The Impact of Environmental Regulation on Defense System Acquisition Management
1976-05-01
producer, had been the sole source for the fuel. The process of manufacturing the fuel also produced a toxic ~arcinogenic byproduct. This condition caused...minimized. Could the design be quieter? Does the maintenance of the system require environmentally sensitive equipment, processes , or material? For ... Of particular interest to this report is the effect of such regulation on the defense system acquisition process . There is a direct impact on the
Impact of Radio Frequency Identification (RFID) on the Marine Corps’ Supply Process
2006-09-01
Hypothetical Improvement Using a Real-Time Order Processing System Vice a Batch Order Processing System ................56 3. As-Is: The Current... Processing System Vice a Batch Order Processing System ................58 V. RESULTS ................................................69 A. SIMULATION...Time: Hypothetical Improvement Using a Real-Time Order Processing System Vice a Batch Order Processing System ................71 3. As-Is: The
Baresel, Christian; Dalgren, Lena; Almemark, Mats; Lazic, Aleksandra
2016-01-01
Wastewater reclamation will be a significant part of future water management and the environmental assessment of various treatment systems to reuse wastewater has become an important research field. The secondary treatment process and sludge handling on-site are, especially, electricity demanding processes due to aeration, pumping, mixing, dewatering, etc. used for operation and are being identified as the main contributor for many environmental impacts. This study discusses how the environmental performance of reuse treatment systems may be influenced by surrounding conditions. This article illustrates and discusses the importance of factors commonly treated as externalities and as such not being included in optimization strategies of reuse systems, but that are necessary to environmentally assess wastewater reclamation systems. This is illustrated by two up-stream and downstream processes; electricity supply and the use of sludge as fertilizer commonly practiced in regions considered for wastewater reclamation. The study shows that external conditions can have a larger impact on the overall environmental performance of reuse treatment systems than internal optimizations could compensate for. These results imply that a more holistic environmental assessment of reuse schemes could provide less environmental impacts as externalities could be included in measures to reduce the overall impacts.
Parajuli, Ranjan; Knudsen, Marie Trydeman; Birkved, Morten; Djomo, Sylvestre Njakou; Corona, Andrea; Dalgaard, Tommy
2017-11-15
This study evaluates the environmental impacts of biorefinery products using consequential (CLCA) and attributional (ALCA) life cycle assessment (LCA) approaches. Within ALCA, economic allocation method was used to distribute impacts among the main products and the coproducts, whereas within the CLCA system expansion was adopted to avoid allocation. The study seeks to answer the questions (i) what is the environmental impacts of process integration?, and (ii) do CLCA and ALCA lead to different conclusions when applied to biorefinery?. Three biorefinery systems were evaluated and compared: a standalone system producing bioethanol from winter wheat-straw (system A), a standalone system producing biobased lactic acid from alfalfa (system B), and an integrated biorefinery system (system C) combining the two standalone systems and producing both bioethanol and lactic acid. The synergy of the integration was the exchange of useful energy necessary for biomass processing in the two standalone systems. The systems were compared against a common reference flow: "1MJ EtOH +1kg LA ", which was set on the basis of products delivered by the system C. Function of the reference flow was to provide service of both fuel (bioethanol) at 99.9% concentration (wt. basis) and biochemical (biobased lactic acid) in food industries at 90% purity; both products delivered at biorefinery gate. The environmental impacts of interest were global warming potential (GWP 100 ), eutrophication potential (EP), non-renewable energy (NRE) use and the agricultural land occupation (ALO). Regardless of the LCA approach adopted, system C performed better in most of the impact categories than both standalone systems. The process wise contribution to the obtained environmental impacts also showed similar impact pattern in both approaches. The study also highlighted that the recirculation of intermediate materials, e.g. C 5 sugar to boost bioethanol yield and that the use of residual streams in the energy conversion were beneficial for optimizing the system performance. Copyright © 2017 Elsevier B.V. All rights reserved.
Maturation of Structural Health Management Systems for Solid Rocket Motors
NASA Technical Reports Server (NTRS)
Quing, Xinlin; Beard, Shawn; Zhang, Chang
2011-01-01
Concepts of an autonomous and automated space-compliant diagnostic system were developed for conditioned-based maintenance (CBM) of rocket motors for space exploration vehicles. The diagnostic system will provide real-time information on the integrity of critical structures on launch vehicles, improve their performance, and greatly increase crew safety while decreasing inspection costs. Using the SMART Layer technology as a basis, detailed procedures and calibration techniques for implementation of the diagnostic system were developed. The diagnostic system is a distributed system, which consists of a sensor network, local data loggers, and a host central processor. The system detects external impact to the structure. The major functions of the system include an estimate of impact location, estimate of impact force at impacted location, and estimate of the structure damage at impacted location. This system consists of a large-area sensor network, dedicated multiple local data loggers with signal processing and data analysis software to allow for real-time, in situ monitoring, and longterm tracking of structural integrity of solid rocket motors. Specifically, the system could provide easy installation of large sensor networks, onboard operation under harsh environments and loading, inspection of inaccessible areas without disassembly, detection of impact events and impact damage in real-time, and monitoring of a large area with local data processing to reduce wiring.
The Impact Of Optical Storage Technology On Image Processing Systems
NASA Astrophysics Data System (ADS)
Garges, Daniel T.; Durbin, Gerald T.
1984-09-01
The recent announcement of commercially available high density optical storage devices will have a profound impact on the information processing industry. Just as the initial introduction of random access storage created entirely new processing strategies, optical technology will allow dramatic changes in the storage, retrieval, and dissemination of engineering drawings and other pictorial or text-based documents. Storage Technology Corporation has assumed a leading role in this arena with the introduction of the 7600 Optical Storage Subsystem, and the formation of StorageTek Integrated Systems, a subsidiary chartered to incorporate this new technology into deliverable total systems. This paper explores the impact of optical storage technology from the perspective of a leading-edge manufacturer and integrator.
NASA Technical Reports Server (NTRS)
Ebert, D. H.; Eppes, T. A.; Thomas, D. J.
1973-01-01
The impact of a conical scan versus a linear scan multispectral scanner (MSS) instrument was studied in terms of: (1) design modifications required in framing and continuous image recording devices; and (2) changes in configurations of an all-digital precision image processor. A baseline system was defined to provide the framework for comparison, and included pertinent spacecraft parameters, a conical MSS, a linear MSS, an image recording system, and an all-digital precision processor. Lateral offset pointing of the sensors over a range of plus or minus 20 deg was considered. The study addressed the conical scan impact on geometric, radiometric, and aperture correction of MSS data in terms of hardware and software considerations, system complexity, quality of corrections, throughput, and cost of implementation. It was concluded that: (1) if the MSS data are to be only film recorded, then there is only a nomial concial scan impact on the ground data processing system; and (2) if digital data are to be provided to users on computer compatible tapes in rectilinear format, then there is a significant conical scan impact on the ground data processing system.
USDA-ARS?s Scientific Manuscript database
The impact of organic fertilizer source on the growth, fruit quality, and yield of blackberry cultivars (‘Marion’ and ‘Black Diamond’) grown in machine-harvested, organic production systems for the processed market was evaluated from 2011-13. The planting was established in spring 2010 using approve...
Meta-studies in land use science: Current coverage and prospects.
van Vliet, Jasper; Magliocca, Nicholas R; Büchner, Bianka; Cook, Elizabeth; Rey Benayas, José M; Ellis, Erle C; Heinimann, Andreas; Keys, Eric; Lee, Tien Ming; Liu, Jianguo; Mertz, Ole; Meyfroidt, Patrick; Moritz, Mark; Poeplau, Christopher; Robinson, Brian E; Seppelt, Ralf; Seto, Karen C; Verburg, Peter H
2016-02-01
Land use science has traditionally used case-study approaches for in-depth investigation of land use change processes and impacts. Meta-studies synthesize findings across case-study evidence to identify general patterns. In this paper, we provide a review of meta-studies in land use science. Various meta-studies have been conducted, which synthesize deforestation and agricultural land use change processes, while other important changes, such as urbanization, wetland conversion, and grassland dynamics have hardly been addressed. Meta-studies of land use change impacts focus mostly on biodiversity and biogeochemical cycles, while meta-studies of socioeconomic consequences are rare. Land use change processes and land use change impacts are generally addressed in isolation, while only few studies considered trajectories of drivers through changes to their impacts and their potential feedbacks. We provide a conceptual framework for linking meta-studies of land use change processes and impacts for the analysis of coupled human-environmental systems. Moreover, we provide suggestions for combining meta-studies of different land use change processes to develop a more integrated theory of land use change, and for combining meta-studies of land use change impacts to identify tradeoffs between different impacts. Land use science can benefit from an improved conceptualization of land use change processes and their impacts, and from new methods that combine meta-study findings to advance our understanding of human-environmental systems.
Chemical reaction path modeling of hydrothermal processes on Mars: Preliminary results
NASA Technical Reports Server (NTRS)
Plumlee, Geoffrey S.; Ridley, W. Ian
1992-01-01
Hydrothermal processes are thought to have had significant roles in the development of surficial mineralogies and morphological features on Mars. For example, a significant proportion of the Martian soil could consist of the erosional products of hydrothermally altered impact melt sheets. In this model, impact-driven, vapor-dominated hydrothermal systems hydrothermally altered the surrounding rocks and transported volatiles such as S and Cl to the surface. Further support for impact-driven hydrothermal alteration on Mars was provided by studies of the Ries crater, Germany, where suevite deposits were extensively altered to montmorillonite clays by inferred low-temperature (100-130 C) hydrothermal fluids. It was also suggested that surface outflow from both impact-driven and volcano-driven hydrothermal systems could generate the valley networks, thereby eliminating the need for an early warm wet climate. We use computer-driven chemical reaction path calculation to model chemical processes which were likely associated with postulated Martian hydrothermal systems.
Wearable Networked Sensing for Human Mobility and Activity Analytics: A Systems Study.
Dong, Bo; Biswas, Subir
2012-01-01
This paper presents implementation details, system characterization, and the performance of a wearable sensor network that was designed for human activity analysis. Specific machine learning mechanisms are implemented for recognizing a target set of activities with both out-of-body and on-body processing arrangements. Impacts of energy consumption by the on-body sensors are analyzed in terms of activity detection accuracy for out-of-body processing. Impacts of limited processing abilities in the on-body scenario are also characterized in terms of detection accuracy, by varying the background processing load in the sensor units. Through a rigorous systems study, it is shown that an efficient human activity analytics system can be designed and operated even under energy and processing constraints of tiny on-body wearable sensors.
ERIC Educational Resources Information Center
Gallagher Gordon, Mary
2012-01-01
This dissertation examines nurses' perceptions of the impacts of systems and technology utilized during the medication administration process on patient safety and the culture of medication error reporting. This exploratory research study was grounded in a model of patient safety based on Patricia Benner's Novice to Expert Skill Acquisition model,…
NASA Astrophysics Data System (ADS)
Hua, H.; Manipon, G.; Starch, M.
2017-12-01
NASA's upcoming missions are expected to be generating data volumes at least an order of magnitude larger than current missions. A significant increase in data processing, data rates, data volumes, and long-term data archive capabilities are needed. Consequently, new challenges are emerging that impact traditional data and software management approaches. At large-scales, next generation science data systems are exploring the move onto cloud computing paradigms to support these increased needs. New implications such as costs, data movement, collocation of data systems & archives, and moving processing closer to the data, may result in changes to the stewardship, preservation, and provenance of science data and software. With more science data systems being on-boarding onto cloud computing facilities, we can expect more Earth science data records to be both generated and kept in the cloud. But at large scales, the cost of processing and storing global data may impact architectural and system designs. Data systems will trade the cost of keeping data in the cloud with the data life-cycle approaches of moving "colder" data back to traditional on-premise facilities. How will this impact data citation and processing software stewardship? What are the impacts of cloud-based on-demand processing and its affect on reproducibility and provenance. Similarly, with more science processing software being moved onto cloud, virtual machines, and container based approaches, more opportunities arise for improved stewardship and preservation. But will the science community trust data reprocessed years or decades later? We will also explore emerging questions of the stewardship of the science data system software that is generating the science data records both during and after the life of mission.
NASA Technical Reports Server (NTRS)
Miller, R. E., Jr.; Southall, J. W.; Kawaguchi, A. S.; Redhed, D. D.
1973-01-01
Reports on the design process, support of the design process, IPAD System design catalog of IPAD technical program elements, IPAD System development and operation, and IPAD benefits and impact are concisely reviewed. The approach used to define the design is described. Major activities performed during the product development cycle are identified. The computer system requirements necessary to support the design process are given as computational requirements of the host system, technical program elements and system features. The IPAD computer system design is presented as concepts, a functional description and an organizational diagram of its major components. The cost and schedules and a three phase plan for IPAD implementation are presented. The benefits and impact of IPAD technology are discussed.
Impact of the Bologna Process on Turkish Higher Education: The Case of Izmir University of Economics
ERIC Educational Resources Information Center
Esen, Oguz; Gürleyen, Isik; Binatli, Ayla Ogus
2012-01-01
This article focuses on Turkey's experience of the Bologna Process. Its main objective is to contribute to the literature on the impact of Bologna Process on national higher education systems regarding the issue of curricula development. It argues that the Bologna Process has fostered development of transparent and systematic curricula, which…
32 CFR 989.16 - Environmental impact statement.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PROTECTION ENVIRONMENTAL IMPACT ANALYSIS PROCESS (EIAP) § 989.16 Environmental impact statement. (a) Certain...) Development of major new weapons systems (at decision points that involve demonstration, validation...
32 CFR 989.16 - Environmental impact statement.
Code of Federal Regulations, 2014 CFR
2014-07-01
... PROTECTION ENVIRONMENTAL IMPACT ANALYSIS PROCESS (EIAP) § 989.16 Environmental impact statement. (a) Certain...) Development of major new weapons systems (at decision points that involve demonstration, validation...
32 CFR 989.16 - Environmental impact statement.
Code of Federal Regulations, 2013 CFR
2013-07-01
... PROTECTION ENVIRONMENTAL IMPACT ANALYSIS PROCESS (EIAP) § 989.16 Environmental impact statement. (a) Certain...) Development of major new weapons systems (at decision points that involve demonstration, validation...
32 CFR 989.16 - Environmental impact statement.
Code of Federal Regulations, 2012 CFR
2012-07-01
... PROTECTION ENVIRONMENTAL IMPACT ANALYSIS PROCESS (EIAP) § 989.16 Environmental impact statement. (a) Certain...) Development of major new weapons systems (at decision points that involve demonstration, validation...
1979-12-01
the functional management level, a real-time production con- trol system and an order processing system at the operational level. SIDMS was designed...at any one time. 26 An overview of the major software systems in operation is listed below: a. Major Software Systems: Order processing system e Order ... processing for the supply support center/AWP locker. e Order processing for the airwing squadron material controls. e Order processing for the IMA
Chemical Separation of Fe-Ni Particles after Impact
NASA Astrophysics Data System (ADS)
Miura, Y.; Fukuyama, S.; Kedves, M. A.; Yamori, A.; Okamoto, M.; Gucsik, A.
Tiny grains of Fe-Ni system originated from planetesimals or meteoroids can remain under solid (or melt)-solid impact reactions even after impact process, probably together with high pressure form of Fe phase. Impact fragment with major Fe-Si (-Ni) system can be formed under vapor condition of impact reaction from terrestrial and artificial impact craters and spherules, and those with Ni-Cl (-S) system in composi- tion are formed under vapor condition of artificial impact experiments on the Barringer iron meteorite. These impact grains of Fe-bearing composition or high pressure form of iron-rich phases will be found probably on the asteroids in future exploration
Nutrients in estuaries--an overview and the potential impacts of climate change.
Statham, Peter J
2012-09-15
The fate and cycling of macronutrients introduced into estuaries depend upon a range of interlinked processes. Hydrodynamics and morphology in combination with freshwater inflow control the freshwater flushing time, and the timescale for biogeochemical processes to operate that include microbial activity, particle-dissolved phase interactions, and benthic exchanges. In some systems atmospheric inputs and exchanges with coastal waters can also be important. Climate change will affect nutrient inputs and behaviour through modifications to temperature, wind patterns, the hydrological cycle, and sea level rise. Resulting impacts include: 1) inundation of freshwater systems 2) changes in stratification, flushing times and phytoplankton productivity 3) increased coastal storm activity 4) changes in species and ecosystem function. A combination of continuing high inputs of nutrients through human activity and climate change is anticipated to lead to enhanced eutrophication in the future. The most obvious impacts of increasing global temperature will be in sub-arctic systems where permafrost zones will be reduced in combination with enhanced inputs from glacial systems. Improved process understanding in several key areas including cycling of organic N and P, benthic exchanges, resuspension, impact of bio-irrigation, particle interactions, submarine groundwater discharges, and rates and magnitude of bacterially-driven recycling processes, is needed. Development of high frequency in situ nutrient analysis systems will provide data to improve predictive models that need to incorporate a wider variety of key factors, although the complexity of estuarine systems makes such modelling a challenge. However, overall a more holistic approach is needed to effectively understand, predict and manage the impact of macronutrients on estuaries. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hamada, Aulia; Rosyidi, Cucuk Nur; Jauhari, Wakhid Ahmad
2017-11-01
Minimizing processing time in a production system can increase the efficiency of a manufacturing company. Processing time are influenced by application of modern technology and machining parameter. Application of modern technology can be apply by use of CNC machining, one of the machining process can be done with a CNC machining is turning. However, the machining parameters not only affect the processing time but also affect the environmental impact. Hence, optimization model is needed to optimize the machining parameters to minimize the processing time and environmental impact. This research developed a multi-objective optimization to minimize the processing time and environmental impact in CNC turning process which will result in optimal decision variables of cutting speed and feed rate. Environmental impact is converted from environmental burden through the use of eco-indicator 99. The model were solved by using OptQuest optimization software from Oracle Crystal Ball.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Robert S.; Benjamin, Jacob; Wright, Virginia L.
A continuing challenge for engineers who utilize digital systems is to understand the impact of cyber-attacks across the entire product and program lifecycle. This is a challenge due to the evolving nature of cyber threats that may impact the design, development, deployment, and operational phases of all systems. Cyber Informed Engineering is the process by which engineers are made aware of both how to use their engineering knowledge to positively impact the cyber security in the processes by which they architect and design components and the services and security of the components themselves.
Zhang Zhou; Ying Ouyang; Yide Li; Zhijun Qiu; Matt Moran
2017-01-01
Climate change over the past several decades has resulted in shifting rainfall pattern and modifying rain-fall intensity, which has exacerbated hydrological processes and added the uncertainty and instability tothese processes. This study ascertained impacts of potential future rainfall change on hydrological pro-cesses at the Jianfengling (JFL) tropical mountain...
Lifecycle assessment of microalgae to biofuel: Comparison of thermochemical processing pathways
Bennion, Edward P.; Ginosar, Daniel M.; Moses, John; ...
2015-01-16
Microalgae are currently being investigated as a renewable transportation fuel feedstock based on various advantages that include high annual yields, utilization of poor quality land, does not compete with food, and can be integrated with various waste streams. This study focuses on directly assessing the impact of two different thermochemical conversion technologies on the microalgae to biofuel process through life cycle assessment. A system boundary of a “well to pump” (WTP) is defined and includes sub-process models of the growth, dewatering, thermochemical bio-oil recovery, bio-oil stabilization, conversion to renewable diesel, and transport to the pump. Models were validated with experimentalmore » and literature data and are representative of an industrial-scale microalgae to biofuel process. Two different thermochemical bio-oil conversion systems are modeled and compared on a systems level, hydrothermal liquefaction (HTL) and pyrolysis. The environmental impact of the two pathways were quantified on the metrics of net energy ratio (NER), defined here as energy consumed over energy produced, and greenhouse gas (GHG) emissions. Results for WTP biofuel production through the HTL pathway were determined to be 1.23 for the NER and GHG emissions of -11.4 g CO 2-eq (MJ renewable diesel) -1. WTP biofuel production through the pyrolysis pathway results in a NER of 2.27 and GHG emissions of 210 g CO2 eq (MJ renewable diesel)-1. The large environmental impact associated with the pyrolysis pathway is attributed to feedstock drying requirements and combustion of co-products to improve system energetics. Discussion focuses on a detailed breakdown of the overall process energetics and GHGs, impact of modeling at laboratory- scale compared to industrial-scale, environmental impact sensitivity to engineering systems input parameters for future focused research and development and a comparison of results to literature.« less
NASA Astrophysics Data System (ADS)
Bennion, Edward P.
Microalgae are currently being investigated as a renewable transportation fuel feedstock based on various advantages that include high annual yields, utilization of poor quality land, does not compete with food, and can be integrated with various waste streams. This study focuses on directly assessing the impact of two different thermochemical conversion technologies on the microalgae-to-biofuel process through life cycle assessment. A system boundary of a "well to pump" (WTP) is defined and includes sub-process models of the growth, dewatering, thermochemical bio-oil recovery, bio-oil stabilization, conversion to renewable diesel, and transport to the pump. Models were validated with experimental and literature data and are representative of an industrial-scale microalgae-to-biofuel process. Two different thermochemical bio-oil conversion systems are modeled and compared on a systems level, hydrothermal liquefaction (HTL) and pyrolysis. The environmental impact of the two pathways were quantified on the metrics of net energy ratio (NER), defined here as energy consumed over energy produced, and greenhouse gas (GHG) emissions. Results for WTP biofuel production through the HTL pathway were determined to be 1.23 for the NER and GHG emissions of -11.4 g CO2 eq (MJ renewable diesel)-1. WTP biofuel production through the pyrolysis pathway results in a NER of 2.27 and GHG emissions of 210 g CO2 eq (MJ renewable diesel)-1. The large environmental impact associated with the pyrolysis pathway is attributed to feedstock drying requirements and combustion of co-products to improve system energetics. Discussion focuses on a detailed breakdown of the overall process energetics and GHGs, impact of modeling at laboratory-scale compared to industrial-scale, environmental impact sensitivity to engineering systems input parameters for future focused research and development, and a comparison of results to literature.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-20
... General Conformity Determination for the California High-Speed Train System Merced to Fresno Section... Environmental Impact Statement (EIS) and Final 4(f) Evaluation for the California High-Speed Train (HST) System...-Speed Rail Authority (Authority) is the lead state agency for the environmental review process. The...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Columbia River System Operation Review
1995-11-01
This Appendix J of the Final Environmental Impact Statement for the Columbia River System discusses impacts on the recreational activities in the region. Major sections include the following: scope and processes; recreation in the Columbia River Basin today - by type, location, participation, user characteristics, factors which affect usage, and managing agencies; recreation analysis procedures and methodology; and alternatives and their impacts.
The Explorer's Guide to Impact Craters
NASA Technical Reports Server (NTRS)
Chuang, F.; Pierazzo, E.; Osinski, G.
2005-01-01
Impact cratering is a fundamental geologic process of our solar system. It competes with other processes, such as plate tectonics, volcanism, fluvial, glacial and eolian activity, in shaping the surfaces of planetary bodies. In some cases, like the Moon and Mercury, impact craters are the dominant landform. On other planetary bodies impact craters are being continuously erased by the action of other geological processes, like volcanism on Io, erosion and plate tectonics on the Earth, tectonic and volcanic resurfacing on Venus, or ancient erosion periods on Mars. The study of crater populations is one of the principal tools for understanding the geologic history of a planetary surface. Among the general public, impact cratering has drawn wide attention through its portrayal in several Hollywood movies. Questions that are raised after watching these movies include: How do scientists learn about impact cratering? , and What information do impact craters provide in understanding the evolution of a planetary surface? Fundamental approaches used by scientists to learn about impact cratering include field work at known terrestrial craters, remote sensing studies of craters on various solid surfaces of solar system bodies, and theoretical and laboratory studies using the known physics of impact cratering.
76 FR 25352 - Establishment of the FDIC Systemic Resolution Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-04
..., may impact regulated entities and other stakeholders potentially affected by the process. The SR... impact regulated entities and other stakeholders potentially affected by the process. The SR Advisory..., investors, bankruptcy professionals, representatives from the audit, accounting, credit rating, and legal...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Acquisition Programs and Major Automated Information System Acquisition Programs. 1 To comply with NEPA and... ANALYSIS PROCESS (EIAP) § 989.1 Purpose. (a) This part implements the Air Force Environmental Impact Analysis Process (EIAP) and provides procedures for environmental impact analysis both within the United...
Decision Grade: Readiness, Mission Impacts, and Classified Data in the Defense Budgeting Process
2015-10-23
AU/ACSC/2015 DECISION-GRADE: READINESS, MISSION IMPACTS , AND CLASSIFIED DATA IN THE DEFENSE BUDGETING PROCESS by Ryan M. Harrell, Maj, USAF A... impacts . This research provides suggestions to improve the venerable PPBE system by investigating ‘how does’ and ‘how should’ the DOD use planning guidance...readiness reporting, this effort analyzes the impact of overclassification and redefines readiness to provide decision-grade analysis to Congress. 1
Environmental impact assessment system in Thailand and its comparison with those in China and Japan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suwanteep, Kultip, E-mail: suwanteep.k.aa@m.titech.ac.jp; Murayama, Takehiko; Nishikizawa, Shigeo
This paper aims to find ways to streamline the Environmental Impact Assessment (EIA) system in Thailand to increase its effectiveness by comparative analysis with China and Japan. This study is mainly focused on review, update and comparison of EIA systems between these three countries. It is intended to clarify fundamental information of the EIA systems and characteristics of the key elements of EIA processes (screening, consideration of alternatives, prediction or evaluation of impact, and public participation). Moreover, the number of the EIA projects that have been implemented in all the provinces in Thailand are presented. The results identified the similaritiesmore » and differences of the EIA processes among the three aforementioned countries. The type of EIA report used in Thailand, unlike those in China and Japan, is an Environmental and Health Impact Assessment (EHIA), which is concerned with the health and environmental impacts that could occur from the project. In addition, EIA reports in Thailand are made available to the public online and the shortcomings of the process have details of barriers resulting from the projects to help future projects with reconsideration and improvements. In this study, it is pointed out that Thai's EIA system still lacks local EIA authority which needs to be empowered by implementing a set of laws or ordinance. - Highlights: • Reviewed current EIA procedures in Thailand, Japan and China • The EIA database is getting improved so as to generate profile of EIAs in the past. • Thailand needs to empower the local EIA authority within the EIA system. • The potential impacts should be more concerned than their scale in Japanese EIA. • Time limits and transparency should be reconsidered in China's EIA system.« less
ERIC Educational Resources Information Center
Lei, Lei
2013-01-01
Environmental Impact Assessment (EIA) is a decision-making process that often involves public participation in the scoping and reviewing stage. Although the importance of engaging the public in the EIA process has long been recognized, it is often considered ineffective due to factors such as time, budget, resource, technical and procedural…
Guidelines for Implementing Change: A Case Study
NASA Astrophysics Data System (ADS)
Masekela, Belinda; Nienaber, Rita
To attain and sustain a competitive advantage organizations are continually faced with the need to change their structures, processes and technologies. Converting to new technology and implementing a new information management system in an organization results in inevitable changes in organizational procedures impacting on the people involved. A major problem encountered during this process is resistance to change, which may contribute to total failure of this system. Change management is the process that can be used to negate this impact and assist employees in transitioning to a new way of doing things.
Slag processing system for direct coal-fired gas turbines
Pillsbury, Paul W.
1990-01-01
Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The systems include a primary combustion compartment coupled to an impact separator for removing molten slag from hot combustion gases. Quenching means are provided for solidifying the molten slag removed by the impact separator, and processing means are provided forming a slurry from the solidified slag for facilitating removal of the solidified slag from the system. The released hot combustion gases, substantially free of molten slag, are then ducted to a lean combustion compartment and then to an expander section of a gas turbine.
NASA Technical Reports Server (NTRS)
Ebert, D. H.; Chase, P. E.; Dye, J.; Fahline, W. C.; Johnson, R. H.
1973-01-01
The impact of a conical scan versus a linear scan multispectral scanner (MSS) instrument on a small local-user data processing facility was studied. User data requirements were examined to determine the unique system rquirements for a low cost ground system (LCGS) compatible with the Earth Observatory Satellite (EOS) system. Candidate concepts were defined for the LCGS and preliminary designs were developed for selected concepts. The impact of a conical scan MSS versus a linear scan MSS was evaluated for the selected concepts. It was concluded that there are valid user requirements for the LCGS and, as a result of these requirements, the impact of the conical scanner is minimal, although some new hardware development for the LCGS is necessary to handle conical scan data.
Paperless Procurement: The Impact of Advanced Automation
1992-09-01
System. POPS = Paperless Order Processing System; RADMIS = Research and Development Management Information System; SAACONS=Standard Army Automated... order processing system, which then updates the contractor’s production (or delivery) scheduling and contract accounting applications. In return, the...used by the DLA’s POPS. 3-5 into an EDI delivery order and pass it directly to the distributor’s or manufacturer’s order processing system. That
Collie, Alex; Gabbe, Belinda; Fitzharris, Michael
2015-01-01
Introduction Injuries resulting from road traffic crashes are a substantial cause of disability and death worldwide. Injured persons receiving compensation have poorer recovery and return to work than those with non-compensable injury. Case or claims management is a critical component of injury compensation systems, and there is now evidence that claims management can have powerful positive impacts on recovery, but can also impede recovery or exacerbate mental health concerns in some injured people. This study seeks to evaluate the impact of a population-based injury claims management intervention in the State of Victoria, Australia, on the health of those injured in motor vehicle crashes, their experience of the compensation process, and the financial viability of the compensation system. Methods and analysis Evaluation of this complex intervention involves a series of linked but stand-alone research projects to assess the anticipated process changes, impacts and outcomes of the intervention over a 5-year time frame. Linkage and analysis of routine administrative and health system data is supplemented with a series of primary studies collecting new information. Additionally, a series of ‘action’ research projects will be undertaken to inform the implementation of the intervention. A program logic model designed by the state government Transport Accident Commission in conjunction with the research team provides the evaluation framework. Ethics and dissemination Relatively few studies have comprehensively examined the impact of compensation system processes on the health of injured persons, their satisfaction with systems processes, and impacts on the financial performance of the compensation scheme itself. The wholesale, population-based transformation of an injury claims management model is a rare opportunity to document impacts of system-level policy change on outcomes of injured persons. Findings will contribute to the evidence base of information on the public health effects of injury claims management policy and practice. PMID:25967991
Collie, Alex; Gabbe, Belinda; Fitzharris, Michael
2015-05-12
Injuries resulting from road traffic crashes are a substantial cause of disability and death worldwide. Injured persons receiving compensation have poorer recovery and return to work than those with non-compensable injury. Case or claims management is a critical component of injury compensation systems, and there is now evidence that claims management can have powerful positive impacts on recovery, but can also impede recovery or exacerbate mental health concerns in some injured people. This study seeks to evaluate the impact of a population-based injury claims management intervention in the State of Victoria, Australia, on the health of those injured in motor vehicle crashes, their experience of the compensation process, and the financial viability of the compensation system. Evaluation of this complex intervention involves a series of linked but stand-alone research projects to assess the anticipated process changes, impacts and outcomes of the intervention over a 5-year time frame. Linkage and analysis of routine administrative and health system data is supplemented with a series of primary studies collecting new information. Additionally, a series of 'action' research projects will be undertaken to inform the implementation of the intervention. A program logic model designed by the state government Transport Accident Commission in conjunction with the research team provides the evaluation framework. Relatively few studies have comprehensively examined the impact of compensation system processes on the health of injured persons, their satisfaction with systems processes, and impacts on the financial performance of the compensation scheme itself. The wholesale, population-based transformation of an injury claims management model is a rare opportunity to document impacts of system-level policy change on outcomes of injured persons. Findings will contribute to the evidence base of information on the public health effects of injury claims management policy and practice. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Validation, Edits, and Application Processing System Report: Phase I.
ERIC Educational Resources Information Center
Gray, Susan; And Others
Findings of phase 1 of a study of the 1979-1980 Basic Educational Opportunity Grants validation, edits, and application processing system are presented. The study was designed to: assess the impact of the validation effort and processing system edits on the correct award of Basic Grants; and assess the characteristics of students most likely to…
Space station impact experiments
NASA Technical Reports Server (NTRS)
Schultz, P.; Ahrens, T.; Alexander, W. M.; Cintala, M.; Gault, D.; Greeley, R.; Hawke, B. R.; Housen, K.; Schmidt, R.
1986-01-01
Four processes serve to illustrate potential areas of study and their implications for general problems in planetary science. First, accretional processes reflect the success of collisional aggregation over collisional destruction during the early history of the solar system. Second, both catastrophic and less severe effects of impacts on planetary bodies survivng from the time of the early solar system may be expressed by asteroid/planetary spin rates, spin orientations, asteroid size distributions, and perhaps the origin of the Moon. Third, the surfaces of planetary bodies directly record the effects of impacts in the form of craters; these records have wide-ranging implications. Fourth, regoliths evolution of asteroidal surfaces is a consequence of cumulative impacts, but the absence of a significant gravity term may profoundly affect the retention of shocked fractions and agglutinate build-up, thereby biasing the correct interpretations of spectral reflectance data. An impact facility on the Space Station would provide the controlled conditions necessary to explore such processes either through direct simulation of conditions or indirect simulation of certain parameters.
a Self-Excited System for Percussive-Rotary Drilling
NASA Astrophysics Data System (ADS)
Batako, A. D.; Babitsky, V. I.; Halliwell, N. A.
2003-01-01
A dynamic model for a new principle of percussive-rotary drilling is presented. This is a non-linear mechanical system with two degrees of freedom, in which friction-induced vibration is used for excitation of impacts, which influence the parameters of stick-slip motion. The model incorporates the friction force as a function of sliding velocity, which allows for the self-excitation of the coupled vibration of the rotating bit and striker, which tends to a steady state periodic cycle. The dynamic coupling of vibro-impact action with the stick-slip process provides an entirely new adaptive feature in the drilling process. The dynamic behaviour of the system with and without impact is studied numerically. Special attention is given to analysis of the relationship between the sticking and impacting phase of the process in order to achieve an optimal drilling performance. This paper provides an understanding of the mechanics of percussive -rotary drilling and design of new drilling tools with advanced characteristics. Conventional percussive-rotary drilling requires two independent actuators and special control for the synchronization of impact and rotation. In the approach presented, a combined complex interaction of drill bit and striker is synchronized by a single rotating drive.
The impact crater as a habitat: effects of impact processing of target materials.
Cockell, Charles S; Osinski, Gordon R; Lee, Pascal
2003-01-01
Impact structures are a rare habitat on Earth. However, where they do occur they can potentially have an important influence on the local ecology. Some of the types of habitat created in the immediate post-impact environment are not specific to the impact phenomenon, such as hydrothermal systems and crater lakes that can be found, for instance, in post-volcanic environments, albeit with different thermal characteristics than those associated with impact. However, some of the habitats created are specifically linked to processes of impact processing. Two examples of how impact processing of target materials has created novel habitats that improve the opportunities for colonization are found in the Haughton impact structure in the Canadian High Arctic. Impact-shocked rocks have become a habitat for endolithic microorganisms, and large, impact-shattered blocks of rock are used as resting sites by avifauna. However, some materials produced by an impact, such as melt sheet rocks, can make craters more biologically depauperate than the area surrounding them. Although there are no recent craters with which to study immediate post-impact colonization, these data yield insights into generalized mechanisms of how impact processing can influence post-impact succession. Because impact events are one of a number of processes that can bring localized destruction to ecosystems, understanding the manner in which impact structures are recolonized is of ecological interest. Impact craters are a universal phenomenon on solid planetary surfaces, and so they are of potential biological relevance on other planetary surfaces, particularly Mars.
The impact crater as a habitat: effects of impact processing of target materials
NASA Technical Reports Server (NTRS)
Cockell, Charles S.; Osinski, Gordon R.; Lee, Pascal
2003-01-01
Impact structures are a rare habitat on Earth. However, where they do occur they can potentially have an important influence on the local ecology. Some of the types of habitat created in the immediate post-impact environment are not specific to the impact phenomenon, such as hydrothermal systems and crater lakes that can be found, for instance, in post-volcanic environments, albeit with different thermal characteristics than those associated with impact. However, some of the habitats created are specifically linked to processes of impact processing. Two examples of how impact processing of target materials has created novel habitats that improve the opportunities for colonization are found in the Haughton impact structure in the Canadian High Arctic. Impact-shocked rocks have become a habitat for endolithic microorganisms, and large, impact-shattered blocks of rock are used as resting sites by avifauna. However, some materials produced by an impact, such as melt sheet rocks, can make craters more biologically depauperate than the area surrounding them. Although there are no recent craters with which to study immediate post-impact colonization, these data yield insights into generalized mechanisms of how impact processing can influence post-impact succession. Because impact events are one of a number of processes that can bring localized destruction to ecosystems, understanding the manner in which impact structures are recolonized is of ecological interest. Impact craters are a universal phenomenon on solid planetary surfaces, and so they are of potential biological relevance on other planetary surfaces, particularly Mars.
Berge, Nicole D; Li, Liang; Flora, Joseph R V; Ro, Kyoung S
2015-09-01
Although there are numerous studies suggesting hydrothermal carbonization is an environmentally advantageous process for transformation of wastes to value-added products, a systems level evaluation of the environmental impacts associated with hydrothermal carbonization and subsequent hydrochar combustion has not been conducted. The specific objectives of this work are to use a life cycle assessment approach to evaluate the environmental impacts associated with the HTC of food wastes and the subsequent combustion of the generated solid product (hydrochar) for energy production, and to understand how parameters and/or components associated with food waste carbonization and subsequent hydrochar combustion influence system environmental impact. Results from this analysis indicate that HTC process water emissions and hydrochar combustion most significantly influence system environmental impact, with a net negative GWP impact resulting for all evaluated substituted energy-sources except biomass. These results illustrate the importance of electricity production from hydrochar particularly when it is used to offset coal-based energy sources. HTC process water emissions result in a net impact to the environment, indicating a need for developing appropriate management strategies. Results from this analysis also highlight a need for additional exploration of liquid and gas-phase composition, a better understanding of how changes in carbonization conditions (e.g., reaction time and temperature) influence metal and nutrient fate, and the exploration of liquid-phase treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Activation and Resolution of Periodontal Inflammation and Its Systemic Impact
Hasturk, Hatice; Kantarci, Alpdogan
2015-01-01
Inflammation is a highly organized event impacting upon organs, tissues and biological systems. Periodontal diseases are characterized by dysregulation or dysfunction of resolution pathways of inflammation resulting in a failure of healing and a dominant chronic, progressive, destructive and predominantly unresolved inflammation. The biological consequences of inflammatory processes may be independent of the etiological agents such as trauma, microbial organisms and stress. The impact of the inflammatory pathological process depends upon the affected tissues or organ system. Whilst mediators are similar, there is a tissue specificity for the inflammatory events. It is plausible that inflammatory processes in one organ could directly lead to pathologies in another organ or tissue. Communication between distant parts of the body and their inflammatory status is also mediated by common signaling mechanisms mediated via cells and soluble mediators. This review focuses on periodontal inflammation, its systemic associations and advances in therapeutic approaches based on mediators acting through orchestration of natural pathway to resolution of inflammation. We also discuss a new treatment concept where natural pathways of resolution of periodontal inflammation can be used to limit systemic inflammation and promote healing and regeneration. PMID:26252412
Health-care process improvement decisions: a systems perspective.
Walley, Paul; Silvester, Kate; Mountford, Shaun
2006-01-01
The paper seeks to investigate decision-making processes within hospital improvement activity, to understand how performance measurement systems influence decisions and potentially lead to unsuccessful or unsustainable process changes. A longitudinal study over a 33-month period investigates key events, decisions and outcomes at one medium-sized hospital in the UK. Process improvement events are monitored using process control methods and by direct observation. The authors took a systems perspective of the health-care processes, ensuring that the impacts of decisions across the health-care supply chain were appropriately interpreted. The research uncovers the ways in which measurement systems disguise failed decisions and encourage managers to take a low-risk approach of "symptomatic relief" when trying to improve performance metrics. This prevents many managers from trying higher risk, sustainable process improvement changes. The behaviour of the health-care system is not understood by many managers and this leads to poor analysis of problem situations. Measurement using time-series methodologies, such as statistical process control are vital for a better understanding of the systems impact of changes. Senior managers must also be aware of the behavioural influence of similar performance measurement systems that discourage sustainable improvement. There is a risk that such experiences will tarnish the reputation of performance management as a discipline. Recommends process control measures as a way of creating an organization memory of how decisions affect performance--something that is currently lacking.
Lipid-associated Oral Delivery: Mechanisms and Analysis of Oral Absorption Enhancement
Rezhdo, Oljora; Speciner, Lauren; Carrier, Rebecca L.
2016-01-01
The majority of newly discovered oral drugs are poorly water soluble, and co-administration with lipids has proven effective in significantly enhancing bioavailability of some compounds with low aqueous solubility. Yet, lipid-based delivery technologies have not been widely employed in commercial oral products. Lipids can impact drug transport and fate in the gastrointestinal (GI) tract through multiple mechanisms including enhancement of solubility and dissolution kinetics, enhancement of permeation through the intestinal mucosa, and triggering drug precipitation upon lipid emulsion depletion (e.g., by digestion). The effect of lipids on drug absorption is currently not quantitatively predictable, in part due to the multiple complex dynamic processes that can be impacted by lipids. Quantitative mechanistic analysis of the processes significant to lipid system function and overall impact on drug absorption can aid understanding of drug-lipid interactions in the GI tract and exploitation of such interactions to achieve optimal lipid-based drug delivery. In this review, we discuss the impact of co-delivered lipids and lipid digestion on drug dissolution, partitioning, and absorption in the context of the experimental tools and associated kinetic expressions used to study and model these processes. The potential benefit of a systems-based consideration of the concurrent multiple dynamic processes occurring upon co-dosing lipids and drugs to predict the impact of lipids on drug absorption and enable rational design of lipid-based delivery systems is presented. PMID:27520734
Experimental evaluation of the impact of packet capturing tools for web services.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choe, Yung Ryn; Mohapatra, Prasant; Chuah, Chen-Nee
Network measurement is a discipline that provides the techniques to collect data that are fundamental to many branches of computer science. While many capturing tools and comparisons have made available in the literature and elsewhere, the impact of these packet capturing tools on existing processes have not been thoroughly studied. While not a concern for collection methods in which dedicated servers are used, many usage scenarios of packet capturing now requires the packet capturing tool to run concurrently with operational processes. In this work we perform experimental evaluations of the performance impact that packet capturing process have on web-based services;more » in particular, we observe the impact on web servers. We find that packet capturing processes indeed impact the performance of web servers, but on a multi-core system the impact varies depending on whether the packet capturing and web hosting processes are co-located or not. In addition, the architecture and behavior of the web server and process scheduling is coupled with the behavior of the packet capturing process, which in turn also affect the web server's performance.« less
Breilh, Jaime
2007-01-01
The article refers to the results of an integrative research project that aim to analyze ecosystem and human health's impacts of cut flower production in Cuencas del Rio Grande region (Cayambe and Tabacundo zones). In order to assess the complex object of study and its multiple dimensions, an interdisciplinary approach has been constructed, based on the following components: a) pesticides dynamics analysis; b) pesticides distribution and commercialization processes in the region; c) economic and anthropological transformation determinate by the flower production; d) epidemiological process of human health impacts; e) and the design of participatory, multicultural and integrative information. The research consolidated an important geo-codified data base on the impacts of cut flower production to workers, communities, aquatic systems and soils, offering evidences of the actual flower production system severe impacts and leading to a reflection about the sustainability of the productive systems and the future of the ecosystems.
Assessing land-use impacts on biodiversity using an expert systems tool
Crist, P.J.; Kohley, T.W.; Oakleaf, J.
2000-01-01
Habitat alteration, in the form of land-use development, is a leading cause of biodiversity loss in the U.S. and elsewhere. Although statutes in the U.S. may require consideration of biodiversity in local land-use planning and regulation, local governments lack the data, resources, and expertise to routinely consider biotic impacts that result from permitted land uses. We hypothesized that decision support systems could aid solution of this problem. We developed a pilot biodiversity expert systems tool (BEST) to test that hypothesis and learn what additional scientific and technological advancements are required for broad implementation of such a system. BEST uses data from the U.S. Geological Survey's Gap Analysis Program (GAP) and other data in a desktop GIS environment. The system provides predictions of conflict between proposed land uses and biotic elements and is intended for use at the start of the development review process. Key challenges were the development of categorization systems that relate named land-use types to ecological impacts, and relate sensitivities of biota to ecological impact levels. Although the advent of GAP and sophisticated desktop GIS make such a system feasible for broad implementation, considerable ongoing research is required to make the results of such a system scientifically sound, informative, and reliable for the regulatory process. We define a role for local government involvement in biodiversity impact assessment, the need for a biodiversity decision support system, the development of a prototype system, and scientific needs for broad implementation of a robust and reliable system.
Evaluation of the Impact of Quality Management Systems on School Climate
ERIC Educational Resources Information Center
Egido Gálvez, Inmaculada; Fernández Cruz, Francisco José; Fernández Díaz, Mª José
2016-01-01
Purpose: Implementation of quality management systems in educational institutions has gradually increased over the last few decades, even though there are still questions about the actual usefulness of these systems for improving school processes and outcomes. The purpose of this paper is to take an in-depth look at the impact, understood as…
NASA Astrophysics Data System (ADS)
Vanderborght, J.; Javaux, M.; Couvreur, V.; Schröder, N.; Huber, K.; Abesha, B.; Schnepf, A.; Vereecken, H.
2013-12-01
Plant roots play a crucial role in several key processes in soils. Besides their impact on biogeochemical cycles and processes, they also have an important influence on physical processes such as water flow and transport of dissolved substances in soils. Interaction between plant roots and soil processes takes place at different scales and ranges from the scale of an individual root and its directly surrounding soil or rhizosphere over the scale of a root system of an individual plant in a soil profile to the scale of vegetation patterns in landscapes. Simulation models that are used to predict water flow and solute transport in soil-plant systems mainly focus on the individual plant root system scale, parameterize single-root scale phenomena, and aggregate the root system scale to the vegetation scale. In this presentation, we will focus on the transition from the single root to the root system scale. Using high resolution non-invasive imaging techniques and methods, gradients in soil properties and states around roots and their difference from the bulk soil properties could be demonstrated. Recent developments in plant sciences provide new insights in the mechanisms that control water fluxes in plants and in the adaptation of root properties or root plasticity to changing soil conditions. However, since currently used approaches to simulate root water uptake neither resolve these small scale processes nor represent processes and controls within the root system, transferring this information to the whole soil-plant system scale is a challenge. Using a simulation model that describes flow and transport processes in the soil, resolves flow and transport towards individual roots, and describes flow and transport within the root system, such a transfer could be achieved. We present a few examples that illustrate: (i) the impact of changed rhizosphere hydraulic properties, (ii) the effect of root hydraulic properties and root system architecture, (iii) the regulation of plant transpiration by root-zone produced plant hormones, and (iv) the impact of salt accumulation at the soil-root interface on root water uptake. We further propose a framework how this process knowledge could be implemented in root zone simulation models that do not resolve small scale processes.
An arm wearable haptic interface for impact sensing on unmanned aerial vehicles
NASA Astrophysics Data System (ADS)
Choi, Yunshil; Hong, Seung-Chan; Lee, Jung-Ryul
2017-04-01
In this paper, an impact monitoring system using fiber Bragg grating (FBG) sensors and vibro-haptic actuators has been introduced. The system is suggested for structural health monitoring (SHM) for unmanned aerial vehicles (UAVs), by making a decision with human-robot interaction. The system is composed with two major subsystems; an on-board system equipped on UAV and an arm-wearable interface for ground pilot. The on-board system acquires impact-induced wavelength changes and performs localization process, which was developed based on arrival time calculation. The arm-wearable interface helps ground pilots to make decision about impact location themselves by stimulating their tactile-sense with motor vibration.
System Modeling of Lunar Oxygen Production: Mass and Power Requirements
NASA Technical Reports Server (NTRS)
Steffen, Christopher J.; Freeh, Joshua E.; Linne, Diane L.; Faykus, Eric W.; Gallo, Christopher A.; Green, Robert D.
2007-01-01
A systems analysis tool for estimating the mass and power requirements for a lunar oxygen production facility is introduced. The individual modeling components involve the chemical processing and cryogenic storage subsystems needed to process a beneficiated regolith stream into liquid oxygen via ilmenite reduction. The power can be supplied from one of six different fission reactor-converter systems. A baseline system analysis, capable of producing 15 metric tons of oxygen per annum, is presented. The influence of reactor-converter choice was seen to have a small but measurable impact on the system configuration and performance. Finally, the mission concept of operations can have a substantial impact upon individual component size and power requirements.
NASA Astrophysics Data System (ADS)
Yuan, Yingchun
This dissertation develops an effective and economical system approach to reduce the environmental impact of manufacturing. The system approach is developed by using a process-based holistic method for upstream analysis and source reduction of the environmental impact of manufacturing. The system approach developed consists of three components of a manufacturing system: technology, energy and material, and is useful for sustainable manufacturing as it establishes a clear link between manufacturing system components and its overall sustainability performance, and provides a framework for environmental impact reductions. In this dissertation, the system approach developed is applied for environmental impact reduction of a semiconductor nano-scale manufacturing system, with three case scenarios analyzed in depth on manufacturing process improvement, clean energy supply, and toxic chemical material selection. The analysis on manufacturing process improvement is conducted on Atomic Layer Deposition of Al2O3 dielectric gate on semiconductor microelectronics devices. Sustainability performance and scale-up impact of the ALD technology in terms of environmental emissions, energy consumption, nano-waste generation and manufacturing productivity are systematically investigated and the ways to improve the sustainability of the ALD technology are successfully developed. The clean energy supply is studied using solar photovoltaic, wind, and fuel cells systems for electricity generation. Environmental savings from each clean energy supply over grid power are quantitatively analyzed, and costs for greenhouse gas reductions on each clean energy supply are comparatively studied. For toxic chemical material selection, an innovative schematic method is developed as a visual decision tool for characterizing and benchmarking the human health impact of toxic chemicals, with a case study conducted on six chemicals commonly used as solvents in semiconductor manufacturing. Reliability of the schematic method is validated by comparing its benchmark results on 104 chemicals with that from the conventional Human Toxicity Potential (HTP) method. This dissertation concludes with discussions on environmental impact assessment of nanotechnologies and sustainability management of nano-particles. As nano-manufacturing is emerging for wide industrial applications, improvement and expansion of the system approach would be valuable for use in the environmental management of nano-manufacturing and in the risk control of nano-particles in the interests of public health and the environment.
1984-02-01
identifies the supply of personnel and training resources that can be expected at critical dates in the conceptual weapon system’s acquisition schedule...impact analysis matches demand to supply and identifies shortfalls in skills, new skill requirements, and high resource drivers. The tradeoff analysis...system. Step 5 - Conduct Impact Analysis The Impact Analysis determines the Army’s supply of those personnel and training resources required by the
Partition method and experimental validation for impact dynamics of flexible multibody system
NASA Astrophysics Data System (ADS)
Wang, J. Y.; Liu, Z. Y.; Hong, J. Z.
2018-06-01
The impact problem of a flexible multibody system is a non-smooth, high-transient, and strong-nonlinear dynamic process with variable boundary. How to model the contact/impact process accurately and efficiently is one of the main difficulties in many engineering applications. The numerical approaches being used widely in impact analysis are mainly from two fields: multibody system dynamics (MBS) and computational solid mechanics (CSM). Approaches based on MBS provide a more efficient yet less accurate analysis of the contact/impact problems, while approaches based on CSM are well suited for particularly high accuracy needs, yet require very high computational effort. To bridge the gap between accuracy and efficiency in the dynamic simulation of a flexible multibody system with contacts/impacts, a partition method is presented considering that the contact body is divided into two parts, an impact region and a non-impact region. The impact region is modeled using the finite element method to guarantee the local accuracy, while the non-impact region is modeled using the modal reduction approach to raise the global efficiency. A three-dimensional rod-plate impact experiment is designed and performed to validate the numerical results. The principle for how to partition the contact bodies is proposed: the maximum radius of the impact region can be estimated by an analytical method, and the modal truncation orders of the non-impact region can be estimated by the highest frequency of the signal measured. The simulation results using the presented method are in good agreement with the experimental results. It shows that this method is an effective formulation considering both accuracy and efficiency. Moreover, a more complicated multibody impact problem of a crank slider mechanism is investigated to strengthen this conclusion.
The Future Impact of Wind on BPA Power System Ancillary Services
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makarov, Yuri V.; Lu, Shuai; McManus, Bart
Wind power is growing in a very fast pace as an alternative generating resource. As the ratio of wind power over total system capacity increases, the impact of wind on various system aspects becomes significant. This paper presents a methodology to study the future impact of wind on BPA power system ancillary services including load following and regulation. Existing approaches for similar analysis include dispatch model simulation and standard deviation evaluation. The methodology proposed in this paper uses historical data and stochastic processes to simulate the load balancing processes in BPA power system. Then capacity, ramp rate and ramp durationmore » characteristics are extracted from the simulation results, and load following and regulation requirements are calculated accordingly. It mimics the actual power system operations therefore the results can be more realistic yet the approach is convenient to perform. Further, the ramp rate and ramp duration data obtained from the analysis can be used to evaluate generator response or maneuverability and energy requirement, respectively, additional to the capacity requirement.« less
NASA Astrophysics Data System (ADS)
al Aamery, N. M. H.; Mahoney, D. T.; Fox, J.
2017-12-01
Future climate change projections suggest extreme impacts on watershed hydrologic systems for some regions of the world including pronounced increases in surface runoff and instream flows. Yet, there remains a lack of research focused on how future changes in hydrologic extremes, as well as relative hydrologic mean changes, impact sediment redistribution within a watershed and sediment flux from a watershed. The authors hypothesized that variations in mean and extreme changes in turn may impact sediments in depositional and erosional dominance in a manner that may not be obvious to the watershed manager. Therefore, the objectives of this study were to investigate the inner processes connecting the combined effect of extreme climate change projections on the vegetation, upland erosion, and instream processes to produce changes in sediment redistribution within watersheds. To do so, research methods were carried out by the authors including simulating sediment processes in forecast and hindcast periods for a lowland watershed system. Publically available climate realizations from several climate factors and the Soil Water Assessment Tool (SWAT) were used to predict hydrologic conditions for the South Elkhorn Watershed in central Kentucky, USA to 2050. The results of the simulated extreme and mean hydrological components were used in simulating upland erosion with the connectivity processes consideration and thereafter used in building and simulating the instream erosion and deposition of sediment processes with the consideration of surface fine grain lamina (SFGL) layer controlling the benthic ecosystem. Results are used to suggest the dominance of erosional and depositional redistribution of sediments under different scenarios associated with extreme and mean hydrologic forecasting. The results are discussed in reference to the benthic ecology of the stream system providing insight on how water managers might consider sediment redistribution in a changing climate.
1987-05-01
processes or thermoregulation . Most investigations involving chronic exposures of mammals indicated either that no effects occurred or that reversible...radiofrequency radiation danger "* Fish, reptiles , and amphibians - Few species and fisheries - Avoid streams and wetlands, when possible 3-37 BIRDS "* The
The Impact of State Authorization Regulations on a Statewide Community College System
ERIC Educational Resources Information Center
Albo-Lopez, Nicole M.
2016-01-01
This concurrent mixed methods study revealed the impacts of the Title IV, Federal Regulation, State Authorization (SA), on a statewide community college system, with regard to staffing, establishment of local processes, obtainment of authorizations, fiscal resources, and student enrollment. The study takes place within the California community…
Achete, Fernanda; Van der Wegen, Mick; Roelvink, Jan Adriaan; Jaffe, Bruce E.
2017-01-01
Suspended sediment concentration is an important estuarine health indicator. Estuarine ecosystems rely on the maintenance of habitat conditions, which are changing due to direct human impact and climate change. This study aims to evaluate the impact of climate change relative to engineering measures on estuarine fine sediment dynamics and sediment budgets. We use the highly engineered San Francisco Bay-Delta system as a case study. We apply a process-based modeling approach (Delft3D-FM) to assess the changes in hydrodynamics and sediment dynamics resulting from climate change and engineering scenarios. The scenarios consider a direct human impact (shift in water pumping location), climate change (sea level rise and suspended sediment concentration decrease), and abrupt disasters (island flooding, possibly as the results of an earthquake). Levee failure has the largest impact on the hydrodynamics of the system. Reduction in sediment input from the watershed has the greatest impact on turbidity levels, which are key to primary production and define habitat conditions for endemic species. Sea level rise leads to more sediment suspension and a net sediment export if little room for accommodation is left in the system due to continuous engineering works. Mitigation measures like levee reinforcement are effective for addressing direct human impacts, but less effective for a persistent, widespread, and increasing threat like sea level rise. Progressive adaptive mitigation measures to the changes in sediment and flow dynamics resulting from sea level rise may be a more effective strategy. Our approach shows that a validated process-based model is a useful tool to address long-term (decades to centuries) changes in sediment dynamics in highly engineered estuarine systems. In addition, our modeling approach provides a useful basis for long-term, process-based studies addressing ecosystem dynamics and health.
A methodology for the environmental assessment of advanced coal extraction systems
NASA Technical Reports Server (NTRS)
Sullivan, P. J.; Hutchinson, C. F.; Makihara, J.; Evensizer, J.
1980-01-01
Procedures developed to identify and assess potential environment impacts of advanced mining technology as it moves from a generic concept to a more systems definition are described. Two levels of assessment are defined in terms of the design stage of the technology being evaluated. The first level of analysis is appropriate to a conceptual design. At this level it is assumed that each mining process has known and potential environmental impacts that are generic to each mining activity. By using this assumption, potential environmental impacts can be identified for new mining systems. When two or more systems have been assessed, they can be evaluated comparing potential environmental impacts. At the preliminary stage of design, a systems performance can be assessed again with more precision. At this level of systems definition, potential environmental impacts can be analyzed and their significane determined in a manner to facilitate comparisons between systems. At each level of analysis, suggestions calculated to help the designer mitigate potentially harmful impacts are provided.
The impact of the pervasive information age on healthcare organizations.
Landry, Brett J L; Mahesh, Sathi; Hartman, Sandra J
2005-01-01
New information technologies place data on integrated information systems, and provide access via pervasive computing technologies. Pervasive computing puts computing power in the hands of all employees, available wherever it is needed. Integrated systems offer seamless data and process integration over diverse information systems. In this paper we look at the impact of these technologies on healthcare organizations in the future.
NASA Astrophysics Data System (ADS)
Heldmann, J. L.; Colaprete, A.; Cohen, B. A.; Elphic, R. C.; Garry, W. B.; Hodges, K. V.; Hughes, S. S.; Kim, K. J.; Lim, D.; McKay, C. P.; Osinski, G. R.; Petro, N. E.; Sears, D. W.; Squyres, S. W.; Tornabene, L. L.
2013-12-01
Terrestrial analog studies are a critical component for furthering our understanding of geologic processes on the Moon, near-Earth asteroids (NEAs), and the moons of Mars. Carefully chosen analog sites provide a unique natural laboratory with high relevance to the associated science on these solar system target bodies. Volcanism and impact cratering are fundamental processes on the Moon, NEAs, and Phobos and Deimos. The terrestrial volcanic and impact records remain invaluable for our understanding of these processes throughout our solar system, since these are our primary source of firsthand knowledge on volcanic landform formation and modification as well as the three-dimensional structural and lithological character of impact craters. Regarding impact cratering, terrestrial fieldwork can help us to understand the origin and emplacement of impactites, the history of impact bombardment in the inner Solar System, the formation of complex impact craters, and the effects of shock on planetary materials. Volcanism is another dominant geologic process that has significantly shaped the surface of planetary bodies and many asteroids. Through terrestrial field investigations we can study the processes, geomorphic features and rock types related to fissure eruptions, volcanic constructs, lava tubes, flows and pyroclastic deposits. Also, terrestrial analog studies have the advantage of enabling simultaneous robotic and/or human exploration testing in a low cost, low risk, high fidelity environment to test technologies and concepts of operations for future missions to the target bodies. Of particular interest is the importance and role of robotic precursor missions prior to human operations for which there is little to no actual mission experience to draw upon. Also critical to understanding new worlds is sample return, and analog studies enable us to develop the appropriate procedures for collecting samples in a manner that will best achieve the science objectives.
NASA Technical Reports Server (NTRS)
Heldmann, Jennifer Lynne; Colaprete, Anthony; Cohen, Barbara; Elphic, Richard; Garry, William; Hodges, Kip; Hughes, Scott; Kim, Kyeon; Lim, Darlene; McKay, Chris;
2013-01-01
Terrestrial analog studies are a critical component for furthering our understanding of geologic processes on the Moon, near-Earth asteroids (NEAs), and the moons of Mars. Carefully chosen analog sites provide a unique natural laboratory with high relevance to the associated science on these solar system target bodies. Volcanism and impact cratering are fundamental processes on the Moon, NEAs, and Phobos and Deimos. The terrestrial volcanic and impact records remain invaluable for our understanding of these processes throughout our solar system, since these are our primary source of firsthand knowledge on volcanic landform formation and modification as well as the three-dimensional structural and lithological character of impact craters. Regarding impact cratering, terrestrial fieldwork can help us to understand the origin and emplacement of impactites, the history of impact bombardment in the inner Solar System, the formation of complex impact craters, and the effects of shock on planetary materials. Volcanism is another dominant geologic process that has significantly shaped the surface of planetary bodies and many asteroids. Through terrestrial field investigations we can study the processes, geomorphic features and rock types related to fissure eruptions, volcanic constructs, lava tubes, flows and pyroclastic deposits. Also, terrestrial analog studies have the advantage of enabling simultaneous robotic and/or human exploration testing in a low cost, low risk, high fidelity environment to test technologies and concepts of operations for future missions to the target bodies. Of particular interest is the importance and role of robotic precursor missions prior to human operations for which there is little to no actual mission experience to draw upon. Also critical to understanding new worlds is sample return, and analog studies enable us to develop the appropriate procedures for collecting samples in a manner that will best achieve the science objectives.
