Corpus-Aided Business English Collocation Pedagogy: An Empirical Study in Chinese EFL Learners
ERIC Educational Resources Information Center
Chen, Lidan
2017-01-01
This study reports an empirical study of an explicit instruction of corpus-aided Business English collocations and verifies its effectiveness in improving learners' collocation awareness and learner autonomy, as a result of which is significant improvement of learners' collocation competence. An eight-week instruction in keywords' collocations,…
Collocation and Pattern Recognition Effects on System Failure Remediation
NASA Technical Reports Server (NTRS)
Trujillo, Anna C.; Press, Hayes N.
2007-01-01
Previous research found that operators prefer to have status, alerts, and controls located on the same screen. Unfortunately, that research was done with displays that were not designed specifically for collocation. In this experiment, twelve subjects evaluated two displays specifically designed for collocating system information against a baseline that consisted of dial status displays, a separate alert area, and a controls panel. These displays differed in the amount of collocation, pattern matching, and parameter movement compared to display size. During the data runs, subjects kept a randomly moving target centered on a display using a left-handed joystick and they scanned system displays to find a problem in order to correct it using the provided checklist. Results indicate that large parameter movement aided detection and then pattern recognition is needed for diagnosis but the collocated displays centralized all the information subjects needed, which reduced workload. Therefore, the collocated display with large parameter movement may be an acceptable display after familiarization because of the possible pattern recognition developed with training and its use.
47 CFR 51.323 - Standards for physical collocation and virtual collocation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... accessible by both the incumbent LEC and the collocating telecommunications carrier, at which the fiber optic... technically feasible, the incumbent LEC shall provide the connection using copper, dark fiber, lit fiber, or... that the incumbent LEC may adopt include: (1) Installing security cameras or other monitoring systems...
47 CFR 51.323 - Standards for physical collocation and virtual collocation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... accessible by both the incumbent LEC and the collocating telecommunications carrier, at which the fiber optic... technically feasible, the incumbent LEC shall provide the connection using copper, dark fiber, lit fiber, or... that the incumbent LEC may adopt include: (1) Installing security cameras or other monitoring systems...
Supporting Collocation Learning with a Digital Library
ERIC Educational Resources Information Center
Wu, Shaoqun; Franken, Margaret; Witten, Ian H.
2010-01-01
Extensive knowledge of collocations is a key factor that distinguishes learners from fluent native speakers. Such knowledge is difficult to acquire simply because there is so much of it. This paper describes a system that exploits the facilities offered by digital libraries to provide a rich collocation-learning environment. The design is based on…
English Collocation Learning through Corpus Data: On-Line Concordance and Statistical Information
ERIC Educational Resources Information Center
Ohtake, Hiroshi; Fujita, Nobuyuki; Kawamoto, Takeshi; Morren, Brian; Ugawa, Yoshihiro; Kaneko, Shuji
2012-01-01
We developed an English Collocations On Demand system offering on-line corpus and concordance information to help Japanese researchers acquire a better command of English collocation patterns. The Life Science Dictionary Corpus consists of approximately 90,000,000 words collected from life science related research papers published in academic…
Usability Study of Two Collocated Prototype System Displays
NASA Technical Reports Server (NTRS)
Trujillo, Anna C.
2007-01-01
Currently, most of the displays in control rooms can be categorized as status screens, alerts/procedures screens (or paper), or control screens (where the state of a component is changed by the operator). The primary focus of this line of research is to determine which pieces of information (status, alerts/procedures, and control) should be collocated. Two collocated displays were tested for ease of understanding in an automated desktop survey. This usability study was conducted as a prelude to a larger human-in-the-loop experiment in order to verify that the 2 new collocated displays were easy to learn and usable. The results indicate that while the DC display was preferred and yielded better performance than the MDO display, both collocated displays can be easily learned and used.
ERIC Educational Resources Information Center
Snoder, Per
2017-01-01
This article reports on a classroom-based experiment that tested the effects of three vocabulary teaching constructs (involvement load, spacing, and intentionality) on the learning of English verb-noun collocations--for example, "shelve a plan." Laufer and Hulstijn's (2001) "involvement load" predicts that the higher the…
USDA-ARS?s Scientific Manuscript database
If not properly account for, auto-correlated errors in observations can lead to inaccurate results in soil moisture data analysis and reanalysis. Here, we propose a more generalized form of the triple collocation algorithm (GTC) capable of decomposing the total error variance of remotely-sensed surf...
Six-Degree-of-Freedom Trajectory Optimization Utilizing a Two-Timescale Collocation Architecture
NASA Technical Reports Server (NTRS)
Desai, Prasun N.; Conway, Bruce A.
2005-01-01
Six-degree-of-freedom (6DOF) trajectory optimization of a reentry vehicle is solved using a two-timescale collocation methodology. This class of 6DOF trajectory problems are characterized by two distinct timescales in their governing equations, where a subset of the states have high-frequency dynamics (the rotational equations of motion) while the remaining states (the translational equations of motion) vary comparatively slowly. With conventional collocation methods, the 6DOF problem size becomes extraordinarily large and difficult to solve. Utilizing the two-timescale collocation architecture, the problem size is reduced significantly. The converged solution shows a realistic landing profile and captures the appropriate high-frequency rotational dynamics. A large reduction in the overall problem size (by 55%) is attained with the two-timescale architecture as compared to the conventional single-timescale collocation method. Consequently, optimum 6DOF trajectory problems can now be solved efficiently using collocation, which was not previously possible for a system with two distinct timescales in the governing states.
NASA Technical Reports Server (NTRS)
Bartolone, Anthony; Trujillo, Anna
2002-01-01
NASA Langley Research Center has been researching ways to improve flight crew decision aiding for systems management. Our current investigation is how to display a wide variety of aircraft parameters in ways that will improve the flight crew's situation awareness. To accomplish this, new means are being explored that will monitor the overall health of a flight and report the current status of the aircraft and forecast impending problems to the pilots. The initial step in this research was to conduct a survey addressing how current glass-cockpit commercial pilots would value a prediction of the status of critical aircraft systems. We also addressed how this new type of data ought to be conveyed and utilized. Therefore, two other items associated with predictive information were also included in the survey. The first addressed the need for system status, alerts and procedures, and system controls to be more logically grouped together, or collocated, on the flight deck. The second idea called for the survey respondents opinions on the functionality of mission status graphics; a display methodology that groups a variety of parameters onto a single display that can instantaneously convey a complete overview of both an aircraft's system and mission health.
Factors Impacting Recognition of False Collocations by Speakers of English as L1 and L2
ERIC Educational Resources Information Center
Makinina, Olga
2017-01-01
Currently there is a general uncertainty about what makes collocations (i.e., fixed word combinations with specific, not easily interpreted relations between their components) hard for ESL learners to master, and about how to improve collocation recognition and learning process. This study explored and designed a comparative classification of…
NASA Astrophysics Data System (ADS)
Liao, Q.; Tchelepi, H.; Zhang, D.
2015-12-01
Uncertainty quantification aims at characterizing the impact of input parameters on the output responses and plays an important role in many areas including subsurface flow and transport. In this study, a sparse grid collocation approach, which uses a nested Kronrod-Patterson-Hermite quadrature rule with moderate delay for Gaussian random parameters, is proposed to quantify the uncertainty of model solutions. The conventional stochastic collocation method serves as a promising non-intrusive approach and has drawn a great deal of interests. The collocation points are usually chosen to be Gauss-Hermite quadrature nodes, which are naturally unnested. The Kronrod-Patterson-Hermite nodes are shown to be more efficient than the Gauss-Hermite nodes due to nestedness. We propose a Kronrod-Patterson-Hermite rule with moderate delay to further improve the performance. Our study demonstrates the effectiveness of the proposed method for uncertainty quantification through subsurface flow and transport examples.
Sokolova, L V; Cherkasova, A S
2015-01-01
Texts or words/pseudowords are often used as stimuli for human verbal activity research. Our study pays attention to decoding processes of grammatical constructions consisted of two-three words--collocations. Russian and English collocation sets without any narrative were presented to Russian-speaking students with different English language skill. Stimulus material had two types of collocations: paradigmatic and syntagmatic. 30 students (average age--20.4 ± 0.22) took part in the study, they were divided into two equal groups depending on their English language skill (linguists/nonlinguists). During reading brain bioelectrical activity of cortex has been registered from 12 electrodes in alfa-, beta-, theta-bands. Coherent function reflecting cooperation of different cortical areas during reading collocations has been analyzed. Increase of interhemispheric and diagonal connections while reading collocations in different languages in the group of students with low knowledge of foreign language testifies of importance of functional cooperation between the hemispheres. It has been found out that brain bioelectrical activity of students with good foreign language knowledge during reading of all collocation types in Russian and English is characterized by economization of nervous substrate resources compared to nonlinguists. Selective activation of certain cortical areas has also been observed (depending on the grammatical construction type) in nonlinguists group that is probably related to special decoding system which processes presented stimuli. Reading Russian paradigmatic constructions by nonlinguists entailed increase between left cortical areas, reading of English syntagmatic collocations--between right ones.
NASA Astrophysics Data System (ADS)
Plestenjak, Bor; Gheorghiu, Călin I.; Hochstenbach, Michiel E.
2015-10-01
In numerous science and engineering applications a partial differential equation has to be solved on some fairly regular domain that allows the use of the method of separation of variables. In several orthogonal coordinate systems separation of variables applied to the Helmholtz, Laplace, or Schrödinger equation leads to a multiparameter eigenvalue problem (MEP); important cases include Mathieu's system, Lamé's system, and a system of spheroidal wave functions. Although multiparameter approaches are exploited occasionally to solve such equations numerically, MEPs remain less well known, and the variety of available numerical methods is not wide. The classical approach of discretizing the equations using standard finite differences leads to algebraic MEPs with large matrices, which are difficult to solve efficiently. The aim of this paper is to change this perspective. We show that by combining spectral collocation methods and new efficient numerical methods for algebraic MEPs it is possible to solve such problems both very efficiently and accurately. We improve on several previous results available in the literature, and also present a MATLAB toolbox for solving a wide range of problems.
Coexistence of Collocated IEEE 802.11 and Bluetooth Technologies in 2.4 GHz ISM Band
NASA Astrophysics Data System (ADS)
Xhafa, Ariton E.; Lu, Xiaolin; Shaver, Donald P.
In this paper, we investigate coexistence of collocated 802.11 and Bluetooth technologies in 2.4 GHz industrial, scientific, and medical (ISM) band. To that end, we show a time division multiplexing approach suffers from the “avalanche effect”. We then provide remedies to avoid this effect and improve the performance of the overall network. For example, it is shown that a simple request-to-send (RTS) / clear-to-send (CTS) frame handshake in WLAN can avoid “avalanche effect” and improve the performance of overall network.
NASA Astrophysics Data System (ADS)
Agarwal, P.; El-Sayed, A. A.
2018-06-01
In this paper, a new numerical technique for solving the fractional order diffusion equation is introduced. This technique basically depends on the Non-Standard finite difference method (NSFD) and Chebyshev collocation method, where the fractional derivatives are described in terms of the Caputo sense. The Chebyshev collocation method with the (NSFD) method is used to convert the problem into a system of algebraic equations. These equations solved numerically using Newton's iteration method. The applicability, reliability, and efficiency of the presented technique are demonstrated through some given numerical examples.
NASA Astrophysics Data System (ADS)
Ocko, Ilissa B.; Ginoux, Paul A.
2017-04-01
Anthropogenic aerosols are a key factor governing Earth's climate and play a central role in human-caused climate change. However, because of aerosols' complex physical, optical, and dynamical properties, aerosols are one of the most uncertain aspects of climate modeling. Fortunately, aerosol measurement networks over the past few decades have led to the establishment of long-term observations for numerous locations worldwide. Further, the availability of datasets from several different measurement techniques (such as ground-based and satellite instruments) can help scientists increasingly improve modeling efforts. This study explores the value of evaluating several model-simulated aerosol properties with data from spatially collocated instruments. We compare aerosol optical depth (AOD; total, scattering, and absorption), single-scattering albedo (SSA), Ångström exponent (α), and extinction vertical profiles in two prominent global climate models (Geophysical Fluid Dynamics Laboratory, GFDL, CM2.1 and CM3) to seasonal observations from collocated instruments (AErosol RObotic NETwork, AERONET, and Cloud-Aerosol Lidar with Orthogonal Polarization, CALIOP) at seven polluted and biomass burning regions worldwide. We find that a multi-parameter evaluation provides key insights on model biases, data from collocated instruments can reveal underlying aerosol-governing physics, column properties wash out important vertical distinctions, and improved
models does not mean all aspects are improved. We conclude that it is important to make use of all available data (parameters and instruments) when evaluating aerosol properties derived by models.
Simplex-stochastic collocation method with improved scalability
NASA Astrophysics Data System (ADS)
Edeling, W. N.; Dwight, R. P.; Cinnella, P.
2016-04-01
The Simplex-Stochastic Collocation (SSC) method is a robust tool used to propagate uncertain input distributions through a computer code. However, it becomes prohibitively expensive for problems with dimensions higher than 5. The main purpose of this paper is to identify bottlenecks, and to improve upon this bad scalability. In order to do so, we propose an alternative interpolation stencil technique based upon the Set-Covering problem, and we integrate the SSC method in the High-Dimensional Model-Reduction framework. In addition, we address the issue of ill-conditioned sample matrices, and we present an analytical map to facilitate uniformly-distributed simplex sampling.
Reducing the cost of using collocation to compute vibrational energy levels: Results for CH2NH.
Avila, Gustavo; Carrington, Tucker
2017-08-14
In this paper, we improve the collocation method for computing vibrational spectra that was presented in the work of Avila and Carrington, Jr. [J. Chem. Phys. 143, 214108 (2015)]. Known quadrature and collocation methods using a Smolyak grid require storing intermediate vectors with more elements than points on the Smolyak grid. This is due to the fact that grid labels are constrained among themselves and basis labels are constrained among themselves. We show that by using the so-called hierarchical basis functions, one can significantly reduce the memory required. In this paper, the intermediate vectors have only as many elements as the Smolyak grid. The ideas are tested by computing energy levels of CH 2 NH.
NASA Astrophysics Data System (ADS)
Essary, David S.
The performance gap between processors and storage systems has been increasingly critical over the years. Yet the performance disparity remains, and further, storage energy consumption is rapidly becoming a new critical problem. While smarter caching and predictive techniques do much to alleviate this disparity, the problem persists, and data storage remains a growing contributor to latency and energy consumption. Attempts have been made at data layout maintenance, or intelligent physical placement of data, yet in practice, basic heuristics remain predominant. Problems that early studies sought to solve via layout strategies were proven to be NP-Hard, and data layout maintenance today remains more art than science. With unknown potential and a domain inherently full of uncertainty, layout maintenance persists as an area largely untapped by modern systems. But uncertainty in workloads does not imply randomness; access patterns have exhibited repeatable, stable behavior. Predictive information can be gathered, analyzed, and exploited to improve data layouts. Our goal is a dynamic, robust, sustainable predictive engine, aimed at improving existing layouts by replicating data at the storage device level. We present a comprehensive discussion of the design and construction of such a predictive engine, including workload evaluation, where we present and evaluate classical workloads as well as our own highly detailed traces collected over an extended period. We demonstrate significant gains through an initial static grouping mechanism, and compare against an optimal grouping method of our own construction, and further show significant improvement over competing techniques. We also explore and illustrate the challenges faced when moving from static to dynamic (i.e. online) grouping, and provide motivation and solutions for addressing these challenges. These challenges include metadata storage, appropriate predictive collocation, online performance, and physical placement. We reduced the metadata needed by several orders of magnitude, reducing the required volume from more than 14% of total storage down to less than 1/2%. We also demonstrate how our collocation strategies outperform competing techniques. Finally, we present our complete model and evaluate a prototype implementation against real hardware. This model was demonstrated to be capable of reducing device-level accesses by up to 65%. Keywords: computer systems, collocation, data management, file systems, grouping, metadata, modeling and prediction, operating systems, performance, power, secondary storage.
Integrated High-Speed Torque Control System for a Robotic Joint
NASA Technical Reports Server (NTRS)
Davis, Donald R. (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Valvo, Michael C. (Inventor); Askew, R. Scott (Inventor)
2013-01-01
A control system for achieving high-speed torque for a joint of a robot includes a printed circuit board assembly (PCBA) having a collocated joint processor and high-speed communication bus. The PCBA may also include a power inverter module (PIM) and local sensor conditioning electronics (SCE) for processing sensor data from one or more motor position sensors. Torque control of a motor of the joint is provided via the PCBA as a high-speed torque loop. Each joint processor may be embedded within or collocated with the robotic joint being controlled. Collocation of the joint processor, PIM, and high-speed bus may increase noise immunity of the control system, and the localized processing of sensor data from the joint motor at the joint level may minimize bus cabling to and from each control node. The joint processor may include a field programmable gate array (FPGA).
Domain decomposition methods for systems of conservation laws: Spectral collocation approximations
NASA Technical Reports Server (NTRS)
Quarteroni, Alfio
1989-01-01
Hyperbolic systems of conversation laws are considered which are discretized in space by spectral collocation methods and advanced in time by finite difference schemes. At any time-level a domain deposition method based on an iteration by subdomain procedure was introduced yielding at each step a sequence of independent subproblems (one for each subdomain) that can be solved simultaneously. The method is set for a general nonlinear problem in several space variables. The convergence analysis, however, is carried out only for a linear one-dimensional system with continuous solutions. A precise form of the error reduction factor at each iteration is derived. Although the method is applied here to the case of spectral collocation approximation only, the idea is fairly general and can be used in a different context as well. For instance, its application to space discretization by finite differences is straight forward.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamm, L.L.; Van Brunt, V.
The Christiansen and Fredenslund programs for calculating vapor-liquid equilibria have been modified by replacing the Soave-Redlich-Kwong equation of state with the newly developed Peng-Robinson equation of state. This modification was shown to be a decided improvement for high pressure systems, especially in the critical and upper retrograde regions. Thermodynamic consistency tests were developed and used to evaluate and compare calculated values from both the modified and unmodified programs with reported experimental data for several vapor-liquid systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avila, Gustavo, E-mail: Gustavo-Avila@telefonica.net; Carrington, Tucker, E-mail: Tucker.Carrington@queensu.ca
In this paper, we improve the collocation method for computing vibrational spectra that was presented in Avila and Carrington, Jr. [J. Chem. Phys. 139, 134114 (2013)]. Using an iterative eigensolver, energy levels and wavefunctions are determined from values of the potential on a Smolyak grid. The kinetic energy matrix-vector product is evaluated by transforming a vector labelled with (nondirect product) grid indices to a vector labelled by (nondirect product) basis indices. Both the transformation and application of the kinetic energy operator (KEO) scale favorably. Collocation facilitates dealing with complicated KEOs because it obviates the need to calculate integrals of coordinatemore » dependent coefficients of differential operators. The ideas are tested by computing energy levels of HONO using a KEO in bond coordinates.« less
ERIC Educational Resources Information Center
Webb, Stuart; Kagimoto, Eve
2011-01-01
This study investigated the effects of three factors (the number of collocates per node word, the position of the node word, synonymy) on learning collocations. Japanese students studying English as a foreign language learned five sets of 12 target collocations. Each collocation was presented in a single glossed sentence. The number of collocates…
Some spectral approximation of one-dimensional fourth-order problems
NASA Technical Reports Server (NTRS)
Bernardi, Christine; Maday, Yvon
1989-01-01
Some spectral type collocation method well suited for the approximation of fourth-order systems are proposed. The model problem is the biharmonic equation, in one and two dimensions when the boundary conditions are periodic in one direction. It is proved that the standard Gauss-Lobatto nodes are not the best choice for the collocation points. Then, a new set of nodes related to some generalized Gauss type quadrature formulas is proposed. Also provided is a complete analysis of these formulas including some new issues about the asymptotic behavior of the weights and we apply these results to the analysis of the collocation method.
NASA Astrophysics Data System (ADS)
Doha, Eid H.; Bhrawy, Ali H.; Abdelkawy, Mohammed A.
2014-09-01
In this paper, we propose an efficient spectral collocation algorithm to solve numerically wave type equations subject to initial, boundary and non-local conservation conditions. The shifted Jacobi pseudospectral approximation is investigated for the discretization of the spatial variable of such equations. It possesses spectral accuracy in the spatial variable. The shifted Jacobi-Gauss-Lobatto (SJ-GL) quadrature rule is established for treating the non-local conservation conditions, and then the problem with its initial and non-local boundary conditions are reduced to a system of second-order ordinary differential equations in temporal variable. This system is solved by two-stage forth-order A-stable implicit RK scheme. Five numerical examples with comparisons are given. The computational results demonstrate that the proposed algorithm is more accurate than finite difference method, method of lines and spline collocation approach
Utilizing Lexical Data from a Web-Derived Corpus to Expand Productive Collocation Knowledge
ERIC Educational Resources Information Center
Wu, Shaoqun; Witten, Ian H.; Franken, Margaret
2010-01-01
Collocations are of great importance for second language learners, and a learner's knowledge of them plays a key role in producing language fluently (Nation, 2001: 323). In this article we describe and evaluate an innovative system that uses a Web-derived corpus and digital library software to produce a vast concordance and present it in a way…
The Use of Verb Noun Collocations in Writing Stories among Iranian EFL Learners
ERIC Educational Resources Information Center
Bazzaz, Fatemeh Ebrahimi; Samad, Arshad Abd
2011-01-01
An important aspect of native speakers' communicative competence is collocational competence which involves knowing which words usually come together and which do not. This paper investigates the possible relationship between knowledge of collocations and the use of verb noun collocation in writing stories because collocational knowledge…
Developing and Evaluating a Chinese Collocation Retrieval Tool for CFL Students and Teachers
ERIC Educational Resources Information Center
Chen, Howard Hao-Jan; Wu, Jian-Cheng; Yang, Christine Ting-Yu; Pan, Iting
2016-01-01
The development of collocational knowledge is important for foreign language learners; unfortunately, learners often have difficulties producing proper collocations in the target language. Among the various ways of collocation learning, the DDL (data-driven learning) approach encourages the independent learning of collocations and allows learners…
The CAFE Experiment: A Joint Seismic and MT Investigation of the Cascadia Subduction System
2013-02-01
In this thesis we present results from inversion of data using dense arrays of collocated seismic and magnetotelluric stations located in the Cascadia...implicit in the standard MT inversion provides tools that enable us to generate a more accurate MT model. This final MT model clearly demonstrates...references within, Hacker, 2008) have given us the tools to better interpret geophysical evidence. Improvements in the thermal modeling of subduction zones
Perceptions on L2 Lexical Collocation Translation with a Focus on English-Arabic
ERIC Educational Resources Information Center
Alqaed, Mai Abdullah
2017-01-01
This paper aims to shed light on recent research concerning translating English-Arabic lexical collocations. It begins with a brief overview of English and Arabic lexical collocations with reference to specialized dictionaries. Research views on translating lexical collocations are presented, with the focus on English-Arabic collocations. These…
Domain decomposition preconditioners for the spectral collocation method
NASA Technical Reports Server (NTRS)
Quarteroni, Alfio; Sacchilandriani, Giovanni
1988-01-01
Several block iteration preconditioners are proposed and analyzed for the solution of elliptic problems by spectral collocation methods in a region partitioned into several rectangles. It is shown that convergence is achieved with a rate which does not depend on the polynomial degree of the spectral solution. The iterative methods here presented can be effectively implemented on multiprocessor systems due to their high degree of parallelism.
ERIC Educational Resources Information Center
Miyakoshi, Tomoko
2009-01-01
Although it is widely acknowledged that collocations play an important part in second language learning, especially at intermediate-advanced levels, learners' difficulties with collocations have not been investigated in much detail so far. The present study examines ESL learners' use of verb-noun collocations, such as "take notes," "place an…
A Survey of Symplectic and Collocation Integration Methods for Orbit Propagation
NASA Technical Reports Server (NTRS)
Jones, Brandon A.; Anderson, Rodney L.
2012-01-01
Demands on numerical integration algorithms for astrodynamics applications continue to increase. Common methods, like explicit Runge-Kutta, meet the orbit propagation needs of most scenarios, but more specialized scenarios require new techniques to meet both computational efficiency and accuracy needs. This paper provides an extensive survey on the application of symplectic and collocation methods to astrodynamics. Both of these methods benefit from relatively recent theoretical developments, which improve their applicability to artificial satellite orbit propagation. This paper also details their implementation, with several tests demonstrating their advantages and disadvantages.
Finite Differences and Collocation Methods for the Solution of the Two Dimensional Heat Equation
NASA Technical Reports Server (NTRS)
Kouatchou, Jules
1999-01-01
In this paper we combine finite difference approximations (for spatial derivatives) and collocation techniques (for the time component) to numerically solve the two dimensional heat equation. We employ respectively a second-order and a fourth-order schemes for the spatial derivatives and the discretization method gives rise to a linear system of equations. We show that the matrix of the system is non-singular. Numerical experiments carried out on serial computers, show the unconditional stability of the proposed method and the high accuracy achieved by the fourth-order scheme.
Are Nonadjacent Collocations Processed Faster?
ERIC Educational Resources Information Center
Vilkaite, Laura
2016-01-01
Numerous studies have shown processing advantages for collocations, but they only investigated processing of adjacent collocations (e.g., "provide information"). However, in naturally occurring language, nonadjacent collocations ("provide" some of the "information") are equally, if not more frequent. This raises the…
NASA Astrophysics Data System (ADS)
Tirani, M. D.; Maleki, M.; Kajani, M. T.
2014-11-01
A numerical method for solving the Lane-Emden equations of the polytropic index α when 4.75 ≤ α ≤ 5 is introduced. The method is based upon nonclassical Gauss-Radau collocation points and Freud type weights. Nonclassical orthogonal polynomials, nonclassical Radau points and weighted interpolation are introduced and are utilized in the interval [0,1]. A smooth, strictly monotonic transformation is used to map the infinite domain x ∈ [0,∞) onto a half-open interval t ∈ [0,1). The resulting problem on the finite interval is then transcribed to a system of nonlinear algebraic equations using collocation. The method is easy to implement and yields very accurate results.
High resolution wind measurements for offshore wind energy development
NASA Technical Reports Server (NTRS)
Nghiem, Son Van (Inventor); Neumann, Gregory (Inventor)
2013-01-01
A method, apparatus, system, article of manufacture, and computer readable storage medium provide the ability to measure wind. Data at a first resolution (i.e., low resolution data) is collected by a satellite scatterometer. Thin slices of the data are determined. A collocation of the data slices are determined at each grid cell center to obtain ensembles of collocated data slices. Each ensemble of collocated data slices is decomposed into a mean part and a fluctuating part. The data is reconstructed at a second resolution from the mean part and a residue of the fluctuating part. A wind measurement is determined from the data at the second resolution using a wind model function. A description of the wind measurement is output.
SIRE: a MIMO radar for landmine/IED detection
NASA Astrophysics Data System (ADS)
Ojowu, Ode; Wu, Yue; Li, Jian; Nguyen, Lam
2013-05-01
Multiple-input multiple-output (MIMO) radar systems have been shown to have significant performance improvements over their single-input multiple-output (SIMO) counterparts. For transmit and receive elements that are collocated, the waveform diversity afforded by this radar is exploited for performance improvements. These improvements include but are not limited to improved target detection, improved parameter identifiability and better resolvability. In this paper, we present the Synchronous Impulse Reconstruction Radar (SIRE) Ultra-wideband (UWB) radar designed by the Army Research Lab (ARL) for landmine and improvised explosive device (IED) detection as a 2 by 16 MIMO radar (with collocated antennas). Its improvement over its SIMO counterpart in terms of beampattern/cross range resolution are discussed and demonstrated using simulated data herein. The limitations of this radar for Radio Frequency Interference (RFI) suppression are also discussed in this paper. A relaxation method (RELAX) combined with averaging of multiple realizations of the measured data is presented for RFI suppression; results show no noticeable target signature distortion after suppression. In this paper, the back-projection (delay and sum) data independent method is used for generating SAR images. A side-lobe minimization technique called recursive side-lobe minimization (RSM) is also discussed for reducing side-lobes in this data independent approach. We introduce a data-dependent sparsity based spectral estimation technique called Sparse Learning via Iterative Minimization (SLIM) as well as a data-dependent CLEAN approach for generating SAR images for the SIRE radar. These data-adaptive techniques show improvement in side-lobe reduction and resolution for simulated data for the SIRE radar.
NASA Astrophysics Data System (ADS)
Gotovac, Hrvoje; Srzic, Veljko
2014-05-01
Contaminant transport in natural aquifers is a complex, multiscale process that is frequently studied using different Eulerian, Lagrangian and hybrid numerical methods. Conservative solute transport is typically modeled using the advection-dispersion equation (ADE). Despite the large number of available numerical methods that have been developed to solve it, the accurate numerical solution of the ADE still presents formidable challenges. In particular, current numerical solutions of multidimensional advection-dominated transport in non-uniform velocity fields are affected by one or all of the following problems: numerical dispersion that introduces artificial mixing and dilution, grid orientation effects, unresolved spatial and temporal scales and unphysical numerical oscillations (e.g., Herrera et al, 2009; Bosso et al., 2012). In this work we will present Eulerian Lagrangian Adaptive Fup Collocation Method (ELAFCM) based on Fup basis functions and collocation approach for spatial approximation and explicit stabilized Runge-Kutta-Chebyshev temporal integration (public domain routine SERK2) which is especially well suited for stiff parabolic problems. Spatial adaptive strategy is based on Fup basis functions which are closely related to the wavelets and splines so that they are also compactly supported basis functions; they exactly describe algebraic polynomials and enable a multiresolution adaptive analysis (MRA). MRA is here performed via Fup Collocation Transform (FCT) so that at each time step concentration solution is decomposed using only a few significant Fup basis functions on adaptive collocation grid with appropriate scales (frequencies) and locations, a desired level of accuracy and a near minimum computational cost. FCT adds more collocations points and higher resolution levels only in sensitive zones with sharp concentration gradients, fronts and/or narrow transition zones. According to the our recent achievements there is no need for solving the large linear system on adaptive grid because each Fup coefficient is obtained by predefined formulas equalizing Fup expansion around corresponding collocation point and particular collocation operator based on few surrounding solution values. Furthermore, each Fup coefficient can be obtained independently which is perfectly suited for parallel processing. Adaptive grid in each time step is obtained from solution of the last time step or initial conditions and advective Lagrangian step in the current time step according to the velocity field and continuous streamlines. On the other side, we implement explicit stabilized routine SERK2 for dispersive Eulerian part of solution in the current time step on obtained spatial adaptive grid. Overall adaptive concept does not require the solving of large linear systems for the spatial and temporal approximation of conservative transport. Also, this new Eulerian-Lagrangian-Collocation scheme resolves all mentioned numerical problems due to its adaptive nature and ability to control numerical errors in space and time. Proposed method solves advection in Lagrangian way eliminating problems in Eulerian methods, while optimal collocation grid efficiently describes solution and boundary conditions eliminating usage of large number of particles and other problems in Lagrangian methods. Finally, numerical tests show that this approach enables not only accurate velocity field, but also conservative transport even in highly heterogeneous porous media resolving all spatial and temporal scales of concentration field.
Revision of IRIS/IDA Seismic Station Metadata
NASA Astrophysics Data System (ADS)
Xu, W.; Davis, P.; Auerbach, D.; Klimczak, E.
2017-12-01
Trustworthy data quality assurance has always been one of the goals of seismic network operators and data management centers. This task is considerably complex and evolving due to the huge quantities as well as the rapidly changing characteristics and complexities of seismic data. Published metadata usually reflect instrument response characteristics and their accuracies, which includes zero frequency sensitivity for both seismometer and data logger as well as other, frequency-dependent elements. In this work, we are mainly focused studying the variation of the seismometer sensitivity with time of IRIS/IDA seismic recording systems with a goal to improve the metadata accuracy for the history of the network. There are several ways to measure the accuracy of seismometer sensitivity for the seismic stations in service. An effective practice recently developed is to collocate a reference seismometer in proximity to verify the in-situ sensors' calibration. For those stations with a secondary broadband seismometer, IRIS' MUSTANG metric computation system introduced a transfer function metric to reflect two sensors' gain ratios in the microseism frequency band. In addition, a simulation approach based on M2 tidal measurements has been proposed and proven to be effective. In this work, we compare and analyze the results from three different methods, and concluded that the collocated-sensor method is most stable and reliable with the minimum uncertainties all the time. However, for epochs without both the collocated sensor and secondary seismometer, we rely on the analysis results from tide method. For the data since 1992 on IDA stations, we computed over 600 revised seismometer sensitivities for all the IRIS/IDA network calibration epochs. Hopefully further revision procedures will help to guarantee that the data is accurately reflected by the metadata of these stations.
Investigation of IPPD: A Case Study of the Marine Corps AAAV.
1998-03-01
process. ( Rafii , 1995, p. 78) The United States Marine Corps is in the process of developing their next generation of Advanced Amphibious Assault...particular product or process. ( Rafii , 1995, p. 78) DiTrapani and Geither’s (1996) study of IPTs stressed the collocation of team members to the...School of Systems Management, Naval Postgraduate School, Monterey, CA, December 1996. Rafii , F., "How Important Is Physical Collocation to Product
Mu, Wenying; Cui, Baotong; Li, Wen; Jiang, Zhengxian
2014-07-01
This paper proposes a scheme for non-collocated moving actuating and sensing devices which is unitized for improving performance in distributed parameter systems. By Lyapunov stability theorem, each moving actuator/sensor agent velocity is obtained. To enhance state estimation of a spatially distributes process, two kinds of filters with consensus terms which penalize the disagreement of the estimates are considered. Both filters can result in the well-posedness of the collective dynamics of state errors and can converge to the plant state. Numerical simulations demonstrate that the effectiveness of such a moving actuator-sensor network in enhancing system performance and the consensus filters converge faster to the plant state when consensus terms are included. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Collocations: A Neglected Variable in EFL.
ERIC Educational Resources Information Center
Farghal, Mohammed; Obiedat, Hussein
1995-01-01
Addresses the issue of collocations as an important and neglected variable in English-as-a-Foreign-Language classes. Two questionnaires, in English and Arabic, involving common collocations relating to food, color, and weather were administered to English majors and English language teachers. Results show both groups deficient in collocations. (36…
Code of Federal Regulations, 2010 CFR
2010-10-01
... Collocation of Wireless Antennas B Appendix B to Part 1 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... the Collocation of Wireless Antennas Nationwide Programmatic Agreement for the Collocation of Wireless Antennas Executed by the Federal Communications Commission, the National Conference of State Historic...
Code of Federal Regulations, 2014 CFR
2014-10-01
... Collocation of Wireless Antennas B Appendix B to Part 1 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... the Collocation of Wireless Antennas Nationwide Programmatic Agreement for the Collocation of Wireless Antennas Executed by the Federal Communications Commission, the National Conference of State Historic...
Code of Federal Regulations, 2011 CFR
2011-10-01
... Collocation of Wireless Antennas B Appendix B to Part 1 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... the Collocation of Wireless Antennas Nationwide Programmatic Agreement for the Collocation of Wireless Antennas Executed by the Federal Communications Commission, the National Conference of State Historic...
Code of Federal Regulations, 2013 CFR
2013-10-01
... Collocation of Wireless Antennas B Appendix B to Part 1 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... the Collocation of Wireless Antennas Nationwide Programmatic Agreement for the Collocation of Wireless Antennas Executed by the Federal Communications Commission, the National Conference of State Historic...
Code of Federal Regulations, 2012 CFR
2012-10-01
... Collocation of Wireless Antennas B Appendix B to Part 1 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... the Collocation of Wireless Antennas Nationwide Programmatic Agreement for the Collocation of Wireless Antennas Executed by the Federal Communications Commission, the National Conference of State Historic...
Collocated electrodynamic FDTD schemes using overlapping Yee grids and higher-order Hodge duals
NASA Astrophysics Data System (ADS)
Deimert, C.; Potter, M. E.; Okoniewski, M.
2016-12-01
The collocated Lebedev grid has previously been proposed as an alternative to the Yee grid for electromagnetic finite-difference time-domain (FDTD) simulations. While it performs better in anisotropic media, it performs poorly in isotropic media because it is equivalent to four overlapping, uncoupled Yee grids. We propose to couple the four Yee grids and fix the Lebedev method using discrete exterior calculus (DEC) with higher-order Hodge duals. We find that higher-order Hodge duals do improve the performance of the Lebedev grid, but they also improve the Yee grid by a similar amount. The effectiveness of coupling overlapping Yee grids with a higher-order Hodge dual is thus questionable. However, the theoretical foundations developed to derive these methods may be of interest in other problems.
Examining Second Language Receptive Knowledge of Collocation and Factors That Affect Learning
ERIC Educational Resources Information Center
Nguyen, Thi My Hang; Webb, Stuart
2017-01-01
This study investigated Vietnamese EFL learners' knowledge of verb-noun and adjective-noun collocations at the first three 1,000 word frequency levels, and the extent to which five factors (node word frequency, collocation frequency, mutual information score, congruency, and part of speech) predicted receptive knowledge of collocation. Knowledge…
Collocation and Galerkin Time-Stepping Methods
NASA Technical Reports Server (NTRS)
Huynh, H. T.
2011-01-01
We study the numerical solutions of ordinary differential equations by one-step methods where the solution at tn is known and that at t(sub n+1) is to be calculated. The approaches employed are collocation, continuous Galerkin (CG) and discontinuous Galerkin (DG). Relations among these three approaches are established. A quadrature formula using s evaluation points is employed for the Galerkin formulations. We show that with such a quadrature, the CG method is identical to the collocation method using quadrature points as collocation points. Furthermore, if the quadrature formula is the right Radau one (including t(sub n+1)), then the DG and CG methods also become identical, and they reduce to the Radau IIA collocation method. In addition, we present a generalization of DG that yields a method identical to CG and collocation with arbitrary collocation points. Thus, the collocation, CG, and generalized DG methods are equivalent, and the latter two methods can be formulated using the differential instead of integral equation. Finally, all schemes discussed can be cast as s-stage implicit Runge-Kutta methods.
Precise control of flexible manipulators
NASA Technical Reports Server (NTRS)
Cannon, R. H., Jr.
1984-01-01
Experimental apparatus were developed for physically testing control systems for pointing flexible structures, such as limber spacecraft, for the case that control actuators cannot be collocated with sensors. Structural damping ratios are less than 0.003, each basic configuration of sensor/actuator noncollocation is available, and inertias can be halved or doubled abruptly during control maneuvers, thereby imposing, in particular, a sudden reversal in the plant's pole-zero sequence. First experimental results are presented, including stable control with both collocation and noncollocation.
A collocation--Galerkin finite element model of cardiac action potential propagation.
Rogers, J M; McCulloch, A D
1994-08-01
A new computational method was developed for modeling the effects of the geometric complexity, nonuniform muscle fiber orientation, and material inhomogeneity of the ventricular wall on cardiac impulse propagation. The method was used to solve a modification to the FitzHugh-Nagumo system of equations. The geometry, local muscle fiber orientation, and material parameters of the domain were defined using linear Lagrange or cubic Hermite finite element interpolation. Spatial variations of time-dependent excitation and recovery variables were approximated using cubic Hermite finite element interpolation, and the governing finite element equations were assembled using the collocation method. To overcome the deficiencies of conventional collocation methods on irregular domains, Galerkin equations for the no-flux boundary conditions were used instead of collocation equations for the boundary degrees-of-freedom. The resulting system was evolved using an adaptive Runge-Kutta method. Converged two-dimensional simulations of normal propagation showed that this method requires less CPU time than a traditional finite difference discretization. The model also reproduced several other physiologic phenomena known to be important in arrhythmogenesis including: Wenckebach periodicity, slowed propagation and unidirectional block due to wavefront curvature, reentry around a fixed obstacle, and spiral wave reentry. In a new result, we observed wavespeed variations and block due to nonuniform muscle fiber orientation. The findings suggest that the finite element method is suitable for studying normal and pathological cardiac activation and has significant advantages over existing techniques.
NASA Astrophysics Data System (ADS)
Vu, Q. H.; Brenner, R.; Castelnau, O.; Moulinec, H.; Suquet, P.
2012-03-01
The correspondence principle is customarily used with the Laplace-Carson transform technique to tackle the homogenization of linear viscoelastic heterogeneous media. The main drawback of this method lies in the fact that the whole stress and strain histories have to be considered to compute the mechanical response of the material during a given macroscopic loading. Following a remark of Mandel (1966 Mécanique des Milieux Continus(Paris, France: Gauthier-Villars)), Ricaud and Masson (2009 Int. J. Solids Struct. 46 1599-1606) have shown the equivalence between the collocation method used to invert Laplace-Carson transforms and an internal variables formulation. In this paper, this new method is developed for the case of polycrystalline materials with general anisotropic properties for local and macroscopic behavior. Applications are provided for the case of constitutive relations accounting for glide of dislocations on particular slip systems. It is shown that the method yields accurate results that perfectly match the standard collocation method and reference full-field results obtained with a FFT numerical scheme. The formulation is then extended to the case of time- and strain-dependent viscous properties, leading to the incremental collocation method (ICM) that can be solved efficiently by a step-by-step procedure. Specifically, the introduction of isotropic and kinematic hardening at the slip system scale is considered.
Improved operation of magnetic bearings for flywheel energy storage system
NASA Technical Reports Server (NTRS)
Zmood, R. B.; Pang, D.; Anand, D. K.; Kirk, J. A.
1990-01-01
Analysis and operation of prototype 500-Wh flywheel at low speeds have shown that many factors affect the correct functioning of the magnetic bearings. An examination is made of a number of these, including magnetic bearing control system nonlinearities and displacement transducer positioning, and their effects upon the successful operation of the suspension system. It is observed that the bearing control system is extremely sensitive to actuator parameters such as coil inductance. As a consequence of the analysis of bearing relaxation oscillations, the bearing actuator design methodology which has previously been used, where coil parameter selection is based upon static considerations, has been revised. Displacement transducer sensors which overcome the collocation problem are discussed.
2015-08-27
and 2) preparing for the post-MODIS/MISR era using the Geostationary Operational Environmental Satellite (GOES). 3. Improve model representations of...meteorological property retrievals. In this study, using collocated data from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Geostationary
NASA Astrophysics Data System (ADS)
Zhou, Rui-Rui; Li, Ben-Wen
2017-03-01
In this study, the Chebyshev collocation spectral method (CCSM) is developed to solve the radiative integro-differential transfer equation (RIDTE) for one-dimensional absorbing, emitting and linearly anisotropic-scattering cylindrical medium. The general form of quadrature formulas for Chebyshev collocation points is deduced. These formulas are proved to have the same accuracy as the Gauss-Legendre quadrature formula (GLQF) for the F-function (geometric function) in the RIDTE. The explicit expressions of the Lagrange basis polynomials and the differentiation matrices for Chebyshev collocation points are also given. These expressions are necessary for solving an integro-differential equation by the CCSM. Since the integrand in the RIDTE is continuous but non-smooth, it is treated by the segments integration method (SIM). The derivative terms in the RIDTE are carried out to improve the accuracy near the origin. In this way, a fourth order accuracy is achieved by the CCSM for the RIDTE, whereas it's only a second order one by the finite difference method (FDM). Several benchmark problems (BPs) with various combinations of optical thickness, medium temperature distribution, degree of anisotropy, and scattering albedo are solved. The results show that present CCSM is efficient to obtain high accurate results, especially for the optically thin medium. The solutions rounded to seven significant digits are given in tabular form, and show excellent agreement with the published data. Finally, the solutions of RIDTE are used as benchmarks for the solution of radiative integral transfer equations (RITEs) presented by Sutton and Chen (JQSRT 84 (2004) 65-103). A non-uniform grid refined near the wall is advised to improve the accuracy of RITEs solutions.
