NASA Technical Reports Server (NTRS)
Hueschen, Richard M.; Knox, Charles E.
1994-01-01
A joint NASA/FAA flight test has been made to record instrument landing system (ILS) localizer receiver signals for use in mathematically modeling the ILS localizer for future simulation studies and airplane flight tracking tasks. The flight test was conducted on a portion of the ILS localizer installed on runway 25L at the Los Angeles International Airport. The tests covered the range from 10 to 32 n.mi. from the localizer antenna. Precision radar tracking information was compared with the recorded localizer deviation data. Data analysis showed that the ILS signal centerline was offset to the left of runway centerline by 0.071 degrees and that no significant bends existed on the localizer beam. Suggested simulation models for the ILS localizer are formed from a statistical analysis.
2014-01-01
Introduction Post-traumatic arthritis (PTA) is a progressive, degenerative response to joint injury, such as articular fracture. The pro-inflammatory cytokines, interleukin 1(IL-1) and tumor necrosis factor alpha (TNF-α), are acutely elevated following joint injury and remain elevated for prolonged periods post-injury. To investigate the role of local and systemic inflammation in the development of post-traumatic arthritis, we targeted both the initial acute local inflammatory response and a prolonged 4 week systemic inflammatory response by inhibiting IL-1 or TNF-α following articular fracture in the mouse knee. Methods Anti-cytokine agents, IL-1 receptor antagonist (IL-1Ra) or soluble TNF receptor II (sTNFRII), were administered either locally via an acute intra-articular injection or systemically for a prolonged 4 week period following articular fracture of the knee in C57BL/6 mice. The severity of arthritis was then assessed at 8 weeks post-injury in joint tissues via histology and micro computed tomography, and systemic and local biomarkers were assessed in serum and synovial fluid. Results Intra-articular inhibition of IL-1 significantly reduced cartilage degeneration, synovial inflammation, and did not alter bone morphology following articular fracture. However, systemic inhibition of IL-1, and local or systemic inhibition of TNF provided no benefit or conversely led to increased arthritic changes in the joint tissues. Conclusion These results show that intra-articular IL-1, rather than TNF-α, plays a critical role in the acute inflammatory phase of joint injury and can be inhibited locally to reduce post-traumatic arthritis following a closed articular fracture. Targeted local inhibition of IL-1 following joint injury may represent a novel treatment option for PTA. PMID:24964765
Local Inflammation in Fracture Hematoma: Results from a Combined Trauma Model in Pigs
Horst, K.; Eschbach, D.; Pfeifer, R.; Hübenthal, S.; Sassen, M.; Steinfeldt, T.; Wulf, H.; Ruchholtz, S.; Pape, H. C.; Hildebrand, F.
2015-01-01
Background. Previous studies showed significant interaction between the local and systemic inflammatory response after severe trauma in small animal models. The purpose of this study was to establish a new combined trauma model in pigs to investigate fracture-associated local inflammation and gain information about the early inflammatory stages after polytrauma. Material and Methods. Combined trauma consisted of tibial fracture, lung contusion, liver laceration, and controlled hemorrhage. Animals were mechanically ventilated and under ICU-monitoring for 48 h. Blood and fracture hematoma samples were collected during the time course of the study. Local and systemic levels of serum cytokines and diverse alarmins were measured by ELISA kit. Results. A statistical significant difference in the systemic serum values of IL-6 and HMGB1 was observed when compared to the sham. Moreover, there was a statistical significant difference in the serum values of the fracture hematoma of IL-6, IL-8, IL-10, and HMGB1 when compared to the systemic inflammatory response. However a decrease of local proinflammatory concentrations was observed while anti-inflammatory mediators increased. Conclusion. Our data showed a time-dependent activation of the local and systemic inflammatory response. Indeed it is the first study focusing on the local and systemic inflammatory response to multiple-trauma in a large animal model. PMID:25694748
Santos, Joao Manuel; Havunen, Riikka; Siurala, Mikko; Cervera-Carrascon, Víctor; Tähtinen, Siri; Sorsa, Suvi; Anttila, Marjukka; Karell, Pauliina; Kanerva, Anna; Hemminki, Akseli
2017-10-01
Systemic high dose interleukin-2 (IL-2) postconditioning has long been utilized in boosting the efficacy of T cells in adoptive cell therapy (ACT) of solid tumors. The resulting severe off-target toxicity of these regimens renders local production at the tumor an attractive concept with possible safety gains. We evaluated the efficacy and safety of intratumorally administered IL-2-coding adenoviruses in combination with tumor-infiltrating lymphocyte therapy in syngeneic Syrian hamsters bearing HapT1 pancreatic tumors and with T cell receptor transgenic ACT in B16.OVA melanoma bearing C57BL/6 mice. The models are complementary: hamsters are semi-permissive for human oncolytic adenovirus, whereas detailed immunological analyses are possible in mice. In both models, local production of IL-2 successfully replaced the need for systemic recombinant IL-2 (rIL-2) administration and increased the efficacy of the cell therapy. Furthermore, vectored delivery of IL-2 significantly enhanced the infiltration of CD8+ T cells, M1-like macrophages, and B-cells while systemic rIL-2 increased CD25 + FoxP3+ T cells at the tumor. In contrast with vectored delivery, histopathological analysis of systemic rIL-2-treated animals revealed significant changes in lungs, livers, hearts, spleens, and kidneys. In summary, local IL-2 production results in efficacy and safety gains in the context of ACT. These preclinical assessments provide the rationale for ongoing clinical translation. © 2017 UICC.
DOT National Transportation Integrated Search
1974-08-01
The Transportation Systems Center (TSC) ILS Localizer Performance Prediction Model was used to predict the derogation to an Alford 1B Localizer caused by vehicular traffic traveling on a roadway to be located in front of the localizer. Several differ...
Dysfunctional stress responses in chronic pain.
Woda, Alain; Picard, Pascale; Dutheil, Frédéric
2016-09-01
Many dysfunctional and chronic pain conditions overlap. This review describes the different modes of chronic deregulation of the adaptive response to stress which may be a common factor for these conditions. Several types of dysfunction can be identified within the hypothalamo-pituitary-adrenal axis: basal hypercortisolism, hyper-reactivity, basal hypocortisolism and hypo-reactivity. Neuroactive steroid synthesis is another component of the adaptive response to stress. Dehydroepiandrosterone (DHEA) and its sulfated form DHEA-S, and progesterone and its derivatives are synthetized in cutaneous, nervous, and adipose cells. They are neuroactive factors that act locally. They may have a role in the localization of the symptoms and their levels can vary both in the central nervous system and in the periphery. Persistent changes in neuroactive steroid levels or precursors can induce localized neurodegeneration. The autonomic nervous system is another component of the stress response. Its dysfunction in chronic stress responses can be expressed by decreased basal parasympathethic activity, increased basal sympathetic activity or sympathetic hyporeactivity to a stressful stimulus. The immune and genetic systems also participate. The helper-T cells Th1 secrete pro-inflammatory cytokines such as IL-1-β, IL-2, IL-6, IL-8, IL-12, IFN-γ, and TNF-α, whereas Th2 secrete anti-inflammatory cytokines: IL-4, IL-10, IGF-10, IL-13. Chronic deregulation of the Th1/Th2 balance can occur in favor of anti- or pro-inflammatory direction, locally or systemically. Individual vulnerability to stress can be due to environmental factors but can also be genetically influenced. Genetic polymorphisms and epigenetics are the main keys to understanding the influence of genetics on the response of individuals to constraints. Copyright © 2016 Elsevier Ltd. All rights reserved.
Monsanto, Stephany P; Edwards, Andrew K; Zhou, Juhua; Nagarkatti, Prakash; Nagarkatti, Mitzi; Young, Steven L; Lessey, Bruce A; Tayade, Chandrakant
2016-04-01
To determine the impact of endometriotic lesion removal on local and systemic inflammation. Multiplex cytokine analysis on samples from endometriosis patients before surgery, 2 weeks after surgery, and 3 months after surgery. Academic teaching hospital and university. A total of 43 endometriosis patients before and after excision of lesions by means of laparoscopic surgery, and 25 normal women. None. Plasma, eutopic and ectopic tissue, and peritoneal fluid cytokine levels. Compared with presurgery plasma samples, levels of granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin (IL) 2, IL-8, and IL-10 decreased significantly by 2 weeks after surgery in endometriosis patients. Interestingly, levels began to rise at 3 months after surgery in most cases. In tissue, levels of GM-CSF and IL-15 were lower in eutopic tissue, while levels of basic fibroblast growth factor, interferon-inducible protein 10, IL-1 receptor antagonist, granulocyte colony-stimulating factor, macrophage inflammatory protein 1β, IL-7, and IL-5 were higher in eutopic than in ectopic tissue. In peritoneal fluid, levels of IL-5 and IL-12 were higher in early versus advanced stages of endometriosis. Compared with normal women, plasma from endometriosis patients had higher levels of inflammatory cytokines. Endometriotic lesion removal significantly alters the inflammatory profile both locally and systemically in women with endometriosis. Our findings indicate that ectopic lesions are the major drivers of systemic inflammation in endometriosis. The transitory nature of the change may reflect the recurrence of the condition and the influence of systemic factors in its onset. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Monsanto, Stephany P.; Edwards, Andrew K.; Zhou, Juhua; Nagarkatti, Prakash; Nagarkatti, Mitzi; Young, Steven L.; Lessey, Bruce A.; Tayade, Chandrakant
2016-01-01
Objective To determine the impact of endometriotic lesion removal on local and systemic inflammation. Design Multiplex cytokine analysis on samples from endometriosis patients before surgery, 2 weeks after surgery, and 3 months after surgery. Setting Academic teaching hospital and university. Patient(s) A total of 43 endometriosis patients before and after excision of lesions by means of laparoscopic surgery, and 25 normal women. Intervention(s) None. Main Outcome Measure(s) Plasma, eutopic and ectopic tissue, and peritoneal fluid cytokine levels. Result(s) Compared with presurgery plasma samples, levels of granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin (IL) 2, IL-8, and IL-10 decreased significantly by 2 weeks after surgery in endometriosis patients. Interestingly, levels began to rise at 3 months after surgery in most cases. In tissue, levels of GM-CSF and IL-15 were lower in eutopic tissue, while levels of basic fibroblast growth factor, interferon-inducible protein 10, IL-1 receptor antagonist, granulocyte colony–stimulating factor, macrophage inflammatory protein 1β, IL-7, and IL-5 were higher in eutopic than in ectopic tissue. In peritoneal fluid, levels of IL-5 and IL-12 were higher in early versus advanced stages of endometriosis. Compared with normal women, plasma from endometriosis patients had higher levels of inflammatory cytokines. Conclusion(s) Endometriotic lesion removal significantly alters the inflammatory profile both locally and systemically in women with endometriosis. Our findings indicate that ectopic lesions are the major drivers of systemic inflammation in endometriosis. The transitory nature of the change may reflect the recurrence of the condition and the influence of systemic factors in its onset. PMID:26698677
Instrument Landing System performance prediction
DOT National Transportation Integrated Search
1974-01-01
Further achievements made in fiscal year 1973 on the development : of an Instrument Landing System (ILS) performance prediction model : are reported. These include (ILS) localizer scattering from generalized : slanted rectangular, triangular and cyli...
ILS Localizer Performance Study for Dallas/Fort Worth Airport, Part 2
DOT National Transportation Integrated Search
1974-02-01
The Transportation Systems Center electromagnetic scattering model was used to predict the course deviation indication (CDI) at the Dallas/Fort Worth Airport in the presence of several derogating structures in the report FAA-RD-72-96 'ILS Localizer P...
Tissue specific distribution of iNKT cells impacts their cytokine response
Lee, You Jeong; Wang, Haiguang; Starrett, Gabriel J.; Phuong, Vanessa; Jameson, Stephen C.; Hogquist, Kristin A.
2015-01-01
Summary Three subsets of invariant natural killer T (iNKT) cells have been identified, NKT1, NKT2 and NKT17, which produce distinct cytokines when stimulated, but little is known about their localization. Here, we have defined the anatomic localization and systemic distribution of these subsets and measured their cytokine production. Thymic NKT2 cells that produced interleukin-4 (IL-4) at steady state were located in the medulla and conditioned medullary thymocytes. NKT2 cells were abundant in the mesenteric lymph node (LN) of BALB/c mice and produced IL-4 in the T cell zone that conditioned other lymphocytes. Intravenous injection of α-galactosylceramide activated NKT1 cells with vascular access, but not LN or thymic NKT cells, resulting in systemic interferon-γ and IL-4 production, while oral α-galactosylceramide activated NKT2 cells in the mesenteric LN, resulting in local IL-4 release. These finding indicate that the localization of iNKT cells governs their cytokine response both at steady state and upon activation. PMID:26362265
Of Inflammasomes and Alarmins: IL-1β and IL-1α in Kidney Disease
2016-01-01
Kidney injury implies danger signaling and a response by the immune system. The inflammasome is a central danger recognition platform that triggers local and systemic inflammation. In immune cells, inflammasome activation causes the release of mature IL-1β and of the alarmin IL-1α. Dying cells release IL-1α also, independently of the inflammasome. Both IL-1α and IL-1β ligate the same IL-1 receptor (IL-1R) that is present on nearly all cells inside and outside the kidney, further amplifying cytokine and chemokine release. Thus, the inflammasome-IL-1α/IL-β-IL-1R system is a central element of kidney inflammation and the systemic consequences. Seminal discoveries of recent years have expanded this central paradigm of inflammation. This review gives an overview of arising concepts of inflammasome and IL-1α/β regulation in renal cells and in experimental kidney disease models. There is a pipeline of compounds that can interfere with the inflammasome-IL-1α/IL-β-IL-1R system, ranging from recently described small molecule inhibitors of NLRP3, a component of the inflammasome complex, to regulatory agency–approved IL-1–neutralizing biologic drugs. Based on strong theoretic and experimental rationale, the potential therapeutic benefits of using such compounds to block the inflammasome-IL-1α/IL-β-IL-1R system in kidney disease should be further explored. PMID:27516236
Myocardial pressure overload induces systemic inflammation through endothelial cell IL-33
Chen, Wei-Yu; Hong, Jaewoo; Gannon, Joseph; Kakkar, Rahul; Lee, Richard T.
2015-01-01
Hypertension increases the pressure load on the heart and is associated with a poorly understood chronic systemic inflammatory state. Interleukin 33 (IL-33) binds to membrane-bound ST2 (ST2L) and has antihypertrophic and antifibrotic effects in the myocardium. In contrast, soluble ST2 appears to act as a decoy receptor for IL-33, blocking myocardial and vascular benefits, and is a prognostic biomarker in patients with cardiovascular diseases. Here we report that a highly local intramyocardial IL-33/ST2 conversation regulates the heart’s response to pressure overload. Either endothelial-specific deletion of IL33 or cardiomyocyte-specific deletion of ST2 exacerbated cardiac hypertrophy with pressure overload. Furthermore, pressure overload induced systemic circulating IL-33 as well as systemic circulating IL-13 and TGF-beta1; this was abolished by endothelial-specific deletion of IL33 but not by cardiomyocyte-specific deletion of IL33. Our study reveals that endothelial cell secretion of IL-33 is crucial for translating myocardial pressure overload into a selective systemic inflammatory response. PMID:25941360
Interleukin-2: Old and New Approaches to Enhance Immune-Therapeutic Efficacy.
Dhupkar, Pooja; Gordon, Nancy
2017-01-01
Interleukin-2 (IL-2) is a very well-known cytokine that has been studied for the past 35 years. It plays a major role in the growth and proliferation of many immune cells such NK and T cells. It is an important immunotherapy cytokine for the treatment of various diseases including cancer. Systemic delivery of IL-2 has shown clinical benefit in renal cell carcinoma and melanoma patients. However, its use has been limited by the numerous toxicities encountered with the systemic delivery. Intravenous IL-2 causes the well-known "capillary leak syndrome," or the leakage of fluid from the circulatory system to the interstitial space resulting in hypotension (low blood pressure), edema, and dyspnea that can lead to circulatory shock and eventually cardiopulmonary collapse and multiple organ failure. Due to the toxicities associated with systemic IL-2, an aerosolized delivery approach has been developed, which enables localized delivery and a higher local immune cell activation. Since proteins are absorbed via pulmonary lymphatics, after aerosol deposition in the lung, aerosol delivery provides a means to more specifically target IL-2 to the local immune system in the lungs with less systemic effects. Its benefits have extended to diseases other than cancer. Delivery of IL-2 via aerosol or as nebulized IL-2 liposomes has been previously shown to have less toxicity and higher efficacy against sarcoma lung metastases. Dogs with cancer provided a highly relevant means to determine biodistribution of aerosolized IL-2 and IL-2 liposomes. However, efficacy of single-agent IL-2 is limited. As in general, for most immune-therapies, its effect is more beneficial in the face of minimal residual disease. To overcome this limitation, combination therapies using aerosol IL-2 with adoptive transfer of T cells or NK cells have emerged.Using a human osteosarcoma (OS) mouse model, we have demonstrated the efficacy of single-agent aerosol IL-2 and combination therapy aerosol IL-2 and NK cells or aerosol IL-2 and interleukin 11 receptor alpha-directed chimeric antigen receptor-T cells (IL-11 receptor α CAR-T cells) against OS pulmonary metastases. Combination therapy resulted in a better therapeutic effect. A Phase-I trial of aerosol IL-2 was done in Europe and proved to be safe. Others and our preclinical studies provided the basis for the development of a Phase-I aerosol IL-2 trial in our institution to include younger patients with lung metastases. OS, our disease of interest, has a peak incidence in the adolescent and young adult years. Our goal is to complete this trial in the next 2 years.In this chapter, we summarize the different effects of IL-2 and cover the advantages of the aerosol delivery route for diseases of the lung with an emphasis on some of our most recent work using combination therapy aerosol IL-2 and NK cells for the treatment of OS lung metastases.
Rossowska, Joanna; Anger, Natalia; Szczygieł, Agnieszka; Mierzejewska, Jagoda; Pajtasz-Piasecka, Elżbieta
2018-06-28
The excessive amounts of immunosuppressive factors present in a tumor microenvironment (TME) reduce the effectiveness of cancer vaccines. The main objective of our research was to improve the effectiveness of dendritic cell (DC)-based immunotherapy or chemoimmunotherapy composed of cyclophosphamide (CY) and DCs by application of lentivectors encoding shRNA specific to IL-10 (shIL10 LVs) in murine colon carcinoma MC38 model. The efficacy of shIL10 LVs in silencing of IL-10 expression was measured both in vitro and in vivo using Real-Time PCR and ELISA assays. In addition, the influence of intratumorally inoculated lentivectors on MC38 tumor microenvironment was examined using flow cytometry method. The effect of applied therapeutic schemes was determined by measurement of tumor growth inhibition and activation state of local and systemic immune response. We observed that intratumorally inoculated shIL10 LVs transduced tumor and TME-infiltrating cells and reduced the secretion of IL-10. Application of shIL10 LVs for three consecutive weeks initiated tumor growth inhibition, whereas treatment with shIL10 LVs and BMDC/TAg did not enhance the antitumor effect. However, when pretreatment with CY was introduced to the proposed scheme, we noticed high MC38 tumor growth inhibition accompanied by reduction of MDSCs and Tregs in TME, as well as activation of potent local and systemic Th1-type antitumor response. The obtained data shows that remodeling of TME by shIL10 LVs and CY enhances DC activity and supports them during regeneration and actuation of a potent antitumor response. Therefore, therapeutic strategies aimed at local IL-10 elimination using lentiviral vectors should be further investigated in context of combined chemoimmunotherapies.
Induction of IL-1, in the testes of adult mice, following subcutaneous administration of turpentine.
Elhija, Mahmoud Abu; Lunenfeld, Eitan; Huleihel, Mahmoud
2006-02-01
Interleukin-1 family is present in the testicular homogenates and its cellular compartments. It has been suggested that IL-1 is involved in physiological and pathological functions of the testicular tissues. In the present study we examined the effect of acute mostly localized inflammation, using turpentine, on the expression levels of testicular IL-1 system. Mice were subcutaneously injected with steam-distilled turpentine or saline (control). Three hours to 10 days following the injection, mice were killed and testis and spleen were homogenized and examined for interleukin (IL)-1alpha, IL-1beta, and IL-1 receptor antagonist (IL-1ra) levels by enzyme-linked immunosorbent assay and polymerase chain reaction. Subcutaneous injection of turpentine induced mice systemic inflammation, as indicated by significant increase in serum IL-1beta levels, and IL-1alpha, IL-1beta and IL-1ra in spleen homogenates. The levels of IL-1alpha, IL-1beta and IL-1ra were significantly induced in testicular homogenates of adult mice following subcutaneous injection of turpentine. The significant induction of testicular IL-1alpha was detected after 3-24 hr of turpentine injection and decreased later (after 3-10 days) to levels similar to the control. However, significant induction of testicular IL-1beta was detected only after 3-10 days of turpentine injection, and for testicular IL-1ra levels was detected after 3 hr to 6 days of turpentine injection, and after 10 days the levels were similar to the control. These results were also confirmed by mRNA expression of these factors. Our results demonstrate for the first time the distant effect of acute localized inflammation on testicular IL-1 levels. Thus, transient inflammatory response to infectious/inflammatory agents at non-testicular sites that elicit systemic IL-1 response should be considered during clinical treatment as a possible factor of male infertility.
Alessandrini, Francesca; Fuchs, Helmut; Gailus-Durner, Valerie; Hrabě de Angelis, Martin; Russkamp, Dennis; Chaker, Adam; Ollert, Markus; Gutermuth, Jan; Schmidt-Weber, Carsten B.
2017-01-01
Background Allergen-specific immunotherapy (AIT) is the only curative treatment for type-1 allergies, but sometimes shows limited therapeutic response as well as local and systemic side effects. Limited control of local inflammation and patient symptoms hampers its widespread use in severe allergic asthma. Objective Our aim was to evaluate whether AIT is more effective in suppression of local inflammation if performed under the umbrella of short-term non-specific immunomodulation using a small molecule inhibitor of JAK pathways. Methods In C57BL/6J mice, a model of ovalbumin (OVA)-induced allergic airway inflammation and allergen-specific immunotherapy was combined with the administration of Tofacitinib (TOFA, a FDA-approved JAK inhibitor) from 48 hours prior to 48 hours after therapeutic OVA-injection. The effect of TOFA on human FOXP3+CD4+ T cells was studied in vitro. Results AIT combined with short-term TOFA administration was significantly more effective in suppressing total cell and eosinophil infiltration into the lung, local cytokine production including IL-1β and CXCL1 and showed a trend for the reduction of IL-4, IL-13, TNF-α and IL-6 compared to AIT alone. Furthermore, TOFA co-administration significantly reduced systemic IL-6, IL-1β and OVA-specific IgE levels and induced IgG1 to the same extent as AIT alone. Additionally, TOFA enhanced the induction of human FOXP3+CD4+ T cells. Conclusions This proof of concept study shows that JAK inhibition did not inhibit tolerance induction, but improved experimental AIT at the level of local inflammation. The improved control of local inflammation might extend the use of AIT in more severe conditions such as polyallergy, asthma and high-risk patients suffering from mastocytosis or anaphylaxis. PMID:28570653
Aguilar-Pimentel, Antonio; Graessel, Anke; Alessandrini, Francesca; Fuchs, Helmut; Gailus-Durner, Valerie; Hrabě de Angelis, Martin; Russkamp, Dennis; Chaker, Adam; Ollert, Markus; Blank, Simon; Gutermuth, Jan; Schmidt-Weber, Carsten B
2017-01-01
Allergen-specific immunotherapy (AIT) is the only curative treatment for type-1 allergies, but sometimes shows limited therapeutic response as well as local and systemic side effects. Limited control of local inflammation and patient symptoms hampers its widespread use in severe allergic asthma. Our aim was to evaluate whether AIT is more effective in suppression of local inflammation if performed under the umbrella of short-term non-specific immunomodulation using a small molecule inhibitor of JAK pathways. In C57BL/6J mice, a model of ovalbumin (OVA)-induced allergic airway inflammation and allergen-specific immunotherapy was combined with the administration of Tofacitinib (TOFA, a FDA-approved JAK inhibitor) from 48 hours prior to 48 hours after therapeutic OVA-injection. The effect of TOFA on human FOXP3+CD4+ T cells was studied in vitro. AIT combined with short-term TOFA administration was significantly more effective in suppressing total cell and eosinophil infiltration into the lung, local cytokine production including IL-1β and CXCL1 and showed a trend for the reduction of IL-4, IL-13, TNF-α and IL-6 compared to AIT alone. Furthermore, TOFA co-administration significantly reduced systemic IL-6, IL-1β and OVA-specific IgE levels and induced IgG1 to the same extent as AIT alone. Additionally, TOFA enhanced the induction of human FOXP3+CD4+ T cells. This proof of concept study shows that JAK inhibition did not inhibit tolerance induction, but improved experimental AIT at the level of local inflammation. The improved control of local inflammation might extend the use of AIT in more severe conditions such as polyallergy, asthma and high-risk patients suffering from mastocytosis or anaphylaxis.
Engulfing tumors with synthetic extracellular matrices for cancer immunotherapy.
Hori, Yuki; Stern, Patrick J; Hynes, Richard O; Irvine, Darrell J
2009-12-01
Local immunotherapies are under investigation for the treatment of unresectable tumors and sites of solid tumor resection to prevent local recurrence. Successful local therapy could also theoretically elicit systemic immune responses against cancer. Here we explored the delivery of therapeutic dendritic cells (DCs), cytokines, or other immunostimulatory factors to tumors via the use of 'self-gelling' hydrogels based on the polysaccharide alginate, injected peritumorally around established melanoma lesions. Peritumoral injection of alginate matrices loaded with DCs and/or an interleukin-15 superagonist (IL-15SA) around 14-day established ova-expressing B16F0 murine melanoma tumors promoted immune cell accumulation in the peritumoral matrix, and matrix infiltration correlated with tumor infiltration by leukocytes. Single injections of IL-15SA-carrying gels concentrated the cytokine in the tumor site approximately 40-fold compared to systemic injection and enabled a majority of treated animals to suppress tumor growth for a week or more. Further, we found that single injections of alginate matrices loaded with IL-15SA and the Toll-like receptor ligand CpG or two injections of gels carrying IL-15SA alone could elicit comparable anti-tumor activity without the need for exogenous DCs. Thus, injectable alginate gels offer an attractive platform for local tumor immunotherapy, and facilitate combinatorial treatments designed to promote immune responses locally at a tumor site while limiting systemic exposure to potent immunomodulatory factors.
Time-Dependent Effects of Localized Inflammation on Peripheral Clock Gene Expression in Rats
Westfall, Susan; Aguilar-Valles, Argel; Mongrain, Valérie; Luheshi, Giamal N.; Cermakian, Nicolas
2013-01-01
Many aspects of the immune system, including circulating cytokine levels as well as counts and function of various immune cell types, present circadian rhythms. Notably, the mortality rate of animals subjected to high doses of lipopolysaccharide is dependent on the time of treatment. In addition, the severity of symptoms of various inflammatory conditions follows a daily rhythmic pattern. The mechanisms behind the crosstalk between the circadian and immune systems remain elusive. Here we demonstrate that localized inflammation induced by turpentine oil (TURP) causes a time-dependent induction of interleukin (IL)-6 and has time-, gene- and tissue-specific effects on clock gene expression. More precisely, TURP blunts the peak of Per1 and Per2 expression in the liver while in other tissues, the expression nadir is elevated. In contrast, Rev-erbα expression remains relatively unaffected by TURP treatment. Co-treatment with the anti-inflammatory agent IL-1 receptor antagonist (IL-1Ra) did not alter the response of Per2 to TURP treatment in liver, despite the reduced induction of fever and IL-6 serum levels. This indicates that the TURP-mediated changes of Per2 in the liver might be due to factors other than systemic IL-6 and fever. Accordingly, IL-6 treatment had no effect on clock gene expression in HepG2 liver carcinoma cells. Altogether, we show that localized inflammation causes significant time-dependent changes in peripheral circadian clock gene expression, via a mechanism likely involving mediators independent from IL-6 and fever. PMID:23527270
Gunjiganur Vemanaradhya, Gayathri; Emani, Shilpa; Mehta, Dhoom Singh; Bhandari, Shilpy
2017-10-01
The present study was carried out to evaluate the effect of 1.2% simvastatin gel as local drug delivery (LDD) system on Gingival Crevicular Fluid (GCF) Interleukin -6 (IL-6) and Interleukin-8 (IL-8) levels in chronic periodontitis patients, in addition to scaling and root planing (SRP). A total of 46 chronic periodontitis patients were equally divided into two groups. Group I patients were treated by SRP; Group II patients were treated by SRP followed by LDD of 1.2% simvastatin (SMV) gel. Plaque index (PI), Gingival index(GI), Sulcus Bleeding Index (SBI), Probing pocket depth (PPD) and Relative clinical attachment level (CAL) were recorded & GCF samples were collected at baseline (0day) and at 45th day from both the groups. The collected GCF samples were analysed for IL-6 and IL-8 levels with enzyme-linked immunosorbent assay (ELISA). Both the groups showed significant reduction in all the clinical parameters scores and IL-6 and IL-8 levels after non-surgical periodontal therapy (SRP for group I/SRP+1.2% SMV gel for group II) in contrast to baseline values. However, a greater reduction was observed in group II. A non-significant positive correlation was observed between clinical parameters and IL-6 and IL-8 levels except at baseline, a significant correlation was observed between PPD &IL 6 levels in group II. In adjunct to SRP, 1.2% Simvastatin gel acts as an effective local drug delivery agent for the management of chronic periodontitis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kulkarni, Yogesh M.; Chambers, Emily; McGray, A. J. Robert; Ware, Jason S.; Bramson, Jonathan L.
2012-01-01
Interleukin-12 (IL12) enhances anti-tumor immunity when delivered to the tumor microenvironment. However, local immunoregulatory elements dampen the efficacy of IL12. The identity of these local mechanisms used by tumors to suppress immunosurveillance represents a key knowledge gap for improving tumor immunotherapy. From a systems perspective, local suppression of anti-tumor immunity is a closed-loop system - where system response is determined by an unknown combination of external inputs and local cellular cross-talk. Here, we recreated this closed-loop system in vitro and combined quantitative high content assays, in silico model-based inference, and a proteomic workflow to identify the biochemical cues responsible for immunosuppression. Following an induction period, the B16 melanoma cell model, a transplantable model for spontaneous malignant melanoma, inhibited the response of a T helper cell model to IL12. This paracrine effect was not explained by induction of apoptosis or creation of a cytokine sink, despite both mechanisms present within the co-culture assay. Tumor-derived Wnt-inducible signaling protein-1 (WISP-1) was identified to exert paracrine action on immune cells by inhibiting their response to IL12. Moreover, WISP-1 was expressed in vivo following intradermal challenge with B16F10 cells and was inferred to be expressed at the tumor periphery. Collectively, the data suggest that (1) biochemical cues associated with epithelial-to-mesenchymal transition can shape anti-tumor immunity through paracrine action and (2) remnants of the immunoselective pressure associated with evolution in cancer include both sculpting of tumor antigens and expression of proteins that proactively shape anti-tumor immunity. PMID:22777646
Workers’ cytokines profiling upon exposure to MWCNT aerosol in occupational settings
NASA Astrophysics Data System (ADS)
Fatkhutdinova, L. M.; Khaliullin, T. O.; Zalyalov, R. R.; Vasilyeva, O. L.; Valeeva, I. Kh; Mustafin, I. G.
2015-11-01
Recent studies have found that upon pulmonary exposure to multi-walled carbon nanotubes (MWCNTs) animals develop primarily fibrosis and granulomas in lungs. In vitro and in vivo studies also give reason to assume that local exposure could be related to remote effects, including immune system and the endothelium. To investigate the remote effect hypothesis, we have analyzed blood, nasal lavage and induced sputum samples taken from workers in the frame of the Russian epidemiological study on Carbon Nanotubes Exposure and Risk Assessment (CNT-ERA). In serum and nasal lavage no significant differences between exposure and control groups were observed with a high variability to the cytokines content. In the samples of induced sputum from exposed workers the content of IL-1b, IL-6, IL-8, TNF-a, IL-4, IL-5, IFN-g exceeded the control group values, but after the regression models construction and bootstrap analysis, significant differences were found only for IL-1b. This study could not provide evidences of blood cytokines changes following local cytokine production in airways in workers exposed to MWCNTs. Cytokines variability in serum and nasal lavage may indicate the absence of severe systemic inflammatory response upon the existing occupational exposure to MWCNTs. Other systemic responses (including allergy-like or autoimmune reactions) should be regarded as well.
Regoli, Mari; Man, Angela; Gicheva, Nadhezda; Dumont, Antonio; Ivory, Kamal; Pacini, Alessandra; Morucci, Gabriele; Branca, Jacopo J V; Lucattelli, Monica; Santosuosso, Ugo; Narbad, Arjan; Gulisano, Massimo; Bertelli, Eugenio; Nicoletti, Claudio
2018-01-01
Interaction between intestinal epithelial cells (IECs) and the underlying immune systems is critical for maintaining intestinal immune homeostasis and mounting appropriate immune responses. We have previously showed that the T helper type 1 (T H 1) cytokine IL-12 plays a key role in the delicate immunological balance in the gut and the lack of appropriate levels of IL-12 had important consequences for health and disease, particularly with regard to food allergy. Here, we sought to understand the role of IL-12 in the regulation of lymphoepithelial cross talk and how this interaction affects immune responses locally and systemically. Using a combination of microscopy and flow cytometry techniques we observed that freshly isolated IECs expressed an incomplete, yet functional IL-12 receptor (IL-12R) formed solely by the IL-12Rβ2 chain that albeit the lack of the complementary IL-12β1 chain responded to ex vivo challenge with IL-12. Furthermore, the expression of IL-12Rβ2 on IECs is strategically located at the interface between epithelial and immune cells of the lamina propria and using in vitro coculture models and primary intestinal organoids we showed that immune-derived signals were required for the expression of IL-12Rβ2 on IECs. The biological relevance of the IEC-associated IL-12Rβ2 was assessed in vivo in a mouse model of food allergy characterized by allergy-associated diminished intestinal levels of IL-12 and in chimeric mice that lack the IL-12Rβ2 chain on IECs. These experimental models enabled us to show that the antiallergic properties of orally delivered recombinant Lactococcus lactis secreting bioactive IL-12 (rLc-IL12) were reduced in mice lacking the IL-12β2 chain on IECs. Finally, we observed that the oral delivery of IL-12 was accompanied by the downregulation of the production of the IEC-derived proallergic cytokine thymic stromal lymphopoietin (TSLP). However, further analysis of intestinal levels of TSLP in IL-12Rβ2 -/- mice suggested that this event was not directly linked to the IEC-associated IL-12Rβ2 chain. We interpreted these data as showing that IEC-associated IL12Rβ2 is a component of the cytokine network operating at the interface between the intestinal epithelium and immune system that plays a role in immune regulation.
Systemic siRNA Nanoparticle-Based Drugs Combined with Radiofrequency Ablation for Cancer Therapy
Ahmed, Muneeb; Kumar, Gaurav; Navarro, Gemma; Wang, Yuanguo; Gourevitch, Svetlana; Moussa, Marwan H.; Rozenblum, Nir; Levchenko, Tatyana; Galun, Eithan; Torchilin, Vladimir P.; Goldberg, S. Nahum
2015-01-01
Purpose Radiofrequency thermal ablation (RFA) of hepatic and renal tumors can be accompanied by non-desired tumorigenesis in residual, untreated tumor. Here, we studied the use of micelle-encapsulated siRNA to suppress IL-6-mediated local and systemic secondary effects of RFA. Methods We compared standardized hepatic or renal RFA (laparotomy, 1 cm active tip at 70±2°C for 5 min) and sham procedures without and with administration of 150nm micelle-like nanoparticle (MNP) anti-IL6 siRNA (DOPE-PEI conjugates, single IP dose 15 min post-RFA, C57Bl mouse:3.5 ug/100ml, Fisher 344 rat: 20ug/200ul), RFA/scrambled siRNA, and RFA/empty MNPs. Outcome measures included: local periablational cellular infiltration (α-SMA+ stellate cells), regional hepatocyte proliferation, serum/tissue IL-6 and VEGF levels at 6-72hr, and distant tumor growth, tumor proliferation (Ki-67) and microvascular density (MVD, CD34) in subcutaneous R3230 and MATBIII breast adenocarcinoma models at 7 days. Results For liver RFA, adjuvant MNP anti-IL6 siRNA reduced RFA-induced increases in tissue IL-6 levels, α-SMA+ stellate cell infiltration, and regional hepatocyte proliferation to baseline (p<0.04, all comparisons). Moreover, adjuvant MNP anti-IL6- siRNA suppressed increased distant tumor growth and Ki-67 observed in R3230 and MATBIII tumors post hepatic RFA (p<0.01). Anti-IL6 siRNA also reduced RFA-induced elevation in VEGF and tumor MVD (p<0.01). Likewise, renal RFA-induced increases in serum IL-6 levels and distant R3230 tumor growth was suppressed with anti-IL6 siRNA (p<0.01). Conclusions Adjuvant nanoparticle-encapsulated siRNA against IL-6 can be used to modulate local and regional effects of hepatic RFA to block potential unwanted pro-oncogenic effects of hepatic or renal RFA on distant tumor. PMID:26154425
Pierce, Joseph R.; Maples, Jill M.
2015-01-01
Animal/cell investigations indicate that there is a decreased adipose tissue mass resulting from skeletal muscle (SkM) IL-15 secretion (e.g., SkM-blood-adipose tissue axis). IL-15 could regulate fat mass accumulation in obesity via lipolysis, although this has not been investigated in humans. Therefore, the purpose was to examine whether SkM and/or subcutaneous adipose tissue (SCAT) IL-15 concentrations were correlated with SCAT lipolysis in lean and obese humans and determine whether IL-15 perfusion could induce lipolysis in human SCAT. Local SkM and abdominal SCAT IL-15 (microdialysis) and circulating IL-15 (blood) were sampled in lean (BMI: 23.1 ± 1.9 kg/m2; n = 10) and obese (BMI: 34.7 ± 3.5 kg/m2; n = 10) subjects at rest/during 1-h cycling exercise. Lipolysis (SCAT interstitial glycerol concentration) was compared against local/systemic IL-15. An additional probe in SCAT was perfused with IL-15 to assess direct lipolytic responses. SkM IL-15 was not different between lean and obese subjects (P = 0.45), whereas SCAT IL-15 was higher in obese vs. lean subjects (P = 0.02) and was correlated with SCAT lipolysis (r = 0.45, P = 0.05). Exercise increased SCAT lipolysis in lean and obese (P < 0.01), but exercise-induced SCAT lipolysis changes were not correlated with exercise-induced SCAT IL-15 changes. Microdialysis perfusion resulting in physiological IL-15 concentrations in the adipose tissue interstitium increased lipolysis in lean (P = 0.04) but suppressed lipolysis in obese (P < 0.01). Although we found no support for a human IL-15 SkM-blood-adipose tissue axis, IL-15 may be produced in/act on the abdominal SCAT depot. The extent to which this autocrine/paracrine IL-15 action regulates human body composition remains unknown. PMID:25921578
Effects of Interleukin 17 on the cardiovascular system.
Robert, Marie; Miossec, Pierre
2017-09-01
Cardiovascular diseases remain the leading cause of death worldwide and account for most of the premature mortality observed in chronic inflammatory diseases. Common mechanisms underlie these two types of disorders, where the contribution of Interleukin (IL)-17A, the founding member of the IL-17 family, is highly suspected. While the local effects of IL-17A in inflammatory disorders have been well described, those on the cardiovascular system remain less studied. This review focuses on the effects of IL-17 on the cardiovascular system both on isolated cells and in vivo. IL-17A acts on vessel and cardiac cells, leading to inflammation, coagulation and thrombosis. In vivo and clinical studies have shown its involvement in the pathogenesis of cardiovascular diseases including atherosclerosis and myocardial infarction that occur prematurely in chronic inflammatory disorders. As new therapeutic approaches are targeting the IL-17 pathway, this review should help to better understand their positive and negative outcomes on the cardio-vascular system. Copyright © 2017 Elsevier B.V. All rights reserved.
Preclinical evaluation of local JAK1 and JAK2 inhibition in cutaneous inflammation.
Fridman, Jordan S; Scherle, Peggy A; Collins, Robert; Burn, Timothy; Neilan, Claire L; Hertel, Denise; Contel, Nancy; Haley, Patrick; Thomas, Beth; Shi, Jack; Collier, Paul; Rodgers, James D; Shepard, Stacey; Metcalf, Brian; Hollis, Gregory; Newton, Robert C; Yeleswaram, Swamy; Friedman, Steven M; Vaddi, Kris
2011-09-01
JAKs are required for signaling initiated by several cytokines (e.g., IL-4, IL-12, IL-23, thymic stromal lymphopoietin (TSLP), and IFNγ) implicated in the pathogenesis of inflammatory skin diseases such as psoriasis and atopic dermatitis (AD). Direct antagonism of cytokines, such as IL-12 and IL-23 using ustekinumab, has proven effective in randomized studies in psoriasis patients. We hypothesized that local inhibition of cytokine signaling using topical administration of INCB018424, a small molecule inhibitor of JAK1 and JAK2, would provide benefit similar to systemic cytokine neutralization. In cellular assays, INCB018424 inhibits cytokine-induced JAK/signal transducers and activators of transcription (STAT) signaling and the resultant production of inflammatory proteins (e.g., IL-17, monocyte chemotactic protein-1, and IL-22) in lymphocytes and monocytes, with half-maximal inhibitory concentration values <100 nM. In vivo, topical application of INCB018424 resulted in suppression of STAT3 phosphorylation, edema, lymphocyte infiltration, and keratinocyte proliferation in a murine contact hypersensitivity model and inhibited tissue inflammation induced by either intradermal IL-23 or TSLP. Topical INCB018424 was also well tolerated in a 28-day safety study in Gottingen minipigs. These results suggest that localized JAK1/JAK2 inhibition may be therapeutic in a range of inflammatory skin disorders such as psoriasis and AD. Clinical evaluation of topical INCB018424 is ongoing.
Bone effects of biologic drugs in rheumatoid arthritis.
Corrado, Addolorata; Neve, Anna; Maruotti, Nicola; Cantatore, Francesco Paolo
2013-01-01
Biologic agents used in the treatment of rheumatoid arthritis (RA) are able to reduce both disease activity and radiographic progression of joint disease. These drugs are directed against several proinflammatory cytokines (TNF α , IL-6, and IL-1) which are involved both in the pathogenesis of chronic inflammation and progression of joint structural damage and in systemic and local bone loss typically observed in RA. However, the role of biologic drugs in preventing bone loss in clinical practice has not yet clearly assessed. Many clinical studies showed a trend to a positive effect of biologic agents in preventing systemic bone loss observed in RA. Although the suppression of inflammation is the main goal in the treatment of RA and the anti-inflammatory effects of biologic drugs exert a positive effect on bone metabolism, the exact relationship between the prevention of bone loss and control of inflammation has not been clearly established, and if the available biologic drugs against TNF α , IL-1, and IL-6 can exert their effect on systemic and local bone loss also through a direct mechanism on bone cell metabolism is still to be clearly defined.
Maekawa, Tomoki; Tabeta, Koichi; Kajita-Okui, Keiko; Nakajima, Takako; Yamazaki, Kazuhisa
2011-11-01
Epidemiological studies have suggested periodontitis as a risk factor for ischemic heart disease. High sensitive C-reactive protein (hs-CRP), a predictor of cardiovascular risk, is elevated in periodontitis patients. Therefore, local infection-induced elevation of systemic CRP could account for the relationship between the 2 diseases. However, the underlying mechanism of CRP production in the periodontal tissues has not been fully elucidated. Therefore, the aim of the present study was to clarify the mechanism of CRP production in periodontal tissues. Gene expression of CRP in gingival biopsies was analysed by quantitative PCR. Human gingival epithelial cells (HGECs), human gingival fibroblasts (HGFBs), and human coronary artery endothelial cells (HCAECs) were characterized for CRP-producing ability by incubating with interleukin (IL)-1β, IL-6, soluble IL-6 receptor (sIL-6R), and Porphyromonas gingivalis strain W83. Gene expression of CRP is significantly elevated in periodontitis lesions compared with gingivitis lesions. HCAECs, but not HGECs and HGFBs, produced CRP in response to IL-6 and IL-1β in the presence of sIL-6R. In contrast to IL-6, the effect of IL-1β on CRP production was indirect via induction of IL-6. IL-1β was produced by HGECs and HGFBs with stimulation of P. gingivalis antigens. These results suggest that CRP induced locally by periodontal infection may play another role in the pathogenesis of periodontal disease, and to a much lesser extent, has the potential to modulate systemic CRP level by extra-hepatic CRP production. Copyright © 2011 Elsevier Ltd. All rights reserved.
The Pathological and Physiological Roles of IL-6 Amplifier Activation
Murakami, Masaaki; Hirano, Toshio
2012-01-01
The NFκB-triggered positive feedback loop for IL-6 signaling in type 1 collagen+ non-immune cells (IL-6 amplifier) was first discovered to be a synergistic signal that is activated following IL-17A and IL-6 stimulation in type 1 collagen+ non-immune cells. Subsequent disease models have shown that it can also be stimulated by the simultaneous activation of NFκB and STAT3, functions as a local chemokine inducer, and acts as a mechanism for local inflammation, particularly chronic ones like rheumatoid arthritis and a multiple sclerosis. Moreover, we have recently shown that hyper activation of the IL-6 amplifier via regional neural activation establishes a gateway for immune cells including autoreactive T cells to pass the blood-brain barrier at dorsal vessels in 5th lumbar cord. Here we review how the IL-6 amplifier is activated by neural activation and the physiological relevance of the gateway to the central nervous system. Accumulating evidences continues to suggest that the IL-6 amplifier offers a potential molecular mechanism for the relationship between neural activation and the development of inflammatory diseases, which could establish a new interdisciplinary field that fuses neurology and immunology. PMID:23136555
Schmittner, M D; Faulhaber, J; Kemler, B; Koenen, W; Thumfart, J O; Weiss, C; Neumaier, M; Beck, G C
2010-12-01
Tumescent local anaesthesia (TLA) with high prilocaine doses leads to formation of methemoglobin (MHb) which is known to be a potent activator of pro-inflammatory endothelial cell response in vitro. As TLA is widely used for large dermatological resections, the aim of this study was to investigate the effects of high prilocaine doses on the systemic inflammatory response in vivo and its clinical relevance. This prospective study examines the influence of MHb on serum interleukin (IL)-6, IL-8 and tumour necrosis tumour necrosis (TNF)-α levels up to 72 h after application of TLA with prilocaine in doses higher than 600 mg. A total of 30 patients received prilocaine in a median dose of 1500 mg (range: 880-4160 mg) for large resections. Peak prilocaine serum concentration was reached 4 h (0.72 ± 0.07 μg/mL), the maximum concentration of MHb (7.43 ± 0.87%) and IL-6 (28.4 ± 4.1 U/L) 12 h after TLA application. TNF-α and IL-8 release were not found significantly increased. Three patients developed MHb concentrations >15%. This clinical study shows for the first time that a high prilocaine serum concentration leads in vivo to elevated systemic levels of IL-6 but not of IL-8 and TNF-α because of initial high MHb levels. Because of possible and unpredictable high MHb concentrations, TLA should only be performed with prilocaine in doses of 2.5 mg/kg. In general, new solutions of TLA are necessary to achieve adequate anaesthesia for large dermatological resections to decrease the risk of methemoglobinaemia. © 2010 The Authors. Journal compilation © 2010 European Academy of Dermatology and Venereology.
B cell–derived IL-6 initiates spontaneous germinal center formation during systemic autoimmunity
Arkatkar, Tanvi
2017-01-01
Recent studies have identified critical roles for B cells in triggering autoimmune germinal centers (GCs) in systemic lupus erythematosus (SLE) and other disorders. The mechanisms whereby B cells facilitate loss of T cell tolerance, however, remain incompletely defined. Activated B cells produce interleukin 6 (IL-6), a proinflammatory cytokine that promotes T follicular helper (TFH) cell differentiation. Although B cell IL-6 production correlates with disease severity in humoral autoimmunity, whether B cell–derived IL-6 is required to trigger autoimmune GCs has not, to our knowledge, been addressed. Here, we report the unexpected finding that a lack of B cell–derived IL-6 abrogates spontaneous GC formation in mouse SLE, resulting in loss of class-switched autoantibodies and protection from systemic autoimmunity. Mechanistically, B cell IL-6 production was enhanced by IFN-γ, consistent with the critical roles for B cell–intrinsic IFN-γ receptor signals in driving autoimmune GC formation. Together, these findings identify a key mechanism whereby B cells drive autoimmunity via local IL-6 production required for TFH differentiation and autoimmune GC formation. PMID:28899868
Synergistic anti-tumor effect of glycosylphosphatidylinositol-anchored IL-2 and IL-12.
Ji, Jianfei; Li, Jinhua; Holmes, Lillia M; Burgin, Kelly E; Yu, Xianzhong; Wagner, Thomas E; Wei, Yanzhang
2004-07-01
Preclinical and clinical studies have demonstrated that interleukin 2 (IL-2), interleukin 12 (IL-12), and some other cytokines, play important roles in activating host immune responses against tumor growth. However, severe side effects caused by systemic high-dose administration of these cytokines limit their clinical application. In our previous study, local high doses of IL-2 were achieved by a GPI-anchoring technology; therefore, it will be interesting to know if this technology works for other cytokines. A fusion gene containing murine IL-12 and the glycosylphosphatidylinositol (GPI) anchor signal sequence was generated and transfected into the murine melanoma tumor cell line B16F0 either alone or together with a vector encoding GPI-anchored IL-2. The GPI-anchored cytokine expression of the selected stable clones was assayed in vitro by ELISA and their anti-tumor effects were analyzed in vivo by tumor lymphocyte infiltration and tumor growth studies. GPI-anchored IL-12 was successfully expressed on the cell surface as indicated by FACS analysis and IL-12 ELISA assay. The GPI-anchored IL-12 enhanced lymphocyte infiltration and significantly inhibited tumor growth. More importantly, when GPI-anchored IL-12 and GPI-anchored IL-2 were co-delivered, a synergistic anti-tumor effect was observed in both subcutaneous and intravenous tumor models. GPI anchorage of cytokines represents a new approach to locally deliver high doses of cytokines without the severe adverse effects normally accompanied with systematic high-dose administration of these cytokines. Copyright 2004 John Wiley & Sons, Ltd.
The role of local and systemic cytokines in patients infected with Clostridium difficile.
Czepiel, J; Biesiada, G; Brzozowski, T; Ptak-Belowska, A; Perucki, W; Birczynska, M; Jurczyszyn, A; Strzalka, M; Targosz, A; Garlicki, A
2014-10-01
It is widely accepted that the pathogenesis of Clostridium difficile infection (CDI) is multifactorial, dependent on pathogen virulence factors produced by the organism as well as disorders of the gastrointestinal tract, the alteration in intestinal flora and the immune response of the host. In particular, the immune response in the course of CDI and the involvement of cytokines in the pathogenesis of CDI is not fully understood. The aim of our study was to evaluate the relationship between proinflammatory and anti-inflammatory cytokines and the course of CDI in vivo. We prospectively studied 80 patients. Our study group included 40 patients aged 30-87 years (mean age 66.9 years) with CDI hospitalized at Infectious Diseases Department and Gastroenterology and Hepatology Clinic, University Hospital in Cracow, and 40 healthy volunteers aged 24-62 years (mean age 51.1 years). The serum concentrations of cytokines IL-1β, IL-6, IL-8, IL-10, tumor necrosis factor (TNF-α), myeloperoxidase (MPO), and prostaglandin E2 (PGE2) were measured using ELISA assays. Additionally, the routine biochemical parameters were assessed including the following: white blood cells with differential leukocyte count, platelets counts, and blood plasma levels of creatinine, alanine transaminase, and C-reactive protein were determined. We noted a significant increase in the concentration of the following cytokines in the CDI group when compared to the control group: IL-1b (4.7 vs. 3.6 pg/ml), IL-6 (21.0 vs. 0.04 pg/ml), IL-10 (8.5 vs. 0.5 pg/ml), TNF-α (7.1 vs. 0.09 pg/ml). In addition the serum concentration of MPO (1056.0 vs. 498.0 pg/ml), and PGE2 (2036.7 vs. 1492.0 pg/ml) showed a significant increase in CDI patients as compared with control subjects. Most CDI patients did not show any increase in the concentration of IL-8. We did observe a direct relationship between TNF-α and creatinine. The course of CDI is characterized by an initial local inflammatory process followed by a systemic inflammatory response, which manifests clinically as fever, and includes leukocytosis, an increase in the level of neutrophils in the blood, and an increase in the serum concentrations of TNF-α, IL-1β, IL-6, IL-10, MPO and PGE2. Despite the leading role of IL-8 in the local inflammatory process, we postulate TNF-α and IL-6 play a key role in the systemic inflammatory response in CDI, and the plasma TNF-α level seems to act as a major factor of poor prognosis in patients with CDI.
Intratumoral immunocytokine treatment results in enhanced antitumor effects.
Johnson, Erik E; Lum, Hillary D; Rakhmilevich, Alexander L; Schmidt, Brian E; Furlong, Meghan; Buhtoiarov, Ilia N; Hank, Jacquelyn A; Raubitschek, Andrew; Colcher, David; Reisfeld, Ralph A; Gillies, Stephen D; Sondel, Paul M
2008-12-01
Immunocytokines (IC), consisting of tumor-specific monoclonal antibodies fused to the immunostimulatory cytokine interleukin 2 (IL2), exert significant antitumor effects in several murine tumor models. We investigated whether intratumoral (IT) administration of IC provided enhanced antitumor effects against subcutaneous tumors. Three unique ICs (huKS-IL2, hu14.18-IL2, and GcT84.66-IL2) were administered systemically or IT to evaluate their antitumor effects against tumors expressing the appropriate IC-targeted tumor antigens. The effect of IT injection of the primary tumor on a distant tumor was also evaluated. Here, we show that IT injection of IC resulted in enhanced antitumor effects against B16-KSA melanoma, NXS2 neuroblastoma, and human M21 melanoma xenografts when compared to intravenous (IV) IC injection. Resolution of both primary and distant subcutaneous tumors and a tumor-specific memory response were demonstrated following IT treatment in immunocompetent mice bearing NXS2 tumors. The IT effect of huKS-IL2 IC was antigen-specific, enhanced compared to IL2 alone, and dose-dependent. Hu14.18-IL2 also showed greater IT effects than IL2 alone. The antitumor effect of IT IC did not always require T cells since IT IC induced antitumor effects against tumors in both SCID and nude mice. Localization studies using radiolabeled (111)In-GcT84.66-IL2 IC confirmed that IT injection resulted in a higher concentration of IC at the tumor site than IV administration. In conclusion, we suggest that IT IC is more effective than IV administration against palpable tumors. Further testing is required to determine how to potentially incorporate IT administration of IC into an antitumor regimen that optimizes local and systemic anticancer therapy.
Special feature for the Olympics: effects of exercise on the immune system: exercise and cytokines.
Pedersen, B K
2000-10-01
Strenuous exercise induces increased levels in a number of pro-inflammatory and anti-inflammatory cytokines, naturally occurring cytokine inhibitors and chemokines. Thus, increased plasma levels of TNF-alpha, IL-1, IL-6, IL-1 receptor antagonist, TNF receptors, IL-10, IL-8 and macrophage inflammatory protein-1 are found after strenuous exercise. The concentration of IL-6 increases up to 100-fold after a marathon race. The increase in IL-6 is tightly related to the duration of the exercise and there appears to be a logarithmic relationship. Furthermore, the increase in IL-6 is related to the intensity of exercise. Given the facts that IL-6, more than any other cytokine, is produced in large amounts in response to exercise, that IL-6 is produced locally in the skeletal muscle in response to exercise and that IL-6 is known to have growth factor abilities, it is likely that IL-6 plays a beneficial role and may be involved in mediating exercise-related metabolic changes.
Hughes, Travis; Kim-Howard, Xana; Kelly, Jennifer A; Kaufman, Kenneth M; Langefeld, Carl D; Ziegler, Julie; Sanchez, Elena; Kimberly, Robert P; Edberg, Jeffrey C; Ramsey-Goldman, Rosalind; Petri, Michelle; Reveille, John D; Martín, Javier; Brown, Elizabeth E; Vilá, Luis M; Alarcón, Graciela S; James, Judith A; Gilkeson, Gary S; Moser, Kathy L; Gaffney, Patrick M; Merrill, Joan T; Vyse, Timothy J; Alarcón-Riquelme, Marta E; Nath, Swapan K; Harley, John B; Sawalha, Amr H
2011-06-01
Genetic association of the IL2/IL21 region at chromosome 4q27 has previously been reported in lupus and a number of autoimmune and inflammatory diseases. This study was undertaken to determine whether this genetic effect could be localized, using a very large cohort of lupus patients and controls. We genotyped 45 tag single-nucleotide polymorphisms (SNPs) across the IL2/IL21 locus in 2 large independent lupus sample sets. We studied a set of subjects of European descent consisting of 4,248 lupus patients and 3,818 healthy controls, and an African American set of 1,569 patients and 1,893 healthy controls. Imputation in 3,004 additional controls from the Wellcome Trust Case Control Consortium was also performed. Genetic association between the genotyped markers was determined, and pairwise conditional analysis was performed to localize the independent genetic effect in the IL2/IL21 locus in lupus. We established and confirmed the genetic association between IL2/IL21 and lupus. Using conditional analysis and transethnic mapping, we localized the genetic effect in this locus to 2 SNPs in high linkage disequilibrium: rs907715 located within IL21 (odds ratio 1.16 [95% confidence interval 1.10-1.22], P=2.17×10(-8)) and rs6835457 located in the 3'-untranslated flanking region of IL21 (odds ratio 1.11 [95% confidence interval 1.05-1.17], P=9.35×10(-5)). Our findings establish the genetic association between lupus and IL2/IL21 with a genome-wide level of significance. Further, our findings indicate that this genetic association within the IL2/IL21 linkage disequilibrium block is localized to IL21. If other autoimmune IL2/IL21 genetic associations are similarly localized, then the IL21 risk alleles would be predicted to operate by a fundamental mechanism that influences the course of a number of autoimmune disease processes. Copyright © 2011 by the American College of Rheumatology.
2014-01-01
Introduction We previously demonstrated that a single-chain fragment variable (scFv) specific to collagen type II (CII) posttranslationally modified by reactive oxygen species (ROS) can be used to target anti-inflammatory therapeutics specifically to inflamed arthritic joints. The objective of the present study was to demonstrate the superior efficacy of anti-inflammatory cytokines when targeted to inflamed arthritic joints by the anti-ROS modified CII (anti-ROS-CII) scFv in a mouse model of arthritis. Methods Viral interleukin-10 (vIL-10) was fused to anti-ROS-CII scFv (1-11E) with a matrix-metalloproteinase (MMP) cleavable linker to create 1-11E/vIL-10 fusion. Binding of 1-11E/vIL-10 to ROS-CII was determined by enzyme-linked immunosorbent assay (ELISA), Western blotting, and immune-staining of arthritic cartilage, whereas vIL-10 bioactivity was evaluated in vitro by using an MC-9 cell-proliferation assay. Specific in vivo localization and therapeutic efficacy of 1-11E/vIL-10 was tested in the mouse model of antigen-induced arthritis. Results 1-11E/vIL-10 bound specifically to ROS-CII and to damaged arthritic cartilage. Interestingly, the in vitro vIL-10 activity in the fusion protein was observed only after cleavage with MMP-1. When systemically administered to arthritic mice, 1-11E/vIL-10 localized specifically to the arthritic knee, with peak accumulation observed after 3 days. Moreover, 1-11E/vIL-10 reduced inflammation significantly quicker than vIL-10 fused to the control anti-hen egg lysozyme scFv (C7/vIL10). Conclusions Targeted delivery of anti-inflammatory cytokines potentiates their anti-arthritic action in a mouse model of arthritis. Our results further support the hypothesis that targeting biotherapeutics to arthritic joints may be extended to include anti-inflammatory cytokines that lack efficacy when administered systemically. PMID:25029910
Performance predictions for a parabolic localizer antenna on Runway 28R - San Francisco Airport.
DOT National Transportation Integrated Search
1973-06-01
The TSC ILS localizer model is used to predict the performance of the Texas Instruments "wide aperture" parabolic antenna as a localizer system for runway 28R at San Francisco Airport. Course derogation caused by the new American Airlines hangar is c...
Pentraxin 3 as a Novel Marker in Cardiovascular Diseases?
Grzesk, Grzegorz; Grzesk, Elzbieta
2011-01-01
Pentraxin 3 (also known as TNFAIP5, TSG-14) belongs to the superfamily of proteins characterized by cyclic multimeric structure. Pentraxin 3 (PTX3) is synthesized locally at the inflammatory sites by endothelial and smooth muscle cells upon exposure to inflammatory signals such as IL-1β, TNF-α or ox-LDL, but not IL-6. Furthermore, PTX3 is highly expressed in vascular cells and myocardial cells in patients with cardiomyopathy. These data suggest that pentraxin 3 may be a useful biomarker for local vascular inflammation and cardiovascular system disorders. PMID:27683398
Immune-endocrine interactions in the mammalian adrenal gland: facts and hypotheses.
Nussdorfer, G G; Mazzocchi, G
1998-01-01
Several cytokines, which are the major mediators of the inflammatory responses, are well-known to stimulate the hypothalamopituitary corticotropin-releasing hormone (CRH)/adrenocorticotropic hormone (ACTH) system, thereby evoking secretory responses by the adrenal cortex. Many of these cytokines, including interleukin-1 (IL-1), IL-2, IL-6, tumor necrosis factor-alpha (TNF-alpha) and interferon-gamma (INF-gamma) are synthesized in the adrenal gland by both parenchymal cells and resident macrophages, and the release of some of them (e.g., IL-6 and TNF-alpha) is regulated by the main agonists of steroid hormone secretion (e.g., ACTH and angiotensin-II) and bacterial endotoxins. Adrenocortical and adrenomedullary cells are provided with specific receptors for IL-1, IL-2, and IL-6. IL-1 and TNF-alpha directly inhibit aldosterone secretion of zona glomerulosa cells, whereas IL-6 enhances it. IL-2, IL-3, IL-6, and INF-alpha are able to directly stimulate glucocorticoid production by zona fasciculata and zona reticularis cells, whereas IL-1 exerts an analogous effect through an indirect mechanism involving the stimulation of catecholamine release by chromaffin cells and/or the activation of the intramedullary CRH/ACTH system; again, TNF-alpha depresses glucocorticoid synthesis. IL-6 raises androgen secretion by inner adrenocortical layers. IL-1 enhances the proliferation of adrenocortical cells, and findings suggest that cytokines may control the apoptotic deletion of senescent zona reticularis cells. The relevance of the intraadrenal cytokine system in the fine-tuning of the secretion and growth of the adrenal cortex under normal conditions remains to be explored. However, indirect proof is available that local immune-endocrine interactions may play an important role in modulating adrenal responses to inflammatory and immune challenges and stresses.
Integration of Directional Antennas in an RSS Fingerprinting-Based Indoor Localization System
Guzmán-Quirós, Raúl; Martínez-Sala, Alejandro; Gómez-Tornero, José Luis; García-Haro, Joan
2015-01-01
In this paper, the integration of directional antennas in a room-level received signal strength (RSS) fingerprinting-based indoor localization system (ILS) is studied. The sensor reader (SR), which is in charge of capturing the RSS to infer the tag position, can be attached to an omnidirectional or directional antenna. Unlike commonly-employed omnidirectional antennas, directional antennas can receive a stronger signal from the direction in which they are pointed, resulting in a different RSS distributions in space and, hence, more distinguishable fingerprints. A simulation tool and a system management software have been also developed to control the system and assist the initial antenna deployment, reducing time-consuming costs. A prototype was mounted in a real scenario, with a number of SRs with omnidirectional and directional antennas properly positioned. Different antenna configurations have been studied, evidencing a promising capability of directional antennas to enhance the performance of RSS fingerprinting-based ILS, reducing the number of required SRs and also increasing the localization success. PMID:26703620
Local and Systemic Inflammatory Responses to Experimentally Induced Gingivitis
Leishman, Shaneen J.; Seymour, Gregory J.; Ford, Pauline J.
2013-01-01
This study profiled the local and systemic inflammatory responses to experimentally induced gingivitis. Eight females participated in a 21-day experimental gingivitis model followed by a 14-day resolution phase. Bleeding on probing and plaque index scores were assessed before, during, and after resolution of gingival inflammation, and samples of saliva, GCF, and plasma were collected. Samples were assessed for biomarkers of inflammation using the BioPlex platform and ELISA. There were no significant changes in GCF levels of cytokines during the experimental phase; however, individual variability in cytokine profiles was noted. During resolution, mean GCF levels of IL-2, IL-6, and TNF-α decreased and were significantly lower than baseline levels (P = 0.003, P = 0.025, and P = 0.007, resp.). Furthermore, changes in GCF levels of IL-2, IL-6, and TNF-α during resolution correlated with changes in plaque index scores (r = 0.88, P = 0.004; r = 0.72, P = 0.042; r = 0.79, P = 0.019, resp.). Plasma levels of sICAM-1 increased significantly during the experimental phase (P = 0.002) and remained elevated and significantly higher than baseline levels during resolution (P < 0.001). These results support the concept that gingivitis adds to the systemic inflammatory burden of an individual. PMID:24227893
Local and systemic inflammatory responses to experimentally induced gingivitis.
Leishman, Shaneen J; Seymour, Gregory J; Ford, Pauline J
2013-01-01
This study profiled the local and systemic inflammatory responses to experimentally induced gingivitis. Eight females participated in a 21-day experimental gingivitis model followed by a 14-day resolution phase. Bleeding on probing and plaque index scores were assessed before, during, and after resolution of gingival inflammation, and samples of saliva, GCF, and plasma were collected. Samples were assessed for biomarkers of inflammation using the BioPlex platform and ELISA. There were no significant changes in GCF levels of cytokines during the experimental phase; however, individual variability in cytokine profiles was noted. During resolution, mean GCF levels of IL-2, IL-6, and TNF-α decreased and were significantly lower than baseline levels (P = 0.003, P = 0.025, and P = 0.007, resp.). Furthermore, changes in GCF levels of IL-2, IL-6, and TNF-α during resolution correlated with changes in plaque index scores (r = 0.88, P = 0.004; r = 0.72, P = 0.042; r = 0.79, P = 0.019, resp.). Plasma levels of sICAM-1 increased significantly during the experimental phase (P = 0.002) and remained elevated and significantly higher than baseline levels during resolution (P < 0.001). These results support the concept that gingivitis adds to the systemic inflammatory burden of an individual.
Pichery, Mélanie; Mirey, Emilie; Mercier, Pascale; Lefrancais, Emma; Dujardin, Arnaud; Ortega, Nathalie; Girard, Jean-Philippe
2012-04-01
IL-33 (previously known as NF from high endothelial venules) is an IL-1 family cytokine that signals through the ST2 receptor and drives cytokine production in mast cells, basophils, eosinophils, invariant NKT and NK cells, Th2 lymphocytes, and type 2 innate immune cells (natural helper cells, nuocytes, and innate helper 2 cells). Little is known about endogenous IL-33; for instance, the cellular sources of IL-33 in mouse tissues have not yet been defined. In this study, we generated an Il-33-LacZ gene trap reporter strain (Il-33(Gt/Gt)) and used this novel tool to analyze expression of endogenous IL-33 in vivo. We found that the Il-33 promoter exhibits constitutive activity in mouse lymphoid organs, epithelial barrier tissues, brain, and embryos. Immunostaining with anti-IL-33 Abs, using Il-33(Gt/Gt) (Il-33-deficient) mice as control, revealed that endogenous IL-33 protein is highly expressed in mouse epithelial barrier tissues, including stratified squamous epithelia from vagina and skin, as well as cuboidal epithelium from lung, stomach, and salivary gland. Constitutive expression of IL-33 was not detected in blood vessels, revealing the existence of species-specific differences between humans and mice. Importantly, IL-33 protein was always localized in the nucleus of producing cells with no evidence for cytoplasmic localization. Finally, strong expression of the Il-33-LacZ reporter was also observed in inflamed tissues, in the liver during LPS-induced endotoxin shock, and in the lung alveoli during papain-induced allergic airway inflammation. Together, our findings support the possibility that IL-33 may function as a nuclear alarmin to alert the innate immune system after injury or infection in epithelial barrier tissues.
Stenlöf, Kaj; Wernstedt, Ingrid; Fjällman, Ted; Wallenius, Ville; Wallenius, Kristina; Jansson, John-Olov
2003-09-01
Recently, we demonstrated that intracerebroventricular injection of IL-6 increases energy expenditure and decreases body fat in rodents. Therefore, IL-6 may play a role in appetite and body weight control in the central nervous system. In the present study we evaluated cerebrospinal fluid (CSF) and serum IL-6 levels in humans in relation to body fat content and to CSF and serum levels of leptin. Thirty-two healthy overweight/obese male subjects with a body mass index range of 29.3-36.0 kg/m(2) were studied. Total and sc body fat were measured by dual energy x-ray absorptiometry and computed tomography, respectively. CSF IL-6 levels were in some individuals higher than serum IL-6 levels and correlated negatively with total body weight, sc and total body fat. In contrast, CSF leptin levels were 30-60 times lower than serum leptin levels and correlated positively with serum leptin, body weight, sc and total body fat. Furthermore, there was a negative correlation between CSF IL-6 and leptin. In conclusion, CSF IL-6 differs in many ways from CSF leptin. CSF IL-6 may be locally produced rather than serum derived, and body fat-regulating regions in the central nervous system may be exposed to insufficient IL-6 levels in more severe obesity.
Collagen degradation products and proinflammatory cytokines in systemic and localized scleroderma.
Becvár, R; Hulejová, H; Braun, M; Stork, J
2007-01-01
The aim of this study was to assess the degradation of collagen type I and proinflammatory cytokines in systemic and localized scleroderma compared with psoriasis and healthy controls. Total 99 individuals were examined - 24 with SSc, 22 with LSc, 39 patients with PsV and 14 healthy controls. U-PD and U-DPD were measured using a sensitive isocratic HPLC method. Serum levels of IL-6 and soluble IL-2R were assayed using commercial ELISA kits. In the SSc group U-PD and U-DPD levels (nmol/mmol creatinine) were increased compared with controls (P = 0.001) and with PsV (P = 0.006). IL-6 levels were increased compared with controls (P = 0.004) and with PsV (P = 0.002). IL-2R concentrations were insignificantly increased in comparison with controls and were lower than in PsV, but the difference was not significant. In the LSc group excretion of U-PD and U-DPD did not differ from controls, but was insignificantly decreased compared with PsV. IL-6 levels were increased compared with controls (P = 0.001) and also with PsV (P = 0.03). IL-2R concentrations were significantly increased in comparison with controls only (P = 0.03). In patients with SSc our data have shown the most intensive collagen degradation and simultaneously an active inflammation, as documented by IL-6, which reflects the pathological processes in the skin and visceral organs compared with PsV patients and healthy individuals. In the LSc group collagen degradation was similar to that in control groups, but a certain inflammatory activity was observed.
Doyle, Sarah L; Ozaki, Ema; Brennan, Kiva; Humphries, Marian M; Mulfaul, Kelly; Keaney, James; Kenna, Paul F; Maminishkis, Arvydas; Kiang, Anna-Sophia; Saunders, Sean P; Hams, Emily; Lavelle, Ed C; Gardiner, Clair; Fallon, Padraic G; Adamson, Peter; Humphries, Peter; Campbell, Matthew
2014-04-02
Age-related macular degeneration (AMD) is the most common form of central retinal blindness globally. Distinct processes of the innate immune system, specifically activation of the NLRP3 inflammasome, have been shown to play a central role in the development of both "dry" and neovascular ("wet") forms of the disease. We show that the inflammatory cytokine interleukin-18 (IL-18) can regulate choroidal neovascularization formation in mice. We observed that exogenous administration of mature recombinant IL-18 has no effect on retinal pigment epithelial (RPE) cell viability, but that overexpression of pro-IL-18 or pro-IL-1β alone can cause RPE cell swelling and subsequent atrophy, a process that can be inhibited by the promotion of autophagy. A direct comparison of local and systemic administration of mature recombinant IL-18 with current anti-VEGF (vascular endothelial growth factor)-based therapeutic strategies shows that IL-18 treatment works effectively alone and more effectively in combination with anti-VEGF therapy and represents a novel therapeutic strategy for the treatment of wet AMD.
Garrido, Mauricio; Dezerega, Andrea; Bordagaray, María José; Reyes, Montserrat; Vernal, Rolando; Melgar-Rodríguez, Samantha; Ciuchi, Pía; Paredes, Rodolfo; García-Sesnich, Jocelyn; Ahumada-Montalva, Pablo; Hernández, Marcela
2015-04-01
C-reactive protein (CRP) is the prototype component of acute-phase proteins induced ultimately by interleukin (IL)-6 in the liver, but it is unknown whether periradicular tissues locally express CRP. The present study aimed to identify whether CRP messenger RNA synthesis occurs in situ within apical lesions of endodontic origin (ALEOs) and healthy periodontal ligament and its association with IL-6 and to determine their protein levels and tissue localization. Patients with asymptomatic apical periodontitis and healthy volunteers presenting at the School of Dentistry, University of Chile, Santiago, Chile, were enrolled. ALEOs and healthy teeth were obtained and processed for either immunohistochemistry and double immunofluorescence to assess IL-6 and CRP tissue localization, whereas healthy periodontal ligaments were processed as controls for real-time reverse-transcription polymerase chain reaction for their RNA expression levels and multiplex assay to determine their protein levels. Statistic analysis was performed using the unpaired t test or Mann-Whitney test according to data distribution and Pearson correlation. IL-6 and CRP were synthesized in ALEOs, whereas their RNA expression and protein levels were significantly higher when compared with healthy periodontal ligament. IL-6 and CRP immunolocalized to the inflammatory cells, vascular endothelial cells, and mesenchymal cells. Both, IL-6 and CRP colocalized in ALEOs, and a positive correlation was found between their expression levels (P < .05). IL-6 and CRP messenger RNA are constitutively expressed in periodontal ligament and up-regulated in ALEOs along with higher protein levels. Given their pleiotropic effects, IL-6 and CRP protein levels in apical tissues might partially explain the development and progression of ALEOs as well as potentially asymptomatic apical periodontitis-associated systemic low-grade inflammation. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Suganuma, Eisuke; Niimura, Fumio; Matsuda, Shinichi; Ukawa, Toshiko; Nakamura, Hideaki; Sekine, Kaori; Kato, Masahiko; Aiba, Yuji; Koga, Yasuhiro; Hayashi, Kuniyoshi; Takahashi, Osamu; Mochizuki, Hiroyuki
2017-04-01
Kawasaki disease is a common systemic vasculitis that leads to coronary artery lesions. Besides its antihypertensive effects, losartan can modulate inflammation in cardiovascular disease. We examined whether losartan can attenuate coronary inflammation in a murine model of Kawasaki disease. Five-wk-old C57/BL6J male mice were intraperitoneally injected with Lactobacillus casei cell wall extract to induce coronary inflammation and divided into four groups: placebo, intravenous immunoglobulin (IVIG), losartan, and IVIG+losartan. After 2 wk, mice were harvested. The coronary perivasculitis was significantly attenuated by losartan but not by IVIG alone, and further dramatic attenuation by IVIG+losartan was observed. The frequency of Lactobacillus casei cell wall extract-induced myocarditis (80%) was markedly lowered by losartan (22%) and IVIG+losartan (0%). Furthermore, interleukin (IL)-6 mRNA was markedly attenuated by IVIG+losartan. Serum levels of IL-6, TNF-α, MCP-1, and IL-10 after Lactobacillus casei cell wall extract injection were slightly decreased by IVIG or losartan. Moreover, IL-1β, IL-10, and MCP-1 levels were significantly decreased by IVIG+losartan. The addition of losartan to IVIG strongly attenuated the severity of coronary perivasculitis and the incidence of myocarditis, along with suppressing systemic/local cytokines as well as the activated macrophage infiltration. Therefore, losartan may be a potentially useful additive drug for the acute phase of Kawasaki disease to minimize coronary artery lesions.
Lee, Jin-A; Kim, Yun-Mi; Kim, Tae-Hoon; Lee, Sang-Ho; Lee, Cho-A; Cho, Cheong-Weon; Jeon, Jong-Woon; Park, Jin-Kyu; Kim, Sang-Ki; Jung, Bock-Gie; Lee, Bong-Joo
2016-10-01
Nasal delivery is a convenient and acceptable route for drug administration, and has been shown to elicit a much more potent local and systemic response compared with other drug delivery routes. We previously demonstrated that rectal administration of poly(lactide-co-glycolide)-encapsulated honeybee venom (P-HBV) could enhance systemic Th 1-specific immune responses. We therefore synthesized chitosan-coated P-HBV (CP-HBV) and then evaluated the immune-boosting efficacy of nasally administered CP-HBV on systemic and local intestinal immunity compared with non-chitosan-coated P-HBV. The nasally delivered CP-HBV effectively enhanced Th 1-specific responses, eliciting a significant increase in the CD3(+)CD4(+)CD8(-) Th cell population, lymphocyte proliferation capacity, and expression of Th 1 cytokines (IFN-γ, IL-12, and IL-2) in peripheral blood mononuclear cells. Furthermore, these immune-boosting effects persisted up to 21days post CP-HBV administration. Nasal administration of CP-HBV also led to an increase of not only the CD4(+) Th 1 and IFN-γ secreting CD4(+) Th 1 cell population but also Th 1-specific cytokines and transcription factors, including IL-12, IFN-γ, STAT4, and T-bet, in isolated mononuclear cells from the spleen and ileum. Copyright © 2016 Elsevier B.V. All rights reserved.
Ateş, Gökay; Yaman, Ferda; Bakar, Bülent; Kısa, Üçler; Atasoy, Pınar; Büyükkoçak, Ünase
2017-09-01
Blunt thoracic injury often leads to pulmonary contusion and the development of acute respiratory distress syndrome, which carries a high risk of morbidity and mortality, originating from the local and systemic inflammatory states. This study aimed to investigate the local and systemic antiinflammatory effects of levosimendan in rat models of blunt chest trauma. A total of 32 Wistar albino rats were randomly assigned to one of the following four groups: control, sham, low-dose levosimendan (LDL) (5 µg/kg loading dose for 10 min and 0.05 µg/kg/min intravenous infusion), and high-dose levosimendan (HDL) (10 µg/kg loading dose for 10 min and 0.1 µg/kg/min intravenous infusion). Blunt chest trauma was induced, and after 6 h, the contused pulmonary tissues were histopathologically and immunohistopathologically evaluated, serum TNF-α, IL-1ß, IL-6, and NO levels were biochemically evaluated. The mean arterial pressure was low throughout the experiment in the LDL and HDL groups, with no statistically difference between the groups. Levosimendan reduced the alveolar congestion and hemorrhage, which developed after inducing trauma. Neutrophil infiltration to the damaged pulmonary tissue was also reduced in both the LDL and HDL groups. In rats in which pulmonary contusion (PC) was observed, increased activation of nuclear factor kappa B was observed in the pulmonary tissue, and levosimendan did not reduce this activation. Both high and low doses of levosimendan reduced serum IL-1ß levels, and high doses of levosimendan reduced IL-6 and NO levels. TNF-α levels were not reduced. In conclusion, the results showed that in a rat model of PC, the experimental agent levosimendan could reduce neutrophil cell infiltration to damaged pulmonary tissues and the systemic expressions of some cytokines (IL-1ß, IL-6, and NO), thereby partially reducing and/or correcting pulmonary damage. Systemic inflammatory response that occurs after trauma could also be reduced.
Compartmentalized bronchoalveolar IFN-gamma and IL-12 response in human pulmonary tuberculosis.
Herrera, Maria Teresa; Torres, Martha; Nevels, Denarra; Perez-Redondo, Carlos Núñez; Ellner, Jerrold J; Sada, Eduardo; Schwander, Stephan K
2009-01-01
Human tuberculosis (TB) principally involves the lungs, where local immunity impacts on the load of Mycobacterium tuberculosis (M.tb). Because concomitants of local Th1 immunity are still under-explored in humans, we characterized immune responses in bronchoalveolar cells (BACs) and systemically in peripheral blood mononuclear cells (PBMCs) in persons with active pulmonary TB and in healthy community controls. PPD- and live M.tb-induced IFN-gamma-production were observed in CD4(+), CD8(+), gammadeltaTCR(+), and CD56(+) alveolar T cell subpopulations and NK cells (CD3(-)CD56(+)). IFN-gamma-producing CD4(+) T cells (mostly CD45RO(+)) were more abundant (p<0.05). M.tb-induced IL-12p70, but interestingly also IL-4, was increased (p<0.05) in BACs from TB patients. Constitutive expression of IL-12Rbeta1 and IL-12Rbeta2 mRNA in BACs and PBMCs and IFN-gammaR1 in BACs was similar in both study groups. Data were normalized to account for differences in proportions of alveolar T cells and macrophages in the study groups. IFN-gamma-production and its induction by IL-12R engagement occur virtually unimpaired in the bronchoalveolar spaces of patients with pulmonary TB. The reasons for the apparent failure to control M. tuberculosis growth during active pulmonary TB disease is unknown but could be the expression of locally acting immunosuppressive mechanisms that subvert the antimycobacterial effects of IFN-gamma.
78 FR 25406 - Proposed Modification of Class E Airspace; Twin Falls, ID
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-01
...) Global Positioning System (GPS) and the Instrument Landing System (ILS) or Localizer (LOC) standard... the earth. * * * * * ANM ID E5 Twin Falls, ID [Modified] Twin Falls Joslin Field-Magic Valley Regional...
Evaluation of serum concentrations of the selected cytokines in patients with localized scleroderma.
Budzyńska-Włodarczyk, Jolanta; Michalska-Jakubus, Małgorzata M; Kowal, Małgorzata; Krasowska, Dorota
2016-02-01
Localized scleroderma is an autoimmune disease primarily affecting the skin. The cause of disease remains unexplained although environmental factors are implicated, which are likely to be responsible for activation of the endothelium and subsequent inflammation leading to excessive synthesis of collagen and extracellular matrix components. To determine concentrations of interleukin (IL)-27, transforming growth factor (TGF)-β1, TGF-β2, IL-6, and sIL-6R in patients with localized scleroderma compared to controls and to assess the relations between their levels and laboratory markers. The study encompassed 17 females with localized scleroderma (aged 25-67). The control group consisted of 30 age-matched healthy women. The blood was sampled from the basilic vein. Serum levels of cytokines were determined using ELISA. The TGF-β2 levels were found to be significantly lower in patients with localized scleroderma compared to controls. Concentrations of TGF-β1 were decreased in scleroderma patients when compared to controls but without statistical significance. There were no significant differences in serum IL-6, sIL-6R and IL-27 levels between patients and the control group; however, we found a significant positive correlation between the level of sIL-6 and ESR among subjects with localized scleroderma. The findings of decreased serum levels of TGF-β1 and TGF-β2 in patients with localized scleroderma demonstrate a possible association of these cytokines with pathogenesis of the disease. The results suggest also that sIL-6R is likely to be involved in inflammation in patients with localized scleroderma.
78 FR 27872 - Proposed Amendment of Class E Airspace; Salt Lake City, UT
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-13
... System (GPS) and Instrument Landing System (ILS) or Localizer (LOC) standard instrument approach...: Paragraph 6005 Class E airspace areas extending upward from 700 feet or more above the surface of the earth...
[New concepts on the role of cytokines in the central nervous system].
Jacque, C; Tchélingérian, J L
1994-11-01
Initially described as modulatory molecules in the peripheral immune system and during haematopoiesis, several cytokines also play a role in the brain. Their synthesis in the central nervous system (CNS) is not due solely to glial cell activation or invading immune cells. On the one hand, several functions of central neurons are modulated by cytokines such as IL-1, TNF alpha, IL-2 and IL-6. Thus, IL-1 and TNF alpha modulate the synthesis of several neuromediators and modify ion influxes. IL-2 regulates the effects of central dopaminergic neurons on cholinergic, noradrenergic, serotoninergic and glutamatergic functions. On the other hand, neurons have recently been shown to be able to synthesize some of these cytokines under specific traumatic conditions. For example, a lesion to the hippocampus induces neuronal synthesis of IL-1 alpha and TNF alpha. This induction through neuronal circuits may operate at a distance in contrast to the glial reaction operating only locally. The recent demonstration of the expression by central neurons of receptors specific for these cytokines support a potentially crucial role for these molecules in brain function. Some data emerge in the literature demonstrating a potent expression of cytokines in the central nervous system in numerous pathological situations. Then, it appears that, at the interface between nervous and immune systems, cytokines may bear a pivotal role in the development of specific symptoms in neuroimmune diseases.
[A new approach to clinical and laboratory diagnosis of systemic and local soft tissue infections].
Barkhatova, N A
2009-01-01
Dynamic measurements of blood TNF-a, IL-IRA, CRP, oligopeptide, and lactoferrin levels in patients with systemic and local soft tissue infections revealed direct correlation between them which allowed to use these indicators for the diagnosis of systemic infections. Results of clinical and laboratory analyses provided a basis for distinguishing short-term systemic inflammatory response syndrome and sepsis and developing relevant diagnostic criteria. Sepsis combined with systemic inflammatory response syndrome persisting for more than 72 hours after the onset of adequate therapy was characterized by CRP levels > 30 mg/l, oligopeptides > 0.34 U, lactoferrin > 1900 ng/ml, TNF-a > 6 pg/ml, ILL-IRA < 1500 pg/ml Patients with systemic inflammatory response syndrome for less than 72 hours had lower TNF-a, CRP, oligopeptide, and lactoferrin levels with IL-IRA > 1500 pg/ml. This new approach to early diagnosis of systemic infections makes it possible to optimize their treatment and thereby enhance its efficiency.
Pérez-Cabezas, Begoña; Cecílio, Pedro; Robalo, Ana Luisa; Silvestre, Ricardo; Carrillo, Eugenia; Moreno, Javier; San Martín, Juan V.; Vasconcellos, Rita; Cordeiro-da-Silva, Anabela
2016-01-01
The complexity of Leishmania–host interactions, one of the main leishmaniasis issues, is yet to be fully understood. We detected elevated IL-27 plasma levels in European patients with active visceral disease caused by Leishmania infantum, which returned to basal levels after successful treatment, suggesting this cytokine as a probable infection mediator. We further addressed this hypothesis recurring to two classical susceptible visceral leishmaniasis mouse models. BALB/c, but not C57BL/6 mice, showed increased IL-27 systemic levels after infection, which was associated with an upregulation of IL-27p28 expression by dendritic cells and higher parasite burdens. Neutralization of IL-27 in acutely infected BALB/c led to decreased parasite burdens and a transient increase in IFN-γ+ splenic T cells, while administration of IL-27 to C57BL/6 promoted a local anti-inflammatory cytokine response at the site of infection and increased parasite loads. Overall, we show that, as in humans, BALB/c IL-27 systemic levels are infection dependently upregulated and may favor parasite installation by controlling inflammation. PMID:27867384
Kamensek, Urska; Tesic, Natasa; Sersa, Gregor; Kos, Spela; Cemazar, Maja
2017-01-01
Electrotransfer mediated delivery of interleukin-12 (IL-12) gene, encoded on a plasmid vector, has already been demonstrated to have a potent antitumor efficacy and great potential for clinical application. In the present study, our aim was to construct an optimized IL-12-encoding plasmid that is safe from the regulatory point of view. In light of previous studies demonstrating that IL-12 should be released in a tumor localized manner for optimal efficacy, the strong ubiquitous promoter was replaced with a weak endogenous promoter of the collagen 2 gene, which is specific for fibroblasts. Next, to comply with increasing regulatory demands for clinically used plasmids, the expression cassette was cloned in a plasmid lacking the antibiotic resistance gene. The constructed fibroblast-specific and antibiotic-free IL-12 plasmid was demonstrated to support low IL-12 expression after gene electrotransfer in selected cell lines. Furthermore, the removal of antibiotic resistance did not affect the plasmid expression profile and lowered its cytotoxicity. With optimal IL-12 expression and minimal transgene non-specific effects, i.e., low cytotoxicity, the constructed plasmid could be especially valuable for different modern immunological approaches to achieve localized boosting of the host's immune system. Copyright © 2016 Elsevier Inc. All rights reserved.
Interleukin-12 Immunomodulation Delays the Onset of Lethal Peritoneal Disease of Ovarian Cancer.
Cohen, Courtney A; Shea, Amanda A; Heffron, C Lynn; Schmelz, Eva M; Roberts, Paul C
2016-01-01
The omental fat band (OFB) is the predominant site for metastatic seeding of ovarian cancer. Previously, we highlighted the influx and accumulation of neutrophils and macrophages in the OFB following syngeneic ovarian cancer cell seeding as an important factor in the development of a protumorigenic cascade. Here we investigated localized immunomodulation as a means of promoting a successful protective response. As an important TH1-type immunomodulator, interleukin (IL)-12 has previously been investigated clinically as an anticancer therapeutic. However, systemic IL-12 administration was associated with serious side effects, galvanizing the development of immune or accessory cells engineered to express secreted or membrane-bound IL-12 (mbIL-12). Using an mbIL-12-expressing cell variant, we demonstrate that localized IL-12 in the tumor microenvironment significantly delays disease development. The mbIL-12-mediated decrease in tumor burden was associated with a significant reduction in neutrophil and macrophage infiltration in the OFB, and correlated with a reduced expression of neutrophil and macrophage chemoattractants (CXCL1, -2, -3 and CCL2, -7). Vaccination with mitotically impaired tumor cells did not confer protection against subsequent tumor challenge, indicating that IL-12 did not impact the immunogenicity of the cancer cells. Our findings are in agreement with previous reports suggesting that IL-12 may hold promise when delivered in a targeted and sustained manner to the omental microenvironment. Furthermore, resident cells within the omental microenvironment may provide a reservoir that can be activated and mobilized to prevent metastatic seeding within the peritoneum and, therefore, may be targets for chemotherapeutics.
Interleukin-12 Immunomodulation Delays the Onset of Lethal Peritoneal Disease of Ovarian Cancer
Cohen, Courtney A.; Shea, Amanda A.; Heffron, C. Lynn
2016-01-01
The omental fat band (OFB) is the predominant site for metastatic seeding of ovarian cancer. Previously, we highlighted the influx and accumulation of neutrophils and macrophages in the OFB following syngeneic ovarian cancer cell seeding as an important factor in the development of a protumorigenic cascade. Here we investigated localized immunomodulation as a means of promoting a successful protective response. As an important TH1-type immunomodulator, interleukin (IL)-12 has previously been investigated clinically as an anticancer therapeutic. However, systemic IL-12 administration was associated with serious side effects, galvanizing the development of immune or accessory cells engineered to express secreted or membrane-bound IL-12 (mbIL-12). Using an mbIL-12-expressing cell variant, we demonstrate that localized IL-12 in the tumor microenvironment significantly delays disease development. The mbIL-12-mediated decrease in tumor burden was associated with a significant reduction in neutrophil and macrophage infiltration in the OFB, and correlated with a reduced expression of neutrophil and macrophage chemoattractants (CXCL1, -2, -3 and CCL2, -7). Vaccination with mitotically impaired tumor cells did not confer protection against subsequent tumor challenge, indicating that IL-12 did not impact the immunogenicity of the cancer cells. Our findings are in agreement with previous reports suggesting that IL-12 may hold promise when delivered in a targeted and sustained manner to the omental microenvironment. Furthermore, resident cells within the omental microenvironment may provide a reservoir that can be activated and mobilized to prevent metastatic seeding within the peritoneum and, therefore, may be targets for chemotherapeutics. PMID:26430781
Effects of aging on the immunopathologic response to sepsis.
Turnbull, Isaiah R; Clark, Andrew T; Stromberg, Paul E; Dixon, David J; Woolsey, Cheryl A; Davis, Christopher G; Hotchkiss, Richard S; Buchman, Timothy G; Coopersmith, Craig M
2009-03-01
Aging is associated with increased inflammation following sepsis. The purpose of this study was to determine whether this represents a fundamental age-based difference in the host response or is secondary to the increased mortality seen in aged hosts. Prospective, randomized controlled study. Animal laboratory in a university medical center. Young (6-12 weeks) and aged (20-24 months) FVB/N mice. Mice were subjected to 2 x 25 or 1 x 30 cecal ligation and puncture (CLP). Survival was similar in young mice subjected to 2 x 25 CLP and aged mice subjected to 1 x 30 CLP (p = 0.15). Young mice subjected to 1 x 30 CLP had improved survival compared with the other groups (p < 0.05). When injury was held constant but mortality was greater, both systemic and peritoneal levels of tumor necrosis factor-alpha, interleukin (IL)-6, IL-10, and monocyte chemotactic protein-1 were elevated 24 hours after CLP in aged animals compared with young animals (p < 0.05). When mortality was similar but injury severity was different, there were no significant differences in systemic cytokines between aged mice and young mice. In contrast, peritoneal levels of tumor necrosis factor-alpha, IL-6, and IL-10 were higher in aged mice subjected to 1 x 30 CLP than young mice subjected to 2 x 25 CLP despite their similar mortalities (p < 0.05). There were no significant differences in either bacteremia or peritoneal cultures when animals of different ages sustained similar injuries or had different injuries with similar mortalities. Aged mice are more likely to die of sepsis than young mice when subjected to an equivalent insult, and this is associated with increases in both systemic and local inflammation. There is an exaggerated local but not systemic inflammatory response in aged mice compared with young mice when mortality is similar. This suggests that systemic processes that culminate in death may be age independent, but the local inflammatory response may be greater with aging.
Wang, Hui; Han, Qi; Luo, Zhenhua; Xu, Caixia; Liu, Jiajia; Dan, Hongxia; Xu, Yi; Zeng, Xin; Chen, Qianming
2014-07-01
This study aims to compare the expression levels of interleukin (IL)-17 and IL-23 in local periodontal tissues from patients with both chronic periodontitis and oral lichen planus (CP-OLP), patients with chronic periodontitis (CP) only, patients with oral lichen planus (OLP) only, and healthy controls (HC). The periodontal tissues were collected from 15 CP-OLP patients, 15 CP patients, 15 OLP patients, and 10 healthy controls. Immunohistochemistry (IHC) and real-time quantitative PCR (qPCR) was performed to investigate the protein and mRNA expression level of IL-17 and IL-23 in periodontal lesions from these four groups. IHC statistical analysis showed that the expression level of IL-17- and IL-23p19-positive cells significantly increased in CP-OLP group compared with that in CP (P < 0.01) and OLP groups (P < 0.05), showing intense staining reaction in local lamina propria lesions. Meanwhile, qPCR result showed higher IL-17 mRNA level in CP-OLP compared with that in CP and OLP groups and demonstrated a significant increase than OLP group (P < 0.05). Moreover, it was found that IL-17 mRNA expression level in erosive CP-OLP patients was significantly correlated with probing depth and attachment loss (P < 0.05). This study indicated that there was an increased expression level of IL-17 and IL-23 in periodontal tissues from periodontitis patients with oral lichen planus, which might aggravate the inflammatory response in local lesions. Oral lichen planus and chronic periodontitis may have interaction in disease pathogenesis, while IL-17 detection in local lesions may be helpful in identifying the disease severity in periodontitis patients with oral lichen planus.
Elevated levels of circulating IL-7 and IL-15 in patients with early stage prostate cancer
2011-01-01
Background Chronic inflammation has been suggested to favour prostate cancer (PCA) development. Interleukins (IL) represent essential inflammation mediators. IL-2, IL-7, IL-15 and IL-21, sharing a common receptor γ chain (c-γ), control T lymphocyte homeostasis and proliferation and play major roles in regulating cancer-immune system interactions. We evaluated local IL-2, IL-7, IL-15 and IL-21 gene expression in prostate tissues from patients with early stage PCA or benign prostatic hyperplasia (BPH). As control, we used IL-6 gene, encoding an IL involved in PCA progression. IL-6, IL-7 and IL-15 titres were also measured in patients' sera. Methods Eighty patients with BPH and 79 with early (1 to 2c) stage PCA were enrolled. Gene expression in prostate tissues was analyzed by quantitative real-time PCR (qRT-PCR). Serum IL concentrations and acute phase protein titres were evaluated by ELISA. Mann-Whitney, Wilcoxon and χ2 tests were used to compare IL gene expression and serum titers in the two groups of patients. Receiver operating characteristic (ROC) curves were constructed to evaluate the possibility to distinguish sera from different groups of patients based on IL titers. Results IL-2 and IL-21 gene expression was comparably detectable, with low frequency and at low extents, in PCA and BPH tissues. In contrast, IL-6, IL-7 and IL-15 genes were expressed more frequently (p < 0.0001, p = 0.0047 and p = 0.0085, respectively) and to significantly higher extents (p = 0.0051, p = 0.0310 and p = 0.0205, respectively) in early stage PCA than in BPH tissues. Corresponding proteins could be detected to significantly higher amounts in sera from patients with localized PCA, than in those from patients with BPH (p = 0.0153, p = 0.0174 and p = 0.0064, respectively). Analysis of ROC curves indicates that IL-7 (p = 0.0039), but not IL-6 (p = 0.2938) or IL-15 (p = 0.1804) titres were able to distinguish sera from patients with malignancy from those from patients with benign disease. Serum titres of C reactive (CRP), high mobility group B1 (HMGB1) and serum amyloid A (SAA) acute phase proteins were similar in both groups of patients. Conclusions Expression IL-7 and IL-15 genes in prostate tissues and corresponding serum titres are significantly increased in patients with early stage PCA as compared with patients with BPH. PMID:21943235
Nutku, E; Gounni, A S; Olivenstein, R; Hamid, Q
2000-08-01
Eosinophils are a source of cytokines within the airways of asthmatic individuals that may exert an important immunoregulatory influence. We examined IL-12 messenger (m)RNA and protein expression in eosinophils from peripheral blood and bronchoalveolar lavage (BAL) fluid obtained from subjects with atopic asthma (n = 7), patients with chronic bronchitis (n = 5), and nonatopic healthy control subjects (n = 7). To further define this IL-12(+) population of eosinophils for the expression of other cytokines, we colocalized IL-12 and IL-5 within the peripheral blood eosinophils. To detect IL-12 mRNA and protein expression, we used in situ hybridization and immunocytochemistry techniques. The double-immunocytochemistry technique was used to localize IL-12 protein to BAL eosinophils and to colocalize IL-5 and IL-12 in peripheral blood eosinophils. IL-12 mRNA and immunoreactive protein were localized to peripheral blood eosinophils. BAL fluid-derived eosinophils from asthmatic subjects were also reactive to IL-12. The percentage of peripheral blood eosinophils expressing mRNA for IL-12 was significantly lower in asthmatic subjects compared with that found in eosinophils obtained from patients with chronic bronchitis (P<.001) and control patients (P <.05). Colocalization studies demonstrated that the percentages of IL-12(+) eosinophils that are also IL-5(+) were 72% in asthmatic subjects and only 11% in control subjects (P<.001). These results suggest that eosinophils are a potential source of IL-12. Eosinophil-derived IL-12 may contribute and modulate the local allergic inflammatory responses.
Intestine-specific overexpression of IL-10 improves survival in polymicrobial sepsis.