Laboratory testing in primary care: A systematic review of health IT impacts.
Maillet, Éric; Paré, Guy; Currie, Leanne M; Raymond, Louis; Ortiz de Guinea, Ana; Trudel, Marie-Claude; Marsan, Josianne
2018-08-01
Laboratory testing in primary care is a fundamental process that supports patient management and care. Any breakdown in the process may alter clinical information gathering and decision-making activities and can lead to medical errors and potential adverse outcomes for patients. Various information technologies are being used in primary care with the goal to support the process, maximize patient benefits and reduce medical errors. However, the overall impact of health information technologies on laboratory testing processes has not been evaluated. To synthesize the positive and negative impacts resulting from the use of health information technology in each phase of the laboratory 'total testing process' in primary care. We conducted a systematic review. Databases including Medline, PubMed, CINAHL, Web of Science and Google Scholar were searched. Studies eligible for inclusion reported empirical data on: 1) the use of a specific IT system, 2) the impacts of the systems to support the laboratory testing process, and were conducted in 3) primary care settings (including ambulatory care and primary care offices). Our final sample consisted of 22 empirical studies which were mapped to a framework that outlines the phases of the laboratory total testing process, focusing on phases where medical errors may occur. Health information technology systems support several phases of the laboratory testing process, from ordering the test to following-up with patients. This is a growing field of research with most studies focusing on the use of information technology during the final phases of the laboratory total testing process. The findings were largely positive. Positive impacts included easier access to test results by primary care providers, reduced turnaround times, and increased prescribed tests based on best practice guidelines. Negative impacts were reported in several studies: paper-based processes employed in parallel to the electronic process increased the potential for medical errors due to clinicians' cognitive overload; systems deemed not reliable or user-friendly hampered clinicians' performance; and organizational issues arose when results tracking relied on the prescribers' memory. The potential of health information technology lies not only in the exchange of health information, but also in knowledge sharing among clinicians. This review has underscored the important role played by cognitive factors, which are critical in the clinician's decision-making, the selection of the most appropriate tests, correct interpretation of the results and efficient interventions. By providing the right information, at the right time to the right clinician, many IT solutions adequately support the laboratory testing process and help primary care clinicians make better decisions. However, several technological and organizational barriers require more attention to fully support the highly fragmented and error-prone process of laboratory testing. Copyright © 2018 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Einstein, Michael M.
2014-01-01
As business e-mail volumes continue to grow and employees spend increasingly larger portions of their day processing e-mail, there is strong evidence of the negative impacts of e-mail processing, especially with respect to e-mail overload. This study sought to determine whether a training program focused on select e-mail features and processing…
Electroactive Reactive Oligomers and Polymers as Device Components
2009-02-03
promise to impact the development of reflective and transmissive color-changing systems spanning ’smart’ polyclu’omic glassing technologies and e-papers...mediated cross-coupling reactions. While the first substitution is expected to have the largest impact on the energy gap of the donor-acceptor system, a...transmissive device applications, it is expected that processable black to transmissive analogues will impact the development of EC windows, e- papers and
When Worlds Collide: Witnessing Planetary-Scale Impacts in the Coming Decades
NASA Astrophysics Data System (ADS)
Masiero, J. R.; Bauer, J. M.; Grav, T.; Mainzer, A. K.
2017-02-01
Asteroid impacts offer a unique opportunity to study the collisional processes that shape planetary systems. In the coming decades, expanded surveys may give us the chance to predict an impact with enough advance warning to observe it in situ.
Lipid-associated oral delivery: Mechanisms and analysis of oral absorption enhancement.
Rezhdo, Oljora; Speciner, Lauren; Carrier, Rebecca
2016-10-28
The majority of newly discovered oral drugs are poorly water soluble, and co-administration with lipids has proven effective in significantly enhancing bioavailability of some compounds with low aqueous solubility. Yet, lipid-based delivery technologies have not been widely employed in commercial oral products. Lipids can impact drug transport and fate in the gastrointestinal (GI) tract through multiple mechanisms including enhancement of solubility and dissolution kinetics, enhancement of permeation through the intestinal mucosa, and triggering drug precipitation upon lipid emulsion depletion (e.g., by digestion). The effect of lipids on drug absorption is currently not quantitatively predictable, in part due to the multiple complex dynamic processes that can be impacted by lipids. Quantitative mechanistic analysis of the processes significant to lipid system function and overall impact on drug absorption can aid in the understanding of drug-lipid interactions in the GI tract and exploitation of such interactions to achieve optimal lipid-based drug delivery. In this review, we discuss the impact of co-delivered lipids and lipid digestion on drug dissolution, partitioning, and absorption in the context of the experimental tools and associated kinetic expressions used to study and model these processes. The potential benefit of a systems-based consideration of the concurrent multiple dynamic processes occurring upon co-dosing lipids and drugs to predict the impact of lipids on drug absorption and enable rational design of lipid-based delivery systems is presented. Copyright © 2016 Elsevier B.V. All rights reserved.
Jones, Jason J; Chu, Jeffrey; Graham, Jacob; Zaluski, Serge; Rocha, Guillermo
2016-01-01
The aim of this study was to evaluate the operational impact of using preloaded intraocular lens (IOL) delivery systems compared with manually loaded IOL delivery processes during routine cataract surgeries. Time and motion data, staff and surgery schedules, and cost accounting reports were collected across three sites located in the US, France, and Canada. Time and motion data were collected for manually loaded IOL processes and preloaded IOL delivery systems over four surgery days. Staff and surgery schedules and cost accounting reports were collected during the 2 months prior and after introduction of the preloaded IOL delivery system. The study included a total of 154 routine cataract surgeries across all three sites. Of these, 77 surgeries were performed using a preloaded IOL delivery system, and the remaining 77 surgeries were performed using a manual IOL delivery process. Across all three sites, use of the preloaded IOL delivery system significantly decreased mean total case time by 6.2%-12.0% (P<0.001 for data from Canada and the US and P<0.05 for data from France). Use of the preloaded delivery system also decreased surgeon lens time, surgeon delays, and eliminated lens touches during IOL preparation. Compared to a manual IOL delivery process, use of a preloaded IOL delivery system for cataract surgery reduced total case time, total surgeon lens time, surgeon delays, and eliminated IOL touches. The time savings provided by the preloaded IOL delivery system provide an opportunity for sites to improve routine cataract surgery throughput without impacting surgeon or staff capacity.
Jin, Bo; Zhao, Haibo; Zheng, Chuguang; Liang, Zhiwu
2017-01-03
Exergy-based methods are widely applied to assess the performance of energy conversion systems; however, these methods mainly focus on a certain steady-state and have limited applications for evaluating the control impacts on system operation. To dynamically obtain the thermodynamic behavior and reveal the influences of control structures, layers and loops, on system energy performance, a dynamic exergy method is developed, improved, and applied to a complex oxy-combustion boiler island system for the first time. The three most common operating scenarios are studied, and the results show that the flow rate change process leads to less energy consumption than oxygen purity and air in-leakage change processes. The variation of oxygen purity produces the largest impact on system operation, and the operating parameter sensitivity is not affected by the presence of process control. The control system saves energy during flow rate and oxygen purity change processes, while it consumes energy during the air in-leakage change process. More attention should be paid to the oxygen purity change because it requires the largest control cost. In the control system, the supervisory control layer requires the greatest energy consumption and the largest control cost to maintain operating targets, while the steam control loops cause the main energy consumption.
NASA Technical Reports Server (NTRS)
Mizell, Carolyn Barrett; Malone, Linda
2007-01-01
The development process for a large software development project is very complex and dependent on many variables that are dynamic and interrelated. Factors such as size, productivity and defect injection rates will have substantial impact on the project in terms of cost and schedule. These factors can be affected by the intricacies of the process itself as well as human behavior because the process is very labor intensive. The complex nature of the development process can be investigated with software development process models that utilize discrete event simulation to analyze the effects of process changes. The organizational environment and its effects on the workforce can be analyzed with system dynamics that utilizes continuous simulation. Each has unique strengths and the benefits of both types can be exploited by combining a system dynamics model and a discrete event process model. This paper will demonstrate how the two types of models can be combined to investigate the impacts of human resource interactions on productivity and ultimately on cost and schedule.
NASA Astrophysics Data System (ADS)
Cai, X.; Riley, W. J.; Zhu, Q.
2017-12-01
Deforestation causes a series of changes to the climate, water, and nutrient cycles. Employing a state-of-the-art earth system model—ACME (Accelerated Climate Modeling for Energy), we comprehensively investigate the impacts of deforestation on these processes. We first assess the performance of the ACME Land Model (ALM) in simulating runoff, evapotranspiration, albedo, and plant productivity at 42 FLUXNET sites. The single column mode of ACME is then used to examine climate effects (temperature cooling/warming) and responses of runoff, evapotranspiration, and nutrient fluxes to deforestation. This approach separates local effects of deforestation from global circulation effects. To better understand the deforestation effects in a global context, we use the coupled (atmosphere, land, and slab ocean) mode of ACME to demonstrate the impacts of deforestation on global climate, water, and nutrient fluxes. Preliminary results showed that the land component of ACME has advantages in simulating these processes and that local deforestation has potentially large impacts on runoff and atmospheric processes.
Space Weathering in Houston: A Role for the Experimental Impact Laboratory at JSC
NASA Technical Reports Server (NTRS)
Cintala, M. J.; Keller, L. P.; Christoffersen, R.; Hoerz, F.
2015-01-01
The effective investigation of space weathering demands an interdisciplinary approach that is at least as diversified as any other in planetary science. Because it is a macroscopic process affecting all bodies in the solar system, impact and its resulting shock effects must be given detailed attention in this regard. Direct observation of the effects of impact is most readily done for the Moon, but it still remains difficult for other bodies in the solar system. Analyses of meteorites and precious returned samples provide clues for space weathering on asteroids, but many deductions arising from those studies must still be considered circumstantial. Theoretical work is also indispensable, but it can only go as far as the sometimes meager data allow. Experimentation, however, can permit near real-time study of myriad processes that could contribute to space weathering. This contribution describes some of the capabilities of the Johnson Space Center's Experimental Impact Laboratory (EIL) and how they might help in understanding the space weathering process.
Monitoring and Modeling the Tibetan Plateau's climate system and its impact on East Asia.
Ma, Yaoming; Ma, Weiqiang; Zhong, Lei; Hu, Zeyong; Li, Maoshan; Zhu, Zhikun; Han, Cunbo; Wang, Binbin; Liu, Xin
2017-03-13
The Tibetan Plateau is an important water source in Asia. As the "Third Pole" of the Earth, the Tibetan Plateau has significant dynamic and thermal effects on East Asian climate patterns, the Asian monsoon process and atmospheric circulation in the Northern Hemisphere. However, little systematic knowledge is available regarding the changing climate system of the Tibetan Plateau and the mechanisms underlying its impact on East Asia. This study was based on "water-cryosphere-atmosphere-biology" multi-sphere interactions, primarily considering global climate change in relation to the Tibetan Plateau -East Asia climate system and its mechanisms. This study also analyzed the Tibetan Plateau to clarify global climate change by considering multi-sphere energy and water processes. Additionally, the impacts of climate change in East Asia and the associated impact mechanisms were revealed, and changes in water cycle processes and water conversion mechanisms were studied. The changes in surface thermal anomalies, vegetation, local circulation and the atmospheric heat source on the Tibetan Plateau were studied, specifically, their effects on the East Asian monsoon and energy balance mechanisms. Additionally, the relationships between heating mechanisms and monsoon changes were explored.
Monitoring and Modeling the Tibetan Plateau’s climate system and its impact on East Asia
Ma, Yaoming; Ma, Weiqiang; Zhong, Lei; Hu, Zeyong; Li, Maoshan; Zhu, Zhikun; Han, Cunbo; Wang, Binbin; Liu, Xin
2017-01-01
The Tibetan Plateau is an important water source in Asia. As the “Third Pole” of the Earth, the Tibetan Plateau has significant dynamic and thermal effects on East Asian climate patterns, the Asian monsoon process and atmospheric circulation in the Northern Hemisphere. However, little systematic knowledge is available regarding the changing climate system of the Tibetan Plateau and the mechanisms underlying its impact on East Asia. This study was based on “water-cryosphere-atmosphere-biology” multi-sphere interactions, primarily considering global climate change in relation to the Tibetan Plateau -East Asia climate system and its mechanisms. This study also analyzed the Tibetan Plateau to clarify global climate change by considering multi-sphere energy and water processes. Additionally, the impacts of climate change in East Asia and the associated impact mechanisms were revealed, and changes in water cycle processes and water conversion mechanisms were studied. The changes in surface thermal anomalies, vegetation, local circulation and the atmospheric heat source on the Tibetan Plateau were studied, specifically, their effects on the East Asian monsoon and energy balance mechanisms. Additionally, the relationships between heating mechanisms and monsoon changes were explored. PMID:28287648
Impact of Physics Parameterization Ordering in a Global Atmosphere Model
Donahue, Aaron S.; Caldwell, Peter M.
2018-02-02
Because weather and climate models must capture a wide variety of spatial and temporal scales, they rely heavily on parameterizations of subgrid-scale processes. The goal of this study is to demonstrate that the assumptions used to couple these parameterizations have an important effect on the climate of version 0 of the Energy Exascale Earth System Model (E3SM) General Circulation Model (GCM), a close relative of version 1 of the Community Earth System Model (CESM1). Like most GCMs, parameterizations in E3SM are sequentially split in the sense that parameterizations are called one after another with each subsequent process feeling the effectmore » of the preceding processes. This coupling strategy is noncommutative in the sense that the order in which processes are called impacts the solution. By examining a suite of 24 simulations with deep convection, shallow convection, macrophysics/microphysics, and radiation parameterizations reordered, process order is shown to have a big impact on predicted climate. In particular, reordering of processes induces differences in net climate feedback that are as big as the intermodel spread in phase 5 of the Coupled Model Intercomparison Project. One reason why process ordering has such a large impact is that the effect of each process is influenced by the processes preceding it. Where output is written is therefore an important control on apparent model behavior. Application of k-means clustering demonstrates that the positioning of macro/microphysics and shallow convection plays a critical role on the model solution.« less
Impact of Physics Parameterization Ordering in a Global Atmosphere Model
NASA Astrophysics Data System (ADS)
Donahue, Aaron S.; Caldwell, Peter M.
2018-02-01
Because weather and climate models must capture a wide variety of spatial and temporal scales, they rely heavily on parameterizations of subgrid-scale processes. The goal of this study is to demonstrate that the assumptions used to couple these parameterizations have an important effect on the climate of version 0 of the Energy Exascale Earth System Model (E3SM) General Circulation Model (GCM), a close relative of version 1 of the Community Earth System Model (CESM1). Like most GCMs, parameterizations in E3SM are sequentially split in the sense that parameterizations are called one after another with each subsequent process feeling the effect of the preceding processes. This coupling strategy is noncommutative in the sense that the order in which processes are called impacts the solution. By examining a suite of 24 simulations with deep convection, shallow convection, macrophysics/microphysics, and radiation parameterizations reordered, process order is shown to have a big impact on predicted climate. In particular, reordering of processes induces differences in net climate feedback that are as big as the intermodel spread in phase 5 of the Coupled Model Intercomparison Project. One reason why process ordering has such a large impact is that the effect of each process is influenced by the processes preceding it. Where output is written is therefore an important control on apparent model behavior. Application of k-means clustering demonstrates that the positioning of macro/microphysics and shallow convection plays a critical role on the model solution.
Impact of Physics Parameterization Ordering in a Global Atmosphere Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donahue, Aaron S.; Caldwell, Peter M.
Because weather and climate models must capture a wide variety of spatial and temporal scales, they rely heavily on parameterizations of subgrid-scale processes. The goal of this study is to demonstrate that the assumptions used to couple these parameterizations have an important effect on the climate of version 0 of the Energy Exascale Earth System Model (E3SM) General Circulation Model (GCM), a close relative of version 1 of the Community Earth System Model (CESM1). Like most GCMs, parameterizations in E3SM are sequentially split in the sense that parameterizations are called one after another with each subsequent process feeling the effectmore » of the preceding processes. This coupling strategy is noncommutative in the sense that the order in which processes are called impacts the solution. By examining a suite of 24 simulations with deep convection, shallow convection, macrophysics/microphysics, and radiation parameterizations reordered, process order is shown to have a big impact on predicted climate. In particular, reordering of processes induces differences in net climate feedback that are as big as the intermodel spread in phase 5 of the Coupled Model Intercomparison Project. One reason why process ordering has such a large impact is that the effect of each process is influenced by the processes preceding it. Where output is written is therefore an important control on apparent model behavior. Application of k-means clustering demonstrates that the positioning of macro/microphysics and shallow convection plays a critical role on the model solution.« less
NASA Astrophysics Data System (ADS)
Pershin, I. M.; Pervukhin, D. A.; Ilyushin, Y. V.; Afanaseva, O. V.
2017-10-01
The article considers the important issue of designing the distributed systems of hydrolithospere processes management. Control effects on the hydrolithospere processes are implemented by a set of extractive wells. The article shows how to determine the optimal number of extractive wells that provide a distributed control impact on the management object.
The Future Impact of Wind on BPA Power System Load Following and Regulation Requirements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makarov, Yuri V.; Lu, Shuai; McManus, Bart
Wind power is growing in a very fast pace as an alternative generating resource. As the ratio of wind power over total system capacity increases, the impact of wind on various system aspects becomes significant. This paper presents a methodology to study the future impact of wind on BPA power system load following and regulation requirements. Existing methodologies for similar analysis include dispatch model simulation and standard deviation evaluation on load and wind data. The methodology proposed in this paper uses historical data and stochastic processes to simulate the load balancing processes in the BPA power system. It mimics themore » actual power system operations therefore the results are close to reality yet the study based on this methodology is convenient to perform. The capacity, ramp rate and ramp duration characteristics are extracted from the simulation results. System load following and regulation capacity requirements are calculated accordingly. The ramp rate and ramp duration data obtained from the analysis can be used to evaluate generator response or maneuverability requirement and regulating units’ energy requirement, respectively.« less
Impact of Child Sexual Abuse Medical Examinations on the Dependency and Criminal Systems.
ERIC Educational Resources Information Center
De Jong, Allan R.
1998-01-01
Reviews previous research on the sociolegal impact of medical evaluations for child sexual abuse; offers a recommended menu of research questions, concerning process and outcomes of these evaluations, interviewing techniques, the use of medical evidence in prosecution, and knowledge level of professionals in the criminal and dependency systems.…
Central Radar System, Over-the-Horizon Backscatter
1990-03-09
1,2-Dibromo-3- chloropropane (DBCP) 0.3 TABLE 41-6 (Continued). MINNESOTA RECOMMENDED ALLOWABLE LIMITS (RAL) FOR DRINKING WATER WELLS Compound RAL (ug/ 1 ...TABLE OF CONTENTS ENVIRONMENTAL IMPACT ANALYSIS PROCESS OVERVIEW ............ TECHNICAL STUDY 1 FACILITIES...TECHNICAL STUDY 10 0 TECHNICAL STUDY 1 CENTRAL RADAR SYSTEM OVER-THE-HORIZON BACKSCATTER RADAR PROGRAM 0 ENVIRONMENTAL IMPACT
Mominah, Maher; Yunus, Faisel; Househ, Mowafa S
2013-01-01
Computerized provider order entry (CPOE) is a health informatics system that helps health care providers create and manage orders for medications and other health care services. Through the automation of the ordering process, CPOE has improved the overall efficiency of hospital processes and workflow. In Saudi Arabia, CPOE has been used for years, with only a few studies evaluating the impacts of CPOE on clinical workflow. In this paper, we discuss the experience of a local hospital with the use of CPOE and its impacts on clinical workflow. Results show that there are many issues related to the implementation and use of CPOE within Saudi Arabia that must be addressed, including design, training, medication errors, alert fatigue, and system dep Recommendations for improving CPOE use within Saudi Arabia are also discussed.
NASA Astrophysics Data System (ADS)
Jimenez-Martinez, J.; Porter, M. L.; Hyman, J.; Carey, J. W.; Viswanathan, H. S.
2015-12-01
Although the mixing of fluids within a porous media is a common process in natural and industrial systems, how the degree of mixing depends on the miscibility of multiple phases is poorly characterized. Often, the direct consequence of miscible mixing is the modification of the resident fluid (brine and hydrocarbons) rheological properties. We investigate supercritical (sc)CO2 displacement and mixing processes in a three-phase system (scCO2, oil, and H2O) using a microfluidics experimental system that accommodates the high pressures and temperatures encountered in fossil fuel extraction operations. The miscibility of scCO2 with the resident fluids, low with aqueous solutions and high with hydrocarbons, impacts the mixing processes that control sweep efficiency in enhanced oil recovery (EOR) and the unlocking of the system in unconventional oil and gas extraction. Using standard volume-averaging techniques we upscale the aqueous phase saturation to the field-scale (i.e., Darcy scale) and interpret the results as a simpler two-phase system. This process allows us to perform a statistical analysis to quantify i) the degree of heterogeneity in the system resulting from the immiscible H2O and ii) how that heterogeneity impacts mixing between scCO2 and oil and their displacement. Our results show that when scCO2 is used for miscible displacement, the presence of an aqueous solution, which is common in secondary and tertiary EOR and unconventional oil and gas extraction, strongly impacts the mixing of scCO2 with the hydrocarbons due to low scCO2-H2O miscibility. H2O, which must be displaced advectively by the injected scCO2, introduces spatio-temporal variability into the system that acts as a barrier between the two miscibile fluids. This coupled with the effect of viscosity contrast, i.e., viscous fingering, has an impact on the mixing of the more miscible pair.
Steele, Muriel M; Anctil, Annick; Ladner, David A
2014-05-01
Algaculture has the potential to be a sustainable option for nutrient removal at wastewater treatment plants. The purpose of this study was to compare the environmental impacts of three likely algaculture integration strategies to a conventional nutrient removal strategy. Process modeling was used to determine life cycle inventory data and a comparative life cycle assessment was used to determine environmental impacts. Treatment scenarios included a base case treatment plant without nutrient removal, a plant with conventional nutrient removal, and three other cases with algal unit processes placed at the head of the plant, in a side stream, and at the end of the plant, respectively. Impact categories included eutrophication, global warming, ecotoxicity, and primary energy demand. Integrating algaculture prior to activated sludge proved to be most beneficial of the scenarios considered for all impact categories; however, this scenario would also require primary sedimentation and impacts of that unit process should be considered for implementation of such a system.
Impact of advanced onboard processing concepts on end-to-end data system
NASA Technical Reports Server (NTRS)
Sos, J. Y.
1978-01-01
An investigation is conducted of the impact of advanced onboard data handling concepts on the total system in general and on ground processing operations, such as those being performed in the central data processing facility of the NASA Goddard Space Flight Center. In one of these concepts, known as the instrument telemetry packet (ITP) system, telemetry data from a single instrument is encoded into a packet, along with other ancillary data, and transmitted in this form to the ground. Another concept deals with onboard temporal registration of image data from such sensors as the thematic mapper, to be carried onboard the Landsat-D spacecraft in 1981. It is found that the implementation of the considered concepts will result in substantial simplification of the ground processing element of the system. With the projected tenfold increase in the data volume expected in the next decade, the introduction of ITP should keep the cost of the ground data processing function within reasonable bounds and significantly contribute to a more timely delivery of data/information to the end user.
New social movements and political process: The politics of hydroelectric power in Switzerland
NASA Astrophysics Data System (ADS)
Lehmann, Luzia M.
This dissertation analyzes the mobilization and impact of the ecology movement mobilizing against and challenging hydroelectric power plants in the Alps. It argues that the political process model is the most fruitful framework for such a study, linking a political system's structural constraints and opportunities to movement action via organizational resources. The mobilization process resulting in movement impact is conceived as an interactive process among social movements, authorities, other opponents, and potential counter movements. The case study method is then used to analyze three action campaigns launched against hydro power plants in Graubunden since the 1970s: Ilanz I and II, Greina, and Curciusa. In terms of the movement's narrow goal of preventing a plant, Ilanz I and II is a failure, Greina a success, and Curciusa ambiguous. Yet the author defines movement impact more broadly, including procedural, reactive and proactive substantive impact, and structural impact, changes in the alliance/conflict system, and social learning. Based on the evidence from the case studies, these factors affect movement outcome positively: visibility in the media and framing the debate, adjusting the target level and movement repertoire to the opportunity structure and the spatial concentration of the issue, proactivity, and organizational resources with a well developed division of labor, internal communication, and a non-partisan alliance system at all levels. There are two main conceptual contributions. First, the author analyzes the political opportunity structure at all levels of the federal polity--the national, cantonal, and communal--as well as the interplay among the levels. The fact that the cantonal and communal levels exhibit more elements of closure than the national level helps explain differences in movements' organizational resources, movement repertoire, targeting of movement action, and thus movement impact. Second, the author develops the spatial concentration of the issue, a variable posited and confirmed to have an impact on mobilization and impact via organizational resources: characteristics of the geographical and political space pertaining to the contentious issue may add constraints to mobilization. The variable turns out to be a crucial part of the political process model in explaining the three action campaigns and their outcome.
CLIMATE IMPACTS ON NUTRIENT FLUXES IN STREAM FLOW IN THE MID-ATLANTIC REGION
As part of a national assessment process, researchers of the Mid-Atlantic Regional Assessment (MARA) are studying the impacts of climate variation and change on the natural and social systems of the Mid-Atlantic Region. This poster presents research investigating climate impacts ...
A Module Experimental Process System Development Unit (MEPSDU)
NASA Technical Reports Server (NTRS)
1981-01-01
Design work for a photovoltaic module, fabricated using single crystal silicon dendritic web sheet material, resulted in the identification of surface treatment to the module glass superstrate which improved module efficiencies. A final solar module environmental test, a simulated hailstone impact test, was conducted on full size module superstrates to verify that the module's tempered glass superstrate can withstand specified hailstone impacts near the corners and edges of the module. Process sequence design work on the metallization process selective, liquid dopant investigation, dry processing, and antireflective/photoresist application technique tasks, and optimum thickness for Ti/Pd are discussed. A noncontact cleaning method for raw web cleaning was identified and antireflective and photoresist coatings for the dendritic webs were selected. The design of a cell string conveyor, an interconnect feed system, rolling ultrasonic spot bonding heat, and the identification of the optimal commercially available programmable control system are also discussed. An economic analysis to assess cost goals of the process sequence is also given.
Overview of the NASA Wallops Flight Facility Mobile Range Control System
NASA Technical Reports Server (NTRS)
Davis, Rodney A.; Semancik, Susan K.; Smith, Donna C.; Stancil, Robert K.
1999-01-01
The NASA GSFC's Wallops Flight Facility (WFF) Mobile Range Control System (MRCS) is based on the functionality of the WFF Range Control Center at Wallops Island, Virginia. The MRCS provides real time instantaneous impact predictions, real time flight performance data, and other critical information needed by mission and range safety personnel in support of range operations at remote launch sites. The MRCS integrates a PC telemetry processing system (TELPro), a PC radar processing system (PCDQS), multiple Silicon Graphics display workstations (IRIS), and communication links within a mobile van for worldwide support of orbital, suborbital, and aircraft missions. This paper describes the MRCS configuration; the TELPro's capability to provide single/dual telemetry tracking and vehicle state data processing; the PCDQS' capability to provide real time positional data and instantaneous impact prediction for up to 8 data sources; and the IRIS' user interface for setup/display options. With portability, PC-based data processing, high resolution graphics, and flexible multiple source support, the MRCS system is proving to be responsive to the ever-changing needs of a variety of increasingly complex missions.
The Waste Reduction Decision Support System (WAR DSS) is a Java-based software product providing comprehensive modeling of potential adverse environmental impacts (PEI) predicted to result from newly designed or redesigned chemical manufacturing processes. The purpose of this so...
NASA Astrophysics Data System (ADS)
Kenny, Gavin G.; Petrus, Joseph A.; Whitehouse, Martin J.; Daly, J. Stephen; Kamber, Balz S.
2017-10-01
We report on the first zircon hafnium-oxygen isotope and trace element study of a transect through one of the largest terrestrial impact melt sheets. The differentiated melt sheet at the 1.85 Ga, originally ca. 200 km in diameter Sudbury impact crater, Ontario, Canada, yields a tight range of uniform zircon Hf isotope compositions (εHf(1850) of ca. -9 to -12). This is consistent with its well-established crustal origin and indicates differentiation from a single melt that was initially efficiently homogenised. We propose that the heterogeneity in other isotopic systems, such as Pb, in early-emplaced impact melt at Sudbury is associated with volatility-related depletion during the impact cratering process. This depletion leaves the isotopic systems of more volatile elements more susceptible to contamination during post-impact assimilation of country rock, whereas the systems of more refractory elements preserve initial homogeneities. Zircon oxygen isotope compositions in the melt sheet are also restricted in range relative to those in the impacted target rocks. However, they display a marked offset approximately one-third up the melt sheet stratigraphy that is interpreted to be a result of post-impact assimilation of 18O-enirched rocks into the base of the cooling impact melt. Given that impact cratering was a more dominant process in the early history of the inner Solar System than it is today, and the possibility that impact melt sheets were sources of ex situ Hadean zircon grains, these findings may have significance for the interpretation of the early zircon Hf record. We speculate that apparent εHf-time arrays observed in the oldest terrestrial and lunar zircon datasets may be related to impact melting homogenising previously more diverse crust. We also show that spatially restricted partial melting of rocks buried beneath the superheated impact melt at Sudbury provided a zircon crystallising environment distinct to the impact melt sheet itself.
Predicting on-site environmental impacts of municipal engineering works
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gangolells, Marta, E-mail: marta.gangolells@upc.edu; Casals, Miquel, E-mail: miquel.casals@upc.edu; Forcada, Núria, E-mail: nuria.forcada@upc.edu
2014-01-15
The research findings fill a gap in the body of knowledge by presenting an effective way to evaluate the significance of on-site environmental impacts of municipal engineering works prior to the construction stage. First, 42 on-site environmental impacts of municipal engineering works were identified by means of a process-oriented approach. Then, 46 indicators and their corresponding significance limits were determined on the basis of a statistical analysis of 25 new-build and remodelling municipal engineering projects. In order to ensure the objectivity of the assessment process, direct and indirect indicators were always based on quantitative data from the municipal engineering projectmore » documents. Finally, two case studies were analysed and found to illustrate the practical use of the proposed model. The model highlights the significant environmental impacts of a particular municipal engineering project prior to the construction stage. Consequently, preventive actions can be planned and implemented during on-site activities. The results of the model also allow a comparison of proposed municipal engineering projects and alternatives with respect to the overall on-site environmental impact and the absolute importance of a particular environmental aspect. These findings are useful within the framework of the environmental impact assessment process, as they help to improve the identification and evaluation of on-site environmental aspects of municipal engineering works. The findings may also be of use to construction companies that are willing to implement an environmental management system or simply wish to improve on-site environmental performance in municipal engineering projects. -- Highlights: • We present a model to predict the environmental impacts of municipal engineering works. • It highlights significant on-site environmental impacts prior to the construction stage. • Findings are useful within the environmental impact assessment process. • They also help contractors to implement environmental management systems.« less
Impact Assessment of GNSS Spoofing Attacks on INS/GNSS Integrated Navigation System.
Liu, Yang; Li, Sihai; Fu, Qiangwen; Liu, Zhenbo
2018-05-04
In the face of emerging Global Navigation Satellite System (GNSS) spoofing attacks, there is a need to give a comprehensive analysis on how the inertial navigation system (INS)/GNSS integrated navigation system responds to different kinds of spoofing attacks. A better understanding of the integrated navigation system’s behavior with spoofed GNSS measurements gives us valuable clues to develop effective spoofing defenses. This paper focuses on an impact assessment of GNSS spoofing attacks on the integrated navigation system Kalman filter’s error covariance, innovation sequence and inertial sensor bias estimation. A simple and straightforward measurement-level trajectory spoofing simulation framework is presented, serving as the basis for an impact assessment of both unsynchronized and synchronized spoofing attacks. Recommendations are given for spoofing detection and mitigation based on our findings in the impact assessment process.
An Investigation and Interpretation of Selected Topics in Uncertainty Reasoning
1989-12-01
Characterizing seconditry uncertainty as spurious evidence and including it in the inference process , It was shown that probability ratio graphs are a...in the inference process has great impact on the computational complexity of an Inference process . viii An Investigation and Interpretation of...Systems," he outlines a five step process that incorporates Blyeslan reasoning in the development of the expert system rule base: 1. A group of
High Speed Videometric Monitoring of Rock Breakage
NASA Astrophysics Data System (ADS)
Allemand, J.; Shortis, M. R.; Elmouttie, M. K.
2018-05-01
Estimation of rock breakage characteristics plays an important role in optimising various industrial and mining processes used for rock comminution. Although little research has been undertaken into 3D photogrammetric measurement of the progeny kinematics, there is promising potential to improve the efficacy of rock breakage characterisation. In this study, the observation of progeny kinematics was conducted using a high speed, stereo videometric system based on laboratory experiments with a drop weight impact testing system. By manually tracking individual progeny through the captured video sequences, observed progeny coordinates can be used to determine 3D trajectories and velocities, supporting the idea that high speed video can be used for rock breakage characterisation purposes. An analysis of the results showed that the high speed videometric system successfully observed progeny trajectories and showed clear projection of the progeny away from the impact location. Velocities of the progeny could also be determined based on the trajectories and the video frame rate. These results were obtained despite the limitations of the photogrammetric system and experiment processes observed in this study. Accordingly there is sufficient evidence to conclude that high speed videometric systems are capable of observing progeny kinematics from drop weight impact tests. With further optimisation of the systems and processes used, there is potential for improving the efficacy of rock breakage characterisation from measurements with high speed videometric systems.
Development of Chemical Process Design and Control for Sustainability
This contribution describes a novel process systems engineering framework that couples advanced control with sustainability evaluation and decision making for the optimization of process operations to minimize environmental impacts associated with products, materials, and energy....
Value of Forecaster in the Loop
2014-09-01
forecast system IFR instrument flight rules IMC instrument meteorological conditions LAMP Localized Aviation Model Output Statistics Program METOC...obtaining valuable experience. Additional factors have impacted the Navy weather forecast process. There has been a the realignment of the meteorology...forecasts that are assessed, it may be a relatively small number that have direct impact on the decision-making process. Whether the value is minimal or
NASA Technical Reports Server (NTRS)
Aanstoos, J. V.; Snyder, W. E.
1981-01-01
Anticipated major advances in integrated circuit technology in the near future are described as well as their impact on satellite onboard signal processing systems. Dramatic improvements in chip density, speed, power consumption, and system reliability are expected from very large scale integration. Improvements are expected from very large scale integration enable more intelligence to be placed on remote sensing platforms in space, meeting the goals of NASA's information adaptive system concept, a major component of the NASA End-to-End Data System program. A forecast of VLSI technological advances is presented, including a description of the Defense Department's very high speed integrated circuit program, a seven-year research and development effort.
Impact of Change Management on Employee Behavior in a University Administrative Office
ERIC Educational Resources Information Center
Turner, Kendra
2017-01-01
This qualitative case study focused on the effect of a system implementation upgrade on employees' job performance within a central administration department of a major research university in the Southern United States. Review of literature revealed a lack of a specific model or process for system implementation upgrades and its impact on…
NASA Astrophysics Data System (ADS)
Daneshjou, Kamran; Alibakhshi, Reza
2018-01-01
In the current manuscript, the process of spacecraft docking, as one of the main risky operations in an on-orbit servicing mission, is modeled based on unconstrained multibody dynamics. The spring-damper buffering device is utilized here in the docking probe-cone system for micro-satellites. Owing to the impact occurs inevitably during docking process and the motion characteristics of multibody systems are remarkably affected by this phenomenon, a continuous contact force model needs to be considered. Spring-damper buffering device, keeping the spacecraft stable in an orbit when impact occurs, connects a base (cylinder) inserted in the chaser satellite and the end of docking probe. Furthermore, by considering a revolute joint equipped with torsional shock absorber, between base and chaser satellite, the docking probe can experience both translational and rotational motions simultaneously. Although spacecraft docking process accompanied by the buffering mechanisms may be modeled by constrained multibody dynamics, this paper deals with a simple and efficient formulation to eliminate the surplus generalized coordinates and solve the impact docking problem based on unconstrained Lagrangian mechanics. By an example problem, first, model verification is accomplished by comparing the computed results with those recently reported in the literature. Second, according to a new alternative validation approach, which is based on constrained multibody problem, the accuracy of presented model can be also evaluated. This proposed verification approach can be applied to indirectly solve the constrained multibody problems by minimum required effort. The time history of impact force, the influence of system flexibility and physical interaction between shock absorber and penetration depth caused by impact are the issues followed in this paper. Third, the MATLAB/SIMULINK multibody dynamic analysis software will be applied to build impact docking model to validate computed results and then, investigate the trajectories of both satellites to take place the successful capture process.
Fraga, Hilda Carolina de Jesus Rios; Fukutani, Kiyoshi Ferreira; Celes, Fabiana Santana; Barral, Aldina Maria Prado; Oliveira, Camila Indiani de
2012-01-01
To evaluate the process of implementing a quality management system in a basic research laboratory of a public institution, particularly considering the feasibility and impacts of this improvement. This was a prospective and qualitative study. We employed the norm "NIT DICLA 035--Princípios das Boas Práticas de Laboratório (BPL)" and auxiliary documents of Organisation for Economic Co-operation and Development to complement the planning and implementation of a Quality System, in a basic research laboratory. In parallel, we used the PDCA tool to define the goals of each phase of the implementation process. This study enabled the laboratory to comply with the NIT DICLA 035 norm and to implement this norm during execution of a research study. Accordingly, documents were prepared and routines were established such as the registration of non-conformities, traceability of research data and equipment calibration. The implementation of a quality system, the setting of a laboratory focused on basic research is feasible once certain structural changes are made. Importantly, impacts were noticed during the process, which could be related to several improvements in the laboratory routine.
On the Risk Management and Auditing of SOA Based Business Processes
NASA Astrophysics Data System (ADS)
Orriens, Bart; Heuvel, Willem-Jan V./D.; Papazoglou, Mike
SOA-enabled business processes stretch across many cooperating and coordinated systems, possibly crossing organizational boundaries, and technologies like XML and Web services are used for making system-to-system interactions commonplace. Business processes form the foundation for all organizations, and as such, are impacted by industry regulations. This requires organizations to review their business processes and ensure that they meet the compliance standards set forth in legislation. In this paper we sketch a SOA-based service risk management and auditing methodology including a compliance enforcement and verification system that assures verifiable business process compliance. This is done on the basis of a knowledge-based system that allows integration of internal control systems into business processes conform pre-defined compliance rules, monitor both the normal process behavior and those of the control systems during process execution, and log these behaviors to facilitate retrospective auditing.
The Impact of Flagging on the Admission Process.
ERIC Educational Resources Information Center
Cahalan-Laitusis, Cara; Mandinach, Ellen B.; Camara, Wayne J.
2003-01-01
Study explored issues surrounding flagging test scores taken under non-standard conditions and how the admission process could better serve students with disabilities. Respondents to survey felt current system was not adequately serving subgroups of students, believing some non-disabled students were manipulating the system to gain an advantage on…
LITERATURE REVIEW ON IMPACT OF GLYCOLATE ON THE 2H EVAPORATOR AND THE EFFLUENT TREATMENT FACILITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adu-Wusu, K.
2012-05-10
Glycolic acid (GA) is being studied as an alternate reductant in the Defense Waste Processing Facility (DWPF) feed preparation process. It will either be a total or partial replacement for the formic acid that is currently used. A literature review has been conducted on the impact of glycolate on two post-DWPF downstream systems - the 2H Evaporator system and the Effluent Treatment Facility (ETF). The DWPF recycle stream serves as a portion of the feed to the 2H Evaporator. Glycolate enters the evaporator system from the glycolate in the recycle stream. The overhead (i.e., condensed phase) from the 2H Evaporatormore » serves as a portion of the feed to the ETF. The literature search revealed that virtually no impact is anticipated for the 2H Evaporator. Glycolate may help reduce scale formation in the evaporator due to its high complexing ability. The drawback of the solubilizing ability is the potential impact on the criticality analysis of the 2H Evaporator system. It is recommended that at least a theoretical evaluation to confirm the finding that no self-propagating violent reactions with nitrate/nitrites will occur should be performed. Similarly, identification of sources of ignition relevant to glycolate and/or update of the composite flammability analysis to reflect the effects from the glycolate additions for the 2H Evaporator system are in order. An evaluation of the 2H Evaporator criticality analysis is also needed. A determination of the amount or fraction of the glycolate in the evaporator overhead is critical to more accurately assess its impact on the ETF. Hence, use of predictive models like OLI Environmental Simulation Package Software (OLI/ESP) and/or testing are recommended for the determination of the glycolate concentration in the overhead. The impact on the ETF depends on the concentration of glycolate in the ETF feed. The impact is classified as minor for feed glycolate concentrations {le} 33 mg/L or 0.44 mM. The ETF unit operations that will have minor/major impacts are chlorination, pH adjustment, 1st mercury removal, organics removal, 2nd mercury removal, and ion exchange. For minor impacts, the general approach is to use historical process operations data/modeling software like OLI/ESP and/or monitoring/compiled process operations data to resolve any uncertainties with testing as a last resort. For major impacts (i.e., glycolate concentrations > 33 mg/L or 0.44 mM), testing is recommended. No impact is envisaged for the following ETF unit operations regardless of the glycolate concentration - filtration, reverse osmosis, ion exchange resin regeneration, and evaporation.« less
González Sánchez, María José; Framiñán Torres, José Manuel; Parra Calderón, Carlos Luis; Del Río Ortega, Juan Antonio; Vigil Martín, Eduardo; Nieto Cervera, Jaime
2008-01-01
We present a methodology based on Business Process Management to guide the development of a speech recognition system in a hospital in Spain. The methodology eases the deployment of the system by 1) involving the clinical staff in the process, 2) providing the IT professionals with a description of the process and its requirements, 3) assessing advantages and disadvantages of the speech recognition system, as well as its impact in the organisation, and 4) help reorganising the healthcare process before implementing the new technology in order to identify how it can better contribute to the overall objective of the organisation.
The expected results include an integrated process and mechanical design including a fabrication plan for the glycerol dehydration reactor, comprehensive heat and material balance, environmental impact assessment and comprehensive safety review. The resulting process design w...
A Comparison of the Greenhouse Impacts of Magnesium Produced By Electrolytic and Pidgeon Processes
NASA Astrophysics Data System (ADS)
Ramakrishnan, Subramania; Koltun, Paul
With a focus on the global warming impact, this paper deals with the cradle-to-gate life cycle study of the following two practical production systems for producing magnesium ingots: (i) Magnesite ore is processed using the Australian Magnesium process to produce anhydrous magnesium chloride, which is then electrolysed to produce magnesium; and (ii) Dolomite ore is calcined to produce magnesium oxide, which is then thermally reduced with ferrosilicon using the Pidgeon process, based on the current practice used in China for magnesium production
Competition, Autonomy and New Thinking: Transformation of Higher Education in Federal Germany
ERIC Educational Resources Information Center
Mayer, Peter; Ziegele, Frank
2009-01-01
Germany has recently gone through a fundamental process of reform of its higher education system. The last 15 years have been characterised by significant changes in virtually all aspects of the system. The impacts of the Bologna Process have been far reaching. The reform of the governance and funding systems in higher education has also been…
ERIC Educational Resources Information Center
Karran, Terence
2005-01-01
This article assesses the impact of the Bologna Process on the grading schemes of EU member countries. In light of some problems regarding the implementation of the European Credit Transfer system (ECTS), the author proposes further reforms and offers some elements of a unified grading system for European higher education. The author explores the…
NASA Technical Reports Server (NTRS)
2005-01-01
The purpose of this document is to analyze the impact of Remotely Operated Aircraft (ROA) operations on current and planned Air Traffic Control (ATC) automation systems in the En Route, Terminal, and Traffic Flow Management domains. The operational aspects of ROA flight, while similar, are not entirely identical to their manned counterparts and may not have been considered within the time-horizons of the automation tools. This analysis was performed to determine if flight characteristics of ROAs would be compatible with current and future NAS automation tools. Improvements to existing systems / processes are recommended that would give Air Traffic Controllers an indication that a particular aircraft is an ROA and modifications to IFR flight plan processing algorithms and / or designation of airspace where an ROA will be operating for long periods of time.
Participatory System Science: Multi-Level Comprehension Through a Game-like Process
NASA Astrophysics Data System (ADS)
Fatland, D. R.; Kuntz, L.
2012-12-01
Participatory System Science: Multi-Level Comprehension Through a Game-like Process We built a time-series game that permits the player to make water management decisions concerning the Skagit River (north-central Washington state) every five years for 60 years. This work was inspired by the integrative efforts of the Skagit Climate Science Consortium and the Climate Impacts Group at the University of Washington. Our principle guiding concepts have been - Construct a reasonable system description with -- wherever possible -- Events / Consequences rendered both visually and in terms of financial impact. - Base the system description on peer reviewed publications - Emphasize both connection and absence of connection between player Actions and subsequent Consequences in the catchment basin. Player choices center around dam flow levels and steps to mitigate negative impacts of sediment transport into the lower (populated) reaches of the Skagit River and into Puget Sound (levees, new dams, estuary restoration, etcetera). With this work we hope to explore scientific results in public awareness by engaging the game Player as a problem solver.
Impact of Glycolate Anion on Aqueous Corrosion in DWPF and Downstream Facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mickalonis, J.
Glycolic acid is being evaluated as an alternate reductant in the preparation of high level waste for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). During processing, the glycolic acid may not be completely consumed with small quantities of the glycolate anion being carried forward to other high level waste (HLW) facilities. The SRS liquid waste contractor requested an assessment of the impact of the glycolate anion on the corrosion of the materials of construction (MoC) throughout the waste processing system since this impact had not been previously evaluated. A literature review revealed that corrosion datamore » were not available for the MoCs in glycolic-bearing solutions applicable to SRS systems. Data on the material compatibility with only glycolic acid or its derivative products were identified; however, data were limited for solutions containing glycolic acid or the glycolate anion. For the proprietary coating systems applied to the DWPF concrete, glycolic acid was deemed compatible since the coatings were resistant to more aggressive chemistries than glycolic acid. Additionally, similar coating resins showed acceptable resistance to glycolic acid.« less
Impact of Glycolate Anion on Aqueous Corrosion in DWPF and Downstream Facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mickalonis, J.
Glycolic acid is being evaluated as an alternate reductant in the preparation of high level waste for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). During processing, the glycolic acid may not be completely consumed with small quantities of the glycolate anion being carried forward to other high level waste (HLW) facilities. The SRS liquid waste contractor requested an assessment of the impact of the glycolate anion on the corrosion of the materials of construction (MoC) throughout the waste processing system since this impact had not been previously evaluated. A literature review revealed that corrosion datamore » were not available for the MoCs in glycolic-bearing solutions applicable to SRS systems. Data on the material compatibility with only glycolic acid or its derivative products were identified; however, data were limited for solutions containing glycolic acid or the glycolate anion. For the proprietary coating systems applied to the DWPF concrete, glycolic acid was deemed compatible since the coatings were resistant to more aggressive chemistries than glycolic acid. Additionally similar coating resins showed acceptable resistance to glycolic acid.« less
Technological and life cycle assessment of organics processing odour control technologies.
Bindra, Navin; Dubey, Brajesh; Dutta, Animesh
2015-09-15
As more municipalities and communities across developed world look towards implementing organic waste management programmes or upgrading existing ones, composting facilities are emerging as a popular choice. However, odour from these facilities continues to be one of the most important concerns in terms of cost & effective mitigation. This paper provides a technological and life cycle assessment of some of the different odour control technologies and treatment methods that can be implemented in organics processing facilities. The technological assessment compared biofilters, packed tower wet scrubbers, fine mist wet scrubbers, activated carbon adsorption, thermal oxidization, oxidization chemicals and masking agents. The technologies/treatment methods were evaluated and compared based on a variety of operational, usage and cost parameters. Based on the technological assessment it was found that, biofilters and packed bed wet scrubbers are the most applicable odour control technologies for use in organics processing faculties. A life cycle assessment was then done to compare the environmental impacts of the packed-bed wet scrubber system, organic (wood-chip media) bio-filter and inorganic (synthetic media) bio-filter systems. Twelve impact categories were assessed; cumulative energy demand (CED), climate change, human toxicity, photochemical oxidant formation, metal depletion, fossil depletion, terrestrial acidification, freshwater eutrophication, marine eutrophication, terrestrial eco-toxicity, freshwater eco-toxicity and marine eco-toxicity. The results showed that for all impact categories the synthetic media biofilter had the highest environmental impact, followed by the wood chip media bio-filter system. The packed-bed system had the lowest environmental impact for all categories. Copyright © 2015 Elsevier B.V. All rights reserved.
A tool to analyze environmental impacts of roads on forest watersheds
Ajay Prasad
2007-01-01
The construction and use of forest roads can have impacts on geomorphic processes and erosion patterns in forested basins. Analyzing these impacts will help forest managers to effectively manage road and road drainage system and hence minimize the negative impacts of forest roads. To manage forest roads effectively the USDA Forest Service (USFS) has developed a road...
AIDA: the Asteroid Impact & Deflection Assessment mission
NASA Astrophysics Data System (ADS)
Vincent, Jean-Baptiste
2016-07-01
The Asteroid Impact & Deflection Assessment (AIDA) mission is a joint cooperation between European and US space agencies that consists of two separate and independent spacecraft that will be launched to a binary asteroid system, the near-Earth asteroid Didymos, to assess the possibility of deflecting an asteroid trajectory by using a kinetic impactor. The European Asteroid Impact Mission (AIM) is under Phase A/B1 study at ESA from March 2015 until summer 2016. AIM is set to rendez-vous with the asteroid system a few months prior to the impact by the US Double Asteroid Redirection Test (DART) spacecraft to fully characterize the smaller of the two binary components. AIM is a unique mission as it will be the first time that a spacecraft will investigate the surface, subsurface, and internal properties of a small binary near Earth asteroid. In addition it will perform various important technology demonstrations that can serve other space missions: AIM will release a set of CubeSats in deep space and a lander on the surface of the smaller asteroid and for the first time, deep-space inter-satellite linking will be demonstrated between the main spacecraft, the CubeSats, and the lander, and data will also be transmitted from interplanetary space to Earth by a laser communication system. The knowledge obtained by this mission will have great implications for our understanding of the history of the Solar System. Small asteroids are believed to result from collisions and other processes (e.g., spinup, shaking) that made them what they are now. Having direct information on their surface and internal properties will allow us to understand how these processes work and transform these small bodies as well as, for this particular case, how a binary system forms. So far, our understanding of the collisional process and the validation of numerical simulations of the impact process rely on impact experiments at laboratory scales. With DART, thanks to the characterization of the target by AIM, the mission will be the first fully documented impact experiment at asteroid scale, which will include the characterization of the target's properties and the outcome of the impact. By comparing our in situ measurements with ground-based data from telescopes, we can calibrate better the remote observations and improve our data interpretation of other systems. Therefore, AIDA offers a unique opportunity to test and refine our understanding and models at the actual scale of an asteroid. This will allow feeding small-body collisional evolution models with more realistic parameters to draw a more reliable story of the Solar System formation and evolution. Moreover, it will offer a first check of the validity of the kinetic impactor concept to deflect a small body trajectory and lead to improved efficiency for future kinetic impactor designs.
The Explorer's Guide to Impact Craters
NASA Astrophysics Data System (ADS)
Pierazzo, E.; Osinski, G.; Chuang, F.
2004-12-01
Impact cratering is a fundamental geologic process of our solar system. It competes with other processes, such as plate tectonics, volcanism, or fluvial, glacial and eolian activity, in shaping the surfaces of planetary bodies. In some cases, like the Moon and Mercury, impact craters are the dominant landform. On other planetary bodies impact craters are being continuously erased by the action of other geological processes, like volcanism on Io, erosion and plate tectonics on the Earth, tectonic and volcanic resurfacing on Venus, or ancient erosion periods on Mars. The study of crater populations is one of the principal tools for understanding the geologic history of a planetary surface. Among the general public, impact cratering has drawn wide attention through its portrayal in several Hollywood movies. Questions that are raised after watching these movies include: ``How do scientists learn about impact cratering?'', and ``What information do impact craters provide in understanding the evolution of a planetary surface?'' Fundamental approaches used by scientists to learn about impact cratering include field work at known terrestrial craters, remote sensing studies of craters on various solid surfaces of solar system bodies, and theoretical and laboratory studies using the known physics of impact cratering. We will provide students, science teachers, and the general public an opportunity to experience the scientific endeavor of understanding and exploring impact craters through a multi-level approach including images, videos, and rock samples. This type of interactive learning can also be made available to the general public in the form of a website, which can be addressed worldwide at any time.
Lunar-forming impacts: processes and alternatives
Canup, R. M.
2014-01-01
The formation of a protolunar disc by a giant impact with the early Earth is discussed, focusing on two classes of impacts: (i) canonical impacts, in which a Mars-sized impactor produces a planet–disc system whose angular momentum is comparable to that in the current Earth and Moon, and (ii) high-angular-momentum impacts, which produce a system whose angular momentum is approximately a factor of 2 larger than that in the current Earth and Moon. In (i), the disc originates primarily from impactor-derived material and thus is expected to have an initial composition distinct from that of the Earth's mantle. In (ii), a hotter, more compact initial disc is produced with a silicate composition that can be nearly identical to that of the silicate Earth. Both scenarios require subsequent processes for consistency with the current Earth and Moon: disc–planet compositional equilibration in the case of (i), or large-scale angular momentum loss during capture of the newly formed Moon into the evection resonance with the Sun in the case of (ii). PMID:25114302
Understanding Enterprise Systems' Impact(s) on Business Relationships
NASA Astrophysics Data System (ADS)
Ekman, Peter; Thilenius, Peter
Enterprise systems (ESs), i.e. standardized applications supplied from software vendors such as SAP or Oracle, have been extensively employed by companies during the last decade. Today all Fortune 500 companies have, or are in the process of installing, this kind of information system (Seddon et al. 2003). A wide-spread denotation for these applications is enterprise resource planning (ERP) systems. But the broad utilization use of these software packages in business is rendering this labelling too narrow (Davenport 2000).
Improved Measurement of Ejection Velocities From Craters Formed in Sand
NASA Technical Reports Server (NTRS)
Cintala, Mark J.; Byers, Terry; Cardenas, Francisco; Montes, Roland; Potter, Elliot E.
2014-01-01
A typical impact crater is formed by two major processes: compression of the target (essentially equivalent to a footprint in soil) and ejection of material. The Ejection-Velocity Measurement System (EVMS) in the Experimental Impact Laboratory has been used to study ejection velocities from impact craters formed in sand since the late 1990s. The original system used an early-generation Charge-Coupled Device (CCD) camera; custom-written software; and a complex, multicomponent optical system to direct laser light for illumination. Unfortunately, the electronic equipment was overtaken by age, and the software became obsolete in light of improved computer hardware.
Convergent spray process for environmentally friendly coatings
NASA Technical Reports Server (NTRS)
Scarpa, Jack
1995-01-01
Conventional spray application processes have poor transfer efficiencies, resulting in an exorbitant loss in materials, solvents, and time. Also, with ever tightening Environmental Protection Agency (EPA) regulations and Occupational Safety and Health Administration requirements, the low transfer efficiencies have a significant impact on the quantities of materials and solvents that are released into the environment. High solids spray processes are also limited by material viscosities, thus requiring many passes over the surface to achieve a thickness in the 0.125 -inch range. This results in high application costs and a negative impact on the environment. Until recently, requirements for a 100 percent solid sprayable, environmentally friendly, lightweight thermal protection system that can be applied in a thick (greater than 0.125 inch) single-pass operation exceeded the capability of existing systems. Such coatings must be applied by hand lay-up techniques, especially for thermal and/or fire protection systems. The current formulation of these coatings has presented many problems such as worker safety, environmental hazards, waste, high cost, and application constraints. A system which can apply coatings without using hazardous materials would alleviate many of these problems. Potential applications include the aerospace thermal protective specialty coatings, chemical and petroleum industries that require fire-protection coatings that resist impact, chemicals, and weather. These markets can be penetrated by offering customized coatings applied by automated processes that are environmentally friendly.
NASA Astrophysics Data System (ADS)
Kizilkaya, Elif A.; Gupta, Surendra M.
2005-11-01
In this paper, we compare the impact of different disassembly line balancing (DLB) algorithms on the performance of our recently introduced Dynamic Kanban System for Disassembly Line (DKSDL) to accommodate the vagaries of uncertainties associated with disassembly and remanufacturing processing. We consider a case study to illustrate the impact of various DLB algorithms on the DKSDL. The approach to the solution, scenario settings, results and the discussions of the results are included.
Linda S. Heath; Sarah M. Anderson; Marla R. Emery; Jeffrey A. Hicke; Jeremy Littell; Alan Lucier; Jeffrey G. Masek; David L. Peterson; Richard Pouyat; Kevin M. Potter; Guy Robertson; Jinelle Sperry; Andrzej Bytnerowicz; Sarah Jovan; Miranda H. Mockrin; Robert Musselman; Bethany K. Schulz; Robert J. Smith; Susan I. Stewart
2015-01-01
The Third National Climate Assessment (NCA) process for the United States focused in part on developing a system of indicators to communicate key aspects of the physical climate, climate impacts, vulnerabilities, and preparedness to inform decisionmakers and the public. Initially, 13 active teams were formed to recommend indicators in a range of categories, including...
DECISION SUPPORT SYSTEM TO ENHANCE AND ENCOURAGE SUSTAINABLE CHEMICAL PROCESS DESIGN
There is an opportunity to minimize the potential environmental impacts (PEIs) of industrial chemical processes by providing process designers with timely data nad models elucidating environmentally favorable design options. The second generation of the Waste Reduction (WAR) algo...
NASA Technical Reports Server (NTRS)
Gan, L.; Cravens, T. E.
1992-01-01
Energy transfer between electrons and methane gas by collisional processes plays an important role in the thermal balance of electrons in the atmospheres and ionospheres of planets and satellites in the outer solar system. The literature is reviewed for electron impact cross-sections for methane in this paper. Energy transfer rates are calculated for elastic and inelastic processes using a Maxwellian electron distribution. Vibrational, rotational, and electronic excitation and ionization are included. Results are presented for a wide range of electron temperatures and neutral temperatures.
Numerical investigations on the rebound phenomena and the bonding mechanisms in cold spray processes
NASA Astrophysics Data System (ADS)
Viscusi, A.
2018-05-01
Cold spray technology is a relatively new additive process allowing to create high quality metallic coatings, on both metallic and non-metallic substrates, without extensive heating of the powders sprayed. Upon impact with a target surface, conversion of kinetic energy to plastic deformation occurs, the solid particles deform and bond together. The actual bonding mechanism for cold spray particles is still not well understood, a high number of works has been carried out during the past two decades, several theories have been proposed to explain the adhesion/rebound mechanisms making the system ineffective for industrial applications. Therefore, the aim of this research activity is to better explain the complex adhesion/rebound phenomena into cold spray impact processes through numerical simulations; for this purpose, on the base of simplified hypothesis and results found in literature, an original 3D Finite Element Method (FEM) model of an aluminium particle impacting on an aluminium substrate was proposed. A cohesive behaviour algorithm was implemented in the particle-substrate contact regions aiming to simulate the bonding between the impacting particle and the substrate under specific working conditions. A rebound coefficient was also defined representing the particle residual energy. Different simulations were performed using a range of impact velocities and varying the interfacial cohesive strength. It was shown that at low impact velocities the rebound phenomenon is governed by the elastic energy stored in the system, meanwhile at high impact velocities, the rebound phenomenon is mainly due to the strain rate effects making the system mechanically stronger; therefore, a specific range of bonding velocities depending on substrate-particle contact area were found.
Assessing Impact Submissions for REF 2014: An Evaluation
ERIC Educational Resources Information Center
Manville, Catriona; Guthrie, Susan; Henham, Marie-Louise; Garrod, Bryn; Sousa, Sonia; Kirtley, Anne; Castle-Clarke, Sophie; Ling, Tom
2015-01-01
The Research Excellence Framework (REF) is a new system for assessing the quality of research in UK higher education institutions (HEIs). For the first time, part of the assessment included the wider impact of research. RAND Europe was commissioned to evaluate the assessment process of the impact element of REF submissions, and to explore the…
76 FR 39872 - Information Collection Being Reviewed by the Federal Communications Commission
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-07
... describing the system. See 68 FR 37494, June 24, 2003. Privacy Impact Assessment: Yes. The Privacy Impact.../Privacy_Impact_Assessment.html . The Commission is in the process of updating the PIA to incorporate... by a consumer, including an existing customer, not to call again must honor that request for five (5...