English Learners' Knowledge of Prepositions: Collocational Knowledge or Knowledge Based on Meaning?
ERIC Educational Resources Information Center
Mueller, Charles M.
2011-01-01
Second language (L2) learners' successful performance in an L2 can be partly attributed to their knowledge of collocations. In some cases, this knowledge is accompanied by knowledge of the semantic and/or grammatical patterns that motivate the collocation. At other times, collocational knowledge may serve a compensatory role. To determine the…
Code of Federal Regulations, 2010 CFR
2010-10-01
... elements include, but are not limited to: (1) Physical collocation and virtual collocation at the premises... seeking a particular collocation arrangement, either physical or virtual, is entitled to a presumption... incumbent LEC shall be required to provide virtual collocation, except at points where the incumbent LEC...
ERIC Educational Resources Information Center
Wolter, Brent; Gyllstad, Henrik
2013-01-01
This study investigated the influence of frequency effects on the processing of congruent (i.e., having an equivalent first language [L1] construction) collocations and incongruent (i.e., not having an equivalent L1 construction) collocations in a second language (L2). An acceptability judgment task was administered to native and advanced…
Corpus-Based versus Traditional Learning of Collocations
ERIC Educational Resources Information Center
Daskalovska, Nina
2015-01-01
One of the aspects of knowing a word is the knowledge of which words it is usually used with. Since knowledge of collocations is essential for appropriate and fluent use of language, learning collocations should have a central place in the study of vocabulary. There are different opinions about the best ways of learning collocations. This study…
ERIC Educational Resources Information Center
Gablasova, Dana; Brezina, Vaclav; McEnery, Tony
2017-01-01
This article focuses on the use of collocations in language learning research (LLR). Collocations, as units of formulaic language, are becoming prominent in our understanding of language learning and use; however, while the number of corpus-based LLR studies of collocations is growing, there is still a need for a deeper understanding of factors…
Time Varying Compensator Design for Reconfigurable Structures Using Non-Collocated Feedback
NASA Technical Reports Server (NTRS)
Scott, Michael A.
1996-01-01
Analysis and synthesis tools are developed to improved the dynamic performance of reconfigurable nonminimum phase, nonstrictly positive real-time variant systems. A novel Spline Varying Optimal (SVO) controller is developed for the kinematic nonlinear system. There are several advantages to using the SVO controller, in which the spline function approximates the system model, observer, and controller gain. They are: The spline function approximation is simply connected, thus the SVO controller is more continuous than traditional gain scheduled controllers when implemented on a time varying plant; ft is easier for real-time implementations in storage and computational effort; where system identification is required, the spline function requires fewer experiments, namely four experiments; and initial startup estimator transients are eliminated. The SVO compensator was evaluated on a high fidelity simulation of the Shuttle Remote Manipulator System. The SVO controller demonstrated significant improvement over the present arm performance: (1) Damping level was improved by a factor of 3; and (2) Peak joint torque was reduced by a factor of 2 following Shuttle thruster firings.
Noise reduction in long‐period seismograms by way of array summing
Ringler, Adam; Wilson, David; Storm, Tyler; Marshall, Benjamin T.; Hutt, Charles R.; Holland, Austin
2016-01-01
Long‐period (>100 s period) seismic data can often be dominated by instrumental noise as well as local site noise. When multiple collocated sensors are installed at a single site, it is possible to improve the overall station noise levels by applying stacking methods to their traces. We look at the noise reduction in long‐period seismic data by applying the time–frequency phase‐weighted stacking method of Schimmel and Gallart (2007) as well as the phase‐weighted stacking (PWS) method of Schimmel and Paulssen (1997) to four collocated broadband sensors installed in the quiet Albuquerque Seismological Laboratory underground vault. We show that such stacking methods can improve vertical noise levels by as much as 10 dB over the mean background noise levels at 400 s period, suggesting that greater improvements could be achieved with an array involving multiple sensors. We also apply this method to reduce local incoherent noise on horizontal seismic records of the 2 March 2016 Mw 7.8 Sumatra earthquake, where the incoherent noise levels at very long periods are similar in amplitude to the earthquake signal. To maximize the coherency, we apply the PWS method to horizontal data where relative azimuths between collocated sensors are estimated and compared with a simpler linear stack with no azimuthal rotation. Such methods could help reduce noise levels at various seismic stations where multiple high‐quality sensors have been deployed. Such small arrays may also provide a solution to improving long‐period noise levels at Global Seismographic Network stations.
Rahman, A.; Tsai, F.T.-C.; White, C.D.; Carlson, D.A.; Willson, C.S.
2008-01-01
Data integration is challenging where there are different levels of support between primary and secondary data that need to be correlated in various ways. A geostatistical method is described, which integrates the hydraulic conductivity (K) measurements and electrical resistivity data to better estimate the K distribution in the Upper Chicot Aquifer of southwestern Louisiana, USA. The K measurements were obtained from pumping tests and represent the primary (hard) data. Borehole electrical resistivity data from electrical logs were regarded as the secondary (soft) data, and were used to infer K values through Archie's law and the Kozeny-Carman equation. A pseudo cross-semivariogram was developed to cope with the resistivity data non-collocation. Uncertainties in the auto-semivariograms and pseudo cross-semivariogram were quantified. The groundwater flow model responses by the regionalized and coregionalized models of K were compared using analysis of variance (ANOVA). The results indicate that non-collocated secondary data may improve estimates of K and affect groundwater flow responses of practical interest, including specific capacity and drawdown. ?? Springer-Verlag 2007.
ERIC Educational Resources Information Center
Varlamova, Elena V.; Naciscione, Anita; Tulusina, Elena A.
2016-01-01
Relevance of the issue stated in the article is determined by the fact that there is a lack of research devoted to the methods of teaching English and German collocations. The aim of our work is to determine methods of teaching English and German collocations to Russian university students studying foreign languages through experimental testing.…
47 CFR 69.121 - Connection charges for expanded interconnection.
Code of Federal Regulations, 2010 CFR
2010-10-01
... separations. (2) Charges for subelements associated with physical collocation or virtual collocation, other... of the virtual collocation equipment described in § 64.1401(e)(1) of this chapter, may reasonably...
JPSS application in a near real time regional numerical forecast system at CIMSS
NASA Astrophysics Data System (ADS)
Li, J.; Wang, P.; Han, H.; Zhu, F.; Schmit, T. J.; Goldberg, M.
2015-12-01
Observations from next generation of environmental sensors onboard the Suomi National Polar-Orbiting Parnership (S-NPP) and its successor, the Joint Polar Satellite System (JPSS), provide us the critical information for numerical weather forecast (NWP). How to better represent these satellite observations and how to get value added information into NWP system still need more studies. Recently scientists from Cooperative Institute of Meteorological Satellite Studies (CIMSS) at University of Wisconsin-Madison have developed a near realtime regional Satellite Data Assimilation system for Tropical storm forecasts (SDAT) (http://cimss.ssec.wisc.edu/sdat). The system is built with the community Gridpoint Statistical Interpolation (GSI) assimilation and advanced Weather Research Forecast (WRF) model. With GSI, SDAT can assimilate all operational available satellite data including GOES, AMSUA/AMSUB, HIRS, MHS, ATMS, AIRS and IASI radiances and some satellite derived products. In addition, some research products, such as hyperspectral IR retrieved temperature and moisture profiles, GOES imager atmospheric motion vector (AMV) and GOES sounder layer precipitable water (LPW), are also added into the system. Using SDAT as a research testbed, studies have been conducted to show how to improve high impact weather forecast by better handling cloud information in satellite data. Previously by collocating high spatial resolution MODIS data with hyperspectral resolution AIRS data, precise clear pixels of AIRS can be identified and some partially or thin cloud contamination from pixels can be removed by taking advantage of high spatial resolution and high accurate MODIS cloud information. The results have demonstrated that both of these strategies have greatly improved the hurricane track and intensity forecast. We recently have extended these methodologies into processing CrIS/VIIRS data. We also tested similar ideas in microwave sounders by the collocation of AMSU/MODIS and ATMS/VIIRS data. The experiments along with other SDAT progresses will be presented in the meeting.
Isogeometric Collocation for Elastostatics and Explicit Dynamics
2012-01-25
ICES REPORT 12-07 January 2012 Isogeometric collocation for elastostatics and explicit dynamics by F. Auricchio, L. Beirao da Veiga , T.J.R. Hughes, A...Auricchio, L. Beirao da Veiga , T.J.R. Hughes, A. Reali, G. Sangalli, Isogeometric collocation for elastostatics and explicit dynamics, ICES REPORT 12-07...Isogeometric collocation for elastostatics and explicit dynamics F. Auricchio a,c, L. Beirão da Veiga b,c, T.J.R. Hughes d, A. Reali a,c,∗, G
Toward Regional Clusters: Networking Events, Collaborative Research, and the Business Finder
NASA Astrophysics Data System (ADS)
Reichling, Tim; Moos, Benjamin; Rohde, Markus; Wulf, Volker
Networks of regionally collocated organizations improve the competitiveness of their member companies. This is not only a result of lower transportation costs when delivering or purchasing physical goods but also other matters such as mutual trust or a higher diffusion of specialized knowledge among companies that have emerged as important aspects of regional networks. Even increased competition among collocated companies can lead to comparative advantages over externals as a result of an increased pressure for innovation. While the reasons why regional networks of companies offer comparative advantages has been widely investigated, the question arises as to how networks can be developed in terms of higher interconnectedness and deeper connections.
NASA Astrophysics Data System (ADS)
Zhang, Guannan; Lu, Dan; Ye, Ming; Gunzburger, Max; Webster, Clayton
2013-10-01
Bayesian analysis has become vital to uncertainty quantification in groundwater modeling, but its application has been hindered by the computational cost associated with numerous model executions required by exploring the posterior probability density function (PPDF) of model parameters. This is particularly the case when the PPDF is estimated using Markov Chain Monte Carlo (MCMC) sampling. In this study, a new approach is developed to improve the computational efficiency of Bayesian inference by constructing a surrogate of the PPDF, using an adaptive sparse-grid high-order stochastic collocation (aSG-hSC) method. Unlike previous works using first-order hierarchical basis, this paper utilizes a compactly supported higher-order hierarchical basis to construct the surrogate system, resulting in a significant reduction in the number of required model executions. In addition, using the hierarchical surplus as an error indicator allows locally adaptive refinement of sparse grids in the parameter space, which further improves computational efficiency. To efficiently build the surrogate system for the PPDF with multiple significant modes, optimization techniques are used to identify the modes, for which high-probability regions are defined and components of the aSG-hSC approximation are constructed. After the surrogate is determined, the PPDF can be evaluated by sampling the surrogate system directly without model execution, resulting in improved efficiency of the surrogate-based MCMC compared with conventional MCMC. The developed method is evaluated using two synthetic groundwater reactive transport models. The first example involves coupled linear reactions and demonstrates the accuracy of our high-order hierarchical basis approach in approximating high-dimensional posteriori distribution. The second example is highly nonlinear because of the reactions of uranium surface complexation, and demonstrates how the iterative aSG-hSC method is able to capture multimodal and non-Gaussian features of PPDF caused by model nonlinearity. Both experiments show that aSG-hSC is an effective and efficient tool for Bayesian inference.
NASA Technical Reports Server (NTRS)
Robbins, J. W.
1985-01-01
An autonomous spaceborne gravity gradiometer mission is being considered as a post Geopotential Research Mission project. The introduction of satellite diometry data to geodesy is expected to improve solid earth gravity models. The possibility of utilizing gradiometer data for the determination of pertinent gravimetric quantities on a local basis is explored. The analytical technique of least squares collocation is investigated for its usefulness in local solutions of this type. It is assumed, in the error analysis, that the vertical gravity gradient component of the gradient tensor is used as the raw data signal from which the corresponding reference gradients are removed to create the centered observations required in the collocation solution. The reference gradients are computed from a high degree and order geopotential model. The solution can be made in terms of mean or point gravity anomalies, height anomalies, or other useful gravimetric quantities depending on the choice of covariance types. Selected for this study were 30 x 30 foot mean gravity and height anomalies. Existing software and new software are utilized to implement the collocation technique. It was determined that satellite gradiometry data at an altitude of 200 km can be used successfully for the determination of 30 x 30 foot mean gravity anomalies to an accuracy of 9.2 mgal from this algorithm. It is shown that the resulting accuracy estimates are sensitive to gravity model coefficient uncertainties, data reduction assumptions and satellite mission parameters.
NASA Astrophysics Data System (ADS)
Liu, L. H.; Tan, J. Y.
2007-02-01
A least-squares collocation meshless method is employed for solving the radiative heat transfer in absorbing, emitting and scattering media. The least-squares collocation meshless method for radiative transfer is based on the discrete ordinates equation. A moving least-squares approximation is applied to construct the trial functions. Except for the collocation points which are used to construct the trial functions, a number of auxiliary points are also adopted to form the total residuals of the problem. The least-squares technique is used to obtain the solution of the problem by minimizing the summation of residuals of all collocation and auxiliary points. Three numerical examples are studied to illustrate the performance of this new solution method. The numerical results are compared with the other benchmark approximate solutions. By comparison, the results show that the least-squares collocation meshless method is efficient, accurate and stable, and can be used for solving the radiative heat transfer in absorbing, emitting and scattering media.
Adaptive probabilistic collocation based Kalman filter for unsaturated flow problem
NASA Astrophysics Data System (ADS)
Man, J.; Li, W.; Zeng, L.; Wu, L.
2015-12-01
The ensemble Kalman filter (EnKF) has gained popularity in hydrological data assimilation problems. As a Monte Carlo based method, a relatively large ensemble size is usually required to guarantee the accuracy. As an alternative approach, the probabilistic collocation based Kalman filter (PCKF) employs the Polynomial Chaos to approximate the original system. In this way, the sampling error can be reduced. However, PCKF suffers from the so called "cure of dimensionality". When the system nonlinearity is strong and number of parameters is large, PCKF is even more computationally expensive than EnKF. Motivated by recent developments in uncertainty quantification, we propose a restart adaptive probabilistic collocation based Kalman filter (RAPCKF) for data assimilation in unsaturated flow problem. During the implementation of RAPCKF, the important parameters are identified and active PCE basis functions are adaptively selected. The "restart" technology is used to alleviate the inconsistency between model parameters and states. The performance of RAPCKF is tested by unsaturated flow numerical cases. It is shown that RAPCKF is more efficient than EnKF with the same computational cost. Compared with the traditional PCKF, the RAPCKF is more applicable in strongly nonlinear and high dimensional problems.
NASA Technical Reports Server (NTRS)
Huang, Jingfeng; Hsu, N. Christina; Tsay, Si-Chee; Holben, Brent N.; Welton, Ellsworth J.; Smirnov, Alexander; Jeong, Myeong-Jae; Hansell, Richard A.; Berkoff, Timothy A.
2012-01-01
Cirrus clouds, particularly sub visual high thin cirrus with low optical thickness, are difficult to be screened in operational aerosol retrieval algorithms. Collocated aerosol and cirrus observations from ground measurements, such as the Aerosol Robotic Network (AERONET) and the Micro-Pulse Lidar Network (MPLNET), provide us with an unprecedented opportunity to examine the susceptibility of operational aerosol products to thin cirrus contamination. Quality assured aerosol optical thickness (AOT) measurements were also tested against the CALIPSO vertical feature mask (VFM) and the MODIS-derived thin cirrus screening parameters for the purpose of evaluating thin cirrus contamination. Key results of this study include: (1) Quantitative evaluations of data uncertainties in AERONET AOT retrievals are conducted. Although AERONET cirrus screening schemes are successful in removing most cirrus contamination, strong residuals displaying strong spatial and seasonal variability still exist, particularly over thin cirrus prevalent regions during cirrus peak seasons, (2) Challenges in matching up different data for analysis are highlighted and corresponding solutions proposed, and (3) Estimation of the relative contributions from cirrus contamination to aerosol retrievals are discussed. The results are valuable for better understanding and further improving ground aerosol measurements that are critical for aerosol-related climate research.
Learning L2 Collocations Incidentally from Reading
ERIC Educational Resources Information Center
Pellicer-Sánchez, Ana
2017-01-01
Previous studies have shown that intentional learning through explicit instruction is effective for the acquisition of collocations in a second language (L2) (e.g. Peters, 2014, 2015), but relatively little is known about the effectiveness of incidental approaches for the acquisition of L2 collocations. The present study examined the incidental…
Incidental Learning of Collocation
ERIC Educational Resources Information Center
Webb, Stuart; Newton, Jonathan; Chang, Anna
2013-01-01
This study investigated the effects of repetition on the learning of collocation. Taiwanese university students learning English as a foreign language simultaneously read and listened to one of four versions of a modified graded reader that included different numbers of encounters (1, 5, 10, and 15 encounters) with a set of 18 target collocations.…
Accurate, efficient, and (iso)geometrically flexible collocation methods for phase-field models
NASA Astrophysics Data System (ADS)
Gomez, Hector; Reali, Alessandro; Sangalli, Giancarlo
2014-04-01
We propose new collocation methods for phase-field models. Our algorithms are based on isogeometric analysis, a new technology that makes use of functions from computational geometry, such as, for example, Non-Uniform Rational B-Splines (NURBS). NURBS exhibit excellent approximability and controllable global smoothness, and can represent exactly most geometries encapsulated in Computer Aided Design (CAD) models. These attributes permitted us to derive accurate, efficient, and geometrically flexible collocation methods for phase-field models. The performance of our method is demonstrated by several numerical examples of phase separation modeled by the Cahn-Hilliard equation. We feel that our method successfully combines the geometrical flexibility of finite elements with the accuracy and simplicity of pseudo-spectral collocation methods, and is a viable alternative to classical collocation methods.
Numerical solution of sixth-order boundary-value problems using Legendre wavelet collocation method
NASA Astrophysics Data System (ADS)
Sohaib, Muhammad; Haq, Sirajul; Mukhtar, Safyan; Khan, Imad
2018-03-01
An efficient method is proposed to approximate sixth order boundary value problems. The proposed method is based on Legendre wavelet in which Legendre polynomial is used. The mechanism of the method is to use collocation points that converts the differential equation into a system of algebraic equations. For validation two test problems are discussed. The results obtained from proposed method are quite accurate, also close to exact solution, and other different methods. The proposed method is computationally more effective and leads to more accurate results as compared to other methods from literature.
Optimisation of active suspension control inputs for improved performance of active safety systems
NASA Astrophysics Data System (ADS)
Čorić, Mirko; Deur, Joško; Xu, Li; Tseng, H. Eric; Hrovat, Davor
2018-01-01
A collocation-type control variable optimisation method is used to investigate the extent to which the fully active suspension (FAS) can be applied to improve the vehicle electronic stability control (ESC) performance and reduce the braking distance. First, the optimisation approach is applied to the scenario of vehicle stabilisation during the sine-with-dwell manoeuvre. The results are used to provide insights into different FAS control mechanisms for vehicle performance improvements related to responsiveness and yaw rate error reduction indices. The FAS control performance is compared to performances of the standard ESC system, optimal active brake system and combined FAS and ESC configuration. Second, the optimisation approach is employed to the task of FAS-based braking distance reduction for straight-line vehicle motion. Here, the scenarios of uniform and longitudinally or laterally non-uniform tyre-road friction coefficient are considered. The influences of limited anti-lock braking system (ABS) actuator bandwidth and limit-cycle ABS behaviour are also analysed. The optimisation results indicate that the FAS can provide competitive stabilisation performance and improved agility when compared to the ESC system, and that it can reduce the braking distance by up to 5% for distinctively non-uniform friction conditions.
NASA Astrophysics Data System (ADS)
Parand, Kourosh; Latifi, Sobhan; Delkhosh, Mehdi; Moayeri, Mohammad M.
2018-01-01
In the present paper, a new method based on the Generalized Lagrangian Jacobi Gauss (GLJG) collocation method is proposed. The nonlinear Kidder equation, which explains unsteady isothermal gas through a micro-nano porous medium, is a second-order two-point boundary value ordinary differential equation on the unbounded interval [0, ∞). Firstly, using the quasilinearization method, the equation is converted to a sequence of linear ordinary differential equations. Then, by using the GLJG collocation method, the problem is reduced to solving a system of algebraic equations. It must be mentioned that this equation is solved without domain truncation and variable changing. A comparison with some numerical solutions made and the obtained results indicate that the presented solution is highly accurate. The important value of the initial slope, y'(0), is obtained as -1.191790649719421734122828603800159364 for η = 0.5. Comparing to the best result obtained so far, it is accurate up to 36 decimal places.
Mapped Chebyshev Pseudo-Spectral Method for Dynamic Aero-Elastic Problem of Limit Cycle Oscillation
NASA Astrophysics Data System (ADS)
Im, Dong Kyun; Kim, Hyun Soon; Choi, Seongim
2018-05-01
A mapped Chebyshev pseudo-spectral method is developed as one of the Fourier-spectral approaches and solves nonlinear PDE systems for unsteady flows and dynamic aero-elastic problem in a given time interval, where the flows or elastic motions can be periodic, nonperiodic, or periodic with an unknown frequency. The method uses the Chebyshev polynomials of the first kind for the basis function and redistributes the standard Chebyshev-Gauss-Lobatto collocation points more evenly by a conformal mapping function for improved numerical stability. Contributions of the method are several. It can be an order of magnitude more efficient than the conventional finite difference-based, time-accurate computation, depending on the complexity of solutions and the number of collocation points. The method reformulates the dynamic aero-elastic problem in spectral form for coupled analysis of aerodynamics and structures, which can be effective for design optimization of unsteady and dynamic problems. A limit cycle oscillation (LCO) is chosen for the validation and a new method to determine the LCO frequency is introduced based on the minimization of a second derivative of the aero-elastic formulation. Two examples of the limit cycle oscillation are tested: nonlinear, one degree-of-freedom mass-spring-damper system and two degrees-of-freedom oscillating airfoil under pitch and plunge motions. Results show good agreements with those of the conventional time-accurate simulations and wind tunnel experiments.
NASA Astrophysics Data System (ADS)
Bhrawy, A. H.; Doha, E. H.; Ezz-Eldien, S. S.; Van Gorder, Robert A.
2014-12-01
The Jacobi spectral collocation method (JSCM) is constructed and used in combination with the operational matrix of fractional derivatives (described in the Caputo sense) for the numerical solution of the time-fractional Schrödinger equation (T-FSE) and the space-fractional Schrödinger equation (S-FSE). The main characteristic behind this approach is that it reduces such problems to those of solving a system of algebraic equations, which greatly simplifies the solution process. In addition, the presented approach is also applied to solve the time-fractional coupled Schrödinger system (T-FCSS). In order to demonstrate the validity and accuracy of the numerical scheme proposed, several numerical examples with their approximate solutions are presented with comparisons between our numerical results and those obtained by other methods.
NASA Astrophysics Data System (ADS)
Goldberg, D.; Bock, Y.; Melgar, D.
2017-12-01
Rapid seismic magnitude assessment is a top priority for earthquake and tsunami early warning systems. For the largest earthquakes, seismic instrumentation tends to underestimate the magnitude, leading to an insufficient early warning, particularly in the case of tsunami evacuation orders. GPS instrumentation provides more accurate magnitude estimations using near-field stations, but isn't sensitive enough to detect the first seismic wave arrivals, thereby limiting solution speed. By optimally combining collocated seismic and GPS instruments, we demonstrate improved solution speed of earthquake magnitude for the largest seismic events. We present a real-time implementation of magnitude-scaling relations that adapts to consider the length of the recording, reflecting the observed evolution of ground motion with time.
Not Just "Small Potatoes": Knowledge of the Idiomatic Meanings of Collocations
ERIC Educational Resources Information Center
Macis, Marijana; Schmitt, Norbert
2017-01-01
This study investigated learner knowledge of the figurative meanings of 30 collocations that can be both literal and figurative. One hundred and seven Chilean Spanish-speaking university students of English were asked to complete a meaning-recall collocation test in which the target items were embedded in non-defining sentences. Results showed…
Teaching and Learning Collocation in Adult Second and Foreign Language Learning
ERIC Educational Resources Information Center
Boers, Frank; Webb, Stuart
2018-01-01
Perhaps the greatest challenge to creating a research timeline on teaching and learning collocation is deciding how wide to cast the net in the search for relevant publications. For one thing, the term "collocation" does not have the same meaning for all (applied) linguists and practitioners (Barfield & Gyllstad 2009) (see timeline).…
Cross-Linguistic Influence: Its Impact on L2 English Collocation Production
ERIC Educational Resources Information Center
Phoocharoensil, Supakorn
2013-01-01
This research study investigated the influence of learners' mother tongue on their acquisition of English collocations. Having drawn the linguistic data from two groups of Thai EFL learners differing in English proficiency level, the researcher found that the native language (L1) plays a significant role in the participants' collocation learning…
Going beyond Patterns: Involving Cognitive Analysis in the Learning of Collocations
ERIC Educational Resources Information Center
Liu, Dilin
2010-01-01
Since the late 1980s, collocations have received increasing attention in applied linguistics, especially language teaching, as is evidenced by the many publications on the topic. These works fall roughly into two lines of research (a) those focusing on the identification and use of collocations (Benson, 1989; Hunston, 2002; Hunston & Francis,…
The Effect of Error Correction Feedback on the Collocation Competence of Iranian EFL Learners
ERIC Educational Resources Information Center
Jafarpour, Ali Akbar; Sharifi, Abolghasem
2012-01-01
Collocations are one of the most important elements in language proficiency but the effect of error correction feedback of collocations has not been thoroughly examined. Some researchers report the usefulness and importance of error correction (Hyland, 1990; Bartram & Walton, 1991; Ferris, 1999; Chandler, 2003), while others showed that error…
Collocations of High Frequency Noun Keywords in Prescribed Science Textbooks
ERIC Educational Resources Information Center
Menon, Sujatha; Mukundan, Jayakaran
2012-01-01
This paper analyses the discourse of science through the study of collocational patterns of high frequency noun keywords in science textbooks used by upper secondary students in Malaysia. Research has shown that one of the areas of difficulty in science discourse concerns lexis, especially that of collocations. This paper describes a corpus-based…
The Effect of Grouping and Presenting Collocations on Retention
ERIC Educational Resources Information Center
Akpinar, Kadriye Dilek; Bardakçi, Mehmet
2015-01-01
The aim of this study is two-fold. Firstly, it attempts to determine the role of presenting collocations by organizing them based on (i) the keyword, (ii) topic related and (iii) grammatical aspect on retention of collocations. Secondly, it investigates the relationship between participants' general English proficiency and the presentation types…
ERIC Educational Resources Information Center
Leonardi, Magda
1977-01-01
Discusses the importance of two Firthian themes for language teaching. The first theme, "Restricted Languages," concerns the "microlanguages" of every language (e.g., literary language, scientific, etc.). The second theme, "Collocation," shows that equivalent words in two languages rarely have the same position in…
Corpora and Collocations in Chinese-English Dictionaries for Chinese Users
ERIC Educational Resources Information Center
Xia, Lixin
2015-01-01
The paper identifies the major problems of the Chinese-English dictionary in representing collocational information after an extensive survey of nine dictionaries popular among Chinese users. It is found that the Chinese-English dictionary only provides the collocation types of "v+n" and "v+n," but completely ignores those of…
A two-level stochastic collocation method for semilinear elliptic equations with random coefficients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Luoping; Zheng, Bin; Lin, Guang
In this work, we propose a novel two-level discretization for solving semilinear elliptic equations with random coefficients. Motivated by the two-grid method for deterministic partial differential equations (PDEs) introduced by Xu, our two-level stochastic collocation method utilizes a two-grid finite element discretization in the physical space and a two-level collocation method in the random domain. In particular, we solve semilinear equations on a coarse meshmore » $$\\mathcal{T}_H$$ with a low level stochastic collocation (corresponding to the polynomial space $$\\mathcal{P}_{P}$$) and solve linearized equations on a fine mesh $$\\mathcal{T}_h$$ using high level stochastic collocation (corresponding to the polynomial space $$\\mathcal{P}_p$$). We prove that the approximated solution obtained from this method achieves the same order of accuracy as that from solving the original semilinear problem directly by stochastic collocation method with $$\\mathcal{T}_h$$ and $$\\mathcal{P}_p$$. The two-level method is computationally more efficient, especially for nonlinear problems with high random dimensions. Numerical experiments are also provided to verify the theoretical results.« less
NASA Technical Reports Server (NTRS)
Argentiero, P.; Lowrey, B.
1977-01-01
The least squares collocation algorithm for estimating gravity anomalies from geodetic data is shown to be an application of the well known regression equations which provide the mean and covariance of a random vector (gravity anomalies) given a realization of a correlated random vector (geodetic data). It is also shown that the collocation solution for gravity anomalies is equivalent to the conventional least-squares-Stokes' function solution when the conventional solution utilizes properly weighted zero a priori estimates. The mathematical and physical assumptions underlying the least squares collocation estimator are described.
Well-conditioned fractional collocation methods using fractional Birkhoff interpolation basis
NASA Astrophysics Data System (ADS)
Jiao, Yujian; Wang, Li-Lian; Huang, Can
2016-01-01
The purpose of this paper is twofold. Firstly, we provide explicit and compact formulas for computing both Caputo and (modified) Riemann-Liouville (RL) fractional pseudospectral differentiation matrices (F-PSDMs) of any order at general Jacobi-Gauss-Lobatto (JGL) points. We show that in the Caputo case, it suffices to compute F-PSDM of order μ ∈ (0 , 1) to compute that of any order k + μ with integer k ≥ 0, while in the modified RL case, it is only necessary to evaluate a fractional integral matrix of order μ ∈ (0 , 1). Secondly, we introduce suitable fractional JGL Birkhoff interpolation problems leading to new interpolation polynomial basis functions with remarkable properties: (i) the matrix generated from the new basis yields the exact inverse of F-PSDM at "interior" JGL points; (ii) the matrix of the highest fractional derivative in a collocation scheme under the new basis is diagonal; and (iii) the resulted linear system is well-conditioned in the Caputo case, while in the modified RL case, the eigenvalues of the coefficient matrix are highly concentrated. In both cases, the linear systems of the collocation schemes using the new basis can be solved by an iterative solver within a few iterations. Notably, the inverse can be computed in a very stable manner, so this offers optimal preconditioners for usual fractional collocation methods for fractional differential equations (FDEs). It is also noteworthy that the choice of certain special JGL points with parameters related to the order of the equations can ease the implementation. We highlight that the use of the Bateman's fractional integral formulas and fast transforms between Jacobi polynomials with different parameters, is essential for our algorithm development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Min; Kollias, Pavlos; Feng, Zhe
The motivation for this research is to develop a precipitation classification and rain rate estimation method using cloud radar-only measurements for Atmospheric Radiation Measurement (ARM) long-term cloud observation analysis, which are crucial and unique for studying cloud lifecycle and precipitation features under different weather and climate regimes. Based on simultaneous and collocated observations of the Ka-band ARM zenith radar (KAZR), two precipitation radars (NCAR S-PolKa and Texas A&M University SMART-R), and surface precipitation during the DYNAMO/AMIE field campaign, a new cloud radar-only based precipitation classification and rain rate estimation method has been developed and evaluated. The resulting precipitation classification ismore » equivalent to those collocated SMART-R and S-PolKa observations. Both cloud and precipitation radars detected about 5% precipitation occurrence during this period. The convective (stratiform) precipitation fraction is about 18% (82%). The 2-day collocated disdrometer observations show an increased number concentration of large raindrops in convective rain compared to dominant concentration of small raindrops in stratiform rain. The composite distributions of KAZR reflectivity and Doppler velocity also show two distinct structures for convective and stratiform rain. These indicate that the method produces physically consistent results for two types of rain. The cloud radar-only rainfall estimation is developed based on the gradient of accumulative radar reflectivity below 1 km, near-surface Ze, and collocated surface rainfall (R) measurement. The parameterization is compared with the Z-R exponential relation. The relative difference between estimated and surface measured rainfall rate shows that the two-parameter relation can improve rainfall estimation.« less
The dynamics and control of large flexible asymmetric spacecraft
NASA Astrophysics Data System (ADS)
Humphries, T. T.
1991-02-01
This thesis develops the equations of motion for a large flexible asymmetric Earth observation satellite and finds the characteristics of its motion under the influence of control forces. The mathematical model of the structure is produced using analytical methods. The equations of motion are formed using an expanded momentum technique which accounts for translational motion of the spacecraft hub and employs orthogonality relations between appendage and vehicle modes. The controllability and observability conditions of the full spacecraft motions using force and torque actuators are defined. A three axis reaction wheel control system is implemented for both slewing the spacecraft and controlling its resulting motions. From minor slew results it is shown that the lowest frequency elastic mode of the spacecraft is more important than higher frequency modes, when considering the effects of elastic motion on instrument pointing from the hub. Minor slews of the spacecraft configurations considered produce elastic deflections resulting in rotational attitude motions large enough to contravene pointing accuracy requirements of instruments aboard the spacecraft hub. Active vibration damping is required to reduce these hub motions to acceptable bounds in sufficiently small time. A comparison between hub mounted collocated and hub/appendage mounted non-collocated control systems verifies that provided the non-collocated system is stable, it can more effectively damp elastic modes whilst maintaining adequate damping of rigid modes. Analysis undertaken shows that the reaction wheel controller could be replaced by a thruster control system which decouples the modes of the spacecraft motion, enabling them to be individually damped.
Nilles, M.A.; Gordon, J.D.; Schroder, L.J.
1994-01-01
A collocated, wet-deposition sampler program has been operated since October 1988 by the U.S. Geological Survey to estimate the overall sampling precision of wet atmospheric deposition data collected at selected sites in the National Atmospheric Deposition Program and National Trends Network (NADP/NTN). A duplicate set of wet-deposition sampling instruments was installed adjacent to existing sampling instruments at four different NADP/NTN sites for each year of the study. Wet-deposition samples from collocated sites were collected and analysed using standard NADP/NTN procedures. Laboratory analyses included determinations of pH, specific conductance, and concentrations of major cations and anions. The estimates of precision included all variability in the data-collection system, from the point of sample collection through storage in the NADP/NTN database. Sampling precision was determined from the absolute value of differences in the analytical results for the paired samples in terms of median relative and absolute difference. The median relative difference for Mg2+, Na+, K+ and NH4+ concentration and deposition was quite variable between sites and exceeded 10% at most sites. Relative error for analytes whose concentrations typically approached laboratory method detection limits were greater than for analytes that did not typically approach detection limits. The median relative difference for SO42- and NO3- concentration, specific conductance, and sample volume at all sites was less than 7%. Precision for H+ concentration and deposition ranged from less than 10% at sites with typically high levels of H+ concentration to greater than 30% at sites with low H+ concentration. Median difference for analyte concentration and deposition was typically 1.5-2-times greater for samples collected during the winter than during other seasons at two northern sites. Likewise, the median relative difference in sample volume for winter samples was more than double the annual median relative difference at the two northern sites. Bias accounted for less than 25% of the collocated variability in analyte concentration and deposition from weekly collocated precipitation samples at most sites.A collocated, wet-deposition sampler program has been operated since OCtober 1988 by the U.S Geological Survey to estimate the overall sampling precision of wet atmospheric deposition data collected at selected sites in the National Atmospheric Deposition Program and National Trends Network (NADP/NTN). A duplicate set of wet-deposition sampling instruments was installed adjacent to existing sampling instruments four different NADP/NTN sites for each year of the study. Wet-deposition samples from collocated sites were collected and analysed using standard NADP/NTN procedures. Laboratory analyses included determinations of pH, specific conductance, and concentrations of major cations and anions. The estimates of precision included all variability in the data-collection system, from the point of sample collection through storage in the NADP/NTN database.
On the Effect of Gender and Years of Instruction on Iranian EFL Learners' Collocational Competence
ERIC Educational Resources Information Center
Ganji, Mansoor
2012-01-01
This study investigates the Iranian EFL learners' Knowledge of Lexical Collocation at three academic levels: freshmen, sophomores, and juniors. The participants were forty three English majors doing their B.A. in English Translation studies in Chabahar Maritime University. They took a 50-item fill-in-the-blank test of lexical collocations. The…
ERIC Educational Resources Information Center
Gheisari, Nouzar; Yousofi, Nouroldin
2016-01-01
The effectiveness of different teaching methods of collocational expressions in ESL/EFL contexts of education has been a point of debate for more than two decades, with some believing in explicit and the others in implicit instruction of collocations. In this regard, the present study aimed at finding about which kind of instruction is more…
ERIC Educational Resources Information Center
Krummes, Cedric; Ensslin, Astrid
2015-01-01
Whereas there exists a plethora of research on collocations and formulaic language in English, this article contributes towards a somewhat less developed area: the understanding and teaching of formulaic language in German as a foreign language. It analyses formulaic sequences and collocations in German writing (corpus-driven) and provides modern…
Symmetrical and Asymmetrical Scaffolding of L2 Collocations in the Context of Concordancing
ERIC Educational Resources Information Center
Rezaee, Abbas Ali; Marefat, Hamideh; Saeedakhtar, Afsaneh
2015-01-01
Collocational competence is recognized to be integral to native-like L2 performance, and concordancing can be of assistance in gaining this competence. This study reports on an investigation into the effect of symmetrical and asymmetrical scaffolding on the collocational competence of Iranian intermediate learners of English in the context of…
Profiling the Collocation Use in ELT Textbooks and Learner Writing
ERIC Educational Resources Information Center
Tsai, Kuei-Ju
2015-01-01
The present study investigates the collocational profiles of (1) three series of graded textbooks for English as a foreign language (EFL) commonly used in Taiwan, (2) the written productions of EFL learners, and (3) the written productions of native speakers (NS) of English. These texts were examined against a purpose-built collocation list. Based…
Learning and Teaching L2 Collocations: Insights from Research
ERIC Educational Resources Information Center
Szudarski, Pawel
2017-01-01
The aim of this article is to present and summarize the main research findings in the area of learning and teaching second language (L2) collocations. Being a large part of naturally occurring language, collocations and other types of multiword units (e.g., idioms, phrasal verbs, lexical bundles) have been identified as important aspects of L2…
The National Ambient Air Monitoring Stategy: Rethinking the Role of National Networks
A current re-engineering of the United States routine ambient monitoring networks intended to improve the balance in addressing both regulatory and scientific objectives is addressed in this paper. Key attributes of these network modifications include the addition of collocated ...
Vibration and Control of Flexible Rotor Supported by Magnetic Bearings
NASA Technical Reports Server (NTRS)
Nonami, Kenzou
1988-01-01
Active vibration control of flexible rotors supported by magnetic bearings is discussed. Using a finite-element method for a mathematical model of the flexible rotor, the eigenvalue problem is formulated taking into account the interaction between a mechanical system of the flexible rotor and an electrical system of the magnetic bearings and the controller. However, for the sake of simplicity, gyroscopic effects are disregarded. It is possible to adapt this formulation to a general flexible rotor-magnetic bearing system. Controllability with and without collocation sensors and actuators located at the same distance along the rotor axis is discussed for the higher order flexible modes of the test rig. In conclusion, it is proposed that it is necessary to add new active control loops for the higher flexible modes even in the case of collocation. Then it is possible to stabilize for the case of uncollocation by means of this method.
Joint IRIS/PASSCAL UNAVCO Seismic and GPS Installations, Testing, and Development
NASA Astrophysics Data System (ADS)
Fowler, J.; Alvarez, M.; Beaudoin, B.; Jackson, M.; Feaux, K.; Ruud, O.; Andreatta, V.; Meertens, C.; Ingate, S.
2002-12-01
Future large-scale deformation initiatives such as EarthScope (http://www.earthscope.org/) will provide an opportunity for collocation and integration of GPS receivers and broadband and short period seismic instruments. Example integration targets include PBO backbone and cluster sites with USArray Transportable (Bigfoot) and Permanent Array. A GPS seismic integration and testing facility at the IRIS/PASSCAL Instrument Center in Socorro, NM is currently performing side-by-side testing of different seismometers, GPS receivers, communications hardware, power systems and data streaming software. One configuration tested uses an integrated VSAT data communications system and a broadband seismometer collocated with a geodetic quality GPS system. Data are routed through a VSAT hub and distributed to the UNAVCO Data Archive in Boulder and the IRIS Data Management Center in Seattle. Preliminary results indicate data availability approaching 100% with a maximum latency of 5 sec.
Robustness properties of LQG optimized compensators for collocated rate sensors
NASA Technical Reports Server (NTRS)
Balakrishnan, A. V.
1994-01-01
In this paper we study the robustness with respect to stability of the closed-loop system with collocated rate sensor using LQG (mean square rate) optimized compensators. Our main result is that the transmission zeros of the compensator are precisely the structure modes when the actuator/sensor locations are 'pinned' and/or 'clamped': i.e., motion in the direction sensed is not allowed. We have stability even under parameter mismatch, except in the unlikely situation where such a mode frequency of the assumed system coincides with an undamped mode frequency of the real system and the corresponding mode shape is an eigenvector of the compensator transfer function matrix at that frequency. For a truncated modal model - such as that of the NASA LaRC Phase Zero Evolutionary model - the transmission zeros of the corresponding compensator transfer function can be interpreted as the structure modes when motion in the directions sensed is prohibited.
ERIC Educational Resources Information Center
Ying, Yang
2015-01-01
This study aimed to seek an in-depth understanding about English collocation learning and the development of learner autonomy through investigating a group of English as a Second Language (ESL) learners' perspectives and practices in their learning of English collocations using an AWARE approach. A group of 20 PRC students learning English in…
ERIC Educational Resources Information Center
Chang, Yu-Chia; Chang, Jason S.; Chen, Hao-Jan; Liou, Hsien-Chin
2008-01-01
Previous work in the literature reveals that EFL learners were deficient in collocations that are a hallmark of near native fluency in learner's writing. Among different types of collocations, the verb-noun (V-N) one was found to be particularly difficult to master, and learners' first language was also found to heavily influence their collocation…
ERIC Educational Resources Information Center
Heidrick, Ingrid T.
2017-01-01
This study compares monolinguals and different kinds of bilinguals with respect to their knowledge of the type of lexical phenomenon known as collocation. Collocations are word combinations that speakers use recurrently, forming the basis of conventionalized lexical patterns that are shared by a linguistic community. Examples of collocations…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Man, Jun; Li, Weixuan; Zeng, Lingzao
2016-06-01
The ensemble Kalman filter (EnKF) has gained popularity in hydrological data assimilation problems. As a Monte Carlo based method, a relatively large ensemble size is usually required to guarantee the accuracy. As an alternative approach, the probabilistic collocation based Kalman filter (PCKF) employs the polynomial chaos to approximate the original system. In this way, the sampling error can be reduced. However, PCKF suffers from the so-called "curse of dimensionality". When the system nonlinearity is strong and number of parameters is large, PCKF could be even more computationally expensive than EnKF. Motivated by most recent developments in uncertainty quantification, we proposemore » a restart adaptive probabilistic collocation based Kalman filter (RAPCKF) for data assimilation in unsaturated flow problems. During the implementation of RAPCKF, the important parameters are identified and active PCE basis functions are adaptively selected. The "restart" technology is used to eliminate the inconsistency between model parameters and states. The performance of RAPCKF is tested with numerical cases of unsaturated flow models. It is shown that RAPCKF is more efficient than EnKF with the same computational cost. Compared with the traditional PCKF, the RAPCKF is more applicable in strongly nonlinear and high dimensional problems.« less
Collocational Links in the L2 Mental Lexicon and the Influence of L1 Intralexical Knowledge
ERIC Educational Resources Information Center
Wolter, Brent; Gyllstad, Henrik
2011-01-01
This article assesses the influence of L1 intralexical knowledge on the formation of L2 intralexical collocations. Two tests, a primed lexical decision task (LDT) and a test of receptive collocational knowledge, were administered to a group of non-native speakers (NNSs) (L1 Swedish), with native speakers (NSs) of English serving as controls on the…
ERIC Educational Resources Information Center
Jaen, Maria Moreno
2007-01-01
This paper reports an assessment of the collocational competence of students of English Linguistics at the University of Granada. This was carried out to meet a two-fold purpose. On the one hand, we aimed to establish a solid corpus-driven approach based upon a systematic and reliable framework for the evaluation of collocational competence in…
NASA Technical Reports Server (NTRS)
Argentiero, P.; Lowrey, B.