Rajan, Saju; Vyas, Dinesh; Clark, Andrew T; Woolsey, Cheryl A; Clark, Jessica A; Hotchkiss, Richard S; Buchman, Timothy G; Coopersmith, Craig M
2008-04-01
Targeted IL-10 therapy improves survival in preclinical models of critical illness, and intestine-specific IL-10 decreases inflammation in models of chronic Inflammatory disease. We therefore sought to determine whether intestine-specific overexpression of IL-10 would improve survival in sepsis. Transgenic mice that overexpress IL-10 in their gut epithelium (Fabpi-IL-10 mice) and wild-type (WT) littermates (n = 127) were subjected to cecal ligation and puncture with a 27-gauge needle. The 7-day survival rate was 45% in transgenic animals and 30% in WT animals (P < or = 0.05). Systemic levels of IL-10 were undetectable in both groups of animals under basal conditions and were elevated to a similar degree in septic animals regardless of whether they expressed the transgene. Local parameter of injury, including gut epithelial apoptosis, intestinal permeability, peritoneal lavage cytokines, and stimulated cytokines from intraepithelial lymphocytes, were similar between transgenic and WT mice. However, in stimulated splenocytes, proinflammatory cytokines monocyte chemoattractant protein 1 (189 +/- 43 vs. 40 +/- 8 pg/mL) and IL-6 (116 +/- 28 vs. 34 +/- 9 pg/mL) were lower in Fabpi-IL-10 mice than WT littermates despite the intestine-specific nature of the transgene (P < 0.05). Cytokine levels were similar in blood and bronchoalveolar lavage fluid between the 2 groups, as were circulating LPS levels. Transgenic mice also had lower white blood cell counts associated with lower absolute neutrophil counts (0.5 +/- 0.1 vs. 1.0 +/- 0.2 10(3)/mm3; P < 0.05). These results indicate that gut-specific overexpression of IL-10 improves survival in a murine model of sepsis, and interactions between the intestinal epithelium and the systemic immune system may play a role in conferring this survival advantage.
Intestine-specific overexpression of IL-10 improves survival in polymicrobial sepsis
Rajan, Saju; Vyas, Dinesh; Clark, Andrew T; Woolsey, Cheryl A; Clark, Jessica A; Hotchkiss, Richard S; Buchman, Timothy G; Coopersmith, Craig M
2007-01-01
Targeted Interleukin (IL)-10 therapy improves survival in preclinical models of critical illness, and intestine-specific IL-10 decreases inflammation in models of chronic inflammatory disease. We therefore sought to determine whether intestine-specific overexpression of IL-10 would improve survival in sepsis. Transgenic mice that overexpress IL-10 in their gut epithelium (Fabpi-IL-10 mice) and wild type (WT) littermates (n=127) were subjected to cecal ligation and puncture with a 27-gauge needle. Seven-day survival was 45% in transgenic animals and 30% in WT animals (p≤0.05). Systemic levels of IL-10 were undetectable in both groups of animals under basal conditions and were elevated to a similar degree in septic animals, regardless of whether they expressed the transgene. Local parameters of injury including gut epithelial apoptosis, intestinal permeability, peritoneal lavage cytokines and stimulated cytokines from intraepithelial lymphocytes were similar between transgenic and wildtype mice. However, in stimulated splenocytes, pro-inflammatory cytokines MCP-1 (189 ± 43 pg/ml vs. 40 ± 8 pg/ml) and IL-6 (116 ± 28 pg/ml vs. 34 ± 9 pg/ml) were lower in Fabpi-IL-10 mice than WT littermates despite the intestine-specific nature of the transgene (p<0.05). Cytokine levels were similar in blood and bronchoalveolar lavage fluid between the two groups as were circulating LPS levels. Transgenic mice also had lower white blood cell counts, associated with lower absolute neutrophil counts (0.5 ± 0.1 103/mm3 vs. 1.0 ± 0.2 103/mm3, p<0.05). These results indicate that gut-specific overexpression of IL-10 improves survival in a murine model of sepsis, and interactions between the intestinal epithelium and the systemic immune system may play a role in conferring this survival advantage. PMID:17998890
Adam, Matti; Kooreman, Nigel; Jagger, Ann; Wagenhaeuser, Markus U; Mehrkens, Dennis; Wang, Yongming; Kayama, Yosuke; Toyama, Kensuke; Raaz, Uwe; Schellinger, Isabel N; Maegdefessel, Lars; Spin, Joshua M; Hamming, Jaap F; Quax, Paul H A; Baldus, Stephan; Wu, Joseph C; Tsao, Philip S
2018-06-07
Recruitment of immunologic competent cells to the vessel wall is a crucial step in formation of abdominal aortic aneurysms (AAA). Innate immunity effectors (eg, macrophages), as well as mediators of adaptive immunity (eg, T cells), orchestrate a local vascular inflammatory response. IL-10 (interleukin-10) is an immune-regulatory cytokine with a crucial role in suppression of inflammatory processes. We hypothesized that an increase in systemic IL-10-levels would mitigate AAA progression. Using a single intravenous injection protocol, we transfected an IL-10 transcribing nonimmunogenic minicircle vector into the Ang II (angiotensin II)-ApoE -/- infusion mouse model of AAA. IL-10 minicircle transfection significantly reduced average aortic diameter measured via ultrasound at day 28 from 166.1±10.8% (control) to 131.0±5.8% (IL-10 transfected). Rates of dissecting AAA were reduced by IL-10 treatment, with an increase in freedom from dissecting AAA from 21.5% to 62.3%. Using flow cytometry of aortic tissue from minicircle IL-10-treated animals, we found a significantly higher percentage of CD4 + /CD25 + /Foxp3 (forkhead box P3) + regulatory T cells, with fewer CD8 + /Granzyme B + cytotoxic T cells. Furthermore, isolated aortic macrophages produced less TNF-α (tumor necrosis factor-α), more IL-10, and were more likely to be MRC1 (mannose receptor, C type 1)-positive alternatively activated macrophages. These results concurred with gene expression analysis of LPS-stimulated and Ang II-primed human peripheral blood mononuclear cells. Taken together, we provide an effective gene therapy approach to AAA in mice by enhancing antiinflammatory and dampening proinflammatory pathways through minicircle-induced augmentation of systemic IL-10 expression. © 2018 American Heart Association, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-15
... navigation for en route through non-precision instrument approaches. GPS is an internationally accepted... Localizer Performance with Vertical guidance (LPV). These approaches are equivalent to Category I ILS, but... approach procedures with LPV or localizer performance (LP) non-precision lines of minima to all qualified...
Karlicic, Vukoica; Vukovic, Jelena; Stanojevic, Ivan; Sotirovic, Jelena; Peric, Aleksandar; Jovic, Milena; Cvijanovic, Vlado; Djukic, Mirjana; Banovic, Tatjana; Vojvodic, Danilo
2016-01-01
Advanced lung carcinoma is charasterized with fast disease progression. Interleukin (IL)10 and transforming growth factor (TGF)b1 are immunosuppressive mediators and their role in lung carcinoma pathogenesis and in the antitumor response has not yet been elucidated. The purpose of this study was to correlate IL10 and TGFb1 levels in the serum and lung tumor microcirculation with clinical stage, disease extent, histological features and TNM stage. The study included 41 lung cancer patients in clinical stage III and IV. Histological type was determined immunohistochemically, while tumor size, localization and dissemination were determined radiologically by multislice computerized tomography (MSCT). IL10 and TGFb1 levels were quantified with commercial flow cytometric test in serum and lung tumor microcirculation samples. Non small cell lung cancer (NSCLC) patients had significantly elevated TGFb1 while small cell lung cancer (SCLC) patients had significantly increased IL10 in tumor microcirculation. IL10 was significantly elevated in patients with the largest tumors, as well as in patients with III clinical stage and without metastases, both in the serum and tumor microcirculation. TGFb1 was significantly increased in serum and tumor microcirculation in patients with larger tumors. We found significant correlation between these two immunosuppressive cytokines, IL10 and TGFb1, in tumor microcirculation but not in patient serum samples. IL10 and TGFb1 in systemic and tumor microcirculation are significantly associated with particular histological type of lung cancer, tumor size and degree of disease extent.
Kuswanto, Wilson; Burzyn, Dalia; Panduro, Marisella; Wang, Kathy K.; Jang, Young Charles; Wagers, Amy J.; Benoist, Christophe; Mathis, Diane
2016-01-01
SUMMARY Normal repair of skeletal muscle requires local expansion of a special population of Foxp3+CD4+ regulatory T (Treg) cells. Such cells failed to accumulate in acutely injured muscle of old mice, known to undergo ineffectual repair. This defect reflected reduced recruitment of Treg cells to injured muscle, as well as less proliferation and retention therein. Interleukin (IL)-33 regulated muscle Treg cell homeostasis in young mice, and its administration to old mice ameliorated their deficits in Treg cell accumulation and muscle regeneration. The major IL-33-expressing cells in skeletal muscle displayed a constellation of markers diagnostic of fibro/adipogenic progenitor cells, and were often associated with neural structures, including nerve fibers, nerve bundles and muscle spindles, which are stretch-sensitive mechanoreceptors important for proprioception. IL-33+ cells were more frequent after muscle injury, and were reduced in old mice. IL-33 is well situated to relay signals between the nervous and immune systems within the muscle context. PMID:26872699
Saielli, Giacomo; Bagno, Alessandro; Castiglione, Franca; Simonutti, Roberto; Mauri, Michele; Mele, Andrea
2014-12-04
(129)Xe NMR has been recently employed to probe the local structure of ionic liquids (ILs). However, no theoretical investigation has been yet reported addressing the problem of the dependence of the chemical shift of xenon on the cage structure of the IL. Therefore, we present here a study of the chemical shift of (129)Xe in two ionic liquids, [bmim][Cl] and [bmim][PF6], by a combination of classical MD simulations and relativistic DFT calculations of the xenon shielding constant. The bulk structure of the two ILs is investigated by means of the radial distribution functions, paying special attention to the local structure, volume, and charge distribution of the cage surrounding the xenon atom. Relativistic DFT calculations, based on the ZORA formalism, on clusters extracted from the trajectory files of the two systems, yield an average relative chemical shift in good agreement with the experimental data. Our results demonstrate the importance of the cage volume and the average charge surrounding the xenon nucleus in the IL cage as the factors determining the effective shielding.
Osteoporosis in Rheumatic Diseases: Anti-rheumatic Drugs and the Skeleton.
Dubrovsky, Alanna M; Lim, Mie Jin; Lane, Nancy E
2018-05-01
Osteoporosis in rheumatic diseases is a very well-known complication. Systemic inflammation results in both generalized and localized bone loss and erosions. Recently, increased knowledge of inflammatory process in rheumatic diseases has resulted in the development of potent inhibitors of the cytokines, the biologic DMARDs. These treatments reduce systemic inflammation and have some effect on the generalized and localized bone loss. Progression of bone erosion was slowed by TNF, IL-6 and IL-1 inhibitors, a JAK inhibitor, a CTLA4 agonist, and rituximab. Effects on bone mineral density varied between the biological DMARDs. Medications that are approved for the treatment of osteoporosis have been evaluated to prevent bone loss in rheumatic disease patients, including denosumab, cathepsin K, bisphosphonates, anti-sclerostin antibodies and parathyroid hormone (hPTH 1-34), and have some efficacy in both the prevention of systemic bone loss and reducing localized bone erosions. This article reviews the effects of biologic DMARDs on bone mass and erosions in patients with rheumatic diseases and trials of anti-osteoporotic medications in animal models and patients with rheumatic diseases.
Meng, Xin; Li, Jianping; Yu, Ming; Yang, Jian; Zheng, Minjuan; Zhang, Jinzhou; Sun, Chao; Liang, Hongliang; Liu, Liwen
2018-01-01
Mesenchymal stem cell (MSC) has been well known to exert therapeutic potential for patients with myocardial infarction (MI). In addition, interleukin-10 (IL10) could attenuate MI through suppressing inflammation. Thus, the combination of MSC implantation with IL10 delivery may extend health benefits to ameliorate cardiac injury after MI. Here we established overexpression of IL10 in bone marrow-derived MSC through adenoviral transduction. Cell viability, apoptosis, and IL10 secretion under ischemic challenge in vitro were examined. In addition, MSC was transplanted into the injured hearts in a rat model of MI. Four weeks after the MI induction, MI, cardiac functions, apoptotic cells, and inflammation cytokines were assessed. In response to in vitro oxygen-glucose deprivation (OGD), IL10 overexpression in MSC (Ad.IL10-MSC) enhanced cell viability, decreased apoptosis, and increased IL10 secretion. Consistently, the implantation of Ad.IL10-MSCs into MI animals resulted in more reductions in myocardial infarct size, cardiac impairment, and cell apoptosis, compared to the individual treatments of either MSC or IL10 administration. Moreover, the attenuation of both systemic and local inflammations was most prominent for Ad.IL10-MSC treatment. IL10 overexpression and MSC may exert a synergistic anti-inflammatory effect to alleviate cardiac injury after MI. © 2017 Wiley Periodicals, Inc.
Intralesional antimony for single lesions of bolivian cutaneous leishmaniasis.
Soto, Jaime; Rojas, Ernesto; Guzman, Miguel; Verduguez, Aleida; Nena, Winne; Maldonado, Maria; Cruz, Mary; Gracia, Lineth; Villarroel, Darsi; Alavi, Isidoro; Toledo, Julia; Berman, Jonathan
2013-05-01
Cutaneous leishmaniasis is an ultimately self-curing disease for which systemic therapy with pentavalent antimony (Sb) is effective but with side effects. We evaluated 2 local treatments, intralesional (IL) Sb and cryotherapy, for single lesions due to Bolivian Leishmania (v.) braziliensis in a placebo-controlled study. Patients were randomized between IL Sb (650 µg/mm(2) of lesion area on days 1, 3, and 5), cryotherapy (days 1 and 14), and placebo cream (daily for 20 days) in a 3:2:3 allocation. Lesion area was measured prior to therapy, and at 1, 3, and 6 months after therapy. The criteria for lesion cure were as follows: not doubling in size at 1 month, at least 50% diminution in size at 3 months, and complete reepithelialization at 6 months. Local adverse effects were recorded. Cure rates were 21 of 30 (70%; 95% confidence interval [CI], 52%-83%) for IL Sb, 4 of 20 (20%; 95% CI, 8%-42%) for cryotherapy, and 5 of 30 (17%; 95% CI, 7%-34%) for placebo cream (P < .001 for IL Sb vs each other group). IL Sb adverse events were limited to injection site pain, with a mean value of 1.0 (mild). The comparative cure rate, small amount of drug administered, and tolerance data for IL Sb suggest that if local therapy for single L. braziliensis lesions is chosen, this treatment is attractive. Given the difficulties of performing placebo-controlled trials in the New World, the combined placebo and cryotherapy cure rate (18%; 95% CI, 10%-31%) is likely to become the standard against which future interventions for L. braziliensis are compared. NCT01300975.
Perretti, M; Harris, J G; Flower, R J
1994-07-01
1. When injected into a 6-day-old mouse air-pouch, human recombinant interleukin-8 (IL-8; 0.03-3 micrograms) induced, in a dose-dependent fashion, an accumulation of neutrophils which could be reliably assessed 4 h after the injection. No protein extravasation was measured above the values obtained with the vehicle alone (carboxymethylcellulose, CMC, 0.5% w/v in phosphate-buffered solution, PBS). 2. The IL-8 effect (routinely evaluated at 1 microgram dose) was inhibited neither by local administration of actinomycin D (1 microgram) nor by systemic treatment with indomethacin (1 mg kg-1, i.v.), BWA4C (5 mg kg-1, p.o.), methysergide (6 mg kg-1, i.p.) and RP67580 (2 mg kg-1, i.p.). 3. Treatment of mice with the H1 antagonist, mepyramine (1-10 mg kg-1, i.p.) resulted in a dose-dependent inhibition of the cell accumulation elicited by the chemokine, with a maximal reduction of approximately 50-60%. The mepyramine effect was not due to a non specific reduction of neutrophil function, since treatment with this drug (6 mg kg-1, i.p.) did not modify the cell infiltration measured in response to a challenge with interleukin-1 beta (20 ng) or with the vehicle CMC to any extent. Moreover, treatment of mice with mepyramine did not modify cell counts in a peripheral blood film with respect to controls. Two other H1 antagonists, chemically unrelated to mepyramine, diphenhydramine (9 mg kg-1, i.p.) and triprolidine (0.5 mg kg-1, i.p.), inhibited IL-8-induced migration to a similar extent (approximately 50-60%), whereas the H2 antagonist, ranitidine (5 mg kg-1, i.p.) was without effect. 4. The concept that endogenous histamine could be involved in the IL-8 effect was strengthened in two ways: (i) addition of histamine (0.2-2 microg) to a small dose of IL-8 (0.3 microg) potentiated the cell elicitation induced by the chemokine without having any effect on its own; (ii) IL-8-induced neutrophil accumulation was greatly impaired in animals depleted of mast cell amines by sub-chronic (5 day) treatment with compound 48/80 according to an established protocol.5. The glucocorticoid dexamethasone (Dex; 1-50 microg per mouse, i.v., corresponding approximately to 0.03-1.5 mg kg-1, given i.v. 2 h prior to challenge with IL-8) potently inhibited neutrophil infiltration with an approximate ED50 of 5 microg per mouse (~ 0.3 mg kg-1 , i.v.). Passive immunisation of mice with a polyclonal sheep serum raised against the steroid-inducible anti-inflammatory protein lipocortin 1 (LCl)abolished the inhibitory action of Dex whereas a control serum was without effect.6. Local administration of Dex at a dose which was ineffective when given systemically (1 microg) also reduced neutrophil migration induced by IL-8, either alone or in combination with histamine. This local inhibition (~50%), also seen with hydrocortisone (30 microg), was prevented by the concomitant administration of the steroid antagonist RU38486 (10 microg) indicating the involvement of glucocorticoid receptor in the response.7. These findings characterize further the mechanisms underlying PMN recruitment induced by IL-8 in vivo, and point to a role for histamine. The anti-inflammatory action of the glucocorticoids, as in some other models, appears to be LCl-dependent when these drugs are given systemically and LCl independent when the steroids are given locally.
Lou, Hongfei; Lu, Jingning; Choi, Eun Byul; Oh, Min Hee; Jeong, Mingeum; Barmettler, Sara; Zhu, Zhou; Zheng, Tao
2017-01-01
Increased expression of Th22 cytokine IL-22 is a characteristic finding in atopic dermatitis (AD). However, the specific role of IL-22 in the pathogenesis of AD in vivo has yet to be elucidated. Consistent with observations in human AD, IL-22 was significantly increased in the AD skin of mice after epicutaneous sensitization to house dust mite allergen. Utilizing a skin-specific inducible transgenic system, we show here that expression of IL-22 in the skin of mice caused an AD-like phenotype characterized by chronic pruritic dermatitis associated with Th2-biased local and systemic immune responses, down-regulation of Epidermal Differentiation Complex genes and enhanced dermatitis upon epicutaneous allergen exposure. IL-22 potently induced the expression of gastrin-releasing peptide (GRP), a neuropeptide pruritogen, in dermal immune cells and sensory afferents and in their skin-innervating sensory neurons. IL-22 also differentially up-regulated the expression of GRP receptor (GRPR) on keratinocytes of AD skin. The number of GRP+ cells in the skin correlated with the AD severity and the intensity of pruritus. IL-22 directly upregulated the expression of epithelial-derived type 2 cytokines (TSLP and IL-33) and GRP in primary keratinocytes. Furthermore, GRP not only strongly induced TSLP but also increased the expression IL-33 and GRPR synergistically with IL-22. Importantly, we found that the expression of GRP was strikingly increased in the skin of patients with AD. These results indicate that IL-22 plays important pathogenic roles in the initiation and development of AD, in part through inducing keratinocyte production of type 2 cytokines and activation of the GRP/GRPR pathway. PMID:28228560
Interleukin 33 as a Mechanically Responsive Cytokine Secreted by Living Cells*
Kakkar, Rahul; Hei, Hillary; Dobner, Stephan; Lee, Richard T.
2012-01-01
Interleukin 33 (IL-33), a member of the Interleukin 1 cytokine family, is implicated in numerous human inflammatory diseases such as asthma, atherosclerosis, and rheumatoid arthritis. Despite its pathophysiologic importance, fundamental questions regarding the basic biology of IL-33 remain. Nuclear localization and lack of an export signal sequence are consistent with the view of IL-33 as a nuclear factor with the ability to repress RNA transcription. However, signaling via the transmembrane receptor ST2 and documented caspase-dependent inactivation have suggested IL-33 is liberated during cellular necrosis to effect paracrine signaling. We determined the subcellular localization of IL-33 and tracked its intracellular mobility and extracellular release. In contrast to published data, IL-33 localized simultaneously to nuclear euchromatin and membrane-bound cytoplasmic vesicles. Fluorescent pulse-chase fate-tracking documented dynamic nucleo-cytoplasmic flux, which was dependent on nuclear pore complex function. In murine fibroblasts in vitro and in vivo, mechanical strain induced IL-33 secretion in the absence of cellular necrosis. These data document IL-33 dynamic inter-organelle trafficking and release during biomechanical overload. As such we recharacterize IL-33 as both an inflammatory as well as mechanically responsive cytokine secreted by living cells. PMID:22215666
Germinal-center development of memory B cells driven by IL-9 from follicular helper T cells.
Wang, Yifeng; Shi, Jingwen; Yan, Jiacong; Xiao, Zhengtao; Hou, Xiaoxiao; Lu, Peiwen; Hou, Shiyue; Mao, Tianyang; Liu, Wanli; Ma, Yuanwu; Zhang, Lianfeng; Yang, Xuerui; Qi, Hai
2017-08-01
Germinal centers (GCs) support high-affinity, long-lived humoral immunity. How memory B cells develop in GCs is not clear. Through the use of a cell-cycle-reporting system, we identified GC-derived memory precursor cells (GC-MP cells) that had quit cycling and reached G0 phase while in the GC, exhibited memory-associated phenotypes with signs of affinity maturation and localized toward the GC border. After being transferred into adoptive hosts, GC-MP cells reconstituted a secondary response like genuine memory B cells. GC-MP cells expressed the interleukin 9 (IL-9) receptor and responded to IL-9. Acute treatment with IL-9 or antibody to IL-9 accelerated or retarded the positioning of GC-MP cells toward the GC edge and exit from the GC, and enhanced or inhibited the development of memory B cells, which required B cell-intrinsic responsiveness to IL-9. Follicular helper T cells (T FH cells) produced IL-9, and deletion of IL-9 from T cells or, more specifically, from GC T FH cells led to impaired memory formation of B cells. Therefore, the GC development of memory B cells is promoted by T FH cell-derived IL-9.
Basic biology and role of interleukin-17 in immunity and inflammation
Zenobia, Camille; Hajishengallis, George
2014-01-01
Interleukin-17 (IL-17, also known as IL-17A) is a key cytokine that links T cell activation to neutrophil mobilization and activation. As such, IL-17 can mediate protective innate immunity to pathogens or contribute to the pathogenesis of inflammatory diseases, such as psoriasis and rheumatoid arthritis. This review summarizes the basic biology of IL-17 and discusses its emerging role in periodontal disease. The current burden of evidence from human and animal model studies suggests that the net effect of IL-17 signaling promotes disease development. In addition to promoting neutrophilic inflammation, IL-17 has potent pro-osteoclastogenic effects that are likely to contribute to the pathogenesis of periodontitis, rheumatoid arthritis, and other diseases involving bone immunopathology. Systemic treatments with anti-IL-17 biologics have shown promising results in clinical trials for psoriasis and rheumatoid arthritis, although their impact on the highly prevalent periodontal disease has not been investigated or reported. Future clinical trials, preferably using locally administered IL-17 blockers, are required to conclusively implicate IL-17 in periodontitis and, more importantly, to establish an effective adjunctive treatment for this oral inflammatory disease. PMID:26252407
Jiang, Qiliang; Yu, Shashuang; Li, Xingwang; Ma, Chuangen; Li, Aixiang
2018-01-01
A simple approach for the synthesis of Lidocaine-Ibuprofen ionic liquid stabilized silver nanoparticles (IL-AgNPs) was reported in this work. The shape, size and surface morphology of the Lidocaine-Ibuprofen ionic liquid stabilized AgNPs were characterized by using spectroscopic and microscopic techniques such as Ultraviolet-visible spectroscopy (UV-Visible), X-ray diffraction (XRD) analysis, Selected area electron diffraction (SAED), Transmission electron microscopy (TEM). TEM analysis showed the formation of 20-30nm size of IL-AgNPs with very clear lattice fringes. SAED pattern confirmed the highly crystalline nature of fabricated IL stabilized AgNPs. EDS results confirmed the formation of nanosilver. The fabricated IL-AgNPs were studied for their local anesthetic effect in rats. The results of local anesthetic effect showed that the time for onset of action by IL-AgNPs is 10min, which is significantly higher than that for EMLA. Further, tactile test results confirmed the stronger and faster local anesthetic effect of IL-AgNPs when compared to that of EMLA. Copyright © 2017. Published by Elsevier B.V.
Hernández-Aguas, Jorday; Montiel-Hernández, José Luis; Ruiz-Ramos, Rosa Velia; Escamilla García, Erandi; Guzmán-García, Mario Alberto; Ayón-Haro, Esperanza Raquel; Garza-Elizondo, Mario Alberto
2017-01-01
Studies have proposed that Porphyromonas gingivalis (Pg) and Tannerella forsythia (Tf) promote a nonspecific inflammatory response that could produce systemic disease. Oral inoculation of Pg and Tf on the immune and arthritis response was evaluated in BALB/C mice divided into four groups: (1) sham; (2) food contaminated with Pg/Tf; (3) complete Freund's adjuvant (CFA) + Pg/Tf; and (4) CFA alone. CFA was administered subcutaneously on days 1 and 14. The arthritis response was monitored for 21 days after day 14 of CFA administration. IL-1β and IL-6 were determined in serum. T cell activation was evaluated by CD25 in salivary lymph nodes or mouse spleen. Pad inflammation appeared by day 19 in the CFA group, but animals with bacteria inoculation presented a delay. A significant increase in IL-6 was found in Groups 3 and 4, but not with respect to IL-1β. We observed an increase in CD25 in cells derived from cervical nodes and in animals with bacteria inoculation and CFA. A local immune response was observed in mice inoculated with Pg and Tf (T cell activation); a systemic response was observed with CFA. Since pad inflammation was delayed by bacterial inoculation this suggests that local T cell activation could decrease pad inflammation. PMID:28676826
Pomeshchik, Yuriy; Kidin, Iurii; Korhonen, Paula; Savchenko, Ekaterina; Jaronen, Merja; Lehtonen, Sarka; Wojciechowski, Sara; Kanninen, Katja; Koistinaho, Jari; Malm, Tarja
2015-02-01
Interleukin-33 (IL-33) is a member of the interleukin-1 cytokine family and highly expressed in the naïve mouse brain and spinal cord. Despite the fact that IL-33 is known to be inducible by various inflammatory stimuli, its cellular localization in the central nervous system and role in pathological conditions is controversial. Administration of recombinant IL-33 has been shown to attenuate experimental autoimmune encephalomyelitis progression in one study, yet contradictory reports also exist. Here we investigated for the first time the pattern of IL-33 expression in the contused mouse spinal cord and demonstrated that after spinal cord injury (SCI) IL-33 was up-regulated and exhibited a nuclear localization predominantly in astrocytes. Importantly, we found that treatment with recombinant IL-33 alleviated secondary damage by significantly decreasing tissue loss, demyelination and astrogliosis in the contused mouse spinal cord, resulting in dramatically improved functional recovery. We identified both central and peripheral mechanisms of IL-33 action. In spinal cord, IL-33 treatment reduced the expression of pro-inflammatory tumor necrosis factor-alpha and promoted the activation of anti-inflammatory arginase-1 positive M2 microglia/macrophages, which chronically persisted in the injured spinal cord for up to at least 42 days after the treatment. In addition, IL-33 treatment showed a tendency towards reduced T-cell infiltration into the spinal cord. In the periphery, IL-33 treatment induced a shift towards the Th2 type cytokine profile and reduced the percentage and absolute number of cytotoxic, tumor necrosis factor-alpha expressing CD4+ cells in the spleen. Additionally, IL-33 treatment increased expression of T-regulatory cell marker FoxP3 and reduced expression of M1 marker iNOS in the spleen. Taken together, these results provide the first evidence that IL-33 administration is beneficial after CNS trauma. Treatment with IL33 may offer a novel therapeutic strategy for patients with acute contusion SCI. Copyright © 2014 Elsevier Inc. All rights reserved.
Almuraikhy, Shamma; Kafienah, Wael; Bashah, Moataz; Diboun, Ilhame; Jaganjac, Morana; Al-Khelaifi, Fatima; Abdesselem, Houari; Mazloum, Nayef A; Alsayrafi, Mohammed; Mohamed-Ali, Vidya; Elrayess, Mohamed A
2016-11-01
A subset of obese individuals remains insulin sensitive by mechanisms as yet unclear. The hypothesis that maintenance of normal subcutaneous (SC) adipogenesis accounts, at least partially, for this protective phenotype and whether it can be abrogated by chronic exposure to IL-6 was investigated. Adipose tissue biopsies were collected from insulin-sensitive (IS) and insulin-resistant (IR) individuals undergoing weight-reduction surgery. Adipocyte size, pre-adipocyte proportion of stromal vascular fraction (SVF)-derived cells, adipogenic capacity and gene expression profiles of isolated pre-adipocytes were determined, along with local in vitro IL-6 secretion. Adipogenic capacity was further assessed in response to exogenous IL-6 application. Despite being equally obese, IR individuals had significantly lower plasma leptin and adiponectin levels and higher IL-6 levels compared with age-matched IS counterparts. Elevated systemic IL-6 in IR individuals was associated with hyperplasia of adipose tissue-derived SVF cells, despite higher frequency of hypertrophied adipocytes. SC pre-adipocytes from these tissues exhibited lower adipogenic capacity accompanied by downregulation of PPARγ (also known as PPARG) and CEBPα (also known as CEBPA) and upregulation of GATA3 expression. Impaired adipogenesis in IR individuals was further associated with increased adipose secretion of IL-6. Treatment of IS-derived SC pre-adipocytes with IL-6 reduced their adipogenic capacity to levels of the IR group. Obesity-associated insulin resistance is marked by impaired SC adipogenesis, mediated, at least in a subset of individuals, by elevated local levels of IL-6. Understanding the molecular mechanisms underlying reduced adipogenic capacity in IR individuals could help target appropriate therapeutic strategies aimed at those at greatest risk of insulin resistance and type 2 diabetes mellitus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagley, Yadav; Yoo, Yung-Choon; Seo, Han Geuk
2007-03-23
Melanoma is an intractable tumor that has shown very impressive and promising response to local administration of high dose recombinant TNF-{alpha} in combination with IFN-{gamma} in clinical studies. In this study, we investigated the effect of IL-6/sIL-6R on TNF-{alpha}-resistant B16/F10.9 melanoma cells. A low dose of TNF-{alpha} or IL-6/sIL-6R had minimal affect on the cell growth. However, the highly active fusion protein of sIL-6R and IL-6 (IL6RIL6), covalently linked by a flexible peptide, sensitized TNF-{alpha}-resistant F10.9 melanoma cells to TNF-{alpha}-induced apoptosis. Stimulation of the cells with IL6RIL6 plus TNF-{alpha} resulted in both the activation of caspase-3 and the reduction ofmore » bcl-2 expression. Flow cytometry analysis showed that IL6RIL6-upregulated TNF-R55 and TNF-R75 expression, suggesting an increase in TNF-{alpha} responsiveness by IL6RIL6 resulting from the induction of TNF receptors. Moreover, exposure of F10.9 cells to neutralizing antibody to TNF-R55 significantly inhibited IL6RIL6/TNF-{alpha}-induced cytotoxicity. These results suggest that the IL6/sIL6R/gp130 system, which sensitizes TNF-{alpha}-resistant melanoma cells to TNF-{alpha}-induced apoptosis, may provide a new target for immunotherapy.« less
Photodynamic therapy affects the expression of IL-6 and IL-10 in vivo
NASA Astrophysics Data System (ADS)
Gollnick, Sandra O.; Musser, David A.; Henderson, Barbara W.
1998-05-01
Photodynamic therapy (PDT), which can effectively destroy malignant tissue, also induces a complex immune response which potentiates anti-tumor immunity, but also inhibits skin contact hypersensitivity (CHS) and prolongs skin graft survival. The underlying mechanisms responsible for these effects are poorly understood, but are likely to involve meditation by cytokines. We demonstrate in a BALB/c mouse model that PDT delivered to normal and tumor tissue in vivo causes marked changes in the expression of cytokines interleukin (IL)-6 and IL-10. IL-6 mRNA and protein are rapidly and strongly enhanced in the PDT treated EMT6 tumor. Previous studies have shown that intratumoral injection of IL- 6 or transduction of the IL-6 gene into tumor cells can enhance tumor immunogenicity and inhibit tumor growth in experimental murine tumor systems. Thus, PDT may enhance local anti-tumor immunity by up-regulating IL-6. PDT also results in an increase in IL-10 mRNA and protein in the skin. The same PDT regime which enhances IL-10 production in the skin has been shown to strongly inhibit the CHS response. The kinetics of IL-10 expression coincide with the known kinetics of PDT induced CHS suppression and we propose that the enhanced IL-10 expression plays a role in the observed suppression of cell mediated responses seen following PDT.
DOT National Transportation Integrated Search
1973-08-01
The manual presents the complete ILSLOC computer program package. In addition to including a thorough description of the program itself and a commented listing, the manual contains a brief description of the ILS system and antenna patterns. To illust...
Effects of aging on the immunopathological response to sepsis
Turnbull, Isaiah R.; Clark, Andrew T.; Stromberg, Paul E.; Dixon, David J.; Woolsey, Cheryl A.; Davis, Christopher G.; Hotchkiss, Richard S.; Buchman, Timothy G.; Coopersmith, Craig M.
2009-01-01
Objective Aging is associated with increased inflammation following sepsis. The purpose of this study was to determine if this represents a fundamental age-based difference in the host response or is secondary to the increased mortality seen in aged hosts. Design Prospective, randomized controlled study. Setting Animal laboratory in a university medical center. Subjects Young (6–12 week) and aged (20–24 month) FVB/N mice. Interventions Mice were subjected to 2×25 or 1×30 cecal ligation and puncture (CLP). Measurements and Main Results Survival was similar in young mice subjected to 2×25 CLP and aged mice subjected to 1×30 CLP (p=0.15). Young mice subjected to 1×30 CLP had improved survival compared to both other groups (p<0.05). When injury was held constant but mortality was greater, both systemic and peritoneal levels of TNF-α, IL-6, IL-10 and MCP-1 were elevated 24 hours after CLP in aged animals compared to young animals (p<0.05). When mortality was similar but injury severity was different, there were no significant differences in systemic cytokines between aged mice and young mice. In contrast, peritoneal levels of TNF-α, IL-6, and IL-10 were higher in aged mice subjected to 1×30 CLP than young mice subjected to 2×25 CLP despite their similar mortalities (p<0.05). There were no significant differences in either bacteremia or peritoneal cultures when animals of different ages sustained similar injuries or had different injuries with similar mortalities. Conclusions Aged mice are more likely to die from sepsis than young mice when subjected to an equivalent insult, and this is associated with increases in both systemic and local inflammation. There is an exaggerated local but not systemic inflammatory response in aged mice compared to young mice when mortality is similar. This suggests that systemic processes that culminate in death may be age-independent, but the local inflammatory response may be greater with aging. PMID:19237912
77 FR 68065 - Amendment of Class D and Class E Airspace; Lewiston, ID
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-15
... Measuring Equipment (VOR/ DME), and the Lewiston-Nez Perce Instrument Landing System (ILS) Localizer... feet or more above the surface of the earth. * * * * * ANM ID E5 Lewiston, ID [Modified] Lewiston-Nez...
76 FR 19281 - Proposed Amendment of Class E Airspace; Bozeman, MT
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-07
... Instrument Landing System (ILS) Localizer (LOC) standard instrument approach procedures at the airport. The... extending upward from 700 feet or more above the surface of the earth. * * * * * ANM MT E5 Bozeman, MT...
76 FR 3569 - Proposed Amendment of Class E Airspace; West Yellowstone, MT
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-20
... accommodate aircraft using the Instrument Landing System (ILS) Localizer (LOC) standard instrument approach... airspace areas extending upward from 700 feet or more above the surface of the earth. * * * * * ANM MT E5...
Patel, Sapna; Akalkotkar, Archana; Bivona, Joseph J; Lee, Ji-Young; Park, Young-Ki; Yu, Mingke; Colpitts, Sara L; Vajdy, Michael
2016-08-01
Vitamins A and E and select flavonoids in the family of catechins are well-defined small molecules that, if proven to possess immunomodulatory properties, hold promise as vaccine adjuvants and various therapies. In an effort to determine the in vivo immunomodulatory properties of these molecules, we found that although mucosal and systemic vaccinations with a recombinant HIV-1BaL gp120 with either a catechin, epigallo catechin gallate (EGCG) or pro-vitamin A (retinyl palmitate) alone in a vegetable-oil-in-water emulsion (OWE) suppressed antigen-specific responses, the combination of EGCG and vitamin A or E in OWE (Nutritive Immune-enhancing Delivery System, NIDS) synergistically enhanced adaptive B-cell, and CD4(+) and CD8(+) T-cell responses, following induction of relatively low local and systemic innate tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6) and IL-17, but relatively high levels of early systemic IL-15 responses. For induction of adaptive interferon-γ and TNF-α responses by CD4(+) and CD8(+) T cells, the adjuvant effect of NIDS was dependent on both IL-15 and its receptor. In addition, the anti-oxidant activity of NIDS correlated positively with higher expression of the superoxide dismutase 1, an enzyme involved in reactive oxygen species elimination but negatively with secretion of IL-1β. This suggests that the mechanism of action of NIDS is dependent on anti-oxidant activity and IL-15, but independent of IL-1β and inflammasome formation. These data show that this approach in nutritive vaccine adjuvant design holds promise for the development of potentially safer effective vaccines. © 2016 John Wiley & Sons Ltd.
The role of interleukin-1 in the pathogenesis of human Intervertebral disc degeneration
Le Maitre, Christine Lyn; Freemont, Anthony J; Hoyland, Judith Alison
2005-01-01
In this study, we investigated the hypotheses that in human intervertebral disc (IVD) degeneration there is local production of the cytokine IL-1, and that this locally produced cytokine can induce the cellular and matrix changes of IVD degeneration. Immunohistochemistry was used to localize five members of the IL-1 family (IL-1α, IL-1β, IL-1Ra (IL-1 receptor antagonist), IL-1RI (IL-1 receptor, type I), and ICE (IL-1β-converting enzyme)) in non-degenerate and degenerate human IVDs. In addition, cells derived from non-degenerate and degenerate human IVDs were challenged with IL-1 agonists and the response was investigated using real-time PCR for a number of matrix-degrading enzymes, matrix proteins, and members of the IL-1 family. This study has shown that native disc cells from non-degenerate and degenerate discs produced the IL-1 agonists, antagonist, the active receptor, and IL-1β-converting enzyme. In addition, immunopositivity for these proteins, with the exception of IL-1Ra, increased with severity of degeneration. We have also shown that IL-1 treatment of human IVD cells resulted in increased gene expression for the matrix-degrading enzymes (MMP 3 (matrix metalloproteinase 3), MMP 13 (matrix metalloproteinase 13), and ADAMTS-4 (a disintegrin and metalloproteinase with thrombospondin motifs)) and a decrease in the gene expression for matrix genes (aggrecan, collagen II, collagen I, and SOX6). In conclusion we have shown that IL-1 is produced in the degenerate IVD. It is synthesized by native disc cells, and treatment of human disc cells with IL-1 induces an imbalance between catabolic and anabolic events, responses that represent the changes seen during disc degeneration. Therefore, inhibiting IL-1 could be an important therapeutic target for preventing and reversing disc degeneration. PMID:15987475
Wu, Xilong; Wu, Yundi; Ye, Hongbo; Yu, Shuangjiang; He, Chaoliang; Chen, Xuesi
2017-06-10
In situ-forming thermosensitive hydrogels based on poly(ethylene glycol)-poly(γ-ethyl-l-glutamate) diblock copolymers (mPEG-b-PELG) were prepared for the co-delivery of interleukin-15 (IL-15) and cisplatin (CDDP). The polypeptide-based hydrogels as local drug delivery carriers could reduce the systemic toxicity, degrade thoroughly within 3weeks after subcutaneous injection into rats and display an acceptable biocompatibility. When incubated with mouse melanoma B16 cells, only the CDDP-treated groups had significant effects on the S phase cell-cycle arrest in melanoma cells. After a single peritumoral injection of the hydrogel containing IL-15/CDDP in C57BL/6 mice inoculated with B16F0-RFP melanoma cells, the dual drug-loaded hydrogels displayed synergistic anticancer efficacy, which was resulted from a combination of CDDP-mediated S arrest and IL-15/CDDP-induced recovery of CD8 + T cell and NK cell populations to reduce immunosuppression and enhance antitumor immunity. Hence, the as-prepared thermosensitive polypeptide hydrogels for localized and sustained co-delivery of IL-15 and CDDP may have potential for efficient treatment of melanoma. Copyright © 2017 Elsevier B.V. All rights reserved.
Myrianthefs, P; Boutzouka, E; Venetsanou, K; Papalois, A; Kouloukousa, M; Kittas, C; Baltopoulos, G
2006-05-01
The purpose of the study was to investigate the effect of different ventilatory strategies on local and systemic cytokine production in swine with intact lungs in vivo after 4 h of mechanical ventilation. Twenty-five swine were anesthetized and then randomized into five groups (n = 5): (1) low tidal volume zero PEEP (LVZP); (2) medium tidal volume zero PEEP (MVZP); (3) high tidal volume zero PEEP (HVZP); (4) low tidal volume PEEP (LVP); (4) high tidal volume PEEP (HVP). Respiratory rate was adjusted to maintain normocapnia and fraction of inspired oxygen (FiO2) was 1.0. TNF-alpha and IL-10 were measured in BALF and serum at baseline, 2 h, and 4 h of MV. One animal in LVZP (2 h) and two in HVP (3 h) group died before the end of the experiment. TNF-alpha level in BALF was significantly higher in LVZP and LVP at 4 h compared to baseline and the other groups. IL-10 level in BALF was significantly higher in LVP at 4h compared to baseline and the other groups. There was a statistically significant increase in serum TNF-alpha levels at 4 h in LVP group compared to baseline and the other groups at 4 h. There was statistically significant increase in serum IL-10 levels in HVZP and LVP groups at 2 and 4 h which was significantly higher compared to the other groups at 4 h. Our results show that a) low volume MV may induce local and systemic pro- and anti-inflammatory cytokine increase b) in the presence of pro-inflammatory cytokine response there is also an anti-inflammatory response in the same compartment (lungs, circulation). c) There maybe loss of alveolar-to-systemic cytokine compartmentalization.
Pyle, Chloe J; Uwadiae, Faith I; Swieboda, David P; Harker, James A
2017-09-01
Interleukin-6 is a pleiotropic, pro-inflammatory cytokine that can promote both innate and adaptive immune responses. In humans with respiratory virus infections, such as Respiratory Syncytial Virus (RSV), elevated concentrations of IL-6 are associated with more severe disease. In contrast the polymorphisms in the Il6 promoter which favour lower IL-6 production are associated with increased risk of both RSV and Rhinovirus infections. To determine the precise contribution of IL-6 to protection and pathology we used murine models of respiratory virus infection. RSV infection resulted in increased IL-6 production both in the airways and systemically which remained heightened for at least 2 weeks. IL-6 depletion early, but not late, during RSV or Influenza A virus infection resulted in significantly increased disease associated with an influx of virus specific TH1 and cytotoxic CD8+ T cells, whilst not affecting viral clearance. IL-6 acted by driving production of the immunoregulatory cytokine IL-27 by macrophages and monocytes, which in turn promoted the local maturation of regulatory T cells. Concordantly IL-27 was necessary to regulate TH1 responses in the lungs, and sufficient to limit RSV induced disease. Overall we found that during respiratory virus infection the prototypic inflammatory cytokine IL-6 is a critical anti-inflammatory regulator of viral induced immunopathology in the respiratory tract through its induction of IL-27.
Swieboda, David P.
2017-01-01
Interleukin-6 is a pleiotropic, pro-inflammatory cytokine that can promote both innate and adaptive immune responses. In humans with respiratory virus infections, such as Respiratory Syncytial Virus (RSV), elevated concentrations of IL-6 are associated with more severe disease. In contrast the polymorphisms in the Il6 promoter which favour lower IL-6 production are associated with increased risk of both RSV and Rhinovirus infections. To determine the precise contribution of IL-6 to protection and pathology we used murine models of respiratory virus infection. RSV infection resulted in increased IL-6 production both in the airways and systemically which remained heightened for at least 2 weeks. IL-6 depletion early, but not late, during RSV or Influenza A virus infection resulted in significantly increased disease associated with an influx of virus specific TH1 and cytotoxic CD8+ T cells, whilst not affecting viral clearance. IL-6 acted by driving production of the immunoregulatory cytokine IL-27 by macrophages and monocytes, which in turn promoted the local maturation of regulatory T cells. Concordantly IL-27 was necessary to regulate TH1 responses in the lungs, and sufficient to limit RSV induced disease. Overall we found that during respiratory virus infection the prototypic inflammatory cytokine IL-6 is a critical anti-inflammatory regulator of viral induced immunopathology in the respiratory tract through its induction of IL-27. PMID:28953978
Rummel, Christoph; Hübschle, Thomas; Gerstberger, Rüdiger; Roth, Joachim
2004-01-01
The purpose of the present study was to investigate a possible lipopolysaccharide (LPS)-induced activation of brain cells that is mediated by the pleiotropic cytokine interleukin-6 (IL-6) and its transcription factor STAT3 during systemic or localized inflammation. In guinea pigs, intra-arterial (i.a., 10 μg kg−1) or intraperitoneal (i.p., 30 μg kg−1) injections of bacterial LPS cause a systemic inflammatory response which is accompanied by a robust fever. A febrile response can also be induced by administration of LPS into artificial subcutaneously implanted Teflon chambers (s.c. 100 or 10 μg kg−1), which reflects an experimental model that mimics local tissue inflammation. Baseline plasma levels of bioactive IL-6 determined 60 min prior to injections of LPS or vehicle amounted to 35–80 international units (i.u.) ml−1. Within 90 min of LPS injection, plasma IL-6 rose about 1000-fold in the groups injected i.a. or i.p., about 50-fold in the group injected s.c. with 100 μg kg−1 LPS, and only 5-fold in guinea pigs injected with the lower dose of LPS (10 μg kg−1). At this time point, a distinct nuclear translocation pattern of the transcription factor STAT3 became evident in several brain structures. Amongst those, the sensory circumventricular organs known to lack a tight blood—brain barrier such as the area postrema, the vascular organ of the lamina terminalis and the subfornical organ, as well as the hypothalamic supraoptic nucleus showed intense nuclear STAT3 signals in the i.a. or i.p. injected groups. In contrast a moderate (s.c. group, 100 μg kg−1), or even no (s.c. group, 10 μg kg−1), nuclear STAT3 translocation occurred in response to s.c. injections of LPS. These results suggest that STAT3-mediated genomic activation of target gene transcription in brain cells occurred only in those cases in which sufficiently high concentrations of circulating IL-6 were formed during systemic (i.a.. and i.p. groups) or localized (s.c. group, 100 μg kg−1) inflammation. PMID:14966301
Localization and Functionality of the Inflammasome in Neutrophils*
Bakele, Martina; Joos, Melanie; Burdi, Sofia; Allgaier, Nicolas; Pöschel, Simone; Fehrenbacher, Birgit; Schaller, Martin; Marcos, Veronica; Kümmerle-Deschner, Jasmin; Rieber, Nikolaus; Borregaard, Niels; Yazdi, Amir; Hector, Andreas; Hartl, Dominik
2014-01-01
Neutrophils represent the major fraction of circulating immune cells and are rapidly recruited to sites of infection and inflammation. The inflammasome is a multiprotein complex that regulates the generation of IL-1 family proteins. The precise subcellular localization and functionality of the inflammasome in human neutrophils are poorly defined. Here we demonstrate that highly purified human neutrophils express key components of the NOD-like receptor family, pyrin domain containing 3 (NLRP3), and absent in melanoma 2 (AIM2) inflammasomes, particularly apoptosis-associated speck-like protein containing a CARD (ASC), AIM2, and caspase-1. Subcellular fractionation and microscopic analyses further showed that inflammasome components were localized in the cytoplasm and also noncanonically in secretory vesicle and tertiary granule compartments. Whereas IL-1β and IL-18 were expressed at the mRNA level and released as protein, highly purified neutrophils neither expressed nor released IL-1α at baseline or upon stimulation. Upon inflammasome activation, highly purified neutrophils released substantially lower levels of IL-1β protein compared with partially purified neutrophils. Serine proteases and caspases were differentially involved in IL-1β release, depending on the stimulus. Spontaneous activation of the NLRP3 inflammasome in neutrophils in vivo affected IL-1β, but not IL-18 release. In summary, these studies show that human neutrophils express key components of the inflammasome machinery in distinct intracellular compartments and release IL-1β and IL-18, but not IL-1α or IL-33 protein. Targeting the neutrophil inflammasome may represent a future therapeutic strategy to modulate neutrophilic inflammatory diseases, such as cystic fibrosis, rheumatoid arthritis, or sepsis. PMID:24398679
β-cell-specific IL-2 therapy increases islet Foxp3+Treg and suppresses type 1 diabetes in NOD mice.
Johnson, Mark C; Garland, Alaina L; Nicolson, Sarah C; Li, Chengwen; Samulski, R Jude; Wang, Bo; Tisch, Roland
2013-11-01
Interleukin-2 (IL-2) is a critical cytokine for the homeostasis and function of forkhead box p3-expressing regulatory T cells (Foxp3(+)Tregs). Dysregulation of the IL-2-IL-2 receptor axis is associated with aberrant Foxp3(+)Tregs and T cell-mediated autoimmune diseases such as type 1 diabetes. Treatment with recombinant IL-2 has been reported to enhance Foxp3(+)Tregs and suppress different models of autoimmunity. However, efficacy of IL-2 therapy is dependent on achieving sufficient levels of IL-2 to boost tissue-resident Foxp3(+)Tregs while avoiding the potential toxic effects of systemic IL-2. With this in mind, adeno-associated virus (AAV) vector gene delivery was used to localize IL-2 expression to the islets of NOD mice. Injection of a double-stranded AAV vector encoding IL-2 driven by a mouse insulin promoter (dsAAVmIP-IL2) increased Foxp3(+)Tregs in the islets but not the draining pancreatic lymph nodes. Islet Foxp3(+)Tregs in dsAAVmIP-IL2-treated NOD mice exhibited enhanced fitness marked by increased expression of Bcl-2, proliferation, and suppressor function. In contrast, ectopic IL-2 had no significant effect on conventional islet-infiltrating effector T cells. Notably, β-cell-specific IL-2 expression suppressed late preclinical type 1 diabetes in NOD mice. Collectively, these findings demonstrate that β-cell-specific IL-2 expands an islet-resident Foxp3(+)Tregs pool that effectively suppresses ongoing type 1 diabetes long term.
78 FR 45848 - Amendment of Class E Airspace; Salt Lake City, UT
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-30
... Salt Lake City, UT, to accommodate aircraft using Area Navigation (RNAV) Global Positioning System (GPS) and Instrument Landing System (ILS) or Localizer (LOC) standard instrument approach procedures at Salt..., and makes a minor change to the legal description of Class E airspace extending upward from 1,200 feet...
RNA:RNA interaction can enhance RNA localization in Drosophila oocytes
Hartswood, Eve; Brodie, Jim; Vendra, Georgia; Davis, Ilan; Finnegan, David J.
2012-01-01
RNA localization is a key mechanism for targeting proteins to particular subcellular domains. Sequences necessary and sufficient for localization have been identified, but little is known about factors that affect its kinetics. Transcripts of gurken and the I factor, a non-LTR retrotransposon, colocalize at the nucleus in the dorso–antero corner of the Drosophila oocyte directed by localization signals, the GLS and ILS. I factor RNA localizes faster than gurken after injection into oocytes, due to a difference in the intrinsic localization ability of the GLS and ILS. The kinetics of localization of RNA containing the ILS are enhanced by the presence of a stem–loop, the A loop. This acts as an RNA:RNA interaction element in vivo and in vitro, and stimulates localization of RNA containing other localization signals. RNA:RNA interaction may be a general mechanism for modulating RNA localization and could allow an mRNA that lacks a localization signal to hitchhike on another RNA that has one. PMID:22345148
Shan, Jing; Oshima, Tadayuki; Chen, Xin; Fukui, Hirokazu; Watari, Jiro; Miwa, Hiroto
2012-11-15
Immune-mediated injury by the protease-activated receptor-2-interleukin-8 (PAR-2-IL8) pathway may underlie the development of gastroesophageal reflux disease (GERD). However, the localization of PAR-2 and the mechanism of PAR-2 activation remain unclear. This study aimed to address these questions on an esophageal stratified squamous epithelial model and in the human esophageal mucosa of GERD patients. Normal human esophageal epithelial cells were cultured with the air-liquid interface system to establish the model. SLIGKV-NH2 (PAR-2 synthetic agonist), trypsin (PAR-2 natural activator), and weak acid (pH 4, 5, and 6) were added to either the apical or basolateral compartment to evaluate their effects on transepithelial electrical resistance (TEER) and IL-8 production. PAR-2 localization was examined both in the cell model and biopsies from GERD patients by immunohistochemistry. Apical trypsin stimulation induced IL-8 accompanied by decreased TEER in vitro, whereas the effective concentration from the basolateral side was 10 times lower. SLIGKV-NH2 from basolateral but not apical stimulation induced IL-8 production. Apical weak acid stimulation did not influence TEER or IL-8 production. Immunohistochemistry showed intense reactivity of PAR-2 in the basal and suprabasal layers after stimulation with trypsin. A similar PAR-2 reactivity that was mainly located at the basal and suprabasal layers was detected in GERD patients. In conclusion, the activation of the PAR-2-IL-8 pathway probably occurred at the basal and suprabasal layers, while the esophageal epithelial barrier may influence the activation of PAR-2. Under proton pump inhibitor therapy, refluxed trypsin may remain active and be a potential agent in the pathogenesis of refractory GERD.
Sabel, Michael S; Skitzki, Joseph; Stoolman, Lloyd; Egilmez, Nejat K; Mathiowitz, Edith; Bailey, Nicola; Chang, Wen-Jian; Chang, Alfred E
2004-02-01
Local, sustained delivery of cytokines at a tumor can enhance induction of antitumor immunity and may be a feasible neoadjuvant immunotherapy for breast cancer. We evaluated the ability of intratumoral poly-lactic-acid-encapsulated microspheres (PLAM) containing interleukin 12 (IL-12), tumor necrosis factor alpha (TNF-alpha), and granulocyte-macrophage colony stimulating factor (GM-CSF) in a murine model of breast cancer to generate a specific antitumor response. BALB/c mice with established MT-901 tumors underwent resection or treatment with a single intratumoral injection of PLAM containing IL-12, TNF-alpha, or GM-CSF, alone or in combination. Two weeks later, lymph nodes and spleens were harvested, activated with anti-CD3 monoclonal antibodies (mAb) and rhIL-2, and assessed for antitumor reactivity by an interferon gamma (IFNgamma) release assay. Tumor-infiltrating lymphocyte (TIL) analysis was performed on days 2 and 5 after treatment by mechanically processing the tumors to create a single cell suspension, followed by three-color fluorescence-activated cell sorter (FACS) analysis. Intratumoral injection of cytokine-loaded PLAM significantly suppressed tumor growth, with the combination of IL-12 and TNF-alpha leading to increased infiltration by polymorphonuclear cells and CD8+ T-cells in comparison with controls. The induction of tumor-specific reactive T-cells in the nodes and spleens, as measured by IFN-gamma production, was highest with IL-12 and TNF-alpha. This treatment resulted in resistance to tumor rechallenge. A single intratumoral injection of IL-12 and TNF-alpha-loaded PLAM into a breast tumor leads to infiltration by polymorphonuclear cells and CD8+ T-cells with subsequent tumor regression. In addition, this local therapy induces specific antitumor T-cells in the lymph nodes and spleens, resulting in memory immune response.
Tiwari, Urvashi; Ramachandran, V G; Das, Shukla; Kumar, Sudhir
2014-04-01
Osteoarticular tuberculosis accounts for one to three per cent of all cases of active TB. IL-3 stimulates the proliferation, differentiation and survival of pluripotent stem cells. IL-17 has shown to promote inflammatory cell recruitment and granuloma organization throughout infection with Mycobacterium tuberculosis. During the chronic phase of the infection, a balance between Th1 and Th17 responses needs to be achieved to limit immunopathology. To correlate the serum levels of IL-3 and IL-17 at presentation and after completion of treatment in clinicoradiologically proven cases of osteoarticular tuberculosis. 32 clinicoradiologically confirmed cases of osteoarticular tuberculosis were included. Archived serum samples of eight patients of osteoarticular tuberculosis of an earlier study, confirmed by PCR, AFB smear or by histopathology with previously determined IL-12 and TGF-beta levels were available. A detailed history was noted and their general physical, local and relevant systemic examination was performed. Various laboratory parameters including TL-3 and IL-17 levels in serum were estimated at presentation and at six months of DOTS CAT-1 treatment. There was a significant improvement in the clinical and radiological parameters after treatment. No correlation was found between IL-3 and IL-17 levels before and after treatment. A significant correlation (p value= 0.022) was shown between levels of IL-3 and IL-12 after six months of treatment. Qualitative and quantitative fluctuations in IL-3 and IL-17 levels were not able to serve as useful indices of disease activity.
Björkdahl, O; Åkerblad, P; Gjörloff-wingren, A; Leanderson, T; Dohlsten, M
1999-01-01
To evaluate the biological effects of over-expression of interleukin-1β (IL-1β) on the immune system we have generated transgenic mice, expressing the IL-1β gene fused to a heterologous signal sequence under the control of the mouse immunoglobulin enhancer (Eμ). A prominent hyperplasia and a disturbed microarchitecture of lymphoid tissues were observed in the transgenic mice. The CD4+ T cells in the hyperplastic lymphoid organs seemed to invade the majority of the lymphoid organs including B-cell restricted areas. Analysis of lymph node cells revealed an increased frequency of CD4+ CD44high CD62L− T cells and local secretion of IL-2 and IL-4, compatible with an elevated number of activated T cells. Furthermore, significant levels of human IL-1β in sera and high concentrations of serum immunoglobulin G (IgG) were observed in the transgenic mice. The data suggest a role for IL-1β in controlling lymphoid microarchitecture and, when over-expressed, breaking the threshold in T-helper–B-cell interaction. PMID:10233687
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-21
..., to accommodate aircraft using Instrument Landing System (ILS) Localizer (LOC) standard instrument... 6005 Class E airspace areas extending upward from 700 feet or more above the surface of the earth...
Souza, M.; Azevedo, M. S. P.; Jung, K.; Cheetham, S.; Saif, L. J.
2008-01-01
We previously characterized the pathogenesis of two host-specific bovine enteric caliciviruses (BEC), the GIII.2 norovirus (NoV) strain CV186-OH and the phylogenetically unassigned NB strain, in gnotobiotic (Gn) calves. In this study we evaluated the Gn calf as an alternative animal model to study the pathogenesis and host immune responses to the human norovirus (HuNoV) strain GII.4-HS66. The HuNoV HS66 strain caused diarrhea (five/five calves) and intestinal lesions (one/two calves tested) in the proximal small intestine (duodenum and jejunum) of Gn calves, with lesions similar to, but less severe than, those described for the Newbury agent 2 (NA-2) and NB BEC. Viral capsid antigen was also detected in the jejunum of the proximal small intestine of one of two calves tested by immunohistochemistry. All inoculated calves shed virus in feces (five/five calves), and one/five had viremia. Antibodies and cytokine (proinflammatory, tumor necrosis factor alpha [TNF-α]; Th1, interleukin-12 [IL-12] and gamma interferon [IFN-γ]; Th2, IL-4; Th2/T-regulatory, IL-10) profiles were determined in serum, feces, and intestinal contents (IC) of the HuNoV-HS66-inoculated calves (n = 5) and controls (n = 4) by enzyme-linked immunosorbent assay in the acute (postinoculation day 3 [PID 3]) and convalescent (PID 28) stages of infection. The HuNoV-HS66-specific antibody and cytokine-secreting cells (CSCs) were quantitated by ELISPOT in mononuclear cells of local and systemic tissues at PID 28. Sixty-seven percent of the HuNoV-HS66-inoculated calves seroconverted, and 100% coproconverted with immunoglobulin A (IgA) and/or IgG antibodies to HuNoV-HS66, at low titers. The highest numbers of antibody-secreting cells (ASC), both IgA and IgG, were detected locally in intestine, but systemic IgA and IgG ASC responses also occurred in the HuNoV-HS66-inoculated calves. In serum, HuNoV-HS66 induced higher peaks of TNF-α and IFN-γ at PIDs 2, 7, and 10; of IL-4 and IL-10 at PID 4; and of IL-12 at PIDs 7 and 10, compared to controls. In feces, cytokines increased earlier (PID 1) than in serum and TNF-α and IL-10 were elevated acutely in the IC of the HS66-inoculated calves. Compared to controls, at PID 28 higher numbers of IFN-γ and TNF-α CSCs were detected in mesenteric lymph nodes (MLN) or spleen and Th2 (IL-4) CSCs were elevated in intestine; IL-10 CSCs were highest in spleen. Our study provides new data confirming HuNoV-HS66 replication and enteropathogenicity in Gn calves and reveals important and comprehensive aspects of the host's local (intestine and MLN) and systemic (spleen and blood) immune responses to HuNoV-HS66. PMID:18045944
Souza, M; Azevedo, M S P; Jung, K; Cheetham, S; Saif, L J
2008-02-01
We previously characterized the pathogenesis of two host-specific bovine enteric caliciviruses (BEC), the GIII.2 norovirus (NoV) strain CV186-OH and the phylogenetically unassigned NB strain, in gnotobiotic (Gn) calves. In this study we evaluated the Gn calf as an alternative animal model to study the pathogenesis and host immune responses to the human norovirus (HuNoV) strain GII.4-HS66. The HuNoV HS66 strain caused diarrhea (five/five calves) and intestinal lesions (one/two calves tested) in the proximal small intestine (duodenum and jejunum) of Gn calves, with lesions similar to, but less severe than, those described for the Newbury agent 2 (NA-2) and NB BEC. Viral capsid antigen was also detected in the jejunum of the proximal small intestine of one of two calves tested by immunohistochemistry. All inoculated calves shed virus in feces (five/five calves), and one/five had viremia. Antibodies and cytokine (proinflammatory, tumor necrosis factor alpha [TNF-alpha]; Th1, interleukin-12 [IL-12] and gamma interferon [IFN-gamma]; Th2, IL-4; Th2/T-regulatory, IL-10) profiles were determined in serum, feces, and intestinal contents (IC) of the HuNoV-HS66-inoculated calves (n = 5) and controls (n = 4) by enzyme-linked immunosorbent assay in the acute (postinoculation day 3 [PID 3]) and convalescent (PID 28) stages of infection. The HuNoV-HS66-specific antibody and cytokine-secreting cells (CSCs) were quantitated by ELISPOT in mononuclear cells of local and systemic tissues at PID 28. Sixty-seven percent of the HuNoV-HS66-inoculated calves seroconverted, and 100% coproconverted with immunoglobulin A (IgA) and/or IgG antibodies to HuNoV-HS66, at low titers. The highest numbers of antibody-secreting cells (ASC), both IgA and IgG, were detected locally in intestine, but systemic IgA and IgG ASC responses also occurred in the HuNoV-HS66-inoculated calves. In serum, HuNoV-HS66 induced higher peaks of TNF-alpha and IFN-gamma at PIDs 2, 7, and 10; of IL-4 and IL-10 at PID 4; and of IL-12 at PIDs 7 and 10, compared to controls. In feces, cytokines increased earlier (PID 1) than in serum and TNF-alpha and IL-10 were elevated acutely in the IC of the HS66-inoculated calves. Compared to controls, at PID 28 higher numbers of IFN-gamma and TNF-alpha CSCs were detected in mesenteric lymph nodes (MLN) or spleen and Th2 (IL-4) CSCs were elevated in intestine; IL-10 CSCs were highest in spleen. Our study provides new data confirming HuNoV-HS66 replication and enteropathogenicity in Gn calves and reveals important and comprehensive aspects of the host's local (intestine and MLN) and systemic (spleen and blood) immune responses to HuNoV-HS66.
Evaluation of the Cytosorb™ Hemoadsorptive Column in a Pig Model of Severe Smoke and Burn Injury.
Linden, Katharina; Scaravilli, Vittorio; Kreyer, Stefan F X; Belenkiy, Slava M; Stewart, Ian J; Chung, Kevin K; Cancio, Leopoldo C; Batchinsky, Andriy I
2015-11-01
Host inflammatory response to any form of tissue injury, including burn, trauma, or shock, has been well documented. After significant burns, cytokines can increase substantially within the first 24 h after injury and may contribute to subsequent organ failure. Hemoadsorption by cytokine-adsorbing columns may attenuate this maladaptive response, thereby improving outcomes. The aim of this study was to investigate the feasibility, technical safety, and efficacy of cytokine and myoglobin removal by early use of a cytokine absorbing column (CytoSorb) in a porcine model of smoke inhalation and burn injury. Anesthetized female Yorkshire pigs (n = 15) were injured by wood bark smoke inhalation and a 40% total body surface area deep burn and observed for 72 h or death. The animals were randomized to hemoadsorption treatment (n = 9) or a sham group (n = 6) before injury. A 6-h hemoadsorption or sham session was performed on days one, two, and three. Serum cytokines (IL-1b, IL-6, IL-8, IL-10, TNF-alpha) and myoglobin were measured systemically, locally in bronchoalveolar lavage fluid and also in circulating blood before and after the adsorbing column to evaluate single pass clearance by the device. Hemoadsorption caused significant removal of IL-1b, IL-6, IL-10, and myoglobin across the device mainly during the first run, ranging from 22% for IL-6 to 29% for IL-1b and 41% removal rates for myoglobin after 15 min of treatment. Systemic cytokine or myoglobin serum concentrations did not change. In a porcine model of smoke and burn injury, hemoadsorption using the CytoSorb cartridge did not result in significant systemic or pulmonary reductions in the measured cytokines or myoglobin despite efficient transmembrane reductions. Further investigations are needed to optimize the efficiency of mediator clearance to affect both circulating levels and clinically relevant outcomes.
Chen, Hsin-Hua; Chao, Ya-Hsuan; Chen, Der-Yuan; Yang, Deng-Ho; Chung, Ting-Wen; Li, Yi-Rong; Lin, Chi Chen
2016-04-01
Psoriasis is a chronic autoimmune disease of undefined etiology that involves dysregulated interplay between immune cells and keratinocytes. Acarbose was found to decrease inflammatory parameters in diabetic patients in addition to its anti-diabetic effects. Here, we report that imiquimod (IMQ)-induced epidermal hyperplasia and psoriasis like-inflammation were significantly inhibited by acarbose treatment. Real-time PCR showed that mRNA levels of the cytokines TNF-α, IL-6, IL-1β IL-17A, and IL-22 in skin were also decreased significantly by acarbose. In addition, we found that acarbose reduced infiltration of CD3(+) T cells and GR-1(+) neutrophils in lesional skin and also reduced the percentage of IL-17-producing CD4(+) T cells (Th17) and IL-17- and IL-22-producing γδ T cells in the spleen. In contrast, acarbose increased the frequency of IL-10-producing CD4(+) regulator Tr1 T cells in the spleen and small intestine. These results indicate that oral administration of acarbose can attenuate the severity of imiquimod-induced psoriasis with local and systemic anti-inflammatory and immune modulation effects, thus suggesting that acarbose is an effective therapeutic strategy for psoriasis regulation. Copyright © 2016 Elsevier B.V. All rights reserved.
Jung, Enjae; Perrone, Erin E; Liang, Zhe; Breed, Elise R; Dominguez, Jessica A; Clark, Andrew T; Fox, Amy C; Dunne, W Michael; Burd, Eileen M; Farris, Alton B; Hotchkiss, Richard S; Coopersmith, Craig M
2012-01-01
Mortality in the intensive care unit frequently results from the synergistic effect of two temporally distinct infections. This study examined the pathophysiology of a new model of intra-abdominal sepsis followed by methicillin-resistant Staphylococcus aureus (MRSA) pneumonia. Mice underwent cecal ligation and puncture (CLP) or sham laparotomy followed 3 days later by an intratracheal injection of MRSA or saline. Both CLP/saline and sham/MRSA mice had 100% survival, whereas animals with CLP followed by MRSA pneumonia had 67% 7-day survival. Animals subjected to CLP/MRSA had increased bronchoalveolar lavage concentrations of MRSA compared with sham/MRSA animals. Animals subjected to sham/MRSA pneumonia had increased bronchoalveolar lavage levels of interleukin 6 (IL-6), tumor necrosis factor α, and granulocyte colony-stimulating factor compared with those given intratracheal saline, whereas CLP/MRSA mice had a blunted local inflammatory response with markedly decreased cytokine levels. Similarly, animals subjected to CLP/saline had increased peritoneal lavage levels of IL-6 and IL-1β compared with those subjected to sham laparotomy, whereas this response was blunted in CLP/MRSA mice. Systemic cytokines were upregulated in both CLP/saline and sham/MRSA mice, and this was blunted by the combination of CLP/MRSA. In contrast, no synergistic effect on pneumonia severity, white blood cell count, or lymphocyte apoptosis was identified in CLP/MRSA mice compared with animals with either insult in isolation. These results indicate that a clinically relevant model of CLP followed by MRSA pneumonia causes higher mortality than could have been predicted from studying either infection in isolation, and this was associated with a blunted local (pulmonary and peritoneal) and systemic inflammatory response and decreased ability to clear infection.
Jung, Enjae; Perrone, Erin E.; Liang, Zhe; Breed, Elise R.; Dominguez, Jessica A.; Clark, Andrew T.; Fox, Amy C.; Dunne, W. Michael; Burd, Eileen M.; Farris, Alton B.; Hotchkiss, Richard S.; Coopersmith, Craig M.
2011-01-01
Mortality in the ICU frequently results from the synergistic effect of two temporally-distinct infections. This study examined the pathophysiology of a new model of intraabdominal sepsis followed by methicillin-resistant Staphylococcus aureus (MRSA) pneumonia. Mice underwent cecal ligation and puncture (CLP) or sham laparotomy followed three days later by an intratracheal injection of MRSA or saline. Both CLP/saline and sham/MRSA mice had 100% survival while animals with CLP followed by MRSA pneumonia had 67% seven-day survival. Animals subjected to CLP/MRSA had increased bronchoalveolar lavage (BAL) concentrations of MRSA compared to sham/MRSA animals. Animals subjected to sham/MRSA pneumonia had increased BAL levels of IL-6, TNF-α, and G-CSF compared to those given intratracheal saline while CLP/MRSA mice had a blunted local inflammatory response with markedly decreased cytokine levels. Similarly, animals subjected to CLP/saline had increased peritoneal lavage levels of IL-6 and IL-1β compared to those subjected to sham laparotomy while this response was blunted in CLP/MRSA mice. Systemic cytokines were upregulated in both CLP/saline and sham/MRSA mice, and this was blunted by the combination of CLP/MRSA. In contrast, no synergistic effect on pneumonia severity, white blood cell count or lymphocyte apoptosis was identified in CLP/MRSA mice compared to animals with either insult in isolation. These results indicate that a clinically relevant model of CLP followed by MRSA pneumonia causes higher mortality than could have been predicted from studying either infection in isolation, and this was associated with a blunted local (pulmonary and peritoneal) and systemic inflammatory response and decreased ability to clear infection. PMID:21937950
Montgomery, Logan; Fava, Palma; Freeman, Carolyn R; Hijal, Tarek; Maietta, Ciro; Parker, William; Kildea, John
2018-01-01
Collaborative incident learning initiatives in radiation therapy promise to improve and standardize the quality of care provided by participating institutions. However, the software interfaces provided with such initiatives must accommodate all participants and thus are not optimized for the workflows of individual radiation therapy centers. This article describes the development and implementation of a radiation therapy incident learning system that is optimized for a clinical workflow and uses the taxonomy of the Canadian National System for Incident Reporting - Radiation Treatment (NSIR-RT). The described incident learning system is a novel version of an open-source software called the Safety and Incident Learning System (SaILS). A needs assessment was conducted prior to development to ensure SaILS (a) was intuitive and efficient (b) met changing staff needs and (c) accommodated revisions to NSIR-RT. The core functionality of SaILS includes incident reporting, investigations, tracking, and data visualization. Postlaunch modifications of SaILS were informed by discussion and a survey of radiation therapy staff. There were 240 incidents detected and reported using SaILS in 2016 and the number of incidents per month tended to increase throughout the year. An increase in incident reporting occurred after switching to fully online incident reporting from an initial hybrid paper-electronic system. Incident templating functionality and a connection with our center's oncology information system were incorporated into the investigation interface to minimize repetitive data entry. A taskable actions feature was also incorporated to document outcomes of incident reports and has since been utilized for 36% of reported incidents. Use of SaILS and the NSIR-RT taxonomy has improved the structure of, and staff engagement with, incident learning in our center. Software and workflow modifications informed by staff feedback improved the utility of SaILS and yielded an efficient and transparent solution to categorize incidents with the NSIR-RT taxonomy. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Lang, Annemarie; Neuhaus, Johannes; Pfeiffenberger, Moritz; Schröder, Erik; Ponomarev, Igor; Weber, Yvonne; Gaber, Timo; Schmidt, Michael F G
2014-01-01
Gene therapy appears to have the potential for achieving a long-term remedy for osteoarthritis (OA). However, there is a risk of adverse reactions, especially when using cytomegalovirus-controlled expression. To provide a safe application, we focused on the expression of therapeutic cytokines [e.g. interleukin (IL)-4] in a disease-responsive manner by use of the previously cloned Cox-2 promoter as 'genetic switch'. In the present study, we report the functionality of a controlled gene therapeutic system in an equine osteoarthritic cell model. Different nonviral transfection reagents were tested for their efficiency on equine chondrocytes stimulated with equine IL-1β or lipopolysaccharide to create an inflammatory environment. To optimize the transfection, we successfully redesigned the vector by excluding the internal ribosomal entry site (IRES). The functionality of our Cox-2 promoter construct with respect to expressing IL-4 was proven at the mRNA and protein levels and the anti-inflammatory potential of IL-4 was confirmed by analyzing the expression of IL-1β, IL-6, IL-8, matrix metalloproteinase (MMP)-1, MMP-3 and tumor necrosis factor (TNF)-α using a quantitative polymerase chain reaction. Nonviral transfection reagents yielded transfection rates from 21% to 44% with control vectors with and without IRES, respectively. Stimulation of equine chondrocytes resulted in a 20-fold increase of mRNA expression of IL-1β. Such exogenous stimulation of chondrocytes transfected with pNCox2-IL4 led to an increase of IL-4 mRNA expression, whereas expression of inflammatory mediators decreased. The timely link between these events confirms the anti-inflammatory potential of synthesized IL-4. We consider that this approach has significant potential for translation into a useful anti-inflammation therapy. Molecular tools such as the described therapeutic plasmid pave the way for a local-controlled, self-limiting gene therapy. Copyright © 2014 John Wiley & Sons, Ltd.
Ballak, Dov B; van Essen, Peter; van Diepen, Janna A; Jansen, Henry; Hijmans, Anneke; Matsuguchi, Tetsuya; Sparrer, Helmut; Tack, Cees J; Netea, Mihai G; Joosten, Leo A B; Stienstra, Rinke
2014-01-01
Chronic low-grade inflammation in adipose tissue often accompanies obesity, leading to insulin resistance and increasing the risk for metabolic diseases. MAP3K8 (TPL2/COT) is an important signal transductor and activator of pro-inflammatory pathways that has been linked to obesity-induced adipose tissue inflammation. We used human adipose tissue biopsies to study the relationship of MAP3K8 expression with markers of obesity and expression of pro-inflammatory cytokines (IL-1β, IL-6 and IL-8). Moreover, we evaluated obesity-induced adipose tissue inflammation and insulin resistance in mice lacking MAP3K8 and WT mice on a high-fat diet (HFD) for 16 weeks. Individuals with a BMI >30 displayed a higher mRNA expression of MAP3K8 in adipose tissue compared to individuals with a normal BMI. Additionally, high mRNA expression levels of IL-1β, IL-6 and IL-8, but not TNF -α, in human adipose tissue were associated with higher expression of MAP3K8. Moreover, high plasma SAA and CRP did not associate with increased MAP3K8 expression in adipose tissue. Similarly, no association was found for MAP3K8 expression with plasma insulin or glucose levels. Mice lacking MAP3K8 had similar bodyweight gain as WT mice, yet displayed lower mRNA expression levels of IL-1β, IL-6 and CXCL1 in adipose tissue in response to the HFD as compared to WT animals. However, MAP3K8 deficient mice were not protected against HFD-induced adipose tissue macrophage infiltration or the development of insulin resistance. Together, the data in both human and mouse show that MAP3K8 is involved in local adipose tissue inflammation, specifically for IL-1β and its responsive cytokines IL-6 and IL-8, but does not seem to have systemic effects on insulin resistance.
2012-01-01
Background Women with Human Papilloma Virus (HPV) persistence are characterized by high levels of IL-10 at cervix. We have determined whether polymorphisms of IL-10 gene promoter might be associated with increased risk of squamous intraepithelial cervical lesions (SICL) and whether exist significative differences of IL-10 mRNA expression at cervix and systemic and serum IL-10 protein between SICL cases and non-Cervical Lesions (NCL). Methods Peripheral blood samples from SICL (n = 204) and NCL (n = 166) were used to detect IL-10 promoter polymorphisms at loci -592A/C (rs1800872), -819C/T (rs1800871), -1082A/G (rs1800896), -1352A/G (rs1800893), by allelic discrimination and to evaluate serum IL-10 protein. Cervical epithelial scrapings from NCL and biopsies from SICLs were used for HPV-typing and to evaluate IL-10 mRNA expression level. The systemic and local IL-10 mRNA expression levels were measured by real time-PCR. Genotypic and allelic frequencies of the selected polymorphisms were analyzed by logistic regression, adjusting by age and HPV-genotype, to determine the association with SICL. Results No significant differences were found between genotype frequencies at loci −819, -1082, and −1352. Individuals carrying at least one copy of risk allele A of polymorphism −592 had a two-fold increased risk of developing SICL [adjusted odds ratio (OR), 2.02 (95% CI, 1.26-3.25), p = 0.003], compared to NCL. The IL-10 mRNA expression and serum IL-10 protein, were significantly higher in SICL cases (p < 0.01), being higher in patients carrying the risk allele A. Conclusions The −592 polymorphism is associated with increased risk of SICL and can serve as a marker of genetic susceptibility to SICL among Mexican women. According to IL-10 levels found in SICL, IL-10 can be relevant factor for viral persistence and progression disease. PMID:23148667
Middle Ear Fluid Cytokine and Inflammatory Cell Kinetics in the Chinchilla Otitis Media Model
Sato, Katsuro; Liebeler, Carol L.; Quartey, Moses K.; Le, Chap T.; Giebink, G. Scott
1999-01-01
Streptococcus pneumoniae is the most frequent microbe causing middle ear infection. The pathophysiology of pneumococcal otitis media has been characterized by measurement of local inflammatory mediators such as inflammatory cells, lysozyme, oxidative metabolic products, and inflammatory cytokines. The role of cytokines in bacterial infection has been elucidated with animal models, and interleukin (IL)-1β, IL-6, and IL-8 and tumor necrosis factor alpha (TNF-α) are recognized as being important local mediators in acute inflammation. We characterized middle ear inflammatory responses in the chinchilla otitis media model after injecting a very small number of viable pneumococci into the middle ear, similar to the natural course of infection. Middle ear fluid (MEF) concentrations of IL-1β, IL-6, IL-8, and TNF-α were measured by using anti-human cytokine enzyme-linked immunosorbent assay reagents. IL-1β showed the earliest peak, at 6 h after inoculation, whereas IL-6, IL-8, and TNF-α concentrations were increasing 72 h after pneumococcal inoculation. IL-6, IL-8, and TNF-α but not IL-1β concentrations correlated significantly with total inflammatory cell numbers in MEF, and all four cytokines correlated significantly with MEF neutrophil concentration. Several intercytokine correlations were significant. Cytokines, therefore, participate in the early middle ear inflammatory response to S. pneumoniae. PMID:10085040
Hu, Madeleine D; Ethridge, Alexander D; Lipstein, Rebecca; Kumar, Sushil; Wang, Yitang; Jabri, Bana; Turner, Jerrold R; Edelblum, Karen L
2018-06-08
Intraepithelial lymphocytes (IELs) expressing the γδ TCR (γδ IELs) provide continuous surveillance of the intestinal epithelium. However, the mechanisms regulating the basal motility of these cells within the epithelial compartment have not been well defined. We investigated whether IL-15 contributes to γδ IEL localization and migratory behavior in addition to its role in IEL differentiation and survival. Using advanced live cell imaging techniques in mice, we find that compartmentalized overexpression of IL-15 in the lamina propria shifts the distribution of γδ T cells from the epithelial compartment to the lamina propria. This mislocalization could be rescued by epithelial IL-15 overexpression, indicating that epithelial IL-15 is essential for γδ IEL migration into the epithelium. Furthermore, in vitro analyses demonstrated that exogenous IL-15 stimulates γδ IEL migration into cultured epithelial monolayers, and inhibition of IL-2Rβ significantly attenuates the basal motility of these cells. Intravital microscopy showed that impaired IL-2Rβ signaling induced γδ IEL idling within the lateral intercellular space, which resulted in increased early pathogen invasion. Similarly, the redistribution of γδ T cells to the lamina propria due to local IL-15 overproduction also enhanced bacterial translocation. These findings thus reveal a novel role for IL-15 in mediating γδ T cell localization within the intestinal mucosa and regulating γδ IEL motility and patrolling behavior as a critical component of host defense. Copyright © 2018 by The American Association of Immunologists, Inc.
Human Activity Recognition Supported on Indoor Localization: A Systematic Review.
Cerón, Jesús; López, Diego M
2018-01-01
The number of older adults is growing worldwide. This has a social and economic impact in all countries because of the increased number of older adults affected by chronic diseases, health emergencies, and disabilities, representing at the end high cost for the health system. To face this problem, the Ambient Assisted Living (AAL) domain has emerged. Its main objective is to extend the time that older adults can live independently in their homes. AAL is supported by different fields and technologies, being Human Activity Recognition (HAR), control of vital signs and location tracking the three of most interest during the last years. To perform a systematic review about Human Activity Recognition (HAR) approaches supported on Indoor Localization (IL) and vice versa, describing the methods they have used, the accuracy they have obtained and whether they have been directed towards the AAL domain or not. A systematic review of six databases was carried out (ACM, IEEE Xplore, PubMed, Science Direct and Springer). 27 papers were found. They were categorised into three groups according their approach: paper focus on 1. HAR, 2. IL, 3. HAR and IL. A detailed analysis of the following factors was performed: type of methods and technologies used for HAR, IL and data fusion, as well as the precision obtained for them. This systematic review shows that the relationship between HAR and IL has been very little studied, therefore providing insights of its potential mutual support to provide AAL solutions.
Ahn, Soo Hyun; Edwards, Andrew K.; Singh, Sukhbir S.; Young, Steven L.; Lessey, Bruce A.; Tayade, Chandrakant
2015-01-01
Endometriosis is a chronic, inflammatory disease characterized by the growth of endometrial tissue in aberrant locations outside the uterus. Neo-angiogenesis or establishment of new blood supply is one of the fundamental requirements of endometriotic lesion survival in the peritoneal cavity. IL-17A is emerging as a potent angiogenic and pro-inflammatory cytokine involved in the pathophysiology of several chronic inflammatory diseases such as rheumatoid arthritis and psoriasis. However, sparse information is available in the context of endometriosis. In this study, we demonstrate the potential importance of IL-17A in the pathogenesis and pathophysiology of endometriosis. The data show a differential expression of IL-17A in human ectopic endometriotic lesions and matched eutopic endometrium from women with endometriosis. Importantly, surgical removal of lesions resulted in significantly reduced plasma IL-17A concentrations. Immunohistochemistry revealed localization of IL-17A primarily in the stroma of matched ectopic and eutopic tissue samples. In vitro stimulation of endometrial epithelial carcinoma cells, Ishikawa cells and human umbilical vein endothelial cells with IL-17A revealed significant increase in angiogenic (VEGF, IL-8), pro-inflammatory (IL-6, IL-1β) and chemotactic cytokines (G-CSF, CXCL12, CXCL1, CX3CL1). Furthermore, IL-17A promoted tubulogenesis of HUVECs plated on matrigel in a dose-dependent manner. Thus we provide the first evidence that endometriotic lesions produce IL-17A and that the removal of the lesion via laparoscopic surgery leads to the significant reduction in the systemic levels of IL-17A. Taken together, our data shows a likely important role of IL-17A in promoting angiogenesis and pro-inflammatory environment in the peritoneal cavity for the establishment and maintenance of endometriosis lesions. PMID:26259585
2005-10-01
salvage seed implant, cryotherapy ) or who have a rising PSA while on hormone therapy for locally advanced prostate cancer are as follows: a. A...Gene Transduction in Patients with Recurrent Locally Advanced Prostate Cancer Following Therapy PRINCIPAL INVESTIGATOR: Simon J. Hall, MD...CONTRACT NUMBER Phase I Trial of Adenovirus-Mediated IL-12 Gene Transduction in Patients with Recurrent Locally Advanced Prostate Cancer Following
Maksić, Doko; Colić, Miodrag; Stanković-Popović, Verica; Radojević, Milorad; Bokonjić, Dubravko
2007-01-01
Cytokines are essential mediators of immune response and inflammatory reactions. Patients with chronic renal failure and on Continuous Ambulatory Peritoneal Dialysis commonly present abnormalities of immune function related to impaired kidney function, accumulation of uremic toxins and bioincompatibility of peritoneal dialysis solutions. Aim of this study was to examine effects of the CAPD solutions (standard v.s. biocompatible), as well as dialysis duration upon the local and systemic profile of the pro-inflammatory cytokines (IL-1, TNF and IL-6) in patients on CAPD. The cross-sectional study included 44 CAPD patients (27 M and 17 F, average mean age 57.12+/-16.66), of whom 21 patients were on the standard solutions (A.N.D.Y.Disc) for peritoneal dialysis and 23 on the biocompatible solutions (Gambrosol bio trio, Stay Safe balance). The average dialysis treatment period was 3.59+/-2.67 years. In all CAPD patients dialysed longer than 6 months, levels of IL-1. TNF and IL-6 in the serum and dialysis effluent were analysed in the phase without acute infection-related complications (CAPD peritonitis, infection of the catheter exit-site, other acute infections). The control group included 20 patients with the CRF (stage IV and V) whose serum levels of the examined cytokines were also determined. Levels of the inflammatory cytokines were measured by commercial specific ELISA kits (BioSource, Camarillo, California, USA). Statistical analysis of the obtained results was performed by commercial statistics PC software (Stat for Windows, R.4.5. SAD). The serum IL-1 and IL-6 levels were not statistically significantly different in patients on CAPD, irrespective of the type of the used dialysis solutions and in the control group of patients with CRF. The serum TNF levels, unlike IL-1 and IL-6, were statistically significantly higher in patients on CAPD in comparison with the control group of patients (13.203.23 v.s. 5.594.54, p< 0.001, Mann Whitney test). The serum and effluent IL-1 levels in patients on CAPD within one and longer than one year of dialysation did not significantly differ, but the effluent IL-6 levels were significantly higher than in the serum of both groups of patients, that is, effluent IL-6 levels in CAPD patients dialysed more than one year was significantly higher in comparison with those in patients dialysed within a year. Both serum and intraperitoneal levels of the examined cytokines did not significantly differ in patients on the standard and biocompatible solutions, regardless of the present trend toward decrease of intraperitoneal IL-6 levels in patients on biocompatible solutions. Residual renal funcion and number of CAPD peritonitis did not have any important impact upon the serum and IP levels of the examined ctokynes. Elevated serum TNF levels and significant local IL-6 production in our CAPD patients indirectly confirm importance of peritoneal dialysis in amplification of the chronic inflammation substantially depend on the duration of dialysis treatment.
Duan, Xiaoping; Guan, Hui; Cao, Ying; Kleinerman, Eugenie S
2009-01-01
This study evaluated the therapeutic efficacy of interleukin 12 (IL-12) gene therapy in Ewing sarcoma and whether murine mesenchymal stem cells (MSCs) could serve as vehicles for IL-12 gene delivery. MSCs were isolated from murine bone marrow cells. Cells were phenotyped using flow cytometry. Cultured MSCs differentiated into osteocytes and adipocytes using the appropriate media. Freshly isolated MSCs were transfected with adenoviral vectors containing either the beta-galactosidase (Ad:beta-gal) or the IL-12 (Ad:IL-12) gene. Expression of IL-12 was confirmed using reverse transcription polymerase chain reaction. Mice with TC71 Ewing sarcoma tumors were then treated intravenously with MSCs transfected with Ad:beta-gal or Ad:IL-12. Tumors were measured and analyzed by immunohistochemical analysis for expression of IL-12 protein. Expression of both p35 and p40 IL-12 subunits was demonstrated in MSCs transfected in vitro with Ad:IL-12. IL-12 expression was seen in tumors from mice treated with MSCs transfected with Ad:IL-12. Tumor growth was also significantly inhibited compared with that in mice treated with MSCs transfected with Ad:beta-gal. MSCs can be transfected with the IL-12 gene. These transfected cells localize to tumors after intravenous injection and induce local IL-12 protein production and the regression of established tumors. Copyright (c) 2008 American Cancer Society.
Phosphoinositide-Driven Epithelial Proliferation in Prostatic Inflammation
2009-04-01
IL-1β expression is localized to the urethral urothelium during development, and little or no expression is observed in the developing prostatic...ducts [Figure 3B]. By comparison, IL-1α expression is found both in the urethral urothelium and in the developing prostatic ducts [Figure 3A]. In...adult [C]. Hyperplasia was induced by E. coli for 5 days. In contrast, IL-1β [B,D] expression is localized to the urethral urothelium at P10 [B] and
Vernay, M C M B; Wellnitz, O; Kreipe, L; van Dorland, H A; Bruckmaier, R M
2012-05-01
The metabolic load during periods of high milk production in dairy cows causes a variety of changes of metabolite blood concentrations including dramatically decreased glucose levels. These changes supposedly impair the immune system. The goal of this study was, therefore, to evaluate adaptations of the cow's immune system in response to an intramammary lipopolysaccharide (LPS) stimulation during a 3-d modification of plasma glucose and insulin induced by different clamp infusions. Seventeen midlactating dairy cows received a hypoglycemic hyperinsulinemic clamp induced by insulin infusion (HypoG; n=5), a euglycemic hyperinsulinemic clamp induced by insulin and glucose infusion (EuG; n=6), or infusion of saline solution (NaCl; n=6) for 56 h. At 48 h of infusion, 2 udder quarters were challenged with 200 μg of Escherichia coli LPS. At 48 h of infusion (immediately before LPS challenge), tumor necrosis factor α, lactoferrin, and serum amyloid A (SAA) mRNA abundance was increased in HypoG and Il-1β mRNA abundance was decreased in EuG. After LPS challenge, plasma glucose concentration did not decrease, although plasma insulin increased simultaneously in all groups either due to enhanced endogenous release (NaCl) or due to increased insulin infusion rate (HypoG; EuG). Plasma cortisol, rectal temperatures, and milk somatic cell count of challenged quarters increased, whereas plasma nonesterified fatty acid concentrations were similarly decreased across treatments. In mammary biopsies, increased mRNA expression of tumor necrosis factor α, IL-1β, IL-8, and IL-10, and SAA were observed in LPS-treated quarters of all groups, with a more pronounced increase in IL-1β, IL-10, and SAA expression in EuG. Nuclear factor-κB mRNA expression was upregulated in NaCl and EuG but not in HypoG in response to LPS. Lactoferrin, toll-like receptor 4, and cyclooxygenase-2 mRNA expression was increased in LPS-treated quarters of EuG only, and 5-lipoxygenase mRNA expression was decreased in LPS-treated quarters only in treatments HypoG and NaCl. In conclusion, intramammary LPS induces local and systemic inflammatory responses, as well as systemic insulin resistance. The observed treatment differences of the mammary mRNA expression of several immune parameters both before and after LPS challenge indicate a direct influence of changed glucose and insulin concentrations during the course of lactation on the immune defense against mastitis pathogens. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Serum interleukin-6 levels in murine models of Candida albicans infection.
Kovács, Renátó; Czudar, Anita; Horváth, László; Szakács, Levente; Majoros, László; Kónya, József
2014-03-01
Two Balb/C mouse models of Candida infection were used to detect serum interleukin-6 (IL-6) responses. The first model used systemic infection by Candida albicans ATCC 10231 strain infected through the lateral tail vein of mice without any specific pretreatment. The median Candida burdens of the kidneys were 1.5 × 106 CFU/ml 24 h postinoculation (p.i.) and 1.2 × 107 CFU/ml 72 h p.i., while median serum IL-6 levels were 479.3 pg/ml and 934.5 pg/ml, respectively. The Candida burden showed significant correlation with serum IL-6 24 h p.i. (R2 = 0.6358; P = 0.0082) but not 72 h p.i.The second model was a mouse vaginitis model applying intravaginal inoculation of mice pretreated with subcutaneous estradiol-valerate (10 mg/ml) 3 days before infection. Candida cell count in vaginal lavage fluid was 2.8 × 106 CFU/ml 24 h p.i. and 1.4 × 108 CFU/ml 72 h p.i. Serum IL-6 response was detected in 4 of 15 mice 24 h p.i. and 9 of 15 mice 72 h p.i. Even the responders had low IL-6 serum levels (mean values 29.9 pg/ml and 60.1 pg/ml, respectively) not correlating with Candida cell count in vaginal lavage fluid.In conclusion, serum IL-6 had strong relationship with systemic C. albicans infection while the local C. albicans infection of the vagina led to partial, prolonged and limited serum IL-6 response.
Nemec, Ana; Pavlica, Zlatko; Svete, Alenka Nemec; Erzen, Damijan; Crossley, David A; Petelin, Milan
2009-09-01
Porphyromonas gingivalis aspiration pneumonia induces local and systemic cytokine responses, but the dynamic of the immune response following lung exposure to live P. gingivalis is poorly understood. Groups of 50 12-week-old male BALB/c mice were inoculated intratracheally with live P. gingivalis ATCC 33277 using low dose (2 x 10(5) colony-forming units [CFU]), high dose (2.9 x 10(9) CFU), or phosphate-buffered saline (PBS; sham-inoculated), and the 3 groups were sacrificed at 2, 6, 24, 72, 168 hours. Lung and serum samples were collected for tumor necrosis factor alpha (TNF-alpha), soluble TNF-alpha receptors (sTNFRs), interleukin (IL)-1beta, and IL-6 analysis and lung histology. Pneumonia, only observed in the high-dose group, was associated with an early increase in lung TNF-alpha, IL-1beta, and IL-6, whereas no significant changes were observed in lung sTNFRs. Serum sTNFRs were significantly increased in high-dose animals at all times. IL-1beta elevation occurred earlier in serum than in lungs. IL-1beta was also significantly elevated in serum from low-dose animals at 6 hours. Serum IL-6 and sTNFRs remained raised at 7 days, whereas all other measured cytokines returned to basal levels with resolution of pneumonia. Development of pneumonia is dependent on the P. gingivalis dose; however, part of the cytokine response is unique to the systemic compartment, even in animals that do not develop pneumonia.
Dong, Yuanlin; Xu, Zhipeng; Huang, Lining; Zhang, Yiying; Xie, Zhongcong
2016-01-01
Post-operative cognitive dysfunction (POCD) is associated with morbidity, mortality and increased cost of medical care. However, the neuropathogenesis and targeted interventions of POCD remain largely to be determined. We have found that the peripheral surgical wounding induces an age-dependent Aβ accumulation, neuroinflammation and cognitive impairment in aged mice. Pro-inflammatory cytokine interlukin-6 (IL-6) has been reported to be associated with cognitive impairment in rodents and humans. However, the role of IL-6 in the neuropathogenesis of POCD is unknown. We therefore employed pharmacological (IL-6 antibody) and genetic (knockout of IL-6) approach to investigate whether IL-6 contributed to the peripheral surgical wounding-induced cognitive impairment in aged mice. Abdominal surgery under local anesthesia (peripheral surgical wounding) was established in 18-month-old wild-type and IL-6 knockout mice ( n = 6 to 10 in each group). Brain level of IL-6 and cognitive function in the mice were determined by western blot, ELISA at the end of procedure, and Fear Conditioning System at 7 days after the procedure. The peripheral surgical wounding increased the level of IL-6 in the hippocampus of aged wild-type, but not IL-6 knockout mice. IL-6 antibody ameliorated the peripheral surgical wounding-induced cognitive impairment in the aged wild-type mice. Finally, the peripheral surgical wounding did not induce cognitive impairment in the aged IL-6 knockout mice. These data suggested that IL-6 would be a required pro-inflammatory cytokine for the peripheral surgical wounding-induced cognitive impairment. Given this, further studies are warranted to investigate the role of IL-6 in the neuropathogenesis and targeted interventions of POCD.
Dong, Yuanlin; Xu, Zhipeng; Huang, Lining; Zhang, Yiying; Xie, Zhongcong
2016-01-01
Post-operative cognitive dysfunction (POCD) is associated with morbidity, mortality and increased cost of medical care. However, the neuropathogenesis and targeted interventions of POCD remain largely to be determined. We have found that the peripheral surgical wounding induces an age-dependent Aβ accumulation, neuroinflammation and cognitive impairment in aged mice. Pro-inflammatory cytokine interlukin-6 (IL-6) has been reported to be associated with cognitive impairment in rodents and humans. However, the role of IL-6 in the neuropathogenesis of POCD is unknown. We therefore employed pharmacological (IL-6 antibody) and genetic (knockout of IL-6) approach to investigate whether IL-6 contributed to the peripheral surgical wounding-induced cognitive impairment in aged mice. Abdominal surgery under local anesthesia (peripheral surgical wounding) was established in 18-month-old wild-type and IL-6 knockout mice (n = 6 to 10 in each group). Brain level of IL-6 and cognitive function in the mice were determined by western blot, ELISA at the end of procedure, and Fear Conditioning System at 7 days after the procedure. The peripheral surgical wounding increased the level of IL-6 in the hippocampus of aged wild-type, but not IL-6 knockout mice. IL-6 antibody ameliorated the peripheral surgical wounding-induced cognitive impairment in the aged wild-type mice. Finally, the peripheral surgical wounding did not induce cognitive impairment in the aged IL-6 knockout mice. These data suggested that IL-6 would be a required pro-inflammatory cytokine for the peripheral surgical wounding-induced cognitive impairment. Given this, further studies are warranted to investigate the role of IL-6 in the neuropathogenesis and targeted interventions of POCD. PMID:28217289
Bolus, W Reid; Gutierrez, Dario A; Kennedy, Arion J; Anderson-Baucum, Emily K; Hasty, Alyssa H
2015-10-01
Adipose tissue (AT) inflammation during obesity is mediated by immune cells and closely correlates with systemic insulin resistance. In lean AT, eosinophils are present in low but significant numbers and capable of promoting alternative macrophage activation in an IL-4/IL-13-dependent manner. In WT mice, obesity causes the proportion of AT eosinophils to decline, concomitant with inflammation and classical activation of AT macrophages. In this study, we show that CCR2 deficiency leads to increased eosinophil accumulation in AT. Furthermore, in contrast to WT mice, the increase in eosinophils in CCR2(-/-) AT is sustained and even amplified during obesity. Interestingly, a significant portion of eosinophils is found in CLSs in AT of obese CCR2(-/-) mice, which is the first time eosinophils have been shown to localize to these inflammatory hot spots. CCR2(-/-) bone marrow precursors displayed increased expression of various key eosinophil genes during in vitro differentiation to eosinophils, suggesting a potentially altered eosinophil phenotype in the absence of CCR2. In addition, the proportion of eosinophils in AT positively correlated with local expression of Il5, a potent eosinophil stimulator. The increase in eosinophils in CCR2(-/-) mice was detected in all white fat pads analyzed and in the peritoneal cavity but not in bone marrow, blood, spleen, or liver. In AT of CCR2(-/-) mice, an increased eosinophil number positively correlated with M2-like macrophages, expression of the Treg marker Foxp3, and type 2 cytokines, Il4, Il5, and Il13. This is the first study to link CCR2 function with regulation of AT eosinophil accumulation. © Society for Leukocyte Biology.