The impact of health information technology on organ transplant care: A systematic review.
Niazkhani, Zahra; Pirnejad, Habibollah; Rashidi Khazaee, Parviz
2017-04-01
Health Information Technology (HIT) has a potential to promote transplant care. However, a systematic appraisal on how HIT application has so far affected transplant care is greatly missing from the literature. We systematically reviewed trials that evaluated HIT impact on process and patient outcomes as well as costs in organ transplant care. A systematic search was conducted in OVID versions of MEDLINE, EMBASE, Cumulative Index to Nursing and Allied Health Literature (CINAHL), the Cochrane, and IEEE databases from January 1990 to December 2015. Studies were included if they: (i) evaluated HIT interventions; (ii) reported results for organ transplant population; (iii) reported quantitative data on process, patient, and cost outcomes; and (iv) used a randomized controlled trial or quasi-experimental study design. Primarily, 12,440 publications were identified; from which ten met inclusion criteria. Among HIT systems, uses of clinical decision support systems (CDSS) targeting different aspects of the complex organ transplant care were common. In terms of process outcomes, HIT positively impacted the timeliness of care, laboratory and medication management practices such as promoting therapeutic or diagnostic protocol compliance by clinicians, and reducing medication errors. Regarding patient outcomes, HIT demonstrated a beneficial impact on the percentage of post-transplant patients with normal lab values and decreasing immunosuppressive toxicity and also deviation from the predefined immunosuppressive therapeutic window. However, in terms of mortality, readmission, rejection, and antiviral resistance rates, the impact was not clearly established in the literature. Finally, these systems were associated with savings in the costs of transplant care in three studies. This is the first study reviewing HIT impact on transplant care outcomes. CDSSs have mainly been reported to support transplant care in realizing the above-mentioned benefits. However, to make conclusions, more evidence with less risk of bias is warranted. Several gaps in the literature, including comparison of the impact of commercial systems in different transplant settings, was identified which can motivate future research. Copyright © 2017 Elsevier B.V. All rights reserved.
Static and dynamic high power, space nuclear electric generating systems
NASA Technical Reports Server (NTRS)
Wetch, J. R.; Begg, L. L.; Koester, J. K.
1985-01-01
Space nuclear electric generating systems concepts have been assessed for their potential in satisfying future spacecraft high power (several megawatt) requirements. Conceptual designs have been prepared for reactor power systems using the most promising static (thermionic) and the most promising dynamic conversion processes. Component and system layouts, along with system mass and envelope requirements have been made. Key development problems have been identified and the impact of the conversion process selection upon thermal management and upon system and vehicle configuration is addressed.
Student Team Projects in Information Systems Development: Measuring Collective Creative Efficacy
ERIC Educational Resources Information Center
Cheng, Hsiu-Hua; Yang, Heng-Li
2011-01-01
For information systems development project student teams, learning how to improve software development processes is an important training. Software process improvement is an outcome of a number of creative behaviours. Social cognitive theory states that the efficacy of judgment influences behaviours. This study explores the impact of three types…
ERIC Educational Resources Information Center
Landolfi, Adrienne M.
2016-01-01
As accountability measures continue to increase within education, public school systems have integrated standards-based evaluation systems to formally assess professional practices among educators. The purpose of this study was to explore the extent in which the communication process between evaluators and teachers impacts teacher performance…
Solidifying Segregation or Promoting Diversity? School Closure and Rezoning in an Urban District
ERIC Educational Resources Information Center
Siegel-Hawley, Genevieve; Bridges, Kimberly; Shields, Thomas J.
2017-01-01
Purpose: Layered with myriad considerations, school closure and rezoning processes in urban school systems are politically fraught with the potential for damaging consequences. This article explores the politics and impacts of a closure and rezoning process in Richmond, Virginia, through the lens of themes applicable to urban school systems and…
A new approach to criteria for health risk assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spickett, Jeffery, E-mail: J.Spickett@curtin.edu.au; Faculty of Health Sciences, School of Public Health, Curtin University, Perth, Western Australia; Katscherian, Dianne
2012-01-15
Health Impact Assessment (HIA) is a developing component of the overall impact assessment process and as such needs access to procedures that can enable more consistent approaches to the stepwise process that is now generally accepted in both EIA and HIA. The guidelines developed during this project provide a structured process, based on risk assessment procedures which use consequences and likelihood, as a way of ranking risks to adverse health outcomes from activities subjected to HIA or HIA as part of EIA. The aim is to assess the potential for both acute and chronic health outcomes. The consequences component alsomore » identifies a series of consequences for the health care system, depicted as expressions of financial expenditure and the capacity of the health system. These more specific health risk assessment characteristics should provide for a broader consideration of health consequences and a more consistent estimation of the adverse health risks of a proposed development at both the scoping and risk assessment stages of the HIA process. - Highlights: Black-Right-Pointing-Pointer A more objective approach to health risk assessment is provided. Black-Right-Pointing-Pointer An objective set of criteria for the consequences for chronic and acute impacts. Black-Right-Pointing-Pointer An objective set of criteria for the consequences on the health care system. Black-Right-Pointing-Pointer An objective set of criteria for event frequency that could impact on health. Black-Right-Pointing-Pointer The approach presented is currently being trialled in Australia.« less
Chen, Qiaoling; Zhang, Yuanzhi; Ekroos, Ari
2007-09-01
In this paper, we first review the development of China's Environmental Impact Assessment (EIA) system in the past 30 years. Then we compare the framework and operational procedures of China's new EIA law with those of the EU EIA Directive. We also compare public participation, as well as sanctions and control in the two EIA systems. In addition, we identify where the processes in both EIA systems are similar or different from one another. By comparison, we noted that there are at least three obvious weaknesses in China's EIA system: (1) the application of new models for EIA legislation; (2) the improvement of EIA guidance and education; and (3) the enhancement of public participation in EIA process. Our study indicates that these three major shortcomings should be overcome and improved in China's EIA system, when compared with the EU EIA system.
Pavement marking demonstration projects : state of Alaska and state of Tennessee.
DOT National Transportation Integrated Search
2013-11-01
This project evaluates the safety impacts, environmental impacts, and cost effectiveness of different pavement marking : systems as well as the effect of State bidding and procurement processes on the quality of pavement marking material : employed i...
Socioeconomic Impact Assessment of the Los Angeles Automatic Vehicle Monitoring (AVM) Demonstration
DOT National Transportation Integrated Search
1982-09-01
This report presents a socioeconomic impact assessment of the Automatic Vehicle Monitoring (AVM) Demonstration in Los Angeles. An AVM system uses location, communication, and data processing subsystems to monitor the locations of appropriately equipp...
Effect of the self-pumped limiter concept on the tritium fuel cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finn, P.A.; Sze, D.K.; Hassanein, A.
1988-01-01
The self-pumped limiter concept for impurity control of the plasma of a fusion reactor has a major impact on the design of the tritium systems. To achieve a sustained burn, conventional limiters and divertors remove large quantities of unburnt tritium and deuterium from the plasma which must be then recycled using a plasma processing system. The self-pumped limiter which does not remove the hydrogen species, does not require any plasma processing equipment. The blanket system and the coolant processing systems acquire greater importance with the use of this unconventional impurity control system. 3 refs., 2 figs.
NASA Astrophysics Data System (ADS)
Osinski, G. R.
2013-12-01
Beginning in the late 18th century with the work of James Hutton, uniformitarianism emerged as a central tenet of the natural sciences and remained so well into the 20th century. Central to the idea of uniformitarianism is the concept of gradualism whereby processes throughout time occur at the same, or similar rates. In the 20th century, the idea that asteroids and comets have struck, and continue to strike, planetary bodies throughout geological time, has revolutionized our understanding of Solar System history and evolution. Indeed, it is now widely recognized that impact cratering is one of the most important and fundamental geological process in the Solar System. It is also now apparent that impact events have profoundly affected the origin and evolution of Earth, its environment, and the habitability of our planet. The extreme physical conditions (e.g., 10's of thousands of K and 100's of GPa), the concentrated nature of the energy release at a single point on a planetary surface, and the virtually instantaneous nature of the impact process sets apart impact events from all other geological processes. It should not be surprising then that such a rapid geological process can cause rapid environmental change. The destructive geological, environmental, and biological effects of meteorite impact events are well studied and well known. This is largely due to the discovery of the ~180 km diameter Chicxulub impact structure, Mexico, and its link to the mass extinction event that marks the end of the Cretaceous Period 65 Myr. ago. While the main driver for this mass extinction event remains debated, a long list of possible causes of environmental change have been proposed, including: heat from the impact explosion, tsunamis, earthquakes, global forest fires, dust injection in the upper atmosphere, production of vast quantities of N2O, and release of CO2 and sulfur species from the target rocks. Any one of these effects could potentially cause the annihilation of a particular planetary habitat. But the news is not all bad. Impact events can redistribute viable planetary habitats instantly - and regionally to globally depending on the size of the impact event. They can bring material from depths of many km in the form of ejecta deposits and central uplifts in so-called complex impact structures. Importantly, much of the material excavated and/or redistributed by impact events is shocked to such low pressures and temperatures that habitats, bioessential elements (e.g., C, N, O), and even organisms can remain intact. In recent years, it has also become apparent that impact events can also create new planetary habitats where none previously existed, including hydrothermal systems, endolithic habitats in shocked rocks and impact glasses, and impact crater lakes. Finally, impact events can also generate conditions conducive for the origin of life (e.g., clays, which form catalysts for organic reactions, and hot spring environments). Thus, far from being the agents of destruction that they were once thought to be, impact events can also be viewed as a favourable agent of rapid environmental change. This may have important implications for our understanding of the origin and evolution of early life on Earth, and possibly other planets such as Mars.
Evaluation of the Hanford 200 West Groundwater Treatment System: Fluidized Bed Bioreactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Looney, Brian B.; Jackson, Dennis G.; Dickson, John O.
A fluidized bed reactor (FBR) in the 200W water treatment facility at Hanford is removing nitrate from groundwater as part of the overall pump-treat-reinject process. Control of the FBR bed solids has proven challenging, impacting equipment, increasing operations and maintenance (O&M), and limiting the throughput of the facility. In response to the operational challenges, the Department of Energy Richland Office (DOE-RL) commissioned a technical assistance team to facilitate a system engineering evaluation and provide focused support recommendations to the Hanford Team. The DOE Environmental Management (EM) technical assistance process is structured to identify and triage technologies and strategies that addressmore » the target problem(s). The process encourages brainstorming and dialog and allows rapid identification and prioritization of possible options. Recognizing that continuous operation of a large-scale FBR is complex, requiring careful attention to system monitoring data and changing conditions, the technical assistance process focused on explicit identification of the available control parameters (“knobs”), how these parameters interact and impact the FBR system, and how these can be adjusted under different scenarios to achieve operational goals. The technical assistance triage process was performed in collaboration with the Hanford team.« less
A multi-scale metrics approach to forest fragmentation for Strategic Environmental Impact Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Eunyoung, E-mail: eykim@kei.re.kr; Song, Wonkyong, E-mail: wksong79@gmail.com; Lee, Dongkun, E-mail: dklee7@snu.ac.kr
Forests are becoming severely fragmented as a result of land development. South Korea has responded to changing community concerns about environmental issues. The nation has developed and is extending a broad range of tools for use in environmental management. Although legally mandated environmental compliance requirements in South Korea have been implemented to predict and evaluate the impacts of land-development projects, these legal instruments are often insufficient to assess the subsequent impact of development on the surrounding forests. It is especially difficult to examine impacts on multiple (e.g., regional and local) scales in detail. Forest configuration and size, including forest fragmentationmore » by land development, are considered on a regional scale. Moreover, forest structure and composition, including biodiversity, are considered on a local scale in the Environmental Impact Assessment process. Recently, the government amended the Environmental Impact Assessment Act, including the SEA, EIA, and small-scale EIA, to require an integrated approach. Therefore, the purpose of this study was to establish an impact assessment system that minimizes the impacts of land development using an approach that is integrated across multiple scales. This study focused on forest fragmentation due to residential development and road construction sites in selected Congestion Restraint Zones (CRZs) in the Greater Seoul Area of South Korea. Based on a review of multiple-scale impacts, this paper integrates models that assess the impacts of land development on forest ecosystems. The applicability of the integrated model for assessing impacts on forest ecosystems through the SEIA process is considered. On a regional scale, it is possible to evaluate the location and size of a land-development project by considering aspects of forest fragmentation, such as the stability of the forest structure and the degree of fragmentation. On a local scale, land-development projects should consider the distances at which impacts occur in the vicinity of the forest ecosystem, and these considerations should include the impacts on forest vegetation and bird species. Impacts can be mitigated by considering the distances at which these influences occur. In particular, this paper presents an integrated environmental impact assessment system to be applied in the SEIA process. The integrated assessment system permits the assessment of the cumulative impacts of land development on multiple scales. -- Highlights: • The model is to assess the impact of forest fragmentation across multiple scales. • The paper suggests the type of forest fragmentation on a regional scale. • The type can be used to evaluate the location and size of a land development. • The paper shows the influence distance of land development on a local scale. • The distance can be used to mitigate the impact at an EIA process.« less
Kollikkathara, Naushad; Feng, Huan; Yu, Danlin
2010-11-01
As planning for sustainable municipal solid waste management has to address several inter-connected issues such as landfill capacity, environmental impacts and financial expenditure, it becomes increasingly necessary to understand the dynamic nature of their interactions. A system dynamics approach designed here attempts to address some of these issues by fitting a model framework for Newark urban region in the US, and running a forecast simulation. The dynamic system developed in this study incorporates the complexity of the waste generation and management process to some extent which is achieved through a combination of simpler sub-processes that are linked together to form a whole. The impact of decision options on the generation of waste in the city, on the remaining landfill capacity of the state, and on the economic cost or benefit actualized by different waste processing options are explored through this approach, providing valuable insights into the urban waste-management process. Copyright © 2010 Elsevier Ltd. All rights reserved.
Effect of HEH[EHP] impurities on the ALSEP solvent extraction process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holfeltz, Vanessa E.; Campbell, Emily L.; Peterman, Dean R.
In solvent extraction processes, organic phase impurities can negatively impact separation factors, hydrolytic performance, and overall system robustness. This affects the process-level viability of a separation concept and necessitates knowledge of the behavior and mechanisms to control impurities in the solvent. The most widespread way through which impurities are introduced into a system is through impure extractants and/or diluents used to prepare the solvent, and often development of new purification schemes to achieve the desired level of purity is needed. In this work, the acidic extractant, 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP])—proposed for application in extractive processes aimed at separating trivalentmore » minor actinides from lanthanides and other fission products—is characterized with respect to its common impurities and their impact on Am(III) stripping in the Actinide Lanthanide SEParation (ALSEP) system. To control impurities in HEH[EHP], existing purification technologies commonly applied for the acidic organophosphorus reagents are reviewed, and a new method specific to HEH[EHP] purification is presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kollikkathara, Naushad, E-mail: naushadkp@gmail.co; Feng Huan; Yu Danlin
2010-11-15
As planning for sustainable municipal solid waste management has to address several inter-connected issues such as landfill capacity, environmental impacts and financial expenditure, it becomes increasingly necessary to understand the dynamic nature of their interactions. A system dynamics approach designed here attempts to address some of these issues by fitting a model framework for Newark urban region in the US, and running a forecast simulation. The dynamic system developed in this study incorporates the complexity of the waste generation and management process to some extent which is achieved through a combination of simpler sub-processes that are linked together to formmore » a whole. The impact of decision options on the generation of waste in the city, on the remaining landfill capacity of the state, and on the economic cost or benefit actualized by different waste processing options are explored through this approach, providing valuable insights into the urban waste-management process.« less
Processing-in-Memory Enabled Graphics Processors for 3D Rendering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Chenhao; Song, Shuaiwen; Wang, Jing
2017-02-06
The performance of 3D rendering of Graphics Processing Unit that convents 3D vector stream into 2D frame with 3D image effects significantly impact users’ gaming experience on modern computer systems. Due to the high texture throughput in 3D rendering, main memory bandwidth becomes a critical obstacle for improving the overall rendering performance. 3D stacked memory systems such as Hybrid Memory Cube (HMC) provide opportunities to significantly overcome the memory wall by directly connecting logic controllers to DRAM dies. Based on the observation that texel fetches significantly impact off-chip memory traffic, we propose two architectural designs to enable Processing-In-Memory based GPUmore » for efficient 3D rendering.« less
Primary care research conducted in networks: getting down to business.
Mold, James W
2012-01-01
This seventh annual practice-based research theme issue of the Journal of the American Board of Family Medicine highlights primary care research conducted in practice-based research networks (PBRNs). The issue includes discussion of (1) theoretical and methodological research, (2) health care research (studies addressing primary care processes), (3) clinical research (studies addressing the impact of primary care on patients), and (4) health systems research (studies of health system issues impacting primary care including the quality improvement process). We had a noticeable increase in submissions from PBRN collaborations, that is, studies that involved multiple networks. As PBRNs cooperate to recruit larger and more diverse patient samples, greater generalizability and applicability of findings lead to improved primary care processes.
ERIC Educational Resources Information Center
Hubbell, Ruth
Family impact analyses are focused on one basic question: What will a given law, policy or practice do to families? There are two major activities in the process of analyzing family impact that has been developed by participants in the Family Impact Seminar: the first involves figuring out exactly how a law, policy, or system under study actually…
Graphite in an Apollo 17 impact melt breccia.
Steele, A; McCubbin, F M; Fries, M; Glamoclija, M; Kater, L; Nekvasil, H
2010-07-02
We report on the detection of discrete grains of crystalline graphite and graphite whiskers (GWs) in an Apollo 17 impact melt breccia. Multiple instances of graphite and GWs within a discrete area of the sample imply that these grains are not terrestrial contamination. Both graphite and GWs are indicative of high-temperature conditions and are probably the result of the impact processes responsible for breccia formation. This suggests that impact processes may be an additional formation mechanism for GWs in the solar system and indicates that the Moon contains a record of ancient carbonaceous material delivered at the time of the Late Heavy Bombardment.
Proceedings of the 38th Lunar and Planetary Science Conference
NASA Technical Reports Server (NTRS)
2007-01-01
The sessions in the conference include: Titan, Mars Volcanism, Mars Polar Layered Deposits, Early Solar System Isotopes, SPECIAL SESSION: Mars Reconnaissance Orbiter: New Ways of Studying the Red Planet, Achondrites: Exploring Oxygen Isotopes and Parent-Body Processes, Solar System Formation and Evolution, SPECIAL SESSION: SMART-1, . Impact Cratering: Observations and Experiments, SPECIAL SESSION: Volcanism and Tectonism on Saturnian Satellites, Solar Nebula Composition, Mars Fluvial Geomorphology, Asteroid Observations: Spectra, Mostly, Mars Sediments and Geochemistry: View from the Surface, Mars Tectonics and Crustal Dichotomy, Stardust: Wild-2 Revealed, Impact Cratering from Observations and Interpretations, Mars Sediments and Geochemistry: The Map View, Chondrules and Their Formation, Enceladus, Asteroids and Deep Impact: Structure, Dynamics, and Experiments, Mars Surface Process and Evolution, Martian Meteorites: Nakhlites, Experiments, and the Great Shergottite Age Debate, Stardust: Mainly Mineralogy, Astrobiology, Wind-Surface Interactions on Mars and Earth, Icy Satellite Surfaces, Venus, Lunar Remote Sensing, Space Weathering, and Impact Effects, Interplanetary Dust/Genesis, Mars Cratering: Counts and Catastrophes?, Chondrites: Secondary Processes, Mars Sediments and Geochemistry: Atmosphere, Soils, Brines, and Minerals, Lunar Interior and Differentiation, Mars Magnetics and Atmosphere: Core to Ionosphere, Metal-rich Chondrites, Organics in Chondrites, Lunar Impacts and Meteorites, Presolar/Solar Grains, Topics for Print Only papers are: Outer Planets/Satellites, Early Solar System, Interplanetary Dust, Comets and Kuiper Belt Objects, Asteroids and Meteoroids, Chondrites, Achondrites, Meteorite Related, Mars Reconnaissance Orbiter, Mars, Astrobiology, Planetary Differentiation, Impacts, Mercury, Lunar Samples and Modeling, Venus, Missions and Instruments, Global Warming, Education and Public Outreach, Poster sessions are: Asteroids/Kuiper Belt Objects, Galilean Satellites: Geology and Mapping, Titan, Volcanism and Tectonism on Saturnian Satellites, Early Solar System, Achondrite Hodgepodge, Ordinary Chondrites, Carbonaceous Chondrites, Impact Cratering from Observations and Interpretations, Impact Cratering from Experiments and Modeling, SMART-1, Planetary Differentiation, Mars Geology, Mars Volcanism, Mars Tectonics, Mars: Polar, Glacial, and Near-Surface Ice, Mars Valley Networks, Mars Gullies, Mars Outflow Channels, Mars Sediments and Geochemistry: Spirit and Opportunity, Mars Reconnaissance Orbiter: New Ways of Studying the Red Planet, Mars Reconnaissance Orbiter: Geology, Layers, and Landforms, Oh, My!, Mars Reconnaissance Orbiter: Viewing Mars Through Multicolored Glasses; Mars Science Laboratory, Phoenix, and ExoMars: Science, Instruments, and Landing Sites; Planetary Analogs: Chemical and Mineral, Planetary Analogs: Physical, Planetary Analogs: Operations, Future Mission Concepts, Planetary Data, Imaging, and Cartography, Outer Solar System, Presolar/Solar Grains, Stardust Mission; Interplanetary Dust, Genesis, Asteroids and Comets: Models, Dynamics, and Experiments, Venus, Mercury, Laboratory Instruments, Methods, and Techniques to Support Planetary Exploration; Instruments, Techniques, and Enabling Techologies for Planetary Exploration; Lunar Missions and Instruments, Living and Working on the Moon, Meteoroid Impacts on the Moon, Lunar Remote Sensing, Lunar Samples and Experiments, Lunar Atmosphere, Moon: Soils, Poles, and Volatiles, Lunar Topography and Geophysics, Lunar Meteorites, Chondrites: Secondary Processes, Chondrites, Martian Meteorites, Mars Cratering, Mars Surface Processes and Evolution, Mars Sediments and Geochemistry: Regolith, Spectroscopy, and Imaging, Mars Sediments and Geochemistry: Analogs and Mineralogy, Mars: Magnetics and Atmosphere, Mars Aeolian Geomorphology, Mars Data Processing and Analyses, Astrobiology, Engaging Student Educators and the Public in Planetary Science,
Impact of ICT on Performance of Construction Companies in Slovakia
NASA Astrophysics Data System (ADS)
Mesároš, Peter; Mandičák, Tomáš
2017-10-01
Information and communication technologies became a part of management tools in modern companies. Construction industry and its participants deal with a serious requirement for processing the huge amount of information on construction projects including design, construction, time and cost parameters, economic efficiency and sustainability. To fulfil this requirement, companies have to use appropriate ICT tools. Aim of the paper is to examine the impact of ICT exploitation on performance of construction companies. The impact of BIM tools, ERP systems and controlling system on cost and profit indicators will be measured on the sample of 85 companies from construction industry in Slovakia. Enterprise size, enterprise ownership and role in construction process will be set as independent variables for statistical analyse. The results will be considered for different groups of companies.
Feedbacks in Human-Landscape Systems
NASA Astrophysics Data System (ADS)
Chin, Anne; Florsheim, Joan L.; Wohl, Ellen; Collins, Brian D.
2014-01-01
This article identifies key questions and challenges for geomorphologists in investigating coupled feedbacks in human-landscape systems. While feedbacks occur in the absence of human influences, they are also altered by human activity. Feedbacks are a key element to understanding human-influenced geomorphic systems in ways that extend our traditional approach of considering humans as unidirectional drivers of change. Feedbacks have been increasingly identified in Earth-environmental systems, with studies of coupled human-natural systems emphasizing ecological phenomena in producing emerging concepts for social-ecological systems. Enormous gaps or uncertainties in knowledge remain with respect to understanding impact-feedback loops within geomorphic systems with significant human alterations, where the impacted geomorphic systems in turn affect humans. Geomorphology should play an important role in public policy by identifying the many diffuse and subtle feedbacks of both local- and global-scale processes. This role is urgent, while time may still be available to mitigate the impacts that limit the sustainability of human societies. Challenges for geomorphology include identification of the often weak feedbacks that occur over varied time and space scales ranging from geologic time to single isolated events and very short time periods, the lack of available data linking impact with response, the identification of multiple thresholds that trigger feedback mechanisms, the varied tools and metrics needed to represent both physical and human processes, and the need to collaborate with social scientists with expertise in the human causes of geomorphic change, as well as the human responses to such change.
A Biopsychological Model of Anti-drug PSA Processing: Developing Effective Persuasive Messages.
Hohman, Zachary P; Keene, Justin Robert; Harris, Breanna N; Niedbala, Elizabeth M; Berke, Collin K
2017-11-01
For the current study, we developed and tested a biopsychological model to combine research on psychological tension, the Limited Capacity Model of Motivated Mediated Message Processing, and the endocrine system to predict and understand how people process anti-drug PSAs. We predicted that co-presentation of pleasant and unpleasant information, vs. solely pleasant or unpleasant, will trigger evaluative tension about the target behavior in persuasive messages and result in a biological response (increase in cortisol, alpha amylase, and heart rate). In experiment 1, we assessed the impact of co-presentation of pleasant and unpleasant information in persuasive messages on evaluative tension (conceptualized as attitude ambivalence), in experiment 2, we explored the impact of co-presentation on endocrine system responses (salivary cortisol and alpha amylase), and in experiment 3, we assessed the impact of co-presentation on heart rate. Across all experiments, we demonstrated that co-presentation of pleasant and unpleasant information, vs. solely pleasant or unpleasant, in persuasive communications leads to increases in attitude ambivalence, salivary cortisol, salivary alpha amylase, and heart rate. Taken together, the results support the initial paths of our biopsychological model of persuasive message processing and indicate that including both pleasant and unpleasant information in a message impacts the viewer. We predict that increases in evaluative tension and biological responses will aid in memory and cognitive processing of the message. However, future research is needed to test that hypothesis.
Using scoping as a design process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulvihill, P.R.; Jacobs, P.
1998-07-01
Skillful use of the scoping phase of environment assessment (EA) is critical in cases involving a wide diversity of stakeholders and perspectives. Scoping can exert a strong influence in shaping a relevant impact assessment and increasing the probability of a process that satisfies stakeholders. This article explores key challenges facing scoping processes conducted in highly pluralistic settings. Elements of a notable case study--the scoping process conducted in 1992 for the proposed Great Whale Hydroelectric project in Northern Quebec--are discussed to illustrate innovative approaches. When used as a design process, scoping can ensure that EA reflects the different value sets andmore » cultures that are at play, particularly where diverse knowledge systems and ways of describing environmental components and impacts exist. As it sets the stage for subsequent steps in the EA process, scoping needs to be a sufficiently broad umbrella that accommodates diverse approaches to identifying, classifying, and assessing impacts.« less
The Impact of Information on Decisions: Command and Control System Evaluation
1981-02-01
systems do not (necessarily) change the world in which action occurs, but have their principle impact on the cognitive processes that lead to action...are constants and are (in principle ) knowable in advance of their selection for use in a decision context. The particular outcome of a previously...problem (e.g., signalling the presence of enemy platforms in an area) misses are quantifiable in principle and are quite relevant to system evaluation. But
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naitoh, Masanori; Ujita, Hiroshi; Nagumo, Hiroichi
1997-07-01
The Nuclear Power Engineering Corporation (NUPEC) has initiated a long-term program to develop the simulation system {open_quotes}IMPACT{close_quotes} for analysis of hypothetical severe accidents in nuclear power plants. IMPACT employs advanced methods of physical modeling and numerical computation, and can simulate a wide spectrum of senarios ranging from normal operation to hypothetical, beyond-design-basis-accident events. Designed as a large-scale system of interconnected, hierarchical modules, IMPACT`s distinguishing features include mechanistic models based on first principles and high speed simulation on parallel processing computers. The present plan is a ten-year program starting from 1993, consisting of the initial one-year of preparatory work followed bymore » three technical phases: Phase-1 for development of a prototype system; Phase-2 for completion of the simulation system, incorporating new achievements from basic studies; and Phase-3 for refinement through extensive verification and validation against test results and available real plant data.« less
Influence of Geographic Factors on the Life Cycle Climate Change Impacts of Renewable Energy Systems
NASA Astrophysics Data System (ADS)
Fortier, M. O. P.
2017-12-01
Life cycle assessment (LCA) is a valuable tool to measure the cradle-to-grave climate change impacts of the sustainable energy systems that are planned to replace conventional fossil energy-based systems. The recent inclusion of geographic specificity in bioenergy LCAs has shown that the relative sustainability of these energy sources is often dependent on geographic factors, such as the climate change impact of changing the land cover and local resource availability. However, this development has not yet been implemented to most LCAs of energy systems that do not have biological feedstocks, such as wind, water, and solar-based energy systems. For example, the tidal velocity where tidal rotors are installed can significantly alter the life cycle climate change impacts of electricity generated using the same technology in different locations. For LCAs of solar updraft towers, the albedo change impacts arising from changing the reflectivity of the land that would be converted can be of the same magnitude as other life cycle process climate change impacts. Improvements to determining the life cycle climate change impacts of renewable energy technologies can be made by utilizing GIS and satellite data and by conducting site-specific analyses. This practice can enhance our understanding of the life cycle environmental impacts of technologies that are aimed to reduce the impacts of our current energy systems, and it can improve the siting of new systems to optimize a reduction in climate change impacts.
Germaine, Kieran J.; Byrne, John; Liu, Xuemei; Keohane, Jer; Culhane, John; Lally, Richard D.; Kiwanuka, Samuel; Ryan, David; Dowling, David N.
2015-01-01
Biopiling is an ex situ bioremediation technology that has been extensively used for remediating a wide range of petrochemical contaminants in soils. Biopiling involves the assembling of contaminated soils into piles and stimulating the biodegrading activity of microbial populations by creating near optimum growth conditions. Phytoremediation is another very successful bioremediation technique and involves the use of plants and their associated microbiomes to degrade, sequester or bio-accumulate pollutants from contaminated soil and water. The objective of this study was to investigate the effectiveness of a combined phytoremediation/biopiling system, termed Ecopiling, to remediate hydrocarbon impacted industrial soil. The large scale project was carried out on a sandy loam, petroleum impacted soil [1613 mg total petroleum hydrocarbons (TPHs) kg-1 soil]. The contaminated soil was amended with chemical fertilizers, inoculated with TPH degrading bacterial consortia and then used to construct passive biopiles. Finally, a phyto-cap of perennial rye grass (Lolium perenne) and white clover (Trifolium repens) was sown on the soil surface to complete the Ecopile. Monitoring of important physico-chemical parameters was carried out at regular intervals throughout the trial. Two years after construction the TPH levels in the petroleum impacted Ecopiles were below detectable limits in all but one subsample (152 mg TPH kg-1 soil). The Ecopile system is a multi-factorial bioremediation process involving bio-stimulation, bio-augmentation and phytoremediation. One of the key advantages to this system is the reduced costs of the remediation process, as once constructed, there is little additional cost in terms of labor and maintenance (although the longer process time may incur additional monitoring costs). The other major advantage is that many ecological functions are rapidly restored to the site and the process is esthetically pleasing. PMID:25601875
Germaine, Kieran J; Byrne, John; Liu, Xuemei; Keohane, Jer; Culhane, John; Lally, Richard D; Kiwanuka, Samuel; Ryan, David; Dowling, David N
2014-01-01
Biopiling is an ex situ bioremediation technology that has been extensively used for remediating a wide range of petrochemical contaminants in soils. Biopiling involves the assembling of contaminated soils into piles and stimulating the biodegrading activity of microbial populations by creating near optimum growth conditions. Phytoremediation is another very successful bioremediation technique and involves the use of plants and their associated microbiomes to degrade, sequester or bio-accumulate pollutants from contaminated soil and water. The objective of this study was to investigate the effectiveness of a combined phytoremediation/biopiling system, termed Ecopiling, to remediate hydrocarbon impacted industrial soil. The large scale project was carried out on a sandy loam, petroleum impacted soil [1613 mg total petroleum hydrocarbons (TPHs) kg(-1) soil]. The contaminated soil was amended with chemical fertilizers, inoculated with TPH degrading bacterial consortia and then used to construct passive biopiles. Finally, a phyto-cap of perennial rye grass (Lolium perenne) and white clover (Trifolium repens) was sown on the soil surface to complete the Ecopile. Monitoring of important physico-chemical parameters was carried out at regular intervals throughout the trial. Two years after construction the TPH levels in the petroleum impacted Ecopiles were below detectable limits in all but one subsample (152 mg TPH kg(-1) soil). The Ecopile system is a multi-factorial bioremediation process involving bio-stimulation, bio-augmentation and phytoremediation. One of the key advantages to this system is the reduced costs of the remediation process, as once constructed, there is little additional cost in terms of labor and maintenance (although the longer process time may incur additional monitoring costs). The other major advantage is that many ecological functions are rapidly restored to the site and the process is esthetically pleasing.
An Analysis of the Impact of RFID Technology on Inventory Systems
NASA Astrophysics Data System (ADS)
Rekik, Yacine
Nowadays, most enterprises undertake large investments in order to implement information systems that support decision making for managing inventories. Nevertheless, if data collected from the physical processes used to feed these systems are not correct, there will be severe impacts on business performance. Inventory inaccuracy occurs when the inventory level in the Information System is not in agreement with the physically available inventory. In this chapter, we first describe the major factors generating inventory inaccuracy. Then, we provide situations permitting to manage an inventory system subject to errors. We provide a framework to model the inventory inaccuracy issue and focus on the impact of advanced identification systems, such as that provided by RFID technology, in improving the performance of a supply chain subject to inventory inaccuracies.
Evaluation of an Integrated Multi-Task Machine Learning System with Humans in the Loop
2007-01-01
machine learning components natural language processing, and optimization...was examined with a test explicitly developed to measure the impact of integrated machine learning when used by a human user in a real world setting...study revealed that integrated machine learning does produce a positive impact on overall performance. This paper also discusses how specific machine learning components contributed to human-system
Determinants of business sustainability: an ergonomics perspective.
Genaidy, Ash M; Sequeira, Reynold; Rinder, Magda M; A-Rehim, Amal D
2009-03-01
There is a need to integrate both macro- and micro-ergonomic approaches for the effective implementation of interventions designed to improve the root causes of problems such as work safety, quality and productivity in the enterprise system. The objective of this study was to explore from an ergonomics perspective the concept of business sustainability through optimising the worker-work environment interface. The specific aims were: (a) to assess the working conditions of a production department work process with the goal to jointly optimise work safety, quality and quantity; (b) to evaluate the enterprise-wide work process at the system level as a social entity in an attempt to trace the root causes of ergonomic issues impacting employees throughout the work process. The Work Compatibility Model was deployed to examine the experiences of workers (that is, effort, perceived risk/benefit, performance and satisfaction/dissatisfaction or psychological impact) and their associations with the complex domains of the work environment (task content, physical and non-physical work environment and conditions for learning/growth/development). This was followed by assessment of the enterprise system through detailed interviews with department managers and lead workers. A system diagnostic instrument was also constructed from information derived from the published literature to evaluate the enterprise system performance. The investigation of the production department indicated that the stress and musculoskeletal pain experienced by workers (particularly on the day shift) were derived from sources elsewhere in the work process. The enterprise system evaluation and detailed interviews allowed the research team to chart the feed-forward and feedback stress propagation loops in the work system. System improvement strategies were extracted on the basis of tacit/explicit knowledge obtained from department managers and lead workers. In certain situations concerning workplace human performance issues, a combined macro-micro ergonomic methodology is essential to solve the productivity, quality and safety issues impacting employees along the trajectory or path of the enterprise-wide work process. In this study, the symptoms associated with human performance issues in one production department work process had root causes originating in the customer service department work process. In fact, the issues found in the customer service department caused performance problems elsewhere in the enterprise-wide work process such as the traffic department. Sustainable enterprise solutions for workplace human performance require the integration of macro- and micro-ergonomic approaches.
Impact, and its implications for geology
NASA Technical Reports Server (NTRS)
Marvin, Ursula B.
1988-01-01
The publication of seminal texts on geology and on meteoritics in the 1790s, laid the groundwork for the emergence of each discipline as a modern branch of science. Within the past three decades, impact cratering has become universally accepted as a process that sculptures the surfaces of planets and satellites throughout the solar system. Nevertheless, one finds in-depth discussions of impact processes mainly in books on the Moon or in surveys of the Solar System. The historical source of the separation between meteoritics and geology is easy to identify. It began with Hutton. Meteorite impact is an extraordinary event acting instantaneously from outside the Earth. It violates Hutton's principles, which were enlarged upon and firmly established as fundamental to the geological sciences by Lyell. The split between meteoritics and geology surely would have healed as early as 1892 if the investigations conducted by Gilbert (1843-1918) at the crater in northern Arizona had yielded convincing evidence of meteorite impact. The 1950s and 1960s saw a burgeoning of interest in impact processes. The same period witnessed the so-called revolution in the Earth Sciences, when geologists yielded up the idea of fixed continents and began to view the Earth's lithosphere as a dynamic array of horizontally moving plates. Plate tectonics, however, is fully consistent with the geological concepts inherited from Hutton: the plates slowly split, slide, and suture, driven by forces intrinsic to the globe.
Modeling Business Processes in Public Administration
NASA Astrophysics Data System (ADS)
Repa, Vaclav
During more than 10 years of its existence business process modeling became a regular part of organization management practice. It is mostly regarded. as a part of information system development or even as a way to implement some supporting technology (for instance workflow system). Although I do not agree with such reduction of the real meaning of a business process, it is necessary to admit that information technologies play an essential role in business processes (see [1] for more information), Consequently, an information system is inseparable from a business process itself because it is a cornerstone of the general basic infrastructure of a business. This fact impacts on all dimensions of business process management. One of these dimensions is the methodology that postulates that the information systems development provide the business process management with exact methods and tools for modeling business processes. Also the methodology underlying the approach presented in this paper has its roots in the information systems development methodology.
Predicting impact of SLR on coastal flooding in Banda Aceh coastal defences
NASA Astrophysics Data System (ADS)
Al'ala, Musa; Syamsidik, Kato, Shigeru
2017-10-01
Banda Aceh is a low-lying city located at the northern tip of Sumatra Island and situated at the conjuncture of Malacca Strait and the Andaman Sea. A Sea Level Rise (SLR) rate at 7 mm/year has been observed around this region. In the next 50 years, this city will face a serious challenge to encounter impacts of the sea level rise, such as frequent coastal floodings. This study is aimed at estimating impacts of the sea level rise induced coastal floodings on several types of coastal structures and city drainage system. Numerical simulations of Delft3D were applied to investigate the influence of the gradual sea level rise in 50 years. The hydrodynamic process of coastal flooding and sediment transport were simulated by Delft3D-Flow. Topography and bathymetry data were collected from GEBCO and updated with the available nautical chart (DISHIDROS, JICA, and field measurements). Hydrodynamic process gains the flow process revealing the level of the sea water intrusion also observed in the model. Main rivers (Krueng Aceh, Krueng Neng, and Alue Naga Flood Canal) and the drainage system were observed to see the tides effects on coastal structures and drainage system. The impact on coastal community focusing on affected area, shoreline retreat, the rate of sea intrusion was analyzed with spatial tools. New coastal line, coastal flooding vulnerable area, and the community susceptibility properties map influenced by 50 years sea level rise is produced. This research found that the city needs to address strategies to anticipate the exacerbating impacts of the sea level rise by managing its coastal spatial planning and modify its drainage system, especially at the drainage outlets.
Shim, Sung J; Kumar, Arun; Jiao, Roger
2016-01-01
A hospital is considering deploying a radiofrequency identification (RFID) system and setting up a new "discharge lounge" to improve the patient discharge process. This study uses computer simulation to model and compare the current process and the new process, and it assesses the impact of the RFID system and the discharge lounge on the process in terms of resource utilization and time taken in the process. The simulation results regarding resource utilization suggest that the RFID system can slightly relieve the burden on all resources, whereas the RFID system and the discharge lounge together can significantly mitigate the nurses' tasks. The simulation results in terms of the time taken demonstrate that the RFID system can shorten patient wait times, staff busy times, and bed occupation times. The results of the study could prove helpful to others who are considering the use of an RFID system in the patient discharge process in hospitals or similar processes.
Approaching Error-Free Customer Satisfaction through Process Change and Feedback Systems
ERIC Educational Resources Information Center
Berglund, Kristin M.; Ludwig, Timothy D.
2009-01-01
Employee-based errors result in quality defects that can often impact customer satisfaction. This study examined the effects of a process change and feedback system intervention on error rates of 3 teams of retail furniture distribution warehouse workers. Archival records of error codes were analyzed and aggregated as the measure of quality. The…
Tensions in the Quality Assurance Processes in Post-Apartheid South African Schools
ERIC Educational Resources Information Center
Biputh, Barath; McKenna, Sioux
2010-01-01
This paper tracks the development of the Integrated Quality Management System in South African schools after the dismantling of apartheid in 1994. We argue that the quality processes that are now in place emerged in response to the autocratic school inspection systems that preceded them but did not sufficiently address the impact of educators'…
Resource Analysis of Cognitive Process Flow Used to Achieve Autonomy
2016-03-01
to be used as a decision - making aid to guide system designers and program managers not necessarily familiar with cognitive pro- cessing, or resource...implementing end-to-end cognitive processing flows multiplies and the impact of these design decisions on efficiency and effectiveness increases [1]. The...end-to-end cognitive systems and alternative computing technologies, then system design and acquisition personnel could make systematic analyses and
THE BALLISTICS OF A RIBBON COMPOSITE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larcombe, J.; Morley, M.; Earp, S.
2009-12-28
The impact behaviour of composites is of great importance in the field of aerospace and vehicle protection. The combination of formability, lightness and strength make composite systems attractive compared to equivalent monolithic systems. However, their use as optical components has been hampered by their lack of transparency. Transparency is strongly affected by refractive index differences in the materials that form the composite. In this study a number of ribbon-based composites were produced. The impact velocity, sample deformation during the impact process and residual impactor velocity were measured. This allowed comparison between the materials ballistic efficiency. The materials are then comparedmore » to other transparent systems.« less
Super and parallel computers and their impact on civil engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamat, M.P.
1986-01-01
This book presents the papers given at a conference on the use of supercomputers in civil engineering. Topics considered at the conference included solving nonlinear equations on a hypercube, a custom architectured parallel processing system, distributed data processing, algorithms, computer architecture, parallel processing, vector processing, computerized simulation, and cost benefit analysis.
DOT National Transportation Integrated Search
2012-08-19
Excessive anthropogenic noise has been associated with annoyance, disruption of sleep and cognitive processes, hearing impairment, and adverse impacts on cardiovascular and endocrine systems. Although transportation is a major source of noise, nation...
Artificial Intelligence--Applications in Education.
ERIC Educational Resources Information Center
Poirot, James L.; Norris, Cathleen A.
1987-01-01
This first in a projected series of five articles discusses artificial intelligence and its impact on education. Highlights include the history of artificial intelligence and the impact of microcomputers; learning processes; human factors and interfaces; computer assisted instruction and intelligent tutoring systems; logic programing; and expert…
Life cycle assessment of overhead and underground primary power distribution.
Bumby, Sarah; Druzhinina, Ekaterina; Feraldi, Rebe; Werthmann, Danae; Geyer, Roland; Sahl, Jack
2010-07-15
Electrical power can be distributed in overhead or underground systems, both of which generate a variety of environmental impacts at all stages of their life cycles. While there is considerable literature discussing the trade-offs between both systems in terms of aesthetics, safety, cost, and reliability, environmental assessments are relatively rare and limited to power cable production and end-of-life management. This paper assesses environmental impacts from overhead and underground medium voltage power distribution systems as they are currently built and managed by Southern California Edison (SCE). It uses process-based life cycle assessment (LCA) according to ISO 14044 (2006) and SCE-specific primary data to the extent possible. Potential environmental impacts have been calculated using a wide range of midpoint indicators, and robustness of the results has been investigated through sensitivity analysis of the most uncertain and potentially significant parameters. The studied underground system has higher environmental impacts in all indicators and for all parameter values, mostly due to its higher material intensity. For both systems and all indicators the majority of impact occurs during cable production. Promising strategies for impact reduction are thus cable failure rate reduction for overhead and cable lifetime extension for underground systems.
Nonlinear system identification of smart structures under high impact loads
NASA Astrophysics Data System (ADS)
Sarp Arsava, Kemal; Kim, Yeesock; El-Korchi, Tahar; Park, Hyo Seon
2013-05-01
The main purpose of this paper is to develop numerical models for the prediction and analysis of the highly nonlinear behavior of integrated structure control systems subjected to high impact loading. A time-delayed adaptive neuro-fuzzy inference system (TANFIS) is proposed for modeling of the complex nonlinear behavior of smart structures equipped with magnetorheological (MR) dampers under high impact forces. Experimental studies are performed to generate sets of input and output data for training and validation of the TANFIS models. The high impact load and current signals are used as the input disturbance and control signals while the displacement and acceleration responses from the structure-MR damper system are used as the output signals. The benchmark adaptive neuro-fuzzy inference system (ANFIS) is used as a baseline. Comparisons of the trained TANFIS models with experimental results demonstrate that the TANFIS modeling framework is an effective way to capture nonlinear behavior of integrated structure-MR damper systems under high impact loading. In addition, the performance of the TANFIS model is much better than that of ANFIS in both the training and the validation processes.
[Immobilization and skeletal system of the human body].
Kisała, Aleksander; Pluskiewicz, Wojciech
2015-01-01
Shaping the process of evolution musculoskeletal and nervous systems in animals has allowed these organisms steady increase mobility and mastery of new environments to life. Movement is the essence of life and health. But health is not a permanent condition. Its absence often results in limited mobility of the body. The aim of this study is to assess the impact of immobilization on the state of the skeletal system and the evaluation of the effectiveness of various measures to reduce this impact.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fishkind, H.H.
The overall environmental impact of the eucalyptus to methanol energy system in Florida is assessed. The environmental impacts associated with the following steps of the process are considered: (1) the greenhouse and laboratory; (2) the eucalyptus plantation; (3) transporting the mature logs; (4) the hammermill; and (5) the methanol synthesis plant. Next, the environmental effects of methanol as an undiluted motor fuel, methanol as a gasoline blend, and gasoline as motor fuels are compared. Finally, the environmental effects of the eucalypt gasification/methanol synthesis system are compared to the coal liquefaction and conversion system.
NASA Technical Reports Server (NTRS)
Abbott, David; Batten, Adam; Carpenter, David; Dunlop, John; Edwards, Graeme; Farmer, Tony; Gaffney, Bruce; Hedley, Mark; Hoschke, Nigel; Isaacs, Peter;
2008-01-01
This report describes the first phase of the implementation of the Concept Demonstrator. The Concept Demonstrator system is a powerful and flexible experimental test-bed platform for developing sensors, communications systems, and multi-agent based algorithms for an intelligent vehicle health monitoring system for deployment in aerospace vehicles. The Concept Demonstrator contains sensors and processing hardware distributed throughout the structure, and uses multi-agent algorithms to characterize impacts and determine an appropriate response to these impacts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Columbia River System Operation Review
1995-11-01
This Appendix C of the Final Environmental Impact Statement for the Columbia River System discusses impacts on andromous fish and juvenile fish transportation. The principal andromous fish in the Columbia basin include salmonid species (Chinook, coho, and sockeye salmon, and steelhead) and nonsalmoinid andromous species (sturgeon, lamprey, and shad). Major sections in this document include the following: background, scope and process; affected environment for salmon and steelhead, shaded, lamprey, sturgeon; study methods; description of alternatives: qualitative and quantitative findings.
Meteoric Ions in Planetary Ionospheres
NASA Technical Reports Server (NTRS)
Pesnell, W. D.; Grebowsky, Joseph M.; Vondrak, Richard R. (Technical Monitor)
2001-01-01
Solar system debris, in the form of meteoroids, impacts every planet. The flux, relative composition and speed of the debris at each planet depends on the planet's size and location in the solar system. Ablation in the atmosphere evaporates the meteoric material and leaves behind metal atoms. During the ablation process metallic ions are formed by impact ionization. For small inner solar system planets, including Earth, this source of ionization is typically small compared to either photoionization or charge exchange with ambient molecular ions. For Earth, the atmosphere above the main deposition region absorbs the spectral lines capable of ionizing the major metallic atoms (Fe and Mg) so that charge exchange with ambient ions is the dominant source. Within the carbon dioxide atmosphere of Mars (and possibly Venus), photoionization is important in determining the ion density. For a heavy planet like Jupiter, far from the sun, impact ionization of ablated neutral atoms by impacts with molecules becomes a prominent source of ionization due to the gravitational acceleration to high incident speeds. We will describe the processes and location and extent of metal ion layers for Mars, Earth and Jupiter, concentrating on flagging the uncertainties in the models at the present time. This is an important problem, because low altitude ionosphere layers for the planets, particularly at night, probably consist predominantly of metallic ions. Comparisons with Earth will be used to illustrate the differing processes in the three planetary atmospheres.
Chiu, Sam L H; Lo, Irene M C
2016-12-01
In this paper, factors that affect biogas production in the anaerobic digestion (AD) and anaerobic co-digestion (coAD) processes of food waste are reviewed with the aim to improve biogas production performance. These factors include the composition of substrates in food waste coAD as well as pre-treatment methods and anaerobic reactor system designs in both food waste AD and coAD. Due to the characteristics of the substrates used, the biogas production performance varies as different effects are exhibited on nutrient balance, inhibitory substance dilution, and trace metal element supplement. Various types of pre-treatment methods such as mechanical, chemical, thermal, and biological methods are discussed to improve the rate-limiting hydrolytic step in the digestion processes. The operation parameters of a reactor system are also reviewed with consideration of the characteristics of the substrates. Since the environmental awareness and concerns for waste management systems have been increasing, this paper also addresses possible environmental impacts of AD and coAD in food waste treatment and recommends feasible methods to reduce the impacts. In addition, uncertainties in the life cycle assessment (LCA) studies are also discussed.
Sustainable diets: The interaction between food industry, nutrition, health and the environment.
Alsaffar, Ayten Aylin
2016-03-01
Everyday great amounts of food are produced, processed, transported by the food industry and consumed by us and these activities have direct impact on our health and the environment. The current food system has started causing strain on the Earth's natural resources and that is why sustainable food production systems are needed. This review article discusses the need for sustainable diets by exploring the interactions between the food industry, nutrition, health and the environment, which are strongly interconnected. The most common environmental issues in the food industry are related to food processing loss, food wastage and packaging; energy efficiency; transportation of foods; water consumption and waste management. Among the foods produced and processed, meat and meat products have the greatest environmental impact followed by the dairy products. Our eating patterns impact the environment, but the environment can impact dietary choices as well. The foods and drinks we consume may also affect our health. A healthy and sustainable diet would minimise the consumption of energy-dense and highly processed and packaged foods, include less animal-derived foods and more plant-based foods and encourage people not to exceed the recommended daily energy intake. Sustainable diets contribute to food and nutrition security, have low environmental impacts and promote healthy life for present and future generations. There is an urgent need to develop and promote strategies for sustainable diets; and governments, United Nations agencies, civil society, research organisations and the food industry should work together in achieving this. © The Author(s) 2016.
chemical process designers using simulation software generate alternative designs for one process. One criterion for evaluating these designs is their potential for adverse environmental impacts due to waste generated, energy consumed, and possibilities for fugitive emissions. Co...
Xie, Anping; Carayon, Pascale
2015-01-01
Healthcare systems need to be redesigned to provide care that is safe, effective and efficient, and meets the multiple needs of patients. This systematic review examines how human factors and ergonomics (HFE) is applied to redesign healthcare work systems and processes and improve quality and safety of care. We identified 12 projects representing 23 studies and addressing different physical, cognitive and organisational HFE issues in a variety of healthcare systems and care settings. Some evidence exists for the effectiveness of HFE-based healthcare system redesign in improving process and outcome measures of quality and safety of care. We assessed risk of bias in 16 studies reporting the impact of HFE-based healthcare system redesign and found varying quality across studies. Future research should further assess the impact of HFE on quality and safety of care, and clearly define the mechanisms by which HFE-based system redesign can improve quality and safety of care.
NASA Astrophysics Data System (ADS)
Andres Rodriguez, Daniel; Garofolo, Lucas; Lazaro Siqueira Junior, Jose
2013-04-01
Uncertainties in Climate Change projections are affected by irreducible uncertainties due to knowledge's limitations, chaotic nature of climate system and human decision-making process. Such uncertainties affect the impact studies, complicating the decision-making process aimed at mitigation and adaptation. However, these uncertainties allow the possibility to develop exploratory analyses on system's vulnerability to different sceneries. Through these kinds of analyses it is possible to identify critical issues, which must be deeper studied. For this study we used several future's projections from General Circulation Models to feed a Hydrological Model, applied to the Amazonian sub-basin of Ji-Paraná. Hydrological Model integrations are performed for present historical time (1970-1990) and for future period (2010-2100). Extreme values analyses are performed to each simulated time series and results are compared with extremes events in present time. A simple approach to identify potential vulnerabilities consists of evaluating the hydrologic system response to climate variability and extreme events observed in the past, comparing them with the conditions projected for the future. Thus it is possible to identify critical issues that need attention and more detailed studies. For the goal of this work, we used socio-economic data from Brazilian Institute of Geography and Statistics, the Operator of the National Electric System, the Brazilian National Water Agency and scientific and press published information. This information is used to characterize impacts associated to extremes hydrological events in the basin during the present historical time and to evaluate potential impacts in the future face to the different hydrological projections. Results show inter-model variability results in a broad dispersion on projected extreme's values. The impact of such dispersion is differentiated for different aspects of socio-economic and natural systems and must be carefully addressed in order to help in decision-making processes.
NASA Astrophysics Data System (ADS)
Hudson, E. C.; Johnson, Gordon; Summey, Delbert C.; Portmann, Helmut H., Jr.
2004-09-01
This paper discusses a comprehensive vision for unmanned systems that will shape the future of Naval Warfare within a larger Joint Force concept, and examines the broad impact that can be anticipated across the Fleet. The vision has been articulated from a Naval perspective in NAVSEA technical report CSS/TR-01/09, Shaping the Future of Naval Warfare with Unmanned Systems, and from a Joint perspective in USJFCOM Rapid Assessment Process (RAP) Report #03-10 (Unmanned Effects (UFX): Taking the Human Out of the Loop). Here, the authors build on this foundation by reviewing the major findings and laying out the roadmap for achieving the vision and truly transforming how we fight wars. The focus is on broad impact across the Fleet - but the implications reach across all Joint forces. The term "Unmanned System" means different things to different people. Most think of vehicles that are remotely teleoperated that perform tasks under remote human control. Actually, unmanned systems are stand-alone systems that can execute missions and tasks without direct physical manned presence under varying levels of human control - from teleoperation to full autonomy. It is important to note that an unmanned system comprises a lot more than just a vehicle - it includes payloads, command and control, and communications and information processing.
Solutions for acceleration measurement in vehicle crash tests
NASA Astrophysics Data System (ADS)
Dima, D. S.; Covaciu, D.
2017-10-01
Crash tests are useful for validating computer simulations of road traffic accidents. One of the most important parameters measured is the acceleration. The evolution of acceleration versus time, during a crash test, form a crash pulse. The correctness of the crash pulse determination depends on the data acquisition system used. Recommendations regarding the instrumentation for impact tests are given in standards, which are focused on the use of accelerometers as impact sensors. The goal of this paper is to present the device and software developed by authors for data acquisition and processing. The system includes two accelerometers with different input ranges, a processing unit based on a 32-bit microcontroller and a data logging unit with SD card. Data collected on card, as text files, is processed with a dedicated software running on personal computers. The processing is based on diagrams and includes the digital filters recommended in standards.
NASA Technical Reports Server (NTRS)
Solomon, Sean C.; Duxbury, Elizabeth D.
1987-01-01
Impact cratering has been an important process in the solar system. The cratering event is generally accompanied by faulting in adjacent terrain. Impact-induced faults are nearly ubiquitous over large areas on the terrestrial planets. The suggestion is made that these fault systems, particularly those associated with the largest impact features are preferred sites for later deformation in response to lithospheric stresses generated by other processes. The evidence is a perceived clustering of orientations of tectonic features either radial or concentric to the crater or basin in question. An opportunity exists to test this suggestion more directly on Earth. The terrestrial continents contain more than 100 known or probable impact craters, with associated geological structures mapped to varying levels of detail. Prime facie evidence for reactivation of crater-induced faults would be the occurrence of earthquakes on these faults in response to the intraplate stress field. Either an alignment of epicenters with mapped fault traces or fault plane solutions indicating slip on a plane approximately coincident with that inferred for a crater-induced fault would be sufficient to demonstrate such an association.
Non-Ballistic Vapor-Driven Ejecta
NASA Technical Reports Server (NTRS)
Wrobel, K. E.; Schultz, P. H.; Heineck, J. T.
2004-01-01
Impact-induced vaporization is a key component of early-time cratering mechanics. Previous experimental [1,2] and computational [e.g., 3] studies focused on the generation and expansion of vapor clouds in an attempt to better understand vaporization in hypervelocity impacts. Presented here is a new experimental approach to the study of impact-induced vaporization. The three-dimensional particle image velocimetry (3D PIV) system captures interactions between expanding vapor phases and fine particulates. Particles ejected early in the cratering process may be entrained in expanding gas phases generated at impact, altering their otherwise ballistic path of flight. 3D PIV allows identifying the presence of such non-ballistic ejecta from very early times in the cratering process.
1986-06-06
farm animals (horses, beef cattle, turkeys, broilers , sheep, dairy cattle and pheasants) at Edwards AFB during 1966 show, except for avian species...15 15 loss of hearing, effects on mental health, effects on the circulatory system such as hypertension, digestive system problems, etc. Invlew of the
Mass, Energy, Space And Time System Theory---MEST A way to help our earth
NASA Astrophysics Data System (ADS)
Cao, Dayong
2009-03-01
There are two danger to our earth. The first, the sun will expand to devour our earth, for example, the ozonosphere of our earth is be broken; The second, the asteroid will impact near our earth. According to MEST, there is a interaction between Black hole (and Dark matter-energy) and Solar system. The orbit of Jupiter is a boundary of the interaction between Black hole (and Dark matter-energy) and Solar system. Because there are four terrestrial planets which is mass-energy center as solar system, and there are four or five Jovian planets which is gas (space-time) center as black hole system. According to MEST, dark matter-energy take the velocity of Jupiter gose up. So there are a lot of asteroids and dark matter-energy near the orbit of Jupiter-the boundary. Dark matter-energy can change the orbit of asteroid, and take it impacted near our earth. Because the Dark matter-energy will pressure the Solar system. It is a inverse process with sun's expandedness. So the ``two danger'' is from a new process of the balance system between Black hole (and Dark matter-energy) and Solar system. According to MEST, We need to find the right point for our earth in the ``new process of the balance system.''
Lovering, Andrew T; Elliott, Jonathan E; Davis, James T
2016-08-01
The foramen ovale, which is part of the normal fetal cardiopulmonary circulation, fails to close after birth in ∼35% of the population and represents a potential source of right-to-left shunt. Despite the prevalence of patent foramen ovale (PFO) in the general population, cardiopulmonary, exercise, thermoregulatory, and altitude physiologists may have underestimated the potential effect of this shunted blood flow on normal physiological processes in otherwise healthy humans. Because this shunted blood bypasses the respiratory system, it would not participate in either gas exchange or respiratory system cooling and may have impacts on other physiological processes that remain undetermined. The consequences of this shunted blood flow in PFO-positive (PFO+) subjects can potentially have a significant, and negative, impact on the alveolar-to-arterial oxygen difference (AaDO2), ventilatory acclimatization to high altitude and respiratory system cooling with PFO+ subjects having a wider AaDO2 at rest, during exercise after acclimatization, blunted ventilatory acclimatization, and a higher core body temperature (∼0.4(°)C) at rest and during exercise. There is also an association of PFO with high-altitude pulmonary edema and acute mountain sickness. These effects on physiological processes are likely dependent on both the presence and size of the PFO, with small PFOs not likely to have significant/measureable effects. The PFO can be an important determinant of normal physiological processes and should be considered a potential confounder to the interpretation of former and future data, particularly in small data sets where a significant number of PFO+ subjects could be present and significantly impact the measured outcomes.
Criteria-Based Resource Allocation: A Tool to Improve Public Health Impact.