1976-01-01
The least squares collocation algorithm for estimating gravity anomalies from geodetic data is shown to be an application of the well known regression equations which provide the mean and covariance of a random vector (gravity anomalies) given a realization of a correlated random vector (geodetic data). It is also shown that the collocation solution for gravity anomalies is equivalent to the conventional least-squares-Stokes' function solution when the conventional solution utilizes properly weighted zero a priori estimates. The mathematical and physical assumptions underlying the least squares collocation estimator are described, and its numerical properties are compared with the numerical properties of the conventional least squares estimator.
The error structure of the SMAP single and dual channel soil moisture retrievals
USDA-ARS?s Scientific Manuscript database
Knowledge of the temporal error structure for remotely-sensed surface soil moisture retrievals can improve our ability to exploit them for hydrology and climate studies. This study employs a triple collocation type analysis to investigate both the total variance and temporal auto-correlation of erro...
NASA Astrophysics Data System (ADS)
Zhang, D.; Liao, Q.
2016-12-01
The Bayesian inference provides a convenient framework to solve statistical inverse problems. In this method, the parameters to be identified are treated as random variables. The prior knowledge, the system nonlinearity, and the measurement errors can be directly incorporated in the posterior probability density function (PDF) of the parameters. The Markov chain Monte Carlo (MCMC) method is a powerful tool to generate samples from the posterior PDF. However, since the MCMC usually requires thousands or even millions of forward simulations, it can be a computationally intensive endeavor, particularly when faced with large-scale flow and transport models. To address this issue, we construct a surrogate system for the model responses in the form of polynomials by the stochastic collocation method. In addition, we employ interpolation based on the nested sparse grids and takes into account the different importance of the parameters, under the condition of high random dimensions in the stochastic space. Furthermore, in case of low regularity such as discontinuous or unsmooth relation between the input parameters and the output responses, we introduce an additional transform process to improve the accuracy of the surrogate model. Once we build the surrogate system, we may evaluate the likelihood with very little computational cost. We analyzed the convergence rate of the forward solution and the surrogate posterior by Kullback-Leibler divergence, which quantifies the difference between probability distributions. The fast convergence of the forward solution implies fast convergence of the surrogate posterior to the true posterior. We also tested the proposed algorithm on water-flooding two-phase flow reservoir examples. The posterior PDF calculated from a very long chain with direct forward simulation is assumed to be accurate. The posterior PDF calculated using the surrogate model is in reasonable agreement with the reference, revealing a great improvement in terms of computational efficiency.
NASA Technical Reports Server (NTRS)
Eren, K.
1980-01-01
The mathematical background in spectral analysis as applied to geodetic applications is summarized. The resolution (cut-off frequency) of the GEOS 3 altimeter data is examined by determining the shortest wavelength (corresponding to the cut-off frequency) recoverable. The data from some 18 profiles are used. The total power (variance) in the sea surface topography with respect to the reference ellipsoid as well as with respect to the GEM-9 surface is computed. A fast inversion algorithm for matrices of simple and block Toeplitz matrices and its application to least squares collocation is explained. This algorithm yields a considerable gain in computer time and storage in comparison with conventional least squares collocation. Frequency domain least squares collocation techniques are also introduced and applied to estimating gravity anomalies from GEOS 3 altimeter data. These techniques substantially reduce the computer time and requirements in storage associated with the conventional least squares collocation. Numerical examples given demonstrate the efficiency and speed of these techniques.
NASA Astrophysics Data System (ADS)
Budisulistiorini, S. H.; Canagaratna, M. R.; Croteau, P. L.; Baumann, K.; Edgerton, E. S.; Kollman, M. S.; Ng, N. L.; Verma, V.; Shaw, S. L.; Knipping, E. M.; Worsnop, D. R.; Jayne, J. T.; Weber, R. J.; Surratt, J. D.
2014-07-01
Currently, there are a limited number of field studies that evaluate the long-term performance of the Aerodyne Aerosol Chemical Speciation Monitor (ACSM) against established monitoring networks. In this study, we present seasonal intercomparisons of the ACSM with collocated fine aerosol (PM2.5) measurements at the Southeastern Aerosol Research and Characterization (SEARCH) Jefferson Street (JST) site near downtown Atlanta, GA, during 2011-2012. Intercomparison of two collocated ACSMs resulted in strong correlations (r2 > 0.8) for all chemical species, except chloride (r2 = 0.21) indicating that ACSM instruments are capable of stable and reproducible operation. In general, speciated ACSM mass concentrations correlate well (r2 > 0.7) with the filter-adjusted continuous measurements from JST, although the correlation for nitrate is weaker (r2 = 0.55) in summer. Correlations of the ACSM NR-PM1 (non-refractory particulate matter with aerodynamic diameter less than or equal to 1 μm) plus elemental carbon (EC) with tapered element oscillating microbalance (TEOM) PM2.5 and Federal Reference Method (FRM) PM1 mass are strong with r2 > 0.7 and r2 > 0.8, respectively. Discrepancies might be attributed to evaporative losses of semi-volatile species from the filter measurements used to adjust the collocated continuous measurements. This suggests that adjusting the ambient aerosol continuous measurements with results from filter analysis introduced additional bias to the measurements. We also recommend to calibrate the ambient aerosol monitoring instruments using aerosol standards rather than gas-phase standards. The fitting approach for ACSM relative ionization for sulfate was shown to improve the comparisons between ACSM and collocated measurements in the absence of calibrated values, suggesting the importance of adding sulfate calibration into the ACSM calibration routine.
NASA Astrophysics Data System (ADS)
Parand, K.; Nikarya, M.
2017-11-01
In this paper a novel method will be introduced to solve a nonlinear partial differential equation (PDE). In the proposed method, we use the spectral collocation method based on Bessel functions of the first kind and the Jacobian free Newton-generalized minimum residual (JFNGMRes) method with adaptive preconditioner. In this work a nonlinear PDE has been converted to a nonlinear system of algebraic equations using the collocation method based on Bessel functions without any linearization, discretization or getting the help of any other methods. Finally, by using JFNGMRes, the solution of the nonlinear algebraic system is achieved. To illustrate the reliability and efficiency of the proposed method, we solve some examples of the famous Fisher equation. We compare our results with other methods.
Interpolation of Superconducting Gravity Observations Using Least-Squares Collocation Method
NASA Astrophysics Data System (ADS)
Habel, Branislav; Janak, Juraj
2014-05-01
A pre-processing of the gravity data measured by superconducting gravimeter involves removing of spikes, offsets and gaps. Their presence in observations can limit the data analysis and degrades the quality of obtained results. Short data gaps are filling by theoretical signal in order to get continuous records of gravity. It requires the accurate tidal model and eventually atmospheric pressure at the observed site. The poster presents a design of algorithm for interpolation of gravity observations with a sampling rate of 1 min. Novel approach is based on least-squares collocation which combines adjustment of trend parameters, filtering of noise and prediction. It allows the interpolation of missing data up to a few hours without necessity of any other information. Appropriate parameters for covariance function are found using a Bayes' theorem by modified optimization process. Accuracy of method is improved by the rejection of outliers before interpolation. For filling of longer gaps the collocation model is combined with theoretical tidal signal for the rigid Earth. Finally, the proposed method was tested on the superconducting gravity observations at several selected stations of Global Geodynamics Project. Testing demonstrates its reliability and offers results comparable with the standard approach implemented in ETERNA software package without necessity of an accurate tidal model.
Atmospheric signature of the Agulhas current
NASA Astrophysics Data System (ADS)
Stela Nkwinkwa Njouodo, Arielle; Koseki, Shunya; Rouault, Mathieu; Keenlyside, Noel
2017-04-01
Satellite observation and Climate Forecast System Reanalysis (CFSR) are used to map the influence of the Agulhas current on local annual precipitation in Southern Africa. The pressure adjustment mechanism is applied over the Agulhas current region. Results unfold that the narrow band of precipitation above the Agulhas Current is collocated with surface wind convergence, sea surface temperature (SST) Laplacian and sea level pressure (SLP) Laplacian. Relationship between SLP Laplacian and wind convergence is found, with 0.54 correlation coefficient statistically significant. In the free troposphere, the band of precipitation above the Agulhas current is collocated with the wind divergence and the upward motion of wind velocity. The warm waters from the Agulhas current can influence local precipitation.
Galerkin-collocation domain decomposition method for arbitrary binary black holes
NASA Astrophysics Data System (ADS)
Barreto, W.; Clemente, P. C. M.; de Oliveira, H. P.; Rodriguez-Mueller, B.
2018-05-01
We present a new computational framework for the Galerkin-collocation method for double domain in the context of ADM 3 +1 approach in numerical relativity. This work enables us to perform high resolution calculations for initial sets of two arbitrary black holes. We use the Bowen-York method for binary systems and the puncture method to solve the Hamiltonian constraint. The nonlinear numerical code solves the set of equations for the spectral modes using the standard Newton-Raphson method, LU decomposition and Gaussian quadratures. We show convergence of our code for the conformal factor and the ADM mass. Thus, we display features of the conformal factor for different masses, spins and linear momenta.
Recovery of Near-Fault Ground Motion by Introducing Rotational Motions
NASA Astrophysics Data System (ADS)
Chiu, H. C.
2014-12-01
Near-fault ground motion is the key data to seismologists for revealing the seismic faulting and earthquake physics and strong-motion data is the only near-fault seismogram that can keep on-scale recording in a major earthquake. Unfortunately, this type of data might be contaminated by the rotation induced effects such as the centrifugal acceleration and the gravity effects. We analyze these effects based on a set of collocated rotation-translation data of small to moderate earthquakes. Results show these rotation effects could be negligible in small ground motion, but they might have a radical growing in the near-fault/extremely large ground motions. In order to extract more information from near-fault seismogram for improving our understating of seismic faulting and earthquake physics, it requires six-component collocated rotation-translation records to reduce or remove these effects.
ERIC Educational Resources Information Center
Fiore, Stephen M.; Rodriguez, Walter E.; Carstens, Deborah S.
2012-01-01
This paper presents a framework for facilitating communication among STEM project teams that are geographically dispersed in synchronous or asynchronous online courses. The framework has been developed to: (a) improve how engineering and technology students and faculty work with collocated and geographically-dispersed teams; and (b) to connect the…
The welfare effects of integrating renewable energy into electricity markets
NASA Astrophysics Data System (ADS)
Lamadrid, Alberto J.
The challenges of deploying more renewable energy sources on an electric grid are caused largely by their inherent variability. In this context, energy storage can help make the electric delivery system more reliable by mitigating this variability. This thesis analyzes a series of models for procuring electricity and ancillary services for both individuals and social planners with high penetrations of stochastic wind energy. The results obtained for an individual decision maker using stochastic optimization are ambiguous, with closed form solutions dependent on technological parameters, and no consideration of the system reliability. The social planner models correctly reflect the effect of system reliability, and in the case of a Stochastic, Security Constrained Optimal Power Flow (S-SC-OPF or SuperOPF), determine reserve capacity endogenously so that system reliability is maintained. A single-period SuperOPF shows that including ramping costs in the objective function leads to more wind spilling and increased capacity requirements for reliability. However, this model does not reflect the inter temporal tradeoffs of using Energy Storage Systems (ESS) to improve reliability and mitigate wind variability. The results with the multiperiod SuperOPF determine the optimum use of storage for a typical day, and compare the effects of collocating ESS at wind sites with the same amount of storage (deferrable demand) located at demand centers. The collocated ESS has slightly lower operating costs and spills less wind generation compared to deferrable demand, but the total amount of conventional generating capacity needed for system adequacy is higher. In terms of the total system costs, that include the capital cost of conventional generating capacity, the costs with deferrable demand is substantially lower because the daily demand profile is flattened and less conventional generation capacity is then needed for reliability purposes. The analysis also demonstrates that the optimum daily pattern of dispatch and reserves is seriously distorted if the stochastic characteristics of wind generation are ignored.
Raman lidar characterization using a reference lamp
NASA Astrophysics Data System (ADS)
Landulfo, Eduardo; da Costa, Renata F.; Rodrigues, Patricia F.; da Silva Lopes, Fábio J.
2014-10-01
The determination of the amount of water vapor in the atmosphere using lidar is a calibration dependent technique. Different collocated instruments are used for this purpose, like radiossoundings and microwave radiometers. When there are no collocated instruments available, an independente lamp mapping calibration technique can be used. Aiming to stabilish an independ technique for the calibration of the six channels Nd-YAG Raman lidar system located at the Center for Lasers and Applications (CLA), S˜ao Paulo, Brazil, an optical characterization of the system was first performed using a reference tungsten lamp. This characterization is useful to identify any possible distortions in the interference filters, telescope mirror and stray light contamination. In this paper we show three lamp mapping caracterizations (01/16/2014, 01/22/2014, 04/09/2014). The first day is used to demostrate how the tecnique is useful to detect stray light, the second one how it is sensible to the position of the filters and the third one demostrates a well optimized optical system.
2009-03-01
state of the climate system...information about the current or forecasted state of the climate system. Collocated with FNMOD, is the Air Force’s 14th Weather Squadron (14WS; formerly...relationships between the LSEFs and TC formations can be skillful regardless of the oscillatory state of the climate system. D.
Dissipative controller designs for second-order dynamic systems
NASA Technical Reports Server (NTRS)
Morris, K. A.; Juang, J. N.
1990-01-01
The passivity theorem may be used to design robust controllers for structures with positive transfer functions. This result is extended to more general configurations using dissipative system theory. A stability theorem for robust, model-independent controllers of structures which lack collocated rate sensors and actuators is given. The theory is illustrated for non-square systems and systems with displacement sensors.
Comparison of Implicit Collocation Methods for the Heat Equation
NASA Technical Reports Server (NTRS)
Kouatchou, Jules; Jezequel, Fabienne; Zukor, Dorothy (Technical Monitor)
2001-01-01
We combine a high-order compact finite difference scheme to approximate spatial derivatives arid collocation techniques for the time component to numerically solve the two dimensional heat equation. We use two approaches to implement the collocation methods. The first one is based on an explicit computation of the coefficients of polynomials and the second one relies on differential quadrature. We compare them by studying their merits and analyzing their numerical performance. All our computations, based on parallel algorithms, are carried out on the CRAY SV1.
NASA Technical Reports Server (NTRS)
Carpenter, Mark H.; Fisher, Travis C.; Nielsen, Eric J.; Frankel, Steven H.
2013-01-01
Nonlinear entropy stability and a summation-by-parts framework are used to derive provably stable, polynomial-based spectral collocation methods of arbitrary order. The new methods are closely related to discontinuous Galerkin spectral collocation methods commonly known as DGFEM, but exhibit a more general entropy stability property. Although the new schemes are applicable to a broad class of linear and nonlinear conservation laws, emphasis herein is placed on the entropy stability of the compressible Navier-Stokes equations.
77 FR 29986 - Savannah River Site Building 235-F Safety
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-21
... seismically-induced full-facility fire are greater than 10 rem offsite and 27,000 rem to the collocated worker... require intrusion into the cells). Take action, as necessary, to ensure that these systems are credited in...
NASA Astrophysics Data System (ADS)
Xiao, Long; Liu, Xinggao; Ma, Liang; Zhang, Zeyin
2018-03-01
Dynamic optimisation problem with characteristic times, widely existing in many areas, is one of the frontiers and hotspots of dynamic optimisation researches. This paper considers a class of dynamic optimisation problems with constraints that depend on the interior points either fixed or variable, where a novel direct pseudospectral method using Legendre-Gauss (LG) collocation points for solving these problems is presented. The formula for the state at the terminal time of each subdomain is derived, which results in a linear combination of the state at the LG points in the subdomains so as to avoid the complex nonlinear integral. The sensitivities of the state at the collocation points with respect to the variable characteristic times are derived to improve the efficiency of the method. Three well-known characteristic time dynamic optimisation problems are solved and compared in detail among the reported literature methods. The research results show the effectiveness of the proposed method.
Nonparametric triple collocation
USDA-ARS?s Scientific Manuscript database
Triple collocation derives variance-covariance relationships between three or more independent measurement sources and an indirectly observed truth variable in the case where the measurement operators are linear-Gaussian. We generalize that theory to arbitrary observation operators by deriving nonpa...
Long, Judith A; Wang, Andrew; Medvedeva, Elina L; Eisen, Susan V; Gordon, Adam J; Kreyenbuhl, Julie; Marcus, Steven C
2014-08-01
Persons with serious mental illness (SMI) may benefit from collocation of medical and mental health healthcare professionals and services in attending to their chronic comorbid medical conditions. We evaluated and compared glucose control and diabetes medication adherence among patients with SMI who received collocated care to those not receiving collocated care (which we call usual care). We performed a cross-sectional, observational cohort study of 363 veteran patients with type 2 diabetes and SMI who received care from one of three Veterans Affairs medical facilities: two sites that provided both collocated and usual care and one site that provided only usual care. Through a survey, laboratory tests, and medical records, we assessed patient characteristics, glucose control as measured by a current HbA1c, and adherence to diabetes medication as measured by the medication possession ration (MPR) and self-report. In the sample, the mean HbA1c was 7.4% (57 mmol/mol), the mean MPR was 80%, and 51% reported perfect adherence to their diabetes medications. In both unadjusted and adjusted analyses, there were no differences in glucose control and medication adherence by collocation of care. Patients seen in collocated care tended to have better HbA1c levels (β = -0.149; P = 0.393) and MPR values (β = 0.34; P = 0.132) and worse self-reported adherence (odds ratio 0.71; P = 0.143), but these were not statistically significant. In a population of veterans with comorbid diabetes and SMI, patients on average had good glucose control and medication adherence regardless of where they received primary care. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
NASA Technical Reports Server (NTRS)
Joshi, S. M.
1985-01-01
Robustness properties are investigated for two types of controllers for large flexible space structures, which use collocated sensors and actuators. The first type is an attitude controller which uses negative definite feedback of measured attitude and rate, while the second type is a damping enhancement controller which uses only velocity (rate) feedback. It is proved that collocated attitude controllers preserve closed loop global asymptotic stability when linear actuator/sensor dynamics satisfying certain phase conditions are present, or monotonic increasing nonlinearities are present. For velocity feedback controllers, the global asymptotic stability is proved under much weaker conditions. In particular, they have 90 phase margin and can tolerate nonlinearities belonging to the (0,infinity) sector in the actuator/sensor characteristics. The results significantly enhance the viability of both types of collocated controllers, especially when the available information about the large space structure (LSS) parameters is inadequate or inaccurate.
Understanding a reference-free impedance method using collocated piezoelectric transducers
NASA Astrophysics Data System (ADS)
Kim, Eun Jin; Kim, Min Koo; Sohn, Hoon; Park, Hyun Woo
2010-03-01
A new concept of a reference-free impedance method, which does not require direct comparison with a baseline impedance signal, is proposed for damage detection in a plate-like structure. A single pair of piezoelectric (PZT) wafers collocated on both surfaces of a plate are utilized for extracting electro-mechanical signatures (EMS) associated with mode conversion due to damage. A numerical simulation is conducted to investigate the EMS of collocated PZT wafers in the frequency domain at the presence of damage through spectral element analysis. Then, the EMS due to mode conversion induced by damage are extracted using the signal decomposition technique based on the polarization characteristics of the collocated PZT wafers. The effects of the size and the location of damage on the decomposed EMS are investigated as well. Finally, the applicability of the decomposed EMS to the reference-free damage diagnosis is discussed.
NASA Astrophysics Data System (ADS)
Shen, Xiang; Liu, Bin; Li, Qing-Quan
2017-03-01
The Rational Function Model (RFM) has proven to be a viable alternative to the rigorous sensor models used for geo-processing of high-resolution satellite imagery. Because of various errors in the satellite ephemeris and instrument calibration, the Rational Polynomial Coefficients (RPCs) supplied by image vendors are often not sufficiently accurate, and there is therefore a clear need to correct the systematic biases in order to meet the requirements of high-precision topographic mapping. In this paper, we propose a new RPC bias-correction method using the thin-plate spline modeling technique. Benefiting from its excellent performance and high flexibility in data fitting, the thin-plate spline model has the potential to remove complex distortions in vendor-provided RPCs, such as the errors caused by short-period orbital perturbations. The performance of the new method was evaluated by using Ziyuan-3 satellite images and was compared against the recently developed least-squares collocation approach, as well as the classical affine-transformation and quadratic-polynomial based methods. The results show that the accuracies of the thin-plate spline and the least-squares collocation approaches were better than the other two methods, which indicates that strong non-rigid deformations exist in the test data because they cannot be adequately modeled by simple polynomial-based methods. The performance of the thin-plate spline method was close to that of the least-squares collocation approach when only a few Ground Control Points (GCPs) were used, and it improved more rapidly with an increase in the number of redundant observations. In the test scenario using 21 GCPs (some of them located at the four corners of the scene), the correction residuals of the thin-plate spline method were about 36%, 37%, and 19% smaller than those of the affine transformation method, the quadratic polynomial method, and the least-squares collocation algorithm, respectively, which demonstrates that the new method can be more effective at removing systematic biases in vendor-supplied RPCs.
NASA Astrophysics Data System (ADS)
Blakely, Christopher D.
This dissertation thesis has three main goals: (1) To explore the anatomy of meshless collocation approximation methods that have recently gained attention in the numerical analysis community; (2) Numerically demonstrate why the meshless collocation method should clearly become an attractive alternative to standard finite-element methods due to the simplicity of its implementation and its high-order convergence properties; (3) Propose a meshless collocation method for large scale computational geophysical fluid dynamics models. We provide numerical verification and validation of the meshless collocation scheme applied to the rotational shallow-water equations on the sphere and demonstrate computationally that the proposed model can compete with existing high performance methods for approximating the shallow-water equations such as the SEAM (spectral-element atmospheric model) developed at NCAR. A detailed analysis of the parallel implementation of the model, along with the introduction of parallel algorithmic routines for the high-performance simulation of the model will be given. We analyze the programming and computational aspects of the model using Fortran 90 and the message passing interface (mpi) library along with software and hardware specifications and performance tests. Details from many aspects of the implementation in regards to performance, optimization, and stabilization will be given. In order to verify the mathematical correctness of the algorithms presented and to validate the performance of the meshless collocation shallow-water model, we conclude the thesis with numerical experiments on some standardized test cases for the shallow-water equations on the sphere using the proposed method.
A Jacobi collocation approximation for nonlinear coupled viscous Burgers' equation
NASA Astrophysics Data System (ADS)
Doha, Eid H.; Bhrawy, Ali H.; Abdelkawy, Mohamed A.; Hafez, Ramy M.
2014-02-01
This article presents a numerical approximation of the initial-boundary nonlinear coupled viscous Burgers' equation based on spectral methods. A Jacobi-Gauss-Lobatto collocation (J-GL-C) scheme in combination with the implicit Runge-Kutta-Nyström (IRKN) scheme are employed to obtain highly accurate approximations to the mentioned problem. This J-GL-C method, based on Jacobi polynomials and Gauss-Lobatto quadrature integration, reduces solving the nonlinear coupled viscous Burgers' equation to a system of nonlinear ordinary differential equation which is far easier to solve. The given examples show, by selecting relatively few J-GL-C points, the accuracy of the approximations and the utility of the approach over other analytical or numerical methods. The illustrative examples demonstrate the accuracy, efficiency, and versatility of the proposed algorithm.
NASA Technical Reports Server (NTRS)
Gottlieb, David; Shu, Chi-Wang
1994-01-01
The paper presents a method to recover exponential accuracy at all points (including at the discontinuities themselves), from the knowledge of an approximation to the interpolation polynomial (or trigonometrical polynomial). We show that if we are given the collocation point values (or a highly accurate approximation) at the Gauss or Gauss-Lobatto points, we can reconstruct a uniform exponentially convergent approximation to the function f(x) in any sub-interval of analyticity. The proof covers the cases of Fourier, Chebyshev, Legendre, and more general Gegenbauer collocation methods.
On the anomaly of velocity-pressure decoupling in collocated mesh solutions
NASA Technical Reports Server (NTRS)
Kim, Sang-Wook; Vanoverbeke, Thomas
1991-01-01
The use of various pressure correction algorithms originally developed for fully staggered meshes can yield a velocity-pressure decoupled solution for collocated meshes. The mechanism that causes velocity-pressure decoupling is identified. It is shown that the use of a partial differential equation for the incremental pressure eliminates such a mechanism and yields a velocity-pressure coupled solution. Example flows considered are a three dimensional lid-driven cavity flow and a laminar flow through a 90 deg bend square duct. Numerical results obtained using the collocated mesh are in good agreement with the measured data and other numerical results.
Pereira, Félix Monteiro; Oliveira, Samuel Conceição
2016-11-01
In this article, the occurrence of dead core in catalytic particles containing immobilized enzymes is analyzed for the Michaelis-Menten kinetics. An assessment of numerical methods is performed to solve the boundary value problem generated by the mathematical modeling of diffusion and reaction processes under steady state and isothermal conditions. Two classes of numerical methods were employed: shooting and collocation. The shooting method used the ode function from Scilab software. The collocation methods included: that implemented by the bvode function of Scilab, the orthogonal collocation, and the orthogonal collocation on finite elements. The methods were validated for simplified forms of the Michaelis-Menten equation (zero-order and first-order kinetics), for which analytical solutions are available. Among the methods covered in this article, the orthogonal collocation on finite elements proved to be the most robust and efficient method to solve the boundary value problem concerning Michaelis-Menten kinetics. For this enzyme kinetics, it was found that the dead core can occur when verified certain conditions of diffusion-reaction within the catalytic particle. The application of the concepts and methods presented in this study will allow for a more generalized analysis and more accurate designs of heterogeneous enzymatic reactors.
Distributed optical fiber-based monitoring approach of spatial seepage behavior in dike engineering
NASA Astrophysics Data System (ADS)
Su, Huaizhi; Ou, Bin; Yang, Lifu; Wen, Zhiping
2018-07-01
The failure caused by seepage is the most common one in dike engineering. As to the characteristics of seepage in dike, such as longitudinal extension engineering, the randomness, strong concealment and small initial quantity order, by means of distributed fiber temperature sensor system (DTS), adopting an improved optical fiber layer layout scheme, the location of initial interpolation point of the saturation line is obtained. With the barycentric Lagrange interpolation collocation method (BLICM), the infiltrated surface of dike full-section is generated. Combined with linear optical fiber monitoring seepage method, BLICM is applied in an engineering case, which shows that a real-time seepage monitoring technique is presented in full-section of dike based on the combination method.
Reformulation of Possio's kernel with application to unsteady wind tunnel interference
NASA Technical Reports Server (NTRS)
Fromme, J. A.; Golberg, M. A.
1980-01-01
An efficient method for computing the Possio kernel has remained elusive up to the present time. In this paper the Possio is reformulated so that it can be computed accurately using existing high precision numerical quadrature techniques. Convergence to the correct values is demonstrated and optimization of the integration procedures is discussed. Since more general kernels such as those associated with unsteady flows in ventilated wind tunnels are analytic perturbations of the Possio free air kernel, a more accurate evaluation of their collocation matrices results with an exponential improvement in convergence. An application to predicting frequency response of an airfoil-trailing edge control system in a wind tunnel compared with that in free air is given showing strong interference effects.
Comparison of potential temperature gradient estimates from various temperature profile data sources
DOT National Transportation Integrated Search
2017-01-22
From July through September 2015, concurrent and collocated measurements of temperature profiles from two passive radiometers and a RADAR-RASS (Radio Acoustic Sounding System) were made at a site near the ocean just to the west of Los Angeles Interna...
A multidomain spectral collocation method for the Stokes problem
NASA Technical Reports Server (NTRS)
Landriani, G. Sacchi; Vandeven, H.
1989-01-01
A multidomain spectral collocation scheme is proposed for the approximation of the two-dimensional Stokes problem. It is shown that the discrete velocity vector field is exactly divergence-free and we prove error estimates both for the velocity and the pressure.
Evaluation of assumptions in soil moisture triple collocation analysis
USDA-ARS?s Scientific Manuscript database
Triple collocation analysis (TCA) enables estimation of error variances for three or more products that retrieve or estimate the same geophysical variable using mutually-independent methods. Several statistical assumptions regarding the statistical nature of errors (e.g., mutual independence and ort...
Beyond triple collocation: Applications to satellite soil moisture
USDA-ARS?s Scientific Manuscript database
Triple collocation is now routinely used to resolve the exact (linear) relationships between multiple measurements and/or representations of a geophysical variable that are subject to errors. It has been utilized in the context of calibration, rescaling and error characterisation to allow comparison...
Evaluating Remotely-Sensed Surface Soil Moisture Estimates Using Triple Collocation
USDA-ARS?s Scientific Manuscript database
Recent work has demonstrated the potential of enhancing remotely-sensed surface soil moisture validation activities through the application of triple collocation techniques which compare time series of three mutually independent geophysical variable estimates in order to acquire the root-mean-square...
A survey of decentralized control techniques for large space structures
NASA Technical Reports Server (NTRS)
Lindner, D. K.; Reichard, K.
1987-01-01
Preliminary results on the design of decentralized controllers for the COFS I Mast are reported. A nine mode finite element model is used along with second order model of the actuators. It is shown that without actuator dynamics, the system is stable with collocated rate feedback and has acceptable performace. However, when actuator dynamics are included, the system is unstable.
Pseudospectral collocation methods for fourth order differential equations
NASA Technical Reports Server (NTRS)
Malek, Alaeddin; Phillips, Timothy N.
1994-01-01
Collocation schemes are presented for solving linear fourth order differential equations in one and two dimensions. The variational formulation of the model fourth order problem is discretized by approximating the integrals by a Gaussian quadrature rule generalized to include the values of the derivative of the integrand at the boundary points. Collocation schemes are derived which are equivalent to this discrete variational problem. An efficient preconditioner based on a low-order finite difference approximation to the same differential operator is presented. The corresponding multidomain problem is also considered and interface conditions are derived. Pseudospectral approximations which are C1 continuous at the interfaces are used in each subdomain to approximate the solution. The approximations are also shown to be C3 continuous at the interfaces asymptotically. A complete analysis of the collocation scheme for the multidomain problem is provided. The extension of the method to the biharmonic equation in two dimensions is discussed and results are presented for a problem defined in a nonrectangular domain.
Bibliography of In-House and Contract Reports, Supplement 12.
1984-03-01
A134 952 Karow, Kenneth ADVANCE EDIT SYSTEM January 1983 Sonicraft, Inc. DAAK70-79-C-0 180 Keywords: Automated Cartography, Digital Data Editing...Interactive Graphics. An advanced edit system with high resolution interactive graphic workstations and support software for editing digital cartographic...J.R. OF INERTIAL SURVEY DATA Wei, S.Y. December 1982 Litton Guidance and Control Systems DAAK-70-81-C-0082 Keywords: Collocation, Gravity vector
Evolutionary optimization with data collocation for reverse engineering of biological networks.
Tsai, Kuan-Yao; Wang, Feng-Sheng
2005-04-01
Modern experimental biology is moving away from analyses of single elements to whole-organism measurements. Such measured time-course data contain a wealth of information about the structure and dynamic of the pathway or network. The dynamic modeling of the whole systems is formulated as a reverse problem that requires a well-suited mathematical model and a very efficient computational method to identify the model structure and parameters. Numerical integration for differential equations and finding global parameter values are still two major challenges in this field of the parameter estimation of nonlinear dynamic biological systems. We compare three techniques of parameter estimation for nonlinear dynamic biological systems. In the proposed scheme, the modified collocation method is applied to convert the differential equations to the system of algebraic equations. The observed time-course data are then substituted into the algebraic system equations to decouple system interactions in order to obtain the approximate model profiles. Hybrid differential evolution (HDE) with population size of five is able to find a global solution. The method is not only suited for parameter estimation but also can be applied for structure identification. The solution obtained by HDE is then used as the starting point for a local search method to yield the refined estimates.
Adaptive wavelet collocation methods for initial value boundary problems of nonlinear PDE's
NASA Technical Reports Server (NTRS)
Cai, Wei; Wang, Jian-Zhong
1993-01-01
We have designed a cubic spline wavelet decomposition for the Sobolev space H(sup 2)(sub 0)(I) where I is a bounded interval. Based on a special 'point-wise orthogonality' of the wavelet basis functions, a fast Discrete Wavelet Transform (DWT) is constructed. This DWT transform will map discrete samples of a function to its wavelet expansion coefficients in O(N log N) operations. Using this transform, we propose a collocation method for the initial value boundary problem of nonlinear PDE's. Then, we test the efficiency of the DWT transform and apply the collocation method to solve linear and nonlinear PDE's.
Annual wet and dry deposition of sulfur and nitrogen in the Snowy Range, Wyoming
Karl Zeller; Debra Harrington; Al Riebau; Evgeny Donev
2000-01-01
The collocation of three national networked programs NADP, EPA's CASTNET, and the Forest Service's IMPROVE Module A, within a few hundred meters of each other in the pristine Medicine Bow forest of Wyoming has made it possible to assess the total amount of sulfur and nitrogen deposition, both wet and dry for this alpine/subalpine ecosystem. Additional sites...
Recent advances in (soil moisture) triple collocation analysis
USDA-ARS?s Scientific Manuscript database
To date, triple collocation (TC) analysis is one of the most important methods for the global scale evaluation of remotely sensed soil moisture data sets. In this study we review existing implementations of soil moisture TC analysis as well as investigations of the assumptions underlying the method....
NASA Technical Reports Server (NTRS)
Hussaini, M. Y.; Kopriva, D. A.; Patera, A. T.
1987-01-01
This review covers the theory and application of spectral collocation methods. Section 1 describes the fundamentals, and summarizes results pertaining to spectral approximations of functions. Some stability and convergence results are presented for simple elliptic, parabolic, and hyperbolic equations. Applications of these methods to fluid dynamics problems are discussed in Section 2.
A Comparative Usage-Based Approach to the Reduction of the Spanish and Portuguese Preposition "Para"
ERIC Educational Resources Information Center
Gradoville, Michael Stephen
2013-01-01
This study examines the frequency effect of two-word collocations involving "para" "to," "for" (e.g. "fui para," "para que") on the reduction of "para" to "pa" (in Spanish) and "pra" (in Portuguese). Collocation frequency effects demonstrate that language speakers…
Estimating error cross-correlations in soil moisture data sets using extended collocation analysis
USDA-ARS?s Scientific Manuscript database
Consistent global soil moisture records are essential for studying the role of hydrologic processes within the larger earth system. Various studies have shown the benefit of assimilating satellite-based soil moisture data into water balance models or merging multi-source soil moisture retrievals int...
Edge gradients evaluation for 2D hybrid finite volume method model
USDA-ARS?s Scientific Manuscript database
In this study, a two-dimensional depth-integrated hydrodynamic model was developed using FVM on a hybrid unstructured collocated mesh system. To alleviate the negative effects of mesh irregularity and non-uniformity, a conservative evaluation method for edge gradients based on the second-order Tayl...
The potential of 2D Kalman filtering for soil moisture data assimilation
USDA-ARS?s Scientific Manuscript database
We examine the potential for parameterizing a two-dimensional (2D) land data assimilation system using spatial error auto-correlation statistics gleaned from a triple collocation analysis and the triplet of: (1) active microwave-, (2) passive microwave- and (3) land surface model-based surface soil ...
Potential applications of skip SMV with thrust engine
NASA Astrophysics Data System (ADS)
Wang, Weilin; Savvaris, Al
2016-11-01
This paper investigates the potential applications of Space Maneuver Vehicles (SMV) with skip trajectory. Due to soaring space operations over the past decades, the risk of space debris has considerably increased such as collision risks with space asset, human property on ground and even aviation. Many active debris removal methods have been investigated and in this paper, a debris remediation method is first proposed based on skip SMV. The key point is to perform controlled re-entry. These vehicles are expected to achieve a trans-atmospheric maneuver with thrust engine. If debris is released at altitude below 80 km, debris could be captured by the atmosphere drag force and re-entry interface prediction accuracy is improved. Moreover if the debris is released in a cargo at a much lower altitude, this technique protects high value space asset from break up by the atmosphere and improves landing accuracy. To demonstrate the feasibility of this concept, the present paper presents the simulation results for two specific mission profiles: (1) descent to predetermined altitude; (2) descent to predetermined point (altitude, longitude and latitude). The evolutionary collocation method is adopted for skip trajectory optimization due to its global optimality and high-accuracy. This method is actually a two-step optimization approach based on the heuristic algorithm and the collocation method. The optimal-control problem is transformed into a nonlinear programming problem (NLP) which can be efficiently and accurately solved by the sequential quadratic programming (SQP) procedure. However, such a method is sensitive to initial values. To reduce the sensitivity problem, genetic algorithm (GA) is adopted to refine the grids and provide near optimum initial values. By comparing the simulation data from different scenarios, it is found that skip SMV is feasible in active debris removal and the evolutionary collocation method gives a truthful re-entry trajectory that satisfies the path and boundary constraints.
Reports 10, The Yugoslav Serbo-Croatian-English Contrastive Project.
ERIC Educational Resources Information Center
Filipovic, Rudolf
The tenth volume in this series contains five articles dealing with various aspects of Serbo-Croatian-English contrastive analysis. They are: "The Infinitive as Subject in English and Serbo-Croatian," by Ljiljana Bibovic; "The Contrastive Analysis of Collocations: Collocational Ranges of "Make" and "Take" with Nouns and Their Serbo-Croatian…
No Silver Bullet: L2 Collocation Instruction in an Advanced Spanish Classroom
ERIC Educational Resources Information Center
Jensen, Eric Carl
2017-01-01
Many contemporary second language (L2) instructional materials feature collocation exercises; however, few studies have verified their effectiveness (Boers, Demecheleer, Coxhead, & Webb, 2014) or whether these exercises can be utilized for target languages beyond English (Higueras García, 2017). This study addresses these issues by…
Assessing Team Learning in Technology-Mediated Collaboration: An Experimental Study
ERIC Educational Resources Information Center
Andres, Hayward P.; Akan, Obasi H.
2010-01-01
This study examined the effects of collaboration mode (collocated versus non-collocated videoconferencing-mediated) on team learning and team interaction quality in a team-based problem solving context. Situated learning theory and the theory of affordances are used to provide a framework that describes how technology-mediated collaboration…
Collocation in Regional Development--The Peel Education and TAFE Response.
ERIC Educational Resources Information Center
Goff, Malcolm H.; Nevard, Jennifer
The collocation of services in regional Western Australia (WA) is an important strand of WA's regional development policy. The initiative is intended to foster working relationships among stakeholder groups with a view toward ensuring that regional WA communities have access to quality services. Clustering compatible services in smaller…
Interlanguage Development and Collocational Clash
ERIC Educational Resources Information Center
Shahheidaripour, Gholamabbass
2000-01-01
Background: Persian English learners committed mistakes and errors which were due to insufficient knowledge of different senses of the words and collocational structures they formed. Purpose: The study reported here was conducted for a thesis submitted in partial fulfillment of the requirements for The Master of Arts degree, School of Graduate…
47 CFR 51.323 - Standards for physical collocation and virtual collocation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... unbundled network element if and only if the primary purpose and function of the equipment, as the... nondiscriminatory access to that unbundled network element, including any of its features, functions, or... must be a logical nexus between the additional functions the equipment would perform and the...
Testing ESL Learners' Knowledge of Collocations.
ERIC Educational Resources Information Center
Bonk, William J.
This study reports on the development, administration, and analysis of a test of collocational knowledge for English-as-a-Second-Language (ESL) learners of a wide range of proficiency levels. Through native speaker item validation and pilot testing, three subtests were developed and administered to 98 ESL learners of low-intermediate to advanced…
Collocation of equilibria in gravitational field of triangular body via mass redistribution
NASA Astrophysics Data System (ADS)
Burov, Alexander A.; Guerman, Anna D.; Nikonov, Vasily I.
2018-05-01
We consider a gravitating system with triangular mass distribution that can be used as approximation of gravitational field for small irregular celestial bodies. In such system, the locations of equilibrium points, that is, the points where the gravitational forces are balanced, are analyzed. The goal is to find the mass distribution which provides equilibrium in a pre-assigned location near the triangular system, and to study the stability of this equilibrium.
Elastostatic stress analysis of orthotropic rectangular center-cracked plates
NASA Technical Reports Server (NTRS)
Gyekenyesi, G. S.; Mendelson, A.
1972-01-01
A mapping-collocation method was developed for the elastostatic stress analysis of finite, anisotropic plates with centrally located traction-free cracks. The method essentially consists of mapping the crack into the unit circle and satisfying the crack boundary conditions exactly with the help of Muskhelishvili's function extension concept. The conditions on the outer boundary are satisfied approximately by applying the method of least-squares boundary collocation. A parametric study of finite-plate stress intensity factors, employing this mapping-collocation method, is presented. It shows the effects of varying material properties, orientation angle, and crack-length-to-plate-width and plate-height-to-plate-width ratios for rectangular orthotropic plates under constant tensile and shear loads.
NASA Technical Reports Server (NTRS)
Zang, Thomas A.; Mathelin, Lionel; Hussaini, M. Yousuff; Bataille, Francoise
2003-01-01
This paper describes a fully spectral, Polynomial Chaos method for the propagation of uncertainty in numerical simulations of compressible, turbulent flow, as well as a novel stochastic collocation algorithm for the same application. The stochastic collocation method is key to the efficient use of stochastic methods on problems with complex nonlinearities, such as those associated with the turbulence model equations in compressible flow and for CFD schemes requiring solution of a Riemann problem. Both methods are applied to compressible flow in a quasi-one-dimensional nozzle. The stochastic collocation method is roughly an order of magnitude faster than the fully Galerkin Polynomial Chaos method on the inviscid problem.
Locating CVBEM collocation points for steady state heat transfer problems
Hromadka, T.V.
1985-01-01
The Complex Variable Boundary Element Method or CVBEM provides a highly accurate means of developing numerical solutions to steady state two-dimensional heat transfer problems. The numerical approach exactly solves the Laplace equation and satisfies the boundary conditions at specified points on the boundary by means of collocation. The accuracy of the approximation depends upon the nodal point distribution specified by the numerical analyst. In order to develop subsequent, refined approximation functions, four techniques for selecting additional collocation points are presented. The techniques are compared as to the governing theory, representation of the error of approximation on the problem boundary, the computational costs, and the ease of use by the numerical analyst. ?? 1985.
Efficient Jacobi-Gauss collocation method for solving initial value problems of Bratu type
NASA Astrophysics Data System (ADS)
Doha, E. H.; Bhrawy, A. H.; Baleanu, D.; Hafez, R. M.
2013-09-01
In this paper, we propose the shifted Jacobi-Gauss collocation spectral method for solving initial value problems of Bratu type, which is widely applicable in fuel ignition of the combustion theory and heat transfer. The spatial approximation is based on shifted Jacobi polynomials J {/n (α,β)}( x) with α, β ∈ (-1, ∞), x ∈ [0, 1] and n the polynomial degree. The shifted Jacobi-Gauss points are used as collocation nodes. Illustrative examples have been discussed to demonstrate the validity and applicability of the proposed technique. Comparing the numerical results of the proposed method with some well-known results show that the method is efficient and gives excellent numerical results.