Bolus, W. Reid; Gutierrez, Dario A.; Kennedy, Arion J.; Anderson-Baucum, Emily K.; Hasty, Alyssa H.
2015-01-01
Adipose tissue (AT) inflammation during obesity is mediated by immune cells and closely correlates with systemic insulin resistance. In lean AT, eosinophils are present in low but significant numbers and capable of promoting alternative macrophage activation in an IL-4/IL-13-dependent manner. In WT mice, obesity causes the proportion of AT eosinophils to decline, concomitant with inflammation and classical activation of AT macrophages. In this study, we show that CCR2 deficiency leads to increased eosinophil accumulation in AT. Furthermore, in contrast to WT mice, the increase in eosinophils in CCR2−/− AT is sustained and even amplified during obesity. Interestingly, a significant portion of eosinophils is found in CLSs in AT of obese CCR2−/− mice, which is the first time eosinophils have been shown to localize to these inflammatory hot spots. CCR2−/− bone marrow precursors displayed increased expression of various key eosinophil genes during in vitro differentiation to eosinophils, suggesting a potentially altered eosinophil phenotype in the absence of CCR2. In addition, the proportion of eosinophils in AT positively correlated with local expression of Il5, a potent eosinophil stimulator. The increase in eosinophils in CCR2−/− mice was detected in all white fat pads analyzed and in the peritoneal cavity but not in bone marrow, blood, spleen, or liver. In AT of CCR2−/− mice, an increased eosinophil number positively correlated with M2-like macrophages, expression of the Treg marker Foxp3, and type 2 cytokines, Il4, Il5, and Il13. This is the first study to link CCR2 function with regulation of AT eosinophil accumulation. PMID:25934927
Mesenchymal stem cells increase antioxidant capacity in intestinal ischemia/reperfusion damage.
Inan, M; Bakar, E; Cerkezkayabekir, A; Sanal, F; Ulucam, E; Subaşı, C; Karaöz, E
2017-07-01
Mesenchymal stem cells (MSCs) may have beneficial effects in reversing intestinal damage resulting from circulatory disorders. The hypothesis of this study is that MSCs increase antioxidant capacity of small bowel tissue following intestinal ischemia reperfusion (I/R) damage. A total of 100 rats were used for the control group and three experimental groups, as follows: the sham control, local MSC, and systemic MSC groups. Each group consisted of 10 animals on days 1, 4, and 7 of the experiment. Ischemia was established by clamping the superior mesenteric artery (SMA) for 45min; following this, reperfusion was carried out for 1, 4, and 7days in all groups. In the local and systemic groups, MSCs were administered intravenously and locally just after the ischemia, and they were investigated after 1, 4, and 7days. The superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (Gpx) activities, as well as malondialdehyde (MDA) and total protein levels, were measured. Histopathological analysis was performed using light and electron microscopy. The indicators of proliferation from the effects of anti- and pro-inflammatory cytokines were evaluated using immunohistochemistry. MDA was increased (P<0.05) in the sham control group and decreased (P<0.05) in the MSC groups. SOD, CAT, and Gpx were decreased in the local MSC group (P<0.05). The highest level of amelioration was observed on day 7 in the local MSC group via light and electron microscopy. It was found that the MSCs arrived at the damaged intestinal wall in the MSC groups immediately after injection. Pro-inflammatory cytokines interleukin-1β (IL1β), transforming growth factor-β1 (TGFβ1), tumor necrosis factor-α (TNFα), IL6, MIP2, and MPO decreased (P<0.05), while anti-inflammatory cytokines EP3 and IL1ra increased (p<0.05) in the local and systemic MSC groups. In addition, proliferation indicators, such as PCNA and KI67, increased (P<0.05) in the local and systemic MSC groups. Parallel to our hypothesis, MSC increases the antioxidant capacity of small bowel tissue after intestinal I/R damage. The MSCs migrated to the reperfused small intestine by homing and reduced oxidative stress via the effects of SOD, CAT, and Gpx, as well as reducing the MDA level; thus, they could increase antioxidant capacity of intestine and have a therapeutic effect on the damaged tissue. We think that this effect was achieved via scavenging of oxygen radicals, suppression of pro-inflammatory cytokines, and increasing the expression of anti-inflammatory cytokines. Copyright © 2017 Elsevier Inc. All rights reserved.
2010-01-01
Background Oral administration of probiotics is known to modulate cytokines profile not only locally, but also systemically. Four strains of Lactobacillus salivarius, LDR0723, BNL1059, RGS1746 and CRL1528, were evaluated for their ability to modulate release of pro- and anti-inflammatory cytokines. Findings Strains were assessed for effects on production of Interleukin-12 (IL-12), Interferon-γ (IFN-γ), Interleukin-4 (IL-4) and Interleukin-5 (IL-5) by incubating bacterial suspensions with THP-1 macrophage like cells. Cytokines were determined by means of specific quantitative enzyme-linked immunosorbent assays. LDR0723 and CRL1528 led to a sustained increment in production of IL-12 and IFN-γ and to a decrease in release of IL-4 and IL-5, while BNL1059 and RGS1746 favoured Th2 response, leading to a decrease in Th1/Th2 ratio with respect to unstimulated cells. Conclusions In conclusion, capability of L. salivarius to modulate immune response was strictly strain dependent and strains of the same species might have opposite effects. Therefore, a careful evaluation of anti-inflammatory properties of lactobacilli should be performed on single strain, before any consideration on potential probiotic use. PMID:20184725
IL-18 Does not Increase Allergic Airway Disease in Mice When Produced by BCG
Amniai, L.; Biet, F.; Marquillies, P.; Locht, C.; Pestel, J.; Tonnel, A.-B.; Duez, C.
2007-01-01
Whilst BCG inhibits allergic airway responses in murine models, IL-18 has adversary effects depending on its environment. We therefore constructed a BCG strain producing murine IL-18 (BCG-IL-18) and evaluated its efficiency to prevent an asthma-like reaction in mice. BALB/cByJ mice were sensitized (day (D) 1 and D10) by intraperitoneal injection of ovalbumin (OVA)-alum and primary (D20–22) and secondary (D62, 63) challenged with OVA aerosols. BCG or BCG-IL-18 were intraperitonealy administered 1 hour before each immunization (D1 and D10). BCG-IL-18 and BCG were shown to similarly inhibit the development of AHR, mucus production, eosinophil influx, and local Th2 cytokine production in BAL, both after the primary and secondary challenge. These data show that IL-18 did not increase allergic airway responses in the context of the mycobacterial infection, and suggest that BCG-IL-18 and BCG are able to prevent the development of local Th2 responses and therefore inhibit allergen-induced airway responses even after restimulation. PMID:18299704
Prins, Hendrik J; Daniels, Johannes M A; Lindeman, Jan H; Lutter, René; Boersma, Wim G
2016-01-01
Neutrophilic inflammation plays a causal role in Chronic Obstructive Pulmonary Disease (COPD). Neutrophil derived myeloperoxidase(MPO) matrix metalloproteinases(MMP's), and elastases are thought to contribute to the perpetuation of the disease. The tetracycline analogue doxycycline has been shown to inhibit neutrophil-mediated inflammation. It was thus reasoned that doxycycline may attenuate neutrophil-mediated inflammation in COPD. In this double blind randomized controlled trial the effect of a 3-week course of doxycycline on sputum and systemic inflammatory parameters was evaluated in stable COPD patients. In order to exclude inflammation by bacterial colonisation patients must have 2 negative sputum cultures in the previous year. The effect of doxycycline treatment on inflammatory markers (TNF-α, IL-1β and IL-6) and neutrophil specific markers in sputum (MPO, MMP's, and IL-8) and serum C-reactive protein was evaluated. Sputum was obtained by sputum induction with hypertonic saline. A total of 41 patients were included. Ten patients were excluded as they were not able to produce sputum at the first or second visit. Baseline characteristics were similar in the two groups. In the remaining patients doxycycline did not influence sputum MPO concentrations. Also MMP-8 and 9, IL-6 and IL-8 concentrations as well as lung function parameters were not affected by doxycycline. Systemic inflammation by means of CRP was also not influenced by doxycycline. A three week course of doxycycline did not influence MPO sputum levels nor any of the other inflammatory sputum and systemic markers. ClinicalTrials.gov; No.: NCT00857038 URL: clinicaltrials.gov. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ontogeny and localization of the cells produce IL-2 in healthy animals.
Yamamoto, Mutsumi; Seki, Yoichi; Iwai, Kazuyuki; Ko, Iei; Martin, Alicia; Tsuji, Noriko; Miyagawa, Shuji; Love, Robert B; Iwashima, Makio
2013-03-01
IL-2 is a growth factor for activated T cells and is required for maintenance of naturally arising regulatory T cells (nTregs). Mice defective in IL-2/IL-2 receptor signaling pathways have impaired nTregs and suffer from lymphoproliferative disorders, suggesting that IL-2 is present and functional in healthy animals. However, the cellular source of IL-2 is currently unknown. To determine which cells produce IL-2 in healthy animals, we established mice carrying cre gene knock in at the il-2 locus (termed IL-2(cre)). When IL-2(cre) mice were crossed with EGFP reporter mice, EGFP was exclusively expressed by a fraction of CD4 T cells present in both lymphoid and non-lymphoid tissues. Live imaging of IL-2(cre) mice that carry the luciferase reporter showed concentrated localization of luciferase(+) cells in Peyer's patches. These cells were not observed in new born mice but appeared within 3days after birth. Reduction of antigen receptor repertoire by transgene expression reduced their number, indicating that recognition of environmental antigens is necessary for generation of these IL-2 producers in healthy animals. A substantial fraction of EGFP(+) cells also produce IL-10 and IFN-γ, a characteristic profile of type 1 regulatory T cells (Tr1). The data suggest that a group of Tr1 cells have addition roles in immune homeostasis by producing IL-2 along with other cytokines and help maintaining Tregs. Copyright © 2012 Elsevier Ltd. All rights reserved.
CAPS--pathogenesis, presentation and treatment of an autoinflammatory disease.
Kuemmerle-Deschner, Jasmin B
2015-07-01
The cryopyrin-associated periodic syndrome (CAPS) is a severity spectrum of rare diseases. CAPS comprises the three conditions previously described as familial cold autoinflammatory syndrome (FCAS), Muckle-Wells syndrome (MWS), and neonatal-onset multisystem inflammatory disorder (NOMID), also known as chronic infantile neurologic, cutaneous, and articular (CINCA) syndrome. The clinical phenotype of CAPS is characterized by systemic inflammation. General symptoms are fatigue and fever. Local manifestations affect multiple tissues such as skin, joints, muscles, eyes, and the central nervous system. Distinct clinical features are characteristic for each subphenotype. In FCAS, these are cold-induced urticaria and fever, in MWS systemic amyloidosis and hearing loss and in NOMID/CINCA central nervous system inflammation and bone deformities. CAPS is caused by single heterozygous germline or somatic gain of function mutations in the NLRP3 gene encoding the protein cryopyrin. Cryopyrin nucleates an NLRP3 inflammasome, which regulates the activation and cleavage of caspase-1 that cleaves the pro-inflammatory cytokines, IL-1β and IL-18. IL-1β plays the key role in the induction of inflammation in CAPS. This has been confirmed by the application of IL-1 blocking agents, which lead not only to a rapid and sustained reversal of daily symptoms but also to some extent of long-term disease sequelae. To prevent CAPS-induced organ damage, early diagnosis and swift initiation of effective treatment are mandatory.
Vaccination against a Virus-Encoded Cytokine Significantly Restricts Viral Challenge
Eberhardt, Meghan K.; Deshpande, Ashlesha; Chang, W. L. William; Barthold, Stephen W.
2013-01-01
Identification of immune correlates of protection for viral vaccines is complicated by multiple factors, but there is general consensus on the importance of antibodies that neutralize viral attachment to susceptible cells. Development of new viral vaccines has mostly followed this neutralizing antibody paradigm, but as a recent clinical trial of human cytomegalovirus (HCMV) vaccination demonstrated, this singular approach can yield limited protective efficacy. Since HCMV devotes >50% of its coding capacity to proteins that modulate host immunity, it is hypothesized that expansion of vaccine targets to include this part of the viral proteome will disrupt viral natural history. HCMV and rhesus cytomegalovirus (RhCMV) each encode an ortholog to the cellular interleukin-10 (cIL-10) cytokine: cmvIL-10 and rhcmvIL10, respectively. Despite extensive sequence divergence from their host's cIL-10, each viral IL-10 retains nearly identical functionality to cIL-10. Uninfected rhesus macaques were immunized with engineered, nonfunctional rhcmvIL-10 variants, which were constructed by site-directed mutagenesis to abolish binding to the cIL-10 receptor. Vaccinees developed antibodies that neutralized rhcmvIL-10 function with no cross-neutralization of cIL-10. Following subcutaneous RhCMV challenge, the vaccinees exhibited both reduced RhCMV replication locally at the inoculation site and systemically and significantly reduced RhCMV shedding in bodily fluids compared to controls. Attenuation of RhCMV infection by rhcmvIL-10 vaccination argues that neutralization of viral immunomodulation may be a new vaccine paradigm for HCMV by expanding potential vaccine targets. PMID:23946461
IL-36α Regulates Tubulointerstitial Inflammation in the Mouse Kidney.
Ichii, Osamu; Kimura, Junpei; Okamura, Tadashi; Horino, Taro; Nakamura, Teppei; Sasaki, Hayato; Elewa, Yaser Hosny Ali; Kon, Yasuhiro
2017-01-01
IL-36α, a member of the IL-1 family, is a crucial mediator of inflammatory responses. We previously found that IL-36α was overexpressed in injured distal tubules (DTs); however, its pathological function remains unclear. Herein, unilateral ureter obstruction (UUO) or folic acid (FA) injection was performed in mouse kidneys to assess the role of IL-36α in kidney injury. IL-36α mRNA and protein expression significantly increased in the kidneys within 24 h after UUO. IL-36α localized to dilated DTs. IL-36α expression significantly correlated with the progression of tubulointerstitial cell infiltration and tubular epithelium cell death in UUO kidneys and with renal dysfunction in FA-induced acute kidney injury mice. At 24 h after UUO, IL-36α + DT epithelial cells showed loose intercellular digitations. IL-1RL2, an IL-36α receptor protein, localized to podocytes, proximal tubules, and DTs in the healthy kidney. IL-1RL2 was expressed in interstitial cells and platelets or extended primary cilia of DT epithelial cells in UUO kidneys. IL-36α stimulation promoted the production of IL-6 and Prss35, an inflammatory cytokine and collagen remodeling-associated enzyme, respectively, in cultured NIH3T3 fibroblasts. UUO-treated IL-36α-knockout (KO) mice showed milder kidney injury features than wild-type (WT) mice did. In UUO kidneys from IL-36α-KO mice, the expression of genes associated with inflammatory response and sensory perception was significantly different from that in WT mice. Altogether, our data indicate an association between intrarenal IL-36α overexpression and the progression of tubulointerstitial inflammations and morpho-functional alterations of DT epithelial cells. IL-36α may be a novel kidney injury marker useful for evaluating DT damages.
Phosphoinositide-Driven Epithelial Proliferation in Prostatic Inflammation
2008-01-01
that IL-1β expression is localized to the urethral urothelium during development, and little or no expression is observed in the developing prostatic...ducts [Figure 3B]. By comparison, IL-1α expression is found both in the urethral urothelium and in the developing prostatic ducts [Figure 3A]. In...adult [C]. Hyperplasia was induced by E. coli for 5 days. In contrast, IL-1β [B,D] expression is localized to the urethral urothelium at P10 [B] and
Xiaoling, Y; Chao, W; Wenming, W; Feng, L; Hongzhong, J
2018-06-12
Palmoplantar pustulosis (PPP) is a refractory, nonbacterial impetigo confined to the palms and soles. Its pathogenesis is still obscure, but it may be associated with the large eccrine sweat glands and pores of palmoplantar skin. PPP is considered to be a localized pustular psoriasis. Interleukin (IL)-8, IL-36γ and IL-36Ra play important roles in the pathogenesis of pustular psoriasis, but their role in PPP is unclear. To evaluate IL-8, IL-36γ and IL-36Ra expression in PPP, and their relationship with acrosyringia and pustule formation. mRNA expression was quantified in skin samples from patients with PPP (n = 7), patients with psoriasis vulgaris (PSV; n = 8) and healthy controls (HCs) (n = 6) by reverse-transcription-real-time PCR. Protein expression was characterized by immunohistochemistry (PPP, n = 17; PSV, n = 14; HCs, n = 12). Sweat ducts, including acrosyringia, were stained for epithelial membrane antigen (EMA). IL-8 mRNA and protein were markedly increased in PPP lesions compared with PSV lesions or HC skin. IL-36γ mRNA and protein were significantly more abundant in PPP lesions than in HC skin. IL-36Ra mRNA was significantly overexpressed in PPP lesions compared with HC skin, but there was no difference in IL-36Ra protein between PPP, PSV and HCs. IL-8 was abundantly expressed by neutrophils in PPP pustules, while IL36Ra was localized in the keratinocytes of PPP, PSV and HC skin. IL-36γ and EMA were colocalized in cells surrounding PPP pustules, and IL-36γ was also expressed in sweat duct cells in the dermis. IL-8, IL-36γ and IL-36Ra are overexpressed in PPP lesions. IL-8, IL-36γ and acrosyringia, rather than IL-36Ra, are associated with pustule formation in PPP. © 2018 British Association of Dermatologists.
NASA Astrophysics Data System (ADS)
Yang, Peng
The focus of this dissertation is the Molecular Dynamics (MD) simulation study of two different systems. In thefirst system, we study the dynamic process of graphene exfoliation, particularly graphene dispersion using ionic surfactants (Chapter 2). In the second system, we investigate the mesoscopic structure of binary solute/ionic liquid (IL) mixtures through the comparison between simulations and corresponding experiments (Chapter 3 and 4). In the graphene exfoliation study, we consider two separation mechanisms: changing the interlayer distance and sliding away the relative distance of two single-layer graphene sheets. By calculating the energy barrier as a function of separation (interlayer or sliding-away) distance and performing sodium dodecyl sulfate (SDS) structure analysis around graphene surface in SDS surfactant/water + bilayer graphene mixture systems, we find that the sliding-away mechanism is the dominant, feasible separation process. In this process, the SDS-graphene interaction gradually replaces the graphene-graphene Van der Waals (VdW) interaction, and decreases the energy barrier until almost zero at critical SDS concentration. In solute/IL study, we investigate nonpolar (CS2) and dipolar (CH 3CN) solute/IL mixture systems. MD simulation shows that at low concentrations, IL is nanosegregated into an ionic network and nonpolar domain. It is also found that CS2 molecules tend to be localized into the nonpolar domain, while CH3CN interacts with nonpolar domain as well as with the charged head groups in the ionic network because of its amphiphilicity. At high concentrations, CH3CN molecules eventually disrupt the nanostructural organization. This dissertation is organized in four chapters: (1) introduction to graphene, ionic liquids and the methodology of MD; (2) MD simulation of graphene exfoliation; (3) Nanostructural organization in acetonitrile/IL mixtures; (4) Nanostructural organization in carbon disulfide/IL mixtures; (5) Conclusions. Results of MD simulations of liquid mixture systems car-ried out in this research explain observed experiments and show the details of nanostructural organizations in small solute molecules/IL mixture. Additionally, the research successfully reveals the correct mechanism of graphene exfoliation process in liquid solution. (This will be summarized in Chapter 5.) The research presented in this dissertation enhances our understanding of the microscopic behaviors in complex liquid systems as well as the theoretical method to explore them.
Chen, Shanjuan; Li, Shaohua; Wu, Yan; Liu, Zhixiang; Li, Jiawen
2008-08-01
To investigate the expression of vaginal Th1 and Th2 cytokines in rats with experimental vaginal candidiasis under different immune conditions, ICR murine vaginal candidiasis model was established and immno-suppressed murine models of vaginal cadidiasis were established in estrogen-treated mice. Non-estrogen-treated mice were used as controls. The mRNA level of Th1 (IL-2)/Th2 (IL-4, IL-10, TGF-beta1) cytokines in murine vaginal tissues was determined by RT-PCR. The cykotine in local tissues was increased to different extent under normal immune condition. IL-2 mRNA was increased during early stage of infection, while IL-10 was increased transiently during late stage of infection. TGF-beta1 production was found to be increased persistently. At same time, the expression of IL-2 mRNA was suppressed in immno-suppressed group, and the level of IL-4, IL-10, and TGF-beta1 were higher than the normal immunity group to different degree during infection. The high level of IL-2 mRNA during early stage of infection was associated with clearance of mucosal Candidia albicans (C. albicans), and its expression suppressed leading to decreased clearance of mucosal C. albican in immuno-suppression. The over-expression of IL-4 and IL-10 could significantly enhance the susceptibility to C. albicans infection in mice.
Chi, Haidong; Kawano, Takashi; Tamura, Takahiko; Iwata, Hideki; Takahashi, Yasuhiro; Eguchi, Satoru; Yamazaki, Fumimoto; Kumagai, Naoko; Yokoyama, Masataka
2013-12-18
Pain may be associated with postoperative cognitive dysfunction (POCD); however, this relationship remains under investigated. Therefore, we examined the impact of postoperative pain on cognitive functions in aged animals. Rats were allocated to the following groups: control (C), 1.2 % isoflurane for 2 hours alone (I), I with laparotomy (IL), IL with analgesia using local ropivacaine (IL+R), and IL with analgesia using systemic morphine (IL+M). Pain was assessed by rat grimace scale (RGS). Spatial memory was evaluated using a radial maze from postoperative days (POD) 3 to 14. NMDA receptor (NR) 2 subunits in hippocampus were measured by ELISA. Finally, effects of memantine, a low-affinity uncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist, on postoperative cognitive performance were tested. Postoperative RGS was increased in Group IL, but not in other groups. The number of memory errors in Group I were comparable to that in Group C, whereas errors in Group IL were increased. Importantly, in Group IL+R and IL+M, cognitive impairment was not found. The memory errors were positively correlated with the levels of NMDA receptor 2 subunits in hippocampus. Prophylactic treatment with memantine could prevent the development of memory deficits observed in Group IL without an analgesic effect. Postoperative pain contributes to the development of memory deficits after anesthesia and surgery via up-regulation of hippocampal NMDA receptors. Our findings suggest that postoperative pain management may be important for the prevention of POCD in elderly patients. Copyright © 2013 Elsevier Inc. All rights reserved.
Sharma, Deepesh; Jakkampudi, Aparna; Reddy, Ratnakar; Reddy, Panyala Balakumar; Patil, Aasish; Murthy, H V V; Rao, G Venkat; Reddy, D Nageshwar; Talukdar, Rupjyoti
2017-12-01
This paper reports preliminary data of an ongoing study that evaluates the association of systemic inflammatory response (SIRS) with early severe acute pancreatitis (ESAP) and compensatory anti-inflammatory response syndrome (characterized by HLA-DR down-regulation) with infected pancreatic necrosis (IPN). Consecutive patients presenting within 72 h of symptom onset with organ dysfunction and/or local complications were included. Following parameters were recorded: demographics, etiology, SIRS, APACHE II, creatinine, BUN. Circulating IL-8, IL-6, IL-10, TNF-alpha concentrations and expression of HLA-DR and IL-10 by qRT-PCR in PBMCs were measured. Strength of associations of cytokine concentration and HLA-DR/IL-10 expression with outcomes was expressed as Hedges' G and relative risk (95% CI). Twenty-eight patients (10 MSAP; 18 SAP) fulfilled inclusion criteria. Twelve patients had ESAP and eight presented with organ failure. Admission SIRS worsened in eight (28.6%) patients over 48 h. Sixteen (57.1%) patients developed primary IPN. Twenty-one (75%) patients had HLA-DR down-regulation during the first week, which persisted to the second week in 12 (42.9%) patients. IL-8, IL-6, and TNF-α progressively increased from healthy controls to MAP to MSAP to SAP. IL-6 and TNF-α was higher in the patients who developed ESAP (p = 0.01 and 0.05, respectively). Patients who died within the first week also had a significantly elevated concentration of IL-6 and TNF-α (p = 0.02 and 0.01, respectively). The relative risk (95% CI) of developing primary IPN with persistent HLA-DR down-regulation till the second week of illness was 11.3 (1.6-82.4; p = 0.01). Our study objectively demonstrates significant association of ESAP and early mortality with primary cytokine response, and development of IPN with persistent HLA-DR down-regulation.
Hu, Zhonghan; Margulis, Claudio J
2006-01-24
In this work, we investigate the slow dynamics of 1-butyl-3-methylimidazolium hexafluorophosphate, a very popular room-temperature ionic solvent. Our study predicts the existence of heterogeneity in the liquid and shows that this heterogeneity is the underlying microscopic cause for the recently reported "red-edge effect" (REE) observed in the study of fluorescence of the organic probe 2-amino-7-nitrofluorene. This theoretical work explains in microscopic terms the relation between REE and dynamic heterogeneity in a room-temperature ionic liquid (IL). The REE is typical of micellar or colloidal systems, which are characterized by microscopic environments that are structurally very different. In contrast, in the case of this room-temperature IL, the REE occurs because of the long period during which molecules are trapped in quasistatic local solvent cages. This trapping time, which is longer than the lifetime of the excited-state probe, together with the inability of the surroundings to adiabatically relax, induces a set of site-specific spectroscopic responses. Subensembles of fluorescent molecules associated with particular local environments absorb and emit at different frequencies. We describe in detail the absorption wavelength-dependent emission spectra of 2-amino-7-nitrofluorene and show that this dependence on lambda(ex) is characteristic of the IL and, as is to be expected, is absent in the case of a normal solvent such as methanol.
Furuzawa-Carballeda, J; Ortíz-Ávalos, M; Lima, G; Jurado-Santa Cruz, F; Llorente, L
2012-08-01
Localized scleroderma (LS) is a disfiguring inflammatory autoimmune disease of the skin and underlying tissue. As in systemic sclerosis, a key feature is the presence of T cells in inflammatory lesions. To evaluate the effect of polymerized type I collagen vs. methylprednisolone (MP) in LS, and to determine the influence of this polymerized collagen (PC) on CD4+ peripheral T cells expressing interleukin (IL)-4, IL-17A, interferon-γ and Forkhead box protein (Foxp)3, and on cells expressing transforming growth factor (TGF)-β1, IL-17A, IL-22 and Foxp3 in the skin. In total, 16 patients with LS were treated for 3 months with monthly subcutaneous intralesional injections of 0.1 mL MP (giving a total dose of 20 mg/mL each month) and 15 patients were treated, with weekly subcutaneous intralesional injections of PC, ranging from 0.2 mL (equivalent to 1.66 mg collagen) for a lesion of 50 mm in size, up to a maximum of 1.0 mL (8.3 mg collagen) for a lesion > 100 mm in size, and followed up for a further 6 months. Skin biopsies were obtained from lesions at baseline (before treatment) and 9 months later (6 months after treatment end). Tissue sections were evaluated by histology and immunohistochemistry (IL-17A, IL-22, TGF-β1 and Foxp3). CD4+ T-cell subsets were determined in peripheral blood by flow cytometry. Abnormal tissue architecture was seen in the biopsies taken from patients treated with MP, whereas the PC treatment restored normal skin architecture. PC downregulated pro-inflammatory/profibrotic cytokine expression in peripheral cells, and upregulated the number of regulatory T cells (Tregs) in skin. PC was safe and well tolerated. PC is not only an antifibrotic/fibrolytic agent but also an immunomodulator biodrug that restores the balance between T helper (Th)1, Th2, Th17 and Tregs, downregulates production of pro-inflammatory or profibrogenic cytokines (IL-17A, IL-22 and TGF-β1), and renews skin architecture, without adverse effects. © The Author(s). CED © 2012 British Association of Dermatologists.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-09
... USCG-2008-1113 Chicago, IL Safety Zones (Part 165)...... 11/4/2008 USCG-2008-1114 San Diego, CA Safety...)...... 1/10/2009 USCG-2008-1228 Chicago, IL Safety Zones (Part 165)...... 12/27/2008 USCG-2008-1242 San... USCG-2009-0079 Chicago, IL Safety Zones (Part 165)...... 2/8/2009 USCG-2009-0085 Chicago, IL Security...
Nishi, Naoya; Hashimoto, Atsunori; Minami, Eiji; Sakka, Tetsuo
2015-02-21
The structure of ionic liquids (ILs) at the electrochemical IL|Hg interface has been studied using the pendant drop method. From the electrocapillarity (potential dependence of interfacial tension) differential capacitance (Cd) at zero frequency (in other words, static differential capacitance or differential capacitance in equilibrium) has been evaluated. The potential dependence of zero-frequency Cd at the IL|Hg interface exhibits one or two local maxima near the potential of zero charge (Epzc), depending on the cation of the ILs. For 1-ethyl-3-methylimidazolium tetrafluoroborate, an IL with the cation having a short alkyl chain, the Cdvs. potential curve has one local maximum whereas another IL, 1-octyl-3-methylimidazolium tetrafluoroborate, with the cation having a long alkyl chain, shows two maxima. These behaviors of zero-frequency Cd agree with prediction by recent theoretical and simulation studies for the electrical double layer in ILs. At negative and positive potentials far from Epzc, the zero-frequency Cd increases for both the ILs studied. The increase in zero-frequency Cd is attributable to the densification of ionic layers in the electrical double layer.
Fever of unknown origin in the elderly.
Wakefield, K M; Henderson, S T; Streit, J G
1989-06-01
Fever is a prominent sign of an acute-phase response induced by microbial invasion, tissue injury, immunologic reactions, or inflammatory processes. This generalized host response is produced by a multiplicity of localized or systemic diseases and characterized by acute, subacute, or chronic changes in metabolic, endocrinologic, neurologic, and immunologic functions. The fundamental event is an initiation of the acute-phase response by the production of a mediated molecule called IL-1. This polypeptide is produced primarily from phagocytic cells such as blood monocytes, phagocytic lining cells of the liver and spleen, and other tissue macrophages. IL-1 produces a local reaction but also enters the circulation, acting as a hormone to mediate distant organ system responses to infection, immunologic reaction, and inflammatory processes. Fever is the result when IL-1 initiates the synthesis of prostaglandins, notably prostaglandin E2 in the thermoregulatory center located in the anterior hypothalamus. The thermostatic set point is then raised and mechanisms to conserve heat (vasoconstriction) and to produce heat (shivering) are initiated. The result is a sudden rise in body temperature. The same basic mechanisms are involved in FUO. Many of the biologic and biochemical changes that are seen in FUO are also evidence of an acute-phase response. The elevated erythrocyte sedimentation rate is partly due to increased synthesis of hepatic proteins, including compliment components, ceruloplasmin, fibrinogen, and C-reactive protein. IL-1 acts directly on the bone marrow to increase absolute numbers and immaturity of circulating neutrophils. Anemia is produced by many mechanisms, including the reduction of circulating serum iron. Although fever production in the elderly maybe delayed or of less intensity, it is still a marker of significant disease.(ABSTRACT TRUNCATED AT 400 WORDS)
Brown, Christine E; Badie, Behnam; Barish, Michael E; Weng, Lihong; Ostberg, Julie R; Chang, Wen-Chung; Naranjo, Araceli; Starr, Renate; Wagner, Jamie; Wright, Christine; Zhai, Yubo; Bading, James R; Ressler, Julie A; Portnow, Jana; D'Apuzzo, Massimo; Forman, Stephen J; Jensen, Michael C
2015-09-15
A first-in-human pilot safety and feasibility trial evaluating chimeric antigen receptor (CAR)-engineered, autologous primary human CD8(+) cytotoxic T lymphocytes (CTL) targeting IL13Rα2 for the treatment of recurrent glioblastoma (GBM). Three patients with recurrent GBM were treated with IL13(E13Y)-zetakine CD8(+) CTL targeting IL13Rα2. Patients received up to 12 local infusions at a maximum dose of 10(8) CAR-engineered T cells via a catheter/reservoir system. We demonstrate the feasibility of manufacturing sufficient numbers of autologous CTL clones expressing an IL13(E13Y)-zetakine CAR for redirected HLA-independent IL13Rα2-specific effector function for a cohort of patients diagnosed with GBM. Intracranial delivery of the IL13-zetakine(+) CTL clones into the resection cavity of 3 patients with recurrent disease was well-tolerated, with manageable temporary brain inflammation. Following infusion of IL13-zetakine(+) CTLs, evidence for transient anti-glioma responses was observed in 2 of the patients. Analysis of tumor tissue from 1 patient before and after T-cell therapy suggested reduced overall IL13Rα2 expression within the tumor following treatment. MRI analysis of another patient indicated an increase in tumor necrotic volume at the site of IL13-zetakine(+) T-cell administration. These findings provide promising first-in-human clinical experience for intracranial administration of IL13Rα2-specific CAR T cells for the treatment of GBM, establishing a foundation on which future refinements of adoptive CAR T-cell therapies can be applied. ©2015 American Association for Cancer Research.
Faulkner, C B; Simecka, J W; Davidson, M K; Davis, J K; Schoeb, T R; Lindsey, J R; Everson, M P
1995-01-01
Studies were conducted to determine whether the production of various cytokines is associated with Mycoplasma pulmonis disease expression. Susceptible C3H/HeN and resistant C57BL/6N mice were inoculated intranasally with 10(7) CFU of virulent M. pulmonis UAB CT or avirulent M. pulmonis UAB T. Expression of genes for tumor necrosis factor alpha (TNF-alpha), interleukin 1 alpha (IL-1 alpha), IL-1 beta, IL-6, and gamma interferon (IFN-gamma) in whole lung tissue and TNF-alpha gene expression in bronchoalveolar lavage (BAL) cells was determined by reverse transcription-PCR using specific cytokine primers at various times postinoculation. In addition, concentrations of TNF-alpha, IL-1, IL-6, and IFN-gamma were determined in BAL fluid and serum samples at various times postinoculation. Our results showed that there was a sequential appearance of cytokines in the lungs of infected mice: TNF-alpha, produced primarily by BAL cells, appeared first, followed by IL-1 and IL-6, which were followed by IFN-gamma. Susceptible C3H/HeN mice had higher and more persistent concentrations of TNF-alpha and IL-6 in BAL fluid than did resistant C57BL/6N mice, indicating that TNF-alpha and possibly IL-6 are important factors in pathogenesis of acute M. pulmonis disease in mice. Serum concentrations of IL-6 were elevated in C3H/HeN mice, but not C57BL/6N mice, following infection with M. pulmonis, suggesting that IL-6 has both local and systemic effects in M. pulmonis disease. PMID:7558323
Hemmerle, Teresa; Zgraggen, Silvana; Matasci, Mattia; Halin, Cornelia; Detmar, Michael; Neri, Dario
2014-11-01
The antibody-mediated delivery of cytokines ("immunocytokines") to sites of pathological angiogenesis represents an attractive strategy for the development of innovative biopharmaceuticals, capable of modulating the activity of the immune system in cancer and in chronic inflammatory conditions. Recombinant IL4 has previously been shown to be therapeutically active in patients with psoriasis. The antibody-mediated delivery of this cytokine to sites of chronic skin inflammatory conditions should lead to an improved potency and selectivity, compared to non-targeted IL4. The therapeutic activity of F8-IL4, a fusion protein of the F8 antibody (specific to the alternatively-spliced EDA domain of fibronectin) with murine IL4, was investigated in three immunocompetent mouse models of skin inflammation: two induced by the TLR7/8 ligand imiquimod (in Balb/c and C57BL/6) and one mediated by the over-expression of VEGF-A. The EDA domain of fibronectin, a marker for angiogenesis, is expressed in the inflamed skin in all three models and F8-IL4 selectively localized to inflamed skin lesions following intravenous administration. The F8-IL4 fusion protein mediated a therapeutic benefit, which was superior to the one of a non-targeted version of IL4 and led to increased levels of key regulatory cytokines (including IL5, IL10, IL13, and IL27) in the inflamed skin, while IL2 levels were not affected in all treatment groups. A murine version of etanercept and a murine anti-IL17 antibody were used as positive control in the therapy experiments. Skin inflammatory lesions can be selectively targeted using anti-EDA antibody-cytokine fusion proteins and the pharmacodelivery of IL4 confers a therapeutic benefit by shifting the cytokine balance. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
Caspase-1 and IL-1β Processing in a Teleost Fish
Reis, Marta I. R.; do Vale, Ana; Pereira, Pedro J. B.; Azevedo, Jorge E.; dos Santos, Nuno M. S.
2012-01-01
Interleukine-1β (IL-1β) is the most studied pro-inflammatory cytokine, playing a central role in the generation of systemic and local responses to infection, injury, and immunological challenges. In mammals, IL-1β is synthesized as an inactive 31 kDa precursor that is cleaved by caspase-1 generating a 17.5 kDa secreted active mature form. The caspase-1 cleavage site strictly conserved in all mammalian IL-1β sequences is absent in IL-1β sequences reported for non-mammalian vertebrates. Recently, fish caspase-1 orthologues have been identified in sea bass (Dicentrarchus labrax) and sea bream (Sparus aurata) but very little is known regarding their processing and activity. In this work it is shown that sea bass caspase-1 auto-processing is similar to that of the human enzyme, resulting in active p24/p10 and p20/p10 heterodimers. Moreover, the presence of alternatively spliced variants of caspase-1 in sea bass is reported. The existence of caspase-1 isoforms in fish and in mammals suggests that they have been evolutionarily maintained and therefore are likely to play a regulatory role in the inflammatory response, as shown for other caspases. Finally, it is shown that sea bass and avian IL-1β are specifically cleaved by caspase-1 at different but phylogenetically conserved aspartates, distinct from the cleavage site of mammalian IL-1β. PMID:23226286
Teilmann, Anne Charlotte; Rozell, Björn; Kalliokoski, Otto; Hau, Jann; Abelson, Klas S P
2016-01-01
Automated blood sampling through a vascular catheter is a frequently utilized technique in laboratory mice. The potential immunological and physiological implications associated with this technique have, however, not been investigated in detail. The present study compared plasma levels of the cytokines IL-1β, IL-2, IL-6, IL-10, IL-17A, GM-CSF, IFN-γ and TNF-α in male NMRI mice that had been subjected to carotid artery catheterization and subsequent automated blood sampling with age-matched control mice. Body weight and histopathological changes in the surgical area, including the salivary glands, the heart, brain, spleen, liver, kidneys and lungs were compared. Catheterized mice had higher levels of IL-6 than did control mice, but other cytokine levels did not differ between the groups. No significant difference in body weight was found. The histology revealed inflammatory and regenerative (healing) changes at surgical sites of all catheterized mice, with mild inflammatory changes extending into the salivary glands. Several catheterized mice had multifocal degenerative to necrotic changes with inflammation in the heart, kidneys and livers, suggesting that thrombi had detached from the catheter tip and embolized to distant sites. Thus, catheterization and subsequent automated blood sampling may have physiological impact. Possible confounding effects of visceral damage should be assessed and considered, when using catheterized mouse models.
An analysis of iterated local search for job-shop scheduling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitley, L. Darrell; Howe, Adele E.; Watson, Jean-Paul
2003-08-01
Iterated local search, or ILS, is among the most straightforward meta-heuristics for local search. ILS employs both small-step and large-step move operators. Search proceeds via iterative modifications to a single solution, in distinct alternating phases. In the first phase, local neighborhood search (typically greedy descent) is used in conjunction with the small-step operator to transform solutions into local optima. In the second phase, the large-step operator is applied to generate perturbations to the local optima obtained in the first phase. Ideally, when local neighborhood search is applied to the resulting solution, search will terminate at a different local optimum, i.e.,more » the large-step perturbations should be sufficiently large to enable escape from the attractor basins of local optima. ILS has proven capable of delivering excellent performance on numerous N P-Hard optimization problems. [LMS03]. However, despite its implicity, very little is known about why ILS can be so effective, and under what conditions. The goal of this paper is to advance the state-of-the-art in the analysis of meta-heuristics, by providing answers to this research question. They focus on characterizing both the relationship between the structure of the underlying search space and ILS performance, and the dynamic behavior of ILS. The analysis proceeds in the context of the job-shop scheduling problem (JSP) [Tai94]. They begin by demonstrating that the attractor basins of local optima in the JSP are surprisingly weak, and can be escaped with high probaiblity by accepting a short random sequence of less-fit neighbors. this result is used to develop a new ILS algorithms for the JSP, I-JAR, whose performance is competitive with tabu search on difficult benchmark instances. They conclude by developing a very accurate behavioral model of I-JAR, which yields significant insights into the dynamics of search. The analysis is based on a set of 100 random 10 x 10 problem instances, in addition to some widely used benchmark instances. Both I-JAR and the tabu search algorithm they consider are based on the N1 move operator introduced by van Laarhoven et al. [vLAL92]. The N1 operator induces a connected search space, such that it is always possible to move from an arbitrary solution to an optimal solution; this property is integral to the development of a behavioral model of I-JAR. However, much of the analysis generalizes to other move operators, including that of Nowicki and Smutnick [NS96]. Finally the models are based on the distance between two solutions, which they take as the well-known disjunctive graph distance [MBK99].« less
Hostile marital interactions, proinflammatory cytokine production, and wound healing.
Kiecolt-Glaser, Janice K; Loving, Timothy J; Stowell, Jeffrey R; Malarkey, William B; Lemeshow, Stanley; Dickinson, Stephanie L; Glaser, Ronald
2005-12-01
A growing epidemiological literature has suggested that marital discord is a risk factor for morbidity and mortality. In addition, depression and stress are associated with enhanced production of proinflammatory cytokines that influence a spectrum of conditions associated with aging. To assess how hostile marital behaviors modulate wound healing, as well as local and systemic proinflammatory cytokine production. Couples were admitted twice to a hospital research unit for 24 hours in a crossover trial. Wound healing was assessed daily following research unit discharge. Volunteer sample of 42 healthy married couples, aged 22 to 77 years (mean [SD], 37.04 [13.05]), married a mean (SD) of 12.55 (11.01) years. During the first research unit admission, couples had a structured social support interaction, and during the second admission, they discussed a marital disagreement. Couples' interpersonal behavior, wound healing, and local and systemic changes in proinflammatory cytokine production were assessed during each research unit admission. Couples' blister wounds healed more slowly and local cytokine production (IL-6, tumor necrosis factor alpha, and IL-1beta) was lower at wound sites following marital conflicts than after social support interactions. Couples who demonstrated consistently higher levels of hostile behaviors across both their interactions healed at 60% of the rate of low-hostile couples. High-hostile couples also produced relatively larger increases in plasma IL-6 and tumor necrosis factor alpha values the morning after a conflict than after a social support interaction compared with low-hostile couples. These data provide further mechanistic evidence of the sensitivity of wound healing to everyday stressors. Moreover, more frequent and amplified increases in proinflammatory cytokine levels could accelerate a range of age-related diseases. Thus, these data also provide a window on the pathways through which hostile or abrasive relationships affect physiological functioning and health.
2011-01-01
Background 3,4-Methylenedioxymethamphetamine (MDMA) produces a neuroinflammatory reaction in rat brain characterized by an increase in interleukin-1 beta (IL-1β) and microglial activation. The CB2 receptor agonist JWH-015 reduces both these changes and partially protects against MDMA-induced neurotoxicity. We have examined MDMA-induced changes in IL-1 receptor antagonist (IL-1ra) levels and IL-1 receptor type I (IL-1RI) expression and the effects of JWH-015. The cellular location of IL-1β and IL-1RI was also examined. MDMA-treated animals were given the soluble form of IL-1RI (sIL-1RI) and neurotoxic effects examined. Methods Dark Agouti rats received MDMA (12.5 mg/kg, i.p.) and levels of IL-1ra and expression of IL-1RI measured 1 h, 3 h or 6 h later. JWH-015 (2.4 mg/kg, i.p.) was injected 48 h, 24 h and 0.5 h before MDMA and IL-1ra and IL-1RI measured. For localization studies, animals were sacrificed 1 h or 3 h following MDMA and stained for IL-1β or IL-1RI in combination with neuronal and microglial markers. sIL-1RI (3 μg/animal; i.c.v.) was administered 5 min before MDMA and 3 h later. 5-HT transporter density was determined 7 days after MDMA injection. Results MDMA produced an increase in IL-ra levels and a decrease in IL-1RI expression in hypothalamus which was prevented by CB2 receptor activation. IL-1RI expression was localized on neuronal cell bodies while IL-1β expression was observed in microglial cells following MDMA. sIL-1RI potentiated MDMA-induced neurotoxicity. MDMA also increased IgG immunostaining indicating that blood brain-barrier permeability was compromised. Conclusions In summary, MDMA produces changes in IL-1 signal modulators which are modified by CB2 receptor activation. These results indicate that IL-1β may play a partial role in MDMA-induced neurotoxicity. PMID:21595923
Abduljabbar, Tariq; Abu Hassan, Mohamed Ibrahim; Vohra, Fahim
2016-01-01
To investigate the cytokine profile as biomarkers in the gingival crevicular fluid (GCF) of chronic periodontitis (CP) patients with and without obesity, MEDLINE/PubMed, EMBASE, ScienceDirect, and SCOPUS databases were combined with handsearching of articles published from 1977 up to May 2016 using relevant MeSH terms. Meta-analyses were conducted separately for each of the cytokines: resistin, adiponectin, TNF-α, leptin, IL-6, IL-8, and IL-1β. Forest plots were produced reporting standardized mean difference of outcomes and 95% confidence intervals. Eleven studies were included. Three studies showed comparable levels of leptin among obese and nonobese patients with CP. Four studies reported comparable levels of interleukin- (IL-) 6 and resistin whereas five studies reported comparable levels of adiponectin. Two studies reported similar levels of CRP in patients with periodontitis with and without obesity. One study showed higher levels of tumor necrosis factor-alpha in obese patients with CP. One study showed higher levels of IL-1β and IL-8 in obese patients with CP. The level of localized periodontal inflammation may have a greater influence on the GCF proinflammatory biomarker levels as compared to systemic obesity. Whether patients having chronic periodontitis with obesity have elevated proinflammatory GCF biomarkers levels compared to nonobese individuals remains debatable. PMID:27795608
Zhang, Rui-Xin; Li, Aihui; Liu, Bing; Wang, Linbo; Ren, Ke; Zhang, Haiqing; Berman, Brian M; Lao, Lixing
2008-04-01
Although it has been shown that pro-inflammatory cytokines such as interleukin-1beta (IL-1beta) facilitate perception of noxious inputs at the spinal level, the mechanisms have not been understood. This study determined the cell type that produces IL-1beta, the co-localization of IL-1 receptor type I (IL-1RI) and Fos and NR1 in the spinal cord, and the effects of IL-1 receptor antagonist (IL-1ra) on NR1 phosphorylation and hyperalgesia in a rat model of inflammatory pain. Phosphorylation of NR1, an essential subunit of the NMDA receptor (NMDAR), is known to modulate NMDAR activity and facilitate pain. Hyperalgesia was induced by injecting complete Freund's adjuvant (CFA, 0.08ml, 40microg Mycobacterium tuberculosis) into one hind paw of each rat. Paw withdrawal latency (PWL) was tested before CFA (-48h) for baseline and 2 and 24h after CFA to assess hyperalgesia. IL-1ra was given (i.t.) 24h before CFA to block the action of basal IL-1beta and 2h prior to each of two PWL tests to block CFA-induced IL-1beta. Spinal cords were removed for double immunostaining of IL-1beta/neuronal marker and IL-1beta/glial cell markers, IL-1RI/Fos and IL-1RI/NR1, and for Western blot to measure NR1 phosphorylation. The data showed that: (1) astrocytes produce IL-1beta, (2) IL-1RI is localized in Fos- and NR1-immunoreactive neurons within the spinal dorsal horn, and (3) IL-1ra at 0.01mg/rat significantly increased PWL (P<0.05) and inhibited NR1 phosphorylation compared to saline control. The results suggest that spinal IL-1beta is produced by astrocytes and enhances NR1 phosphorylation to facilitate inflammatory pain.
Localized Immunosuppressive Environment in the Foreign Body Response to Implanted Biomaterials
Higgins, David M.; Basaraba, Randall J.; Hohnbaum, April C.; Lee, Eric J.; Grainger, David W.; Gonzalez-Juarrero, Mercedes
2009-01-01
The implantation of synthetic biomaterials initiates the foreign body response (FBR), which is characterized by macrophage infiltration, foreign body giant cell formation, and fibrotic encapsulation of the implant. The FBR is orchestrated by a complex network of immune modulators, including diverse cell types, soluble mediators, and unique cell surface interactions. The specific tissue locations, expression patterns, and spatial distribution of these immune modulators around the site of implantation are not clear. This study describes a model for studying the FBR in vivo and specifically evaluates the spatial relationship of immune modulators. We modified a biomaterials implantation in vivo model that allowed for cross-sectional in situ analysis of the FBR. Immunohistochemical techniques were used to determine the localization of soluble mediators, ie, interleukin (IL)-4, IL-13, IL-10, IL-6, transforming growth factor-β, tumor necrosis factor-α, interferon-γ, and MCP-1; specific cell types, ie, macrophages, neutrophils, fibroblasts, and lymphocytes; and cell surface markers, ie, F4/80, CD11b, CD11c, and Ly-6C, at early, middle, and late stages of the FBR in subcutaneous implant sites. The cytokines IL-4, IL-13, IL-10, and transforming growth factor-β were localized to implant-adherent cells that included macrophages and foreign body giant cells. A better understanding of the FBR in vivo will allow the development of novel strategies to enhance biomaterial implant design to achieve better performance and safety of biomedical devices at the site of implant. PMID:19528351
Localized immunosuppressive environment in the foreign body response to implanted biomaterials.
Higgins, David M; Basaraba, Randall J; Hohnbaum, April C; Lee, Eric J; Grainger, David W; Gonzalez-Juarrero, Mercedes
2009-07-01
The implantation of synthetic biomaterials initiates the foreign body response (FBR), which is characterized by macrophage infiltration, foreign body giant cell formation, and fibrotic encapsulation of the implant. The FBR is orchestrated by a complex network of immune modulators, including diverse cell types, soluble mediators, and unique cell surface interactions. The specific tissue locations, expression patterns, and spatial distribution of these immune modulators around the site of implantation are not clear. This study describes a model for studying the FBR in vivo and specifically evaluates the spatial relationship of immune modulators. We modified a biomaterials implantation in vivo model that allowed for cross-sectional in situ analysis of the FBR. Immunohistochemical techniques were used to determine the localization of soluble mediators, ie, interleukin (IL)-4, IL-13, IL-10, IL-6, transforming growth factor-beta, tumor necrosis factor-alpha, interferon-gamma, and MCP-1; specific cell types, ie, macrophages, neutrophils, fibroblasts, and lymphocytes; and cell surface markers, ie, F4/80, CD11b, CD11c, and Ly-6C, at early, middle, and late stages of the FBR in subcutaneous implant sites. The cytokines IL-4, IL-13, IL-10, and transforming growth factor-beta were localized to implant-adherent cells that included macrophages and foreign body giant cells. A better understanding of the FBR in vivo will allow the development of novel strategies to enhance biomaterial implant design to achieve better performance and safety of biomedical devices at the site of implant.
Early human pregnancy serum cytokine levels predict autoimmunity in offspring.
Lindehammer, Sabina Resic; Björck, Sara; Lynch, Kristian; Brundin, Charlotte; Marsal, Karel; Agardh, Daniel; Fex, Malin
2011-09-01
It is generally believed that pregnancy is mediated by a Th2 response, which includes cytokines that promote placental growth and are involved in inducing tolerance to the foetus. If the balance between Th1/and Th2-mediated cytokines is disrupted, systemic and local changes could predispose the foetus to future disease. Therefore, a shift in the Th1/Th2 balance during pregnancy, possibly caused by underlying environmental factors, could be associated with post-partum autoimmune disease in the offspring. Based on this presumption, we used celiac disease as a model to investigate whether autoimmunity is triggered in the foetus during early pregnancy, observed as changes in the mother's cytokine profile. Ten cytokines were measured by electro-chemi-luminescent multiplex ELISA in serum samples obtained from mothers during early pregnancy. Cases included women with children who had developed verified celiac disease before the age of 5, who were compared with other women as matched controls. We observed that 7 out of 10 cytokine levels were significantly increased in our case mothers when compared to controls. Five of these belonged to what is generally known as a Th1-mediated response (TNFα, IFNγ, IL-2, IL-1β and IL-12) and two were Th2 cytokines (IL-13 and IL-10). However, the IL-10 cytokine is known to have features from both arms of the immune system. These results were confirmed in a logistic regression model where five out of the initial seven cytokines remained. This study suggests that increase in Th1 serum cytokines may be associated with celiac disease in offspring.
Ryan, Sinead M; O'Keeffe, Gerard W; O'Connor, Caitriona; Keeshan, Karen; Nolan, Yvonne M
2013-10-01
Adult hippocampal neurogenesis is modulated by a number of intrinsic and extrinsic factors including local signalling molecules, exercise, aging and inflammation. Inflammation is also a major contributor to several hippocampal-associated disorders. Interleukin-1beta (IL-1β) is the most predominant pro-inflammatory cytokine in the brain, and an increase in its concentration is known to decrease the proliferation of both embryonic and adult hippocampal neural precursor cells (NPCs). Recent research has focused on the role of nuclear receptors as intrinsic regulators of neurogenesis, and it is now established that the orphan nuclear receptor TLX is crucial in maintaining the NPC pool in neurogenic brain regions. To better understand the involvement of TLX in IL-1β-mediated effects on hippocampal NPC proliferation, we examined hippocampal NPC proliferation and TLX expression in response to IL-1β treatment in an adult rat hippocampal neurosphere culture system. We demonstrate that IL-1β reduced the proliferation of hippocampal NPCs and TLX expression in a dose and time-dependent manner and that co-treatment with IL-1β receptor antagonist or IL-1 receptor siRNA prevented these effects. We also report a dose-dependent effect of IL-1β on the composition of cell phenotypes in the culture and on expression of TLX in these cells. This study thus provides evidence of an involvement of TLX in IL-1β-induced changes in adult hippocampal neurogenesis, and offers mechanistic insight into disorders in which neuroinflammation and alterations in neurogenesis are characteristic features. Copyright © 2013 Elsevier Inc. All rights reserved.
Millimeter-Wave Localizers for Aircraft-to-Aircraft Approach Navigation
NASA Technical Reports Server (NTRS)
Tang, Adrian J.
2013-01-01
Aerial refueling technology for both manned and unmanned aircraft is critical for operations where extended aircraft flight time is required. Existing refueling assets are typically manned aircraft, which couple to a second aircraft through the use of a refueling boom. Alignment and mating of the two aircraft continues to rely on human control with use of high-resolution cameras. With the recent advances in unmanned aircraft, it would be highly advantageous to remove/reduce human control from the refueling process, simplifying the amount of remote mission management and enabling new operational scenarios. Existing aerial refueling uses a camera, making it non-autonomous and prone to human error. Existing commercial localizer technology has proven robust and reliable, but not suited for aircraft-to-aircraft approaches like in aerial refueling scenarios since the resolution is too coarse (approximately one meter). A localizer approach system for aircraft-to-aircraft docking can be constructed using the same modulation with a millimeterwave carrier to provide high resolution. One technology used to remotely align commercial aircraft on approach to a runway are ILS (instrument landing systems). ILS have been in service within the U.S. for almost 50 years. In a commercial ILS, two partially overlapping beams of UHF (109 to 126 MHz) are broadcast from an antenna array so that their overlapping region defines the centerline of the runway. This is called a localizer system and is responsible for horizontal alignment of the approach. One beam is modulated with a 150-Hz tone, while the other with a 90-Hz tone. Through comparison of the modulation depths of both tones, an autopilot system aligns the approaching aircraft with the runway centerline. A similar system called a glide-slope (GS) exists in the 320-to-330MHz band for vertical alignment of the approach. While this technology has been proven reliable for millions of commercial flights annually, its UHF nature limits its ability to operate beyond the 1-to-2-meter precisions associated with commercial runway width. A prototype ILS-type system operates at millimeter-wave frequencies to provide automatic and robust approach control for aerial refueling. The system allows for the coupling process to remain completely autonomous, as a boom operator is no longer required. Operating beyond 100 GHz provides enough resolution and a narrow enough beamwidth that an approach corridor of centimeter scales can be maintained. Two modules were used to accomplish this task. The first module is a localizer/glide-slope module that can be fitted on a refueling aircraft. This module provides the navigation beams for aligning the approaching aircraft. The second module is navigational receiver fitted onto the approaching aircraft to be re fueled that can detect the approach beams. Since unmanned aircraft have a limited payload size and limited electrical power, the receiver portion was implemented in CMOS (complementary metal oxide semiconductor) technology based on a super-regenerative receiver (SRR) architecture. The SRR achieves mW-level power consumption and chip sizes less than l mm2. While super-regenerative techniques have small bandwidths that limit use in communication systems, their advantages of high sensitivity, low complexity, and low power make them ideal in this situation where modulating tones of less than 1 kHz are used.
IL-33 activates tumor stroma to promote intestinal polyposis.
Maywald, Rebecca L; Doerner, Stephanie K; Pastorelli, Luca; De Salvo, Carlo; Benton, Susan M; Dawson, Emily P; Lanza, Denise G; Berger, Nathan A; Markowitz, Sanford D; Lenz, Heinz-Josef; Nadeau, Joseph H; Pizarro, Theresa T; Heaney, Jason D
2015-05-12
Tumor epithelial cells develop within a microenvironment consisting of extracellular matrix, growth factors, and cytokines produced by nonepithelial stromal cells. In response to paracrine signals from tumor epithelia, stromal cells modify the microenvironment to promote tumor growth and metastasis. Here, we identify interleukin 33 (IL-33) as a regulator of tumor stromal cell activation and mediator of intestinal polyposis. In human colorectal cancer, IL-33 expression was induced in the tumor epithelium of adenomas and carcinomas, and expression of the IL-33 receptor, IL1RL1 (also referred to as IL1-R4 or ST2), localized predominantly to the stroma of adenoma and both the stroma and epithelium of carcinoma. Genetic and antibody abrogation of responsiveness to IL-33 in the Apc(Min/+) mouse model of intestinal tumorigenesis inhibited proliferation, induced apoptosis, and suppressed angiogenesis in adenomatous polyps, which reduced both tumor number and size. Similar to human adenomas, IL-33 expression localized to tumor epithelial cells and expression of IL1RL1 associated with two stromal cell types, subepithelial myofibroblasts and mast cells, in Apc(Min/+) polyps. In vitro, IL-33 stimulation of human subepithelial myofibroblasts induced the expression of extracellular matrix components and growth factors associated with intestinal tumor progression. IL-33 deficiency reduced mast cell accumulation in Apc(Min/+) polyps and suppressed the expression of mast cell-derived proteases and cytokines known to promote polyposis. Based on these findings, we propose that IL-33 derived from the tumor epithelium promotes polyposis through the coordinated activation of stromal cells and the formation of a protumorigenic microenvironment.
Preferential Binding to Elk-1 by SLE-Associated IL10 Risk Allele Upregulates IL10 Expression
Kelly, Jennifer A.; Brown, Elizabeth E.; Harley, John B.; Bae, Sang-Cheol; Alarcόn-Riquelme, Marta E.; Edberg, Jeffrey C.; Kimberly, Robert P.; Ramsey-Goldman, Rosalind; Petri, Michelle A.; Reveille, John D.; Vilá, Luis M.; Alarcón, Graciela S.; Kaufman, Kenneth M.; Vyse, Timothy J.; Jacob, Chaim O.; Gaffney, Patrick M.; Sivils, Kathy Moser; James, Judith A.; Kamen, Diane L.; Gilkeson, Gary S.; Niewold, Timothy B.; Merrill, Joan T.; Scofield, R. Hal; Criswell, Lindsey A.; Stevens, Anne M.; Boackle, Susan A.; Kim, Jae-Hoon; Choi, Jiyoung; Pons-Estel, Bernardo A.; Freedman, Barry I.; Anaya, Juan-Manuel; Martin, Javier; Yu, C. Yung; Chang, Deh-Ming; Song, Yeong Wook; Langefeld, Carl D.; Chen, Weiling; Grossman, Jennifer M.; Cantor, Rita M.; Hahn, Bevra H.; Tsao, Betty P.
2013-01-01
Immunoregulatory cytokine interleukin-10 (IL-10) is elevated in sera from patients with systemic lupus erythematosus (SLE) correlating with disease activity. The established association of IL10 with SLE and other autoimmune diseases led us to fine map causal variant(s) and to explore underlying mechanisms. We assessed 19 tag SNPs, covering the IL10 gene cluster including IL19, IL20 and IL24, for association with SLE in 15,533 case and control subjects from four ancestries. The previously reported IL10 variant, rs3024505 located at 1 kb downstream of IL10, exhibited the strongest association signal and was confirmed for association with SLE in European American (EA) (P = 2.7×10−8, OR = 1.30), but not in non-EA ancestries. SNP imputation conducted in EA dataset identified three additional SLE-associated SNPs tagged by rs3024505 (rs3122605, rs3024493 and rs3024495 located at 9.2 kb upstream, intron 3 and 4 of IL10, respectively), and SLE-risk alleles of these SNPs were dose-dependently associated with elevated levels of IL10 mRNA in PBMCs and circulating IL-10 protein in SLE patients and controls. Using nuclear extracts of peripheral blood cells from SLE patients for electrophoretic mobility shift assays, we identified specific binding of transcription factor Elk-1 to oligodeoxynucleotides containing the risk (G) allele of rs3122605, suggesting rs3122605 as the most likely causal variant regulating IL10 expression. Elk-1 is known to be activated by phosphorylation and nuclear localization to induce transcription. Of interest, phosphorylated Elk-1 (p-Elk-1) detected only in nuclear extracts of SLE PBMCs appeared to increase with disease activity. Co-expression levels of p-Elk-1 and IL-10 were elevated in SLE T, B cells and monocytes, associated with increased disease activity in SLE B cells, and were best downregulated by ERK inhibitor. Taken together, our data suggest that preferential binding of activated Elk-1 to the IL10 rs3122605-G allele upregulates IL10 expression and confers increased risk for SLE in European Americans. PMID:24130510
Preferential binding to Elk-1 by SLE-associated IL10 risk allele upregulates IL10 expression.
Sakurai, Daisuke; Zhao, Jian; Deng, Yun; Kelly, Jennifer A; Brown, Elizabeth E; Harley, John B; Bae, Sang-Cheol; Alarcόn-Riquelme, Marta E; Edberg, Jeffrey C; Kimberly, Robert P; Ramsey-Goldman, Rosalind; Petri, Michelle A; Reveille, John D; Vilá, Luis M; Alarcón, Graciela S; Kaufman, Kenneth M; Vyse, Timothy J; Jacob, Chaim O; Gaffney, Patrick M; Sivils, Kathy Moser; James, Judith A; Kamen, Diane L; Gilkeson, Gary S; Niewold, Timothy B; Merrill, Joan T; Scofield, R Hal; Criswell, Lindsey A; Stevens, Anne M; Boackle, Susan A; Kim, Jae-Hoon; Choi, Jiyoung; Pons-Estel, Bernardo A; Freedman, Barry I; Anaya, Juan-Manuel; Martin, Javier; Yu, C Yung; Chang, Deh-Ming; Song, Yeong Wook; Langefeld, Carl D; Chen, Weiling; Grossman, Jennifer M; Cantor, Rita M; Hahn, Bevra H; Tsao, Betty P
2013-01-01
Immunoregulatory cytokine interleukin-10 (IL-10) is elevated in sera from patients with systemic lupus erythematosus (SLE) correlating with disease activity. The established association of IL10 with SLE and other autoimmune diseases led us to fine map causal variant(s) and to explore underlying mechanisms. We assessed 19 tag SNPs, covering the IL10 gene cluster including IL19, IL20 and IL24, for association with SLE in 15,533 case and control subjects from four ancestries. The previously reported IL10 variant, rs3024505 located at 1 kb downstream of IL10, exhibited the strongest association signal and was confirmed for association with SLE in European American (EA) (P = 2.7×10⁻⁸, OR = 1.30), but not in non-EA ancestries. SNP imputation conducted in EA dataset identified three additional SLE-associated SNPs tagged by rs3024505 (rs3122605, rs3024493 and rs3024495 located at 9.2 kb upstream, intron 3 and 4 of IL10, respectively), and SLE-risk alleles of these SNPs were dose-dependently associated with elevated levels of IL10 mRNA in PBMCs and circulating IL-10 protein in SLE patients and controls. Using nuclear extracts of peripheral blood cells from SLE patients for electrophoretic mobility shift assays, we identified specific binding of transcription factor Elk-1 to oligodeoxynucleotides containing the risk (G) allele of rs3122605, suggesting rs3122605 as the most likely causal variant regulating IL10 expression. Elk-1 is known to be activated by phosphorylation and nuclear localization to induce transcription. Of interest, phosphorylated Elk-1 (p-Elk-1) detected only in nuclear extracts of SLE PBMCs appeared to increase with disease activity. Co-expression levels of p-Elk-1 and IL-10 were elevated in SLE T, B cells and monocytes, associated with increased disease activity in SLE B cells, and were best downregulated by ERK inhibitor. Taken together, our data suggest that preferential binding of activated Elk-1 to the IL10 rs3122605-G allele upregulates IL10 expression and confers increased risk for SLE in European Americans.
Pulmonary Th17 anti-fungal immunity is regulated by the gut microbiome12
McAleer, Jeremy P.; Nguyen, Nikki L.H.; Chen, Kong; Kumar, Pawan; Ricks, David M.; Binnie, Matthew; Armentrout, Rachel A.; Pociask, Derek A.; Hein, Aaron; Yu, Amy; Vikram, Amit; Bibby, Kyle; Umesaki, Yoshinori; Rivera, Amariliz; Sheppard, Dean; Ouyang, Wenjun; Hooper, Lora V.; Kolls, Jay K.
2016-01-01
Commensal microbiota are critical for the development of local immune responses. Here, we show that gut microbiota can regulate CD4 T cell polarization during pulmonary fungal infections. Vancomycin drinking water significantly decreased lung Th17 cell numbers during acute infection, demonstrating that Gram-positive commensals contribute to systemic inflammation. We next tested a role for RegIIIγ, an IL-22 inducible anti-microbial protein with specificity for Gram-positive bacteria. Following infection, increased accumulation of Th17 cells in the lungs of RegIIIγ−/− and Il22−/− mice was associated with intestinal segmented filamentous bacteria (SFB) colonization. Although gastrointestinal delivery of recombinant RegIIIγ decreased lung inflammatory gene expression and protected Il22−/− mice from weight-loss during infection, RegIIIγ had no direct effect on SFB colonization, fungal clearance or lung Th17 immunity. We further show that vancomycin only decreased lung IL-17 production in mice colonized with SFB. To determine the link between gut microbiota and lung immunity, serum transfer experiments revealed that IL-1 receptor ligands increase the accumulation of lung Th17 cells. These data suggest that intestinal microbiota including SFB can regulate pulmonary adaptive immune responses. PMID:27217583
Fu, Qiang; Chang, Yuan; An, Huimin; Fu, Hangcheng; Zhu, Yu; Xu, Le; Zhang, Weijuan; Xu, Jiejie
2015-12-01
Interleukin-6 (IL-6) is the major cytokine that induces transcriptional acute and chronic inflammation responses, and was recently incorporated as a recurrence prognostication signature for localised clear-cell renal cell carcinoma (ccRCC). As the prognostic efficacy of initial risk factors may ebb during long-term practice, we aim to report conditional cancer-specific survival (CCSS) of RCC patients and evaluate the impact of IL-6 as well as its receptor (IL-6R) to offer more relevant prognostic information accounting for elapsing time. We enrolled 180 histologically proven localised ccRCC patients who underwent nephrectomy between 2001 and 2004 with available pathologic information. Five-year CCSS was determined and stratified by future prognostic factors. Constant Cox regression analysis and Harrell's concordance index were used to indicate the predictive accuracy of established models. The 5-year CCSS of organ-confined ccRCC patients with both IL-6- and IL-6R-positive expression was 52% at year 2 after surgery, which was close to locally advanced patients (48%, P=0.564) and was significantly poorer than organ-confined patients with IL-6- or IL-6R-negative expression (89%, P<0.001). Multivariate analyses proved IL-6 and IL-6R as independent predictors after adjusting for demographic factors. Concordance index of pT-IL-6-IL-6R risk stratification was markedly higher compared with the stage, size, grade and necrosis prognostic model (0.724 vs 0.669, P=0.002) or UCLA Integrated Staging System (0.724 vs 0.642, P=0.007) in organ-confined ccRCC population during the first 5 years. Combined IL-6 and IL-6R coexpression emerges as an independent early-stage immunologic prognostic factor for organ-confined ccRCC patients.
Méndez-Lagares, Gema; Lu, Ding; Merriam, David; Baker, Christopher A; Villinger, François; Van Rompay, Koen K A; McCune, Joseph M; Hartigan-O'Connor, Dennis J
2017-11-01
Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replicate during acute infection in lymphocytes of the gastrointestinal tract, before disseminating systemically. Localized replication and associated loss of gut-resident CD4 + T cells occur regardless of the portal of entry of the virus (e.g., intravenous vs. rectal). Thus, HIV and SIV are tropic for gut tissue, and their pathogenesis requires the special environment of the intestine. T helper 17 (Th17) cells are important contributors to microbial defense in the gut that are vulnerable to HIV infection and whose loss is associated with translocation of microbial products to the systemic circulation, leading to chronic immune activation and disease progression. Interleukin (IL)-21 promotes differentiation and survival of Th17 cells and stimulates CD8 + T cell function. By promoting Th17 cell survival, IL-21 could limit bacterial translocation and immune activation in the setting of acute or rebounding HIV/SIV disease. In this study, we tested the effect of recombinant IL-21-IgFc treatment, given at the time of infection, on SIV mac251 infection. We found that rIL-21-IgFc decreases immune activation and maintains effective antiviral responses by CD8 + T cells in blood, but this maintenance is not associated with lower viral loads. rIL-21-IgFc treatment also did not generally support Th17 cell populations, but Th17 cells remained strongly and independently associated with control of plasma viremia. For example, the single animal exhibiting greatest control over viremia in our study also manifested the highest levels of IL-21 in plasma, Th17 cell maintenance in blood, and Th17 cells in intestinal tissue. These findings provide rationale for further exploration of IL-21 treatment as a support for host CD8 + T cell responses in HIV cure strategies.
Jourdier, T-M; Moste, C; Bonnet, M-C; Delisle, F; Tafani, J-P; Devauchelle, P; Tartaglia, J; Moingeon, P
2003-12-01
We tested the canarypox virus vector ALVAC and the genetically attenuated vaccinia virus vector NYVAC as vehicles for achieving local immunomodulation in domestic animals bearing spontaneous tumours. Following intratumoral administration of ALVAC-, or NYVAC-luciferase in dogs with melanoma, it was demonstrated that viral recombinants remained localized along the needle track, with no virus detectable in the periphery of the tumour. Given these distribution characteristics and their well-documented safety profile, ALVAC- or NYVAC-based recombinants expressing feline or human IL2, respectively, were administered to domestic cats, in order to prevent the recurrence of spontaneous fibrosarcomas. In the absence of immunotherapy, tumour recurrence was observed in 61% of animals within a 12-month follow-up period after treatment with surgery and iridium-based radiotherapy. In contrast, only 39 and 28% of cats receiving either NYVAC-human IL2 or ALVAC-feline IL2, respectively, exhibited tumour recurrences. Based on such results, and in the context of ongoing clinical studies conducted in humans, we discuss the utilization of ALVAC- or NYVAC-based recombinants as viable therapeutic modalities for local immunotherapy or therapeutic vaccination against cancer, both in humans and companion animals.
NASA Astrophysics Data System (ADS)
Kim, Miju; Kim, Tae-Jin; Kim, Hye Mi; Doh, Junsang; Lee, Kyung-Mi
2017-01-01
Multi-cellular cluster formation of natural killer (NK) cells occurs during in vivo priming and potentiates their activation to IL-2. However, the precise mechanism underlying this synergy within NK cell clusters remains unclear. We employed lymphocyte-laden microwell technologies to modulate contact-mediated multi-cellular interactions among activating NK cells and to quantitatively assess the molecular events occurring in multi-cellular clusters of NK cells. NK cells in social microwells, which allow cell-to-cell contact, exhibited significantly higher levels of IL-2 receptor (IL-2R) signaling compared with those in lonesome microwells, which prevent intercellular contact. Further, CD25, an IL-2R α chain, and lytic granules of NK cells in social microwells were polarized toward MTOC. Live cell imaging of lytic granules revealed their dynamic and prolonged polarization toward neighboring NK cells without degranulation. These results suggest that IL-2 bound on CD25 of one NK cells triggered IL-2 signaling of neighboring NK cells. These results were further corroborated by findings that CD25-KO NK cells exhibited lower proliferation than WT NK cells, and when mixed with WT NK cells, underwent significantly higher level of proliferation. These data highlights the existence of IL-2 trans-presentation between NK cells in the local microenvironment where the availability of IL-2 is limited.
Liuzzi, Juan P.; Lichten, Louis A.; Rivera, Seth; Blanchard, Raymond K.; Aydemir, Tolunay Beker; Knutson, Mitchell D.; Ganz, Tomas; Cousins, Robert J.
2005-01-01
Infection and inflammation produce systemic responses that include hypozincemia and hypoferremia. The latter involves regulation of the iron transporter ferroportin 1 by hepcidin. The mechanism of reduced plasma zinc is not known. Transcripts of the two zinc transporter gene families (ZnT and Zip) were screened for regulation in mouse liver after turpentine-induced inflammation and LPS administration. Zip14 mRNA was the transporter transcript most up-regulated by inflammation and LPS. IL-6 knockout (IL-6–/–) mice did not exhibit either hypozincemia or the induction of Zip14 with turpentine inflammation. However, in IL-6–/– mice, LPS produced a milder hypozincemic response but no Zip14 induction. Northern analysis showed Zip14 up-regulation was specific for the liver, with one major transcript. Immunohistochemistry, using an antibody to an extracellular Zip14 epitope, showed both LPS and turpentine increased abundance of Zip14 at the plasma membrane of hepatocytes. IL-6 produced increased expression of Zip14 in primary hepatocytes cultures and localization of the protein to the plasma membrane. Transfection of mZip14 cDNA into human embryonic kidney cells increased zinc uptake as measured by both a fluorescent probe for free Zn2+ and 65Zn accumulation, as well as by metallothionein mRNA induction, all indicating that Zip14 functions as a zinc importer. Zip14 was localized in plasma membrane of the transfected cells. These in vivo and in vitro experiments demonstrate that Zip14 expression is up-regulated through IL-6, and that this zinc transporter most likely plays a major role in the mechanism responsible for hypozincemia that accompanies the acute-phase response to inflammation and infection. PMID:15863613
Local inflammation, lethality and cytokine release in mice injected with Bothrops atrox venom.
Barros, S F; Friedlanskaia, I; Petricevich, V L; Kipnis, T L
1998-01-01
We have provided evidence that: (a) lethality of mice to crude Bothrops venom varies according the isogenic strain (A/J > C57Bl/6 > A/Sn > BALB/c > C3H/HePas > DBA/2 > C3H/He); (b)BALB/c mice (LD50=100.0 microg) were injected i.p. with 50 microg of venom produced IL-6, IL-10, INF-gamma, TNF-alpha and NO in the serum. In vitro the cells from the mice injected and challenged with the venom only released IL-10 while peritoneal macrophages released IL-10, INF-gamma and less amounts of IL-6; (c) establishment of local inflammation and necrosis induced by the venom, coincides with the peaks of TNF-alpha, IFN-gamma and NO and the damage was neutralized when the venom was incubated with a monoclonal antibody against a 60 kDa haemorrhagic factor. These results suggest that susceptibility to Bothrops atrox venom is genetically dependent but MHC independent; that IL-6, IL-10, TNF-alpha, IFN-gamma and NO can be involved in the mediation of tissue damage; and that the major venom component inducers of the lesions are haemorrhagins. PMID:9883969
Local and systemic effect of transfection-reagent formulated DNA vectors on equine melanoma.
Mählmann, Kathrin; Feige, Karsten; Juhls, Christiane; Endmann, Anne; Schuberth, Hans-Joachim; Oswald, Detlef; Hellige, Mareu; Doherr, Marcus; Cavalleri, Jessika-M V
2015-05-14
Equine melanoma has a high incidence in grey horses. Xenogenic DNA vaccination may represent a promising therapeutic approach against equine melanoma as it successfully induced an immunological response in other species suffering from melanoma and in healthy horses. In a clinical study, twenty-seven, grey, melanoma-bearing, horses were assigned to three groups (n = 9) and vaccinated on days 1, 22, and 78 with DNA vectors encoding for equine (eq) IL-12 and IL-18 alone or in combination with either human glycoprotein (hgp) 100 or human tyrosinase (htyr). Horses were vaccinated intramuscularly, and one selected melanoma was locally treated by intradermal peritumoral injection. Prior to each injection and on day 120, the sizes of up to nine melanoma lesions per horse were measured by caliper and ultrasound. Specific serum antibodies against hgp100 and htyr were measured using cell based flow-cytometric assays. An Analysis of Variance (ANOVA) for repeated measurements was performed to identify statistically significant influences on the relative tumor volume. For post-hoc testing a Tukey-Kramer Multiple-Comparison Test was performed to compare the relative volumes on the different examination days. An ANOVA for repeated measurements was performed to analyse changes in body temperature over time. A one-way ANOVA was used to evaluate differences in body temperature between the groups. A p-value < 0.05 was considered significant for all statistical tests applied. In all groups, the relative tumor volume decreased significantly to 79.1 ± 26.91% by day 120 (p < 0.0001, Tukey-Kramer Multiple-Comparison Test). Affiliation to treatment group, local treatment and examination modality had no significant influence on the results (ANOVA for repeated measurements). Neither a cellular nor a humoral immune response directed against htyr or hgp100 was detected. Horses had an increased body temperature on the day after vaccination. This is the first clinical report on a systemic effect against equine melanoma following treatment with DNA vectors encoding eqIL12 and eqIL18 and formulated with a transfection reagent. Addition of DNA vectors encoding hgp100 respectively htyr did not potentiate this effect.
Local and systemic effect of transfection-reagent formulated DNA vectors on equine melanoma.
Mählmann, Kathrin; Feige, Karsten; Juhls, Christiane; Endmann, Anne; Schuberth, Hans-Joachim; Oswald, Detlef; Hellige, Maren; Doherr, Marcus; Cavalleri, Jessika-M V
2015-06-11
Equine melanoma has a high incidence in grey horses. Xenogenic DNA vaccination may represent a promising therapeutic approach against equine melanoma as it successfully induced an immunological response in other species suffering from melanoma and in healthy horses. In a clinical study, twenty-seven, grey, melanoma-bearing, horses were assigned to three groups (n = 9) and vaccinated on days 1, 22, and 78 with DNA vectors encoding for equine (eq) IL-12 and IL-18 alone or in combination with either human glycoprotein (hgp) 100 or human tyrosinase (htyr). Horses were vaccinated intramuscularly, and one selected melanoma was locally treated by intradermal peritumoral injection. Prior to each injection and on day 120, the sizes of up to nine melanoma lesions per horse were measured by caliper and ultrasound. Specific serum antibodies against hgp100 and htyr were measured using cell based flow-cytometric assays. An Analysis of Variance (ANOVA) for repeated measurements was performed to identify statistically significant influences on the relative tumor volume. For post-hoc testing a Tukey-Kramer Multiple-Comparison Test was performed to compare the relative volumes on the different examination days. An ANOVA for repeated measurements was performed to analyse changes in body temperature over time. A one-way ANOVA was used to evaluate differences in body temperature between the groups. A p-value < 0.05 was considered significant for all statistical tests applied. In all groups, the relative tumor volume decreased significantly to 79.1 ± 26.91% by day 120 (p < 0.0001, Tukey-Kramer Multiple-Comparison Test). Affiliation to treatment group, local treatment and examination modality had no significant influence on the results (ANOVA for repeated measurements). Neither a cellular nor a humoral immune response directed against htyr or hgp100 was detected. Horses had an increased body temperature on the day after vaccination. This is the first clinical report on a systemic effect against equine melanoma following treatment with DNA vectors encoding eqIL12 and eqIL18 and formulated with a transfection reagent. Addition of DNA vectors encoding hgp100 respectively htyr did not potentiate this effect.
Dehshahri, Ali; Sadeghpour, Hossein; Keykhaee, Maryam; Khalvati, Bahman; Sheikhsaran, Fatemeh
2016-05-01
Recombinant therapeutic proteins have been considered as an efficient category of medications used for the treatment of various diseases. Despite their effectiveness, there are some reports on the systemic adverse effects of recombinant therapeutic proteins limiting their wide clinical applications. Among different cytokines used for cancer immunotherapy, interleukin-12 (IL-12) has shown great ability as a powerful antitumor and antiangiogenic agent. However, significant toxic reactions following the systemic administration of IL-12 have led researchers to seek for alternative approaches such as the delivery and local expression of the IL-12 gene inside the tumor tissues. In order to transfer the plasmid encoding IL-12 gene, the most extensively investigated polycationic polymer, polyethylenimine (PEI), was modified by diethylene triamine penta-acetic acid (DTPA) to modulate the hydrophobic-hydrophilic balance of the polymer as well as its toxicity. DTPA-conjugated PEI derivatives were able to form complexes in the size range around 100-180 nm with great condensation ability and protection of the plasmid against enzymatic degradation. The highest gene transfer ability was achieved by the DTPA-conjugated PEI at the conjugation degree of 0.1 % where the level of IL-12 production increased up to twofold compared with that of the unmodified PEI. Results of the present study demonstrated that modulation of the surface positive charge of PEI along with the improvement of the polymer hydrophobic balance could be considered as a successful strategy to develop safe and powerful nanocarriers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffin, Philip J., E-mail: pgrif@seas.upenn.edu; Holt, Adam P.; Tsunashima, Katsuhiko
2015-02-28
Charge transport and structural dynamics in a homologous pair of ammonium and phosphonium based room temperature ionic liquids (ILs) have been characterized over a wide temperature range using broadband dielectric spectroscopy and quasi-elastic light scattering spectroscopy. We have found that the ionic conductivity of the phosphonium based IL is significantly enhanced relative to the ammonium homolog, and this increase is primarily a result of a lower glass transition temperature and higher ion mobility. Additionally, these ILs exhibit pronounced secondary relaxations which are strongly influenced by the atomic identity of the cation charge center. While the secondary relaxation in the phosphoniummore » IL has the expected Arrhenius temperature dependence characteristic of local beta relaxations, the corresponding relaxation process in the ammonium IL was found to exhibit a mildly non-Arrhenius temperature dependence in the measured temperature range—indicative of molecular cooperativity. These differences in both local and long-range molecular dynamics are a direct reflection of the subtly different inter-ionic interactions and mesoscale structures found in these homologous ILs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffin, Phillip J.; Holt, Adam P.; Tsunashima, Katsuhiko
2015-02-01
Charge transport and structural dynamics in a homologous pair of ammonium and phosphonium based room temperature ionic liquids (ILs) have been characterized over a wide temperature range using broadband dielectric spectroscopy and quasi-elastic light scattering spectroscopy. We have found that the ionic conductivity of the phosphonium based IL is significantly enhanced relative to the ammonium homolog, and this increase is primarily a result of a lower glass transition temperature and higher ion mobility. Additionally, these ILs exhibit pronounced secondary relaxations which are strongly influenced by the atomic identity of the cation charge center. While the secondary relaxation in the phosphoniummore » IL has the expected Arrhenius temperature dependence characteristic of local beta relaxations, the corresponding relaxation process in the ammonium IL was found to exhibit a mildly non-Arrhenius temperature dependence in the measured temperature range-indicative of molecular cooperativity. These differences in both local and long-range molecular dynamics are a direct reflection of the subtly different inter-ionic interactions and mesoscale structures found in these homologous ILs.« less
Gasparetto, Naiani Domingos; Almeida, Arleana do Bom Parto Ferreira; Nakazato, Luciano; França, Eduardo Luzía; França, Adenilda Cristina Honorio; Fagundes, Danny Laura Gomes; Bortolini, Juliano; Sousa, Valéria Régia Franco
2018-06-15
To quantify (by qPCR) the density of Demodex canis mites in the skin of dogs with demodicosis and in healthy dogs, as well as measuring the serum concentrations of interleukin (IL)-1β, IL-6, IL-8, IL-10, IL-12, and tumour necrosis factor-alfa (TNF-α). Fifty-four dogs were divided into three groups: localized demodicosis (LD, n = 16), generalized demodicosis (GD, n = 22), and control group (CG, n = 16). All dogs were subjected to skin scraping, blood collection, and skin biopsy. DNA extraction was performed and the parasite density was established by qPCR. Serum cytokine concentrations were obtained by flow cytometry. The median number of mites in the skin of the GD (6.2 × 10 4 copies/μL) and LD dogs (1.2 × 10 4 copies/μL) was statistically higher than that in the CG dogs (8.7 × 10 2 copies/μL). Whereas there were no significant differences in median IL-1β, IL-8, IL-10, IL-12, and TNF-α levels among the study groups, there was a statistically higher IL-6 concentration in the LD dogs than in the healthy dogs. According to our results, qPCR is an effective method for measuring the density of D. canis in the canine integument. In addition, the activation of the acute-phase immune response in localized demodicosis can be induced by IL-6 activity. Copyright © 2018 Elsevier B.V. All rights reserved.
Chen, Ruchong; Smith, Steven G; Salter, Brittany; El-Gammal, Amani; Oliveria, John Paul; Obminski, Caitlin; Watson, Rick; O'Byrne, Paul M; Gauvreau, Gail M; Sehmi, Roma
2017-09-15
Group 2 innate lymphoid cells (ILC2), a major source of type 2 cytokines, initiate eosinophilic inflammatory responses in murine models of asthma. To investigate the role of ILC2 in allergen-induced airway eosinophilic responses in subjects with atopy and asthma. Using a diluent-controlled allergen challenge crossover study, where all subjects (n = 10) developed allergen-induced early and late responses, airway eosinophilia, and increased methacholine airway responsiveness, bone marrow, blood, and sputum samples were collected before and after inhalation challenge. ILC2 (lin - FcεRI - CD45 + CD127 + ST2 + ) and CD4 + T lymphocytes were enumerated by flow cytometry, as well as intracellular IL-5 and IL-13 expression. Steroid sensitivity of ILC2 and CD4 + T cells was investigated in vitro. A significant increase in total, IL-5 + , IL-13 + , and CRTH2 + ILC2 was found in sputum, 24 hours after allergen, coincident with a significant decrease in blood ILC2. Total, IL-5 + , and IL-13 + , but not CRTH2 + , CD4 + T cells significantly increased at 24 and 48 hours after allergen in sputum. In blood and bone marrow, only CD4 + cells demonstrated increased activation after allergen. Airway eosinophilia correlated with IL-5 + ILC2 at all time points and allergen-induced changes in IL-5 + CD4 + cells at 48 hours after allergen. Dexamethasone significantly attenuated IL-2- and IL-33-stimulated IL-5 and IL-13 production by both cell types. Innate and adaptive immune cells are increased in the airways associated with allergic asthmatic responses. Total and type 2 cytokine-positive ILC2 are increased only within the airways, whereas CD4 + T lymphocytes demonstrated local and systemic increases. Steroid sensitivity of both cells may explain effectiveness of this therapy in those with mild asthma.
Lee, Hyun Seung; Park, Da-Eun; Lee, Ji-Won; Chang, Yuna; Kim, Hye Young; Song, Woo-Jung; Kang, Hye-Ryun; Park, Heung-Woo; Chang, Yoon-Seok; Cho, Sang-Heon
2017-01-01
IL-23 has been postulated to be a critical mediator contributing to various inflammatory diseases. Dermatophagoides pteronyssinus (Der p) is one of the most common inhalant allergens. However, the role of IL-23 in Der p-induced mouse asthma model is not well understood, particularly with regard to the development of allergic sensitization in the airways. The objective of this study was to evaluate roles of IL-23 in Der p sensitization and asthma development. BALB/c mice were repeatedly administered Der p intranasally to develop Der p allergic sensitization and asthma. After Der p local administration, changes in IL-23 expression were examined in lung tissues and primary epithelial cells. Anti-IL-23p19 antibody was given during the Der p sensitization period, and its effects were examined. Effects of anti-IL-23p19 antibody at bronchial epithelial levels were also examined in vitro. The expression of IL-23 at bronchial epithelial layers was increased after Der p local administration in mouse. In Der p-induced mouse models, anti-IL-23p19 antibody treatment during allergen sensitization significantly diminished Der p allergic sensitization and several features of allergic asthma including the production of Th2 cytokines and the population of type 2 innate lymphoid cells in lungs. The activation of dendritic cells in lung-draining lymph nodes was also reduced by anti-IL-23 treatment. In murine lung alveolar type II-like epithelial cell line (MLE-12) cells, IL-23 blockade prevented cytokine responses to Der p stimulation, such as IL-1α, granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-33, and also bone marrow-derived dendritic cell activation. In conclusion, IL-23 is another important bronchial epithelial cell-driven cytokine which may contribute to the development of house dust mite allergic sensitization and asthma. Copyright © 2017 the American Physiological Society.
Wise, G E; Zhao, L
1997-05-01
Interleukin-1alpha (IL-1alpha) enhances the gene expression of colony-stimulating factor-one (CSF-1) in dental follicle cells. In turn, CSF-1 appears to be a critical molecule in stimulating the cellular events of eruption that require the presence of the follicle. Chronologically, the maximal transcription and translation of CSF-1 in the follicle occurs early postnatally, followed by a decline later. Thus, in this study, immunostaining for the interleukin-1 receptor type I (IL-1RI) was used to determine if it paralleled the CSF-1 localization and chronology. The results showed that IL-1RI is primarily localized in the dental follicle, with maximal immunostaining early postnatally and a greatly reduced staining by day 10. In conjunction with this, molecules that enhance the gene expression of IL-1alpha epidermal growth factor (EGF) and transforming growth factor-beta1 (TGF-beta1) were also shown to enhance the expression of IL-1RI, but IL-1alpha did not increase the gene expression of IL-1RI. After injections of EGF at different times postnatally the mRNA of IL-1RI increased over comparable controls. Between days 2 and 5 the IL-1RI mRNA in the follicle decreased. In combination the results suggest that, as the expression of IL-1alpha is enhanced in the stellate reticulum either by EGF or TGF-beta1, these two molecules could also enhance the expression of IL-1RI in the dental follicle such that more receptors would be available to respond to the increased IL-1alpha secreted. The maximal presence of the receptors (IL-1RI) in the dental follicle early postnatally, followed by their subsequent decline, parallels the rise and fall of CSF-1 in the follicle. Thus, regulation of the IL-1RI and IL-1RI gene expression might be a means of regulating changes in CSF-1 in the follicle.
DMPL: Programming and Verifying Distributed Mixed Synchrony and Mixed Critical Software
2016-06-16
ference on Intelligent Robots and Systems, pages 1495–1502, Chicago, IL, September 2014. IEEE Computer Society. [21] MADARA website . http://sourceforge.net...4.6 DMPL program for 5- robot reconnaissance example 19 Figure 5.1 Generated C++ code for example DMPL program. In practice, local vari- ables (lines...examples of collision avoidance in multi- robot systems. CMU/SEI-2016-TR-005 | SOFTWARE ENGINEERING INSTITUTE | Carnegie Mellon University vii
Noninvasive monitoring of cancer therapy induced activated T cells using [18F]FB-IL-2 PET imaging.
Hartimath, S V; Draghiciu, O; van de Wall, S; Manuelli, V; Dierckx, R A J O; Nijman, H W; Daemen, T; de Vries, E F J
2017-01-01
Cancer immunotherapy urgently calls for methods to monitor immune responses at the site of the cancer. Since activated T lymphocytes may serve as a hallmark for anticancer responses, we targeted these cells using the radiotracer N-(4-[ 18 F]fluorobenzoyl)-interleukin-2 ([ 18 F]FB-IL-2) for positron emission tomography (PET) imaging. Thus, we noninvasively monitored the effects of local tumor irradiation and/or immunization on tumor-infiltrating and systemic activated lymphocytes in tumor-bearing mice. A 10- and 27-fold higher [ 18 F]FB-IL-2 uptake was observed in tumors of mice receiving tumor irradiation alone or in combination with immunization, respectively. This increased uptake was extended to several non-target tissues. Administration of the CXCR4 antagonist AMD3100 reduced tracer uptake by 2.8-fold, indicating a CXCR4-dependent infiltration of activated T lymphocytes upon cancer treatment. In conclusion, [ 18 F]FB-IL-2 PET can serve as a clinical biomarker to monitor treatment-induced infiltration of activated T lymphocytes and, on that basis, may guide cancer immunotherapies.
Tuan, Rocky S; Lee, Francis Young-In; T Konttinen, Yrjö; Wilkinson, J Mark; Smith, Robert Lane
2008-01-01
New clinical and basic science data on the cellular and molecular mechanisms by which wear particles stimulate the host inflammatory response have provided deeper insight into the pathophysiology of periprosthetic bone loss. Interactions among wear particles, macrophages, osteoblasts, bone marrow-derived mesenchymal stem cells, fibroblasts, endothelial cells, and T cells contribute to the production of pro-inflammatory and pro-osteoclastogenic cytokines such as TNF-alpha, RANKL, M-SCF, PGE2, IL-1, IL-6, and IL-8. These cytokines not only promote osteoclastogenesis but interfere with osteogenesis led by osteoprogenitor cells. Recent studies indicate that genetic variations in TNF-alpha, IL-1, and FRZB can result in subtle changes in gene function, giving rise to altered susceptibility or severity for periprosthetic inflammation and bone loss. Continuing research on the biologic effects and mechanisms of action of wear particles will provide a rational basis for the development of novel and effective ways of diagnosis, prevention, and treatment of periprosthetic inflammatory bone loss.
Brundage, Susan I; Zautke, N A; Holcomb, J B; Spain, D A; Lam, J C; Mastrangelo, M A; Macaitis, J M; Tweardy, D J
2004-11-01
Serum elevations of interleukin-6 (IL-6) correlate with multiple organ dysfunction syndrome and mortality in critically injured trauma patients. Data from rodent models of controlled hemorrhage suggest that recombinant IL-6 (rIL-6) infusion protects tissue at risk for ischemia-reperfusion injury. Exogenous rIL-6 administered during shock appears to abrogate inflammation, providing a protective rather than a deleterious influence. In an examination of this paradox, the current study aimed to determine whether rIL-6 decreases inflammation in a clinically relevant large animal model of uncontrolled hemorrhagic shock, (UHS), and to investigate the mechanism of protection. Swine were randomized to four groups (8 animals in each): (1) sacrifice, (2) sham (splenectomy followed by hemodilution and cooling to 33 degrees C), (3) rIL-6 infusion (sham plus UHS using grade 5 liver injury with packing and resuscitation plus blinded infusion of rIL-6 [10 mcg/kg]), and (4) placebo (UHS plus blinded vehicle). After 4 hours, blood was sampled, estimated blood loss determined, animals sacrificed, and lung harvested for RNA isolation. Quantitative reverse transcriptase-polymerase chain reaction was used to assess granulocyte colony-stimulating factor (G-CSF), IL-6, and tumor necrosis factor-alpha (TNFalpha) messenger ribonucleic acid (mRNA) levels. Serum levels of IL-6 and TNFalpha were measured by enzyme-linked immunoassay (ELISA). As compared with placebo, IL-6 infusion in UHS did not increase estimated blood loss or white blood cell counts, nor decrease hematocrit or platelet levels. As compared with the sham condition, lung G-CSF mRNA production in UHS plus placebo increased eightfold (*p < 0.05). In contrast, rIL-6 infusion plus UHS blunted G-CSF mRNA levels, which were not significantly higher than sham levels (p = 0.1). Infusion of rIL-6 did not significantly affect endogenous production of either lung IL-6 or mRNA. As determined by ELISA, rIL-6 infusion did not increase final serum levels of IL-6 or TNFalpha over those of sham and placebo conditions. Exogenous rIL-6 blunts lung mRNA levels of the proinflammatory cytokine G-CSF. The administration of rIL-6 does not increase the local expression of IL-6 nor TNFalpha mRNA in the lung. Additionally, rIL-6 infusion does not appear to cause systemic toxicity.
Sugihara, T; Kobori, A; Imaeda, H; Tsujikawa, T; Amagase, K; Takeuchi, K; Fujiyama, Y; Andoh, A
2010-01-01
Recent studies have demonstrated that the complement system participates in the regulation of T cell functions. To address the local biosynthesis of complement components in inflammatory bowel disease (IBD) mucosa, we investigated C3 and interleukin (IL)-17 mRNA expression in mucosal samples obtained from patients with IBD. The molecular mechanisms underlying C3 induction were investigated in human colonic subepithelial myofibroblasts (SEMFs). IL-17 and C3 mRNA expressions in the IBD mucosa were evaluated by real-time polymerase chain reaction. The C3 levels in the supernatant were determined by enzyme-linked immunosorbent assay. IL-17 and C3 mRNA expressions were elevated significantly in the active lesions from ulcerative colitis (UC) and Crohn's disease (CD) patients. There was a significant positive correlation between IL-17 and C3 mRNA expression in the IBD mucosa. IL-17 stimulated a dose- and time-dependent increase in C3 mRNA expression and C3 secretion in colonic SEMFs. The C3 molecules secreted by colonic SEMFs were a 115-kDa α-chain linked to a 70-kDa β-chain by disulphide bonds, which was identical to serum C3. The IL-17-induced C3 mRNA expression was blocked by p42/44 mitogen-activated protein kinase (MAPK) inhibitors (PD98059 and U0216) and a p38 MAPK inhibitor (SB203580). Furthermore, IL-17-induced C3 mRNA expression was inhibited by an adenovirus containing a stable mutant form of IκBα. C3 and IL-17 mRNA expressions are enhanced, with a strong correlation, in the inflamed mucosa of IBD patients. Part of these clinical findings was considered to be mediated by the colonic SEMF response to IL-17. PMID:20089077
Chai, Jinghua; Zhou, Minliang; Simon, Nirvine; Huang, Liquan
2014-01-01
Although inflammatory responses are a critical component in defense against pathogens, too much inflammation is harmful. Mechanisms have evolved to regulate inflammation, including modulation by the anti-inflammatory cytokine interleukin-10 (IL-10). Previously we have shown that taste buds express various molecules involved in innate immune responses, including the proinflammatory cytokine tumor necrosis factor (TNF). Here, using a reporter mouse strain, we show that taste cells also express the anti-inflammatory cytokine IL-10. Remarkably, IL-10 is produced by only a specific subset of taste cells, which are different from the TNF-producing cells in mouse circumvallate and foliate taste buds: IL-10 expression was found exclusively in the G-protein gustducin-expressing bitter receptor cells, while TNF was found in sweet and umami receptor cells as reported previously. In contrast, IL-10R1, the ligand-binding subunit of the IL-10 receptor, is predominantly expressed by TNF-producing cells, suggesting a novel cellular hierarchy for regulating TNF production and effects in taste buds. In response to inflammatory challenges, taste cells can increase IL-10 expression both in vivo and in vitro. These findings suggest that taste buds use separate populations of taste receptor cells that coincide with sweet/umami and bitter taste reception to modulate local inflammatory responses, a phenomenon that has not been previously reported. Furthermore, IL-10 deficiency in mice leads to significant reductions in the number and size of taste buds, as well as in the number of taste receptor cells per taste bud, suggesting that IL-10 plays critical roles in maintaining structural integrity of the peripheral gustatory system. PMID:24523558
Feng, Pu; Chai, Jinghua; Zhou, Minliang; Simon, Nirvine; Huang, Liquan; Wang, Hong
2014-02-12
Although inflammatory responses are a critical component in defense against pathogens, too much inflammation is harmful. Mechanisms have evolved to regulate inflammation, including modulation by the anti-inflammatory cytokine interleukin-10 (IL-10). Previously we have shown that taste buds express various molecules involved in innate immune responses, including the proinflammatory cytokine tumor necrosis factor (TNF). Here, using a reporter mouse strain, we show that taste cells also express the anti-inflammatory cytokine IL-10. Remarkably, IL-10 is produced by only a specific subset of taste cells, which are different from the TNF-producing cells in mouse circumvallate and foliate taste buds: IL-10 expression was found exclusively in the G-protein gustducin-expressing bitter receptor cells, while TNF was found in sweet and umami receptor cells as reported previously. In contrast, IL-10R1, the ligand-binding subunit of the IL-10 receptor, is predominantly expressed by TNF-producing cells, suggesting a novel cellular hierarchy for regulating TNF production and effects in taste buds. In response to inflammatory challenges, taste cells can increase IL-10 expression both in vivo and in vitro. These findings suggest that taste buds use separate populations of taste receptor cells that coincide with sweet/umami and bitter taste reception to modulate local inflammatory responses, a phenomenon that has not been previously reported. Furthermore, IL-10 deficiency in mice leads to significant reductions in the number and size of taste buds, as well as in the number of taste receptor cells per taste bud, suggesting that IL-10 plays critical roles in maintaining structural integrity of the peripheral gustatory system.