Graham, J Ross; Mackie, Christopher
2016-01-01
Resource allocation in local public health (LPH) has been reported as a significant challenge for practitioners and a Public Health Services and Systems Research priority. Ensuring available resources have maximum impact on community health and maintaining public confidence in the resource allocation process are key challenges. A popular strategy in health care settings to address these challenges is Program Budgeting and Marginal Analysis (PBMA). This case study used PBMA in an LPH setting to examine its appropriateness and utility. The criteria-based resource allocation process PBMA was implemented to guide the development of annual organizational budget in an attempt to maximize the impact of agency resources. Senior leaders and managers were surveyed postimplementation regarding process facilitators, challenges, and successes. Canada's largest autonomous LPH agency. PBMA was used to shift 3.4% of the agency budget from lower-impact areas (through 34 specific disinvestments) to higher-impact areas (26 specific reinvestments). Senior leaders and managers validated the process as a useful approach for improving the public health impact of agency resources. However, they also reported the process may have decreased frontline staff confidence in senior leadership. In this case study, PBMA was used successfully to reallocate a sizable portion of an LPH agency's budget toward higher-impact activities. PBMA warrants further study as a tool to support optimal resource allocation in LPH settings.
Actualizing system benefits--Part II.
Zinn, T K; DiGiulio, L W
1988-05-01
Do benefits impact the psychology of the information system buying decision? Is system success tied to achieving "promoted" benefits? Part II of this series reveals responses from a survey of some 3,000 executives about the importance of qualitative and quantitative benefits in the "buying process."
TRACI: USER'S GUIDE AND SYSTEM DOCUMENTATION
TRACI allows the examination of the potential for impacts associated with the raw material usage and chemical releases resulting from the processes involved in producing a product. TRACI allows the user to examine the potential for impacts for a single life cycle stage, or the w...
Pressure-based impact method to count bedload particles
NASA Astrophysics Data System (ADS)
Antico, Federica; Mendes, Luís; Aleixo, Rui; Ferreira, Rui M. L.
2017-04-01
Bedload transport processes determine morphological changes in fluvial, estuarine and coastal domains, thus impacting the diversity and quality of ecosystems and human activities such as river management, coastal protection or dam operation. In spite of the advancements made in the last 60 years, driven by the improvements in measurement techniques, research efforts on grain-scale mechanics of bedload are still required, especially to clarify the intermittent nature of bedload, its stochastic structure and its scale dependence. A new impact-based device to measure bedload transport - MiCas system - is presented in this work. It was designed to meet the following key requirements: simple data output composed of time instant and location of impacts; no need for post-processing - impacts determined through hardware and firmware; capable of computing simple statistics in real time such as cumulative particle counting and discrete lateral distribution of cumulative particle counts; able to run for very large time periods (days, weeks); ability to detect particle impacts of large size fractions that are separated by a few milliseconds; composed of robust and relatively cheap components. The system's firmware analyses pressure time series, namely recognizing the imprints of impacts of individual particles as they hit pressurized membranes. A pattern analysis algorithm is used to identify the impact events. The implementation of this principle in a dedicated microprocessor allows for the real-time measurements of particle hits and cumulative particle count. To validate the results obtained by the MiCas system, Experiments were carried out in the 12.5m long and 40.5cm wide glass-sided flume of the Laboratory of Hydraulics and Environment of Instituto Superior Técnico, Lisbon. This flume has two independent circuits for water and sediment recirculation. A cohesionless granular bed, composed of 4 layers of 5 mm glass beads, subjected to a steady-uniform turbulent open-channel flow, was analysed. All tests featured a period of 90 s data collection. For a detailed description of the laboratory facilities and test conditions see Mendes et al. (2016). Results from MiCas system were compared with those of obtained from the analysis of a high-speed video footage. The obtained results shown a good agreement between both techniques. The measurements carried out allowed to determine that MiCas system is able to track particle impact in real-time within an error margin of 2.0%. From different tests with the same conditions it was possible to determine the repeatability of MiCas system. Derived quantities such as bedload transport rates, eulerian auto-correlation functions and structure functions are also in close agreement with measurements based on optical methods. The main advantages of MiCas system relatively to digital image processing methods are: a) independence from optical access, thus avoiding problems with light intensity variations and oscillating free surfaces; b) small volume of data associated to particle counting, which allows for the possibility of acquiring very long data series (hours, days) of particle impacts. In the considered cases, it would take more than two hours to generate 1 MB of data. For the current validation tests, 90 s acquisition time generated 25 Gb of images but 11 kB of MiCas data. On the other hand the time necessary to process the digital images may correspond to days, effectively limiting its usage to small time series. c) the possibility of real-time measurements, allowing for detection of problems during the experiments and minimizing some post-processing steps. This research was partially supported by Portuguese and European funds, within programs COMPETE2020 and PORL-FEDER, through project PTDC/ECM-HID/6387/2014 granted by the National Foundation for Science and Technology (FCT). References Mendes L., Antico F., Sanches P., Alegria F., Aleixo R., and Ferreira RML. (2016). A particle counting system for calculation of bedload fluxes. Measurement Science and Technology. DOI: http://dx.doi.org/10.1088/0957-0233/27/12/125305
NASA Technical Reports Server (NTRS)
Ziese, James M.
1992-01-01
A design tool of figure of merit was developed that allows the operability of a propulsion system design to be measured. This Launch Operations Index (LOI) relates Operations Efficiency to System Complexity. The figure of Merit can be used by conceptual designers to compare different propulsion system designs based on their impact on launch operations. The LOI will improve the design process by making sure direct launch operations experience is a necessary feedback to the design process.
Restructure Staff Development for Systemic Change
ERIC Educational Resources Information Center
Kelly, Thomas F.
2012-01-01
This paper presents a systems approach based on the work of W. Edwards Deming to system wide, high impact staff development. Deming has pointed out the significance of structure in systems. By restructuring the process of staff development we can bring about cost effective improvement of the whole system. We can improve student achievement while…
Use of high temperature superconductors in magnetoplasmadynamic systems
NASA Technical Reports Server (NTRS)
Reed, C. B.; Sovey, J. S.
1988-01-01
The use of Tesla-class high-temperature superconducting magnets may have an extremely large impact on critical development issues (erosion, heat transfer, and performance) related to magnetoplasmadynamic (MPD) thrusters and also may provide significant benefits in reducing the mass of magnetics used in the power processing system. These potential performance improvements, coupled with additional benefits of high-temperature superconductivity, provide a very strong motivation to develop high-temperature superconductivity (HTS) applied-field MPD thruster propulsion systems. The application of HTS to MPD thruster propulsion systems may produce an enabling technology for these electric propulsion systems. This paper summarizes the impact that HTS may have upon MPD propulsion systems.
Visual analysis of inter-process communication for large-scale parallel computing.
Muelder, Chris; Gygi, Francois; Ma, Kwan-Liu
2009-01-01
In serial computation, program profiling is often helpful for optimization of key sections of code. When moving to parallel computation, not only does the code execution need to be considered but also communication between the different processes which can induce delays that are detrimental to performance. As the number of processes increases, so does the impact of the communication delays on performance. For large-scale parallel applications, it is critical to understand how the communication impacts performance in order to make the code more efficient. There are several tools available for visualizing program execution and communications on parallel systems. These tools generally provide either views which statistically summarize the entire program execution or process-centric views. However, process-centric visualizations do not scale well as the number of processes gets very large. In particular, the most common representation of parallel processes is a Gantt char t with a row for each process. As the number of processes increases, these charts can become difficult to work with and can even exceed screen resolution. We propose a new visualization approach that affords more scalability and then demonstrate it on systems running with up to 16,384 processes.
What Determines Water Temperature Dynamics in the San Francisco Bay-Delta System?
NASA Astrophysics Data System (ADS)
Vroom, J.; van der Wegen, M.; Martyr-Koller, R. C.; Lucas, L. V.
2017-11-01
Water temperature is an important factor determining estuarine species habitat conditions. Water temperature is mainly governed by advection (e.g., from rivers) and atmospheric exchange processes varying strongly over time (day-night, seasonally) and the spatial domain. On a long time scale, climate change will impact water temperature in estuarine systems due to changes in river flow regimes, air temperature, and sea level rise. To determine which factors govern estuarine water temperature and its sensitivity to changes in its forcing, we developed a process-based numerical model (Delft3D Flexible Mesh) and applied it to a well-monitored estuarine system (the San Francisco Estuary) for validation. The process-based approach allows for detailed process description and a physics-based analysis of governing processes. The model was calibrated for water year 2011 and incorporated 3-D hydrodynamics, salinity intrusion, water temperature dynamics, and atmospheric coupling. Results show significant skill in reproducing temperature observations on daily, seasonal, and yearly time scales. In North San Francisco Bay, thermal stratification is present, enhanced by salinity stratification. The temperature of the upstream, fresh water Delta area is captured well in 2-D mode, although locally—on a small scale—vertical processes (e.g., stratification) may be important. The impact of upstream river temperature and discharge and atmospheric forcing on water temperatures differs throughout the Delta, possibly depending on dispersion and residence times. Our modeling effort provides a sound basis for future modeling studies including climate change impact on water temperature and associated ecological modeling, e.g., clam and fish habitat and phytoplankton dynamics.
ERIC Educational Resources Information Center
National Science Teachers Association, Arlington, VA.
The seven activities contained in this book are designed to equip students (grades 9-12) with scientific tools and skills for understanding what introduced species are, how they impact natural processes and human systems, and what may be done about them. The activities are designed to link the biology and ecology of introduced species with…
NASA Astrophysics Data System (ADS)
Polichtchouk, Yuri; Tokareva, Olga; Bulgakova, Irina V.
2003-03-01
Methodical problems of space images processing for assessment of atmosphere pollution impact on forest ecosystems using geoinformation systems are developed. An approach to quantitative assessment of atmosphere pollution impact on forest ecosystems is based on calculating relative squares of forest landscapes which are inside atmosphere pollution zones. Landscape structure of forested territories in the southern part of Western Siberia are determined on the basis of procession of middle resolution space images from spaceborn Resource-O. Particularities of atmosphere pollution zones modeling caused by gas burning in torches on territories of oil fields are considered. Pollution zones were revealed by modeling of contaminants dispersal in atmosphere with standard models. Polluted landscapes squares are calculated depending on atmosphere pollution level.
Improving cardiac surgical care: a work systems approach.
Wiegmann, Douglas A; Eggman, Ashley A; Elbardissi, Andrew W; Parker, Sarah Henrickson; Sundt, Thoralf M
2010-09-01
Over the past 50 years, significant improvements in cardiac surgical care have been achieved. Nevertheless, surgical errors that significantly impact patient safety continue to occur. In order to further improve surgical outcomes, patient safety programs must focus on rectifying work system factors in the operating room (OR) that negatively impact the delivery of reliable surgical care. The goal of this paper is to provide an integrative review of specific work system factors in the OR that may directly impact surgical care processes, as well as the subsequent recommendations that have been put forth to improve surgical outcomes and patient safety. The important role that surgeons can play in facilitating work system changes in the OR is also discussed. The paper concludes with a discussion of the challenges involved in assessing the impact that interventions have on improving surgical care. Opportunities for future research are also highlighted throughout the paper. 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jin, H.; Ma, Q.; Jin, X.
2017-12-01
Permafrost degradation substantially impacts hydrological processes in the Source Area of the Yellow River (SAYR). Deepening active layer has directly led to a reduction of surface runoffs, alters the generation and dynamics of slope runoffs and groundwater, leading to a deepening of groundwater flow paths. At present, however, there is only a limited understanding of the hydrological impact mechanisms of degrading permafrost. On the basis of analyzing and evaluating the current states, changing history and developing trends of climate, permafrost and hydrological processes, this program aims at further and better quantifying the nature of these mechanisms linking the degrading permafrost with changing hydrological processes. The key scientific themes for this research are the characterization of interactions between ground freezing-thawing and hydrogeology in the SAYR. For this study, a coupling is made between geothermal states and the occurrences of taliks in river systems, in order to understand how expanding taliks control groundwater and surface-water interactions and how these interactions might intensify or weaken when the climate warms and dries persistently. Numerical models include freeze-thaw dynamics coupled to groundwater and surface flow processes. For the proper parameterization of these models, field and laboratory studies are conducted with a focus on the SAYR. Geophysical investigations are employed for mapping permafrost distribution in relation to landscape elements. Boreholes and water wells and observation sites for the hydrothermal processes and water tables are used for establishing the current thermal state of frozen ground and talik and monitor their changes over time, and serve to ground-truth surface geophysical observations. Boreholes and wellbores, water wells and active layer sites have provided access to the permafrost and aquifer systems, allowing the dating of ground-water and -ice and soil strata for elucidating the regional hydrogeological system underlying the SAYR, and groundwater recharge mechanisms. The project plans to quantitatively study the impacting mechanisms of degrading frozen ground on changes in hydrological processes and systems in the SAYR.
NASA Technical Reports Server (NTRS)
See, T. H.; Montes, R.
2012-01-01
Impact is the most common and only weathering phenomenon affecting all the planetary bodies (e.g., planets, satellites, asteroids, comets, etc.) in the solar system. NASA Johnson Space Center s Experimental Impact Laboratory (EIL) includes three accelerators that are used in support of research into the effects of impact on the formation and evolution of the solar system. They permit researchers to study a wide variety of phenomena associated with high-velocity impacts into a wide range of geologic targets and materials relevant to astrobiological studies. By studying these processes, researchers can investigate the histories and evolution of planetary bodies and the solar system as a whole. While the majority of research conducted in the EIL addresses questions involving planetary impacts, work involving spacecraft components has been performed on occasion. An example of this is the aerogel collector material flown on the Stardust spacecraft that traveled to Comet Wild-2. This capture medium was tested and flight qualified using the 5 mm Light-Gas Gun located in the EIL.
Towards understanding the dynamic behaviour of floodplains as human-water systems
NASA Astrophysics Data System (ADS)
Di Baldassarre, G.; Kooy, M.; Kemerink, J. S.; Brandimarte, L.
2013-03-01
This paper offers a conceptual approach to explore the complex dynamics of floodplains as fully coupled human-water systems. A number of hydrologists have recently investigated the impact of human activities (such as flood control measures, land-use changes, and settlement patterns) on the frequency and severity of floods. Meanwhile, social scientists have shown how interactions between society and waters in floodplain areas, including the frequency and severity of floods, have an impact on the ways in which social relations unfold (in terms of governance processes, policies, and institutions) and societies are organised (spatially, politically, and socially). However, we argue that the interactions and associated feedback mechanisms between hydrological and social processes remain largely unexplored and poorly understood. Thus, there is a need to better understand how the institutions and governance processes interact with hydrological processes in floodplains to influence the frequency and severity of floods, while (in turn) hydrological processes co-constitute the social realm and make a difference for how social relations unfold to shape governance processes and institutions. Our research goal, therefore, is not in identifying one or the other side of the cycle (hydrological or social), but in explaining the relationship between them: how, when, where, and why they interact, and to what result for both social relations and hydrological processes? We argue that long time series of hydrological and social data, along with remote sensing data, can be used to observe floodplain dynamics from unconventional approaches, and understand the complex interactions between water and human systems taking place in floodplain areas, across scales and levels of human impacts, and within different hydro-climatic conditions, socio-cultural settings, and modes of governance.
Towards understanding the dynamic behaviour of floodplains as human-water systems
NASA Astrophysics Data System (ADS)
Di Baldassarre, G.; Kooy, M.; Kemerink, J. S.; Brandimarte, L.
2013-08-01
This paper offers a conceptual approach to explore the complex dynamics of floodplains as fully coupled human-water systems. A number of hydrologists have recently investigated the impact of human activities (such as flood control measures, land-use changes, and settlement patterns) on the frequency and severity of floods. Meanwhile, social scientists have shown how interactions between society and waters in deltas and floodplain areas, including the frequency and severity of floods, have an impact on the ways in which social relations unfold (in terms of governance processes, policies, and institutions) and societies are organised (spatially, politically, and socially). However, we argue that the interactions and associated feedback mechanisms between hydrological and social processes remain largely unexplored and poorly understood. Thus, there is a need to better understand how the institutions and governance processes interact with hydrological processes in deltas and floodplains to influence the frequency and severity of floods, while (in turn) hydrological processes co-constitute the social realm and make a difference for how social relations unfold to shape governance processes and institutions. Our research goal, therefore, is not in identifying one or the other side of the cycle (hydrological or social), but in explaining the relationship between them: how, when, where, and why they interact, and to what result for both social relations and hydrological processes? We argue that long time series of hydrological and social data, along with remote sensing data, can be used to observe floodplain dynamics from unconventional approaches, and understand the complex interactions between water and human systems taking place in floodplain areas, across scales and levels of human impacts, and within different hydro-climatic conditions, socio-cultural settings, and modes of governance.
Evaluating the impact of a new pay system on nurses in the UK.
Buchan, James; Ball, Jane
2011-01-01
This study examines the impact of implementing a new pay system (Agenda for Change) on nursing staff in the National Health Service (NHS) in the UK. This new pay system covered approximately 400,000 nursing staff. Its objectives were to improve the delivery of patient care as well as staff recruitment, retention and motivation. The new system aimed to provide a simplified approach to pay determination, with a more systematic use of agreed job descriptions and job evaluation to 'price' individual jobs, linked to a new career development framework. Secondary analysis of survey data. Analysis of results of large-scale surveys of members of the Royal College of Nursing of the United Kingdom (RCN) to assess the response of nurses to questions about the implementation process itself and their attitude to pay levels. The results demonstrated that there was some positive change after implementation of Agenda for Change in 2006, mainly some time after implementation, and that the process of implementation itself raised expectations that were not fully met for all nurses. There were clear indications of differential impact and reported experiences, with some categories of nurse being less satisfied with the process of implementation. The overall message is that a national pay system has strengths and weaknesses compared to the local systems used in other countries and that these benefits can only be maximised by effective communication, adequate funding and consistent management of the system. How nurses' pay is determined and delivered can be a major satisfier and incentive to nurses if the process is well managed and can be a factor in supporting clinical practice, performance and innovation. This study highlights that a large-scale national exercise to reform the pay system for nurses is a major undertaking, carries risk and will take significant time to implement effectively. © 2010 Blackwell Publishing Ltd.
A network control concept for the 30/20 GHz communication system baseband processor
NASA Technical Reports Server (NTRS)
Sabourin, D. J.; Hay, R. E.
1982-01-01
The architecture and system design for a satellite-switched TDMA communication system employing on-board processing was developed by Motorola for NASA's Lewis Research Center. The system design is based on distributed processing techniques that provide extreme flexibility in the selection of a network control protocol without impacting the satellite or ground terminal hardware. A network control concept that includes system synchronization and allows burst synchronization to occur within the system operational requirement is described. This concept integrates the tracking and control links with the communication links via the baseband processor, resulting in an autonomous system operational approach.
Overview of High Speed Close-Up Imaging in an Icing Environment
NASA Technical Reports Server (NTRS)
Miller, Dean R.; Lynch, Christopher J.; Tate, Peter A.
2004-01-01
The Icing Branch and Imaging Technology Center at NASA Glenn Research Center have recently been involved in several projects where high speed close-up imaging was used to investigate water droplet impact/splash, and also ice particle impact/bounce in an icing wind tunnel. The combination of close-up and high speed imaging capabilities were required because the particles being studied were relatively small (d < 1 mm in diameter), and the impact process occurred in a very short time period (t(sub impact) << 1 sec). High speed close-up imaging was utilized to study the dynamics of droplet impact and splash in simulated Supercooled Large Droplet (SLD) icing conditions. The objective of this test was to evaluate the capability of a ultra high speed camera system to acquire quantitative information about the impact process (e.g., droplet size, velocity). Imaging data were obtained in an icing wind tunnel for spray cloud MVD > 50 m. High speed close-up imaging was also utilized to characterize the impact of ice particles on an airfoil with a thermally protected leading edge. The objective of this investigation was to determine whether ice particles tend to "stick" or "bounce" after impact. Imaging data were obtained for cases where the airfoil surface was heated and unheated. Based on the results from this test, follow on tests were conducted to investigate ice particle impact on the sensing elements of water content measurement devices. This paper will describe the use of the imaging systems to support these experimental investigations, present some representative results, and summarize what was learned about the use of these systems in an icing environment.
NASA Astrophysics Data System (ADS)
Glaubius, J.; Maerker, M.
2016-12-01
Anthropogenic landforms, such as mines and agricultural terraces, are impacted by both geomorphic and social processes at varying intensities through time. In the case of agricultural terraces, decisions regarding terrace maintenance are intertwined with land use, such as when terraced fields are abandoned. Furthermore, terrace maintenance and land use decisions, either jointly or separately, may be in response to geomorphic processes, as well as geomorphic feedbacks. Previous studies of these complex geomorphic systems considered agricultural terraces as static features or analyzed only the geomorphic response to landowner decisions. Such research is appropriate for short-term or binary landscape scenarios (e.g. the impact of maintained vs. abandoned terraces), but the complexities inherent in these socio-natural systems requires an approach that includes both social and geomorphic processes. This project analyzes feedbacks and emergent properties in terraced systems by implementing a coupled landscape evolution model (LEM) and agent-based model (ABM) using the Landlab and Mesa modeling libraries. In the ABM portion of the model, agricultural terraces are conceptualized using a life-cycle stages schema and implemented using Markov Decision Processes to simulate the changing geomorphic impact of terracing based on human decisions. This paper examines the applicability of this approach by comparing results from a LEM-only model against the coupled LEM-ABM model for a terraced region. Model results are compared by quantify and spatial patterning of sediment transport. This approach fully captures long-term landscape evolution of terraced terrain that is otherwise lost when the life-cycle of terraces is not considered. The coupled LEM-ABM approach balances both environmental and social processes so that the socio-natural feedbacks in such anthropogenic systems can be disentangled.
[Human resources for local health systems].
Linger, C
1989-01-01
The economic and social crises affecting Latin America have had a profound social and political effect on its structures. This paper analyzes this impact from 2 perspectives: 1) the impact on the apparatus of the state, in particular on its health infra-structures; and 2) the direction of the democratic process in the continent and the participatory processes of civil societies. The institutionalization of the Local Health Systems (SILOS) is an effort to analyze the problem from within the health sector and propose solutions. This paper discusses the issues of human resource development in health systems; training in human resource development and human resource development in local health care systems. There are 3 strategies used to change health systems: 1) The judicial-political system: The state's apparatus 2) The political-administrative system: the national health care system; and 3) the political-operative system: local health care systems. To assure implementation of SILOS there are 4 steps to be followed: 1) create political conditions that allow the transformation and development of local health systems; 2) development of high-level institutional and political initiatives to develop health care networks; 3) offer key players institutional space and social action to develop the SILOS process; 4) rapidly develop SILOS in regions to assure its integration with other development efforts. The labor force in the health sector and organized communities play critical roles in proposing and institutionalizing health programs.
Debris Impact Detection Instrument for Crewed Modules
NASA Technical Reports Server (NTRS)
Opiela, J.; Corsaro, R.; Giovanes, F.; Lio, J.-C.
2012-01-01
When micrometeoroid or debris impacts occur on a space habitat, crew members need to be quickly informed of the likely extent of damage, and be directed to the impact location for possible repairs. This is especially important because the outer walls of pressurized volumes are often not easily accessible, blocked by racks or cabinets. The goal of the Habitat Particle Impact Monitoring System (HIMS) is to develop a fully automated, end-to-end particle impact detection system for crewed space exploration modules. The HIMS uses multiple passive, thin film piezo-polymer vibration sensors to detect impacts on a surface, and computer processing of the acoustical signals to characterize the impacts. Development and demonstration of the HIMS is proceeding in concert with NASA's Habitat Demonstration Unit (HDU) Project. The HDU Project is designed to develop and test various technologies, configurations, and operational concepts for exploration habitats. This paper describes the HIMS development, initial testing, and HDU integration efforts. Initial tests of the system on the HDU were conducted at NASA s 2010 and 2011 Desert Research and Technologies Studies (Desert-RATS or D-RATS). The HDU lab module, as seen from above, has an open circular floorplan divided into eight wedge-shaped Segments. The side wall of the module -- the surface used for this technology demonstration -- is a hard fiberglass composite covered with a layer of sprayed-on foam insulation. Four sensor locations were assigned near the corners of a rectangular pattern on the wall of one segment of the HDU lab module. The flat, self-adhesive sensors were applied to the module during its initial outfitting. To study the influence of the wall s construction (thickness and materials), three sets of four sensors were installed at different layer depths: on the interior of the module s wall, on the exterior of the same wall, and on the exterior of the foam insulation. The signal produced when a vibration passes through a sensor is first sent through a pre-amplifier. The amplified signal then is sent to the data acquisition and data processing systems. The vibration data from the sensors are then processed and reduced to a form suitable for presentation to the crew.
Operationalizing Space Weather Products - Process and Issues
NASA Astrophysics Data System (ADS)
Scro, K. D.; Quigley, S.
2006-12-01
Developing and transitioning operational products for any customer base is a complicated process. This is the case for operational space weather products and services for the USAF. This presentation will provide information on the current state of affairs regarding the process required to take an idea from the research field to the real-time application of 24-hour space weather operations support. General principles and specific issues are discussed and will include: customer requirements, organizations in-play, funding, product types, acquisition of engineering and validation data, security classification, version control, and various important changes that occur during the process. The author's viewpoint is as an individual developing space environmental system-impact products for the US Air Force: 1) as a member of its primary research organization (Air Force Research Laboratory), 2) working with its primary space environment technology transition organization (Technology Application Division of the Space and Missile Systems Center, SMC/WXT), and 3) delivering to the primary sponsor/customer of such system-impact products (Air Force Space Command). The experience and focus is obviously on specific military operationalization process and issues, but most of the paradigm may apply to other (commercial) enterprises as well.
Pandey, S N; Vishal, Vikram
2017-12-06
3-D modeling of coupled thermo-hydro-mechanical (THM) processes in enhanced geothermal systems using the control volume finite element code was done. In a first, a comparative analysis on the effects of coupled processes, operational parameters and reservoir parameters on heat extraction was conducted. We found that significant temperature drop and fluid overpressure occurred inside the reservoirs/fracture that affected the transport behavior of the fracture. The spatio-temporal variations of fracture aperture greatly impacted the thermal drawdown and consequently the net energy output. The results showed that maximum aperture evolution occurred near the injection zone instead of the production zone. Opening of the fracture reduced the injection pressure required to circulate a fixed mass of water. The thermal breakthrough and heat extraction strongly depend on the injection mass flow rate, well distances, reservoir permeability and geothermal gradients. High permeability caused higher water loss, leading to reduced heat extraction. From the results of TH vs THM process simulations, we conclude that appropriate coupling is vital and can impact the estimates of net heat extraction. This study can help in identifying the critical operational parameters, and process optimization for enhanced energy extraction from a geothermal system.
NASA Astrophysics Data System (ADS)
Kamiński, K.; Dobrowolski, A. P.
2017-04-01
The paper presents the architecture and the results of optimization of selected elements of the Automatic Speaker Recognition (ASR) system that uses Gaussian Mixture Models (GMM) in the classification process. Optimization was performed on the process of selection of individual characteristics using the genetic algorithm and the parameters of Gaussian distributions used to describe individual voices. The system that was developed was tested in order to evaluate the impact of different compression methods used, among others, in landline, mobile, and VoIP telephony systems, on effectiveness of the speaker identification. Also, the results were presented of effectiveness of speaker identification at specific levels of noise with the speech signal and occurrence of other disturbances that could appear during phone calls, which made it possible to specify the spectrum of applications of the presented ASR system.
Freitas, Sindelia; Canário, Sónia; Santos, José A L; Prazeres, Duarte M F
2009-02-01
Robust cGMP manufacturing is required to produce high-quality plasmid DNA (pDNA). Three established techniques, isopropanol and ammonium sulfate (AS) precipitation (PP), tangential flow filtration (TFF) and aqueous two-phase systems (ATPS) with PEG600/AS, were tested as alternatives to recover pDNA from alkaline lysates. Yield and purity data were used to evaluate the economic and environmental impact of each option. Although pDNA yields > or = 90% were always obtained, ATPS delivered the highest HPLC purity (59%), followed by PP (48%) and TFF (18%). However, the ability of ATPS to concentrate pDNA was very poor when compared with PP or TFF. Processes were also implemented by coupling TFF with ATPS or AS-PP. Process simulations indicate that all options require large amounts of water (100-200 tons/kg pDNA) and that the ATPS process uses large amounts of mass separating agents (65 tons/kg pDNA). Estimates indicate that operating costs of the ATPS process are 2.5-fold larger when compared with the PP and TFF processes. The most significant contributions to the costs in the PP, TFF and ATPS processes came from operators (59%), consumables (75%) and raw materials (84%), respectively. The ATPS process presented the highest environmental impact, whereas the impact of the TFF process was negligible.
Software architecture for intelligent image processing using Prolog
NASA Astrophysics Data System (ADS)
Jones, Andrew C.; Batchelor, Bruce G.
1994-10-01
We describe a prototype system for interactive image processing using Prolog, implemented by the first author on an Apple Macintosh computer. This system is inspired by Prolog+, but differs from it in two particularly important respects. The first is that whereas Prolog+ assumes the availability of dedicated image processing hardware, with which the Prolog system communicates, our present system implements image processing functions in software using the C programming language. The second difference is that although our present system supports Prolog+ commands, these are implemented in terms of lower-level Prolog predicates which provide a more flexible approach to image manipulation. We discuss the impact of the Apple Macintosh operating system upon the implementation of the image-processing functions, and the interface between these functions and the Prolog system. We also explain how the Prolog+ commands have been implemented. The system described in this paper is a fairly early prototype, and we outline how we intend to develop the system, a task which is expedited by the extensible architecture we have implemented.
Rapid multichannel impact-echo scanning of concrete bridge decks from a continuously moving platform
NASA Astrophysics Data System (ADS)
Mazzeo, Brian A.; Larsen, Jacob; McElderry, Joseph; Guthrie, W. Spencer
2017-02-01
Impact-echo testing is a non-destructive evaluation technique for determining the presence of defects in reinforced concrete bridge decks based on the acoustic response of the bridge deck when struck by an impactor. In this work, we build on our prior research with a single-channel impactor to demonstrate a seven-channel impact-echo scanning system with independent control of the impactors. This system is towed by a vehicle and integrated with distance measurement for registering the locations of the impacts along a bridge deck. The entire impact and recording system is computer-controlled. Because of a winch system and hinged frame construction of the apparatus, setup, measurement, and take-down of the apparatus can be achieved in a matter of minutes. Signal processing of the impact responses is performed on site and can produce a map of delaminations immediately after data acquisition. This map can then be used to guide other testing and/or can be referenced with the results of other testing techniques to facilitate comprehensive condition assessments of concrete bridge decks. This work demonstrates how impact-echo testing can be performed in a manner that makes complete bridge deck scanning for delaminations rapid and practical.
Impact detection and analysis/health monitoring system for composites
NASA Astrophysics Data System (ADS)
Child, James E.; Kumar, Amrita; Beard, Shawn; Qing, Peter; Paslay, Don G.
2006-05-01
This manuscript includes information from test evaluations and development of a smart event detection system for use in monitoring composite rocket motor cases for damaging impacts. The primary purpose of the system as a sentry for case impact event logging is accomplished through; implementation of a passive network of miniaturized piezoelectric sensors, logger with pre-determined force threshold levels, and analysis software. Empirical approaches to structural characterizations and network calibrations along with implementation techniques were successfully evaluated, testing was performed on both unloaded (less propellants) as well as loaded rocket motors with the cylindrical areas being of primary focus. The logged test impact data with known physical network parameters provided for impact location as well as force determination, typically within 3 inches of actual impact location using a 4 foot network grid and force accuracy within 25%of an actual impact force. The simplistic empirical characterization approach along with the robust / flexible sensor grids and battery operated portable logger show promise of a system that can increase confidence in composite integrity for both new assets progressing through manufacturing processes as well as existing assets that may be in storage or transportation.
Tracer techniques in aeolian research: Approaches, applications, and challenges
USDA-ARS?s Scientific Manuscript database
Aeolian processes, the entrainment, transport and deposition of sediments by wind, impacts climate, biogeochemical cycles, food security, environmental quality and human health. Considering the multitude of interactions between aeolian processes and all the major components of the Earth system, ther...
NASA Astrophysics Data System (ADS)
Turrini, Diego; Grassi, Davide; Adriani, Alberto; Piccioni, Giuseppe; Altieri, Francesca; Barbieri, Mauro
Over the last twenty years, the search for extrasolar planets revealed us the rich diversity of the outcomes of the processes shaping the formation and evolution of planetary systems. More recently, ground-based and space-based observations started to complement this information with the first data on the atmospheric composition of extrasolar planets. The full exploitation of the data that space-based and ground-based facilities will provide in growing number in the near future, however, requires that we improve our understanding of what are the sources and sinks of the chemical species and molecules that will be observed. Luckily, the study of the past history of the Solar System provides several indications on the effects of processes like migration, late accretion and secular impacts, and on the time they occur in the life of planetary systems. Here we will discuss what is already known about the factors influencing the composition of planetary atmospheres, focusing on the case of gaseous giant planets, and what instead still need to be investigated.
Research of Environmental and Economic Interactions of Coke And By-Product Process
NASA Astrophysics Data System (ADS)
Mikhailov, Vladimir; Kiseleva, Tamara; Bugrova, Svetlana; Muromtseva, Alina; Mikhailova, Yana
2017-11-01
The issues of showing relations between environmental and economic indicators (further - environmental and economic interactions) of coke and by-product process are considered in the article. The purpose of the study is to reveal the regularities of the functioning of the local environmental and economic system on the basis of revealed spectrum of environmental and economic interactions. A simplified scheme of the environmental and economic system "coke and by-product process - the environment" was developed. The forms of the investigated environmental-economic interactions were visualized and the selective interpretation of the tightness of the established connection was made. The main result of the work is modeling system of environmental and economic interactions that allows increasing the efficiency of local ecological and economic system management and optimizing the "interests" of an industrial enterprise - the source of negative impact on the environment. The results of the survey can be recommended to government authorities and industrial enterprises with a wide range of negative impact forms to support the adoption of effective management decisions aimed at sustainable environmental and economic development of the region or individual municipalities.
Reciprocal interactions between circadian clocks and aging.
Banks, Gareth; Nolan, Patrick M; Peirson, Stuart N
2016-08-01
Virtually, all biological processes in the body are modulated by an internal circadian clock which optimizes physiological and behavioral performance according to the changing demands of the external 24-h world. This circadian clock undergoes a number of age-related changes, at both the physiological and molecular levels. While these changes have been considered to be part of the normal aging process, there is increasing evidence that disruptions to the circadian system can substantially impact upon aging and these impacts will have clear health implications. Here we review the current data of how both the physiological and core molecular clocks change with age and how feedback from external cues may modulate the aging of the circadian system.
Using location tracking data to assess efficiency in established clinical workflows.
Meyer, Mark; Fairbrother, Pamela; Egan, Marie; Chueh, Henry; Sandberg, Warren S
2006-01-01
Location tracking systems are becoming more prevalent in clinical settings yet applications still are not common. We have designed a system to aid in the assessment of clinical workflow efficiency. Location data is captured from active RFID tags and processed into usable data. These data are stored and presented visually with trending capability over time. The system allows quick assessments of the impact of process changes on workflow, and isolates areas for improvement.
Columbia River System Operation Review : Final Environmental Impact Statement, Appendix N: Wildlife.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Columbia River System Operation Review
1995-11-01
The Columbia River System is a vast and complex combination of Federal and non-Federal facilities used for many purposes including power production, irrigation, navigation, flood control, recreation, fish and wildlife habitat and municipal and industrial water supply. Each river use competes for the limited water resources in the Columbia River Basin. This technical appendix addresses only the effects of alternative system operating strategies for managing the Columbia River system. The environmental impact statement (EIS) itself and some of the other appendices present analyses of the alternative approaches to the other three decisions considered as part of the SOR. This documentmore » is the product of the Wildlife Work Group, focusing on wildlife impacts but not including fishes. Topics covered include the following: scope and process; existing and affected environment, including specific discussion of 18 projects in the Columbia river basin. Analysis, evaluation, and alternatives are presented for all projects. System wide impacts to wildlife are also included.« less
Pathways of Understanding: the Interactions of Humanity and Global Environmental Change
NASA Technical Reports Server (NTRS)
Jacobson, Harold K.; Katzenberger, John; Lousma, Jack; Mooney, Harold A.; Moss, Richard H.; Kuhn, William; Luterbacher, Urs; Wiegandt, Ellen
1992-01-01
How humans, interacting within social systems, affect and are affected by global change is explored. Recognizing the impact human activities have on the environment and responding to the need to document the interactions among human activities, the Consortium for International Earth Science Information Network (CIESIN) commissioned a group of 12 scientists to develop a framework illustrating the key human systems that contribute to global change. This framework, called the Social Process Diagram, will help natural and social scientists, educators, resource managers and policy makers envision and analyze how human systems interact among themselves and with the natural system. The Social Process Diagram consists of the following blocks that constitute the Diagram's structural framework: (1) fund of knowledge and experience; (2) preferences and expectations; (3) factors of production and technology; (4) population and social structure; (5) economic systems; (6) political systems and institutions; and (7) global scale environmental processes. To demonstrate potential ways the Diagram can be used, this document includes 3 hypothetical scenarios of global change issues: global warming and sea level rise; the environmental impact of human population migration; and energy and the environment. These scenarios demonstrate the Diagram's usefulness for visualizing specific processes that might be studied to evaluate a particular global change issues. The scenario also shows that interesting and unanticipated questions may emerge as links are explored between categories on the Diagram.
Evoked Potential Studies of the Effects of Impact Acceleration on the Motor Nervous System,
1983-01-01
experimental animals subjected to -Y ampere) were applied sufficient to obtain good (lateral impact) acceleration and animals sub- afferent evoked...NBDL -Y impact experiments were processed at the EP recorded from these animals before and after Texas Research Institute of Mental Sciences impact were...adjustments were made to playback discriminators and cord in a lateral (-Y) collision. Each and the sampling interval. The final digit. -e d, J animal was
Space Shuttle Systems Engineering Processes for Liftoff Debris Risk Mitigation
NASA Technical Reports Server (NTRS)
Mitchell, Michael; Riley, Christopher
2011-01-01
This slide presentation reviews the systems engineering process designed to reduce the risk from debris during Space Shuttle Launching. This process begins the day of launch from the tanking to the vehicle tower clearance. Other debris risks (i.e., Ascent, and micrometeoroid orbital debit) are mentioned) but are not the subject of this presentation. The Liftoff debris systems engineering process and an example of how it works are reviewed (i.e.,STS-119 revealed a bolt liberation trend on the Fixed Service Structure (FSS) 275 level elevator room). The process includes preparation of a Certification of Flight Readiness (CoFR) that includes (1) Lift-off debris from previous mission dispositioned, (2) Flight acceptance rationale has been provided for Lift-off debris sources/causes (3) Lift-off debris mission support documentation, processes and tools are in place for the up-coming mission. The process includes a liftoff debris data collection that occurs after each launch. This includes a post launch walkdown, that records each liftoff debris, and the entry of the debris into a database, it also includes a review of the imagery from the launch, and a review of the instrumentation data. There is also a review of the debris transport analysis process, that includes temporal and spatial framework and a computational fluid dynamics (CFD) analysis. which incorporates a debris transport analyses (DTA), debris materials and impact tests, and impact analyses.
Jenke, Dennis
2012-01-01
An emerging trend in the biotechnology industry is the utilization of plastic components in manufacturing systems for the production of an active pharmaceutical ingredient (API) or a finished drug product (FDP). If the API, the FDP, or any solution used to generate them (for example, process streams such as media, buffers, and the like) come in contact with a plastic at any time during the manufacturing process, there is the potential that substances leached from the plastic may accumulate in the API or FDP, affecting safety and/or efficacy. In this article the author develops a terminology that addresses process streams associated with the manufacturing process. Additionally, the article outlines the safety assessment process for manufacturing systems, specifically addressing the topics of risk management and the role of compendial testing. Finally, the proper use of vendor-supplied extractables information is considered. Manufacturing suites used to produce biopharmaceuticals can include components that are made out of plastics. Thus it is possible that substances could leach out of the plastics and into manufacturing solutions, and it is further possible that such leachables could accumulate in the pharmaceutical product. In this article, the author develops a terminology that addresses process streams associated with the manufacturing process. Additionally, the author proposes a process by which the impact on product safety of such leached substances can be assessed.
Minding Impacting Events in a Model of Stochastic Variance
Duarte Queirós, Sílvio M.; Curado, Evaldo M. F.; Nobre, Fernando D.
2011-01-01
We introduce a generalization of the well-known ARCH process, widely used for generating uncorrelated stochastic time series with long-term non-Gaussian distributions and long-lasting correlations in the (instantaneous) standard deviation exhibiting a clustering profile. Specifically, inspired by the fact that in a variety of systems impacting events are hardly forgot, we split the process into two different regimes: a first one for regular periods where the average volatility of the fluctuations within a certain period of time is below a certain threshold, , and another one when the local standard deviation outnumbers . In the former situation we use standard rules for heteroscedastic processes whereas in the latter case the system starts recalling past values that surpassed the threshold. Our results show that for appropriate parameter values the model is able to provide fat tailed probability density functions and strong persistence of the instantaneous variance characterized by large values of the Hurst exponent (), which are ubiquitous features in complex systems. PMID:21483864
Impact of glycolate anion on aqueous corrosion in DWPF and downstream facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mickalonis, J. I.
2015-12-15
Glycolic acid is being evaluated as an alternate reductant in the preparation of high level waste for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). During processing, the glycolic acid may not be completely consumed with small quantities of the glycolate anion being carried forward to other high level waste (HLW) facilities. The impact of the glycolate anion on the corrosion of the materials of construction (MoC) throughout the waste processing system has not been previously evaluated. A literature review had revealed that corrosion data were not available for the MoCs in glycolic-bearing solutions applicable tomore » SRS systems. Data on the material compatibility with only glycolic acid or its derivative products were identified; however, data were limited for solutions containing glycolic acid or the glycolate anion.« less
Astrophysics space systems critical technology needs
NASA Technical Reports Server (NTRS)
Gartrell, C. F.
1982-01-01
This paper addresses an independent assessment of space system technology needs for future astrophysics flight programs contained within the NASA Space Systems Technology Model. The critical examination of the system needs for the approximately 30 flight programs in the model are compared to independent technology forecasts and possible technology deficits are discussed. These deficits impact the developments needed for spacecraft propulsion, power, materials, structures, navigation, guidance and control, sensors, communications and data processing. There are also associated impacts upon in-orbit assembly technology and space transportation systems. A number of under-utilized technologies are highlighted which could be exploited to reduce cost and enhance scientific return.
PRELIMINARY EVALUATION OF DWPF IMPACTS OF BORIC ACID USE IN CESIUM STRIP FOR SWPF AND MCU
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, M.
2010-09-28
A new solvent system is being evaluated for use in the Modular Caustic-Side Solvent Extraction Unit (MCU) and in the Salt Waste Processing Facility (SWPF). The new system includes the option to replace the current dilute nitric acid strip solution with boric acid. To support this effort, the impact of using 0.01M, 0.1M, 0.25M and 0.5M boric acid in place of 0.001M nitric acid was evaluated for impacts on the DWPF facility. The evaluation only covered the impacts of boric acid in the strip effluent and does not address the other changes in solvents (i.e., the new extractant, called MaxCalix,more » or the new suppressor, guanidine). Boric acid additions may lead to increased hydrogen generation during the SRAT and SME cycles as well as change the rheological properties of the feed. The boron in the strip effluent will impact glass composition and could require each SME batch to be trimmed with boric acid to account for any changes in the boron from strip effluent additions. Addition of boron with the strip effluent will require changes in the frit composition and could lead to changes in melt behavior. The severity of the impacts from the boric acid additions is dependent on the amount of boric acid added by the strip effluent. The use of 0.1M or higher concentrations of boric acid in the strip effluent was found to significantly impact DWPF operations while the impact of 0.01M boric acid is expected to be relatively minor. Experimental testing is required to resolve the issues identified during the preliminary evaluation. The issues to be addressed by the testing are: (1) Impact on SRAT acid addition and hydrogen generation; (2) Impact on melter feed rheology; (3) Impact on glass composition control; (4) Impact on frit production; and (5) Impact on melter offgas. A new solvent system is being evaluated for use in the Modular Caustic-Side Solvent Extraction Unit (MCU) and in the Salt Waste Processing Facility (SWPF). The new system includes the option to replace the current dilute nitric acid strip solution with boric acid. To support this effort, the impact of using 0.01M, 0.1M, 0.25M and 0.5M boric acid in place of 0.001M nitric acid was evaluated for impacts on the DWPF facility. The evaluation only covered the impacts of boric acid in the strip effluent and does not address the other changes in solvents (i.e., the new extractant, called MaxCalix, or the new suppressor, guanidine). Experimental testing with the improved solvent is required to determine the impact of any changes in the entrained solvent on DWPF processing.« less
Integrated Communications and Work Efficiency: Impacts on Organizational Structure and Power.
ERIC Educational Resources Information Center
Wigand, Rolf T.
This paper reviews the work environment surrounding integrated office systems, synthesizes the known effects of automated office technologies, and discusses their impact on work efficiency in office environments. Particular attention is given to the effect of automated technologies on networks, workflow/processes, and organizational structure and…
Impact parameter sensitive study of inner-shell atomic processes in the experimental storage ring
NASA Astrophysics Data System (ADS)
Gumberidze, A.; Kozhuharov, C.; Zhang, R. T.; Trotsenko, S.; Kozhedub, Y. S.; DuBois, R. D.; Beyer, H. F.; Blumenhagen, K.-H.; Brandau, C.; Bräuning-Demian, A.; Chen, W.; Forstner, O.; Gao, B.; Gassner, T.; Grisenti, R. E.; Hagmann, S.; Hillenbrand, P.-M.; Indelicato, P.; Kumar, A.; Lestinsky, M.; Litvinov, Yu. A.; Petridis, N.; Schury, D.; Spillmann, U.; Trageser, C.; Trassinelli, M.; Tu, X.; Stöhlker, Th.
2017-10-01
In this work, we present a pilot experiment in the experimental storage ring (ESR) at GSI devoted to impact parameter sensitive studies of inner shell atomic processes for low-energy (heavy-) ion-atom collisions. The experiment was performed with bare and He-like xenon ions (Xe54+, Xe52+) colliding with neutral xenon gas atoms, resulting in a symmetric collision system. This choice of the projectile charge states was made in order to compare the effect of a filled K-shell with the empty one. The projectile and target X-rays have been measured at different observation angles for all impact parameters as well as for the impact parameter range of ∼35-70 fm.
A system dynamic model to estimate hydrological processes and water use in a eucalypt plantation
Ying Ouyang; Daping Xu; Ted Leininger; Ningnan Zhang
2016-01-01
Eucalypts have been identified as one of the best feedstocks for bioenergy production due to theirfast-growth rate and coppicing ability. However, their water use efficiency along with the adverse envi-ronmental impacts is still a controversial issue. In this study, a system dynamic model was developed toestimate the hydrological processes and water use in a eucalyptus...
NASA Astrophysics Data System (ADS)
Lemieux, J.-M.; Sudicky, E. A.; Peltier, W. R.; Tarasov, L.
2008-09-01
In the recent literature, it has been shown that Pleistocene glaciations had a large impact on North American regional groundwater flow systems. Because of the myriad of complex processes and large spatial scales involved during periods of glaciation, numerical models have become powerful tools to examine how ice sheets control subsurface flow systems. In this paper, the key processes that must be represented in a continental-scale 3-D numerical model of groundwater flow during a glaciation are reviewed, including subglacial infiltration, density-dependent (i.e., high-salinity) groundwater flow, permafrost evolution, isostasy, sea level changes, and ice sheet loading. One-dimensional hydromechanical coupling associated with ice loading and brine generation were included in the numerical model HydroGeoSphere and tested against newly developed exact analytical solutions to verify their implementation. Other processes such as subglacial infiltration, permafrost evolution, and isostasy were explicitly added to HydroGeoSphere. A specified flux constrained by the ice sheet thickness was found to be the most appropriate boundary condition in the subglacial environment. For the permafrost, frozen and unfrozen elements can be selected at every time step with specified hydraulic conductivities. For the isostatic adjustment, the elevations of all the grid nodes in each vertical grid column below the ice sheet are adjusted uniformly to account for the Earth's crust depression and rebound. In a companion paper, the model is applied to the Wisconsinian glaciation over the Canadian landscape in order to illustrate the concepts developed in this paper and to better understand the impact of glaciation on 3-D continental groundwater flow systems.
Corrosion impact of reductant on DWPF and downstream facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mickalonis, J. I.; Imrich, K. J.; Jantzen, C. M.
2014-12-01
Glycolic acid is being evaluated as an alternate reductant in the preparation of high level waste for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). During processing, the glycolic acid is not completely consumed and small quantities of the glycolate anion are carried forward to other high level waste (HLW) facilities. The impact of the glycolate anion on the corrosion of the materials of construction throughout the waste processing system has not been previously evaluated. A literature review had revealed that corrosion data in glycolate-bearing solution applicable to SRS systems were not available. Therefore, testing wasmore » recommended to evaluate the materials of construction of vessels, piping and components within DWPF and downstream facilities. The testing, conducted in non-radioactive simulants, consisted of both accelerated tests (electrochemical and hot-wall) with coupons in laboratory vessels and prototypical tests with coupons immersed in scale-up and mock-up test systems. Eight waste or process streams were identified in which the glycolate anion might impact the performance of the materials of construction. These streams were 70% glycolic acid (DWPF feed vessels and piping), SRAT/SME supernate (Chemical Processing Cell (CPC) vessels and piping), DWPF acidic recycle (DWPF condenser and recycle tanks and piping), basic concentrated recycle (HLW tanks, evaporators, and transfer lines), salt processing (ARP, MCU, and Saltstone tanks and piping), boric acid (MCU separators), and dilute waste (HLW evaporator condensate tanks and transfer line and ETF components). For each stream, high temperature limits and worst-case glycolate concentrations were identified for performing the recommended tests. Test solution chemistries were generally based on analytical results of actual waste samples taken from the various process facilities or of prototypical simulants produced in the laboratory. The materials of construction for most vessels, components and piping were not impacted with the presence of glycolic acid or the impact is not expected to affect the service life. However, the presence of the glycolate anion was found to affect corrosion susceptibility of some materials of construction in the DWPF and downstream facilities, especially at elevated temperatures. The following table summarizes the results of the electrochemical and hot wall testing and indicates expected performance in service with the glycolate anion present.« less
The six critical attributes of the next generation of quality management software systems.
Clark, Kathleen
2011-07-01
Driven by both the need to meet regulatory requirements and a genuine desire to drive improved quality, quality management systems encompassing standard operating procedure, corrective and preventative actions and related processes have existed for many years, both in paper and electronic form. The impact of quality management systems on 'actual' quality, however, is often reported as far less than desired. A quality management software system that moves beyond formal forms-driven processes to include a true closed loop design, manage disparate processes across the enterprise, provide support for collaborative processes and deliver insight into the overall state of control has the potential to close the gap between simply accomplishing regulatory compliance and delivering measurable improvements in quality and efficiency.
SUSTAIN - A BMP Process and Placement Tool for Urban Watersheds (Poster)
To assist stormwater management professionals in planning for best management practices (BMPs) and low-impact developments (LIDs) implementation, USEPA is developing a decision support system, called the System for Urban Stormwater Treatment and Analysis INtegration (SUSTAIN). ...
The Blind, From Braille to the Present.
ERIC Educational Resources Information Center
Truquet, Monique
1980-01-01
Traces the historical development of processing information for the blind from the system devised by Barbier to present systems of producing Braille documents using computers. Cites the impact of microprocessors and outlines possibilities for Braille reproductions in the future. (GS)
NASA Technical Reports Server (NTRS)
Cooper, Lynne P.
2010-01-01
Users continuously evaluate the value and performance of their Knowledge Management Systems (KMS). As suggested by a punctuated socio-technical system process model, today's success can quickly become tomorrow's failure should the KMS fail to meet evolving needs and expectations. The more deeply a tool is embedded in the actual work process, the more vulnerable it is to emergent changes and perturbations. This paper uses the metaphor of a "3-stringed violin" to explore how differing levels of user knowledge about tools and processes can lead to system perturbations and how the active involvement of other actors can dampen the impact of perturbations, i.e., help the system survive the operational equivalent of a broken string. Recommendations suggest ways to increase system resiliency and contribute to incremental innovation.
Ölçer, İbrahim; Öncü, Ahmet
2017-06-05
Distributed vibration sensing based on phase-sensitive optical time domain reflectometry ( ϕ -OTDR) is being widely used in several applications. However, one of the main challenges in coherent detection-based ϕ -OTDR systems is the fading noise, which impacts the detection performance. In addition, typical signal averaging and differentiating techniques are not suitable for detecting high frequency events. This paper presents a new approach for reducing the effect of fading noise in fiber optic distributed acoustic vibration sensing systems without any impact on the frequency response of the detection system. The method is based on temporal adaptive processing of ϕ -OTDR signals. The fundamental theory underlying the algorithm, which is based on signal-to-noise ratio (SNR) maximization, is presented, and the efficacy of our algorithm is demonstrated with laboratory experiments and field tests. With the proposed digital processing technique, the results show that more than 10 dB of SNR values can be achieved without any reduction in the system bandwidth and without using additional optical amplifier stages in the hardware. We believe that our proposed adaptive processing approach can be effectively used to develop fiber optic-based distributed acoustic vibration sensing systems.
A Framework for Performing V&V within Reuse-Based Software Engineering
NASA Technical Reports Server (NTRS)
Addy, Edward A.
1996-01-01
Verification and validation (V&V) is performed during application development for many systems, especially safety-critical and mission-critical systems. The V&V process is intended to discover errors, especially errors related to critical processing, as early as possible during the development process. Early discovery is important in order to minimize the cost and other impacts of correcting these errors. In order to provide early detection of errors, V&V is conducted in parallel with system development, often beginning with the concept phase. In reuse-based software engineering, however, decisions on the requirements, design and even implementation of domain assets can be made prior to beginning development of a specific system. In this case, V&V must be performed during domain engineering in order to have an impact on system development. This paper describes a framework for performing V&V within architecture-centric, reuse-based software engineering. This framework includes the activities of traditional application-level V&V, and extends these activities into domain engineering and into the transition between domain engineering and application engineering. The framework includes descriptions of the types of activities to be performed during each of the life-cycle phases, and provides motivation for the activities.
Ölçer, İbrahim; Öncü, Ahmet
2017-01-01
Distributed vibration sensing based on phase-sensitive optical time domain reflectometry (ϕ-OTDR) is being widely used in several applications. However, one of the main challenges in coherent detection-based ϕ-OTDR systems is the fading noise, which impacts the detection performance. In addition, typical signal averaging and differentiating techniques are not suitable for detecting high frequency events. This paper presents a new approach for reducing the effect of fading noise in fiber optic distributed acoustic vibration sensing systems without any impact on the frequency response of the detection system. The method is based on temporal adaptive processing of ϕ-OTDR signals. The fundamental theory underlying the algorithm, which is based on signal-to-noise ratio (SNR) maximization, is presented, and the efficacy of our algorithm is demonstrated with laboratory experiments and field tests. With the proposed digital processing technique, the results show that more than 10 dB of SNR values can be achieved without any reduction in the system bandwidth and without using additional optical amplifier stages in the hardware. We believe that our proposed adaptive processing approach can be effectively used to develop fiber optic-based distributed acoustic vibration sensing systems. PMID:28587240
2013-01-07
of MFOP principles on processes, procedures , and costs in acquisition planning. It investigates MFOP and reviews the results of a 2005 submarine pilot...approach be a game changer? This paper evaluates the potential impact of MFOP principles on processes, procedures , and costs in acquisition planning. It...elli=lc=_rpfkbpp=C=mr_if`=mlif`v= = - 2 - k^s^i=mlpqdo^ar^qb=p`elli= procedures , and costs in acquisition planning. The scope of the research was to
Yang, Shiying; Yang, Siyu; Kraslawski, Andrzej; Qian, Yu
2013-12-17
Ecologically based life cycle assessment (Eco-LCA) is an appealing approach for the evaluation of resources utilization and environmental impacts of the process industries from an ecological scale. However, the aggregated metrics of Eco-LCA suffer from some drawbacks: the environmental impact metric has limited applicability; the resource utilization metric ignores indirect consumption; the renewability metric fails to address the quantitative distinction of resources availability; the productivity metric seems self-contradictory. In this paper, the existing Eco-LCA metrics are revised and extended for sustainability assessment of the energy and chemical processes. A new Eco-LCA metrics system is proposed, including four independent dimensions: environmental impact, resource utilization, resource availability, and economic effectiveness. An illustrative example of comparing assessment between a gas boiler and a solar boiler process provides insight into the features of the proposed approach.
Life cycle impacts of ethanol production from spruce wood chips under high-gravity conditions.
Janssen, Matty; Xiros, Charilaos; Tillman, Anne-Marie
2016-01-01
Development of more sustainable biofuel production processes is ongoing, and technology to run these processes at a high dry matter content, also called high-gravity conditions, is one option. This paper presents the results of a life cycle assessment (LCA) of such a technology currently in development for the production of bio-ethanol from spruce wood chips. The cradle-to-gate LCA used lab results from a set of 30 experiments (or process configurations) in which the main process variable was the detoxification strategy applied to the pretreated feedstock material. The results of the assessment show that a process configuration, in which washing of the pretreated slurry is the detoxification strategy, leads to the lowest environmental impact of the process. Enzyme production and use are the main contributors to the environmental impact in all process configurations, and strategies to significantly reduce this contribution are enzyme recycling and on-site enzyme production. Furthermore, a strong linear correlation between the ethanol yield of a configuration and its environmental impact is demonstrated, and the selected environmental impacts show a very strong cross-correlation ([Formula: see text] in all cases) which may be used to reduce the number of impact categories considered from four to one (in this case, global warming potential). Lastly, a comparison with results of an LCA of ethanol production under high-gravity conditions using wheat straw shows that the environmental performance does not significantly differ when using spruce wood chips. For this comparison, it is shown that eutrophication potential also needs to be considered due to the fertilizer use in wheat cultivation. The LCA points out the environmental hotspots in the ethanol production process, and thus provides input to the further development of the high-gravity technology. Reducing the number of impact categories based only on cross-correlations should be done with caution. Knowledge of the analyzed system provides further input to the choice of impact categories.
Computer Simulation of Developmental Processes and Toxicities (SOT)
Rationale: Recent progress in systems toxicology and synthetic biology have paved the way to new thinking about in vitro/in silico modeling of developmental processes and toxicities, both for embryological and reproductive impacts. Novel in vitro platforms such as 3D organotypic ...
BIOWINOL TECHNOLOGIES: A HYBRID GREEN PROCESS FOR BIOFUEL PRODUCTION – PHASE 2
The development of hollow fiber membrane (HFM) reactor will result in improved gas utilization that will positively impact overall process efficiencies. Successful completion of this project could result in the development of many decentralized biofuel production systems near ...
Quenching chatter instability in turning process with a vibro-impact nonlinear energy sink
NASA Astrophysics Data System (ADS)
Gourc, E.; Seguy, S.; Michon, G.; Berlioz, A.; Mann, B. P.
2015-10-01
This paper investigates the passive control of chatter instability in turning processes using a vibro-impact nonlinear energy sink (NES). The workpiece is assumed to be rigid and the tool is flexible. A dynamical model including a nonlinear cutting law is presented and the stability lobes diagram is obtained. The behavior of the system with the vibro-impact NES is investigated using an asymptotic analysis. A control mechanism by successive beating is revealed, similarly to the strongly modulated response in the case of NES with cubic stiffness. It is shown that such a response regime may be beneficial for chatter mitigation. An original experimental procedure is proposed to verify the sizing of the vibro-impact NES. An experimental setup is developed with a vibro-impact NES embedded on the lathe tool and the results are analyzed and validated.
NASA Astrophysics Data System (ADS)
Turner, Sean W. D.; Marlow, David; Ekström, Marie; Rhodes, Bruce G.; Kularathna, Udaya; Jeffrey, Paul J.
2014-04-01
Despite a decade of research into climate change impacts on water resources, the scientific community has delivered relatively few practical methodological developments for integrating uncertainty into water resources system design. This paper presents an application of the "decision scaling" methodology for assessing climate change impacts on water resources system performance and asks how such an approach might inform planning decisions. The decision scaling method reverses the conventional ethos of climate impact assessment by first establishing the climate conditions that would compel planners to intervene. Climate model projections are introduced at the end of the process to characterize climate risk in such a way that avoids the process of propagating those projections through hydrological models. Here we simulated 1000 multisite synthetic monthly streamflow traces in a model of the Melbourne bulk supply system to test the sensitivity of system performance to variations in streamflow statistics. An empirical relation was derived to convert decision-critical flow statistics to climatic units, against which 138 alternative climate projections were plotted and compared. We defined the decision threshold in terms of a system yield metric constrained by multiple performance criteria. Our approach allows for fast and simple incorporation of demand forecast uncertainty and demonstrates the reach of the decision scaling method through successful execution in a large and complex water resources system. Scope for wider application in urban water resources planning is discussed.
The Cascading Impacts of Technology Selection: Incorporating Ruby on Rails into ECHO
NASA Astrophysics Data System (ADS)
Pilone, D.; Cechini, M.