Proactive Time-Rearrangement Scheme for Multi-Radio Collocated Platform
NASA Astrophysics Data System (ADS)
Kim, Chul; Shin, Sang-Heon; Park, Sang Kyu
We present a simple proactive time rearrangement scheme (PATRA) that reduces the interferences from multi-radio devices equipped in one platform and guarantees user-conceived QoS. Simulation results show that the interference among multiple radios in one platform causes severe performance degradation and cannot guarantee the user requested QoS. However, the PATRA can dramatically improve not only the userconceived QoS but also the overall network throughput.
ERIC Educational Resources Information Center
Gyllstad, Henrik; Wolter, Brent
2016-01-01
The present study investigates whether two types of word combinations (free combinations and collocations) differ in terms of processing by testing Howarth's Continuum Model based on word combination typologies from a phraseological tradition. A visual semantic judgment task was administered to advanced Swedish learners of English (n = 27) and…
47 CFR 51.323 - Standards for physical collocation and virtual collocation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... unbundled network elements. (1) Equipment is necessary for interconnection if an inability to deploy that... obtains within its own network or the incumbent provides to any affiliate, subsidiary, or other party. (2) Equipment is necessary for access to an unbundled network element if an inability to deploy that equipment...
47 CFR 51.323 - Standards for physical collocation and virtual collocation.
Code of Federal Regulations, 2013 CFR
2013-10-01
... unbundled network elements. (1) Equipment is necessary for interconnection if an inability to deploy that... obtains within its own network or the incumbent provides to any affiliate, subsidiary, or other party. (2) Equipment is necessary for access to an unbundled network element if an inability to deploy that equipment...
Strategies in Translating Collocations in Religious Texts from Arabic into English
ERIC Educational Resources Information Center
Dweik, Bader S.; Shakra, Mariam M. Abu
2010-01-01
The present study investigated the strategies adopted by students in translating specific lexical and semantic collocations in three religious texts namely, the Holy Quran, the Hadith and the Bible. For this purpose, the researchers selected a purposive sample of 35 MA translation students enrolled in three different public and private Jordanian…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-02
... quarter substitution test. ``Collocated'' indicates that the collocated data was substituted for missing... 24-hour standard design value is greater than the level of the standard. EPA addresses missing data... substituted for the missing data. In the maximum quarter test, maximum recorded values are substituted for the...
Shape Control of Plates with Piezo Actuators and Collocated Position/Rate Sensors
NASA Technical Reports Server (NTRS)
Balakrishnan, A. V.
1994-01-01
This paper treats the control problem of shaping the surface deformation of a circular plate using embedded piezo-electric actuators and collocated rate sensors. An explicit Linear Quadratic Gaussian (LQG) optimizer stability augmentation compensator is derived as well as the optimal feed-forward control. Corresponding performance evaluation formulas are also derived.
Shape Control of Plates with Piezo Actuators and Collocated Position/Rate Sensors
NASA Technical Reports Server (NTRS)
Balakrishnan, A. V.
1994-01-01
This paper treats the control problem of shaping the surface deformation of a circular plate using embedded piezo-electric actuator and collocated rate sensors. An explicit Linear Quadratic Gaussian (LQG) optimizer stability augmentation compensator is derived as well as the optimal feed-forward control. Corresponding performance evaluation formulas are also derived.
Collocational Competence of Arabic Speaking Learners of English: A Study in Lexical Semantics.
ERIC Educational Resources Information Center
Zughoul, Muhammad Raji; Abdul-Fattah, Hussein S.
This study examined learners' productive competence in collocations and idioms by means of their performance on two interdependent tasks. Participants were two groups of English as a Foreign Language undergraduate and graduate students from the English department at Jordan's Yarmouk University. The two tasks included the following: a multiple…
Processing and Learning of Enhanced English Collocations: An Eye Movement Study
ERIC Educational Resources Information Center
Choi, Sungmook
2017-01-01
Research to date suggests that textual enhancement may positively affect the learning of multiword combinations known as collocations, but may impair recall of unenhanced text. However, the attentional mechanisms underlying such effects remain unclear. In this study, 38 undergraduate students were divided into two groups: one read a text…
Mars Mission Optimization Based on Collocation of Resources
NASA Technical Reports Server (NTRS)
Chamitoff, G. E.; James, G. H.; Barker, D. C.; Dershowitz, A. L.
2003-01-01
This paper presents a powerful approach for analyzing Martian data and for optimizing mission site selection based on resource collocation. This approach is implemented in a program called PROMT (Planetary Resource Optimization and Mapping Tool), which provides a wide range of analysis and display functions that can be applied to raw data or imagery. Thresholds, contours, custom algorithms, and graphical editing are some of the various methods that can be used to process data. Output maps can be created to identify surface regions on Mars that meet any specific criteria. The use of this tool for analyzing data, generating maps, and collocating features is demonstrated using data from the Mars Global Surveyor and the Odyssey spacecraft. The overall mission design objective is to maximize a combination of scientific return and self-sufficiency based on utilization of local materials. Landing site optimization involves maximizing accessibility to collocated science and resource features within a given mission radius. Mission types are categorized according to duration, energy resources, and in-situ resource utilization. Optimization results are shown for a number of mission scenarios.
NASA Astrophysics Data System (ADS)
Husson, V. S.; Long, J. L.; Pearlman, M.
2001-12-01
By the end of 2000, 94% of ILRS stations had completed station and site information forms (i.e. site logs). These forms contain six types of information. These six categories include site identifiers, contact information, approximate coordinates, system configuration history, system ranging capabilities, and local survey ties. The ILRS Central Bureau, in conjunction with the ILRS Networks and Engineering Working Group, has developed procedures to quality control site log contents. Part of this verification entails data integrity checks of local site ties and is the primary focus of this paper. Local survey ties are critical to the combination of space geodetic network coordinate solutions (i.e. GPS, SLR, VLBI, DORIS) of the International Terrestrial Reference Frame (ITRF). Approximately 90% of active SLR sites are collocated with at least one other space geodetic technique. The process used to verify these SLR ties, at collocated sites, is identical to the approach used in ITRF2000. Local vectors (X, Y, Z) from each ILRS site log are differenced from its corresponding ITRF2000 position vectors (i.e. no transformations). These X, Y, and Z deltas are converted into North, East, and Up. Any deltas, in any component, larger than 5 millimeter is flagged for investigation. In the absence of ITRF2000 SLR positions, CSR positions were used. To further enhance this comparison and to fill gaps in information, local ties contained in site logs from the other space geodetic services (i.e. IGS, IVS, IDS) were used in addition to ITRF2000 ties. Case studies of two collocated sites (McDonald/Ft. Davis and Hartebeeshtoek) will be explored in-depth. Recommendations on how local site surveys should be conducted and how this information should be managed will also be presented.
On pseudo-spectral time discretizations in summation-by-parts form
NASA Astrophysics Data System (ADS)
Ruggiu, Andrea A.; Nordström, Jan
2018-05-01
Fully-implicit discrete formulations in summation-by-parts form for initial-boundary value problems must be invertible in order to provide well functioning procedures. We prove that, under mild assumptions, pseudo-spectral collocation methods for the time derivative lead to invertible discrete systems when energy-stable spatial discretizations are used.
A strawman SLR program plan for the 1990s
NASA Technical Reports Server (NTRS)
Degnan, John J.
1994-01-01
A series of programmatic and technical goals for the satellite laser ranging (SLR) network are presented. They are: (1) standardize the performance of the global SLR network; (2) improve the geographic distribution of stations; (3) reduce costs of field operations and data processing; (4) expand the 24 hour temporal coverage to better serve the growing constellation of satellites; (5) improve absolute range accuracy to 2 mm at key stations; (6) improve satellite force, radiative propagation, and station motion models and investigate alternative geodetic analysis techniques; (7) support technical intercomparison and the Terrestrial Reference Frame through global collocations; (8) investigate potential synergisms between GPS and SLR.
Earlinet validation of CATS L2 product
NASA Astrophysics Data System (ADS)
Proestakis, Emmanouil; Amiridis, Vassilis; Kottas, Michael; Marinou, Eleni; Binietoglou, Ioannis; Ansmann, Albert; Wandinger, Ulla; Yorks, John; Nowottnick, Edward; Makhmudov, Abduvosit; Papayannis, Alexandros; Pietruczuk, Aleksander; Gialitaki, Anna; Apituley, Arnoud; Muñoz-Porcar, Constantino; Bortoli, Daniele; Dionisi, Davide; Althausen, Dietrich; Mamali, Dimitra; Balis, Dimitris; Nicolae, Doina; Tetoni, Eleni; Luigi Liberti, Gian; Baars, Holger; Stachlewska, Iwona S.; Voudouri, Kalliopi-Artemis; Mona, Lucia; Mylonaki, Maria; Rita Perrone, Maria; João Costa, Maria; Sicard, Michael; Papagiannopoulos, Nikolaos; Siomos, Nikolaos; Burlizzi, Pasquale; Engelmann, Ronny; Abdullaev, Sabur F.; Hofer, Julian; Pappalardo, Gelsomina
2018-04-01
The Cloud-Aerosol Transport System (CATS) onboard the International Space Station (ISS), is a lidar system providing vertically resolved aerosol and cloud profiles since February 2015. In this study, the CATS aerosol product is validated against the aerosol profiles provided by the European Aerosol Research Lidar Network (EARLINET). This validation activity is based on collocated CATS-EARLINET measurements and the comparison of the particle backscatter coefficient at 1064nm.
A Simulation Study of the Overdetermined Geodetic Boundary Value Problem Using Collocation
1989-03-01
9 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED GEOPHYSICS LABORATORY AIR FORCE SYSTEMS COMMAND UNITED STATES AIR FORCE HANSCOM AIR FORCE BASE...linearized integral equation is obtained through an infinite system of integral equations which is solved step by step by means of Stokes’ function. The...computed. Since 9 and W = W(9) 4 are known on the boundary, then the boundary is known in the new coordinate system . The serious disadvantage of this
The Chebyshev-Legendre method: Implementing Legendre methods on Chebyshev points
NASA Technical Reports Server (NTRS)
Don, Wai Sun; Gottlieb, David
1993-01-01
We present a new collocation method for the numerical solution of partial differential equations. This method uses the Chebyshev collocation points, but because of the way the boundary conditions are implemented, it has all the advantages of the Legendre methods. In particular, L2 estimates can be obtained easily for hyperbolic and parabolic problems.
Domain identification in impedance computed tomography by spline collocation method
NASA Technical Reports Server (NTRS)
Kojima, Fumio
1990-01-01
A method for estimating an unknown domain in elliptic boundary value problems is considered. The problem is formulated as an inverse problem of integral equations of the second kind. A computational method is developed using a splice collocation scheme. The results can be applied to the inverse problem of impedance computed tomography (ICT) for image reconstruction.
Frequent Collocates and Major Senses of Two Prepositions in ESL and ENL Corpora
ERIC Educational Resources Information Center
Nkemleke, Daniel
2009-01-01
This contribution assesses in quantitative terms frequent collocates and major senses of "between" and "through" in the corpus of Cameroonian English (CCE), the corpus of East-African (Kenya and Tanzania) English which is part of the International Corpus of English (ICE) project (ICE-EA), and the London Oslo/Bergen (LOB) corpus…
Geostationary Collocation: Case Studies for Optimal Maneuvers
2016-03-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited GEOSTATIONARY ...DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE GEOSTATIONARY COLLOCATION: CASE STUDIES FOR OPTIMAL MANEUVERS 5. FUNDING NUMBERS 6...The geostationary belt is considered a natural resource, and as time goes by, the physical spaces for geostationary satellites will run out. The
The Effect of Critical Reading Strategies on EFL Learners' Recall and Retention of Collocations
ERIC Educational Resources Information Center
NematTabrizi, Amir Reza; Saber, Mehrnoush Akhavan
2016-01-01
The study was an attempt to measure the effect of critical reading strategies, namely; re-reading, questioning and annotating on recall and retention of collocations by intermediate Iranian EFL learners. To this end, Nelson proficiency test was administered to ninety (n = 90) Iranian EFL learners studying at Zaban Sara language institute in…
Collocational Differences between L1 and L2: Implications for EFL Learners and Teachers
ERIC Educational Resources Information Center
Sadeghi, Karim
2009-01-01
Collocations are one of the areas that produce problems for learners of English as a foreign language. Iranian learners of English are by no means an exception. Teaching experience at schools, private language centers, and universities in Iran suggests that a significant part of EFL learners' problems with producing the language, especially at…
NASA Astrophysics Data System (ADS)
Liao, Qinzhuo; Zhang, Dongxiao; Tchelepi, Hamdi
2017-02-01
A new computational method is proposed for efficient uncertainty quantification of multiphase flow in porous media with stochastic permeability. For pressure estimation, it combines the dimension-adaptive stochastic collocation method on Smolyak sparse grids and the Kronrod-Patterson-Hermite nested quadrature formulas. For saturation estimation, an additional stage is developed, in which the pressure and velocity samples are first generated by the sparse grid interpolation and then substituted into the transport equation to solve for the saturation samples, to address the low regularity problem of the saturation. Numerical examples are presented for multiphase flow with stochastic permeability fields to demonstrate accuracy and efficiency of the proposed two-stage adaptive stochastic collocation method on nested sparse grids.
Error Estimation of Pathfinder Version 5.3 SST Level 3C Using Three-way Error Analysis
NASA Astrophysics Data System (ADS)
Saha, K.; Dash, P.; Zhao, X.; Zhang, H. M.
2017-12-01
One of the essential climate variables for monitoring as well as detecting and attributing climate change, is Sea Surface Temperature (SST). A long-term record of global SSTs are available with observations obtained from ships in the early days to the more modern observation based on in-situ as well as space-based sensors (satellite/aircraft). There are inaccuracies associated with satellite derived SSTs which can be attributed to the errors associated with spacecraft navigation, sensor calibrations, sensor noise, retrieval algorithms, and leakages due to residual clouds. Thus it is important to estimate accurate errors in satellite derived SST products to have desired results in its applications.Generally for validation purposes satellite derived SST products are compared against the in-situ SSTs which have inaccuracies due to spatio/temporal inhomogeneity between in-situ and satellite measurements. A standard deviation in their difference fields usually have contributions from both satellite as well as the in-situ measurements. A real validation of any geophysical variable must require the knowledge of the "true" value of the said variable. Therefore a one-to-one comparison of satellite based SST with in-situ data does not truly provide us the real error in the satellite SST and there will be ambiguity due to errors in the in-situ measurements and their collocation differences. A Triple collocation (TC) or three-way error analysis using 3 mutually independent error-prone measurements, can be used to estimate root-mean square error (RMSE) associated with each of the measurements with high level of accuracy without treating any one system a perfectly-observed "truth". In this study we are estimating the absolute random errors associated with Pathfinder Version 5.3 Level-3C SST product Climate Data record. Along with the in-situ SST data, the third source of dataset used for this analysis is the AATSR reprocessing of climate (ARC) dataset for the corresponding period. All three SST observations are collocated, and statistics of difference between each pair is estimated. Instead of using a traditional TC analysis we have implemented the Extended Triple Collocation (ETC) approach to estimate the correlation coefficient of each measurement system w.r.t. the unknown target variable along with their RMSE.
GEOS observation systems intercomparison investigation results
NASA Technical Reports Server (NTRS)
Berbert, J. H.
1974-01-01
The results of an investigation designed to determine the relative accuracy and precision of the different types of geodetic observation systems used by NASA is presented. A collocation technique was used to minimize the effects of uncertainties in the relative station locations and in the earth's gravity field model by installing accurate reference tracking systems close to the systems to be compared, and by precisely determining their relative survey. The Goddard laser and camera systems were shipped to selected sites, where they tracked the GEOS satellite simultaneously with other systems for an intercomparison observation.
1998-04-01
The result of the project is a demonstration of the fusion process, the sensors management and the real-time capabilities using simulated sensors...demonstrator (TAD) is a system that demonstrates the core ele- ment of a battlefield ground surveillance system by simulation in near real-time. The core...Management and Sensor/Platform simulation . The surveillance system observes the real world through a non-collocated heterogene- ous multisensory system
Joint Information Environment: DOD Needs to Strengthen Governance and Management
2016-10-25
while JIE should not result in a net increase in required manpower , the types of skill sets and collocation of those skill sets into regional and...As a result , DOD risks having a deficient security posture and not being able to ensure that it will have the appropriate workforce knowledge and...initiative to consolidate IT infrastructure to achieve savings in acquisition, sustainment, and manpower costs and improve the department’s ability
RAPIER: a new relocatable VHF coherent radar
NASA Astrophysics Data System (ADS)
Popple, M.; Chapman, P. J.; Thomas, E. C.; Jones, T. B.
1997-06-01
VHF coherent radar observations of the high latitude ionosphere have contributed significantly to our understanding of the complex processes which couple the ionosphere, magnetosphere and the solar wind. In addition, these observations have also improved our knowledge of the physics of the ionospheric plasma irregularities and their scattering properties. In this article the design of a new mobile coherent radar system is described. The new system, RAPIER (Relocatable Auroral Polar Ionospheric Radar), was initially collocated with the existing SABRE radar and simultaneous operations undertaken to evaluate RAPIER's performance in its beam scanning mode. In this way the performance of the new system was quantitatively compared with that of a well established auroral radar facility. The velocities measured by the new RAPIER system are well correlated with those observed by SABRE. The received backscatter powers observed by the two systems were, however, less well correlated, mainly caused by differences between their respective antenna elevation polar diagrams. As expected from system considerations, SABRE was found to be more sensitive than RAPIER at slant ranges corresponding to the maxima in the SABRE elevation polar diagrams. However, RAPIER's improved elevation polar diagram, superior instantaneous dynamic range and its ability to alter its receiver gain with pointing direction ensured that it could accurately measure targets over a much greater spatial region than SABRE. This effect became more pronounced when regions of intense backscatter were monitored.
Barzaghi, Riccardo; Carrion, Daniela; Pepe, Massimiliano; Prezioso, Giuseppina
2016-07-26
Recent studies on the influence of the anomalous gravity field in GNSS/INS applications have shown that neglecting the impact of the deflection of vertical in aerial surveys induces horizontal and vertical errors in the measurement of an object that is part of the observed scene; these errors can vary from a few tens of centimetres to over one meter. The works reported in the literature refer to vertical deflection values based on global geopotential model estimates. In this paper we compared this approach with the one based on local gravity data and collocation methods. In particular, denoted by ξ and η, the two mutually-perpendicular components of the deflection of the vertical vector (in the north and east directions, respectively), their values were computed by collocation in the framework of the Remove-Compute-Restore technique, applied to the gravity database used for estimating the ITALGEO05 geoid. Following this approach, these values have been computed at different altitudes that are relevant in aerial surveys. The (ξ, η) values were then also estimated using the high degree EGM2008 global geopotential model and compared with those obtained in the previous computation. The analysis of the differences between the two estimates has shown that the (ξ, η) global geopotential model estimate can be reliably used in aerial navigation applications that require the use of sensors connected to a GNSS/INS system only above a given height (e.g., 3000 m in this paper) that must be defined by simulations.
Barzaghi, Riccardo; Carrion, Daniela; Pepe, Massimiliano; Prezioso, Giuseppina
2016-01-01
Recent studies on the influence of the anomalous gravity field in GNSS/INS applications have shown that neglecting the impact of the deflection of vertical in aerial surveys induces horizontal and vertical errors in the measurement of an object that is part of the observed scene; these errors can vary from a few tens of centimetres to over one meter. The works reported in the literature refer to vertical deflection values based on global geopotential model estimates. In this paper we compared this approach with the one based on local gravity data and collocation methods. In particular, denoted by ξ and η, the two mutually-perpendicular components of the deflection of the vertical vector (in the north and east directions, respectively), their values were computed by collocation in the framework of the Remove-Compute-Restore technique, applied to the gravity database used for estimating the ITALGEO05 geoid. Following this approach, these values have been computed at different altitudes that are relevant in aerial surveys. The (ξ, η) values were then also estimated using the high degree EGM2008 global geopotential model and compared with those obtained in the previous computation. The analysis of the differences between the two estimates has shown that the (ξ, η) global geopotential model estimate can be reliably used in aerial navigation applications that require the use of sensors connected to a GNSS/INS system only above a given height (e.g., 3000 m in this paper) that must be defined by simulations. PMID:27472333
ERIC Educational Resources Information Center
Molina-Plaza, Silvia; de Gregorio-Godeo, Eduardo
2010-01-01
Within the context of on-going research, this paper explores the pedagogical implications of contrastive analyses of multiword units in English and Spanish based on electronic corpora as a CALL resource. The main tenets of collocations from a contrastive perspective--and the points of contact and departure between both languages--are discussed…
ERIC Educational Resources Information Center
Reynolds, Barry Lee
2016-01-01
Lack of knowledge in the conventional usage of collocations in one's respective field of expertise cause Taiwanese students to produce academic writing that is markedly different than more competent writing. This is because Taiwanese students are first and foremost English as a Foreign language (EFL) readers and may have difficulties picking up on…
The Effect of Corpus-Based Activities on Verb-Noun Collocations in EFL Classes
ERIC Educational Resources Information Center
Ucar, Serpil; Yükselir, Ceyhun
2015-01-01
This current study sought to reveal the impacts of corpus-based activities on verb-noun collocation learning in EFL classes. This study was carried out on two groups--experimental and control groups- each of which consists of 15 students. The students were preparatory class students at School of Foreign Languages, Osmaniye Korkut Ata University.…
A Study of Learners' Usage of a Mobile Learning Application for Learning Idioms and Collocations
ERIC Educational Resources Information Center
Amer, Mahmoud
2014-01-01
This study explored how four groups of language learners used a mobile software application developed by the researcher for learning idiomatic expressions and collocations. A total of 45 participants in the study used the application for a period of one week. Data for this study was collected from the application, a questionnaire, and follow-up…
ERIC Educational Resources Information Center
Ördem, Eser; Paker, Turan
2016-01-01
The purpose of this study was to investigate whether teaching vocabulary via collocations would contribute to retention and use of foreign language, English. A quasi-experimental design was formed to see whether there would be a significant difference between the treatment and control groups. Three instruments developed were conducted to 60…
ERIC Educational Resources Information Center
Okyar, Hatice; Yangin Eksi, Gonca
2017-01-01
This study compared the effectiveness of negative evidence and enriched input on learning the verb-noun collocations. There were 52 English as Foreign Language (EFL) learners in this research study and they were randomly assigned to the negative evidence or enriched input groups. While the negative evidence group (n = 27) was provided with…
ERIC Educational Resources Information Center
Wu, Yi-ju
2016-01-01
Data-Driven Learning (DDL), in which learners "confront [themselves] directly with the corpus data" (Johns, 2002, p. 108), has shown to be effective in collocation learning in L2 writing. Nevertheless, there have been only few research studies of this type examining the relationship between English proficiency and corpus consultation.…
Porsa, Sina; Lin, Yi-Chung; Pandy, Marcus G
2016-08-01
The aim of this study was to compare the computational performances of two direct methods for solving large-scale, nonlinear, optimal control problems in human movement. Direct shooting and direct collocation were implemented on an 8-segment, 48-muscle model of the body (24 muscles on each side) to compute the optimal control solution for maximum-height jumping. Both algorithms were executed on a freely-available musculoskeletal modeling platform called OpenSim. Direct collocation converged to essentially the same optimal solution up to 249 times faster than direct shooting when the same initial guess was assumed (3.4 h of CPU time for direct collocation vs. 35.3 days for direct shooting). The model predictions were in good agreement with the time histories of joint angles, ground reaction forces and muscle activation patterns measured for subjects jumping to their maximum achievable heights. Both methods converged to essentially the same solution when started from the same initial guess, but computation time was sensitive to the initial guess assumed. Direct collocation demonstrates exceptional computational performance and is well suited to performing predictive simulations of movement using large-scale musculoskeletal models.
NASA Astrophysics Data System (ADS)
Liao, Qinzhuo; Zhang, Dongxiao; Tchelepi, Hamdi
2017-06-01
In numerical modeling of subsurface flow and transport problems, formation properties may not be deterministically characterized, which leads to uncertainty in simulation results. In this study, we propose a sparse grid collocation method, which adopts nested quadrature rules with delay and transformation to quantify the uncertainty of model solutions. We show that the nested Kronrod-Patterson-Hermite quadrature is more efficient than the unnested Gauss-Hermite quadrature. We compare the convergence rates of various quadrature rules including the domain truncation and domain mapping approaches. To further improve accuracy and efficiency, we present a delayed process in selecting quadrature nodes and a transformed process for approximating unsmooth or discontinuous solutions. The proposed method is tested by an analytical function and in one-dimensional single-phase and two-phase flow problems with different spatial variances and correlation lengths. An additional example is given to demonstrate its applicability to three-dimensional black-oil models. It is found from these examples that the proposed method provides a promising approach for obtaining satisfactory estimation of the solution statistics and is much more efficient than the Monte-Carlo simulations.
Total-column nitrogen dioxide (NO2) data collected by a ground-based sun-tracking spectrometer system 21 (Pandora) and an photolytic-converter-based in-situ instrument collocated at NASA’s Langley Research Center in 22 Hampton, Virginia were analyzed to study the relationship bet...
NASA Technical Reports Server (NTRS)
Funaro, Daniele; Gottlieb, David
1989-01-01
A new method of imposing boundary conditions in the pseudospectral approximation of hyperbolic systems of equations is proposed. It is suggested to collocate the equations, not only at the inner grid points, but also at the boundary points and use the boundary conditions as penalty terms. In the pseudo-spectral Legrendre method with the new boundary treatment, a stability analysis for the case of a constant coefficient hyperbolic system is presented and error estimates are derived.
Optimal guidance law development for an advanced launch system
NASA Technical Reports Server (NTRS)
Calise, Anthony J.; Leung, Martin S. K.
1995-01-01
The objective of this research effort was to develop a real-time guidance approach for launch vehicles ascent to orbit injection. Various analytical approaches combined with a variety of model order and model complexity reduction have been investigated. Singular perturbation methods were first attempted and found to be unsatisfactory. The second approach based on regular perturbation analysis was subsequently investigated. It also fails because the aerodynamic effects (ignored in the zero order solution) are too large to be treated as perturbations. Therefore, the study demonstrates that perturbation methods alone (both regular and singular perturbations) are inadequate for use in developing a guidance algorithm for the atmospheric flight phase of a launch vehicle. During a second phase of the research effort, a hybrid analytic/numerical approach was developed and evaluated. The approach combines the numerical methods of collocation and the analytical method of regular perturbations. The concept of choosing intelligent interpolating functions is also introduced. Regular perturbation analysis allows the use of a crude representation for the collocation solution, and intelligent interpolating functions further reduce the number of elements without sacrificing the approximation accuracy. As a result, the combined method forms a powerful tool for solving real-time optimal control problems. Details of the approach are illustrated in a fourth order nonlinear example. The hybrid approach is then applied to the launch vehicle problem. The collocation solution is derived from a bilinear tangent steering law, and results in a guidance solution for the entire flight regime that includes both atmospheric and exoatmospheric flight phases.
Radiation energy budget studies using collocated AVHRR and ERBE observations
NASA Technical Reports Server (NTRS)
Ackerman, Steven A.; Inoue, Toshiro
1994-01-01
Changes in the energy balance at the top of the atmosphere are specified as a function of atmospheric and surface properties using observations from the Advanced Very High Resolution Radiometer (AVHRR) and the Earth Radiation Budget Experiment (ERBE) scanner. By collocating the observations from the two instruments, flown on NOAA-9, the authors take advantage of the remote-sensing capabilities of each instrument. The AVHRR spectral channels were selected based on regions that are strongly transparent to clear sky conditions and are therefore useful for characterizing both surface and cloud-top conditions. The ERBE instruments make broadband observations that are important for climate studies. The approach of collocating these observations in time and space is used to study the radiative energy budget of three geographic regions: oceanic, savanna, and desert.
Inversion of the strain-life and strain-stress relationships for use in metal fatigue analysis
NASA Technical Reports Server (NTRS)
Manson, S. S.
1979-01-01
The paper presents closed-form solutions (collocation method and spline-function method) for the constants of the cyclic fatigue life equation so that they can be easily incorporated into cumulative damage analysis. The collocation method involves conformity with the experimental curve at specific life values. The spline-function method is such that the basic life relation is expressed as a two-part function, one applicable at strains above the transition strain (strain at intersection of elastic and plastic lines), the other below. An illustrative example is treated by both methods. It is shown that while the collocation representation has the advantage of simplicity of form, the spline-function representation can be made more accurate over a wider life range, and is simpler to use.
A Christoffel function weighted least squares algorithm for collocation approximations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narayan, Akil; Jakeman, John D.; Zhou, Tao
Here, we propose, theoretically investigate, and numerically validate an algorithm for the Monte Carlo solution of least-squares polynomial approximation problems in a collocation framework. Our investigation is motivated by applications in the collocation approximation of parametric functions, which frequently entails construction of surrogates via orthogonal polynomials. A standard Monte Carlo approach would draw samples according to the density defining the orthogonal polynomial family. Our proposed algorithm instead samples with respect to the (weighted) pluripotential equilibrium measure of the domain, and subsequently solves a weighted least-squares problem, with weights given by evaluations of the Christoffel function. We present theoretical analysis tomore » motivate the algorithm, and numerical results that show our method is superior to standard Monte Carlo methods in many situations of interest.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, Qinzhuo, E-mail: liaoqz@pku.edu.cn; Zhang, Dongxiao; Tchelepi, Hamdi
A new computational method is proposed for efficient uncertainty quantification of multiphase flow in porous media with stochastic permeability. For pressure estimation, it combines the dimension-adaptive stochastic collocation method on Smolyak sparse grids and the Kronrod–Patterson–Hermite nested quadrature formulas. For saturation estimation, an additional stage is developed, in which the pressure and velocity samples are first generated by the sparse grid interpolation and then substituted into the transport equation to solve for the saturation samples, to address the low regularity problem of the saturation. Numerical examples are presented for multiphase flow with stochastic permeability fields to demonstrate accuracy and efficiencymore » of the proposed two-stage adaptive stochastic collocation method on nested sparse grids.« less
A Christoffel function weighted least squares algorithm for collocation approximations
Narayan, Akil; Jakeman, John D.; Zhou, Tao
2016-11-28
Here, we propose, theoretically investigate, and numerically validate an algorithm for the Monte Carlo solution of least-squares polynomial approximation problems in a collocation framework. Our investigation is motivated by applications in the collocation approximation of parametric functions, which frequently entails construction of surrogates via orthogonal polynomials. A standard Monte Carlo approach would draw samples according to the density defining the orthogonal polynomial family. Our proposed algorithm instead samples with respect to the (weighted) pluripotential equilibrium measure of the domain, and subsequently solves a weighted least-squares problem, with weights given by evaluations of the Christoffel function. We present theoretical analysis tomore » motivate the algorithm, and numerical results that show our method is superior to standard Monte Carlo methods in many situations of interest.« less
A Two-Timescale Discretization Scheme for Collocation
NASA Technical Reports Server (NTRS)
Desai, Prasun; Conway, Bruce A.
2004-01-01
The development of a two-timescale discretization scheme for collocation is presented. This scheme allows a larger discretization to be utilized for smoothly varying state variables and a second finer discretization to be utilized for state variables having higher frequency dynamics. As such. the discretization scheme can be tailored to the dynamics of the particular state variables. In so doing. the size of the overall Nonlinear Programming (NLP) problem can be reduced significantly. Two two-timescale discretization architecture schemes are described. Comparison of results between the two-timescale method and conventional collocation show very good agreement. Differences of less than 0.5 percent are observed. Consequently. a significant reduction (by two-thirds) in the number of NLP parameters and iterations required for convergence can be achieved without sacrificing solution accuracy.
Berti, Claudio; Gillespie, Dirk; Bardhan, Jaydeep P; Eisenberg, Robert S; Fiegna, Claudio
2012-07-01
Particle-based simulation represents a powerful approach to modeling physical systems in electronics, molecular biology, and chemical physics. Accounting for the interactions occurring among charged particles requires an accurate and efficient solution of Poisson's equation. For a system of discrete charges with inhomogeneous dielectrics, i.e., a system with discontinuities in the permittivity, the boundary element method (BEM) is frequently adopted. It provides the solution of Poisson's equation, accounting for polarization effects due to the discontinuity in the permittivity by computing the induced charges at the dielectric boundaries. In this framework, the total electrostatic potential is then found by superimposing the elemental contributions from both source and induced charges. In this paper, we present a comparison between two BEMs to solve a boundary-integral formulation of Poisson's equation, with emphasis on the BEMs' suitability for particle-based simulations in terms of solution accuracy and computation speed. The two approaches are the collocation and qualocation methods. Collocation is implemented following the induced-charge computation method of D. Boda et al. [J. Chem. Phys. 125, 034901 (2006)]. The qualocation method is described by J. Tausch et al. [IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 20, 1398 (2001)]. These approaches are studied using both flat and curved surface elements to discretize the dielectric boundary, using two challenging test cases: a dielectric sphere embedded in a different dielectric medium and a toy model of an ion channel. Earlier comparisons of the two BEM approaches did not address curved surface elements or semiatomistic models of ion channels. Our results support the earlier findings that for flat-element calculations, qualocation is always significantly more accurate than collocation. On the other hand, when the dielectric boundary is discretized with curved surface elements, the two methods are essentially equivalent; i.e., they have comparable accuracies for the same number of elements. We find that ions in water--charges embedded in a high-dielectric medium--are harder to compute accurately than charges in a low-dielectric medium.
NASA Astrophysics Data System (ADS)
Wang, N.; Li, J.; Borisov, D.; Gharti, H. N.; Shen, Y.; Zhang, W.; Savage, B. K.
2016-12-01
We incorporate 3D anelastic attenuation into the collocated-grid finite-difference method on curvilinear grids (Zhang et al., 2012), using the rheological model of the generalized Maxwell body (Emmerich and Korn, 1987; Moczo and Kristek, 2005; Käser et al., 2007). We follow a conventional procedure to calculate the anelastic coefficients (Emmerich and Korn, 1987) determined by the Q(ω)-law, with a modification in the choice of frequency band and thus the relaxation frequencies that equidistantly cover the logarithmic frequency range. We show that such an optimization of anelastic coefficients is more accurate when using a fixed number of relaxation mechanisms to fit the frequency independent Q-factors. We use curvilinear grids to represent the surface topography. The velocity-stress form of the 3D isotropic anelastic wave equation is solved with a collocated-grid finite-difference method. Compared with the elastic case, we need to solve additional material-independent anelastic functions (Kristek and Moczo, 2003) for the mechanisms at each relaxation frequency. Based on the stress-strain relation, we calculate the spatial partial derivatives of the anelastic functions indirectly thereby saving computational storage and improving computational efficiency. The complex-frequency-shifted perfectly matched layer (CFS-PML) is used for the absorbing boundary condition based on the auxiliary difference equation (Zhang and Shen, 2010). The traction image method (Zhang and Chen, 2006) is employed for the free-surface boundary condition. We perform several numerical experiments including homogeneous full-space models and layered half-space models, considering both flat and 3D Gaussian-shape hill surfaces. The results match very well with those of the spectral-element method (Komatitisch and Tromp, 2002; Savage et al., 2010), verifying the simulations by our method in the anelastic model with surface topography.
Lexical Collocation and Topic Occurrence in Well-Written Editorials: A Study in Form.
ERIC Educational Resources Information Center
Addison, James C., Jr.
To explore the concept of lexical collocation, or relationships between words, a study was conducted based on three assumptions: (1) that a text structure for a unit of discourse was analogous to that existing at the level of the sentence, (2) that such a text form could be discovered if a large enough sample of generically similar texts was…
ERIC Educational Resources Information Center
Alqarni, Ibrahim R.
2017-01-01
This study investigates the impact that study in Australia has on the lexical knowledge of Saudi Arabian students. It focuses on: 1) the effects that the length of study in Australia has on the acquisition of lexical collocations, as reflected by lexical knowledge tests, and 2) whether there is a significant gender difference in the acquisition of…
Data-Driven Learning and the Acquisition of Italian Collocations: From Design to Student Evaluation
ERIC Educational Resources Information Center
Forti, Luciana
2017-01-01
This paper looks at how corpus data was used to design an Italian as an L2 language learning programme and how it was evaluated by students. The study focuses on the acquisition of Italian verb-noun collocations by Chinese native students attending a ten month long Italian language course before enrolling at an Italian university. It describes how…
Periodic response of nonlinear systems
NASA Technical Reports Server (NTRS)
Nataraj, C.; Nelson, H. D.
1988-01-01
A procedure is developed to determine approximate periodic solutions of autonomous and non-autonomous systems. The trignometric collocation method (TCM) is formalized to allow for the analysis of relatively small order systems directly in physical coordinates. The TCM is extended to large order systems by utilizing modal analysis in a component mode synthesis strategy. The procedure was coded and verified by several check cases. Numerical results for two small order mechanical systems and one large order rotor dynamic system are presented. The method allows for the possibility of approximating periodic responses for large order forced and self-excited nonlinear systems.
An empirical understanding of triple collocation evaluation measure
NASA Astrophysics Data System (ADS)
Scipal, Klaus; Doubkova, Marcela; Hegyova, Alena; Dorigo, Wouter; Wagner, Wolfgang
2013-04-01
Triple collocation method is an advanced evaluation method that has been used in the soil moisture field for only about half a decade. The method requires three datasets with an independent error structure that represent an identical phenomenon. The main advantages of the method are that it a) doesn't require a reference dataset that has to be considered to represent the truth, b) limits the effect of random and systematic errors of other two datasets, and c) simultaneously assesses the error of three datasets. The objective of this presentation is to assess the triple collocation error (Tc) of the ASAR Global Mode Surface Soil Moisture (GM SSM 1) km dataset and highlight problems of the method related to its ability to cancel the effect of error of ancillary datasets. In particular, the goal is to a) investigate trends in Tc related to the change in spatial resolution from 5 to 25 km, b) to investigate trends in Tc related to the choice of a hydrological model, and c) to study the relationship between Tc and other absolute evaluation methods (namely RMSE and Error Propagation EP). The triple collocation method is implemented using ASAR GM, AMSR-E, and a model (either AWRA-L, GLDAS-NOAH, or ERA-Interim). First, the significance of the relationship between the three soil moisture datasets was tested that is a prerequisite for the triple collocation method. Second, the trends in Tc related to the choice of the third reference dataset and scale were assessed. For this purpose the triple collocation is repeated replacing AWRA-L with two different globally available model reanalysis dataset operating at different spatial resolution (ERA-Interim and GLDAS-NOAH). Finally, the retrieved results were compared to the results of the RMSE and EP evaluation measures. Our results demonstrate that the Tc method does not eliminate the random and time-variant systematic errors of the second and the third dataset used in the Tc. The possible reasons include the fact a) that the TC method could not fully function with datasets acting at very different spatial resolutions, or b) that the errors were not fully independent as initially assumed.
Data centers as dispatchable loads to harness stranded power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Kibaek; Yang, Fan; Zavala, Victor M.
Here, we analyze how traditional data center placement and optimal placement of dispatchable data centers affect power grid efficiency. We use detailed network models, stochastic optimization formulations, and diverse renewable generation scenarios to perform our analysis. Our results reveal that significant spillage and stranded power will persist in power grids as wind power levels are increased. A counter-intuitive finding is that collocating data centers with inflexible loads next to wind farms has limited impacts on renewable portfolio standard (RPS) goals because it provides limited system-level flexibility. Such an approach can, in fact, increase stranded power and fossil-fueled generation. In contrast,more » optimally placing data centers that are dispatchable provides system-wide flexibility, reduces stranded power, and improves efficiency. In short, optimally placed dispatchable computing loads can enable better scaling to high RPS. In our case study, we find that these dispatchable computing loads are powered to 60-80% of their requested capacity, indicating that there are significant economic incentives provided by stranded power.« less
Data centers as dispatchable loads to harness stranded power
Kim, Kibaek; Yang, Fan; Zavala, Victor M.; ...
2016-07-20
Here, we analyze how traditional data center placement and optimal placement of dispatchable data centers affect power grid efficiency. We use detailed network models, stochastic optimization formulations, and diverse renewable generation scenarios to perform our analysis. Our results reveal that significant spillage and stranded power will persist in power grids as wind power levels are increased. A counter-intuitive finding is that collocating data centers with inflexible loads next to wind farms has limited impacts on renewable portfolio standard (RPS) goals because it provides limited system-level flexibility. Such an approach can, in fact, increase stranded power and fossil-fueled generation. In contrast,more » optimally placing data centers that are dispatchable provides system-wide flexibility, reduces stranded power, and improves efficiency. In short, optimally placed dispatchable computing loads can enable better scaling to high RPS. In our case study, we find that these dispatchable computing loads are powered to 60-80% of their requested capacity, indicating that there are significant economic incentives provided by stranded power.« less
Statistical Constraints on Station Clock Parameters in the NRCAN PPP Estimation Process
2008-12-01
e.g., Two-Way Satellite Time and Frequency Transfer ( TWSTFT ), GPS Common View (CV), and GPS P3 [9]. Finally, PPP shows a 2- times improvement in...the collocated Two-Way Satellite Time and Frequency Technique ( TWSTFT ) estimates for the same baseline. The TWSTFT estimates are available every 2...periodicity is due to the thermal variations described in the previous section, while the divergence between both PPP solutions and TWSTFT estimates is due
Visual Typo Correction by Collocative Optimization: A Case Study on Merchandize Images.
Wei, Xiao-Yong; Yang, Zhen-Qun; Ngo, Chong-Wah; Zhang, Wei
2014-02-01
Near-duplicate retrieval (NDR) in merchandize images is of great importance to a lot of online applications on e-Commerce websites. In those applications where the requirement of response time is critical, however, the conventional techniques developed for a general purpose NDR are limited, because expensive post-processing like spatial verification or hashing is usually employed to compromise the quantization errors among the visual words used for the images. In this paper, we argue that most of the errors are introduced because of the quantization process where the visual words are considered individually, which has ignored the contextual relations among words. We propose a "spelling or phrase correction" like process for NDR, which extends the concept of collocations to visual domain for modeling the contextual relations. Binary quadratic programming is used to enforce the contextual consistency of words selected for an image, so that the errors (typos) are eliminated and the quality of the quantization process is improved. The experimental results show that the proposed method can improve the efficiency of NDR by reducing vocabulary size by 1000% times, and under the scenario of merchandize image NDR, the expensive local interest point feature used in conventional approaches can be replaced by color-moment feature, which reduces the time cost by 9202% while maintaining comparable performance to the state-of-the-art methods.
X-ray and neutron interrogation of air cargo for mobile applications
NASA Astrophysics Data System (ADS)
Van Liew, Seth
2015-06-01
A system for scanning break-bulk cargo for mobile applications is presented. This combines a 140 kV multi-view, multi-energy X-ray system with 2.5 MeV neutrons. The system uses dual energy X-ray radiography with neutron radiography. The X-ray and neutron systems were designed to be collocated in a mobile environment. Various materials were interrogated with the intent of distinguishing threat materials such as explosives from similar benign materials. In particular, the identification of threats and bengins with nearly identical effective atomic numbers has been demonstrated.
NASA Astrophysics Data System (ADS)
Asai, Kikuo; Kondo, Kimio; Kobayashi, Hideaki; Saito, Fumihiko
We developed a prototype system to support telecommunication by using keywords selected by the speaker in a videoconference. In the traditional presentation style, a speaker talks and uses audiovisual materials, and the audience at remote sites looks at these materials. Unfortunately, the audience often loses concentration and attention during the talk. To overcome this problem, we investigate a keyword presentation style, in which the speaker holds keyword cards that enable the audience to see additional information. Although keyword captions were originally intended for use in video materials for learning foreign languages, they can also be used to improve the quality of distance lectures in videoconferences. Our prototype system recognizes printed keywords in a video image at a server, and transfers the data to clients as multimedia functions such as language translation, three-dimensional (3D) model visualization, and audio reproduction. The additional information is collocated to the keyword cards in the display window, thus forming a spatial relationship between them. We conducted an experiment to investigate the properties of the keyword presentation style for an audience. The results suggest the potential of the keyword presentation style for improving the audience's concentration and attention in distance lectures by providing an environment that facilitates eye contact during videoconferencing.