Chinnasamy, Dhanalakshmi; Yu, Zhiya; Kerkar, Sid P; Zhang, Ling; Morgan, Richard A; Restifo, Nicholas P; Rosenberg, Steven A
2012-03-15
We investigated the feasibility of delivering the proinflammatory cytokine interleukin (IL)-12 into tumor using T cells genetically engineered to express a chimeric antigen receptor (CAR) against the VEGF receptor-2 (VEGFR-2). Two different strains of mice bearing five different established subcutaneous tumors were treated with syngeneic T cells cotransduced with an anti-VEGFR-2 CAR and a constitutively expressed single-chain murine IL-12 or an inducible IL-12 gene after host lymphodepletion. Tumor regression, survival of mice, and persistence of the transferred cells were evaluated. Adoptive transfer of syngeneic T cells cotransduced with an anti-VEGFR-2 CAR and a constitutively expressing single-chain IL-12 resulted in the regression of five different established tumors of different histologies without the need for IL-2 administration. T cells transduced with either anti-VEGFR-2 CAR or single-chain IL-12 alone did not alter the tumor growth indicating that both of them had to be expressed in the same cell to mediate tumor regression. Anti-VEGFR-2 CAR and IL-12-cotransduced T cells infiltrated the tumors, expanded, and persisted for prolonged periods. The antitumor effect did not require the presence of host T and B cells but was dependent on host IL-12R-expressing cells. The anti-VEGFR-2 CAR changed the immunosuppressive tumor environment by altering/reducing both the systemic and the intratumoral CD11b(+)Gr1(+) myeloid suppressor cell subsets that expressed VEGFR-2. These results suggest that targeted delivery of IL-12 into the tumor environment with T cells redirected against VEGFR-2 is a promising approach for treating patients with a variety of solid tumor types.
Th9 cytokines response and its possible implications in the immunopathogenesis of leprosy.
de Sousa, Jorge Rodrigues; Pagliari, Carla; de Almeida, Dandara Simone Maia; Barros, Luiz Fernando Lima; Carneiro, Francisca Regina Oliveira; Dias, Leonidas Braga; de Souza Aarão, Tinara Leila; Quaresma, Juarez Antonio Simões
2017-06-01
Leprosy is an infectious-contagious disease whose clinical evolution depends on the interaction of the infectious agent with the immune response of the host, leading to a clinical spectrum that ranges from lepromatous leprosy (susceptibility, LL) to tuberculoid leprosy (resistance, TT). The immune response profile will depend on the pattern of cytokine production and on the activity of macrophages during infection. Classically, the clinical evolution of leprosy has been associated with Th1/Th2 cytokine profiles, but the role of new cytokine profiles such as T helper 9 (Th9) remains to be elucidated. To evaluate the tissue expression profile of these cytokines, a cross-sectional study was conducted using a sample of 30 leprosy skin lesion biopsies obtained from patients with leprosy, 16 TT and 14 lepromatous LL. Immunohistochemical analysis revealed a significant difference in interleukin (IL)-9, IL-4 transforming growth factor (TGF)-β and IL-10 levels between the two groups. IL-9 was more expressed in TT lesions compared with LL lesions. Higher expression of IL-4, IL-10 and TGF-β was observed in LL compared with TT. IL-4, IL-10 and TGF-β tended to be negatively correlated with the expression of IL-9, indicating a possible antagonistic activity in tissue. The results suggest that Th9 lymphocytes may be involved in the response to Mycobacterium leprae , positively or negatively regulating microbicidal activity of the local immune system in the disease. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Chandler, Joshua D; Hu, Xin; Ko, Eun-Ju; Park, Soojin; Lee, Young-Tae; Orr, Michael; Fernandes, Jolyn; Uppal, Karan; Kang, Sang-Moo; Jones, Dean P; Go, Young-Mi
2016-11-01
Influenza is a significant health concern worldwide. Viral infection induces local and systemic activation of the immune system causing attendant changes in metabolism. High-resolution metabolomics (HRM) uses advanced mass spectrometry and computational methods to measure thousands of metabolites inclusive of most metabolic pathways. We used HRM to identify metabolic pathways and clusters of association related to inflammatory cytokines in lungs of mice with H1N1 influenza virus infection. Infected mice showed progressive weight loss, decreased lung function, and severe lung inflammation with elevated cytokines [interleukin (IL)-1β, IL-6, IL-10, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ] and increased oxidative stress via cysteine oxidation. HRM showed prominent effects of influenza virus infection on tryptophan and other amino acids, and widespread effects on pathways including purines, pyrimidines, fatty acids, and glycerophospholipids. A metabolome-wide association study (MWAS) of the aforementioned inflammatory cytokines was used to determine the relationship of metabolic responses to inflammation during infection. This cytokine-MWAS (cMWAS) showed that metabolic associations consisted of distinct and shared clusters of 396 metabolites highly correlated with inflammatory cytokines. Strong negative associations of selected glycosphingolipid, linoleate, and tryptophan metabolites with IFN-γ contrasted strong positive associations of glycosphingolipid and bile acid metabolites with IL-1β, TNF-α, and IL-10. Anti-inflammatory cytokine IL-10 had strong positive associations with vitamin D, purine, and vitamin E metabolism. The detailed metabolic interactions with cytokines indicate that targeted metabolic interventions may be useful during life-threatening crises related to severe acute infection and inflammation. Copyright © 2016 the American Physiological Society.
Maeto, Cynthia; Rodríguez, Ana María; Holgado, María Pía; Falivene, Juliana; Gherardi, María Magdalena
2014-01-01
Induction of local antiviral immune responses at the mucosal portal surfaces where HIV-1 and other viral pathogens are usually first encountered remains a primary goal for most vaccines against mucosally acquired viral infections. Exploring mucosal immunization regimes in order to find optimal vector combinations and also appropriate mucosal adjuvants in the HIV vaccine development is decisive. In this study we analyzed the interaction of DNA-IL-12 and cholera toxin B subunit (CTB) after their mucosal administration in DNA prime/MVA boost intranasal regimes, defining the cooperation of both adjuvants to enhance immune responses against the HIV-1 Env antigen. Our results demonstrated that nasal mucosal DNA/MVA immunization schemes can be effectively improved by the co-delivery of DNA-IL-12 plus CTB inducing elevated HIV-specific CD8 responses in spleen and more importantly in genital tract and genito-rectal draining lymph nodes. Remarkably, these CTL responses were of superior quality showing higher avidity, polyfunctionality and a broader cytokine profile. After IL-12+CTB co-delivery, the cellular responses induced showed an enhanced breadth recognizing with higher efficiency Env peptides from different subtypes. Even more, an in vivo CTL cytolytic assay demonstrated the higher specific CD8 T-cell performance after the IL-12+CTB immunization showing in an indirect manner its potential protective capacity. Improvements observed were maintained during the memory phase where we found higher proportions of specific central memory and T memory stem-like cells T-cell subpopulations. Together, our data show that DNA-IL-12 plus CTB can be effectively employed acting as mucosal adjuvants during DNA prime/MVA boost intranasal vaccinations, enhancing magnitude and quality of HIV-specific systemic and mucosal immune responses.
Chandler, Joshua D.; Hu, Xin; Ko, Eun-Ju; Park, Soojin; Lee, Young-Tae; Orr, Michael; Fernandes, Jolyn; Uppal, Karan; Kang, Sang-Moo; Jones, Dean P.
2016-01-01
Influenza is a significant health concern worldwide. Viral infection induces local and systemic activation of the immune system causing attendant changes in metabolism. High-resolution metabolomics (HRM) uses advanced mass spectrometry and computational methods to measure thousands of metabolites inclusive of most metabolic pathways. We used HRM to identify metabolic pathways and clusters of association related to inflammatory cytokines in lungs of mice with H1N1 influenza virus infection. Infected mice showed progressive weight loss, decreased lung function, and severe lung inflammation with elevated cytokines [interleukin (IL)-1β, IL-6, IL-10, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ] and increased oxidative stress via cysteine oxidation. HRM showed prominent effects of influenza virus infection on tryptophan and other amino acids, and widespread effects on pathways including purines, pyrimidines, fatty acids, and glycerophospholipids. A metabolome-wide association study (MWAS) of the aforementioned inflammatory cytokines was used to determine the relationship of metabolic responses to inflammation during infection. This cytokine-MWAS (cMWAS) showed that metabolic associations consisted of distinct and shared clusters of 396 metabolites highly correlated with inflammatory cytokines. Strong negative associations of selected glycosphingolipid, linoleate, and tryptophan metabolites with IFN-γ contrasted strong positive associations of glycosphingolipid and bile acid metabolites with IL-1β, TNF-α, and IL-10. Anti-inflammatory cytokine IL-10 had strong positive associations with vitamin D, purine, and vitamin E metabolism. The detailed metabolic interactions with cytokines indicate that targeted metabolic interventions may be useful during life-threatening crises related to severe acute infection and inflammation. PMID:27558316
Pretreatment of Lignocellulosic Biomass with Ionic Liquids and Ionic Liquid-Based Solvent Systems.
Hou, Qidong; Ju, Meiting; Li, Weizun; Liu, Le; Chen, Yu; Yang, Qian
2017-03-20
Pretreatment is very important for the efficient production of value-added products from lignocellulosic biomass. However, traditional pretreatment methods have several disadvantages, including low efficiency and high pollution. This article gives an overview on the applications of ionic liquids (ILs) and IL-based solvent systems in the pretreatment of lignocellulosic biomass. It is divided into three parts: the first deals with the dissolution of biomass in ILs and IL-based solvent systems; the second focuses on the fractionation of biomass using ILs and IL-based solvent systems as solvents; the third emphasizes the enzymatic saccharification of biomass after pretreatment with ILs and IL-based solvent systems.
2012-01-01
Background Cytokines may be elevated in tumor and normal tissues following irradiation. Cytokine expression in these tissues may predict for toxicity or tumor control. The purpose of this pilot study was to determine the feasibility of measuring local salivary cytokine levels using buccal sponges in patients receiving chemo-radiation for head and neck malignancies. Patients and methods 11 patients with epithelial malignancies of the head and neck were recruiting to this study. All patients received radiotherapy to the head and neck region with doses ranging between 60 – 67.5 Gy. Chemotherapy was delivered concurrently with radiation in all patients. Salivary samples were obtained from high dose and low dose regions prior to treatment and at three intervals during treatment for assessment of cytokine levels (IL-4, IL-6, IL-8, IL-10, EGF, MCP-1, TNF-α, and VEGF). Results Cytokine levels were detectable in the salivary samples. Salivary cytokine levels of IL-4, IL-6, IL-8, EGF, MCP-1, TNF- α , and VEGF were higher in the high dose region compared to the low dose region at all time points (p < 0.05). A trend toward an increase in cytokine levels as radiation dose increased was observed for IL-6, IL-8, MCP-1, and TNF-α. Conclusion Assessment of salivary cytokine levels may provide a novel method to follow local cytokine levels during radiotherapy and may provide a mechanism to study cytokine levels in a regional manner. PMID:22537315
Wu, Yan; Tan, Zhijian; Liu, Zhixiang; Xia, Dechao; Li, Jiawen
2006-01-01
To investigate the expression of vaginal IL-23 and its role in experimental murine vaginal candidiasis and its relationship with infection and immune status, immuno-competent (group A) and immuno-suppressed (group B) murine models of vaginal candidiasis were established in estrogen-treated mice. Non-estrogen-treated mice were used as controls (group C). The level of IL-23 p19 mRNA in murine vaginal tissue was determined by RT-PCR. Significantly increased levels of IL-23p19mRNA were observed on the 4th, the 7th and 14th day after inoculation in immuno-competent group when compared with that in control group (P<0.01, P<0.05). However, significant increase of IL-23 p19mRNA were only observed on the 7th day and the 14th day after inoculatuon in immuno-suppressed groups (P<0.05). On the 4th and 7th day, the levels of IL-23 p19mRNA were significantly increased in immuno-competent group than those in immuno-suppressed group (P <0.05). Local IL-23 may play a role in the pathogenesis of murine vaginal candidiasis and has a protective function during infection. Low vaginal IL-23 level may correlate with the increased susceptibility to Candida albicans in immuno-suppressed group.
NASA Astrophysics Data System (ADS)
Yang, Peng; Voth, Gregory A.; Xiao, Dong; Hines, Larry G.; Bartsch, Richard A.; Quitevis, Edward L.
2011-07-01
In this paper, the nanostructural organization and subpicosecond intermolecular dynamics in the mixtures of CS2 and the room temperature ionic liquid (IL) 1-pentyl-3-methylimidazolium bis{(trifluoromethane)sulfonyl}amide ([C5mim][NTf2]) were studied as a function of concentration using molecular dynamics (MD) simulations and optical heterodyne-detected Raman-induced Kerr effect spectroscopy. At low CS2 concentrations (<10 mol.% CS2/IL), the MD simulations indicate that the CS2 molecules are localized in the nonpolar domains. In contrast, at higher concentrations (≥10 mol.% CS2/IL), the MD simulations show aggregation of the CS2 molecules. The optical Kerr effect (OKE) spectra of the mixtures are interpreted in terms of an additivity model with the components arising from the subpicosecond dynamics of CS2 and the IL. Comparison of the CS2-component with the OKE spectra of CS2 in alkane solvents is consistent with CS2 mainly being localized in the nonpolar domains, even at high CS2 concentrations, and the local CS2 concentration being higher than the bulk CS2 concentration.
Role of Complement C5 in Experimental Blunt Chest Trauma-Induced Septic Acute Lung Injury (ALI)
Karbach, Michael; Braumueller, Sonja; Kellermann, Philipp; Gebhard, Florian; Huber-Lang, Markus; Perl, Mario
2016-01-01
Background Severe blunt chest trauma is associated with high mortality. Sepsis represents a serious risk factor for mortality in acute respiratory distress syndrome (ARDS). In septic patients with ARDS complement activation products were found to be elevated in the plasma. In single models like LPS or trauma complement has been studied to some degree, however in clinically highly relevant double hit models such as the one used here little data is available. Here, we hypothesized that absence of C5 is correlated with a decreased inflammatory response in trauma induced septic acute lung injury. Methods 12 hrs after DH in mice the local and systemic cytokines and chemokines were quantified by multiplex bead array or ELISA, activated caspase-3 by western blot. Data were analyzed using one-way ANOVA followed by post-hoc Sidak’s multiple comparison test (significance, p≤ 0.05). Results In lung tissue interleukin (IL)-6, monocyte chemo attractant protein-1 (MCP-1) and granulocyte-colony stimulating factor (G-CSF) was elevated in both C5-/- mice and wildtype littermates (wt), whereas caspase-3 was reduced in lungs after DH in C5-/- mice. Systemically, reduced keratinocyte-derived chemokine (KC) levels were observed after DH in C5-/- compared to wt mice. Locally, lung myeloperoxidase (MPO), protein, IL-6, MCP-1 and G-CSF in brochoalveolar lavage fluid (BALF) were elevated after DH in C5-/- compared to wt. Conclusions In the complex but clinically relevant DH model the local and systemic inflammatory immune response features both, C5-dependent and C5-independent characteristics. Activation of caspase-3 in lung tissue after DH was C5-dependent whereas local inflammation in lung tissue was C5-independent. PMID:27437704
Role of Complement C5 in Experimental Blunt Chest Trauma-Induced Septic Acute Lung Injury (ALI).
Kalbitz, Miriam; Karbach, Michael; Braumueller, Sonja; Kellermann, Philipp; Gebhard, Florian; Huber-Lang, Markus; Perl, Mario
2016-01-01
Severe blunt chest trauma is associated with high mortality. Sepsis represents a serious risk factor for mortality in acute respiratory distress syndrome (ARDS). In septic patients with ARDS complement activation products were found to be elevated in the plasma. In single models like LPS or trauma complement has been studied to some degree, however in clinically highly relevant double hit models such as the one used here little data is available. Here, we hypothesized that absence of C5 is correlated with a decreased inflammatory response in trauma induced septic acute lung injury. 12 hrs after DH in mice the local and systemic cytokines and chemokines were quantified by multiplex bead array or ELISA, activated caspase-3 by western blot. Data were analyzed using one-way ANOVA followed by post-hoc Sidak's multiple comparison test (significance, p≤ 0.05). In lung tissue interleukin (IL)-6, monocyte chemo attractant protein-1 (MCP-1) and granulocyte-colony stimulating factor (G-CSF) was elevated in both C5-/- mice and wildtype littermates (wt), whereas caspase-3 was reduced in lungs after DH in C5-/- mice. Systemically, reduced keratinocyte-derived chemokine (KC) levels were observed after DH in C5-/- compared to wt mice. Locally, lung myeloperoxidase (MPO), protein, IL-6, MCP-1 and G-CSF in brochoalveolar lavage fluid (BALF) were elevated after DH in C5-/- compared to wt. In the complex but clinically relevant DH model the local and systemic inflammatory immune response features both, C5-dependent and C5-independent characteristics. Activation of caspase-3 in lung tissue after DH was C5-dependent whereas local inflammation in lung tissue was C5-independent.
Zhang, Jing; Wang, Wei-da; Geng, Qi-Rong; Wang, Liang; Chen, Xiao-Qin; Liu, Cheng-Cheng; Lv, Yue
2014-01-01
Interleukin-9 (IL-9) is more functionally diverse than previously expected, especially with regards to lymphomagenesis. However, the relationship between IL-9 and the clinicopathological features of extranodal NK/T-cell lymphoma is less well established. Patients with this lymphoma in Sun Yat-Sen University Cancer Center between January 2003 and March 2013 were systematically reviewed in an intention-to-treat analysis. Baseline serum IL-9 levels were determined using sandwich enzyme-linked immunosorbent assays. A total of seventy-four patients were enrolled in this study. The mean concentration of serum IL-9 for all patients was 6.48 pg/mL (range: 1.38-51.87 pg/mL). Age, B symptoms and local lymph node involvement were found to be related to high serum IL-9 levels. Patients with low IL-9 levels tended to have higher rates of complete remission. Notably, the median progression-free survival (PFS) and overall survival (OS) were longer in the low IL-9 level group than in the high IL-9 level group (PFS: 68.7 months vs. 28.3 months, P<0.001; OS: 86 months vs. 42.8 months, P = 0.001). Multivariate analysis revealed independent prognostic factors for PFS. Similarly, high IL-9 levels (P = 0.003) and old age (P = 0.007) were independently predictive of shorter OS. Serum IL-9 is closely related to several clinical features, such as age, B symptoms and local lymph node involvement. It can also be a significant independent prognostic factor for extranodal NK/T-cell lymphoma, which suggests a role for IL-9 in the pathogenesis of this disease and offers new insight into potential therapeutic strategies.
Short-term repeated HRV-16 exposure results in an attenuated immune response in vivo in humans
Koch, Rebecca M.; Kox, Matthijs; van den Kieboom, Corné; Ferwerda, Gerben; Gerretsen, Jelle; ten Bruggencate, Sandra; van der Hoeven, Johannes G.; de Jonge, Marien I.; Pickkers, Peter
2018-01-01
Introduction Naturally, development of adaptive immunity following HRV infection affects the immune response. However, it is currently unclear whether or not HRV re-exposure within a short time frame leads to an altered innate immune response. The “experimental cold model” is used to investigate the pathogenesis of HRV infection and allows us to investigate the effects of repeated exposure on both local and systemic innate immunity. Methods 40 healthy male and female (1:1) subjects were nasally inoculated with HRV-16 or placebo. One week later, all subjects received HRV-16. Baseline seronegative subjects (n = 18) were included for further analysis. Results Infection rate was 82%. Primary HRV infection induced a marked increase in viral load and IP-10 levels in nasal wash, while a similar trend was observed for IL-6 and IL-10. Apart from an increase in IP-10 plasma levels, HRV infection did not induce systemic immune effects nor lower respiratory tract inflammation. With similar viral load present during the second HRV challenge, IP-10 and IL-6 in nasal wash showed no increase, but gradually declined, with a similar trend for IL-10. Conclusion Upon a second HRV challenge one week after the first, a less pronounced response for several innate immune parameters is observed. This could be the result of immunological tolerance and possibly increases vulnerability towards secondary infections. PMID:29447199
Short-term repeated HRV-16 exposure results in an attenuated immune response in vivo in humans.
Koch, Rebecca M; Kox, Matthijs; van den Kieboom, Corné; Ferwerda, Gerben; Gerretsen, Jelle; Ten Bruggencate, Sandra; van der Hoeven, Johannes G; de Jonge, Marien I; Pickkers, Peter
2018-01-01
Naturally, development of adaptive immunity following HRV infection affects the immune response. However, it is currently unclear whether or not HRV re-exposure within a short time frame leads to an altered innate immune response. The "experimental cold model" is used to investigate the pathogenesis of HRV infection and allows us to investigate the effects of repeated exposure on both local and systemic innate immunity. 40 healthy male and female (1:1) subjects were nasally inoculated with HRV-16 or placebo. One week later, all subjects received HRV-16. Baseline seronegative subjects (n = 18) were included for further analysis. Infection rate was 82%. Primary HRV infection induced a marked increase in viral load and IP-10 levels in nasal wash, while a similar trend was observed for IL-6 and IL-10. Apart from an increase in IP-10 plasma levels, HRV infection did not induce systemic immune effects nor lower respiratory tract inflammation. With similar viral load present during the second HRV challenge, IP-10 and IL-6 in nasal wash showed no increase, but gradually declined, with a similar trend for IL-10. Upon a second HRV challenge one week after the first, a less pronounced response for several innate immune parameters is observed. This could be the result of immunological tolerance and possibly increases vulnerability towards secondary infections.
Gani, Dhruva Kumar; Lakshmi, Deepa; Krishnan, Rama; Emmadi, Pamela
2009-05-01
The aim of the present study was to investigate systemic levels of inflammatory markers of cardiovascular diseases like C-reactive protein and interleukin-6 in patients with chronic periodontitis, in comparison to periodontally healthy individuals. A total of 42 individuals, both males and females above the age of 30 years, were included in the study. Healthy controls (Group I, n = 14), chronic localized periodontitis (Group II, n = 14), and chronic generalized periodontitis (Group III, n = 14), all without any medical disorder, were recruited. Peripheral blood samples were taken and C-reactive protein (CRP) levels were estimated in the serum samples by using the Particle-Enhanced Turbidimetric Immunoassay (PETIA) technique. Serum samples of Interleukin-6 (IL-6) were assayed by using the Chemiluminescent Immunoassay (IMMULITE) technique. When mean CRP levels were compared between the groups, group III showed statistical significance when compared to group I (P = 0.04). Group III had a higher median IL-6 level (6.35 pg/mL) than Group II (< 5.0 pg/mL) and group I (< 5.0 pg/mL). Differences in median values of IL-6 were not statistically significant in any group (P = 0.29). Periodontitis results in higher systemic levels of CRP and IL-6. These elevated inflammatory factors may increase inflammatory activity in atherosclerotic lesions and potentially increasing the risk for cardiovascular events.
van der Lee, Saskia; Kemmeren, Jeanet M; de Rond, Lia G H; Öztürk, Kemal; Westerhof, Anneke; de Melker, Hester E; Sanders, Elisabeth A M; Berbers, Guy A M; van der Maas, Nicoline A T; Rümke, Hans C; Buisman, Anne-Marie
2017-09-01
In the Netherlands, acellular pertussis vaccines replaced the more reactogenic whole-cell pertussis vaccines. This replacement in the primary immunization schedule of infants coincided with a significant increase in pronounced local adverse events (AEs) in 4 years old children shortly after the administration of a fifth diphtheria, tetanus, acellular pertussis and inactivated polio (DTaP-IPV) vaccine. The objective of this study was to investigate possible differences in vaccine antigen-specific immune responses between children with and without a pronounced local AE after the fifth DTaP-IPV vaccination. Blood was sampled in 2 groups of 4-year-olds: a case group reporting pronounced local swelling and/or erythema up to extensive limb swelling at the injection site (n = 30) and a control group (n = 30). Peripheral blood mononuclear cells were stimulated with individual vaccine antigens. Plasma antigen-specific IgG, IgG subclass and total IgE concentrations and T-cell cytokine [interferon-gamma, interleukin (IL)-13, IL-17 and IL-10] production by stimulated peripheral blood mononuclear cells were determined by multiplex bead-based fluorescent multiplex immunoassays. In children with AEs, significantly higher total IgE and vaccine antigen-specific IgG and IgG4 responses as well as levels of the T-helper 2 (Th2) cytokine IL-13 were found after pertussis, tetanus and diphtheria stimulation compared with controls. Children with pronounced local reactions show higher humoral and cellular immune responses. Acellular vaccines are known to skew toward more Th2 responses. The pronounced local AEs may be associated with more Th2 skewing after the fifth DTaP-IPV vaccination, but other biologic factors may also impact the occurrence of these pronounced local reactions.
Gender Difference in Bacteria Endotoxin-Induced Inflammatory and Anorexic Responses.
Kuo, Shiu-Ming
2016-01-01
Inflammation-related anorexic response has been observed in systemic diseases as well as in localized infection and is an important issue in patient care. We tested the hypothesis that upon the same endotoxin exposure, males have more severe inflammatory responses and thus suffer from more negative effect on appetite. Ten-week old male and female mice were compared in their plasma levels of pro-inflammatory cytokines after a body weight-based i.p. injection of bacterial endotoxin lipopolysaccharide. Male mice consistently showed significantly higher levels of IL6 and TNFα than female mice. The difference was observed starting at 3 hours after the systemic endotoxin exposure. It was independent of the level of endotoxin dosage and of the genotype of the anti-inflammatory cytokine, IL10. Interestingly, endotoxin-injected male mice also had significantly higher plasma IL10 levels compared to the female mice. Pre-puberty young mice showed no gender differences in the plasma levels of IL6, TNFα and IL10. Their cytokine levels were mostly between that of the adult males and females. Consistent with the higher inflammatory response in male mice, the endotoxin exposure also led to significantly more appetite loss in male mice at a range of doses in two strains of mice. Saline injection in the absence of endotoxin affected neither the cytokine levels nor the appetite. Although a direct mechanistic link between inflammation parameters and appetite was not addressed here, the results support that male gender could be a risk factor for higher pro-inflammatory cytokines and anorexic response after the endotoxin exposure.
Williams, Andrew R; Dige, Anders; Rasmussen, Tue Kruse; Hvas, Christian L; Dahlerup, Jens F; Iversen, Lars; Stensvold, C Rune; Agnholt, Jørgen; Nejsum, Peter
2017-08-01
Ingestion of eggs (ova) of the porcine nematode parasite Trichuris suis (TSO) may reduce the severity of autoimmune disorders, however the development of TSO treatment as a useful therapy for autoimmune diseases is hampered by a lack of knowledge on the development of the parasite and the nature of the local immune responses in humans. Here, we used colonoscopy to investigate the development of T. suis and related mucosal and systemic immune responses during TSO treatment in an intestinally healthy male volunteer. TSO treatment induced T. suis-specific serum antibodies, a transient blood eosinophilia, and increases in IFNγ + and IL4 + cells within the circulating CD4 + T-cell population. Increased expression of genes encoding cytokines (IL4, IL10, IL17 and TGF-β), and transcription factors (FOXP3, GATA3 and RORC) were apparent in the ascending and transverse colon (the predilection site of the worms), whereas only limited changes in gene expression were observed proximally (ileum) and distally (descending colon) to the infected tissue. We further show that T. suis is able to colonise the human colon, with a number of worms developing to a similar size and morphology observed in the natural pig host, and a small number of unembryonated eggs were passed in the faeces, indicating patent infection. Notably, the volunteer experienced a substantial improvement in psoriasis during the course of TSO treatment. Thus, TSO treatment induced a mixed Th1/Th2/T regulatory response at the local site of infection, which was also reflected to some extent in the peripheral circulation. These results, together with the first definitive observations that T. suis can mature to adult size and reproduce in humans, shed new light on the interaction between the human immune system and probiotic helminth treatment, which should facilitate further development of this novel therapeutic option. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.
Do inflammatory markers portend heterotopic ossification and wound failure in combat wounds?
Forsberg, Jonathan A; Potter, Benjamin K; Polfer, Elizabeth M; Safford, Shawn D; Elster, Eric A
2014-09-01
After a decade of war in Iraq and Afghanistan, we have observed an increase in combat-related injury survival and a paradoxical increase in injury severity, mainly because of the effects of blasts. These severe injuries have a devastating effect on each patient's immune system resulting in massive upregulation of the systemic inflammatory response. By examining inflammatory mediators, preliminary data suggest that it may be possible to correlate complications such as wound failure and heterotopic ossification (HO) with distinct systemic and local inflammatory profiles, but this is a relatively new topic. We asked whether systemic or local markers of inflammation could be used as an objective means, independent of demographic and subjective factors, to estimate the likelihood of (1) HO and/or (2) wound failure (defined as wounds requiring surgical débridement after definitive closure, or wounds that were not closed or covered within 21 days of injury) in patients sustaining combat wounds. Two hundred combat wounded active-duty service members who sustained high-energy extremity injuries were prospectively enrolled between 2008 and 2012. Of these 200 patients, 189 had adequate followups to determine the presence or absence of HO, and 191 had adequate followups to determine the presence or absence of wound failure. In addition to injury-specific and demographic data, we quantified 24 cytokines and chemokines during each débridement. Patients were followed clinically for 6 weeks, and radiographs were obtained 3 months after definitive wound closure. Associations were investigated between these markers and wound failure or HO, while controlling for known confounders. The presence of an amputation (p < 0.001; odds ratio [OR], 6.1; 95% CI. 1.63-27.2), Injury Severity Score (p = 0.002; OR, 33.2; 95% CI, 4.2-413), wound surface area (p = 0.001; OR, 1.01; 95% CI, 1.002-1.009), serum interleukin (IL)-3 (p = 0.002; OR, 2.41; 95% CI, 1.5-4.5), serum IL-12p70 (p = 0.01; OR, 0.49; 95% CI, 0.27-0.81), effluent IL-3 (p = 0.02; OR, 1.75; 95% CI, 1.2-2.9), and effluent IL-13 (p = 0.006; OR, 0.67; 95% CI, 0.50-0.87) were independently associated with HO formation. Injury Severity Score (p = 0.05; OR, 18; 95% CI, 5.1-87), wound surface area (p = 0.05; OR, 28.7; 95% CI, 1.5-1250), serum procalcitonin ([ProCT] (p = 0.03; OR, 1596; 95% CI, 5.1-1,758,613) and effluent IL-6 (p = 0.02; OR, 83; 95% CI, 2.5-5820) were independently associated with wound failure. We identified associations between patients' systemic and local inflammatory responses and wound-specific complications such as HO and wound failure. However, future efforts to model these data must account for their complex, time dependent, and nonlinear nature. Level II, prognostic study. See the Instructions for Authors for a complete description of levels of evidence.
Bathige, S D N K; Thulasitha, William Shanthakumar; Umasuthan, Navaneethaiyer; Jayasinghe, J D H E; Wan, Qiang; Nam, Bo-Hye; Lee, Jehee
2017-04-01
Signal transducer and activator of transcription 3 (STAT3) is one of the crucial transcription factors in the Janus kinase (JAK)/STAT signaling pathway, and it was previously considered as acute phase response factor. A number of interleukins (ILs) such as IL-5, IL-6, IL-9, IL-10, IL-12, and IL-22 are known to be involved in activation of STAT3. In addition, various growth factors and pathogenic or oxidative stresses mediate the activation of a wide range of functions via STAT3. In this study, a STAT3 homolog was identified and functionally characterized from rock bream (RbSTAT3), Oplegnathus fasciatus. In silico characterization revealed that the RbSTAT3 amino acid sequence shares highly conserved common domain architectural features including N-terminal domain, coiled coil domain, DNA binding domain, linker domain, and Src homology 2 (SH2) domains. In addition, a fairly conserved transcriptional activation domain (TAD) was located at the C-terminus. Comparison of RbSTAT3 with other counterparts revealed higher identities (>90%) with fish orthologs. The genomic sequence of RbSTAT3 was obtained from a bacterial artificial chromosome (BAC) library, and was identified as a multi-exonic gene (24 exons), as found in other vertebrates. Genomic structural comparison and phylogenetic studies have showed that the evolutionary routes of teleostean and non-teleostean vertebrates were distinct. Quantitative real time PCR (qPCR) analysis revealed that the spatial distribution of RbSTAT3 mRNA expression was ubiquitous and highly detectable in blood, heart, and liver tissues. Transcriptional modulation of RbSTAT3 was examined in blood and liver tissues after challenges with bacteria (Edwardsiella tarda and Streptococcus iniae), rock bream irido virus (RBIV), and immune stimulants (LPS and poly (I:C)). Significant changes in RbSTAT3 transcription were also observed in response to tissue injury. In addition, the transcriptional up-regulation of RbSTAT3 was detected in rock bream heart cells upon recombinant rock bream IL-10 (rRbIL-10) treatment. Subcellular localization and nuclear translocation of rock bream STAT3 following poly (I:C) treatment were also demonstrated. Taken together, the results of the current study provide important evidence for potential roles of rock bream STAT3 in the immune system and wound healing processes. Copyright © 2017 Elsevier B.V. All rights reserved.
Iwata, T; Mitani, A; Ishihara, Y; Tanaka, S; Yamamoto, G; Kikuchi, T; Naganawa, T; Matsumura, Y; Suga, T; Koide, M; Sobue, T; Suzuki, T; Noguchi, T
2005-01-01
Capsular polysaccharide from Actinobacillus actinomycetemcomitans Y4 (Y4 CP) induces bone resorption in a mouse organ culture system and osteoclast formation in mouse bone marrow cultures, as reported in previous studies. We also found that Y4 CP inhibits the release of interleukin (IL)-6 and IL-8 from human gingival fibroblast (HGF). Thus Y4 CP induces various responses in localized tissue and leads to the secretion of several cytokines. However, the effects of Y4 CP on human monocytes/macrophages are still unclear. In this study, THP-1 cells, which are a human monocytic cell line, were stimulated with Y4 CP, and we measured gene expression in inflammatory cytokine and signal transduction pathways. IL-1β and tumour necrosis factor (TNF)-α mRNA were induced from Y4 CP-treated THP-1 cells. IL-1β mRNA expression was increased according to the dose of Y4 CP, and in a time-dependent manner. IL-1β mRNA expression induced by Y4 CP (100 µg/ml) was approximately 7- to 10-fold greater than that in the control by real-time PCR analysis. Furthermore, neither PD98059, a specific inhibitor of extracellular signal-regulated kinase nor SB203580, a specific inhibitor of p38 kinase prevented the IL-1β expression induced by Y4 CP. However, JNK Inhibitor II, a specific inhibitor of c-Jun N-terminal kinase (JNK) prevented the IL-1β mRNA expression induced by Y4 CP in a concentration-dependent manner. These results indicate that Y4 CP-mediated JNK pathways play an important role in the regulation of IL-1β mRNA. Therefore, Y4 CP-transduced signals for IL-1β induction in the antibacterial action of macrophages may provide a therapeutic strategy for periodontitis. PMID:15996190
Kumakura, Seiichiro; Yamaguchi, Keisuke; Sugasawa, Yusuke; Murakami, Taisuke; Kikuchi, Toshihiro; Inada, Eiichi; Nagaoka, Isao
2013-12-01
The aim of this study was to evaluate the effects of nitrous oxide (a gaseous anesthetic) on the in vivo production of inflammatory cytokines and chemokines by the airway epithelium, when combined with sevoflurane or propofol. Subjects undergoing simple or segmental mastectomy were randomly assigned to the sevoflurane and nitrous oxide, sevoflurane and air, propofol and nitrous oxide, or propofol and air group (all n=13). Epithelial lining fluid (ELF) was obtained using the bronchoscopic microsampling method prior to and following the mastectomy to enable measurement of the pre- and post-operative levels of certain inflammatory cytokines and chemokines using a cytometric bead array system. Notably, the levels of interleukin (IL)-1β, IL-8 and monocyte chemotactic protein-1 (MCP-1) in the ELF were significantly increased following the operations which involved the inhalation of sevoflurane and nitrous oxide, although the levels of these molecules were not significantly changed by the inhalation of sevoflurane and air. Furthermore, the IL-12p70 levels were significantly reduced in the ELF following the operations that involved the inhalation of sevoflurane and air, although the IL-12p70 levels were not significantly changed by the inhalation of nitrous oxide and sevoflurane. These observations suggest that the combination of sevoflurane and nitrous oxide induces an inflammatory response (increased production of IL-1β, IL-8 and MCP-1) and suppresses the anti-inflammatory response (reduced production of IL-12p70) in the local milieu of the airway. Thus, the combination of these compounds should be carefully administered for anesthesia.
Activation of an IL-6:STAT3-dependent Transcriptome in Pediatric-onset Inflammatory Bowel Disease
Carey, Rebecca; Jurickova, Ingrid; Ballard, Edgar; Bonkowski, Erin; Han, Xiaonan; Xu, Huan; Denson, Lee A.
2008-01-01
Background: While activation of the IL-6-dependent transcription factor signal transducer and activator of transcription 3 (STAT3) has been implicated in the pathogenesis of inflammatory bowel disease (IBD), a direct effect on mucosal gene expression and inflammation has not been shown. We hypothesized that a proinflammatory IL-6:STAT3-dependent biological network would be up regulated in pediatric-onset IBD patients, and would be associated with the severity of mucosal inflammation. Methods: Patients with pediatric-onset IBD were enrolled at diagnosis and during therapy. Serum cytokine analysis was performed using Bioplex. STAT3 phosphorylation (pSTAT3) in peripheral blood leukocytes (PBLs) was assessed by flow cytometry. Immunohistochemistry of colonic mucosa was used to localize pSTAT3 and STAT3 target genes. Microarray analysis was used to determine RNA expression profiles from colon biopsies. Results: Circulating IL-6 was upregulated in active IBD patients at diagnosis and during therapy. STAT3 activation was increased in PB granulocytes, IL-6-stimulated CD3+/CD4+ lymphocytes, and affected colon biopsies of IBD patients. The frequency of pSTAT3+PB granulocytes and colon epithelial and lamina propria cells was highly correlated with the degree of mucosal inflammation. Microarray and Ingenuity Systems bioinformatics analysis identified IL-6:STAT3-dependent biological networks upregulated in IBD patients which control leukocyte recruitment, HLA expression, angiogenesis, and tissue remodeling. Conclusions: A proinflammatory IL6:STAT3 biologic network is upregulated in active pediatric IBD patients at diagnosis and during therapy. Specific targeting of this network may be effective in reducing mucosal inflammation. PMID:18069684
Geven, Edwin J W; van den Bosch, Martijn H J; Di Ceglie, Irene; Ascone, Giuliana; Abdollahi-Roodsaz, Shahla; Sloetjes, Annet W; Hermann, Sven; Schäfers, Michael; van de Loo, Fons A J; van der Kraan, Peter M; Koenders, Marije I; Foell, Dirk; Roth, Johannes; Vogl, Thomas; van Lent, Peter L E M
2016-10-24
Seronegative joint diseases are characterized by a lack of well-defined biomarkers since autoantibodies are not elevated. Calprotectin (S100A8/A9) is a damage-associated molecular pattern (DAMP) which is released by activated phagocytes, and high levels are found in seronegative arthritides. In this study, we investigated the biomarker potential of systemic and local levels of these S100 proteins to assess joint inflammation and joint destruction in an experimental model for seronegative arthritis. Serum levels of S100A8/A9 and various cytokines were monitored during disease development in interleukin-1 receptor antagonist (IL-1Ra) -/- mice using ELISA and multiplex bead-based immunoassay, and were correlated to macroscopic and microscopic parameters for joint inflammation, bone erosion, and cartilage damage. Local expression of S100A8 and S100A9 and matrix metalloproteinase (MMP)-mediated cartilage damage in the ankle joints were investigated by immunohistochemistry. In addition, local S100A8 and activated MMPs were monitored in vivo by optical imaging using anti-S100A8-Cy7 and AF489-Cy5.5, a specific tracer for activated MMPs. Serum levels of S100A8/A9 were significantly increased in IL-1Ra -/- mice and correlated with macroscopic joint swelling and histological inflammation, while serum levels of pro-inflammatory cytokines did not correlate with joint swelling. In addition, early serum S100A8/A9 levels were prognostic for disease outcome at a later stage. The increased serum S100A8/A9 levels were reflected by an increased expression of S100A8 and S100A9 within the ankle joint, as visualized by molecular imaging. Next to inflammatory processes, serum S100A8/A9 also correlated with histological parameters for bone erosion and cartilage damage. In addition, arthritic IL-1Ra -/- mice with increased synovial S100A8 and S100A9 expression showed increased cartilage damage that coincided with MMP-mediated neoepitope expression and in vivo imaging of activated MMPs. Expression of S100A8 and S100A9 in IL-1Ra -/- mice strongly correlates with synovial inflammation, bone erosion, and cartilage damage, underlining the potential of S100A8/A9 as a systemic and local biomarker in seronegative arthritis not only for assessing inflammation but also for assessing severity of inflammatory joint destruction.
Haba, Danisia; Teslaru, Silvia; Ungureanu, Didona; Hodorog, Diana; Alecu, C; Benghiac, Ana Gabriela; Zetu, L; Ancuţa, Codrina; Ancuţa, E; Nemţoi, A; Iordache, Cristina
2011-01-01
Recent advances have suggested that periodontitis (PD), the paradigm of chronic infection in dental pathology, shares several pathogenic pathways with cardio- and cerebro-vascular disorders (CVD), based on inflammatory mediators including IL-1, IL-6, TNF-α. To assess pro-inflammatory biomarkers (C-reactive protein - CRP, IL-6) in serum and gingival crevicular fluid (GCF) in patients with PD and with transient ischemic attacks (TIAs). Prospective observational study on 143 patients classified as follows: 40 healthy subjects (group A), 50 PD patients (group B) and 53 PD-TIAs patients (group C). The predefined assessment protocol has included: current medical data, risk factors for CRP changes, periodontal status (clinical, orthopantomography, Schei Ruler technique), inflammatory biomarkers (CRP, IL-6). High serum CRP and IL-6 have been reported in both TIAs and PD, while statistically significant increase in GCF CRP only in PD-TIAs (p<0.05). Moreover, both generalized and localized chronic PD may be at higher risk for CVD, since CRP level was higher in these subgroups. However, no significant differences were reported in serum IL-6 between generalized and localized PD. A score function was demonstrated, including bone loss degree, bleeding index, collection site depth, serum and GCF IL-6 and CRP, tooth loss, allowing the classification of PD based on risk for developing TIAs. CRP and IL-6 are commonly involved in the pathways of PD and TIAs. Interdisciplinary assessment should be promoted in order to implement the stratification of PD patients according to the risk for TIAs as suggested by the proposed algorithm.
Chaly, Yury; Fu, Yu; Marinov, Anthony; Hostager, Bruce; Yan, Wei; Campfield, Brian; Kellum, John A.; Bushnell, Daniel; Wang, Yudong; Vockley, Jerry; Hirsch, Raphael
2014-01-01
Summary Follistatin-like protein 1 (FSTL-1) is overexpressed in a number of inflammatory conditions characterized by elevated IL-1β. Here we found that FSTL-1 serum concentration was increased three-fold in patients with bacterial sepsis and four-fold following administration of endotoxin (LPS) to mice. To test the contribution of FSTL-1 to IL-1β secretion, wild-type and FSTL-1-deficient mice were injected with LPS. While LPS induced IL-1β in the sera of wild-type mice, it was low or undetectable in FSTL-1-deficient mice. Monocytes/macrophages, a key source of IL-1β, do not normally express FSTL-1. However, FSTL-1 was found in tissue macrophages after injection of LPS into mouse footpads, demonstrating that macrophages are capable of taking up FSTL-1 at sites of inflammation. In vitro, intracellular FSTL-1 localized to the mitochondria. FSTL-1 activated the mitochondrial electron transport chain, increased the production of ATP (a key activator of the NLRP3 inflammasome) and IL-1β secretion. FSTL-1 also enhanced transcription of the NLRP3 and pro-caspase-1 genes, two components of the NLRP3 inflammasome. Adenovirus-mediated overexpression of FSTL-1 in mouse paws led to activation of the inflammasome complex and local secretion of IL-1β and IL-1β-related proinflammatory cytokines. These results suggest that FSTL-1 may act on the NLRP3 inflammasome to promote IL-1β secretion from monocytes/macrophages. PMID:24470197
Varadhan, Krishna K; Constantin-Teodosiu, Dumitru; Constantin, Despina; Greenhaff, Paul L; Lobo, Dileep N
2017-11-02
Postoperative hyperglycaemia is common in patients having major surgery and is associated with adverse outcomes. This study aimed to determine whether bacteraemia contributed to postoperative systemic inflammation, and whether increases in the expression of muscle mRNAs and proteins reflecting increased muscle inflammation, atrophy and impaired carbohydrate oxidation were evident at the time of surgery, and both local and distant to the site of trauma, and could be associated with impaired glucoregulation. Fifteen adult patients without diabetes undergoing major abdominal surgery participated in this observational study set in a university teaching hospital. Arterialised-venous blood samples and muscle biopsies were obtained before and after major elective abdominal surgery, from sites local (rectus abdominis - RA) and remote to the site of surgery (vastus lateralis - VL). The main outcome measures included blood glucose concentrations, gut permeability and changes in expression of muscle mRNAs and proteins linked to inflammation and glucose regulation. Immediately postoperatively, RA demonstrated markedly increased mRNA expression levels of cathepsin-L (7.5-fold, P < 0.05), FOXO1 (10.5-fold, P < 0.05), MAFbx (11.5-fold, P < 0.01), PDK4 (7.8-fold, P < 0.05), TNF-α (16.5-fold, P < 0.05) and IL-6 (1058-fold, P < 0.001). A similar, albeit blunted, response was observed in VL. Surgery also increased expression of proteins linked to inflammation (IL-6; 6-fold, P < 0.01), protein degradation (MAFbx; 4.5-fold, P < 0.5), and blunted carbohydrate oxidation (PDK4; 4-fold, P < 0.05) in RA but not VL. Increased systemic inflammation (TNF-α, P < 0.05; IL-6, P < 0.001), and impaired postoperative glucose tolerance (P < 0.001), but not bacteraemia (although gut permeability was increased significantly, P < 0.05) or increased plasma cortisol, were noted 48 h postoperatively. A systemic postoperative proinflammatory response was accompanied by muscle inflammation and metabolic dysregulation both local and remote to the site of surgery, and was not accompanied by bacteraemia. Registered at http://clinicaltrials.gov (NCT01134809). Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Aguiar, Marco Antonio Nasser; Wanderley, Carlos Wagner S; Nobre, Lívia Maria Soares; Alencar, Mateus Rolim Mendes; Saldanha, Maria do Perpétuo Socorro; Souza, Alceu Machado; Wong, Deysi Viviana Tenazoa; Barros, Paulo Goberlânio; Almeida, Paulo Roberto Carvalho; Lima-Júnior, Roberto Cesar Pereira; Ribeiro, Ronaldo Albuquerque
2018-04-01
Inflammatory breast cancer (IBC) is the most aggressive form of locally advanced breast cancer. The signs of inflammation such as hyperemia and hyperthermia might suggest the possible participation of inflammatory mediators. This study investigates stromal and tumor expression of nuclear factor-kappa B (NF-κB) and interleukin-18 (IL-18) in samples obtained from IBC and noninflammatory locally advanced breast cancer (LABC) and the influence of these markers on patients' prognosis. Demographic data, tumor molecular characteristics and overall survival in both groups were also assessed. Furthermore, in this study, we evaluated the expression of IL-18 and p50 nuclear fraction of NF-κB by immunohistochemistry in specimens from IBC and LABC (T4b). We observed that 24.6% of women were diagnosed with IBC up to age 40. In addition, the patients with IBC showed a lower overall survival when compared to LABC. In regard to molecular markers, ER + , C-erbB2 - or triple negative IBC patients showed a significantly reduced overall survival. In addition, a higher IL-18 immunostaining in stroma of IBC and LABC was observed in comparison with tumor cells, but stromal immunoexpression was similar between IBC and LABC. Besides, IL-18 positivity seemed be related with a better clinical response to neoadjuvant chemotherapy. However, NF-κB expression was identical in both groups. The IL-18 is present in tumor stroma of IBC and LABC and seems to be associated with the complete response to neoadjuvant chemotherapy. © 2017 John Wiley & Sons Australia, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burkhardt E.; Adham, I.M.; Brosig, B.
1994-03-01
Leydig insulin-like protein (LEY I-L) is a member of the insulin-like hormone superfamily. The LEY I-L gene (designated INSL3) is expressed exclusively in prenatal and postnatal Leydig cells. The authors report here the cloning and nucleotide sequence of porcine and human LEY I-L genes including the 5[prime] regions. Both genes consist of two exons and one intron. The organization of the LEY I-L gene is similar to that of insulin and relaxin. The transcription start site in the porcine and human LEY I-L gene is localized 13 and 14 bp upstream of the translation start site, respectively. Alignment of themore » 5[prime] flanking regions of both genes reveals that the first 107 nucleotides upstream of the transcription start site exhibit an overall sequence similarity of 80%. This conserved region contains a consensus TATAA box, a CAAT-like element (GAAT), and a consensus SP1 sequence (GGGCGG) at equivalent positions in both genes and therefore may play a role in regulation of expression of the LEY I-L gene. The porcine and human genome contains a single copy of the LEY I-L gene. By in situ hybridization, the human gene was assigned to bands p13.2-p12 of the short arm of chromosome 19. 25 refs., 6 figs.« less
Wang, Li-Qin; Yan, Xiao-Ting; Yan, Chun-Fang; Zhang, Xin-Wen; Hui, Ling-Yun; Xue, Mingzhan; Yu, Xue-Wen
2016-01-01
Effects of vitamin D deficiency in pregnancy have been associated with some adverse pregnancy outcomes. The 25-hydroxyvitamin D3-1α-hydroxylase (CYP27B1) is integral to the vitamin D metabolic pathway. The enzyme catalyzes localized conversion of pro-hormone 25-hydroxyvitamin D3 to active 1,25-dihydroxyvitamin D3. Our aim was to investigate the expression of CYP27B1 at the fetal-maternal interface in the first trimester pregnancy and to determine whether CYP27B1 was associated with recurrent miscarriage (RM). Expressions of CYP27B1 mRNA and protein in villi and decidua from 20 women undergoing primary miscarriage, 20 women with RM and 20 women with normal pregnancy were evaluated by western blot, and quantitative real-time PCR. The co-localization of CYP27B1 and certain cytokines including IL-10, IFN-γ, TNF-α, and IL-2 expression were examined using immunohistochemistry and confocal microscopy. Women with RM had a significantly lower expression of CYP27B1 mRNA and protein in villous and decidual tissues compared with the normal pregnant women (P = 0.000 in villus, P = 0.002 in decidua for mRNA; P = 0.036 in villus, P = 0.007 in decidua for protein.). Compared with the normal pregnancy, immunostaining for CYP27B1 was significantly decreased in villous trophoblasts and decidual glandular epithelial cells in RM women. No significant differences in the localization of CYP27B1, IL-10, IFN-γ, TNF-α, and IL-2 expression were identified between the normal pregnant and RM women. Women with RM have a lower level of CYP27B1 expression in chorionic villi and decidua compared with normal pregnant women, suggesting that reduced CYP27B1 expression may be associated with RM. The consistent localization of CYP27B1 and IL-10, IFN-γ, TNF-α, and IL-2 expression in villous and decidual tissues suggests the importance of the local production of 1,25(OH)2D3 at the fetal-maternal interface to regulate cytokine responses.
Liang, Shuwei; Chen, Zhuojia; Jiang, Guanmin; Zhou, Yan; Liu, Qiao; Su, Qiao; Wei, Weidong; Du, Jun; Wang, Hongsheng
2017-02-01
Triple-negative breast cancer (TNBC) is characterized by high vascularity and frequent metastasis. Here, we found that activation of G protein-coupled estrogen receptor (GPER) by its specific agonist G-1 can significantly inhibit interleukin 6 (IL-6) and vascular endothelial growth factor A (VEGF-A). TNBC tissue microarrays from 100 TNBC patients revealed GPER is negatively associated with IL-6 levels and higher grade and stage. Activation of GPER or anti-IL-6 antibody can inhibit both in vitro tube formation of human umbilical vein endothelial cells (HUVECs) and migration of TNBC cells. While recombinant IL-6 supplementary can significantly reverse the inhibitory effects of G-1, suggesting the essential role of IL-6 in G-1 induced suppression of angiogenesis and invasiveness of TNBC cells. G-1 treatment decreased the phosphorylation, nuclear localization, transcriptional activities of NF-κB and suppressed its binding with IL-6 promoter. BAY11-7028, the inhibitor of NF-κB, can mimic the effect of G-1 to suppression of IL-6 and VEGF-A. While over expression of p65 can attenuate the inhibitory effects of G-1 on IL-6 and VEGF expression. The suppression of IL-6 by G-1 can further inhibit HIF-1α and STAT3 signals in TNBC cells by inhibition their expression, phosphorylation and/or nuclear localization. Moreover, G-1 also inhibited the in vivo NF-κB/IL-6 signals and angiogenesis and metastasis of MDA-MB-231 xenograft tumors. In conclusion, our study demonstrated that activation of GPER can suppress migration and angiogenesis of TNBC via inhibition of NF-κB/IL-6 signals, therefore it maybe act as an important target for TNBC treatment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Montalvany-Antonucci, C C; Zicker, M C; Macari, S; Pereira, T S F; Diniz, I M A; Andrade, I; Ferreira, A V M; Silva, T A
2018-02-01
The impact of high-refined carbohydrate (HC) diet on fat accumulation, adipokines secretion and systemic inflammation is well described. However, it remains unclear whether these processes affect bone remodeling. To investigate the effects of HC diet in the alveolar bone and femur parameters. BalbC mice were fed with conventional chow or HC diet for 12 weeks. After experimental time maxillae, femur, blood and white adipose tissue samples were collected. The animals feed with HC diet exhibited considerable increase of adiposity index and adipose tissue levels of TNF-α, IL-6, IL-10, IL-1β, TGF-β and leptin. Microtomography analysis of maxillary bone revealed horizontal alveolar bone loss and disruption of trabecular bone in mice feed with HC diet. These deleterious effects were correlated with a disturbance in bone cells and an augmented expression of Rankl/Opg ratio. Consistently, similar effects were observed in femurs, which also exhibited a reduction in bone maximum load and stiffness. Our data indicates that HC diet consumption disrupts bone remodeling process, favoring bone loss. Underlying mechanisms relies on fat tissue accumulation and also in systemic and local inflammation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Structural analysis of zwitterionic liquids vs. homologous ionic liquids
NASA Astrophysics Data System (ADS)
Wu, Boning; Kuroda, Kosuke; Takahashi, Kenji; Castner, Edward W.
2018-05-01
Zwitterionic liquids (Zw-ILs) have been developed that are homologous to monovalent ionic liquids (ILs) and show great promise for controlled dissolution of cellulosic biomass. Using both high energy X-ray scattering and atomistic molecular simulations, this article compares the bulk liquid structural properties for novel Zw-ILs with their homologous ILs. It is shown that the significant localization of the charges on Zw-ILs leads to charge ordering similar to that observed for conventional ionic liquids with monovalent anions and cations. A low-intensity first sharp diffraction peak in the liquid structure factor S(q) is observed for both the Zw-IL and the IL. This is unexpected since both the Zw-IL and IL have a 2-(2-methoxyethoxy)ethyl (diether) functional group on the cationic imidazolium ring and ether functional groups are known to suppress this peak. Detailed analyses show that this intermediate range order in the liquid structure arises for slightly different reasons in the Zw-IL vs. the IL. For the Zw-IL, the ether tails in the liquid are shown to aggregate into nanoscale domains.
Madej-Michniewicz, Anna; Budkowska, Marta; Sałata, Daria; Dołęgowska, Barbara; Starzyńska, Teresa; Błogowski, Wojciech
2015-10-21
Abnormal interactions between cytokines may be an overlooked mechanism linking the development of different types of gastric neoplasms. In this study a comprehensive analysis of the systemic levels of interleukins (IL-1,IL-6, IL-8,IL-10 and IL-12) was performed in 75 patients with different gastric neoplasms (cancer, gastrointestinal stromal tumors, neuroendocrine neoplasms, lymphomas) and 40 healthy volunteers. Patients with gastric cancer (GC) have significantly higher IL-6 levels, and lower IL-8 and IL-10 concentrations, in comparison to controls and patients with other gastric neoplasms. Analogous results were observed in terms of IL-6/IL-8 and IL-6/IL-10 ratios, whose values were also higher in GC patients. In GC patients no associations were detected between the systemic levels/values of interleukins (ratios) and TNM staging. IL-6, IL-10, IL-6/IL-8 and IL-6/IL-10 ratios appeared to hold diagnostic potential in confirming/excluding the presence of GC. Their sensitivity/specificity in GC detection/exclusion was approximately 54-72%. In conclusion, disturbed systemic biochemical balance in multiple interleukins exists at the earliest stages of and appears to be specific to GC. The interleukin ratios proposed here seem to be more promising indicators of GC in humans than direct systemic levels of interleukins, and probably possess the potential to be applied as a supporting factor for techniques routinely used.
Madej-Michniewicz, Anna; Budkowska, Marta; Sałata, Daria; Dołęgowska, Barbara; Starzyńska, Teresa; Błogowski, Wojciech
2015-01-01
Abnormal interactions between cytokines may be an overlooked mechanism linking the development of different types of gastric neoplasms. In this study a comprehensive analysis of the systemic levels of interleukins (IL-1,IL-6, IL-8,IL-10 and IL-12) was performed in 75 patients with different gastric neoplasms (cancer, gastrointestinal stromal tumors, neuroendocrine neoplasms, lymphomas) and 40 healthy volunteers. Patients with gastric cancer (GC) have significantly higher IL-6 levels, and lower IL-8 and IL-10 concentrations, in comparison to controls and patients with other gastric neoplasms. Analogous results were observed in terms of IL-6/IL-8 and IL-6/IL-10 ratios, whose values were also higher in GC patients. In GC patients no associations were detected between the systemic levels/values of interleukins (ratios) and TNM staging. IL-6, IL-10, IL-6/IL-8 and IL-6/IL-10 ratios appeared to hold diagnostic potential in confirming/excluding the presence of GC. Their sensitivity/specificity in GC detection/exclusion was approximately 54–72%. In conclusion, disturbed systemic biochemical balance in multiple interleukins exists at the earliest stages of and appears to be specific to GC. The interleukin ratios proposed here seem to be more promising indicators of GC in humans than direct systemic levels of interleukins, and probably possess the potential to be applied as a supporting factor for techniques routinely used. PMID:26486258
Jain, Shardool; Tran, Thanh-Huyen; Amiji, Mansoor
2015-01-01
In this study, we have shown for the first time the effectiveness of a non-viral gene transfection strategy to re-polarize macrophages from M1 to M2 functional sub-type for the treatment of rheumatoid arthritis (RA). An anti-inflammatory (IL-10) cytokine encoding plasmid DNA was successfully encapsulated into non-condensing alginate based nanoparticles and the surface of the nano-carriers was modified with tuftsin peptide to achieve active macrophage targeting. Enhanced localization of tuftsin-modified alginate nanoparticles was observed in the inflamed paws of arthritic rats upon intraperitoneal administration. Importantly, targeted nanoparticle treatment was successful in reprogramming macrophage phenotype balance as ~66% of total synovial macrophages from arthritic rats treated with the IL-10 plasmid DNA loaded tuftsin/alginate nanoparticles were in the M2 state compared to ~9% of macrophages in the M2 state from untreated arthritic rats. Treatment significantly reduced systemic and joint tissue pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) expression and prevented the progression of inflammation and joint damage as revealed by magnetic resonance imaging and histology. Treatment enabled animals to retain their mobility throughout the course of study, whereas untreated animals suffered from impaired mobility. Overall, this study demonstrates that targeted alginate nanoparticles loaded with IL-10 plasmid DNA can efficiently re-polarize macrophages from an M1 to an M2 state, offering a novel treatment paradigm for treatment of chronic inflammatory diseases. PMID:26004232
Cruz-Rivera, Mayra; Diaz-Gandarilla, Jose Alfredo; Flores-Torres, Marco Antonio; Avila, Guillermina; Perfiliev, Maria; Salazar, Ana Maria; Arriaga-Pizano, Lourdes; Ostrosky-Wegman, Patricia; Flisser, Ana
2017-01-01
Intestinal helminth antigens are inducers of type 2 responses and can elicit regulatory immune responses, resulting in dampened inflammation. Several platyhelminth proteins with anti-inflammatory activity have been reported. We have identified, cloned and expressed the Taenia solium calreticulin (rTsCRT) and shown that it predominantly induces a type 2 response characterized by IgG1, IL-4 and IL-5 production in mice. Here, we report the rTsCRT anti-inflammatory activity in a well-known experimental colitis murine model. Mice were orally immunized with purified rTsCRT and colitis was induced with trinitrobenzene sulfonic acid (TNBS). Clinical signs of disease, macroscopic and microscopic tissue inflammation, cytokine production and micronuclei formation, as a marker of genotoxicity, were measured in order to assess the effect of rTsCRT immunization on experimentally induced colitis. rTsCRT administration prior to TNBS instillation significantly reduced the inflammatory parameters, including the acute phase cytokines TNF-α, IL-1β and IL-6. Dampened inflammation was associated with increased local expression of IL-13 and systemic IL-10 and TGF-β production. Genotoxic damage produced by the inflammatory response was also precluded. Our results show that oral treatment with rTsCRT prevents excessive TNBS-induced inflammation in mice and suggest that rTsCRT has immunomodulatory properties associated with the expression of type 2 and regulatory cytokines commonly observed in other helminths. PMID:29036211
Rigoni, Vera Lucia Silva; Kwasniewski, Fabio H; Vieira, Rodolfo Paula; Linhares, Ingrid Sestrem; da Silva, Joelmir Lucena Veiga; Nogueira-Pedro, Amanda; Zamuner, Stella Regina
2016-09-15
Tityus serrulatus is the scorpion specie responsible for the majority of scorpion sting accidents in Brazil. Symptoms of envenomation by Tityus serrulatus range from local pain to severe systemic reactions such as cardiac dysfunction and pulmonary edema. Thus, this study has evaluated the participation of bronchial epithelial cells in the pulmonary effects of Tityus serrulatus scorpion venom (Tsv). Human bronchial epithelial cell line BEAS-2B were utilized as a model target and were incubated with Tsv (10 or 50 μg/mL) for 1, 3, 6 and 24 h. Effects on cellular response of venom-induce cytotoxicity were examined including cell viability, cell integrity, cell morphology, apoptosis/necrosis as well as cell activation through the release of pro-inflammatory cytokines IL-1β, IL-6 and IL-8. Tsv caused a decrease in cell viability at 10 and 50 μg/mL, which was confirmed by lactate dehydrogenase (LDH) measurement. Flow cytometry analyses revealed necrosis as the main cell death pathway caused by Tsv. Furthermore, Tsv induced the release of IL-1β, IL-6 and IL-8. Altogether, these results demonstrate that Tsv induces cytotoxic effects on bronchial epithelial cells, involving necrosis and release of pro-inflammatory cytokines, suggesting that bronchial epithelial cells may play a role in the pulmonary injury caused by Tsv. Copyright © 2016 Elsevier Ltd. All rights reserved.
Warmington, Kelly S.; Boring, Landin; Ruth, Jeffrey H.; Sonstein, Joanne; Hogaboam, Cory M.; Curtis, Jeffrey L.; Kunkel, Steven L.; Charo, Israel R.; Chensue, Stephen W.
1999-01-01
Monocyte chemotactic protein (MCP)-1 is postulated to play a role in cellular recruitment during inflammatory reactions. C-C chemokine receptor 2 (CCR2) is considered the major G-protein coupled receptor for MCP-1/JE. We reported that mice with knockout of the CCR2 gene display partially impaired type-1 granuloma formation. The present study similarly examined the effect of CCR2 deficiency on synchronously developing type-2 (Th2) cytokine-mediated lung granulomas elicited by embolization of beads coated with Ags of Schistosoma mansoni eggs. Systemically, blood monocytes were reduced by about half throughout the 8-day study period. At the local level, granuloma size and macrophage content were impaired during the early growth phase (days 1 to 2). By day 4, granuloma sizes were similar to controls. In granulomatous lungs, CCR2 knockout increased mRNA for CCR2 agonists, MCP-1, MCP-3, and MCP-5, but reduced IL-4 and IFNγ mRNA. The latter was possibly related to decreased CD4+ T cell recruitment. Regionally, draining lymph nodes showed panlymphoid hyperplasia with impaired production of IFNγ, IL-2, and IL-4, but not IL-5, IL-10, or IL-13. Analysis of procollagen gene expression indicated transient impairment of procollagen III transcripts on day 4 of granuloma formation. These findings indicate that agonists of CCR2 contribute to multiple facets of type-2 hypersensitivity granulomatous inflammation. PMID:10329593
Liukkonen, Joonas; Gürsoy, Ulvi K; Pussinen, Pirkko J; Suominen, Anna L; Könönen, Eija
2016-12-01
Interleukin (IL)-23-induced T helper (Th) 17 pathway is involved in the pathogenesis of periodontal disease. This study's aim is to determine levels of IL-1β, IL-17A, IL-23, and lipopolysaccharide (LPS) in saliva, and to examine whether their salivary concentrations are associated with periodontal health status. Saliva samples originated from 220 participants; 76 had generalized periodontitis (GP) and 65 had localized periodontitis (LP), whereas 79 without periodontitis were used as controls. Cytokine analyses were performed by a flow cytometry-based technique and LPS analyses from pellet by commercially optimized assay coupled with chromogenic substrate. Salivary concentrations of IL-17A and IL-23 were elevated significantly in patients with LP compared with controls and patients with GP. Salivary IL-1β concentrations were significantly higher in patients with GP than in patients with LP, whereas no difference was found between LP and control groups. Significant correlation was found between concentrations of IL-17A and IL-23 or IL-1β. LPS concentrations did not have significant associations with any of the tested ILs. Elevated salivary IL-1β concentrations are related to GP, whereas distinct elevation and reduction profiles of IL-17A and IL-23 are detected in saliva of patients with LP and GP.
Sun, Li; Zhang, Xiaoxu; Dai, Fang; Shen, Jijia; Ren, Cuiping; Zuo, Chunlin; Zhang, Qiu
2016-08-01
To explore the relationship between IL-1β expression and two common autoimmune thyroid diseases: Hashimoto thyroiditis (HT) and Graves' disease (GD). qRT-PCR, Quantiglo ELISA, and flow cytometry were used to evaluate the expression levels of IL-1β in serum, peripheral blood mononuclear cells (PBMCs), and thyroid tissue samples from patients with HT or GD. Local infiltration of monocytes was assessed by immunohistochemical study of patients' thyroid tissue samples. Although no significant differences in IL-1β levels were found between samples of serum from patients with HT or GD and normal controls, we found that IL-1β mRNA and protein levels in PBMCs of HT patients were significantly higher than those of patients with GD, which were in turn higher than the level in normal controls. In addition, IL-1β mRNA was also increased in thyroid gland tissue from patients with HT compared to those with GD, and this was accompanied by increased local infiltration of monocytes into thyroid tissues. Correlation analysis of the clinical samples validated the association of high IL-1β levels with the pathogenesis of HT. Our study suggests that IL-1β may be an active etiologic factor in the pathogenesis of HT and thus present a new target for novel diagnostics and treatment.
Ferenczi, Szilamér; Szegi, Krisztián; Winkler, Zsuzsanna; Barna, Teréz; Kovács, Krisztina J.
2016-01-01
Inflammatory bowel disease shows increasing prevalence, however its pathomechanism and treatment is not fully resolved. Prebiotics are non-digestible carbohydrates which might provide an alternative to treat inflammatory conditions in the gut due to their positive effects either on the microbiome or through their direct effect on macrophages and mucosa. To test the protective effects of an oligomannan prebiotic, yeast cell wall mannooligosaccharide (MOS) was administered in dextran-sulphate-sodium (DSS)-induced mouse model of acute colitis. MOS reduced DSS-induced clinical- (weight loss, diarrhea) and histological scores (mucosal damage) as well as sickness-related anxiety. DSS treatment resulted in changes in colon microbiome with selective increase of Coliform bacteria. MOS administration attenuated colitis-related increase of Coliforms, normalized colonic muc2 expression and attenuated local expression of proinflammatory cytokines IL-1a, IL1b, IL6, KC, G-CSF and MCP1 as well as toll-like receptor TLR4 and NLRP3 inflammasome. Some of the protective effects of MOS were likely be mediated directly through local macrophages because MOS dose-dependently inhibited IL-1b and G-CSF induction following in vitro DSS challenge and IL1a, IL1b, G-SCF-, and IL6 increases after LPS treatment in mouse macrophage cell line RAW264.7. These results highlight oligomannan prebiotics as therapeutic functional food for testing in clinical trials. PMID:27658624
Interleukin-29 induces epithelial production of CXCR3A ligands and T-cell infiltration.
Witte, Ellen; Kokolakis, Georgios; Witte, Katrin; Warszawska, Katarzyna; Friedrich, Markus; Christou, Demetrios; Kirsch, Stefan; Sterry, Wolfram; Volk, Hans-Dieter; Sabat, Robert; Wolk, Kerstin
2016-04-01
Psoriasis is considered as a model for chronic immune-mediated disorders. Th17-cells are pivotal players in those diseases. Recently, we demonstrated that Th17-cells produce interleukin (IL)-29 and that IL-29 is highly present in psoriatic lesions. Whether IL-29, with its action on epithelial cells and melanocytes, contributes to psoriasis pathogenesis, was unknown so far. Analysis of IL-29-treated human keratinocytes revealed induction of the chemokines CXCL10, CXCL11, and, to a much lesser extent, CXCL9. Unlike these CXCR3A ligands, known to attract Th1-, CD8(+), NK-, and Th1/Th17 transient cells, no influence was found on chemokines attracting other immune cell populations or on molecules modulating the CXCR3A/CXCR3A ligand interaction. CXCR3A ligand expression was also induced by IL-29 in melanocytes and in epidermis models and explanted skin. Regarding other psoriasis-relevant cytokines, interferon-γ and, less potently, tumor necrosis factor-α and IL-1β shared and strengthened IL-29's capacity. Murine IL-29 counterpart injected into mouse skin provoked local CXCL10 and CXCL11 expression, T-cell infiltration, and, in consequence, skin swelling. The elevated IL-29 expression in psoriatic lesions was associated with upregulation of CXCR3A ligands compared to non-lesional skin of these patients and to the skin of healthy donors and atopic dermatitis patients, which lack IL-29 production. Importantly, neutralization of IL-29 reduced CXCR3A ligand levels in explant cultures of psoriatic lesions. Finally, elevated blood CXCL11 levels were found in psoriasis that might be useful for monitoring lesional activity of the IL-29 axis. In summary, the Th17-cytokine IL-29 induces specific chemokines and, in consequence, provokes skin infiltration of potentially pathogenic T-cells. IL-29 selectively induces CXCR3A-binding chemokines (CXCL9, CXCL10, CXCL11) in skin cells. Murine IL-29 counterpart induces skin T-cell infiltration and inflammation in mice. CXCR3A ligands are IL-29-dependently increased in lesional skin of psoriasis patients. CXCR3A ligand levels in psoriatic skin correlate with epidermal T-cell numbers. Increased blood CXCL11 levels in psoriasis may be a biomarker for local IL-29 action.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bae, Yunju; Lee, Soyoung; Kim, Sang-Hyun, E-mail: shkim72@knu.ac.kr
A great number of people are suffering from allergic inflammatory diseases such as asthma, atopic dermatitis, and sinusitis. Therefore discovery of drugs for the treatment of these diseases is an important subject in human health. Chrysin (5,7-dihydroxyflavone) is a natural flavonoid contained in propolis, blue passion flower, and fruits. Several studies reported that chrysin has beneficial effects including anti-tumor and anti-oxidant activities. The aim of the present study was to elucidate whether chrysin modulates the allergic inflammatory reaction and to study its possible mechanisms of action using mast cell-based in vitro and in vivo models. Chrysin inhibited immediate-type systemic hypersensitivitymore » and serum histamine release. Chrysin attenuated immunoglobulin E-mediated local anaphylaxis. These inhibitory effects of chrysin on the systemic and local allergic reaction were more potent than cromolyn, a known anti-allergic drug. Chrysin reduced histamine release from mast cells. The inhibitory effect of chrysin on the histamine release was mediated by the modulation of intracellular calcium. In addition, chrysin decreased gene expression of pro-inflammatory cytokines such as, tumor necrosis factor-{alpha}, IL (interleukin)-1{beta}, IL-4, and IL-6 in mast cells. The inhibitory effect of chrysin on the pro-inflammatory cytokine was nuclear factor-{kappa}B and caspase-1 dependent. Our findings provide evidence that chrysin inhibits mast cell-derived allergic inflammatory reactions by blocking histamine release and pro-inflammatory cytokine expression, and suggest the mechanisms of action. Furthermore, in vivo and in vitro anti-allergic inflammatory effect of chrysin suggests a possible therapeutic application of this agent in allergic inflammatory diseases. - Research Highlights: > Discovery of drugs for the allergic inflammation is important in human health. > Chrysin is a natural flavonoid contained in propolis, blue passion flower, and fruits. > Chrysin inhibited systemic and local hypersensitivity, and serum histamine release. > Chrysin decreased inflammatory cytokines through the inhibition of NF-{kappa}B and caspase-1. > Chrysin might be a candidate for the treatment of allergic inflammatory diseases.« less
Bitencourt, Mariana Angélica Oliveira; Lima, Maira Conceição Jerônimo de Souza; Torres-Rêgo, Manoela; da Silva-Júnior, Arnóbio Antônio; Tambourgi, Denise Vilarinho; Zucolotto, Silvana Maria
2014-01-01
Scorpion bite represents a significant and serious public health problem in certain regions of Brazil, as well as in other parts of the world. Inflammatory mediators are thought to be involved in the systemic and local immune response induced by Tityus serrulatus scorpion envenomation. The aim of this study was to evaluate the effect of extracts of Mimosa tenuiflora on model envenomation. In mice, the envenomation model is induced by Tityus serrulatus venom. Previous treatment of mice with fractions from M. tenuiflora was able to suppress the cell migration to the peritoneal cavity. The treatment of mice with M. tenuiflora extracts also decreased the levels of IL-6, IL-12, and IL-1β. We concluded that the administration of the extract and fractions resulted in a reduction in cell migration and showed a reduction in the level of proinflammatory cytokines. This study demonstrates, for the first time, the anti-inflammatory effect of aqueous extract from the Mimosa tenuiflora plant on T. serrulatus venom. PMID:25013776
Bitencourt, Mariana Angélica Oliveira; de Souza Lima, Maira Conceição Jerônimo; Torres-Rêgo, Manoela; Fernandes, Júlia Morais; da Silva-Júnior, Arnóbio Antônio; Tambourgi, Denise Vilarinho; Zucolotto, Silvana Maria; de Freitas Fernandes-Pedrosa, Matheus
2014-01-01
Scorpion bite represents a significant and serious public health problem in certain regions of Brazil, as well as in other parts of the world. Inflammatory mediators are thought to be involved in the systemic and local immune response induced by Tityus serrulatus scorpion envenomation. The aim of this study was to evaluate the effect of extracts of Mimosa tenuiflora on model envenomation. In mice, the envenomation model is induced by Tityus serrulatus venom. Previous treatment of mice with fractions from M. tenuiflora was able to suppress the cell migration to the peritoneal cavity. The treatment of mice with M. tenuiflora extracts also decreased the levels of IL-6, IL-12, and IL-1β. We concluded that the administration of the extract and fractions resulted in a reduction in cell migration and showed a reduction in the level of proinflammatory cytokines. This study demonstrates, for the first time, the anti-inflammatory effect of aqueous extract from the Mimosa tenuiflora plant on T. serrulatus venom.
Inhibition of IL-6 Signaling Pathway by Curcumin in Uterine Decidual Cells
Devi, Y. Sangeeta; DeVine, Majesta; DeKuiper, Justin; Ferguson, Susan; Fazleabas, Asgerally T.
2015-01-01
IL-6 is a multifunctional pro-inflammatory cytokine and has been implicated in many gestational disorders including preterm birth. Currently, there are no appropriate therapeutic interventions available to circumvent inflammatory-mediated gestational disorders. Therefore, the goal of this study was to identify a safe and effective pharmacological compound to counterbalance inflammatory responses in the uterus. Curcumin, a naturally-occuring polyphenolic compound, has been widely used in alternative medicine to treat inflammatory diseases. However, the anti-inflammatory effect of curcumin has not been explored in uterine decidual cells, a major source of IL-6. Therefore, we examined the effect of curcumin on IL-6 expression using two types of uterine decidual cells 1) HuF cells, primary human fibroblast cells obtained from the decidua parietalis; 2) UIII cells, a rodent non-transformed decidual cell line. Curcumin treatment completely abrogated the expression of IL-1β-induced IL-6 in these cells. Curcumin also strongly inhibited the expression of gp130, a critical molecule in IL-6 signaling, whereas expression of IL-6R and sIL-6R was not affected. Curcumin also inhibited phosphorylation and nuclear localization of STAT3, a well-known downstream mediator of IL-6 signaling. Furthermore, curcumin attenuated IL-1β-induced IL-6 promoter reporter activity suggesting transcriptional regulation. To further understand whether NF-ҡB is involved in this inhibition, we examined the effect of curcumin on the expression of p50 and p65 subunits of NF-ҡB in decidual cells. Expression of IL-1β-induced p50 mRNA was repressed by curcumin while p65 mRNA was not affected. However, curcumin treatment dramatically inhibited both p50 and p65 protein levels and prevented its nuclear localization. This effect is at least partly mediated through the deactivation of IKK, since IL-1β-induced IKKα/β phosphorylation is decreased upon curcumin treatment. Our results not only revealed molecular mechanisms underlying curcumin action in uterine decidual cells but also suggest that this compound may have therapeutic potential for the prevention of inflammation-mediated preterm birth and other gestational disorders. PMID:25961579
The Role of Th17 in Neuroimmune Disorders: Target for CAM Therapy. Part I.
Vojdani, Aristo; Lambert, Jama
2011-01-01
CD4(+) effector cells, based on cytokine production, nuclear receptors and signaling pathways, have been categorized into four subsets. T-helper-1 cells produce IFN-γ, TNF-β, lymphotoxin and IL-10; T-helper-2 cells produce IL-4, IL-5, IL-10, IL-13, IL-21 and IL-31; T-helper-3, or regulatory T-cells, produce IL-10, TGF-β and IL-35; and the recently discovered T-helper-17 cell produces IL-17, IL-17A, IL-17F, IL-21, IL-26 and CCL20. By producing IL-17 and other signaling molecules, Th17 contributes to the pathogenesis of multiple autoimmune diseases including allergic inflammation, rheumatoid arthritis, autoimmune gastritis, inflammatory bowel disease, psoriasis and multiple sclerosis. In this article, we review the differential regulation of inflammation in different tissues with a major emphasis on enhancement of neuroinflammation by local production of IL-17 in the brain. By understanding the role of pathogenic factors in the induction of autoimmune diseases by Th17 cells, CAM practitioners will be able to design CAM therapies targeting Th17 and associated cytokine activities and signaling pathways to repair the intestinal and blood-brain barriers for their patients with autoimmunities, in particular, those with neuroinflammation and neurodegeneration.
Kim, Dong-Kyu; Jin, Hong Ryul; Eun, Kyoung Mi; Mutusamy, Somasundran; Cho, Seong H; Oh, Sohee; Kim, Dae Woo
2015-01-01
Non-eosinophilic nasal polyps (NPs) show less inflammatory changes and are less commonly associated with lower airway inflammatory disorders such as asthma, compared with eosinophilic NPs. However, the development of non-eosinophilic NPs which is a predominant subtype in Asian population still remains unclear. A total of 81 patients (45 with non-eosinophilic NPs and 36 with eosinophilic NPs) were enrolled. Clinical information and computed tomography (CT), endoscopic, and histological findings were investigated. Tissue samples were analyzed for total IgE levels and for mRNA expression levels of interleukin (IL)-4, IL-5, IL-13, interferon (IFN)-γ, tumor necrosis factor (TNF)-α, IL-17A, IL-22, IL-23p19, transforming growth factor (TGF)-β1, TGF-β2, TGF-β3, and periostin. Immunostaining assessment of Ki-67 as a proliferation marker was performed. We found that epithelial in-growing patterns such as pseudocysts were more frequently observed in histological and endoscopic evaluations of non-eosinophilic NPs, which was linked to increase epithelial staining of Ki-67, a proliferating marker. Eosinophilic NPs were characterized by high infiltration of inflammatory cells, compared with non-eosinophilic NPs. To investigate the developmental course of each subtype, CT was analyzed according to CT scores and subtypes. Non-eosinophilic NPs showed more localized pattern and maxillary sinus involvement, but lesser olfactory involvement in early stage whereas eosinophilic NPs were characterized by diffuse ethmoidal and olfactory involvement. In addition, high ethmoidal/maxillary (E/M) CT scores, indicating ethmoidal dominant involvement, were one of surrogate markers for eosinophilic NP. E/M CT scores was positively correlated with levels of TH2 inflammatory markers, including IL-4, IL-5, periostin mRNA expression and total IgE levels in NPs, whereas levels of the TH1 cytokine, IFN- γ were inversely correlated. Moreover, if the combinatorial algorithm meet the three of the four markers, including IL-5 (<2.379), periostin (<3.889), IFN-γ (>0.316), and E/M ratio (<2.167), non-eosinophilic CRSwNP are diagnosed with a sensitivity of 84.4% and a specificity of 84.8%. Histologic, immunologic and clinical data suggest that non-eosinophilic NPs showed enhanced epithelial alteration and more localized maxillary involvement. Combination of cutoff value on IL-5, periostin, IFN-γ, and E/M scores may be one of surrogate markers for non-eosinophil NP subtype.
Hallab, Nadim J; Bao, Qi-Bin; Brown, Tim
2013-12-01
To understand the relative histopathological effects of PEEK particulate debris when applied within the epidural versus the intervertebral disc space. We hypothesized that due to the avascular nature of the intervertebral disc acting as a barrier to immune cells, the intradiscal response would be less than the epidural response. The inflammatory effects of clinically relevant doses (3 mg/5-kg rabbit) and sizes (1.15 µm diameter) of PEEK implant debris were assed when placed dry on epidural and intradiscal tissues in an in vivo rabbit model. The size of the particulate was based on wear particulate analysis of wear debris generated from simulator wear testing of PEEK spinal disc arthroplasty devices. Local and systemic gross histology was evaluated at the 3- and 6-month time points. Quantitative immunohistochemistry of local tissues was used to quantify the common inflammatory mediators TNF-α, IL-1β, and IL-6. Both treatments did not alter the normal appearance of the dura mater and vascular structures; however, limited epidural fibrosis was observed. Epidural challenge of PEEK particles resulted in a significant (30 %) increase (p < 0.007) in TNF-α and IL-1β at both 3 and 6 months compared to that of controls, and IL-6 at 6 months (p < 0.0001). Intradiscal challenge of PEEK particles resulted in a significant increase in IL-1β, IL-6 and TNF-α at 6-months post-challenge (p ≤ 0.03). However, overall there were only moderate increases in the relative amount of these cytokines when compared with surgical controls (10-20 %). In contrast, epidural challenge resulted in a 50-100 % increase. The results of this study are similar to past investigations of PEEK, whose results have not been shown to elicit an aggressive immune response. The degree to which these results will translate to the clinical environment remains to be established, but the pattern of subtle elevations in inflammatory cytokines indicated both a mild persistence of responses to PEEK debris, and that intradiscal implant debris will likely result in less inflammation than epidural implant debris.
Immunomodulatory Effects of Levofloxacin on Patients with Pneumonia in Assiut University Hospitals.
Badari, Mohamed S; Elgendy, Sherein G; Mohamed, Asmaa S; Hassan, Alaa T
2015-01-01
The immunomodulatory effects of antibiotics could influence the degree of systemic and local responses to infection, so investigation of their intrinsic influence on the host's inflammatory response appears to be essential. Fluoroquinolones are known to exert modulatory activity on immune responses to microbial infection. However the mechanism of this immunmodulation has not been well elucidated. The aim of the work, is to assess the immunomodulatory effects of a levofloxacin, through examining its effect on the concentrations of tumor necrosis factor α (TNF-α) and Interleukin - 10 (IL-10) in serum of pneumonic patients. After following local research ethics committee approval and informed consent. This study included 40 patients with different types of pneumonia, admitted to department of Chest Diseases, Faculty of Medicine, Assiut University Hospitals, Egypt. Also, 10 healthy volunteers served as randomized controls. Both patients and controls received levofloxacin (750 mg once daily for 10 days). Serum levels of TNF-α and IL-10 were measured in patients and control before and after levofloxacin administration (750 mg once daily for 10 days) using human TNF-α and IL-10 ELISA kits respectively. Levofloxacin caused a statistically significant decrease in the mean level of TNF-α in both patients (20.82 ± 1.31 pg/ml) (P < 0.009) and control group (17.12 ± 0.84 pg/ml) (P < 0.004). In contrast, there was statistically significant increase (P < 0.000) in the mean level of IL-1 0 in patients (61.75 ± 2.85 pg/ml) while statistically significant decrease (P < 0.005) in control group (28.57 ± 1.37 pg/ml). In conclusion, our study demonstrates that treatment with levofloxacin affects production of TNF-α as a pro-inflammatory cytokine and IL-10 as an anti-inflammatory cytokines which may provide additional benefits in treatment of respiratory tract infections that are independent of its antibacterial properties.
High-fat Diet-induced Inflammation Accelerates Prostate Cancer Growth via IL6 Signaling.
Hayashi, Takuji; Fujita, Kazutoshi; Nojima, Satoshi; Hayashi, Yujiro; Nakano, Kosuke; Ishizuya, Yu; Wang, Cong; Yamamoto, Yoshiyuki; Kinouchi, Toshiro; Matsuzaki, Kyosuke; Jingushi, Kentaro; Kato, Taigo; Kawashima, Atsunari; Nagahara, Akira; Ujike, Takeshi; Uemura, Motohide; Rodriguez Pena, Maria Del Carmen; Gordetsky, Jennifer B; Morii, Eiichi; Tsujikawa, Kazutake; Netto, George J; Nonomura, Norio
2018-05-18
High-fat diet (HFD) could induce prostate cancer progression. The aim of this study is to identify mechanisms of HFD-induced prostate cancer progression, focusing on inflammation. We administered HFD and celecoxib to autochthonous immunocompetent Pb-Cre+; Pten(fl/fl) model mice for prostate cancer. Tumor growth was evaluated by tumor weight and Ki67 stain, and local immune cells were assessed by flow cytometry at 22 weeks of age. Cytokines which correlated with tumor growth were identified, and the changes of tumor growth and local immune cells after inhibition of the cytokine signals were evaluated in the mice. Immunohistochemical analyses using prostatectomy specimens of obese patients were performed. HFD accelerated tumor growth, and increased the myeloid-derived suppressor cells (MDSCs) fraction and M2/M1 macrophage ratio in the model mice. Celecoxib suppressed tumor growth, and decreased both local MDSCs and M2/M1 macrophage ratio in HFD-fed mice. HFD-induced tumor growth was associated with IL6 secreted by prostatic macrophages, as were phosphorylated signal transducer and activator of transcription 3 (pSTAT3)-positive tumor cells. Anti-IL6 receptor antibody administration suppressed tumor growth, and decreased local MDSCs and pSTAT3-positive cell fractions in HFD-fed mice. The tumor-infiltrating CD11b-positive cell count was significantly higher in prostatectomy specimens of obese than those of non-obese prostate cancer patients. HFD increased MDSCs and accelerated prostate cancer tumor growth via IL6/pSTAT3 signaling in the mice. This mechanism could exist in obese prostate cancer patients. IL6-mediated inflammation could be a therapeutic target for prostate cancer. Copyright ©2018, American Association for Cancer Research.
Levy, Oren; Zhao, Weian; Mortensen, Luke J; Leblanc, Sarah; Tsang, Kyle; Fu, Moyu; Phillips, Joseph A; Sagar, Vinay; Anandakumaran, Priya; Ngai, Jessica; Cui, Cheryl H; Eimon, Peter; Angel, Matthew; Lin, Charles P; Yanik, Mehmet Fatih; Karp, Jeffrey M
2013-10-03
Mesenchymal stem cells (MSCs) are promising candidates for cell-based therapy to treat several diseases and are compelling to consider as vehicles for delivery of biological agents. However, MSCs appear to act through a seemingly limited "hit-and-run" mode to quickly exert their therapeutic impact, mediated by several mechanisms, including a potent immunomodulatory secretome. Furthermore, MSC immunomodulatory properties are highly variable and the secretome composition following infusion is uncertain. To determine whether a transiently controlled antiinflammatory MSC secretome could be achieved at target sites of inflammation, we harnessed mRNA transfection to generate MSCs that simultaneously express functional rolling machinery (P-selectin glycoprotein ligand-1 [PSGL-1] and Sialyl-Lewis(x) [SLeX]) to rapidly target inflamed tissues and that express the potent immunosuppressive cytokine interleukin-10 (IL-10), which is not inherently produced by MSCs. Indeed, triple-transfected PSGL-1/SLeX/IL-10 MSCs transiently increased levels of IL-10 in the inflamed ear and showed a superior antiinflammatory effect in vivo, significantly reducing local inflammation following systemic administration. This was dependent on rapid localization of MSCs to the inflamed site. Overall, this study demonstrates that despite the rapid clearance of MSCs in vivo, engineered MSCs can be harnessed via a "hit-and-run" action for the targeted delivery of potent immunomodulatory factors to treat distant sites of inflammation.
Cai, Jun; Deng, Yun; Yang, Junfeng; Zhou, Xinmin; Tan, Lina
2018-01-01
Reducing costs is a pragmatic method for promoting the widespread usage of indoor localization technology. Conventional indoor localization systems (ILSs) exploit relatively expensive wireless chips to measure received signal strength for positioning. Our work is based on a cheap and widely-used commercial off-the-shelf (COTS) wireless chip, i.e., the Nordic Semiconductor nRF24LE1, which has only several output power levels, and proposes a new power level based-ILS, called Plils. The localization procedure incorporates two phases: an offline training phase and an online localization phase. In the offline training phase, a self-organizing map (SOM) is utilized for dividing a target area into k subregions, wherein their grids in the same subregion have similar fingerprints. In the online localization phase, the support vector machine (SVM) and back propagation (BP) neural network methods are adopted to identify which subregion a tagged object is located in, and calculate its exact location, respectively. The reasonable value for k has been discussed as well. Our experiments show that Plils achieves 75 cm accuracy on average, and is robust to indoor obstacles. PMID:29329226
Li, Xiaolong; Yang, Yifu; Cai, Jun; Deng, Yun; Yang, Junfeng; Zhou, Xinmin; Tan, Lina
2018-01-12
Reducing costs is a pragmatic method for promoting the widespread usage of indoor localization technology. Conventional indoor localization systems (ILSs) exploit relatively expensive wireless chips to measure received signal strength for positioning. Our work is based on a cheap and widely-used commercial off-the-shelf (COTS) wireless chip, i.e., the Nordic Semiconductor nRF24LE1, which has only several output power levels, and proposes a new power level based-ILS, called Plils. The localization procedure incorporates two phases: an offline training phase and an online localization phase. In the offline training phase, a self-organizing map (SOM) is utilized for dividing a target area into k subregions, wherein their grids in the same subregion have similar fingerprints. In the online localization phase, the support vector machine (SVM) and back propagation (BP) neural network methods are adopted to identify which subregion a tagged object is located in, and calculate its exact location, respectively. The reasonable value for k has been discussed as well. Our experiments show that Plils achieves 75 cm accuracy on average, and is robust to indoor obstacles.
Hosaka, Koji; Rojas, Kelley; Fazal, Hanain Z; Schneider, Matheus B; Shores, Jorma; Federico, Vincent; McCord, Matthew; Lin, Li; Hoh, Brian
2017-01-01
Background and Purpose We have previously demonstrated that the local delivery of monocyte chemotactic protein-1 (MCP-1) via a MCP-1-releasing poly(lactic-co-glycolic acid) (PLGA) -coated coil promotes intra-aneurysmal tissue healing. In this study, we demonstrate that interleukin-6 (IL-6) and osteopontin (OPN) are downstream mediators in the MCP-1-mediated aneurysm healing pathway. Methods Murine carotid aneurysms were created in C57BL/6 mice. Drug-releasing coils (MCP-1, IL-6 and OPN) and control PLGA coils were created and then implanted into the aneurysms in order to evaluate their intra-aneurysmal healing capacity. In order to investigate the downstream mediators for aneurysm healing, blocking antibodies for IL-6 receptor and OPN were given to the mice implanted with the MCP-1-releasing coils. A histological analysis of both murine and human aneurysms was utilized to cross-validate the data. Results We observed increased expression of IL-6 in MCP-1-coil treated aneurysms and not in control-PLGA-only treated aneurysms. MCP-1-mediated intra-aneurysmal healing is inhibited in mice given blocking antibody to IL-6 receptor. MCP-1-mediated intra-aneurysmal healing is also inhibited by blocking antibody to OPN. The role of IL-6 in intra-aneurysmal healing is in recruiting of endothelial cells and fibroblasts. Local delivery of OPN to murine carotid aneurysms via OPN-releasing coil significantly promotes intra-aneurysmal healing, but IL-6-releasing coil does not, suggesting that IL-6 cannot promote aneurysm healing independent of MCP-1. In the MCP-1-mediated aneurysm healing, OPN expression is dependent on IL-6; inhibition of IL-6 receptor significantly inhibits OPN expression in MCP-1-mediated aneurysm healing. Conclusions Our findings suggest that IL-6 and OPN are key downstream mediators of MCP-1-mediated intra-aneurysmal healing. PMID:28292871
Sousa, Katiene Régia Silva; Ribeiro, André Mauric Frossard; Dantas, Waleska de Melo Ferreira; Oliveira, Leandro Licursi de; Gasparino, Eliane; Guimarães, Simone Eliza Facioni
2017-10-01
We aimed to compare Toll-like receptors (TLR) and cytokines expression in local Piau breed and a Commercial line (Landrace×Large White crossbred) pigs in response to vaccination against Pasteurella multocida type D. Seronegative gilts for Pasteurella multocida type D and Mycoplasma hyopneumoniae were used, from which peripheral blood mononuclear cells (PBMC) were collected in four time points (T0, T1, T2 and T3; before and after each vaccination dose). For bronchoalveolar lavage fluid cells (BALF), we set groups of vaccinated and unvaccinated animals for both genetic groups. Gene expression was evaluated on PBMC and BALF. In PBMC, when we analyzed time points within breeds, significant differences in expression for TLRs and cytokines, except TGFβ, were observed for Commercial animals. For the Piau pigs, only TGFβ showed differential expression. Comparing the expression among genetic groups, the Commercial pigs showed higher expression for TLRs after first vaccination dose, while for IL2, IL6, IL12 and IL13, higher expression was also observed in T3 and IL8 and IL10, in T1 and T3. Still comparing the breeds, the crossbred animals showed higher expression for TNFα in T1 and T2, while for TGFβ only in T2. For gene expression in BALF, vaccinated Commercial pigs showed higher expression of TLR6, TLR10, IL6, IL8, IL10, TNFα and TGFβ genes than vaccinated Piau pigs. The Commercial line pigs showed higher sensitivity to vaccination, while in local Piau breed lower responsiveness, which may partly explain genetic variability in immune response and will let us better understand the tolerance/susceptibility for pasteurellosis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Thakur, Vikram; Gonzalez, Mayra; Pennington, Kristen; Chattopadhyay, Munmun
2016-04-01
Painful diabetic neuropathy is a common and difficult to treat complication of diabetes. A growing body of evidence implicates the role of inflammatory mediators in the damage to the peripheral axons and in the pathogenesis of neuropathic pain. Increased expression of pro-inflammatory cytokines such as interleukin (IL)-1β and tumor necrosis factor (TNF)-α in the peripheral nervous system suggests the possibility of change in pain perception in diabetes. In this study we investigated that continuous delivery of IL10 in the nerve fibers achieved by HSV vector mediated transduction of dorsal root ganglion (DRG) in animals with Type 1 diabetes, blocks the nociceptive and stress responses in the DRG neurons by reducing IL1β expression along with inhibition of phosphorylation of p38 MAPK (mitogen-activated protein kinase) and protein kinase C (PKC). The continuous expression of IL10 also alters Toll like receptor (TLR)-4 expression in the DRG with increased expression of heat shock protein (HSP)-70 in conjunction with the reduction of pain. Taken together, this study suggests that macrophage activation in the peripheral nervous system may be involved in the pathogenesis of pain in Type 1 diabetes and therapeutic benefits of HSV mediated local expression of IL10 in the DRG with the reduction of a number of proinflammatory cytokines, subsequently inhibits the development of painful neuropathy along with a decrease in stress associated markers in the DRG. This basic and preclinical study provides an important evidence for a novel treatment strategy that could lead to a clinical trial for what is currently a treatment resistant complication of diabetes. Copyright © 2016 Elsevier Inc. All rights reserved.
Martín, Rebeca; Chain, Florian; Miquel, Sylvie; Natividad, Jane M; Sokol, Harry; Verdu, Elena F; Langella, Philippe; Bermúdez-Humarán, Luis G
2014-01-01
Irritable bowel syndrome (IBS) is a gastrointestinal disorder characterized by chronic abdominal pain, discomfort, and bloating. Interestingly, there is now evidence of the presence of a low-grade inflammatory status in many IBS patients, including histopathological and mucosal cytokine levels in the colon, as well as the presence of IBS-like symptoms in quiescent inflammatory bowel disease (IBD). The use of a genetically engineered food-grade bacterium, such as Lactococcus lactis, secreting the anti-inflammatory cytokine IL-10 has been proven by many pre-clinical studies to be a successful therapy to treat colon inflammation. In this study, we first reproduced the recovery-recurrence periods observed in IBS-patients in a new chronic model characterized by 2 episodes of DiNitro-BenzeneSulfonic-acid (DNBS)-challenge and we tested the effects of a recombinant strain of L. lactis secreting IL-10 under a Stress-Inducible Controlled Expression (SICE) system. In vivo gut permeability, colonic serotonin levels, cytokine profiles, and spleen cell populations were then measured as readouts of a low-grade inflammation. In addition, since there is increasing evidence that gut microbiota tightly regulates gut barrier function, tight junction proteins were also measured by qRT-PCR after administration of recombinant L. lactis in DNBS-treated mice. Strikingly, oral administration of L. lactis secreting active IL-10 in mice resulted in significant protective effects in terms of permeability, immune activation, and gut-function parameters. Although genetically engineered bacteria are, for now, used only as a "proof-of-concept," our study validates the interest in the use of the novel SICE system in L. lactis to express therapeutic molecules, such as IL-10, locally at mucosal surfaces.