2010-12-01
NASA’s Earth Observing System (EOS) ClearingHOuse (ECHO) is a SOA based Earth Science Data search and order system implemented in Java with one significant exception: the web client used by 98% of our users is written in Perl. After several decades of maintenance the Perl based application had reached the end of its serviceable life and ECHO was tasked with implementing a replacement. Despite a broad investment in Java, the ECHO team conducted a survey of modern development technologies including Flex, Python/Django, JSF2/Spring and Ruby on Rails. The team ultimately chose Ruby on Rails (RoR) with Cucumber for testing due to its perceived applicability to web application development and corresponding development efficiency gains. Both positive and negative impacts on the entire ECHO team, including our stakeholders, were immediate and sometimes subtle. The technology selection caused shifts in our architecture and design, development and deployment procedures, requirement definition approach, testing approach, and, somewhat surprisingly, our project team structure and software process. This presentation discusses our experiences, including technical, process, and psychological, using RoR on a production system. During this session we will discuss: - Real impacts of introducing a dynamic language to a Java team - Real and perceived efficiency advantages - Impediments to adoption and effectiveness - Impacts of transition from Test Driven Development to Behavior Driven Development - Leveraging Cucumber to provide fully executable requirement documents - Impacts on team structure and roles
ERIC Educational Resources Information Center
Singleton, Chris; Henderson, Lisa-Marie
2006-01-01
This article reviews current knowledge about how the visual system recognizes letters and words, and the impact on reading when parts of the visual system malfunction. The physiology of eye and brain places important constraints on how we process text, and the efficient organization of the neurocognitive systems involved is not inherent but…
USDA-ARS?s Scientific Manuscript database
Agricultural production responds to economic, social, environmental, and technological drivers operating both internal and external to the production system. These drivers influence producers’ decision making processes, and act to shape the individual production systems through modification of produ...
NASA Astrophysics Data System (ADS)
Kawamura, M.; Umeda, K.; Ohi, T.; Ishimaru, T.; Niizato, T.; Yasue, K.; Makino, H.
2007-12-01
We have developed a formal evaluation method to assess the potential impact of natural phenomena (earthquakes and faulting; volcanism; uplift, subsidence, denudation and sedimentation; climatic and sea-level changes) on a High Level Radioactive Waste (HLW) Disposal System. In 2000, we had developed perturbation scenarios in a generic and conservative sense and illustrated the potential impact on a HLW disposal system. As results of the development of perturbation scenarios, two points were highlighted for consideration in subsequent work: improvement of the scenarios from the viewpoints of reality, transparency, traceability and consistency and avoiding extreme conservatism. Subsequently, we have thus developed a new procedure for describing such perturbation scenarios based on further studies of the characteristics of these natural perturbation phenomena in Japan. The approach to describing the perturbation scenario is effectively developed in five steps: Step 1: Description of potential process of phenomena and their impacts on the geological environment. Step 2: Characterization of potential changes of geological environment in terms of T-H-M-C (Thermal - Hydrological - Mechanical - Chemical) processes. The focus is on specific T-H-M-C parameters that influence geological barrier performance, utilizing the input from Step 1. Step 3: Classification of potential influences, based on similarity of T-H-M-C perturbations. This leads to development of perturbation scenarios to serve as a basis for consequence analysis. Step 4: Establishing models and parameters for performance assessment. Step 5: Calculation and assessment. This study focuses on identifying key T-H-M-C process associated with perturbations at Step 2. This framework has two advantages. First one is assuring maintenance of traceability during the scenario construction processes, facilitating the production and structuring of suitable records. The second is providing effective elicitation and organization of information from a wide range of investigations of earth sciences within a performance assessment context. In this framework, scenario development work proceeds in a stepwise manner, to ensure clear identification of the impact of processes associated with these phenomena on a HLW disposal system. Output is organized to create credible scenarios with required transparency, consistency, traceability and adequate conservatism. In this presentation, the potential impact of natural phenomena in the viewpoint of performance assessment for HLW disposal will be discussed and modeled using the approach.
Cascading events in linked ecological and socioeconomic systems
Peters, Debra P.C.; Sala, O.E.; Allen, Craig D.; Covich, A.; Brunson, M.
2007-01-01
Cascading events that start at small spatial scales and propagate non-linearly through time to influence larger areas often have major impacts on ecosystem goods and services. Events such as wildfires and hurricanes are increasing in frequency and magnitude as systems become more connected through globalization processes. We need to improve our understanding of these events in order to predict their occurrence, minimize potential impacts, and allow for strategic recovery. Here, we synthesize information about cascading events in systems located throughout the Americas. We discuss a variety of examples of cascading events that share a common feature: they are often driven by linked ecological and human processes across scales. In this era of globalization, we recommend studies that explicitly examine connections across scales and examine the role of connectivity among non-contiguous as well as contiguous areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beltrán-Esteve, Mercedes, E-mail: mercedes.beltran@uv.es; Reig-Martínez, Ernest; Estruch-Guitart, Vicent
Sustainability analysis requires a joint assessment of environmental, social and economic aspects of production processes. Here we propose the use of Life Cycle Analysis (LCA), a metafrontier (MF) directional distance function (DDF) approach, and Data Envelopment Analysis (DEA), to assess technological and managerial differences in eco-efficiency between production systems. We use LCA to compute six environmental and health impacts associated with the production processes of nearly 200 Spanish citrus farms belonging to organic and conventional farming systems. DEA is then employed to obtain joint economic-environmental farm's scores that we refer to as eco-efficiency. DDF allows us to determine farms' globalmore » eco-efficiency scores, as well as eco-efficiency scores with respect to specific environmental impacts. Furthermore, the use of an MF helps us to disentangle technological and managerial eco-inefficiencies by comparing the eco-efficiency of both farming systems with regards to a common benchmark. Our core results suggest that the shift from conventional to organic farming technology would allow a potential reduction in environmental impacts of 80% without resulting in any decline in economic performance. In contrast, as regards farmers' managerial capacities, both systems display quite similar mean scores.« less
Geary, Phillip; Lucas, Steven
2018-02-03
Aquaculture in many coastal estuaries is threatened by diffuse sources of runoff from different land use activities. The poor performance of septic tank systems (STS), as well as runoff from agriculture, may contribute to the movement of contaminants through ground and surface waters to estuaries resulting in oyster contamination, and following their consumption, impacts to human health. In monitoring individual STS in sensitive locations, it is possible to show that nutrients and faecal contaminants are transported through the subsurface in sandy soils off-site with little attenuation. At the catchment scale however, there are always difficulties in discerning direct linkages between failing STS and water contamination due to processes such as effluent dilution, adsorption, precipitation and vegetative uptake. There is often substantial complexity in detecting and tracing effluent pathways from diffuse sources to water bodies in field studies. While source tracking as well as monitoring using tracers may assist in identifying potential pathways from STS to surface waters and estuaries, there are difficulties in scaling up from monitored individual systems to identify their contribution to the cumulative impact which may be apparent at the catchment scale. The processes which may be obvious through monitoring and dominate at the individual scale may be masked and not readily discernible at the catchment scale due to impacts from other land use activities.
NASA Astrophysics Data System (ADS)
Xing, Lizhi; Dong, Xianlei; Guan, Jun
2017-04-01
Input-output table is very comprehensive and detailed in describing the national economic system with lots of economic relationships, which contains supply and demand information among industrial sectors. The complex network, a theory and method for measuring the structure of complex system, can describe the structural characteristics of the internal structure of the research object by measuring the structural indicators of the social and economic system, revealing the complex relationship between the inner hierarchy and the external economic function. This paper builds up GIVCN-WIOT models based on World Input-Output Database in order to depict the topological structure of Global Value Chain (GVC), and assumes the competitive advantage of nations is equal to the overall performance of its domestic sectors' impact on the GVC. Under the perspective of econophysics, Global Industrial Impact Coefficient (GIIC) is proposed to measure the national competitiveness in gaining information superiority and intermediate interests. Analysis of GIVCN-WIOT models yields several insights including the following: (1) sectors with higher Random Walk Centrality contribute more to transmitting value streams within the global economic system; (2) Half-Value Ratio can be used to measure robustness of open-economy macroeconomics in the process of globalization; (3) the positive correlation between GIIC and GDP indicates that one country's global industrial impact could reveal its international competitive advantage.
Modelling the impacts of pests and diseases on agricultural systems.
Donatelli, M; Magarey, R D; Bregaglio, S; Willocquet, L; Whish, J P M; Savary, S
2017-07-01
The improvement and application of pest and disease models to analyse and predict yield losses including those due to climate change is still a challenge for the scientific community. Applied modelling of crop diseases and pests has mostly targeted the development of support capabilities to schedule scouting or pesticide applications. There is a need for research to both broaden the scope and evaluate the capabilities of pest and disease models. Key research questions not only involve the assessment of the potential effects of climate change on known pathosystems, but also on new pathogens which could alter the (still incompletely documented) impacts of pests and diseases on agricultural systems. Yield loss data collected in various current environments may no longer represent a adequate reference to develop tactical, decision-oriented, models for plant diseases and pests and their impacts, because of the ongoing changes in climate patterns. Process-based agricultural simulation modelling, on the other hand, appears to represent a viable methodology to estimate the impacts of these potential effects. A new generation of tools based on state-of-the-art knowledge and technologies is needed to allow systems analysis including key processes and their dynamics over appropriate suitable range of environmental variables. This paper offers a brief overview of the current state of development in coupling pest and disease models to crop models, and discusses technical and scientific challenges. We propose a five-stage roadmap to improve the simulation of the impacts caused by plant diseases and pests; i) improve the quality and availability of data for model inputs; ii) improve the quality and availability of data for model evaluation; iii) improve the integration with crop models; iv) improve the processes for model evaluation; and v) develop a community of plant pest and disease modelers.
Isotopes as tracers of the sources of the lunar material and processes of lunar origin.
Pahlevan, Kaveh
2014-09-13
Ever since the Apollo programme, isotopic abundances have been used as tracers to study lunar formation, in particular to study the sources of the lunar material. In the past decade, increasingly precise isotopic data have been reported that give strong indications that the Moon and the Earth's mantle have a common heritage. To reconcile these observations with the origin of the Moon via the collision of two distinct planetary bodies, it has been proposed (i) that the Earth-Moon system underwent convective mixing into a single isotopic reservoir during the approximately 10(3) year molten disc epoch after the giant impact but before lunar accretion, or (ii) that a high angular momentum impact injected a silicate disc into orbit sourced directly from the mantle of the proto-Earth and the impacting planet in the right proportions to match the isotopic observations. Recently, it has also become recognized that liquid-vapour fractionation in the energetic aftermath of the giant impact is capable of generating measurable mass-dependent isotopic offsets between the silicate Earth and Moon, rendering isotopic measurements sensitive not only to the sources of the lunar material, but also to the processes accompanying lunar origin. Here, we review the isotopic evidence that the silicate-Earth-Moon system represents a single planetary reservoir. We then discuss the development of new isotopic tracers sensitive to processes in the melt-vapour lunar disc and how theoretical calculations of their behaviour and sample observations can constrain scenarios of post-impact evolution in the earliest history of the Earth-Moon system. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
New technologies - How to assess environmental effects
NASA Technical Reports Server (NTRS)
Sullivan, P. J.; Lavin, M. L.
1981-01-01
A method is provided for assessing the environmental effects of a room-and-pillar mining system (RP) and a new hydraulic borehole mining system (HBM). Before environmental assessment can begin, each technology is defined in terms of its engineering characteristics at both the conceptual and preliminary design stages. The mining sites are also described in order to identify the significant advantages and constraints for each system. This can be a basic physical and biological survey of the region at the conceptual stage, but a more specific representation of site characteristics is required at the preliminary stage. Assessment of potential environmental effects of each system at the conceptual design is critical to its hardware development and application. A checklist can be used to compare and identify the negative impacts of each method, outlining the resource affected, the type of impact involved, and the exact activity causing that impact. At the preliminary design stage, these impacts should be evaluated as a result of either utilization or alteration. Underground coal mining systems have three major utilization impacts - the total area disturbed, the total water resources withdrawn from other uses, and the overall energy efficiency of the process - and one major alteration impact - the degradation of water quality by sedimentation and acid contamination. A comparison of the RP and HBM systems shows the HBM to be an environmentally less desirable system for the Central Appalachia region.
A risk-based approach to management of leachables utilizing statistical analysis of extractables.
Stults, Cheryl L M; Mikl, Jaromir; Whelehan, Oliver; Morrical, Bradley; Duffield, William; Nagao, Lee M
2015-04-01
To incorporate quality by design concepts into the management of leachables, an emphasis is often put on understanding the extractable profile for the materials of construction for manufacturing disposables, container-closure, or delivery systems. Component manufacturing processes may also impact the extractable profile. An approach was developed to (1) identify critical components that may be sources of leachables, (2) enable an understanding of manufacturing process factors that affect extractable profiles, (3) determine if quantitative models can be developed that predict the effect of those key factors, and (4) evaluate the practical impact of the key factors on the product. A risk evaluation for an inhalation product identified injection molding as a key process. Designed experiments were performed to evaluate the impact of molding process parameters on the extractable profile from an ABS inhaler component. Statistical analysis of the resulting GC chromatographic profiles identified processing factors that were correlated with peak levels in the extractable profiles. The combination of statistically significant molding process parameters was different for different types of extractable compounds. ANOVA models were used to obtain optimal process settings and predict extractable levels for a selected number of compounds. The proposed paradigm may be applied to evaluate the impact of material composition and processing parameters on extractable profiles and utilized to manage product leachables early in the development process and throughout the product lifecycle.
Rosenkrantz, Andrew B; Lawson, Kirk; Ally, Rosina; Chen, David; Donno, Frank; Rittberg, Steven; Rodriguez, Joan; Recht, Michael P
2015-01-01
To evaluate sustainability of impact of rapid, focused process improvement (PI) events on process and performance within an academic radiology department. Our department conducted PI during 2011 and 2012 in CT, MRI, ultrasound, breast imaging, and research billing. PI entailed participation by all stakeholders, facilitation by the department chair, collection of baseline data, meetings during several weeks, definition of performance metrics, creation of an improvement plan, and prompt implementation. We explore common themes among PI events regarding initial impact and durability of changes. We also assess performance in each area pre-PI, immediately post-PI, and at the time of the current study. All PI events achieved an immediate improvement in performance metrics, often entailing both examination volumes and on-time performance. IT-based solutions, process standardization, and redefinition of staff responsibilities were often central in these changes, and participants consistently expressed improved internal leadership and problem-solving ability. Major environmental changes commonly occurred after PI, including a natural disaster with equipment loss, a change in location or services offered, and new enterprise-wide electronic medical record system incorporating new billing and radiology informatics systems, requiring flexibility in the PI implementation plan. Only one PI team conducted regular post-PI follow-up meetings. Sustained improvement was frequently, but not universally, observed: in the long-term following initial PI, measures of examination volume showed continued progressive improvements, whereas measures of operational efficiency remained stable or occasionally declined. Focused PI is generally effective in achieving performance improvement, although a changing environment influences the sustainability of impact. Thus, continued process evaluation and ongoing workflow modifications are warranted. Copyright © 2015 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Impact Processes in the Solar System
NASA Technical Reports Server (NTRS)
Ahrens, Thomas J.
2004-01-01
The three main topics of this program as described initially in our May 2003 proposal are: 1) Shock-induced damage and attenuation in planetary materials. 2 ) Shock-induced melting and phase changes. 3) Impact-induced volatilization and vapor speciation of planetary materials Topic 4 has been the subject of a continuing investigation since approximately 1990. On Topic 5, we have a paper in preparation and have submitted a proposal to Astrobiology. 4) Responses of planetary atmospheres to giant impact, 5) Effects of impact-induced shock waves on microbial life
Performance indicators for the efficiency analysis of urban drainage systems.
Artina, S; Becciu, G; Maglionico, M; Paoletti, A; Sanfilippo, U
2005-01-01
Performance indicators implemented in a decision support system (DSS) for the technical, managerial and economic evaluation of urban drainage systems (UDS), called MOMA FD, are presented. Several kinds of information are collected and processed by MOMA FD to evaluate both present situation and future scenarios of development and enhancement. Particular interest is focused on the evaluation of the environmental impact, which is considered a very relevant factor in the decision making process to identify the priorities for UDS improvements.
NASA Astrophysics Data System (ADS)
Wang, Wenke; Wang, Zhan; Hou, Rongzhe; Guan, Longyao; Dang, Yan; Zhang, Zaiyong; Wang, Hao; Duan, Lei; Wang, Zhoufeng
2018-05-01
The hydrodynamic processes and impacts exerted by river-groundwater transformation need to be studied at regional and catchment scale, especially with respect to diverse geology and lithology. This work adopted an integrated method to study four typical modes (characterized primarily by lithology, flow subsystems, and gaining/losing river status) and the associated hydrodynamic processes and ecological impacts in the southern part of Junggar Basin, China. River-groundwater transformation occurs one to four times along the basin route. For mode classification, such transformation occurs: once or twice, controlled by lithological factors (mode 1); twice, impacted by geomorphic features and lithological structures (mode 2); and three or four times, controlled by both geological and lithological structures (modes 3 and 4). Results also suggest: (1) there exist local and regional groundwater flow subsystems at 400 m depth, which form a multistage nested groundwater flow system. The groundwater flow velocities are 0.1-1.0 and <0.1 m/day for each of two subsystems; (2) the primary groundwater hydro-chemical type takes on apparent horizontal and vertical zoning characteristics, and the TDS of the groundwater evidently increases along the direction of groundwater flow, driven by hydrodynamic processes; (3) the streams, wetland and terminal lakes are the end-points of the local and regional groundwater flow systems. This work indicates that not only are groundwater and river water derived from the same source, but also hydrodynamic and hydro-chemical processes and ecological effects, as a whole in arid areas, are controlled by stream-groundwater transformation.
Saronga, Happiness Pius; Duysburgh, Els; Massawe, Siriel; Dalaba, Maxwell Ayindenaba; Wangwe, Peter; Sukums, Felix; Leshabari, Melkizedeck; Blank, Antje; Sauerborn, Rainer; Loukanova, Svetla
2017-08-07
QUALMAT project aimed at improving quality of maternal and newborn care in selected health care facilities in three African countries. An electronic clinical decision support system was implemented to support providers comply with established standards in antenatal and childbirth care. Given that health care resources are limited and interventions differ in their potential impact on health and costs (efficiency), this study aimed at assessing cost-effectiveness of the system in Tanzania. This was a quantitative pre- and post- intervention study involving 6 health centres in rural Tanzania. Cost information was collected from health provider's perspective. Outcome information was collected through observation of the process of maternal care. Incremental cost-effectiveness ratios for antenatal and childbirth care were calculated with testing of four models where the system was compared to the conventional paper-based approach to care. One-way sensitivity analysis was conducted to determine whether changes in process quality score and cost would impact on cost-effectiveness ratios. Economic cost of implementation was 167,318 USD, equivalent to 27,886 USD per health center and 43 USD per contact. The system improved antenatal process quality by 4.5% and childbirth care process quality by 23.3% however these improvements were not statistically significant. Base-case incremental cost-effectiveness ratios of the system were 2469 USD and 338 USD per 1% change in process quality for antenatal and childbirth care respectively. Cost-effectiveness of the system was sensitive to assumptions made on costs and outcomes. Although the system managed to marginally improve individual process quality variables, it did not have significant improvement effect on the overall process quality of care in the short-term. A longer duration of usage of the electronic clinical decision support system and retention of staff are critical to the efficiency of the system and can reduce the invested resources. Realization of gains from the system requires effective implementation and an enabling healthcare system. Registered clinical trial at www.clinicaltrials.gov ( NCT01409824 ). Registered May 2009.
A Mixed Kijima Model Using the Weibull-Based Generalized Renewal Processes
2015-01-01
Generalized Renewal Processes are useful for approaching the rejuvenation of dynamical systems resulting from planned or unplanned interventions. We present new perspectives for the Generalized Renewal Processes in general and for the Weibull-based Generalized Renewal Processes in particular. Disregarding from literature, we present a mixed Generalized Renewal Processes approach involving Kijima Type I and II models, allowing one to infer the impact of distinct interventions on the performance of the system under study. The first and second theoretical moments of this model are introduced as well as its maximum likelihood estimation and random sampling approaches. In order to illustrate the usefulness of the proposed Weibull-based Generalized Renewal Processes model, some real data sets involving improving, stable, and deteriorating systems are used. PMID:26197222
Evaluation of environmental impact assessment system in Pakistan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nadeem, Obaidullah; Hameed, Rizwan
2008-11-15
Environmental impact assessment (EIA) was first introduced in Pakistan based on the Environmental Protection Ordinance 1983. The EIA process was further strengthened under the Pakistan Environmental Protection Act 1997, which became operational under EIA Regulations 2000. Despite a sound legal basis and comprehensive guidelines, evidence suggests that EIA has not yet evolved satisfactorily in Pakistan. An evaluation of the EIA system against systematic evaluation criteria, based on interviews with EIA approval authorities, consulting firms and experts, reveals various shortcomings of the EIA system. These mainly include; inadequate capacity of EIA approval authorities, deficiencies in screening and scoping, poor EIA quality,more » inadequate public participation and weak monitoring. Overall, EIA is used presently as a project justification tool rather than as a project planning tool to contribute to achieving sustainable development. Whilst shortcomings are challenging, central government has recently shown a high degree of commitment to the environmental protection by making EIA compulsory for all the public sector projects likely to have adverse environmental impacts. The paper identifies opportunities for taking advantage of the current environment for strengthening the EIA process.« less
Developing a Web-Based Nursing Practice and Research Information Management System: A Pilot Study.
Choi, Jeeyae; Lapp, Cathi; Hagle, Mary E
2015-09-01
Many hospital information systems have been developed and implemented to collect clinical data from the bedside and have used the information to improve patient care. Because of a growing awareness that the use of clinical information improves quality of care and patient outcomes, measuring tools (electronic and paper based) have been developed, but most of them require multiple steps of data collection and analysis. This necessitated the development of a Web-based Nursing Practice and Research Information Management System that processes clinical nursing data to measure nurses' delivery of care and its impact on patient outcomes and provides useful information to clinicians, administrators, researchers, and policy makers at the point of care. This pilot study developed a computer algorithm based on a falls prevention protocol and programmed the prototype Web-based Nursing Practice and Research Information Management System. It successfully measured performance of nursing care delivered and its impact on patient outcomes successfully using clinical nursing data from the study site. Although Nursing Practice and Research Information Management System was tested with small data sets, results of study revealed that it has the potential to measure nurses' delivery of care and its impact on patient outcomes, while pinpointing components of nursing process in need of improvement.
Sweidan, Michelle; Williamson, Margaret; Reeve, James F; Harvey, Ken; O'Neill, Jennifer A; Schattner, Peter; Snowdon, Teri
2010-04-15
Electronic prescribing is increasingly being used in primary care and in hospitals. Studies on the effects of e-prescribing systems have found evidence for both benefit and harm. The aim of this study was to identify features of e-prescribing software systems that support patient safety and quality of care and that are useful to the clinician and the patient, with a focus on improving the quality use of medicines. Software features were identified by a literature review, key informants and an expert group. A modified Delphi process was used with a 12-member multidisciplinary expert group to reach consensus on the expected impact of the features in four domains: patient safety, quality of care, usefulness to the clinician and usefulness to the patient. The setting was electronic prescribing in general practice in Australia. A list of 114 software features was developed. Most of the features relate to the recording and use of patient data, the medication selection process, prescribing decision support, monitoring drug therapy and clinical reports. The expert group rated 78 of the features (68%) as likely to have a high positive impact in at least one domain, 36 features (32%) as medium impact, and none as low or negative impact. Twenty seven features were rated as high positive impact across 3 or 4 domains including patient safety and quality of care. Ten features were considered "aspirational" because of a lack of agreed standards and/or suitable knowledge bases. This study defines features of e-prescribing software systems that are expected to support safety and quality, especially in relation to prescribing and use of medicines in general practice. The features could be used to develop software standards, and could be adapted if necessary for use in other settings and countries.
2010-01-01
Background Electronic prescribing is increasingly being used in primary care and in hospitals. Studies on the effects of e-prescribing systems have found evidence for both benefit and harm. The aim of this study was to identify features of e-prescribing software systems that support patient safety and quality of care and that are useful to the clinician and the patient, with a focus on improving the quality use of medicines. Methods Software features were identified by a literature review, key informants and an expert group. A modified Delphi process was used with a 12-member multidisciplinary expert group to reach consensus on the expected impact of the features in four domains: patient safety, quality of care, usefulness to the clinician and usefulness to the patient. The setting was electronic prescribing in general practice in Australia. Results A list of 114 software features was developed. Most of the features relate to the recording and use of patient data, the medication selection process, prescribing decision support, monitoring drug therapy and clinical reports. The expert group rated 78 of the features (68%) as likely to have a high positive impact in at least one domain, 36 features (32%) as medium impact, and none as low or negative impact. Twenty seven features were rated as high positive impact across 3 or 4 domains including patient safety and quality of care. Ten features were considered "aspirational" because of a lack of agreed standards and/or suitable knowledge bases. Conclusions This study defines features of e-prescribing software systems that are expected to support safety and quality, especially in relation to prescribing and use of medicines in general practice. The features could be used to develop software standards, and could be adapted if necessary for use in other settings and countries. PMID:20398294
NASA Technical Reports Server (NTRS)
Pereira, J. Michael; Revilock, Duane M.; Ruggeri, Charles R.; Roberts, Gary D.; Kohlman, Lee W.; Miller, Sandi G.
2016-01-01
An experimental study was conducted to measure the effects of long term hygrothermal aging on the impact penetration resistance of triaxially braided polymer composites. Flat panels of three different materials were subjected to repeated cycles of high and low temperature and high and low humidity for two years. Samples of the panels were periodically tested under impact loading during the two year time period. The purpose of the study was to identify and quantify any degradation in impact penetration resistance of these composites under cyclic temperature and humidity conditions experienced by materials in the fan section of commercial gas turbine engines for a representative aircraft flight cycle. The materials tested consisted of Toray ® T700S carbon fibers in a 2D triaxial braid with three different resins, Cycom® PR520, a toughened resin, Hercules® 3502, an untoughened resin and EPON 862, intermediate between the two. The fiber preforms consisted of a quasi-isotropic 0/+60/-60 braid with 24K tows in the axial direction and 12K tows in the bias directions. The composite panels were manufactured using a resin transfer molding process producing panels with a thickness of 0.125 inches. The materials were tested in their as-processed condition and again after one year and two years of aging (1.6 years in the case of E862). The aging process involved subjecting the test panels to two cycles per day of high and low temperature and high and low humidity. A temperature range of -60degF to 250degF and a humidity range of 0 to 85% rh was used to simulate extreme conditions for composite components in the fan section of a commercial gas turbine engine. Additional testing was conducted on the as-processed PR520 composite under cryogenic conditions. After aging there was some change in the failure pattern, but there was no reduction in impact penetration threshold for any of the three systems, and in the case of the 3502 system, a significant increase in penetration threshold. There was also an increase in the penetration resistance of the PR520 system impacted under cryogenic conditions.
Impact of Hospital Information Systems on Emergency Patient Processing
Rusnak, James E.
1981-01-01
The Emergency Department offers the Hospital Information System's designer some unique problems to solve in the operational areas of patient registration, order entry, charge recording, and treatment processing. In a number of instances, Hospital Information Systems implementers have encountered serious difficulties in trying to design system components to support the requirements of the Emergency Services Department's operations. Washington Hospital has developed a very effective system for Emergency Services. The system's features are designed to meet the special requirements of the department and to maximize the use of the data captured by the Hospital Information System. The system supports accurate and timely charging for services. The treatment of the patient has been dramatically improved through the use of a computerized order processing and control. The installed systems resulted in a higher quality of care and cost effective operations.
Determination of technological parameters in strip mining by time-of-flight and image processing
NASA Astrophysics Data System (ADS)
Elandaloussi, Frank; Mueller, B.; Osten, Wolfgang
1999-09-01
The conveying and dumping of earth masses lying over the coal seam in lignite surface mining is done usually by overburden conveyor bridges. The overburden, obtained from connected excavators, is transported over the bridge construction using a conveyor belt system and poured into one front dump and three surface dumps. The shaping of the dump growth is of great importance both to guaranty the stability of the masses dumped to earth stocks as well as the whole construction and to prepare the area for re-cultivation. This article describes three measurement systems: one to determine the impact point of the dumped earth masses, one to determine the shape of the entire mining process and the other a sensor for the loading of the conveyor belt. For the first measurement system, a real-time video system has been designed, set-up and installed that is capable to determine the impact point of all three dumps simultaneously. The second measurement system is a connection of 5 special designed laser distance measuring instruments, that are able to measure the shape of the mining process under unfavorable environmental conditions like dust, high temperature changes, heavy shocks etc. The third sensor is designed for monitoring the transportation of the masses via the conveyor belt system.
A model for predicting field-directed particle transport in the magnetofection process.
Furlani, Edward P; Xue, Xiaozheng
2012-05-01
To analyze the magnetofection process in which magnetic carrier particles with surface-bound gene vectors are attracted to target cells for transfection using an external magnetic field and to obtain a fundamental understanding of the impact of key factors such as particle size and field strength on the gene delivery process. A numerical model is used to study the field-directed transport of the carrier particle-gene vector complex to target cells in a conventional multiwell culture plate system. The model predicts the transport dynamics and the distribution of particle accumulation at the target cells. The impact of several factors that strongly influence gene vector delivery is assessed including the properties of the carrier particles, the strength of the field source, and its extent and proximity relative to the target cells. The study demonstrates that modeling can be used to predict and optimize gene vector delivery in the magnetofection process for novel and conventional in vitro systems.
ERIC Educational Resources Information Center
Goksu, Idris
2016-01-01
The aim of this study is to develop the Web Based Expert System (WBES) which provides analyses and reports based on the cognitive processes of Renewed Bloom Taxonomy (RBT), and to put forward the impact of the supportive education provided in line with these reports, on the academic achievement and mastery learning state of the students. The study…
State/federal interaction of LANDSAT system and related technical assistance
NASA Technical Reports Server (NTRS)
Tesser, P. A.
1981-01-01
The history of state involvement in LANDSAT systems planning and related efforts is described. Currently 16 states have visual LANDSAT capabilities and 10 others are planning on developing such capabilities. The federal government's future plans for the LANDSAT system, the impacts of recent budget decisions on the systems, and the FY 82 budget process are examined.
Autoverification process improvement by Six Sigma approach: Clinical chemistry & immunoassay.
Randell, Edward W; Short, Garry; Lee, Natasha; Beresford, Allison; Spencer, Margaret; Kennell, Marina; Moores, Zoë; Parry, David
2018-05-01
This study examines effectiveness of a project to enhance an autoverification (AV) system through application of Six Sigma (DMAIC) process improvement strategies. Similar AV systems set up at three sites underwent examination and modification to produce improved systems while monitoring proportions of samples autoverified, the time required for manual review and verification, sample processing time, and examining characteristics of tests not autoverified. This information was used to identify areas for improvement and monitor the impact of changes. Use of reference range based criteria had the greatest impact on the proportion of tests autoverified. To improve AV process, reference range based criteria was replaced with extreme value limits based on a 99.5% test result interval, delta check criteria were broadened, and new specimen consistency rules were implemented. Decision guidance tools were also developed to assist staff using the AV system. The mean proportion of tests and samples autoverified improved from <62% for samples and <80% for tests, to >90% for samples and >95% for tests across all three sites. The new AV system significantly decreased turn-around time and total sample review time (to about a third), however, time spent for manual review of held samples almost tripled. There was no evidence of compromise to the quality of testing process and <1% of samples held for exceeding delta check or extreme limits required corrective action. The Six Sigma (DMAIC) process improvement methodology was successfully applied to AV systems resulting in an increase in overall test and sample AV by >90%, improved turn-around time, reduced time for manual verification, and with no obvious compromise to quality or error detection. Copyright © 2018 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
How Has the Internet Reshaped Human Cognition?
Loh, Kep Kee; Kanai, Ryota
2016-10-01
Throughout our evolutionary history, our cognitive systems have been altered by the advent of technological inventions such as primitive tools, spoken language, writing, and arithmetic systems. Thirty years ago, the Internet surfaced as the latest technological invention poised to deeply reshape human cognition. With its multifaceted affordances, the Internet environment has profoundly transformed our thoughts and behaviors. Growing up with Internet technologies, "Digital Natives" gravitate toward "shallow" information processing behaviors characterized by rapid attention shifting and reduced deliberations. They engage in increased multitasking behaviors that are linked to increased distractibility and poor executive control abilities. Digital natives also exhibit higher prevalence of Internet-related addictive behaviors that reflect altered reward-processing and self-control mechanisms. Recent neuroimaging investigations have suggested associations between these Internet-related cognitive impacts and structural changes in the brain. Against mounting apprehension over the Internet's consequences on our cognitive systems, several researchers have lamented that these concerns were often exaggerated beyond existing scientific evidence. In the present review, we aim to provide an objective overview of the Internet's impacts on our cognitive systems. We critically discuss current empirical evidence about how the Internet environment has altered the cognitive behaviors and structures involved in information processing, executive control, and reward-processing. © The Author(s) 2015.
Preface: Special issue on wildland fires
Alistair M. S. Smith; James A. Lutz; Chad M. Hoffman; Grant J. Williamson; Andrew T. Hudak
2018-01-01
Wildland fires are a critical Earth-system process that impacts human populations in each settled continent [1,2]. Wildland fires have often been stated as being essential to human life and civilization through the impacts on land clearance, agriculture, and hunting, with fire as a phenomenon serving a key role in the development of agricultural and industrial...
Improving environmental impact and cost assessment for supplier evaluation
NASA Astrophysics Data System (ADS)
Beucker, Severin; Lang, Claus
2004-02-01
Improving a company"s environmental and financial performance necessitates the evaluation of environmental impacts deriving from the production and cost effects of corporate actions. These effects have to be made transparent and concrete targets have to be developed. Such an evaluation has to be done on a regular basis but with limited expenses. To achieve this, different instruments of environmental controlling such as LCA and environmental performance indicators have to be combined with methods from cost accounting. Within the research project CARE (Computer Aided Resource Efficiency Accounting for Medium-Sized Enterprises), the method Resource Efficiency Accounting (REA) is used to give the participating companies new insights into hidden costs and environmental effects of their production and products. The method combines process based cost accounting with environmental impact assessment methodology and offers results that can be integrated into a company"s environmental controlling system and business processes like cost accounting, supplier assessment, etc. Much of the data necessary for the combined assessment can be available within a company"s IT system and therefore can be efficiently used for the assessment process. The project CARE puts a strong focus on the use of company data and information systems for the described assessment process and offers a methodological background for the evaluation and the structuring of such data. Besides the general approach of the project CARE the paper will present results from a case study in which the described approach is used for the evaluation of suppliers.
Suit study - The impact of VMS in subsystem integration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, B.; Watts, R.
1992-02-01
One of the thrusts of the Wright Laboratory/FIVE-sponsored Subsystem Integration Technology (SUIT) study is to investigate the impact of emerging vehicle management system (VMS) concepts on subsystem integration. This paper summarizes the issues relating to VMS/subsystem integration as examined during the Northrop SUIT study. Projected future weapon system requirements are identified and their impact on VMS and subsystem design interpreted. Integrated VMS/subsystem control and management functions are proposed. A candidate system VMS architecture satisfying the aforementioned weapon system requirements and providing the identified control and management functions is proposed. This architecture is used, together with the environmental control system, asmore » an illustrative subsystem example, to address the risks associated with the design, development, procurement, integration and testing of integrated VMS/subsystem concepts. The conclusion is that the development process requires an airframer to adopt the role of subsystem integrator, the consequences of which are discussed. 2 refs.« less
The Bologna Process and Its Impact on University-Level Chemical Education in Europe
ERIC Educational Resources Information Center
Pinto, Gabriel
2010-01-01
This article describes the Bologna Process, an effort by a consortium of nearly 50 European countries trying to standardize the higher education system in Europe. Starting from a nonbinding agreement (the 1999 Bologna Declaration), the Bologna Process involves a voluntary joint venture for the construction of a European higher education area…
NASA Astrophysics Data System (ADS)
Jolanta Walery, Maria
2017-12-01
The article describes optimization studies aimed at analysing the impact of capital and current costs changes of medical waste incineration on the cost of the system management and its structure. The study was conducted on the example of an analysis of the system of medical waste management in the Podlaskie Province, in north-eastern Poland. The scope of operational research carried out under the optimization study was divided into two stages of optimization calculations with assumed technical and economic parameters of the system. In the first stage, the lowest cost of functioning of the analysed system was generated, whereas in the second one the influence of the input parameter of the system, i.e. capital and current costs of medical waste incineration on economic efficiency index (E) and the spatial structure of the system was determined. Optimization studies were conducted for the following cases: with a 25% increase in capital and current costs of incineration process, followed by 50%, 75% and 100% increase. As a result of the calculations, the highest cost of system operation was achieved at the level of 3143.70 PLN/t with the assumption of 100% increase in capital and current costs of incineration process. There was an increase in the economic efficiency index (E) by about 97% in relation to run 1.
NASA Technical Reports Server (NTRS)
Mest, S. C.
2005-01-01
The martian southern highlands contain impact craters that display pristine to degraded morphologies, and preserve a record of degradation that can be attributed to fluvial, eolian, mass wasting, volcanic and impact-related processes. However, the relative degree of modification by these processes and the amounts of material contributed to crater interiors are not well constrained. Impact craters (D>10 km) within Terra Cimmeria (0deg-60degS, 190deg-240degW), Terra Tyrrhena (0deg-30degS, 260deg-310degW) and Noachis Terra (20deg-50degS, 310deg-340degW) are being examined to better understand the degradational history and evolution of highland terrains. The following scientific objectives will be accomplished. 1) Determine the geologic processes that modified impact craters (and surrounding highland terrains). 2) Determine the sources (e.g. fluvial, lacustrine, eolian, mass wasting, volcanic, impact melt) and relative amounts of material composing crater interior deposits. 3) Document the relationships between impact crater degradation and highland fluvial systems. 4) Determine the spatial and temporal relationships between degradational processes on local and regional scales. And 5) develop models of impact crater (and highland) degradation that can be applied to these and other areas of the martian highlands. The results of this study will be used to constrain the geologic, hydrologic and climatic evolution of Mars and identify environments in which subsurface water might be present or evidence for biologic activity might be preserved.
Sensakovic, William F; O'Dell, M Cody; Letter, Haley; Kohler, Nathan; Rop, Baiywo; Cook, Jane; Logsdon, Gregory; Varich, Laura
2016-10-01
Image processing plays an important role in optimizing image quality and radiation dose in projection radiography. Unfortunately commercial algorithms are black boxes that are often left at or near vendor default settings rather than being optimized. We hypothesize that different commercial image-processing systems, when left at or near default settings, create significant differences in image quality. We further hypothesize that image-quality differences can be exploited to produce images of equivalent quality but lower radiation dose. We used a portable radiography system to acquire images on a neonatal chest phantom and recorded the entrance surface air kerma (ESAK). We applied two image-processing systems (Optima XR220amx, by GE Healthcare, Waukesha, WI; and MUSICA(2) by Agfa HealthCare, Mortsel, Belgium) to the images. Seven observers (attending pediatric radiologists and radiology residents) independently assessed image quality using two methods: rating and matching. Image-quality ratings were independently assessed by each observer on a 10-point scale. Matching consisted of each observer matching GE-processed images and Agfa-processed images with equivalent image quality. A total of 210 rating tasks and 42 matching tasks were performed and effective dose was estimated. Median Agfa-processed image-quality ratings were higher than GE-processed ratings. Non-diagnostic ratings were seen over a wider range of doses for GE-processed images than for Agfa-processed images. During matching tasks, observers matched image quality between GE-processed images and Agfa-processed images acquired at a lower effective dose (11 ± 9 μSv; P < 0.0001). Image-processing methods significantly impact perceived image quality. These image-quality differences can be exploited to alter protocols and produce images of equivalent image quality but lower doses. Those purchasing projection radiography systems or third-party image-processing software should be aware that image processing can significantly impact image quality when settings are left near default values.
Sensing Passive Eye Response to Impact Induced Head Acceleration Using MEMS IMUs.
Meng, Yuan; Bottenfield, Brent; Bolding, Mark; Liu, Lei; Adams, Mark L
2018-02-01
The eye may act as a surrogate for the brain in response to head acceleration during an impact. Passive eye movements in a dynamic system are sensed by microelectromechanical systems (MEMS) inertial measurement units (IMU) in this paper. The technique is validated using a three-dimensional printed scaled human skull model and on human volunteers by performing drop-and-impact experiments with ribbon-style flexible printed circuit board IMUs inserted in the eyes and reference IMUs on the heads. Data are captured by a microcontroller unit and processed using data fusion. Displacements are thus estimated and match the measured parameters. Relative accelerations and displacements of the eye to the head are computed indicating the influence of the concussion causing impacts.
Microelectromechanical Systems
NASA Technical Reports Server (NTRS)
Gabriel, Kaigham J.
1995-01-01
Micro-electromechanical systems (MEMS) is an enabling technology that merges computation and communication with sensing and actuation to change the way people and machines interact with the physical world. MEMS is a manufacturing technology that will impact widespread applications including: miniature inertial measurement measurement units for competent munitions and personal navigation; distributed unattended sensors; mass data storage devices; miniature analytical instruments; embedded pressure sensors; non-invasive biomedical sensors; fiber-optics components and networks; distributed aerodynamic control; and on-demand structural strength. The long term goal of ARPA's MEMS program is to merge information processing with sensing and actuation to realize new systems and strategies for both perceiving and controlling systems, processes, and the environment. The MEMS program has three major thrusts: advanced devices and processes, system design, and infrastructure.
Westinghouse modular grinding process - improvement for follow on processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fehrmann, Henning
2013-07-01
In nuclear power plants (NPP) ion exchange (IX) resins are used in several systems for water treatment. The resins can be in bead or powdered form. For waste treatment of spent IX resins, two methods are basically used: Direct immobilization (e.g. with cement, bitumen, polymer or High Integrity Container (HIC)); Thermal treatment (e.g. drying, oxidation or pyrolysis). Bead resins have some properties (e.g. particle size and density) that can have negative impacts on following waste treatment processes. Negative impacts could be: Floatation of bead resins in cementation process; Sedimentation in pipeline during transportation; Poor compaction properties for Hot Resin Supercompactionmore » (HRSC). Reducing the particle size of the bead resins can have beneficial effects enhancing further treatment processes and overcoming prior mentioned effects. Westinghouse Electric Company has developed a modular grinding process to crush/grind the bead resins. This modular process is designed for flexible use and enables a selective adjustment of particle size to tailor the grinding system to the customer needs. The system can be equipped with a crusher integrated in the process tank and if necessary a colloid mill. The crusher reduces the bead resins particle size and converts the bead resins to a pump able suspension with lower sedimentation properties. With the colloid mill the resins can be ground to a powder. Compared to existing grinding systems this equipment is designed to minimize radiation exposure of the worker during operation and maintenance. Using the crushed and/or ground bead resins has several beneficial effects like facilitating cementation process and recipe development, enhancing oxidation of resins, improving the Hot Resin Supercompaction volume reduction performance. (authors)« less
Stochastic eco-evolutionary model of a prey-predator community.
Costa, Manon; Hauzy, Céline; Loeuille, Nicolas; Méléard, Sylvie
2016-02-01
We are interested in the impact of natural selection in a prey-predator community. We introduce an individual-based model of the community that takes into account both prey and predator phenotypes. Our aim is to understand the phenotypic coevolution of prey and predators. The community evolves as a multi-type birth and death process with mutations. We first consider the infinite particle approximation of the process without mutation. In this limit, the process can be approximated by a system of differential equations. We prove the existence of a unique globally asymptotically stable equilibrium under specific conditions on the interaction among prey individuals. When mutations are rare, the community evolves on the mutational scale according to a Markovian jump process. This process describes the successive equilibria of the prey-predator community and extends the polymorphic evolutionary sequence to a coevolutionary framework. We then assume that mutations have a small impact on phenotypes and consider the evolution of monomorphic prey and predator populations. The limit of small mutation steps leads to a system of two differential equations which is a version of the canonical equation of adaptive dynamics for the prey-predator coevolution. We illustrate these different limits with an example of prey-predator community that takes into account different prey defense mechanisms. We observe through simulations how these various prey strategies impact the community.
NASA Astrophysics Data System (ADS)
Polichtchouk, Yuri; Ryukhko, Viatcheslav; Tokareva, Olga; Alexeeva, Mary
2002-02-01
Geoinformation modeling system structure for assessment of the environmental impact of atmospheric pollution on forest- swamp ecosystems of West Siberia is considered. Complex approach to the assessment of man-caused impact based on the combination of sanitary-hygienic and landscape-geochemical approaches is reported. Methodical problems of analysis of atmosphere pollution impact on vegetable biosystems using geoinformation systems and remote sensing data are developed. Landscape structure of oil production territories in southern part of West Siberia are determined on base of processing of space images from spaceborn Resource-O. Particularities of atmosphere pollution zones modeling caused by gas burning in torches in territories of oil fields are considered. For instance, a pollution zones were revealed modeling of contaminants dispersal in atmosphere by standard model. Polluted landscapes areas are calculated depending on oil production volume. It is shown calculated data is well approximated by polynomial models.
Privacy Impact Assessment for the EPA Acquisition System
The EPA Acquisition System collects data on the business process of acquiring goods in support of the Agency's mission. Learn how this data is collected, how it will be used, access to the data, the purpose of data collection, and record retention policies
Surveys of facilities for the potential effects from the fallout of airborne graphite fibers
NASA Technical Reports Server (NTRS)
Butterfield, A. J.
1980-01-01
The impact of the entry of graphite fibers into workplaces in the United States is discussed. Areas where an electrical failure could cause major problems include process and production systems, hospitals, and police/fire emergency communication systems.
NASA Astrophysics Data System (ADS)
Bell, Kevin D.; Dafesh, Philip A.; Hsu, L. A.; Tsuda, A. S.
1995-12-01
Current architectural and design trade techniques often carry unaffordable alternatives late into the decision process. Early decisions made during the concept exploration and development (CE&D) phase will drive the cost of a program more than any other phase of development; thus, designers must be able to assess both the performance and cost impacts of their early choices. The Space Based Infrared System (SBIRS) cost engineering model (CEM) described in this paper is an end-to-end process integrating engineering and cost expertise through commonly available spreadsheet software, allowing for concurrent design engineering and cost estimation to identify and balance system drives to reduce acquisition costs. The automated interconnectivity between subsystem models using spreadsheet software allows for the quick and consistent assessment of the system design impacts and relative cost impacts due to requirement changes. It is different from most CEM efforts attempted in the past as it incorporates more detailed spacecraft and sensor payload models, and has been applied to determine the cost drivers for an advanced infrared satellite system acquisition. The CEM is comprised of integrated detailed engineering and cost estimating relationships describing performance, design, and cost parameters. Detailed models have been developed to evaluate design parameters for the spacecraft bus and sensor; both step-starer and scanner sensor types incorporate models of focal plane array, optics, processing, thermal, communications, and mission performance. The current CEM effort has provided visibility to requirements, design, and cost drivers for system architects and decision makers to determine the configuration of an infrared satellite architecture that meets essential requirements cost effectively. In general, the methodology described in this paper consists of process building blocks that can be tailored to the needs of many applications. Descriptions of the spacecraft and payload subsystem models provide insight into The Aerospace Corporation expertise and scope of the SBIRS concept development effort.
Life cycle assessment of Chinese shrimp farming systems targeted for export and domestic sales.
Cao, Ling; Diana, James S; Keoleian, Gregory A; Lai, Qiuming
2011-08-01
We conducted surveys of six hatcheries and 18 farms for data inputs to complete a cradle-to-farm-gate life cycle assessment (LCA) to evaluate the environmental performance for intensive (for export markets in Chicago) and semi-intensive (for domestic markets in Shanghai) shrimp farming systems in Hainan Province, China. The relative contribution to overall environmental performance of processing and distribution to final markets were also evaluated from a cradle-to-destination-port perspective. Environmental impact categories included global warming, acidification, eutrophication, cumulative energy use, and biotic resource use. Our results indicated that intensive farming had significantly higher environmental impacts per unit production than semi-intensive farming in all impact categories. The grow-out stage contributed between 96.4% and 99.6% of the cradle-to-farm-gate impacts. These impacts were mainly caused by feed production, electricity use, and farm-level effluents. By averaging over intensive (15%) and semi-intensive (85%) farming systems, 1 metric ton (t) live-weight of shrimp production in China required 38.3 ± 4.3 GJ of energy, as well as 40.4 ± 1.7 t of net primary productivity, and generated 23.1 ± 2.6 kg of SO(2) equiv, 36.9 ± 4.3 kg of PO(4) equiv, and 3.1 ± 0.4 t of CO(2) equiv. Processing made a higher contribution to cradle-to-destination-port impacts than distribution of processed shrimp from farm gate to final markets in both supply chains. In 2008, the estimated total electricity consumption, energy consumption, and greenhouse gas emissions from Chinese white-leg shrimp production would be 1.1 billion kW·h, 49 million GJ, and 4 million metric tons, respectively. Improvements suggested for Chinese shrimp aquaculture include changes in feed composition, farm management, electricity-generating sources, and effluent treatment before discharge. Our results can be used to optimize market-oriented shrimp supply chains and promote more sustainable shrimp production and consumption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makarov, Yuri V.; Lu, Shuai
2008-07-15
This report presents a methodology developed to study the future impact of wind on BPA power system load following and regulation requirements. The methodology uses historical data and stochastic processes to simulate the load balancing processes in the BPA power system, by mimicking the actual power system operations. Therefore, the results are close to reality, yet the study based on this methodology is convenient to conduct. Compared with the proposed methodology, existing methodologies for doing similar analysis include dispatch model simulation and standard deviation evaluation on load and wind data. Dispatch model simulation is constrained by the design of themore » dispatch program, and standard deviation evaluation is artificial in separating the load following and regulation requirements, both of which usually do not reflect actual operational practice. The methodology used in this study provides not only capacity requirement information, it also analyzes the ramp rate requirements for system load following and regulation processes. The ramp rate data can be used to evaluate generator response/maneuverability requirements, which is another necessary capability of the generation fleet for the smooth integration of wind energy. The study results are presented in an innovative way such that the increased generation capacity or ramp requirements are compared for two different years, across 24 hours a day. Therefore, the impact of different levels of wind energy on generation requirements at different times can be easily visualized.« less
USDA-ARS?s Scientific Manuscript database
Future farming systems need to simultaneously 1) meet the demand for feeding a growing world population, 2) adjust to the developing scarcity of energy, nutrients, and water resources, and 3) mitigate environmental hazards. Development of cropping systems that maximize ecological processes for prov...
Succession Planning in a Two-Year Technical College System
ERIC Educational Resources Information Center
Neefe, Diane Osterhaus
2009-01-01
The study explores the organizational characteristics of strategic planning, succession planning and career management and the processes impact on the hiring location of academic leaders from within the college, external to the college but within the system, and external to the system. The study was conducted in the 16 college Wisconsin…
Freshwater habitats provide fishable, swimmable and drinkable resources and are a nexus of geophysical and biological processes. These processes in turn influence the persistence and sustainability of populations, communities and ecosystems. Climate change and landuse change enco...
Sun, Xu; May, Andrew; Wang, Qingfeng
2016-05-01
This article describes an experimental study investigating the impact on user experience of two approaches of personalization of content provided on a mobile device, for spectators at large sports events. A lab-based experiment showed that a system-driven approach to personalization was generally preferable, but that there were advantages to retaining some user control over the process. Usability implications for a hybrid approach, and design implications are discussed, with general support for countermeasures designed to overcome recognised limitations of adaptive systems. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Demonstration of a Particle Impact Monitoring System for Crewed Space Exploration Modules
NASA Technical Reports Server (NTRS)
Opiela, J. N.; Liou, J.-C.; Corsaro, R.; Giovane, F.; Anz-Meador, P.
2011-01-01
When micrometeorite or debris impacts occur on a space habitat, crew members need to be quickly informed of the likely extent of damage, and be directed to the impact location for possible repairs. The goal of the Habitat Particle Impact Monitoring System (HIMS) is to develop a fully automated, end-to-end particle impact detection system for crewed space exploration modules, both in space and on the surfaces of Solar System bodies. The HIMS uses multiple thin film piezo-polymer vibration sensors to detect impacts on a surface, and computer processing of the acoustical signals to characterize the impacts. Development and demonstration of the HIMS is proceeding in concert with NASA's Habitat Demonstration Unit (HDU) Project. The HDU Project is designed to develop and test various technologies, configurations, and operational concepts for exploration habitats. This paper describes the HIMS development, initial testing, and HDU integration efforts. Initial tests of the system on the HDU were conducted at NASA?s 2010 Desert Research and Technologies Studies (Desert-RATS). Four sensor locations were assigned near the corners of a rectangular pattern. To study the influence of wall thickness, three sets of four sensors were installed at different layer depths: on the interior of the PEM wall, on the exterior of the same wall, and on the exterior of a layer of foam insulation applied to the exterior wall. Once the system was activated, particle impacts were periodically applied by firing a pneumatic pellet gun at the exterior wall section. Impact signals from the sensors were recognized by a data acquisition system when they occurred, and recorded on a computer for later analysis. Preliminary analysis of the results found that the HIMS system located the point of impact to within 8 cm, provided a measure of the impact energy / damage produced, and was insensitive to other acoustic events. Based on this success, a fully automated version of this system will be completed and demonstrated as part of a crew "Caution/Warning" system at the 2011 Desert-RATS, along with a crew response procedure.
Parajuli, Ranjan; Dalgaard, Tommy; Birkved, Morten
2018-04-01
This study evaluates environmental impacts of an integrated mixed crop-livestock system with a green biorefinery (GBR). System integration included production of feed crops and green biomasses (Sys-I) to meet the demand of a livestock system (Sys-III) and to process green biomasses in a GBR system (Sys-II). Processing of grass-clover to produce feed protein was considered in Sys-II, particularly to substitute the imported soybean meal. Waste generated from the livestock and GBR systems were considered for the conversion to biomethane (Sys-IV). Digestate produced therefrom was assumed to be recirculated back to the farmers' field (Sys-I). A consequential approach of Life Cycle Assessment (LCA) method was used to evaluate the environmental impacts of a combined production of suckler cow calves (SCC) and Pigs, calculated in terms of their live weight (LW). The functional unit (FU) was a basket of two products "1kg LW -SCC+1kg LW -Pigs", produced at the farm gate. Results obtained per FU were: 19.6kg CO 2 eq for carbon footprint; 0.11kg PO 4 eq for eutrophication potential, -129MJ eq for non-renewable energy use and -3.9 comparative toxicity units (CTU e ) for potential freshwater ecotoxicity. Environmental impact, e.g. greenhouse gas (GHG) emission was primarily due to (i) N 2 O emission and diesel consumption within Sys-I, (ii) energy input to Sys-II, III and IV, and (iii) methane emission from Sys-III and Sys-IV. Specifically, integrating GBR with the mixed crop-livestock system contributed 4% of the GHG emissions, whilst its products credited 7% of the total impact. Synergies among the different sub-systems showed positive environmental gains for the selected main products. The main effects of the system integration were in the reductions of GHG emissions, fossil fuel consumption, eutrophication potential and freshwater ecotoxicity, compared to a conventional mixed crop-livestock system, without the biogas conversion facility and the GBR. Copyright © 2017 Elsevier B.V. All rights reserved.
Life cycle assessment of corn-based ethanol production in Argentina.
Pieragostini, Carla; Aguirre, Pío; Mussati, Miguel C
2014-02-15
The promotion of biofuels as energy for transportation in the world is mainly driven by the perspective of oil depletion, the concerns about energy security and global warming. In Argentina, the legislation has imposed the use of biofuels in blend with fossil fuels (5 to 10%) in the transport sector. The aim of this paper is to assess the environmental impact of corn-based ethanol production in the province of Santa Fe in Argentina based on the life cycle assessment methodology. The studied system includes from raw materials production to anhydrous ethanol production using dry milling technology. The system is divided into two subsystems: agricultural system and refinery system. The treatment of stillage is considered as well as the use of co-products (distiller's dried grains with solubles), but the use and/or application of the produced biofuel is not analyzed: a cradle-to-gate analysis is presented. As functional unit, 1MJ of anhydrous ethanol at biorefinery is chosen. Two life cycle impact assessment methods are selected to perform the study: Eco-indicator 99 and ReCiPe. SimaPro is the life cycle assessment software used. The influence of the perspectives on the model is analyzed by sensitivity analysis for both methods. The two selected methods identify the same relevant processes. The use of fertilizers and resources, seeds production, harvesting process, corn drying, and phosphorus fertilizers and acetamide-anillide-compounds production are the most relevant processes in agricultural system. For refinery system, corn production, supplied heat and burned natural gas result in the higher contributions. The use of distiller's dried grains with solubles has an important positive environmental impact. Copyright © 2013 Elsevier B.V. All rights reserved.
Georgiou, Andrew; McCaughey, Euan J; Tariq, Amina; Walter, Scott R; Li, Julie; Callen, Joanne; Paoloni, Richard; Runciman, William B; Westbrook, Johanna I
2017-03-01
To examine the impact of an electronic Results Acknowledgement (eRA) system on emergency physicians' test result management work processes and the time taken to acknowledge microbiology and radiology test results for patients discharged from an Emergency Department (ED). The impact of the eRA system was assessed in an Australian ED using: a) semi-structured interviews with senior emergency physicians; and b) a time and motion direct observational study of senior emergency physicians completing test acknowledgment pre and post the implementation of the eRA system. The eRA system led to changes in the way results and actions were collated, stored, documented and communicated. Although there was a non-significant increase in the average time taken to acknowledge results in the post period, most types of acknowledgements (other than simple acknowledgements) took less time to complete. The number of acknowledgements where physicians sought additional information from the Electronic Medical Record (EMR) rose from 12% pre to 20% post implementation of eRA. Given that the type of results are unlikely to have changed significantly across the pre and post implementation periods, the increase in the time physicians spent accessing additional clinical information in the post period likely reflects the greater access to clinical information provided by the integrated electronic system. Easier access to clinical information may improve clinical decision making and enhance the quality of patient care. For instance, in situations where a senior clinician, not initially involved in the care process, is required to deal with the follow-up of non-normal results. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
1983-08-11
34 and the secular forces which the Bri- tish impact unleashed. In any case, a powerful process of transformation of the Indian people along the...adverse impact on savings for investment has. however, said, "Judging by the RBI data, it would appear that the effective corporation tax rate for a...this has been replaced by man-made vegetation to some extent River discharge reduced: On the impact bf the project on the physical systems of the
Application of open source standards and technologies in the http://climate4impact.eu/ portal
NASA Astrophysics Data System (ADS)
Plieger, Maarten; Som de Cerff, Wim; Pagé, Christian; Tatarinova, Natalia
2015-04-01
This presentation will demonstrate how to calculate and visualize the climate indice SU (number of summer days) on the climate4impact portal. The following topics will be covered during the demonstration: - Security: Login using OpenID for access to the Earth System Grid Fedeation (ESGF) data nodes. The ESGF works in conjunction with several external websites and systems. The climate4impact portal uses X509 based short lived credentials, generated on behalf of the user with a MyProxy service. Single Sign-on (SSO) is used to make these websites and systems work together. - Discovery: Facetted search based on e.g. variable name, model and institute using the ESGF search services. A catalog browser allows for browsing through CMIP5 and any other climate model data catalogues (e.g. ESSENCE, EOBS, UNIDATA). - Processing using Web Processing Services (WPS): Transform data, subset, export into other formats, and perform climate indices calculations using Web Processing Services implemented by PyWPS, based on NCAR NCPP OpenClimateGIS and IS-ENES2 ICCLIM. - Visualization using Web Map Services (WMS): Visualize data from ESGF data nodes using ADAGUC Web Map Services. The aim of climate4impact is to enhance the use of Climate Research Data and to enhance the interaction with climate effect/impact communities. The portal is based on 21 impact use cases from 5 different European countries, and is evaluated by a user panel consisting of use case owners. It has been developed within the European projects IS-ENES and IS-ENES2 for more than 5 years, and its development currently continues within IS-ENES2 and CLIPC. As the climate impact community is very broad, the focus is mainly on the scientific impact community. This work has resulted in the ENES portal interface for climate impact communities and can be visited at http://climate4impact.eu/ The current main objectives for climate4impact can be summarized in two objectives. The first one is to work on a web interface which automatically generates a graphical user interface on WPS endpoints. The WPS calculates climate indices and subset data using OpenClimateGIS/ICCLIM on data stored in ESGF data nodes. Data is then transmitted from ESGF nodes over secured OpenDAP and becomes available in a new, per user, secured OpenDAP server. The results can then be visualized again using ADAGUC WMS. Dedicated wizards for processing of climate indices will be developed in close collaboration with users. The second one is to expose climate4impact services, so as to offer standardized services which can be used by other portals. This has the advantage to add interoperability between several portals, as well as to enable the design of specific portals aimed at different impact communities, either thematic or national, for example.
NASA Astrophysics Data System (ADS)
Karuppiah, R.; Faldi, A.; Laurenzi, I.; Usadi, A.; Venkatesh, A.