NASA Astrophysics Data System (ADS)
Amerian, Z.; Salem, M. K.; Salar Elahi, A.; Ghoranneviss, M.
2017-03-01
Equilibrium reconstruction consists of identifying, from experimental measurements, a distribution of the plasma current density that satisfies the pressure balance constraint. Numerous methods exist to solve the Grad-Shafranov equation, describing the equilibrium of plasma confined by an axisymmetric magnetic field. In this paper, we have proposed a new numerical solution to the Grad-Shafranov equation (an axisymmetric, magnetic field transformed in cylindrical coordinates solved with the Chebyshev collocation method) when the source term (current density function) on the right-hand side is linear. The Chebyshev collocation method is a method for computing highly accurate numerical solutions of differential equations. We describe a circular cross-section of the tokamak and present numerical result of magnetic surfaces on the IR-T1 tokamak and then compare the results with an analytical solution.
Local Geoid Determination Using the Global Positioning System
1988-09-01
Positioning System by Ma, Wei-Ming September 1988 Co-Advisor: Kandiah Jeyapalan Co-Advisor: Stevens P. Tucker Approved for public release; distribution is... Jeyapalan and Stevens P. Tucker, my thesis advisors, for their dedicated assistance and guidance during the study. Without their encouragement...method of collocation is [ Jeyapalan , 1977]: x = A*X+S +n +O.S q q P where x the vector of the observation (x = Ah - N0(X,Y,Z) - H) A a given rectangular
ERIC Educational Resources Information Center
Keresztes, Kalman
This study was conducted to find and collocate the semantically equivalent form patterns of the English and Hungarian relation-marking systems by contrasting the use of the individual relational morphemes. The ultimate aim of the study is to determine interlingual congruences and contrasts for possible use in language teaching. The investigation…
Assemble Collocation and Colligation in Chinese Writing Web Tools for New Immigrants in Taiwan
ERIC Educational Resources Information Center
Lu, Meg; Lin, Chien Hui; Chuang, Tsung Yen; Ku, Tsun; Tsai, Chia Min
2011-01-01
CSL (Chinese as a second language) learning is an emergency task in Taiwan, especially when more and more new immigrants joined in Taiwan. However, there are just a few new immigrants who can finish all language courses. For this reason, this research intends to provide a training system to assist new immigrants observing and learning the phrase…
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Elia, M.; Edwards, H. C.; Hu, J.
Previous work has demonstrated that propagating groups of samples, called ensembles, together through forward simulations can dramatically reduce the aggregate cost of sampling-based uncertainty propagation methods [E. Phipps, M. D'Elia, H. C. Edwards, M. Hoemmen, J. Hu, and S. Rajamanickam, SIAM J. Sci. Comput., 39 (2017), pp. C162--C193]. However, critical to the success of this approach when applied to challenging problems of scientific interest is the grouping of samples into ensembles to minimize the total computational work. For example, the total number of linear solver iterations for ensemble systems may be strongly influenced by which samples form the ensemble whenmore » applying iterative linear solvers to parameterized and stochastic linear systems. In this paper we explore sample grouping strategies for local adaptive stochastic collocation methods applied to PDEs with uncertain input data, in particular canonical anisotropic diffusion problems where the diffusion coefficient is modeled by truncated Karhunen--Loève expansions. Finally, we demonstrate that a measure of the total anisotropy of the diffusion coefficient is a good surrogate for the number of linear solver iterations for each sample and therefore provides a simple and effective metric for grouping samples.« less
D'Elia, M.; Edwards, H. C.; Hu, J.; ...
2018-01-18
Previous work has demonstrated that propagating groups of samples, called ensembles, together through forward simulations can dramatically reduce the aggregate cost of sampling-based uncertainty propagation methods [E. Phipps, M. D'Elia, H. C. Edwards, M. Hoemmen, J. Hu, and S. Rajamanickam, SIAM J. Sci. Comput., 39 (2017), pp. C162--C193]. However, critical to the success of this approach when applied to challenging problems of scientific interest is the grouping of samples into ensembles to minimize the total computational work. For example, the total number of linear solver iterations for ensemble systems may be strongly influenced by which samples form the ensemble whenmore » applying iterative linear solvers to parameterized and stochastic linear systems. In this paper we explore sample grouping strategies for local adaptive stochastic collocation methods applied to PDEs with uncertain input data, in particular canonical anisotropic diffusion problems where the diffusion coefficient is modeled by truncated Karhunen--Loève expansions. Finally, we demonstrate that a measure of the total anisotropy of the diffusion coefficient is a good surrogate for the number of linear solver iterations for each sample and therefore provides a simple and effective metric for grouping samples.« less
Feedback control of acoustic musical instruments: collocated control using physical analogs.
Berdahl, Edgar; Smith, Julius O; Niemeyer, Günter
2012-01-01
Traditionally, the average professional musician has owned numerous acoustic musical instruments, many of them having distinctive acoustic qualities. However, a modern musician could prefer to have a single musical instrument whose acoustics are programmable by feedback control, where acoustic variables are estimated from sensor measurements in real time and then fed back in order to influence the controlled variables. In this paper, theory is presented that describes stable feedback control of an acoustic musical instrument. The presentation should be accessible to members of the musical acoustics community who may have limited or no experience with feedback control. First, the only control strategy guaranteed to be stable subject to any musical instrument mobility is described: the sensors and actuators must be collocated, and the controller must emulate a physical analog system. Next, the most fundamental feedback controllers and the corresponding physical analog systems are presented. The effects that these controllers have on acoustic musical instruments are described. Finally, practical design challenges are discussed. A proof explains why changing the resonance frequency of a musical resonance requires much more control power than changing the decay time of the resonance. © 2012 Acoustical Society of America.
NASA Astrophysics Data System (ADS)
Brown, Shannon E.; Sargent, Steve; Wagner-Riddle, Claudia
2018-03-01
Nitrous oxide (N2O) fluxes measured using the eddy-covariance method capture the spatial and temporal heterogeneity of N2O emissions. Most closed-path trace-gas analyzers for eddy-covariance measurements have large-volume, multi-pass absorption cells that necessitate high flow rates for ample frequency response, thus requiring high-power sample pumps. Other sampling system components, including rain caps, filters, dryers, and tubing, can also degrade system frequency response. This field trial tested the performance of a closed-path eddy-covariance system for N2O flux measurements with improvements to use less power while maintaining the frequency response. The new system consists of a thermoelectrically cooled tunable diode laser absorption spectrometer configured to measure both N2O and carbon dioxide (CO2). The system features a relatively small, single-pass sample cell (200 mL) that provides good frequency response with a lower-powered pump ( ˜ 250 W). A new filterless intake removes particulates from the sample air stream with no additional mixing volume that could degrade frequency response. A single-tube dryer removes water vapour from the sample to avoid the need for density or spectroscopic corrections, while maintaining frequency response. This eddy-covariance system was collocated with a previous tunable diode laser absorption spectrometer model to compare N2O and CO2 flux measurements for two full growing seasons (May 2015 to October 2016) in a fertilized cornfield in Southern Ontario, Canada. Both spectrometers were placed outdoors at the base of the sampling tower, demonstrating ruggedness for a range of environmental conditions (minimum to maximum daily temperature range: -26.1 to 31.6 °C). The new system rarely required maintenance. An in situ frequency-response test demonstrated that the cutoff frequency of the new system was better than the old system (3.5 Hz compared to 2.30 Hz) and similar to that of a closed-path CO2 eddy-covariance system (4.05 Hz), using shorter tubing and no dryer, that was also collocated at the site. Values of the N2O fluxes were similar between the two spectrometer systems (slope = 1.01, r2 = 0.96); CO2 fluxes as measured by the short-tubed eddy-covariance system and the two spectrometer systems correlated well (slope = 1.03, r2 = 0.998). The new lower-powered tunable diode laser absorption spectrometer configuration with the filterless intake and single-tube dryer showed promise for deployment in remote areas.
Hall, Naima L.; Dvonch, Joseph Timothy; Marsik, Frank J.; Barres, James A.; Landis, Matthew S.
2017-01-01
This paper describes the development of a new artificial turf surrogate surface (ATSS) sampler for use in the measurement of mercury (Hg) dry deposition. In contrast to many existing surrogate surface designs, the ATSS utilizes a three-dimensional deposition surface that may more closely mimic the physical structure of many natural surfaces than traditional flat surrogate surface designs (water, filter, greased Mylar film). The ATSS has been designed to overcome several complicating factors that can impact the integrity of samples with other direct measurement approaches by providing a passive system which can be deployed for both short and extended periods of time (days to weeks), and is not contaminated by precipitation and/or invalidated by strong winds. Performance characteristics including collocated precision, in-field procedural and laboratory blanks were evaluated. The results of these performance evaluations included a mean collocated precision of 9%, low blanks (0.8 ng), high extraction efficiency (97%–103%), and a quantitative matrix spike recovery (100%). PMID:28208603
Potential of collocated radiometer and wind profiler observations for monsoon studies
NASA Astrophysics Data System (ADS)
Balaji, B.; Prabha, Thara V.; Jaya Rao, Y.; Kiran, T.; Dinesh, G.; Chakravarty, Kaustav; Sonbawne, S. M.; Rajeevan, M.
2017-09-01
Collocated observations from microwave radiometer and wind profiler are used in a pilot study during the monsoon period to derive information on the thermodynamics and winds and association with rainfall characteristics. These instruments were operated throughout the monsoon season of 2015. Continuous vertical profiles of winds, temperature and humidity show significant promise for understanding the low-level jet, its periodicity and its association with moisture transport, clouds and precipitation embedded within the monsoon large-scale convection. Observations showed mutually beneficial in explaining variability that are part of the low frequency oscillations and the diurnal variability during monsoon. These observations highlight the importance of locally driven convective systems, in the presence of weak moisture transport over the area. The episodic moisture convergence showed a periodicity of 9 days which matches with the subsequent convection and precipitation and thermodynamic regimes. Inferences from the diurnal cycle of moisture transport and the convective activity, relationship with the low-level jet characteristics and thermodynamics are also illustrated.
An hp symplectic pseudospectral method for nonlinear optimal control
NASA Astrophysics Data System (ADS)
Peng, Haijun; Wang, Xinwei; Li, Mingwu; Chen, Biaosong
2017-01-01
An adaptive symplectic pseudospectral method based on the dual variational principle is proposed and is successfully applied to solving nonlinear optimal control problems in this paper. The proposed method satisfies the first order necessary conditions of continuous optimal control problems, also the symplectic property of the original continuous Hamiltonian system is preserved. The original optimal control problem is transferred into a set of nonlinear equations which can be solved easily by Newton-Raphson iterations, and the Jacobian matrix is found to be sparse and symmetric. The proposed method, on one hand, exhibits exponent convergence rates when the number of collocation points are increasing with the fixed number of sub-intervals; on the other hand, exhibits linear convergence rates when the number of sub-intervals is increasing with the fixed number of collocation points. Furthermore, combining with the hp method based on the residual error of dynamic constraints, the proposed method can achieve given precisions in a few iterations. Five examples highlight the high precision and high computational efficiency of the proposed method.
Enhancing Critical Thinking Skills for Army Leaders Using Blended-Learning Methods
2013-01-01
delivering, and evaluating leader education and those who develop and implement distributed learning courses that incorporate group collaboration on topics...Circumstances Numerous studies comparing outcomes of collocated and virtual groups show that collocated groups perform better on interdependent tasks, such as...in class or “cold call” on students to answer questions. Third, using small (rather than large) groups for interactive activities can alleviate free
NASA Astrophysics Data System (ADS)
Lambert, Jean-Christopher
As a contribution to the implementation of the Global Earth Observation System of Systems (GEOSS), the Committee on Earth Observation Satellites (CEOS) is developing a data quality strategy for satellite measurements. To achieve GEOSS requirements of consistency and interoperability (e.g. for comparison and for integrated interpretation) of the measurements and their derived data products, proper uncertainty assessment is essential and needs to be continuously monitored and traceable to standards. Therefore, CEOS has undertaken the task to establish a set of best practices and guidelines for satellite validation, starting with current practices that could be improved with time. Best practices are not intended to be imposed as firm requirements, but rather to be suggested as a baseline for comparing against, which could be used by the widest community and provide guidance to newcomers. The present paper reviews the current development of best practices and guidelines for the validation of atmospheric composition satellites. Terminologies and general principles of validation are reminded. Going beyond elementary definitions of validation like the assessment of uncertainties, the specific GEOSS context calls also for validation of individual service components and against user requirements. This paper insists on two important aspects. First one, the question of the "collocation". Validation generally involves comparisons with "reference" measurements of the same quantities, and the question of what constitutes a valid comparison is not the least of the challenges faced. We present a tentative scheme for defining the validity of a comparison and of the necessary "collocation" criteria. Second focus of this paper: the information content of the data product. Validation against user requirements, or the verification of the "fitness for purpose" of both the data products and their validation, needs to identify what information, in the final product, is contributed really by the measurement, as opposed to what is contributed by a priori constraints imposed by the retrieval.
Preliminary numerical analysis of improved gas chromatograph model
NASA Technical Reports Server (NTRS)
Woodrow, P. T.
1973-01-01
A mathematical model for the gas chromatograph was developed which incorporates the heretofore neglected transport mechanisms of intraparticle diffusion and rates of adsorption. Because a closed-form analytical solution to the model does not appear realizable, techniques for the numerical solution of the model equations are being investigated. Criteria were developed for using a finite terminal boundary condition in place of an infinite boundary condition used in analytical solution techniques. The class of weighted residual methods known as orthogonal collocation is presently being investigated and appears promising.
ERIC Educational Resources Information Center
Peters, Elke
2014-01-01
This article examines how form recall of target lexical items by learners of English as a foreign language (EFL) is affected (1) by repetition (1, 3 or 5 number of occurrences), (2) by the type of target item (single words versus collocations), and (3) by the time of post-test administration (immediately or one week after the learning session).…
Stability of compressible Taylor-Couette flow
NASA Technical Reports Server (NTRS)
Kao, Kai-Hsiung; Chow, Chuen-Yen
1991-01-01
Compressible stability equations are solved using the spectral collocation method in an attempt to study the effects of temperature difference and compressibility on the stability of Taylor-Couette flow. It is found that the Chebyshev collocation spectral method yields highly accurate results using fewer grid points for solving stability problems. Comparisons are made between the result obtained by assuming small Mach number with a uniform temperature distribution and that based on fully incompressible analysis.
Single-grid spectral collocation for the Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Bernardi, Christine; Canuto, Claudio; Maday, Yvon; Metivet, Brigitte
1988-01-01
The aim of the paper is to study a collocation spectral method to approximate the Navier-Stokes equations: only one grid is used, which is built from the nodes of a Gauss-Lobatto quadrature formula, either of Legendre or of Chebyshev type. The convergence is proven for the Stokes problem provided with inhomogeneous Dirichlet conditions, then thoroughly analyzed for the Navier-Stokes equations. The practical implementation algorithm is presented, together with numerical results.
The Benard problem: A comparison of finite difference and spectral collocation eigen value solutions
NASA Technical Reports Server (NTRS)
Skarda, J. Raymond Lee; Mccaughan, Frances E.; Fitzmaurice, Nessan
1995-01-01
The application of spectral methods, using a Chebyshev collocation scheme, to solve hydrodynamic stability problems is demonstrated on the Benard problem. Implementation of the Chebyshev collocation formulation is described. The performance of the spectral scheme is compared with that of a 2nd order finite difference scheme. An exact solution to the Marangoni-Benard problem is used to evaluate the performance of both schemes. The error of the spectral scheme is at least seven orders of magnitude smaller than finite difference error for a grid resolution of N = 15 (number of points used). The performance of the spectral formulation far exceeded the performance of the finite difference formulation for this problem. The spectral scheme required only slightly more effort to set up than the 2nd order finite difference scheme. This suggests that the spectral scheme may actually be faster to implement than higher order finite difference schemes.
Global collocation methods for approximation and the solution of partial differential equations
NASA Technical Reports Server (NTRS)
Solomonoff, A.; Turkel, E.
1986-01-01
Polynomial interpolation methods are applied both to the approximation of functions and to the numerical solutions of hyperbolic and elliptic partial differential equations. The derivative matrix for a general sequence of the collocation points is constructed. The approximate derivative is then found by a matrix times vector multiply. The effects of several factors on the performance of these methods including the effect of different collocation points are then explored. The resolution of the schemes for both smooth functions and functions with steep gradients or discontinuities in some derivative are also studied. The accuracy when the gradients occur both near the center of the region and in the vicinity of the boundary is investigated. The importance of the aliasing limit on the resolution of the approximation is investigated in detail. Also examined is the effect of boundary treatment on the stability and accuracy of the scheme.
NASA Technical Reports Server (NTRS)
Fromme, J.; Golberg, M.
1978-01-01
The numerical calculation of unsteady two dimensional airloads which act upon thin airfoils in subsonic ventilated wind tunnels was studied. Neglecting certain quadrature errors, Bland's collocation method is rigorously proved to converge to the mathematically exact solution of Bland's integral equation, and a three way equivalence was established between collocation, Galerkin's method and least squares whenever the collocation points are chosen to be the nodes of the quadrature rule used for Galerkin's method. A computer program displayed convergence with respect to the number of pressure basis functions employed, and agreement with known special cases was demonstrated. Results are obtained for the combined effects of wind tunnel wall ventilation and wind tunnel depth to airfoil chord ratio, and for acoustic resonance between the airfoil and wind tunnel walls. A boundary condition is proposed for permeable walls through which mass flow rate is proportional to pressure jump.
NASA Astrophysics Data System (ADS)
Barron-Gafford, G.; Escobedo, E. B.; Smith, J.; Raub, H.; Jimenez, J. R.; Sutter, L., Jr.; Barnett-Moreno, I.; Blackett, D. T.; Thompson, M. S.; Minor, R. L.; Pavao-Zuckerman, M.
2017-12-01
Conventional understanding of land use asserts an inherent "zero-sum-game" of competition between renewable energy and agricultural food production. This discourse is so fundamentally entrenched that it drives most current policy around conservation practices, land and water allotments for agriculture, and permitting for large-scale renewable energy installations. We are investigating a novel approach to solve a problem key to our environment and economy in drylands by creating a hybrid of collocated "green" agriculture and "grey" solar photovoltaic (PV) infrastructure to maximize agricultural production while improving renewable energy production. We are monitoring atmospheric microclimatic conditions, soil moisture, plant ecophysiological function, and biomass production within both this novel "agrivoltaics" ecosystem and in traditional PV installations and agricultural settings (control plot) to quantify tradeoffs associated with this approach. We have found that levels of soil moisture remained higher after each irrigation event within the soils under the agrivoltaics installation than the traditional agricultural setting due to the shading provided by the PV panels overhead. We initiated a drought treatment, which underscored the water-savings under the agrivoltaics installation and increased water use efficiency in this system. We hypothesized that we will see more temperature and drought stresses on photosynthetic capacity and water use efficiency in the control plants relative to the agrivoltaic installation, and we found that several food crops either experienced significantly more production within the agrivoltaics area, whereas others resulted in nearly equal production but at significant water savings. Combined with localized cooling of the PV panels resulting from the transpiration from the vegetative "understory", we are finding a win-win-win at the food-water-energy nexus. photo credit: Bob Demers/UANews
NRL tethered balloon measurements at San Nicolas Island during FIRE IFO 1987
NASA Technical Reports Server (NTRS)
Gerber, Hermann; Gathman, Stuart; James, Jeffrey; Smith, Mike; Consterdine, Ian; Brandeki, Scott
1990-01-01
An overview is given of the tethered balloon measurements made during the First ISCCP Regional Experiment (FIRE) marine stratocumulus intensive field observations (IFO) at San Nicolas Island in 1987. The instrument utilized on the balloon flights, the 17 flights over a 10 day period, the state of the data analysis, and some preliminary results are described. A goal of the measurements with the Naval Research Laboratory (NRL) balloon was to give a unique and greatly improved look at the microphysics of the clear and cloud-topped boundary layer. For this goal, collocated measurements were made of turbulence, aerosol, cloud particles, and meteorology. Two new instruments which were expected to make significant contributions to this effort were the saturation hygrometer, capable of measuring 95 percent less than RH 105 percent (with an accuracy of 0.05 percent near 100 percent) and used for the first time in clouds; and the forward scatter meter which gives in situ LWC measurements at more than 10 Hz. The data set, while unfortunately only partially simultaneous with the bulk of the FIRE stratocumulus observations, is unique and worthwhile in its own right. For the first time accurate RH measurements near 100 percent have been made in-cloud; although, the use of the saturation hygrometer reflected a learning experience which will result is substantially better performance the next time. These measurements were made in conjunction with other microphysical measurements such as aerosol and cloud droplet spectra, and perhaps most important of all, they were all collocated with bivane turbulence measurements thus permitting flux calculations. Thus the analysis of this data set, which consisted of about 50 percent stratocumulus cases including increasing and decreasing partial cloud cover, should lead to new insights on the physical mechanisms which drive the boundary-layer/cloud/turbulence system.
ERIC Educational Resources Information Center
Taylor, Zachary Wayne
2017-01-01
Examining post-election statements made by UC System, UT-Austin, and UW-Madison executive leadership, this study employs word frequency, collocation, and a three-pronged latent semantic analysis to explicate the associative diction, major concepts, and institutional priorities expressed by said leadership to answer the research question,…
Scalable collaborative risk management technology for complex critical systems
NASA Technical Reports Server (NTRS)
Campbell, Scott; Torgerson, Leigh; Burleigh, Scott; Feather, Martin S.; Kiper, James D.
2004-01-01
We describe here our project and plans to develop methods, software tools, and infrastructure tools to address challenges relating to geographically distributed software development. Specifically, this work is creating an infrastructure that supports applications working over distributed geographical and organizational domains and is using this infrastructure to develop a tool that supports project development using risk management and analysis techniques where the participants are not collocated.
Achieving algorithmic resilience for temporal integration through spectral deferred corrections
Grout, Ray; Kolla, Hemanth; Minion, Michael; ...
2017-05-08
Spectral deferred corrections (SDC) is an iterative approach for constructing higher-order-accurate numerical approximations of ordinary differential equations. SDC starts with an initial approximation of the solution defined at a set of Gaussian or spectral collocation nodes over a time interval and uses an iterative application of lower-order time discretizations applied to a correction equation to improve the solution at these nodes. Each deferred correction sweep increases the formal order of accuracy of the method up to the limit inherent in the accuracy defined by the collocation points. In this paper, we demonstrate that SDC is well suited to recovering frommore » soft (transient) hardware faults in the data. A strategy where extra correction iterations are used to recover from soft errors and provide algorithmic resilience is proposed. Specifically, in this approach the iteration is continued until the residual (a measure of the error in the approximation) is small relative to the residual of the first correction iteration and changes slowly between successive iterations. Here, we demonstrate the effectiveness of this strategy for both canonical test problems and a comprehensive situation involving a mature scientific application code that solves the reacting Navier-Stokes equations for combustion research.« less
Achieving algorithmic resilience for temporal integration through spectral deferred corrections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grout, Ray; Kolla, Hemanth; Minion, Michael
2017-05-08
Spectral deferred corrections (SDC) is an iterative approach for constructing higher- order accurate numerical approximations of ordinary differential equations. SDC starts with an initial approximation of the solution defined at a set of Gaussian or spectral collocation nodes over a time interval and uses an iterative application of lower-order time discretizations applied to a correction equation to improve the solution at these nodes. Each deferred correction sweep increases the formal order of accuracy of the method up to the limit inherent in the accuracy defined by the collocation points. In this paper, we demonstrate that SDC is well suited tomore » recovering from soft (transient) hardware faults in the data. A strategy where extra correction iterations are used to recover from soft errors and provide algorithmic resilience is proposed. Specifically, in this approach the iteration is continued until the residual (a measure of the error in the approximation) is small relative to the residual on the first correction iteration and changes slowly between successive iterations. We demonstrate the effectiveness of this strategy for both canonical test problems and a comprehen- sive situation involving a mature scientific application code that solves the reacting Navier-Stokes equations for combustion research.« less
Achieving algorithmic resilience for temporal integration through spectral deferred corrections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grout, Ray; Kolla, Hemanth; Minion, Michael
2017-05-08
Spectral deferred corrections (SDC) is an iterative approach for constructing higher-order-accurate numerical approximations of ordinary differential equations. SDC starts with an initial approximation of the solution defined at a set of Gaussian or spectral collocation nodes over a time interval and uses an iterative application of lower-order time discretizations applied to a correction equation to improve the solution at these nodes. Each deferred correction sweep increases the formal order of accuracy of the method up to the limit inherent in the accuracy defined by the collocation points. In this paper, we demonstrate that SDC is well suited to recovering frommore » soft (transient) hardware faults in the data. A strategy where extra correction iterations are used to recover from soft errors and provide algorithmic resilience is proposed. Specifically, in this approach the iteration is continued until the residual (a measure of the error in the approximation) is small relative to the residual of the first correction iteration and changes slowly between successive iterations. We demonstrate the effectiveness of this strategy for both canonical test problems and a comprehensive situation involving a mature scientific application code that solves the reacting Navier-Stokes equations for combustion research.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Damao; Wang, Zhien; Kollias, Pavlos
In this study, collocated A-Train CloudSat radar and CALIPSO lidar measurements between 2006 and 2010 are analyzed to study primary ice particle production characteristics in mid-level stratiform mixed-phase clouds on a global scale. For similar clouds in terms of cloud top temperature and liquid water path, Northern Hemisphere latitude bands have layer-maximum radar reflectivity (ZL) that is ~1 to 8 dBZ larger than their counterparts in the Southern Hemisphere. The systematically larger ZL under similar cloud conditions suggests larger ice number concentrations in mid-level stratiform mixed-phase clouds over the Northern Hemisphere, which is possibly related to higher background aerosol loadings.more » Furthermore, we show that springtime northern mid- and high latitudes have ZL that is larger by up to 6 dBZ (a factor of 4 higher ice number concentration) than other seasons, which might be related to more dust events that provide effective ice nucleating particles. Our study suggests that aerosol-dependent ice number concentration parameterizations are required in climate models to improve mixed-phase cloud simulations, especially over the Northern Hemisphere.« less
Zhang, Damao; Wang, Zhien; Kollias, Pavlos; ...
2018-03-28
In this study, collocated A-Train CloudSat radar and CALIPSO lidar measurements between 2006 and 2010 are analyzed to study primary ice particle production characteristics in mid-level stratiform mixed-phase clouds on a global scale. For similar clouds in terms of cloud top temperature and liquid water path, Northern Hemisphere latitude bands have layer-maximum radar reflectivity (ZL) that is ~1 to 8 dBZ larger than their counterparts in the Southern Hemisphere. The systematically larger ZL under similar cloud conditions suggests larger ice number concentrations in mid-level stratiform mixed-phase clouds over the Northern Hemisphere, which is possibly related to higher background aerosol loadings.more » Furthermore, we show that springtime northern mid- and high latitudes have ZL that is larger by up to 6 dBZ (a factor of 4 higher ice number concentration) than other seasons, which might be related to more dust events that provide effective ice nucleating particles. Our study suggests that aerosol-dependent ice number concentration parameterizations are required in climate models to improve mixed-phase cloud simulations, especially over the Northern Hemisphere.« less
Surface Energy Balance System (SEBS) Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, DR
2011-02-14
A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system at the Southern Great Plains (SGP), North Slope of Alaska (NSA), Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes.
1988-09-23
DOWNGRADING SCHEDULE D~istribution Unlimited 4. PERFORMING ORGANIZATiON REPORT NUMVBER(S) 5. MONITORiG ORGANIZATION REPORT NUMBER(S) AFGL-TR-88-0237...Collocations were performed on launch sites of the cloud contamination, aerosol problems, collocation 1200 UT radiosondes on 25 Aug 1987. Statistics were...al (1987) and Thomason, 1987). In this imagery opaque clouds to this problem appear white, low clouds and fog appear bright red against a brown
A collocation-shooting method for solving fractional boundary value problems
NASA Astrophysics Data System (ADS)
Al-Mdallal, Qasem M.; Syam, Muhammed I.; Anwar, M. N.
2010-12-01
In this paper, we discuss the numerical solution of special class of fractional boundary value problems of order 2. The method of solution is based on a conjugating collocation and spline analysis combined with shooting method. A theoretical analysis about the existence and uniqueness of exact solution for the present class is proven. Two examples involving Bagley-Torvik equation subject to boundary conditions are also presented; numerical results illustrate the accuracy of the present scheme.
Design and Application of a Collocated Capacitance Sensor for Magnetic Bearing Spindle
NASA Technical Reports Server (NTRS)
Shin, Dongwon; Liu, Seon-Jung; Kim, Jongwon
1996-01-01
This paper presents a collocated capacitance sensor for magnetic bearings. The main feature of the sensor is that it is made of a specific compact printed circuit board (PCB). The signal processing unit has been also developed. The results of the experimental performance evaluation on the sensitivity, resolution and frequency response of the sensor are presented. Finally, an application example of the sensor to the active control of a magnetic bearing is described.
Treatment of systematic errors in land data assimilation systems
NASA Astrophysics Data System (ADS)
Crow, W. T.; Yilmaz, M.
2012-12-01
Data assimilation systems are generally designed to minimize the influence of random error on the estimation of system states. Yet, experience with land data assimilation systems has also revealed the presence of large systematic differences between model-derived and remotely-sensed estimates of land surface states. Such differences are commonly resolved prior to data assimilation through implementation of a pre-processing rescaling step whereby observations are scaled (or non-linearly transformed) to somehow "match" comparable predictions made by an assimilation model. While the rationale for removing systematic differences in means (i.e., bias) between models and observations is well-established, relatively little theoretical guidance is currently available to determine the appropriate treatment of higher-order moments during rescaling. This talk presents a simple analytical argument to define an optimal linear-rescaling strategy for observations prior to their assimilation into a land surface model. While a technique based on triple collocation theory is shown to replicate this optimal strategy, commonly-applied rescaling techniques (e.g., so called "least-squares regression" and "variance matching" approaches) are shown to represent only sub-optimal approximations to it. Since the triple collocation approach is likely infeasible in many real-world circumstances, general advice for deciding between various feasible (yet sub-optimal) rescaling approaches will be presented with an emphasis of the implications of this work for the case of directly assimilating satellite radiances. While the bulk of the analysis will deal with linear rescaling techniques, its extension to nonlinear cases will also be discussed.
Temporal gravity field modeling based on least square collocation with short-arc approach
NASA Astrophysics Data System (ADS)
ran, jiangjun; Zhong, Min; Xu, Houze; Liu, Chengshu; Tangdamrongsub, Natthachet
2014-05-01
After the launch of the Gravity Recovery And Climate Experiment (GRACE) in 2002, several research centers have attempted to produce the finest gravity model based on different approaches. In this study, we present an alternative approach to derive the Earth's gravity field, and two main objectives are discussed. Firstly, we seek the optimal method to estimate the accelerometer parameters, and secondly, we intend to recover the monthly gravity model based on least square collocation method. The method has been paid less attention compared to the least square adjustment method because of the massive computational resource's requirement. The positions of twin satellites are treated as pseudo-observations and unknown parameters at the same time. The variance covariance matrices of the pseudo-observations and the unknown parameters are valuable information to improve the accuracy of the estimated gravity solutions. Our analyses showed that introducing a drift parameter as an additional accelerometer parameter, compared to using only a bias parameter, leads to a significant improvement of our estimated monthly gravity field. The gravity errors outside the continents are significantly reduced based on the selected set of the accelerometer parameters. We introduced the improved gravity model namely the second version of Institute of Geodesy and Geophysics, Chinese Academy of Sciences (IGG-CAS 02). The accuracy of IGG-CAS 02 model is comparable to the gravity solutions computed from the Geoforschungszentrum (GFZ), the Center for Space Research (CSR) and the NASA Jet Propulsion Laboratory (JPL). In term of the equivalent water height, the correlation coefficients over the study regions (the Yangtze River valley, the Sahara desert, and the Amazon) among four gravity models are greater than 0.80.
Parallel Implementation of a High Order Implicit Collocation Method for the Heat Equation
NASA Technical Reports Server (NTRS)
Kouatchou, Jules; Halem, Milton (Technical Monitor)
2000-01-01
We combine a high order compact finite difference approximation and collocation techniques to numerically solve the two dimensional heat equation. The resulting method is implicit arid can be parallelized with a strategy that allows parallelization across both time and space. We compare the parallel implementation of the new method with a classical implicit method, namely the Crank-Nicolson method, where the parallelization is done across space only. Numerical experiments are carried out on the SGI Origin 2000.
1982-08-18
cselixataan has been shown to Pro, imonedimie. FIN SMCS10 tam we m Vp assuma threry. In lacd. it has been shown lor difeent oide a pouwerful method to simulate...Afortd meaden 11. ’by)W~itl 116.ttousol =odimra She delade Ia~c Ul - by she Oa SWISS INaolder 10 wAce shem. re’te" s s m rnb -bute r~ 6 X-06 CSc a I
Significance of modeling internal damping in the control of structures
NASA Technical Reports Server (NTRS)
Banks, H. T.; Inman, D. J.
1992-01-01
Several simple systems are examined to illustrate the importance of the estimation of damping parameters in closed-loop system performance and stability. The negative effects of unmodeled damping are particularly pronounced in systems that do not use collocated sensors and actuators. An example is considered for which even the actuators (a tip jet nozzle and flexible hose) for a simple beam produce significant damping which, if ignored, results in a model that cannot yield a reasonable time response using physically meaningful parameter values. It is concluded that correct damping modeling is essential in structure control.
Deterministic analysis of extrinsic and intrinsic noise in an epidemiological model.
Bayati, Basil S
2016-05-01
We couple a stochastic collocation method with an analytical expansion of the canonical epidemiological master equation to analyze the effects of both extrinsic and intrinsic noise. It is shown that depending on the distribution of the extrinsic noise, the master equation yields quantitatively different results compared to using the expectation of the distribution for the stochastic parameter. This difference is incident to the nonlinear terms in the master equation, and we show that the deviation away from the expectation of the extrinsic noise scales nonlinearly with the variance of the distribution. The method presented here converges linearly with respect to the number of particles in the system and exponentially with respect to the order of the polynomials used in the stochastic collocation calculation. This makes the method presented here more accurate than standard Monte Carlo methods, which suffer from slow, nonmonotonic convergence. In epidemiological terms, the results show that extrinsic fluctuations should be taken into account since they effect the speed of disease breakouts and that the gamma distribution should be used to model the basic reproductive number.
NASA Astrophysics Data System (ADS)
Parand, K.; Latifi, S.; Moayeri, M. M.; Delkhosh, M.
2018-05-01
In this study, we have constructed a new numerical approach for solving the time-dependent linear and nonlinear Fokker-Planck equations. In fact, we have discretized the time variable with Crank-Nicolson method and for the space variable, a numerical method based on Generalized Lagrange Jacobi Gauss-Lobatto (GLJGL) collocation method is applied. It leads to in solving the equation in a series of time steps and at each time step, the problem is reduced to a problem consisting of a system of algebraic equations that greatly simplifies the problem. One can observe that the proposed method is simple and accurate. Indeed, one of its merits is that it is derivative-free and by proposing a formula for derivative matrices, the difficulty aroused in calculation is overcome, along with that it does not need to calculate the General Lagrange basis and matrices; they have Kronecker property. Linear and nonlinear Fokker-Planck equations are given as examples and the results amply demonstrate that the presented method is very valid, effective, reliable and does not require any restrictive assumptions for nonlinear terms.
Wetherbee, G.A.; Latysh, N.E.; Gordon, J.D.
2005-01-01
Data from the U.S. Geological Survey (USGS) collocated-sampler program for the National Atmospheric Deposition Program/National Trends Network (NADP/NTN) are used to estimate the overall error of NADP/NTN measurements. Absolute errors are estimated by comparison of paired measurements from collocated instruments. Spatial and temporal differences in absolute error were identified and are consistent with longitudinal distributions of NADP/NTN measurements and spatial differences in precipitation characteristics. The magnitude of error for calcium, magnesium, ammonium, nitrate, and sulfate concentrations, specific conductance, and sample volume is of minor environmental significance to data users. Data collected after a 1994 sample-handling protocol change are prone to less absolute error than data collected prior to 1994. Absolute errors are smaller during non-winter months than during winter months for selected constituents at sites where frozen precipitation is common. Minimum resolvable differences are estimated for different regions of the USA to aid spatial and temporal watershed analyses.
NASA Technical Reports Server (NTRS)
Phillips, J. R.
1996-01-01
In this paper we derive error bounds for a collocation-grid-projection scheme tuned for use in multilevel methods for solving boundary-element discretizations of potential integral equations. The grid-projection scheme is then combined with a precorrected FFT style multilevel method for solving potential integral equations with 1/r and e(sup ikr)/r kernels. A complexity analysis of this combined method is given to show that for homogeneous problems, the method is order n natural log n nearly independent of the kernel. In addition, it is shown analytically and experimentally that for an inhomogeneity generated by a very finely discretized surface, the combined method slows to order n(sup 4/3). Finally, examples are given to show that the collocation-based grid-projection plus precorrected-FFT scheme is competitive with fast-multipole algorithms when considering realistic problems and 1/r kernels, but can be used over a range of spatial frequencies with only a small performance penalty.
Precipitation Estimation from the ARM Distributed Radar Network During the MC3E Campaign
NASA Astrophysics Data System (ADS)
Theisen, A. K.; Giangrande, S. E.; Collis, S. M.
2012-12-01
The DOE - NASA Midlatitude Continental Convective Cloud Experiment (MC3E) was the first demonstration of the Atmospheric Radiation Measurement (ARM) Climate Research Facility scanning precipitation radar platforms. A goal for the MC3E field campaign over the Southern Great Plains (SGP) facility was to demonstrate the capabilities of ARM polarimetric radar systems for providing unique insights into deep convective storm evolution and microphysics. One practical application of interest for climate studies and the forcing of cloud resolving models is improved Quantitative Precipitation Estimates (QPE) from ARM radar systems positioned at SGP. This study presents the results of ARM radar-based precipitation estimates during the 2-month MC3E campaign. Emphasis is on the usefulness of polarimetric C-band radar observations (CSAPR) for rainfall estimation to distances within 100 km of the Oklahoma SGP facility. Collocated ground disdrometer resources, precipitation profiling radars and nearby surface Oklahoma Mesonet gauge records are consulted to evaluate potential ARM radar-based rainfall products and optimal methods. Rainfall products are also evaluated against the regional NEXRAD-standard observations.
Explosion Source Location Study Using Collocated Acoustic and Seismic Networks in Israel
NASA Astrophysics Data System (ADS)
Pinsky, V.; Gitterman, Y.; Arrowsmith, S.; Ben-Horin, Y.
2013-12-01
We explore a joined analysis of seismic and infrasonic signals for improvement in automatic monitoring of small local/regional events, such as construction and quarry blasts, military chemical explosions, sonic booms, etc. using collocated seismic and infrasonic networks recently build in Israel (ISIN) in the frame of the project sponsored by the Bi-national USA-Israel Science Foundation (BSF). The general target is to create an automatic system, which will provide detection, location and identification of explosions in real-time or close-to-real time manner. At the moment the network comprises 15 stations hosting a microphone and seismometer (or accelerometer), operated by the Geophysical Institute of Israel (GII), plus two infrasonic arrays, operated by the National Data Center, Soreq: IOB in the South (Negev desert) and IMA in the North of Israel (Upper Galilee),collocated with the IMS seismic array MMAI. The study utilizes a ground-truth data-base of numerous Rotem phosphate quarry blasts, a number of controlled explosions for demolition of outdated ammunitions and experimental surface explosions for a structure protection research, at the Sayarim Military Range. A special event, comprising four military explosions in a neighboring country, that provided both strong seismic (up to 400 km) and infrasound waves (up to 300 km), is also analyzed. For all of these events the ground-truth coordinates and/or the results of seismic location by the Israel Seismic Network (ISN) have been provided. For automatic event detection and phase picking we tested the new recursive picker, based on Statistically optimal detector. The results were compared to the manual picks. Several location techniques have been tested using the ground-truth event recordings and the preliminary results obtained have been compared to the ground-truth locations: 1) a number of events have been located as intersection of azimuths estimated using the wide-band F-K analysis technique applied to the infrasonic phases of the two distant arrays; 2) a standard robust grid-search location procedure based on phase picks and a constant celerity for a phase (tropospheric or stratospheric) was applied; 3) a joint coordinate grid-search procedure using array waveforms and phase picks was tested, 4) the Bayesian Infrasonic Source Localization (BISL) method, incorporating semi-empirical model-based prior information, was modified for array+network configuration and applied to the ground-truth events. For this purpose we accumulated data of the former observations of the air-to-ground infrasonic phases to compute station specific ground-truth Celerity-Range Histograms (ssgtCRH) and/or model-based CRH (mbCRH), which allow to essentially improve the location results. For building the mbCRH the local meteo-data and the ray-tracing modeling in 3 available azimuth ranges, accounting seasonal variations of winds directivity (quadrants North:315-45, South: 135-225, East 45-135) have been used.
NASA Astrophysics Data System (ADS)
González-Zamora, Ángel; Sánchez, Nilda; Martínez-Fernández, José; Gumuzzio, Ángela; Piles, María; Olmedo, Estrella
The European Space Agency's Soil Moisture and Ocean Salinity (SMOS) Level 2 soil moisture and the new L3 product from the Barcelona Expert Center (BEC) were validated from January 2010 to June 2014 using two in situ networks in Spain. The first network is the Soil Moisture Measurement Stations Network of the University of Salamanca (REMEDHUS), which has been extensively used for validating remotely sensed observations of soil moisture. REMEDHUS can be considered a small-scale network that covers a 1300 km2 region. The second network is a large-scale network that covers the main part of the Duero Basin (65,000 km2). At an existing meteorological network in the Castilla y Leon region (Inforiego), soil moisture probes were installed in 2012 to provide data until 2014. Comparisons of the temporal series using different strategies (total average, land use, and soil type) as well as using the collocated data at each location were performed. Additionally, spatial correlations on each date were computed for specific days. Finally, an improved version of the Triple Collocation (TC) method, i.e., the Extended Triple Collocation (ETC), was used to compare satellite and in situ soil moisture estimates with outputs of the Soil Water Balance Model Green-Ampt (SWBM-GA). The results of this work showed that SMOS estimates were consistent with in situ measurements in the time series comparisons, with Pearson correlation coefficients (R) and an Agreement Index (AI) higher than 0.8 for the total average and the land-use averages and higher than 0.85 for the soil-texture averages. The results obtained at the Inforiego network showed slightly better results than REMEDHUS, which may be related to the larger scale of the former network. Moreover, the best results were obtained when all networks were jointly considered. In contrast, the spatial matching produced worse results for all the cases studied. These results showed that the recent reprocessing of the L2 products (v5.51) improved the accuracy of soil moisture retrievals such that they are now suitable for developing new L3 products, such as the presented in this work. Additionally, the validation based on comparisons between dense/sparse networks and satellite retrievals at a coarse resolution showed that temporal patterns in the soil moisture are better reproduced than spatial patterns.
NASA Astrophysics Data System (ADS)
Kalashnikova, O. V.; Seidel, F. C.; Xu, F.; Garay, M. J.; Wu, L.; Bruegge, C. J.; van Harten, G.; Val, S.; Diner, D. J.; Seinfeld, J.; Bates, K. H.; Cappa, C. D.; Bradley, C. L.; Kupinski, M.; Clements, C. B.; Camacho, C.; Yorks, J. E.