Martín, Rebeca; Martín, Rebeca; Chain, Florian; Chain, Florian; Miquel, Sylvie; Miquel, Sylvie; Natividad, Jane M; Natividad, Jane M; Sokol, Harry; Sokol, Harry; Verdu, Elena F; Verdu, Elena F; Langella, Philippe; Langella, Philippe; Bermúdez-Humarán, Luis G; Bermúdez-Humarán, Luis G
2014-01-01
Irritable bowel syndrome (IBS) is a gastrointestinal disorder characterized by chronic abdominal pain, discomfort, and bloating. Interestingly, there is now evidence of the presence of a low-grade inflammatory status in many IBS patients, including histopathological and mucosal cytokine levels in the colon, as well as the presence of IBS-like symptoms in quiescent inflammatory bowel disease (IBD). The use of a genetically engineered food-grade bacterium, such as Lactococcus lactis, secreting the anti-inflammatory cytokine IL-10 has been proven by many pre-clinical studies to be a successful therapy to treat colon inflammation. In this study, we first reproduced the recovery-recurrence periods observed in IBS-patients in a new chronic model characterized by 2 episodes of DiNitro-BenzeneSulfonic-acid (DNBS)-challenge and we tested the effects of a recombinant strain of L. lactis secreting IL-10 under a Stress-Inducible Controlled Expression (SICE) system. In vivo gut permeability, colonic serotonin levels, cytokine profiles, and spleen cell populations were then measured as readouts of a low-grade inflammation. In addition, since there is increasing evidence that gut microbiota tightly regulates gut barrier function, tight junction proteins were also measured by qRT-PCR after administration of recombinant L. lactis in DNBS-treated mice. Strikingly, oral administration of L. lactis secreting active IL-10 in mice resulted in significant protective effects in terms of permeability, immune activation, and gut-function parameters. Although genetically engineered bacteria are, for now, used only as a “proof-of-concept,” our study validates the interest in the use of the novel SICE system in L. lactis to express therapeutic molecules, such as IL-10, locally at mucosal surfaces. PMID:24732667
Bullens, Dominique M A
2007-06-01
Recent insights regarding the development of allergic diseases such as allergic rhinitis, asthma and atopic eczema are based on the functional diversity of T helper (Th)1 and Th2 lymphocytes. Th2 cells (secreting Interleukin (IL)-4, IL-5, IL-9 and IL-13) are considered to be responsible for the induction and for many of the manifestations of atopic diseases. Local overproduction of Th2 cytokines at the site of allergic inflammation, and an intrinsic defect in the production of IFN-gamma by Th1 cells in atopic individuals, have now been reported by several authors. Both IFN-gamma and IL-10 have been suggested to play a modulatory role in the induction and maintenance of allergen-specific tolerance in healthy individuals. However, recent studies indicate that Th1 cells, secreting IFN-gamma might cause severe airway inflammation. On the other hand, 'inflammatory T cells' or Th17 cells, producing IL-17, could represent a link between T cell inflammation and granulocytic influx as observed in allergic airway inflammation. We focus in this review on local (at the side of inflammation) T cell cytokine production and cytokine production by circulating T cells (after in vitro restimulation) from individuals with allergic airway disease, rhinitis and/or asthma. We furthermore review the changes in local T cell cytokine production and/or cytokine production by circulating T cells (after restimulation in vitro) from allergic/asthmatic individuals after treatment with anti-inflammatory agents or immunotherapy. Finally, we discuss whether measuring these T cell cytokines in the airways might be of diagnostic importance or could help to follow-up patients with allergy/asthma.
Epidermal Th22 and Tc17 cells form a localized disease memory in clinically healed psoriasis.
Cheuk, Stanley; Wikén, Maria; Blomqvist, Lennart; Nylén, Susanne; Talme, Toomas; Ståhle, Mona; Eidsmo, Liv
2014-04-01
Psoriasis is a common and chronic inflammatory skin disease in which T cells play a key role. Effective treatment heals the skin without scarring, but typically psoriasis recurs in previously affected areas. A pathogenic memory within the skin has been proposed, but the nature of such site-specific disease memory is unknown. Tissue-resident memory T (TRM) cells have been ascribed a role in immunity after resolved viral skin infections. Because of their localization in the epidermal compartment of the skin, TRM may contribute to tissue pathology during psoriasis. In this study, we investigated whether resolved psoriasis lesions contain TRM cells with the ability to maintain and potentially drive recurrent disease. Three common and effective therapies, narrowband-UVB treatment and long-term biologic treatment systemically inhibiting TNF-α or IL-12/23 signaling were studied. Epidermal T cells were highly activated in psoriasis and a high proportion of CD8 T cells expressed TRM markers. In resolved psoriasis, a population of cutaneous lymphocyte-associated Ag, CCR6, CD103, and IL-23R expressing epidermal CD8 T cells was highly enriched. Epidermal CD8 T cells expressing the TRM marker CD103 responded to ex vivo stimulation with IL-17A production and epidermal CD4 T cells responded with IL-22 production after as long as 6 y of TNF-α inhibition. Our data suggest that epidermal TRM cells are retained in resolved psoriasis and that these cells are capable of producing cytokines with a critical role in psoriasis pathogenesis. We provide a potential mechanism for a site-specific T cell-driven disease memory in psoriasis.
Kurt, Aysel; Turut, Hasan; Acipayam, Ahmet; Kirbas, Aynur; Yuce, Suleyman; Cumhur Cure, Medine; Cure, Erkan
2016-10-12
Multiple rib fractures (RFs) and pulmonary contusions (PCs), with resulting systemic lung inflammation, are the most common injuries caused by blunt chest trauma (BCT) in motor vehicle accidents. This study examined levels of the inflammation marker interleukin (IL)-6 and those of the acute-phase reactant surfactant protein (SP)-D in patients with BCT. Prospective, cross-sectional, observational study. Single-centre, tertiary care hospital in the Black Sea Region of Turkey. The study included 60 patients with BCT who were hospitalised in our thoracic surgery department. The SP-D and IL-6 serum levels of patients with RFs (two or more RFs) (n=30) and patients with PCs (n=30) were measured after 6 hours, 24 hours and 7 days, and compared with those of age-matched and gender-matched healthy participants. The 6-hour serum SP-D levels of the RFs (p=0.017) and PCs (p<0.001) groups were significantly higher than those of the healthy controls. The 24-hour and 7-day SP-D levels of both groups were also higher than the control group. The serum IL-6 levels of both groups were significantly higher than those of the control group. We have found Injury Severity Score to be independently related to 6-hour IL-6 (β=1.414, p<0.001) and 24-hour IL-6 levels (β=1.067, p<0.001). The development of complications was independently related to 6-hour SP-D level (β=0.211, p=0.047). RFs and PCs after BCT lead to local and systemic inflammation due to lung injury. The levels of the systemic inflammation marker IL-6 and those of the acute-phase reactant SP-D were elevated in the present study. The SP-D level may be used as a marker in the follow-up of BCT-related complications. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Xiao, X-G; Zu, H-G; Li, Q-G; Huang, P
2016-01-01
Patients with severe burns often develop acute lung injury (ALI), systemic inflammatory response syndrome (SIRS) often complicates with ALI. Sivelestat sodium hydrate is an effective drug against ALI. However, the mechanisms of this beneficial effect are still poorly understood. In the current study, we evaluate the effects of sivelestat sodium hydrate on systemic and local inflammatory parameters (neutrophil elastase [NE], interleukin [IL]-8, matrix metalloproteinase [MMP] 2 and 9) in a rat model of severe burns and ALI. And to analyze the correlations between expression of NE and IL-8 and acute lung injury. 48 Sprague-Dawley (SD) rats were divided into 3 groups: normal control group, severe burns injury group and severe burns treated with sivelestat sodium hydrate group (SSI). The lung water content and PaO2 were detected in each group. Pathological manifestations in each group were observed for pathology scoring in SD rats with acute lung injury. ELISA was used for detecting expression of NE and IL-8 in serum and BAL specimens of SD rats in each group. RT-PCR was used to detect mRNA expression of NE and IL-8 in lung tissues of each group. Western blotting was used for detecting protein expression of MMP-2 and MMP-9 in lung tissues of each group. SPSS 18.0 was used for statistical analysis. The PaO2 was significantly increased after sivelestat sodium hydrate intravenous injection. Pathological score and water content of lung tissue were significantly decreased in SSI group compared with severe burns injury group, slightly higher than that normal control group. NE and IL-8 levels significantly decreased in serum, BAL and lung tissue specimens after sivelestat sodium hydrate intravenous injection; Expression of MMP-2 and MMP-9 were significantly up-regulated in severe burns group and showed no significantly changed after sivelestat sodium hydrate intravenous injection. In a rat model of severe burns and ALI, administration of sivelestat sodium hydrate improved symptoms of ALI and significantly decreased inflammatory parameters NE and IL-8.
Gani, Dhruva Kumar; Lakshmi, Deepa; Krishnan, Rama; Emmadi, Pamela
2009-01-01
Aims and Objectives: The aim of the present study was to investigate systemic levels of inflammatory markers of cardiovascular diseases like C-reactive protein and interleukin-6 in patients with chronic periodontitis, in comparison to periodontally healthy individuals. Materials and Methods: A total of 42 individuals, both males and females above the age of 30 years, were included in the study. Healthy controls (Group I, n = 14), chronic localized periodontitis (Group II, n = 14), and chronic generalized periodontitis (Group III, n = 14), all without any medical disorder, were recruited. Peripheral blood samples were taken and C-reactive protein (CRP) levels were estimated in the serum samples by using the Particle-Enhanced Turbidimetric Immunoassay (PETIA) technique. Serum samples of Interleukin-6 (IL-6) were assayed by using the Chemiluminescent Immunoassay (IMMULITE) technique. Results: When mean CRP levels were compared between the groups, group III showed statistical significance when compared to group I (P = 0.04). Group III had a higher median IL-6 level (6.35 pg/mL) than Group II (< 5.0 pg/mL) and group I (< 5.0 pg/mL). Differences in median values of IL-6 were not statistically significant in any group (P = 0.29). Conclusion: Periodontitis results in higher systemic levels of CRP and IL-6. These elevated inflammatory factors may increase inflammatory activity in atherosclerotic lesions and potentially increasing the risk for cardiovascular events. PMID:20407653
Schietroma, Mario; Pessia, Beatrice; Stifini, Derna; Lancione, Laura; Carlei, Francesco; Cecilia, Emanuela Marina; Amicucci, Gianfranco
2016-01-01
The advantages of laparoscopic adrenalectomy (LA) over open adrenalectomy are undeniable. Nevertheless, carbon dioxide (CO2) pneumoperitoneum may have an unfavourable effect on the local immune response. The aim of this study was to compare changes in the systemic inflammation and immune response in the early post-operative (p.o.) period after LA performed with standard and low-pressure CO2 pneumoperitoneum. We studied, in a prospective randomised study, 51 patients consecutively with documented adrenal lesion who had undergone a LA: 26 using standard-pressure (12-14 mmHg) and 25 using low-pressure (6-8 mmHg) pneumoperitoneum. White blood cells (WBC), peripheral lymphocyte subpopulation, human leucocyte antigen-DR (HLA-DR), neutrophil elastase, interleukin (IL)-6 and IL-1, and C-reactive protein (CRP) were investigated. Significantly higher concentrations of neutrophil elastase, IL-6 and IL-1 and CRP were detected p.o. in the standard-pressure group of patients in comparison with the low-pressure group (P < 0.05). A statistically significant change in HLA-DR expression was recorded p.o. at 24 h, as a reduction of this antigen expressed on the monocyte surface in patients from the standard group; no changes were noted in low-pressure group patients (P < 0.05). This study demonstrated that reducing the pressure of the pneumoperitoneum to 6-8 mmHg during LA reduced p.o. inflammatory response and averted p.o. immunosuppression.
Tron, Kyrylo; Novosyadlyy, Ruslan; Dudas, Jozsef; Samoylenko, Anatoly; Kietzmann, Thomas; Ramadori, Giuliano
2005-03-01
Heme oxygenase-1 (HO-1) is the inducible isoform of an enzyme family responsible for heme degradation and was suggested to be involved in the acute phase response in the liver. However, the mechanisms of the HO-1 regulation under inflammatory conditions are poorly understood. Therefore, the purpose of the current work was to study the expression of HO-1 in the liver and other organs of rats with a localized inflammation after intramuscular injection of turpentine oil (TO). Since interleukin-6 (IL-6) is known to be a principal mediator of inflammation, the levels of this cytokine were also estimated in the animal model used. HO-1 and IL-6 expression was evaluated by Northern blot, in situ hybridization, Western blot, immunohistochemistry and enzyme-linked immunosorbent assay. In the liver and injured muscle, the HO-1 mRNA levels were dramatically increased 4-6 h after TO administration. HO-1 protein levels in the liver were elevated starting from 6-12 h after the treatment. In other internal organs such as the heart, kidney and large intestine, only a slight induction of HO-1 mRNA was observed. IL-6-specific transcripts appeared only in the injured muscle and were in accordance with serum levels of IL-6. In turn, temporal expression of IL-6 in the muscle and circulatory IL-6 levels correlated well with HO-1 expression in the liver and injured muscle. In the liver of control rats HO-1 protein was detected in Kupffer cells, while in TO-injected rats also hepatocytes became strongly HO-1 positive. Conversely, in the injured muscle, HO-1 immunoreactivity was attributed only to macrophages. Our data demonstrate that during localized inflammation HO-1 expression was rapidly and strongly induced in macrophages of injured muscle and in hepatocytes, and IL-6 derived from injured muscle seems to be responsible for the HO-1 induction in the liver.
Mourglia-Ettlin, Gustavo; Marqués, Juan Martín; Chabalgoity, José Alejandro; Dematteis, Sylvia
2011-01-01
Background Cystic echinococcosis is a worldwide distributed helminth zoonosis caused by the larval stage of Echinococcus granulosus. Human secondary cystic echinococcosis is caused by dissemination of protoscoleces after accidental rupture of fertile cysts and is due to protoscoleces ability to develop into new metacestodes. In the experimental model of secondary cystic echinococcosis mice react against protoscoleces producing inefficient immune responses, allowing parasites to develop into cysts. Although the chronic phase of infection has been analyzed in depth, early immune responses at the site of infection establishment, e.g., peritoneal cavity, have not been well studied. Because during early stages of infection parasites are thought to be more susceptible to immune attack, this work focused on the study of cellular and molecular events triggered early in the peritoneal cavity of infected mice. Principal Findings Data obtained showed disparate behaviors among subpopulations within the peritoneal lymphoid compartment. Regarding B cells, there is an active molecular process of plasma cell differentiation accompanied by significant local production of specific IgM and IgG2b antibodies. In addition, peritoneal NK cells showed a rapid increase with a significant percentage of activated cells. Peritoneal T cells showed a substantial increase, with predominance in CD4+ T lymphocytes. There was also a local increase in Treg cells. Finally, cytokine response showed local biphasic kinetics: an early predominant induction of Th1-type cytokines (IFN-γ, IL-2 and IL-15), followed by a shift toward a Th2-type profile (IL-4, IL-5, IL-6, IL-10 and IL-13). Conclusions Results reported here open new ways to investigate the involvement of immune effectors players in E. granulosus establishment, and also in the sequential promotion of Th1- toward Th2-type responses in experimental secondary cystic echinococcosis. These data would be relevant for designing rational therapies based on stimulation of effective responses and blockade of evasion mechanisms. PMID:21912714
Sims, Natalie A
2016-10-01
Bone renews itself and changes shape throughout life to account for the changing needs of the body; this requires co-ordinated activities of bone resorbing cells (osteoclasts), bone forming cells (osteoblasts) and bone's internal cellular network (osteocytes). This review focuses on paracrine signaling by the IL-6 family of cytokines between bone cells, bone marrow, and skeletal muscle in normal physiology and in pathological states where their levels may be locally or systemically elevated. These functions include the support of osteoclast formation by osteoblast lineage cells in response to interleukin 6 (IL-6), interleukin 11 (IL-11), oncostatin M (OSM) and cardiotrophin 1 (CT-1). In addition it will discuss how bone-resorbing osteoclasts promote osteoblast activity by secreting CT-1, which acts as a "coupling factor" on osteocytes, osteoblasts, and their precursors to promote bone formation. OSM, produced by osteoblast lineage cells and macrophages, stimulates bone formation via osteocytes. IL-6 family cytokines also mediate actions of other bone formation stimuli like parathyroid hormone (PTH) and mechanical loading. CT-1, OSM and LIF suppress marrow adipogenesis by shifting commitment of pluripotent precursors towards osteoblast differentiation. Ciliary neurotrophic factor (CNTF) is released as a myokine from skeletal muscle and suppresses osteoblast differentiation and bone formation on the periosteum (outer bone surface in apposition to muscle). Finally, IL-6 acts directly on marrow-derived osteoclasts to stimulate release of "osteotransmitters" that act through the cortical osteocyte network to stimulate bone formation on the periosteum. Each will be discussed as illustrations of how the extended family of IL-6 cytokines acts within the skeleton in physiology and may be altered in pathological conditions or by targeted therapies. Copyright © 2016 Elsevier Ltd. All rights reserved.
IL-6 signaling in diabetic nephropathy: From pathophysiology to therapeutic perspectives.
Feigerlová, Eva; Battaglia-Hsu, Shyue-Fang
2017-10-01
Diabetic nephropathy (DN) is a leading cause of chronic kidney disease (CKD). Interleukin-6 (IL-6) signaling participates in inflammation responses central to the progression of DN. Current evidence suggests that these IL-6 responses are mediated via gp130-STAT3 dependent mechanisms which, on one hand, trigger globally the transition from innate to adaptive immune response, and on the other hand act locally for tissue remodeling and immune cell infiltration. In diabetic conditions the role of IL-6 is not well elucidated. Both IL-6 classical signaling pathway via receptor IL-6R (IL-6R) and IL-6 trans-signaling pathway via soluble IL-6R (sIL-6R) were shown to participate in the pathogenesis and progression of DN, and IL-6 appears to influence renal cells also in an autocrine manner. To date, evidence is limited. The goal of this review is to provide an overview of our current understanding on the role of IL-6 signaling in DN and to delineate challenges for future research. Putative sequential events related to IL-6 secretion by different cell populations in diabetic conditions are outlined. Further, we discuss potential applications of anti-IL-6 therapy in the context of DN. Copyright © 2017 Elsevier Ltd. All rights reserved.
Xu, Jia; Xu, Xiaoqing; Wang, Bingjing; Ma, Yuanwu; Zhang, Lianfeng; Xu, Henan; Hu, Ye; Wu, Jiacheng; Cao, Xuetao
2017-08-08
Interleukin-12 (IL-12) is critical for induction of protective immunity against intracellular bacterial infection. However, the mechanisms for efficient induction of IL-12 in innate response remain poorly understood. Here we report that the B type of carbonic anhydrase 6 ( Car6-b , which encoded CA-VI B) is essential for host defense against Listeria monocytogenes (LM) infection by epigenetically promoting IL-12 expression independent of its carbonic anhydrase activity. Deficiency of Car6-b attenuated IL-12 production upon LM infection both in vitro and in vivo. Car6 -/- mice were more susceptible to LM infection with less production of IL-12. Mechanistically, the nuclear localized CA-VI B selectively promotes IL-12 expression by interaction with protein arginine N -methyltransferase 5 (PRMT5), which reduces symmetric dimethylation of histone H3 arginine 8 modification (H3R8me2s) at Il12 promoters to facilitate chromatin accessibility, selectively enhancing c-Rel binding to the Il12b promoter. Our findings add insights to the epigenetic regulation of IL-12 induction in innate immunity.
Role of bacteria in leukocyte adhesion deficiency-associated periodontitis.
Hajishengallis, George; Moutsopoulos, Niki M
2016-05-01
Leukocyte adhesion deficiency Type I (LAD-I)-associated periodontitis is an aggressive form of inflammatory bone loss that has been historically attributed to lack of neutrophil surveillance of the periodontal infection. However, this form of periodontitis has proven unresponsive to antibiotics and/or mechanical removal of the tooth-associated biofilm. Recent studies in LAD-I patients and relevant animal models have shown that the fundamental cause of LAD-I periodontitis involves dysregulation of a granulopoietic cytokine cascade. This cascade includes interleukin IL-23 (IL-23) and IL-17 that drive inflammatory bone loss in LAD-I patients and animal models and, moreover, foster a nutritionally favorable environment for bacterial growth and development of a compositionally unique microbiome. Although the lack of neutrophil surveillance in the periodontal pockets might be expected to lead to uncontrolled bacterial invasion of the underlying connective tissue, microbiological analyses of gingival biopsies from LAD-I patients did not reveal tissue-invasive infection. However, bacterial lipopolysaccharide was shown to translocate into the lesions of LAD-I periodontitis. It is concluded that the bacteria serve as initial triggers for local immunopathology through translocation of bacterial products into the underlying tissues where they unleash the dysregulated IL-23-IL-17 axis. Subsequently, the IL-23/IL-17 inflammatory response sustains and shapes a unique local microbiome which, in turn, can further exacerbate inflammation and bone loss in the susceptible host. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cytokine gene expression in skin of susceptible guinea-pig infected with Treponema pallidum.
Wicher, V; Scarozza, A M; Ramsingh, A I; Wicher, K
1998-01-01
Using a semi-quantitative multiplex reverse transcription-polymerase chain reaction assay, we examined cytokine mRNA expression for interleukin-1alpha (IL-1alpha), IL-2, IL-10, IL-12p40, tumour necrosis factor-alpha (TNF-alpha) and transforming growth factor-beta (TGF-beta) in skin samples obtained from C4-deficient (C4D) guinea-pigs inoculated intradermally with virulent Treponema pallidum (VTP). Controls included unmanipulated animals, guinea-pigs injected with T. pallidum-free rabbit inflammatory testicular fluid (ITF) alone, or mixed with heat-killed organisms (HKTP). The expression of IL-1alpha, IL-12p40, and TNF-alpha mRNA [T helper type 1 (Th1)] remained within the normal range in both infected and control animals throughout the experimental period. However, a significant increase (P<0.05) in IL-10 mRNA (Th2) was found exclusively in the VTP-inoculated animals from 3 to 30 days post-infection. Another unique characteristic of the inflammatory response in infected guinea-pigs was the appearance, between 11 and 30 days post-inoculation, of a substantial number of eosinophils in addition to infiltrating mononuclear cells. The results showed a local Th2 response which is consistent with an inadequate immune response. This is reflected by the lengthy and incomplete clearance of the pathogen from the local site of entry and the chronic infection of distant organs. Images Figure 1 Figure 4 PMID:9824482
Phosphorylation of interleukin (IL)-24 is required for mediating its anti-cancer activity.
Panneerselvam, Janani; Shanker, Manish; Jin, Jiankang; Branch, Cynthia D; Muralidharan, Ranganayaki; Zhao, Yan D; Chada, Sunil; Munshi, Anupama; Ramesh, Rajagopal
2015-06-30
Interleukin (IL)-24 is a tumor suppressor/cytokine gene that undergoes post-translational modifications (PTMs). Glycosylation and ubiquitination are important for IL-24 protein stabilization and degradation respectively. Little is known about IL-24 protein phosphorylation and its role in IL-24-mediated anti-tumor activities. In this study we conducted molecular studies to determine whether IL-24 phosphorylation is important for IL-24-mediated anti-cancer activity.Human H1299 lung tumor cell line that was stably transfected with a doxycycline (DOX)-inducible (Tet-on) plasmid vector carrying the cDNA of IL-24-wild-type (IL-24wt) or IL-24 with all five phosphorylation sites replaced (IL-24mt) was used in the present study. Inhibition of tumor cell proliferation, cell migration and invasion, and induction of G2/M cell cycle arrest was observed in DOX-induced IL-24wt-expressing cells but not in IL-24mt-expressing cells. Secretion of IL-24mt protein was greatly reduced compared to IL-24wt protein. Further, IL-24wt and IL-24mt proteins markedly differed in their subcellular organelle localization. IL-24wt but not IL-24mt inhibited the AKT/mTOR signaling pathway. SiRNA-mediated AKT knockdown and overexpression of myristolyated AKT protein confirmed that IL-24wt but not IL-24mt mediated its anti-cancer activity by inhibiting the AKT signaling pathway.Our results demonstrate that IL-24 phosphorylation is required for inhibiting the AKT/mTOR signaling pathway and exerting its anti-cancer activities.
T cell–derived interleukin (IL)-21 promotes brain injury following stroke in mice
Clarkson, Benjamin D.S.; Ling, Changying; Shi, Yejie; Harris, Melissa G.; Rayasam, Aditya; Sun, Dandan; Salamat, M. Shahriar; Kuchroo, Vijay; Lambris, John D.; Sandor, Matyas
2014-01-01
T lymphocytes are key contributors to the acute phase of cerebral ischemia reperfusion injury, but the relevant T cell–derived mediators of tissue injury remain unknown. Using a mouse model of transient focal brain ischemia, we report that IL-21 is highly up-regulated in the injured mouse brain after cerebral ischemia. IL-21–deficient mice have smaller infarcts, improved neurological function, and reduced lymphocyte accumulation in the brain within 24 h of reperfusion. Intracellular cytokine staining and adoptive transfer experiments revealed that brain-infiltrating CD4+ T cells are the predominant IL-21 source. Mice treated with decoy IL-21 receptor Fc fusion protein are protected from reperfusion injury. In postmortem human brain tissue, IL-21 localized to perivascular CD4+ T cells in the area surrounding acute stroke lesions, suggesting that IL-21–mediated brain injury may be relevant to human stroke. PMID:24616379
Den Otter, Willem; Hack, Margot; Jacobs, John J L; Tan, Jurgen F V; Rozendaal, Lawrence; Van Moorselaar, R Jeroen A
2015-02-01
To improve the treatment of transmissible venereal tumors (TVTs) in dogs with intratumoral injections of interleukin-2 (IL-2). We treated 13 dogs with 18 natural TVTs with IL-2. The tumors were treated with intratumoral application of 2×10(6) units IL-2. Three months after injection of IL-2, the tumors in 2/13 dogs had regressed completely, those in 1/13 had regressed partially, and 4/13 dogs had stable disease. Local IL-2 treatment of TVT is therapeutically effective, as indicated by complete regression (CR), partial regression (PR) and stable disease (SD) of the tumors of 7 out of 13 dogs. In addition, we observed that the intratumoral treatment with IL-2 did not cause any toxic side-effects. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Carpenter, Catherine L; Duvall, Karen; Jardack, Patricia; Li, Luyi; Henning, Susanne M; Li, Zhaoping; Heber, David
2012-12-05
Accumulation of excess body fat increases breast cancer risk after menopause. Whether the localized breast is differently influenced by adipose tissue compared to the rest of the body, has not been well studied. Our purpose was to demonstrate feasibility and preliminarily evaluate serum-based and localized breast biomarker changes resulting from a weight loss intervention among obese postmenopausal women. We conducted a 12-week pilot controlled dietary and exercise intervention among healthy obese postmenopausal women, collected serum and breast ductal fluid before and after the intervention, and estimated the association with systemic and localized biomarker changes. We recruited 7 obese (mean body mass index = 33.6 kg/m2) postmenopausal women. We collected samples at baseline and the 12th week for: anthropometry; phlebotomy; dual-energy x-ray absorptiometry (lean and fat mass); exercise fitness (maximum oxygen consumption (VO2Max); 1-repetition strength maximum); and breast ductal lavage. Changes from baseline occurred in body composition and exercise performance including fat mass loss (14% average drop), VO2Max (+36% increase) and strength improvement (+26%). Breast ductal fluid markers declined from baseline with estradiol showing a 24% reduction and IL-6 a 20% reduction. We also observed serum biomarker reductions from baseline including leptin (36% decline), estrone sulfate (-10%), estradiol (-25%), and Il-6 (-33%). Conduct of the diet and exercise intervention, collection of ductal fluid, and measurement of hormones and cytokines contained in the ductal fluid were all feasible. We preliminarily demonstrated estradiol and IL-6 reductions from baseline in both serum and breast ductal fluid among obese postmenopausal women who participated in the 12-week weight loss diet and exercise intervention.
TrackCC: A Practical Wireless Indoor Localization System Based on Less-Expensive Chips
Li, Xiaolong; Zheng, Yan; Cai, Jun; Yi, Yunfei
2017-01-01
This paper aims at proposing a new wireless indoor localization system (ILS), called TrackCC, based on a commercial type of low-power system-on-chip (SoC), nRF24LE1. This type of chip has only l output power levels and acute fluctuation for a received minimum power level in operation, which give rise to many practical challenges for designing localization algorithms. In order to address these challenges, we exploit the Markov theory to construct a (l+1)×(l+1) -sized state transition matrix to remove the fluctuation, and then propose a priority-based pattern matching algorithm to search for the most similar match in the signal map to estimate the real position of unknown nodes. The experimental results show that, compared to two existing wireless ILSs, LANDMARC and SAIL, which have meter level positioning accuracy, the proposed TrackCC can achieve the decimeter level accuracy on average in both line-of-sight (LOS) and non-line-of-sight (NLOS) senarios. PMID:28617313
Enzymatic synthesis of esculin ester in ionic liquids buffered with organic solvents.
Hu, Yifan; Guo, Zheng; Lue, Bena-Marie; Xu, Xuebing
2009-05-13
The enzymatic esterification of esculin catalyzed by Candida antarctica lipase B (Novozym 435) was carried out in ionic liquid (IL)-organic solvent mixed systems in comparison with individual systems. The reaction behaviors in IL-organic solvents were systemically evaluated using acetone as a model solvent. With organic solvents as media, the esterification rates of esculin depended mainly on its solubility in solvents; for the reactions in ILs, the reaction rates were generally low, and the anion part of the IL played a critical role in enzyme activity. Therefore, the esterification of esculin in IL-acetone mixtures made it possible to improve the solubility of esculin while the effects of ILs on lipase activity were minimized. Following the benignity of ILs to lipase activity, the anions of ILs were ranked in the order as [Tf(2)N](-) > [PF(6)](-) > [BF(4)](-) > [CF(3)SO(3)](-) > [C(4)F(9)SO(3)](-) > [TAF](-) > [MDEGSO(4)](-) > [OctSO(4)](-) > [ES](-) = [DMP](-) = [OTs](- )= Cl(-). The reaction behaviors differed in different systems and largely depended on the properties of the ILs and organic solvents. In general, improvements were observed in terms of both solubility and reaction efficiency. The knowledge acquired in this work gives a better understanding of multiple interactions in IL-organic solvent systems, which provide guidance for system design and optimization.
IL-17 genetic and immunophenotypic evaluation in chronic graft-versus-host disease.
Resende, Renata Gonçalves; Correia-Silva, Jeane de Fátima; Silva, Tarcília Aparecida; Salomão, Ulisses Eliezer; Marques-Silva, Luciano; Vieira, Érica Leandro Marciano; Dutra, Walderez Ornelas; Gomez, Ricardo Santiago
2014-01-01
Although interleukin-17 (IL-17) is a recently discovered cytokine associated with several autoimmune diseases, its role in the pathogenesis of chronic graft-versus-host disease (cGVHD) was not established yet. The objective of this study was to investigate the association of IL17A and IL17F genes polymorphisms and IL-17A and IL-17F levels with cGVHD. IL-17A expression was also investigated in CD4(+) T cells of patients with systemic cGVHD. For Part I of the study, fifty-eight allo-HSCT recipients and donors were prospectively studied. Blood samples were obtained to determine IL17A and IL17F genes polymorphisms. Cytokines levels in blood and saliva were assessed by ELISA at days +35 and +100 after HSCT. In Part II, for the immunophenotypic evaluation, eight patients with systemic cGVHD were selected and the expression of IL-17A was evaluated. We found association between recipient AA genotype with systemic cGVHD. No association was observed between IL-17A levels and cGVHD. Lower IL-17A levels in the blood were associated with AA genotype. In flow cytometry analysis, decreased expression of IL-17A was observed in patients with cGVHD after stimulation. In conclusion, IL-17A may have an important role in the development of systemic cGVHD.
Block, Linda; Jörneberg, Per; Björklund, Ulrika; Westerlund, Anna; Biber, Björn; Hansson, Elisabeth
2013-01-01
Bupivacaine is a widely used, local anesthetic agent that blocks voltage-gated Na+ channels when used for neuro-axial blockades. Much lower concentrations of bupivacaine than in normal clinical use, < 10−8 m, evoked Ca2+ transients in astrocytes from rat cerebral cortex, that were inositol trisphosphate receptor-dependent. We investigated whether bupivacaine exerts an influence on the Ca2+ signaling and interleukin-1β (IL-1β) secretion in inflammation-reactive astrocytes when used at ultralow concentrations, < 10−8 m. Furthermore, we wanted to determine if bupivacaine interacts with the opioid-, 5-hydroxytryptamine- (5-HT) and glutamate-receptor systems. With respect to the μ-opioid- and 5-HT-receptor systems, bupivacaine restored the inflammation-reactive astrocytes to their normal non-inflammatory levels. With respect to the glutamate-receptor system, bupivacaine, in combination with an ultralow concentration of the μ-opioid receptor antagonist naloxone and μ-opioid receptor agonists, restored the inflammation-reactive astrocytes to their normal non-inflammatory levels. Ultralow concentrations of bupivacaine attenuated the inflammation-induced upregulation of IL-1β secretion. The results indicate that bupivacaine interacts with the opioid-, 5-HT- and glutamate-receptor systems by affecting Ca2+ signaling and IL-1β release in inflammation-reactive astrocytes. These results suggest that bupivacaine may be used at ultralow concentrations as an anti-inflammatory drug, either alone or in combination with opioid agonists and ultralow concentrations of an opioid antagonist. PMID:24083665
Li, Jun-qing; Pan, Quan-ke; Mao, Kun
2014-01-01
A hybrid algorithm which combines particle swarm optimization (PSO) and iterated local search (ILS) is proposed for solving the hybrid flowshop scheduling (HFS) problem with preventive maintenance (PM) activities. In the proposed algorithm, different crossover operators and mutation operators are investigated. In addition, an efficient multiple insert mutation operator is developed for enhancing the searching ability of the algorithm. Furthermore, an ILS-based local search procedure is embedded in the algorithm to improve the exploitation ability of the proposed algorithm. The detailed experimental parameter for the canonical PSO is tuning. The proposed algorithm is tested on the variation of 77 Carlier and Néron's benchmark problems. Detailed comparisons with the present efficient algorithms, including hGA, ILS, PSO, and IG, verify the efficiency and effectiveness of the proposed algorithm. PMID:24883414
Relationship between serum interleukin-17 level and inflammatory bowel disease.
Liu, Q L; Huang, L; Zhao, Q J; Li, Q; He, Z
2016-01-01
By detecting expression of interleukin (IL)-17A, IL-10 and interferon-γ (IFN-γ) in serum of inflammatory bowel disease (IBD) patients, this study aims to analyze the effects of these factors on the pathogenesis of IBD. According to illness status, selected patients were divided into Crohns disease (CD) group (28 patients), ulcerative colitis (UC) group (74 patients) and normal control group (36 patients); enzymelinked immunosorbent assay (ELISA) was used to detect IL-17A, IL-10 and IFN-γ levels in serum; immunohistochemical assay was used to detect local IL-17A expression in the colonic mucosa of each group. Clinical results showed that IL-17A content of the UC group and CD group was significantly higher than that of the normal control group (p less than 0.05); IL-17A content of the CD group was higher than that of the UC group (p>0.05). The UC group had the highest IL-10 content, and the difference between the UC group and other two groups had statistical significance (p less than 0.05); the difference of IL-10 content between UC group and normal control group had no statistical significance (p>0.05). There was no significant difference of IFN-γ level between the CD group and the UC group and normal control group (p>0.05), and no significant difference of IFN-γ level was shown between the CD group and the UC group (p>0.05). Both the CD and UC groups showed IL-17A positive staining in cytoplasm of lymphocyte, however no positive staining was found in any layer of intestinal mucosa of the normal control group. IL-17A was locally expressed in the colon of IBD patients in remission; furthermore, it also had high expression in serum; thus, there still existed high expression of pro-inflammatory factor, which might be related to relapse of IBD. Therefore, prevention of IL-17A may become a feasible therapy for IBD in the future.
Gopal, Radha; Monin, Leticia; Slight, Samantha; Uche, Uzodinma; Blanchard, Emmeline; A. Fallert Junecko, Beth; Ramos-Payan, Rosalio; Stallings, Christina L.; Reinhart, Todd A.; Kolls, Jay K.; Kaushal, Deepak; Nagarajan, Uma; Rangel-Moreno, Javier; Khader, Shabaana A.
2014-01-01
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), infects one third of the world's population. Among these infections, clinical isolates belonging to the W-Beijing appear to be emerging, representing about 50% of Mtb isolates in East Asia, and about 13% of all Mtb isolates worldwide. In animal models, infection with W-Beijing strain, Mtb HN878, is considered “hypervirulent” as it results in increased mortality and causes exacerbated immunopathology in infected animals. We had previously shown the Interleukin (IL) -17 pathway is dispensable for primary immunity against infection with the lab adapted Mtb H37Rv strain. However, it is not known whether IL-17 has any role to play in protective immunity against infection with clinical Mtb isolates. We report here that lab adapted Mtb strains, such as H37Rv, or less virulent Mtb clinical isolates, such as Mtb CDC1551, do not require IL-17 for protective immunity against infection while infection with Mtb HN878 requires IL-17 for early protective immunity. Unexpectedly, Mtb HN878 induces robust production of IL-1β through a TLR-2-dependent mechanism, which supports potent IL-17 responses. We also show that the role for IL-17 in mediating protective immunity against Mtb HN878 is through IL-17 Receptor signaling in non-hematopoietic cells, mediating the induction of the chemokine, CXCL-13, which is required for localization of T cells within lung lymphoid follicles. Correct T cell localization within lymphoid follicles in the lung is required for maximal macrophage activation and Mtb control. Since IL-17 has a critical role in vaccine-induced immunity against TB, our results have far reaching implications for the design of vaccines and therapies to prevent and treat emerging Mtb strains. In addition, our data changes the existing paradigm that IL-17 is dispensable for primary immunity against Mtb infection, and instead suggests a differential role for IL-17 in early protective immunity against emerging Mtb strains. PMID:24831696
Smith, N Ms; Wasserman, G A; Coleman, F T; Hilliard, K L; Yamamoto, K; Lipsitz, E; Malley, R; Dooms, H; Jones, M R; Quinton, L J; Mizgerd, J P
2018-01-01
As children age, they become less susceptible to the diverse microbes causing pneumonia. These microbes are pathobionts that infect the respiratory tract multiple times during childhood, generating immunological memory. To elucidate mechanisms of such naturally acquired immune protection against pneumonia, we modeled a relevant immunological history in mice by infecting their airways with mismatched serotypes of Streptococcus pneumoniae (pneumococcus). Previous pneumococcal infections provided protection against a heterotypic, highly virulent pneumococcus, as evidenced by reduced bacterial burdens and long-term sterilizing immunity. This protection was diminished by depletion of CD4 + cells prior to the final infection. The resolution of previous pneumococcal infections seeded the lungs with CD4 + resident memory T (T RM ) cells, which responded to heterotypic pneumococcus stimulation by producing multiple effector cytokines, particularly interleukin (IL)-17A. Following lobar pneumonias, IL-17-producing CD4 + T RM cells were confined to the previously infected lobe, rather than dispersed throughout the lower respiratory tract. Importantly, pneumonia protection also was confined to that immunologically experienced lobe. Thus regionally localized memory cells provide superior local tissue protection to that mediated by systemic or central memory immune defenses. We conclude that respiratory bacterial infections elicit CD4 + T RM cells that fill a local niche to optimize heterotypic protection of the affected tissue, preventing pneumonia.
Local brain heavy ion irradiation induced Immunosuppression
NASA Astrophysics Data System (ADS)
Lei, Runhong; Deng, Yulin; Huiyang Zhu, Bitlife.; Zhao, Tuo; Wang, Hailong; Yu, Yingqi; Ma, Hong; Wang, Xiao; Zhuang, Fengyuan; Qing, Hong
Purpose: To investigate the long term effect of acute local brain heavy ion irradiation on the peripheral immune system in rat model. Methodology: Only the brain of adult male Wistar rats were radiated by heavy ions at the dose of 15 Gy. One, two and three months after irradiation, thymus and spleen were analyzed by four ways. Tunel assay was performed to evaluate the percentage of apoptotic cells in thymus and spleen, level of Inflammatory cytokines (IL-2, IL-6, SSAO, and TNF-α) was detected by ELISA assay, the differentiation of thymus T lymphocyte subsets were measured by flow cytometry and the relative expression levels of genes related to thymus immune cell development were measured by using quantitative real-time PCR. Results: Thymus and spleen showed significant atrophy from one month to three months after irradiation. A high level of apoptosis in thymus and spleen were obtained and the latter was more vulnerable, also, high level of inflammatory cytokines were found. Genes (c-kit, Rag1, Rag2 and Sca1) related to thymus lymphocytes’ development were down-regulated. Conclusion: Local area radiation in the rat brain would cause the immunosuppression, especially, the losing of cell-mediated immune functions. In this model, radiation caused inflammation and then induced apoptosis of cells in the immune organs, which contributed to immunosuppression.
Hsu, Wei-Chuan; Cheng, Chu-Nian; Lee, Te-Wei; Hwang, Jeng-Jong
2015-09-01
We aimed to construct epidermal growth factor receptor (EGFR)-targeting cetuximab-immunoliposomes (IL-C225) for targeted delivery of doxorubicin and rhenium-188 (Re-188) to EGFR(+) cancer cells. Synthesized IL-C225 was analyzed by dynamic light scattering, transmission electron microscopy, and matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy. Cell binding and internalization were examined using doxorubicin-loaded IL-C225 (DXR-IL-C225) with confocal microscopy. IL-C225 combined with doxorubicin and Re-188 ((188)Re-DXR-IL-C225) was synthesized, and the cytotoxic effects of (188)Re-DXR-IL-C225 were analyzed in EGFR(+) cancer cells using cell viability assays. IL-C225 bound to EGFR on A431 cancer cells and was rapidly internalized. Furthermore, IL-C225 localized within the tumor cells efficiently. (188)Re-DXR-IL-C225 exhibited outstanding cytotoxic effects against EGFR(+) cancer cells in vitro and showed superior cytotoxic effects compared to DXR-IL-C225 or (188)Re-IL-C225 alone. The new formulation of (188)Re-DXR-IL-C225 may be a potential theranostic vehicle for delivery of drugs in the treatment of EGFR-overexpressing human cancer. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Shiratori, Ikuo; Suzuki, Yasuhiko; Oshiumi, Hiroyuki; Begum, Nasim A; Ebihara, Takashi; Matsumoto, Misako; Hazeki, Kaoru; Kodama, Ken; Kashiwazaki, Yasuo; Seya, Tsukasa
2007-12-01
Interleukin (IL)-12 and IL-18 are secreted by myeloid cells activated with adjuvants such as Bacillus Calmette-Guérin (BCG) cell wall. They induce T-helper 1 polarization in the host immune system and upregulate production of lymphocyte interferon-gamma, which leads to the induction of an antitumor gene program. It has been reported that humans have an immune system that more closely resembles that of the guinea pig in adjuvant-response features rather than the mouse system, which prevents the mouse results being extrapolated to human immunotherapy. Here we have constructed a tumor-implant system in guinea pigs to evaluate the antitumor potential of guinea pig IL-12 (gpIL-12) and guinea pig IL-18 (gpIL-18). Purified recombinant gpIL-12 and gpIL-18 were prepared and applied intraperitoneally to tumor-bearing (line 10 hepatoma) guinea pigs as the basis of the adjuvant immunotherapy. Intraperitoneal administration of gpIL-12 and gpIL-18 led to retardation of primary tumor growth and suppression of lymph-node metastasis in tumor-bearing guinea pigs. The permissible range of IL-12 appeared wider in guinea pigs than in mice. Even at an IL-12 dose higher than that in mice, there was no evidence of side-effects until day 26, when the guinea pigs were killed. gpIL-18 augmented the antitumor effect of gpIL-12 but exerted less ability to suppress lymph-node metastasis. The effects of gpIL-12 and gpIL-18 on the tumors implanted in guinea pigs will encourage us to use IL-12- and IL-18-inducible adjuvants for immunotherapy in human patients with solid cancer.
Nasi, Milena; Alboni, Silvia; Pinti, Marcello; Tascedda, Fabio; Benatti, Cristina; Benatti, Stefania; Gibellini, Lara; De Biasi, Sara; Borghi, Vanni; Brunello, Nicoletta; Mussini, Cristina; Cossarizza, Andrea
2014-11-01
: The importance of interleukin (IL)-18 in mediating immune activation during HIV infection has recently emerged. IL-18 activity is regulated by its receptor (IL-18R), formed by an α and a β chain, the IL-18-binding protein, and the newly identified shorter isoforms of both IL-18R chains. We evaluated gene expression of the IL-18/IL-18R system in peripheral blood mononuclear cells from HIV+ patients. Compared with healthy donors, IL-18 expression decreased in patients with primary infection. The IL-18Rα short transcript expression was strongly upregulated by successful highly active antiretroviral therapy. HIV progression and its treatment can influence the expression of different components of the complex IL-18/IL-18R system.
Abundances of Local Group Globular Clusters Using High Resolution Integrated Light Spectroscopy
NASA Astrophysics Data System (ADS)
Sakari, Charli; McWilliam, A.; Venn, K.; Shetrone, M. D.; Dotter, A. L.; Mackey, D.
2014-01-01
Abundances and kinematics of extragalactic globular clusters provide valuable clues about galaxy and globular cluster formation in a wide variety of environments. In order to obtain such information about distant, unresolved systems, specific observational techniques are required. An Integrated Light Spectrum (ILS) provides a single spectrum from an entire stellar population, and can therefore be used to determine integrated cluster abundances. This dissertation investigates the accuracy of high resolution ILS analysis methods, using ILS (taken with the Hobby-Eberly Telescope) of globular clusters associated with the Milky Way (47 Tuc, M3, M13, NGC 7006, and M15) and then applies the method to globular clusters in the outer halo of M31 (from the Pan-Andromeda Archaeological Survey, or PAndAS). Results show that: a) as expected, the high resolution method reproduces individual stellar abundances for elements that do not vary within a cluster; b) the presence of multiple populations does affect the abundances of elements that vary within the cluster; c) certain abundance ratios are very sensitive to systematic effects, while others are not; and d) certain abundance ratios (e.g. [Ca/Fe]) can be accurately obtained from unresolved systems. Applications of ILABUNDS to the PAndAS clusters reveal that accretion may have played an important role in the formation of M31's outer halo.
Santos Rocha, Clarissa; Gomes-Santos, Ana Cristina; Garcias Moreira, Thais; de Azevedo, Marcela; Diniz Luerce, Tessalia; Mariadassou, Mahendra; Longaray Delamare, Ana Paula; Langella, Philippe; Maguin, Emmanuelle; Azevedo, Vasco; Caetano de Faria, Ana Maria; Miyoshi, Anderson; van de Guchte, Maarten
2014-01-01
Several probiotic bacteria have been proposed for treatment or prevention of inflammatory bowel diseases (IBD), showing a protective effect in animal models of experimental colitis and for some of them also in human clinical trials. While most of these probiotic bacteria are isolated from the digestive tract, we recently reported that a Lactobacillus strain isolated from cheese, L. delbrueckii subsp. lactis CNRZ327 (Lb CNRZ327), also possesses anti-inflammatory effects in vitro and in vivo, demonstrating that common dairy bacteria may be useful in the treatment or prevention of IBD. Here, we studied the mechanisms underlying the protective effects of Lb CNRZ327 in vivo, in a mouse dextran sodium sulfate (DSS) colitis model. During colitis, Lb CNRZ327 modulated the production of TGF-β, IL-6, and IL-12 in colonic tissue and of TGF-β and IL-6 in the spleen, and caused an expansion of CD4+Foxp3+ regulatory T cells in the cecal lymph nodes. Moreover, a strong tendency to CD4+Foxp3+ expansion was also observed in the spleen. The results of this study for the first time show that orally administered dairy lactobacilli can not only modulate mucosal but also systemic immune responses and constitute an effective treatment of IBD.
Astroglial Control of the Antidepressant-Like Effects of Prefrontal Cortex Deep Brain Stimulation.
Etiévant, A; Oosterhof, C; Bétry, C; Abrial, E; Novo-Perez, M; Rovera, R; Scarna, H; Devader, C; Mazella, J; Wegener, G; Sánchez, C; Dkhissi-Benyahya, O; Gronfier, C; Coizet, V; Beaulieu, J M; Blier, P; Lucas, G; Haddjeri, N
2015-08-01
Although deep brain stimulation (DBS) shows promising efficacy as a therapy for intractable depression, the neurobiological bases underlying its therapeutic action remain largely unknown. The present study was aimed at characterizing the effects of infralimbic prefrontal cortex (IL-PFC) DBS on several pre-clinical markers of the antidepressant-like response and at investigating putative non-neuronal mechanism underlying DBS action. We found that DBS induced an antidepressant-like response that was prevented by IL-PFC neuronal lesion and by adenosine A1 receptor antagonists including caffeine. Moreover, high frequency DBS induced a rapid increase of hippocampal mitosis and reversed the effects of stress on hippocampal synaptic metaplasticity. In addition, DBS increased spontaneous IL-PFC low-frequency oscillations and both raphe 5-HT firing activity and synaptogenesis. Unambiguously, a local glial lesion counteracted all these neurobiological effects of DBS. Further in vivo electrophysiological results revealed that this astrocytic modulation of DBS involved adenosine A1 receptors and K(+) buffering system. Finally, a glial lesion within the site of stimulation failed to counteract the beneficial effects of low frequency (30 Hz) DBS. It is proposed that an unaltered neuronal-glial system constitutes a major prerequisite to optimize antidepressant DBS efficacy. It is also suggested that decreasing frequency could heighten antidepressant response of partial responders.
The human interleukin-1 alpha gene is located on the long arm of chromosome 2 at band q13.
Lafage, M; Maroc, N; Dubreuil, P; de Waal Malefijt, R; Pébusque, M J; Carcassonne, Y; Mannoni, P
1989-01-01
Interleukin-1 alpha (IL-1 alpha) and interleukin-1 beta (IL-1 beta) are two biochemically distinct, but distantly related, polypeptidic cytokines that play a key role in inflammation, immunologic reactions, and tissue repair. Recently, it has been shown that IL-1 alpha is identical to hematopoietin 1, which was described as a hematopoietic growth factor acting on early progenitor cells in synergy with other hematopoietic growth factors. In this report we discuss our use of in situ hybridization on human prometaphase cells with a human IL-1 alpha cDNA probe to localize the human IL-1 alpha gene on the proximal part of the long arm of chromosome 2 at band q13, in the same chromosomal region as the IL-1 beta gene.
Strauss, Kenneth I; Elisevich, Kost V
2016-10-13
Epilepsy patients have distinct immune/inflammatory cell profiles and inflammatory mediator levels in the blood. Although the neural origin of inflammatory cells and mediators has been implied, few studies have measured these inflammatory components in the human brain itself. This study examines the brain levels of chemokines (8), cytokines (14), and vascular injury mediators (3) suspected of being altered in epilepsy. Soluble protein extracts of fresh frozen resected hippocampus, entorhinal cortex, and temporal cortex from 58 medically refractory mesial temporal lobe epilepsy subjects and 4 nonepileptic neurosurgical subjects were assayed for 25 inflammation-related mediators using ultrasensitive low-density arrays. Brain mediator levels were compared between regions and between epileptic and nonepileptic cases, showing a number of regional and possible epilepsy-associated differences. Eotaxin, interferon-γ, interleukin (IL)-2, IL-4, IL-12 p70, IL-17A, tumor necrosis factor-α, and intercellular adhesion molecule (ICAM)-1 levels were highest in the hippocampus, the presumptive site of epileptogenesis. Surprisingly, IL-1β and IL-1α were lowest in the hippocampus, compared to cortical regions. In the temporal cortex, IL-1β, IL-8, and MIP-1α levels were highest, compared to the entorhinal cortex and the hippocampus. The most pronounced epilepsy-associated differences were decreased levels of eotaxin, IL-1β, C-reactive protein, and vascular cell adhesion molecule (VCAM)-1 and increased IL-12 p70 levels. Caution must be used in interpreting these results, however, because nonepileptic subjects were emergent neurosurgical cases, not a control group. Correlation analyses of each mediator in each brain region yielded valuable insights into the regulation of these mediator levels in the brain. Over 70 % of the associations identified were between different mediators in a single brain region, providing support for local control of mediator levels. Correlations of different mediators in different brain regions suggested more distributed control mechanisms, particularly in the hippocampus. Interestingly, only four mediators showed robust correlations between the brain regions, yet levels in three of these were significantly different between regions, indicating both global and local controls for these mediators. Both brain region-specific and epilepsy-associated changes in inflammation-related mediators were detected. Correlations in mediator levels within and between brain regions indicated local and global regulation, respectively. The hippocampus showed the majority of interregional associations, suggesting a focus of inflammatory control between these regions.
Novel allergic asthma model demonstrates ST2-dependent dendritic cell targeting by cypress pollen.
Gabriele, Lucia; Schiavoni, Giovanna; Mattei, Fabrizio; Sanchez, Massimo; Sestili, Paola; Butteroni, Cinzia; Businaro, Rita; Mirchandani, Ananda; Niedbala, Wanda; Liew, Foo Y; Afferni, Claudia
2013-09-01
Cypress pollen causes respiratory syndromes with different grades of severity, including asthma. IL-33, its receptor ST2, and dendritic cells (DCs) have been implicated in human respiratory allergy. We sought to define a new mouse model of allergy to cypress pollen that recapitulates clinical parameters in allergic patients and to evaluate the implications of DCs and the IL-33/ST2 pathway in this pathology. BALB/c mice, either wild-type or ST2 deficient (ST2(-/-)), were sensitized and challenged with the Cupressus arizonica major allergen nCup a 1. Local and systemic allergic responses were evaluated. Pulmonary cells were characterized by means of flow cytometry. DCs were stimulated with nCup a 1 and tested for their biological response to IL-33 in coculture assays. nCup a 1 causes a respiratory syndrome closely resembling human pollinosis in BALB/c mice. nCup a 1-treated mice exhibit the hallmarks of allergic pathology associated with pulmonary infiltration of eosinophils, T cells, and DCs and a dominant TH2-type immune response. IL-33 levels were increased in lungs and sera of nCup a 1-treated mice and in subjects with cypress allergy. The allergen-specific reaction was markedly reduced in ST2(-/-) mice, which showed fewer infiltrating eosinophils, T cells, and DCs in the lungs. Finally, stimulation of DCs with nCup a 1 resulted in ST2 upregulation that endowed DCs with increased ability to respond to IL-33-mediated differentiation of IL-5- and IL-13-producing CD4 T cells. Our findings define a novel preclinical model of allergy to cypress pollen and provide the first evidence of a functionally relevant linkage between pollen allergens and TH2-polarizing activity by DCs through IL-33/ST2. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
Furcron, Amy-Eunice; Romero, Roberto; Mial, Tara N.; Balancio, Amapola; Panaitescu, Bogdan; Hassan, Sonia S.; Sahi, Aashna; Nord, Claire; Gomez-Lopez, Nardhy
2016-01-01
Human chorionic gonadotropin (hCG) is implicated in the maintenance of uterine quiescence by down-regulating myometrial gap junctions during pregnancy, and it was considered as a strategy to prevent preterm birth after the occurrence of preterm labor. However, the effect of hCG on innate and adaptive immune cells implicated in parturition is poorly understood. Herein, we investigated the immune effects of hCG at the maternal-fetal interface during late gestation, and whether this hormone can safely prevent endotoxin-induced preterm birth. Using immunophenotyping, we demonstrated that hCG has immune effects at the maternal-fetal interface (decidual tissues) by: 1) increasing the proportion of regulatory T cells; 2) reducing the proportion of macrophages and neutrophils; 3) inducing an M1 → M2 macrophage polarization; and 4) increasing the proportion of T helper 17 cells. Next, ELISAs were used to determine whether the local immune changes were associated with systemic concentrations of progesterone, estradiol, and/or cytokines (IFNgamma, IL1beta, IL2, IL4, IL5, IL6, IL10, IL12p70, KC/GRO, and TNFalpha). Plasma concentrations of IL1beta, but not progesterone, estradiol, or any other cytokine, were increased following hCG administration. Pretreatment with hCG prevented endotoxin-induced preterm birth by 44%, proving the effectiveness of this hormone as an anti-inflammatory agent. However, hCG administration alone caused dystocia and fetal compromise, as proven by Doppler ultrasound. These results provide insight into the mechanisms whereby hCG induces an anti-inflammatory microenvironment at the maternal-fetal interface during late gestation, and demonstrate its effectiveness in preventing preterm labor/birth. However, the deleterious effects of this hormone on mothers and fetuses warrant caution. PMID:27146032
An overview of the involvement of interleukin-18 in degenerative retinopathies.
Campbell, Matthew; Doyle, Sarah L; Ozaki, Ema; Kenna, Paul F; Kiang, Anna-Sophia; Humphries, Marian M; Humphries, Peter
2014-01-01
Age-related macular degeneration (AMD) is the leading cause of central vision loss worldwide and while polymorphisms in genes associated with the immune system have been identified as risk factors for disease development, the underlying pathways and mechanisms involved in disease progression have remained unclear. In AMD, localised inflammatory responses related to particulate matter accumulation and subsequent "sterile" inflammation has recently gained considerable interest amongst basic researchers and clinicians alike. Typically, inflammatory responses in the human body are caused as a result of bacterial or viral infection, however in chronic conditions such as AMD, extracellular particulate matter such as drusen can be "sensed" by the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome, culminating in the release of the two pro-inflammatory cytokines IL-1β and IL-18 in the delicate local tissue of the retina. Identification at the molecular level of mediators of the inflammatory response in AMD may yield novel therapeutic approaches to this common and often severe form of blindness. Here, we will describe the role of IL-18 in AMD and other forms of retinal disorders. We will outline some of the key functions of IL-18 as it pertains to maintaining tissue homeostasis in a healthy and degenerating/diseased retina.
Uto-Konomi, Ayako; Miyauchi, Kosuke; Ozaki, Naoko; Motomura, Yasutaka; Suzuki, Yoshie; Yoshimura, Akihiko; Suzuki, Shinobu; Cua, Daniel; Kubo, Masato
2012-01-01
Homeostatic regulation of epidermal keratinocytes is controlled by the local cytokine milieu. However, a role for suppressor of cytokine signaling (SOCS), a negative feedback regulator of cytokine networks, in skin homeostasis remains unclear. Keratinocyte specific deletion of Socs3 (Socs3 cKO) caused severe skin inflammation with hyper-production of IgE, epidermal hyperplasia, and S100A8/9 expression, although Socs1 deletion caused no inflammation. The inflamed skin showed constitutive STAT3 activation and up-regulation of IL-6 and IL-20 receptor (IL-20R) related cytokines, IL-19, IL-20 and IL-24. Disease development was rescued by deletion of the Il6 gene, but not by the deletion of Il23, Il4r, or Rag1 genes. The expression of IL-6 in Socs3 cKO keratinocytes increased expression of IL-20R-related cytokines that further facilitated STAT3 hyperactivation, epidermal hyperplasia and neutrophilia. These results demonstrate that skin homeostasis is strictly regulated by the IL-6-STAT3-SOCS3 axis. Moreover, the SOCS3-mediated negative feedback loop in keratinocytes has a critical mechanistic role in the prevention of skin inflammation caused by hyperactivation of STAT3. PMID:22792286
Interleukin-10 Modulation of Virus Clearance and Disease in Mice with Alphaviral Encephalomyelitis.
Martin, Nina M; Griffin, Diane E
2018-03-15
Alphaviruses are an important cause of mosquito-borne outbreaks of arthritis, rash, and encephalomyelitis. Previous studies in mice with a virulent strain (neuroadapted SINV [NSV]) of the alphavirus Sindbis virus (SINV) identified a role for Th17 cells and regulation by interleukin-10 (IL-10) in the pathogenesis of fatal encephalomyelitis (K. A. Kulcsar, V. K. Baxter, I. P. Greene, and D. E. Griffin, Proc Natl Acad Sci U S A 111:16053-16058, 2014, https://doi.org/10.1073/pnas.1418966111). To determine the role of virus virulence in generation of immune responses, we analyzed the modulatory effects of IL-10 on disease severity, virus clearance, and the CD4 + T cell response to infection with a recombinant strain of SINV of intermediate virulence (TE12). The absence of IL-10 during TE12 infection led to longer morbidity, more weight loss, higher mortality, and slower viral clearance than in wild-type mice. More severe disease and impaired virus clearance in IL-10 -/- mice were associated with more Th1 cells, fewer Th2 cells, innate lymphoid type 2 cells, regulatory cells, and B cells, and delayed production of antiviral antibody in the central nervous system (CNS) without an effect on Th17 cells. Therefore, IL-10 deficiency led to more severe disease in TE12-infected mice by increasing Th1 cells and by hampering development of the local B cell responses necessary for rapid production of antiviral antibody and virus clearance from the CNS. In addition, the shift from Th17 to Th1 responses with decreased virus virulence indicates that the effects of IL-10 deficiency on immunopathologic responses in the CNS during alphavirus infection are influenced by virus strain. IMPORTANCE Alphaviruses cause mosquito-borne outbreaks of encephalomyelitis, but determinants of outcome are incompletely understood. We analyzed the effects of the anti-inflammatory cytokine IL-10 on disease severity and virus clearance after infection with an alphavirus strain of intermediate virulence. The absence of IL-10 led to longer illness, more weight loss, more death, and slower viral clearance than in mice that produced IL-10. IL-10 influenced development of disease-causing T cells and entry into the brain of B cells producing antiviral antibody. The Th1 pathogenic cell subtype that developed in IL-10-deficient mice infected with a less virulent virus was distinct from the Th17 subtype that developed in response to a more virulent virus, indicating a role for virus strain in determining the immune response. Slow production of antibody in the nervous system led to delayed virus clearance. Therefore, both the virus strain and the host response to infection are important determinants of outcome. Copyright © 2018 American Society for Microbiology.
Orona, Nadia S; Ferraro, Sebastián A; Astort, Francisco; Morales, Celina; Brites, Fernando; Boero, Laura; Tiscornia, Gisela; Maglione, Guillermo A; Saldiva, Paulo H N; Yakisich, Sebastian; Tasat, Deborah R
2016-01-01
Exposure to air particulate matter (PM) is associated with increased cardiovascular morbimortality. However, PM doesn't affect equally to all people, being the old cohort the most susceptible and studied. We hypothesized that another specific life phase, the middle-aged subpopulation, may be negatively affected. Therefore, the aim of this study was to analyze in vivo the acute biological impact of two environmental particles, Urban Air Particles from Buenos Aires and Residual Oil Fly Ash, on the cardiorespiratory system of middle-aged mice, evaluating oxidative metabolism and inflammation. Both PM provoked a local and systemic inflammatory response, leading to a reduced alveolar area in the lung, an epicard inflammation in the heart, an increment of IL-6, and a reduction on PON 1 activity in serum of middle-aged animals. The positive correlation of local parameters with systemic markers of oxidative stress and inflammation could be responsible for associations of cardiovascular morbimortality in this subpopulation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Role of Mammary Prolactin in Carcinogenesis
1998-10-01
severity jectives were to 1) demonstrate local expression of both of breast cancer, and treatments that suppress pituitary PRL PRL and PRL receptor, and 2...factors in the haemopoietic system. Immunol Today 14: mammary tumors and effect of antiestrogen treatment on the de- 212-214 velopment and growth of...PRL is stimulated by interleukin-2 (IL-2), is quence analysis of decidual PRL cDNA (103) has established maximal within 6 h of treatment , and is
Bodger, K; Bromelow, K; Wyatt, J; Heatley, R
2001-01-01
Background/Aims—Interleukin 10 (IL-10) is a counterinflammatory peptide implicated in the downregulation of human intestinal immune responses. Enhanced secretion of IL-10 has been documented in gastric biopsy organ culture in Helicobacter pylori infection. This study aimed to define the cellular origins of IL-10 in H pylori associated gastritis, and to determine the effects of endogenous IL-10 on proinflammatory cytokine secretion in vitro. Methods—Endoscopic biopsies were obtained from the gastric antrum at endoscopy from patients with dyspepsia. Two pairs of antral biopsies were cultured in vitro for 24 hours, one pair in the presence of neutralising anti-IL-10 monoclonal antibody, the other pair as controls. The cytokine content of culture supernatants (tumour necrosis factor α (TNF-α), IL-6, and IL-8) was determined by enzyme linked immunosorbent assay and corrected for biopsy weight. Helicobacter pylori status was established by histology and biopsy urease test, and histopathology graded by the Sydney system. In a subgroup of patients, western blotting was used to establish CagA serological status. Immunohistochemistry for IL-10 was performed on formalin fixed tissues using a combination of microwave antigen retrieval and the indirect avidin–biotin technique. Immunoreactivity was scored semiquantitatively. Results—In vitro culture was performed in 41 patients: 31 with H pylori positive chronic gastritis and 10 H pylori negative. In vitro secretion of TNF-α, IL-6, and IL-8 for "control" biopsies was significantly higher in H pylori positive versus negative samples, with values of TNF-α and IL-6 correlating with the degree of active and chronic inflammation and being higher in CagA seropositive cases. No evidence for enhanced cytokine secretion was seen in biopsies cocultured in the presence of anti-IL-10 monoclonal antibody. Immunohistochemistry was performed in 29 patients, of whom 13 were H pylori positive. IL-10 immunoreactivity was observed in the surface epithelium in all H pylori positive cases and in 13 of 16 negative cases, especially in areas of surface epithelial degeneration. Lamina propria mononuclear cells (LPMNCs) were positively stained in all H pylori positive cases and in 12 of 16 negative cases, with a significantly greater proportion of positive LPMNCs in the positive group. Conclusions—This study localised IL-10 protein to the gastric epithelium and LPMNCs. In vitro proinflammatory cytokine secretion was increased in H pylori infection (especially CagA positive infection), but blocking endogenous IL-10 secretion did not significantly increase cytokine secretion. IL-10 is implicated in H pylori infection and might "damp down" local inflammation. The role of gastric IL-10 secretion in determining the clinicopathological outcome of infection merits further study. Key Words: Helicobacter pylori infection • interleukin 10 • gastritis • immunohistochemistry PMID:11304845
Effects of B Cell Depletion on Early Mycobacterium tuberculosis Infection in Cynomolgus Macaques.
Phuah, Jiayao; Wong, Eileen A; Gideon, Hannah P; Maiello, Pauline; Coleman, M Teresa; Hendricks, Matthew R; Ruden, Rachel; Cirrincione, Lauren R; Chan, John; Lin, Philana Ling; Flynn, JoAnne L
2016-05-01
Although recent studies in mice have shown that components of B cell and humoral immunity can modulate the immune responses against Mycobacterium tuberculosis, the roles of these components in human and nonhuman primate infections are unknown. The cynomolgus macaque (Macaca fascicularis) model of M. tuberculosis infection closely mirrors the infection outcomes and pathology in human tuberculosis (TB). The present study used rituximab, an anti-CD20 antibody, to deplete B cells in M. tuberculosis-infected macaques to examine the contribution of B cells and humoral immunity to the control of TB in nonhuman primates during the acute phase of infection. While there was no difference in the overall pathology, disease profession, and clinical outcome between the rituximab-treated and untreated macaques in acute infection, analyzing individual granulomas revealed that B cell depletion resulted in altered local T cell and cytokine responses, increased bacterial burden, and lower levels of inflammation. There were elevated frequencies of T cells producing interleukin-2 (IL-2), IL-10, and IL-17 and decreased IL-6 and IL-10 levels within granulomas from B cell-depleted animals. The effects of B cell depletion varied among granulomas in an individual animal, as well as among animals, underscoring the previously reported heterogeneity of local immunologic characteristics of tuberculous granulomas in nonhuman primates. Taken together, our data clearly showed that B cells can modulate the local granulomatous response in M. tuberculosis-infected macaques during acute infection. The impact of these alterations on disease progression and outcome in the chronic phase remains to be determined. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Aqueous two-phase systems enable multiplexing of homogeneous immunoassays
Simon, Arlyne B.; Frampton, John P.; Huang, Nien-Tsu; Kurabayashi, Katsuo; Paczesny, Sophie; Takayama, Shuichi
2014-01-01
Quantitative measurement of protein biomarkers is critical for biomarker validation and early disease detection. Current multiplex immunoassays are time consuming costly and can suffer from low accuracy. For example, multiplex ELISAs require multiple, tedious, washing and blocking steps. Moreover, they suffer from nonspecific antibody cross-reactions, leading to high background and false-positive signals. Here, we show that co-localizing antibody-bead pairs in an aqueous two-phase system (ATPS) enables multiplexing of sensitive, no-wash, homogeneous assays, while preventing nonspecific antibody cross-reactions. Our cross-reaction-free, multiplex assay can simultaneously detect picomolar concentrations of four protein biomarkers ((C-X-C motif) ligand 10 (CXCL10), CXCL9, interleukin (IL)-8 and IL-6) in cell supernatants using a single assay well. The potential clinical utility of the assay is demonstrated by detecting diagnostic biomarkers (CXCL10 and CXCL9) in plasma from 88 patients at the onset of the clinical symptoms of chronic graft-versus-host disease (GVHD). PMID:25083509
Systemic release of cytokines and heat shock proteins in porcine models of polytrauma and hemorrhage
Baker, Todd A.; Romero, Jacqueline; Bach, Harold H.; Strom, Joel A.; Gamelli, Richard L.; Majetschak, Matthias
2011-01-01
Objective To define systemic release kinetics of a panel of cytokines and heat shock proteins (HSP) in porcine polytrauma/hemorrhage models and to evaluate whether they could be useful as early trauma biomarkers. Design and Setting Prospective study in a research laboratory. Subjects Twenty-one Yorkshire pigs. Measurements and Main Results Pigs underwent polytrauma (femur fractures/lung contusion, P), hemorrhage (mean arterial pressure 25-30mmHg, H), polytrauma plus hemorrhage (P/H) or sham procedure (S). Plasma was obtained at baseline, in 5-15min intervals during a 60min shock period without intervention and in 60-120min intervals during fluid resuscitation for up to 300min. Plasma was assayed for IL-1β, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12/IL-23p40, IL-13, IL-17, IL-18, IFNγ, TGFβ, TNFα, HSP40, HSP70 and HSP90 by ELISA. All animals after S, P and H survived (n=5/group). Three of six animals after P/H died. IL-10 increased during shock after P and this increase was attenuated after H. TNFα increased during the shock period after P, H and also after S. P/H abolished the systemic IL-10 and TNFα release and resulted in 20-30% increased levels of IL-6 during shock. As fluid resuscitation was initiated TNFα and IL-10 levels decreased after P, H and P/H, HSP 70 increased after P, IL-6 levels remained elevated after P/H and also increased after P and S. Conclusions Differential regulation of the systemic cytokine release after polytrauma and/or hemorrhage, in combination with the effects of resuscitation, can explain the variability and inconsistent association of systemic cytokine/HSP levels with clinical variables in trauma patients. Insults of major severity (P/H) partially suppress the systemic inflammatory response. The plasma concentrations of the measured cytokines/HSPs do not reflect injury severity or physiological changes in porcine trauma models and are unlikely to be able to serve as useful trauma biomarkers in patients. PMID:21983369
Michaud, Nadège; Al-Akoum, Mahéra; Gagnon, Geneviève; Girard, Karine; Blanchet, Pierre; Rousseau, Julie Anne; Akoum, Ali
2011-12-01
Interleukin 1 (IL1) may play an important role in endometriosis-associated pelvic inflammation, and natural specific inhibitors, including soluble IL1 receptor accessory protein (sIL1RAcP) and soluble IL1 receptor type 2 (sIL1R2), are critical for counterbalancing the pleiotropic effects of IL1. The objective of this study was to evaluate the levels of sIL1RAcP, together with those of sIL1R2 and IL1β, in the peritoneal fluid of women with and without endometriosis. Peritoneal fluid samples were obtained at laparoscopy and assessed by ELISA. sIL1RAcP concentrations were reduced in endometriosis stages I-II and III-IV. sIL1R2 concentrations were decreased, and those of IL1β were significantly increased in endometriosis stages I-II. sIL1RAcP and sIL1R2 concentrations were significantly decreased in the secretory phase of the menstrual cycle, and IL1β concentrations were elevated in the proliferative and the secretory phases. sIL1RAcP and sIL1R2 concentrations were reduced in women with endometriosis who were infertile, fertile, suffering from pelvic pain or pain-free. However, IL1β concentrations were significantly reduced in women with endometriosis who were infertile or had pelvic pain. These changes may exacerbate the local peritoneal inflammatory reaction observed in women with endometriosis and contribute to endometriosis pathophysiology and the major symptoms of this disease. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Strandmark, J; Steinfelder, S; Berek, C; Kühl, A A; Rausch, S; Hartmann, S
2017-05-01
Infections with enteric nematodes result in systemic type 2 helper T (Th2) responses, expansion of immunoglobulin (Ig)G1 antibodies, and eosinophilia. Eosinophils have a supportive role in mucosal Th2 induction during airway hyperreactivity. Whether eosinophils affect the local T-cell and antibody response in the gut-associated lymphoid tissue during enteric infections is unknown. We infected eosinophil-deficient ΔdblGATA-1 mice with the Th2-inducing small intestinal nematode Heligmosomoides polygyrus and found that parasite fecundity was decreased in the absence of eosinophils. A lack of eosinophils resulted in significantly augmented expression of GATA-3 and IL-4 by CD4 + T cells during acute infection, a finding strictly limited to Peyer's patches (PP). The increase in IL-4-producing cells in ΔdblGATA-1 mice was particularly evident within the CXCR5 + PD-1 + T-follicular helper cell population and was associated with a switch of germinal centre B cells to IgG1 production and elevated serum IgG1 levels. In contrast, infected wild-type mice had a modest IgG1 response in the PP, whereas successfully maintaining a population of IgA + germinal center B cells. Our results suggest a novel role for eosinophils during intestinal infection whereby they restrict IL-4 responses by follicular T helper cells and IgG1 class switching in the PP to ensure maintenance of local IgA production.
Peripheral blood cytokine and chemokine profiles in juvenile localized scleroderma
Torok, Kathryn S.; Kurzinski, Katherine; Kelsey, Christina; Yabes, Jonathan; Magee, Kelsey; Vallejo, Abbe N.; Medsger, Thomas; Feghali-Bostwick, Carol A.
2015-01-01
Objective To evaluate peripheral blood T-helper (TH) cell associated cytokine and chemokine profiles in localized scleroderma (LS), and correlate them with clinical disease features, including disease activity parameters. Methods A 29-plex Luminex platform was used to analyze the humoral profile of plasma samples from 69 pediatric LS patients and 71 healthy pediatric controls. Cytokine/chemokine levels were compared between these two groups and within LS patients, focusing on validated clinical outcome measures of disease activity and damage in LS. Results Plasma levels of IP-10, MCP-1, IL-17a, IL-12p70, GM-CSF, PDGF-bb, IFN-α2, and IFN-γ were significantly higher in LS compared to healthy controls. Analysis within the LS group demonstrated IP-10, TNF-α and GM-CSF correlated with clinical measures of disease activity. Several cytokines/chemokines correlated with anti-histone antibody, while only a few correlated with positive ANA and single-stranded DNA antibody. Conclusion This is the first time that multiple cytokines and chemokines have been examined simultaneously LS. In general, a TH-1 (IFN-γ) and TH-17 (IL-17a) predominance was demonstrated in LS compared to healthy controls. There is also an IFN–γ signature with elevated IP-10, MCP-1 and IFN-γ, which has been previously demonstrated in systemic sclerosis, suggesting a shared pathophysiology. Within the LS patients, those with active disease demonstrated IP-10, TNF-α and GM-CSF, which may potentially serve as biomarkers of disease activity in the clinical setting. PMID:26254121
Assessment of the U937 cell line for the detection of contact allergens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Python, Francois; Goebel, Carsten; Aeby, Pierre
2007-04-15
The human myeloid cell line U937 was evaluated as an in vitro test system to identify contact sensitizers in order to develop alternatives to animal tests for the cosmetic industry. Specific culture conditions (i.e., presence of interleukin-4, IL-4) were applied to obtain a dendritic cell-like phenotype. In the described test protocol, these cells were exposed to test chemicals and then analyzed by flow cytometry for CD86 expression and by quantitative real-time reverse transcriptase-polymerase chain reaction for IL-1{beta} and IL-8 gene expressions. Eight sensitizers, three non-sensitizers and five oxidative hair dye precursors were examined after 24-, 48- and 72-h exposure times.more » Test item-specific modulations of the chosen activation markers (CD86, IL-1{beta} and IL-8) suggest that this U937 activation test could discriminate test items classified as contact sensitizers or non-sensitizers in the local lymph node assay in mice (LLNA). More specifically, a test item can be considered as a potential sensitizer when it significantly induced the upregulation of the expression of at least two markers. Using this approach, we could correctly evaluate the dendritic cell (DC) activation potential for 15 out of 16 tested chemicals. We conclude that the U937 activation test may represent an useful tool in a future in vitro test battery for predicting sensitizing properties of chemicals.« less
Zhou, Bin; Liao, Yonggan; Guo, Yunkai; Tarner, Ingo H; Liao, Chunfen; Chen, Sisi; Kermany, Mohammad Habiby; Tu, Hanjun; Zhong, Sen; Chen, Peijie
2017-01-01
In the past, the clinical therapy for autoimmune diseases, such as autoimmune polychondritis ear disease, was mostly limited to nonspecific immunosuppressive agents, which could lead to variable responses. Currently, gene therapy aims at achieving higher specificity and less adverse effects. This concept utilizes the adoptive transfer of autologous T cells that have been retrovirally transduced ex vivo to express and deliver immunoregulatory gene products to sites of autoimmune inflammation. In the animal model of collagen-induced autoimmune polychondritis ear disease (CIAPED), the adoptive transfer of IL-12p40-expressing collagen type II (CII)-specific CD4+ T-cell hybridomas resulted in a significantly lower disease incidence and severity compared with untreated or vector-only-treated animals. In vivo cell detection using bioluminescent labels showed that transferred CII-reactive T-cell hybridomas accumulated in the inflamed earlobes of the mice with CIAPED. In vitro analysis demonstrated that IL-12p40-transduced T cells did not affect antigen-specific T-cell activation or systemic anti-CII Ab responses. However, IL-12p40-transduced T cells suppressed IFN-γ and augmented IL-4 production, indicating their potential to act therapeutically by interrupting Th1-mediated inflammatory responses via augmenting Th2 responses. These results indicate that the local delivery of IL-12p40 by T cells could inhibit CIAPED by suppressing autoimmune responses at the site of inflammation. © 2017 S. Karger AG, Basel.
Fischer, Katrin; Ruiz, Henry H.; Jhun, Kevin; Finan, Brian; Oberlin, Douglas J.; van der Heide, Verena; Kalinovich, Anastasia V.; Petrovic, Natasa; Wolf, Yochai; Clemmensen, Christoffer; Shin, Andrew C.; Divanovic, Senad; Brombacher, Frank; Glasmacher, Elke; Keipert, Susanne; Jastroch, Martin; Nagler, Joachim; Schramm, Karl-Werner; Medrikova, Dasa; Collden, Gustav; Woods, Stephen C.; Herzig, Stephan; Homann, Dirk; Jung, Steffen; Nedergaard, Jan; Cannon, Barbara; Tschöp, Matthias H.
2017-01-01
Adaptive thermogenesis is the process of heat generation in response to cold stimulation and is under the control of the sympathetic nervous system whose chief effector is the catecholamine norepinephrine (NE). NE enhances thermogenesis through beta3 adrenergic receptors to activate brown adipose tissue and by “browning” white adipose tissue. Recent studies reported that the alternative activation of macrophages in response to IL-4 stimulation induces the expression of tyrosine hydroxylase (TH), a key enzyme in the catecholamine synthesis pathway, and to provide an alternative source of locally produced catecholamines during the thermogenic process. We here report that the deletion of Th in hematopoetic cells of adult mice neither alters energy expenditure upon cold exposure nor reduces browning in inguinal adipose tissue. Bone marrow-derived macrophages did not release NE in response to stimulation with Interleukin-4 (IL-4), and conditioned media from IL-4 stimulated macrophages failed to induce expression of thermogenic genes, such as the one for uncoupling protein 1 (Ucp1) in adipocytes cultured with the conditioned media. Further, chronic IL-4 treatment failed to increase energy expenditure in WT, Ucp1-/- and Il4ra-/- mice. Consistent with these findings, adipose tissue-resident macrophages did not express TH. Thus, we conclude that alternatively activated macrophages do not synthesize relevant amounts of catecholamines and hence are not likely to play a direct role in adipocyte metabolism or adaptive thermogenesis. PMID:28414329
Immunohistochemical study of intestinal eosinophils in inflammatory bowel disease.
Carvalho, Ana Teresa Pugas; Elia, Celeste Carvalho Siqueira; de Souza, Heitor Siffert Pereira; Elias, Paulo Roberto Pinheiro; Pontes, Eduardo Lopes; Lukashok, Hannah Pitanga; de Freitas, Fernanda Cristina Dias; Lapa e Silva, José Roberto
2003-02-01
Eosinophil accumulation and activation are characteristic features of inflammation in allergic diseases and in host defense against parasites. To investigate the involvement of eosinophils in inflamed and noninflamed mucosa of patients with inflammatory bowel disease (IBD). Specimens of inflamed colonic mucosa from 15 patients with ulcerative colitis (UC) and inflamed and noninflamed colonic mucosa from 15 patients with Crohn's disease (CD) were submitted to histologic and immunohistochemical studies. Twelve patients with irritable bowel syndrome were studied as controls. Sirius red was used to label eosinophils in tissue. EG1, EG2, and anti-hIL-5 were used as primary antibodies in an indirect alkaline phosphatase-labeled immunostaining protocol. Both positive and negative lamina propria cells were assessed by a quantitative grading system and the results expressed as cell numbers per mm. Increased proportions of eosinophils stained with Sirius red, EG1, EG2, and anti-hIL-5+ cells were found in the colon of patients with UC and in inflamed and noninflamed colon of CD patients as compared with controls. Crohn's disease patients showed increased proportions of EG1+ and EG2+ cells as compared with those with UC. Increased proportions of IL-5+ cells were detected in UC patients as compared with those with CD. Quantitative eosinophil alterations and IL-5+ cells may indicate enhanced cellular activation with degranulation, which is implicated in the pathogenesis of IBD. Increase in IL-5+ cells may reflect a predominant local Th2 response in UC as compared with CD.
Immunological effects of reduced mucosal integrity in the early life of BALB/c mice.
Bendtsen, Katja Maria; Hansen, Camilla Hartmann Friis; Krych, Łukasz; Skovgaard, Kerstin; Kot, Witold; Vogensen, Finn Kvist; Hansen, Axel Kornerup
2017-01-01
Certain stimuli at the gut barrier may be necessary in early life to establish a proper balance of immune tolerance. We evaluated a compromised barrier in juvenile mice in relation to microbiota and local and systemic immunity. BALB/c mice were treated with a low dose of dextran sulfate sodium (DSS) with or without ampicillin and lipopolysaccharide (LPS) to clarify the importance of microbial antigens and interaction between microbial-associated patterns and toll-like receptors. The barrier breach resulted in increased plasma LPS, which was highest in mice treated simultaneously with ampicillin. Adding LPS in the food reduced its levels in plasma. Regulatory T cells were acutely increased in mesenteric lymph nodes (MLN) and spleen during DSS treatment regardless of simultaneous ampicillin treatment. In contrast, NK T and NK cells decreased in MLN and in spleen. This acute DSS effect was reflected in fold changes of haptoglobin and Il1a in colon, and this was also more pronounced in mice simultaneously treated with ampicillin. On day 1 post-treatment, major upregulations of Ifng, Foxp3, Il1b, Il2, and Il6 genes in colon were only observed in the mice simultaneously treated with ampicillin. A two-fold upregulation of colonic Foxp3 and Il1a was evident 25 days post-treatment. DSS skewed the microbiota in favor of Gram negative phyla. Therefore, increased permeability induced tolerogenic immunity independent of microbiota, and this was enhanced by LPS stimulation.
Fischer, Katrin; Ruiz, Henry H; Jhun, Kevin; Finan, Brian; Oberlin, Douglas J; van der Heide, Verena; Kalinovich, Anastasia V; Petrovic, Natasa; Wolf, Yochai; Clemmensen, Christoffer; Shin, Andrew C; Divanovic, Senad; Brombacher, Frank; Glasmacher, Elke; Keipert, Susanne; Jastroch, Martin; Nagler, Joachim; Schramm, Karl-Werner; Medrikova, Dasa; Collden, Gustav; Woods, Stephen C; Herzig, Stephan; Homann, Dirk; Jung, Steffen; Nedergaard, Jan; Cannon, Barbara; Tschöp, Matthias H; Müller, Timo D; Buettner, Christoph
2017-05-01
Adaptive thermogenesis is the process of heat generation in response to cold stimulation. It is under the control of the sympathetic nervous system, whose chief effector is the catecholamine norepinephrine (NE). NE enhances thermogenesis through β3-adrenergic receptors to activate brown adipose tissue and by 'browning' white adipose tissue. Recent studies have reported that alternative activation of macrophages in response to interleukin (IL)-4 stimulation induces the expression of tyrosine hydroxylase (TH), a key enzyme in the catecholamine synthesis pathway, and that this activation provides an alternative source of locally produced catecholamines during the thermogenic process. Here we report that the deletion of Th in hematopoietic cells of adult mice neither alters energy expenditure upon cold exposure nor reduces browning in inguinal adipose tissue. Bone marrow-derived macrophages did not release NE in response to stimulation with IL-4, and conditioned media from IL-4-stimulated macrophages failed to induce expression of thermogenic genes, such as uncoupling protein 1 (Ucp1), in adipocytes cultured with the conditioned media. Furthermore, chronic treatment with IL-4 failed to increase energy expenditure in wild-type, Ucp1 -/- and interleukin-4 receptor-α double-negative (Il4ra -/- ) mice. In agreement with these findings, adipose-tissue-resident macrophages did not express TH. Thus, we conclude that alternatively activated macrophages do not synthesize relevant amounts of catecholamines, and hence, are not likely to have a direct role in adipocyte metabolism or adaptive thermogenesis.
Genetic risk factors of systemic lupus erythematosus in the Malaysian population: a minireview.
Chai, Hwa Chia; Phipps, Maude Elvira; Chua, Kek Heng
2012-01-01
SLE is an autoimmune disease that is not uncommon in Malaysia. In contrast to Malays and Indians, the Chinese seem to be most affected. SLE is characterized by deficiency of body's immune response that leads to production of autoantibodies and failure of immune complex clearance. This minireview attempts to summarize the association of several candidate genes with risk for SLE in the Malaysian population and discuss the genetic heterogeneity that exists locally in Asians and in comparison with SLE in Caucasians. Several groups of researchers have been actively investigating genes that are associated with SLE susceptibility in the Malaysian population by screening possible reported candidate genes across the SLE patients and healthy controls. These candidate genes include MHC genes and genes encoding complement components, TNF, FcγR, T-cell receptors, and interleukins. However, most of the polymorphisms investigated in these genes did not show significant associations with susceptibility to SLE in the Malaysian scenario, except for those occurring in MHC genes and genes coding for TNF-α, IL-1β, IL-1RN, and IL-6.
Genetic Risk Factors of Systemic Lupus Erythematosus in the Malaysian Population: A Minireview
Chai, Hwa Chia; Phipps, Maude Elvira; Chua, Kek Heng
2012-01-01
SLE is an autoimmune disease that is not uncommon in Malaysia. In contrast to Malays and Indians, the Chinese seem to be most affected. SLE is characterized by deficiency of body's immune response that leads to production of autoantibodies and failure of immune complex clearance. This minireview attempts to summarize the association of several candidate genes with risk for SLE in the Malaysian population and discuss the genetic heterogeneity that exists locally in Asians and in comparison with SLE in Caucasians. Several groups of researchers have been actively investigating genes that are associated with SLE susceptibility in the Malaysian population by screening possible reported candidate genes across the SLE patients and healthy controls. These candidate genes include MHC genes and genes encoding complement components, TNF, FcγR, T-cell receptors, and interleukins. However, most of the polymorphisms investigated in these genes did not show significant associations with susceptibility to SLE in the Malaysian scenario, except for those occurring in MHC genes and genes coding for TNF-α, IL-1β, IL-1RN, and IL-6. PMID:21941582
A mathematical model of aortic aneurysm formation
Hao, Wenrui; Gong, Shihua; Wu, Shuonan; Xu, Jinchao; Go, Michael R.; Friedman, Avner; Zhu, Dai
2017-01-01
Abdominal aortic aneurysm (AAA) is a localized enlargement of the abdominal aorta, such that the diameter exceeds 3 cm. The natural history of AAA is progressive growth leading to rupture, an event that carries up to 90% risk of mortality. Hence there is a need to predict the growth of the diameter of the aorta based on the diameter of a patient’s aneurysm at initial screening and aided by non-invasive biomarkers. IL-6 is overexpressed in AAA and was suggested as a prognostic marker for the risk in AAA. The present paper develops a mathematical model which relates the growth of the abdominal aorta to the serum concentration of IL-6. Given the initial diameter of the aorta and the serum concentration of IL-6, the model predicts the growth of the diameter at subsequent times. Such a prediction can provide guidance to how closely the patient’s abdominal aorta should be monitored. The mathematical model is represented by a system of partial differential equations taking place in the aortic wall, where the media is assumed to have the constituency of an hyperelastic material. PMID:28212412
Skelly, Donal T; Griffin, Éadaoin W; Murray, Carol L; Harney, Sarah; O'Boyle, Conor; Hennessy, Edel; Dansereau, Marc-Andre; Nazmi, Arshed; Tortorelli, Lucas; Rawlins, J Nicholas; Bannerman, David M; Cunningham, Colm
2018-06-06
Systemic inflammation can impair cognition with relevance to dementia, delirium and post-operative cognitive dysfunction. Episodes of delirium also contribute to rates of long-term cognitive decline, implying that these acute events induce injury. Whether systemic inflammation-induced acute dysfunction and acute brain injury occur by overlapping or discrete mechanisms remains unexplored. Here we show that systemic inflammation, induced by bacterial LPS, produces both working-memory deficits and acute brain injury in the degenerating brain and that these occur by dissociable IL-1-dependent processes. In normal C57BL/6 mice, LPS (100 µg/kg) did not affect working memory but impaired long-term memory consoliodation. However prior hippocampal synaptic loss left mice selectively vulnerable to LPS-induced working memory deficits. Systemically administered IL-1 receptor antagonist (IL-1RA) was protective against, and systemic IL-1β replicated, these working memory deficits. Dexamethasone abolished systemic cytokine synthesis and was protective against working memory deficits, without blocking brain IL-1β synthesis. Direct application of IL-1β to ex vivo hippocampal slices induced non-synaptic depolarisation and irrevesible loss of membrane potential in CA1 neurons from diseased animals and systemic LPS increased apoptosis in the degenerating brain, in an IL-1RI -/- -dependent fashion. The data suggest that LPS induces working memory dysfunction via circulating IL-1β but direct hippocampal action of IL-1β causes neuronal dysfunction and may drive neuronal death. The data suggest that acute systemic inflammation produces both reversible cognitive deficits, resembling delirium, and acute brain injury contributing to long-term cognitive impairment but that these events are mechanistically dissociable. These data have significant implications for management of cognitive dysfunction during acute illness.
IL-30 (IL27p28) alleviates sepsis via modulation of cytokine profiles produced by NKT cells
Yan, Jun; Mitra, Abhisek; Hu, Jiemiao; Cutrera, Jeffery J; Xia, Xueqing; Doetschman, Thomas; Gagea, Mihai; Mishra, Lopa; Li, Shulin
2016-01-01
Background & Aims Sepsis is an acute systemic inflammatory response to infection associated with high patient mortality (28-40%). We hypothesized that interleukin (IL)-30, a novel cytokine protecting mice against liver injury resulted from inflammation, would generate a protective effect against systemic inflammation and sepsis-induced death. Methods Sepsis was induced by lipopolysaccharide (LPS) or cecal ligation and puncture (CLP). The inhibitory effects of IL-30 on septic inflammation and associated therapeutic effects were determined in wild-type, IL-30 (p28)−/−, IL10−/−, and CD1d−/− mice. Results Mice treated with pIL30 gene therapy or recombinant IL-30 protein (rIL30) were protected from LPS-induced septic shock or CLP-induced polymicrobial sepsis and showed markedly less liver damage and lymphocyte apoptosis than control septic mice. The resulting reduction in mortality was mediated through attenuation of the systemic pro-inflammatory response and augmentation of bacterial clearance. Mice lacking IL-30 were more sensitive to LPS-induced sepsis. Natural killer–like T cells (NKT) produced much higher levels of IL-10 and lower levels of interferon–gamma and tumor necrosis factor–alpha in IL-30–treated septic mice than in control septic mice. Likewise, deficiency in IL-10 or NKT cells abolished the protective role of IL-30 against sepsis. Furthermore, IL-30 induced IL-10 production in purified and LPS-stimulated NKT cells. Blocking IL-6R or gp130 inhibited IL-30 mediated IL-10 production. Conclusions IL-30 is important in modulating production of NKT cytokines and subsequent NKT cell–mediated immune regulation of other cells. Therefore, IL-30 has a role in prevention and treatment of sepsis via modulation of cytokine production by NKT. PMID:26767500
Harms, Robert Z.; Creer, Austin J.; Lorenzo-Arteaga, Kristina M.; Ostlund, Katie R.; Sarvetnick, Nora E.
2017-01-01
The cytokine interleukin (IL)-18 is a crucial amplifier of natural killer (NK) cell function. IL-18 signaling is regulated by the inhibitory effects of IL-18 binding protein (IL-18BP). Using mice deficient in IL-18BP (IL-18BPKO), we investigated the impact of mismanaged IL-18 signaling on NK cells. We found an overall reduced abundance of splenic NK cells in the absence of IL-18BP. Closer examination of NK cell subsets in spleen and bone marrow using CD27 and CD11b expression revealed that immature NK cells were increased in abundance, while the mature population of NK cells was reduced. Also, NK cells were polarized to greater production of TNF-α, while dedicated IFN-γ producers were reduced. A novel subset of IL-18 receptor α− NK cells contributed to the expansion of immature NK cells in IL-18BPKO mice. Splenocytes cultured with IL-18 resulted in alterations similar to those observed in IL-18BP deficiency. NK cell changes were associated with significantly reduced levels of circulating plasma IL-18. However, IL-18BPKO mice exhibited normal weight gain and responded to LPS challenge with a >10-fold increase in IFN-γ compared to wild type. Finally, we identified that the source of splenic IL-18BP was among dendritic cells/macrophage localized to the T cell-rich regions of the spleen. Our results demonstrate that IL-18BP is required for normal NK cell abundance and function and also contributes to maintaining steady-state levels of circulating IL-18. Thus, IL-18BP appears to have functions suggestive of a carrier protein, not just an inhibitor. PMID:28900426
Guerra, Evelyn Santos; Lee, Chrono K; Specht, Charles A; Yadav, Bhawna; Huang, Haibin; Akalin, Ali; Huh, Jun R; Mueller, Christian; Levitz, Stuart M
2017-01-01
Aspergillus fumigatus causes invasive pulmonary disease in immunocompromised hosts and allergic asthma in atopic individuals. We studied the contribution of lung eosinophils to these fungal diseases. By in vivo intracellular cytokine staining and confocal microscopy, we observed that eosinophils act as local sources of IL-23 and IL-17. Remarkably, mice lacking eosinophils had a >95% reduction in the percentage of lung IL-23p19+ cells as well as markedly reduced IL-23 heterodimer in lung lavage fluid. Eosinophils killed A. fumigatus conidia in vivo. Eosinopenic mice had higher mortality rates, decreased recruitment of inflammatory monocytes, and decreased expansion of lung macrophages after challenge with conidia. All of these functions underscore a potential protective role for eosinophils in acute aspergillosis. Given the postulated role for IL-17 in asthma pathogenesis, we assessed whether eosinophils could act as sources of IL-23 and IL-17 in models where mice were sensitized to either A. fumigatus antigens or ovalbumin (OVA). We found IL-23p19+ IL-17AF+ eosinophils in both allergic models. Moreover, close to 95% of IL-23p19+ cells and >90% of IL-17AF+ cells were identified as eosinophils. These data establish a new paradigm in acute and allergic aspergillosis whereby eosinophils act not only as effector cells but also as immunomodulatory cells driving the IL-23/IL-17 axis and contributing to inflammatory cell recruitment.
Guerra, Evelyn Santos; Lee, Chrono K.; Specht, Charles A.; Yadav, Bhawna; Huang, Haibin; Akalin, Ali; Huh, Jun R.; Mueller, Christian
2017-01-01
Aspergillus fumigatus causes invasive pulmonary disease in immunocompromised hosts and allergic asthma in atopic individuals. We studied the contribution of lung eosinophils to these fungal diseases. By in vivo intracellular cytokine staining and confocal microscopy, we observed that eosinophils act as local sources of IL-23 and IL-17. Remarkably, mice lacking eosinophils had a >95% reduction in the percentage of lung IL-23p19+ cells as well as markedly reduced IL-23 heterodimer in lung lavage fluid. Eosinophils killed A. fumigatus conidia in vivo. Eosinopenic mice had higher mortality rates, decreased recruitment of inflammatory monocytes, and decreased expansion of lung macrophages after challenge with conidia. All of these functions underscore a potential protective role for eosinophils in acute aspergillosis. Given the postulated role for IL-17 in asthma pathogenesis, we assessed whether eosinophils could act as sources of IL-23 and IL-17 in models where mice were sensitized to either A. fumigatus antigens or ovalbumin (OVA). We found IL-23p19+ IL-17AF+ eosinophils in both allergic models. Moreover, close to 95% of IL-23p19+ cells and >90% of IL-17AF+ cells were identified as eosinophils. These data establish a new paradigm in acute and allergic aspergillosis whereby eosinophils act not only as effector cells but also as immunomodulatory cells driving the IL-23/IL-17 axis and contributing to inflammatory cell recruitment. PMID:28095479
Feliciani, C; Toto, P; Mohammad Pour, S; Coscione, G; Amerio, P; Amerio, P
1999-01-01
Bullous Pemphigoid is an autoimmune bullous disorder characterized by production of IgG against an hemidesmosomal antigen (230 kDa, 180 kDa) responsible for blistering of the skin. In the past several mediators have been implicated in the pathogenesis of the disease such as proteases and collagenases secreted by local inflammatory cells. In order to investigate the role of cytokines in BP, the cytokine pattern was evaluated by an immunohistochemical analysis and by reverse transcriptase polymerase chain reaction procedure in 13 BP patients. Cytokines examined were interleukin (IL)-2, IL-4, IL-5, interferon (IFN)-gamma and tumor necrosis factor (TNF)-alpha. The T cell inflammatory infiltrate was also characterized by monoclonal antibodies showing CD3+, CD4+ T cells with a perivascular and scattered distribution in lesional skin. IL-4 and IL-5 were detected in a similar distribution to the inflammatory infiltrate. IL-4 and IL-5 mRNA levels were also revealed by RT-PCR. Proinflammatory cytokines such as TNF-alpha, IL-6 and Th1-like cytokines (IL-2 and INF-gamma) were not detected neither as proteins nor as mRNA. Since IL-4 and IL-5 are important in eosinophil chemoattraction, maturation and functional activity, the presence of IL-4 and IL-5 in BP suggest that these cytokines could be important in the pathogenesis of the disease.