2014-12-01
An increasing number of studies are focused on assessing the environmental footprint of different products and processes, especially using life cycle assessment (LCA). This work shows how combining statistical methods and Geographic Information Systems (GIS) with environmental analyses can help improve the quality of results and their interpretation. Most environmental assessments in literature yield single numbers that characterize the environmental impact of a process/product - typically global or country averages, often unchanging in time. In this work, we show how statistical analysis and GIS can help address these limitations. For example, we demonstrate a method to separately quantify uncertainty and variability in the result of LCA models using a power generation case study. This is important for rigorous comparisons between the impacts of different processes. Another challenge is lack of data that can affect the rigor of LCAs. We have developed an approach to estimate environmental impacts of incompletely characterized processes using predictive statistical models. This method is applied to estimate unreported coal power plant emissions in several world regions. There is also a general lack of spatio-temporal characterization of the results in environmental analyses. For instance, studies that focus on water usage do not put in context where and when water is withdrawn. Through the use of hydrological modeling combined with GIS, we quantify water stress on a regional and seasonal basis to understand water supply and demand risks for multiple users. Another example where it is important to consider regional dependency of impacts is when characterizing how agricultural land occupation affects biodiversity in a region. We developed a data-driven methodology used in conjuction with GIS to determine if there is a statistically significant difference between the impacts of growing different crops on different species in various biomes of the world.
Integrating impact assessment and conflict management in urban planning: Experiences from Finland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peltonen, Lasse, E-mail: lasse.peltonen@tkk.f; Sairinen, Rauno, E-mail: rauno.sairinen@joensuu.f
2010-09-15
The article examines the interlinkages between recent developments in conflict management and impact assessment procedures in the context of urban planning in Finland. It sets out by introducing the fields of impact assessment and conflict mediation. It then proceeds to discuss the development of impact assessment practices and the status of conflict mediation in Finnish land use planning. The case of Korteniitty infill development plan in Jyvaeskylae is used to demonstrate how the Finnish planning system operates in conflict situations - and how social impact assessment can contribute to managing planning conflicts. The authors ask how the processes of impactmore » assessment contribute to conflict management. Based on the Finnish experience, it is argued that social impact assessment of land use plans can contribute to conflict management, especially in the absence of institutionalised conflict mediation processes. In addition, SIA may acquire features of conflict mediation, depending on extent and intensity of stakeholder participation in the process, and the quality of linkages it between knowledge production and decision-making. Simultaneously, conflict mediation practices and theoretical insights can inform the application of SIA to help it address land use conflicts more consciously.« less
Fremier, Alexander K.; Girvetz, Evan H.; Greco, Steven E.; Larsen, Eric W.
2014-01-01
Environmental legislation in the US (i.e. NEPA) requires defining baseline conditions on current rather than historical ecosystem conditions. For ecosystems with long histories of multiple environmental impacts, this baseline method can subsequently lead to a significantly altered environment; this has been termed a ‘sliding baseline’. In river systems, cumulative effects caused by flow regulation, channel revetment and riparian vegetation removal significantly impact floodplain ecosystems by altering channel dynamics and precluding subsequent ecosystem processes, such as primary succession. To quantify these impacts on floodplain development processes, we used a model of river channel meander migration to illustrate the degree to which flow regulation and riprap impact migration rates, independently and synergistically, on the Sacramento River in California, USA. From pre-dam conditions, the cumulative effect of flow regulation alone on channel migration is a reduction by 38%, and 42–44% with four proposed water diversion project scenarios. In terms of depositional area, the proposed water project would reduce channel migration 51–71 ha in 130 years without current riprap in place, and 17–25 ha with riprap. Our results illustrate the utility of a modeling approach for quantifying cumulative impacts. Model-based quantification of environmental impacts allow scientists to separate cumulative and synergistic effects to analytically define mitigation measures. Additionally, by selecting an ecosystem process that is affected by multiple impacts, it is possible to consider process-based mitigation scenarios, such as the removal of riprap, to allow meander migration and create new floodplains and allow for riparian vegetation recruitment. PMID:24964145
Saltzman, William R; Lester, Patricia; Milburn, Norweeta; Woodward, Kirsten; Stein, Judith
2016-12-01
Over the past decade, studies into the impact of wartime deployment and related adversities on service members and their families have offered empirical support for systemic models of family functioning and a more nuanced understanding of the mechanisms by which stress and trauma reverberate across family and partner relationships. They have also advanced our understanding of the ways in which families may contribute to the resilience of children and parents contending with the stressors of serial deployments and parental physical and psychological injuries. This study is the latest in a series designed to further clarify the systemic functioning of military families and to explicate the role of resilient family processes in reducing symptoms of distress and poor adaptation among family members. Drawing upon the implementation of the Families Overcoming Under Stress (FOCUS) Family Resilience Program at 14 active-duty military installations across the United States, structural equation modeling was conducted with data from 434 marine and navy active-duty families who participated in the FOCUS program. The goal was to better understand the ways in which parental distress reverberates across military family systems and, through longitudinal path analytic modeling, determine the pathways of program impact on parental distress. The findings indicated significant cross-influence of distress between the military and civilian parents within families, families with more distressed military parents were more likely to sustain participation in the program, and reductions in distress among both military and civilian parents were significantly mediated by improvements in resilient family processes. These results are consistent with family systemic and resilient models that support preventive interventions designed to enhance family resilient processes as an important part of comprehensive services for distressed military families. © 2016 Family Process Institute.
NASA Astrophysics Data System (ADS)
Johnston, J. M.
2013-12-01
Freshwater habitats provide fishable, swimmable and drinkable resources and are a nexus of geophysical and biological processes. These processes in turn influence the persistence and sustainability of populations, communities and ecosystems. Climate change and landuse change encompass numerous stressors of potential exposure, including the introduction of toxic contaminants, invasive species, and disease in addition to physical drivers such as temperature and hydrologic regime. A systems approach that includes the scientific and technologic basis of assessing the health of ecosystems is needed to effectively protect human health and the environment. The Integrated Environmental Modeling Framework 'iemWatersheds' has been developed as a consistent and coherent means of forecasting the cumulative impact of co-occurring stressors. The Framework consists of three facilitating technologies: Data for Environmental Modeling (D4EM) that automates the collection and standardization of input data; the Framework for Risk Assessment of Multimedia Environmental Systems (FRAMES) that manages the flow of information between linked models; and the Supercomputer for Model Uncertainty and Sensitivity Evaluation (SuperMUSE) that provides post-processing and analysis of model outputs, including uncertainty and sensitivity analysis. Five models are linked within the Framework to provide multimedia simulation capabilities for hydrology and water quality processes: the Soil Water Assessment Tool (SWAT) predicts surface water and sediment runoff and associated contaminants; the Watershed Mercury Model (WMM) predicts mercury runoff and loading to streams; the Water quality Analysis and Simulation Program (WASP) predicts water quality within the stream channel; the Habitat Suitability Index (HSI) model scores physicochemical habitat quality for individual fish species; and the Bioaccumulation and Aquatic System Simulator (BASS) predicts fish growth, population dynamics and bioaccumulation of toxic substances. The capability of the Framework to address cumulative impacts will be demonstrated for freshwater ecosystem services and mountaintop mining.
A question driven socio-hydrological modeling process
NASA Astrophysics Data System (ADS)
Garcia, M.; Portney, K.; Islam, S.
2016-01-01
Human and hydrological systems are coupled: human activity impacts the hydrological cycle and hydrological conditions can, but do not always, trigger changes in human systems. Traditional modeling approaches with no feedback between hydrological and human systems typically cannot offer insight into how different patterns of natural variability or human-induced changes may propagate through this coupled system. Modeling of coupled human-hydrological systems, also called socio-hydrological systems, recognizes the potential for humans to transform hydrological systems and for hydrological conditions to influence human behavior. However, this coupling introduces new challenges and existing literature does not offer clear guidance regarding model conceptualization. There are no universally accepted laws of human behavior as there are for the physical systems; furthermore, a shared understanding of important processes within the field is often used to develop hydrological models, but there is no such consensus on the relevant processes in socio-hydrological systems. Here we present a question driven process to address these challenges. Such an approach allows modeling structure, scope and detail to remain contingent on and adaptive to the question context. We demonstrate the utility of this process by revisiting a classic question in water resources engineering on reservoir operation rules: what is the impact of reservoir operation policy on the reliability of water supply for a growing city? Our example model couples hydrological and human systems by linking the rate of demand decreases to the past reliability to compare standard operating policy (SOP) with hedging policy (HP). The model shows that reservoir storage acts both as a buffer for variability and as a delay triggering oscillations around a sustainable level of demand. HP reduces the threshold for action thereby decreasing the delay and the oscillation effect. As a result, per capita demand decreases during periods of water stress are more frequent but less drastic and the additive effect of small adjustments decreases the tendency of the system to overshoot available supplies. This distinction between the two policies was not apparent using a traditional noncoupled model.
The Application of V&V within Reuse-Based Software Engineering
NASA Technical Reports Server (NTRS)
Addy, Edward
1996-01-01
Verification and Validation (V&V) is performed during application development for many systems, especially safety-critical and mission-critical systems. The V&V process is intended to discover errors as early as possible during the development process. Early discovery is important in order to minimize the cost and other impacts of correcting these errors. In reuse-based software engineering, decisions on the requirements, design and even implementation of domain assets can can be made prior to beginning development of a specific system. in order to bring the effectiveness of V&V to bear within reuse-based software engineering. V&V must be incorporated within the domain engineering process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, T. Jr
Volume IV represents the results of one of four major study areas under the Automotive Manufacturing Assessment System (AMAS) sponsored by the DOT/Transportation Systems Center. AMAS was designed to assist in the evaluation of industry's capability to produce fuel efficient vehicles. An analysis of automotive engine manufacturing was conducted in order to determine the impact of regulatory changes on tooling costs and the production process. The 351W CID V-8 engine at Ford's Windsor No. 1 Plant was the subject of the analysis. A review of plant history and its product is presented along with an analysis of manufacturing operations, includingmore » material and production flow, plant layout, machining and assembly processes, tooling, supporting facilities, inspection, service and repair. Four levels of product change intensity showing the impact on manufacturing methods and cost is also presented.« less
The impact of systemic cortical alterations on perception
NASA Astrophysics Data System (ADS)
Zhang, Zheng
2011-12-01
Perception is the process of transmitting and interpreting sensory information, and the primary somatosensory (SI) area in the human cortex is the main sensory receptive area for the sensation of touch. The elaborate neuroanatomical connectivity that subserves the neuronal communication between adjacent and near-adjacent regions within sensory cortex has been widely recognized to be essential to normal sensory function. As a result, systemic cortical alterations that impact the cortical regional interaction, as associated with many neurological disorders, are expected to have significant impact on sensory perception. Recently, our research group has developed a novel sensory diagnostic system that employs quantitative sensory testing methods and is able to non-invasively assess central nervous system healthy status. The intent of this study is to utilize quantitative sensory testing methods that were designed to generate discriminable perception to objectively and quantitatively assess the impacts of different conditions on human sensory information processing capacity. The correlation between human perceptions with observations from animal research enables a better understanding of the underlying neurophysiology of human perception. Additional findings on different subject populations provide valuable insight of the underlying mechanisms for the development and maintenance of different neurological diseases. During the course of the study, several protocols were designed and utilized. And this set of sensory-based perceptual metrics was employed to study the effects of different conditions (non-noxious thermal stimulation, chronic pain stage, and normal aging) on sensory perception. It was found that these conditions result in significant deviations of the subjects' tactile information processing capacities from normal values. Although the observed shift of sensory detection sensitivity could be a result of enhanced peripheral activity, the changes in the effects of adaptation most likely reflect changes in central nervous system. The findings in this work provide valuable information for better understanding the underlying mechanisms involved in the development and maintenance of different neurological conditions.
Internal controls over computer-processed financial data at Boeing Petroleum Services
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-02-14
The Strategic Petroleum Reserve (SPR) is responsible for purchasing and storing crude oil to mitigate the potential adverse impact of any future disruptions in crude oil imports. Boeing Petroleum Services, Inc. (BPS) operates the SPR under a US Department of Energy (DOE) management and operating contract. BPS receives support for various information systems and other information processing needs from a mainframe computer center. The objective of the audit was to determine if the internal controls implemented by BPS for computer systems were adequate to assure processing reliability.
Wäger, P A; Hischier, R; Eugster, M
2011-04-15
While Waste Electrical and Electronic Equipment (WEEE) collection and recovery have significantly gained in importance all over Europe in the last 15years, comprehensive studies assessing the environmental loads and benefits of these systems still are not common. In this paper we present the results of a combined material flow analysis and life cycle assessment study, which aimed to calculate the overall environmental impacts of collection, pre-processing and end-processing for the existing Swiss WEEE collection and recovery systems, as well as of incineration and landfilling scenarios, in which the same amount of WEEE is either incinerated in a an MSWI plant or landfilled. According to the calculations based on the material flow data for the year 2009 and a new version of the ecoinvent life cycle inventory database (ecoinvent v2.01), collection, recovery and disposal result in significantly lower environmental impacts per t of WEEE for midpoint indicators such as global warming or ozone depletion and the endpoint indicator Eco-Indicator '99 points. A comparison between the environmental impacts of the WEEE recovery scenarios 2009 and 2004, both calculated with ecoinvent v2.01 data, shows that the impacts per t of WEEE in 2009 were slightly lower. This appears to be mainly due to the changes in the treatment of plastics (more recycling, less incineration). Compared to the overall environmental impacts of the recovery scenario 2004 obtained with an old version of ecoinvent (ecoinvent v1.1), the calculation with ecoinvent v2.01 results in an increase of the impacts by about 20%, which is primarily the consequence of a more adequate modeling of several WEEE fractions (e.g. metals, cables or CRT devices). In view of a further increase of the environmental benefits associated with the Swiss WEEE collection and recovery systems, the recovery of geochemically scarce metals should be further investigated, in particular. Copyright © 2011 Elsevier B.V. All rights reserved.
Proceedings of the 40th Lunar and Planetary Science Conference
NASA Technical Reports Server (NTRS)
2009-01-01
The 40th Lunar and Planetary Science Conference included sessions on: Phoenix: Exploration of the Martian Arctic; Origin and Early Evolution of the Moon; Comet Wild 2: Mineralogy and More; Astrobiology: Meteorites, Microbes, Hydrous Habitats, and Irradiated Ices; Phoenix: Soil, Chemistry, and Habitability; Planetary Differentiation; Presolar Grains: Structures and Origins; SPECIAL SESSION: Venus Atmosphere: Venus Express and Future Missions; Mars Polar Caps: Past and Present; SPECIAL SESSION: Lunar Missions: Results from Kaguya, Chang'e-1, and Chandrayaan-1, Part I; 5 Early Nebula Processes and Models; SPECIAL SESSION: Icy Satellites of Jupiter and Saturn: Cosmic Gymnasts; Mars: Ground Ice and Climate Change; SPECIAL SESSION: Lunar Missions: Results from Kaguya, Chang'e-1, and Chandrayaan-1, Part II; Chondrite Parent-Body Processes; SPECIAL SESSION: Icy Satellites of Jupiter and Saturn: Salubrious Surfaces; SNC Meteorites; Ancient Martian Crust: Primary Mineralogy and Aqueous Alteration; SPECIAL SESSION: Messenger at Mercury: A Global Perspective on the Innermost Planet; CAIs and Chondrules: Records of Early Solar System Processes; Small Bodies: Shapes of Things to Come; Sulfur on Mars: Rocks, Soils, and Cycling Processes; Mercury: Evolution and Tectonics; Venus Geology, Volcanism, Tectonics, and Resurfacing; Asteroid-Meteorite Connections; Impacts I: Models and Experiments; Solar Wind and Genesis: Measurements and Interpretation; Mars: Aqueous Processes; Magmatic Volatiles and Eruptive Conditions of Lunar Basalts; Comparative Planetology; Interstellar Matter: Origins and Relationships; Impacts II: Craters and Ejecta Mars: Tectonics and Dynamics; Mars Analogs I: Geological; Exploring the Diversity of Lunar Lithologies with Sample Analyses and Remote Sensing; Chondrite Accretion and Early History; Science Instruments for the Mars Science Lander; . Martian Gullies: Morphology and Origins; Mars: Dunes, Dust, and Wind; Mars: Volcanism; Early Solar System Chronology; Seek Out and Explore: Upcoming and Future Missions; Mars: Early History and Impact Processes; Mars Analogs II: Chemical and Spectral; Achondrites and their Parent Bodies; and Planning for Future Exploration of the Moon The poster sessions were: Lunar Missions: Results from Kaguya, Chang'e-1, and Chandrayaan-1; LRO and LCROSS; Geophysical Analysis of the Lunar Surface and Interior; Remote Observation and Geologic Mapping of the Lunar Surface; Lunar Spectroscopy; Venus Geology, Geophysics, Mapping, and Sampling; Planetary Differentiation; Bunburra and Buzzard Coulee: Recent Meteorite Falls; Meteorites: Terrestrial History; CAIs and Chondrules: Records of Early Solar System Processes; Volatile and Organic Compounds in Chondrites; Crashing Chondrites: Impact, Shock, and Melting; Ureilite Studies; Petrology and Mineralogy of the SNC Meteorites; Martian Meteorites; Phoenix Landing Site: Perchlorate and Other Tasty Treats; Mars Polar Atmospheres and Climate Modeling; Mars Polar Investigations; Mars Near-Surface Ice; Mars: A Volatile-Rich Planet; Mars: Geochemistry and Alteration Processes; Martian Phyllosilicates: Identification, Formation, and Alteration; Astrobiology; Instrument Concepts, Systems, and Probes for Investigating Rocks and Regolith; Seeing is Believing: UV, VIS, IR, X- and Gamma-Ray Camera and Spectrometer Instruments; Up Close and Personal: In Situ Analysis with Laser-Induced Breakdown Spectroscopy and Mass Spectrometry; Jupiter and Inscrutable Io; Tantalizing Titan; Enigmatic Enceladus and Intriguing Iapetus; Icy Satellites: Cryptic Craters; Icy Satellites: Gelid Geology/Geophysics; Icy Satellites: Cool Chemistry and Spectacular Spectroscopy; Asteroids and Comets; Comet Wild 2: Mineralogy and More; Hypervelocity Impacts: Stardust Models, LDEF, and ISPE; Presolar Grains; Early Nebular Processes: Models and Isotopes; Solar Wind and Genesis: Measurements and Interpretation; Education and Public Outreach; Mercury; Pursuing Lunar Exploration; Sources and Eruptionf Lunar Basalts; Chemical and Physical Properties of the Lunar Regolith; Lunar Dust and Transient Surface Phenomena; Lunar Databases and Data Restoration; Meteoritic Samples of the Moon; Chondrites, Their Clasts, and Alteration; Achondrites: Primitive and Not So Primitive; Iron Meteorites; Meteorite Methodology; Antarctic Micrometeorites; HEDs and Vesta; Dust Formation and Transformation; Interstellar Organic Matter; Early Solar System Chronology; Comparative Planetology; Impacts I: Models and Experiments; Impacts II: Craters and Ejecta; Mars: Volcanism; Mars: Tectonics and Dynamics; Martian Stratigraphy: Understanding the Geologic History of Mars Through the Sedimentary Rock Record; Mars: Valleys and Valley Networks; Mars: Aqueous Processes in Valles Marineris and the Southern Highlands; Mars: Aqueous Geomorphology; Martian Gullies: Morphology and Origins; Mars: Dunes, Dust, and Wind; Mars: Remote Sensing; Mars: Geologic Mapping, Photogrammetry, and Cratering; Martian Mineralogy: Constraints from Missions and Laboratory Investigations; Mars Analogs: Chemical and Physical; Mars Analogs: Sulfates and Sulfides; Missions: Approaches, Architectures, Analogs, and Actualities; Not Just Skin Deep: Electron Microscopy, Heat Flow, Radar, and Seismology Instruments and Planetary Data Systems, Techniques, and Interpretation.
Magnetic field enhancement of organic photovoltaic cells performance.
Oviedo-Casado, S; Urbina, A; Prior, J
2017-06-27
Charge separation is a critical process for achieving high efficiencies in organic photovoltaic cells. The initial tightly bound excitonic electron-hole pair has to dissociate fast enough in order to avoid photocurrent generation and thus power conversion efficiency loss via geminate recombination. Such process takes place assisted by transitional states that lie between the initial exciton and the free charge state. Due to spin conservation rules these intermediate charge transfer states typically have singlet character. Here we propose a donor-acceptor model for a generic organic photovoltaic cell in which the process of charge separation is modulated by a magnetic field which tunes the energy levels. The impact of a magnetic field is to intensify the generation of charge transfer states with triplet character via inter-system crossing. As the ground state of the system has singlet character, triplet states are recombination-protected, thus leading to a higher probability of successful charge separation. Using the open quantum systems formalism we demonstrate that the population of triplet charge transfer states grows in the presence of a magnetic field, and discuss the impact on carrier population and hence photocurrent, highlighting its potential as a tool for research on charge transfer kinetics in this complex systems.
The Shattered Stereotype: The Academic Library in Technological Transition.
ERIC Educational Resources Information Center
Foster, Constance L.
In academic libraries, neither technical services, public services, nor administration has escaped the impact of online information systems. Online catalogs, network systems, interlibrary lending, database searches, circulation control, automated technical processes, and an increasing number of non-book materials are part of a technological…
LIFE CYCLE DESIGN GUIDANCE MANUAL: ENVIRONMENTAL REQUIREMENTS AND THE PRODUCT SYSTEM
This document seeks to promote the reduction of environmental impacts and health risks through a systems approach to design. he approach is based on the product life cycle, which includes raw materials acquisition and processing, manufacturing, use/service, resource recovery, and...
LIFE CYCLE DESIGN GUIDANCE MANUAL - ENVIRONMENTAL REQUIREMENTS AND THE PRODUCT SYSTEM
This document seeks to promote the reduction of environmental impacts and health risks through a systems approach to design. The approach is based on die product life cycle, which includes raw materials acquisition and processing, manufacturing, use/service, resource recovery, an...
Economics of human performance and systems total ownership cost.
Onkham, Wilawan; Karwowski, Waldemar; Ahram, Tareq Z
2012-01-01
Financial costs of investing in people is associated with training, acquisition, recruiting, and resolving human errors have a significant impact on increased total ownership costs. These costs can also affect the exaggerate budgets and delayed schedules. The study of human performance economical assessment in the system acquisition process enhances the visibility of hidden cost drivers which support program management informed decisions. This paper presents the literature review of human total ownership cost (HTOC) and cost impacts on overall system performance. Economic value assessment models such as cost benefit analysis, risk-cost tradeoff analysis, expected value of utility function analysis (EV), growth readiness matrix, multi-attribute utility technique, and multi-regressions model were introduced to reflect the HTOC and human performance-technology tradeoffs in terms of the dollar value. The human total ownership regression model introduces to address the influencing human performance cost component measurement. Results from this study will increase understanding of relevant cost drivers in the system acquisition process over the long term.
Impact-driven supply of sodium and potassium to the atmosphere of Mercury
NASA Technical Reports Server (NTRS)
Morgan, T. H.; Zook, H. A.; Potter, A. E.
1988-01-01
The Mercury atmosphere is supplied with sodium atoms from both impacting meteoroids and the impacted regolith; the production of vaporized sodium due to such impact varies with the instantaneous distance of Mercury from the sun, in a way that differs from the distance-dependence of those source-and-sink processes driven by solar radiation. Such impact-driven vaporization will yield the Na/K ratio noted in the Mercury atmosphere only if both the meteoroids and the regolith of the planet are deficient in K relative to other solar system objects sampled, other than comets.
Meystre, Stéphane M; Ferrández, Óscar; Friedlin, F Jeffrey; South, Brett R; Shen, Shuying; Samore, Matthew H
2014-08-01
As more and more electronic clinical information is becoming easier to access for secondary uses such as clinical research, approaches that enable faster and more collaborative research while protecting patient privacy and confidentiality are becoming more important. Clinical text de-identification offers such advantages but is typically a tedious manual process. Automated Natural Language Processing (NLP) methods can alleviate this process, but their impact on subsequent uses of the automatically de-identified clinical narratives has only barely been investigated. In the context of a larger project to develop and investigate automated text de-identification for Veterans Health Administration (VHA) clinical notes, we studied the impact of automated text de-identification on clinical information in a stepwise manner. Our approach started with a high-level assessment of clinical notes informativeness and formatting, and ended with a detailed study of the overlap of select clinical information types and Protected Health Information (PHI). To investigate the informativeness (i.e., document type information, select clinical data types, and interpretation or conclusion) of VHA clinical notes, we used five different existing text de-identification systems. The informativeness was only minimally altered by these systems while formatting was only modified by one system. To examine the impact of de-identification on clinical information extraction, we compared counts of SNOMED-CT concepts found by an open source information extraction application in the original (i.e., not de-identified) version of a corpus of VHA clinical notes, and in the same corpus after de-identification. Only about 1.2-3% less SNOMED-CT concepts were found in de-identified versions of our corpus, and many of these concepts were PHI that was erroneously identified as clinical information. To study this impact in more details and assess how generalizable our findings were, we examined the overlap between select clinical information annotated in the 2010 i2b2 NLP challenge corpus and automatic PHI annotations from our best-of-breed VHA clinical text de-identification system (nicknamed 'BoB'). Overall, only 0.81% of the clinical information exactly overlapped with PHI, and 1.78% partly overlapped. We conclude that automated text de-identification's impact on clinical information is small, but not negligible, and that improved clinical acronyms and eponyms disambiguation could significantly reduce this impact. Copyright © 2014 Elsevier Inc. All rights reserved.
Impact of processing on odour-active compounds of a mixed tomato-onion puree.
Koutidou, Maria; Grauwet, Tara; Van Loey, Ann; Acharya, Parag
2017-08-01
Gas chromatography-olfactometry revealed thirty-two odour-active compounds in a heat-processed tomato-onion puree, among which twenty-seven were identified by gas chromatography-olfactometry-mass spectrometry (GC-O-MS) and comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC×GC-TOF MS). Based on the results of two olfactometric methods, i.e. detection frequency and aroma extract dilution analysis, the most potent aroma components include: dipropyl disulfide, S-propyl thioacetate, dimethyl trisulfide, 1-octen-3-one, methional, dipropyl trisulfide, 4,5-dimethylthiazole, 2-phenylacetaldehyde and sotolone. Processing of mixed vegetable systems can add complexity in their aroma profiles due to (bio)chemical interactions between the components. Therefore, the impact of different processing steps (i.e. thermal blanching, all-in-one and split-stream processes) on the volatile profile and aroma of a mixed tomato-onion puree has been investigated using a GC-MS fingerprinting approach. Results showed the potential to control the aroma in a mixed tomato-onion system through process-induced enzymatic modulations for producing tomato-onion food products with distinct aroma characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.
Oral Reading in Bilingual Aphasia: Evidence from Mongolian and Chinese
ERIC Educational Resources Information Center
Weekes, Brendan Stuart; Su, I. Fan; Yin, Wengang; Zhang, Xihong
2007-01-01
Cognitive neuropsychological studies of bilingual patients with aphasia have contributed to our understanding of how the brain processes different languages. The question we asked is whether differences in script have any impact on language processing in bilingual aphasic patients who speak languages with different writing systems: Chinese and…
A Multi-Scale, Integrated Approach to Representing Watershed Systems
NASA Astrophysics Data System (ADS)
Ivanov, Valeriy; Kim, Jongho; Fatichi, Simone; Katopodes, Nikolaos
2014-05-01
Understanding and predicting process dynamics across a range of scales are fundamental challenges for basic hydrologic research and practical applications. This is particularly true when larger-spatial-scale processes, such as surface-subsurface flow and precipitation, need to be translated to fine space-time scale dynamics of processes, such as channel hydraulics and sediment transport, that are often of primary interest. Inferring characteristics of fine-scale processes from uncertain coarse-scale climate projection information poses additional challenges. We have developed an integrated model simulating hydrological processes, flow dynamics, erosion, and sediment transport, tRIBS+VEGGIE-FEaST. The model targets to take the advantage of the current generation of wealth of data representing watershed topography, vegetation, soil, and landuse, as well as to explore the hydrological effects of physical factors and their feedback mechanisms over a range of scales. We illustrate how the modeling system connects precipitation-hydrologic runoff partition process to the dynamics of flow, erosion, and sedimentation, and how the soil's substrate condition can impact the latter processes, resulting in a non-unique response. We further illustrate an approach to using downscaled climate change information with a process-based model to infer the moments of hydrologic variables in future climate conditions and explore the impact of climate information uncertainty.
Pruett, M K; Jackson, T D
2001-01-01
Through semistructured interviews, divorcing parents provide a consumer perspective of the legal process of divorce discussed in law and mental health literature. The parents offer a heightened awareness of families' basic needs within the legal system that may otherwise be overlooked by professionals. This article focuses on narrative accounts provided by 41 divorcing parents to describe both their positive and negative experiences with the legal system and court-related professionals. Although many parents entered the divorce process with hopes for a fair and reasonable experience and outcome, only 12 percent of the parents ended the process with positive expectations. Parents conveyed feelings of a lack of power and control over divorce outcomes. The responses from parents provide valuable insight into how reforms of the legal system can be structured best to increase the quality of the process and ameliorate potentially destructive effects of divorce on the family.
Johnsen, David L; Emamipour, Hamidreza; Guest, Jeremy S; Rood, Mark J
2016-02-02
A life-cycle assessment (LCA) and cost analysis are presented comparing the environmental and economic impacts of using regenerative thermal oxidizer (RTO), granular activated carbon (GAC), and activated carbon fiber cloth (ACFC) systems to treat gaseous emissions from sheet-foam production. The ACFC system has the lowest operational energy consumption (i.e., 19.2, 8.7, and 3.4 TJ/year at a full-scale facility for RTO, GAC, and ACFC systems, respectively). The GAC system has the smallest environmental impacts across most impact categories for the use of electricity from select states in the United States that produce sheet foam. Monte Carlo simulations indicate the GAC and ACFC systems perform similarly (within one standard deviation) for seven of nine environmental impact categories considered and have lower impacts than the RTO for every category for the use of natural gas to produce electricity. The GAC and ACFC systems recover adequate isobutane to pay for themselves through chemical-consumption offsets, whereas the net present value of the RTO is $4.1 M (20 years, $0.001/m(3) treated). The adsorption systems are more environmentally and economically competitive than the RTO due to recovered isobutane for the production process and are recommended for resource recovery from (and treatment of) sheet-foam-production exhaust gas. Research targets for these adsorption systems should focus on increasing adsorptive capacity and saturation of GAC systems and decreasing electricity and N2 consumption of ACFC systems.
The Whitening of Brown Fat and Its Implications for Weight Management in Obesity.
Shimizu, Ippei; Walsh, Kenneth
2015-06-01
Systemic inflammation resulting from dysfunction of white adipose tissue (WAT) accelerates the pathologies of diabetes and cardiovascular diseases. In contrast to WAT, brown adipose tissue (BAT) is abundant in mitochondria that produce heat by uncoupling respiratory chain process of ATP synthesis. Besides BAT's role in thermogenesis, accumulating evidence has shown that it is involved in regulating systemic metabolism. Studies have analyzed the "browning" processes of WAT as a means to combat obesity, whereas few studies have focused on the impact and molecular mechanisms that contribute to obesity-linked BAT dysfunction--a process that is associated with the "whitening" of this tissue. Compared to WAT, a dense vascular network is required to support the high energy consumption of BAT. Recently, vascular rarefaction was shown to be a significant causal factor in the whitening of BAT in mouse models. Vascular insufficiency leads to mitochondrial dysfunction and loss in BAT and contributes to systemic insulin resistance. These data suggest that BAT "whitening," resulting from vascular dysfunction, can impact obesity and obesity-linked diseases. Conversely, agents that promote BAT function could have utility in the treatment of these conditions.
Schaubroeck, Thomas; Alvarenga, Rodrigo A F; Verheyen, Kris; Muys, Bart; Dewulf, Jo
2013-01-01
Life Cycle Assessment (LCA) is a tool to assess the environmental sustainability of a product; it quantifies the environmental impact of a product's life cycle. In conventional LCAs, the boundaries of a product's life cycle are limited to the human/industrial system, the technosphere. Ecosystems, which provide resources to and take up emissions from the technosphere, are not included in those boundaries. However, similar to the technosphere, ecosystems also have an impact on their (surrounding) environment through their resource usage (e.g., nutrients) and emissions (e.g., CH4). We therefore propose a LCA framework to assess the impact of integrated Techno-Ecological Systems (TES), comprising relevant ecosystems and the technosphere. In our framework, ecosystems are accounted for in the same manner as technosphere compartments. Also, the remediating effect of uptake of pollutants, an ecosystem service, is considered. A case study was performed on a TES of sawn timber production encompassing wood growth in an intensively managed forest ecosystem and further industrial processing. Results show that the managed forest accounted for almost all resource usage and biodiversity loss through land occupation but also for a remediating effect on human health, mostly via capture of airborne fine particles. These findings illustrate the potential relevance of including ecosystems in the product's life cycle of a LCA, though further research is needed to better quantify the environmental impact of TES.
Insecticide use in hybrid onion seed production affects pre- and postpollination processes.
Gillespie, Sandra; Long, Rachael; Seitz, Nicola; Williams, Neal
2014-02-01
Research on threats to pollination service in agro-ecosystems has focused primarily on the negative impacts of land use change and agricultural practices such as insecticide use on pollinator populations. Insecticide use could also affect the pollination process, through nonlethal impacts on pollinator attraction and postpollination processes such as pollen viability or pollen tube growth. Hybrid onion seed (Allium cepa L., Alliaceae) is an important pollinator-dependent crop that has suffered yield declines in California, concurrent with increased insecticide use. Field studies suggest that insecticide use reduces pollination service in this system. We conducted a field experiment manipulating insecticide use to examine the impacts of insecticides on 1) pollinator attraction, 2) pollen/stigma interactions, and 3) seed set and seed quality. Select insecticides had negative impacts on pollinator attraction and pollen/stigma interactions, with certain products dramatically reducing pollen germination and pollen tube growth. Decreased pollen germination was not associated with reduced seed set; however, reduced pollinator attraction was associated with lower seed set and seed quality, for one of the two female lines examined. Our results highlight the importance of pesticide effects on the pollination process. Overuse may lead to yield reductions through impacts on pollinator behavior and postpollination processes. Overall, in hybrid onion seed production, moderation in insecticide use is advised when controlling onion thrips, Thrips tabaci, on commercial fields.
Impact of Energy Gain and Subsystem Characteristics on Fusion Propulsion Performance
NASA Technical Reports Server (NTRS)
Chakrabarti, S.; Schmidt, G. R.
2001-01-01
Rapid transport of large payloads and human crews throughout the solar system requires propulsion systems having very high specific impulse (I(sub sp) > 10(exp 4) to 10(exp 5) s). It also calls for systems with extremely low mass-power ratios (alpha < 10(exp -1) kg/kW). Such low alpha are beyond the reach of conventional power-limited propulsion, but may be attainable with fusion and other nuclear concepts that produce energy within the propellant. The magnitude of energy gain must be large enough to sustain the nuclear process while still providing a high jet power relative to the massive energy-intensive subsystems associated with these concepts. This paper evaluates the impact of energy gain and subsystem characteristics on alpha. Central to the analysis are general parameters that embody the essential features of any 'gain-limited' propulsion power balance. Results show that the gains required to achieve alpha = 10(exp -1) kg/kW with foreseeable technology range from approximately 100 to over 2000, which is three to five orders of magnitude greater than current fusion state of the arL Sensitivity analyses point to the parameters exerting the most influence for either: (1) lowering a and improving mission performance or (2) relaxing gain requirements and reducing demands on the fusion process. The greatest impact comes from reducing mass and increasing efficiency of the thruster and subsystems downstream of the fusion process. High relative gain, through enhanced fusion processes or more efficient drivers and processors, is also desirable. There is a benefit in improving driver and subsystem characteristics upstream of the fusion process, but it diminishes at relative gains > 100.
Impact of pharmacy automation on patient waiting time: an application of computer simulation.
Tan, Woan Shin; Chua, Siang Li; Yong, Keng Woh; Wu, Tuck Seng
2009-06-01
This paper aims to illustrate the use of computer simulation in evaluating the impact of a prototype automated dispensing system on waiting time in an outpatient pharmacy and its potential as a routine tool in pharmacy management. A discrete event simulation model was developed to investigate the impact of a prototype automated dispensing system on operational efficiency and service standards in an outpatient pharmacy. The simulation results suggest that automating the prescription-filing function using a prototype that picks and packs at 20 seconds per item will not assist the pharmacy in achieving the waiting time target of 30 minutes for all patients. Regardless of the state of automation, to meet the waiting time target, 2 additional pharmacists are needed to overcome the process bottleneck at the point of medication dispense. However, if the automated dispensing is the preferred option, the speed of the system needs to be twice as fast as the current configuration to facilitate the reduction of the 95th percentile patient waiting time to below 30 minutes. The faster processing speed will concomitantly allow the pharmacy to reduce the number of pharmacy technicians from 11 to 8. Simulation was found to be a useful and low cost method that allows an otherwise expensive and resource intensive evaluation of new work processes and technology to be completed within a short time.
Food waste conversion options in Singapore: environmental impacts based on an LCA perspective.
Khoo, Hsien H; Lim, Teik Z; Tan, Reginald B H
2010-02-15
Proper management and recycling of huge volumes of food waste is one of the challenges faced by Singapore. Semakau island - the only offshore landfill of the nation - only accepts inert, inorganic solid waste and therefore a large bulk of food waste is directed to incinerators. A remaining small percent is sent for recycling via anaerobic digestion (AD), followed by composting of the digestate material. This article investigates the environmental performance of four food waste conversion scenarios - based on a life cycle assessment perspective - taking into account air emissions, useful energy from the incinerators and AD process, as well as carbon dioxide mitigation from the compost products derived from the digestate material and a proposed aerobic composting system. The life cycle impact results were generated for global warming, acidification, eutrophication, photochemical oxidation and energy use. The total normalized results showed that a small-scale proposed aerobic composting system is more environmentally favorable than incinerators, but less ideal compared to the AD process. By making full use of the AD's Recycling Phase II process alone, the Singapore Green Plan's 2012 aim to increase the recycling of food waste to 30% can easily be achieved, along with reduced global warming impacts.
Coercive and legitimate authority impact tax honesty: evidence from behavioral and ERP experiments
Pfabigan, Daniela M.; Lamm, Claus; Kirchler, Erich; Hofmann, Eva
2017-01-01
Abstract Cooperation in social systems such as tax honesty is of central importance in our modern societies. However, we know little about cognitive and neural processes driving decisions to evade or pay taxes. This study focuses on the impact of perceived tax authority and examines the mental chronometry mirrored in ERP data allowing a deeper understanding about why humans cooperate in tax systems. We experimentally manipulated coercive and legitimate authority and studied its impact on cooperation and underlying cognitive (experiment 1, 2) and neuronal (experiment 2) processes. Experiment 1 showed that in a condition of coercive authority, tax payments are lower, decisions are faster and participants report more rational reasoning and enforced compliance, however, less voluntary cooperation than in a condition of legitimate authority. Experiment 2 confirmed most results, but did not find a difference in payments or self-reported rational reasoning. Moreover, legitimate authority led to heightened cognitive control (expressed by increased MFN amplitudes) and disrupted attention processing (expressed by decreased P300 amplitudes) compared to coercive authority. To conclude, the neuronal data surprisingly revealed that legitimate authority may led to higher decision conflict and thus to higher cognitive demands in tax decisions than coercive authority. PMID:28402477
NASA Astrophysics Data System (ADS)
Liu, Yu-Hsin; Yan, Lujiang; Zhang, Alex Ce; Hall, David; Niaz, Iftikhar Ahmad; Zhou, Yuchun; Sham, L. J.; Lo, Yu-Hwa
2015-08-01
Signal amplification, performed by transistor amplifiers with its merit rated by the efficiency and noise characteristics, is ubiquitous in all electronic systems. Because of transistor thermal noise, an intrinsic signal amplification mechanism, impact ionization was sought after to complement the limits of transistor amplifiers. However, due to the high operation voltage (30-200 V typically), low power efficiency, limited scalability, and, above all, rapidly increasing excess noise with amplification factor, impact ionization has been out of favor for most electronic systems except for a few applications such as avalanche photodetectors and single-photon Geiger detectors. Here, we report an internal signal amplification mechanism based on the principle of the phonon-assisted cycling excitation process (CEP). Si devices using this concept show ultrahigh gain, low operation voltage, CMOS compatibility, and, above all, quantum limit noise performance that is 30 times lower than devices using impact ionization. Established on a unique physical effect of attractive properties, CEP-based devices can potentially revolutionize the fields of semiconductor electronics.
NASA Astrophysics Data System (ADS)
Roy Chowdhury, T.; Bramer, L.; Hoyt, D. W.; Kim, Y. M.; Metz, T. O.; McCue, L. A.; Jansson, J.; Bailey, V. L.
2017-12-01
Earth System Models predict climate extremes that will impact regional and global hydrology. Aquatic-terrestrial transition zones like wetlands will experience the immediate consequence of climate change as shifts in the magnitude and dynamics of hydrologic flow. Such fluctuating hydrology can alter the structure and function of the soil microbial populations that in turn will alter the nature and rate of biogeochemical transformations and significantly impact the carbon balance of the ecosystem. We tested the impacts of shifting hydrology on the soil microbiome and the role of antecedent moisture condition on redox active microbial processes in soils sampled from a tidal freshwater wetland system in the lower Columbia River, WA, USA. Our objectives were to characterize changes in the soil microbial community composition in response to soil moisture legacy effects, and to elucidate relationships between community response, geochemical signatures and metabolite profiles in this soil. The 16S rRNA gene sequencing showed significant decreases in bacterial abundance capable of anaerobic metabolism in response to drying, but quickly recovered to the antecedent moisture condition, as observed by redox processes. Metabolomics and biogeochemical process rates generated evidence for moisture-driven redox conditions as principal controls on the community and metabolic function. Fluctuating redox conditions altered terminal electron acceptor and donor availability and recovery strengths of these pools in soil such that a disproportionate release of carbon dioxide stemmed from alternative anaerobic degradation processes like sulfate and iron reduction in compared to methanogenesis. Our results show that anoxic conditions impact microbial communities in both permanently and temporarily saturated conditions and that rapid change in hydrology can increase substrate availability for both aerobic and anaerobic decomposition processes, including methanogenesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertshaw, G.A.; Snyder, A.L.; Weiner, M.M.
1993-05-14
The proposed HAARP emitters at the Gakona (Alaska) preferred site and at the Clear AFS (Alaska) alternative site are the Ionospheric Research Instrument (IRI), the Incoherent Scatter Radar (ISR), and the Vertical Incidence Sounder(VIS). The electromagnetic interference (EMI) impact of those emitters on receiving systems in the vicinity of the sites is estimated in this study. The results are intended for use as an input to the Air Force Environmental Impact Statement as part of the Environmental Impact Analysis Process.
Robust fusion-based processing for military polarimetric imaging systems
NASA Astrophysics Data System (ADS)
Hickman, Duncan L.; Smith, Moira I.; Kim, Kyung Su; Choi, Hyun-Jin
2017-05-01
Polarisation information within a scene can be exploited in military systems to give enhanced automatic target detection and recognition (ATD/R) performance. However, the performance gain achieved is highly dependent on factors such as the geometry, viewing conditions, and the surface finish of the target. Such performance sensitivities are highly undesirable in many tactical military systems where operational conditions can vary significantly and rapidly during a mission. Within this paper, a range of processing architectures and fusion methods is considered in terms of their practical viability and operational robustness for systems requiring ATD/R. It is shown that polarisation information can give useful performance gains but, to retained system robustness, the introduction of polarimetric processing should be done in such a way as to not compromise other discriminatory scene information in the spectral and spatial domains. The analysis concludes that polarimetric data can be effectively integrated with conventional intensity-based ATD/R by either adapting the ATD/R processing function based on the scene polarisation or else by detection-level fusion. Both of these approaches avoid the introduction of processing bottlenecks and limit the impact of processing on system latency.
NASA Astrophysics Data System (ADS)
Hirabayashi, M.; Schwartz, S. R.; Yu, Y.; Davis, A. B.; Chesley, S. R.; Fahnestock, E.; Michel, P.; Richardson, D. C.; Naidu, S.; Scheeres, D. J.; Cheng, A. F.; Rivkin, A.; Benner, L.
2017-12-01
(65803) Didymos is a binary near-Earth asteroid that consists of a top-shaped primary body rotating at a spin period of 2.26 hr and a secondary body orbiting around it at an orbital period of 11.92 hr. This asteroid is the target of the proposed NASA Double Asteroid Redirection Test (DART), which is part of the Asteroid Impact & Deflection Assessment (AIDA) mission concept. The goal of DART is to impact the secondary with the spacecraft and measure the momentum transfer by observing the perturbation of the orbital period of the system after the impact. Achieving this goal requires careful accounting for physical uncertainties that prevent accurate measurement of the momentum transfer. Here, we examine a scenario that might affect the momentum transfer measurement and a possible solution to avoiding issues due to this scenario. The primary's spin period is close to the spin barrier of rubble-pile asteroids, i.e., 2.3 hr. Also, some particles ejected from the secondary due to the DART impact may reach the primary and induce landslides or internal deformation of the primary, changing the gravity field. We have developed a numerical simulation technique for investigating how the mutual orbit of the system varies due to symmetric shape deformation of the primary along its spin axis after the DART impact. We find that if the deformation process occurs, the orbital period can change significantly, depending on the magnitude of the shape deformation. The mission currently plans a nearly head-on collision of the DART impactor with the secondary, making the orbital period of the system shorter. Our simulations show that since the deformation process always causes the primary to become more oblate, it shortens the orbital period as well. We also propose precise measurement of the primary's spin state to determine the deformation of the primary. This relies on the fact that any deformation process changes the spin state of the primary consistent with angular momentum conservation. Further investigations on this problem may improve the accuracy of the momentum transfer measurement for the AIDA mission.
NASA Space Technology Draft Roadmap Area 13: Ground and Launch Systems Processing
NASA Technical Reports Server (NTRS)
Clements, Greg
2011-01-01
This slide presentation reviews the technology development roadmap for the area of ground and launch systems processing. The scope of this technology area includes: (1) Assembly, integration, and processing of the launch vehicle, spacecraft, and payload hardware (2) Supply chain management (3) Transportation of hardware to the launch site (4) Transportation to and operations at the launch pad (5) Launch processing infrastructure and its ability to support future operations (6) Range, personnel, and facility safety capabilities (7) Launch and landing weather (8) Environmental impact mitigations for ground and launch operations (9) Launch control center operations and infrastructure (10) Mission integration and planning (11) Mission training for both ground and flight crew personnel (12) Mission control center operations and infrastructure (13) Telemetry and command processing and archiving (14) Recovery operations for flight crews, flight hardware, and returned samples. This technology roadmap also identifies ground, launch and mission technologies that will: (1) Dramatically transform future space operations, with significant improvement in life-cycle costs (2) Improve the quality of life on earth, while exploring in co-existence with the environment (3) Increase reliability and mission availability using low/zero maintenance materials and systems, comprehensive capabilities to ascertain and forecast system health/configuration, data integration, and the use of advanced/expert software systems (4) Enhance methods to assess safety and mission risk posture, which would allow for timely and better decision making. Several key technologies are identified, with a couple of slides devoted to one of these technologies (i.e., corrosion detection and prevention). Development of these technologies can enhance life on earth and have a major impact on how we can access space, eventually making routine commercial space access and improve building and manufacturing, and weather forecasting for example for the effect of these process improvements on our daily lives.
NASA Astrophysics Data System (ADS)
Papers are presented on ISDN, mobile radio systems and techniques for digital connectivity, centralized and distributed algorithms in computer networks, communications networks, quality assurance and impact on cost, adaptive filters in communications, the spread spectrum, signal processing, video communication techniques, and digital satellite services. Topics discussed include performance evaluation issues for integrated protocols, packet network operations, the computer network theory and multiple-access, microwave single sideband systems, switching architectures, fiber optic systems, wireless local communications, modulation, coding, and synchronization, remote switching, software quality, transmission, and expert systems in network operations. Consideration is given to wide area networks, image and speech processing, office communications application protocols, multimedia systems, customer-controlled network operations, digital radio systems, channel modeling and signal processing in digital communications, earth station/on-board modems, computer communications system performance evaluation, source encoding, compression, and quantization, and adaptive communications systems.
The perceived impact of the European registration system for genetic counsellors and nurses.
Paneque, Milena; Moldovan, Ramona; Cordier, Christophe; Serra-Juhé, Clara; Feroce, Irene; Pasalodos, Sara; Haquet, Emmanuelle; Lambert, Debby; Bjørnevoll, Inga; Skirton, Heather
2017-09-01
The aim of the European Board of Medical Genetics has been to develop and promote academic and professional standards necessary in order to provide competent genetic counselling services. The aim of this study was to explore the impact of the European registration system for genetic nurses and counsellors from the perspectives of those professionals who have registered. Registration system was launched in 2013. A cross-sectional, online survey was used to explore the motivations and experiences of those applying for, and the effect of registration on their career. Fifty-five Genetic Nurses and Counsellors are registered till now, from them, thirty-three agreed to participate on this study. The main motivations for registering were for recognition of their work value and competence (30.3%); due to the absence of a registration system in their own country (15.2%) and the possibility of obtaining a European/international certification (27.3%), while 27.3% of respondents registered to support recognition of the genetic counselling profession. Some participants valued the registration process as an educational activity in its own right, while the majority indicated the greatest impact of the registration process was on their clinical practice. The results confirm that registrants value the opportunity to both confirm their own competence and advance the genetic counselling profession in Europe.
NASA Technical Reports Server (NTRS)
Tylka, Jonathan
2016-01-01
Parts produced by additive manufacturing, particularly selective laser melting (SLM), have been shown to silt metal particulate even after undergoing stringent precision aerospace cleaning processes (Lowrey 2016). As printed parts are used in oxygen systems with increased pressures, temperatures, and gas velocity, the risk of ignition by particle impact, the most common direct ignition source of metals in oxygen, substantially increases. The White Sands Test Facility (WSTF), in collaboration with Marshall Space Flight Center (MSFC), desires to test the ignitability of SLM metals by particle impact in heated oxygen. The existing test systems rely on gas velocity calculations to infer particle velocity in both subsonic and supersonic particle impact systems. Until now, it was not possible to directly measure particle velocity. To increase the fidelity of planned SLM ignition studies, it is necessary to validate that the Photon Doppler Velocimetry(PDV) test system can accurately measure particle velocity.
Patient centered integrated clinical resource management.
Hofdijk, Jacob
2011-01-01
The impact of funding systems on the IT systems of providers has been enormous and have prevented the implementation of designs to focused on the health issue of patients. The paradigm shift the Dutch Ministry of Health has taken in funding health care has a remarkable impact on the orientation of IT systems design. Since 2007 the next step is taken: the application of the funding concept on chronic diseases using clinical standards as the norm. The focus on prevention involves the patient as an active partner in the care plan. The impact of the new dimension in funding has initiated a process directed to the development of systems to support collaborative working and an active involvement of the patient and its informal carers. This national approach will be presented to assess its international potential, as all countries face the long term care crisis lacking resources to meet the health needs of the population.
School Reentry for Children with Acquired Central Nervous Systems Injuries
ERIC Educational Resources Information Center
Carney, Joan; Porter, Patricia
2009-01-01
Onset of acquired central nervous system (CNS) injury during the normal developmental process of childhood can have impact on cognitive, behavioral, and motor function. This alteration of function often necessitates special education programming, modifications, and accommodations in the education setting for successful school reentry. Special…
WAR DSS: A DECISION SUPPORT SYSTEM FOR ENVIRONMENTALLY CONSCIOUS CHEMICAL PROCESS DESIGN
The second generation of the Waste Reduction (WAR) Algorithm is constructed as a decision support system (DSS) in the design of chemical manufacturing facilities. The WAR DSS is a software tool that can help reduce the potential environmental impacts (PEIs) of industrial chemical...
PERFORMANCE EVALUATION AT A LONG-TERM FOOD PROCESSING LAND TREATMENT SITE
The objective of this project was to determine the performance of a full scale, operating overland flow land (GEL) treatment system treating nonhazardous waste. Performance was evaluated in terms of treatment of the applied waste and the environmental impact of the system, partic...
Liu, Shih-Chii; Delbruck, Tobi
2010-06-01
Biology provides examples of efficient machines which greatly outperform conventional technology. Designers in neuromorphic engineering aim to construct electronic systems with the same efficient style of computation. This task requires a melding of novel engineering principles with knowledge gleaned from neuroscience. We discuss recent progress in realizing neuromorphic sensory systems which mimic the biological retina and cochlea, and subsequent sensor processing. The main trends are the increasing number of sensors and sensory systems that communicate through asynchronous digital signals analogous to neural spikes; the improved performance and usability of these sensors; and novel sensory processing methods which capitalize on the timing of spikes from these sensors. Experiments using these sensors can impact how we think the brain processes sensory information. 2010 Elsevier Ltd. All rights reserved.
Payne, Velma L; Hysong, Sylvia J
2016-07-13
Audit and feedback (A&F) is a strategy that has been used in various disciplines for performance and quality improvement. There is limited research regarding medical professionals' acceptance of clinical-performance feedback and whether feedback impacts clinical practice. The objectives of our research were to (1) investigate aspects of A&F that impact physicians' acceptance of performance feedback; (2) determine actions physicians take when receiving feedback; and (3) determine if feedback impacts physicians' patient-management behavior. In this qualitative study, we employed grounded theory methods to perform a secondary analysis of semi-structured interviews with 12 VA primary care physicians. We analyzed a subset of interview questions from the primary study, which aimed to determine how providers of high, low and moderately performing VA medical centers use performance feedback to maintain and improve quality of care, and determine perceived utility of performance feedback. Based on the themes emergent from our analysis and their observed relationships, we developed a model depicting aspects of the A&F process that impact feedback acceptance and physicians' patient-management behavior. The model is comprised of three core components - Reaction, Action and Impact - and depicts elements associated with feedback recipients' reaction to feedback, action taken when feedback is received, and physicians modifying their patient-management behavior. Feedback characteristics, the environment, external locus-of-control components, core values, emotion and the assessment process induce or deter reaction, action and impact. Feedback characteristics (content and timeliness), and the procedural justice of the assessment process (unjust penalties) impact feedback acceptance. External locus-of-control elements (financial incentives, competition), the environment (patient volume, time constraints) and emotion impact patient-management behavior. Receiving feedback generated intense emotion within physicians. The underlying source of the emotion was the assessment process, not the feedback. The emotional response impacted acceptance, impelled action or inaction, and impacted patient-management behavior. Emotion intensity was associated with type of action taken (defensive, proactive, retroactive). Feedback acceptance and impact have as much to do with the performance assessment process as it does the feedback. In order to enhance feedback acceptance and the impact of feedback, developers of clinical performance systems and feedback interventions should consider multiple design elements.
Business Process Aware IS Change Management in SMEs
NASA Astrophysics Data System (ADS)
Makna, Janis
Changes in the business process usually require changes in the computer supported information system and, vice versa, changes in the information system almost always cause at least some changes in the business process. In many situations it is not even possible to detect which of those changes are causes and which of them are effects. Nevertheless, it is possible to identify a set of changes that usually happen when one of the elements of the set changes its state. These sets of changes may be used as patterns for situation analysis to anticipate full range of activities to be performed to get the business process and/or information system back to the stable state after it is lost because of the changes in one of the elements. Knowledge about the change pattern gives an opportunity to manage changes of information systems even if business process models and information systems architecture are not neatly documented as is the case in many SMEs. Using change patterns it is possible to know whether changes in information systems are to be expected and how changes in information systems activities, data and users will impact different aspects of the business process supported by the information system.
Glycans as Regulatory Elements of the Insulin/IGF System: Impact in Cancer Progression
Andrade-da-Costa, Jéssica; Silva, Mariana Costa
2017-01-01
The insulin/insulin-like growth factor (IGF) system in mammals comprises a dynamic network of proteins that modulate several biological processes such as development, cell growth, metabolism, and aging. Dysregulation of the insulin/IGF system has major implications for several pathological conditions such as diabetes and cancer. Metabolic changes also culminate in aberrant glycosylation, which has been highlighted as a hallmark of cancer. Changes in glycosylation regulate every pathophysiological step of cancer progression including tumour cell-cell dissociation, cell migration, cell signaling and metastasis. This review discusses how the insulin/IGF system integrates with glycosylation alterations and impacts on cell behaviour, metabolism and drug resistance in cancer. PMID:28880250
A quality-based cost model for new electronic systems and products
NASA Astrophysics Data System (ADS)
Shina, Sammy G.; Saigal, Anil
1998-04-01
This article outlines a method for developing a quality-based cost model for the design of new electronic systems and products. The model incorporates a methodology for determining a cost-effective design margin allocation for electronic products and systems and its impact on manufacturing quality and cost. A spreadsheet-based cost estimating tool was developed to help implement this methodology in order for the system design engineers to quickly estimate the effect of design decisions and tradeoffs on the quality and cost of new products. The tool was developed with automatic spreadsheet connectivity to current process capability and with provisions to consider the impact of capital equipment and tooling purchases to reduce the product cost.
Resilient Control Systems Practical Metrics Basis for Defining Mission Impact
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craig G. Rieger
"Resilience” describes how systems operate at an acceptable level of normalcy despite disturbances or threats. In this paper we first consider the cognitive, cyber-physical interdependencies inherent in critical infrastructure systems and how resilience differs from reliability to mitigate these risks. Terminology and metrics basis are provided to integrate the cognitive, cyber-physical aspects that should be considered when defining solutions for resilience. A practical approach is taken to roll this metrics basis up to system integrity and business case metrics that establish “proper operation” and “impact.” A notional chemical processing plant is the use case for demonstrating how the system integritymore » metrics can be applied to establish performance, and« less
The Certified Clinical Nurse Leader in Critical Care.
L'Ecuyer, Kristine M; Shatto, Bobbi J; Hoffmann, Rosemary L; Crecelius, Matthew L
2016-01-01
Challenges of the current health system in the United States call for collaboration of health care professionals, careful utilization of resources, and greater efficiency of system processes. Innovations to the delivery of care include the introduction of the clinical nurse leader role to provide leadership at the point of care, where it is needed most. Clinical nurse leaders have demonstrated their ability to address needed changes and implement improvements in processes that impact the efficiency and quality of patient care across the continuum and in a variety of settings, including critical care. This article describes the role of the certified clinical nurse leader, their education and skill set, and outlines outcomes that have been realized by their efforts. Specific examples of how clinical nurse leaders impact critical care nursing are discussed.
An integrated GIS application system for soil moisture data assimilation
NASA Astrophysics Data System (ADS)
Wang, Di; Shen, Runping; Huang, Xiaolong; Shi, Chunxiang
2014-11-01
The gaps in knowledge and existing challenges in precisely describing the land surface process make it critical to represent the massive soil moisture data visually and mine the data for further research.This article introduces a comprehensive soil moisture assimilation data analysis system, which is instructed by tools of C#, IDL, ArcSDE, Visual Studio 2008 and SQL Server 2005. The system provides integrated service, management of efficient graphics visualization and analysis of land surface data assimilation. The system is not only able to improve the efficiency of data assimilation management, but also comprehensively integrate the data processing and analysis tools into GIS development environment. So analyzing the soil moisture assimilation data and accomplishing GIS spatial analysis can be realized in the same system. This system provides basic GIS map functions, massive data process and soil moisture products analysis etc. Besides,it takes full advantage of a spatial data engine called ArcSDE to effeciently manage, retrieve and store all kinds of data. In the system, characteristics of temporal and spatial pattern of soil moiture will be plotted. By analyzing the soil moisture impact factors, it is possible to acquire the correlation coefficients between soil moisture value and its every single impact factor. Daily and monthly comparative analysis of soil moisture products among observations, simulation results and assimilations can be made in this system to display the different trends of these products. Furthermore, soil moisture map production function is realized for business application.
Ruscio, Daniele; Ciceri, Maria Rita; Biassoni, Federica
2015-04-01
Brake Reaction Time (BRT) is an important parameter for road safety. Previous research has shown that drivers' expectations can impact RT when facing hazardous situations, but driving with advanced driver assistance systems, can change the way BRT are considered. The interaction with a collision warning system can help faster more efficient responses, but at the same time can require a monitoring task and evaluation process that may lead to automation complacency. The aims of the present study are to test in a real-life setting whether automation compliancy can be generated by a collision warning system and what component of expectancy can impact the different tasks involved in an assisted BRT process. More specifically four component of expectancy were investigated: presence/absence of anticipatory information, previous direct experience, reliability of the device, and predictability of the hazard determined by repeated use of the warning system. Results supply indication on perception time and mental elaboration of the collision warning system alerts. In particular reliable warning quickened the decision making process, misleading warnings generated automation complacency slowing visual search for hazard detection, lack of directed experienced slowed the overall response while unexpected failure of the device lead to inattentional blindness and potential pseudo-accidents with surprise obstacle intrusion. Copyright © 2015 Elsevier Ltd. All rights reserved.