2016-12-01
The Multi-Angle Imager for Aerosols (MAIA) instrument, which was recently selected under NASA's third Earth Venture Instrument call, will improve aerosol particle type sensitivity through the atmospheric column as well as at the surface through the use of multiangular, multispectral, and polarimetric observations. MAIA will provide new information that enables estimates of speciated (size- and particle type classifications) surface particulate matter (PM) from space over major cities around the globe, and enable improved associations between particulate air pollution and human health. As a pathfinder to MAIA, the ImPACT-PM field campaign was a joint JPL/Caltech effort to combine measurements from MISR and AirMSPI with in situ airborne measurements and a chemical transport model to validate remote sensing retrievals of different types of airborne particulate matter. We will present highlights of the successfully completed ImPACT-PM field campaign which took place in the California Central Valley on July 5-8, 2016. We had two NASA ER-2/ CIRPAS Twin Otter collocated flights coincident with Terra/MISR overpasses on Tuesday and Thursday July 5 and 7; and two ER-2/Twin Otter collocations over local fires on Friday, July 8th. The AirMSPI, AirSPEX, and CPL instruments were integrated on the ER-2, and Caltech aerosol/cloud in-situ instruments were integrated on the CIRPAS Twin Otter aircraft in addition to the normal Twin Otter payload. We also deployed the JPL/University of Arizona GroundMSPI instrument and a ground-based lidar from San José State University at the Fresno California Air Resources Board super-site. While the overall aerosol and PM levels were low at this time, we were able to see a gradient of pollution in specially processed MISR high-resolution 4.4 km resolution aerosol data on both days. We will present initial results of AirMSPI WRF-Chem-constrained retrievals in comparison with EPA Speciation Trends Network stations in Fresno and Bakersfield, and with available AMS/DMA/SP2 instrument data from the Twin Otter. The SP2 instrument measured very high levels of carbon over the fire near Gorman on July 8 that was collocated with the AirMSPI/SPEX data. This provides a case to validate AirMSPI retrievals of absorbing particles.
Intercomparison of Targeted Observation Guidance for Tropical Cyclones in the Northwestern Pacific
2009-08-01
sensitivity of NCVAR is usually located near the midlatitude jet or extratropical storm , where high winds may be collocated with large DLM wind variance or the...the six guidance products and to interpret the dynamical systems affecting the TC motion in the northwestern Pacific. Among the three storms studied...Atmospheric Administration (NOAA) Winter Storms Corresponding author address: Dr. Chun-Chieh Wu, Dept. of Atmospheric Sciences, National Taiwan University, No
Spectral methods for time dependent partial differential equations
NASA Technical Reports Server (NTRS)
Gottlieb, D.; Turkel, E.
1983-01-01
The theory of spectral methods for time dependent partial differential equations is reviewed. When the domain is periodic Fourier methods are presented while for nonperiodic problems both Chebyshev and Legendre methods are discussed. The theory is presented for both hyperbolic and parabolic systems using both Galerkin and collocation procedures. While most of the review considers problems with constant coefficients the extension to nonlinear problems is also discussed. Some results for problems with shocks are presented.
Information Management for Installation Restoration with Focus on Aberdeen Proving Ground, Maryland
1993-08-01
savings. Edgewood Area Project Background EA has been the site of extensive military munitions testing and disposal for over 70 years. Onsite burial of...titled "Installation Restoration Data Manage- ment Information System" (IRDMIS). This program, begun in 1975, has undergone several updates as technology ...collocated with AEC on EA, Maryland. Data from geotechnical chemical analysis and field survey results are supplied by AEC-authorized contractors and
Crowdsourced Contributions to the Nation's Geodetic Elevation Infrastructure
NASA Astrophysics Data System (ADS)
Stone, W. A.
2014-12-01
NOAA's National Geodetic Survey (NGS), a United States Department of Commerce agency, is engaged in providing the nation's fundamental positioning infrastructure - the National Spatial Reference System (NSRS) - which includes the framework for latitude, longitude, and elevation determination as well as various geodetic models, tools, and data. Capitalizing on Global Navigation Satellite System (GNSS) technology for improved access to the nation's precise geodetic elevation infrastructure requires use of a geoid model, which relates GNSS-derived heights (ellipsoid heights) with traditional elevations (orthometric heights). NGS is facilitating the use of crowdsourced GNSS observations collected at published elevation control stations by the professional surveying, geospatial, and scientific communities to help improve NGS' geoid modeling capability. This collocation of published elevation data and newly collected GNSS data integrates together the two height systems. This effort in turn supports enhanced access to accurate elevation information across the nation, thereby benefiting all users of geospatial data. By partnering with the public in this collaborative effort, NGS is not only helping facilitate improvements to the elevation infrastructure for all users but also empowering users of NSRS with the capability to do their own high-accuracy positioning. The educational outreach facet of this effort helps inform the public, including the scientific community, about the utility of various NGS tools, including the widely used Online Positioning User Service (OPUS). OPUS plays a key role in providing user-friendly and high accuracy access to NSRS, with optional sharing of results with NGS and the public. All who are interested in helping evolve and improve the nationwide elevation determination capability are invited to participate in this nationwide partnership and to learn more about the geodetic infrastructure which is a vital component of viable spatial data for many disciplines, including the geosciences.
Play-fairway analysis for geothermal exploration: Examples from the Great Basin, western USA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siler, Drew L; Faulds, James E
2013-10-27
Elevated permeability within fault systems provides pathways for circulation of geothermal fluids. Future geothermal development depends on precise and accurate location of such fluid flow pathways in order to both accurately assess geothermal resource potential and increase drilling success rates. The collocation of geologic characteristics that promote permeability in a given geothermal system define the geothermal ‘fairway’, the location(s) where upflow zones are probable and where exploration efforts including drilling should be focused. We define the geothermal fairway as the collocation of 1) fault zones that are ideally oriented for slip or dilation under ambient stress conditions, 2) areas withmore » a high spatial density of fault intersections, and 3) lithologies capable of supporting dense interconnected fracture networks. Areas in which these characteristics are concomitant with both elevated temperature and fluids are probable upflow zones where economic-scale, sustainable temperatures and flow rates are most likely to occur. Employing a variety of surface and subsurface data sets, we test this ‘play-fairway’ exploration methodology on two Great Basin geothermal systems, the actively producing Brady’s geothermal system and a ‘greenfield’ geothermal prospect at Astor Pass, NV. These analyses, based on 3D structural and stratigraphic framework models, reveal subsurface characteristics about each system, well beyond the scope of standard exploration methods. At Brady’s, the geothermal fairways we define correlate well with successful production wells and pinpoint several drilling targets for maintaining or expanding production in the field. In addition, hot-dry wells within the Brady’s geothermal field lie outside our defined geothermal fairways. At Astor Pass, our play-fairway analysis provides for a data-based conceptual model of fluid flow within the geothermal system and indicates several targets for exploration drilling.« less
System status display evaluation
NASA Technical Reports Server (NTRS)
Summers, Leland G.
1988-01-01
The System Status Display is an electronic display system which provides the crew with an enhanced capability for monitoring and managing the aircraft systems. A flight simulation in a fixed base cockpit simulator was used to evaluate alternative design concepts for this display system. The alternative concepts included pictorial versus alphanumeric text formats, multifunction versus dedicated controls, and integration of the procedures with the system status information versus paper checklists. Twelve pilots manually flew approach patterns with the different concepts. System malfunctions occurred which required the pilots to respond to the alert by reconfiguring the system. The pictorial display, the multifunction control interfaces collocated with the system display, and the procedures integrated with the status information all had shorter event processing times and lower subjective workloads.
1984-01-06
NO-1 ARCUASSII 004-3K-40F /G74N L 2874 Lj6l 1.0= = aM22 1.2 1.1 1. 1. MICROCOP ’ RP’-OLLI’ION liT[* CHART %".NA. H~.Nt I -’AN, All - ,- A t$ CUeavr...The cyclic voltammogram of the methoxy compound -has been simulated by the orthogonal collocation method. Products of bulk electrolysis have been...spectroelectrochemical means. The cyclic volta-mocra. of the methoxy compound has been simulated by the orthoccna. collocation method. Products of bulk
Fourier analysis of finite element preconditioned collocation schemes
NASA Technical Reports Server (NTRS)
Deville, Michel O.; Mund, Ernest H.
1990-01-01
The spectrum of the iteration operator of some finite element preconditioned Fourier collocation schemes is investigated. The first part of the paper analyses one-dimensional elliptic and hyperbolic model problems and the advection-diffusion equation. Analytical expressions of the eigenvalues are obtained with use of symbolic computation. The second part of the paper considers the set of one-dimensional differential equations resulting from Fourier analysis (in the tranverse direction) of the 2-D Stokes problem. All results agree with previous conclusions on the numerical efficiency of finite element preconditioning schemes.
NASA Astrophysics Data System (ADS)
Budisulistiorini, S. H.; Canagaratna, M. R.; Croteau, P. L.; Baumann, K.; Edgerton, E. S.; Kollman, M. S.; Ng, N. L.; Verma, V.; Shaw, S. L.; Knipping, E. M.; Worsnop, D. R.; Jayne, J. T.; Weber, R. J.; Surratt, J. D.
2013-12-01
The Aerodyne Aerosol Chemical Speciation Monitor (ACSM) was recently developed to provide long-term real-time continuous measurements of ambient non-refractory (i.e., organic, sulfate, ammonium, nitrate, and chloride) submicron particulate matter (NR-PM1). Currently, there are a limited number of field studies that evaluate the long-term performance of the ACSM against established monitoring networks. In this study, we present seasonal intercomparisons of the ACSM with collocated fine aerosol (PM2.5) measurements at the Southeastern Aerosol Research and Characterization (SEARCH) Jefferson Street (JST) site near downtown Atlanta, GA, during 2011-2012. The collocated measurements included a second ACSM, continuous and integrated sulfate, nitrate, and ammonium measurements, as well as a semi-continuous Sunset organic carbon/elemental carbon (OC/EC) analyzer, continuous tapered element oscillating microbalance (TEOM), 24 h integrated Federal Reference Method (FRM) filters, and continuous scanning electrical mobility system-mixing condensation particle counter (SEMS-MCPC). Intercomparison of the two collocated ACSMs resulted in strong correlations (r2 > 0.8) for all chemical species, except chloride (r2 = 0.21); mass concentration for all chemical species agreed within ±27%, indicating that ACSM instruments are capable of stable and reproducible operation. Chemical constituents measured by the ACSM are also compared with those obtained from the continuous measurements from JST. Since the continuous measurement concentrations are adjusted to match the integrated filter measurements, these comparisons reflect the combined uncertainties of the ACSM, continuous, and filter measurements. In general, speciated ACSM mass concentrations correlate well (r2 > 0.7) with the continuous measurements from JST, although the correlation for nitrate is weaker (r2 = 0.55) in summer. Differences between ACSM mass concentrations and the filter-adjusted JST continuous data are 5-27%, 4-25%, and 34-51% for sulfate, ammonium, and nitrate, respectively. These comparisons are all close to the stated ±30% accuracy of the ACSM except for nitrate. These discrepancies could be due to positive biases in the ACSM nitrate concentrations from interferences at the NO+ (m/z 30) fragment ion and/or negative artifacts in the nitrate filter measurement (from volatilization of NH4NO3) are also possible. The organic matter OM/OC ratios derived from linear regression of ACSM OM vs. Sunset OC/EC analyzer are 4.18 ± 0.04 and 3.59 ± 0.02 for summer and fall, respectively. Linear correlations of the ACSM NR-PM1 plus EC with TEOM PM2.5 mass are strong (r2 > 0.7) with percentage difference of 19% and 80% during summer and fall, respectively. On the other hand, the ACSM NR-PM1 correlation with FRM PM1 is high (r2 > 0.8) with percentage difference of ±47% over three seasons. Correlation of ACSM NR-PM1 plus EC mass with SEMS-MCPC PM1 volume concentration results in an estimation of aerosol density of 1.61 g cm-3 for fall 2012 period. ACSM organic concentrations measured during this study were obtained using relative ionization efficiency (RIE) values observed in Aerodyne Aerosol Mass Spectrometer (AMS). Explicit calibration of the ACSM relative ionizations for ammonium, nitrate, and sulfate, during this study was shown to improve the comparisons between ACSM and collocated measurements for these species. The accuracy of the organic and total mass concentrations would likely also be improved if organic relative ionization efficiency values for the ACSM were available during this study. Laboratory calibrations of ACSM relative ionization efficiencies using organic particles of known composition are recommended for future studies.
Numerical solution of boundary-integral equations for molecular electrostatics.
Bardhan, Jaydeep P
2009-03-07
Numerous molecular processes, such as ion permeation through channel proteins, are governed by relatively small changes in energetics. As a result, theoretical investigations of these processes require accurate numerical methods. In the present paper, we evaluate the accuracy of two approaches to simulating boundary-integral equations for continuum models of the electrostatics of solvation. The analysis emphasizes boundary-element method simulations of the integral-equation formulation known as the apparent-surface-charge (ASC) method or polarizable-continuum model (PCM). In many numerical implementations of the ASC/PCM model, one forces the integral equation to be satisfied exactly at a set of discrete points on the boundary. We demonstrate in this paper that this approach to discretization, known as point collocation, is significantly less accurate than an alternative approach known as qualocation. Furthermore, the qualocation method offers this improvement in accuracy without increasing simulation time. Numerical examples demonstrate that electrostatic part of the solvation free energy, when calculated using the collocation and qualocation methods, can differ significantly; for a polypeptide, the answers can differ by as much as 10 kcal/mol (approximately 4% of the total electrostatic contribution to solvation). The applicability of the qualocation discretization to other integral-equation formulations is also discussed, and two equivalences between integral-equation methods are derived.
Active control of flexible structures using a fuzzy logic algorithm
NASA Astrophysics Data System (ADS)
Cohen, Kelly; Weller, Tanchum; Ben-Asher, Joseph Z.
2002-08-01
This study deals with the development and application of an active control law for the vibration suppression of beam-like flexible structures experiencing transient disturbances. Collocated pairs of sensors/actuators provide active control of the structure. A design methodology for the closed-loop control algorithm based on fuzzy logic is proposed. First, the behavior of the open-loop system is observed. Then, the number and locations of collocated actuator/sensor pairs are selected. The proposed control law, which is based on the principles of passivity, commands the actuator to emulate the behavior of a dynamic vibration absorber. The absorber is tuned to a targeted frequency, whereas the damping coefficient of the dashpot is varied in a closed loop using a fuzzy logic based algorithm. This approach not only ensures inherent stability associated with passive absorbers, but also circumvents the phenomenon of modal spillover. The developed controller is applied to the AFWAL/FIB 10 bar truss. Simulated results using MATLAB© show that the closed-loop system exhibits fairly quick settling times and desirable performance, as well as robustness characteristics. To demonstrate the robustness of the control system to changes in the temporal dynamics of the flexible structure, the transient response to a considerably perturbed plant is simulated. The modal frequencies of the 10 bar truss were raised as well as lowered substantially, thereby significantly perturbing the natural frequencies of vibration. For these cases, too, the developed control law provides adequate settling times and rates of vibrational energy dissipation.
The 2008 IDA Cost Research Workshop: Contractor Data Reporting Systems
2008-07-01
Consulting Services, Ltd. Mr. Michael Carey, NCCA, (703) 692-4901 Mr. Craig Clark, HVR CSL, 011 44 1420 87977 Ms Mary M. Mertz, NSWC-CD, (301) 227-4012...Services, Ltd Mr. Michael Carey, NCCA, (703) 692-4901 Mr. Craig Clark, HVR CSL, 011 44 1420 87977 Ms Mary M. Mertz, NSWC-CD, (301) 227-4012... Deegan , (202) 781-0959 Size: Professional: 57 Support: 2 Consultants: 0 Subcontractors: 9 collocated or 30 total Focus: O&S Cost Estimating
NASA Astrophysics Data System (ADS)
Sohn, D.; Park, K.
2012-12-01
The increased amount of saturated water vapor due to the Earth's temperature rise frequently causes abnormal meteorological phenomena such as local severe rainfall in Korea. The National Institute of Meteorological Research of Korea Meteorological Administration (KMA) conducted observation experiments using a variety of water-vapor measuring equipments to improve the accuracy of weather forecasts and accurately measure the precipitable water vapor in the atmosphere. Equipments used were GNSS, water vapor radiometers (WVR), radiosonde, and LiDAR. For GNSS measurements we used two receivers that can collect not only GPS but also GLONASS signals: Trimble NetR5 and Septentrio PolaRx4. The two WVR makers are Raidometrics and RPG. For radiosonde observations, KMA launched Vaisala GPSondes every 6 hours during the experiment period. The LiDAR system was made locally by Hanbat University in Daejeon. Thus, we could obtain collocation experiment results from 6 different kinds of water vapor measurement and analyze the characteristics of each device.
Derivation of Sky-View Factors from LIDAR Data
NASA Technical Reports Server (NTRS)
Kidd, Christopher; Chapman, Lee
2013-01-01
The use of Lidar (Light Detection and Ranging), an active light-emitting instrument, is becoming increasingly common for a range of potential applications. Its ability to provide fine resolution spatial and vertical resolution elevation data makes it ideal for a wide range of studies. This paper demonstrates the capability of Lidar data to measure sky view factors (SVF). The Lidar data is used to generate a spatial map of SVFs which are then compared against photographically-derived SVF at selected point locations. At each location three near-surface elevations measurements were taken and compared with collocated Lidar-derived estimated. It was found that there was generally good agreement between the two methodologies, although with decreasing SVF the Lidar-derived technique tended to overestimate the SVF: this can be attributed in part to the spatial resolution of the Lidar sampling. Nevertheless, airborne Lidar systems can map sky view factors over a large area easily, improving the utility of such data in atmospheric and meteorological models.
NASA Astrophysics Data System (ADS)
Werner, F.; Ditas, F.; Siebert, H.; Simmel, M.; Wehner, B.; Pilewskie, P.; Schmeissner, T.; Shaw, R. A.; Hartmann, S.; Wex, H.; Roberts, G. C.; Wendisch, M.
2014-02-01
Clear experimental evidence of the Twomey effect for shallow trade wind cumuli near Barbados is presented. Effective droplet radius (reff) and cloud optical thickness (τ), retrieved from helicopter-borne spectral cloud-reflected radiance measurements, and spectral cloud reflectivity (γλ) are correlated with collocated in situ observations of the number concentration of aerosol particles from the subcloud layer (N). N denotes the concentration of particles larger than 80 nm in diameter and represents particles in the activation mode. In situ cloud microphysical and aerosol parameters were sampled by the Airborne Cloud Turbulence Observation System (ACTOS). Spectral cloud-reflected radiance data were collected by the Spectral Modular Airborne Radiation measurement sysTem (SMART-HELIOS). With increasing N a shift in the probability density functions of τ and γλ toward larger values is observed, while the mean values and observed ranges of retrieved reff decrease. The relative susceptibilities (RS) of reff, τ, and γλ to N are derived for bins of constant liquid water path. The resulting values of RS are in the range of 0.35 for reff and τ, and 0.27 for γλ. These results are close to the maximum susceptibility possible from theory. Overall, the shallow cumuli sampled near Barbados show characteristics of homogeneous, plane-parallel clouds. Comparisons of RS derived from in situ measured reff and from a microphysical parcel model are in close agreement.
NASA Astrophysics Data System (ADS)
Doha, E. H.; Bhrawy, A. H.; Abdelkawy, M. A.; Van Gorder, Robert A.
2014-03-01
A Jacobi-Gauss-Lobatto collocation (J-GL-C) method, used in combination with the implicit Runge-Kutta method of fourth order, is proposed as a numerical algorithm for the approximation of solutions to nonlinear Schrödinger equations (NLSE) with initial-boundary data in 1+1 dimensions. Our procedure is implemented in two successive steps. In the first one, the J-GL-C is employed for approximating the functional dependence on the spatial variable, using (N-1) nodes of the Jacobi-Gauss-Lobatto interpolation which depends upon two general Jacobi parameters. The resulting equations together with the two-point boundary conditions induce a system of 2(N-1) first-order ordinary differential equations (ODEs) in time. In the second step, the implicit Runge-Kutta method of fourth order is applied to solve this temporal system. The proposed J-GL-C method, used in combination with the implicit Runge-Kutta method of fourth order, is employed to obtain highly accurate numerical approximations to four types of NLSE, including the attractive and repulsive NLSE and a Gross-Pitaevskii equation with space-periodic potential. The numerical results obtained by this algorithm have been compared with various exact solutions in order to demonstrate the accuracy and efficiency of the proposed method. Indeed, for relatively few nodes used, the absolute error in our numerical solutions is sufficiently small.
Wetherbee, G.A.; Gay, D.A.; Brunette, R.C.; Sweet, C.W.
2007-01-01
The National Atmospheric Deposition Program/Mercury Deposition Network (MDN) provides long-term, quality-assured records of mercury in wet deposition in the USA and Canada. Interpretation of spatial and temporal trends in the MDN data requires quantification of the variability of the MDN measurements. Variability is quantified for MDN data from collocated samplers at MDN sites in two states, one in Illinois and one in Washington. Median absolute differences in the collocated sampler data for total mercury concentration are approximately 11% of the median mercury concentration for all valid 1999-2004 MDN data. Median absolute differences are between 3.0% and 14% of the median MDN value for collector catch (sample volume) and between 6.0% and 15% of the median MDN value for mercury wet deposition. The overall measurement errors are sufficiently low to resolve between NADP/MDN measurements by ??2 ng??l-1 and ??2 ????m-2?? year-1, which are the contour intervals used to display the data on NADP isopleths maps for concentration and deposition, respectively. ?? Springer Science+Business Media B.V. 2007.
NASA Technical Reports Server (NTRS)
Carpenter, Mark H.; Parsani, Matteo; Fisher, Travis C.; Nielsen, Eric J.
2015-01-01
Staggered grid, entropy stable discontinuous spectral collocation operators of any order are developed for Burgers' and the compressible Navier-Stokes equations on unstructured hexahedral elements. This generalization of previous entropy stable spectral collocation work [1, 2], extends the applicable set of points from tensor product, Legendre-Gauss-Lobatto (LGL) to a combination of tensor product Legendre-Gauss (LG) and LGL points. The new semi-discrete operators discretely conserve mass, momentum, energy and satisfy a mathematical entropy inequality for both Burgers' and the compressible Navier-Stokes equations in three spatial dimensions. They are valid for smooth as well as discontinuous flows. The staggered LG and conventional LGL point formulations are compared on several challenging test problems. The staggered LG operators are significantly more accurate, although more costly to implement. The LG and LGL operators exhibit similar robustness, as is demonstrated using test problems known to be problematic for operators that lack a nonlinearly stability proof for the compressible Navier-Stokes equations (e.g., discontinuous Galerkin, spectral difference, or flux reconstruction operators).
Experience and results of the 1991 MTLRS-1 USSR campaign
NASA Technical Reports Server (NTRS)
Sperber, Peter; Hauck, H.
1993-01-01
The year 1991 was a special year for the mobile laser ranging systems. Due to the scheduled upgrades of the Modular Transportable Laser Ranging Systems, MTLRS#1 and MTLRS#2, neither a WEGENER MEDLAS nor a Crustal Dynamics Project campaign was carried out in 1991. After the successful upgrade of MTLRS#1 in the first half of 1991 the system departed from Wettzell in August to make measurements at two sites in the USSR. In Riga/Latvia, we operated close to the fixed SLR system. In Simeiz/Ucrainea, the place for MTLRS#1 pad was choosen to collocate the two fixed SLR stations in Simeiz (300 m distance to MTLRS#1) and Kazivelli (about 3 km distance).
Optimal control of Formula One car energy recovery systems
NASA Astrophysics Data System (ADS)
Limebeer, D. J. N.; Perantoni, G.; Rao, A. V.
2014-10-01
The utility of orthogonal collocation methods in the solution of optimal control problems relating to Formula One racing is demonstrated. These methods can be used to optimise driver controls such as the steering, braking and throttle usage, and to optimise vehicle parameters such as the aerodynamic down force and mass distributions. Of particular interest is the optimal usage of energy recovery systems (ERSs). Contemporary kinetic energy recovery systems are studied and compared with future hybrid kinetic and thermal/heat ERSs known as ERS-K and ERS-H, respectively. It is demonstrated that these systems, when properly controlled, can produce contemporary lap time using approximately two-thirds of the fuel required by earlier generation (2013 and prior) vehicles.
Fisher, J Brian; Porter, Susan M
2002-01-01
This paper describes an application of a display approach which uses chromakey techniques to composite real and computer-generated images allowing a user to see his hands and medical instruments collocated with the display of virtual objects during a medical training simulation. Haptic feedback is provided through the use of a PHANTOM force feedback device in addition to tactile augmentation, which allows the user to touch virtual objects by introducing corresponding real objects in the workspace. A simplified catheter introducer insertion simulation was developed to demonstrate the capabilities of this approach.
A Fourier collocation time domain method for numerically solving Maxwell's equations
NASA Technical Reports Server (NTRS)
Shebalin, John V.
1991-01-01
A new method for solving Maxwell's equations in the time domain for arbitrary values of permittivity, conductivity, and permeability is presented. Spatial derivatives are found by a Fourier transform method and time integration is performed using a second order, semi-implicit procedure. Electric and magnetic fields are collocated on the same grid points, rather than on interleaved points, as in the Finite Difference Time Domain (FDTD) method. Numerical results are presented for the propagation of a 2-D Transverse Electromagnetic (TEM) mode out of a parallel plate waveguide and into a dielectric and conducting medium.
Benchmarking the Collocation Stand-Alone Library and Toolkit (CSALT)
NASA Technical Reports Server (NTRS)
Hughes, Steven; Knittel, Jeremy; Shoan, Wendy; Kim, Youngkwang; Conway, Claire; Conway, Darrel J.
2017-01-01
This paper describes the processes and results of Verification and Validation (VV) efforts for the Collocation Stand Alone Library and Toolkit (CSALT). We describe the test program and environments, the tools used for independent test data, and comparison results. The VV effort employs classical problems with known analytic solutions, solutions from other available software tools, and comparisons to benchmarking data available in the public literature. Presenting all test results are beyond the scope of a single paper. Here we present high-level test results for a broad range of problems, and detailed comparisons for selected problems.
Revisiting and Extending Interface Penalties for Multi-Domain Summation-by-Parts Operators
NASA Technical Reports Server (NTRS)
Carpenter, Mark H.; Nordstrom, Jan; Gottlieb, David
2007-01-01
General interface coupling conditions are presented for multi-domain collocation methods, which satisfy the summation-by-parts (SBP) spatial discretization convention. The combined interior/interface operators are proven to be L2 stable, pointwise stable, and conservative, while maintaining the underlying accuracy of the interior SBP operator. The new interface conditions resemble (and were motivated by) those used in the discontinuous Galerkin finite element community, and maintain many of the same properties. Extensive validation studies are presented using two classes of high-order SBP operators: 1) central finite difference, and 2) Legendre spectral collocation.
Reduced basis ANOVA methods for partial differential equations with high-dimensional random inputs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, Qifeng, E-mail: liaoqf@shanghaitech.edu.cn; Lin, Guang, E-mail: guanglin@purdue.edu
2016-07-15
In this paper we present a reduced basis ANOVA approach for partial deferential equations (PDEs) with random inputs. The ANOVA method combined with stochastic collocation methods provides model reduction in high-dimensional parameter space through decomposing high-dimensional inputs into unions of low-dimensional inputs. In this work, to further reduce the computational cost, we investigate spatial low-rank structures in the ANOVA-collocation method, and develop efficient spatial model reduction techniques using hierarchically generated reduced bases. We present a general mathematical framework of the methodology, validate its accuracy and demonstrate its efficiency with numerical experiments.
Benchmarking the Collocation Stand-Alone Library and Toolkit (CSALT)
NASA Technical Reports Server (NTRS)
Hughes, Steven; Knittel, Jeremy; Shoan, Wendy (Compiler); Kim, Youngkwang; Conway, Claire (Compiler); Conway, Darrel
2017-01-01
This paper describes the processes and results of Verification and Validation (V&V) efforts for the Collocation Stand Alone Library and Toolkit (CSALT). We describe the test program and environments, the tools used for independent test data, and comparison results. The V&V effort employs classical problems with known analytic solutions, solutions from other available software tools, and comparisons to benchmarking data available in the public literature. Presenting all test results are beyond the scope of a single paper. Here we present high-level test results for a broad range of problems, and detailed comparisons for selected problems.
NASA Astrophysics Data System (ADS)
Ardanuy, Philip; Bergen, Bill; Huang, Allen; Kratz, Gene; Puschell, Jeff; Schueler, Carl; Walker, Joe
2006-08-01
The US operates a diverse, evolving constellation of research and operational environmental satellites, principally in polar and geosynchronous orbits. Our current and enhanced future domestic remote sensing capability is complemented by the significant capabilities of our current and potential future international partners. In this analysis, we define "success" through the data customers' "eyes": participating in the sufficient and continuously improving satisfaction of their mission responsibilities. To successfully fuse together observations from multiple simultaneous platforms and sensors into a common, self-consistent, operational environment requires that there exist a unified calibration and validation approach. Here, we consider develop a concept for an integrating framework for absolute accuracy; long-term stability; self-consistency among sensors, platforms, techniques, and observing systems; and validation and characterization of performance. Across all systems, this is a non-trivial problem. Simultaneous Nadir Overpasses, or SNO's, provide a proven intercomparison technique: simultaneous, collocated, co-angular measurements. Many systems have off-nadir elements, or effects, that must be calibrated. For these systems, the nadir technique constrains the process. We define the term "SOON," for simultaneous overpass off nadir. We present a target architecture and sensitivity analysis for the affordable, sustainable implementation of a global SOON calibration/validation network that can deliver the much-needed comprehensive, common, self-consistent operational picture in near-real time, at an affordable cost.
Control of strong light-matter coupling using the capacitance of metamaterial nanocavities
Benz, Alexander; Campione, Salvatore; Klem, John Frederick; ...
2015-01-27
Metallic nanocavities with deep subwavelength mode volumes can lead to dramatic changes in the behavior of emitters placed in their vicinity. The resulting collocation and interaction often leads to strong coupling. We present for the first time experimental evidence that the Rabi splitting is directly proportional to the electrostatic capacitance associated with the metallic nanocavity. As a result, the system analyzed consists of different metamaterial geometries with the same resonance wavelength coupled to intersubband transitions in quantum wells.
2011-10-14
Chi]. These as- sumptions are usually not valid in coastal waters. This can create significant errors in BRDF estima- tions in coastal zones [38,39...collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION. 1. REPORT...platform (LISCO) near Northport, New York, has been recently established to support validation of ocean color radiometry (OCR) satellite data. LISCO
On a cost functional for H2/H(infinity) minimization
NASA Technical Reports Server (NTRS)
Macmartin, Douglas G.; Hall, Steven R.; Mustafa, Denis
1990-01-01
A cost functional is proposed and investigated which is motivated by minimizing the energy in a structure using only collocated feedback. Defined for an H(infinity)-norm bounded system, this cost functional also overbounds the H2 cost. Some properties of this cost functional are given, and preliminary results on the procedure for minimizing it are presented. The frequency domain cost functional is shown to have a time domain representation in terms of a Stackelberg non-zero sum differential game.
NASA Astrophysics Data System (ADS)
Lopes, Fábio J. S.; Luis Guerrero-Rascado, Juan; Benavent-Oltra, Jose A.; Román, Roberto; Moreira, Gregori A.; Marques, Marcia T. A.; da Silva, Jonatan J.; Alados-Arboledas, Lucas; Artaxo, Paulo; Landulfo, Eduardo
2018-04-01
During the period of August-September 2016 an intensive campaign was carried out to assess aerosol properties in São Paulo-Brazil aiming to detect long-range aerosol transport events and to characterize the instrument regarding data quality. Aerosol optical properties retrieved by the GALION - LALINET SPU lidar station and collocated AERONET sunphotometer system are presented as extinction/ backscatter vertical profiles with microphysical products retrieved with GRASP inversion algorithm.
The Space-Wise Global Gravity Model from GOCE Nominal Mission Data
NASA Astrophysics Data System (ADS)
Gatti, A.; Migliaccio, F.; Reguzzoni, M.; Sampietro, D.; Sanso, F.
2011-12-01
In the framework of the GOCE data analysis, the space-wise approach implements a multi-step collocation solution for the estimation of a global geopotential model in terms of spherical harmonic coefficients and their error covariance matrix. The main idea is to use the collocation technique to exploit the spatial correlation of the gravity field in the GOCE data reduction. In particular the method consists of an along-track Wiener filter, a collocation gridding at satellite altitude and a spherical harmonic analysis by integration. All these steps are iterated, also to account for the rotation between local orbital and gradiometer reference frame. Error covariances are computed by Montecarlo simulations. The first release of the space-wise approach was presented at the ESA Living Planet Symposium in July 2010. This model was based on only two months of GOCE data and partially contained a priori information coming from other existing gravity models, especially at low degrees and low orders. A second release was distributed after the 4th International GOCE User Workshop in May 2011. In this solution, based on eight months of GOCE data, all the dependencies from external gravity information were removed thus giving rise to a GOCE-only space-wise model. However this model showed an over-regularization at the highest degrees of the spherical harmonic expansion due to the combination technique of intermediate solutions (based on about two months of data). In this work a new space-wise solution is presented. It is based on all nominal mission data from November 2009 to mid April 2011, and its main novelty is that the intermediate solutions are now computed in such a way to avoid over-regularization in the final solution. Beyond the spherical harmonic coefficients of the global model and their error covariance matrix, the space-wise approach is able to deliver as by-products a set of spherical grids of potential and of its second derivatives at mean satellite altitude. These grids have an information content that is very similar to the original along-orbit data, but they are much easier to handle. In addition they are estimated by local least-squares collocation and therefore, although computed by a unique global covariance function, they could yield more information at local level than the spherical harmonic coefficients of the global model. For this reason these grids seem to be useful for local geophysical investigations. The estimated grids with their estimated errors are presented in this work together with proposals on possible future improvements. A test to compare the different information contents of the along-orbit data, the gridded data and the spherical harmonic coefficients is also shown.
Lin, Yi-Chung; Pandy, Marcus G
2017-07-05
The aim of this study was to perform full-body three-dimensional (3D) dynamic optimization simulations of human locomotion by driving a neuromusculoskeletal model toward in vivo measurements of body-segmental kinematics and ground reaction forces. Gait data were recorded from 5 healthy participants who walked at their preferred speeds and ran at 2m/s. Participant-specific data-tracking dynamic optimization solutions were generated for one stride cycle using direct collocation in tandem with an OpenSim-MATLAB interface. The body was represented as a 12-segment, 21-degree-of-freedom skeleton actuated by 66 muscle-tendon units. Foot-ground interaction was simulated using six contact spheres under each foot. The dynamic optimization problem was to find the set of muscle excitations needed to reproduce 3D measurements of body-segmental motions and ground reaction forces while minimizing the time integral of muscle activations squared. Direct collocation took on average 2.7±1.0h and 2.2±1.6h of CPU time, respectively, to solve the optimization problems for walking and running. Model-computed kinematics and foot-ground forces were in good agreement with corresponding experimental data while the calculated muscle excitation patterns were consistent with measured EMG activity. The results demonstrate the feasibility of implementing direct collocation on a detailed neuromusculoskeletal model with foot-ground contact to accurately and efficiently generate 3D data-tracking dynamic optimization simulations of human locomotion. The proposed method offers a viable tool for creating feasible initial guesses needed to perform predictive simulations of movement using dynamic optimization theory. The source code for implementing the model and computational algorithm may be downloaded at http://simtk.org/home/datatracking. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Comprehensive Study of Gridding Methods for GPS Horizontal Velocity Fields
NASA Astrophysics Data System (ADS)
Wu, Yanqiang; Jiang, Zaisen; Liu, Xiaoxia; Wei, Wenxin; Zhu, Shuang; Zhang, Long; Zou, Zhenyu; Xiong, Xiaohui; Wang, Qixin; Du, Jiliang
2017-03-01
Four gridding methods for GPS velocities are compared in terms of their precision, applicability and robustness by analyzing simulated data with uncertainties from 0.0 to ±3.0 mm/a. When the input data are 1° × 1° grid sampled and the uncertainty of the additional error is greater than ±1.0 mm/a, the gridding results show that the least-squares collocation method is highly robust while the robustness of the Kriging method is low. In contrast, the spherical harmonics and the multi-surface function are moderately robust, and the regional singular values for the multi-surface function method and the edge effects for the spherical harmonics method become more significant with increasing uncertainty of the input data. When the input data (with additional errors of ±2.0 mm/a) are decimated by 50% from the 1° × 1° grid data and then erased in three 6° × 12° regions, the gridding results in these three regions indicate that the least-squares collocation and the spherical harmonics methods have good performances, while the multi-surface function and the Kriging methods may lead to singular values. The gridding techniques are also applied to GPS horizontal velocities with an average error of ±0.8 mm/a over the Chinese mainland and the surrounding areas, and the results show that the least-squares collocation method has the best performance, followed by the Kriging and multi-surface function methods. Furthermore, the edge effects of the spherical harmonics method are significantly affected by the sparseness and geometric distribution of the input data. In general, the least-squares collocation method is superior in terms of its robustness, edge effect, error distribution and stability, while the other methods have several positive features.
Coevolution of a multilayer node-aligned network whose layers represent different social relations.
Bahulkar, Ashwin; Szymanski, Boleslaw K; Chan, Kevin; Lizardo, Omar
2017-01-01
We examine the coevolution of three-layer node-aligned network of university students. The first layer is defined by nominations based on perceived prominence collected from repeated surveys during the first four semesters; the second is a behavioral layer representing actual students' interactions based on records of mobile calls and text messages; while the third is a behavioral layer representing potential face-to-face interactions suggested by bluetooth collocations. We address four interrelated questions. First, we ask whether the formation or dissolution of a link in one of the layers precedes or succeeds the formation or dissolution of the corresponding link in another layer (temporal dependencies). Second, we explore the causes of observed temporal dependencies between the layers. For those temporal dependencies that are confirmed, we measure the predictive capability of such dependencies. Third, we observe the progress towards nominations and the stages that lead to them. Finally, we examine whether the differences in dissolution rates of symmetric (undirected) versus asymmetric (directed) links co-exist in all layers. We find strong patterns of reciprocal temporal dependencies between the layers. In particular, the creation of an edge in either behavioral layer generally precedes the formation of a corresponding edge in the nomination layer. Conversely, the decay of a link in the nomination layer generally precedes a decline in the intensity of communication and collocation. Finally, nodes connected by asymmetric nomination edges have lower overall communication and collocation volumes and more asymmetric communication flows than the nodes linked by symmetric edges. We find that creation and dissolution of cognitively salient contacts have temporal dependencies with communication and collocation behavior.
TEMIS UV product validation using NILU-UV ground-based measurements in Thessaloniki, Greece
NASA Astrophysics Data System (ADS)
Zempila, Melina-Maria; van Geffen, Jos H. G. M.; Taylor, Michael; Fountoulakis, Ilias; Koukouli, Maria-Elissavet; van Weele, Michiel; van der A, Ronald J.; Bais, Alkiviadis; Meleti, Charikleia; Balis, Dimitrios
2017-06-01
This study aims to cross-validate ground-based and satellite-based models of three photobiological UV effective dose products: the Commission Internationale de l'Éclairage (CIE) erythemal UV, the production of vitamin D in the skin, and DNA damage, using high-temporal-resolution surface-based measurements of solar UV spectral irradiances from a synergy of instruments and models. The satellite-based Tropospheric Emission Monitoring Internet Service (TEMIS; version 1.4) UV daily dose data products were evaluated over the period 2009 to 2014 with ground-based data from a Norsk Institutt for Luftforskning (NILU)-UV multifilter radiometer located at the northern midlatitude super-site of the Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki (LAP/AUTh), in Greece. For the NILU-UV effective dose rates retrieval algorithm, a neural network (NN) was trained to learn the nonlinear functional relation between NILU-UV irradiances and collocated Brewer-based photobiological effective dose products. Then the algorithm was subjected to sensitivity analysis and validation. The correlation of the NN estimates with target outputs was high (r = 0. 988 to 0.990) and with a very low bias (0.000 to 0.011 in absolute units) proving the robustness of the NN algorithm. For further evaluation of the NILU NN-derived products, retrievals of the vitamin D and DNA-damage effective doses from a collocated Yankee Environmental Systems (YES) UVB-1 pyranometer were used. For cloud-free days, differences in the derived UV doses are better than 2 % for all UV dose products, revealing the reference quality of the ground-based UV doses at Thessaloniki from the NILU-UV NN retrievals. The TEMIS UV doses used in this study are derived from ozone measurements by the SCIAMACHY/Envisat and GOME2/MetOp-A satellite instruments, over the European domain in combination with SEVIRI/Meteosat-based diurnal cycle of the cloud cover fraction per 0. 5° × 0. 5° (lat × long) grid cells. TEMIS UV doses were found to be ˜ 12.5 % higher than the NILU NN estimates but, despite the presence of a visually apparent seasonal pattern, the R2 values were found to be robustly high and equal to 0.92-0.93 for 1588 all-sky coincidences. These results significantly improve when limiting the dataset to cloud-free days with differences of 0.57 % for the erythemal doses, 1.22 % for the vitamin D doses, and 1.18 % for the DNA-damage doses, with standard deviations of the order of 11-13 %. The improvement of the comparative statistics under cloud-free cases further testifies to the importance of the appropriate consideration of the contribution of clouds in the UV radiation reaching the Earth's surface. For the urban area of Thessaloniki, with highly variable aerosol, the weakness of the implicit aerosol information introduced to the TEMIS UV dose algorithm was revealed by comparison of the datasets to aerosol optical depths at 340 nm as reported by a collocated CIMEL sun photometer, operating in Thessaloniki at LAP/AUTh as part of the NASA Aerosol Robotic Network.
NASA Astrophysics Data System (ADS)
Dehghan, Mehdi; Mohammadi, Vahid
2017-03-01
As is said in [27], the tumor-growth model is the incorporation of nutrient within the mixture as opposed to being modeled with an auxiliary reaction-diffusion equation. The formulation involves systems of highly nonlinear partial differential equations of surface effects through diffuse-interface models [27]. Simulations of this practical model using numerical methods can be applied for evaluating it. The present paper investigates the solution of the tumor growth model with meshless techniques. Meshless methods are applied based on the collocation technique which employ multiquadrics (MQ) radial basis function (RBFs) and generalized moving least squares (GMLS) procedures. The main advantages of these choices come back to the natural behavior of meshless approaches. As well as, a method based on meshless approach can be applied easily for finding the solution of partial differential equations in high-dimension using any distributions of points on regular and irregular domains. The present paper involves a time-dependent system of partial differential equations that describes four-species tumor growth model. To overcome the time variable, two procedures will be used. One of them is a semi-implicit finite difference method based on Crank-Nicolson scheme and another one is based on explicit Runge-Kutta time integration. The first case gives a linear system of algebraic equations which will be solved at each time-step. The second case will be efficient but conditionally stable. The obtained numerical results are reported to confirm the ability of these techniques for solving the two and three-dimensional tumor-growth equations.
Precipitation Estimation from the ARM Distributed Radar Network during the MC3E Campaign
Giangrande, Scott E.; Collis, Scott; Theisen, Adam K.; ...