Immune Modulatory Effects of IL-22 on Allergen-Induced Pulmonary Inflammation
Fang, Ping; Zhou, Li; Zhou, Yuqi; Kolls, Jay K.; Zheng, Tao; Zhu, Zhou
2014-01-01
IL-22 is a Th17/Th22 cytokine that is increased in asthma. However, recent animal studies showed controversial findings in the effects of IL-22 in allergic asthma. To determine the role of IL-22 in ovalbumin-induced allergic inflammation we generated inducible lung-specific IL-22 transgenic mice. Transgenic IL-22 expression and signaling activity in the lung were determined. Ovalbumin (OVA)-induced pulmonary inflammation, immune responses, and airway hyperresponsiveness (AHR) were examined and compared between IL-22 transgenic mice and wild type controls. Following doxycycline (Dox) induction, IL-22 protein was readily detected in the large (CC10 promoter) and small (SPC promoter) airway epithelial cells. IL-22 signaling was evidenced by phosphorylated STAT3. After OVA sensitization and challenge, compared to wild type littermates, IL-22 transgenic mice showed decreased eosinophils in the bronchoalveolar lavage (BAL), and in lung tissue, decreased mucus metaplasia in the airways, and reduced AHR. Among the cytokines and chemokines examined, IL-13 levels were reduced in the BAL fluid as well as in lymphocytes from local draining lymph nodes of IL-22 transgenic mice. No effect was seen on the levels of serum total or OVA-specific IgE or IgG. These findings indicate that IL-22 has immune modulatory effects on pulmonary inflammatory responses in allergen-induced asthma. PMID:25254361
Velazquez, J R; Lacy, P; Mahmudi-Azer, S; Bablitz, B; Milne, C D; Denburg, J A; Moqbel, R
2000-01-01
Eosinophils elaborate a number of proinflammatory mediators, including immunoregulatory cytokines and chemokines. Interleukin (IL)-4 and RANTES are important cytokines that have previously been shown to be expressed by mature eosinophils. We hypothesized that de novo synthesis of IL-4 and RANTES occurs in nascent eosinophils, leading to storage of newly produced proteins in crystalloid granule-like structures. Cytokine mRNA and protein expression were examined in cultured eosinophil colonies, which were derived from purified cord blood CD34+ cells and generated in semisolid media (methylcellulose) in the presence of recombinant human (rh)IL-3 and rhIL-5. Cytokine mRNA profiles were analysed by the reverse transcription–polymerase chain reaction (RT–PCR) to determine transcription of IL-4 and RANTES in cells on days 0, 7, 14, 21 and 28 of culture. The expression of translated cytokine products and granule major basic protein (MBP) was confirmed, from day 23 onwards, for colonies cultured in semisolid media, by immunofluorescent labelling and confocal laser-scanning microscopy (CLSM). We found that mRNA sequences encoding IL-4 and RANTES were expressed in freshly prepared, non-differentiated CD34+ cells. Furthermore, RANTES mRNA localized to carbol chromotrope 2R-positive colony cells, as assessed using in situ RT–PCR on day 21 of culture in semisolid media, and was found to gradually decrease (relative to β2-microglobulin) in rhIL-3- and rhIL-5-treated colony cells (comprising > 90% eosinophil-like cells) up to day 28. Immunoreactivity for IL-4 and RANTES co-localized with MBP in maturing colony eosinophils on day 23 of culture in semisolid media, as judged by CLSM. These results suggest that synthesis and storage of immunoregulatory cytokines, essential for processes associated with adaptive immunity, occurs in nascent eosinophils during their growth and differentiation. PMID:11106947
Cytokine expression in severe pneumonia: a bronchoalveolar lavage study.
Montón, C; Torres, A; El-Ebiary, M; Filella, X; Xaubet, A; de la Bellacasa, J P
1999-09-01
To assess the cytokine expression (tumor necrosis factor-alpha [TNF-alpha], interleukin [IL]-1beta, and IL-6) in severe pneumonia, both locally (in the lungs) and systemically (in blood). Prospective sequential study with bronchoalveolar lavage (BAL) and blood sampling. Six-bed respiratory intensive care unit of a 1,000-bed teaching hospital. Thirty mechanically ventilated patients (>48 hrs) were allocated to either the pneumonia group (n = 20) or a control group (n = 10). Protected specimen brush and BAL samples for quantitative cultures, and serum and BAL fluid TNF-alpha, IL-1beta, and IL-6 levels were measured on days 1, 3, and 7. In the control group, the procedure was done on day 1 only. Serum TNF-alpha levels were significantly higher in patients with pneumonia compared with controls (35 +/- 4 vs. 17 +/- 3 pg/mL, respectively, p = .001). IL-6 levels in serum and BAL fluid were higher in pneumonia than in control patients (serum, 837 +/- 260 vs. 94 +/- 35 pg/mL, respectively, p = .017; BAL fluid, 1176 +/- 468 vs. 234 +/- 83 pg/mL, respectively, p = .05). On days 1, 3, and 7 in patients with pneumonia, IL-1beta levels turned out to be higher in BAL fluid than in serum (71 +/- 17 vs. 2 +/-1 pg/mL on day 1; 49 +/- 8 vs. 6 +/- 2 pg/mL on day 3; and 47 +/- 16 vs. 3 +/- 2 pg/mL on day 7 for BAL fluid and serum, respectively, p < .05). No significant correlation between BAL fluid cytokine levels and lung bacterial burden was shown in presence of antibiotic treatment. Although no clear relationship was found between BAL fluid and serum cytokines and mortality, there was a trend toward higher serum IL-6 levels in nonsurvivors (1209 +/- 433 pg/mL) with pneumonia compared with survivors (464 +/- 260 pg/mL). In addition, serum TNF-alpha and IL-6 correlated with multiple organ failure score (r2 = .36, p = .004 for both) and with lung injury score (r2 = .30, p = .01, and r2 = .22, p = .03, for TNF-alpha and IL-6, respectively). The present study describes the lung and systemic inflammatory response in severe pneumonia. The lung cytokine expression seems to be independent from the lung bacterial burden in the presence of antibiotic treatment. Because of the limited sample size, we did not find a clear relationship between serum and BAL fluid cytokine levels and outcome.
Ragusa, Rosetta; Cabiati, Manuela; Guzzardi, Maria Angela; D'Amico, Andrea; Giannessi, Daniela; Del Ry, Silvia; Caselli, Chiara
2017-04-01
Suppression of tumorigenicity 2 (ST2) mediates the effect of Interleukin-33 (IL-33). Few data are reported on the relationship between IL-33/ST2 and obesity. We aimed to investigate effects of obesity on IL-33/ST2 system in heart, adipose tissue and liver in a rodent model of obesity. The relationship of cardiac expression of IL-33/ST2 system with natriuretic peptides (NPs) system and inflammatory mediators was also studied. mRNA expression of IL-33/ST2 system was evaluated in cardiac, adipose and hepatic biopsies from obese Zucker rats (O) and controls (CO). Expression levels of sST2 was significantly lower in O rats compared with CO (p<0.05) in all tissues. Besides, the mRNA levels of IL-33 decreased significant in fat of O respect to CO, while, expression levels of ST2L was significantly higher in liver of CO than in O. A strong relationship of IL-33/ST2 with NPs and classical inflammatory mediators was observed in cardiac tissue. Expression of sST2 in cardiac, adipose and liver tissue decreased in O compared with controls, suggesting an involvement for IL-33/ST2 system in molecular mechanisms of obesity. The strong relationships with NP systems and inflammatory mediators could suggest an involvement for IL-33/ST2 in molecular pathways leading to cardiac dysfunction and inflammation associated with obesity. Copyright © 2017 Elsevier Inc. All rights reserved.
Oksaharju, Anna; Kooistra, Teake; Kleemann, Robert; van Duyvenvoorde, Wim; Miettinen, Minja; Lappalainen, Jani; Lindstedt, Ken A; Kovanen, Petri T; Korpela, Riitta; Kekkonen, Riina A
2013-07-14
A high-fat diet disturbs the composition and function of the gut microbiota and generates local gut-associated and also systemic responses. Intestinal mast cells, for their part, secrete mediators which play a role in the orchestration of physiological and immunological functions of the intestine. Probiotic bacteria, again, help to maintain the homeostasis of the gut microbiota by protecting the gut epithelium and regulating the local immune system. In the present study, we explored the effects of two probiotic bacteria, Lactobacillus rhamnosus GG (GG) and Propionibacterium freudenreichii spp. shermanii JS (PJS), on high fat-fed ApoE*3Leiden mice by estimating the mast cell numbers and the immunoreactivity of TNF-α and IL-10 in the intestine, as well as plasma levels of several markers of inflammation and parameters of lipid metabolism. We found that mice that received GG and PJS exhibited significantly lower numbers of intestinal mast cells compared with control mice. PJS lowered intestinal immunoreactivity of TNF-α, while GG increased intestinal IL-10. PJS was also observed to lower the plasma levels of markers of inflammation including vascular cell adhesion molecule 1, and also the amount of gonadal adipose tissue. GG lowered alanine aminotransferase, a marker of hepatocellular activation. Collectively, these data demonstrate that probiotic GG and PJS tend to down-regulate both intestinal and systemic pro-inflammatory changes induced by a high-fat diet in this humanised mouse model.
Campbell, Sharon M; Knipper, Johanna A; Ruckerl, Dominik; Finlay, Conor M; Logan, Nicola; Minutti, Carlos M; Mack, Matthias; Jenkins, Stephen J; Taylor, Matthew D
2018-01-01
Both TH2-dependent helminth killing and suppression of the TH2 effector response have been attributed to macrophages (MΦ) activated by IL-4 (M(IL-4)). To investigate how M(IL-4) contribute to diverse infection outcomes, the MΦ compartment of susceptible BALB/c mice and more resistant C57BL/6 mice was profiled during infection of the pleural cavity with the filarial nematode, Litomosoides sigmodontis. C57BL/6 mice exhibited a profoundly expanded resident MΦ (resMΦ) population, which was gradually replenished from the bone marrow in an age-dependent manner. Infection status did not alter the bone-marrow derived contribution to the resMΦ population, confirming local proliferation as the driver of resMΦ expansion. Significantly less resMΦ expansion was observed in the susceptible BALB/c strain, which instead exhibited an influx of monocytes that assumed an immunosuppressive PD-L2+ phenotype. Inhibition of monocyte recruitment enhanced nematode killing. Thus, the balance of monocytic vs. resident M(IL-4) numbers varies between inbred mouse strains and impacts infection outcome. PMID:29299998
Gong, Yaoyao; Huang, Lei; Cheng, Wenfang; Li, Xueliang; Lu, Jia; Lin, Lin; Si, Xinmin
2014-01-01
Interstitial cells of Cajal (ICC) are pacemaker cells in the gastrointestinal (GI) tract and loss of ICC is associated with many GI motility disorders. Previous studies have shown that ICC have the capacity to regenerate or restore, and several growth factors are critical to their growth, maintenance or regeneration. The present study aimed to investigate the roles of interleukin-9 (IL-9) in the growth, maintenance and pacemaker functions of cultured ICC. Here, we report that IL-9 promotes proliferation of ICC, and culturing ICC with IL-9 enhances cholecystokinin-8-induced Ca²⁺ transients, which is probably caused by facilitating maintenance of ICC functions under culture condition. We also show co-localizations of cholecystokinin-1 receptor and IL-9 receptor with c-kit by double-immunohistochemical labeling. In conclusion, IL-9 can promote ICC growth and help maintain ICC functions; IL-9 probably performs its functions via IL-9 receptors on ICC.
ERIC Educational Resources Information Center
Wang, Zhonghong
2009-01-01
An online survey was sent to academic libraries and consortia with an integrated library system (ILS) migration project, based on review of press releases from major U.S. ILS vendors. This study takes a systematic approach to provide a snapshot of the academic ILS market and key factors affecting the outcome of an ILS migration project. It reveals…
Sa, Susan M; Valdez, Patricia A; Wu, Jianfeng; Jung, Kenneth; Zhong, Fiona; Hall, Linda; Kasman, Ian; Winer, Jane; Modrusan, Zora; Danilenko, Dimitry M; Ouyang, Wenjun
2007-02-15
IL-19, IL-20, IL-22, IL-24, and IL-26 are members of the IL-10 family of cytokines that have been shown to be up-regulated in psoriatic skin. Contrary to IL-10, these cytokines signal using receptor complex R1 subunits that are preferentially expressed on cells of epithelial origin; thus, we henceforth refer to them as the IL-20 subfamily cytokines. In this study, we show that primary human keratinocytes (KCs) express receptors for these cytokines and that IL-19, IL-20, IL-22, and IL-24 induce acanthosis in reconstituted human epidermis (RHE) in a dose-dependent manner. These cytokines also induce expression of the psoriasis-associated protein S100A7 and keratin 16 in RHE and cause persistent activation of Stat3 with nuclear localization. IL-22 had the most pronounced effects on KC proliferation and on the differentiation of KCs in RHE, inducing a decrease in the granular cell layer (hypogranulosis). Furthermore, gene expression analysis performed on cultured RHE treated with these cytokines showed that IL-19, IL-20, IL-22, and IL-24 regulate many of these same genes to variable degrees, inducing a gene expression profile consistent with inflammatory responses, wound healing re-epithelialization, and altered differentiation. Many of these genes have also been found to be up-regulated in psoriatic skin, including several chemokines, beta-defensins, S100 family proteins, and kallikreins. These results confirm that IL-20 subfamily cytokines are important regulators of epidermal KC biology with potentially pivotal roles in the immunopathology of psoriasis.
Schmidt, Jonas D; Ahlström, Malin G; Johansen, Jeanne D; Dyring-Andersen, Beatrice; Agerbeck, Christina; Nielsen, Morten M; Poulsen, Steen S; Woetmann, Anders; Ødum, Niels; Thomsen, Allan R; Geisler, Carsten; Bonefeld, Charlotte M
2017-04-01
Skin-resident memory T (T RM ) cells are associated with immunological memory in the skin. Whether immunological memory responses to allergens in the skin are solely localized to previously allergen-exposed sites or are present globally in the skin is not clear. Furthermore, the mechanisms whereby T RM cells induce rapid recall responses need further investigation. To study whether contact allergens induce local and/or global memory, and to determine the mechanisms involved in memory responses in the skin. To address these questions, we analysed responses to contact allergens in mice and humans sensitized to 2,4-dinitrofluorobenzene and nickel, respectively. Challenge responses in both mice and humans were dramatically increased at sites previously exposed to allergens as compared with previously unexposed sites. Importantly, the magnitude of the challenge response correlated with the epidermal accumulation of interleukin (IL)-17A-producing and interferon (IFN)-γ-producing T RM cells. Moreover, IL-17A and IFN-γ enhanced allergen-induced IL-1β production in keratinocytes. We show that sensitization with contact allergens induces a strong, long-lasting local memory and a weaker, temporary global immunological memory response to the allergen that is mediated by IL-17A-producing and IFN-γ-producing CD8 + T RM cells. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Szóstek, Anna Z.; Gajos, Katarzyna; Kozdrowski, Roland; Nowak, Marcin; Okuda, Kiyoshi
2016-01-01
Mares that fail to conceive or lose their embryos, without showing typical signs of clinical endometritis, should be suspected of subclinical endometritis (SE). In this study, the question was addressed: does SE fully activate selected mechanisms of innate immunity in mares? For this aim, expression of mRNAs for Toll-like Receptor 2 and 4 (TLR 2/4), interleukin 1β (IL-1β), interleukin 6 (IL-6) and tumor necrosis factor α (TNF) was examined in control mares versus either mares suffering from chronic endometritis (ChE) or subacute suppurative endometritis (SSE). The concentrations of IL-1β, IL-6 and TNF-α in supernatants from endometrial tissue cultures after 4 h incubation were measured using the enzyme immunoassay (EIA) method. Eighty-two warmblood mares, of known breeding history, were enrolled in this study. Based on histopathological assessment, mares were classified as suffering from ChE, SSE or as being healthy. In addition, immuno-localization of both TLR2 and TLR4 as well as TNF-α was investigated in the equine endometria. The mRNA expression of TLR2 (P < 0.01), IL-1β (P < 0.0001), IL-6 (P < 0.0001) and TLR4 and TNF (P < 0.05) was up-regulated in endometria of mares suffering from SSE compared with unaffected mares. Concentrations of IL-6 and TNF-α were increased only in mares exhibiting SSE, compared with unaffected (P < 0.01 for both) and ChE mares (P < 0.05 for both). Immuno-localization of TNF-α and TLRs was confirmed, both in unaffected and SE-affected endometria, and was present in the luminal and glandular epithelia and stromal cells. The severity of inflammation impacts the immune response and fosters activation of innate immunity mechanisms, as observed in the endometria of mares. The intracellular localization of TLRs and TNF-α in the endometria indicates a key role of endometrial epithelial and stromal cells in the immune response and inflammation. PMID:27152525
Ben-Sasson, Shlomo Z.; Hogg, Alison; Hu-Li, Jane; Wingfield, Paul; Chen, Xi; Crank, Michelle; Caucheteux, Stephane; Ratner-Hurevich, Maya; Berzofsky, Jay A.; Nir-Paz, Ran
2013-01-01
Here, we show that interleukin-1 (IL-1) enhances antigen-driven CD8 T cell responses. When administered to recipients of OT-I T cell receptor transgenic CD8 T cells specific for an ovalbumin (OVA) peptide, IL-1 results in an increase in the numbers of wild-type but not IL1R1−/− OT-I cells, particularly in spleen, liver, and lung, upon immunization with OVA and lipopolysaccharide. IL-1 administration also results in an enhancement in the frequency of antigen-specific cells that are granzyme B+, have cytotoxic activity, and/ or produce interferon γ (IFN-γ). Cells primed in the presence of IL-1 display enhanced expression of granzyme B and increased capacity to produce IFN-γ when rechallenged 2 mo after priming. In three in vivo models, IL-1 enhances the protective value of weak immunogens. Thus, IL-1 has a marked enhancing effect on antigen-specific CD8 T cell expansion, differentiation, migration to the periphery, and memory. PMID:23460726
Nlrp3-dependent IL-1β inhibits CD103+ dendritic cell differentiation in the gut.
Mak'Anyengo, Rachel; Duewell, Peter; Reichl, Cornelia; Hörth, Christine; Lehr, Hans-Anton; Fischer, Sandra; Clavel, Thomas; Denk, Gerald; Hohenester, Simon; Kobold, Sebastian; Endres, Stefan; Schnurr, Max; Bauer, Christian
2018-03-08
Inflammatory bowel disease (IBD) is associated with enhanced levels of the IL-1 family cytokines IL-1β and IL-18, which are activated by the Nlrp3 inflammasome. Here, we investigated the role of inflammasome-driven cytokine release on T cell polarization and DC differentiation in steady state and T cell transfer colitis. In vitro and in vivo data showed that IL-1β induces Th17 polarization and increases GM‑CSF production by T cells. Reduced IL-1β levels in Nlrp3-/- mice correlated with enhanced FLT3L levels and increased frequency of tolerogenic CD103+ DC. In the T cell transfer colitis model, Nlrp3 deficiency resulted in lower IL‑1β levels, reduced Th17 immunity, and less severe colitis. Unaltered IL-18 levels in both mouse strains pointed toward Nlrp3-independent processing. Importantly, cohousing revealed that the gut microbiome had no impact on the observed Nlrp3-/- phenotype. This study demonstrates that NLRP3 acts as a molecular switch of intestinal homeostasis by shifting local immune cells toward an inflammatory phenotype via IL-1β.
M2 macrophages and inflammatory cells in oral lesions of chronic paracoccidioidomycosis.
de Carli, Marina Lara; Miyazawa, Marta; Nonogaki, Suely; Shirata, Neuza Kasumi; Oliveira, Denise Tostes; Pereira, Alessandro Antônio Costa; Hanemann, João Adolfo Costa
2016-02-01
Paracoccidioidomycosis (PCM) is a systemic fungal infection caused by Paracoccidioides brasiliensis (Pb) and associated with deficient cellular immune response, which is modulated by inflammatory cells, mainly macrophages, and cytokines. Recently, the comprehension of the macrophage polarization mediated by Th1 and Th2 cytokines has contributed to elucidate the immune response that takes part in some diseases. Thus, the aim of this study was to assess the presence of Th1- and Th2-immune response and also Pb counting in oral lesions of chronic PCM. Forty-eight cases of chronic PCM oral lesions were included. All cases were classified as loose or dense granulomas. S100 protein, IL-1β, IL-6, TNF-α, CD163 and CD68 immunoexpressions, and Pb localization were evaluated. The fungi present in the tissue were quantified by anti-Pb antibody. Most patients were white men with mean age of 47 years old and showed higher incidence of multiple lesions. Loose granulomas were predominant and exhibited a great amount of M2 macrophages, which were visualized with anti-CD163 antibody. The expression for CD163 and CD68 was similar (P = 0.05), highlighting the predominance of M2 macrophages in PCM. IL-1β, IL-6, and TNF-α immunoexpression did not significantly change with CD163, CD68, and S100 protein. The number of fungi was significantly higher in cases with intense IL-1β immunoexpression (P = 0.003). M2-activated macrophages were the majority among inflammatory cells in chronic PCM, characterizing the action of a Th2-immune response. Nevertheless, Th1 cytokines were also found; mainly IL-1β, which was associated with fungi counting in oral lesions. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Parlet, Corey P; Kavanaugh, Jeffrey S; Horswill, Alexander R; Schlueter, Annette J
2015-04-01
Alcoholics are at increased risk of Staphylococcus aureus skin infection and serious sequelae, such as bacteremia and death. Despite the association between alcoholism and severe S. aureus skin infection, the impact of EtOH on anti-S. aureus cutaneous immunity has not been investigated in a model of chronic EtOH exposure. To test the hypothesis that EtOH enhances the severity of S. aureus skin infection, mice were fed EtOH for ≥12 weeks via the Meadows-Cook model of alcoholism and inoculated with S. aureus following epidermal abrasion. Evidence of exacerbated staphylococcal disease in EtOH-fed mice included: skin lesions that were larger and contained more organisms, greater weight loss, and increased bacterial dissemination. Infected EtOH-fed mice demonstrated poor maintenance and induction of PMN responses in skin and draining LNs, respectively. Additionally, altered PMN dynamics in the skin of these mice corresponded with reduced production of IL-23 and IL-1β by CD11b(+) myeloid cells and IL-17 production by γδ T cells, with the latter defect occurring in the draining LNs as well. In addition, IL-17 restoration attenuated S. aureus-induced dermatopathology and improved bacterial clearance defects in EtOH-fed mice. Taken together, the findings show, in a novel model system, that the EtOH-induced increase in S. aureus-related injury/illness corresponds with defects in the IL-23/IL-17 inflammatory axis and poor PMN accumulation at the site of infection and draining LNs. These findings offer new information about the impact of EtOH on cutaneous host-defense pathways and provide a potential mechanism explaining why alcoholics are predisposed to S. aureus skin infection. © Society for Leukocyte Biology.
Parlet, Corey P.; Kavanaugh, Jeffrey S.; Horswill, Alexander R.; Schlueter, Annette J.
2015-01-01
Alcoholics are at increased risk of Staphylococcus aureus skin infection and serious sequelae, such as bacteremia and death. Despite the association between alcoholism and severe S. aureus skin infection, the impact of EtOH on anti-S. aureus cutaneous immunity has not been investigated in a model of chronic EtOH exposure. To test the hypothesis that EtOH enhances the severity of S. aureus skin infection, mice were fed EtOH for ≥12 weeks via the Meadows-Cook model of alcoholism and inoculated with S. aureus following epidermal abrasion. Evidence of exacerbated staphylococcal disease in EtOH-fed mice included: skin lesions that were larger and contained more organisms, greater weight loss, and increased bacterial dissemination. Infected EtOH-fed mice demonstrated poor maintenance and induction of PMN responses in skin and draining LNs, respectively. Additionally, altered PMN dynamics in the skin of these mice corresponded with reduced production of IL-23 and IL-1β by CD11b+ myeloid cells and IL-17 production by γδ T cells, with the latter defect occurring in the draining LNs as well. In addition, IL-17 restoration attenuated S. aureus-induced dermatopathology and improved bacterial clearance defects in EtOH-fed mice. Taken together, the findings show, in a novel model system, that the EtOH-induced increase in S. aureus-related injury/illness corresponds with defects in the IL-23/IL-17 inflammatory axis and poor PMN accumulation at the site of infection and draining LNs. These findings offer new information about the impact of EtOH on cutaneous host-defense pathways and provide a potential mechanism explaining why alcoholics are predisposed to S. aureus skin infection. PMID:25605871
Shin, Mi Hee; Park, Raeeun; Nojima, Hideo; Kim, Hyung-Chel; Kim, Yeon Kyung; Chung, Jin Ho
2013-01-01
Recently, there has been much effort to find effective ingredients which can prevent or retard cutaneous skin aging after topical or systemic use. Here, we investigated the effects of the atomic hydrogen surrounded by water molecules, H(H2O)m, on acute UV-induced responses and as well as skin aging. Interestingly, we observed that H(H2O)m application to human skin prevented UV-induced erythema and DNA damage. And H(H2O)m significantly prevented UV-induced MMP-1, COX-2, IL-6 and IL-1β mRNA expressions in human skin in vivo. We found that H(H2O)m prevented UV-induced ROS generation and inhibited UV-induced MMP-1, COX-2 and IL-6 expressions, and UV-induced JNK and c-Jun phosphorylation in HaCaT cells. Next, we investigated the effects of H(H2O)m on intrinsically aged or photoaged skin of elderly subjects. In intrinsically aged skin, H(H2O)m application significantly reduced constitutive expressions of MMP-1, IL-6, and IL-1β mRNA. Additionally, H(H2O)m significantly increased procollagen mRNA and also decreased MMP-1 and IL-6 mRNA expressions in photoaged facial skin. These results demonstrated that local application of H(H2O)m may prevent UV-induced skin inflammation and can modulate intrinsic skin aging and photoaging processes. Therefore, we suggest that modifying the atmospheric gas environment within a room may be a new way to regulate skin functions or skin aging.
Shin, Mi Hee; Park, Raeeun; Nojima, Hideo; Kim, Hyung-Chel; Kim, Yeon Kyung; Chung, Jin Ho
2013-01-01
Recently, there has been much effort to find effective ingredients which can prevent or retard cutaneous skin aging after topical or systemic use. Here, we investigated the effects of the atomic hydrogen surrounded by water molecules, H(H2O)m, on acute UV-induced responses and as well as skin aging. Interestingly, we observed that H(H2O)m application to human skin prevented UV-induced erythema and DNA damage. And H(H2O)m significantly prevented UV-induced MMP-1, COX-2, IL-6 and IL-1β mRNA expressions in human skin in vivo. We found that H(H2O)m prevented UV-induced ROS generation and inhibited UV-induced MMP-1, COX-2 and IL-6 expressions, and UV-induced JNK and c-Jun phosphorylation in HaCaT cells. Next, we investigated the effects of H(H2O)m on intrinsically aged or photoaged skin of elderly subjects. In intrinsically aged skin, H(H2O)m application significantly reduced constitutive expressions of MMP-1, IL-6, and IL-1β mRNA. Additionally, H(H2O)m significantly increased procollagen mRNA and also decreased MMP-1 and IL-6 mRNA expressions in photoaged facial skin. These results demonstrated that local application of H(H2O)m may prevent UV-induced skin inflammation and can modulate intrinsic skin aging and photoaging processes. Therefore, we suggest that modifying the atmospheric gas environment within a room may be a new way to regulate skin functions or skin aging. PMID:23637886
Clark, Sarah E; Schmidt, Rebecca L; McDermott, Daniel S; Lenz, Laurel L
2018-05-29
The bacterial pathogen Listeria monocytogenes (Lm) capitalizes on natural killer (NK) cell production of regulatory interleukin (IL)-10 to establish severe systemic infections. Here, we identify regulators of this IL-10 secretion. We show that IL-18 signals to NK cells license their ability to produce IL-10. IL-18 acts independent of IL-12 and STAT4, which co-stimulate IFNγ secretion. Dendritic cell (DC) expression of Nlrp3 is required for IL-18 release in response to the Lm p60 virulence protein. Therefore, mice lacking Nlrp3, Il18, or Il18R fail to accumulate serum IL-10 and are highly resistant to systemic Lm infection. We further show that cells expressing or dependent on Batf3 are required for IL-18-inducing IL-10 production observed in infected mice. These findings explain how Il18 and Batf3 promote susceptibility to bacterial infection and demonstrate the ability of Lm to exploit NLRP3 for the promotion of regulatory NK cell activity. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaghloul, M.S.; Dorie, M.J.; Kallman, R.F.
1993-06-15
This study was conducted to examine the radioprotective and radiochemoprotective capabilities of interleukin 1[beta] (IL-1) on two acute-reacting normal tissues of the C3H mouse, the mucosa of the lip and the duodenum. Also assessed was the modulating effect of IL-1 on tumor growth in the same strain of mice. IL-1 was administered to C3H-Km mice in combination with fractionated irradiation, or with cyclophosphamide, cisplatin, or 5-fluorouracil (5FU) followed by irradiation. Normal tissue damage was evaluated in the mouse lip, using a subjective scoring system for tissue reaction, and in the duodenum, using the crypt cell survival assay. RIF-1 fibrosarcoma tumormore » response was assayed with the regrowth delay method. IL-1 protected against the acute reaction produced by fractionated irradiation in the lip mucosa, shifting the dose-response curve by 3.8 Gy. IL-1 was protective when injected intraperitoneally 24 hr before CY or c-DDP, which were given immediately before the first of five daily radiation dose fractions. The dose-response curves for cyclophosphamide and cisplatin were shifted 4.0 Gy and 1.6 Gy, respectively. IL-1 did not protect against 5FU toxicity when treatments were administered in that same sequence; however, when 5FU was given 4 or 8 hr before IL-1 and the first radiation dose fraction followed 20 or 16 hr later, there was significant protection and the curves were separated by 1.5 Gy or 3.5 Gy. IL-1 also protected duodenal crypt cells against the cytocidal effect of fractionated irradiation, with a dose difference of 1.5 Gy and an improvement of crypt survival of 11.7%. It was even more immediately before the first of five daily radiation doses, with the dose differences of 4.4 and 5.3 Gy, respectively, and improvements of crypt survival of 33.8 and 29.9%, respectively. There was no modification by IL-1 of the effect of irradiation alone on the RIF-1 tumor. 45 refs., 8 figs., 1 tab.« less
Mace, Thomas A; Shakya, Reena; Pitarresi, Jason R; Swanson, Benjamin; McQuinn, Christopher W; Loftus, Shannon; Nordquist, Emily; Cruz-Monserrate, Zobeida; Yu, Lianbo; Young, Gregory; Zhong, Xiaoling; Zimmers, Teresa A; Ostrowski, Michael C; Ludwig, Thomas; Bloomston, Mark; Bekaii-Saab, Tanios; Lesinski, Gregory B
2018-02-01
Limited efficacy of immune checkpoint inhibitors in pancreatic ductal adenocarcinoma (PDAC) has prompted investigation into combination therapy. We hypothesised that interleukin 6 (IL-6) blockade would modulate immunological features of PDAC and enhance the efficacy of anti-programmed death-1-ligand 1 (PD-L1) checkpoint inhibitor therapy. Transcription profiles and IL-6 secretion from primary patient-derived pancreatic stellate cells (PSCs) were analyzed via Nanostring and immunohistochemistry, respectively. In vivo efficacy and mechanistic studies were conducted with antibodies (Abs) targeting IL-6, PD-L1, CD4 or CD8 in subcutaneous or orthotopic models using Panc02, MT5 or KPC-luc cell lines; and the aggressive, genetically engineered PDAC model (Kras LSL-G12D , Trp53 LSL-R270H , Pdx1-cre, Brca2 F/F (KPC-Brca2 mice)). Systemic and local changes in immunophenotype were measured by flow cytometry or immunohistochemical analysis. PSCs (n=12) demonstrated prominent IL-6 expression, which was localised to stroma of tumours. Combined IL-6 and PD-L1 blockade elicited efficacy in mice bearing subcutaneous MT5 (p<0.02) and Panc02 tumours (p=0.046), which was accompanied by increased intratumoural effector T lymphocytes (CD62L - CD44 - ). CD8-depleting but not CD4-depleting Abs abrogated the efficacy of combined IL-6 and PD-L1 blockade in mice bearing Panc02 tumours (p=0.0016). This treatment combination also elicited significant antitumour activity in mice bearing orthotopic KPC-luc tumours and limited tumour progression in KPC-Brca2 mice (p<0.001). Histological analysis revealed increased T-cell infiltration and reduced α-smooth muscle actin cells in tumours from multiple models. Finally, IL-6 and PD-L1 blockade increased overall survival in KPC-Brca2 mice compared with isotype controls (p=0.0012). These preclinical results indicate that targeted inhibition of IL-6 may enhance the efficacy of anti-PD-L1 in PDAC. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Association of plasma endotoxin, inflammatory cytokines and risk of colorectal adenomas
2013-01-01
Background Recent studies suggest that bacterial endotoxins may be associated with various chronic diseases, including colorectal adenomas and cancer. Given the evidence linking inflammation and colorectal cancer, we sought to determine if plasma endotoxin concentrations are associated with indicators of systemic or local inflammation and colorectal adenomas. Methods This cross-sectional study consisted of participants who underwent screening colonoscopies and included adenoma cases (n=138) and non-adenoma controls (n=324). Plasma concentrations of endotoxin were measured with Limulus Amebocyte Lysate (LAL) assay. We quantified concentrations of inflammatory cytokines, interleukin-4 (IL-4), IL-6, IL-8, IL-10, IL-12, tumor necrosis factor-alpha (TNF-α), and interferon-γ (IFN-γ) in plasma by ELISA and mRNA expression levels in rectal mucosal biopsies by quantitative RT-PCR. Interleukin-17 was evaluated only in the rectal mucosa. Results Compared to subjects with low plasma endotoxin concentrations, those with higher concentrations were more likely to have adenomas (OR 1.4, 95% CI 1.0-2.1). Among subjects with adenomas, those with villous histology were more likely to have higher endotoxin concentrations (5.4 vs. 4.1EU/mL, p=0.05) and lower plasma IFN-γ (0 vs. 1.64 pg/mL, p=0.02) compared to those with only tubular adenomas. Cases showed a trend of having higher plasma TNF-α levels than controls (p=0.06), but none of the other plasma or rectal mucosal cytokine levels differed between cases and controls. Elevated mucosal IL-12 levels were associated with having multiple adenomas (p=0.04). Higher concentrations of plasma endotoxin predicted increased plasma IL-12 levels (OR 1.5, 95% CI 1.0-2.2) and rectal mucosal IL-12 (OR 1.9, 95% CI 1.0-3.7) and IL-17 gene expression (OR 2.2, 95% CI 1.0-4.6). Conclusions These findings suggest that interactions between elevated plasma endotoxin concentrations and inflammatory cytokines may be relevant to the development of colorectal adenomas. PMID:23442743
Guo, Zhihui; Zhang, Tingting; Liu, Tiantian; Du, Jun; Jia, Bing; Gao, Shujing; Yu, Jiang
2015-05-05
To improve the hydrogen sulfide removal efficiency with the application of an iron-based imidazolium chloride ionic liquid (Fe(III)-IL) as desulfurizer, Fe(II) and N,N-dimethylformamide (DMF) are introduced to Fe(III)-IL to construct a new nonaqueous desulfurization system (Fe(III/II)-IL/DMF). Following desulfurization, the system can be regenerated using the controlled-potential electrolysis method. The addition of Fe(II) in Fe(III)-IL is beneficial for the hydrogen sulfide removal and the electrochemical regeneration of the desulfurizer. The addition of DMF in Fe(III/II)-IL does not change the structure of Fe(III/II)-IL but clearly decreases the acidity, increases the electrolytic current, and decreases the stability of the Fe-Cl bond in Fe(III/II)-IL. Fe(III/II)-IL/DMF can remove hydrogen sulfide and can be regenerated through an electrochemical method more efficiently than can Fe(III/II)-IL. After six cycles, the desulfurization efficiency remains higher than 98%, and the average conversion rate of Fe(II) is essentially unchanged. No sulfur peroxidation occurs, and the system remains stable. Therefore, this new nonaqueous system has considerable potential for removing H2S in pollution control applications.
Furcron, Amy-Eunice; Romero, Roberto; Plazyo, Olesya; Unkel, Ronald; Xu, Yi; Hassan, Sonia S.; Chaemsaithong, Piya; Mahajan, Arushi; Gomez-Lopez, Nardhy
2016-01-01
OBJECTIVE Progestogen (vaginal progesterone or 17-alpha-hydroxyprogesterone caproate [17OHP-C]) administration to patients at risk for preterm delivery is widely used for the prevention of preterm birth (PTB). The mechanisms by which these agents prevent PTB are poorly understood. Progestogens have immunomodulatory functions; therefore, we investigated the local effects of vaginal progesterone and 17OHP-C on adaptive and innate immune cells implicated in the process of parturition. STUDY DESIGN Pregnant C57BL/6J mice received vaginal progesterone (1 mg per 200 μL, n = 10) or Replens (control, 200 μL, n = 10) from 13 to 17 days postcoitum (dpc) or were subcutaneously injected with 17OHP-C (2 mg per 100 μL, n = 10) or castor oil (control, 100 μL, n = 10) on 13, 15, and 17 dpc. Decidual and myometrial leukocytes were isolated prior to term delivery (18.5 dpc) for immunophenotyping by flow cytometry. Cervical tissues were collected to determine matrix metalloproteinase (MMP)-9 activity by in situ zymography and visualization of collagen content by Masson’s trichrome staining. Plasma concentrations of progesterone, estradiol, and cytokines (interferon [IFN]-γ, interleukin (IL)-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12p70, KC/GRO, and tumor necrosis factor-α) were quantified by enzyme-linked immunosorbent assays. Pregnant mice pretreated with vaginal progesterone or Replens were injected with 10 μg of an endotoxin on 16.5 dpc (n = 10 each) and monitored via infrared camera until delivery to determine the effect of vaginal progesterone on the rate of PTB. RESULTS The following results were found: (1) vaginal progesterone, but not 17OHP-C, increased the proportion of decidual CD4+ T-regulatory cells; (2) vaginal progesterone, but not 17OHP-C, decreased the proportion of decidual CD8+CD25+Foxp3+ T cells and macrophages; (3) vaginal progesterone did not cause an M1→M2 macrophage polarization but reduced the proportion of myometrial IFNγ+ neutrophils and cervical active MMP-9-positive neutrophils and monocytes; (4) 17OHP-C did not reduce the proportion of myometrial IFNy-positive neutrophils; however, it increased the abundance of cervical active MMP-9-positive neutrophils and monocytes; (5) vaginal progesterone immune effects were associated with reduced systemic concentrations of IL-1β but not with alterations in progesterone or estradiol concentrations; and (6) vaginal progesterone pretreatment protected against endotoxin-induced PTB (effect size 50%, P = .008). CONCLUSION Vaginal progesterone, but not 17OHP-C, has local antiinflammatory effects at the maternal-fetal interface and the cervix and protects against endotoxin-induced PTB. PMID:26264823
Tanaka, Aiko; Nishimura, Mie; Sato, Yuji; Sato, Hiroki; Nishihira, Jun
2016-10-01
Pleurotus cornucopiae (Oyster mushroom, Tamogitake) has long been eaten as a functional food for enhancement of the immune system, but its effectiveness has not been well confirmed in humans. To this end, we set up a double-blind placebo-controlled human clinical trial to investigate the potential of Oyster mushrooms with respect to the up-regulation of the immune system. The subjects ingested Oyster mushroom extract for 8 weeks. We measured the serum cytokine levels involved in regulation of the immune system, including interferon (IFN)-γ, interleukin (IL)-4, IL-5, IL-10, IL-12, IL-13, and tumor-necrosis factor (TNF)-α. We found that intake of Oyster mushroom extract elevated IFN-γ ( P = 0.013) and IL-12, whereas serum levels of IL-10 and IL-13 and other cytokines were minimally changed. We also measured natural killer (NK) cell activity, the levels of which tended to increase, but not significantly. Taken together, these facts suggest that Oyster mushrooms have the potential to enhance the immune system, through Th1 phenotype potentiation as the macrophage-IL-12 - IFN-γ pathway. This results in activation of the cell-mediated immune system as exemplified by up-regulation of NK cell activity. Oyster mushroom extract may be beneficial for the prevention of various diseases, including infectious diseases and cancer, due to its stimulation of the immune system.
Distinct role of IL-1β in instigating disease in Sharpincpdm mice
Gurung, Prajwal; Sharma, Bhesh Raj; Kanneganti, Thirumala-Devi
2016-01-01
Mice deficient in SHARPIN (Sharpincpdm mice), a member of linear ubiquitin chain assembly complex (LUBAC), develop severe dermatitis associated with systemic inflammation. Previous studies have demonstrated that components of the TNF-signaling pathway, NLRP3 inflammasome and IL-1R signaling are required to provoke skin inflammation in Sharpincpdm mice. However, whether IL-1α or IL-1β, both of which signals through IL-1R, instigates skin inflammation and systemic disease is not known. Here, we have performed extensive cellular analysis of pre-diseased and diseased Sharpincpdm mice and demonstrated that cellular dysregulation precedes skin inflammation. Furthermore, we demonstrate a specific role for IL-1β, but not IL-1α, in instigating dermatitis in Sharpincpdm mice. Our results altogether demonstrate distinct roles of SHARPIN in initiating systemic inflammation and dermatitis. Furthermore, skin inflammation in Sharpincpdm mice is specifically modulated by IL-1β, highlighting the importance of specific targeted therapies in the IL-1 signaling blockade. PMID:27892465
Intravitreal invading cells contribute to vitreal cytokine milieu in proliferative vitreoretinopathy
El-Ghrably, I; Dua, H.; Orr, G.; Fischer, D.; Tighe, P.
2001-01-01
AIM—To examine the contribution of infiltrating cells in the local production of cytokines within the vitreous of patients with proliferative vitreoretinopathy (PVR). METHODS—The presence of mRNA coding for IL-6, IL-8, IL-1β, IL-1α, TNFα, IFNγ, IL-12, and HPRT was investigated in 25 vitreous samples from patients with PVR, 11 vitreous samples from patients with retinal detachment (RD) not complicated by PVR, and 10 vitreous samples from patients with macular hole (MH). A quantitative reverse transcriptase polymerase chain reaction (RT-PCR) using an internal competitor was used to investigate these samples. From these samples, 15 PVR, 8 RD, and 8 MH were analysed for the protein levels of the same cytokines using enzyme linked immunosorbent assay (ELISA). Spearman correlation was used to test any association between mRNA and cytokine protein levels, as an indicator of the contribution these cells make to the intravitreal cytokine milieu. RESULTS—A strong correlation was found between mRNA and their respective cytokine levels (protein products) for IL-6, IL-8, IL-1β, IL-1α, TNFα, IFNγ (Spearman r = 0.83, 0.73, 0.67, 0.91, 0.73, and 0.73 respectively), but not for IL-12. The median levels of IL-6, IL-8, IL-1β, and IFNγ mRNA and their respective cytokines were significantly higher (p <0.05) in patients with PVR than in those with macular hole. There was no statistically significant difference in the median levels of IL-1α mRNA between PVR and MH but the cytokine IL-1α was detected at a significantly higher level in PVR compared with MH patients. Between PVR and RD patients, there was no statistically significant difference in mRNA levels for all the investigated cytokines (p >0.05) except for IL-6 where there was a statistical significance (p= 0.038). In contrast, the median levels of IL-6, IL-8, and IL-1β cytokines were significantly higher (p <0.05) in patients with PVR than in those with RD, whereas for IL-1α and IFNγ no significant statistical difference was detected between PVR and RD patients (p >0.05). When results of RD and MH patients were compared, a statistical difference was only detected in mRNA levels of INFγ (p = 0.008). However, no difference was detected for INFγ (protein product) or for any of the other cytokines between RD and MH patients. CONCLUSION—Levels of both protein and mRNA encoding IL-6, IL-8, IL-1β, and IFNγ is significantly increased in vitreous samples from patients with PVR. The strong correlation between ELISA detectable cytokines (protein products) and their respective mRNA levels suggest that intravitreal, invasive cells are the major source of these cytokines, with the exception of IL-12. Cells invading the vitreous do not appear to locally produce IL-12 mRNA. This would appear to implicate cells peripheral to the vitreal mass as the major source of this cytokine. PMID:11264138
Montón, C; Ewig, S; Torres, A; El-Ebiary, M; Filella, X; Rañó, A; Xaubet, A
1999-07-01
The aim of the study was to assess the potential role of glucocorticoids (GC) in modulating systemic and pulmonary inflammatory responses in mechanically ventilated patients with severe pneumonia. Twenty mechanically ventilated patients with pneumonia treated at a respiratory intensive care unit (RICU) of a 1,000-bed teaching hospital were prospectively studied. All patients had received prior antimicrobial treatment. Eleven patients received GC (mean+/-SD dose of i.v. methylprednisolone 677+/-508 mg for 9+/-7 days), mainly for bronchial dilatation. Serum and bronchoalveolar lavage fluid (BALF) tumour necrosis factor (TNF)-alpha, interleukin (IL)-1beta, IL-6 and C-reactive protein levels were measured in all patients. The inflammatory response was attenuated in patients receiving GC, both systemically (IL-6 1,089+/-342 versus 630+/-385 pg x mL(-1), p=0.03; C-reactive protein 34+/-5 versus 19+/-5 mg x L(-1), p=0.04) and locally in BALF (TNF-alpha 118+/-50 versus 24+/-5 pg x mL(-1), p= 0.05; neutrophil count: 2.4+/-1.1 x 10(9) cells x L(-1) (93+/-3%) versus 1.9+/-1.8 x 10(9) cells x L(-1) (57+/-16%), p=0.03). Four of the 11 (36%) patients receiving GC died compared to six (67%) who were not receiving GC (p=0.37). The present pilot study suggests that glucocorticoids decrease systemic and lung inflammatory responses in mechanically ventilated patients with severe pneumonia receiving antimicrobial treatment.
Corrêa, Jôice Dias; Calderaro, Débora Cerqueira; Ferreira, Gilda Aparecida; Mendonça, Santuza Maria Souza; Fernandes, Gabriel R; Xiao, E; Teixeira, Antônio Lúcio; Leys, Eugene J; Graves, Dana T; Silva, Tarcília Aparecida
2017-03-20
Periodontitis results from the interaction between a subgingival biofilm and host immune response. Changes in biofilm composition are thought to disrupt homeostasis between the host and subgingival bacteria resulting in periodontal damage. Chronic systemic inflammatory disorders have been shown to affect the subgingival microbiota and clinical periodontal status. However, this relationship has not been examined in subjects with systemic lupus erythematosus (SLE). The objective of our study was to investigate the influence of SLE on the subgingival microbiota and its connection with periodontal disease and SLE activity. We evaluated 52 patients with SLE compared to 52 subjects without SLE (control group). Subjects were classified as without periodontitis and with periodontitis. Oral microbiota composition was assessed by amplifying the V4 region of 16S rRNA gene from subgingival dental plaque DNA extracts. These amplicons were examined by Illumina MiSeq sequencing. SLE patients exhibited higher prevalence of periodontitis which occurred at a younger age compared to subjects of the control group. More severe forms of periodontitis were found in SLE subjects that had higher bacterial loads and decreased microbial diversity. Bacterial species frequently detected in periodontal disease were observed in higher proportions in SLE patients, even in periodontal healthy sites such as Fretibacterium, Prevotella nigrescens, and Selenomonas. Changes in the oral microbiota were linked to increased local inflammation, as demonstrated by higher concentrations of IL-6, IL-17, and IL-33 in SLE patients with periodontitis. SLE is associated with differences in the composition of the microbiota, independently of periodontal status.
Sallmon, Hannes; Hoene, Victoria; Weber, Sven C; Dame, Christof
2010-02-01
The clinical prognosis of children with high-stage neuroblastoma is still poor. Therapeutic approaches include surgery and cellular differentiation by retinoic acid, but also experimental interleukin-based immune modulation. However, the molecular mechanisms of all-trans retinoic acid (ATRA)-induced differentiation of neuroblastoma cells are incompletely understood. Herein, we examined the effect of ATRA on the activity of the interleukin-18 (IL-18) system in human SH-SY5Y neuroblastoma cells. It is shown that SH-SY5Y cells express IL-18 receptor (IL-18R) and the secreted antagonist IL-18-binding protein (IL-18BP), but no IL-18. SH-SY5Y cells are highly sensitive to ATRA treatment and react by cellular differentiation from a neuroblastic toward a more neuronal phenotype. This was associated with induction of IL-18 and reduction of IL-18BP expression, while IL-18R expression remained stable. Thereby, we identified the IL-18 system as a novel target of ATRA in neuroblastoma cells that might contribute to the therapeutic properties of retinoids in treatment of neuroblastoma.
Systemic and Local Vaccination against Breast Cancer with Minimum Autoimmune Sequelae
2013-12-01
2012;61:899-904. 29. Matsushima H, Ogawa Y, Miyazaki T, Tanaka H, Nishibu A, Takashima A. Intravital imaging of IL-1beta production in skin. The Journal...their activities to enhance treatment outcome. In parallel with this progress is the advancement in image guided percutaneous cryoablation that...caudual and rostral mammary tissue relative to tumor (10 μL/injection site). Imaging and histology of cryoablated tumors: Tumors were removed from WT or
Characterization of blunt chest trauma in a long-term porcine model of severe multiple trauma
Horst, K.; Simon, T. P.; Pfeifer, R.; Teuben, M.; Almahmoud, K.; Zhi, Q.; Santos, S. Aguiar; Wembers, C. Castelar; Leonhardt, S.; Heussen, N.; Störmann, P.; Auner, B.; Relja, B.; Marzi, I.; Haug, A. T.; van Griensven, M.; Kalbitz, M.; Huber-Lang, M.; Tolba, R.; Reiss, L. K.; Uhlig, S.; Marx, G.; Pape, H. C.; Hildebrand, F.
2016-01-01
Chest trauma has a significant relevance on outcome after severe trauma. Clinically, impaired lung function typically occurs within 72 hours after trauma. However, the underlying pathophysiological mechanisms are still not fully elucidated. Therefore, we aimed to establish an experimental long-term model to investigate physiological, morphologic and inflammatory changes, after severe trauma. Male pigs (sus scrofa) sustained severe trauma (including unilateral chest trauma, femur fracture, liver laceration and hemorrhagic shock). Additionally, non-injured animals served as sham controls. Chest trauma resulted in severe lung damage on both CT and histological analyses. Furthermore, severe inflammation with a systemic increase of IL-6 (p = 0.0305) and a local increase of IL-8 in BAL (p = 0.0009) was observed. The pO2/FiO2 ratio in trauma animals decreased over the observation period (p < 0.0001) but not in the sham group (p = 0.2967). Electrical Impedance Tomography (EIT) revealed differences between the traumatized and healthy lung (p < 0.0001). In conclusion, a clinically relevant, long-term model of blunt chest trauma with concomitant injuries has been developed. This reproducible model allows to examine local and systemic consequences of trauma and is valid for investigation of potential diagnostic or therapeutic options. In this context, EIT might represent a radiation-free method for bedside diagnostics. PMID:28000769
Jeannin, P; Delneste, Y; Lecoanet-Henchoz, S; Gretener, D; Bonnefoy, J Y
1998-02-15
Interleukin-7 (IL-7) is a B-cell growth factor produced by both bone marrow stroma cells and follicular dendritic cells (FDCs) located in primary lymphoid follicles and germinal centers. In this study, we have evaluated the role of IL-7 on human Ig class switching. IL-7 was added to peripheral blood mononuclear cells (PBMCs) or tonsillar B cells in the absence or presence of IL-4 and/or anti-CD40 monoclonal antibody (MoAb). Alone, IL-7 did not affect Ig production by PBMCs or by anti-CD40 MoAb-stimulated B cells. Rather, IL-7 potentiated IL-4-induced IgE and IgG4 production by PBMCs. In parallel, IgG3 production was also enhanced but to a lesser extent, whereas the production of the other isotypes was unaltered. The activity of IL-2, IL-9, or IL-15, which share usage of the common gamma chain for signaling, was also assessed. IL-9, like IL-7, potentiated mainly IgE and IgG4 production by IL-4-stimulated PBMCs. IL-15, in contrast, was ineffective, whereas IL-2 enhanced the production of all isotypes. More precisely, IL-7 potentiation of IgE and IgG4 production required the presence of T cells and was accompanied by an increase of the expression of two soluble molecules favoring preferentially IgE and IgG4 synthesis: CD23 (sCD23) and IL-9. Moreover, neutralizing anti-CD23 and anti-IL-9 antibodies partly inhibited the increase of IgE synthesis induced by IL-7. Thus, IL-7 produced locally in the germinal centers by FDCs may interact with T cells and potentiate human IgE and IgG4 switching by favoring IL-9 and sCD23 production.
Evaluation of ILS Localizer Signal Specification During Ground Rollout.
DOT National Transportation Integrated Search
1973-08-01
The International Civil Aviation Organization (ICAO) has developed a specification for localizer information on the runway surface appropriate for rollout guidance during Category III B operations. The suitability of this specification was evaluated ...
Langerhans Cells Maintain Local Tissue Tolerance in a Model of Systemic Autoimmune Disease1
King, Jennifer K.; Philips, Rachael L.; Eriksson, Anna U.; Kim, Peter J.; Halder, Ramesh C.; Lee, Delphine J.; Singh, Ram Raj
2015-01-01
Systemic autoimmune diseases such as lupus affect multiple organs, usually in a diverse fashion where only certain organs are affected in individual patients. It is unclear whether the ‘local’ immune cells play a role in regulating tissue specificity in relation to disease heterogeneity in systemic autoimmune diseases. Here, we used skin as a model to determine the role of tissue-resident dendritic cells in local and systemic involvement within a systemic lupus disease model. Skin-resident dendritic cells, namely Langerhans cells (LC), have been implicated in regulating tolerance or autoimmunity using elegant transgenic models, however, their role in local versus systemic immune regulation is unknown. We demonstrate that while lymphocytes from skin-draining lymph nodes of autoimmune-prone MRL/MpJ-Faslpr/lpr mice react spontaneously to a physiological skin self-Ag desmoglein-3, epicutaneous applications of desmoglein-3 induced tolerance that is dependent on LCs. Inducible ablation of LCs in adult, preclinical MRL/MpJ-Faslpr/lpr and MRL/MpJ-Fas+/+ mice resulted in increased autoantibodies against skin Ags and markedly accelerated lupus dermatitis with increased local macrophage infiltration, but had no effect on systemic autoantibodies such as anti-dsDNA Abs or disease in other organs such as kidneys, lung, and liver. Furthermore, skin-draining lymph nodes of LC-ablated MRL/MpJ-Faslpr/lpr mice had significantly fewer CD4+ T-cells producing anti-inflammatory cytokine IL-10 than LC-intact controls. These results indicate that a skin-resident dendritic cell population regulates local tolerance in systemic lupus and emphasize the importance of the local immune milieu in preventing tissue-specific autoimmunity yet have no effect on systemic autoimmunity. PMID:26071559
Lania, Bruno Grosselli; Morari, Joseane; Souza, Aglécio Luis de; Silva, Marilene Neves da; de Almeida, Amanda Roberta; Veira-Damiani, Gislaine; Alegre, Sarah Monte; César, Carlos Lenz; Velloso, Lício Augusto; Cintra, Maria Letícia; Maia, Nilson Borlina; Velho, Paulo Eduardo Neves Ferreira
2017-01-01
Wounds are a common health problem. Coffee is widely consumed and its oil contains essential fatty acids. We evaluated the local (skin) and systemic effects associated with the topical use of coffee oils in rats. Punch skin wounds (6 mm) incisions were generated on the backs of 75 rats. Saline (SS), mineral oil (MO), green coffee oil (GCO), roasted coffee oil (RCO), green coffee ground oil (GCGO) or roasted coffee ground oil (RCGO) were topically applied to the wounds. Healing was evaluated by visual and histological/morphometric optical microscopy examination; second harmonics generation (SHG) microscopy, wound tissue q-PCR (values in fold-change) and blood serum (ELISA, values in pg/mL). RCO treated animals presented faster wound healing (0.986 vs. 0.422), higher mRNA expression of IGF-1 (2.78 vs. 1.00, p = 0.01), IL-6 (10.72 vs. 1.00, p = 0.001) and IL-23 (4.10 vs. 1.2, p = 0.05) in early stages of wound healing; higher IL-12 (3.32 vs. 1.00, p = 0.05) in the later stages; and lower serum levels of IFN-γ (11.97 vs. 196.45, p = 0.01). GCO treatment led to higher mRNA expression of IL-6 (day 2: 7.94 vs. 1.00, p = 0.001 and day 4: 6.90 vs. 1.00, p = 0.01) and IL-23 (7.93 vs. 1.20, p = 0.001) in the early stages. The RCO treatment also produced higher serum IFN-α levels throughout the experiment (day 2: 52.53 vs. 21.20; day 4: 46.98 vs.21.56; day 10: 83.61 vs. 25.69, p = 0.05) and lower levels of IL-4 (day 4: 0.9 vs.13.36, p = 0.01), adiponectin (day 10: 8,367.47 vs. 16,526.38, p = 0.001) and IFN-γ (day 4: 43.03 vs.196.45, p = 0.05). The SHG analysis showed a higher collagen density in the RCO and GCO treatments (p = 0.05). Topical treatment with coffee oils led to systemic actions and faster wound healing in rats. Further studies should be performed are necessary to assess the safety of topical vegetal oil use for skin lesions.
de Souza, Aglécio Luis; Alegre, Sarah Monte; César, Carlos Lenz
2017-01-01
Introduction Wounds are a common health problem. Coffee is widely consumed and its oil contains essential fatty acids. We evaluated the local (skin) and systemic effects associated with the topical use of coffee oils in rats. Methods Punch skin wounds (6 mm) incisions were generated on the backs of 75 rats. Saline (SS), mineral oil (MO), green coffee oil (GCO), roasted coffee oil (RCO), green coffee ground oil (GCGO) or roasted coffee ground oil (RCGO) were topically applied to the wounds. Healing was evaluated by visual and histological/morphometric optical microscopy examination; second harmonics generation (SHG) microscopy, wound tissue q-PCR (values in fold-change) and blood serum (ELISA, values in pg/mL). Results RCO treated animals presented faster wound healing (0.986 vs. 0.422), higher mRNA expression of IGF-1 (2.78 vs. 1.00, p = 0.01), IL-6 (10.72 vs. 1.00, p = 0.001) and IL-23 (4.10 vs. 1.2, p = 0.05) in early stages of wound healing; higher IL-12 (3.32 vs. 1.00, p = 0.05) in the later stages; and lower serum levels of IFN-γ (11.97 vs. 196.45, p = 0.01). GCO treatment led to higher mRNA expression of IL-6 (day 2: 7.94 vs. 1.00, p = 0.001 and day 4: 6.90 vs. 1.00, p = 0.01) and IL-23 (7.93 vs. 1.20, p = 0.001) in the early stages. The RCO treatment also produced higher serum IFN-α levels throughout the experiment (day 2: 52.53 vs. 21.20; day 4: 46.98 vs.21.56; day 10: 83.61 vs. 25.69, p = 0.05) and lower levels of IL-4 (day 4: 0.9 vs.13.36, p = 0.01), adiponectin (day 10: 8,367.47 vs. 16,526.38, p = 0.001) and IFN-γ (day 4: 43.03 vs.196.45, p = 0.05). The SHG analysis showed a higher collagen density in the RCO and GCO treatments (p = 0.05). Conclusion Topical treatment with coffee oils led to systemic actions and faster wound healing in rats. Further studies should be performed are necessary to assess the safety of topical vegetal oil use for skin lesions. PMID:29236720
Kitazawa, T; Streilein, J W
2000-02-01
Ultraviolet-B radiation (UVR) of mouse skin promotes both local and systemic immune aberrations that are thought to be important in the pathogenesis of cutaneous malignancies. Acute, low-dose UVR regimens inhibit the induction of contact hypersensitivity (CH) in genetically susceptible mice by TNF-alpha-dependent mechanisms. In addition, these regimens also promote the development of tolerance when hapten is applied to the UVR-exposed site at the completion of the radiation treatment protocol. A third immune abnormality is also observed in mice exposed to acute, low-dose UVR. This abnormality, which develops within 48-72 hr of the completion of the UVR regimen, has been described among antigen-presenting cells within secondary lymphoid organs, including lymph nodes that do not drain the site of irradiation. Dendritic cells (DCs) from lymph nodes and spleens of mice exposed to UVR lack the capacity to induce CH if they are derivatized with hapten and injected intracutaneously into naive mice. The DC defect is related to the production of and systemic dissemination of interleukin-10 (IL-10) by keratinocytes within the epidermis of the UVR-exposed skin. We have now examined the nature of the functional aberration that exists among DCs within the secondary lymphoid organs of UVR-exposed mice by examining the capacity of DCs to express co-stimulatory molecules, and their ability to activate ovalbumin (OVA) -specific DO11.10 T-cell receptor transgenic T cells in vitro. Our results indicate that DCs from UVR-exposed mice produced insufficient amounts of IL-12. When pulsed with OVA, these cells were capable of inducing proliferation among DO11.10 T cells in vitro, but the responding cells produced neither IFN-gamma nor IL-10 and IL-4. A similar antigen-presenting cell defect was generated in mice treated with a subcutaneous injection of IL-10. We conclude that acute, low-dose UVR creates an IL-10-dependent functional deficit in DCs in secondary lymphoid organs, and that this defect robs UVR-exposed mice of the capacity to develop CH when hapten is painted epicutaneously.
Aerobic vaginitis in pregnancy.
Donders, Ggg; Bellen, G; Rezeberga, D
2011-09-01
Aerobic vaginitis (AV) is an alteration in vaginal bacterial flora that differs from bacterial vaginosis (BV). AV is characterised by an abnormal vaginal microflora accompanied by an increased localised inflammatory reaction and immune response, as opposed to the suppressed immune response that is characteristic of BV. Given the increased local production of interleukin (IL)-1, IL-6 and IL-8 associated with AV during pregnancy, not surprisingly AV is associated with an increased risk of preterm delivery, chorioamnionitis and funisitis of the fetus. There is no consensus on the optimal treatment for AV in pregnant or non-pregnant women, but a broader spectrum drug such as clindamycin is preferred above metronidazole to prevent infection-related preterm birth. The exact role of AV in pregnancy, the potential benefit of screening, and the use of newer local antibiotics, disinfectants, probiotics and immune modulators need further study. © 2011 The Authors BJOG An International Journal of Obstetrics and Gynaecology © 2011 RCOG.
Expression and localization of CXCL16 and CXCR6 in ovarian endometriotic tissues.
Manabe, Shuichi; Iwase, Akira; Goto, Maki; Kobayashi, Hiroharu; Takikawa, Sachiko; Nagatomo, Yoshinari; Nakahara, Tatsuo; Bayasula; Nakamura, Tomoko; Hirokawa, Wakana; Kikkawa, Fumitaka
2011-12-01
Inflammatory mediators, including chemokines, may play crucial roles in the development of endometriosis. Therefore, we investigated the expression and localization of CXCL16 and its receptor, CXCR6, in ovarian endometriotic tissues. We also examined whether CXCL16 induces IL-8 production in endometriotic stromal cells. We performed immunohistochemical and Western blotting analyses of in vivo and in vitro samples. IL-8 production was assayed using an ELISA. Both CXCL16 and CXCR6 were expressed by endometriotic epithelial cells and stromal cells, but not normal ovarian stroma. A Western blotting analysis using primary cultured endometriotic stromal cells showed a constant expression of CXCL16 and CXCR6 in the proliferative phase, secretory phase and during gonadotropin-releasing hormone agonist therapy. CXCL16 induced IL-8 production in several endometriotic stromal cells in vitro. CXCL16 and CXCR6 might be involved in the pathophysiology of endometriosis through regulation of the inflammatory response.
NASA Astrophysics Data System (ADS)
Whitmire, Rachel Elisabeth
Osteoarthritis (OA) affects 26 million Americans, or approximately 14% of the adult population. The incidence of OA is predicted to dramatically increase in the next 20 years as the US grows older and the rate of obesity continues to increase. There are currently no clinical interventions that cure OA. Current biomaterial delivery systems exhibit several limitations. First, most drug-delivery particles are hydrophobic, which is not optimal for hydrophilic protein encapsulation. Second, hydrophobic particles, such as PLGA, could cause wear damage to the already-fragile OA cartilage structure. Additionally, these particles usually suffer from non-specific protein adsorption, which causes increased phagocytosis and can lead to increased inflammation. New therapies that increase the effectiveness of OA treatments or reverse OA disease progression will greatly decrease the economic costs and individual pain associated with this disease. The goal of this thesis was to develop a new drug-delivering material to deliver anti-inflammatory protein for treating OA. Our central hypothesis for this work is that a controlled release/presentation system will more effectively deliver anti-inflammatory protein therapies to the OA joint. The primary goal of this work was to synthesize a block copolymer that could self-assemble into injectable, sub-micron-scale particles and would allow an anti-inflammatory protein, IL-1ra, to be tethered to its surface for efficient protein delivery. The block copolymer incorporated an oligo-ethylene monomer for tissue compatibility and non-fouling behavior, a 4-nitrophenol group for efficient protein tethering, and cyclohexyl methacrylate, a hydrophobic monomer, for particle stability. We engineered the copolymer and tested it in both in vitro culture experiments and an in vivo model to evaluate protein retention in the knee joint. The rationale for this project was that the rational design and synthesis of a new drug- and protein-delivering material can create a modular polymer particle that can deliver multi-faceted therapies to treat OA. This work characterizes the in vitro and in vivo behavior of our polymer particle system. The protein tethering strategy allows IL-1ra protein to be tethered to the surface of these particles. Once tethered, IL-1ra maintains its bioactivity and actively targets synoviocytes, cells crucial to the OA pathology. This binding happens in an IL-1-dependent manner. Furthermore, IL-1ra-tethered particles are able to inhibit IL-1β-induced NF-κB activation. These studies show that this particle system has the potential to deliver IL-1ra to arthritic joints and that it has potential for localizing/targeting drugs to inflammatory cells of interest as a new way to target OA drug treatments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Che, Qi; Liu, Bin-Ya; Wang, Fang-Yuan
Highlights: • IL-6 could promote endometrial cancer cells proliferation. • IL-6 promotes its own production through an autocrine feedback loop. • ERK and NF-κB pathway inhibitors inhibit IL-6 production and tumor growth. • IL-6 secretion relies on the activation of ERK–NF-κB pathway axis. • An orthotopic nude endometrial carcinoma model confirms the effect of IL-6. - Abstract: Interleukin (IL)-6 as an inflammation factor, has been proved to promote cancer proliferation in several human cancers. However, its role in endometrial cancer has not been studied clearly. Previously, we demonstrated that IL-6 promoted endometrial cancer progression through local estrogen biosynthesis. In thismore » study, we proved that IL-6 could directly stimulate endometrial cancer cells proliferation and an autocrine feedback loop increased its production even after the withdrawal of IL-6 from the medium. Next, we analyzed the mechanism underlying IL-6 production in the feedback loop and found that its production and IL-6-stimulated cell proliferation were effectively blocked by pharmacologic inhibitors of nuclear factor-kappa B (NF-κB) and extra-cellular signal-regulated kinase (ERK). Importantly, activation of ERK was upstream of the NF-κB pathways, revealing the hierarchy of this event. Finally, we used an orthotopic nude endometrial carcinoma model to confirm the effects of IL-6 on the tumor progression. Taken together, these data indicate that IL-6 promotes endometrial carcinoma growth through an expanded autocrine regulatory loop and implicate the ERK–NF-κB pathway as a critical mediator of IL-6 production, implying IL-6 to be an important therapeutic target in endometrial carcinoma.« less
Feng, Wei; Liu, Hongrui; Luo, Tingting; Liu, Di; Du, Juan; Sun, Jing; Wang, Wei; Han, Xiuchun; Yang, Kaiyun; Guo, Jie; Amizuka, Norio; Li, Minqi
2017-01-27
Interleukin (IL)-6 is known to indirectly enhance osteoclast formation by promoting receptor activator of nuclear factor kappa-B ligand (RANKL) production by osteoblastic/stromal cells. However, little is known about the direct effect of IL-6 on osteoclastogenesis. Here, we determined the direct effects of IL-6 and its soluble receptor (sIL-6R) on RANKL-induced osteoclast formation by osteoclast precursors in vitro. We found IL-6/sIL-6R significantly promoted and suppressed osteoclast differentiation induced by low- (10 ng/ml) and high-level (50 ng/ml) RANKL, respectively. Using a bone resorption pit formation assay, expression of osteoclastic marker genes and transcription factors confirmed differential regulation of RANKL-induced osteoclastogenesis by IL-6/sIL-6R. Intracellular signaling transduction analysis revealed IL-6/sIL-6R specifically upregulated and downregulated the phosphorylation of NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells), ERK (extracellular signal-regulated kinase) and JNK (c-Jun N-terminal kinase) induced by low- and high level RANKL, respectively. Taken together, our findings demonstrate that IL-6/sIL-6R differentially regulate RANKL-induced osteoclast differentiation and activity through modulation of NF-κB, ERK and JNK signaling pathways. Thus, IL-6 likely plays a dual role in osteoclastogenesis either as a pro-resorption factor or as a protector of bone, depending on the level of RANKL within the local microenvironment.
[Cytokine profile in young children with acute stenotic laryngotracheitis].
Гладченко, Ольга І; Токарєв, Павло В; Надрага, Олександр Б
2016-01-01
One of the most severe complications of acute respiratory infections in young children is acute stenotic laryngotracheitis (croup). The relationship between cytokine blood levels and symptoms of croup, croup severity, disease sequel, despite numerous studies is still unclear. Cytokine profile in young children with acute stenotic laryngotracheitis investigation. 112 children aged 12 min. - 36 mon. with acute stenotic laryngotracheitis which were treated at the Lviv Regional Infectious Diseases Hospital were kept under observation. Croup symptoms, levels of interleukins (IL1, IL4, IL6, IL10, IL17) in serum, DNA and RNA viruses in respiratory nasal mucus were studied; Chan croup severity was used. In the pathogenesis of croup has an important role the imbalance between inflammatory (IL1, IL6) and anti-inflammatory (IL4, IL10, IL17) cytokines, which does not reduce the intensity of inflammatory reactions and its lead to local swelling, muscle spasm, excessive production of mucus in the place of viral replication. The levels of inflammatory and anti-inflammatory cytokines in the blood serum of children with croup were significantly higher than in patients with acute laryngitis. In patients with recurrent croup, unlike patients with the first case of croup does we don't see a significant correlation between the concentrations of inflammatory and anti-inflammatory cytokine levels Conclusions: The significantly higher levels of cytokines in children with croup compared with the group of patients with acute laryngitis were found, imbalance between anti-inflammatory (IL1, IL6) cytokine levels and inflammatory (IL4, IL10, IL17) cytokine levels in children who developed recurrent croup.
Ionic Liquid-Solute Interactions Studied by 2D NOE NMR Spectroscopy.
Khatun, Sufia; Castner, Edward W
2015-07-23
Intermolecular interactions between a Ru(2+)(bpy)3 solute and the anions and cations of four different ionic liquids (ILs) are investigated by 2D NMR nuclear Overhauser effect (NOE) techniques, including {(1)H-(19)F} HOESY and {(1)H-(1)H} ROESY. Four ILs are studied, each having the same bis(trifluoromethylsulfonyl)amide anion in common. Two of the ILs have aliphatic 1-alkyl-1-methylpyrrolidinium cations, while the other two ILs have aromatic 1-alkyl-3-methylimidazolium cations. ILs with both shorter (butyl) and longer (octyl or decyl) cationic alkyl substituents are studied. NOE NMR results suggest that the local environment of IL anions and cations near the Ru(2+)(bpy)3 solute is rather different from the bulk IL structure. The solute-anion and solute-cation interactions are significantly different both for ILs with short vs long alkyl tails and for ILs with aliphatic vs aromatic cation polar head groups. In particular, the solute-anion interactions are observed to be about 3 times stronger for the cations with shorter alkyl tails relative to the ILs with longer alkyl tails. The Ru(2+)(bpy)3 solute interacts with both the polar head and the nonpolar tail groups of the 1-butyl-1-methylpyrrolidinium cation but only with the nonpolar tail groups of the 1-decyl-1-methylpyrrolidinium cation.
Cytokines and bullous pemphigoid.
D'Auria, L; Cordiali Fei, P; Ameglio, F
1999-06-01
This report reviews the data presented in the literature concerning the presence and levels of different cytokines in sera, lesional tissue or blister fluids of patients with bullous pemphigoid. The list of cytokines analysed includes 21 molecules: interleukins (IL)-1 => 8, IL-10 => 13, IL-15, granulocyte-monocyte-colony stimulating factor (GM-CSF), interferon-gamma (IFN-gamma), oncostatin-M (OSM), regulated upon activation normal T cell expressed and presumably secreted (RANTES), transforming growth factor-beta 1 (TGF-beta 1), tumor necrosis factor-alpha (TNF-alpha) and vascular endothelial growth factor (VEGF). Basic information regarding the functions of these cytokines and their possible involvement in the pathogenetic steps of the disease, such as autoantigen expression, autoantibody induction, complement activation, local cell recruitment and stimulation, resident cell activation, release of various effector molecules and tissue damage are also reported. A specific function for each cytokine in bullous pemphigoid induction cannot be still defined, however, the literature attributes a major role to IL-1, IL-4, IL-5, IL-6, IL-8 and IFN-gamma. On the basis of significant (direct or inverse) correlations found between disease intensity and the blister fluid/serum levels, the following cytokines IL-7, IL-15, RANTES, VEGF and TNF-alpha, besides those previously mentioned, may also be involved in this disease.
Oliveira, Arão Belitardo; Bachi, André Luis Lacerda; Ribeiro, Reinaldo Teixeira; Mello, Marco Tulio; Tufik, Sergio; Peres, Mario Fernando Prieto
2017-12-15
Increased plasma pro-inflammatory and decreased anti-inflammatory cytokines have been implicated in physiological and behavioural aspects of mood- and pain-related disorders, including migraine. In this case-control study, we assessed mood scores, cardiorespiratory fitness (VO 2Peak ), and plasma concentrations of TNF-α, IL-1β, IL-6, IL-8, IL-10, and IL-12p70 interictally in women with episodic migraine with/without aura (ICHD-II), taking no preventive medicine, and in healthy women recruited from São Paulo Hospital and local community, respectively. Thirty-seven participants (mean±SD age=34±10 and BMI=26.5±4.9) were assessed. Groups (Control, n=17; Migraine, n=20) showed no differences in age, BMI, and VO 2Peak . Migraine patients showed higher tension (p=0.019) and anxiety scores (p=0.046), TNF-α (p<0.01), and IL-12p70 (p=0.01), while IL-6 (p<0.01), IL-8 (p<0.01), and IL-10 (p<0.01) were decreased compared to control group. Multiple linear regression models showed that migraine was positively associated with TNF-α and IL-12p70, and negatively associated with IL-6, IL-8, and IL-10. Anxiety scores were positively associated with IL-12p70, and VO 2Peak was negatively associated with TNF-α. In conclusion, an exaggeratedly skewed cytokine profile, in particular the TNF-α and 12p70/IL-10 balance may be related to migraine pathomechanisms, and its psychiatric comorbidities and functional capacity. Additional studies are needed to confirm these results. Copyright © 2017 Elsevier B.V. All rights reserved.
Chang, Kai-Kai; Liu, Li-Bing; Jin, Li-Ping; Zhang, Bing; Mei, Jie; Li, Hui; Wei, Chun-Yan; Zhou, Wen-Jie; Zhu, Xiao-Yong; Shao, Jun; Li, Da-Jin; Li, Ming-Qing
2017-01-01
Endometriosis is an estrogen-dependent inflammatory disease. The anti-inflammatory cytokine IL-10 is also increased in endometriosis. IL-10 production by Th17 cells is critical for limiting autoimmunity and inflammatory responses. However, the mechanism of inducing IL-10-producing Th17 cells is still largely unknown. The present study investigated the differentiation mechanism and role of IL-10-producing Th17 cells in endometriosis. Here, we report that IL-10+Th17 cells are significantly increased in the peritoneal fluid of women with endometriosis, along with an elevation of IL-27, IL-6 and TGF-β. Compared with peripheral CD4+ T cells, endometrial CD4+ T cells highly expressed IL-27 receptors, especially the ectopic endometrium. Under external (2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD) and local (estrogen, IL-6 and TGF-β) environmental regulation, IL-27 from macrophages and endometrial stromal cells (ESCs) induces IL-10 production in Th17 cells in vitro and in vivo. This process may be mediated through the interaction between c-musculoaponeurotic fibrosarconna (c-Maf) and retinoic acid-related orphan receptor gamma t (RORγt), and associated with the upregulation of downstream B lymphocyte-induced maturation protein-1 (Blimp-1). IL-10+Th17 cells, in turn, stimulate the proliferation and implantation of ectopic lesions and accelerate the progression of endometriosis. These results suggest that IL-27 is a pivotal regulator in endometriotic immune tolerance by triggering Th17 cells to produce IL-10 and promoting the rapid growth and implantation of ectopic lesions. This finding provides a scientific basis for potential therapeutic strategies aimed at preventing the development of endometriosis, especially for patients with high levels of IL-10+Th17 cells. PMID:28300844
IFN-gamma Impairs Release of IL-8 by IL-1beta-stimulated A549 Lung Carcinoma Cells
Boost, Kim A; Sadik, Christian D; Bachmann, Malte; Zwissler, Bernhard; Pfeilschifter, Josef; Mühl, Heiko
2008-01-01
Background Production of interferon (IFN)-γ is key to efficient anti-tumor immunity. The present study was set out to investigate effects of IFNγ on the release of the potent pro-angiogenic mediator IL-8 by human A549 lung carcinoma cells. Methods A549 cells were cultured and stimulated with interleukin (IL)-1β alone or in combination with IFNγ. IL-8 production by these cells was analyzed with enzyme linked immuno sorbent assay (ELISA). mRNA-expression was analyzed by real-time PCR and RNase protection assay (RPA), respectively. Expression of inhibitor-κ Bα, cellular IL-8, and cyclooxygenase-2 was analyzed by Western blot analysis. Results Here we demonstrate that IFNγ efficiently reduced IL-8 secretion under the influence of IL-1β. Surprisingly, real-time PCR analysis and RPA revealed that the inhibitory effect of IFNγ on IL-8 was not associated with significant changes in mRNA levels. These observations concurred with lack of a modulatory activity of IFNγ on IL-1β-induced NF-κB activation as assessed by cellular IκB levels. Moreover, analysis of intracellular IL-8 suggests that IFNγ modulated IL-8 secretion by action on the posttranslational level. In contrast to IL-8, IL-1β-induced cyclooxygenase-2 expression and release of IL-6 were not affected by IFNγ indicating that modulation of IL-1β action by this cytokine displays specificity. Conclusion Data presented herein agree with an angiostatic role of IFNγ as seen in rodent models of solid tumors and suggest that increasing T helper type 1 (Th1)-like functions in lung cancer patients e.g. by local delivery of IFNγ may mediate therapeutic benefit via mechanisms that potentially include modulation of pro-angiogenic IL-8. PMID:18801189
Hensler, T; Sauerland, S; Riess, P; Hess, S; Helling, H J; Andermahr, J; Bouillon, B; Neugebauer, E A
2000-10-01
Besides interleukin (IL)-10, accumulating evidence from in vitro studies has indicated a strong antiinflammatory capacity for IL-13. A prospective clinical study was undertaken to assess the influence of additional brain injury on systemic IL-10 and IL-13 levels as markers for the antiinflammatory state in trauma patients. The course of IL-10 and IL-13 plasma levels from 32 patients with an isolated severe head trauma (SHT), 50 patients with multiple injuries and additional SHT and 39 patients with multiple injuries without SHT was detected using ELISA-technique. Blood samples from 37 healthy blood donors were analysed for control. IL-10 levels were significantly elevated in all 3 injury groups within 3 h after trauma. The lowest initial release was detected in patients with an isolated SHT (Injury severity score; ISS: 18.1 +/- 5.6). No difference could be demonstrated for the IL-10 levels from multiple injured patients with (ISS: 35.3 +/- 9.6) or without additional SHT (ISS: 25.5 +/- 11.7), though there were relevant differences in the ISS. In contrast, the IL-13 plasma levels were not elevated systemically after trauma. IL-10 but not IL-13 is a detectable antiinflammatory marker in trauma patients with or without brain injury and to a minor degree in patients with an isolated SHT.
Cunningham, Bryan W; Hallab, Nadim J; Hu, Nianbin; McAfee, Paul C
2013-09-01
The introduction and utilization of motion-preserving implant systems for spinal reconstruction served as the impetus for this basic scientific investigation. The effect of unintended wear particulate debris resulting from micromotion at spinal implant interconnections and bearing surfaces remains a clinical concern. Using an in vivo rabbit model, the current study quantified the neural and systemic histopathological responses following epidural application of 11 different types of medical-grade particulate wear debris produced from spinal instrumentation. A total of 120 New Zealand White rabbits were equally randomized into 12 groups based on implant treatment: 1) sham (control), 2) stainless steel, 3) titanium alloy, 4) cobalt chromium alloy, 5) ultra-high molecular weight polyethylene (UHMWPe), 6) ceramic, 7) polytetrafluoroethylene, 8) polycarbonate urethane, 9) silicone, 10) polyethylene terephthalate, 11) polyester, and 12) polyetheretherketone. The surgical procedure consisted of a midline posterior approach followed by resection of the L-6 spinous process and L5-6 ligamentum flavum, permitting interlaminar exposure of the dural sac. Four milligrams of the appropriate treatment material (Groups 2-12) was then implanted onto the dura in a dry, sterile format. All particles (average size range 0.1-50 μm in diameter) were verified to be endotoxin free prior to implantation. Five animals from each treatment group were sacrificed at 3 months and 5 were sacrificed at 6 months postoperatively. Postmortem analysis included epidural cultures and histopathological assessment of local and systemic tissue samples. Immunocytochemical analysis of the spinal cord and overlying epidural fibrosis quantified the extent of proinflammatory cytokines (tumor necrosis factor-α, tumor necrosis factor-β, interleukin [IL]-1α, IL-1β, and IL-6) and activated macrophages. Epidural cultures were negative for nearly all cases, and there was no evidence of particulate debris or significant histopathological changes in the systemic tissues. Gross histopathological examination demonstrated increased levels of epidural fibrosis in the experimental treatment groups compared with the control group. Histopathological evaluation of the epidural fibrous tissues showed evidence of a histiocytic reaction containing phagocytized inert particles and foci of local inflammatory reactions. At 3 months, immunohistochemical examination of the spinal cord and epidural tissues demonstrated upregulation of IL-6 in the groups in which metallic and UHMWPe debris were implanted (p < 0.05), while macrophage activity levels were greatest in the stainless-steel and UHMWPe groups (p < 0.05). By 6 months, the levels of activated cytokines and macrophages in nearly all experimental cases were downregulated and not significantly different from those of the operative controls (p > 0.05). The spinal cord had no evidence of lesions or neuropathology. However, multiple treatments in the metallic groups exhibited a mild, chronic macrophage response to particulate debris, which had diffused intrathecally. Epidural application of spinal instrumentation particulate wear debris elicits a chronic histiocytic reaction localized primarily within the epidural fibrosis. Particles have the capacity to diffuse intrathecally, eliciting a transient upregulation in macrophage/cytokine activity response within the epidural fibrosis. Overall, based on the time periods evaluated, there was no evidence of an acute neural or systemic histopathological response to the materials included in the current project.
Keratinocyte overexpression of IL-17C promotes psoriasiform skin inflammation
Johnston, Andrew; Fritz, Yi; Dawes, Sean M.; Diaconu, Doina; Al-Attar, Paul M.; Guzman, Andrew M.; Chen, Cynthia S.; Fu, Wen; Gudjonsson, Johann E.; McCormick, Thomas S.; Ward, Nicole L.
2013-01-01
IL-17C is a functionally distinct member of the IL-17 family that binds IL-17RE/A to promote innate defense in epithelial cells and regulate Th17 cell differentiation. We demonstrate that IL-17C (not IL-17A) is the most abundant IL-17 isoform in lesional psoriasis skin (1058pg/ml vs. 8pg/ml; p<0.006) and localizes to keratinocytes (KCs), endothelial cells (ECs) and leukocytes. ECs stimulated with IL-17C produce increased TNFα and KCs stimulated with IL-17C/TNFα produce similar inflammatory gene response patterns as those elicited by IL-17A/TNFα, including increases in IL-17C, TNFα, IL-8, IL-1α/β, IL-1F5, IL-1F9, IL-6, IL-19, CCL20, S100A7/A8/A9, DEFB4, LCN2 and PI3 (p<0.05); indicating a positive pro-inflammatory feedback loop between the epidermis and ECs. Psoriasis patients treated with etanercept rapidly decrease cutaneous IL-17C levels, suggesting IL-17C/TNFα-mediated inflammatory signaling is critical for psoriasis pathogenesis. Mice genetically engineered to overexpress IL-17C in KCs develop well-demarcated areas of erythematous, flakey “involved” skin adjacent to areas of normal appearing “uninvolved” skin despite increased IL-17C expression in both areas (p<0.05). Uninvolved skin displays increased angiogenesis and elevated S100A8/A9expression (p<0.05) but no epidermal hyperplasia; whereas involved skin exhibits robust epidermal hyperplasia, increased angiogenesis and leukocyte infiltration and upregulated TNFα, IL-1α/β, IL-17A/F, IL-23p19, VEGF, IL-6 and CCL20 (p<0.05) suggesting that IL-17C, when coupled with other pro-inflammatory signals, initiates the development of psoriasiform dermatitis. This skin phenotype was significantly improved following 8 weeks of TNFα inhibition. These findings identify a role for IL-17C in skin inflammation and suggest a pathogenic function for the elevated IL-17C observed in lesional psoriasis skin. PMID:23359500
Ruckerl, Dominik; Thomas, Graham D.; Hewitson, James P.; Duncan, Sheelagh; Brombacher, Frank; Maizels, Rick M.; Hume, David A.; Allen, Judith E.
2013-01-01
Macrophages (MΦs) colonize tissues during inflammation in two distinct ways: recruitment of monocyte precursors and proliferation of resident cells. We recently revealed a major role for IL-4 in the proliferative expansion of resident MΦs during a Th2-biased tissue nematode infection. We now show that proliferation of MΦs during intestinal as well as tissue nematode infection is restricted to sites of IL-4 production and requires MΦ-intrinsic IL-4R signaling. However, both IL-4Rα–dependent and –independent mechanisms contributed to MΦ proliferation during nematode infections. IL-4R–independent proliferation was controlled by a rise in local CSF-1 levels, but IL-4Rα expression conferred a competitive advantage with higher and more sustained proliferation and increased accumulation of IL-4Rα+ compared with IL-4Rα− cells. Mechanistically, this occurred by conversion of IL-4Rα+ MΦs from a CSF-1–dependent to –independent program of proliferation. Thus, IL-4 increases the relative density of tissue MΦs by overcoming the constraints mediated by the availability of CSF-1. Finally, although both elevated CSF1R and IL-4Rα signaling triggered proliferation above homeostatic levels, only CSF-1 led to the recruitment of monocytes and neutrophils. Thus, the IL-4 pathway of proliferation may have developed as an alternative to CSF-1 to increase resident MΦ numbers without coincident monocyte recruitment. PMID:24101381
Jenkins, Stephen J; Ruckerl, Dominik; Thomas, Graham D; Hewitson, James P; Duncan, Sheelagh; Brombacher, Frank; Maizels, Rick M; Hume, David A; Allen, Judith E
2013-10-21
Macrophages (MΦs) colonize tissues during inflammation in two distinct ways: recruitment of monocyte precursors and proliferation of resident cells. We recently revealed a major role for IL-4 in the proliferative expansion of resident MΦs during a Th2-biased tissue nematode infection. We now show that proliferation of MΦs during intestinal as well as tissue nematode infection is restricted to sites of IL-4 production and requires MΦ-intrinsic IL-4R signaling. However, both IL-4Rα-dependent and -independent mechanisms contributed to MΦ proliferation during nematode infections. IL-4R-independent proliferation was controlled by a rise in local CSF-1 levels, but IL-4Rα expression conferred a competitive advantage with higher and more sustained proliferation and increased accumulation of IL-4Rα(+) compared with IL-4Rα(-) cells. Mechanistically, this occurred by conversion of IL-4Rα(+) MΦs from a CSF-1-dependent to -independent program of proliferation. Thus, IL-4 increases the relative density of tissue MΦs by overcoming the constraints mediated by the availability of CSF-1. Finally, although both elevated CSF1R and IL-4Rα signaling triggered proliferation above homeostatic levels, only CSF-1 led to the recruitment of monocytes and neutrophils. Thus, the IL-4 pathway of proliferation may have developed as an alternative to CSF-1 to increase resident MΦ numbers without coincident monocyte recruitment.
Wermuth, Peter J; Jimenez, Sergio A
2012-07-01
Nephrogenic systemic sibrosis is a progressive disorder occurring in some renal insufficiency patients exposed to gadolinium-based contrast agents (GdBCA). Previous studies demonstrated that the GdBCA Omniscan upregulated several innate immunity pathways in normal differentiated human macrophages, induced rapid nuclear localization of the transcription factor NF-κB, and increased the expression and production of numerous profibrotic/proinflammatory cytokines, chemokines, and growth factors. To further examine GdBCA stimulation of the innate immune system, cultured human embryonic kidney 293 cells expressing one of seven different human TLRs or one of two human nucleotide-binding oligomerization domain-like receptors were exposed in vitro for 24 h to various GdBCA. The signaling activity of each compound was evaluated by its ability to activate an NF-κB-inducible reporter gene. Omniscan and gadodiamide induced strong TLR4- and TLR7-mediated reporter gene activation. The other Gd compounds examined failed to induce reporter gene activation. TLR pathway inhibition using chloroquine or an inhibitor of IL-1R-associated kinases 1 and 4 in normal differentiated human macrophages abrogated Omniscan-induced gene expression. Omniscan and gadodiamide signaling via TLRs 4 and 7 resulted in increased production and expression of numerous proinflammatory/profibrotic cytokines, chemokines, and growth factors, including CXCL10, CCL2, CCL8, CXCL12, IL-4, IL-6, TGF-β, and vascular endothelial growth factor. These observations suggest that TLR activation by environmental stimuli may participate in the pathogenesis of nephrogenic systemic fibrosis and of other fibrotic disorders including systemic sclerosis.
A novel platform for biologically active recombinant human interleukin-13 production.
Wang, David J; Brandsma, Martin; Yin, Ziqin; Wang, Aiming; Jevnikar, Anthony M; Ma, Shengwu
2008-06-01
Interleukin-13 (IL-13) is a pleiotropic regulatory cytokine with the potential for treating several human diseases, including type-1 diabetes. Thus far, conventional expression systems for recombinant IL-13 production have proven difficult and are limited by efficiency. In this study, transgenic plants were used as a novel expression platform for the production of human IL-13 (hIL-13). DNA constructs containing hIL-13 cDNA were introduced into tobacco plants. Transcriptional expression of the hIL-13 gene in transgenic plants was confirmed by reverse transcriptase-polymerase chain reaction and Northern blotting. Western blot analysis showed that the hIL-13 protein was efficiently accumulated in transgenic plants and present in multiple molecular forms, with an expression level as high as 0.15% of total soluble protein in leaves. The multiple forms of plant-derived recombinant hIL-13 (rhIL-13) are a result of differential N-linked glycosylation, as revealed by enzymatic and chemical deglycosylation, but not of disulphide-linked oligomerization. In vitro trypsin digestion indicated that plant rhIL-13 was more resistant than unglycosylated control rhIL-13 to proteolysis. The stability of plant rhIL-13 to digestion was further supported with simulated gastric and intestinal fluid digestion. In vitro bioassays using a factor-dependent human erythroleukaemic cell line (TF-1 cells) showed that plant rhIL-13 retained the biological functions of the authentic hIL-13 protein. These results demonstrate that transgenic plants are superior to conventional cell-based expression systems for the production of rhIL-13. Moreover, transgenic plants synthesizing high levels of rhIL-13 may prove to be an attractive delivery system for direct oral administration of IL-13 in the treatment of clinical diseases such as type-1 diabetes.
A role for NF-κB–dependent gene transactivation in sunburn
Abeyama, Kazuhiro; Eng, William; Jester, James V.; Vink, Arie A.; Edelbaum, Dale; Cockerell, Clay J.; Bergstresser, Paul R.; Takashima, Akira
2000-01-01
Exposure of skin to ultraviolet (UV) radiation is known to induce NF-κB activation, but the functional role for this pathway in UV-induced cutaneous inflammation remains uncertain. In this study, we examined whether experimentally induced sunburn reactions in mice could be prevented by blocking UV-induced, NF-κB–dependent gene transactivation with oligodeoxynucleotides (ODNs) containing the NF-κB cis element (NF-κB decoy ODNs). UV-induced secretion of IL-1, IL-6, TNF-α, and VEGF by skin-derived cell lines was inhibited by the decoy ODNs, but not by the scrambled control ODNs. Systemic or local injection of NF-κB decoy ODNs also inhibited cutaneous swelling responses to UV irradiation. Moreover, local UV-induced inflammatory changes (swelling, leukocyte infiltration, epidermal hyperplasia, and accumulation of proinflammatory cytokines) were all inhibited specifically by topically applied decoy ODNs. Importantly, these ODNs had no effect on alternative types of cutaneous inflammation caused by irritant or allergic chemicals. These results indicate that sunburn reactions culminate from inflammatory events that are triggered by UV-activated transcription of NF-κB target genes, rather than from nonspecific changes associated with tissue damage. PMID:10862790
Development and validation of a house finch interleukin-1β (HfIL-1β) ELISA system.
Kim, Sungwon; Park, Myeongseon; Leon, Ariel E; Adelman, James S; Hawley, Dana M; Dalloul, Rami A
2017-08-30
A unique clade of the bacterium Mycoplasma gallisepticum (MG), which causes chronic respiratory disease in poultry, has resulted in annual epidemics of conjunctivitis in North American house finches since the 1990s. Currently, few immunological tools have been validated for this songbird species. Interleukin-1β (IL-1β) is a prototypic multifunctional cytokine and can affect almost every cell type during Mycoplasma infection. The overall goal of this study was to develop and validate a direct ELISA assay for house finch IL-1β (HfIL-1β) using a cross-reactive chicken antibody. A direct ELISA approach was used to develop this system using two different coating methods, carbonate and dehydration. In both methods, antigens (recombinant HfIL-1b or house finch plasma) were serially diluted in carbonate-bicarbonate coating buffer and either incubated at 4 °C overnight or at 60 °C on a heating block for 2 hr. To generate the standard curve, rHfIL-1b protein was serially diluted at 0, 3, 6, 9, 12, 15, 18, 21, and 24 ng/mL. Following blocking and washing, anti-chicken IL-1b polyclonal antibody was added, plates were later incubated with detecting antibodies, and reactions developed with tetramethylbenzidine solution. A commercially available anti-chicken IL-1β (ChIL-1β) polyclonal antibody (pAb) cross-reacted with house finch plasma IL-1β as well as bacterially expressed recombinant house finch IL-1β (rHfIL-1β) in immunoblotting assays. In a direct ELISA system, rHfIL-1β could not be detected by an anti-ChIL-1β pAb when the antigen was coated with carbonate-bicarbonate buffer at 4°C overnight. However, rHfIL-1β was detected by the anti-ChIL-1β pAb when the antigen was coated using a dehydration method by heat (60°C). Using the developed direct ELISA for HfIL-1β with commercial anti-ChIL-1β pAb, we were able to measure plasma IL-1β levels from house finches. Based on high amino acid sequence homology, we hypothesized and demonstrated cross-reactivity of anti-ChIL-1β pAb and HfIL-1β. Then, we developed and validated a direct ELISA system for HfIL-1β using a commercial anti-ChIL-1β pAb by measuring plasma HfIL-1β in house finches.
Systems Analysis of Physical Absorption of CO2 in Ionic Liquids for Pre-Combustion Carbon Capture.
Zhai, Haibo; Rubin, Edward S
2018-04-17
This study develops an integrated technical and economic modeling framework to investigate the feasibility of ionic liquids (ILs) for precombustion carbon capture. The IL 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide is modeled as a potential physical solvent for CO 2 capture at integrated gasification combined cycle (IGCC) power plants. The analysis reveals that the energy penalty of the IL-based capture system comes mainly from the process and product streams compression and solvent pumping, while the major capital cost components are the compressors and absorbers. On the basis of the plant-level analysis, the cost of CO 2 avoided by the IL-based capture and storage system is estimated to be $63 per tonne of CO 2 . Technical and economic comparisons between IL- and Selexol-based capture systems at the plant level show that an IL-based system could be a feasible option for CO 2 capture. Improving the CO 2 solubility of ILs can simplify the capture process configuration and lower the process energy and cost penalties to further enhance the viability of this technology.
A Multi-Start Evolutionary Local Search for the Two-Echelon Location Routing Problem
NASA Astrophysics Data System (ADS)
Nguyen, Viet-Phuong; Prins, Christian; Prodhon, Caroline
This paper presents a new hybrid metaheuristic between a greedy randomized adaptive search procedure (GRASP) and an evolutionary/iterated local search (ELS/ILS), using Tabu list to solve the two-echelon location routing problem (LRP-2E). The GRASP uses in turn three constructive heuristics followed by local search to generate the initial solutions. From a solution of GRASP, an intensification strategy is carried out by a dynamic alternation between ELS and ILS. In this phase, each child is obtained by mutation and evaluated through a splitting procedure of giant tour followed by a local search. The tabu list, defined by two characteristics of solution (total cost and number of trips), is used to avoid searching a space already explored. The results show that our metaheuristic clearly outperforms all previously published methods on LRP-2E benchmark instances. Furthermore, it is competitive with the best meta-heuristic published for the single-echelon LRP.
Presence of a novel exon 2E encoding a putative transmembrane protein in human IL-33 gene.
Tominaga, Shin-ichi; Hayakawa, Morisada; Tsuda, Hidetoshi; Ohta, Satoshi; Yanagisawa, Ken
2013-01-18
Interleukin-33 (IL-33) is a dual-function molecule that regulates gene expression in nuclei and, as a cytokine, conveys proinflammatory signals from outside of cells via its specific receptor ST2L. There are still a lot of questions about localization and processing of IL-33 gene products. In the course of re-evaluating human IL-33 gene, we found distinct promoter usage depending on the cell type, similar to the case in the ST2 gene. Furthermore, we found a novel exon 2E in the conventional intron 2 whose open reading frame corresponded to a transmembrane protein of 131 amino acids. Dependence of exon 2E expression on differentiation of HUVEC cells is of great interest in relation to human IL-33 function. Copyright © 2012 Elsevier Inc. All rights reserved.