An Empirical Study of Combining Communicating Processes in a Parallel Discrete Event Simulation
1990-12-01
dynamics of the cost/performance criteria which typically made up computer resource acquisition decisions . offering a broad range of tradeoffs in the way... prcesses has a significant impact on simulation performance. It is the hypothesis of this 3-4 SYSTEM DECOMPOSITION PHYSICAL SYSTEM 1: N PHYSICAL PROCESS 1...EMPTY)) next-event = pop(next-event-queue); lp-clock = next-event - time; Simulate next event departure- consume event-enqueue new event end while; If no
Identifying the Machine Translation Error Types with the Greatest Impact on Post-editing Effort
Daems, Joke; Vandepitte, Sonia; Hartsuiker, Robert J.; Macken, Lieve
2017-01-01
Translation Environment Tools make translators’ work easier by providing them with term lists, translation memories and machine translation output. Ideally, such tools automatically predict whether it is more effortful to post-edit than to translate from scratch, and determine whether or not to provide translators with machine translation output. Current machine translation quality estimation systems heavily rely on automatic metrics, even though they do not accurately capture actual post-editing effort. In addition, these systems do not take translator experience into account, even though novices’ translation processes are different from those of professional translators. In this paper, we report on the impact of machine translation errors on various types of post-editing effort indicators, for professional translators as well as student translators. We compare the impact of MT quality on a product effort indicator (HTER) with that on various process effort indicators. The translation and post-editing process of student translators and professional translators was logged with a combination of keystroke logging and eye-tracking, and the MT output was analyzed with a fine-grained translation quality assessment approach. We find that most post-editing effort indicators (product as well as process) are influenced by machine translation quality, but that different error types affect different post-editing effort indicators, confirming that a more fine-grained MT quality analysis is needed to correctly estimate actual post-editing effort. Coherence, meaning shifts, and structural issues are shown to be good indicators of post-editing effort. The additional impact of experience on these interactions between MT quality and post-editing effort is smaller than expected. PMID:28824482
Identifying the Machine Translation Error Types with the Greatest Impact on Post-editing Effort.
Daems, Joke; Vandepitte, Sonia; Hartsuiker, Robert J; Macken, Lieve
2017-01-01
Translation Environment Tools make translators' work easier by providing them with term lists, translation memories and machine translation output. Ideally, such tools automatically predict whether it is more effortful to post-edit than to translate from scratch, and determine whether or not to provide translators with machine translation output. Current machine translation quality estimation systems heavily rely on automatic metrics, even though they do not accurately capture actual post-editing effort. In addition, these systems do not take translator experience into account, even though novices' translation processes are different from those of professional translators. In this paper, we report on the impact of machine translation errors on various types of post-editing effort indicators, for professional translators as well as student translators. We compare the impact of MT quality on a product effort indicator (HTER) with that on various process effort indicators. The translation and post-editing process of student translators and professional translators was logged with a combination of keystroke logging and eye-tracking, and the MT output was analyzed with a fine-grained translation quality assessment approach. We find that most post-editing effort indicators (product as well as process) are influenced by machine translation quality, but that different error types affect different post-editing effort indicators, confirming that a more fine-grained MT quality analysis is needed to correctly estimate actual post-editing effort. Coherence, meaning shifts, and structural issues are shown to be good indicators of post-editing effort. The additional impact of experience on these interactions between MT quality and post-editing effort is smaller than expected.
Serotonin and conditioning: focus on Pavlovian psychostimulant drug conditioning.
Carey, Robert J; Damianopoulos, Ernest N
2015-04-01
Serotonin containing neurons are located in nuclei deep in the brainstem and send axons throughout the central nervous system from the spinal cord to the cerebral cortex. The vast scope of these connections and interactions enable serotonin and serotonin analogs to have profound effects upon sensory/motor processes. In that conditioning represents a neuroplastic process that leads to new sensory/motor connections, it is apparent that the serotonin system has the potential for a critical role in conditioning. In this article we review the basics of conditioning as well as the serotonergic system and point up the number of non-associative ways in which manipulations of serotonin neurotransmission have an impact upon conditioning. We focus upon psychostimulant drug conditioning and review the contribution of drug stimuli in the use of serotonin drugs to investigate drug conditioning and the important impact drug stimuli can have on conditioning by introducing new sensory stimuli that can create or mask a CS. We also review the ways in which experimental manipulations of serotonin can disrupt conditioned behavioral effects but not the associative processes in conditioning. In addition, we propose the use of the recently developed memory re-consolidation model of conditioning as an approach to assess the possible role of serotonin in associative processes without the complexities of performance effects related to serotonin treatment induced alterations in sensory/motor systems. Copyright © 2014 Elsevier B.V. All rights reserved.
Implementation of Building Information Modeling (BIM) in Construction: A Comparative Case Study
NASA Astrophysics Data System (ADS)
Rowlinson, Steve; Collins, Ronan; Tuuli, Martin M.; Jia, Yunyan
2010-05-01
Building Information Modeling (BIM) approach is increasingly adopted in coordination of construction projects, with a number of parties providing BIM services and software solutions. However, the empirical impact of BIM on construction industry has yet to be investigated. This paper explores the interaction between BIM and the construction industry during its implementation, with a specific focus on the empirical impacts of BIM on the design and construction processes and professional roles during the process. Two cases were selected from recent construction projects coordinated with BIM systems: the Venetian Casino project in Macau and the Cathy Pacific Cargo Terminal project in Hong Kong. The former case illustrates how the conflicts emerged during the design process and procurement were addressed by adopting a BIM approach. The latter demonstrates how the adoption of BIM altered the roles of architect, contractor, and sub-contractors involved in the project. The impacts of BIM were critically reviewed and discussed.
NASA Technical Reports Server (NTRS)
Batten, Adam; Dunlop, John; Edwards, Graeme; Farmer, Tony; Gaffney, Bruce; Hedley, Mark; Hoschke, Nigel; Isaacs, Peter; Johnson, Mark; Lewis, Chris;
2009-01-01
This report describes the second phase of the implementation of the Concept Demonstrator experimental test-bed system containing sensors and processing hardware distributed throughout the structure, which uses multi-agent algorithms to characterize impacts and determine a suitable response to these impacts. This report expands and adds to the report of the first phase implementation. The current status of the system hardware is that all 192 physical cells (32 on each of the 6 hexagonal prism faces) have been constructed, although only four of these presently contain data-acquisition sub-modules to allow them to acquire sensor data. Impact detection.. location and severity have been successfully demonstrated. The software modules for simulating cells and controlling the test-bed are fully operational. although additional functionality will be added over time. The visualization workstation displays additional diagnostic information about the array of cells (both real and simulated) and additional damage information. Local agent algorithms have been developed that demonstrate emergent behavior of the complex multi-agent system, through the formation of impact damage boundaries and impact networks. The system has been shown to operate well for multiple impacts. and to demonstrate robust reconfiguration in the presence of damage to numbers of cells.
Experimental observations of low-velocity collisional systems
NASA Astrophysics Data System (ADS)
Jorges, Jeffery; Dove, Adrienne; Colwell, Joshua
Low-velocity collisions in systems of centimeter-sized objects may result in particle growth by accretion, rebounding, or erosive processes that result in the production of additional smaller particles. Numerical simulations of these systems are limited by a need to understand the collisional parameters governing the outcomes of these collisions over a range of conditions. Here, we present the results from laboratory experiments designed to explore low-velocity collisions by conducting experiments in a vacuum chamber in our 0.8-sec drop tower apparatus. These experiments utilize a variety of impacting spheres, including glass, Teflon, aluminum, stainless steel, and brass. These spheres are either used in their natural state or are ``mantled'' - coated with a few-mm thick layer of a cohesive powder. A high-speed, high-resolution video camera is used to record the motion of the colliding bodies. These videos are then processed and we track the particles to determine impactor speeds before and after collision and the collisional outcome. We determine how the coefficient of restitution varies as a function of material type, morphology, and impact velocity. For impact velocities in the range from about 20-100 cm/s we observe that mantling of particles has the most significant effect, reducing the coefficients of restitution.
Evaluating neural networks and artificial intelligence systems
NASA Astrophysics Data System (ADS)
Alberts, David S.
1994-02-01
Systems have no intrinsic value in and of themselves, but rather derive value from the contributions they make to the missions, decisions, and tasks they are intended to support. The estimation of the cost-effectiveness of systems is a prerequisite for rational planning, budgeting, and investment documents. Neural network and expert system applications, although similar in their incorporation of a significant amount of decision-making capability, differ from each other in ways that affect the manner in which they can be evaluated. Both these types of systems are, by definition, evolutionary systems, which also impacts their evaluation. This paper discusses key aspects of neural network and expert system applications and their impact on the evaluation process. A practical approach or methodology for evaluating a certain class of expert systems that are particularly difficult to measure using traditional evaluation approaches is presented.
Postacchini, Leonardo; Lamichhane, Krishna M; Furukawa, Dennis; Babcock, Roger W; Ciarapica, F E; Cooney, Michael J
2016-01-01
This paper conducts a comparative assessment of the environmental impacts of three methods of treating primary clarifier effluent in wastewater treatment plants (WWTPs) through life cycle assessment methodology. The three technologies, activated sludge (AS), high rate anaerobic-aerobic digestion (HRAAD), and trickling filter (TF), were assessed for treatment of wastewater possessing average values of biochemical oxygen demand and total suspended solids of 90 mg L(-1) and 70 mg L(-1), respectively. The operational requirements to process the municipal wastewater to effluent that meets USEPA regulations have been calculated. The data for the AS system were collected from the East Honolulu WWTP (Hawaii, USA) while data for the HRAAD system were collected from a demonstration-scale system at the same plant. The data for the TF system were estimated from published literature. Two different assessment methods have been used in this study: IMPACT 2002+ and TRACI 2. The results show that TF had the smallest environmental impacts and that AS had the largest, while HRAAD was in between the two but with much reduced impacts compared with AS. Additionally, the study shows that lower sludge production is the greatest advantage of HRAAD for reducing environmental impacts compared with AS.
Unmanned Underwater Vehicle (UUV) Information Study
2014-11-28
Maritime Unmanned System NATO North Atlantic Treaty Organization xi The use or disclosure of the information on this sheet is subject to the... Unmanned Aerial System UDA Underwater Domain Awareness UNISIPS Unified Sonar Image Processing System USV Unmanned Surface Vehicle UUV Unmanned Underwater...data distribution to ashore systems , such as the delay, its impact and the benefits to the overall MDA and required metadata for efficient search and
Assessing the efficiency of different CSO positions based on network graph characteristics.
Sitzenfrei, R; Urich, C; Möderl, M; Rauch, W
2013-01-01
The technical design of urban drainage systems comprises two major aspects: first, the spatial layout of the sewer system and second, the pipe-sizing process. Usually, engineers determine the spatial layout of the sewer network manually, taking into account physical features and future planning scenarios. Before the pipe-sizing process starts, it is important to determine locations of possible weirs and combined sewer overflows (CSOs) based on, e.g. distance to receiving water bodies or to a wastewater treatment plant and available space for storage units. However, positions of CSOs are also determined by topological characteristics of the sewer networks. In order to better understand the impact of placement choices for CSOs and storage units in new systems, this work aims to determine case unspecific, general rules. Therefore, based on numerous, stochastically generated virtual alpine sewer systems of different sizes it is investigated how choices for placement of CSOs and storage units have an impact on the pipe-sizing process (hence, also on investment costs) and on technical performance (CSO efficiency and flooding). To describe the impact of the topological positions of these elements in the sewer networks, graph characteristics are used. With an evaluation of 2,000 different alpine combined sewer systems, it was found that, as expected, with CSOs at more downstream positions in the network, greater construction costs and better performance regarding CSO efficiency result. At a specific point (i.e. topological network position), no significant difference (further increase) in construction costs can be identified. Contrarily, the flooding efficiency increases with more upstream positions of the CSOs. Therefore, CSO and flooding efficiency are in a trade-off conflict and a compromise is required.
Pirnejad, Habibollah; Niazkhani, Zahra; van der Sijs, Heleen; Berg, Marc; Bal, Roland
2008-11-01
Due to their efficiency and safety potential, computerized physician order entry (CPOE) systems are gaining considerable attention in in-patient settings. However, recent studies have shown that these systems may undermine the efficiency and safety of the medication process by impeding nurse-physician collaboration. To evaluate the effects of a CPOE system on the mechanisms whereby nurses and physicians maintain their collaboration in the medication process. SETTING AND METHODOLOGY: Six internal medicine wards at the Erasmus Medical Centre were included in this study. A questionnaire was used to record nurses' attitudes towards the effectiveness of the former paper-based system. A similar questionnaire was used to evaluate nurses' attitudes with respect to a CPOE system that replaced the paper-based system. The data were complemented and triangulated through interviews with physicians and nurses. Response rates for the analyzed questions in the pre- and post-implementation questionnaires were 54.3% (76/140) and 52.14% (73/140). The CPOE system had a mixed impact on medication work: while it improved the main non-supportive features of the paper-based system, it lacked its main supportive features. The interviews revealed more detailed supportive and non-supportive features of the two systems. A comparison of supportive features of the paper-based system with non-supportive features of the CPOE system showed that synchronisation and feedback mechanisms in nurse-physician collaborations have been impaired after the CPOE system was introduced. This study contributes to an understanding of the affected mechanisms in nurse-physician collaboration using a CPOE system. It provides recommendations for repairing the impaired mechanisms and for redesigning the CPOE system and thus for better supporting these structures.
NASA Astrophysics Data System (ADS)
Yang, Shuo; Fu, Yun; Wang, Xiuteng; Xu, Bingsheng; Li, Zheng
2017-11-01
Eco-design is an advanced design approach which plays an important part in the national innovation project and serves as a key point for the successful transformation of the supply structure. However, the practical implementation of the pro-environmental designs and technologies always faces a dilemma situation, where some processes can effectively control their emissions to protect the environment at relatively high costs, while others pursue the individual interest in making profit by ignoring the possible adverse environmental impacts. Thus, the assessment on the eco-design process must be carried out based on the comprehensive consideration of the economic and environmental aspects. Presently, the assessment systems in China are unable to fully reflect the new environmental technologies regarding their innovative features or performance. Most of the assessment systems adopt scoring method based on the judgments of the experts, which are easy to use but somewhat subjective. The assessment method presented in this paper includes the environmental impact (EI) assessment based on LCA principal and willingness-to-pay theory, and economic profit (EP) assessment mainly based on market price. The results from the assessment are in the form of EI/EP, which evaluate the targeted process from a combined perspective of environmental and economic performance. A case study was carried out upon the utilization process of coal fly ash, which indicates the proposed method can compare different technical processes in an effective and objective manner, and provide explicit and insightful suggestions for decision making.
Jakobsson, Lotta; Lindman, Magdalena; Svanberg, Bo; Carlsson, Henrik
2010-01-01
This study analyses the outcome of the continuous improved occupant protection over the last two decades for front seat near side occupants in side impacts based on a real world driven working process. The effectiveness of four generations of improved side impact protection are calculated based on data from Volvo’s statistical accident database of Volvo Cars in Sweden. Generation I includes vehicles with a new structural and interior concept (SIPS). Generation II includes vehicles with structural improvements and a new chest airbag (SIPSbag). Generation III includes vehicles with further improved SIPS and SIPSbag as well as the new concept with a head protecting Inflatable Curtain (IC). Generation IV includes the most recent vehicles with further improvements of all the systems plus advanced sensors and seat belt pretensioner activation. Compared to baseline vehicles, vehicles of generation I reduce MAIS2+ injuries by 54%, generation II by 61% and generation III by 72%. For generation IV effectiveness figures cannot be calculated because of the lack of MAIS2+ injuries. A continuous improved performance is also seen when studying the AIS2+ pelvis, abdomen, chest and head injuries separately. By using the same real world driven working process, future improvements and possibly new passive as well as active safety systems, will be developed with the aim of further improved protection to near side occupants in side impacts. PMID:21050597
Significant achievements in the planetary geology program, 1981
NASA Technical Reports Server (NTRS)
Holt, H. E. (Editor)
1981-01-01
Recent developments in planetology research as reported at the 1981 NASA Planetary Geology Principal Investigators meeting are summarized. The evolution of the solar system, comparative planetology, and geologic processes active on other planets are considered. Galilean satellites and small bodies, Venus, geochemistry and regoliths, volcanic and aeolian processes and landforms, fluvial and periglacial processes, and planetary impact cratering, remote sensing, and cartography are discussed.
An impact analysis of a micro wind system. [windpower for recovering magnesium from stack dust
NASA Technical Reports Server (NTRS)
Zimmer, R. P.; Robinette, S. L.; Mason, R. M.; Schaffer, W. A.
1975-01-01
A process for the recovery of steel mill stack dust has been developed and is being used to recover secondary metals by a small company in Georgia. The process is energy intensive and wind generators were studied as a means of supplying energy for part of the recovery process. Some of the results of this study will be presented.
Influence of North Atlantic modes on European climate extremes
NASA Astrophysics Data System (ADS)
Proemmel, K.; Cubasch, U.
2017-12-01
It is well known that the North Atlantic strongly influences European climate. Only few studies exist that focus on its impact on climate extremes. We are interested in these extremes and the processes and mechanisms behind it. For the analysis of the North Atlantic Oscillation (NAO) we use simulations performed with the Max Planck Institute for Meteorology Earth System Model (MPI-ESM). The NAO has a strong impact especially on European winter and the changes in minimum temperature are even larger than in maximum temperature. The impact of the Atlantic Multi-decadal Variability (AMV) on climate extremes is analyzed in ECHAM6 simulations forced with AMV warm and AMV cold sea surface temperature patterns. We analyze different extreme indices and try to understand the processes.
An Approach towards Teaching Green Chemistry Fundamentals
ERIC Educational Resources Information Center
van Arnum, Susan D.
2005-01-01
A useful metrics system for the assessment of the environmental impact of chemical processes is utilized to illustrate several of the principles of green chemistry. The use of this metrics system in conjunction with laboratory experiments in green chemistry would provide for reinforcement in both the theory and practice of green chemistry.
2006-11-01
not ensure that a selection system will achieve its desired and expected impact (Guion, 1998; Higgs, Papper , & Carr, 2000). Ultimately, to be...C., Papper , E. M., & Carr, L. S. (2000). Integrating selection with other organizational processes and systems. In J. F. Kehoe (Ed.), Managing
Web Tutorials on Systems Thinking Using the Driver-Pressure-State-Impact-Response (DPSIR) Framework
This set of tutorials provides an overview of incorporating systems thinking into decision-making, an introduction to the DPSIR framework as one approach that can assist in the decision analysis process, and an overview of DPSIR tools, including concept mapping and keyword lists,...
Impact of Quality Management Systems on Teaching-Learning Processes
ERIC Educational Resources Information Center
Cruz, Francisco José Fernández; Gálvez, Inmaculada Egido; Santaolalla, Rafael Carballo
2016-01-01
Purpose: Quality management systems are being used more frequently in educational institutions, although their application has generated a certain amount of disagreement among education experts, who have at times questioned their suitability and usefulness for improving schools. The purpose of this paper is to contribute to this discussion by…
Handwriting in Lebanese Bigraphic Children: Standardization of the BHK Scale
ERIC Educational Resources Information Center
Matta Abizeid, Carla; Tabsh Nakib, Amira; Younès Harb, Céleste; Ghantous Faddoul, Shereen; Albaret, Jean-Michel
2017-01-01
Educational systems in Lebanon are bilingual. They simultaneously impose two handwriting systems in Arabic and Latin. This historically driven situation could constitute a significant impact on the process and development of handwriting skills. Using an accurate and valid handwriting evaluation tool standardized for the Lebanese population is a…
SIMULATIONS OF AEROSOLS AND PHOTOCHEMICAL SPECIES WITH THE CMAQ PLUME-IN-GRID MODELING SYSTEM
A plume-in-grid (PinG) method has been an integral component of the CMAQ modeling system and has been designed in order to realistically simulate the relevant processes impacting pollutant concentrations in plumes released from major point sources. In particular, considerable di...
Making decisions to increase community or regional sustainability requires a comprehensive understanding of the linkages between environmental, social, and economic systems. We present a visualization tool that can improve decision processes and improve interdisciplinary research...
One of the most common biological treatment systems used to clean wastewater is suspended growth activated sludge wastewater treatment (AS). When AS is adapted for the treatment of wastewater from industrial manufacturing processes, unanticipated difficulties can arise. For the s...
Model-Based Fault Diagnosis: Performing Root Cause and Impact Analyses in Real Time
NASA Technical Reports Server (NTRS)
Figueroa, Jorge F.; Walker, Mark G.; Kapadia, Ravi; Morris, Jonathan
2012-01-01
Generic, object-oriented fault models, built according to causal-directed graph theory, have been integrated into an overall software architecture dedicated to monitoring and predicting the health of mission- critical systems. Processing over the generic fault models is triggered by event detection logic that is defined according to the specific functional requirements of the system and its components. Once triggered, the fault models provide an automated way for performing both upstream root cause analysis (RCA), and for predicting downstream effects or impact analysis. The methodology has been applied to integrated system health management (ISHM) implementations at NASA SSC's Rocket Engine Test Stands (RETS).
ERIC Educational Resources Information Center
Kilmer, Ryan P.; Gil-Rivas, Virginia
2010-01-01
This study explored posttraumatic growth (PTG), positive change resulting from struggling with trauma, among 7- to 10-year-olds impacted by Hurricane Katrina. Analyses focused on child self-system functioning and cognitive processes, and the caregiving context, in predicting PTG at 2 time points (Time 1n = 66, Time 2n = 51). Findings suggest that…
The Spiritual and Moral Values of Rural Youth (Based on Materials of Buriatia and Chita Oblast)
ERIC Educational Resources Information Center
Boiak, T. N.
2010-01-01
The processes of disintegration of the former system of values, ideals, and established models of socialization, and the search for new ones, could hardly fail to have an impact on the personality formation and development of young people. The impact has been contradictory, evidence for which is provided by the results of a questionnaire…
Family Group Conferencing: A Pilot Project within the Juvenile Court System in Louisville, Kentucky
ERIC Educational Resources Information Center
Duncan, Susan Hanley; Dickie, Ida
2013-01-01
The notion that everyone who is impacted by a crime has an investment in the process of how the offender is dealt with is gaining acceptance in diverse contexts around the world. This notion, called restorative justice, is an approach that brings together the offender and individuals impacted by the offender's behavior in a problem-solving process…
Henderson, Emily J; Rubin, Greg P
2013-05-01
To evaluate the utility of Isabel, an online diagnostic decision support system developed by Isabel Healthcare primarily for secondary medical care, in the general practice setting. Focus groups were conducted with clinicians to understand why and how they used the system. A modified online post-use survey asked practitioners about its impact on their decision-making. Normalization process theory (NPT) was used as a theoretical framework to determine whether the system could be incorporated into routine clinical practice. The system was introduced by NHS County Durham and Darlington in the UK in selected general practices as a three-month pilot. General practitioners and nurse practitioners who had access to Isabel as part of the Primary Care Trust's pilot. General practitioners' views, experiences and usage of the system. Seven general practices agreed to pilot Isabel. Two practices did not subsequently use it. The remaining five practices conducted searches on 16 patients. Post-use surveys (n = 10) indicated that Isabel had little impact on diagnostic decision-making. Focus group participants stated that, although the diagnoses produced by Isabel in general did not have an impact on their decision-making, they would find the tool useful if it were better tailored to the primary care setting. Our analysis concluded that normalization was not likely to occur in its current form. Isabel was of limited utility in this short pilot study and may need further modification for use in general practice.
2013-01-01
Background The public healthcare sector in developing countries faces many challenges including weak healthcare systems and under-resourced facilities that deliver poor outcomes relative to total healthcare expenditure. Global references demonstrate that information technology has the ability to assist in this regard through the automation of processes, thus reducing the inefficiencies of manually driven processes and lowering transaction costs. This study examines the impact of hospital information systems implementation on service delivery, user adoption and organisational culture within two hospital settings in South Africa. Methods Ninety-four interviews with doctors, nurses and hospital administrators were conducted in two public sector tertiary healthcare facilities (in two provinces) to record end-user perceptions. Structured questionnaires were used to conduct the interviews with both qualitative and quantitative information. Results Noteworthy differences were observed among the three sample groups of doctors, nurses and administrators as well as between our two hospital groups. The impact of automation in terms of cost and strategic value in public sector hospitals is shown to have yielded positive outcomes with regard to patient experience, hospital staff workflow enhancements, and overall morale in the workplace. Conclusion The research provides insight into the reasons for investing in system automation, the associated outcomes, and organisational factors that impact the successful adoption of IT systems. In addition, it finds that sustainable success in these initiatives is as much a function of the technology as it is of the change management function that must accompany the system implementation. PMID:23347433
Cline, Gregory B; Luiz, John M
2013-01-24
The public healthcare sector in developing countries faces many challenges including weak healthcare systems and under-resourced facilities that deliver poor outcomes relative to total healthcare expenditure. Global references demonstrate that information technology has the ability to assist in this regard through the automation of processes, thus reducing the inefficiencies of manually driven processes and lowering transaction costs. This study examines the impact of hospital information systems implementation on service delivery, user adoption and organisational culture within two hospital settings in South Africa. Ninety-four interviews with doctors, nurses and hospital administrators were conducted in two public sector tertiary healthcare facilities (in two provinces) to record end-user perceptions. Structured questionnaires were used to conduct the interviews with both qualitative and quantitative information. Noteworthy differences were observed among the three sample groups of doctors, nurses and administrators as well as between our two hospital groups. The impact of automation in terms of cost and strategic value in public sector hospitals is shown to have yielded positive outcomes with regard to patient experience, hospital staff workflow enhancements, and overall morale in the workplace. The research provides insight into the reasons for investing in system automation, the associated outcomes, and organisational factors that impact the successful adoption of IT systems. In addition, it finds that sustainable success in these initiatives is as much a function of the technology as it is of the change management function that must accompany the system implementation.
2004-10-12
KENNEDY SPACE CENTER, FLA. - In an installation demonstration in the Orbiter Processing Facility, a sensor is placed on the wing leading edge of orbiter Discovery. The sensors are part of the Wing Leading Edge Impact Detection System, a new safety measure added for all future Space Shuttle missions. The system also includes accelerometers that monitor the orbiter's wings for debris impacts during launch and while in orbit. There are 22 temperature sensors and 66 accelerometers on each wing. Sensor data will flow from the wing to the crew compartment, where it will be transmitted to Earth.
2004-10-12
KENNEDY SPACE CENTER, FLA. - In an installation demonstration the Orbiter Processing Facility, a sensor is placed on the wing leading edge of orbiter Discovery. The sensors are part of the Wing Leading Edge Impact Detection System, a new safety measure added for all future Space Shuttle missions. The system also includes accelerometers that monitor the orbiter's wings for debris impacts during launch and while in orbit. There are 22 temperature sensors and 66 accelerometers on each wing. Sensor data will flow from the wing to the crew compartment, where it will be transmitted to Earth.
The impact of fuels on aircraft technology through the year 2000
NASA Technical Reports Server (NTRS)
Grobman, J.; Reck, G. M.
1980-01-01
The impact that the supply, quality, and processing costs of future fuels may have on aircraft technology is assessed. The potential range of properties for future jet fuels is discussed along with the establishment of a data base of fuel property effects on propulsion system components. Also, the evolution and evaluation of advanced component technology that would permit the use of broader property fuels and the identification of technical and economic trade-offs within the overall fuel production-air transportation system associated with variations in fuel properties are examined.
Hupp, C.R.; Pierce, Aaron R.; Noe, G.B.
2009-01-01
Human alterations along stream channels and within catchments have affected fluvial geomorphic processes worldwide. Typically these alterations reduce the ecosystem services that functioning floodplains provide; in this paper we are concerned with the sediment and associated material trapping service. Similarly, these alterations may negatively impact the natural ecology of floodplains through reductions in suitable habitats, biodiversity, and nutrient cycling. Dams, stream channelization, and levee/canal construction are common human alterations along Coastal Plain fluvial systems. We use three case studies to illustrate these alterations and their impacts on floodplain geomorphic and ecological processes. They include: 1) dams along the lower Roanoke River, North Carolina, 2) stream channelization in west Tennessee, and 3) multiple impacts including canal and artificial levee construction in the central Atchafalaya Basin, Louisiana. Human alterations typically shift affected streams away from natural dynamic equilibrium where net sediment deposition is, approximately, in balance with net erosion. Identification and understanding of critical fluvial parameters (e.g., stream gradient, grain-size, and hydrography) and spatial and temporal sediment deposition/erosion process trajectories should facilitate management efforts to retain and/or regain important ecosystem services. ?? 2009, The Society of Wetland Scientists.
NASA Astrophysics Data System (ADS)
Efimov, A. E.; Maksarov, V. V.; Timofeev, D. Y.
2018-03-01
The present paper states the impact of a technological system on piece’s roughness and shape accuracy via simulation modeling. For this purpose, a theory was formulated and a mathematical model was generated to justify self-oscillations in a system. The method of oscillations eliminations based on workpiece’s high-energy laser irradiation with the purpose of further processing were suggested in compliance with the adopted theory and model. Modeling the behaviour of a system with the transient phenomenon indicated the tendency of reducing self-oscillations in unstable processing modes, which has a positive effect under the conditions of practical implementation over piece’s roughness and accuracy.
Computerised Order Entry Systems and Pathology Services - A Synthesis of the Evidence
Georgiou, Andrew; Westbrook, Johanna I
2006-01-01
Computerised Physician Order Entry (CPOE) systems have been promoted in Australia and internationally for their potential to improve the quality of care. The existing research of the effect of CPOE on pathology laboratories has been variable, pointing to the potential to increase efficiency and effectiveness and contribute to enhancing the quality of patient care on the one hand, while leading to significant disruptions in work organisation with a negative impact on departmental relations on the other hand. In this paper we provide an overview of the research evidence about the impact of CPOE on four areas associated with pathology services; a) efficiency of the ordering process, e.g. test turnaround times, b) effectiveness as measured by test ordering volumes and test order appropriateness, c) quality of care, particularly its effects on patient care and d) work organisation patterns, which can be severely disrupted by CPOE. We discuss the possible ramifications of CPOE and offer three broad, but important recommendations for pathology laboratories, based on our own research experience investigating CPOE implementations over three years. Firstly, pathology laboratories need to be active participants in planning the implementation of CPOE. Secondly, the importance of building a firm organisational foundation for the introduction of the new system that includes openness and responsiveness to feedback. And thirdly, the implementation process needs to be underpinned by a strong commitment to a multi-method evaluation at every stage of the process to be able to measure the impact of the system on work practices and outcomes. PMID:17077878
Process level improvements in the CMAQ system have been made to WRF meteorology, lightning NO production, national ammonia emission profiles, and CMAQ ammonia air-surface exchange. An incremental study was conducted to quantify the impact of individual and combined changes on mo...
ERIC Educational Resources Information Center
Crnic, Keith A.; Neece, Cameron L.; McIntyre, Laura Lee; Blacher, Jan; Baker, Bruce L.
2017-01-01
Initial intervention processes for children with intellectual disabilities (IDs) largely focused on direct efforts to impact core cognitive and academic deficits associated with the diagnosis. Recent research on risk processes in families of children with ID, however, has influenced new developmental system approaches to early intervention. Recent…
Exchange of Biomaterial Between Planetary Systems
NASA Astrophysics Data System (ADS)
Napier, W. M.
2011-10-01
It is now known that dynamical highways exist along which viable microorganisms may travel between the planets of the solar system. The extension of this concept to interstellar distances is explored here. Giant molecular clouds play a significant role in the process. They stimulate exoplanetary systems by disturbing their comet clouds and enhancing planetary impact rates. Biomaterial thrown out by impacts is injected directly into their stellar nurseries, with transfer times typically 0.1-0.5 million years. With reasonably conservative assumptions it is expected that, if life started at one locality in the Galaxy 5-10 Gyr ago, it would by now occupy ecological niches throughout the habitable zone. The chief uncertainty is the proportion of planetary systems capable of receiving life, nurturing it and re-ejecting it through impacts: a critical proportion of ˜10-3 to ˜10-4 such exoplanetary systems is necessary for the diffusion of life to go critical in the solar neighbourhood. This requirement is relaxed within ˜3-5 kpc of the Galactic centre.
DOE Office of Scientific and Technical Information (OSTI.GOV)
RoyChowdhury, Taniya; Bramer, Lisa; Hoyt, David W.
Earth System Models predict climate extremes that will impact regional and global hydrology. Aquatic-terrestrial transition zones like wetlands are subjected to the immediate consequence of climate change with shifts in the magnitude and dynamics of hydrologic flow. Such fluctuating hydrology can alter the nature and rate of biogeochemical transformations and significantly impact the carbon balance of the ecosystem. We tested the impacts of fluctuating hydrology and, specifically, the role of antecedent moisture conditions in determining the dominant carbon loss mechanisms in soils sampled from a tidal freshwater wetland system in the lower Columbia River, WA, USA. The objective was tomore » understand shifts in biogeochemical processes in response to changing soil moisture, based on soil respiration and methane production rates, and to elucidate such responses based on the observed electron acceptor and metabolite profiles under laboratory conditions. Metabolomics and biogeochemical process rates provided evidence that soil redox was the principal factor driving metabolic function. Fluctuating redox conditions altered terminal electron acceptor and donor availability and recovery strengths of their concentrations in soil such that a disproportionate release of carbon dioxide stemmed from alternative anaerobic degradation processes like sulfate and iron reduction compared to carbon loss due to methanogenesis. These results show that extended and short-term saturation created conditions conducive to increasing metabolite availability for anaerobic decomposition processes, with a significant lag in methanogenesis. In contrast, extended drying caused a cellular-level stress response and rapid recycling of alternate electron acceptors.« less
Xie, Anping; Carayon, Pascale
2014-01-01
Healthcare systems need to be redesigned to provide care that is safe, effective and efficient, and meets the multiple needs of patients. This systematic review examines how Human Factors and Ergonomics (HFE) is applied to redesign healthcare work systems and processes and improve quality and safety of care. We identified twelve projects representing 23 studies and addressing different physical, cognitive and organizational HFE issues in a variety of healthcare systems and care settings. Some evidence exists for the effectiveness of HFE-based healthcare system redesign in improving process and outcome measures of quality and safety of care. We assessed risk of bias in 16 studies reporting the impact of HFE-based healthcare system redesign and found varying quality across studies. Future research should further assess the impact of HFE on quality and safety of care, and clearly define the mechanisms by which HFE-based system redesign can improve quality and safety of care. Practitioner Summary Existing evidence shows that HFE-based healthcare system redesign has the potential to improve quality of care and patient safety. Healthcare organizations need to recognize the importance of HFE-based healthcare system redesign to quality of care and patient safety, and invest resources to integrate HFE in healthcare improvement activities. PMID:25323570
The Difficulties of Studying Planetary Versus Terrestrial Craters
NASA Astrophysics Data System (ADS)
Spray, J. G.
2015-09-01
Terrestrial and extraterrestrial impact structures each provide advantages and disadvantages with respect to furthering our understanding of the cratering process within our solar system. These pros and cons are explored.
Michael Burke; Klaus Jorde; John M. Buffington
2009-01-01
River systems have been altered worldwide by dams and diversions, resulting in a broad array of environmental impacts. The use of a process-based, hierarchical framework for assessing environmental impacts of dams is explored here in terms of a case study of the Kootenai River, western North America. The goal of the case study is to isolate and quantify the relative...
Beyond night float? The impact of call structure on internal medicine residents.
Rosenberg, M; McNulty, D
1995-02-01
Limitation of resident working hours has been a critical issue for training programs in recent years. At Providence Medical Center, residents and faculty collaborated in developing goals, implementation strategies, and an evaluation process for a new ward float system. The goals of the float system were to reduce fatigue, facilitate education, maintain continuity of care, and minimize the negative impact of training on residents' personal lives. Evaluation revealed: 1) 74% of the residents preferred Providence Medical Center float system (PMCF) to either night float (NF) (13%) or standard every-fourth-night call (EFNC) (13%); and 2) PMCF was perceived to ensure quality patient care to a greater degree than was NF, to better facilitate resident education than was NF, and to have a less negative impact on personal lives than was EFNC.
Levesque, Eric; Hoti, Emir; de La Serna, Sofia; Habouchi, Houssam; Ichai, Philippe; Saliba, Faouzi; Samuel, Didier; Azoulay, Daniel
2013-03-01
In the French healthcare system, the intensive care budget allocated is directly dependent on the activity level of the center. To evaluate this activity level, it is necessary to code the medical diagnoses and procedures performed on Intensive Care Unit (ICU) patients. The aim of this study was to evaluate the effects of using an Intensive Care Information System (ICIS) on the incidence of coding errors and its impact on the ICU budget allocated. Since 2005, the documentation on and monitoring of every patient admitted to our ICU has been carried out using an ICIS. However, the coding process was performed manually until 2008. This study focused on two periods: the period of manual coding (year 2007) and the period of computerized coding (year 2008) which covered a total of 1403 ICU patients. The time spent on the coding process, the rate of coding errors (defined as patients missed/not coded or wrongly identified as undergoing major procedure/s) and the financial impact were evaluated for these two periods. With computerized coding, the time per admission decreased significantly (from 6.8 ± 2.8 min in 2007 to 3.6 ± 1.9 min in 2008, p<0.001). Similarly, a reduction in coding errors was observed (7.9% vs. 2.2%, p<0.001). This decrease in coding errors resulted in a reduced difference between the potential and real ICU financial supplements obtained in the respective years (€194,139 loss in 2007 vs. a €1628 loss in 2008). Using specific computer programs improves the intensive process of manual coding by shortening the time required as well as reducing errors, which in turn positively impacts the ICU budget allocation. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Geochemistry and the Understanding of Groundwater Systems
NASA Astrophysics Data System (ADS)
Glynn, P. D.; Plummer, L. N.; Weissmann, G. S.; Stute, M.
2009-12-01
Geochemical techniques and concepts have made major contributions to the understanding of groundwater systems. Advances continue to be made through (1) development of measurement and characterization techniques, (2) improvements in computer technology, networks and numerical modeling, (3) investigation of coupled geologic, hydrologic, geochemical and biologic processes, and (4) scaling of individual observations, processes or subsystem models into larger coherent model frameworks. Many applications benefit from progress in these areas, such as: (1) understanding paleoenvironments, in particular paleoclimate, through the use of groundwater archives, (2) assessing the sustainability (recharge and depletion) of groundwater resources, and (3) their vulnerability to contamination, (4) evaluating the capacity and consequences of subsurface waste isolation (e.g. geologic carbon sequestration, nuclear and chemical waste disposal), (5) assessing the potential for mitigation/transformation of anthropogenic contaminants in groundwater systems, and (6) understanding the effect of groundwater lag times in ecosystem-scale responses to natural events, land-use changes, human impacts, and remediation efforts. Obtaining “representative” groundwater samples is difficult and progress in obtaining “representative” samples, or interpreting them, requires new techniques in characterizing groundwater system heterogeneity. Better characterization and simulation of groundwater system heterogeneity (both physical and geochemical) is critical to interpreting the meaning of groundwater “ages”; to understanding and predicting groundwater flow, solute transport, and geochemical evolution; and to quantifying groundwater recharge and discharge processes. Research advances will also come from greater use and progress (1) in the application of environmental tracers to ground water dating and in the analysis of new geochemical tracers (e.g. compound specific isotopic analyses, noble gas isotopes, analyses of natural organic tracers), (2) in inverse geochemical and hydrological modeling, (3) in the understanding and simulation of coupled biological, geological, geochemical and hydrological processes, and (4) in the description and quantification of processes occurring at the boundaries of groundwater systems (e.g. unsaturated zone processes, groundwater/surface water interactions, impacts of changing geomorphology and vegetation). Improvements are needed in the integration of widely diverse information. Better techniques are needed to construct coherent conceptual frameworks from individual observations, simulated or reconstructed information, process models, and intermediate scale models. Iterating between data collection, interpretation, and the application of forward, inverse, and statistical modeling tools is likely to provide progress in this area. Quantifying groundwater system processes by using an open-system thermodynamic approach in a common mass- and energy-flow framework will also facilitate comparison and understanding of diverse processes.
Investigation into process-induced de-aggregation of cohesive micronised API particles.
Hoffmann, Magnus; Wray, Patrick S; Gamble, John F; Tobyn, Mike
2015-09-30
The aim of this study was to assess the impact of unit processes on the de-aggregation of a cohesive micronised API within a pharmaceutical formulation using near-infrared chemical imaging. The impact on the primary API particles was also investigated using an image-based particle characterization system with integrated Raman analysis. The blended material was shown to contain large, API rich domains which were distributed in-homogeneously across the sample, suggesting that the blending process was not aggressive enough to disperse aggregates of micronised drug particles. Cone milling, routinely used to improve the homogeneity of such cohesive formulations, was observed to substantially reduce the number and size of API rich domains; however, several smaller API domains survived the milling process. Conveyance of the cone milled formulation through the Alexanderwerk WP120 powder feed system completely dispersed all remaining aggregates. Importantly, powder feed transmission of the un-milled formulation was observed to produce an equally homogeneous API distribution. The size of the micronised primary drug particles remained unchanged during powder feed transmission. These findings provide further evidence that this powder feed system does induce shear, and is in fact better able to disperse aggregates of a cohesive micronised API within a blend than the blend-mill-blend step. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.
Potential use of advanced process control for safety purposes during attack of a process plant.
Whiteley, James R
2006-03-17
Many refineries and commodity chemical plants employ advanced process control (APC) systems to improve throughputs and yields. These APC systems utilize empirical process models for control purposes and enable operation closer to constraints than can be achieved with traditional PID regulatory feedback control. Substantial economic benefits are typically realized from the addition of APC systems. This paper considers leveraging the control capabilities of existing APC systems to minimize the potential impact of a terrorist attack on a process plant (e.g., petroleum refinery). Two potential uses of APC are described. The first is a conventional application of APC and involves automatically moving the process to a reduced operating rate when an attack first begins. The second is a non-conventional application and involves reconfiguring the APC system to optimize safety rather than economics. The underlying intent in both cases is to reduce the demands on the operator to allow focus on situation assessment and optimal response planning. An overview of APC is provided along with a brief description of the modifications required for the proposed new applications of the technology.
Visceral Inflammation and Immune Activation Stress the Brain
Holzer, Peter; Farzi, Aitak; Hassan, Ahmed M.; Zenz, Geraldine; Jačan, Angela; Reichmann, Florian
2017-01-01
Stress refers to a dynamic process in which the homeostasis of an organism is challenged, the outcome depending on the type, severity, and duration of stressors involved, the stress responses triggered, and the stress resilience of the organism. Importantly, the relationship between stress and the immune system is bidirectional, as not only stressors have an impact on immune function, but alterations in immune function themselves can elicit stress responses. Such bidirectional interactions have been prominently identified to occur in the gastrointestinal tract in which there is a close cross-talk between the gut microbiota and the local immune system, governed by the permeability of the intestinal mucosa. External stressors disturb the homeostasis between microbiota and gut, these disturbances being signaled to the brain via multiple communication pathways constituting the gut–brain axis, ultimately eliciting stress responses and perturbations of brain function. In view of these relationships, the present article sets out to highlight some of the interactions between peripheral immune activation, especially in the visceral system, and brain function, behavior, and stress coping. These issues are exemplified by the way through which the intestinal microbiota as well as microbe-associated molecular patterns including lipopolysaccharide communicate with the immune system and brain, and the mechanisms whereby overt inflammation in the GI tract impacts on emotional-affective behavior, pain sensitivity, and stress coping. The interactions between the peripheral immune system and the brain take place along the gut–brain axis, the major communication pathways of which comprise microbial metabolites, gut hormones, immune mediators, and sensory neurons. Through these signaling systems, several transmitter and neuropeptide systems within the brain are altered under conditions of peripheral immune stress, enabling adaptive processes related to stress coping and resilience to take place. These aspects of the impact of immune stress on molecular and behavioral processes in the brain have a bearing on several disturbances of mental health and highlight novel opportunities of therapeutic intervention. PMID:29213271
Army Maintenance System Transformation
2006-05-25
its undesired effects . Systems thinking will also help forecast the second and third order effects on the rest of the system. In the case of...and instilling discipline into the maintenance process. Finally, the impact of the debate between effectiveness and efficiency proves useful in...Many leaders, both military and civilian question whether the national treasure allocated to the transformation effort has been effectively utilized
System simulation of direct-current speed regulation based on Simulink
NASA Astrophysics Data System (ADS)
Yang, Meiying
2018-06-01
Many production machines require the smooth adjustment of speed in a certain range In the process of modern industrial production, and require good steady-state and dynamic performance. Direct-current speed regulation system with wide speed regulation range, small relative speed variation, good stability, large overload capacity, can bear the frequent impact load, can realize stepless rapid starting-braking and inversion of frequency and other good dynamic performances, can meet the different kinds of special operation requirements in production process of automation system. The direct-current power drive system is almost always used in the field of drive technology of high performance for a long time.
Acoustic sand detector for fluid flowstreams
Beattie, Alan G.; Bohon, W. Mark
1993-01-01
The particle volume and particle mass production rate of particulate solids entrained in fluid flowstreams such as formation sand or fracture proppant entrained in oil and gas production flowstreams is determined by a system having a metal probe interposed in a flow conduit for transmitting acoustic emissions created by particles impacting the probe to a sensor and signal processing circuit which produces discrete signals related to the impact of each of the particles striking the probe. The volume or mass flow rate of particulates is determined from making an initial particle size distribution and particle energy distribution and comparing the initial energy distribution and/or the initial size distribution with values related to the impact energies of a predetermined number of recorded impacts. The comparison is also used to recalibrate the system to compensate for changes in flow velocity.
Zhao, Junshu; Koo, Otilia; Pan, Duohai; Wu, Yongmei; Morkhade, Dinesh; Rana, Sandeep; Saha, Partha; Marin, Arturo
2017-09-01
In formulation development, certain excipients, even though used in small quantities, can have a significant impact on the processability and performance of the dosage form. In this study, three common disintegrants, croscarmellose sodium (CCS), crospovidone (xPVP), and sodium starch glycolate (SSG) as well as the surfactant sodium lauryl sulfate (SLS) were evaluated for their impact on the processability and performance of a typical dry granulation formulation. Two model compounds, the mechanically brittle and chemically inert acetaminophen and the mechanically ductile carboxylic acid aspirin, were used for the evaluation. It was found that the disintegrants were generally identical in their impact on the processability and little difference was observed in the granulation and compression processes. The exception is that when xPVP was used in the formulation of the brittle acetaminophen, lower compression forces were needed to reach the same tablet hardness, suggesting a binding effect of xPVP for such systems. In general, CCS and xPVP tend to provide slightly better disintegration than SSG. However, in the case of aspirin, a strong hydrogen bonding interaction between the carboxylic acid group of aspirin and the carbonyl group of xPVP was observed, resulting in slower release of the drug after fast disintegration. SLS was found to have a significant impact on the processability due to its lubricating effect, resulting in higher compression forces needed to achieve the target tablet hardness. Due to the higher degree of compression, the disintegration and dissolution of both drugs became slower despite the wetting effect of SLS.
Retooling the nurse executive for 21st century practice: decision support systems.
Fralic, M F; Denby, C B
2000-01-01
Health care financing and care delivery systems are changing at almost warp speed. This requires new responses and new capabilities from contemporary nurse executives and calls for new approaches to the preparation of the next generation of nursing leaders. The premise of this article is that, in these highly unstable environments, the nurse executive faces the need to make high-impact decisions in relatively short time frames. A standardized process for objective decision making becomes essential. This article describes that process.
Overlay leaves litho: impact of non-litho processes on overlay and compensation
NASA Astrophysics Data System (ADS)
Ruhm, Matthias; Schulz, Bernd; Cotte, Eric; Seltmann, Rolf; Hertzsch, Tino
2014-10-01
According to the ITRS roadmap [1], the overlay requirement for the 28nm node is 8nm. If we compare this number with the performance given by tool vendors for their most advanced immersion systems (which is < 3nm), there seems to remain a large margin. Does that mean that today's leading edge Fab has an easy life? Unfortunately not, as other contributors affecting overlay are emerging. Mask contributions and so-called non-linear wafer distortions are known effects that can impact overlay quite significantly. Furthermore, it is often forgotten that downstream (post-litho) processes can impact the overlay as well. Thus, it can be required to compensate for the effects of subsequent processes already at the lithography operation. Within our paper, we will briefly touch on the wafer distortion topic and discuss the limitations of lithography compensation techniques such as higher order corrections versus solving the root cause of the distortions. The primary focus will be on the impact of the etch processes on the pattern placement error. We will show how individual layers can get affected differently by showing typical wafer signatures. However, in contrast to the above-mentioned wafer distortion topic, lithographic compensation techniques can be highly effective to reduce the placement error significantly towards acceptable levels (see Figure 1). Finally we will discuss the overall overlay budget for a 28nm contact to gate case by taking the impact of the individual process contributors into account.
Benchmarking performance: Environmental impact statements in Egypt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badr, El-Sayed A., E-mail: ebadr@mans.edu.e; Zahran, Ashraf A., E-mail: ashraf_zahran@yahoo.co; Cashmore, Matthew, E-mail: m.cashmore@uea.ac.u
Environmental impact assessment (EIA) was formally introduced in Egypt in 1994. This short paper evaluates 'how well' the EIA process is working in practice in Egypt, by reviewing the quality of 45 environmental impact statements (EISs) produced between 2000 and 2007 for a variety of project types. The Lee and Colley review package was used to assess the quality of the selected EISs. About 69% of the EISs sampled were found to be of a satisfactory quality. An assessment of the performance of different elements of the EIA process indicates that descriptive tasks tend to be performed better than scientificmore » tasks. The quality of core elements of EIA (e.g., impact prediction, significance evaluation, scoping and consideration of alternatives) appears to be particularly problematic. Variables that influence the quality of EISs are identified and a number of broad recommendations are made for improving the effectiveness of the EIA system.« less
NASA Technical Reports Server (NTRS)
Lee, Eunjee; Koster, Randal D.; Ott, Lesley E.; Weir, Brad; Mahanama, Sarith; Chang, Yehui; Zeng, Fan-Wei
2017-01-01
Understanding the underlying processes that control the carbon cycle is key to predicting future global change. Much of the uncertainty in the magnitude and variability of the atmospheric carbon dioxide (CO2) stems from uncertainty in terrestrial carbon fluxes, and the relative impacts of temperature and moisture variations on regional and global scales are poorly understood. Here we investigate the impact of a regional drought on terrestrial carbon fluxes and CO2 mixing ratios over North America using the NASA Goddard Earth Observing System (GEOS) Model. Results show a sequence of changes in carbon fluxes and atmospheric CO2, induced by the drought. The relative contributions of meteorological changes to the neighboring carbon dynamics are also presented. The coupled modeling approach allows a direct quantification of the impact of the regional drought on local and proximate carbon exchange at the land surface via the carbon-water feedback processes.
Evolution of the clinical review station for enterprise-wide multimedia radiology reporting
NASA Astrophysics Data System (ADS)
Hanlon, William B.; Valtchinov, Vladimir I.; Davis, Scott D.; Lester, James; Khorasani, Ramin; Carrino, John A.; Benfield, Andrew
2000-05-01
Efforts to develop Picture Archiving and Communications Systems (PACS) for the last ten years have concentrated mainly on developing systems for primary interpretation of digital radiological images. Much less attention has been paid to the clinical aspects of the radiology process. Clinical radiology services are an important component of the overall care delivery process, providing information and consultation services to referring physicians, the customers of radiology, in a timely fashion to aid in care decisions. Information management systems (IMS) are playing an increasingly central role in the care delivery process. No suitable commercial PACS or IMS products were available that could effectively provide for the requirements of the clinicians. We endeavored to fill this void at our institution by developing a system to deliver images and text reports electronically on-demand to the referring physicians. This system has evolved substantially since initial deployment eight years ago. As new technologies become available they are evaluated and integrated as appropriate to improve system performance and manageability. Not surprisingly, the internet and World Wide Web (WWW) technology has had the greatest impact on system design in recent years. Additional features have been added over time to provide services for teleradiology, teaching, and research needs. We also discovered that these value-added services give us a competitive edge in attracting new business to our department. Commercial web-based products are now becoming available which do a satisfactory job of providing many of these clinical services. These products are evaluated for integration into our system as they mature. The result is a system that impacts positively on patient care.
NASA Technical Reports Server (NTRS)
Perry, J. L.
2017-01-01
Contamination of a crewed spacecraft's cabin environment leading to environmental control and life support system (ECLSS) functional capability and operational margin degradation or loss can have an adverse effect on NASA's space exploration mission figures of merit-safety, mission success, effectiveness, and affordability. The role of evaluating the ECLSS's compatibility and cabin environmental impact as a key component of pass trace contaminant control is presented and the technical approach is described in the context of implementing NASA's safety and mission success objectives. Assessment examples are presented for a variety of chemicals used in vehicle systems and experiment hardware for the International Space Station program. The ECLSS compatibility and cabin environmental impact assessment approach, which can be applied to any crewed spacecraft development and operational effort, can provide guidance to crewed spacecraft system and payload developers relative to design criteria assigned ECLSS compatibility and cabin environmental impact ratings can be used by payload and system developers as criteria for ensuring adequate physical and operational containment. In additional to serving as an aid for guiding containment design, the assessments can guide flight rule and procedure development toward protecting the ECLSS as well as approaches for contamination event remediation.
Analysis and optimization of hybrid electric vehicle thermal management systems
NASA Astrophysics Data System (ADS)
Hamut, H. S.; Dincer, I.; Naterer, G. F.
2014-02-01
In this study, the thermal management system of a hybrid electric vehicle is optimized using single and multi-objective evolutionary algorithms in order to maximize the exergy efficiency and minimize the cost and environmental impact of the system. The objective functions are defined and decision variables, along with their respective system constraints, are selected for the analysis. In the multi-objective optimization, a Pareto frontier is obtained and a single desirable optimal solution is selected based on LINMAP decision-making process. The corresponding solutions are compared against the exergetic, exergoeconomic and exergoenvironmental single objective optimization results. The results show that the exergy efficiency, total cost rate and environmental impact rate for the baseline system are determined to be 0.29, ¢28 h-1 and 77.3 mPts h-1 respectively. Moreover, based on the exergoeconomic optimization, 14% higher exergy efficiency and 5% lower cost can be achieved, compared to baseline parameters at an expense of a 14% increase in the environmental impact. Based on the exergoenvironmental optimization, a 13% higher exergy efficiency and 5% lower environmental impact can be achieved at the expense of a 27% increase in the total cost.
NASA Technical Reports Server (NTRS)
Lundquist, Ray; Aymergen, Cagatay; VanCampen, Julie; Abell, James; Smith, Miles; Driggers, Phillip
2008-01-01
The Integrated Science Instrument Module (ISIM) for the James Webb Space Telescope (JWST) provides the critical functions and the environment for the four science instruments on JWST. This complex system development across many international organizations presents unique challenges and unique solutions. Here we describe how the requirement flow has been coordinated through the documentation system, how the tools and processes are used to minimize impact to the development of the affected interfaces, how the system design has matured, how the design review process operates, and how the system implementation is managed through reporting to ensure a truly world class scientific instrument compliment is created as the final product.
Aeolian Processes and the Biosphere
NASA Astrophysics Data System (ADS)
Ravi, Sujith; D'Odorico, Paolo; Breshears, David D.; Field, Jason P.; Goudie, Andrew S.; Huxman, Travis E.; Li, Junran; Okin, Gregory S.; Swap, Robert J.; Thomas, Andrew D.; Van Pelt, Scott; Whicker, Jeffrey J.; Zobeck, Ted M.
2011-08-01
Aeolian processes affect the biosphere in a wide variety of contexts, including landform evolution, biogeochemical cycles, regional climate, human health, and desertification. Collectively, research on aeolian processes and the biosphere is developing rapidly in many diverse and specialized areas, but integration of these recent advances is needed to better address management issues and to set future research priorities. Here we review recent literature on aeolian processes and their interactions with the biosphere, focusing on (1) geography of dust emissions, (2) impacts, interactions, and feedbacks, (3) drivers of dust emissions, and (4) methodological approaches. Geographically, dust emissions are highly spatially variable but also provide connectivity at global scales between sources and effects, with “hot spots” being of particular concern. Recent research reveals that aeolian processes have impacts, interactions, and feedbacks at a variety of scales, including large-scale dust transport and global biogeochemical cycles, climate mediated interactions between atmospheric dust and ecosystems, impacts on human health, impacts on agriculture, and interactions between aeolian processes and dryland vegetation. Aeolian dust emissions are driven largely by, in addition to climate, a combination of soil properties, soil moisture, vegetation and roughness, biological and physical crusts, and disturbances. Aeolian research methods span laboratory and field techniques, modeling, and remote sensing. Together these integrated perspectives on aeolian processes and the biosphere provide insights into management options and aid in identifying research priorities, both of which are increasingly important given that global climate models predict an increase in aridity in many dryland systems of the world.
Security Risk Assessment Process for UAS in the NAS CNPC Architecture
NASA Technical Reports Server (NTRS)
Iannicca, Dennis C.; Young, Dennis P.; Thadani, Suresh K.; Winter, Gilbert A.
2013-01-01
This informational paper discusses the risk assessment process conducted to analyze Control and Non-Payload Communications (CNPC) architectures for integrating civil Unmanned Aircraft Systems (UAS) into the National Airspace System (NAS). The assessment employs the National Institute of Standards and Technology (NIST) Risk Management framework to identify threats, vulnerabilities, and risks to these architectures and recommends corresponding mitigating security controls. This process builds upon earlier work performed by RTCA Special Committee (SC) 203 and the Federal Aviation Administration (FAA) to roadmap the risk assessment methodology and to identify categories of information security risks that pose a significant impact to aeronautical communications systems. A description of the deviations from the typical process is described in regards to this aeronautical communications system. Due to the sensitive nature of the information, data resulting from the risk assessment pertaining to threats, vulnerabilities, and risks is beyond the scope of this paper.
Security Risk Assessment Process for UAS in the NAS CNPC Architecture
NASA Technical Reports Server (NTRS)
Iannicca, Dennis Christopher; Young, Daniel Paul; Suresh, Thadhani; Winter, Gilbert A.
2013-01-01
This informational paper discusses the risk assessment process conducted to analyze Control and Non-Payload Communications (CNPC) architectures for integrating civil Unmanned Aircraft Systems (UAS) into the National Airspace System (NAS). The assessment employs the National Institute of Standards and Technology (NIST) Risk Management framework to identify threats, vulnerabilities, and risks to these architectures and recommends corresponding mitigating security controls. This process builds upon earlier work performed by RTCA Special Committee (SC) 203 and the Federal Aviation Administration (FAA) to roadmap the risk assessment methodology and to identify categories of information security risks that pose a significant impact to aeronautical communications systems. A description of the deviations from the typical process is described in regards to this aeronautical communications system. Due to the sensitive nature of the information, data resulting from the risk assessment pertaining to threats, vulnerabilities, and risks is beyond the scope of this paper
Measuring the impact of final demand on global production system based on Markov process
NASA Astrophysics Data System (ADS)
Xing, Lizhi; Guan, Jun; Wu, Shan
2018-07-01
Input-output table is a comprehensive and detailed in describing the national economic systems, consisting of supply and demand information among various industrial sectors. The complex network, a theory and method for measuring the structure of complex system, can depict the structural properties of social and economic systems, and reveal the complicated relationships between the inner hierarchies and the external macroeconomic functions. This paper tried to measure the globalization degree of industrial sectors on the global value chain. Firstly, it constructed inter-country input-output network models to reproduce the topological structure of global economic system. Secondly, it regarded the propagation of intermediate goods on the global value chain as Markov process and introduced counting first passage betweenness to quantify the added processing amount when globally final demand stimulates this production system. Thirdly, it analyzed the features of globalization at both global and country-sector level
Developing the architecture for the Climate Information Portal for Copernicus
NASA Astrophysics Data System (ADS)
Som de Cerff, Wim; Thijsse, Peter; Plieger, Maarten; Pascoe, Stephen; Jukes, Martin; Leadbetter, Adam; Goosen, Hasse; de Vreede, Ernst
2015-04-01
Climate change is impacting the environment, society and policy decisions. Information about climate change is available from many sources, but not all of them are reliable. The CLIPC project is developing a portal to provide a single point of access for authoritative scientific information on climate change. This ambitious objective is made possible through the Copernicus Earth Observation Programme for Europe, which will deliver a new generation of environmental measurements of climate quality. The data about the physical environment which is used to inform climate change policy and adaptation measures comes from several categories: satellite measurements, terrestrial observing systems, model projections and simulations and from re-analyses (syntheses of all available observations constrained with numerical weather prediction systems). These data categories are managed by different communities: CLIPC will provide a single point of access for the whole range of data. Information on data value and limitations will be provided as part of a knowledge base of authoritative climate information. The impacts of climate change on society will generally reflect a range of different environmental and climate system changes, and different sectors and actors within society will react differently to these changes. The CLIPC portal will provide some a number of indicators showing impacts on specific sectors which have been generated using a range of factors selected through structured expert consultation. It will also, as part of the transformation services, allow users to explore the consequences of using different combinations of driving factors which they consider to be of particular relevance to their work or life. The portal will provide information on the scientific quality and pitfalls of such transformations to prevent misleading usage of the results. The CLIPC project will not be able to process a comprehensive range of climate change impacts on the physical environment and society, but will develop an end to end processing chain (indicator toolkit), from comprehensive information on the climate state through to highly aggregated decision relevant products. This processing chain will be demonstrated within three thematic areas: water, rural and urban. Indicators of climate change and climate change impact will be provided, and a toolkit to update and post process the collection of indicators will be integrated into the portal. For the indicators three levels (Tiers) have been loosely defined: Tier 1: field summarising properties of the climate system; e.g. temperature change; Tier 2: expressed in terms of environmental properties outside the climate system; e.g. flooding change; Tier 3: expressed in social and economic impact. For the architecture, CLIPC has two interlocked themes: 1. Harmonised access to climate datasets derived from models, observations and re-analyses 2. A climate impact toolkit to evaluate, rank and aggregate indicators For development of the CLIPC architecture an Agile 'storyline' approach is taken. The storyline is a real world use case and consists of producing a Tier 3 indicator (Urban Heat Vulnerability) and making it available through the CLIPC infrastructure for a user group. In this way architecture concepts can be directly tested and improved. Also, the produced indicator can be shown to users to refine requirements. Main components of the CLIPC architecture are 1) Data discovery and access, 2) Data processing, 3) Data visualization, 4) Knowledge base and 5) User Management. The Data discovery and access component main challenge is to provide harmonized access to various sources of climate data (ngEO, EMODNET/SeaDataNet, ESGF, MyOcean). The discovery service concept will be provided using a CLIPC data and data product catalogue and via a structured data search on selected infrastructures, using NERC vocabulary services and mappings. Data processing will be provided using OGC WPS services, linking/re-using existing processing services from climate4impact.eu. The processing services will allow users to calculate climate impact indicators (Tier 1, 2 and 3). Processing wizards will guide users in processing indicators. The PyWPS framework will be used. The CLIPC portal will have its own central viewing service, using OGC standards for interoperability. For the WMS server side the ADAGUC framework will be used. For Tier 3 visualizations specific tailored visualisations will be developed. Tier 3 can be complicated to build and require manual work from specialists to provide meaningful results before they can be published as e.g. interactive maps. The CLIPC knowledge base is a set of services that supply explanatory information to the users when working with CLIPC services. It is structured around 1) a catalogue, containing ISO standardized metadata, citations, background information, links to data; 2) Commentary information, e.g. FAQ, annotation URLs , version information, disclaimers; 3) Technical documents, e.g. using vocabularies and mappings 4) Glossaries, adding and using existing glossaries from e.g. EUPORIAS/IS-ENES, IPCC; 5) literature references. CLIPC will have a very light weight user management system, providing as little barriers to the user as possible. We will make use of OpenID, accepting from selected OpenID providers such as Google and ESGF. In the presentation we will show the storyline implementation: the first results of the Tier 3 indicator, the architecture in development and the lessons learned.