2014-09-12
This study presents radar-based precipitation estimates collected during the two-month DOE ARM - NASA Midlatitude Continental Convective Clouds Experiment (MC3E). Emphasis is on the usefulness of radar observations from the C-band and X-band scanning ARM precipitation radars (CSAPR, XSAPR) for rainfall estimation products to distances within 100 km of the Oklahoma SGP facility. A dense collection of collocated ARM, NASA GPM and nearby surface Oklahoma Mesonet gauge records are consulted to evaluate potential ARM radar-based hourly rainfall products and campaign optimized methods over individual gauge and areal characterizations. Rainfall products are evaluated against the performance of the regional operational NWSmore » NEXRAD S-band radar polarimetric product. Results indicate that the ARM C-band system may achieve similar point and areal-gauge bias and root mean square (rms) error performance to the NEXRAD standard for the variety of MC3E deep convective events sampled when capitalizing on differential phase measurements. The best campaign rainfall performance was achieved when applying radar relations capitalizing on estimates of the specific attenuation from the CSAPR system. The ARM X-band systems only demonstrate solid capabilities as compared to NEXRAD standards for hourly point and areal rainfall accumulations under 10 mm. Here, all methods exhibit a factor of 1.5 to 2.5 reduction in rms errors for areal accumulations over a 15 km2 NASA dense network housing 16 sites having collocated bucket gauges, with the higher error reductions best associated with polarimetric methods.« less
Precipitation Estimation from the ARM Distributed Radar Network during the MC3E Campaign
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giangrande, Scott E.; Collis, Scott; Theisen, Adam K.
This study presents radar-based precipitation estimates collected during the two-month DOE ARM - NASA Midlatitude Continental Convective Clouds Experiment (MC3E). Emphasis is on the usefulness of radar observations from the C-band and X-band scanning ARM precipitation radars (CSAPR, XSAPR) for rainfall estimation products to distances within 100 km of the Oklahoma SGP facility. A dense collection of collocated ARM, NASA GPM and nearby surface Oklahoma Mesonet gauge records are consulted to evaluate potential ARM radar-based hourly rainfall products and campaign optimized methods over individual gauge and areal characterizations. Rainfall products are evaluated against the performance of the regional operational NWSmore » NEXRAD S-band radar polarimetric product. Results indicate that the ARM C-band system may achieve similar point and areal-gauge bias and root mean square (rms) error performance to the NEXRAD standard for the variety of MC3E deep convective events sampled when capitalizing on differential phase measurements. The best campaign rainfall performance was achieved when applying radar relations capitalizing on estimates of the specific attenuation from the CSAPR system. The ARM X-band systems only demonstrate solid capabilities as compared to NEXRAD standards for hourly point and areal rainfall accumulations under 10 mm. Here, all methods exhibit a factor of 1.5 to 2.5 reduction in rms errors for areal accumulations over a 15 km2 NASA dense network housing 16 sites having collocated bucket gauges, with the higher error reductions best associated with polarimetric methods.« less
NASA Astrophysics Data System (ADS)
Wu, Mousong; Sholze, Marko
2017-04-01
We investigated the importance of soil moisture data on assimilation of a terrestrial biosphere model (BETHY) for a long time period from 2010 to 2015. Totally, 101 parameters related to carbon turnover, soil respiration, as well as soil texture were selected for optimization within a carbon cycle data assimilation system (CCDAS). Soil moisture data from Soil Moisture and Ocean Salinity (SMOS) product was derived for 10 sites representing different plant function types (PFTs) as well as different climate zones. Uncertainty of SMOS soil moisture data was also estimated using triple collocation analysis (TCA) method by comparing with ASCAT dataset and BETHY forward simulation results. Assimilation of soil moisture to the system improved soil moisture as well as net primary productivity(NPP) and net ecosystem productivity (NEP) when compared with soil moisture derived from in-situ measurements and fluxnet datasets. Parameter uncertainties were largely reduced relatively to prior values. Using SMOS soil moisture data for assimilation of a terrestrial biosphere model proved to be an efficient approach in reducing uncertainty in ecosystem fluxes simulation. It could be further used in regional an global assimilation work to constrain carbon dioxide concentration simulation by combining with other sources of measurements.
Evaluation and Validation of Operational RapidScat Ocean Surface Vector Winds
NASA Astrophysics Data System (ADS)
Chang, Paul; Jelenak, Zorana; Soisuvarn, Seubson; Said, Faozi; Sienkiewicz, Joseph; Brennan, Michael
2015-04-01
NASA launched RapidScat to the International Space Station (ISS) on September 21, 2014 on a two-year mission to support global monitoring of ocean winds for improved weather forecasting and climate studies. The JPL-developed space-based scatterometer is conically scanning and operates at ku-band (13.4 GHz) similar to QuikSCAT. The ISS-RapidScat's measurement swath is approximately 900 kilometers and covers the majority of the ocean between 51.6 degrees north and south latitude (approximately from north of Vancouver, Canada, to the southern tip of Patagonia) in 48 hours. RapidScat data are currently being posted at a spacing of 25 kilometers, but a version to be released in the near future will improve the postings to 12.5 kilometers. RapidScat ocean surface wind vector data are being provided in near real-time to NOAA, and other operational users such as the U.S. Navy, the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), the Indian Space Research Organisation (ISRO) and the Royal Netherlands Meteorological Institute (KNMI). The quality of the RapidScat OSVW data are assessed by collocating the data in space and time with "truth" data. Typically "truth" data will include, but are not limited to, the NWS global forecast model analysis (GDAS) fields, buoys, ASCAT, WindSat, AMSR-2, and aircraft measurements during hurricane and winter storm experiment flights. The standard statistical analysis used for satellite microwave wind sensors will be utilized to characterize the RapidScat wind vector retrievals. The global numerical weather prediction (NWP) models are a convenient source of "truth" data because they are available 4 times/day globally which results in the accumulation of a large number of collocations over a relatively short amount of time. The NWP model fields are not "truth" in the same way an actual observation would be, however, as long as there are no systematic errors in the NWP model output the collocations will converge in the mean for winds between approximately 3-20 m/s. The NWP models typically do not properly resolve the very low and high wind speeds in part due to limitations of the spatial scales they can account for. Buoy measurements, aircraft-based measurements and other satellite retrievals can be more directly compared on a point-by-point basis. The RapidScat OSVW validation results will be presented and discussed. Utilization examples of these data in support of NOAA's marine weather forecasting and warning mission will also be presented and discussed.
Coherent Uncertainty Analysis of Aerosol Measurements from Multiple Satellite Sensors
NASA Technical Reports Server (NTRS)
Petrenko, M.; Ichoku, C.
2013-01-01
Aerosol retrievals from multiple spaceborne sensors, including MODIS (on Terra and Aqua), MISR, OMI, POLDER, CALIOP, and SeaWiFS altogether, a total of 11 different aerosol products were comparatively analyzed using data collocated with ground-based aerosol observations from the Aerosol Robotic Network (AERONET) stations within the Multi-sensor Aerosol Products Sampling System (MAPSS, http://giovanni.gsfc.nasa.gov/mapss/ and http://giovanni.gsfc.nasa.gov/aerostat/). The analysis was performed by comparing quality-screened satellite aerosol optical depth or thickness (AOD or AOT) retrievals during 2006-2010 to available collocated AERONET measurements globally, regionally, and seasonally, and deriving a number of statistical measures of accuracy. We used a robust statistical approach to detect and remove possible outliers in the collocated data that can bias the results of the analysis. Overall, the proportion of outliers in each of the quality-screened AOD products was within 12%. Squared correlation coefficient (R2) values of the satellite AOD retrievals relative to AERONET exceeded 0.6, with R2 for most of the products exceeding 0.7 over land and 0.8 over ocean. Root mean square error (RMSE) values for most of the AOD products were within 0.15 over land and 0.09 over ocean. We have been able to generate global maps showing regions where the different products present advantages over the others, as well as the relative performance of each product over different landcover types. It was observed that while MODIS, MISR, and SeaWiFS provide accurate retrievals over most of the landcover types, multi-angle capabilities make MISR the only sensor to retrieve reliable AOD over barren and snow / ice surfaces. Likewise, active sensing enables CALIOP to retrieve aerosol properties over bright-surface shrublands more accurately than the other sensors, while POLDER, which is the only one of the sensors capable of measuring polarized aerosols, outperforms other sensors in certain smoke-dominated regions, including broadleaf evergreens in Brazil and South-East Asia.
NASA Astrophysics Data System (ADS)
Zhang, Zhibo; Dong, Xiquan; Xi, Baike; Song, Hua; Ma, Po-Lun; Ghan, Steven J.; Platnick, Steven; Minnis, Patrick
2017-02-01
From April 2009 to December 2010, the Department of Energy Atmospheric Radiation Measurement (ARM) program carried out an observational field campaign on Graciosa Island, targeting the marine boundary layer (MBL) clouds over the Azores region. In this paper, we present an intercomparison of the MBL cloud properties, namely, cloud liquid water path (LWP), cloud optical thickness (COT), and cloud-droplet effective radius (CER), among retrievals from the ARM mobile facility and two Moderate Resolution Imaging Spectroradiometer (MODIS) cloud products (Goddard Space Flight Center (GSFC)-MODIS and Clouds and Earth's Radiant Energy System-MODIS). A total of 63 daytime single-layer MBL cloud cases are selected for intercomparison. Comparison of collocated retrievals indicates that the two MODIS cloud products agree well on both COT and CER retrievals, with the correlation coefficient R > 0.95, despite their significant difference in spatial sampling. In both MODIS products, the CER retrievals based on the 2.1 µm band (CER2.1) are significantly larger than those based on the 3.7 µm band (CER3.7). The GSFC-MODIS cloud product is collocated and compared with ground-based ARM observations at several temporal-spatial scales. In general, the correlation increases with more precise collocation. For the 63 selected MBL cloud cases, the GSFC-MODIS LWP and COT retrievals agree reasonably well with the ground-based observations with no apparent bias and correlation coefficient R around 0.85 and 0.70, respectively. However, GSFC-MODIS CER3.7 and CER2.1 retrievals have a lower correlation (R 0.5) with the ground-based retrievals. For the 63 selected cases, they are on average larger than ground observations by about 1.5 µm and 3.0 µm, respectively. Taking into account that the MODIS CER retrievals are only sensitive to cloud top reduces the bias only by 0.5 µm.
NASA Astrophysics Data System (ADS)
Mukherjee, A. D.; Brown, S. G.; McCarthy, M. C.
2017-12-01
A new generation of low cost air quality sensors have the potential to provide valuable information on the spatial-temporal variability of air pollution - if the measurements have sufficient quality. This study examined the performance of a particulate matter sensor model, the AirBeam (HabitatMap Inc., Brooklyn, NY), over a three month period in the urban environment of Sacramento, California. Nineteen AirBeam sensors were deployed at a regulatory air monitoring site collocated with meteorology measurements and as a local network over an 80 km2 domain in Sacramento, CA. This study presents the methodology to evaluate the precision, accuracy, and reliability of the sensors over a range of meteorological and aerosol conditions. The sensors demonstrated a robust degree of precision during collocated measurement periods (R2 = 0.98 - 0.99) and a moderate degree of correlation against a Beta Attenuation Monitor PM2.5 monitor (R2 0.6). A normalization correction is applied during the study period so that each AirBeam sensor in the network reports a comparable value. The role of the meteorological environment on the accuracy of the sensor measurements is investigated, along with the possibility of improving the measurements through a meteorology weighted correction. The data quality of the network of sensors is examined, and the spatial variability of particulate matter through the study domain derived from the sensor network is presented.
Barber, Jared; Tanase, Roxana; Yotov, Ivan
2016-06-01
Several Kalman filter algorithms are presented for data assimilation and parameter estimation for a nonlinear diffusion model of epithelial cell migration. These include the ensemble Kalman filter with Monte Carlo sampling and a stochastic collocation (SC) Kalman filter with structured sampling. Further, two types of noise are considered -uncorrelated noise resulting in one stochastic dimension for each element of the spatial grid and correlated noise parameterized by the Karhunen-Loeve (KL) expansion resulting in one stochastic dimension for each KL term. The efficiency and accuracy of the four methods are investigated for two cases with synthetic data with and without noise, as well as data from a laboratory experiment. While it is observed that all algorithms perform reasonably well in matching the target solution and estimating the diffusion coefficient and the growth rate, it is illustrated that the algorithms that employ SC and KL expansion are computationally more efficient, as they require fewer ensemble members for comparable accuracy. In the case of SC methods, this is due to improved approximation in stochastic space compared to Monte Carlo sampling. In the case of KL methods, the parameterization of the noise results in a stochastic space of smaller dimension. The most efficient method is the one combining SC and KL expansion. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ozer, Ekin; Feng, Dongming; Feng, Maria Q.
2017-10-01
State-of-the-art multisensory technologies and heterogeneous sensor networks propose a wide range of response measurement opportunities for structural health monitoring (SHM). Measuring and fusing different physical quantities in terms of structural vibrations can provide alternative acquisition methods and improve the quality of the modal testing results. In this study, a recently introduced SHM concept, SHM with smartphones, is focused to utilize multisensory smartphone features for a hybridized structural vibration response measurement framework. Based on vibration testing of a small-scale multistory laboratory model, displacement and acceleration responses are monitored using two different smartphone sensors, an embedded camera and accelerometer, respectively. Double-integration or differentiation among different measurement types is performed to combine multisensory measurements on a comparative basis. In addition, distributed sensor signals from collocated devices are processed for modal identification, and performance of smartphone-based sensing platforms are tested under different configuration scenarios and heterogeneity levels. The results of these tests show a novel and successful implementation of a hybrid motion sensing platform through multiple sensor type and device integration. Despite the heterogeneity of motion data obtained from different smartphone devices and technologies, it is shown that multisensory response measurements can be blended for experimental modal analysis. Getting benefit from the accessibility of smartphone technology, similar smartphone-based dynamic testing methodologies can provide innovative SHM solutions with mobile, programmable, and cost-free interfaces.
Attitude and vibration control of a large flexible space-based antenna
NASA Technical Reports Server (NTRS)
Joshi, S. M.
1982-01-01
Control systems synthesis is considered for controlling the rigid body attitude and elastic motion of a large deployable space-based antenna. Two methods for control systems synthesis are considered. The first method utilizes the stability and robustness properties of the controller consisting of torque actuators and collocated attitude and rate sensors. The second method is based on the linear-quadratic-Gaussian control theory. A combination of the two methods, which results in a two level hierarchical control system, is also briefly discussed. The performance of the controllers is analyzed by computing the variances of pointing errors, feed misalignment errors and surface contour errors in the presence of sensor and actuator noise.
Collocation mismatch uncertainties in satellite aerosol retrieval validation
NASA Astrophysics Data System (ADS)
Virtanen, Timo H.; Kolmonen, Pekka; Sogacheva, Larisa; Rodríguez, Edith; Saponaro, Giulia; de Leeuw, Gerrit
2018-02-01
Satellite-based aerosol products are routinely validated against ground-based reference data, usually obtained from sun photometer networks such as AERONET (AEROsol RObotic NETwork). In a typical validation exercise a spatial sample of the instantaneous satellite data is compared against a temporal sample of the point-like ground-based data. The observations do not correspond to exactly the same column of the atmosphere at the same time, and the representativeness of the reference data depends on the spatiotemporal variability of the aerosol properties in the samples. The associated uncertainty is known as the collocation mismatch uncertainty (CMU). The validation results depend on the sampling parameters. While small samples involve less variability, they are more sensitive to the inevitable noise in the measurement data. In this paper we study systematically the effect of the sampling parameters in the validation of AATSR (Advanced Along-Track Scanning Radiometer) aerosol optical depth (AOD) product against AERONET data and the associated collocation mismatch uncertainty. To this end, we study the spatial AOD variability in the satellite data, compare it against the corresponding values obtained from densely located AERONET sites, and assess the possible reasons for observed differences. We find that the spatial AOD variability in the satellite data is approximately 2 times larger than in the ground-based data, and the spatial variability correlates only weakly with that of AERONET for short distances. We interpreted that only half of the variability in the satellite data is due to the natural variability in the AOD, and the rest is noise due to retrieval errors. However, for larger distances (˜ 0.5°) the correlation is improved as the noise is averaged out, and the day-to-day changes in regional AOD variability are well captured. Furthermore, we assess the usefulness of the spatial variability of the satellite AOD data as an estimate of CMU by comparing the retrieval errors to the total uncertainty estimates including the CMU in the validation. We find that accounting for CMU increases the fraction of consistent observations.
Application of Collocated GPS and Seismic Sensors to Earthquake Monitoring and Early Warning
Li, Xingxing; Zhang, Xiaohong; Guo, Bofeng
2013-01-01
We explore the use of collocated GPS and seismic sensors for earthquake monitoring and early warning. The GPS and seismic data collected during the 2011 Tohoku-Oki (Japan) and the 2010 El Mayor-Cucapah (Mexico) earthquakes are analyzed by using a tightly-coupled integration. The performance of the integrated results is validated by both time and frequency domain analysis. We detect the P-wave arrival and observe small-scale features of the movement from the integrated results and locate the epicenter. Meanwhile, permanent offsets are extracted from the integrated displacements highly accurately and used for reliable fault slip inversion and magnitude estimation. PMID:24284765
Legendre spectral-collocation method for solving some types of fractional optimal control problems
Sweilam, Nasser H.; Al-Ajami, Tamer M.
2014-01-01
In this paper, the Legendre spectral-collocation method was applied to obtain approximate solutions for some types of fractional optimal control problems (FOCPs). The fractional derivative was described in the Caputo sense. Two different approaches were presented, in the first approach, necessary optimality conditions in terms of the associated Hamiltonian were approximated. In the second approach, the state equation was discretized first using the trapezoidal rule for the numerical integration followed by the Rayleigh–Ritz method to evaluate both the state and control variables. Illustrative examples were included to demonstrate the validity and applicability of the proposed techniques. PMID:26257937
NASA Astrophysics Data System (ADS)
Mueller, A.
2018-04-01
A new transparent artificial boundary condition for the two-dimensional (vertical) (2DV) free surface water wave propagation modelled using the meshless Radial-Basis-Function Collocation Method (RBFCM) as boundary-only solution is derived. The two-way artificial boundary condition (2wABC) works as pure incidence, pure radiation and as combined incidence/radiation BC. In this work the 2wABC is applied to harmonic linear water waves; its performance is tested against the analytical solution for wave propagation over horizontal sea bottom, standing and partially standing wave as well as wave interference of waves with different periods.
Hybrid near-optimal aeroassisted orbit transfer plane change trajectories
NASA Technical Reports Server (NTRS)
Calise, Anthony J.; Duckeman, Gregory A.
1994-01-01
In this paper, a hybrid methodology is used to determine optimal open loop controls for the atmospheric portion of the aeroassisted plane change problem. The method is hybrid in the sense that it combines the features of numerical collocation with the analytically tractable portions of the problem which result when the two-point boundary value problem is cast in the form of a regular perturbation problem. Various levels of approximation are introduced by eliminating particular collocation parameters and their effect upon problem complexity and required number of nodes is discussed. The results include plane changes of 10, 20, and 30 degrees for a given vehicle.
Acoustic ranging of small arms fire using a single sensor node collocated with the target.
Lo, Kam W; Ferguson, Brian G
2015-06-01
A ballistic model-based method, which builds upon previous work by Lo and Ferguson [J. Acoust. Soc. Am. 132, 2997-3017 (2012)], is described for ranging small arms fire using a single acoustic sensor node collocated with the target, without a priori knowledge of the muzzle speed and ballistic constant of the bullet except that they belong to a known two-dimensional parameter space. The method requires measurements of the differential time of arrival and differential angle of arrival of the muzzle blast and ballistic shock wave at the sensor node. Its performance is evaluated using both simulated and real data.
Martian resource locations: Identification and optimization
NASA Astrophysics Data System (ADS)
Chamitoff, Gregory; James, George; Barker, Donald; Dershowitz, Adam
2005-04-01
The identification and utilization of in situ Martian natural resources is the key to enable cost-effective long-duration missions and permanent human settlements on Mars. This paper presents a powerful software tool for analyzing Martian data from all sources, and for optimizing mission site selection based on resource collocation. This program, called Planetary Resource Optimization and Mapping Tool (PROMT), provides a wide range of analysis and display functions that can be applied to raw data or imagery. Thresholds, contours, custom algorithms, and graphical editing are some of the various methods that can be used to process data. Output maps can be created to identify surface regions on Mars that meet any specific criteria. The use of this tool for analyzing data, generating maps, and collocating features is demonstrated using data from the Mars Global Surveyor and the Odyssey spacecraft. The overall mission design objective is to maximize a combination of scientific return and self-sufficiency based on utilization of local materials. Landing site optimization involves maximizing accessibility to collocated science and resource features within a given mission radius. Mission types are categorized according to duration, energy resources, and in situ resource utilization. Preliminary optimization results are shown for a number of mission scenarios.
Accuracy and speed in computing the Chebyshev collocation derivative
NASA Technical Reports Server (NTRS)
Don, Wai-Sun; Solomonoff, Alex
1991-01-01
We studied several algorithms for computing the Chebyshev spectral derivative and compare their roundoff error. For a large number of collocation points, the elements of the Chebyshev differentiation matrix, if constructed in the usual way, are not computed accurately. A subtle cause is is found to account for the poor accuracy when computing the derivative by the matrix-vector multiplication method. Methods for accurately computing the elements of the matrix are presented, and we find that if the entities of the matrix are computed accurately, the roundoff error of the matrix-vector multiplication is as small as that of the transform-recursion algorithm. Results of CPU time usage are shown for several different algorithms for computing the derivative by the Chebyshev collocation method for a wide variety of two-dimensional grid sizes on both an IBM and a Cray 2 computer. We found that which algorithm is fastest on a particular machine depends not only on the grid size, but also on small details of the computer hardware as well. For most practical grid sizes used in computation, the even-odd decomposition algorithm is found to be faster than the transform-recursion method.
Computational approach to compact Riemann surfaces
NASA Astrophysics Data System (ADS)
Frauendiener, Jörg; Klein, Christian
2017-01-01
A purely numerical approach to compact Riemann surfaces starting from plane algebraic curves is presented. The critical points of the algebraic curve are computed via a two-dimensional Newton iteration. The starting values for this iteration are obtained from the resultants with respect to both coordinates of the algebraic curve and a suitable pairing of their zeros. A set of generators of the fundamental group for the complement of these critical points in the complex plane is constructed from circles around these points and connecting lines obtained from a minimal spanning tree. The monodromies are computed by solving the defining equation of the algebraic curve on collocation points along these contours and by analytically continuing the roots. The collocation points are chosen to correspond to Chebychev collocation points for an ensuing Clenshaw-Curtis integration of the holomorphic differentials which gives the periods of the Riemann surface with spectral accuracy. At the singularities of the algebraic curve, Puiseux expansions computed by contour integration on the circles around the singularities are used to identify the holomorphic differentials. The Abel map is also computed with the Clenshaw-Curtis algorithm and contour integrals. As an application of the code, solutions to the Kadomtsev-Petviashvili equation are computed on non-hyperelliptic Riemann surfaces.
[A particular anthropometric method for the study of accessibility of a workstation].
Molinaro, V; Del Ferraro, S
2008-01-01
One of the main factors which can involve musculo-skeletal disorders is the assumption of awkward postures. These lasts can be caused, in some cases, by a no-suitable collocation of some devices which are indispensable for the work. It is possible to evaluate if the chosen collocation is adequate or not by studying the accessibility of the workstation with a special regard for the accessibility of the devices placed inside the workstation. EN ISO 14738:2002 is a specific standard which has been adopted in Italy as UNI EN ISO 14738:2004. This standard gives some useful requirements, in terms of accessibility, to design a workstation at no-mobile machinery. In this study, the authors have analyzed a check out workstation by following the requirements described in UNI EN ISO 14738:2004. Critical aspects, related to the organization both of the work activities either of the workstation, have been highlighted taking into account standard criteria. Finally the authors make a new design of the check out workstation trying to optimize device collocation in order to reduce awkward postures. The new configuration has been investigated by applying the criteria mentioned in the standard.
NASA Astrophysics Data System (ADS)
John, Viju O.; Holl, Gerrit; Buehler, Stefan A.; Candy, Brett; Saunders, Roger W.; Parker, David E.
2012-01-01
Simultaneous nadir overpasses (SNOs) of polar-orbiting satellites are most frequent in polar areas but can occur at any latitude when the equatorial crossing times of the satellites become close owing to orbital drift. We use global SNOs of polar orbiting satellites to evaluate the intercalibration of microwave humidity sounders from the more frequent high-latitude SNOs. We have found based on sensitivity analyses that optimal distance and time thresholds for defining collocations are pixel centers less than 5 km apart and time differences less than 300 s. These stringent collocation criteria reduce the impact of highly variable surface or atmospheric conditions on the estimated biases. Uncertainties in the estimated biases are dominated by the combined radiometric noise of the instrument pair. The effects of frequency changes between different versions of the humidity sounders depend on the amount of water vapor in the atmosphere. There are significant scene radiance and thus latitude dependencies in the estimated biases and this has to taken into account while intercalibrating microwave humidity sounders. Therefore the results obtained using polar SNOs will not be representative for moist regions, necessitating the use of global collocations for reliable intercalibration.
NASA Technical Reports Server (NTRS)
Hanks, Brantley R.; Skelton, Robert E.
1991-01-01
This paper addresses the restriction of Linear Quadratic Regulator (LQR) solutions to the algebraic Riccati Equation to design spaces which can be implemented as passive structural members and/or dampers. A general closed-form solution to the optimal free-decay control problem is presented which is tailored for structural-mechanical systems. The solution includes, as subsets, special cases such as the Rayleigh Dissipation Function and total energy. Weighting matrix selection is a constrained choice among several parameters to obtain desired physical relationships. The closed-form solution is also applicable to active control design for systems where perfect, collocated actuator-sensor pairs exist. Some examples of simple spring mass systems are shown to illustrate key points.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thorsen, Tyler J.; Fu, Qiang; Newsom, Rob K.
A Feature detection and EXtinction retrieval (FEX) algorithm for the Atmospheric Radiation Measurement (ARM) program’s Raman lidar (RL) has been developed. Presented here is part 1 of the FEX algorithm: the detection of features including both clouds and aerosols. The approach of FEX is to use multiple quantities— scattering ratios derived using elastic and nitro-gen channel signals from two fields of view, the scattering ratio derived using only the elastic channel, and the total volume depolarization ratio— to identify features using range-dependent detection thresholds. FEX is designed to be context-sensitive with thresholds determined for each profile by calculating the expectedmore » clear-sky signal and noise. The use of multiple quantities pro-vides complementary depictions of cloud and aerosol locations and allows for consistency checks to improve the accuracy of the feature mask. The depolarization ratio is shown to be particularly effective at detecting optically-thin features containing non-spherical particles such as cirrus clouds. Improve-ments over the existing ARM RL cloud mask are shown. The performance of FEX is validated against a collocated micropulse lidar and observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite over the ARM Darwin, Australia site. While we focus on a specific lidar system, the FEX framework presented here is suitable for other Raman or high spectral resolution lidars.« less
Optimal active vibration absorber: Design and experimental results
NASA Technical Reports Server (NTRS)
Lee-Glauser, Gina; Juang, Jer-Nan; Sulla, Jeffrey L.
1992-01-01
An optimal active vibration absorber can provide guaranteed closed-loop stability and control for large flexible space structures with collocated sensors/actuators. The active vibration absorber is a second-order dynamic system which is designed to suppress any unwanted structural vibration. This can be designed with minimum knowledge of the controlled system. Two methods for optimizing the active vibration absorber parameters are illustrated: minimum resonant amplitude and frequency matched active controllers. The Controls-Structures Interaction Phase-1 Evolutionary Model at NASA LaRC is used to demonstrate the effectiveness of the active vibration absorber for vibration suppression. Performance is compared numerically and experimentally using acceleration feedback.
Biala, T A; Jator, S N
2015-01-01
In this article, the boundary value method is applied to solve three dimensional elliptic and hyperbolic partial differential equations. The partial derivatives with respect to two of the spatial variables (y, z) are discretized using finite difference approximations to obtain a large system of ordinary differential equations (ODEs) in the third spatial variable (x). Using interpolation and collocation techniques, a continuous scheme is developed and used to obtain discrete methods which are applied via the Block unification approach to obtain approximations to the resulting large system of ODEs. Several test problems are investigated to elucidate the solution process.
AIRS: Improving Weather Forecasting and Providing New Data on Greenhouse Gases
NASA Technical Reports Server (NTRS)
Chahine, Moustafa T.; Pagano, Thomas S.; Aumann, Hartmut H.; Atlas, Robert; Barnet, Christopher; Blaisdell, John; Chen, Luke; Divakarla, Murty; Fetzer, Eric J.; Goldberg, Mitch;
2006-01-01
This paper discusses the performance of AIRS and examines how it is meeting its operational and research objectives based on the experience of more than 2 yr with AIRS data. We describe the science background and the performance of AIRS in terms of the accuracy and stability of its observed spectral radiances. We examine the validation of the retrieved temperature and water vapor profiles against collocated operational radiosondes, and then we assess the impact thereof on numerical weather forecasting of the assimilation of the AIRS spectra and the retrieved temperature. We close the paper with a discussion on the retrieval of several minor tropospheric constituents from AIRS spectra.
Optimisation of active suspension control inputs for improved vehicle handling performance
NASA Astrophysics Data System (ADS)
Čorić, Mirko; Deur, Joško; Kasać, Josip; Tseng, H. Eric; Hrovat, Davor
2016-11-01
Active suspension is commonly considered under the framework of vertical vehicle dynamics control aimed at improvements in ride comfort. This paper uses a collocation-type control variable optimisation tool to investigate to which extent the fully active suspension (FAS) application can be broaden to the task of vehicle handling/cornering control. The optimisation approach is firstly applied to solely FAS actuator configurations and three types of double lane-change manoeuvres. The obtained optimisation results are used to gain insights into different control mechanisms that are used by FAS to improve the handling performance in terms of path following error reduction. For the same manoeuvres the FAS performance is compared with the performance of different active steering and active differential actuators. The optimisation study is finally extended to combined FAS and active front- and/or rear-steering configurations to investigate if they can use their complementary control authorities (over the vertical and lateral vehicle dynamics, respectively) to further improve the handling performance.
JPL's GNSS Real-Time Earthquake and Tsunami (GREAT) Alert System
NASA Astrophysics Data System (ADS)
Bar-Sever, Yoaz; Miller, Mark; Vallisneri, Michele; Khachikyan, Robert; Meyer, Robert
2017-04-01
We describe recent developments to the GREAT Alert natural hazard monitoring service from JPL's Global Differential GPS (GDGPS) System. GREAT Alert provides real-time, 1 Hz positioning solutions for hundreds of GNSS tracking sites, from both global and regional networks, aiming to monitor ground motion in the immediate aftermath of earthquakes. We take advantage of the centralized data processing, which is collocated with the GNSS orbit determination operations of the GDGPS System, to combine orbit determination with large-scale point-positioning in a grand estimation scheme, and as a result realize significant improvement to the positioning accuracy compared to conventional stand-alone point positioning techniques. For example, the measured median site (over all sites) real-time horizontal positioning accuracy is 2 cm 1DRMS, and the median real-time vertical accuracy is 4 cm RMS. The GREAT Alert positioning service is integrated with automated global earthquake notices from the United States Geodetic Survey (USGS) to support near-real-time calculations of co-seismic displacements with attendant formal errors based both short-term and long-term error analysis for each individual site. We will show the millimeter-level resolution of co-seismic displacement can be achieved by this system. The co-seismic displacements, in turn, are fed into a JPL geodynamics and ocean models, that estimate the Earthquake magnitude and predict the potential tsunami scale.
NASA Astrophysics Data System (ADS)
Chen, Kejie; Liu, Zhen; Liang, Cunren; Song, Y. Tony
2018-06-01
Dense strong motion and high-rate Global Navigation Satellite Systems (GNSS) networks have been deployed in central Italy for rapid seismic source determination and corresponding hazard mitigation. Different from previous studies for the consistency between two kinds of sensor at collocated stations, here we focus on the combination of high-rate GNSS displacement waveforms with collocated seismic strong motion accelerators, and investigate its application to image rupture history. Taking the 2016 August 24 Mw 6.1 Central Italy earthquake as a case study, we first generate more accurate and longer period seismogeodetic displacement waveforms by a Kalman filter, then model the rupture behaviour through a joint inversion including seismogeodetic waveforms and InSAR observations. Our results reveal that strong motion data alone can overestimate the magnitude and mismatch the GNSS observations, while 1 Hz sampling rate GNSS is insufficient and the displacement is too noisy to depict rupture process. By contrast, seismogeodetic data enhances temporal resolution and maintains the static offsets that provide vital constraint to the reliable estimation of earthquake magnitude. The obtained model is close to the jointly inverted one. Our work demonstrates the unique usefulness of seismogeodesy for fast seismic hazard response.
3D electromagnetic modelling of a TTI medium and TTI effects in inversion
NASA Astrophysics Data System (ADS)
Jaysaval, Piyoosh; Shantsev, Daniil; de la Kethulle de Ryhove, Sébastien
2016-04-01
We present a numerical algorithm for 3D electromagnetic (EM) forward modelling in conducting media with general electric anisotropy. The algorithm is based on the finite-difference discretization of frequency-domain Maxwell's equations on a Lebedev grid, in which all components of the electric field are collocated but half a spatial step staggered with respect to the magnetic field components, which also are collocated. This leads to a system of linear equations that is solved using a stabilized biconjugate gradient method with a multigrid preconditioner. We validate the accuracy of the numerical results for layered and 3D tilted transverse isotropic (TTI) earth models representing typical scenarios used in the marine controlled-source EM method. It is then demonstrated that not taking into account the full anisotropy of the conductivity tensor can lead to misleading inversion results. For simulation data corresponding to a 3D model with a TTI anticlinal structure, a standard vertical transverse isotropic inversion is not able to image a resistor, while for a 3D model with a TTI synclinal structure the inversion produces a false resistive anomaly. If inversion uses the proposed forward solver that can handle TTI anisotropy, it produces resistivity images consistent with the true models.
NASA Astrophysics Data System (ADS)
Smirnov, Alexander; Petrenko, Maksym; Ichoku, Charles; Holben, Brent N.
2017-10-01
The paper reports on the current status of the Maritime Aerosol Network (MAN) which is a component of the Aerosol Robotic Network (AERONET). A public domain web-based data archive dedicated to MAN activity can be found at https://aeronet.gsfc.nasa.gov/new_web/maritime_aerosol_network.html . Since 2006 over 450 cruises were completed and the data archive consists of more than 6000 measurement days. In this work, we present MAN observations collocated with MODIS Terra, MODIS Aqua, MISR, POLDER, SeaWIFS, OMI, and CALIOP spaceborne aerosol products using a modified version of the Multi-Sensor Aerosol Products Sampling System (MAPSS) framework. Because of different spatio-temporal characteristics of the analyzed products, the number of MAN data points collocated with spaceborne retrievals varied between 1500 matchups for MODIS to 39 for CALIOP (as of August 2016). Despite these unavoidable sampling biases, latitudinal dependencies of AOD differences for all satellite sensors, except for SeaWIFS and POLDER, showed positive biases against ground truth (i.e. MAN) in the southern latitudes (<50° S), and substantial scatter in the Northern Atlantic "dust belt" (5°-15° N). Our analysis did not intend to determine whether satellite retrievals are within claimed uncertainty boundaries, but rather show where bias exists and corrections are needed.
NASA Astrophysics Data System (ADS)
Chen, K. H.; Cheng, C. C.; Hwang, C.
2016-12-01
A new inversion technique featured by the collocation of hydrological modeling and gravimetry observation is presented in this report. Initially this study started from a project attempting to build a sequence of hydrodynamic models of ground water system, which was applied to identify the supplement areas of alluvial plains and basins along the west coast of Taiwan. To calibrate the decent hydro-geological parameters for the modeling, geological evolution were carefully investigated and absolute gravity observations, along with other on-site hydrological monitoring data were specially introduced. It was discovered in the data processing that the time-varying gravimetrical data are highly sensitive to certain boundary conditions in the hydrodynamic model, which are correspondent with respective geological features. A new inversion technique coined by the term "hydrological tomography" is therefore developed by reversing the boundary condition into the unknowns to be solved. An example of accurate estimate for water storage and precipitation infiltration of a costal alluvial plain Yun-Lin is presented. In the mean time, the study of an anticline structure of the upstream basin Ming-Ju is also presented to demonstrate how a geological formation is outlined when the gravimetrical data and hydrodynamic model are re-directed into an inversion.
NASA Astrophysics Data System (ADS)
Bakker, Mark
2010-08-01
A new analytic solution approach is presented for the modeling of steady flow to pumping wells near rivers in strip aquifers; all boundaries of the river and strip aquifer may be curved. The river penetrates the aquifer only partially and has a leaky stream bed. The water level in the river may vary spatially. Flow in the aquifer below the river is semi-confined while flow in the aquifer adjacent to the river is confined or unconfined and may be subject to areal recharge. Analytic solutions are obtained through superposition of analytic elements and Fourier series. Boundary conditions are specified at collocation points along the boundaries. The number of collocation points is larger than the number of coefficients in the Fourier series and a solution is obtained in the least squares sense. The solution is analytic while boundary conditions are met approximately. Very accurate solutions are obtained when enough terms are used in the series. Several examples are presented for domains with straight and curved boundaries, including a well pumping near a meandering river with a varying water level. The area of the river bottom where water infiltrates into the aquifer is delineated and the fraction of river water in the well water is computed for several cases.
Spectral Collocation Time-Domain Modeling of Diffractive Optical Elements
NASA Astrophysics Data System (ADS)
Hesthaven, J. S.; Dinesen, P. G.; Lynov, J. P.
1999-11-01
A spectral collocation multi-domain scheme is developed for the accurate and efficient time-domain solution of Maxwell's equations within multi-layered diffractive optical elements. Special attention is being paid to the modeling of out-of-plane waveguide couplers. Emphasis is given to the proper construction of high-order schemes with the ability to handle very general problems of considerable geometric and material complexity. Central questions regarding efficient absorbing boundary conditions and time-stepping issues are also addressed. The efficacy of the overall scheme for the time-domain modeling of electrically large, and computationally challenging, problems is illustrated by solving a number of plane as well as non-plane waveguide problems.
NASA Astrophysics Data System (ADS)
Dillner, A. M.; Takahama, S.
2015-10-01
Elemental carbon (EC) is an important constituent of atmospheric particulate matter because it absorbs solar radiation influencing climate and visibility and it adversely affects human health. The EC measured by thermal methods such as thermal-optical reflectance (TOR) is operationally defined as the carbon that volatilizes from quartz filter samples at elevated temperatures in the presence of oxygen. Here, methods are presented to accurately predict TOR EC using Fourier transform infrared (FT-IR) absorbance spectra from atmospheric particulate matter collected on polytetrafluoroethylene (PTFE or Teflon) filters. This method is similar to the procedure developed for OC in prior work (Dillner and Takahama, 2015). Transmittance FT-IR analysis is rapid, inexpensive and nondestructive to the PTFE filter samples which are routinely collected for mass and elemental analysis in monitoring networks. FT-IR absorbance spectra are obtained from 794 filter samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites collected during 2011. Partial least squares regression is used to calibrate sample FT-IR absorbance spectra to collocated TOR EC measurements. The FT-IR spectra are divided into calibration and test sets. Two calibrations are developed: one developed from uniform distribution of samples across the EC mass range (Uniform EC) and one developed from a uniform distribution of Low EC mass samples (EC < 2.4 μg, Low Uniform EC). A hybrid approach which applies the Low EC calibration to Low EC samples and the Uniform EC calibration to all other samples is used to produce predictions for Low EC samples that have mean error on par with parallel TOR EC samples in the same mass range and an estimate of the minimum detection limit (MDL) that is on par with TOR EC MDL. For all samples, this hybrid approach leads to precise and accurate TOR EC predictions by FT-IR as indicated by high coefficient of determination (R2; 0.96), no bias (0.00 μg m-3, a concentration value based on the nominal IMPROVE sample volume of 32.8 m3), low error (0.03 μg m-3) and reasonable normalized error (21 %). These performance metrics can be achieved with various degrees of spectral pretreatment (e.g., including or excluding substrate contributions to the absorbances) and are comparable in precision and accuracy to collocated TOR measurements. Only the normalized error is higher for the FT-IR EC measurements than for collocated TOR. FT-IR spectra are also divided into calibration and test sets by the ratios OC/EC and ammonium/EC to determine the impact of OC and ammonium on EC prediction. We conclude that FT-IR analysis with partial least squares regression is a robust method for accurately predicting TOR EC in IMPROVE network samples, providing complementary information to TOR OC predictions (Dillner and Takahama, 2015) and the organic functional group composition and organic matter estimated previously from the same set of sample spectra (Ruthenburg et al., 2014).
NASA Astrophysics Data System (ADS)
Dillner, A. M.; Takahama, S.
2015-06-01
Elemental carbon (EC) is an important constituent of atmospheric particulate matter because it absorbs solar radiation influencing climate and visibility and it adversely affects human health. The EC measured by thermal methods such as Thermal-Optical Reflectance (TOR) is operationally defined as the carbon that volatilizes from quartz filter samples at elevated temperatures in the presence of oxygen. Here, methods are presented to accurately predict TOR EC using Fourier Transform Infrared (FT-IR) absorbance spectra from atmospheric particulate matter collected on polytetrafluoroethylene (PTFE or Teflon) filters. This method is similar to the procedure tested and developed for OC in prior work (Dillner and Takahama, 2015). Transmittance FT-IR analysis is rapid, inexpensive, and non-destructive to the PTFE filter samples which are routinely collected for mass and elemental analysis in monitoring networks. FT-IR absorbance spectra are obtained from 794 filter samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites collected during 2011. Partial least squares regression is used to calibrate sample FT-IR absorbance spectra to collocated TOR EC measurements. The FTIR spectra are divided into calibration and test sets. Two calibrations are developed, one which is developed from uniform distribution of samples across the EC mass range (Uniform EC) and one developed from a~uniform distribution of low EC mass samples (EC < 2.4 μg, Low Uniform EC). A hybrid approach which applies the low EC calibration to low EC samples and the Uniform EC calibration to all other samples is used to produces predictions for low EC samples that have mean error on par with parallel TOR EC samples in the same mass range and an estimate of the minimum detection limit (MDL) that is on par with TOR EC MDL. For all samples, this hybrid approach leads to precise and accurate TOR EC predictions by FT-IR as indicated by high coefficient of variation (R2; 0.96), no bias (0.00 μg m-3, concentration value based on the nominal IMPROVE sample volume of 32.8 m-3), low error (0.03 μg m-3) and reasonable normalized error (21 %). These performance metrics can be achieved with various degrees of spectral pretreatment (e.g., including or excluding substrate contributions to the absorbances) and are comparable in precision and accuracy to collocated TOR measurements. Only the normalized error is higher for the FT-IR EC measurements than for collocated TOR. FT-IR spectra are also divided into calibration and test sets by the ratios OC/EC and ammonium/EC to determine the impact of OC and ammonium on EC prediction. We conclude that FT-IR analysis with partial least squares regression is a robust method for accurately predicting TOR EC in IMPROVE network samples; providing complementary information to TOR OC predictions (Dillner and Takahama, 2015) and the organic functional group composition and organic matter (OM) estimated previously from the same set of sample spectra (Ruthenburg et al., 2014).
AEMS implementation cost study for Boeing 727
NASA Technical Reports Server (NTRS)
Allison, R. L.
1977-01-01
Costs for airline operational implementation of a NASA-developed approach energy management system (AEMS) concept, as applied to the 727 airplane, were determined. Estimated costs are provided for airplane retrofit and for installation of the required DME ground stations. Operational costs and fuel cost savings are presented in a cost-of-ownership study. The potential return on the equipment investment is evaluated using a net present value method. Scheduled 727 traffic and existing VASI, ILS, and collocated DME ground station facilities are summarized for domestic airports used by 727 operators.