Sex Difference in Link between IL-6 and Stress
Jankord, Ryan; Turk, James R.; Schadt, James C.; Casati, Jennifer; Ganjam, Venkataseshu K.; Price, Elmer M.; Keisler, Duane H.; Laughlin, M. Harold
2009-01-01
Inflammation contributes to disease development, and the neuro-immuno-endocrine interface is a potential site of action for inflammatory products like IL-6 to affect health. Although plasma IL-6 can stimulate the activity of the hypothalamo-pituitary-adrenocortical (HPA) axis, the precise role, if any, for IL-6 in the HPA response to non-immunological stressors is unclear. The purpose of this study was to test the hypothesis that IL-6 in the stalk median eminence (SME) can be directly involved in stimulating ACTH secretion in response to acute stress in female swine. This study was undertaken as a result of finding IL-6 localized to the external zone of the stalk median eminence (SME) next to the hypophyseal portal vessels. Results indicate that content of IL-6 in the SME decreases in response to acute stress along with an increase in phosphorylation of STAT3 in the anterior pituitary and a simultaneous increase in plasma concentrations of IL-6 and ACTH. Furthermore, we show that females concomitantly display greater SME content of IL-6 and greater HPA responsiveness to stress, thereby suggesting that IL-6 release from the SME is an integral factor contributing to enhanced stress responsiveness in females. Our results provide evidence for a direct link between IL-6 and ACTH release and reveal a sex difference in this relationship. PMID:17510233
Lin, M T; Saito, H; Fukushima, R; Inaba, T; Fukatsu, K; Inoue, T; Furukawa, S; Han, I; Muto, T
1996-01-01
OBJECTIVE: The authors' aim was to investigate whether antecedent nutritional routes influence immune responses after surgical insult. SUMMARY BACKGROUND DATA: Total parenteral nutrition (TPN) may influence host responses to infection. To the best of the authors' knowledge, however, no study has focused on the mechanisms underlying the influence of nutritional route on local, systemic, and remote organ (lung) responses after surgical insult. METHODS: Sixty-eight rats were divided into TPN and total enteral nutrition (TEN) groups. The two groups received identical nutrients for 7 days and were then challenged intraperitoneally with 3 x 10(8) Escherichia coli. In the first experiment, the rats were observed for survival. In the second experiment, the rats were killed before (0 hours) challenge or 2 or 6 hours after challenge. Peritoneal exudative cells (PEC) and bronchoalveolar cells (BALC) were harvested and cultured in vitro. Colony-forming units of bacteria in the peritoneal lavage fluid (PLF) were determined. Tumor necrosis factor (TNF), interleukin-1 alpha (IL-1 alpha), interferon-gamma (IFN-gamma) levels in serum, PLF, bronchoalveolar lavage fluid (BALF), and cell culture supernatants were measured. RESULTS: The 48-hour survival rate was higher in TEN than in TPN rats. Local immunity was depressed in the TPN group. Bacterial colony counts in PLF were significantly higher in the TPN group than in the TEN group after challenge. The number of PECs was significantly lower, and at 2 hours, local cytokine (TNF and IL-1 alpha) responses were diminished in the TPN group compared with the TEN group at 2 hours. The number of PECs showed a significant positive correlation with levels of local cytokines in the TEN group but not in the TPN group. Elevation of local IFN-gamma was significant from 0 to 6 hours in the TEN group but not in the TPN group. In vitro production of TNF by PEC was impaired in the TPN rats before challenge. Remote organ (lung) responses were suppressed in the TPN group. The number of BALCs and the TNF levels in BALF declined significantly between 0 and 2 hours in the TEN group but not in the TPN group. Interferon-gamma levels in BALF were higher in the TEN group than in the TPN group at 2 hours. Systemic cytokine responses were disturbed in the TPN group. Production of systemic TNF was greater, but the IFN-gamma response was diminished in the TPN group compared with the TEN group after intraperitoneal bacterial challenge. CONCLUSION: Local, systemic, and remote organ (lung) immune responses to intraperitoneal bacterial challenge are suppressed in TPN-treated animals, leading to poor survival after challenge. Enteral nutrition before surgical insult may enhance host immune responses after the insult as compared to parenteral nutrition. PMID:8554423
Negherbon, Jesse P.; Romero, Karina; Williams, D’Ann L.; Guerrero-Preston, Rafael E.; Hartung, Thomas; Scott, Alan L.; Breysse, Patrick N.; Checkley, William; Hansel, Nadia N.
2017-01-01
This study sought to investigate if acute phase immune responses of whole blood from Peruvian children with controlled and uncontrolled asthma differed from children without asthma, following exposure to traffic-related particulate matter (TRPM). TRPM, including particulate matter from diesel combustion, has been shown to stimulate acute airway inflammation in individuals with and without asthma. For this study, a whole blood assay (WBA) was used to test peripheral whole blood samples from 27 children with asthma, and 12 without asthma. Participant blood samples were stimulated, ex vivo, for 24-h with an aqueous extract of TRPM that was collected near study area highways in Lima, Peru. All participant blood samples were tested against the same TRPM extract, in addition to purified bacterial endotoxin and pyrogen-free water, which served as positive and negative WBA controls, respectively. The innate and adaptive cytokine responses were evaluated in cell-free supernatants of the whole blood incubations. Comparatively similar levels were recorded for nine out of the 10 cytokines measured [e.g., – Interleukin (IL)-1β, IL-6, IL-10], regardless of study participant asthma status. However, IL-8 levels in TRPM-stimulated blood from children with uncontrolled asthma were diminished, compared to subjects without asthma (633 pg/ml vs. 1,023 pg/ml, respectively; p < 0.01); IL-8 responses for subjects with controlled asthma were also reduced, but to a lesser degree (799 pg/ml vs. 1,023 pg/ml, respectively; p = 0.10). These relationships were present before, and after, adjusting for age, sex, obesity/overweight status, C-reactive protein levels, and residential proximity to the study area’s major roadway. For tests conducted with endotoxin, there were no discernible differences in cytokine response between groups, for all cytokines measured. The WBA testing conducted for this study highlighted the capacity of the TRPM extract to potently elicit the release of IL-8 from the human whole blood system. Although the small sample size of the study limits the capacity to draw definitive conclusions, the IL-8 responses suggest that that asthma control may be associated with the regulation of a key mediator in neutrophil chemotaxis, at a systemic level, following exposure to PM derived from traffic-related sources. PMID:28424616
Ostadkarampour, Mahyar; Müller, Malin; Öckinger, Johan; Kullberg, Susanna; Lindén, Anders; Eklund, Anders; Grunewald, Johan; Wahlström, Jan
2016-01-01
Smoking influences the immune system in different ways and, hypothetically, effects on pulmonary effector and regulatory T cells emerge as potentially detrimental. Therefore, we characterized the frequencies and characteristics of CD4+ and CD8+ T cell subsets in the blood and lungs of young tobacco smokers. Bronchoalveolar lavage (BAL) and peripheral blood were obtained from healthy moderate smokers (n = 18; 2–24 pack-years) and never-smokers (n = 15), all with normal lung function. Cells were stimulated ex vivo and key intracellular cytokines (IFNγ, IL-17, IL-10 and TNFα) and transcription factors (Foxp3, T-bet and Helios) were analyzed using flow cytometry. Our results indicate that smoking is associated with a decline in lung IL-17+ CD4+ T cells, increased IFNγ+ CD8+ T cells and these alterations relate to the history of daily cigarette consumption. There is an increased fraction of Foxp3+ regulatory T cells being Helios- in the lungs of smokers. Cytokine production is mainly confined to the Helios- T cells, both in regulatory and effector subsets. Moreover, we detected a decline of Helios+Foxp3- postulated regulatory CD8+ T cells in smokers. These alterations in the immune system are likely to increase risk for infection and may have implications for autoimmune processes initiated in the lungs among tobacco smokers. PMID:27798682
Peripheral inflammation in prodromal Alzheimer’s and Lewy body dementias
King, Eleanor; O’Brien, John Tiernan; Donaghy, Paul; Morris, Christopher; Barnett, Nicola; Olsen, Kirsty; Martin-Ruiz, Carmen; Taylor, John-Paul; Thomas, Alan J
2018-01-01
Objectives There is growing evidence for the role of systemic inflammation in Alzheimer’s disease (AD) and other neurodegenerative diseases; however the systemic inflammatory profile in dementia with Lewy bodies (DLB) has never before been investigated. This study aimed to characterise systemic inflammatory mediators in established DLB and AD, as well as in their prodromal, mild cognitive impairment (MCI) phases. Methods We obtained plasma samples from patients with DLB (n=37), AD (n=20), MCI with DLB profile (n=38), MCI with AD profile (n=20) and healthy control subjects (n=20). The following inflammatory biomarkers were measured using Roche cobas c702 and Meso Scale Discovery V-Plex Plus: high-sensitivity C-reactive protein, interferon-gamma, interleukin (IL)-10, IL-12p70, IL-13, IL-1beta, IL-2, IL-4, IL-6, IL-8 and tumour necrosis factor-alpha. Results We found significantly higher levels of IL-10, IL-1beta, IL-4 and IL-2 in both MCI groups (P<0.001), while there was no significant difference in inflammatory markers between dementia groups and controls. Furthermore, increased disease severity was associated with lower levels of IL-1beta, IL-2 and IL-4 (P<0.05). Interpretation We have shown for the first time that in both DLB and AD, increased peripheral inflammation occurs early at the MCI disease stages. These data support a role for inflammation early in the disease process, and have important implications for the stage of disease where trials of anti-inflammatory medication should be focused. PMID:29248892
Duzagac, E; Cifcibasi, E; Erdem, M G; Karabey, V; Kasali, K; Badur, S; Cintan, S
2016-10-01
We aimed to detect the role of obesity on the healing response to periodontal therapy in terms of serum lipids, C-reactive protein (CRP) and both serum and gingival crevicular fluid adipocytokines. Thirty patients with periodontitis with (CPO) (n = 15) and without (n = 15) obesity and 15 healthy controls were included. Serum high-density lipoprotein, low-density lipoprotein, triglyceride, CRP levels and levels of adiponectin, interleukin (IL)-6, tumor necrosis factor (TNF)-α and IL-10 were evaluated before and 3 mo after initial periodontal therapy. Clinical periodontal measurements were also recorded at baseline and 3 mo. Periodontal parameters improved significantly in both periodontitis groups with or without obesity (p < 0.05) with no significant difference in terms of gain clinical attachment level (p > 0.05) and change in numbers of sites with probing depth ≥ 4 mm. High-density lipoprotein significantly increased in both groups (p > 0.05). CRP decreased significantly solely in the normal weight group. IL-6, IL-10 and TNF-α levels in gingival crevicular fluid improved significantly based on therapy in both groups (p < 0.05). Only TNF-α decreased significantly in the CPO, while adiponectin and IL-10 in addition to TNF-α improved significantly in the group of patients with periodontitis without obesity. Patients with CPO respond to periodontal therapy as well as the non-obese controls. This similar response is accompanied with consistent adipokine levels in gingival crevicular fluid. However, obesity affects the CRP and serum adipocytokine levels in response to therapy. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
A Guide to Using the Bibliographic Features of the Integrated Library System (ILS).
ERIC Educational Resources Information Center
King, Susan G.
This manual provides guidance in the use of the Integrated Library System (ILS), a library minicomputer system in which all automated library functions are processed against a single database. It is oriented toward ILS users with no ADP training or experience. Written in MUMPS, a higher-level language, the system includes the following…
Cytokine gene polymorphisms in bullous pemphigoid in a Chinese population.
Chang, Y T; Liu, H N; Yu, C W; Lin, M W; Huang, C H; Chen, C C; Liu, M T; Lee, D D; Wang, W J; Tsai, S F
2006-01-01
Bullous pemphigoid (BP) is an autoimmune bullous disease mostly associated with autoantibodies to the hemidesmosomal BP autoantigens BP180 and BP230. High levels of interleukin (IL)-1beta, IL-4, IL-5, IL-6, IL-8, IL-10, IL-13, tumour necrosis factor (TNF)-alpha and interferon (IFN)-gamma have been detected in skin lesions or sera of patients with BP. Cytokine gene polymorphisms may affect cytokine production and contribute to susceptibility to autoimmune diseases. Until now, no cytokine gene polymorphism study has been conducted on patients with BP. We aimed to determine whether the genetic polymorphisms of the cytokine genes might influence the development of BP. DNA samples were obtained from 96 BP patients and 174 control subjects. Using direct sequencing and microsatellite genotyping, we examined 23 polymorphisms in 11 cytokine genes including the IL-1alpha, IL-1beta, IL-1 receptor antagonist, IL-4, IL-6, IL-8, IL-10, IL-13, IL-4 receptor, TNF-alpha and IFN-gamma genes. Although the BP patients were more likely to carry the -511T and -31C alleles of the IL-1beta gene (P = 0.04), the significance disappeared after correction for multiple testing (Pc). There was complete linkage disequilibrium between the -511T and -31C alleles of the IL-1beta gene. In female patients with BP, the associations with IL-1beta (-511T) and (-31C) alleles were much stronger (68% vs. 40.6%, odds ratio = 3.11, Pc = 0.006). No significantly different allelic and genotypic distributions of other cytokine gene polymorphisms could be found between the patients with BP and controls. Moreover, no association with the extent of disease involvement (localized or generalized) was observed. The IL-1beta (-511) and (-31) polymorphisms were significantly associated with BP in women. The other genetic polymorphisms of cytokine genes that we analysed do not appear to be associated with BP susceptibility in our Chinese population.
Chaudhari, Harshal Liladhar; Warad, Shivaraj; Ashok, Nipun; Baroudi, Kusai; Tarakji, Bassel
2016-01-01
Interleukin 17(IL-17) is a pro-inflammatory cytokine produced mainly by Th17 cells. The present study was undertaken to investigate a possible association between IL-17 A genetic polymorphism at (-197A/G) and susceptibility to chronic and localized aggressive periodontitis (LAgP) in an Indian population. The study was carried out on 105 subjects, which included 35 LAgP patients, 35 chronic periodontitis patients and 35 healthy controls. Blood samples were drawn from the subjects and analyzed for IL-17 genetic polymorphism at (-197A/G), by using the polymerase chain reaction-restriction fragment length polymorphism method. A statistically significant difference was seen in the genotype distribution among chronic periodontitis patients, LAgP patients and healthy subjects. There was a significant difference in the distribution of alleles among chronic periodontitis patients, LAgP patients and healthy subjects. The odds ratio for A allele versus G allele was 5.1 between chronic periodontitis patients and healthy controls, and 5.1 between LAgp patients and healthy controls. Our study concluded that IL-17 A gene polymorphism at (-197A/G) is linked to chronic periodontitis and LAgP in Indian population. The presence of allele A in the IL-17 gene polymorphism (-197A/G) can be considered a risk factor for chronic periodontitis and LAgP.
Targeting of GLUT1-GLUT5 chimeric proteins in the polarized cell line Caco-2.
Inukai, K; Takata, K; Asano, T; Katagiri, H; Ishihara, H; Nakazaki, M; Fukushima, Y; Yazaki, Y; Kikuchi, M; Oka, Y
1997-04-01
Caco-2, a human differentiated intestinal epithelial cell line, is a promising model for investigating the mechanism of polarized targeting of apical and basolateral membrane proteins. We stably transfected rat GLUT5 cDNA and rabbit GLUT1 cDNA into Caco-2 cells with an expression vector. Immunohistochemical study revealed that the GLUT5 protein expressed was localized at apical membranes and that the GLUT1 expressed was present primarily in the basolateral membranes of cells grown on permeable support. Next, to investigate the domain responsible for determining apical vs. basolateral sorting in glucose transporters, we prepared several GLUT1-GLUT5 chimeric cDNAs and transfected them into Caco-2 cells. A GLUT1 [N terminus approximately sixth transmembrane domain (TM6)]-GLUT5 [intracellular loop (IL) approximately C terminus] chimera was observed exclusively at the apical membrane, while GLUT1 (N terminus approximately IL)-GLUT5 (TM7 approximately C terminus) and GLUT1 (N terminus approximately TM12)-GLUT5 (C-terminal domain) chimeras were observed mainly at the basolateral membrane, a localization similar to that of GLUT1. Moreover, using a recombinant adenovirus expression system, we expressed a GLUT5 (N terminus approximately TM6)-GLUT1(IL)-GLUT5(TM7 approximately C-terminus) chimera, which was observed at the basolateral membrane. Based on these results, the C-terminal domain does not determine isoform-specific targeting of GLUT1 and GLUT5. Rather, it is the intracellular loop in glucose transporters that appears to play a pivotal role in apical-basolateral sorting signals in Caco-2 cells.
Torok, Kathryn S; Kurzinski, Katherine; Kelsey, Christina; Yabes, Jonathan; Magee, Kelsey; Vallejo, Abbe N; Medsger, Thomas; Feghali-Bostwick, Carol A
2015-12-01
To evaluate peripheral blood T-helper (TH) cell-associated cytokine and chemokine profiles in localized scleroderma (LS), and correlate them with clinical disease features, including disease activity parameters. A 29-plex Luminex platform was used to analyze the humoral profile of plasma samples from 69 pediatric LS patients and 71 healthy pediatric controls. Cytokine/chemokine levels were compared between these two groups and within LS patients, focusing on validated clinical outcome measures of disease activity and damage in LS. Plasma levels of IP-10, MCP-1, IL-17a, IL-12p70, GM-CSF, PDGF-bb, IFN-α2, and IFN-γ were significantly higher in LS subjects compared to healthy controls. Analysis within the LS group demonstrated IP-10, TNF-α, and GM-CSF correlated with clinical measures of disease activity. Several cytokines/chemokines correlated with anti-histone antibody, while only a few correlated with positive ANA and single-stranded DNA antibody. This is the first time that multiple cytokines and chemokines have been examined simultaneously in LS. In general, a TH1 (IFN-γ) and TH17 (IL-17a) predominance was demonstrated in LS compared to healthy controls. There is also an IFN-γ signature with elevated IP-10, MCP-1, and IFN-γ, which has been previously demonstrated in systemic sclerosis, suggesting a shared pathophysiology. Within the LS patients, those with active disease demonstrated IP-10, TNF-α, and GM-CSF, which may potentially serve as biomarkers of disease activity in the clinical setting. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffith, K.D.; Read, E.J.; Carrasquillo, J.A.
Patients with metastatic melanoma undergoing therapy with cyclophosphamide (CPM), tumor-infiltrating lymphocytes (TIL), and interleukin-2 (IL-2) were studied for the ability of their 111In-labeled TIL or peripheral blood lymphocytes (PBL) to localize in sites of tumor using gamma camera imaging and biopsies. Nineteen infusions of radiolabeled TIL were given to 18 patients, while five patients received radiolabeled autologous PBL during TIL therapy. Clear tumor localization was seen on 13 of 18 nuclear scan series performed on 111In-TIL recipients, while tumor was imaged in only one of four scan sequences on patients given 111In-PBL. Nineteen paired biopsies of tumor and normal skinmore » were completed on 10 patients receiving 111In-TIL, while eight biopsies were done on three PBL patients receiving 111In-PBL. The mean percentage of total injectate activity localizing per gram of tumor tissue was 0.0049% in the TIL group and 0.0010% in the PBL group (P2 = .0004). The mean of the tumor to normal skin ratios of the 111In-TIL group was three times that for 111In-PBL (P2 = .0072). One patient was studied by nuclear scanning on three consecutive treatment courses of CPM, TIL, and IL-2. He initially demonstrated clear tumor localization by 111In-TIL at several sites, then faint localization with 111In-PBL at a single site, and subsequently positive tumor imaging on repeat 111In-TIL infusion at multiple sites. These results confirm and expand our initial data demonstrating that human TIL transferred with CPM pretreatment and followed by IL-2 preferentially localize to tumor sites and indicate that this localization is greater for TIL than PBL.« less
Interleukin-33 (IL-33): A nuclear cytokine from the IL-1 family.
Cayrol, Corinne; Girard, Jean-Philippe
2018-01-01
Interleukin-33 (IL-33) is a tissue-derived nuclear cytokine from the IL-1 family abundantly expressed in endothelial cells, epithelial cells and fibroblast-like cells, both during homeostasis and inflammation. It functions as an alarm signal (alarmin) released upon cell injury or tissue damage to alert immune cells expressing the ST2 receptor (IL-1RL1). The major targets of IL-33 in vivo are tissue-resident immune cells such as mast cells, group 2 innate lymphoid cells (ILC2s) and regulatory T cells (Tregs). Other cellular targets include T helper 2 (Th2) cells, eosinophils, basophils, dendritic cells, Th1 cells, CD8 + T cells, NK cells, iNKT cells, B cells, neutrophils and macrophages. IL-33 is thus emerging as a crucial immune modulator with pleiotropic activities in type-2, type-1 and regulatory immune responses, and important roles in allergic, fibrotic, infectious, and chronic inflammatory diseases. The critical function of IL-33/ST2 signaling in allergic inflammation is illustrated by the fact that IL33 and IL1RL1 are among the most highly replicated susceptibility loci for asthma. In this review, we highlight 15 years of discoveries on IL-33 protein, including its molecular characteristics, nuclear localization, bioactive forms, cellular sources, mechanisms of release and regulation by proteases. Importantly, we emphasize data that have been validated using IL-33-deficient cells. © 2017 The Authors. Immunological Reviews Published by John Wiley & Sons Ltd.
Drago, Lorenzo; Bottagisio, Marta; Bongio, Matilde; Ferrario, Marzia; Perego, Silvia; Sansoni, Veronica; De Vecchi, Elena; Romanò, Carlo L.
2016-01-01
S. epidermidis is responsible for biofilm-related nonunions. This study compares the response to S. epidermidis-infected fractures in rats systemically or locally injected with vancomycin or bone marrow mesenchymal stem cells (BMSCs) in preventing the nonunion establishment. The 50% of rats receiving BMSCs intravenously (s-rBMSCs) died after treatment. A higher cytokine trend was measured in BMSCs locally injected rats (l-rBMSCs) at day 3 and in vancomycin systemically injected rats (l-VANC) at day 7 compared to the other groups. At day 14, the highest cytokine values were measured in l-VANC and in l-rBMSCs for IL-10. µCT showed a good bony bridging in s-VANC and excellent both in l-VANC and in l-rBMSCs. The bacterial growth was lower in s-VANC and l-VANC than in l-rBMSCs. Histology demonstrated the presence of new woven bone in s-VANC and a more mature bony bridging was found in l-VANC. The l-rBMSCs showed a poor bony bridging of fibrovascular tissue. Our results could suggest the synergic use of systemic and local injection of vancomycin as an effective treatment to prevent septic nonunions. This study cannot sustain the systemic injection of BMSCs due to high risks, while a deeper insight into local BMSCs immunomodulatory effects is mandatory before developing cell therapies in clinics. PMID:27478310
1992-05-01
Problem on the Self -Defense Test Ship" LCDR David Sanders, Project Officer for Self -Defense Test Ship, RAM Program Office (PMS 420), NAVSEA Rick York...as ballast tanks, bilge areas, and machinery. Sac- (1) Compliance with all local, state, and federal rificial anode systems are self regulating in...involved in logisticitygoods. However, less than car load rates negate some planningand ILS execution. These efforts are very costly in of the cost savings
Jakovljevic, Aleksandar; Knezevic, Aleksandra; Karalic, Danijela; Soldatovic, Ivan; Popovic, Branka; Milasin, Jelena; Andric, Miroslav
2015-08-01
This study aimed to compare the levels of tumour necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and interleukin-6 (IL-6) between apical periodontitis lesions with different clinical and histological features. Based on clinical data and history of disease, 100 human apical periodontitis lesions were categorised as either asymptomatic or symptomatic lesions. According to histological examination, lesions were divided into periapical granulomas and radicular cysts. Pulp tissues of 25 impacted wisdom teeth were used as controls. Homogenised tissue samples were centrifuged and supernatants were used for the determination of cytokine levels by enzyme-linked immunosorbent assay. Significantly higher levels of IL-1β and IL-6 were found in symptomatic lesions compared with asymptomatic lesions and control tissues (P < 0.001, P < 0.001, respectively). The concentration of IL-1β was significantly higher in radicular cysts compared with periapical granulomas (P = 0.003). Symptomatic lesions, as judged by high local production of IL-1β and IL-6, represent an immunologically active stage of the disease. © 2014 Australian Society of Endodontology.
Dalmas, Elise; Lehmann, Frank M; Dror, Erez; Wueest, Stephan; Thienel, Constanze; Borsigova, Marcela; Stawiski, Marc; Traunecker, Emmanuel; Lucchini, Fabrizio C; Dapito, Dianne H; Kallert, Sandra M; Guigas, Bruno; Pattou, Francois; Kerr-Conte, Julie; Maechler, Pierre; Girard, Jean-Philippe; Konrad, Daniel; Wolfrum, Christian; Böni-Schnetzler, Marianne; Finke, Daniela; Donath, Marc Y
2017-11-21
Pancreatic-islet inflammation contributes to the failure of β cell insulin secretion during obesity and type 2 diabetes. However, little is known about the nature and function of resident immune cells in this context or in homeostasis. Here we show that interleukin (IL)-33 was produced by islet mesenchymal cells and enhanced by a diabetes milieu (glucose, IL-1β, and palmitate). IL-33 promoted β cell function through islet-resident group 2 innate lymphoid cells (ILC2s) that elicited retinoic acid (RA)-producing capacities in macrophages and dendritic cells via the secretion of IL-13 and colony-stimulating factor 2. In turn, local RA signaled to the β cells to increase insulin secretion. This IL-33-ILC2 axis was activated after acute β cell stress but was defective during chronic obesity. Accordingly, IL-33 injections rescued islet function in obese mice. Our findings provide evidence that an immunometabolic crosstalk between islet-derived IL-33, ILC2s, and myeloid cells fosters insulin secretion. Copyright © 2017 Elsevier Inc. All rights reserved.
Characterization of the early local immune response to Ixodes ricinus tick bites in human skin.
Glatz, Martin; Means, Terry; Haas, Josef; Steere, Allen C; Müllegger, Robert R
2017-03-01
Little is known about the immunomodulation by tick saliva during a natural tick bite in human skin, the site of the tick-host interaction. We examined the expression of chemokines, cytokines and leucocyte markers on the mRNA levels and histopathologic changes in human skin biopsies of tick bites (n=37) compared to unaffected skin (n=9). Early tick-bite skin lesions (<24 hours of tick attachment) were characterized by a predominance of macrophages and dendritic cells, elevated mRNA levels of macrophage chemoattractants (CCL2, CCL3, CCL4) and neutrophil chemoattractants (CXCL1, CXCL8), of the pro-inflammatory cytokine, IL-1β, and the anti-inflammatory cytokine, IL-5. In contrast, the numbers of lymphocytes and mRNA levels of lymphocyte cell markers (CD4, CD8, CD19), lymphocyte chemoattractants (CXCL9, CXCL10, CXCL11, CXCL13, CCL1, CCL22), dendritic cell chemoattractants (CCL20), and other pro- (IL-6, IL-12p40, IFN-γ, TNF-α) and anti-inflammatory cytokines (IL-4, IL-10, TGF-β) did not differ from normal skin. With longer tick attachment (>24 hours), the numbers of innate immune cells and mediators (not significantly) declined, whereas the numbers of lymphocytes (not significantly) increased. Natural tick bites by Ixodes ricinus ticks initially elicit a strong local innate immune response in human skin. Beyond 24 hours of tick attachment, this response usually becomes less, perhaps because of immunomodulation by tick saliva. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Nlrp3-dependent IL-1β inhibits CD103+ dendritic cell differentiation in the gut
Mak’Anyengo, Rachel; Reichl, Cornelia; Hörth, Christine; Lehr, Hans‑Anton; Fischer, Sandra; Clavel, Thomas; Denk, Gerald; Kobold, Sebastian; Endres, Stefan; Bauer, Christian
2018-01-01
Inflammatory bowel disease (IBD) is associated with enhanced levels of the IL-1 family cytokines IL-1β and IL-18, which are activated by the Nlrp3 inflammasome. Here, we investigated the role of inflammasome-driven cytokine release on T cell polarization and DC differentiation in steady state and T cell transfer colitis. In vitro and in vivo data showed that IL-1β induces Th17 polarization and increases GM‑CSF production by T cells. Reduced IL-1β levels in Nlrp3–/– mice correlated with enhanced FLT3L levels and increased frequency of tolerogenic CD103+ DC. In the T cell transfer colitis model, Nlrp3 deficiency resulted in lower IL‑1β levels, reduced Th17 immunity, and less severe colitis. Unaltered IL-18 levels in both mouse strains pointed toward Nlrp3-independent processing. Importantly, cohousing revealed that the gut microbiome had no impact on the observed Nlrp3–/– phenotype. This study demonstrates that NLRP3 acts as a molecular switch of intestinal homeostasis by shifting local immune cells toward an inflammatory phenotype via IL-1β. PMID:29515025
Vaeth, Martin; Gogishvili, Tea; Bopp, Tobias; Klein, Matthias; Berberich-Siebelt, Friederike; Gattenloehner, Stefan; Avots, Andris; Sparwasser, Tim; Grebe, Nadine; Schmitt, Edgar; Hünig, Thomas; Serfling, Edgar; Bodor, Josef
2011-01-01
Inducible cAMP early repressor (ICER) is a transcriptional repressor, which, because of alternate promoter use, is generated from the 3′ region of the cAMP response modulator (Crem) gene. Its expression and nuclear occurrence are elevated by high cAMP levels in naturally occurring regulatory T cells (nTregs). Using two mouse models, we demonstrate that nTregs control the cellular localization of ICER/CREM, and thereby inhibit IL-2 synthesis in conventional CD4+ T cells. Ablation of nTregs in depletion of regulatory T-cell (DEREG) mice resulted in cytosolic localization of ICER/CREM and increased IL-2 synthesis upon stimulation. Direct contacts between nTregs and conventional CD4+ T cells led to nuclear accumulation of ICER/CREM and suppression of IL-2 synthesis on administration of CD28 superagonistic (CD28SA) Ab. In a similar way, nTregs communicated with B cells and induced the cAMP-driven nuclear localization of ICER/CREM. High levels of ICER suppressed the induction of nuclear factor of activated T cell c1 (Nfatc1) gene in T cells whose inducible Nfatc1 P1 promoter bears two highly conserved cAMP-responsive elements to which ICER/CREM can bind. These findings suggest that nTregs suppress T-cell responses by the cAMP-dependent nuclear accumulation of ICER/CREM and inhibition of NFATc1 and IL-2 induction. PMID:21262800
Labler, Ludwig; Rancan, Mario; Mica, Ladislav; Härter, Luc; Mihic-Probst, Daniela; Keel, Marius
2009-03-01
Clinical observations are suggesting accelerated granulation tissue formation in traumatic wounds treated with vacuum-assisted closure (VAC). Aim of this study was to determine the impact of VAC therapy versus alternative Epigard application on local inflammation and neovascularization in traumatic soft tissue wounds. Thirty-two patients with traumatic wounds requiring temporary coverage (VAC n = 16; Epigard n = 16) were included. At each change of dressing, samples of wound fluid and serum were collected (n = 80). The cytokines interleukin (IL)-6, IL-8, vascular endothelial growth factor (VEGF), and fibroblast growth factor-2 were measured by ELISA. Wound biopsies were examined histologically for inflammatory cells and degree of neovascularization present. All cytokines were found to be elevated in wound fluids during both VAC and Epigard treatment, whereas serum concentrations were negligible or not detectable. In wound fluids, significantly higher IL-8 (p < 0.001) and VEGF (p < 0.05) levels were detected during VAC therapy. Furthermore, histologic examination revealed increased neovascularization (p < 0.05) illustrated by CD31 and von Willebrand factor immunohistochemistry in wound biopsies of VAC treatment. In addition, there was an accumulation of neutrophils as well as an augmented expression of VEGF (p < 0.005) in VAC wound biopsies. This study suggests that VAC therapy of traumatic wounds leads to increased local IL-8 and VEGF concentrations, which may trigger accumulation of neutrophils and angiogenesis and thus, accelerate neovascularization.
Castleman's Disease: From Basic Mechanisms to Molecular Therapeutics
El-Osta, Hazem E.
2011-01-01
Castleman's disease is a rare lymphoproliferative disorder in which there has been recent progress in elucidating underlying mechanisms with potential therapeutic implications. Unicentric Castleman's disease is an indolent condition that is often treated with local approaches. In contrast, patients with multicentric Castleman's disease (MCD) have a less favorable prognosis and require systemic treatment. Cytotoxic chemotherapy, with its attendant risk for toxicity, has been widely used to treat MCD, with variable efficacy. The discovery of putative etiologic factors and targets in MCD, particularly human herpes virus 8, CD20, and interleukin (IL)-6, has been translated into the use of rituximab and anti–IL-6-based therapy, as well as antiviral agents. In this article, we review the current state of the art of our understanding of Castleman's disease and its treatment and we provide insight into future treatment strategies based on disease biology. PMID:21441298
Nokhbehsaim, Marjan; Deschner, Birgit; Winter, Jochen; Bourauel, Christoph; Jäger, Andreas; Jepsen, Søren; Deschner, James
2012-02-01
Enamel matrix derivative (EMD) used to promote periodontal regeneration has been shown to exert anti-inflammatory effects. This in vitro study was performed to investigate if the anti-inflammatory actions of EMD are modulated by the local cellular environment, such as inflammation or occlusal, i.e., biomechanical, loading. Human periodontal ligament cells were seeded on BioFlex plates and incubated with EMD under normal, inflammatory, and biomechanical loading conditions for 1 and 6 days. In order to mimic inflammatory and biomechanical loading conditions in vitro, cells were stimulated with interleukin (IL)-1β and exposed to dynamic tensile strain, respectively. The gene expression of IL-1β, IL-1 receptor antagonist (IL-1RN), IL-6, IL-8, IL-10, and cyclooxygenase (COX)-2 was analyzed by real-time RT-PCR and the IL-6 protein synthesis by enzyme-linked immunoassay. For statistical analysis, Student's t test, ANOVA, and post-hoc comparison tests were applied (p < 0.05). EMD downregulated significantly the expression of IL-1β and COX-2 at 1 day and of IL-6, IL-8, and COX-2 at 6 days in normal condition. In an inflammatory environment, the anti-inflammatory actions of EMD were significantly enhanced at 6 days. In the presence of low biomechanical loading, EMD caused a downregulation of IL-1β and IL-8, whereas high biomechanical loading significantly abrogated the anti-inflammatory effects of EMD at both days. Neither IL-1RN nor IL-10 was upregulated by EMD. These data suggest that high occlusal forces may abrogate anti-inflammatory effects of EMD and should, therefore, be avoided immediately after the application of EMD to achieve best healing results.
Immunomodulatory activity of interleukin-27 in human chronic periapical diseases.
Li, Juan; Wang, Rong; Huang, Shi-Guang
2017-01-01
This study aims to observe expression of IL-27 on different cells in periapical tissues of different types of human chronic periapical diseases. Periapical tissue specimens of 60 donors, including healthy control (n=20), periapical granuloma group (n=20) and radicular cysts group (n=20), were fixed in 10% buffered formalin, stained with hematoxylin and eosin for histopathology. Then specimens were stained with double- immuno-fluorescence assay for identification of IL-27-tryptase (mast cells, MCs), IL-27-CD14 (mononuclear phagocyte cells, MPs) and IL-27-CD31 (endothelial cells, ECs) double-positive cells in periapical tissues. The results indicated that compared with healthy control, the densities (cells/mm 2 ) of IL-27-tryptase, IL-27-CD14 and IL-27-CD31 double-positive cells were significantly increased in human chronic periapical diseases (periapical granuloma group and radicular cysts group) ( P <0.001). The density of IL-27-tryptase double positive cells in radicular cysts group was significantly higher than those in periapical granuloma group ( P <0.001). Densities of IL-27-CD14 and IL-27-CD31 double-positive cells in periapical granuloma group had no significant difference with those in radicular cysts group ( P =0.170 and 0.138, respectively). IL-27-CD14 double positive cells density achieved to peak among three cell groups in radicular cysts groups. In conclusion, IL-27 expressed in MCs, MPs and ECs of human chronic periapical diseases with different degrees. IL-27-tryptase double-positive cells may participate in pathogenic mechanism of chronic periapical diseases, especially for formation of fibrous in periapical cysts. IL-27-CD14 and IL-27-CD31 double-positive cells may participate in immunologic response to resist periapical infection, and they may play an dual role in pathogenesis and localization of periapical diseases.
IL-33/ST2 involves the immunopathology of ocular toxoplasmosis in murine model.
Tong, Xinxin; Lu, Fangli
2015-05-01
Ocular toxoplasmosis (OT) is the major cause of infective uveitis. Since the eye is a special organ protected by immune privilege, its immune response is different from general organs with Toxoplasma gondii infection. Here, we used Kunming outbred mice to establish OT by intravitreal injection of T. gondii RH strain tachyzoites, IL-33 expression in the eyes was localized by immunostaining, the levels of interleukin (IL)-33 and ST2 (IL-33 receptor) and T-helper (Th)1 and Th2-associated cytokines in the eye and cervical lymph nodes (CLNs) of infected mice were measured, and their correlations were analyzed. Our results showed that the pathologies of the eye and CLN tissues and the IL-33 positive cells in the eye tissues of ocular T. gondii-infected mice were all increased at days 2, 6, and 9 postinfection (p.i.), accompanied with significantly increased transcript levels of IL-33, ST2, IL-1β, IFN-γ, IL-12p40, IL-10, and IL-13 in both the eyes and CLNs, and increased IL-4 expressions in the eyes of T. gondii-infected mice. There were significant correlations between the levels of IFN-γ and ST2, IL-4 and ST2, and IL-13 and ST2 in the eye tissues (P < 0.001), significant correlations between the levels of IFN-γ and ST2 (P < 0.001) as well as between IL-13 and ST2 (P < 0.05) in the CLNs, and significant correlations between the levels of IL-1β and IL-33 in the eyes (P < 0.05) and between IL-1β and IL-33/ST2 in the CLNs (P < 0.001 and P < 0.01, respectively). Our data indicated that IL-33/ST2 may involve the regulation of ocular immunopathology induced by T. gondii infection.
Zhao, Yuling; Wang, Jianji; Wang, Huiyong; Li, Zhiyong; Liu, Xiaomin; Zhang, Suojiang
2015-06-04
Recently, some binary ionic liquid (IL)/cosolvent systems have shown better performance than the pure ILs in fields such as CO2 absorption, catalysis, cellulose dissolution, and electrochemistry. However, interactions of ILs with cosolvents are still not well understood at the molecular level. In this work, H2O and DMSO were chosen as the representative protic and aprotic solvents to study the effect of cosolvent nature on solvation of a series of ILs by molecular dynamics simulations and quantum chemistry calculations. The concept of preferential interaction of ions was proposed to describe the interaction of cosolvent with cation and anion of the ILs. By comparing the interaction energies between IL and different cosolvents, it was found that there were significantly preferential interactions of anions of the ILs with water, but the same was not true for the interactions of cations/anions of the ILs with DMSO. Then, a detailed analysis and comparison of the interactions in IL/cosolvent systems, hydrogen bonds between cations and anions of the ILs, and the structure of the first coordination shells of the cations and the anions were performed to reveal the existing state of ions at different molar ratios of the cosolvent to a given IL. Furthermore, a systematic knowledge for the solvation of ions of the ILs in DMSO was given to understand cellulose dissolution in IL/cosolvent systems. The conclusions drawn from this study may provide new insight into the ionic solvation of ILs in cosolvents, and motivate further studies in the related applications.
IL-17 Expression in Dermatitis Herpetiformis and Bullous Pemphigoid
Wagrowska-Danilewicz, Malgorzata; Stasikowska-Kanicka, Olga; Cynkier, Anna; Sysa-Jedrzejowska, Anna; Waszczykowska, Elzbieta
2013-01-01
Dermatitis herpetiformis (DH) and bullous pemphigoid (BP) are skin diseases associated with eosinophilic and neutrophilic infiltrations. Although cytokines are critical for the inflammatory process, there are single findings concerning concentration of IL-17 in bullous diseases. The goal of this study was to assess IL-17 expression in DH and BP patients. Skin biopsies were taken from 10 DH, 14 BP patients and from 10 healthy subjects. The localization and expression of IL-17 was studied by immunohistochemistry and the serum concentration was measured by immunoassays. Expression of IL-17 in the epidermis and in influxed cells in dermis was detected in skin biopsies. Expression of IL-17 was statistically higher in epidermis and infiltration cells in specimens from BP than from DH patients. Examined interleukin expression was detected in perilesional skin of all patients but it was much lower than in lesional skin. The expression of IL-17 was not observed in biopsies from healthy people. Serum level of IL-17 was statistically higher in BP and DH groups as compared to control group. Our results provide the evidence that IL-17 may play an essential role in activating and recruiting eosinophils and neutrophils, which ultimately contribute to the tissue damage in DH and BP. PMID:23970818
Production of interleukin-10 by human bronchogenic carcinoma.
Smith, D. R.; Kunkel, S. L.; Burdick, M. D.; Wilke, C. A.; Orringer, M. B.; Whyte, R. I.; Strieter, R. M.
1994-01-01
Interleukin-10 (IL-10) is a recently characterized cytokine with suppressive activity against various aspects of the cellular immune response. Our laboratory has previously demonstrated that another anti-inflammatory cytokine, IL-1 receptor antagonist (IRAP) is produced and secreted by human bronchogenic carcinomas. We speculated that tumor production of IRAP may mitigate host responses and confer increased tumor viability. In this study, we investigated the capacity of human bronchogenic tumors to produce IL-10 as another possible mechanism to attenuate host defenses. We found increased levels of antigenic IL-10 in tissue homogenates of human bronchogenic carcinomas compared with normal lung tissue (13.69 +/- 2.87 versus 5.84 +/- 0.84 ng/mg total protein). Immunohistochemical staining of tumors illustrate primary localization of antigenic IL-10 to individual tumor cells. Analysis of supernatants of several unstimulated human bronchogenic cell lines in vitro demonstrated the ability of tumor cells to constitutively produce IL-10. Functional studies of mononuclear cells, cultured in the presence of conditioned medium from a bronchogenic cell line, demonstrated their increased tumor necrosis factor and IL-6 production with the addition of neutralizing antibodies to IL-10. These findings demonstrate that human bronchogenic carcinomas elaborate functional IL-10, which may significantly impair immune effector cell function and enable the tumor to evade host defenses. Images Figure 1 Figure 2 PMID:8030748
Essential role of interleukin-6 in post-stroke angiogenesis
Gertz, Karen; Kronenberg, Golo; Kälin, Roland E.; Baldinger, Tina; Werner, Christian; Balkaya, Mustafa; Eom, Gina D.; Hellmann-Regen, Julian; Kröber, Jan; Miller, Kelly R.; Lindauer, Ute; Laufs, Ulrich; Dirnagl, Ulrich; Heppner, Frank L.
2012-01-01
Ambivalent effects of interleukin-6 on the pathogenesis of ischaemic stroke have been reported. However, to date, the long-term actions of interleukin-6 after stroke have not been investigated. Here, we subjected interleukin-6 knockout (IL-6−/−) and wild-type control mice to mild brain ischaemia by 30-min filamentous middle cerebral artery occlusion/reperfusion. While ischaemic tissue damage was comparable at early time points, IL-6−/− mice showed significantly increased chronic lesion volumes as well as worse long-term functional outcome. In particular, IL-6−/− mice displayed an impaired angiogenic response to brain ischaemia with reduced numbers of newly generated endothelial cells and decreased density of perfused microvessels along with lower absolute regional cerebral blood flow and reduced vessel responsivity in ischaemic striatum at 4 weeks. Similarly, the early genomic activation of angiogenesis-related gene networks was strongly reduced and the ischaemia-induced signal transducer and activator of transcription 3 activation observed in wild-type mice was almost absent in IL-6−/− mice. In addition, systemic neoangiogenesis was impaired in IL-6−/− mice. Transplantation of interleukin-6 competent bone marrow into IL-6−/− mice (IL-6chi) did not rescue interleukin-6 messenger RNA expression or the early transcriptional activation of angiogenesis after stroke. Accordingly, chronic stroke outcome in IL-6chi mice recapitulated the major effects of interleukin-6 deficiency on post-stroke regeneration with significantly enhanced lesion volumes and reduced vessel densities. Additional in vitro experiments yielded complementary evidence, which showed that after stroke resident brain cells serve as the major source of interleukin-6 in a self-amplifying network. Treatment of primary cortical neurons, mixed glial cultures or immortalized brain endothelia with interleukin 6-induced robust interleukin-6 messenger RNA transcription in each case, whereas oxygen–glucose deprivation did not. However, oxygen–glucose deprivation of organotypic brain slices resulted in strong upregulation of interleukin-6 messenger RNA along with increased transcription of key angiogenesis-associated genes. In conclusion, interleukin-6 produced locally by resident brain cells promotes post-stroke angiogenesis and thereby affords long-term histological and functional protection. PMID:22492561
Abu-El-Saad, Abdel-Aziz S; Abdel-Moneim, Ahmed S
2005-03-22
Poxviruses encode a range of immunomodulatory genes to subvert or evade the challenges posed by the innate and adaptive immune responses. However, the inactivated poxviruses possessed immunostimulating capacity and were used as a prophylactic or metaphylactic application that efficiently reduced susceptibility to infectious diseases in different species. This fact is intensively studied in different genera of poxviruses. However, little is known about the basic mechanisms adopted by sheeppox virus (SPPV). SPPV causes an acute disease of sheep that recently, has been observed to reinfect its host in spite of vaccination. By injecting inactivated or attenuated sheeppox virus SPPV vaccine in adult male Swiss mice, SPPV was found to reduce macrophages' functions in a local event that occurs at the site of application 12 h after vaccine administration as indicated by increased level of IL-10 and decreased level of SOD from cultured peritoneal macrophages. In contrast increased levels of IL-12, and SOD activity from cultured splenic macrophages, lymphocyte response to PHA-P, and in-vivo response to T-dependant Ag were detected. These effects were observed in both attenuated and inactivated SPPV, but more prominent in attenuated one. The results of this study help to elucidate, the phenomenon of existence natural SPPV infections in sheep instead of vaccination and the basic mechanisms responsible for the immunostimulating capacity of sheeppox virus. Locally, SPPV shows evidence for an immune escape mechanism that alleviates the host's immune response. Later and systemically, the virus protects the host from any fatal consequences of the immune system suppression.
Melatonin rescued interleukin 1β-impaired chondrogenesis of human mesenchymal stem cells.
Gao, Bo; Gao, Wenjie; Wu, Zizhao; Zhou, Taifeng; Qiu, Xianjian; Wang, Xudong; Lian, Chengjie; Peng, Yan; Liang, Anjing; Qiu, Jincheng; Zhu, Yuanxin; Xu, Caixia; Li, Yibing; Su, Peiqiang; Huang, Dongsheng
2018-06-14
Osteoarthritis (OA) is a widespread arthritic disease and a primary cause of disability. Increasing evidence suggests that inflammation has a pivotal part in its pathogenesis. Interleukin-1β (IL-1β) is a primary mediator of local inflammatory processes in OA. Current therapies for OA mainly focus on the symptoms of the advanced stage of the disease. The possible utilization of bone marrow mesenchymal stem cells (BMSCs) to regenerate cartilage is an appealing method, but in the case of OA requires chondrogenesis to take place within an inflamed environment. Our previous study showed that melatonin (MLT) can promote chondrogenic differentiation of MSCs, but whether MLT can rescue IL-1β-impaired chondrogenesis in human BMSCs has not yet been established. MLT, which can have anti-inflammatory and prochondrogenic effects, has demonstrated potential in defeating IL-1β-induced inhibition of chondrogenesis and further study should be conducted. Human bone marrow-derived MSCs were separated and cultured based on our system that was already documented. A high-density micromass culture system was used for the chondrogenic differentiation of human BMSCs, which was also described previously. Human BMSCs were induced for chondrogenesis for 7, 14, and 21 days with the treatment of IL-1β and MLT. The cultured cartilage pellets were then evaluated by morphology, extracellular matrix accumulation, and chondrogenic, metabolic, and apoptotic marker expression. Furthermore, cell apoptosis was assessed by TUNEL assay. The phosphorylation level P65 and IκBα of the NF-κB pathway activity was explored on day 21 of chondrogenic differentiation of BMSCs. The current evaluation showed that MLT can save IL-1β-impaired chondrogenesis of human BMSCs in different aspects. Firstly, MLT can restore the chondrogenic pellet size, and rescue matrix synthesis and accumulation. Secondly, MLT can upregulate chondrogenic marker COL2A1 expression at both mRNA and protein levels, and also regulate the expression levels of other chondrogenic markers like ACAN, SOX9, and COL10A1 in the presence of IL-1β. Thirdly, MLT can maintain the metabolic balance of the chondrogenic process by suppressing expression of catabolic genes, such as MMP, MMP13, and ADAMTS4. Furthermore, MLT can subdue IL-1β-induced cell apoptosis of BMSCs throughout chondrogenesis. Meanwhile, MLT suppressed the phosphorylation level of P65 and IκBα, which were elevated by IL-1β treatment, indicating that MLT can attenuate the IL-1β-induced activation of NF-κB signaling. The current evaluation showed that MLT can save IL-1β-impaired chondrogenesis of human BMSCs by restoring the pellet size and matrix accumulation, and maintaining the metabolic balance, reducing cell apoptosis. Our study also showed that MLT can attenuate the IL-1β-induced activation of the NF-κB signaling pathway, which is the most important pathway downstream of IL-1β, and plays a crucial role in inflammation, apoptosis, and metabolism. Thus, MLT has prospects for treating OA due to its multifaceted functions, such as mitigating inflammation, maintaining metabolic balance, and mitigating apoptosis.
Hong, Hye Kyoung; Lee, Hyun Ju; Ko, Jung Hwa; Park, Ji Hyun; Park, Ji Yeon; Choi, Chang Won; Yoon, Chang-Hwan; Ahn, Seong Joon; Park, Kyu Hyung; Woo, Se Joon; Oh, Joo Youn
2014-05-15
Alteration of retinal angiogenesis during development leads to retinopathy of prematurity (ROP) in preterm infants, which is a leading cause of visual impairment in children. A number of clinical studies have reported higher rates of ROP in infants who had perinatal infections or inflammation, suggesting that exposure of the developing retina to inflammation may disturb retinal vessel development. Thus, we investigated the effects of systemic inflammation on retinal vessel development and retinal inflammation in neonatal rats. To induce systemic inflammation, we intraperitoneally injected 100 μl lipopolysaccharide (LPS, 0.25 mg/ml) or the same volume of normal saline in rat pups on postnatal days 1, 3, and 5. The retinas were extracted on postnatal days 7 and 14, and subjected to assays for retinal vessels, inflammatory cells and molecules, and apoptosis. We found that intraperitoneal injection of LPS impaired retinal vessel development by decreasing vessel extension, reducing capillary density, and inducing localized overgrowth of abnormal retinal vessels and dilated peripheral vascular ridge, all of which are characteristic findings of ROP. Also, a large number of CD11c+ inflammatory cells and astrocytes were localized in the lesion of abnormal vessels. Further analysis revealed that the number of major histocompatibility complex (MHC) class IIloCD68loCD11bloCD11chi cells in the retina was higher in LPS-treated rats compared to controls. Similarly, the levels of TNF-α, IL-1β, and IL-12a were increased in LPS-treated retina. Also, apoptosis was increased in the inner retinal layer where retinal vessels are located. Our data demonstrate that systemic LPS-induced inflammation elicits retinal inflammation and impairs retinal angiogenesis in neonatal rats, implicating perinatal inflammation in the pathogenesis of ROP.
Han, Bo La; Guan, Qiunong; Chafeeva, Irina; Mendelson, Asher A; Roza, Gerald da; Liggins, Richard; Kizhakkedathu, Jayachandran N; Du, Caigan
2018-05-12
Metabolic syndrome (MetS) is commonly observed among peritoneal dialysis (PD) patients, and hyperbranched polyglycerol (HPG) is a promising glucose-sparing osmotic agent for PD. However, the biocompatibility of a HPG-based PD solution (HPG) in subjects with MetS has not been investigated. This study compared the local and systemic effects of a HPG solution with conventional Physioneal (PYS) and Icodextrin (ICO) PD solutions in rats with MetS. Obese type 2 diabetic ZSF1 rats received a daily intraperitoneal injection of PD solutions (10 mL) for 3 months. The peritoneal membrane (PM) function was determined by ultrafiltration, and the systemic responses were determined by profiling blood metabolic substances, cytokines and oxidative status. Tissue damage was assessed by histology. At the end of the 3-month treatment with PD solutions, PM damage and ultrafiltration loss in both the PYS and ICO groups were greater than those in the HPG group. Blood analyses showed that compared to the baseline control, the rats in the HPG group exhibited a significant decrease only in serum albumin and IL-6 and a minor glomerular injury, whereas in both the PYS and ICO groups, there were more significant decreases in serum albumin, antioxidant activity, IL-6, KC/GRO (CXCL1) and TNF-α (in ICO only) as well as a mores substantial glomerular injury compared to the HPG group. Furthermore, PYS increased serum creatinine, serum glucose and urine production. In conclusion, compared to PYS or ICO solutions, the HPG solution had less adverse effects locally on the PM and systemically on distant organs (e.g., kidneys) and the plasma oxidative status in rats with MetS. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Elevated levels of circulating IL-18BP and perturbed regulation of IL-18 in schizophrenia
2012-01-01
Background The pleiotropic pro-inflammatory cytokine Interleukin (IL)-18 has been proposed to play a role in schizophrenia, since elevated circulating levels of its protein and altered frequencies of genetic variants in its molecular system are reported in schizophrenic patients. Methods We analyzed 77 patients with schizophrenia diagnosis (SCZ) and 77 healthy control subjects (HC) for serum concentration of both IL-18 and its natural inhibitor, the IL-18 binding protein (IL-18BP). Results We confirmed that serum levels of total IL-18 are significantly increased in SCZ, as compared to HC. However, due to a highly significant increase in levels of circulating IL-18BP in SCZ, as compared to HC, the levels of free, bioactive IL-18 are not significantly different between the two groups. In addition, the relationships between the levels of IL-18 and its inhibitor, as well as between the two molecules and age appear dissimilar for SCZ and HC. In particular, the elevated levels of IL-18BP, likely a consequence of the body’s attempt to counteract the early prominent inflammation which characterizes schizophrenia, are maintained in earlier and later stages of the disease. However, the IL-18BP elevation appears ineffective to balance the IL-18 system in younger SCZ patients, while in older patients the levels of circulating bioactive IL-18 are comparable to those of HC, if not lower. Conclusions In conclusion, these findings indicate that the IL-18 system is perturbed in schizophrenia, supporting the idea that this pro-inflammatory cytokine might be part of a pathway of genetic and environmental components for vulnerability to the disease. PMID:22913567
Peripheral inflammation in prodromal Alzheimer's and Lewy body dementias.
King, Eleanor; O'Brien, John Tiernan; Donaghy, Paul; Morris, Christopher; Barnett, Nicola; Olsen, Kirsty; Martin-Ruiz, Carmen; Taylor, John-Paul; Thomas, Alan J
2018-04-01
There is growing evidence for the role of systemic inflammation in Alzheimer's disease (AD) and other neurodegenerative diseases; however the systemic inflammatory profile in dementia with Lewy bodies (DLB) has never before been investigated. This study aimed to characterise systemic inflammatory mediators in established DLB and AD, as well as in their prodromal, mild cognitive impairment (MCI) phases. We obtained plasma samples from patients with DLB (n=37), AD (n=20), MCI with DLB profile (n=38), MCI with AD profile (n=20) and healthy control subjects (n=20). The following inflammatory biomarkers were measured using Roche cobas c702 and Meso Scale Discovery V-Plex Plus: high-sensitivity C-reactive protein, interferon-gamma, interleukin (IL)-10, IL-12p70, IL-13, IL-1beta, IL-2, IL-4, IL-6, IL-8 and tumour necrosis factor-alpha. We found significantly higher levels of IL-10, IL-1beta, IL-4 and IL-2 in both MCI groups (P<0.001), while there was no significant difference in inflammatory markers between dementia groups and controls. Furthermore, increased disease severity was associated with lower levels of IL-1beta, IL-2 and IL-4 (P<0.05). We have shown for the first time that in both DLB and AD, increased peripheral inflammation occurs early at the MCI disease stages. These data support a role for inflammation early in the disease process, and have important implications for the stage of disease where trials of anti-inflammatory medication should be focused. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Quintin-Colonna, F; Devauchelle, P; Fradelizi, D; Mourot, B; Faure, T; Kourilsky, P; Roth, C; Mehtali, M
1996-12-01
The production of human interleukin-2 (hIL-2) local to the tumor site by engineered histoincompatible cells has been shown in various murine models to promote a strong immune response leading to tumor growth inhibition or rejection. To assess whether this strategy would be similarly applicable for treatment of primary neoplastic cells, two naturally occurring tumors were used as preclinical models; the highly metastatic melanoma of the dog and the low metastatic fibrosarcoma of the cat. We demonstrate that both cats and dogs when treated by tumor surgery, radiotherapy and repeated local injections of xenogeneic Vero cells secreting high levels of hIL-2 relapse less frequently and survive longer than control animals treated by surgery and radiotherapy alone. Local secretion of hIL-2 by the xenogeneic cells is shown to be necessary for the induction of an optimal antitumor effect. Moreover, the safety of the procedure was demonstrated in both animal models and through extensive toxicological analysis performed in rats. These results confirm for the first time to our knowledge the safety and therapeutic potential of a gene transfer strategy in animals with spontaneous metastatic and nonmetastatic tumors.
Development of an in vitro test system measuring transcriptional downregulatory activities on IL-13.
Choi, Jeong June; Park, Bo-Kyung; Park, Sunyoung; Yun, Chi-Young; Kim, Dong Hee; Kim, Jin Sook; Hwang, Eun Sook; Jin, Mirim
2009-03-01
Interleukin-13 (IL-13) has been proposed as a therapeutic target for bronchial asthma as it plays crucial roles in the pathogenesis of the disease. We developed an in vitro test system measuring transcriptional downregulatory activities on IL-13 as a primary screening method to select drug candidates from natural products. The promoter region of IL-13 (-2,048 to +1) was cloned into the upstream of a luciferase gene in the plasmid pGL4.14 containing the hygromycin resistance gene as a selection marker, generating pGL4.14-IL-13. The EL-4 thymoma and RBL-2H3 mast cells transiently expressing this plasmid highly produced the luciferase activities by responding to PI (PMA and ionomycin) stimulation up to 8-fold and 13-fold compared with the control, respectively, whereas cyclosporin A, a wellknown antiasthmatic agent, significantly downregulated the activities. The BF1 clone of RBL-2H3 cells constitutively expressing pGL4.14-IL-13 was established by selecting surviving cells under a constant lethal dose of hygromycin treatment. The feasibility of this system was evaluated by measuring the downregulatory activities of 354 natural products on the IL-13 promoter using the BF1 clone. An extract from Morus bombycis (named TBRC 156) significantly inhibited PI-induced luciferase activities and IL-13 mRNA expression, but not the protein expression. Fisetin (named TBRC 353) inhibited not only PI-induced luciferase activities and mRNA expression, but also the IL-13 protein secretion, whereas myricetin (named TBRC 354) could not suppress the IL-13 expression at all. Our data indicated that this in vitro test system is able to discriminate the effects on IL-13 expression, and furthermore, that it might be suitable as a simple and time-saving primary screening system to select antiasthmatic agents by measuring transcriptional activities of the IL-13 promoter.
Sandén, Emma; Enríquez Pérez, Julio; Visse, Edward; Kool, Marcel; Carén, Helena; Siesjö, Peter; Darabi, Anna
2016-12-01
Primary brain tumors are the most common solid tumors in children. Increasing evidence demonstrates diverse intratumoral immune signatures, which are tentatively reflected in peripheral blood. Twenty cytokines were analyzed in preoperative plasma samples from five healthy children and 45 children with brain tumors, using a multiplex platform (MesoScale Discovery V-PLEX ® ). Tumor types included medulloblastoma (MB), ependymoma, sarcoma, high-grade glioma, pilocytic astrocytoma, and other low-grade gliomas. A panel of four cytokines [VEGFA, interleukin (IL)-7, IL-17A, and tumor necrosis factor (TNF)-β] delineated two distinct patient groups, identified as VEGFA high IL-7 high IL-17A low TNF-β low (Group A) and VEGFA low IL-7 low IL-17A high TNF-β high (Group B). Healthy controls and the vast majority of patients with MB were found within Group A, whereas patients with other tumor types were equally distributed between the two groups. Unrelated to A/B affiliation, we detected trends toward increased IL-10 and decreased IL-12/23 and TNF-α in several tumor types. Finally, a small number of patients displayed evidence of enhanced systemic immune activation, including elevated levels of interferon-γ, granulocyte monocyte colony-stimulating factor, IL-6, IL-12/23, and TNF-α. Following tumor resection, cytokine levels in a MB patient approached the levels of healthy controls. We identify common features and individual differences in the systemic immune profiles of children with brain tumors. Overall, patients with MB displayed a uniform cytokine profile, whereas other tumor diagnoses did not predict systemic immunological status in single patients. Future characterization and monitoring of systemic immune responses in children with brain tumors will have important implications for the development and implementation of immunotherapy. © 2016 Wiley Periodicals, Inc.
Aye, Irving L M H; Jansson, Thomas; Powell, Theresa L
2013-12-05
Interleukin-1β (IL-1β) promotes insulin resistance in tissues such as liver and skeletal muscle; however the influence of IL-1β on placental insulin signaling is unknown. We recently reported increased IL-1β protein expression in placentas of obese mothers, which could contribute to insulin resistance. In this study, we tested the hypothesis that IL-1β inhibits insulin signaling and prevents insulin-stimulated amino acid transport in cultured primary human trophoblast (PHT) cells. Cultured trophoblasts isolated from term placentas were treated with physiological concentrations of IL-1β (10pg/ml) for 24h. IL-1β increased the phosphorylation of insulin receptor substrate-1 (IRS-1) at Ser307 (inhibitory) and decreased total IRS-1 protein abundance but did not affect insulin receptor β expression. Furthermore, IL-1β inhibited insulin-stimulated phosphorylation of IRS-1 (Tyr612, activation site) and Akt (Thr308) and prevented insulin-stimulated increase in PI3K/p85 and Grb2 protein expression. IL-1β alone stimulated cRaf (Ser338), MEK (Ser221) and Erk1/2 (Thr202/Tyr204) phosphorylation. The inflammatory pathways nuclear factor kappa B and c-Jun N-terminal kinase, which are involved in insulin resistance, were also activated by IL-1β treatment. Moreover, IL-1β inhibited insulin-stimulated System A, but not System L amino acid uptake, indicating functional impairment of insulin signaling. In conclusion, IL-1β inhibited the insulin signaling pathway by inhibiting IRS-1 signaling and prevented insulin-stimulated System A transport, thereby promoting insulin resistance in cultured PHT cells. These findings indicate that conditions which lead to increased systemic maternal or placental IL-1β levels may attenuate the effects of maternal insulin on placental function and consequently fetal growth. Published by Elsevier Ireland Ltd.
Aye, Irving L. M. H.; Jansson, Thomas; Powell, Theresa L.
2013-01-01
Interleukin-1β (IL-1β) promotes insulin resistance in tissues such as liver and skeletal muscle; however the influence of IL-1β on placental insulin signaling is unknown. We recently reported increased IL-1β protein expression in placentas of obese mothers, which could contribute to insulin resistance. In this study, we tested the hypothesis that IL-1β inhibits insulin signaling and prevents insulin-stimulated amino acid transport in cultured primary human trophoblast (PHT) cells. Cultured trophoblasts isolated from term placentas were treated with physiological concentrations of IL-1β (10 pg/ml) for 24 hours. IL-1β increased the phosphorylation of insulin receptor substrate-1 (IRS-1) at Ser307 (inhibitory) and decreased total IRS-1 protein abundance but did not affect insulin receptor β expression. Furthermore, IL-1β inhibited insulin-stimulated phosphorylation of IRS-1 (Tyr612, activation site) and Akt (Thr308) and prevented insulin-stimulated increase in PI3K/p85 and Grb2 protein expression. IL-1β alone stimulated cRaf (Ser338), MEK (Ser221) and Erk1/2 (Thr202/Tyr204) phosphorylation. The inflammatory pathways nuclear factor kappa B and c-Jun N-terminal kinase, which are involved in insulin resistance, were also activated by IL-1β treatment. Moreover, IL-1β inhibited insulin-stimulated System A, but not System L amino acid uptake, indicating functional impairment of insulin signaling. In conclusion, IL-1β inhibited the insulin signaling pathway by inhibiting IRS-1 signaling and prevented insulin-stimulated System A transport, thereby promoting insulin resistance in cultured PHT cells. These findings indicate that conditions which lead to increased systemic maternal or placental IL-1β levels may attenuate the effects of maternal insulin on placental function and consequently fetal growth. PMID:23891856
Palmer, K; Moore, J; Everard, M; Harris, J D; Rodgers, S; Rees, R C; Murray, A K; Mascari, R; Kirkwood, J; Riches, P G; Fisher, C; Thomas, J M; Harries, M; Johnston, S R; Collins, M K; Gore, M E
1999-05-20
We vaccinated metastatic melanoma patients with irradiated, autologous melanoma cells genetically engineered to secrete interleukin 2 (IL-2) to investigate whether an anti-tumor immune response would be induced. Melanoma cell cultures were established from surgical specimens and were engineered to secrete IL-2 by infection with recombinant retrovirus. Twelve patients were vaccinated subcutaneously one, two, or three times with approximately 10(7) irradiated, autologous, IL-2-secreting tumor cells. Treatment was well tolerated, with local reactions at 11 of 24 injection sites and minor systemic symptoms of fever and headache after 6 injections. One patient developed anti-tumor DTH after the first vaccination and showed an increased response after the second vaccination. Anti-autologous tumor CTLs could be detected prevaccination in the peripheral blood of seven patients and their activity increased after vaccination in four patients. No UICC-defined clinical responses were seen, but three patients had stable disease for 7-15 months, one of whom has not yet progressed (15+ months). Thus, patient vaccination with autologous, genetically engineered tumor cells is feasible and safe. Anti-tumor DTH and CTLs can be induced in some patients with such a vaccine.
IL-8 as mediator in the microenvironment-leukaemia network in acute myeloid leukaemia.
Kuett, Alexander; Rieger, Christina; Perathoner, Deborah; Herold, Tobias; Wagner, Michaela; Sironi, Silvia; Sotlar, Karl; Horny, Hans-Peter; Deniffel, Christian; Drolle, Heidrun; Fiegl, Michael
2015-12-17
The bone marrow microenvironment is physiologically hypoxic with areas being as low as 1% O2, e.g. the stem cell niche. Acute myeloid leukaemia (AML) blasts misuse these bone marrow niches for protection by the local microenvironment, but also might create their own microenvironment. Here we identify IL-8 as a hypoxia-regulated cytokine in both AML cell lines and primary AML samples that is induced within 48 hours of severe hypoxia (1% O2). IL-8 lacked effects on AML cells but induced migration in mesenchymal stromal cells (MSC), an integral part of the bone marrow. Accordingly, MSC were significantly increased in AML bone marrow as compared to healthy bone marrow. Interestingly, mononuclear cells obtained from healthy bone marrow displayed both significantly lower endogenous and hypoxia-induced production of IL-8. IL-8 mRNA expression in AML blasts from 533 patients differed between genetic subgroups with significantly lower expression of IL-8 in acute promyelocytic leukaemia (APL), while in non APL-AML patients with FLT ITD had the highest IL-8 expression. In this subgroup, high IL-8 expression was also prognostically unfavourable. In conclusion, hypoxia as encountered in the bone marrow specifically increases IL-8 expression of AML, which in turn impacts niche formation. High IL-8 expression might be correlated with poor prognosis in certain AML subsets.
Sex difference in link between interleukin-6 and stress.
Jankord, Ryan; Turk, James R; Schadt, James C; Casati, Jennifer; Ganjam, Venkataseshu K; Price, Elmer M; Keisler, Duane H; Laughlin, M Harold
2007-08-01
Inflammation contributes to disease development, and the neuroimmunoendocrine interface is a potential site of action for inflammatory products like IL-6 to affect health. Although plasma IL-6 can stimulate the activity of the hypothalamo-pituitary-adrenocortical (HPA) axis, the precise role, if any, for IL-6 in the HPA response to nonimmunological stressors is unclear. The purpose of this study was to test the hypothesis that IL-6 in the stalk median eminence (SME) can be directly involved in stimulating ACTH secretion in response to acute stress in female swine. This study was undertaken as a result of finding IL-6 localized to the external zone of the SME next to the hypophyseal portal vessels. Results indicate that content of IL-6 in the SME decreases in response to acute stress along with an increase in nuclear phosphorylated signal transducer and activator of transcription-3 (pSTAT-3) in pituitary corticotrophs and a simultaneous increase in plasma concentrations of IL-6 and ACTH. Furthermore, we show that females concomitantly display greater SME content of IL-6 and greater HPA responsiveness to stress, thereby suggesting that IL-6 release from the SME is an integral factor contributing to enhanced stress responsiveness in females. Our results provide evidence for a direct link between IL-6 and ACTH release and reveal a sex difference in this relationship.
Ionic Liquid–Solute Interactions Studied by 2D NOE NMR Spectroscopy
Khatun, Sufia; Castner, Edward W.
2014-11-26
Intermolecular interactions between a Ru²⁺(bpy)₃ solute and the anions and cations of four different ionic liquids (ILs) are investigated by 2D NMR nuclear Overhauser effect (NOE) techniques, including {¹H-¹⁹F} HOESY and {¹H-¹H} ROESY. Four ILs are studied, each having the same bis(trifluoromethylsulfonyl)amide anion in common. Two of the ILs have aliphatic 1-alkyl-1-methylpyrrolidinium cations, while the other two ILs have aromatic 1-alkyl-3-methylimidazolium cations. ILs with both shorter (butyl) and longer (octyl or decyl) cationic alkyl substituents are studied. NOE NMR results suggest that the local environment of IL anions and cations near the Ru²⁺(bpy)₃ solute is rather different from the bulkmore » IL structure. The solute-anion and solute-cation interactions are significantly different both for ILs with short vs long alkyl tails and for ILs with aliphatic vs aromatic cation polar head groups. In particular, the solute-anion interactions are observed to be about 3 times stronger for the cations with shorter alkyl tails relative to the ILs with longer alkyl tails. The Ru²⁺(bpy)₃ solute interacts with both the polar head and the nonpolar tail groups of the 1- butyl-1-methylpyrrolidinium cation but only with the nonpolar tail groups of the 1-decyl-1-methylpyrrolidinium cation.« less
Yoshida, S; Haque, A; Mizobuchi, T; Iwata, T; Chiyo, M; Webb, T J; Baldridge, L A; Heidler, K M; Cummings, O W; Fujisawa, T; Blum, J S; Brand, D D; Wilkes, D S
2006-04-01
Immunity to collagen V [col(V)] contributes to lung 'rejection.' We hypothesized that ischemia reperfusion injury (IRI) associated with lung transplantation unmasks antigenic col(V) such that fresh and well-healed lung grafts have differential susceptibility to anti-col(V)-mediated injury; and expression of the autoimmune cytokines, IL-17 and IL-23, are associated with this process. Adoptive transfer of col(V)-reactive lymphocytes to WKY rats induced grade 2 rejection in fresh isografts, but induced worse pathology (grade 3) when transferred to isograft recipients 30 days post-transplantation. Immunhistochemistry detected col(V) in fresh and well-healed isografts but not native lungs. Hen egg lysozyme-reactive lymphocytes (HEL, control) did not induce lung disease in any group. Col(V), but not HEL, immunization induced transcripts for IL-17 and IL-23 (p19) in the cells utilized for adoptive transfer. Transcripts for IL-17 were upregulated in fresh, but not well-healed isografts after transfer of col(V)-reactive cells. These data show that IRI predisposes to anti-col(V)-mediated pathology; col(V)-reactive lymphocytes express IL-17 and IL-23; and anti-col(V)-mediated lung disease is associated with local expression of IL-17. Finally, because of similar histologic patterns, the pathology of clinical rejection may reflect the activity of autoimmunity to col(V) and/or alloimmunity.
Mast cells limit extracellular levels of IL-13 via a serglycin proteoglycan-serine protease axis.
Waern, Ida; Karlsson, Iulia; Thorpe, Michael; Schlenner, Susan M; Feyerabend, Thorsten B; Rodewald, Hans-Reimer; Åbrink, Magnus; Hellman, Lars; Pejler, Gunnar; Wernersson, Sara
2012-12-01
Mast cell (MC) granules contain large amounts of proteases of the chymase, tryptase and carboxypeptidase A (MC-CPA) type that are stored in complex with serglycin,a proteoglycan with heparin side chains. Hence, serglycinprotease complexes are released upon MC degranulation and may influence local inflammation. Here we explored the possibility that a serglycin-protease axis may regulate levels of IL-13, a cytokine involved in allergic asthma. Indeed, we found that wild-type MCs efficiently degraded exogenous or endogenously produced IL-13 upon degranulation,whereas serglycin −/− MCs completely lacked this ability.Moreover, MC-mediated IL-13 degradation was blocked both by a serine protease inhibitor and by a heparin antagonist,which suggests that IL-13 degradation is catalyzed by serglycin-dependent serine proteases and that optimal IL-13 degradation is dependent on both the serglycin and the protease component of the serglycin-protease complex.Moreover, IL-13 degradation was abrogated in MC-CPA −/−MC cultures, but was normal in cultures of MCs with an inactivating mutation of MC-CPA, which suggests that the IL-13-degrading serine proteases rely on MC-CPA protein.Together, our data implicate a serglycin-serine protease axis in the regulation of extracellular levels of IL-13. Reduction of IL-13 levels through this mechanism possibly can provide a protective function in the context of allergic inflammation.
Novel Roles for Hypoxia and Prostaglandin E2 in the Regulation of IL-8 During Endometrial Repair
Maybin, Jacqueline A.; Hirani, Nikhil; Jabbour, Henry N.; Critchley, Hilary O.D.
2011-01-01
The endometrium has a remarkable capacity for efficient repair; however, factors involved remain undefined. Premenstrual progesterone withdrawal leads to increased prostaglandin (PG) production and local hypoxia. Here we determined human endometrial expression of interleukin-8 (IL-8) and the roles of PGE2 and hypoxia in its regulation. Endometrial biopsy specimens (n = 51) were collected. Endometrial cells and explants were exposed to 100 nmol/L of PGE2 or 0.5% O2. The endometrial IL-8 concentration peaked during menstruation (P < 0.001) and had a significant proangiogenic effect. IL-8 was increased by PGE2 and hypoxia in secretory but not proliferative explants, which suggests that exposure to progesterone is essential. In vitro progesterone withdrawal induced significant IL-8 up-regulation in proliferative explants primed with progestins, but only in the presence of hypoxia. Epithelial cells treated simultaneously with PGE2 and hypoxia demonstrated synergistic increases in IL-8. Inhibition of HIF-1 by short hairpin RNA abolished hypoxic IL-8 induction, and inhibition of NF-κB by an adenoviral dominant negative inhibitor decreased PGE2-induced IL-8 expression (P > 0.05). Increased menstrual IL-8 is consistent with a role in repair. Progesterone withdrawal, hypoxia, and PGE2 regulate endometrial IL-8 by acting via HIF-1 and NF-κB. Hence, progesterone withdrawal may activate two distinct pathways to initiate endometrial repair. PMID:21356375
Immunotherapeutic implications of IL-6 blockade for cytokine storm.
Tanaka, Toshio; Narazaki, Masashi; Kishimoto, Tadamitsu
2016-07-01
IL-6 contributes to host defense against infections and tissue injuries. However, exaggerated, excessive synthesis of IL-6 while fighting environmental stress leads to an acute severe systemic inflammatory response known as 'cytokine storm', since high levels of IL-6 can activate the coagulation pathway and vascular endothelial cells but inhibit myocardial function. Remarkable beneficial effects of IL-6 blockade therapy using a humanized anti-IL-6 receptor antibody, tocilizumab were recently observed in patients with cytokine release syndrome complicated by T-cell engaged therapy. In this review we propose the possibility that IL-6 blockade may constitute a novel therapeutic strategy for other types of cytokine storm, such as the systemic inflammatory response syndrome including sepsis, macrophage activation syndrome and hemophagocytic lymphohistiocytosis.
Shifrin, Helena; Harel, Efrat; Nadler-Milbauer, Mirela; Weinstock, Marta; Srebnik, Morris
2015-01-01
A novel fused-cyclopentenone phosphonate compound, namely, diethyl 3-nonyl-5-oxo-3,5,6,6a-tetrahydro-1H-cyclopenta[c]furan-4-ylphosphonate (P-5), was prepared and tested in vitro (LPS-activated macrophages) for its cytotoxicity and anti-inflammatory activity and in vivo (DNBS induced rat model) for its potential to ameliorate induced colitis. Specifically, the competence of P-5 to reduce TNFα, IL-6, INFγ, MCP-1, IL-1α, MIP-1α, and RANTES in LPS-activated macrophages was measured. Experimental colitis was quantified in the rat model, macroscopically and by measuring the activity of tissue MPO and iNOS and levels of TNFα and IL-1β. It was found that P-5 decreased the levels of TNFα and the tested proinflammatory cytokines and chemokines in LPS-activated macrophages. In the colitis-induced rat model, P-5 was effective locally in reducing mucosal inflammation. This activity was equal to the activity of local treatment with 5-aminosalicylic acid. It is speculated that P-5 may be used for the local treatment of IBD (e.g., with the aid of colon-specific drug platforms). Its mode of action involves inhibition of the phosphorylation of MAPK ERK but not of p38 and had no effect on IκBα. PMID:25949237
Luo, Yu; Van Nguyen, Ut; de la Fe Rodriguez, Pedro Y; Devriendt, Bert; Cox, Eric
2015-10-21
Enterotoxigenic Escherichia coli (ETEC) are an important cause of post-weaning diarrhea (PWD) in piglets. Porcine-specific ETEC strains possess different fimbrial subtypes of which F4 fimbriae are the most frequently associated with ETEC-induced diarrhea in piglets. These F4 fimbriae are potent oral immunogens that induce protective F4-specific IgA antibody secreting cells at intestinal tissues. Recently, T-helper 17 (Th17) cells have been implicated in the protection of the host against extracellular pathogens. However, it remains unknown if Th17 effector responses are needed to clear ETEC infections. In the present study, we aimed to elucidate if ETEC elicits a Th17 response in piglets and if F4 fimbriae trigger a similar response. F4(+) ETEC infection upregulated IL-17A, IL-17F, IL-21 and IL-23p19, but not IL-12 and IFN-γ mRNA expression in the systemic and mucosal immune system. Similarly, oral immunization with F4 fimbriae triggered a Th17 signature evidenced by an upregulated mRNA expression of IL-17F, RORγt, IL-23p19 and IL-21 in the peripheral blood mononuclear cells (PBMCs). Intriguingly, IL-17A mRNA levels were unaltered. To further evaluate this difference between systemic and mucosal immune responses, we assayed the cytokine mRNA profile of F4 fimbriae stimulated PBMCs. F4 fimbriae induced IL-17A, IL-17F, IL-22 and IL-23p19, but downregulated IL-17B mRNA expression. Altogether, these data indicate a Th17 dominated response upon oral immunization with F4 fimbriae and F4(+) ETEC infection. Our work also highlights that IL-17B and IL-17F participate in the immune response to protect the host against F4(+) ETEC infection and could aid in the design of future ETEC vaccines.
Raymondos, Konstantinos; Martin, Michael U; Schmudlach, Tanja; Baus, Stefan; Weilbach, Christian; Welte, Tobias; Krettek, Christian; Frink, Michael; Hildebrand, Frank
2012-02-01
Alveolar IL-8 has been reported to early identify patients at-risk to develop ARDS. However, it remains unknown how alveolar IL-8 is related to pulmonary and systemic inflammation in patients predisposed for ARDS. We studied 24 patients 2-6h after multiple trauma. Patients with IL-8 >200 pg/ml in bronchoalveolar lavage (BAL) were assigned to the group at high risk for ARDS (H, n = 8) and patients with BAL IL-8 <200 pg/ml to the group at low risk for ARDS (L, n = 16). ARDS developed within 24h after trauma in 5 patients at high and at least after 1 week in 2 patients at low risk for ARDS (p = 0.003). High-risk patients had also increased BAL IL-6, TNF-α, IL-1β, IL-10 and IL-1ra levels (p<0.05). BAL neutrophil counts did not differ between patient groups (H vs. L, 12% (3-73%) vs. 6% (2-32%), p = 0.1) but correlated significantly with BAL IL-8, IL-6 and IL-1ra. High-risk patients had increased plasma levels of pro- but not anti-inflammatory mediators. The enhanced alveolar and systemic inflammation associated with alveolar IL-8 release should be considered to identify high-risk patients for pulmonary complications after multiple trauma to adjust surgical and other treatment strategies to the individual risk profile. Copyright © 2011 Elsevier Ltd. All rights reserved.
Lau, Bi-Wen; Lim, Dee-Zhen; Capon, Francesca; Barker, Jonathan N; Choon, Siew-Eng
2017-04-01
Limited information exists regarding juvenile generalized pustular psoriasis (GPP). We aim to determine the clinical profile and outcome of Malaysians with juvenile GPP. Review of hospital case notes on patients with juvenile GPP. Twenty-seven patients with juvenile GPP were identified. Female to male ratio was 1.4:1. The median age at onset of GPP was 6.5 years. Ten patients had prior psoriasis with a median pre-pustular duration of 2.7 years. Onset of GPP was earlier in patients without prior psoriasis (5.1 years vs. 12.0 years, P = 0.002). Precipitating factors identified included stress, upper respiratory tract infection, systemic steroid use, vaccination, and pregnancy. A positive family history of psoriasis and GPP was present in six and one patient(s), respectively. Twenty-one patients had acute, five annular, and one localized variant of GPP. Arthritis was present in 22.2%. Fever, leukocytosis, and transaminitis were mainly seen in patients with acute GPP at 80.9, 72.2, and 11.1%, respectively. Among 20 patients screened, eight carry IL36RN variants and one has CARD14 mutation. IL36RN-positive patients have more severe disease characterized by early onset, low prevalence of prior plaque psoriasis, high prevalence of systemic inflammation, and need for continuous long-term systemic therapy. Acitretin and cyclosporine were effective in aborting acute GPP in 100% of 16 and 66.7% of six patients treated, respectively. However, relapses were common. Only three of the 17 patients whose initial acute GPP was controlled with systemic agents were successfully weaned off treatment. Juvenile GPP is a chronic recalcitrant disease. IL36RN-positive patients have more severe disease. © 2017 The International Society of Dermatology.
Notre Dame Geothermal Ionic Liquids Research: Ionic Liquids for Utilization of Geothermal Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brennecke, Joan F.
The goal of this project was to develop ionic liquids for two geothermal energy related applications. The first goal was to design ionic liquids as high temperature heat transfer fluids. We identified appropriate compounds based on both experiments and molecular simulations. We synthesized the new ILs, and measured their thermal stability, measured storage density, viscosity, and thermal conductivity. We found that the most promising compounds for this application are aminopyridinium bis(trifluoromethylsulfonyl)imide based ILs. We also performed some measurements of thermal stability of IL mixtures and used molecular simulations to better understand the thermal conductivity of nanofluids (i.e., mixtures of ILsmore » and nanoparticles). We found that the mixtures do not follow ideal mixture theories and that the addition of nanoparticles to ILs may well have a beneficial influence on the thermal and transport properties of IL-based heat transfer fluids. The second goal was to use ionic liquids in geothermally driven absorption refrigeration systems. We performed copious thermodynamic measurements and modeling of ionic liquid/water systems, including modeling of the absorption refrigeration systems and the resulting coefficients of performance. We explored some IL/organic solvent mixtures as candidates for this application, both with experimentation and molecular simulations. We found that the COPs of all of the IL/water systems were higher than the conventional system – LiBr/H2O. Thus, IL/water systems appear very attractive for absorption refrigeration applications.« less
Targeting the IL-23/IL-17 axis for the treatment of psoriasis and psoriatic arthritis.
Alunno, Alessia; Carubbi, Francesco; Cafaro, Giacomo; Pucci, Giacomo; Battista, Francesca; Bartoloni, Elena; Giacomelli, Roberto; Schillaci, Giuseppe; Gerli, Roberto
2015-01-01
A growing amount of data supporting the pathogenic role of the IL-23/IL-17 axis in inflammatory/autoimmune disorders has provided the rationale to target the system for therapeutic purpose. Several compounds have been and are currently under intense investigation in psoriasis and psoriatic arthritis (PsA) yielding impressive results. In this review article, we provide an overview of currently available data on the IL-23/IL-17 system as a target for treatment for psoriasis and PsA. We searched MEDLINE for articles on drug therapy for psoriasis and PsA published between 1 January 2010 and 31 May 2015. One of these agents, ustekinumab, has been recently approved for the treatment of psoriasis and PsA, and a number of IL-23/IL-17-targeted compounds under investigation in these diseases. As our knowledge of the role of the IL-23/IL-17 axis in the pathogenesis of psoriasis and PsA deepens, it enables the development of more targeted therapies in the management of these conditions. Early data on IL-23/IL-17 targeting drugs appear promising, although incomplete. Given the key role IL-23/IL-17 in host defence, the safety profile of targeted drugs should be thoroughly assessed in future studies.
Schuetz, Alexandra; Deleage, Claire; Sereti, Irini; Rerknimitr, Rungsun; Phanuphak, Nittaya; Phuang-Ngern, Yuwadee; Estes, Jacob D.; Sandler, Netanya G.; Sukhumvittaya, Suchada; Marovich, Mary; Jongrakthaitae, Surat; Akapirat, Siriwat; Fletscher, James L. K.; Kroon, Eugene; Dewar, Robin; Trichavaroj, Rapee; Chomchey, Nitiya; Douek, Daniel C.; O′Connell, Robert J.; Ngauy, Viseth; Robb, Merlin L.; Phanuphak, Praphan; Michael, Nelson L.; Excler, Jean-Louis; Kim, Jerome H.; de Souza, Mark S.; Ananworanich, Jintanat
2014-01-01
Mucosal Th17 cells play an important role in maintaining gut epithelium integrity and thus prevent microbial translocation. Chronic HIV infection is characterized by mucosal Th17 cell depletion, microbial translocation and subsequent immune-activation, which remain elevated despite antiretroviral therapy (ART) correlating with increased mortality. However, when Th17 depletion occurs following HIV infection is unknown. We analyzed mucosal Th17 cells in 42 acute HIV infection (AHI) subjects (Fiebig (F) stage I-V) with a median duration of infection of 16 days and the short-term impact of early initiation of ART. Th17 cells were defined as IL-17+ CD4+ T cells and their function was assessed by the co-expression of IL-22, IL-2 and IFNγ. While intact during FI/II, depletion of mucosal Th17 cell numbers and function was observed during FIII correlating with local and systemic markers of immune-activation. ART initiated at FI/II prevented loss of Th17 cell numbers and function, while initiation at FIII restored Th17 cell numbers but not their polyfunctionality. Furthermore, early initiation of ART in FI/II fully reversed the initially observed mucosal and systemic immune-activation. In contrast, patients treated later during AHI maintained elevated mucosal and systemic CD8+ T-cell activation post initiation of ART. These data support a loss of Th17 cells at early stages of acute HIV infection, and highlight that studies of ART initiation during early AHI should be further explored to assess the underlying mechanism of mucosal Th17 function preservation. PMID:25503054
Obesity-related chronic kidney disease is associated with spleen-derived IL-10.
Gotoh, Koro; Inoue, Megumi; Masaki, Takayuki; Chiba, Seiichi; Shiraishi, Kentaro; Shimasaki, Takanobu; Matsuoka, Kazue; Ando, Hisae; Fujiwara, Kansuke; Fukunaga, Naoya; Aoki, Kohei; Nawata, Tomoko; Katsuragi, Isao; Kakuma, Tetsuya; Seike, Masataka; Yoshimatsu, Hironobu
2013-05-01
Obesity is associated with systemic low-grade inflammation and is a risk factor for chronic kidney disease (CKD), but the molecular mechanism remains uncertain. We noticed spleen-derived interleukin (IL)-10 because it is observed that obesity reduces several cytokines in the spleen. We examined whether spleen-derived IL-10 regulates CKD caused by a high-fat diet (HF)-induced obesity as follows: (i) male mice were fed with HF (60% fat) during 8 weeks and IL-10 induction from the spleen was examined, (ii) glomerular hypertrophy, fibrosis, inflammatory responses in the kidney and systolic blood pressure (SBP) were evaluated in splenectomy (SPX)-treated mice fed HF, (iii) exogenous IL-10 was systemically administered to HF-induced obese mice and the alteration of obesity-induced pathogenesis caused by IL-10 treatment was assessed. (iv) IL-10 knockout (IL-10KO) mice were treated with SPX and glomerular hypertrophy, fibrosis and the inflammatory condition in the kidney and SBP were also investigated. Obesity decreased serum levels of only IL-10, an anti-inflammatory cytokine even though pro- and anti-inflammatory cytokine expression in the spleen was significantly lower in the obese group. SPX aggravated HF-induced inflammatory responses in the kidney and hypertension. These HF-induced alterations were inhibited by systemically administered IL-10. Moreover, SPX had little effect on inflammatory responses and SBP in the kidney of IL-10KO mice. We suggest that obesity reduces IL-10 induction from the spleen, and spleen-derived IL-10 may protect against the development of CKD induced by obesity.
Amoudruz, Petra; Minang, Jacob Taku; Sundström, Yvonne; Nilsson, Caroline; Lilja, Gunnar; Troye-Blomberg, Marita; Sverremark-Ekström, Eva
2006-09-01
In this study, we investigated how pregnancy influences cytokine production in response to stimulation of the innate and the adaptive immune system, respectively. Peripheral blood mononuclear cells (PBMCs) from allergic (n = 44) and non-allergic (n = 36) women were collected at three time-points: during the third trimester, at delivery and at a non-pregnant state 2 years after delivery. The production of interleukin-1beta (IL-1beta), IL-6, IL-10 and IL-12 was measured by enzyme-linked immunosorbent assay (ELISA) or enzyme-linked immunospot assay (ELISPOT). The spontaneous cytokine production, and the response following stimulation with agents that primarily activate the adaptive part of the immune system [phytohaemagglutinin (PHA), allergen extracts from cat and birch], or lipopolysaccharide (LPS) that activate innate immunity was measured in vitro. There was a significantly higher spontaneous in vitro production of IL-1beta, IL-6 and IL-10 by PBMCs during pregnancy than 2 years after pregnancy, and this was not affected by the allergic status of the women. Conversely, in PHA-stimulated cell cultures there was a lower production of IL-10 and IL-12 during pregnancy than 2 years after pregnancy. LPS-induced IL-6 levels were significantly lower in PBMCs obtained during pregnancy than at 2 years after pregnancy. In addition, we made the interesting observation that in allergic women total immunoglobulin E (IgE) levels were significantly lower 2 years after pregnancy compared to the levels during pregnancy. Taken together, our results indicate that while atopic allergy in women does not have a substantial effect on cytokine production, pregnancy has an obvious effect on the immune system in terms of cytokine production as well as on the total IgE levels.
BMP2-Induced Inflammation Can Be Suppressed by the Osteoinductive Growth Factor NELL-1
Shen, Jia; James, Aaron W.; Zara, Janette N.; Asatrian, Greg; Khadarian, Kevork; Zhang, James B.; Ho, Stephanie; Kim, Hyun Ju
2013-01-01
Bone-morphogenetic protein 2 (BMP2) is currently the only Food and Drug Administration-approved osteoinductive growth factor used in clinical settings for bone regeneration and repair. However, the use of BMP2 is encumbered by numerous clinical complications, including postoperative inflammation and life-threatening cervical swelling. Thus, methods to prevent BMP2-induced inflammation would have far-reaching clinical implications toward improving current BMP2-based methods for bone regeneration. For the first time, we investigate the potential role of the growth factor Nel-like molecule-1 (NELL-1) in inhibiting BMP2-induced inflammation. Adult rats underwent a femoral bone onlay procedure, treated with either BMP2 protein (4 mg/mL), NELL-1 protein (4 mg/mL), or both proteins combined. Animals were evaluated at 3, 7, and 14 days postoperatively by histology, histomorphometry, immunohistochemistry, and real-time PCR for markers of inflammation (TNFα, IL6). The relative levels of TNFα and IL6 in serum were also detected by ELISA. The mechanism for NELL-1's anti-inflammatory effect was further assessed through examining inflammatory markers and generation of reactive oxygen species (ROS) in the mouse embryonic fibroblast NIH3T3 cells. BMP2 significantly induced local inflammation, including an early and pronounced polymorphonuclear cell infiltration accompanied by increased expression of TNFα and IL6. Treatment with NELL-1 alone elicited no significant inflammatory response. However, NELL-1 significantly attenuated BMP2-induced inflammation by all markers and at all timepoints. These local findings were also confirmed using systemic serum inflammatory biomarkers (TNFα, IL6). In each case, NELL-1 fully reversed BMP2-induced systemic inflammation. Lastly, our findings were recapitulated in vitro, where NELL-1 suppressed BMP2 induced expression of inflammatory markers, as well as NF-κB transcriptional activity and generation of ROS. BMP2-induced inflammation is a serious public health concern with potentially life-threatening complications. In the present study, we observed that the growth factor, NELL-1, significantly attenuates or completely reverses BMP2-induced inflammation. The mechanisms of NELL-1's anti-inflammatory effect are only partially elucidated, and may include reduction of NF-κB transcriptional activity or ROS generation. PMID:23758588
Interleukin-1 may link helplessness-hopelessness with cancer progression: a proposed model.
Argaman, Miriam; Gidron, Yori; Ariad, Shmuel
2005-01-01
A model of the relations between psychological factors and cancer progression should include brain and systemic components and their link with critical cellular stages in cancer progression. We present a psychoneuroimmunological (PNI) model that links helplessness-hopelessness (HH) with cancer progression via interleukin-1beta (IL-1beta). IL-1beta was elevated in the brain following exposure to inescapable shock, and HH was minimized by antagonizing cerebral IL-1beta. Elevated cerebral IL-1beta increased cancer metastasis in animals. Inescapable shock was associated with systemic elevations of IL-1beta and peripheral IL-1beta was associated with escape from apoptosis, angiogenesis, and metastasis. Involvement of the sympathetic nervous system and the hypothalamic-pituitary-adrenal axis are discussed. Future studies need to identify the role of additional factors in this PNI pathway.
Fisetin, a flavonol, inhibits TH2-type cytokine production by activated human basophils.
Higa, Shinji; Hirano, Toru; Kotani, Mayumi; Matsumoto, Motonobu; Fujita, Akihito; Suemura, Masaki; Kawase, Ichiro; Tanaka, Toshio
2003-06-01
Activation of mast cells and basophils through allergen stimulation releases chemical mediators and synthesizes cytokines. Among these cytokines, IL-4, IL-13, and IL-5 have major roles in allergic inflammation. We sought to determine the potency of flavonoids (astragalin, fisetin, kaempferol, myricetin, quercetin, and rutin) for the inhibition of cytokine expression and synthesis by human basophils. The inhibitory effect of flavonoids on cytokine expression by stimulated KU812 cells, a human basophilic cell line, and freshly purified peripheral blood basophils was measured by means of semiquantitative RT-PCR and ELISA assays. The effects of flavonoids on transcriptional activation of the nuclear factor of activated T cells were assessed by means of electrophoretic mobility shift assays. Fisetin suppressed the induction of IL-4, IL-13, and IL-5 mRNA expression by A23187-stimulated KU812 cells and basophils in response to cross-linkage of the IgE receptor. Fisetin reduced IL-4, IL-13, and IL-5 synthesis (inhibitory concentration of 50% [IC(50)] = 19.4, 17.7, and 17.4 micromol/L, respectively) but not IL-6 and IL-8 production by KU812 cells. In addition, fisetin inhibited IL-4 and IL-13 synthesis by anti-IgE antibody-stimulated human basophils (IC(50) = 5.1 and 6.2 micromol/L, respectively) and IL-4 synthesis by allergen-stimulated basophils from allergic patients (IC(50) = 4.8 micromol/L). Among the flavonoids examined, kaempferol and quercetin showed substantial inhibitory activities in cytokine expression but less so than those of fisetin. Fisetin inhibited nuclear localization of nuclear factor of activated T cells c2 by A23187-stimulated KU812 cells. These results provide evidence of a novel activity of the flavonoid fisetin that suppresses the expression of T(H)2-type cytokines (IL-4, IL-13, and IL-5) by basophils.
Sapan, Heber Bombang; Paturusi, Idrus; Jusuf, Irawan; Patellongi, Ilhamjaya; Massi, Muh Nasrum; Pusponegoro, Aryono Djuned; Arief, Syafrie Kamsul; Labeda, Ibrahim; Islam, Andi Asadul; Rendy, Leo; Hatta, Mochammad
2016-01-01
Massive injury remains the most common cause of death for productive age group globally. The current immune, inflammatory paradigm, based on an incomplete understanding of the functional integration of the complex host response, remains a major impediment to the development of effective innovative diagnostic and therapeutic effort. This study attempt to investigate the pattern of inflammatory and anti-inflammatory cytokines such as interleukin-6 and 10 (IL-6 and IL-10) and their interaction in severe injury condition with its major complication as multiple organ dysfunction syndrome (MODS) and failure (MOF) after polytrauma. This is multicenter study held at 4 academic Level-1 Trauma center included 54 polytrauma participants. Inclusion criteria were age between 16-60 years old, had new acute episode of polytrauma which defined as injury in ≥2 body region with Injury Severity Score (ISS) ≥16, and the presence of Systemic Inflammation Response Syndrome (SIRS). Serum level of IL-6 and IL-10 were taken on day 2, 3, and 5 after trauma. During hospitalization, samples were observed for the occurrence of MODS or MOF using Sequential Organ Failure Assessment (SOFA) and mortality rate were also noted. Participant were mostly male with mean of age of 35, 9 years old, endured polytrauma caused by traffic accident. Elevation of cytokines (IL-6, IL-10, and IL-6/IL-10 ratio) had directly proportional with MODS and mortality. Threshold level of compensation for severe trauma is IL-6 of 50 pg/mL and trauma load of ISS ≥30. Inflammation reaction greater than this threshold level would result in downhill level of IL-6, IL-10, or IL-6/IL-10 ratio which associated with poor outcome (MODS and death). The elevation of these cytokines level were represent as compensation/adaptive immune system and its fall represent decompensating/failure of immune system after severe trauma. The pattern of IL-6 and IL-10 after polytrauma represent immune system effort to restore homeostasis. Besides cytokines interaction, there must be other factors that contribute to mortality and poor outcome after major trauma. Further study is needed to investigate genomic variant or polymorphism related to trauma.
Fernández, Olga L.; Rodriguez-Pinto, Daniel; Castilho, Tiago M.; Corral Caridad, Maria J.; Goldsmith-Pestana, Karen; Saravia, Nancy Gore; McMahon-Pratt, Diane
2017-01-01
ABSTRACT Infection by Leishmania (Viannia) panamensis, the predominant etiologic agent for cutaneous leishmaniasis in Colombia, is characterized by a chronic mixed inflammatory response. Current treatment options are plagued by toxicity, lengthy treatment regimens, and growing evidence of drug resistance. Immunotherapy, modulating the immune system to mount a protective response, may provide an alternate therapeutic approach. We investigated the ability of the Toll-like receptor 9 (TLR9) ligand CpG to modulate established disease in the L. (V.) panamensis mouse model. Treatment of established infection with a high dose (50 μg) of CpG ameliorated disease and lowered parasite burden. Interestingly, immediately after treatment there was a significant increase in transforming growth factor β (TGF-β) and concomitantly an increase in T regulatory cell (Treg) function. Although a general reduction in cell-mediated immune cytokine and chemokine (gamma interferon [IFN-γ], interleukin 10 [IL-10], IL-13, IL-6, granulocyte-macrophage colony-stimulating factor [GM-CSF], IL-4, and MIP-1α) responses of the treated mice was observed, certain chemokines (RANTES, monocyte chemoattractant protein 1[MCP-1], and IP-10) were increased. Further, in peripheral blood mononuclear cells (PBMCs) from patients with cutaneous leishmaniasis, CpG treatment similarly exhibited a dose-response effect on the production of IFN-γ, IL-17, IL-10, and IL-13, with reductions observed at higher doses. To further understand the underlying mechanisms and cell populations driving the CpG mediated response, we examined the ex vivo dose effects mediated by the TLR9+ cell populations (dendritic cells, macrophages, and B cells) found to accumulate labeled CpG in vivo. Notably, B cells altered the production of IL-17, IL-13, and IFN-γ, supporting a role for B cells functioning as antigen-presenting cells (APCs) and/or regulatory cells during infection. Interestingly, B cells have been previously demonstrated as a primary type of APC in patients infected with L. (V.) panamensis and thus may be useful targets of immunotherapy. Collectively, our results show that CpG-induced immune regulation leads to a dampening of the host immune response and healing in the mouse model, and it may provide an alternate approach to treatment of cutaneous leishmaniasis caused by L. (V.) panamensis. PMID:28052994
Induction of CD4 T cell memory by local cellular collectivity.