Impact of hydroelectric development upon a northern Manitoba native community
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waldram, J.B.
1983-01-01
This dissertation describes the process of underdevelopment among the Cree Indian people of South Indian Lake, in Northern Manitoba, Canada, following the construction of the Churchill-Nelson River Hydro Project in 1975. The dissertation seeks to link the ecological, political, economic, socio-cultural and health aspects of the impact of the hydro project within the framework of the historical process of underdevelopment as it has occurred in Latin America, among Native people in the United States, and among Native people in Northern Canada. Utilizing both qualitative and quantitative data, a process of increased dependence is described as the product of two relatedmore » processes. The first process is the impairment of the local commercial and domestic economy caused by the flooding of Southern Indian Lake, which has resulted in a decline in local productivity. The second process is the enhancement of consumerism through rising consumer expectations and a post-project increase in available goods and services which the people are increasingly unable to afford. The overall result has been a process of economic divergence at the local level. The dissertation concludes that the process of underdevelopment which has occurred in South Indian Lake has been the result primarily of changes in the local ecological system caused by the construction of the hydro project. These ecological changes have, in turn, resulted in secondary changes in the socio-economic system.« less
On the importance of electron impact processes in excimer-pumped alkali laser-induced plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markosyan, Aram H.
We present that the excimer-pumped alkali laser (XPAL) system has recently been demonstrated in several different mixtures of alkali vapor and rare gas. Without special preventive measures, plasma formation during operation of XPAL is unavoidable. Some recent advancements in the availability of reliable data for electron impact collisions with atoms and molecules have enabled development of a complete reaction mechanism to investigate XPAL-induced plasmas. Here, we report on pathways leading to plasma formation in an Ar/C 2H 6/CsAr/C2H6/Cs XPAL sustained at different cell temperatures. We find that depending on the operating conditions, the contribution of electron impact processes can bemore » as little as bringing the excitation of Cs(P 2) states to higher level Cs** states, and can be as high as bringing Cs(P 2) excited states to a full ionization. Increasing the input pumping power or cell temperature, or decreasing the C 2H 6 mole fraction leads to electron impact processes dominating in plasma formation over the energy pooling mechanisms previously reported in literature.« less
On the importance of electron impact processes in excimer-pumped alkali laser-induced plasmas
Markosyan, Aram H.
2017-10-18
We present that the excimer-pumped alkali laser (XPAL) system has recently been demonstrated in several different mixtures of alkali vapor and rare gas. Without special preventive measures, plasma formation during operation of XPAL is unavoidable. Some recent advancements in the availability of reliable data for electron impact collisions with atoms and molecules have enabled development of a complete reaction mechanism to investigate XPAL-induced plasmas. Here, we report on pathways leading to plasma formation in an Ar/C 2H 6/CsAr/C2H6/Cs XPAL sustained at different cell temperatures. We find that depending on the operating conditions, the contribution of electron impact processes can bemore » as little as bringing the excitation of Cs(P 2) states to higher level Cs** states, and can be as high as bringing Cs(P 2) excited states to a full ionization. Increasing the input pumping power or cell temperature, or decreasing the C 2H 6 mole fraction leads to electron impact processes dominating in plasma formation over the energy pooling mechanisms previously reported in literature.« less
Nieto, Alejandra; Roehl, Holger; Adler, Michael; Mohl, Silke
2018-05-31
Frozen-state storage and cold-chain transport are key operations in the development and commercialization of biopharmaceuticals. Nowadays, a few marketed drug products are stored (and/or) shipped under frozen conditions to ensure sufficient stability, particularly for live viral vaccines. When these products are stored in glass vials with stoppers, the elastomer of the stopper needs to be flexible enough to seal the vial at the target's lowest temperature to ensure container closure integrity and hence both sterility and safety of the drug product. The container closure integrity assessment in the frozen state (e.g., -20°C, -80°C) should include: Container Closure Integrity (CCI) of the Container Closure System (CCS) itself, impact of processing, e.g. capping process on CCI and impact of shipment and movement on CCI in the frozen state. The objective of this work was an evaluation of the impact of processing and shipment on CCI of a CCS in the frozen state. The impact on other quality attributes was not investigated. In this light, the ThermCCI method was applied to evaluate the impact of shipping stress and variable capping force on CCI of frozen vials and to evaluate the temperature limits of rubber stoppers. In conclusion, retaining CCI during cold storage is mostly a function of vial-stopper combination and temperatures below -40°C may pose a risk to the CCI of a frozen drug product. Variable capping force may have an influence on the CCI of a frozen drug product if not appropriately assessed. Regarding the impact of shipment on the CCI of glass vials, no indication was given either at room temperature, -20°C or -75°C when compared to static storage at such temperatures. Copyright © 2018, Parenteral Drug Association.
Impact structures in Africa: A review
Reimold, Wolf Uwe; Koeberl, Christian
2014-01-01
More than 50 years of space and planetary exploration and concomitant studies of terrestrial impact structures have demonstrated that impact cratering has been a fundamental process – an essential part of planetary evolution – ever since the beginning of accretion and has played a major role in planetary evolution throughout the solar system and beyond. This not only pertains to the development of the planets but to evolution of life as well. The terrestrial impact record represents only a small fraction of the bombardment history that Earth experienced throughout its evolution. While remote sensing investigations of planetary surfaces provide essential information about surface evolution and surface processes, they do not provide the information required for understanding the ultra-high strain rate, high-pressure, and high-temperature impact process. Thus, hands-on investigations of rocks from terrestrial impact craters, shock experimentation for pressure and temperature calibration of impact-related deformation of rocks and minerals, as well as parameter studies pertaining to the physics and chemistry of cratering and ejecta formation and emplacement, and laboratory studies of impact-generated lithologies are mandatory tools. These, together with numerical modeling analysis of impact physics, form the backbone of impact cratering studies. Here, we review the current status of knowledge about impact cratering – and provide a detailed account of the African impact record, which has been expanded vastly since a first overview was published in 1994. No less than 19 confirmed impact structures, and one shatter cone occurrence without related impact crater are now known from Africa. In addition, a number of impact glass, tektite and spherule layer occurrences are known. The 49 sites with proposed, but not yet confirmed, possible impact structures contain at least a considerable number of structures that, from available information, hold the promise to be able to expand the African impact record drastically – provided the political conditions for safe ground-truthing will become available. The fact that 28 structures have also been shown to date NOT to be of impact origin further underpins the strong interest in impact in Africa. We hope that this review stimulates the education of students about impact cratering and the fundamental importance of this process for Earth – both for its biological and geological evolution. This work may provide a reference volume for those workers who would like to search for impact craters and their ejecta in Africa. PMID:27065753
Chen, Yuhuan; Dennis, Sherri B; Hartnett, Emma; Paoli, Greg; Pouillot, Régis; Ruthman, Todd; Wilson, Margaret
2013-03-01
Stakeholders in the system of food safety, in particular federal agencies, need evidence-based, transparent, and rigorous approaches to estimate and compare the risk of foodborne illness from microbial and chemical hazards and the public health impact of interventions. FDA-iRISK (referred to here as iRISK), a Web-based quantitative risk assessment system, was developed to meet this need. The modeling tool enables users to assess, compare, and rank the risks posed by multiple food-hazard pairs at all stages of the food supply system, from primary production, through manufacturing and processing, to retail distribution and, ultimately, to the consumer. Using standard data entry templates, built-in mathematical functions, and Monte Carlo simulation techniques, iRISK integrates data and assumptions from seven components: the food, the hazard, the population of consumers, process models describing the introduction and fate of the hazard up to the point of consumption, consumption patterns, dose-response curves, and health effects. Beyond risk ranking, iRISK enables users to estimate and compare the impact of interventions and control measures on public health risk. iRISK provides estimates of the impact of proposed interventions in various ways, including changes in the mean risk of illness and burden of disease metrics, such as losses in disability-adjusted life years. Case studies for Listeria monocytogenes and Salmonella were developed to demonstrate the application of iRISK for the estimation of risks and the impact of interventions for microbial hazards. iRISK was made available to the public at http://irisk.foodrisk.org in October 2012.
de Andrade Junior, Milton Aurelio Uba; Zanghelini, Guillherme Marcelo; Soares, Sebastião Roberto
2017-05-01
Because the consumption of materials is generally higher than their recovery rate, improving municipal solid waste (MSW) management is fundamental for increasing the efficiency of natural resource use and consumption in urban areas. More broadly, the characteristics of a MSW management system influence the end-of-life (EOL) impacts of goods consumed by households. We aim to indicate the extent to which greenhouse gas emissions from a MSW management system can be reduced by increasing waste paper recycling. We also address the stakeholders' contribution for driving transition towards an improved scenario. Life cycle assessment (LCA) addresses the EOL impacts of the paper industry, driven by the characteristics of MSW management in Florianópolis, Brazil, by varying the level of stakeholders' commitment through different recycling scenarios. The results show that 41% of the climate change impacts from waste paper management could be reduced when increasing the waste paper recycling rates and reducing waste paper landfilling. To achieve such emissions reduction, the industry contribution to the MSW management system would have to increase from 17% in the business-as-usual scenario to 74% in the target scenario. We were able to measure the differences in stakeholders' contribution by modelling the MSW management system processes that are under the industry's responsibility separately from the processes that are under the government's responsibility, based on the Brazilian legal framework. The conclusions indicate that LCA can be used to support policy directions on reducing the impacts of MSW management by increasing resource recovery towards a circular economy.
The impact of missing sensor information on surgical workflow management.
Liebmann, Philipp; Meixensberger, Jürgen; Wiedemann, Peter; Neumuth, Thomas
2013-09-01
Sensor systems in the operating room may encounter intermittent data losses that reduce the performance of surgical workflow management systems (SWFMS). Sensor data loss could impact SWFMS-based decision support, device parameterization, and information presentation. The purpose of this study was to understand the robustness of surgical process models when sensor information is partially missing. SWFMS changes caused by wrong or no data from the sensor system which tracks the progress of a surgical intervention were tested. The individual surgical process models (iSPMs) from 100 different cataract procedures of 3 ophthalmologic surgeons were used to select a randomized subset and create a generalized surgical process model (gSPM). A disjoint subset was selected from the iSPMs and used to simulate the surgical process against the gSPM. The loss of sensor data was simulated by removing some information from one task in the iSPM. The effect of missing sensor data was measured using several metrics: (a) successful relocation of the path in the gSPM, (b) the number of steps to find the converging point, and (c) the perspective with the highest occurrence of unsuccessful path findings. A gSPM built using 30% of the iSPMs successfully found the correct path in 90% of the cases. The most critical sensor data were the information regarding the instrument used by the surgeon. We found that use of a gSPM to provide input data for a SWFMS is robust and can be accurate despite missing sensor data. A surgical workflow management system can provide the surgeon with workflow guidance in the OR for most cases. Sensor systems for surgical process tracking can be evaluated based on the stability and accuracy of functional and spatial operative results.
Impact of solar system exploration on theories of chemical evolution and the origin of life
NASA Technical Reports Server (NTRS)
Devincenzi, D. L.
1983-01-01
The impact of solar system exploration on theories regarding chemical evolution and the origin of life is examined in detail. Major findings from missions to Mercury, Venus, the moon, Mars, Jupiter, Saturn, and Titan are reviewed and implications for prebiotic chemistry are discussed. Among the major conclusions are: prebiotic chemistry is widespread throughout the solar system and universe; chemical evolution and the origin of life are intimately associated with the origin and evolution of the solar system; the rate, direction, and extent of prebiotic chemistry is highly dependent upon planetary characteristics; and continued exploration will increase understanding of how life originated on earth and allow better estimates of the likelihood of similar processes occurring elsewhere.
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Housner, Jerrold M.
1993-01-01
Recent advances in computer technology that are likely to impact structural analysis and design of flight vehicles are reviewed. A brief summary is given of the advances in microelectronics, networking technologies, and in the user-interface hardware and software. The major features of new and projected computing systems, including high performance computers, parallel processing machines, and small systems, are described. Advances in programming environments, numerical algorithms, and computational strategies for new computing systems are reviewed. The impact of the advances in computer technology on structural analysis and the design of flight vehicles is described. A scenario for future computing paradigms is presented, and the near-term needs in the computational structures area are outlined.
Danial-Saad, Alexandra; Kuflik, Tsvi; Weiss, Patrice L Tamar; Schreuer, Naomi
2016-01-01
The aim of this study was to evaluate the usability of Ontology Supported Computerized Assistive Technology Recommender (OSCAR), a Clinical Decision Support System (CDSS) for the assistive technology adaptation process, its impact on learning the matching process, and to determine the relationship between its usability and learnability. Two groups of expert and novice clinicians (total, n = 26) took part in this study. Each group filled out system usability scale (SUS) to evaluate OSCAR's usability. The novice group completed a learning questionnaire to assess OSCAR's effect on their ability to learn the matching process. Both groups rated OSCAR's usability as "very good", (M [SUS] = 80.7, SD = 11.6, median = 83.7) by the novices, and (M [SUS] = 81.2, SD = 6.8, median = 81.2) by the experts. The Mann-Whitney results indicated that no significant differences were found between the expert and novice groups in terms of OSCAR's usability. A significant positive correlation existed between the usability of OSCAR and the ability to learn the adaptation process (rs = 0.46, p = 0.04). Usability is an important factor in the acceptance of a system. The successful application of user-centered design principles during the development of OSCAR may serve as a case study that models the significant elements to be considered, theoretically and practically in developing other systems. Implications for Rehabilitation Creating a CDSS with a focus on its usability is an important factor for its acceptance by its users. Successful usability outcomes can impact the learning process of the subject matter in general, and the AT prescription process in particular. The successful application of User-Centered Design principles during the development of OSCAR may serve as a case study that models the significant elements to be considered, theoretically and practically. The study emphasizes the importance of close collaboration between the developers and the end users.
NASA Astrophysics Data System (ADS)
Mishra, S. K.; Rapolu, U.; Ding, D.; Muste, M.; Bennett, D.; Schnoor, J. L.
2011-12-01
Human activity is intricately linked to the quality and quantity of water resources. Although many studies have examined water-human interaction, the complexity of such coupled systems is not well understood largely because of gaps in our knowledge of water-cycle processes which are heavily influenced by socio-economic drivers. Considerable research has been performed to develop an understanding of the impact of local land use decisions on field and catchment processes at an annual basis. Still less is known about the impact of economic and environmental outcomes on decision-making processes at the local and national level. Traditional geographic information management systems lack the ability to support the modeling and analysis of complex spatial processes. New frameworks are needed to track, query, and analyze the massive amounts of data generated by ensembles of simulations produced by multiple models that couple socioeconomic and natural system processes. On this context, we propose to develop an Intelligent Digital Watershed (IDW) which fuses emerging concepts of Digital Watershed (DW). DW is a comprehensive characterization of the eco hydrologic systems based on the best available digital data generated by measurements and simulations models. Prototype IDW in the form of a cyber infrastructure based engineered system will facilitate novel insights into human/environment interactions through multi-disciplinary research focused on watershed-related processes at multiple spatio-temporal scales. In ongoing effort, the prototype IDW is applied to Clear Creek watershed, an agricultural dominating catchment in Iowa, to understand water-human processes relevant to management decisions by farmers regarding agro ecosystems. This paper would also lay out the database design that stores metadata about simulation scenarios, scenario inputs and outputs, and connections among these elements- essentially the database. The paper describes the cyber infrastructure and workflows developed for connecting the IDW modeling tools: ABM, Data-Driven Modeling, and SWAT.
NASA Astrophysics Data System (ADS)
Åström, Anders; Forchheimer, Robert
2012-03-01
Based on the Near-Sensor Image Processing (NSIP) concept and recent results concerning optical flow and Time-to- Impact (TTI) computation with this architecture, we show how these results can be used and extended for robot vision applications. The first case involves estimation of the tilt of an approaching planar surface. The second case concerns the use of two NSIP cameras to estimate absolute distance and speed similar to a stereo-matching system but without the need to do image correlations. Going back to a one-camera system, the third case deals with the problem to estimate the shape of the approaching surface. It is shown that the previously developed TTI method not only gives a very compact solution with respect to hardware complexity, but also surprisingly high performance.
Sedimentation along the Eastern Chenier Plain Coast: Down Drift Impact of a Delta Complex Shift
NASA Technical Reports Server (NTRS)
Huh, Oscar K.; Walker, Nan D.; Moeller, Christopher
2001-01-01
The Mississippi River Chenier Plain is a shore parallel landform (down-drift from the Atchafalaya distributary of the Mississippi River) consisting of an alternating series of transgressive sand-shell ridges and regressive, progradational mudflats. The late 1940s shift of 1/3 of the flow of the Mississippi to the newly developing Atchafalaya delta complex to the west has resulted in injection of the river waters and suspended sediment into the westward flowing currents of the coastal current system. This has reactivated the dormant processes of mud accumulation along this coast. These environmental circumstances have provided the opportunity to: (1) investigate the depositional processes of the prograding, fine grained, mud flat facies of the open Chenier main coast and (2) to test the hypothesis that the impacts of the frequent cold front passages of fall, winter and spring exceed those of the occasional and more localized hurricane in shaping the coast and powering the dominant sedimentary processes. We conducted field investigations with the benefit of multi - scale, time series environmental surveillance by remote sensing systems, including airborne and satellite sensors. These systems provided invaluable new information on areal geomorphic patterns and the behavior of the coastal waters. This is a classic case of weather impacting inner shelf waters and sediments and causing the development of a new landform. It is clear that mud flats of the eastern chenier plain are prograding seaward, as well as progressively growing in a westerly direction.
A multiscale forecasting method for power plant fleet management
NASA Astrophysics Data System (ADS)
Chen, Hongmei
In recent years the electric power industry has been challenged by a high level of uncertainty and volatility brought on by deregulation and globalization. A power producer must minimize the life cycle cost while meeting stringent safety and regulatory requirements and fulfilling customer demand for high reliability. Therefore, to achieve true system excellence, a more sophisticated system-level decision-making process with a more accurate forecasting support system to manage diverse and often widely dispersed generation units as a single, easily scaled and deployed fleet system in order to fully utilize the critical assets of a power producer has been created as a response. The process takes into account the time horizon for each of the major decision actions taken in a power plant and develops methods for information sharing between them. These decisions are highly interrelated and no optimal operation can be achieved without sharing information in the overall process. The process includes a forecasting system to provide information for planning for uncertainty. A new forecasting method is proposed, which utilizes a synergy of several modeling techniques properly combined at different time-scales of the forecasting objects. It can not only take advantages of the abundant historical data but also take into account the impact of pertinent driving forces from the external business environment to achieve more accurate forecasting results. Then block bootstrap is utilized to measure the bias in the estimate of the expected life cycle cost which will actually be needed to drive the business for a power plant in the long run. Finally, scenario analysis is used to provide a composite picture of future developments for decision making or strategic planning. The decision-making process is applied to a typical power producer chosen to represent challenging customer demand during high-demand periods. The process enhances system excellence by providing more accurate market information, evaluating the impact of external business environment, and considering cross-scale interactions between decision actions. Along with this process, system operation strategies, maintenance schedules, and capacity expansion plans that guide the operation of the power plant are optimally identified, and the total life cycle costs are estimated.
ATLAS: Big Data in a Small Package
NASA Astrophysics Data System (ADS)
Denneau, Larry; Tonry, John
2015-08-01
For even small telescope projects, the petabyte scale is now upon us. The Asteroid Terrestrial-impact Last Alert System (ATLAS; Tonry 2011) will robotically survey the entire visible sky from Hawaii multiple times per night to search for near-Earth asteroids (NEAs) on impact trajectories. While the ATLAS optical system is modest by modern astronomical standards -- two 0.5 m F/2.0 telescopes -- each year the ATLAS system will obtain ~103 measurements of 109 astronomical sources to a photometric accuracy of <5%. This ever-growing dataset must be searched in real-time for moving objects then archived for further analysis, and alerts for newly discovered near-Earth NEAs disseminated within tens of minutes from detection. ATLAS's all-sky coverage ensures it will discover many ``rifle shot'' near-misses moving rapidly on the sky as they shoot past the Earth, so the system will need software to automatically detect highly-trailed sources and discriminate them from the thousands of satellites and pieces of space junk that ATLAS will see each night. Additional interrogation will identify interesting phenomena from beyond the solar system occurring over millions of transient sources per night. The data processing and storage requirements for ATLAS demand a ``big data'' approach typical of commercial Internet enterprises. We describe our approach to deploying a nimble, scalable and reliable data processing infrastructure, and promote ATLAS as steppingstone to eventual processing scales in the era of LSST.
Swept Impact Seismic Technique (SIST)
Park, C.B.; Miller, R.D.; Steeples, D.W.; Black, R.A.
1996-01-01
A coded seismic technique is developed that can result in a higher signal-to-noise ratio than a conventional single-pulse method does. The technique is cost-effective and time-efficient and therefore well suited for shallow-reflection surveys where high resolution and cost-effectiveness are critical. A low-power impact source transmits a few to several hundred high-frequency broad-band seismic pulses during several seconds of recording time according to a deterministic coding scheme. The coding scheme consists of a time-encoded impact sequence in which the rate of impact (cycles/s) changes linearly with time providing a broad range of impact rates. Impact times used during the decoding process are recorded on one channel of the seismograph. The coding concept combines the vibroseis swept-frequency and the Mini-Sosie random impact concepts. The swept-frequency concept greatly improves the suppression of correlation noise with much fewer impacts than normally used in the Mini-Sosie technique. The impact concept makes the technique simple and efficient in generating high-resolution seismic data especially in the presence of noise. The transfer function of the impact sequence simulates a low-cut filter with the cutoff frequency the same as the lowest impact rate. This property can be used to attenuate low-frequency ground-roll noise without using an analog low-cut filter or a spatial source (or receiver) array as is necessary with a conventional single-pulse method. Because of the discontinuous coding scheme, the decoding process is accomplished by a "shift-and-stacking" method that is much simpler and quicker than cross-correlation. The simplicity of the coding allows the mechanical design of the source to remain simple. Several different types of mechanical systems could be adapted to generate a linear impact sweep. In addition, the simplicity of the coding also allows the technique to be used with conventional acquisition systems, with only minor modifications.
ERIC Educational Resources Information Center
Perez-Lopez, David; Contero, Manuel
2013-01-01
This paper presents a study to analyze the use of augmented reality (AR) for delivering multimedia content to support the teaching and learning process of the digestive and circulatory systems at the primary school level, and its impact on knowledge retention. Our AR application combines oral explanations and 3D models and animations of anatomical…
United States Air Force Annual Financial Statements
2002-01-01
the Naval Postgraduate School and AFIT. While specific rec- ommendations are still in process, better cooperation, exchange of professors, and a common ...address schedule, technical, pro- grammatic, and performance risk; (3) the impact of capabilities-based requirements on system trade-off decisions; and (4...methodology to consider the impact of “aging” aircraft on the funding requirements . The model resulted in the identification and correct
Marilyn Hof; David W. Lime
1997-01-01
The Visitor Experience and Resource Protection (VERP) framework was developed by the National Park Service to address carrying capacity questions associated with visitation-related resource impacts and impacts to the quality of visitor experiences. The framework can be applied as part of a parkâs general management planning process (general management plans, GMPs), to...
Impact on TRMM Products of Conversion to Linux
NASA Technical Reports Server (NTRS)
Stocker, Erich Franz; Kwiatkowski, John
2008-01-01
In June 2008, TRMM data processing will be assumed by the Precipitation Processing System (PPS). This change will also mean a change in the hardware production environment from an SGI 32 bit IRIX processing environment to a Linux (Beowulf) 64 bit processing environment. This change of platform and operating system addressing (32 to 64) has some influence on data values in the TRMM data products. This paper will describe the transition architecture and scheduling. It will also provide an analysis of what the nature of the product differences will be. It will demonstrate that the differences are not scientifically significant and are generally not visible. However, they are not always identical with those which the SGI would produce.
Impact of heating method on the flocculation process using thermosensitive polymer.
Lemanowicz, Marcin; Kuźnik, Wojciech; Gibas, Mirosław; Dzido, Grzegorz; Gierczycki, Andrzej
2012-09-01
The impact of suspension heating method on the flocculation process using thermosensitive polymer is reported in this paper. In experiments a model suspension of chalk in RO water (purified by Reverse Osmosis) was destabilized using a copolymer of N-isopropylacrylamide (NIPAM) and cationic diallyldimethyl ammonium chloride (DADMAC). The measurements were made using a laboratory setup consisting of a mixing tank with four baffles, Rushton turbine, laser particle sizer Analysette 22 by Fritsch and a system of pump and thermostating devices. Two different modes of heating were used. In the first case the temperature of the system was gently raised above the Lower Critical Solution Temperature (LCST) using an electrical heater placed inside the tank, while in the second case the system temperature was rapidly raised by an injection of hot water directly into the tank. It was proven that heating method as well as the polymer concentration was crucial to the shape and size of created flocs. Copyright © 2012 Elsevier Ltd. All rights reserved.
The Impact of New Electronic Imaging Systems on U.S. Air Force Visual Information Professionals.
1993-06-01
modernizing the functions left in their control. This process started by converting combat camera assets from 16mm film to Betacam "camcorder’ systems. Combat...upgraded to computer-controlled editing with 1-inch helical machines or component-video Betacam equipment. For the base visual information centers, new
The Impact of a Flexible Assessment System on Students' Motivation, Performance and Attitude
ERIC Educational Resources Information Center
Pacharn, Parunchana; Bay, Darlene; Felton, Sandra
2013-01-01
We examine a flexible assessment system that allows students to determine the weights allocated to each course component and to re-allocate the weights in response to achieved scores. The flexibility is intended to encourage students' participation in the learning process, thereby promoting self-regulated learning skills. We compare this…
Case Studies of Auditing in a Computer-Based Systems Environment.
ERIC Educational Resources Information Center
General Accounting Office, Washington, DC.
In response to a growing need for effective and efficient means for auditing computer-based systems, a number of studies dealing primarily with batch-processing type computer operations have been conducted to explore the impact of computers on auditing activities in the Federal Government. This report first presents some statistical data on…
Impact of CALS on Electronic Publishing Systems and Users.
ERIC Educational Resources Information Center
Beazley, William G.
1990-01-01
The U.S. Department of Defense has begun using its buying power to enforce standards on the vendors and contractors of automatic data processing hardware and software. An example of this, the Computer-Aided Acquisition and Logistic Support (CALS) program, is described, and how it will affect electronic publishing systems is discussed. (five…
Process level improvements in the CMAQ system have been made to WRF meteorology, national ammonia emission profiles, and CMAQ ammonia air-surface exchange. An incremental study was conducted to quantify the impact of individual and combined changes on modeled inorganic depositio...
Making decisions to increase community or regional sustainability requires a comprehensive understanding of the linkages between environmental, social, and economic systems. We present a visualization tool that can improve decision processes by enhancing understanding of system c...
Instructional Videos for Supporting Older Adults Who Use Interactive Systems
ERIC Educational Resources Information Center
Gramss, Denise; Struve, Doreen
2009-01-01
The study reported in this paper investigated the usefulness of different instructions for guiding inexperienced older adults through interactive systems. It was designed to compare different media in relation to their social as well as their motivational impact on the elderly during the learning process. Precisely, the video was compared with…
NASA Technical Reports Server (NTRS)
Sharpe, M. H.; Roberts, M. L.; Hill, W. E.; Jackson, C. H.
1983-01-01
Water blasting system under development removes hard, dense, extraneous material from surfaces. High pressure pump forces water at supersonic speed through nozzle manipulated by robot. Impact of water blasts away unwanted material from workpiece rotated on air bearing turntable. Designed for removing thermal-protection material, system is adaptable to such industrial processes as cleaning iron or steel castings.
A probabilistic methodology for radar cross section prediction in conceptual aircraft design
NASA Astrophysics Data System (ADS)
Hines, Nathan Robert
System effectiveness has increasingly become the prime metric for the evaluation of military aircraft. As such, it is the decision maker's/designer's goal to maximize system effectiveness. Industry and government research documents indicate that all future military aircraft will incorporate signature reduction as an attempt to improve system effectiveness and reduce the cost of attrition. Today's operating environments demand low observable aircraft which are able to reliably take out valuable, time critical targets. Thus it is desirable to be able to design vehicles that are balanced for increased effectiveness. Previous studies have shown that shaping of the vehicle is one of the most important contributors to radar cross section, a measure of radar signature, and must be considered from the very beginning of the design process. Radar cross section estimation should be incorporated into conceptual design to develop more capable systems. This research strives to meet these needs by developing a conceptual design tool that predicts radar cross section for parametric geometries. This tool predicts the absolute radar cross section of the vehicle as well as the impact of geometry changes, allowing for the simultaneous tradeoff of the aerodynamic, performance, and cost characteristics of the vehicle with the radar cross section. Furthermore, this tool can be linked to a campaign theater analysis code to demonstrate the changes in system and system of system effectiveness due to changes in aircraft geometry. A general methodology was developed and implemented and sample computer codes applied to prototype the proposed process. Studies utilizing this radar cross section tool were subsequently performed to demonstrate the capabilities of this method and show the impact that various inputs have on the outputs of these models. The F/A-18 aircraft configuration was chosen as a case study vehicle to perform a design space exercise and to investigate the relative impact of shaping parameters on radar cross section. Finally, two unique low observable configurations were analyzed to examine the impact of shaping for stealthiness.
Heritage and Advanced Technology Systems Engineering Lessons Learned from NASA Deep Space Missions
NASA Technical Reports Server (NTRS)
Barley, Bryan; Newhouse, Marilyn; Clardy, Dennon
2010-01-01
In the design and development of complex spacecraft missions, project teams frequently assume the use of advanced technology systems or heritage systems to enable a mission or reduce the overall mission risk and cost. As projects proceed through the development life cycle, increasingly detailed knowledge of the advanced and heritage systems within the spacecraft and mission environment identifies unanticipated technical issues. Resolving these issues often results in cost overruns and schedule impacts. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for 5 missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that optimistic hardware/software inheritance and technology readiness assumptions caused cost and schedule growth for four of the five missions studied. The cost and schedule growth was not found to result from technical hurdles requiring significant technology development. The projects institutional inheritance and technology readiness processes appear to adequately assess technology viability and prevent technical issues from impacting the final mission success. However, the processes do not appear to identify critical issues early enough in the design cycle to ensure project schedules and estimated costs address the inherent risks. In general, the overruns were traceable to: an inadequate understanding of the heritage system s behavior within the proposed spacecraft design and mission environment; an insufficient level of development experience with the heritage system; or an inadequate scoping of the system-wide impacts necessary to implement an advanced technology for space flight applications. The paper summarizes the study's lessons learned in more detail and offers suggestions for improving the project's ability to identify and manage the technology and heritage risks inherent in the design solution.
Collisional Processing of Comet and Asteroid Surfaces: Velocity Effects on Absorption Spectra
NASA Technical Reports Server (NTRS)
Lederer, S. M.; Jensen, E. A.; Wooden, D. H.; Lindsay, S. S.; Smith, D. C.; Nakamura-Messenger, K.; Keller, L. P.; Cintala, M. J.; Zolensky, M. E.
2012-01-01
A new paradigm has emerged where 3.9 Gyr ago, a violent reshuffling reshaped the placement of small bodies in the solar system (the Nice model). Surface properties of these objects may have been affected by collisions caused by this event, and by collisions with other small bodies since their emplacement. These impacts affect the spectrographic observations of these bodies today. Shock effects (e.g., planar dislocations) manifest in minerals allowing astronomers to better understand geophysical impact processing that has occurred on small bodies. At the Experimental Impact Laboratory at NASA Johnson Space Center, we have impacted forsterite and enstatite across a range of velocities. We find that the amount of spectral variation, absorption wavelength, and full width half maximum of the absorbance peaks vary non-linearly with the velocity of the impact. We also find that the spectral variation increases with decreasing crystal size (single solid rock versus granular). Future analyses include quantification of the spectral changes with different impactor densities, temperature, and additional impact velocities. Results on diopside, fayalite, and magnesite can be found in Lederer et al., this meeting.
Ritter, Alison; Lancaster, Kari
2013-01-01
Assessing the extent to which drug research influences and impacts upon policy decision-making needs to go beyond bibliometric analysis of academic citations. Policy makers do not necessarily access the academic literature, and policy processes are largely iterative and rely on interactions and relationships. Furthermore, media representation of research contributes to public opinion and can influence policy uptake. In this context, assessing research influence involves examining the extent to which a research project is taken up in policy documents, used within policy processes, and disseminated via the media. This three component approach is demonstrated using a case example of two ongoing illicit drug monitoring systems: the Illicit Drug Reporting System (IDRS) and the Ecstasy and related Drugs Reporting System (EDRS). Systematic searches for reference to the IDRS and/or EDRS within policy documents, across multiple policy processes (such as parliamentary inquiries) and in the media, in conjunction with analysis of the types of mentions in these three sources, enables an analysis of policy influence. The context for the research is also described as the foundation for the approach. The application of the three component approach to the case study demonstrates a practical and systematic retrospective approach to measure drug research influence. For example, the ways in which the IDRS and EDRS were mentioned in policy documents demonstrated research utilisation. Policy processes were inclusive of IDRS and EDRS findings, while the media analysis revealed only a small contribution in the context of wider media reporting. Consistent with theories of policy processes, assessing the extent of research influence requires a systematic analysis of policy documents and processes. Development of such analyses and associated methods will better equip researchers to evaluate the impact of research. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olalla, Carlos; Maksimovic, Dragan; Deline, Chris
Here, this paper quantifies the impact of distributed power electronics in photovoltaic (PV) systems in terms of end-of-life energy-capture performance and reliability. The analysis is based on simulations of PV installations over system lifetime at various degradation rates. It is shown how module-level or submodule-level power converters can mitigate variations in cell degradation over time, effectively increasing the system lifespan by 5-10 years compared with the nominal 25-year lifetime. An important aspect typically overlooked when characterizing such improvements is the reliability of distributed power electronics, as power converter failures may not only diminish energy yield improvements but also adversely affectmore » the overall system operation. Failure models are developed, and power electronics reliability is taken into account in this work, in order to provide a more comprehensive view of the opportunities and limitations offered by distributed power electronics in PV systems. Lastly, it is shown how a differential power-processing approach achieves the best mismatch mitigation performance and the least susceptibility to converter faults.« less
Olalla, Carlos; Maksimovic, Dragan; Deline, Chris; ...
2017-04-26
Here, this paper quantifies the impact of distributed power electronics in photovoltaic (PV) systems in terms of end-of-life energy-capture performance and reliability. The analysis is based on simulations of PV installations over system lifetime at various degradation rates. It is shown how module-level or submodule-level power converters can mitigate variations in cell degradation over time, effectively increasing the system lifespan by 5-10 years compared with the nominal 25-year lifetime. An important aspect typically overlooked when characterizing such improvements is the reliability of distributed power electronics, as power converter failures may not only diminish energy yield improvements but also adversely affectmore » the overall system operation. Failure models are developed, and power electronics reliability is taken into account in this work, in order to provide a more comprehensive view of the opportunities and limitations offered by distributed power electronics in PV systems. Lastly, it is shown how a differential power-processing approach achieves the best mismatch mitigation performance and the least susceptibility to converter faults.« less
Ageing and the immune system: focus on macrophages.
Linehan, E; Fitzgerald, D C
2015-03-01
A fully functioning immune system is essential in order to maintain good health. However, the immune system deteriorates with advancing age, and this contributes to increased susceptibility to infection, autoimmunity, and cancer in the older population. Progress has been made in identifying age-related defects in the adaptive immune system. In contrast, relatively little research has been carried out on the impact of ageing on the innate immune response. This area requires further research as the innate immune system plays a crucial role in protection against infection and represents a first line of defence. Macrophages are central effector cells of the innate immune system and have many diverse functions. As a result, age-related impairments in macrophage function are likely to have important consequences for the health of the older population. It has been reported that ageing in macrophages impacts on many processes including toll-like receptor signalling, polarisation, phagocytosis, and wound repair. A detailed understanding of the impact of ageing on macrophages is required in order to develop therapeutics that will boost immune responses in the older population.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, W.A.
1994-07-01
The environmental impact statement (EIS) system of the Philippines is reviewed, identifying progress made in its effective implementation since 1986. Improvement in coverage is noted and real commitment to good environmental impact assessment (EIA) practice is found in those responsible for the EIS system. Project proponents show a modest acceptance of the system. Major problems remaining are: (1) the EIS system is seen as a bureaucratic requirement needed to obtain project approvals; (2) political interference determines the outcome of some environmental reviews; (3) questionable practices by public servants serve to discredit the system; and (4) the treatment of projects inmore » environmentally critical areas is less than satisfactory. Based on the principle that it is essential to establish a credible process seen to work effectively by the public, politicians, the government bureaucracy, and proponents, suggestions for improvement are made. They deal with the treatment of EISs for projects already under construction, EIA training courses, and simple adjustments to the EIS system to focus it on the most important projects.« less
Cheng, Xu-Dong; Feng, Liang; Zhang, Ming-Hua; Gu, Jun-Fei; Jia, Xiao-Bin
2014-10-01
The purpose of the secondary exploitation of Chinese medicine is to improve the quality of Chinese medicine products, enhance core competitiveness, for better use in clinical practice, and more effectively solve the patient suffering. Herbs, extraction, separation, refreshing, preparation and quality control are all involved in the industry promotion of Chinese medicine secondary exploitation of industrial production. The Chinese medicine quality improvement and industry promotion could be realized with the whole process of process optimization, quality control, overall processes improvement. Based on the "component structure theory", "multi-dimensional structure & process dynamic quality control system" and systematic and holistic character of Chinese medicine, impacts of whole process were discussed. Technology systems of Chinese medicine industry promotion was built to provide theoretical basis for improving the quality and efficacy of the secondary development of traditional Chinese medicine products.
Kröger, G; Pietsch, J; Ufermann, K
1999-01-01
Starting from an ecological perspective of urban-industrial areas, environmental accounting is used to analyse and to evaluate which environmental impacts are the result of communal activities (e.g. the results of different kinds of water supply systems). Therefore, the anthropogenic fluxes, the changing quality of areas as well as the processes between the environmental fields are taken into account. The approach is based on methodical elements of te Life Cycle Analysis and the Environmental Impact Assessment. Looking at the 'urban systems' within the communal activities, 'ecological modelling' gives us a new and fuller picture of the spatial and temporal character of urban metabolism. The approach supports the perception of cumulative effects and the postponement of environmental problems and opens new horizons for process-oriented environmental planning within the community. Greater efficiency and a decrease in costs can be arrived at by leaving 'end of the pipe' strategies; opportunities for a better planning process and measures for different individuals and organisations can be drawn up. A data base which acts as a 'support system' implements the computer-aided approach to environmental accounting.
Novaes, Hillegonda Maria Dutilh; Elias, Flávia Tavares Silva
2013-11-01
Policies for scientific development and knowledge production in health have increased in recent decades. In Brazil, incentives for research, development, and innovation have been part of the National Health Act since 1990, and science and technology policies for health, including health technology assessment (HTA), have been implemented since 1994, as in many other countries. The emphasis is now on impact evaluation of HTA policies in the incorporation of technologies by health services and systems. The article presents a case study of HTA utilization in decision-making processes in the Brazilian Ministry of Health, analyzing participation by the Department of Science and Technology (DECIT), responsible for the production of assessments used in the Commission on Technology Incorporation (CITEC) of the Ministry of Health from 2008 to 2010. CITEC used 103 assessments in its decisions during this period, of which DECIT produced 80%. Nearly all were literature reviews on therapeutic technologies. An increase in knowledge production was observed. A methodological and political learning process appears to have occurred in the use of HTA, but its impact on Brazilian Unified National Health System remains unclear.
Two-phase nanofluid-based thermal management systems for LED cooling
NASA Astrophysics Data System (ADS)
Kiseev, V.; Aminev, D.; Sazhin, O.
2017-04-01
This research focuses on two-phase thermal control systems, namely loop thermosyphons (LTS) filled with nanofluids, and their use as LED cooling devices. The behavior of the fluid in the thermosyphons and the mechanisms explaining the possible impact of nanoparticles on thermal properties of the working fluid as well as the processes in the LTS are addressed. Nanoparticle distribution in the nanofluid, methods of preparation of nanofluids and nanofluid degradation processes (aging) are studied. The results are obtained from a set of experiments on thermosyphon characteristics depending on the thermophysical properties of the working fluid, filling volume, geometry and materials of radiators. The impact of nanofluids on heat-transfer process occurring inside thermosyphon is also studied. Results indicate strong influence of nanoparticles on the thermal properties of the thermosyphons, with up to 20% increase of the heat transfer coefficient. Additionally, a method of calculating the hydrodynamic limit of the LTS is proposed, which allows for estimation of the maximum heat flux that can be transferred by means of the LTS. Possible ways for further improvement of the model are proposed. The nanofluids are shown to be effective means of enhancing two-phase systems of thermal management.
Coercive and legitimate authority impact tax honesty: evidence from behavioral and ERP experiments.
Gangl, Katharina; Pfabigan, Daniela M; Lamm, Claus; Kirchler, Erich; Hofmann, Eva
2017-07-01
Cooperation in social systems such as tax honesty is of central importance in our modern societies. However, we know little about cognitive and neural processes driving decisions to evade or pay taxes. This study focuses on the impact of perceived tax authority and examines the mental chronometry mirrored in ERP data allowing a deeper understanding about why humans cooperate in tax systems. We experimentally manipulated coercive and legitimate authority and studied its impact on cooperation and underlying cognitive (experiment 1, 2) and neuronal (experiment 2) processes. Experiment 1 showed that in a condition of coercive authority, tax payments are lower, decisions are faster and participants report more rational reasoning and enforced compliance, however, less voluntary cooperation than in a condition of legitimate authority. Experiment 2 confirmed most results, but did not find a difference in payments or self-reported rational reasoning. Moreover, legitimate authority led to heightened cognitive control (expressed by increased MFN amplitudes) and disrupted attention processing (expressed by decreased P300 amplitudes) compared to coercive authority. To conclude, the neuronal data surprisingly revealed that legitimate authority may led to higher decision conflict and thus to higher cognitive demands in tax decisions than coercive authority. © The Author (2017). Published by Oxford University Press.
How Does Learning Impact Development in Infancy? The Case of Perceptual Organization
ERIC Educational Resources Information Center
Bhatt, Ramesh S.; Quinn, Paul C.
2011-01-01
Pattern perception and organization are critical functions of the visual cognition system. Many organizational processes are available early in life, such that infants as young 3 months of age are able to readily utilize a variety of cues to organize visual patterns. However, other processes are not readily evident in young infants, and their…
The Impact of Storage on Processing: How Is Information Maintained in Working Memory?
ERIC Educational Resources Information Center
Vergauwe, Evie; Camos, Valérie; Barrouillet, Pierre
2014-01-01
Working memory is typically defined as a system devoted to the simultaneous maintenance and processing of information. However, the interplay between these 2 functions is still a matter of debate in the literature, with views ranging from complete independence to complete dependence. The time-based resource-sharing model assumes that a central…
ERIC Educational Resources Information Center
Tsatsanis, Katherine D.; Noens, Ilse L. J.; Illmann, Cornelia L.; Pauls, David L.; Volkmar, Fred R.; Schultz, Robert T.; Klin, Ami
2011-01-01
The contributions of cognitive style and organization to processing and recalling a complex novel stimulus were examined by comparing the Rey Osterrieth Complex Figure (ROCF) test performance of children, adolescents, and adults with ASD to clinical controls (CC) and non-impaired controls (NC) using the "Developmental Scoring System."…
Choosing Segregation or Integration? The Extent and Effects of Ethnic Segregation in Dutch Cities
ERIC Educational Resources Information Center
Karsten, Sjoerd; Felix, Charles; Ledoux, Guuske; Meijnen, Wim; Roeleveld, Jaap; Van Schooten, Erik
2006-01-01
Across Europe, urban education systems are struggling with the process of integration of immigrants in schools. The process of inclusion and exclusion in European cities shows many similarities with earlier experiences in U.S. cities. This article explores the most important aspects of this new urban phenomenon and its impact on urban school…
The Impact on Stakeholder Confidence of Increased Transparency in the Examination Assessment Process
ERIC Educational Resources Information Center
Bamber, Matthew
2015-01-01
A group of postgraduate accounting and finance students were asked to participate in a three-phase exercise: sit an unseen past examination question; mark a fully anonymised previous student solution (exemplar); and then mark their own work. The marking process was facilitated by explaining and discussing the marking guide, assessment systems and…
Validation, Edits, and Application Processing Phase II and Error-Prone Model Report.
ERIC Educational Resources Information Center
Gray, Susan; And Others
The impact of quality assurance procedures on the correct award of Basic Educational Opportunity Grants (BEOGs) for 1979-1980 was assessed, and a model for detecting error-prone applications early in processing was developed. The Bureau of Student Financial Aid introduced new comments into the edit system in 1979 and expanded the pre-established…
Application of Advanced Process Control techniques to a pusher type reheating furnace
NASA Astrophysics Data System (ADS)
Zanoli, S. M.; Pepe, C.; Barboni, L.
2015-11-01
In this paper an Advanced Process Control system aimed at controlling and optimizing a pusher type reheating furnace located in an Italian steel plant is proposed. The designed controller replaced the previous control system, based on PID controllers manually conducted by process operators. A two-layer Model Predictive Control architecture has been adopted that, exploiting a chemical, physical and economic modelling of the process, overcomes the limitations of plant operators’ mental model and knowledge. In addition, an ad hoc decoupling strategy has been implemented, allowing the selection of the manipulated variables to be used for the control of each single process variable. Finally, in order to improve the system flexibility and resilience, the controller has been equipped with a supervision module. A profitable trade-off between conflicting specifications, e.g. safety, quality and production constraints, energy saving and pollution impact, has been guaranteed. Simulation tests and real plant results demonstrated the soundness and the reliability of the proposed system.
The Impact of the Brain-Derived Neurotrophic Factor Gene on Trauma and Spatial Processing.
Miller, Jessica K; McDougall, Siné; Thomas, Sarah; Wiener, Jan
2017-11-27
The influence of genes and the environment on the development of Post-Traumatic Stress Disorder (PTSD) continues to motivate neuropsychological research, with one consistent focus being the Brain-Derived Neurotrophic Factor (BDNF) gene, given its impact on the integrity of the hippocampal memory system. Research into human navigation also considers the BDNF gene in relation to hippocampal dependent spatial processing. This speculative paper brings together trauma and spatial processing for the first time and presents exploratory research into their interactions with BDNF. We propose that quantifying the impact of BDNF on trauma and spatial processing is critical and may well explain individual differences in clinical trauma treatment outcomes and in navigation performance. Research has already shown that the BDNF gene influences PTSD severity and prevalence as well as navigation behaviour. However, more data are required to demonstrate the precise hippocampal dependent processing mechanisms behind these influences in different populations and environmental conditions. This paper provides insight from recent studies and calls for further research into the relationship between allocentric processing, trauma processing and BDNF. We argue that research into these neural mechanisms could transform PTSD clinical practice and professional support for individuals in trauma-exposing occupations such as emergency response, law enforcement and the military.
NASA Astrophysics Data System (ADS)
Spencer, K. L.; Harvey, G. L.
2012-06-01
Coastal saltmarsh ecosystems occupy only a small percentage of Earth's land surface, yet contribute a wide range of ecosystem services that have significant global economic and societal value. These environments currently face significant challenges associated with climate change, sea level rise, development and water quality deterioration and are consequently the focus of a range of management schemes. Increasingly, soft engineering techniques such as managed realignment (MR) are being employed to restore and recreate these environments, driven primarily by the need for habitat (re)creation and sustainable coastal flood defence. Such restoration schemes also have the potential to provide additional ecosystem services including climate regulation and waste processing. However, these sites have frequently been physically impacted by their previous land use and there is a lack of understanding of how this 'disturbance' impacts the delivery of ecosystem services or of the complex linkages between ecological, physical and biogeochemical processes in restored systems. Through the exploration of current data this paper determines that hydrological, geomorphological and hydrodynamic functioning of restored sites may be significantly impaired with respects to natural 'undisturbed' systems and that links between morphology, sediment structure, hydrology and solute transfer are poorly understood. This has consequences for the delivery of seeds, the provision of abiotic conditions suitable for plant growth, the development of microhabitats and the cycling of nutrients/contaminants and may impact the delivery of ecosystem services including biodiversity, climate regulation and waste processing. This calls for a change in our approach to research in these environments with a need for integrated, interdisciplinary studies over a range of spatial and temporal scales incorporating both intensive and extensive research design.
Schoen, Mary E; Xue, Xiaobo; Wood, Alison; Hawkins, Troy R; Garland, Jay; Ashbolt, Nicholas J
2017-02-01
We compared water and sanitation system options for a coastal community across selected sustainability metrics, including environmental impact (i.e., life cycle eutrophication potential, energy consumption, and global warming potential), equivalent annual cost, and local human health impact. We computed normalized metric scores, which we used to discuss the options' strengths and weaknesses, and conducted sensitivity analysis of the scores to changes in variable and uncertain input parameters. The alternative systems, which combined centralized drinking water with sanitation services based on the concepts of energy and nutrient recovery as well as on-site water reuse, had reduced environmental and local human health impacts and costs than the conventional, centralized option. Of the selected sustainability metrics, the greatest advantages of the alternative community water systems (compared to the conventional system) were in terms of local human health impact and eutrophication potential, despite large, outstanding uncertainties. Of the alternative options, the systems with on-site water reuse and energy recovery technologies had the least local human health impact; however, the cost of these options was highly variable and the energy consumption was comparable to on-site alternatives without water reuse or energy recovery, due to on-site reuse treatment. Future work should aim to reduce the uncertainty in the energy recovery process and explore the health risks associated with less costly, on-site water treatment options. Copyright © 2016 Elsevier Ltd. All rights reserved.
An Imaging System for Satellite Hypervelocity Impact Debris Characterization
NASA Astrophysics Data System (ADS)
Moraguez, M.; Liou, J.; Fitz-Coy, N.; Patankar, K.; Cowardin, H.
This paper discusses the design of an automated imaging system for size characterization of debris produced by the DebriSat hypervelocity impact test. The goal of the DebriSat project is to update satellite breakup models. A representative LEO satellite, DebriSat, was constructed and subjected to a hypervelocity impact test. The impact produced an estimated 85,000 debris fragments. The size distribution of these fragments is required to update the current satellite breakup models. An automated imaging system was developed for the size characterization of the debris fragments. The system uses images taken from various azimuth and elevation angles around the object to produce a 3D representation of the fragment via a space carving algorithm. The system consists of N point-and-shoot cameras attached to a rigid support structure that defines the elevation angle for each camera. The debris fragment is placed on a turntable that is incrementally rotated to desired azimuth angles. The number of images acquired can be varied based on the desired resolution. Appropriate background and lighting is used for ease of object detection. The system calibration and image acquisition process are automated to result in push-button operations. However, for quality assurance reasons, the system is semi-autonomous by design to ensure operator involvement. This paper describes the imaging system setup, calibration procedure, repeatability analysis, and the results of the debris characterization.
An Imaging System for Satellite Hypervelocity Impact Debris Characterization
NASA Technical Reports Server (NTRS)
Moraguez, Matthew; Patankar, Kunal; Fitz-Coy, Norman; Liou, J.-C.; Cowardin, Heather
2015-01-01
This paper discusses the design of an automated imaging system for size characterization of debris produced by the DebriSat hypervelocity impact test. The goal of the DebriSat project is to update satellite breakup models. A representative LEO satellite, DebriSat, was constructed and subjected to a hypervelocity impact test. The impact produced an estimated 85,000 debris fragments. The size distribution of these fragments is required to update the current satellite breakup models. An automated imaging system was developed for the size characterization of the debris fragments. The system uses images taken from various azimuth and elevation angles around the object to produce a 3D representation of the fragment via a space carving algorithm. The system consists of N point-and-shoot cameras attached to a rigid support structure that defines the elevation angle for each camera. The debris fragment is placed on a turntable that is incrementally rotated to desired azimuth angles. The number of images acquired can be varied based on the desired resolution. Appropriate background and lighting is used for ease of object detection. The system calibration and image acquisition process are automated to result in push-button operations. However, for quality assurance reasons, the system is semi-autonomous by design to ensure operator involvement. This paper describes the imaging system setup, calibration procedure, repeatability analysis, and the results of the debris characterization.
Can nanotechnology deliver the promised benefits without negatively impacting soil microbial life?
Dimkpa, Christian O
2014-09-01
Nanotechnology exploits the enhanced reactivity of materials at the atomic scale to improve various applications for humankind. In agriculture, potential nanotechnology applications include crop protection and fertilization. However, such benefits could come with risks for the environment: non-target plants, plant-beneficial soil microbes and other life forms could be impacted if nanoparticles (nanomaterials) contaminate the environment. This review evaluates the impact of the major metallic nanoparticles (Ag, ZnO, CuO, CeO2 , TiO2 , and FeO-based nanoparticles) on soil microbes involved in agricultural processes. The current literature indicate that in addition to population and organismal-scale effects on microbes, other subtle impacts of nanoparticles are seen in the nitrogen cycle, soil enzyme activities, and processes involved in iron metabolism, phytohormone, and antibiotic production. These effects are negative or positive, the outcome being dependent on specific nanoparticles. Collectively, published results suggest that nanotechnology portends considerable, many negative, implications for soil microbes and, thus, agricultural processes that are microbially driven. Nonetheless, the potential of plant and soil microbial processes to mitigate the bioreactivity of nanoparticles also are observed. Whereas the roots of most terrestrial plants are associated with microbes, studies of nanoparticle interactions with plants and microbes are generally conducted separately. The few studies in actual microbe-plant systems found effects of nanoparticles on the functioning of arbuscular mycorrhizal fungi, nitrogen fixation, as well as on the production of microbial siderophores in the plant rhizosphere. It is suggested that a better understanding of the agro-ecological ramifications of nanoparticles would require more in-depth interactive studies in combined plant-microbe-nanoparticle systems. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Heat pipe heat transport system for the Stirling Space Power Converter (SSPC)
NASA Technical Reports Server (NTRS)
Alger, Donald L.
1992-01-01
Life issues relating to a sodium heat pipe heat transport system are described. The heat pipe system provides heat, at a temperature of 1050 K, to a 50 kWe Stirling engine/linear alternator power converter called the Stirling Space Power Converter (SSPC). The converter is being developed under a National Aeronautics and Space Administration program. Since corrosion of heat pipe materials in contact with sodium can impact the life of the heat pipe, a literature review of sodium corrosion processes was performed. It was found that the impurity reactions, primarily oxygen, and dissolution of alloy elements were the two corrosion process likely to be operative in the heat pipe. Approaches that are being taken to minimize these corrosion processes are discussed.
NASA Astrophysics Data System (ADS)
Yaeger, Mary A.; Housh, Mashor; Cai, Ximing; Sivapalan, Murugesu
2014-12-01
To better address the dynamic interactions between human and hydrologic systems, we develop an integrated modeling framework that employs a System of Systems optimization model to emulate human development decisions which are then incorporated into a watershed model to estimate the resulting hydrologic impacts. The two models are run interactively to simulate the coevolution of coupled human-nature systems, such that reciprocal feedbacks between hydrologic processes and human decisions (i.e., human impacts on critical low flows and hydrologic impacts on human decisions on land and water use) can be assessed. The framework is applied to a Midwestern U.S. agricultural watershed, in the context of proposed biofuels development. This operation is illustrated by projecting three possible future coevolution trajectories, two of which use dedicated biofuel crops to reduce annual watershed nitrate export while meeting ethanol production targets. Imposition of a primary external driver (biofuel mandate) combined with different secondary drivers (water quality targets) results in highly nonlinear and multiscale responses of both the human and hydrologic systems, including multiple tradeoffs, impacting the future coevolution of the system in complex, heterogeneous ways. The strength of the hydrologic response is sensitive to the magnitude of the secondary driver; 45% nitrate reduction target leads to noticeable impacts at the outlet, while a 30% reduction leads to noticeable impacts that are mainly local. The local responses are conditioned by previous human-hydrologic modifications and their spatial relationship to the new biofuel development, highlighting the importance of past coevolutionary history in predicting future trajectories of change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yu-Hsin; Yan, Lujiang; Zhang, Alex Ce
2015-08-03
Signal amplification, performed by transistor amplifiers with its merit rated by the efficiency and noise characteristics, is ubiquitous in all electronic systems. Because of transistor thermal noise, an intrinsic signal amplification mechanism, impact ionization was sought after to complement the limits of transistor amplifiers. However, due to the high operation voltage (30-200 V typically), low power efficiency, limited scalability, and, above all, rapidly increasing excess noise with amplification factor, impact ionization has been out of favor for most electronic systems except for a few applications such as avalanche photodetectors and single-photon Geiger detectors. Here, we report an internal signal amplification mechanismmore » based on the principle of the phonon-assisted cycling excitation process (CEP). Si devices using this concept show ultrahigh gain, low operation voltage, CMOS compatibility, and, above all, quantum limit noise performance that is 30 times lower than devices using impact ionization. Established on a unique physical effect of attractive properties, CEP-based devices can potentially revolutionize the fields of semiconductor electronics.« less
Menzies, Kevin
2014-08-13
The growth in simulation capability over the past 20 years has led to remarkable changes in the design process for gas turbines. The availability of relatively cheap computational power coupled to improvements in numerical methods and physical modelling in simulation codes have enabled the development of aircraft propulsion systems that are more powerful and yet more efficient than ever before. However, the design challenges are correspondingly greater, especially to reduce environmental impact. The simulation requirements to achieve a reduced environmental impact are described along with the implications of continued growth in available computational power. It is concluded that achieving the environmental goals will demand large-scale multi-disciplinary simulations requiring significantly increased computational power, to enable optimization of the airframe and propulsion system over the entire operational envelope. However even with massive parallelization, the limits imposed by communications latency will constrain the time required to achieve a solution, and therefore the position of such large-scale calculations in the industrial design process. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Monaci, Linda; Brohée, Marcel; Tregoat, Virginie; van Hengel, Arjon
2011-07-15
Milk allergens are common allergens occurring in foods, therefore raising concern in allergic consumers. Enzyme-linked immunosorbent assay (ELISA) is, to date, the method of choice for the detection of food allergens by the food industry although, the performance of ELISA might be compromised when severe food processing techniques are applied to allergen-containing foods. In this paper we investigated the influence of baking time on the detection of milk allergens by using commercial ELISA kits. Baked cookies were chosen as a model food system and experiments were set up to study the impact of spiking a matrix food either before, or after the baking process. Results revealed clear analytical differences between both spiking methods, which stress the importance of choosing appropriate spiking methodologies for method validation purposes. Finally, since the narrow dynamic range of quantification of ELISA implies that dilution of samples is required, the impact of sample dilution on the quantitative results was investigated. All parameters investigated were shown to impact milk allergen detection by means of ELISA. Copyright © 2011 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Kershner, Lois M.
The amount of change resulting from the implementation of the Bibliographic Automation of Large Library Operations using a Time-sharing System (BALLOTS) is analyzed, in terms of (1) physical room arrangement, (2) work procedure, and (3) organizational structure. Also considered is the factor of amount of time the new system has been in use.…