Polonsky, Michal; Rimer, Jacob; Kern-Perets, Amos; Zaretsky, Irina; Miller, Stav; Bornstein, Chamutal; David, Eyal; Kopelman, Naama Meira; Stelzer, Gil; Porat, Ziv; Chain, Benjamin; Friedman, Nir
2018-06-15
Cell differentiation is directed by signals driving progenitors into specialized cell types. This process can involve collective decision-making, when differentiating cells determine their lineage choice by interacting with each other. We used live-cell imaging in microwell arrays to study collective processes affecting differentiation of naïve CD4 + T cells into memory precursors. We found that differentiation of precursor memory T cells sharply increases above a threshold number of locally interacting cells. These homotypic interactions involve the cytokines interleukin-2 (IL-2) and IL-6, which affect memory differentiation orthogonal to their effect on proliferation and survival. Mathematical modeling suggests that the differentiation rate is continuously modulated by the instantaneous number of locally interacting cells. This cellular collectivity can prioritize allocation of immune memory to stronger responses. Copyright © 2018, American Association for the Advancement of Science.
Brown, Monica; Postlethwaite, Arnold E; Myers, Linda K; Hasty, Karen A
2012-06-01
Systemic sclerosis (SSc) is a chronic fibrosing disease characterized by vasculopathy, autoimmunity, and an accumulation of collagen in tissues. Numerous studies have shown that compared to healthy or diseased controls, the peripheral blood mononuclear cells (PBMC) from patients with SSc produce a variety of cytokines or proliferate when cultured with solubilized type I collagen (CI) or constituent α1(II) and α2(I) polypeptide chains. The purpose of this study was to determine whether PBMC isolated from patients with SSc and cultured in vitro with soluble CI elaborated soluble mediators that inhibit the production of collagenase (i.e., matrix metalloproteinase, MMP-1) by fibroblasts. Supernatants of CI-stimulated PBMC from juvenile and adult diffuse cutaneous (dc)SSc patients significantly reduced MMP-1 production by SSc dermal fibroblasts, while supernatants of CI-stimulated PBMC from patients with localized scleroderma (LS) did not. CI-stimulated PBMC culture supernatants from patients with dcSSc in contrast to patients with LS exhibited increased levels of platelet-derived growth factor (PDGF)-AA, PDGF-BB, TNF-α, IL-13, and EGF. Prolonged culture of SSc dermal fibroblasts with recombinant PDGF-BB or IL-13 inhibited the induction of MMP-1 in response to subsequent TNF-α stimulation. These data suggest that therapies aimed at reducing these cytokines may decrease collagen accumulation in SSc, preventing the development of chronic fibrosis.
Ionic Liquids for Utilization of Waste Heat from Distributed Power Generation Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joan F. Brennecke; Mihir Sen; Edward J. Maginn
2009-01-11
The objective of this research project was the development of ionic liquids to capture and utilize waste heat from distributed power generation systems. Ionic Liquids (ILs) are organic salts that are liquid at room temperature and they have the potential to make fundamental and far-reaching changes in the way we use energy. In particular, the focus of this project was fundamental research on the potential use of IL/CO2 mixtures in absorption-refrigeration systems. Such systems can provide cooling by utilizing waste heat from various sources, including distributed power generation. The basic objectives of the research were to design and synthesize ILsmore » appropriate for the task, to measure and model thermophysical properties and phase behavior of ILs and IL/CO2 mixtures, and to model the performance of IL/CO2 absorption-refrigeration systems.« less
Elburki, M S; Moore, D D; Terezakis, N G; Zhang, Y; Lee, H-M; Johnson, F; Golub, L M
2017-04-01
Periodontal disease is the most common chronic inflammatory disease known to mankind (and the major cause of tooth loss in the adult population) and has also been linked to various systemic diseases, particularly diabetes mellitus. Based on the literature linking periodontal disease with diabetes in a "bidirectional manner", the objectives of the current study were to determine: (i) the effect of a model of periodontitis, complicated by diabetes, on mechanisms of tissue breakdown including bone loss; and (ii) the response of the combination of this local and systemic phenotype to a novel pleiotropic matrix metalloproteinase inhibitor, chemically modified curcumin (CMC) 2.24. Diabetes was induced in adult male rats by intravenous injection of streptozotocin (nondiabetic rats served as controls), and Escherichia coli endotoxin (lipopolysaccharide) was repeatedly injected into the gingiva to induce periodontitis. CMC 2.24 was administered by oral gavage (30 mg/kg) daily; untreated diabetic rats received vehicle alone. After 3 wk of treatment, the rats were killed, and gingiva, jaws, tibia and skin were collected. The maxillary jaws and tibia were dissected and radiographed. The gingival tissues of each experimental group (n = 6 rats/group) were pooled, extracted, partially purified and, together with individual skin samples, analyzed for matrix metalloproteinase (MMP)-2 and MMP-9 by gelatin zymography; MMP-8 was analyzed in gingival and skin tissue extracts, and in serum, by western blotting. The levels of three bone-resorptive cytokines [interleukin (IL)-1β, IL-6 and tumor necrosis factor-α], were measured in gingival tissue extracts and serum by ELISA. Systemic administration of CMC 2.24 to diabetic rats with endotoxin-induced periodontitis significantly inhibited alveolar bone loss and attenuated the severity of local and systemic inflammation. Moreover, this novel tri-ketonic phenylaminocarbonyl curcumin (CMC 2.24) appeared to reduce the pathologically excessive levels of inducible MMPs to near-normal levels, but appeared to have no significant effect on the constitutive MMPs required for physiologic connective tissue turnover. In addition to the beneficial effects on periodontal disease, induced both locally and systemically, CMC 2.24 also favorably affected extra-oral connective tissues, skin and skeletal bone. This study supports our hypothesis that CMC 2.24 is a potential therapeutic pleiotropic MMP inhibitor, with both intracellular and extracellular effects, which reduces local and systemic inflammation and prevents hyperglycemia- and bacteria-induced connective tissue destruction. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Yu, Sheng-Jie; Liao, En-Chih; Tsai, Jaw-Ji
2015-01-01
Despite improvements in anti-allergy medication, the prevalence of allergic airway inflammation remains high, affecting up to 40% of the population worldwide. Allergen immunotherapy is effective for inducing tolerance but has the adverse effect of severe allergic reaction. This can be avoided by denaturing with urea. In this study, we demonstrated that the serum level of allergen-specific IgE in mice sensitized with native Dermatophagoides pteronyssinus (Der p) crude extract after receiving local nasal immunotherapy (LNIT) with urea-denatured Der p crude extract (DN-Dp) significantly decreased compared to that in the normal saline (NS) treatment group. Expressions of IL-4 were significantly reduced in lung tissues after treatment. Inflammation around the bronchial epithelium improved and airway hypersensitivity was down-regulated. LNIT with DN-Dp can down-regulate IL-1b, IL-6 and TNF-a expression and then decrease Der p-induced allergic airway inflammation. This therapeutic modality may be used as an alternative treatment for airway allergic diseases. PMID:25933184
Kologrivova, I V; Suslova, T E; Koshel'skaya, O A; Vinnitskaya, I V; Trubacheva, O A
2014-03-01
The study included patients with type 2 diabetes mellitus and impaired carbohydrate tolerance associated with arterial hypertension, patients with arterial hypertension, and healthy volunteers. We evaluated the levels of matrix metalloproteinases 2 and 9 (MMP-2, MMP-9), tissue inhibitor of metalloproteinase type 1 (TIMP-1), glucose, insulin, C-peptide, glycated hemoglobin, and spontaneous and mitogen-activated cytokine secretion (IL-2, IL4, IL-6, IL-10, IL-17, TNF-α, and IFN-γ). Patients with type 2 diabetes mellitus in combination with arterial hypertension exhibited maximum TIMP-1 levels and TIMP-1/MMP-2, TIMP-1/ MMP-9 ratios as well as enhanced secretion of TNF-α, IL-6, IL-17 and reduced secretion of IL-10 in comparison with healthy individuals. The observed shifts are probably determined the development of systemic hyperinsulinemia in patients suffering from type 2 diabetes mellitus coupled with arterial hypertension.
Dekita, Masato; Wu, Zhou; Ni, Junjun; Zhang, Xinwen; Liu, Yicong; Yan, Xu; Nakanishi, Hiroshi; Takahashi, Ichiro
2017-01-01
Positive links have been found between periodontitis and numerous diseases in humans via persistent inflammation throughout the body. However, the main factors responsible for maintaining this pro-inflammatory condition are poorly understood. The spleen, the largest secondary immune organ, is a central hub regulating the immune response/inflammation due to the dendritic cell (DC) response to CD4 + T cell subtype differentiation, and lysosomal proteinase cathepsin S (CatS) is known to be involved in DC functions. In the present study, we found that CatS-induced IL-6 production by splenic DCs subsequently promotes Th17 differentiation, in response to systemic exposure to lipopolysaccharide derived from Porphyromonas gingivalis (PgLPS). The population of CD11c + DCs was significantly increased in the splenic marginal zone (MZ) locally of wild-type (DBA/2) mice with splenomegaly but not in that of CatS deficient ( CatS -/- ) mice after systemic exposure to PgLPS for 7 consecutive days (5 mg/kg/day, intraperitoneal). Similarly, the population of Th17 + CD4 + T cells was also significantly increased in the splenic MZ of wild-type mice but not in that of CatS -/- mice after PgLPS exposure. Furthermore, the increase in the Th17 + CD4 + T cell population paralleled increases in the levels of CatS and IL-6 in CD11c + cells in the splenic MZ. In isolated primary splenic CD11c + cells, the mRNA expression and the production of IL-6 was dramatically increased in wild-type mice but not in CatS - /- mice after direct stimulation with PgLPS (1 μg/ml), and this PgLPS-induced increase in the IL-6 expression was completely abolished by pre-treatment with Z-Phe-Leu-COCHO (Z-FL), the specific inhibitor of CatS. The PgLPS activated protease-activated receptor (PAR) 2 in the isolated splenic CD11c + cells was also significantly inhibited by CatS deficiently. In addition, the PgLPS - induced increase in the IL-6 production by splenic CD11c + cells was completely abolished by pre-treatment with FSLLRY-NH 2 , a PAR2 antagonist, as well as Akti, a specific inhibitor of Akt. These findings indicate that CatS plays a critical role in driving splenic DC-dependent Th17 differentiation through the upregulation of IL-6 by activating PAR2 after exposure to components of periodontal bacteria. Therefore, CatS-specific inhibitors may be effective in alleviating periodontitis-related immune/inflammation.
Qi, Jianying; Ye, Xianlong; Ren, Guiping; Kan, Fangming; Zhang, Yu; Guo, Mo; Zhang, Zhiyi; Li, Deshan
2014-02-01
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease that mainly causes the synovial joint inflammation and cartilage destruction. Interleukin-1β (IL-1β) is an important proinflammatory cytokine involved in the pathogenesis of RA. In this study, we constructed and expressed anti-IL-1β-full-length antibody in CHO-K1-SV, anti-IL-1β-Fab and anti-IL-1β-scFv in Rosetta. We compared the therapeutic efficacy of three anti-IL-1β antibodies for CIA mice. Mice with CIA were subcutaneously injected with humanized anti-IL-1β-scFv, anti-IL-1β-Fab or anti-IL-1β-full-length antibody. The effects of treatment were determined by arthritis severity score, autoreactive humoral, cellular immune responses, histological lesion and cytokines production. Compared with anti-IL-1β-scFv treatments, anti-IL-1β-Fab and anti-IL-1β-full-length antibody therapy resulted in more significant effect in alleviating the severity of arthritis by preventing bone damage and cartilage destruction, reducing humoral and cellular immune responses, and down-regulating the expression of IL-1β, IL-6, IL-2, IFN-γ, TNF-α and MMP-3 in inflammatory tissue. The therapeutic effects of anti-IL-1β-Fab and anti-IL-1β-full-length antibodies on CIA mice had no significant difference. However, production of anti-IL-1β-full-length antibody in eukaryotic system is, in general, time-consuming and more expensive than that of anti-IL-1β-Fab in prokaryotic systems. In conclusion, as a small molecule antibody, anti-IL-1β-Fab is an ideal candidate for RA therapy. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zhou, Jie; Zhang, Chao; Pan, Jun; Chen, Ligang; Qi, Song-Tao
2017-01-01
Total resection of adamantinomatous craniopharyngioma (ACP) is complex and often leads to postoperative recurrence. This is due to the tendency of the tumor to invade the surrounding brain tissue and the generation of a local inflammatory state between the tumor cells and parenchyma. While there is evidence to suggest that interleukin-6 (IL-6) induces craniopharyngioma (CP)-associated inflammation, particularly in ACP, the role of IL-6 in the progression of ACP remains unclear. The results of the present study demonstrated that CP inflammation was associated with pathological classification, extent of surgery, degree of calcification and postoperative hypothalamic status scale. Cytokine antibody arrays were conducted to measure the expression of IL-6 and other inflammatory factors in tumor tissues in response to various levels of inflammatory exposure. IL-6, IL-6 receptor (IL-6R) and glycoprotein 130 expression was detected by immunohistochemistry. In addition, an ELISA was performed to quantify the levels of soluble IL-6R (sIL-6R) in the cystic fluid and supernatants of ACP cells and tumor-associated fibroblasts. These measurements demonstrated that ACP cells produce IL-6 and its associated proteins. In addition, the results revealed that while the viability of ACP cells was not affected, the migration of ACP cells was promoted by IL-6 treatment in a concentration-dependent manner. Conversely, treatment with an IL-6-blocking monoclonal antibody significantly decreased the migration of ACP cells. In addition, IL-6 treatment increased the expression of vimentin and decreased the expression of E-cadherin in a dose-dependent manner. The findings of the present study demonstrate that IL-6 may promote migration in vitro via the classic- and trans-signaling pathways by inducing epithelial-mesenchymal transition in ACP cell cultures. PMID:28487953
Yang, G-X; Sun, Y; Tsuneyama, K; Zhang, W; Leung, P S C; He, X-S; Ansari, A A; Bowlus, C; Ridgway, W M; Gershwin, M E
2016-08-01
During chronic inflammation, interleukin (IL)-22 expression is up-regulated in both CD4 and CD8 T cells, exerting a protective role in infections. However, in autoimmunity, IL-22 appears to have either a protective or a pathogenic role in a variety of murine models of autoimmunity and, by extrapolation, in humans. It is not clear whether IL-22 itself mediates inflammation or is a by-product of inflammation. We have taken advantage of the dominant negative form of transforming growth factor beta receptor type II (dnTGF-βRII) mice that develop both inflammatory bowel disease and autoimmune cholangitis and studied the role and the biological function of IL-22 by generating IL-22(-/-) dnTGF-βRII mice. Our data suggest that the influence of IL-22 on autoimmunity is determined in part by the local microenvironment. In particular, IL-22 deficiency exacerbates tissue injury in inflammatory bowel disease, but has no influence on either the hepatocytes or cholangiocytes in the same model. These data take on particular significance in the previously defined effects of IL-17A, IL-12p40 and IL-23p19 deficiency and emphasize that, in colitis, there is a dominant role of IL-23/T helper type 17 (Th17) signalling. Furthermore, the levels of IL-22 are IL-23-dependent. The use of cytokine therapy in patients with autoimmune disease has significant potential, but must take into account the overlapping and often promiscuous effects that can theoretically exacerbate inflammation. © 2016 British Society for Immunology.
Hodes, Georgia E; Pfau, Madeline L; Leboeuf, Marylene; Golden, Sam A; Christoffel, Daniel J; Bregman, Dana; Rebusi, Nicole; Heshmati, Mitra; Aleyasin, Hossein; Warren, Brandon L; Lebonté, Benoit; Horn, Sarah; Lapidus, Kyle A; Stelzhammer, Viktoria; Wong, Erik H F; Bahn, Sabine; Krishnan, Vaishnav; Bolaños-Guzman, Carlos A; Murrough, James W; Merad, Miriam; Russo, Scott J
2014-11-11
Depression and anxiety disorders are associated with increased release of peripheral cytokines; however, their functional relevance remains unknown. Using a social stress model in mice, we find preexisting individual differences in the sensitivity of the peripheral immune system that predict and promote vulnerability to social stress. Cytokine profiles were obtained 20 min after the first social stress exposure. Of the cytokines regulated by stress, IL-6 was most highly up-regulated only in mice that ultimately developed a susceptible behavioral phenotype following a subsequent chronic stress, and levels remained elevated for at least 1 mo. We confirmed a similar elevation of serum IL-6 in two separate cohorts of patients with treatment-resistant major depressive disorder. Before any physical contact in mice, we observed individual differences in IL-6 levels from ex vivo stimulated leukocytes that predict susceptibility versus resilience to a subsequent stressor. To shift the sensitivity of the peripheral immune system to a pro- or antidepressant state, bone marrow (BM) chimeras were generated by transplanting hematopoietic progenitor cells from stress-susceptible mice releasing high IL-6 or from IL-6 knockout (IL-6(-/-)) mice. Stress-susceptible BM chimeras exhibited increased social avoidance behavior after exposure to either subthreshold repeated social defeat stress (RSDS) or a purely emotional stressor termed witness defeat. IL-6(-/-) BM chimeric and IL-6(-/-) mice, as well as those treated with a systemic IL-6 monoclonal antibody, were resilient to social stress. These data establish that preexisting differences in stress-responsive IL-6 release from BM-derived leukocytes functionally contribute to social stress-induced behavioral abnormalities.
Curra, Marina; Martins, Marco Antonio T; Lauxen, Isabel S; Pellicioli, Ana Carolina A; Sant'Ana Filho, Manoel; Pavesi, Vanessa Christina S; Carrard, Vinicius C; Martins, Manoela D
2013-02-01
The aim of the present study was to evaluate the effect of topical chamomile and corticosteroid treatment on the profile of tissue cytokines (IL-1β and TNF-α) in 5-fluorouracil-induced oral mucositis in hamsters. Thirty-six hamsters were randomly separated into three groups (12 animals each): Group I--without treatment (control); Group II-treatment with chamomile (Ad-Muc(®)); and Group III--treatment with corticosteroid (betamethasone elixir- Celestone(®)). The animals received an intraperitoneal injection of 5--fluorouracil on Days 0 and 2. On Days 3 and 4, the buccal mucosa was scratched and therapy was initiated on Day 5. Three animals from each group were killed on Days 0, 5, 10, and 14 and the buccal mucosa was removed. The streptavidin-biotin complex method was used to delineate the in situ distribution, localization, and semiquantitative analysis of IL-1β and TNF-α. Data from the semiquantitative analysis of immunohistochemical staining were comparatively analyzed using the Kruskal-Wallis test, followed by Dunn's multiple comparisons test. The distribution and localization of IL-1β and TNF-α immunolabeling were similar. These proteins exhibited a diffuse pattern distributed throughout the connective tissue. The epithelium and adipose tissue were negative for both proteins. The semiquantitative analysis revealed that immunolabeling of IL-1β and TNF-α increased in all groups with the development of mucositis. On Day 10 (period of peak mucositis), the group treated with chamomile had lower scores for both pro-inflammatory cytokines. Treatment with topical chamomile reduced the tissue levels of IL-1β and TNF-α, thereby demonstrating anti-inflammatory action in oral mucositis in hamsters.
Ghosh, Sayan; Mukherjee, Sudeshna; Choudhury, Sreetama; Gupta, Payal; Adhikary, Arghya; Baral, Rathindranath; Chattopadhyay, Sreya
2015-07-01
Macrophages are projected as one of the key players responsible for the progression of cancer. Classically activated (M1) macrophages are pro-inflammatory and have a central role in host defense, while alternatively activated (M2) macrophages are associated with immunosuppression. Macrophages residing at the site of neoplastic growth are alternately activated and are referred to as tumor-associated macrophages (TAMs). These "cooperate" with tumor tissue, promoting increased proliferation and immune escape. Selective serotonin reuptake inhibitors like fluoxetine have recently been reported to possess anti-inflammatory activity. We used fluoxetine to target tumor-associated inflammation and consequent alternate polarization of macrophages. We established that murine peritoneal macrophages progressed towards an altered activation state when exposed to cell-free tumor fluid, as evidenced by increased IL-6, IL-4 and IL-10 levels. These polarized macrophages showed significant pro-oxidant bias and increased p65 nuclear localization. It was further observed that these altered macrophages could induce oxidative insult and apoptosis in cultured mouse CD3(+) T cells. To validate these findings, we replicated key experiments in vivo, and observed that there was increased serum IL-6, IL-4 and IL-10 in tumor-bearing animals, with increased % CD206(+) cells within the tumor niche. TAMs showed increased nuclear localization of p65 with decreased Nrf2 expression in the nucleus. These results were associated with increase in apoptosis of CD3(+) T cells co-cultured with TAM-spent media. We could establish that fluoxetine treatment could specifically re-educate the macrophages both in vitro and in vivo by skewing their phenotype such that immune suppression mediated by tumor-dictated macrophages was successfully mitigated. Copyright © 2015 Elsevier Inc. All rights reserved.
Involvement of Fas/FasL pathway in the murine model of atopic dermatitis.
Bień, Karolina; Żmigrodzka, Magdalena; Orłowski, Piotr; Fruba, Aleksandra; Szymański, Łukasz; Stankiewicz, Wanda; Nowak, Zuzanna; Malewski, Tadeusz; Krzyżowska, Małgorzata
2017-08-01
The aim of this study was to elucidate the role of apoptosis mediated through Fas/FasL pathway using the mouse model of atopic dermatitis (AD). AD was induced by epicutaneous application of ovalbumin (OVA) in wild-type C57BL/6, B6. MRL-Faslpr/J (Fas-) and B6Smn.C3-Faslgld/J (FasL-) mouse strains. Skin samples were subjected to staining for Fas/FasL expression, M30 epitope and assessment of inflammatory response via immunohistochemical staining. Cytokine and chemokine production was assessed by real-time PCR. In comparison to wild-type mice, OVA sensitization of Fas- and FasL-deficient mice led to increased epidermal and dermal thickness, collagen deposition and local inflammation consisting of macrophages, neutrophils and CD4+ T cells. Fas- and FasL-deficient mice showed increased total counts of regulatory T cells (Tregs) and IgE levels in blood as well as increased expression of IL-1β, IL-4, IL-5, IL-13 and TGF-1β mRNA in comparison to wild-type mice. On the other hand, expression of CXCL9 and CXCL10, IL-17 mRNAs in the skin samples in Fas- and FasL-deficient mice was decreased. Our results show that lack of the Fas-induced apoptosis leads to exacerbation of AD characteristics such as Th2 inflammation and dermal thickening. Therefore, Fas receptor can play an important role in AD pathogenesis by controlling development of the local inflammation.
Smith, Tracey J; Wilson, Marques A; Karl, J Philip; Orr, Jeb; Smith, Carl D; Cooper, Adam D; Heaton, Kristin J; Young, Andrew J; Montain, Scott J
2018-01-01
Systemic immune function is impaired by sleep restriction. However, the impact of sleep restriction on local immune responses and to what extent any impairment can be mitigated by nutritional supplementation is unknown. We assessed the effect of 72-h sleep restriction (2-h nightly sleep) on local immune function and skin barrier restoration of an experimental wound, and determined the influence of habitual protein intake (1.5 g·kg -1 ·day -1 ) supplemented with arginine, glutamine, zinc sulfate, vitamin C, vitamin D3, and omega-3 fatty acids compared with lower protein intake (0.8 g·kg -1 ·day -1 ) without supplemental nutrients on these outcomes. Wounds were created in healthy adults by removing the top layer of less than or equal to eight forearm blisters induced via suction, after adequate sleep (AS) or 48 h of a 72-h sleep restriction period (SR; 2-h nightly sleep). A subset of participants undergoing sleep restriction received supplemental nutrients during and after sleep restriction (SR+). Wound fluid was serially sampled 48 h postblistering to assess local cytokine responses. The IL-8 response of wound fluid was higher for AS compared with SR [area-under-the-curve (log 10 ), 5.1 ± 0.2 and 4.9 ± 0.2 pg/ml, respectively; P = 0.03]; and both IL-6 and IL-8 concentrations were higher for SR+ compared with SR ( P < 0.0001), suggestive of a potentially enhanced early wound healing response. Skin barrier recovery was shorter for AS (4.2 ± 0.9 days) compared with SR (5.0 ± 0.9 days) ( P = 0.02) but did not differ between SR and SR+ ( P = 0.18). Relatively modest sleep disruption delays wound healing. Supplemental nutrition may mitigate some decrements in local immune responses, without detectable effects on wound healing rate. NEW & NOTEWORTHY The data herein characterizes immune function in response to sleep restriction in healthy volunteers with and without nutrition supplementation. We used a unique skin wound model to show that sleep restriction delays skin barrier recovery, and nutrition supplementation attenuates decrements in local immune responses produced by sleep restriction. These findings support the beneficial effects of adequate sleep on immune function. Additional studies are necessary to characterize practical implications for populations where sleep restriction is unavoidable.
Conti, Heather R.; Whibley, Natasha; Coleman, Bianca M.; Garg, Abhishek V.; Jaycox, Jillian R.; Gaffen, Sarah L.
2015-01-01
Candida albicans is a commensal fungal microbe of the human orogastrointestinal tract and skin. C. albicans causes multiple forms of disease in immunocompromised patients, including oral, vaginal, dermal and disseminated candidiasis. The cytokine IL-17 (IL-17A) and its receptor subunits, IL-17RA and IL-17RC, are required for protection to most forms of candidiasis. The importance of the IL-17R pathway has been observed not only in knockout mouse models, but also in humans with rare genetic mutations that impact generation of Th17 cells or the IL-17 signaling pathway, including Hyper-IgE Syndrome (STAT3 or TYK2 mutations) or IL17RA or ACT1 gene deficiency. The IL-17 family of cytokines is a distinct subclass of cytokines with unique structural and signaling properties. IL-17A is the best-characterized member of the IL-17 family to date, but far less is known about other IL-17-related cytokines. In this study, we sought to determine the role of a related IL-17 cytokine, IL-17C, in protection against oral, dermal and disseminated forms of C. albicans infection. IL-17C signals through a heterodimeric receptor composed of the IL-17RA and IL-17RE subunits. We observed that IL-17C mRNA was induced following oral C. albicans infection. However, mice lacking IL-17C or IL-17RE cleared C. albicans infections in the oral mucosa, skin and bloodstream at rates similar to WT littermate controls. Moreover, these mice demonstrated similar gene transcription profiles and recovery kinetics as WT animals. These findings indicate that IL-17C and IL-17RE are dispensable for immunity to the forms of candidiasis evaluated, and illustrate a surprisingly limited specificity of the IL-17 family of cytokines with respect to systemic, oral and cutaneous Candida infections. PMID:25849644
Conti, Heather R; Whibley, Natasha; Coleman, Bianca M; Garg, Abhishek V; Jaycox, Jillian R; Gaffen, Sarah L
2015-01-01
Candida albicans is a commensal fungal microbe of the human orogastrointestinal tract and skin. C. albicans causes multiple forms of disease in immunocompromised patients, including oral, vaginal, dermal and disseminated candidiasis. The cytokine IL-17 (IL-17A) and its receptor subunits, IL-17RA and IL-17RC, are required for protection to most forms of candidiasis. The importance of the IL-17R pathway has been observed not only in knockout mouse models, but also in humans with rare genetic mutations that impact generation of Th17 cells or the IL-17 signaling pathway, including Hyper-IgE Syndrome (STAT3 or TYK2 mutations) or IL17RA or ACT1 gene deficiency. The IL-17 family of cytokines is a distinct subclass of cytokines with unique structural and signaling properties. IL-17A is the best-characterized member of the IL-17 family to date, but far less is known about other IL-17-related cytokines. In this study, we sought to determine the role of a related IL-17 cytokine, IL-17C, in protection against oral, dermal and disseminated forms of C. albicans infection. IL-17C signals through a heterodimeric receptor composed of the IL-17RA and IL-17RE subunits. We observed that IL-17C mRNA was induced following oral C. albicans infection. However, mice lacking IL-17C or IL-17RE cleared C. albicans infections in the oral mucosa, skin and bloodstream at rates similar to WT littermate controls. Moreover, these mice demonstrated similar gene transcription profiles and recovery kinetics as WT animals. These findings indicate that IL-17C and IL-17RE are dispensable for immunity to the forms of candidiasis evaluated, and illustrate a surprisingly limited specificity of the IL-17 family of cytokines with respect to systemic, oral and cutaneous Candida infections.
Eski, Muhitdin; Sahin, Ismail; Sengezer, Mustafa; Serdar, Muhittin; Ifran, Ahmet
2008-02-01
TNF and IL-1, which are produced from phagocytic cells, can produce a significant systemic inflammatory response independently by inducing systemic leukocyte and endothelial cell activation. These cytokines play a pivotal role in development of systemic inflammatory response after severe burn. Thalidomide has been shown to decrease the secretion of TNF from phagocytic cells, therefore suppression of TNF and IL-1 production from activated phagocytic cells might be a successful treatment modality for prevention of systemic inflammatory response following severe burn. To address this issue, we aimed to show whether thalidomide treatment decreased or suppressed plasma levels of TNF and IL-1 following burn in rats. Following the injury, 36 rats were randomly separated into two experimental groups at the third and seventh days. Rats in the experimental group had oral thalidomide (10mg/kg day) treatment for three and seven consecutive days whereas animals in control groups had no treatment. Thalidomide treatment decreased TNF and IL-1 significantly in both experimental groups at both the points (P<0.05). Although in this study we just showed inhibitory effect of thalidomide on plasma the level of TNF and IL-1, we speculate that thalidomide may have modulatory effect on the systemic inflammatory response after burn by decreasing plasma levels of TNF and IL-1.
Kopf, Manfred; Herren, Suzanne; Wiles, Michael V.; Pepys, Mark B.; Kosco-Vilbois, Marie H.
1998-01-01
Mice rendered deficient for interleukin (IL) 6 by gene targeting were evaluated for their response to T cell–dependent antigens. Antigen-specific immunoglobulin (Ig)M levels were unaffected whereas all IgG isotypes showed varying degrees of alteration. Germinal center reactions occurred but remained physically smaller in comparison to those in the wild-type mice. This concurred with the observations that molecules involved in initial signaling events leading to germinal center formation were not altered (e.g., B7.2, CD40 and tumor necrosis factor R1). T cell priming was not impaired nor was a gross imbalance of T helper cell (Th) 1 versus Th2 cytokines observed. However, B7.1 molecules, absent from wild-type counterparts, were detected on germinal center B cells isolated from the deficient mice suggesting a modification of costimulatory signaling. A second alteration involved impaired de novo synthesis of C3 both in serum and germinal center cells from IL-6–deficient mice. Indeed, C3 provided an essential stimulatory signal for wild-type germinal center cells as both monoclonal antibodies that interrupted C3-CD21 interactions and sheep anti–mouse C3 antibodies caused a significant decrease in antigen-specific antibody production. In addition, germinal center cells isolated from C3–deficient mice produced a similar defect in isotype production. Low density cells with dendritic morphology were the local source of IL-6 and not the germinal center lymphocytes. Adding IL-6 in vitro to IL-6–deficient germinal center cells stimulated cell cycle progression and increased levels of antibody production. These findings reveal that the germinal center produces and uses molecules of the innate immune system, evolutionarily pirating them in order to optimally generate high affinity antibody responses. PMID:9815267
Beringer, A; Thiam, N; Molle, J; Bartosch, B; Miossec, P
2018-04-20
The proinflammatory cytokines interleukin (IL)-17 and tumour necrosis factor (TNF)-α are targets for treatment in many chronic inflammatory diseases. Here, we examined their role in liver inflammatory response compared to that of IL-6. Human hepatoma cells (HepaRG, Huh7.5 and HepG2 cells) and primary human hepatocytes (PHH) were cultured with IL-6, IL-17 and/or TNF-α. To determine the contribution of the IL-6 pathway in the IL-17/TNF-α-mediated effect, an anti-IL-6 receptor antibody was used. IL-17 and TNF-α increased in synergy IL-6 secretion by HepaRG cells and PHH but not by Huh7.5 and HepG2 cells. This IL-17/TNF-α synergistic cooperation enhanced the levels of C-reactive protein (CRP) and aspartate aminotransferase (ASAT) in HepaRG cell and PHH cultures through the induction of IL-6. IL-17/TNF-α also up-regulated IL-8, monocyte chemoattractant protein (MCP)-1 and chemokine (C-C motif) ligand 20 (CCL20) chemokines in synergy through an IL-6-independent pathway. Interestingly, first exposure to IL-17, but not to TNF-α, was crucial for the initiation of the IL-17/TNF-α synergistic effect on IL-6 and IL-8 production. In HepaRG cells, IL-17 enhanced IL-6 mRNA stability resulting in increased IL-6 protein levels. The IL-17A/TNF-α synergistic effect on IL-6 and IL-8 induction was mediated through the activation of extracellular signal-regulated kinase (ERK)-mitogen-activated protein kinase, nuclear factor-κB and/or protein kinase B (Akt)-phosphatidylinositol 3-kinase signalling pathways. Therefore, the IL-17/TNF-α synergistic interaction mediates systemic inflammation and cell damage in hepatocytes mainly through IL-6 for CRP and ASAT induction. Independently of IL-6, the IL-17A/TNF-α combination may also induce immune cell recruitment by chemokine up-regulation. IL-17 and/or TNF-α neutralization can be a promising therapeutic strategy to control both systemic inflammation and liver cell attraction. © 2018 British Society for Immunology.
IL-22 Is Essential for Lung Epithelial Repair following Influenza Infection
Pociask, Derek A.; Scheller, Erich V.; Mandalapu, Sivanarayana; McHugh, Kevin J.; Enelow, Richard I.; Fattman, Cheryl L.; Kolls, Jay K.; Alcorn, John F.
2014-01-01
Influenza infection is widespread in the United States and the world. Despite low mortality rates due to infection, morbidity is common and little is known about the molecular events involved in recovery. Influenza infection results in persistent distal lung remodeling, and the mechanism(s) involved are poorly understood. Recently IL-22 has been found to mediate epithelial repair. We propose that IL-22 is critical for recovery of normal lung function and architecture after influenza infection. Wild-type and IL-22−/− mice were infected with influenza A PR8/34 H1N1 and were followed up for up to 21 days post infection. IL-22 receptor was localized to the airway epithelium in naive mice but was expressed at the sites of parenchymal lung remodeling induced by influenza infection. IL-22−/− mice displayed exacerbated lung injury compared with wild-type mice, which correlated with decreased lung function 21 days post infection. Epithelial metaplasia was observed in wild-type mice but was not evident in IL-22−/− animals that were characterized with an increased fibrotic phenotype. Gene expression analysis revealed aberrant expression of epithelial genes involved in repair processes, among changes in several other biological processes. These data indicate that IL-22 is required for normal lung repair after influenza infection. IL-22 represents a novel pathway involved in interstitial lung disease. PMID:23490254
Shinoda, Kenta; Hirahara, Kiyoshi; Iinuma, Tomohisa; Ichikawa, Tomomi; Suzuki, Akane S.; Sugaya, Kaoru; Tumes, Damon J.; Yamamoto, Heizaburo; Hara, Takahiro; Tani-ichi, Shizue; Ikuta, Koichi; Okamoto, Yoshitaka; Nakayama, Toshinori
2016-01-01
Memory CD4+ T helper (Th) cells are central to long-term protection against pathogens, but they can also be pathogenic and drive chronic inflammatory disorders. How these pathogenic memory Th cells are maintained, particularly at sites of local inflammation, remains unclear. We found that ectopic lymphoid-like structures called inducible bronchus-associated lymphoid tissue (iBALT) are formed during chronic allergic inflammation in the lung, and that memory-type pathogenic Th2 (Tpath2) cells capable of driving allergic inflammation are maintained within the iBALT structures. The maintenance of memory Th2 cells within iBALT is supported by Thy1+IL-7–producing lymphatic endothelial cells (LECs). The Thy1+IL-7–producing LECs express IL-33 and T-cell–attracting chemokines CCL21 and CCL19. Moreover, ectopic lymphoid structures consisting of memory CD4+ T cells and IL-7+IL-33+ LECs were found in nasal polyps of patients with eosinophilic chronic rhinosinusitis. Thus, Thy1+IL-7–producing LECs control chronic allergic airway inflammation by providing a survival niche for memory-type Tpath2 cells. PMID:27140620
The role of cytokines in a Porphyromonas gingivalis-induced murine abscess model.
Alayan, J; Gemmell, E; Ford, P; Hamlet, S; Bird, P S; Ivanovski, S; Farah, C S
2007-10-01
Porphyromonas gingivalis is an important periodontopathic bacterium that is strongly associated with periodontal disease and is part of human dental plaque. Periodontal disease results from the interaction of the host with bacterial products, and T-cell-derived cytokines remain critical in the immunoregulation of periodontal disease. The aim of this study was to examine the role of T helper type 1 [interleukin-12p40 (IL-12p40), interferon-gamma, tumour necrosis factor (TNF)] and type 2 (IL-4, IL-10) cytokines in the immune response to a subcutaneous challenge with P. gingivalis using a well-established murine abscess model, in genetically modified cytokine-specific knockout mice. IL-12p40(-/-) mice exhibited more advanced tissue destruction and a reduced inflammatory cell infiltrate after subcutaneous P. gingivalis challenge. Deficiency of IL-4 or IL-10 did not result in increased susceptibility to P. gingivalis-mediated tissue destruction. Furthermore, TNF deficiency appeared to reduce local tissue destruction. Interestingly, serum-specific antibodies suggested a strong T helper type 2 response. The results of our study indicate an important role for IL-12 in a primary P. gingivalis subcutaneous challenge.
Zhang, Yan-Ling; Xu, Jun-Mei; Zhou, Pei; Zhong, Xiao-Lin; Dai, Ru-Ping
2012-06-01
In a previous study, we showed that a deep thoracic incision induces the segmental upregulation of interleukin-1β (IL-1β) in the spinal cord. However, whether the cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) are also activated in response to surgical incision remains to be determined. The present study aimed to investigate the expression pattern of TNF-α and IL-6 in the spinal cord following a deep thoracic incision. After surgical incision, the mRNA levels of TNF-α and IL-6 in the thoracic spinal cord were transiently upregulated as determined by real-time polymerase chain reaction (PCR) assay. However, the activation of IL-6 was detected at 1 h postoperatively, which was earlier compared to that of TNF-α, observed at 6 h postoperatively. The activated TNF-α was mainly localized in the neurons, but not in microglia or astrocytes as determined by immunohistochemistry and confocal microscopy. However, the increased IL-6-immunoreactivity was mainly expressed in blood vessels. The differential upregulation of TNF-α and IL-6 induced by incision suggests that the proinflammatory cytokines may play different roles in the development of surgical pain.
Astrocytic IL-6 Influences the Clinical Symptoms of EAE in Mice.
Erta, Maria; Giralt, Mercedes; Jiménez, Silvia; Molinero, Amalia; Comes, Gemma; Hidalgo, Juan
2016-05-17
Interleukin-6 (IL-6) is a multifunctional cytokine that not only plays major roles in the immune system, but also serves as a coordinator between the nervous and endocrine systems. IL-6 is produced in multiple cell types in the CNS, and in turn, many cells respond to it. It is therefore important to ascertain which cell type is the key responder to IL-6 during both physiological and pathological conditions. In order to test the role of astrocytic IL-6 in neuroinflammation, we studied an extensively-used animal model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), in mice with an IL-6 deficiency in astrocytes (Ast-IL-6 KO). Results indicate that lack of astrocytic IL-6 did not cause major changes in EAE symptomatology. However, a delay in the onset of clinical signs was observed in Ast-IL-6 KO females, with fewer inflammatory infiltrates and decreased demyelination and some alterations in gliosis and vasogenesis, compared to floxed mice. These results suggest that astrocyte-secreted IL-6 has some roles in EAE pathogenesis, at least in females.
Evolutionary divergence and functions of the human interleukin (IL) gene family
2010-01-01
Cytokines play a very important role in nearly all aspects of inflammation and immunity. The term 'interleukin' (IL) has been used to describe a group of cytokines with complex immunomodulatory functions -- including cell proliferation, maturation, migration and adhesion. These cytokines also play an important role in immune cell differentiation and activation. Determining the exact function of a particular cytokine is complicated by the influence of the producing cell type, the responding cell type and the phase of the immune response. ILs can also have pro- and anti-inflammatory effects, further complicating their characterisation. These molecules are under constant pressure to evolve due to continual competition between the host's immune system and infecting organisms; as such, ILs have undergone significant evolution. This has resulted in little amino acid conservation between orthologous proteins, which further complicates the gene family organisation. Within the literature there are a number of overlapping nomenclature and classification systems derived from biological function, receptor-binding properties and originating cell type. Determining evolutionary relationships between ILs therefore can be confusing. More recently, crystallographic data and the identification of common structural motifs have led to a more accurate classification system. To date, the known ILs can be divided into four major groups based on distinguishing structural features. These groups include the genes encoding the IL1-like cytokines, the class I helical cytokines (IL4-like, γ-chain and IL6/12-like), the class II helical cytokines (IL10-like and IL28-like) and the IL17-like cytokines. In addition, there are a number of ILs that do not fit into any of the above groups, due either to their unique structural features or lack of structural information. This suggests that the gene family organisation may be subject to further change in the near future. PMID:21106488
Caracterisation pratique des systemes quantiques et memoires quantiques auto-correctrices 2D
NASA Astrophysics Data System (ADS)
Landon-Cardinal, Olivier
Cette these s'attaque a deux problemes majeurs de l'information quantique: - Comment caracteriser efficacement un systeme quantique? - Comment stocker de l'information quantique? Elle se divise done en deux parties distinctes reliees par des elements techniques communs. Chacune est toutefois d'un interet propre et se suffit a elle-meme. Caracterisation pratique des systemes quantiques. Le calcul quantique exige un tres grand controle des systemes quantiques composes de plusieurs particules, par exemple des atomes confines dans un piege electromagnetique ou des electrons dans un dispositif semi-conducteur. Caracteriser un tel systeme quantique consiste a obtenir de l'information sur l'etat grace a des mesures experimentales. Or, chaque mesure sur le systeme quantique le perturbe et doit done etre effectuee apres avoir reprepare le systeme de facon identique. L'information recherchee est ensuite reconstruite numeriquement a partir de l'ensemble des donnees experimentales. Les experiences effectuees jusqu'a present visaient a reconstruire l'etat quantique complet du systeme, en particulier pour demontrer la capacite de preparer des etats intriques, dans lesquels les particules presentent des correlations non-locales. Or, la procedure de tomographie utilisee actuellement n'est envisageable que pour des systemes composes d'un petit nombre de particules. Il est donc urgent de trouver des methodes de caracterisation pour les systemes de grande taille. Dans cette these, nous proposons deux approches theoriques plus ciblees afin de caracteriser un systeme quantique en n'utilisant qu'un effort experimental et numerique raisonnable. - La premiere consiste a estimer la distance entre l'etat realise en laboratoire et l'etat cible que l'experimentateur voulait preparer. Nous presentons un protocole, dit de certification, demandant moins de ressources que la tomographie et tres efficace pour plusieurs classes d'etats importantes pour l'informatique quantique. - La seconde approche, dite de tomographie variationnelle, propose de reconstruire l'etat en restreignant l'espace de recherche a une classe variationnelle plutot qu'a l'immense espace des etats possibles. Un etat variationnel etant decrit par un petit nombre de parametres, un petit nombre d'experiences peut suffire a identifier les parametres variationnels de l'etat experimental. Nous montrons que c'est le cas pour deux classes variationnelles tres utilisees, les etats a produits matriciels (MPS) et l'ansatz pour intrication multi-echelle (MERA). Memoires quantiques auto-correctrices 2D. Une memoire quantique auto-correctrice est un systeme physique preservant de l'information quantique durant une duree de temps macroscopique. Il serait done l'equivalent quantique d'un disque dur ou d'une memoire flash equipant les ordinateurs actuels. Disposer d'un tel dispositif serait d'un grand interet pour l'informatique quantique. Une memoire quantique auto-correctrice est initialisee en preparant un etat fondamental, c'est-a-dire un etat stationnaire de plus basse energie. Afin de stocker de l'information quantique, il faut plusieurs etats fondamentaux distincts, chacun correspondant a une valeur differente de la memoire. Plus precisement, l'espace fondamental doit etre degenere. Dans cette these, on s'interesse a des systemes de particules disposees sur un reseau bidimensionnel (2D), telles les pieces sur un echiquier, qui sont plus faciles a realiser que les systemes 3D. Nous identifions deux criteres pour l'auto-correction: - La memoire quantique doit etre stable face aux perturbations provenant de l'environnement, par exemple l'application d'un champ magnetique externe. Ceci nous amene a considerer les systemes topologiques 2D dont les degres de liberte sont intrinsequement robustes aux perturbations locales de l'environnement. - La memoire quantique doit etre robuste face a un environnement thermique. Il faut s'assurer que les excitations thermiques n'amenent pas deux etats fondamentaux distincts vers le meme etat excite, sinon l'information aura ete perdue. Notre resultat principal montre qu'aucun systeme topologique 2D n'est auto-correcteur: l'environnement peut changer l'etat fondamental en deplacant aleatoirement de petits paquets d'energie, un mecanisme coherent avec l'intuition que tout systeme topologique admet des excitations localisees ou quasiparticules. L'interet de ce resultat est double. D'une part, il oriente la recherche d'un systeme auto-correcteur en montrant qu'il doit soit (i) etre tridimensionnel, ce qui est difficile a realiser experimentalement, soit (ii) etre base sur des mecanismes de protection nouveaux, allant au-dela des considerations energetiques. D'autre part, ce resultat constitue un premier pas vers la demonstration formelle de l'existence de quasiparticules pour tout systeme topologique.
Thompson, Aaron M S; Zanobetti, Antonella; Silverman, Frances; Schwartz, Joel; Coull, Brent; Urch, Bruce; Speck, Mary; Brook, Jeffrey R; Manno, Michael; Gold, Diane R
2010-01-01
Systemic inflammation may be one of the mechanisms mediating the association between ambient air pollution and cardiovascular morbidity and mortality. Interleukin-6 (IL-6) and fibrinogen are biomarkers of systemic inflammation that are independent risk factors for cardio-vascular disease. We investigated the association between ambient air pollution and systemic inflammation using baseline measurements of IL-6 and fibrinogen from controlled human exposure studies. In this retrospective analysis we used repeated-measures data in 45 nonsmoking subjects. Hourly and daily moving averages were calculated for ozone, nitrogen dioxide, sulfur dioxide, and particulate matter
Impaired Cytokine Responses to Epstein-Barr Virus Antigens in Systemic Lupus Erythematosus Patients
Draborg, Anette Holck; Sandhu, Noreen; Larsen, Nanna; Lisander Larsen, Janni; Jacobsen, Søren; Houen, Gunnar
2016-01-01
We analyzed cytokine responses against latent and lytic Epstein-Barr virus (EBV) antigens in systemic lupus erythematosus (SLE) patients and healthy controls (HCs) to obtain an overview of the distinctive immune regulatory response in SLE patients and to expand the previously determined impaired EBV-directed T-cell response. The concentrations of 14 cytokines (IL2, IL4, IL5, IL6, IL10, IL12, IL17, IL18, IL1β, IFNγ, TNFα, TNFβ, TGFβ, and GM-CSF) were quantified upon stimulation of whole blood with latent state antigen EBNA1, lytic cycle antigen EBV-EA/D, and the superantigen SEB. To avoid results affected by lack of lymphocytes, we focused on SLE patients with normal levels. Decreased induction of IL12, IFNγ, IL17, and IL6 upon EBNA1 stimulation and that of IFNγ, IL6, TNFβ, IL1β, and GM-CSF upon EBV-EA/D stimulation were detected in SLE patients compared to HCs. IFNγ responses, especially, were shown to be reduced. Induction of several cytokines was furthermore impaired in SLE patients upon SEB stimulation, but no difference was observed in basic levels. Results substantiate the previously proposed impaired regulation of the immune response against latent and lytic cycle EBV infection in SLE patients without lymphopenia. Furthermore, results indicate general dysfunction of leukocytes and their cytokine regulations in SLE patients. PMID:27110576
Jung, Kyoung-Mi; Jang, Won-Hee; Lee, Yong-Kyoung; Yum, Young Na; Sohn, Soojung; Kim, Bae-Hwan; Chung, Jin-Ho; Park, Young-Ho; Lim, Kyung-Min
2012-03-25
Non-radioisotopic local lymph node assay (LLNA) using 5-bromo-2'-deoxyuridine (BrdU) with flow cytometry (FCM) is gaining attention since it is free from the regulatory issues in traditional LLNA (tLLNA) accompanying in vivo uses of radioisotope, (3)H-thymidine. However, there is also concern over compromised performance of non-radioisotopic LLNA, raising needs for additional endpoints to improve the accuracy. With the full 22 reference substances enlisted in OECD Test Guideline No. 429, we evaluated the performance of LLNA:BrdU-FCM along with the concomitant measurements of B/T cell ratio and ex vivo cytokine production from isolated lymph node cells (LNCs) to examine the utility of these markers as secondary endpoints. Mice (Balb/c, female) were topically treated with substances on both ears for 3 days and then, BrdU was intraperitoneally injected on day 5. After a day, lymph nodes were isolated and undergone FCM to determine BrdU incorporation and B/T cell sub-typing with B220+ and CD3e+. Ex vivo cytokine production by LNCs was measured such as IL-2, IL-4, IL-6, IL-12, IFN-γ, MCP-1, GM-CSF and TNFα. Mice treated with sensitizers showed preferential increases in B cell population and the selective production of IL-2, which matched well with the increases in BrdU incorporation. When compared with guinea pig or human data, BrdU incorporation, B cell increase and IL-2 production ex vivo could successfully identify sensitizers with the accuracy comparable to tLLNA, suggesting that these markers may be useful for improving the accuracy of LLNA:BrdU-FCM or as stand-alone non-radioisotopic endpoints. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Evaluation of Silver Nanoparticle Toxicity in Skin in Vivo and Keratinocytes in Vitro
Samberg, Meghan E.; Oldenburg, Steven J.; Monteiro-Riviere, Nancy A.
2010-01-01
Introduction Products using the antimicrobial properties of silver nanoparticles (Ag-nps) may be found in health and consumer products that routinely contact skin. Objectives This study was designed to assess the potential cytotoxicity of Ag-nps in human epidermal keratinocytes (HEKs) and their inflammatory and penetrating potential into porcine skin in vivo. Materials and Methods We used eight different Ag-nps in this study [unwashed/uncoated (20, 50, and 80 nm particle diameter), washed/uncoated (20, 50, and 80 nm), and carbon-coated (25 and 35 nm)]. Skin was dosed topically for 14 consecutive days. HEK viability was assessed by MTT, alamarBlue (aB), and CellTiter 96 AQueous One (96AQ). Release of the proinflammatory mediators interleukin (IL)-1β, IL-6, IL-8, IL-10, and tumor necrosis factor-α (TNF-α) were measured. Results The effect of the unwashed Ag-nps on HEK viability after a 24-hr exposure indicated a significant dose-dependent decrease (p < 0.05) at 0.34 μg/mL with aB and 96AQ and at 1.7 μg/mL with MTT. However, both the washed Ag-nps and carbon-coated Ag-nps showed no significant decrease in viability at any concentration assessed by any of the three assays. For each of the unwashed Ag-nps, we noted a significant increase (p < 0.05) in IL-1β, IL-6, IL-8, and TNF-α concentrations. We observed localization of all Ag-nps in cytoplasmic vacuoles of HEKs. Macroscopic observations showed no gross irritation in porcine skin, whereas microscopic and ultrastructural observations showed areas of focal inflammation and localization of Ag-nps on the surface and in the upper stratum corneum layers of the skin. Conclusion This study provides a better understanding Ag-nps safety in vitro as well as in vivo and a basis for occupational and risk assessment. Ag-nps are nontoxic when dosed in washed Ag-nps solutions or carbon coated. PMID:20064793
Giles, James A; Greenhalgh, Andrew D; Davies, Claire L; Denes, Adam; Shaw, Tovah; Coutts, Graham; Rothwell, Nancy J; McColl, Barry W; Allan, Stuart M
2015-01-01
The immune system is implicated in a wide range of disorders affecting the brain and is, therefore, an attractive target for therapy. Interleukin-1 (IL-1) is a potent regulator of the innate immune system important for host defense but is also associated with injury and disease in the brain. Here, we show that IL-1 is a key mediator driving an innate immune response to inflammatory challenge in the mouse brain but is dispensable in extracerebral tissues including the lung and peritoneum. We also demonstrate that IL-1α is an important ligand contributing to the CNS dependence on IL-1 and that IL-1 derived from the CNS compartment (most likely microglia) is the major source driving this effect. These data reveal previously unknown tissue-specific requirements for IL-1 in driving innate immunity and suggest that IL-1-mediated inflammation in the brain could be selectively targeted without compromising systemic innate immune responses that are important for resistance to infection. This property could be exploited to mitigate injury- and disease-associated inflammation in the brain without increasing susceptibility to systemic infection, an important complication in several neurological disorders. PMID:25367678
Diana, Michele; Noll, Eric; Legnèr, Andras; Kong, Seong-Ho; Liu, Yu-Yin; Schiraldi, Luigi; Marchegiani, Francesco; Bano, Jordan; Geny, Bernard; Charles, Anne-Laure; Dallemagne, Bernard; Lindner, Véronique; Mutter, Didier; Diemunsch, Pierre; Marescaux, Jacques
2018-07-01
Standard insufflators compensate for intra-abdominal pressure variations with pressure spikes. Our aim was to evaluate the impact of a stable, low-pressure pneumoperitoneum induced by a valve-less insufflator, on working space, hemodynamics, inflammation, and peritoneal physiology, in a model of laparoscopic sigmoid resection. Twelve pigs (47 ± 3.3 kg) were equipped for invasive hemodynamic monitoring and randomly assigned to Standard (n = 6) vs. valve-less (n = 6) insufflation. Animals were positioned in a 30° Trendelenburg on a CT scan bed. A low-pressure pneumoperitoneum (8 mmHg) was started and duration was set for 180 min. Abdominal CT scans were performed, under neuromuscular blockade, before, immediately after, and 1 and 3 h after insufflation. Pneumoperitoneum volumes were calculated on 3D reconstructed CT scans. After creation of a mesenteric window, capillary blood was obtained by puncturing the sigmoid serosa and local lactatemia (mmol/L) was measured using a handheld analyzer. Surgical resection was performed according to the level of lactates, in order to standardize bowel stump perfusion. IL-1 and IL-6 (ng/mL) were measured repeatedly. The peritoneum was sampled close to the surgical site and distantly for the oxygraphic assessment of mitochondrial respiration. A pathologist applied a semi-quantitative score to evaluate the anastomosis. Mean arterial pressure, pulse, body temperature, oximetry, systemic lactatemia, and local lactates were similar. IL-6 was lower in the valve-less group, reaching a statistically significant difference after 3 h of insufflation (64.85 ± 32.5 vs. 133.95 ± 59.73; p = 0.038) and 48 h (77.53 ± 68.4 vs. 190.74 ± 140.79; p = 0.029). Peritoneal mitochondrial respiration was significantly increased after the survival period, with no difference among the groups. The anastomoses in the valve-less group demonstrated a lower acute (p = 0.04) inflammatory infiltration. The mean anterior posterior thickness was slightly, yet significantly higher in the valve-less group, on all post-insufflation CT scans. Valve-less insufflation achieved a slightly higher working space and a lower systemic and localized inflammatory response in this experimental setting.
Mizowaki, Takashi; Sasayama, Takashi; Tanaka, Kazuhiro; Mizukawa, Katsu; Takata, Kumi; Nakamizo, Satoshi; Tanaka, Hirotomo; Nagashima, Hiroaki; Nishihara, Masamitsu; Hirose, Takanori; Itoh, Tomoo; Kohmura, Eiji
2015-09-01
Signal transducers and activators of transcription 3 (STAT3) are activated by various cytokines and oncogenes; however, the activity and pathogenesis of STAT3 in diffuse large B cell lymphoma of the central nervous system have not been thoroughly elucidated. We investigated the phosphorylation levels of STAT3 in 40 specimens of primary central nervous system diffuse large B-cell lymphoma (PCNS DLBCL) and analyzed the association between phsopho-STAT3 (pSTAT3) expression and cerebrospinal fluid (CSF) concentration of interleukin-10 (IL-10) or IL-6. Immunohistochemistry and Western blot analysis revealed that most of the specimens in PCNS DLBCL expressed pSTST3 protein, and a strong phosphorylation levels of STAT3 was statistically associated with high CSF IL-10 levels, but not with CSF IL-6 levels. Next, we demonstrated that recombinant IL-10 and CSF containing IL-10 induced the phosphorylation of STAT3 in PCNS DLBCL cells. Furthermore, molecular subtype classified by Hans' algorithm was correlated with pSTAT3 expression levels and CSF IL-10 levels. These results suggest that the STAT3 activity is correlated with CSF IL-10 level, which is a useful marker for STAT3 activity in PCNS DLBCLs.
Ruiz, Elia; Ferro, Victor R; Palomar, Jose; Ortega, Juan; Rodriguez, Juan Jose
2013-06-20
The interactions between ionic liquids (ILs) and acetone have been studied to obtain a further understanding of the behavior of their mixtures, which generally give place to an exothermic process, mutual miscibility, and negative deviation of Raoult's law. COSMO-RS was used as a suitable computational method to systematically analyze the excess enthalpy of IL-acetone systems (>300), in terms of the intermolecular interactions contributing to the mixture behavior. Spectroscopic and COSMO-RS results indicated that acetone, as a polar compound with strong hydrogen bond acceptor character, in most cases, establishes favorable hydrogen bonding with ILs. This interaction is strengthened by the presence of an acidic cation and an anion with dispersed charge and non-HB acceptor character in the IL. COSMO-RS predictions indicated that gas-liquid and vapor-liquid equilibrium data for IL-acetone systems can be finely tuned by the IL selection, that is, acting on the intermolecular interactions between the molecular and ionic species in the liquid phase. NMR measurements for IL-acetone mixtures at different concentrations were also carried out. Quantum-chemical calculations by using molecular clusters of acetone and IL species were finally performed. These results provided additional evidence of the main role played by hydrogen bonding in the behavior of systems containing ILs and HB acceptor compounds, such as acetone.
Interleukin-12 plasmid DNA delivery using l-thyroxine-conjugated polyethylenimine nanocarriers
NASA Astrophysics Data System (ADS)
Dehshahri, Ali; Sadeghpour, Hossein; Kazemi Oskuee, Reza; Fadaei, Mahin; Sabahi, Zahra; Alhashemi, Samira Hossaini; Mohazabieh, Erfaneh
2014-05-01
In this study, l-thyroxine was covalently grafted on 25 kDa branched polyethylenimine (PEI), and the ability of the nano-sized polyplexes for transferring plasmid encoding interleukin-12 (IL-12) gene was evaluated. As there are several problems in systemic administration of recombinant IL-12 protein, local expression of the plasmid encoding IL-12 gene inside the tumor tissue has been considered as an effective alternative approach. The l-thyroxine-conjugated PEI polyplexes were prepared using pUMVC3-hIL12 plasmid, and their transfection activity was determined in HepG2 human liver carcinoma and Neuro2A neuroblastoma cell lines. The polyplexes characterized in terms of DNA condensation ability, particle size, zeta potential, and buffering capacity as well as cytotoxicity and resistance to enzyme digestion. The results revealed that l-thyroxine conjugation of PEI increased gene transfer ability by up to two fold relative to unmodified 25 kDa PEI, the gold standard for non-viral gene delivery, with the highest increase occurring at degrees of conjugation around 10 %. pDNA condensation tests and dynamic light scattering measurements exhibited the ability of PEI conjugates to optimally condense the plasmid DNA into polyplexes in the size range around 200 nm. The modified polymers showed remarkable buffering capacity and protection against enzymatic degradation comparable to that of unmodified PEI. These results suggest that l-thyroxine conjugation of PEI is a simple modification strategy for future investigations aimed at developing a targeting gene vehicle.
Necrotizing Enterocolitis is associated with Ureaplasma Colonization in Preterm Infants
Okogbule-Wonodi, Adora C.; Gross, George W.; Sun, Chen-Chih J.; Agthe, Alexander G.; Xiao, Li; Waites, Ken B.; Viscardi, Rose Marie
2014-01-01
The study objective was to determine whether Ureaplasma respiratory tract colonization of preterm infants <33 weeks gestation is associated with an increased risk for necrotizing enterocolitis (NEC). One or more tracheal or nasopharyngeal aspirates for Ureaplasma culture and PCR were obtained during the first week of life from 368 infants <33 weeks gestation enrolled from 1999-2003 or from 2007-2009. NEC Bell stage ≥2 was confirmed by radiological criteria, and pathology, if available. Cord serum samples were analyzed for IL-6 and IL-1β concentrations and placentas were reviewed for histological chorioamnionitis in the first cohort. NEC was confirmed in 29/368 (7.9%) of the combined cohorts. The incidence of NEC was 2.2-fold higher in Ureaplasma-positive (12.3%) than Ureaplasma-negative infants (5.5%) <33 wk (OR 2.43, 95%CI 1.13-5.22, P=0.023) and 3.3-fold higher in Ureaplasma-positive (14.6%) than Ureaplasma-negative (4.4%) infants ≤28 wks (OR 3.67, 95%CI 1.36-9.93, P=0.01). Age of onset, hematologic parameters at onset, and NEC severity were similar between Ureaplasma-positive and negative infants. Cord serum IL-6 and IL-1β concentrations were significantly higher in Ureaplasma-positive than in Ureaplasma-negative NEC-affected infants. Ureaplasma may be a factor in NEC pathogenesis in preterm infants by contributing to intestinal mucosal injury and/or altering systemic or local immune responses. PMID:21258263
2012-01-01
Background This study evaluated the effects of C. verbenacea essential oil topically administered in a rat periodontitis model. Methods Periodontitis was induced on rats in one of the mandibular first molars assigned to receive a ligature. Animals were randomly divided into two groups: a) non-treatment group (NT) (n = 18): animals received 1mL of vehicle; b) C. verbenacea group (C.v.) (n = 18): animals received 5mg/Kg of essential oils isolated from C. verbenacea. The therapies were administered topically 3 times daily for 11 days. Then, the specimens were processed for morphometric analysis of bone loss. The ligatures were used for microbiological assessment of the presence of Aggregatibacter actinomycetemcomitans, Tannerella forsythia and Porphyromonas gingivalis using PCR. The gingival tissue was collected to Elisa assay of interleukin (IL)-1α and IL-10 levels. Results Bone loss was inhibited by C. verbenacea when compared to the NT group (p < 0.05). A decrease in the levels of IL-1α and increase in the IL-10 amounts was observed in the C.v. group as compared to NT group (p < 0.05). A lower frequency of P. gingivalis was found in C.v. group (p < 0.05). Conclusion C. verbenacea essential oil topically administered diminished alveolar bone resorption, promoting a positive local imbalance in the pro/anti-inflammatory system and reducing the frequency of detection of P. gingivalis. PMID:23171319
Pimentel, Suzana Peres; Barrella, Guilherme Emerson; Casarin, Renato Corrêa Viana; Cirano, Fabiano Ribeiro; Casati, Márcio Zaffalon; Foglio, Mary Ann; Figueira, Glyn Mara; Ribeiro, Fernanda Vieira
2012-11-21
This study evaluated the effects of C. verbenacea essential oil topically administered in a rat periodontitis model. Periodontitis was induced on rats in one of the mandibular first molars assigned to receive a ligature. Animals were randomly divided into two groups: a) non-treatment group (NT) (n = 18): animals received 1mL of vehicle; b) C. verbenacea group (C.v.) (n = 18): animals received 5mg/Kg of essential oils isolated from C. verbenacea. The therapies were administered topically 3 times daily for 11 days. Then, the specimens were processed for morphometric analysis of bone loss. The ligatures were used for microbiological assessment of the presence of Aggregatibacter actinomycetemcomitans, Tannerella forsythia and Porphyromonas gingivalis using PCR. The gingival tissue was collected to Elisa assay of interleukin (IL)-1α and IL-10 levels. Bone loss was inhibited by C. verbenacea when compared to the NT group (p < 0.05). A decrease in the levels of IL-1α and increase in the IL-10 amounts was observed in the C.v. group as compared to NT group (p < 0.05). A lower frequency of P. gingivalis was found in C.v. group (p < 0.05). C. verbenacea essential oil topically administered diminished alveolar bone resorption, promoting a positive local imbalance in the pro/anti-inflammatory system and reducing the frequency of detection of P. gingivalis.
Vanherberghen, M; Bureau, F; Peters, I R; Day, M J; Lynch, A; Fievez, L; Billen, F; Clercx, C; Peeters, D
2013-08-15
The causal agent of sino-nasal aspergillosis is usually Aspergillus fumigatus, which is a saprophytic and ubiquitous fungus that causes a severe rhinosinusitis in apparent healthy dogs. Affected dogs do not have systemic immuno-suppression. It has been shown previously that dogs affected by this disease have local over-expression of interleukin (IL)-10 and Th1 cytokines in nasal mucosal tissue. The aim of the present study was to assess the response of peripheral blood mononuclear cells (PBMC) from affected and unaffected dogs to antigen-specific stimulation with heat-inactivated Aspergillus spp. conidia, by quantifying gene expression for specific Th1, Th2, Th17 and Treg cytokines and their related transcription factors. Quantification of IL-4 and IFN-γ protein in culture supernatant was performed by enzyme-linked immunosorbent assay (ELISA). PBMC from dogs with SNA produced adequate mRNA encoding IFN-γ and IFN-γ protein. The expression of IL-17A mRNA was significantly greater in PBMC of affected compared with unaffected dogs. The amount of IL-10 mRNA in PBMC from affected dogs decreased after antigen-specific challenge. These results suggest that the incapacity of affected dogs to clear these fungal infections is not related to a defect in Th1 immunity or to an overwhelming regulatory reaction, but rather to an uncontrolled pro-inflammatory reaction driven by Th17 cells. Copyright © 2013 Elsevier B.V. All rights reserved.
Borgmann, Stefan; Endisch, Georg; Hacker, Ulrich T; Song, Bong-Seok; Fricke, Harald
2003-05-01
Small-vessel vasculitides are associated with antineutrophil cytoplasmic antibodies (ANCAs). Cytoplasmic ANCAs are targeted mainly against proteinase 3 (PR3), whereas myeloperoxidase (MPO) is the major antigen of perinuclear ANCAs. These relapsing vasculitides show heterogeneous clinical pictures, and disease severity may vary broadly from mild local organ manifestation to acute organ failure (eg, renal failure). We tested whether two cytokine polymorphisms in the interleukin-1beta (IL-1beta) and IL-1 receptor antagonist (IL-1ra) genes, known to determine cytokine secretion, are associated with clinical manifestations and outcome of ANCA-associated vasculitides. Polymerase chain reaction and restriction fragment length polymorphism analyses were performed to determine polymorphisms in the IL-1beta and IL-1ra genes in 79 patients with PR3-ANCA, 30 patients with MPO-ANCA vasculitis, and 196 healthy controls. The frequency of the so-called proinflammatory genotype, characterized by high secretion of IL-1beta and low secretion of its antagonist IL-1ra, was increased significantly in patients with PR3-ANCA with end-stage renal disease. Patients with a renal manifestation of PR3-ANCA vasculitis have an increased risk for developing end-stage renal disease when carrying the proinflammatory IL-1beta/IL-1ra genotype. Anti-inflammatory therapy specifically antagonizing the proinflammatory effect of IL-1beta may be a promising treatment for patients with Wegener's granulomatosis with renal manifestations.
Elevated interleukin-8 in bile of patients with primary sclerosing cholangitis.
Zweers, Serge J; Shiryaev, Alexey; Komuta, Mina; Vesterhus, Mette; Hov, Johannes R; Perugorria, María J; de Waart, D Rudi; Chang, Jung-Chin; Tol, Shanna; Te Velde, Anje A; de Jonge, Wouter J; Banales, Jesus M; Roskams, Tania; Beuers, Ulrich; Karlsen, Tom H; Jansen, Peter L; Schaap, Frank G
2016-09-01
To better understand the pathogenesis of primary sclerosing cholangitis, anti- and pro-inflammatory factors were studied in bile. Ductal bile of PSC patients (n = 36) and controls (n = 20) was collected by endoscopic retrograde cholangiography. Gallbladder bile was collected at liver transplantation. Bile samples were analysed for cytokines, FGF19 and biliary lipids. Hepatobiliary tissues of PSC and non-PSC patients (n = 8-11 per patient group) were collected at transplantation and were analysed for IL8 and FGF19 mRNA expression and IL8 localization. The effect of IL8 on proliferation of primary human cholangiocytes and expression of pro-fibrotic genes was studied. In PSC patients, median IL8 in ductal bile was 6.6 ng/ml vs. 0.24 ng/ml in controls. Median IL8 in gallbladder bile was 7.6 ng/ml in PSC vs. 2.2 and 0.3 ng/ml in two control groups. IL8 mRNA in PSC gallbladder was increased and bile ducts stained positive for IL8. In vitro, IL8 induced proliferation of primary human cholangiocytes and increased the expression of pro-fibrotic genes. Elevation of IL8 in bile of PSC patients, collected at different stages of disease, indicates an ongoing inflammatory stimulus that drives IL8 production. This challenges the idea that advanced PSC is a burned-out disease, and calls for reconsideration of anti-inflammatory therapy in PSC. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Morelli, Sara S; Keegan, Debbra A; Krey, Lewis C; Katz, Joseph; Liu, Mengling; Noyes, Nicole
2008-12-01
To determine whether early measurement of the serum cytokines interleukin-2 receptor (IL-2R), IL-6, and IL-8 along with human chorionic gonadotropin (hCG) and progesterone (P(4)) can differentiate an ectopic from an intrauterine gestation. Retrospective analysis. University-based fertility center. 75 women who underwent treatment with in vitro fertilization (IVF) and subsequently had an ectopic gestation (n = 15), spontaneous abortion (SAB) (n = 30), or term delivery (TD) (n = 30). Serum samples were obtained 14 (day 28) and 21 (day 35) days after oocyte retrieval. Serum concentrations of IL-2R, IL-6, IL-8, P(4), and hCG. Median hCG readings on day 28 and day 35 were statistically significantly lower in the ectopic gestation group than in those with spontaneous abortion or term delivery. On day 28, median IL-8 levels were lower in the ectopic gestation group when compared with all intrauterine gestations combined. No statistically significant differences in IL-2R or IL-6 levels were noted between groups. Despite P(4) supplementation, median day-35 P(4) levels were lower in ectopic gestation than in the spontaneous abortion and term delivery cycles. In the setting of a rise or plateau in hCG levels, low day-28 IL-8 and day-35 P(4) levels suggested an extrauterine implantation. This assay combination may facilitate earlier diagnosis of an ectopic gestation when pregnancy location is unclear.
Fear extinction induces mGluR5-mediated synaptic and intrinsic plasticity in infralimbic neurons.
Sepulveda-Orengo, Marian T; Lopez, Ana V; Soler-Cedeño, Omar; Porter, James T
2013-04-24
Studies suggest that plasticity in the infralimbic prefrontal cortex (IL) in rodents and its homolog in humans is necessary for inhibition of fear during the recall of fear extinction. The recall of extinction is impaired by locally blocking metabotropic glutamate receptor type 5 (mGluR5) activation in IL during extinction training. This finding suggests that mGluR5 stimulation may lead to IL plasticity needed for fear extinction. To test this hypothesis, we recorded AMPA and NMDA currents, AMPA receptor (AMPAR) rectification, and intrinsic excitability in IL pyramidal neurons in slices from trained rats using whole-cell patch-clamp recording. We observed that fear extinction increases the AMPA/NMDA ratio, consistent with insertion of AMPARs into IL synapses. In addition, extinction training increased inward rectification, suggesting that extinction induces the insertion of calcium-permeable (GluA2-lacking) AMPARs into IL synapses. Consistent with this, selectively blocking calcium-permeable AMPARs with Naspm reduced the AMPA EPSCs in IL neurons to a larger degree after extinction. Extinction-induced changes in AMPA/NMDA ratio, rectification, and intrinsic excitability were blocked with an mGluR5 antagonist. These findings suggest that mGluR5 activation leads to consolidation of fear extinction by regulating the intrinsic excitability of IL neurons and modifying the composition of AMPARs in IL synapses. Therefore, impaired mGluR5 activity in IL synapses could be one factor that causes inappropriate modulation of fear expression leading to anxiety disorders.
Gu, Yangkui; Srimathveeravalli, Govindarajan; Cai, Liqun; Ueshima, Eisuke; Maybody, Majid; Yarmohammadi, Hooman; Zhu, Yuan-Shan; Durack, Jeremy C; Solomon, Stephen B; Coleman, Jonathan A; Erinjeri, Joseph P
2018-06-01
To investigate the effects of pirfenidone (PFD) on post-cryoablation inflammation in a mouse model. In this IACUC-approved study, eighty Balb/c mice were randomly divided into four groups (20/group): sham + vehicle, sham + PFD, cryoablation + vehicle, and cryoablation + PFD. For cryoablation groups, a 20% freeze rate cryoablation (20 s to less than -100 °C) was used to ablate normal muscle in the right flank. For sham groups, the cryoprobe was advanced into the flank and maintained for 20 s without ablation. PFD or vehicle solution was intraperitoneally injected (5 mg/kg) at days 0, 1, 2, 3, and then every other day until day 13 after cryoablation. Mice were euthanized at days 1, 3, 7, and 14. Blood samples were used for serum IL-6, IL-10, and TGFβ1 analysis using electrochemiluminescence and ELISA assays, respectively. Immunohistochemistry-stained ablated tissues were used to analyze macrophage infiltration and local TGFβ1 expression in the border region surrounding the cryoablation-induced coagulation zone. Cryoablation induced macrophage infiltration and increased TGFβ1 expression in the border of the necrotic zone, and high levels of serum IL-6, peaking at days 7 (70.5 ± 8.46/HPF), 14 (228 ± 18.36/HPF), and 7 (298.67 ± 92.63), respectively. Animals receiving PFD showed reduced macrophage infiltration (35.5 ± 16.93/HPF at day 7, p < 0.01) and cytokine levels (60.2 ± 7.6/HPF at day 14, p < 0.01). PFD also significantly reduced serum IL-6 levels (p < 0.001 vs. all non-PFD groups). PFD mitigates cryoablation induced muscle tissue macrophage infiltration, increased IL-6 levels, and local TGFβ1 expression in a small animal model. Copyright © 2018 Elsevier Inc. All rights reserved.
van Tongeren, J; Röschmann, K I L; Reinartz, S M; Luiten, S; Fokkens, W J; de Jong, E C; van Drunen, C M
2015-01-01
Innate immune recognition via Toll-like receptors (TLRs) on barrier cells like epithelial cells has been shown to influence the regulation of local immune responses. Here we determine expression level variations and functionality of TLRs in nasal epithelial cells from healthy donors. Expression levels of the different TLRs on primary nasal epithelial cells from healthy donors derived from inferior turbinates was determined by RT-PCR. Functionality of the TLRs was determined by stimulation with the respective ligand and evaluation of released mediators by Luminex ELISA. Primary nasal epithelial cells express different levels of TLR1-6 and TLR9. We were unable to detect mRNA of TLR7, TLR8 and TLR10. Stimulation with Poly(I:C) resulted in a significant increased secretion of IL-4, IL-6, RANTES, IP-10, MIP-1β, VEGF, FGF, IL-1RA, IL-2R and G-CSF. Stimulation with PGN only resulted in significant increased production of IL-6, VEGF and IL-1RA. Although the expression of TLR4 and co-stimulatory molecules could be confirmed, primary nasal epithelial cells appeared to be unresponsive to stimulation with LPS. Furthermore, we observed huge individual differences in TLR agonist-induced mediator release, which did not correlate with the respective expression of TLRs. Our data suggest that nasal epithelium seems to have developed a delicate system of discrimination and recognition of microbial patterns. Hypo-responsiveness to LPS could provide a mechanism to dampen the inflammatory response in the nasal mucosa in order to avoid a chronic inflammatory response. Individual, differential expression of TLRs on epithelial cells and functionality in terms of released mediators might be a crucial factor in explaining why some people develop allergies to common inhaled antigens, and others do not.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakamoto, Noriho; Hayashi, Shizu; Gosselink, John
2007-12-01
Exposure to ambient air pollution particles with a diameter of < 10 {mu}m (PM{sub 10}) has been associated with increased cardiopulmonary morbidity and mortality. We have shown that human bronchial epithelial cells (HBECs) exposed to PM{sub 10} produce pro-inflammatory mediators that contribute to a local and systemic inflammatory response. Changes in intracellular calcium concentrations ([Ca{sup 2+}]{sub i}) have been demonstrated to regulate several functions of the airway epithelium including the production of pro-inflammatory mediators. The aim of the present study was to determine the nature and mechanism of calcium responses induced by PM{sub 10} in HBECs and its relationship tomore » cytokine synthesis. Methods: Primary HBECs were exposed to urban air pollution particles (EHC-93) and [Ca{sup 2+}]{sub i} responses were measured using the fluoroprobe (Fura-2). Cytokine levels were measured at mRNA and protein levels using real-time PCR and ELISA. Results: PM{sub 10} increased [Ca{sup 2+}]{sub i} in a dose-dependent manner. This calcium response was reduced by blocking the influx of calcium into cells (i.e. calcium-free medium, NiCl{sub 2}, LaCl{sub 3}). PM{sub 10} also decreased the activity of calcium pumps. PM{sub 10} increased the production of IL-1{beta}, IL-8, GM-CSF and LIF. Preincubation with intracellular calcium chelator (BAPTA-AM) attenuated IL-1{beta} and IL-8 production, but not GM-CSF and LIF production. Conclusion: We conclude that exposure to PM{sub 10} induces an increase in cytosolic calcium and cytokine production in bronchial epithelial cells. Our results also suggest that PM{sub 10} induces the production of pro-inflammatory mediators via either intracellular calcium-dependent (IL-1{beta}, IL-8) or -independent (GM-CSF, LIF) pathways.« less
Towers, Albert E; Oelschlager, Maci L; Patel, Jay; Gainey, Stephen J; McCusker, Robert H; Freund, Gregory G
2017-06-01
Inflammation within the central nervous system (CNS) is frequently comorbid with anxiety. Importantly, the pro-inflammatory cytokine most commonly associated with anxiety is IL-1β. The bioavailability and activity of IL-1β are regulated by caspase-1-dependent proteolysis vis-a-vis the inflammasome. Thus, interventions regulating the activation or activity of caspase-1 should reduce anxiety especially in states that foster IL-1β maturation. Male C57BL/6j, C57BL/6j mice treated with the capase-1 inhibitor biotin-YVAD-cmk, caspase-1 knockout (KO) mice and IL-1R1 KO mice were fasted for 24h or allowed ad libitum access to food. Immediately after fasting, caspase-1 activity was measured in brain region homogenates while activated caspase-1 was localized in the brain by immunohistochemistry. Mouse anxiety-like behavior and cognition were tested using the elevated zero maze and novel object/object location tasks, respectively. A 24h fast in mice reduced the activity of caspase-1 in whole brain and in the prefrontal cortex, amygdala, hippocampus, and hypothalamus by 35%, 25%, 40%, 40%, and 40% respectively. A 24h fast also reduced anxiety-like behavior by 40% and increased novel object and object location recognition by 21% and 31%, respectively. IL-1β protein, however, was not reduced in the brain by fasting. ICV administration of YVAD decreased caspase-1 activity in the prefrontal cortex and amygdala by 55%, respectively leading to a 64% reduction in anxiety like behavior. Importantly, when caspase-1 KO or IL1-R1 KO mice are fasted, no fasting-dependent reduction in anxiety-like behavior was observed. Results indicate that fasting decrease anxiety-like behavior and improves memory by a mechanism tied to reducing caspase-1 activity throughout the brain. Copyright © 2017 Elsevier Inc. All rights reserved.
Towers, Albert E; Oelschlager, Maci L.; Patel, Jay; Gainey, Stephen J.; McCusker, Robert; Freund, Gregory G.
2017-01-01
Background Inflammation within the central nervous system (CNS) is frequently comorbid with anxiety. Importantly, the pro-inflammatory cytokine most commonly associated with anxiety is IL-1β. The bioavailability and activity of IL-1β is regulated by caspase-1-dependent proteolysis vis-a-vis the inflammasome. Thus, interventions regulating the activation or activity of caspase-1 should reduce anxiety especially in states that foster IL-1β maturation. Methods Male C57BL/6j, C57BL/6j mice treated with the capase-1 inhibitor biotin-YVAD-cmk, caspase-1 knockout (KO) mice and IL-1R1 KO mice were fasted for 24 hours or allowed ad libitum access to food. Immediately after fasting, caspase-1 activity was measured in brain region homogenates while activated caspase-1 was localized in the brain by immunohistochemistry. Mouse anxiety-like behavior and cognition were tested using the elevated zero maze and novel object/object location tasks, respectively. Results A 24 h fast in mice reduced the activity of caspase-1 in whole brain and in the prefrontal cortex, amygdala, hippocampus, and hypothalamus by 35%, 25%, 40%, 40%, and 40% respectively. A 24 h fast also reduced anxiety-like behavior by 40% and increased novel object and object location recognition by 21% and 31%, respectively. IL-1β protein, however, was not reduced in the brain by fasting. ICV administration of YVAD decreased caspase-1 activity in the prefrontal cortex and amygdala by 55%, respectively leading to a 64% reduction in anxiety like behavior. Importantly, when caspase-1 KO or IL1-R1 KO mice are fasted, no fasting-dependent reduction in anxiety-like behavior was observed. Conclusions Results indicate that fasting decrease anxiety-like behavior and improves memory by a mechanism tied to reducing caspase-1 activity throughout the brain. PMID:28521881
Acute Phase Proteins and Their Role in Periodontitis: A Review
Moogala, Srinivas; Boggarapu, Shalini; Pesala, Divya Sai; Palagi, Firoz Babu
2015-01-01
Acute phase proteins are a class of proteins whose plasma concentration increase (positive acute phase proteins) or decrease (negative acute phase proteins) in response to inflammation. This response is called as the acute phase reaction, also called as acute phase response, which occurs approximately 90 minutes after the onset of a systemic inflammatory reaction. In Periodontitis endotoxins released from gram negative organisms present in the sub gingival plaque samples interact with Toll- like receptors (TLR) that are expressed on the surface of Polymorphonuclear leucocytes (PMNs) and monocytes which are in abundance in periodontal inflammation. The complex formed due to interaction of Endotoxins and TLR activates the Signal transduction pathway in both innate and adaptive immunity resulting in production of Cytokines that co- ordinate the local and systemic inflammatory response. The pro inflammatory cytokines originating at the diseased site activates the liver cells to produce acute phase proteins as a part of non specific response. The production of Acute phase proteins is regulated to a great extent by Cytokines such as IL-1, IL-6, IL-8, TNF-α and to a lesser extent by Glucocorticoid hormones. These proteins bind to bacteria leading to activation of complement proteins that destroys pathogenic organisms. Studies have shown that levels of acute phase proteins are increased in otherwise healthy adults with poor periodontal status. This article highlights about the synthesis, structure, types and function of acute phase proteins and the associated relation of acute phase proteins in Periodontitis. PMID:26674303
Murray, Carol; Griffin, Éadaoin W.; O’Loughlin, Elaine; Lyons, Aoife; Sherwin, Eoin; Ahmed, Suaad; Stevenson, Nigel J; Harkin, Andrew; Cunningham, Colm
2015-01-01
Type I interferons (IFN-I) are expressed in the brain during many inflammatory and neurodegenerative conditions and have multiple effects on CNS function. IFN-I is readily induced in the brain by systemic administration of the viral mimetic, poly I:C (synthetic double-stranded RNA). We hypothesised that IFN-I contributes to systemically administered poly I:C-induced sickness behaviour, metabolic and neuroinflammatory changes. IFN-I receptor 1 deficient mice (IFNAR1−/−) displayed significantly attenuated poly I:C-induced hypothermia, hypoactivity and weight loss compared to WT C57BL/6 mice. This amelioration of sickness was associated with equivalent IL-1β and TNF-α responses but much reduced IL-6 responses in plasma, hypothalamus and hippocampus of IFNAR1−/− mice. IFN-β injection induced trivial IL-6 production and limited behavioural change and the poly I:C-induced IFN-β response did not preceed, and would not appear to mediate, IL-6 induction. Rather, IFNAR1−/− mice lack basal IFN-I activity, have lower STAT1 levels and show significantly lower levels of several inflammatory transcripts, including stat1. Basal IFN-I activity appears to play a facilitatory role in the full expression of the IL-6 response and activation of the tryptophan-kynurenine metabolism pathway. The deficient IL-6 response in IFNAR1−/− mice partially explains the observed incomplete sickness behaviour response. Reconstitution of circulating IL-6 revealed that the role of IFNAR in burrowing activity is mediated via IL-6, while IFN-I and IL-6 have additive effects on hypoactivity, but the role of IFN-I in anorexia is independent of IL-6. Hence, we have demonstrated both interdependent and independent roles for IFN-I and IL-6 in systemic inflammation-induced changes in brain function. PMID:25900439
Murray, Carol; Griffin, Éadaoin W; O'Loughlin, Elaine; Lyons, Aoife; Sherwin, Eoin; Ahmed, Suaad; Stevenson, Nigel J; Harkin, Andrew; Cunningham, Colm
2015-08-01
Type I interferons (IFN-I) are expressed in the brain during many inflammatory and neurodegenerative conditions and have multiple effects on CNS function. IFN-I is readily induced in the brain by systemic administration of the viral mimetic, poly I:C (synthetic double-stranded RNA). We hypothesised that IFN-I contributes to systemically administered poly I:C-induced sickness behaviour, metabolic and neuroinflammatory changes. IFN-I receptor 1 deficient mice (IFNAR1(-/-)) displayed significantly attenuated poly I:C-induced hypothermia, hypoactivity and weight loss compared to WT C57BL/6 mice. This amelioration of sickness was associated with equivalent IL-1β and TNF-α responses but much reduced IL-6 responses in plasma, hypothalamus and hippocampus of IFNAR1(-/-) mice. IFN-β injection induced trivial IL-6 production and limited behavioural change and the poly I:C-induced IFN-β response did not preceed, and would not appear to mediate, IL-6 induction. Rather, IFNAR1(-/-) mice lack basal IFN-I activity, have lower STAT1 levels and show significantly lower levels of several inflammatory transcripts, including stat1. Basal IFN-I activity appears to play a facilitatory role in the full expression of the IL-6 response and activation of the tryptophan-kynurenine metabolism pathway. The deficient IL-6 response in IFNAR1(-/-) mice partially explains the observed incomplete sickness behaviour response. Reconstitution of circulating IL-6 revealed that the role of IFNAR in burrowing activity is mediated via IL-6, while IFN-I and IL-6 have additive effects on hypoactivity, but the role of IFN-I in anorexia is independent of IL-6. Hence, we have demonstrated both interdependent and independent roles for IFN-I and IL-6 in systemic inflammation-induced changes in brain function. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Campos, Regis A; Szczepanik, Marian; Itakura, Atsuko; Lisbonne, Mariette; Dey, Neelendu; Leite-de-Moraes, Maria C; Askenase, Philip W
2006-01-01
We showed that hepatic Vα14+ invariant natural killer T (iNKT) cells, via their rapid interleukin (IL)-4 production, activate B-1 cells to initiate contact sensitivity (CS). This innate collaboration was absent in IL-4–/– and signal transducer and activator of transcription (STAT)-6–/– mice and was inhibited by anti-IL-4 treatment. These mice have defective CS because they fail to locally recruit the sensitized effector T cells of acquired immunity. Their CS is reconstituted by transfer of downstream-acting 1-day immune B-1 cells from wild-type mice. Responses were not reconstituted with B-1 cells from IL-4 receptor-α–/– or STAT-6–/– mice, nor by IL-4 treatment of B cell-deficient mice at immunization. Finally, IL-4 was preferentially and transiently produced by hepatic iNKT cells within 7 min after sensitization to mediate collaboration between innate-like iNKT cells and the B-1 B cells that participate in the recruitment of effector T cells in vivo. PMID:16556268
Kearley, Jennifer; Silver, Jonathan S; Sanden, Caroline; Liu, Zheng; Berlin, Aaron A; White, Natalie; Mori, Michiko; Pham, Tuyet-Hang; Ward, Christine K; Criner, Gerard J; Marchetti, Nathaniel; Mustelin, Tomas; Erjefalt, Jonas S; Kolbeck, Roland; Humbles, Alison A
2015-03-17
Cigarette smoking is a major risk factor for chronic obstructive pulmonary disease and is presumed to be central to the altered responsiveness to recurrent infection in these patients. We examined the effects of smoke priming underlying the exacerbated response to viral infection in mice. Lack of interleukin-33 (IL-33) signaling conferred complete protection during exacerbation and prevented enhanced inflammation and exaggerated weight loss. Mechanistically, smoke was required to upregulate epithelial-derived IL-33 and simultaneously alter the distribution of the IL-33 receptor ST2. Specifically, smoke decreased ST2 expression on group 2 innate lymphoid cells (ILC2s) while elevating ST2 expression on macrophages and natural killer (NK) cells, thus altering IL-33 responsiveness within the lung. Consequently, upon infection and release, increased local IL-33 significantly amplified type I proinflammatory responses via synergistic modulation of macrophage and NK cell function. Therefore, in COPD, smoke alters the lung microenvironment to facilitate an alternative IL-33-dependent exaggerated proinflammatory response to infection, exacerbating disease. Copyright © 2015 Elsevier Inc. All rights reserved.
Mayado, A; Teodosio, C; Garcia-Montero, A C; Matito, A; Rodriguez-Caballero, A; Morgado, J M; Muñiz, C; Jara-Acevedo, M; Álvarez-Twose, I; Sanchez-Muñoz, L; Matarraz, S; Caldas, C; Muñoz-González, J I; Escribano, L; Orfao, A
2016-01-01
Systemic mastocytosis (SM) is a heterogeneous disease with altered interleukin (IL)-6 and IL13 plasma levels. However, no study has simultaneously investigated the plasma levels of IL1β, IL6, IL13, CCL23 and clusterin in SM at diagnosis and correlated them with disease outcome. Here we investigated IL1β, IL6, IL13, CCL23 and clusterin plasma levels in 75 SM patients--66 indolent SM (ISM) and 9 aggressive SM--and analyzed their prognostic impact among ISM cases grouped according to the extent of hematopoietic involvement of the bone marrow cells by the KIT D816V mutation. Although increased IL1β, IL6 and CCL23 levels were detected in SM patients versus healthy controls, only IL6 and CCL23 levels gradually increased with disease severity. Moreover, increased IL6 plasma levels were associated with ISM progression to more aggressive disease, in particular among ISM patients with multilineal KIT mutation (ISM-ML), these patients also showing a higher frequency of organomegalies, versus other ISM-ML patients. Of note, all ISM patients who progressed had increased IL6 plasma levels already at diagnosis. Our results indicate that SM patients display an altered plasma cytokine profile already at diagnosis, increased IL6 plasma levels emerging as an early marker for disease progression among ISM cases, in particular among high-risk ISM patients who carry multilineage KIT mutation.
Intrauterine group A streptococcal infections are exacerbated by prostaglandin E2.
Mason, Katie L; Rogers, Lisa M; Soares, Elyara M; Bani-Hashemi, Tara; Erb Downward, John; Agnew, Dalen; Peters-Golden, Marc; Weinberg, Jason B; Crofford, Leslie J; Aronoff, David M
2013-09-01
Streptococcus pyogenes (Group A Streptococcus; GAS) is a major cause of severe postpartum sepsis, a re-emerging cause of maternal morbidity and mortality worldwide. Immunological alterations occur during pregnancy to promote maternofetal tolerance, which may increase the risk for puerperal infection. PGE2 is an immunomodulatory lipid that regulates maternofetal tolerance, parturition, and innate immunity. The extent to which PGE2 regulates host immune responses to GAS infections in the context of endometritis is unknown. To address this, both an in vivo mouse intrauterine (i.u.) GAS infection model and an in vitro human macrophage-GAS interaction model were used. In C57BL/6 mice, i.u. GAS inoculation resulted in local and systemic inflammatory responses and triggered extensive changes in the expression of eicosanoid pathway genes. The i.u. administration of PGE2 increased the mortality of infected mice, suppressed local IL-6 and IL-17A levels, enhanced neutrophilic inflammation, reduced uterine macrophage populations, and increased bacterial dissemination. A role for endogenous PGE2 in the modulation of antistreptococcal host defense was suggested, because mice lacking the genes encoding the microsomal PGE2 synthase-1 or the EP2 receptor were protected from death, as were mice treated with the EP4 receptor antagonist, GW627368X. PGE2 also regulated GAS-macrophage interactions. In GAS-infected human THP-1 (macrophage-like) cells, PGE2 inhibited the production of MCP-1 and TNF-α while augmenting IL-10 expression. PGE2 also impaired the phagocytic ability of human placental macrophages, THP-1 cells, and mouse peritoneal macrophages in vitro. Exploring the targeted disruption of PGE2 synthesis and signaling to optimize existing antimicrobial therapies against GAS may be warranted.
Bergamaschi, C; Kulkarni, V; Rosati, M; Alicea, C; Jalah, R; Chen, S; Bear, J; Sardesai, N Y; Valentin, A; Felber, B K; Pavlakis, G N
2015-01-01
Interleukin-15 (IL-15) is a common γ-chain cytokine that has a significant role in the activation and proliferation of T and NK cells and holds great potential in fighting infection and cancer. We have previously shown that bioactive IL-15 in vivo comprises a complex of the IL-15 chain with the soluble or cell-associated IL-15 receptor alpha (IL-15Rα) chain, which together form the IL-15 heterodimer. We have generated DNA vectors expressing the heterodimeric IL-15 by optimizing mRNA expression and protein trafficking. Repeated administration of these DNA plasmids by intramuscular injection followed by in vivo electroporation in rhesus macaques resulted in sustained high levels of IL-15 in plasma, with no significant toxicity. Administration of DNAs expressing heterodimeric IL-15 also resulted in an increased frequency of NK and T cells undergoing proliferation in peripheral blood. Heterodimeric IL-15 led to preferential expansion of CD8(+)NK cells, all memory CD8(+) T-cell subsets and effector memory CD4(+) T cells. Expression of heterodimeric IL-15 by DNA delivery to the muscle is an efficient procedure to obtain high systemic levels of bioactive cytokine, without the toxicity linked to the high transient cytokine peak associated with protein injection.
Nickoloff, B J; Fivenson, D P; Kunkel, S L; Strieter, R M; Turka, L A
1994-10-01
Despite the highly diverse reaction patterns of benign and malignant skin diseases involving T lymphocytes, polymerase chain reaction analysis of cytokine mRNAs present in biopsy samples has revealed that many cutaneous responses can be categorized into essentially two discrete groups. One group exemplified by psoriasis is characterized by consistently detectable mRNAs for IL-2, IFN-gamma, and TNF-alpha, but not IL-4, IL-5, IL-10, thereby closely resembling the murine Th1-type cell-mediated response. The second group exemplified by tape-stripped skin, poison ivy dermatitis, and Sezary syndrome contains predominantly IL-4, IL-5, and IL-10 mRNAs resembling the Th2-type cytokine profile. Because of the growing interest in the immunoregulatory role of IL-10, which can suppress IFN-gamma production and inhibit cell-mediated reactions, we produced a rabbit antiserum that was used to immunohistochemically localize IL-10 in a total of 27 biopsies. The results revealed that in Th2-type skin diseases, IL-10 was predominantly identified throughout all levels of epidermis in the cytoplasm of keratinocytes (KCs), with accentuation of their membranes in upper level cells. In Sezary syndrome, T cells were also immunoreactive for IL-10, which was confirmed using the HUT 78 T cell line derived from a Sezary syndrome patient. While normal skin was devoid of IL-10 expression, KCs began expressing it as early as 6 hr following tape stripping or application of poison ivy antigen and became strongly and diffusely positive by 18-24 hr. In contrast, psoriatic plaques contained no IL-10 immunoreactivity in either the parakeratotic scale or the epidermal KCs. These results confirm the earlier IL-10 mRNA analysis using whole skin samples and immunolocalize IL-10 to epidermal KCs in the Th2 diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuchigami, Takao; Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544; Kibe, Toshiro
Highlights: • We studied the interaction between tumor cells and fibroblasts in ameloblastoma. • AM-3 ameloblastoma cells secreted significantly high IL-1α levels. • IL-1α derived from AM-3 cells promoted IL-6 and IL-8 secretion of fibroblasts. • IL-6 and IL-8 activated the cellular motility and proliferation of AM-3 cells. - Abstract: Ameloblastoma is an odontogenic benign tumor that occurs in the jawbone, which invades bone and reoccurs locally. This tumor is treated by wide surgical excision and causes various problems, including changes in facial countenance and mastication disorders. Ameloblastomas have abundant tumor stroma, including fibroblasts and immune cells. Although cell-to-cell interactionsmore » are considered to be involved in the pathogenesis of many diseases, intercellular communications in ameloblastoma have not been fully investigated. In this study, we examined interactions between tumor cells and stromal fibroblasts via soluble factors in ameloblastoma. We used a human ameloblastoma cell line (AM-3 ameloblastoma cells), human fibroblasts (HFF-2 fibroblasts), and primary-cultured fibroblasts from human ameloblastoma tissues, and analyzed the effect of ameloblastoma-associated cell-to-cell communications on gene expression, cytokine secretion, cellular motility and proliferation. AM-3 ameloblastoma cells secreted higher levels of interleukin (IL)-1α than HFF-2 fibroblasts. Treatment with conditioned medium from AM-3 ameloblastoma cells upregulated gene expression and secretion of IL-6 and IL-8 of HFF-2 fibroblasts and primary-cultured fibroblast cells from ameloblastoma tissues. The AM3-stimulated production of IL-6 and IL-8 in fibroblasts was neutralized by pretreatment of AM-3 cells with anti-IL-1α antibody and IL-1 receptor antagonist. Reciprocally, cellular motility of AM-3 ameloblastoma cells was stimulated by HFF-2 fibroblasts in IL-6 and IL-8 dependent manner. In conclusion, ameloblastoma cells and stromal fibroblasts behave interactively via these cytokines to create a microenvironment that leads to the extension of ameloblastomas.« less
Immunomodulatory activity of interleukin-27 in human chronic periapical diseases
Li, Juan; Wang, Rong; Huang, Shi-Guang
2017-01-01
This study aims to observe expression of IL-27 on different cells in periapical tissues of different types of human chronic periapical diseases. Periapical tissue specimens of 60 donors, including healthy control (n=20), periapical granuloma group (n=20) and radicular cysts group (n=20), were fixed in 10% buffered formalin, stained with hematoxylin and eosin for histopathology. Then specimens were stained with double- immuno-fluorescence assay for identification of IL-27-tryptase (mast cells, MCs), IL-27-CD14 (mononuclear phagocyte cells, MPs) and IL-27-CD31 (endothelial cells, ECs) double-positive cells in periapical tissues. The results indicated that compared with healthy control, the densities (cells/mm2) of IL-27-tryptase, IL-27-CD14 and IL-27-CD31 double-positive cells were significantly increased in human chronic periapical diseases (periapical granuloma group and radicular cysts group) (P<0.001). The density of IL-27-tryptase double positive cells in radicular cysts group was significantly higher than those in periapical granuloma group (P<0.001). Densities of IL-27-CD14 and IL-27-CD31 double-positive cells in periapical granuloma group had no significant difference with those in radicular cysts group (P=0.170 and 0.138, respectively). IL-27-CD14 double positive cells density achieved to peak among three cell groups in radicular cysts groups. In conclusion, IL-27 expressed in MCs, MPs and ECs of human chronic periapical diseases with different degrees. IL-27-tryptase double-positive cells may participate in pathogenic mechanism of chronic periapical diseases, especially for formation of fibrous in periapical cysts. IL-27-CD14 and IL-27-CD31 double-positive cells may participate in immunologic response to resist periapical infection, and they may play an dual role in pathogenesis and localization of periapical diseases. PMID:28386371