AIRS Subpixel Cloud Characterization Using MODIS Cloud Products.
NASA Astrophysics Data System (ADS)
Li, Jun; Menzel, W. Paul; Sun, Fengying; Schmit, Timothy J.; Gurka, James
2004-08-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS) measurements from the Earth Observing System's (EOS's) Aqua satellite enable improved global monitoring of the distribution of clouds. MODIS is able to provide, at high spatial resolution (1 5 km), a cloud mask, surface and cloud types, cloud phase, cloud-top pressure (CTP), effective cloud amount (ECA), cloud particle size (CPS), and cloud optical thickness (COT). AIRS is able to provide CTP, ECA, CPS, and COT at coarser spatial resolution (13.5 km at nadir) but with much better accuracy using its high-spectral-resolution measurements. The combined MODIS AIRS system offers the opportunity for improved cloud products over those possible from either system alone. The key steps for synergistic use of imager and sounder radiance measurements are 1) collocation in space and time and 2) imager cloud amount, type, and phase determination within the sounder pixel. The MODIS and AIRS measurements from the EOS Aqua satellite provide the opportunity to study the synergistic use of advanced imager and sounder measurements. As the first step, the MODIS classification procedure is applied to identify various surface and cloud types within an AIRS footprint. Cloud-layer information (lower, midlevel, or high clouds) and phase information (water, ice, or mixed-phase clouds) within the AIRS footprint are sorted and characterized using MODIS 1-km-spatial-resolution data. The combined MODIS and AIRS data for various scenes are analyzed to study the utility of the synergistic use of high-spatial-resolution imager products and high-spectral-resolution sounder radiance measurements. There is relevance to the optimal use of data from the Advanced Baseline Imager (ABI) and Hyperspectral Environmental Suite (HES) systems, which are to fly on the Geostationary Operational Environmental Satellite (GOES)-R.
An Overview of the Applied Meteorology Unit (AMU)
NASA Technical Reports Server (NTRS)
Merceret, Francis; Bauman, William; Lambert, Winifred; Short, David; Barrett, Joe; Watson, Leela
2007-01-01
The Applied Meteorology Unit (AMU) acts as a bridge between research and operations by transitioning technology to improve weather support to the Shuttle and American space program. It is a NASA entity operated under a tri-agency agreement by NASA, the US Air Force, and the National Weather Service (NWS). The AMU contract is managed by NASA, operated by ENSCO, Inc. personnel, and is collocated with Range Weather Operations at Cape Canaveral Air Force Station. The AMU is tasked by its customers in the 45th Weather Squadron, Spaceflight Meteorology Group, and the NWS in Melbourne, FL with projects whose results help improve the weather forecast for launch, landing, and ground operations. This presentation describes the history behind the formation of the AMU, its working relationships and goals, how it is tasked by its customers, and examples of completed tasks.
NASA Technical Reports Server (NTRS)
Joiner, J.; Vasilkov, A. P.; Gupta, Pawan; Bhartia, P. K.; Veefkind, Pepijn; Sneep, Maarten; deHaan, Johan; Polonsky, Igor; Spurr, Robert
2011-01-01
We have developed a relatively simple scheme for simulating retrieved cloud optical centroid pressures (OCP) from satellite solar backscatter observations. We have compared simulator results with those from more detailed retrieval simulators that more fully account for the complex radiative transfer in a cloudy atmosphere. We used this fast simulator to conduct a comprehensive evaluation of cloud OCPs from the two OMI algorithms using collocated data from CloudSat and Aqua MODIS, a unique situation afforded by the A-train formation of satellites. We find that both OMI algorithms perform reasonably well and that the two algorithms agree better with each other than either does with the collocated CloudSat data. This indicates that patchy snow/ice, cloud 3D, and aerosol effects not simulated with the CloudSat data are affecting both algorithms similarly. We note that the collocation with CloudSat occurs mainly on the East side of OMI's swath. Therefore, we are not able to address cross-track biases in OMI cloud OCP retrievals. Our fast simulator may also be used to simulate cloud OCP from output generated by general circulation models (GCM) with appropriate account of cloud overlap. We have implemented such a scheme and plan to compare OMI data with GCM output in the near future.
NASA Technical Reports Server (NTRS)
Au, Andrew Y.; Brown, Richard D.; Welker, Jean E.
1991-01-01
Satellite-based altimetric data taken by GOES-3, SEASAT, and GEOSAT over the Aral Sea, the Black Sea, and the Caspian Sea are analyzed and a least squares collocation technique is used to predict the geoid undulations on a 0.25x0.25 deg. grid and to transform these geoid undulations to free air gravity anomalies. Rapp's 180x180 geopotential model is used as the reference surface for the collocation procedure. The result of geoid to gravity transformation is, however, sensitive to the information content of the reference geopotential model used. For example, considerable detailed surface gravity data were incorporated into the reference model over the Black Sea, resulting in a reference model with significant information content at short wavelengths. Thus, estimation of short wavelength gravity anomalies from gridded geoid heights is generally reliable over regions such as the Black Sea, using the conventional collocation technique with local empirical covariance functions. Over regions such as the Caspian Sea, where detailed surface data are generally not incorporated into the reference model, unconventional techniques are needed to obtain reliable gravity anomalies. Based on the predicted gravity anomalies over these inland seas, speculative tectonic structures are identified and geophysical processes are inferred.
The next generation of low-cost personal air quality sensors for quantitative exposure monitoring
NASA Astrophysics Data System (ADS)
Piedrahita, R.; Xiang, Y.; Masson, N.; Ortega, J.; Collier, A.; Jiang, Y.; Li, K.; Dick, R. P.; Lv, Q.; Hannigan, M.; Shang, L.
2014-10-01
Advances in embedded systems and low-cost gas sensors are enabling a new wave of low-cost air quality monitoring tools. Our team has been engaged in the development of low-cost, wearable, air quality monitors (M-Pods) using the Arduino platform. These M-Pods house two types of sensors - commercially available metal oxide semiconductor (MOx) sensors used to measure CO, O3, NO2, and total VOCs, and NDIR sensors used to measure CO2. The MOx sensors are low in cost and show high sensitivity near ambient levels; however they display non-linear output signals and have cross-sensitivity effects. Thus, a quantification system was developed to convert the MOx sensor signals into concentrations. We conducted two types of validation studies - first, deployments at a regulatory monitoring station in Denver, Colorado, and second, a user study. In the two deployments (at the regulatory monitoring station), M-Pod concentrations were determined using collocation calibrations and laboratory calibration techniques. M-Pods were placed near regulatory monitors to derive calibration function coefficients using the regulatory monitors as the standard. The form of the calibration function was derived based on laboratory experiments. We discuss various techniques used to estimate measurement uncertainties. The deployments revealed that collocation calibrations provide more accurate concentration estimates than laboratory calibrations. During collocation calibrations, median standard errors ranged between 4.0-6.1 ppb for O3, 6.4-8.4 ppb for NO2, 0.28-0.44 ppm for CO, and 16.8 ppm for CO2. Median signal to noise (S / N) ratios for the M-Pod sensors were higher than the regulatory instruments: for NO2, 3.6 compared to 23.4; for O3, 1.4 compared to 1.6; for CO, 1.1 compared to 10.0; and for CO2, 42.2 compared to 300-500. By contrast, lab calibrations added bias and made it difficult to cover the necessary range of environmental conditions to obtain a good calibration. A separate user study was also conducted to assess uncertainty estimates and sensor variability. In this study, 9 M-Pods were calibrated via collocation multiple times over 4 weeks, and sensor drift was analyzed, with the result being a calibration function that included baseline drift. Three pairs of M-Pods were deployed, while users individually carried the other three. The user study suggested that inter-M-Pod variability between paired units was on the same order as calibration uncertainty; however, it is difficult to make conclusions about the actual personal exposure levels due to the level of user engagement. The user study provided real-world sensor drift data, showing limited CO drift (under -0.05 ppm day-1), and higher for O3 (-2.6 to 2.0 ppb day-1), NO2 (-1.56 to 0.51 ppb day-1), and CO2 (-4.2 to 3.1 ppm day-1). Overall, the user study confirmed the utility of the M-Pod as a low-cost tool to assess personal exposure.
Application of SMAP Data for Ocean Surface Remote Sensing
NASA Astrophysics Data System (ADS)
Fore, A.; Yueh, S. H.; Tang, W.; Stiles, B. W.; Hayashi, A.
2017-12-01
The Soil Moisture Active Passive (SMAP) mission was launched January 31st, 2015. It is designed to measure the soil moisture over land using a combined active / passive L-band system. Due to the Aquarius mission, L-band model functions for ocean winds and salinity are mature and are directly applicable to the SMAP mission. In contrast to Aquarius, the higher resolution and scanning geometry of SMAP allow for wide-swath ocean winds and salinities to be retrieved. In this talk we present the SMAP Sea Surface Salinity (SSS) and extreme winds dataset and its performance. First we discuss the heritage of SMAP SSS algorithms, showing that SMAP and Aquarius show excellent agreement in the ocean surface roughness correction. Then, we give an overview of some newly developed algorithms that are only relevant to the SMAP system; a new galaxy correction and land correction enabling SSS retrievals up to 40 km from coast. We discuss recent improvements to the SMAP data processing for version 4.0. Next we compare the performance of the SMAP SSS to in-situ salinity measurements obtained from ARGO floats, tropical moored buoys, and ship-based data. SMAP SSS has accuracy of 0.2 PSU on a monthly basis compared to ARGO gridded data in tropics and mid-latitudes. In tropical oceans, time series comparison of salinity measured at 1 m depth by moored buoys indicates SMAP can track large salinity changes within a month. Synergetic analysis of SMAP, SMOS, and Argo data allows us to identify and exclude erroneous buoy data from assessment of SMAP SSS. The resulting SMAP-buoy matchup analysis gives a mean standard deviation (STD) of 0.22 PSU and correlation of 0.73 on weekly scale; at monthly scale the mean STD decreased to 0.17 PSU and the correlation increased to 0.8. In addition to SSS, SMAP provides a view into tropical cyclones having much higher sensitivity than traditional scatterometers. We validate the high-winds using collocations with SFMR during tropical cyclones as well as triple-collocations with RapidScat and WindSat. We consider two validation regimes, storm force winds and hurricane force winds. For storm force winds we validate using other space-borne scatterometers and microwave radiometers as well as with SFMR, however, for hurricane force winds we must use SFMR. Finally we discuss the various data products and where they may be obtained.
NASA Astrophysics Data System (ADS)
Dvorska, Alice; Milan, Váňa; Vlastimil, Hanuš; Marian, Pavelka
2013-04-01
The collocated station Košetice - Křešín u Pacova, central Czech Republic, is a major research and monitoring infrastructure in the Czech Republic and central Europe. It consists of two basic components: the observatory Košetice run since 1988 by the Czech Hydrometeorological Institute and the atmospheric station (AS) Křešín u Pacova starting operation in 2013. The AS is built and run by CzechGlobe - Global Change Research Centre, Academy of Sciences of the Czech Republic and is situated 100 m far from the observatory. There are three research and monitoring activities at the collocated station providing data necessary for the research on climate and related changes. The AS Křešín u Pacova consists of a 250 m tall tower serving for ground-based and vertical gradient measurements of (i) concentrations of CO2, CO, CH4, total gaseous mercury and tropospheric ozone (continuously), (ii) elemental and organic carbon (semicontinuously), (iii) carbon and oxygen isotopes, radon, N2O, SF6 and other species (episodically), (iv) optical properties of atmospheric aerosols and (v) meteorological parameters and the boundary layer height. Further, eddy covariance measurements in the nearby agroecosystem provide data on CO2 and H2O fluxes between the atmosphere and the ecosystem. Finally, monitoring activities at the nearby small hydrological catchment Anenské povodí run under the GEOMON network enables studying local hydrological and biogeochemical cycles. These measurements are supported by the long-term monitoring of meteorological and air quality parameters at the observatory Košetice, that are representative for the central European background. The collocated station provides a big research opportunity and challenge due to (i) a broad spectra of monitored chemical species, meteorological, hydrological and other parameters, (ii) measurements in various environmental compartments and especially the atmosphere, (iii) provision of data suitable for conducting multidisciplinar research activities and (iv) participation in a number of international programmes and projects, i.e. ICOS (AS Křešín u Pacova), ACTRIS, ACCENT, CLRTAP/EMEP, GAW and ICP-IM (Košetice) and others. Finally, the collocated station has potential for a successful participation in the planned network of European superstations covering both climate and air quality issues, one of the key areas in the European Strategy Forum on Research Infrastructures (ESFRI) process. Acknowledgement: This work is supported by the CzechGlobe (CZ.1.05/1.1.00/02.0073) and CZ.1.07/2.4.00/31.0056 projects.
Cloud radiative properties and aerosol - cloud interaction
NASA Astrophysics Data System (ADS)
Viviana Vladutescu, Daniela; Gross, Barry; Li, Clement; Han, Zaw
2015-04-01
The presented research discusses different techniques for improvement of cloud properties measurements and analysis. The need for these measurements and analysis arises from the high errors noticed in existing methods that are currently used in retrieving cloud properties and implicitly cloud radiative forcing. The properties investigated are cloud fraction (cf) and cloud optical thickness (COT) measured with a suite of collocated remote sensing instruments. The novel approach makes use of a ground based "poor man's camera" to detect cloud and sky radiation in red, green, and blue with a high spatial resolution of 30 mm at 1km. The surface-based high resolution photography provides a new and interesting view of clouds. As the cloud fraction cannot be uniquely defined or measured, it depends on threshold and resolution. However as resolution decreases, cloud fraction tends to increase if the threshold is below the mean, and vice versa. Additionally cloud fractal dimension also depends on threshold. Therefore these findings raise concerns over the ability to characterize clouds by cloud fraction or fractal dimension. Our analysis indicate that Principal Component analysis may lead to a robust means of quantifying cloud contribution to radiance. The cloud images are analyzed in conjunction with a collocated CIMEL sky radiometer, Microwave Radiometer and LIDAR to determine homogeneity and heterogeneity. Additionally, MFRSR measurements are used to determine the cloud radiative properties as a validation tool to the results obtained from the other instruments and methods. The cloud properties to be further studied are aerosol- cloud interaction, cloud particle radii, and vertical homogeneity.
Contribution potential of glaciers to water availability in different climate regimes
Kaser, Georg; Großhauser, Martin; Marzeion, Ben
2010-01-01
Although reliable figures are often missing, considerable detrimental changes due to shrinking glaciers are universally expected for water availability in river systems under the influence of ongoing global climate change. We estimate the contribution potential of seasonally delayed glacier melt water to total water availability in large river systems. We find that the seasonally delayed glacier contribution is largest where rivers enter seasonally arid regions and negligible in the lowlands of river basins governed by monsoon climates. By comparing monthly glacier melt contributions with population densities in different altitude bands within each river basin, we demonstrate that strong human dependence on glacier melt is not collocated with highest population densities in most basins. PMID:21059938
A fast collocation method for a variable-coefficient nonlocal diffusion model
NASA Astrophysics Data System (ADS)
Wang, Che; Wang, Hong
2017-02-01
We develop a fast collocation scheme for a variable-coefficient nonlocal diffusion model, for which a numerical discretization would yield a dense stiffness matrix. The development of the fast method is achieved by carefully handling the variable coefficients appearing inside the singular integral operator and exploiting the structure of the dense stiffness matrix. The resulting fast method reduces the computational work from O (N3) required by a commonly used direct solver to O (Nlog N) per iteration and the memory requirement from O (N2) to O (N). Furthermore, the fast method reduces the computational work of assembling the stiffness matrix from O (N2) to O (N). Numerical results are presented to show the utility of the fast method.
Gálvez, Verònica; de Arriba Arnau, Aida; Martínez-Amorós, Erika; Ribes, Carmina; Urretavizcaya, Mikel; Cardoner, Narcís
2014-11-10
ABSTRACT Electroconvulsive Therapy (ECT) has been demonstrated to be a safe and effective treatment for geriatric depression, although its application might be challenging when medical comorbidities exist. The present case reports a 78-year-old man diagnosed with recurrent unipolar major depressive disorder (MDD), who presented with a severe depressive episode with psychotic features (DSM IV). He successfully received a course of bitemporal (BT) ECT with a hip-aztreonam-spacer due to a hip fracture that occurred during hospitalization. This was followed by maintenance ECT (M-ECT) with a recent prosthesis collocation. This particular case illustrates the importance of a multidisciplinary approach in geriatric patients with somatic complications receiving ECT.
NASA Astrophysics Data System (ADS)
Hu, Y.; Vaughan, M.; McClain, C.; Behrenfeld, M.; Maring, H.; Anderson, D.; Sun-Mack, S.; Flittner, D.; Huang, J.; Wielicki, B.; Minnis, P.; Weimer, C.; Trepte, C.; Kuehn, R.
2007-06-01
This study presents an empirical relation that links the volume extinction coefficients of water clouds, the layer integrated depolarization ratios measured by lidar, and the effective radii of water clouds derived from collocated passive sensor observations. Based on Monte Carlo simulations of CALIPSO lidar observations, this method combines the cloud effective radius reported by MODIS with the lidar depolarization ratios measured by CALIPSO to estimate both the liquid water content and the effective number concentration of water clouds. The method is applied to collocated CALIPSO and MODIS measurements obtained during July and October of 2006, and January 2007. Global statistics of the cloud liquid water content and effective number concentration are presented.
Aerospace Systems Design in NASA's Collaborative Engineering Environment
NASA Technical Reports Server (NTRS)
Monell, Donald W.; Piland, William M.
1999-01-01
Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g. manufacturing and systems operations). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often lead to the inability of assessing critical programmatic and technical issues (e.g., cost risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographically distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative engineering environment. NASA is planning to use this collaborative engineering infrastructure to provide better aerospace systems life cycle design and analysis, which includes analytical assessment of the technical and programmatic aspects of a system from "cradle to grave." This paper describes the recent NASA developments in the area of collaborative engineering, the benefits (realized and anticipated) of using the developed capability, and the long-term plans for implementing this capability across the Agency.
Aerospace Systems Design in NASA's Collaborative Engineering Environment
NASA Technical Reports Server (NTRS)
Monell, Donald W.; Piland, William M.
2000-01-01
Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g., manufacturing and systems operation). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often lead to the inability of assessing critical programmatic and technical issues (e.g., cost, risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographical distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative engineering environment. NASA is planning to use this collaborative engineering engineering infrastructure to provide better aerospace systems life cycle design and analysis, which includes analytical assessment of the technical and programmatic aspects of a system from "cradle to grave." This paper describes the recent NASA developments in the area of collaborative engineering, the benefits (realized and anticipated) of using the developed capability, and the long-term plans for implementing this capability across Agency.
Aerospace Systems Design in NASA's Collaborative Engineering Environment
NASA Astrophysics Data System (ADS)
Monell, Donald W.; Piland, William M.
2000-07-01
Past designs of complex aerospace systems involved an environment consisting of collocated design teams with project managers, technical discipline experts, and other experts (e.g., manufacturing and systems operations). These experts were generally qualified only on the basis of past design experience and typically had access to a limited set of integrated analysis tools. These environments provided less than desirable design fidelity, often led to the inability of assessing critical programmatic and technical issues (e.g., cost, risk, technical impacts), and generally derived a design that was not necessarily optimized across the entire system. The continually changing, modern aerospace industry demands systems design processes that involve the best talent available (no matter where it resides) and access to the best design and analysis tools. A solution to these demands involves a design environment referred to as collaborative engineering. The collaborative engineering environment evolving within the National Aeronautics and Space Administration (NASA) is a capability that enables the Agency's engineering infrastructure to interact and use the best state-of-the-art tools and data across organizational boundaries. Using collaborative engineering, the collocated team is replaced with an interactive team structure where the team members are geographically distributed and the best engineering talent can be applied to the design effort regardless of physical location. In addition, a more efficient, higher quality design product is delivered by bringing together the best engineering talent with more up-to-date design and analysis tools. These tools are focused on interactive, multidisciplinary design and analysis with emphasis on the complete life cycle of the system, and they include nontraditional, integrated tools for life cycle cost estimation and risk assessment. NASA has made substantial progress during the last two years in developing a collaborative engineering environment. NASA is planning to use this collaborative engineering infrastructure to provide better aerospace systems life cycle design and analysis, which includes analytical assessment of the technical and programmatic aspects of a system from "cradle to grave." This paper describes the recent NASA developments in the area of collaborative engineering, the benefits (realized and anticipated) of using the developed capability, and the long-term plans for implementing this capability across the Agency.
NASA Technical Reports Server (NTRS)
Mallinckrodt, A. J.
1977-01-01
Data from an extensive array of collocated instrumentation at the Wallops Island test facility were intercompared in order to (1) determine the practical achievable accuracy limitations of various tropospheric and ionospheric correction techniques; (2) examine the theoretical bases and derivation of improved refraction correction techniques; and (3) estimate internal systematic and random error levels of the various tracking stations. The GEOS 2 satellite was used as the target vehicle. Data were obtained regarding the ionospheric and tropospheric propagation errors, the theoretical and data analysis of which was documented in some 30 separate reports over the last 6 years. An overview of project results is presented.
NASA Astrophysics Data System (ADS)
Hurter, F.; Maier, O.
2013-11-01
We reconstruct atmospheric wet refractivity profiles for the western part of Switzerland with a least-squares collocation approach from data sets of (a) zenith path delays that are a byproduct of the GPS (global positioning system) processing, (b) ground meteorological measurements, (c) wet refractivity profiles from radio occultations whose tangent points lie within the study area, and (d) radiosonde measurements. Wet refractivity is a parameter partly describing the propagation of electromagnetic waves and depends on the atmospheric parameters temperature and water vapour pressure. In addition, we have measurements of a lower V-band microwave radiometer at Payerne. It delivers temperature profiles at high temporal resolution, especially in the range from ground to 3000 m a.g.l., though vertical information content decreases with height. The temperature profiles together with the collocated wet refractivity profiles provide near-continuous dew point temperature or relative humidity profiles at Payerne for the study period from 2009 to 2011. In the validation of the humidity profiles, we adopt a two-step procedure. We first investigate the reconstruction quality of the wet refractivity profiles at the location of Payerne by comparing them to wet refractivity profiles computed from radiosonde profiles available for that location. We also assess the individual contributions of the data sets to the reconstruction quality and demonstrate a clear benefit from the data combination. Secondly, the accuracy of the conversion from wet refractivity to dew point temperature and relative humidity profiles with the radiometer temperature profiles is examined, comparing them also to radiosonde profiles. For the least-squares collocation solution combining GPS and ground meteorological measurements, we achieve the following error figures with respect to the radiosonde reference: maximum median offset of relative refractivity error is -16% and quartiles are 5% to 40% for the lower troposphere. We further added 189 radio occultations that met our requirements. They mostly improved the accuracy in the upper troposphere. Maximum median offsets have decreased from 120% relative error to 44% at 8 km height. Dew point temperature profiles after the conversion with radiometer temperatures compare to radiosonde profiles as to: absolute dew point temperature errors in the lower troposphere have a maximum median offset of -2 K and maximum quartiles of 4.5 K. For relative humidity, we get a maximum mean offset of 7.3%, with standard deviations of 12-20%. The methodology presented allows us to reconstruct humidity profiles at any location where temperature profiles, but no atmospheric humidity measurements other than from GPS are available. Additional data sets of wet refractivity are shown to be easily integrated into the framework and strongly aid the reconstruction. Since the used data sets are all operational and available in near-realtime, we envisage the methodology of this paper to be a tool for nowcasting of clouds and rain and to understand processes in the boundary layer and at its top.
The estimation of the Earth's gravity field
NASA Astrophysics Data System (ADS)
Szabo, Bela
1986-06-01
The various methods for the description of the Earth's gravity field from direct and/or indirect observations are reviewed. Geopotential models produced by various organizations and in use during the past 15 years are discussed in detail. Recent and future programs for the improvement of global gravity fields are reviewed and the expected improvements from new observation and data processing techniques are estimated. The regional and local gravity field is also reviewed. The various data types and their spectral properties, the sensitivities of the different gravimetric quantities to datatypes are discussed. The techniques for the estimation of gravimetric quantities and the achievable accuracies are presented (e.g., integral formulae, collocation). The results of recent works in this area by prominent authors are reviewed. The prediction of gravity outside the earth from surface data is discussed in two forms: a) prediction of gravity disturbance at high altitudes and b) upward continuation of gravity anomalies. The achievable improvements of the high frequency field by airborne gradiometry are summarized utilizing recent investigations.
What You Need to Know About the OMI NO2 Data Product for Air Quality Studies
NASA Technical Reports Server (NTRS)
Celarier, E. A.; Gleason, J. F.; Bucsela, E. J.; Brinksma, E.; Veefkind, J. P.
2007-01-01
The standard nitrogen dioxide (NO2) data product, produced from measurements by the Ozone Monitoring Instrument (OMI), are publicly available online from the NASA GESDISC facility. Important data fields include total and tropospheric column densities, as well as collocated data for cloud fraction and cloud top height, surface albedo and snow/ice coverage, at the resolution of the OMI instrument (12 km x 26 km, at nadir). The retrieved NO2 data have been validated, principally under clear-sky conditions. The first public-release version has been available since September 2006. An improved version of the data product, which includes a number of new data fields, and improved estimates of the retrieval uncertainties will be released by the end of 2007. This talk will describe the standard NO2 data product, including details that are essential for the use of the data for air quality studies. We will also describe the principal improvements with the new version of the data product.
Optical Fiber Sensors for Infrasonic Wind Noise Reduction and Earth Strain Measurement
NASA Astrophysics Data System (ADS)
DeWolf, Scott
Fiber-based interferometers provide the means to sense very small displacements over long baselines, and have the advantage of being nearly completely passive in their operation, making them particularly well suited for geophysical applications. This work presents the development and results from four new systems: one in atmospheric acoustics and three in Earth strain. Turbulent pressure fluctuations (wind noise) are a significant limiting factor in low-frequency atmospheric acoustic measurements. The Optical Fiber Infrasound Sensor (OFIS) provides an alternative to traditional infrasonic wind noise reduction (WNR) techniques by providing an instantaneous average over a large spatial extent. This study shows that linear OFISs ranging in length from 30 to 270 m provide a WNR of up to 30 dB in winds up to 5 m/s, in good agreement with a new analytical model. Arrays of optical fiber strainmeters were deployed to measure sediment compaction at two sites in Bangladesh. One array at Jamalganj (in the north) consists of 20, 40, 60, and 100 m long strainmeters, while the second near Khulna (in the south) also includes lengths of 80 and 300 m. Two years of weekly measurements show a clear seasonal signal and subsidence at both sites that is in reasonable agreement with collocated GPS receivers. A new 250-meter, interferometric vertical borehole strainmeter has been developed based completely on passive optical components. Details of the prototyping, design, and deployment at the Pinon Flat Observatory (PFO) are presented. Power spectra show an intertidal noise level of -130 dB (re. 1 epsilon/Hz), consistent within 1-3 dB between redundant components. Examination of its response to Earth tides and earthquakes relative to the areal strain recorded by an orthogonal pair of collocated, 730 m horizontal laser strainmeters yield a Poisson's ratio of 0.26. Two prototype horizontal strainmeters were also developed to explore the use of similar interferometric optical fiber technology for near-surface, long baseline strain measurement. Both instruments are shown to faithfully record earthquakes and yield very good estimates of the M2 tidal constituent, despite unexplained 2-8% amplitude discrepancies between the 90 and 180 m long instruments relative to the collocated laser strainmeter and each other.
NASA Astrophysics Data System (ADS)
Ho, Shu-Peng; Peng, Liang; Mears, Carl; Anthes, Richard A.
2018-01-01
We compare atmospheric total precipitable water (TPW) derived from the SSM/I (Special Sensor Microwave Imager) and SSMIS (Special Sensor Microwave Imager/Sounder) radiometers and WindSat to collocated TPW estimates derived from COSMIC (Constellation System for Meteorology, Ionosphere, and Climate) radio occultation (RO) under clear and cloudy conditions over the oceans from June 2006 to December 2013. Results show that the mean microwave (MW) radiometer - COSMIC TPW differences range from 0.06 to 0.18 mm for clear skies, from 0.79 to 0.96 mm for cloudy skies, from 0.46 to 0.49 mm for cloudy but non-precipitating conditions, and from 1.64 to 1.88 mm for precipitating conditions. Because RO measurements are not significantly affected by clouds and precipitation, the biases mainly result from MW retrieval uncertainties under cloudy and precipitating conditions. All COSMIC and MW radiometers detect a positive TPW trend over these 8 years. The trend using all COSMIC observations collocated with MW pixels for this data set is 1.79 mm decade-1, with a 95 % confidence interval of (0.96, 2.63), which is in close agreement with the trend estimated by the collocated MW observations (1.78 mm decade-1 with a 95 % confidence interval of 0.94, 2.62). The sample of MW and RO pairs used in this study is highly biased toward middle latitudes (40-60° N and 40-65° S), and thus these trends are not representative of global average trends. However, they are representative of the latitudes of extratropical storm tracks and the trend values are approximately 4 to 6 times the global average trends, which are approximately 0.3 mm decade-1. In addition, the close agreement of these two trends from independent observations, which represent an increase in TPW in our data set of about 6.9 %, are a strong indication of the positive water vapor-temperature feedback on a warming planet in regions where precipitation from extratropical storms is already large.
Nilles, M.A.; Gordon, J.D.; Schroder, L.J.; Paulin, C.E.
1995-01-01
The U.S. Geological Survey used four programs in 1991 to provide external quality assurance for the National Atmospheric Deposition Program/National Trends Network (NADP/NTN). An intersite-comparison program was used to evaluate onsite pH and specific-conductance determinations. The effects of routine sample handling, processing, and shipping of wet-deposition samples on analyte determinations and an estimated precision of analyte values and concentrations were evaluated in the blind-audit program. Differences between analytical results and an estimate of the analytical precision of four laboratories routinely measuring wet deposition were determined by an interlaboratory-comparison program. Overall precision estimates for the precipitation-monitoring system were determined for selected sites by a collocated-sampler program. Results of the intersite-comparison program indicated that 93 and 86 percent of the site operators met the NADP/NTN accuracy goal for pH determinations during the two intersite-comparison studies completed during 1991. The results also indicated that 96 and 97 percent of the site operators met the NADP/NTN accuracy goal for specific-conductance determinations during the two 1991 studies. The effects of routine sample handling, processing, and shipping, determined in the blind-audit program indicated significant positive bias (a=.O 1) for calcium, magnesium, sodium, potassium, chloride, nitrate, and sulfate. Significant negative bias (or=.01) was determined for hydrogen ion and specific conductance. Only ammonium determinations were not biased. A Kruskal-Wallis test indicated that there were no significant (*3t=.01) differences in analytical results from the four laboratories participating in the interlaboratory-comparison program. Results from the collocated-sampler program indicated the median relative error for cation concentration and deposition exceeded eight percent at most sites, whereas the median relative error for sample volume, sulfate, and nitrate concentration at all sites was less than four percent. The median relative error for hydrogen ion concentration and deposition ranged from 4.6 to 18.3 percent at the four sites and as indicated in previous years of the study, was inversely proportional to the acidity of the precipitation at a given site. Overall, collocated-sampling error typically was five times that of laboratory error estimates for most analytes.
A Recommendation on SLR Ranging to Future Global Navigation Satellite Systems
NASA Astrophysics Data System (ADS)
Labrecque, J. L.; Miller, J. J.; Pearlman, M.
2008-12-01
The multi-agency US Geodetic Requirements Working Group has recommended that Satellite Laser Retro- reflectors be installed on GPS III satellites as a principal component of the Positioning, Navigation, and Timing mandate of the Global Positioning System. The Working Group, which includes NASA, NGA, NOAA, NRL, USGS, and the USNO, echoes the Global Geodetic Observing System recommendation that SLR retro- reflectors be installed on all GNSS satellites. It is further recommended that the retro-reflectors conform to and hopefully exceed the minimum standard of the International Laser Ranging Service for retro-reflector cross sections of 100 million square meters for the HEO GNSS satellites to insure sufficiently accurate ranging by the global network of satellite laser ranging systems. The objective of this recommendation is to contribute to the improvement in the International Terrestrial Reference Frame, and its derivative the WGS84 reference frame, through continuing improvements in the characterization of the GPS orbits and clocks. Another objective is to provide an independent means of assessing the interoperability and accuracy of the GNSS systems and regional augmentation systems. The ranging to GNSS-mounted retro-reflectors will constitute a significant new means of space-based collocation to constrain the tie between the GPS and SLR networks that constitute over 50% of the data from which the ITRF is derived. The recommendation for the installation of SLR retro-reflectors aboard future GPS satellites is one of a number of efforts aimed at improving the accuracy and stability of ITRF. These steps are being coordinated with and supportive of the efforts of the GGOS and its services such at the VLBI2010 initiative, developing a next generation geodetic network, near real-time GPS positioning and EOP determination, and numerous efforts in the improvement of geodetic algorithms for GPS, SLR, VLBI, DORIS, and the determination of the ITRF. If past is prologue, the requirements of accuracy placed upon GNSS systems will continue to evolve at a factor of ten per decade for the lifetime of the GPS III, extending to 2025 and beyond. Global societal priorities such as sea level change measurement already require a factor of ten or more improvement in the accuracy and stability of the ITRF. Increasing accuracy requirements by civilian users for precision positioning and time keeping will certainly continue to grow at an exponential rate. The PNT accuracy of our GNSS systems will keep pace with these societal needs only if we equip the GNSS systems with the capability to identify and further reduce systematic errors.
Gravity model improvement using GEOS-3 (GEM 9 and 10)
NASA Technical Reports Server (NTRS)
Lerch, F. J.; Klosko, S. M.; Laubscher, R. E.; Wagner, C. A.
1977-01-01
The use of collocation permitted GEM 9 to be a larger field than previous derived satellite models, GEM 9 having harmonics complete to 20 x 20 with selected higher degree terms. The satellite data set has approximately 840,000 observations, of which 200,000 are laser ranges taken on 9 satellites equipped with retroreflectors. GEM 10 is complete to 22 x 22 with selected higher degree terms out to degree and order 30 amounting to a total of 592 coefficients. Comparisons with surface gravity and altimeter data indicate a substantial improvement in GEM 9 over previous satellite solutions; GEM 9 is in even closer agreement with surface data than the previously published GEM 6 solution which contained surface gravity. In particular the free air gravity anomalies calculated from GEM 9 and a surface gravity solution are in excellent agreement for the high degree terms.
NASA Astrophysics Data System (ADS)
Wyborn, L. A.; Evans, B. J. K.
2015-12-01
The National Computational Infrastructure (NCI) at the Australian National University (ANU) has evolved to become Australia's peak computing centre for national computational and Data-intensive Earth system science. More recently NCI collocated 10 Petabytes of 34 major national and international environmental, climate, earth system, geophysics and astronomy data collections to create the National Environmental Research Interoperability Data Platform (NERDIP). Spatial scales of the collections range from global to local ultra-high resolution, whilst sizes range from 3PB down to a few GB. The data is highly connected to both NCI HPC and cloud resources via low latency internal networks with massive bandwidth. Now that the collections are collocated on a single data platform, the 'Hype' and expectations around potential use cases for the NERDIP are high. Not unexpected issues are emerging such as access, licensing issues, ownership, and incompatible data standards. Many communities are standardised within their domain, but achieving true interdisciplinary science will require all communities to move towards open interoperable data formats such as NetCDF4/HDF5. This transition will impact on software using proprietary or non-open standards. But before we reach the 'Plateau of Productivity', there needs to be greater 'Enlightenment' of users to encourage them to realise that this unprecedented Earth system science platform provides a rich mine of opportunities for discovery and innovation for a diverse range of both domain-specific and interdisciplinary investigations including climate and weather research, impact analysis, environment, remote sensing and geophysics and develop new and innovative interdisciplinary use cases that will guide those architecting the system and help minimise the amplitude of the 'Trough of Disillusionment' and ensure greater productivity and uptake of the collections that make NERDIP unique in the next generation of Data-intensive Science.
NASA Technical Reports Server (NTRS)
Yam, Yeung; Johnson, Timothy L.; Lang, Jeffrey H.
1987-01-01
A model reduction technique based on aggregation with respect to sensor and actuator influence functions rather than modes is presented for large systems of coupled second-order differential equations. Perturbation expressions which can predict the effects of spillover on both the reduced-order plant model and the neglected plant model are derived. For the special case of collocated actuators and sensors, these expressions lead to the derivation of constraints on the controller gains that are, given the validity of the perturbation technique, sufficient to guarantee the stability of the closed-loop system. A case study demonstrates the derivation of stabilizing controllers based on the present technique. The use of control and observation synthesis in modifying the dimension of the reduced-order plant model is also discussed. A numerical example is provided for illustration.
Predictive Simulations of Neuromuscular Coordination and Joint-Contact Loading in Human Gait.
Lin, Yi-Chung; Walter, Jonathan P; Pandy, Marcus G
2018-04-18
We implemented direct collocation on a full-body neuromusculoskeletal model to calculate muscle forces, ground reaction forces and knee contact loading simultaneously for one cycle of human gait. A data-tracking collocation problem was solved for walking at the normal speed to establish the practicality of incorporating a 3D model of articular contact and a model of foot-ground interaction explicitly in a dynamic optimization simulation. The data-tracking solution then was used as an initial guess to solve predictive collocation problems, where novel patterns of movement were generated for walking at slow and fast speeds, independent of experimental data. The data-tracking solutions accurately reproduced joint motion, ground forces and knee contact loads measured for two total knee arthroplasty patients walking at their preferred speeds. RMS errors in joint kinematics were < 2.0° for rotations and < 0.3 cm for translations while errors in the model-computed ground-reaction and knee-contact forces were < 0.07 BW and < 0.4 BW, respectively. The predictive solutions were also consistent with joint kinematics, ground forces, knee contact loads and muscle activation patterns measured for slow and fast walking. The results demonstrate the feasibility of performing computationally-efficient, predictive, dynamic optimization simulations of movement using full-body, muscle-actuated models with realistic representations of joint function.
Enhanced damping for bridge cables using a self-sensing MR damper
NASA Astrophysics Data System (ADS)
Chen, Z. H.; Lam, K. H.; Ni, Y. Q.
2016-08-01
This paper investigates enhanced damping for protecting bridge stay cables from excessive vibration using a newly developed self-sensing magnetorheological (MR) damper. The semi-active control strategy for effectively operating the self-sensing MR damper is formulated based on the linear-quadratic-Gaussian (LQG) control by further considering a collocated control configuration, limited measurements and nonlinear damper dynamics. Due to its attractive feature of sensing-while-damping, the self-sensing MR damper facilitates the collocated control. On the other hand, only the sensor measurements from the self-sensing device are employed in the feedback control. The nonlinear dynamics of the self-sensing MR damper, represented by a validated Bayesian NARX network technique, are further accommodated in the control formulation to compensate for its nonlinearities. Numerical and experimental investigations are conducted on stay cables equipped with the self-sensing MR damper operated in passive and semi-active control modes. The results verify that the collocated self-sensing MR damper facilitates smart damping for inclined cables employing energy-dissipative LQG control with only force and displacement measurements at the damper. It is also demonstrated that the synthesis of nonlinear damper dynamics in the LQG control enhances damping force tracking efficiently, explores the features of the self-sensing MR damper, and achieves better control performance over the passive MR damping control and the Heaviside step function-based LQG control that ignores the damper dynamics.
NASA Astrophysics Data System (ADS)
Ramachandran, R.; Murphy, K. J.; Baynes, K.; Lynnes, C.
2016-12-01
With the volume of Earth observation data expanding rapidly, cloud computing is quickly changing the way Earth observation data is processed, analyzed, and visualized. The cloud infrastructure provides the flexibility to scale up to large volumes of data and handle high velocity data streams efficiently. Having freely available Earth observation data collocated on a cloud infrastructure creates opportunities for innovation and value-added data re-use in ways unforeseen by the original data provider. These innovations spur new industries and applications and spawn new scientific pathways that were previously limited due to data volume and computational infrastructure issues. NASA, in collaboration with Amazon, Google, and Microsoft, have jointly developed a set of recommendations to enable efficient transfer of Earth observation data from existing data systems to a cloud computing infrastructure. The purpose of these recommendations is to provide guidelines against which all data providers can evaluate existing data systems and be used to improve any issues uncovered to enable efficient search, access, and use of large volumes of data. Additionally, these guidelines ensure that all cloud providers utilize a common methodology for bulk-downloading data from data providers thus preventing the data providers from building custom capabilities to meet the needs of individual cloud providers. The intent is to share these recommendations with other Federal agencies and organizations that serve Earth observation to enable efficient search, access, and use of large volumes of data. Additionally, the adoption of these recommendations will benefit data users interested in moving large volumes of data from data systems to any other location. These data users include the cloud providers, cloud users such as scientists, and other users working in a high performance computing environment who need to move large volumes of data.
Fully anisotropic 3-D EM modelling on a Lebedev grid with a multigrid pre-conditioner
NASA Astrophysics Data System (ADS)
Jaysaval, Piyoosh; Shantsev, Daniil V.; de la Kethulle de Ryhove, Sébastien; Bratteland, Tarjei
2016-12-01
We present a numerical algorithm for 3-D electromagnetic (EM) simulations in conducting media with general electric anisotropy. The algorithm is based on the finite-difference discretization of frequency-domain Maxwell's equations on a Lebedev grid, in which all components of the electric field are collocated but half a spatial step staggered with respect to the magnetic field components, which also are collocated. This leads to a system of linear equations that is solved using a stabilized biconjugate gradient method with a multigrid preconditioner. We validate the accuracy of the numerical results for layered and 3-D tilted transverse isotropic (TTI) earth models representing typical scenarios used in the marine controlled-source EM method. It is then demonstrated that not taking into account the full anisotropy of the conductivity tensor can lead to misleading inversion results. For synthetic data corresponding to a 3-D model with a TTI anticlinal structure, a standard vertical transverse isotropic (VTI) inversion is not able to image a resistor, while for a 3-D model with a TTI synclinal structure it produces a false resistive anomaly. However, if the VTI forward solver used in the inversion is replaced by the proposed TTI solver with perfect knowledge of the strike and dip of the dipping structures, the resulting resistivity images become consistent with the true models.
An Artificial Turf-Based Surrogate Surface Collector for the ...
This paper describes the development of a new artificial turf surrogate surface (ATSS) sampler for use in the measurement of mercury (Hg) dry deposition. In contrast to many existing surrogate surface designs, the ATSS utilizes a three-dimensional deposition surface that may more closely mimic the physical structure of many natural surfaces than traditional flat surrogate surface designs (water, filter, greased Mylar film). The ATSS has been designed to overcome several complicating factors that can impact the integrity of samples with other direct measurement approaches by providing a passive system which can be deployed for both short and extended periods of time (days to weeks), and is not contaminated by precipitation and/or invalidated by strong winds. Performance characteristics including collocated precision, in-field procedural and laboratory blanks were evaluated. The results of these performance evaluations included a mean collocated precision of 9%, low blanks (0.8 ng), high extraction efficiency (97%–103%), and a quantitative matrix spike recovery (100%). In recent years, a growing number of intensive field campaigns and routine measurement networks have provided valuable information on the rates of total mercury (Hg) wet deposition in North America (Guentzel et al., 1995; Rea et al., 1996; Dvonch et al., 1999; Landis and Keeler, 2002; Dvonch et al., 2005; Hall et al., 2005; Keeler et al., 2005; Keeler et al., 2006; Butler et al., 2008; Prestbo an
Improved global prediction of 300 nautical mile mean free air anomalies
NASA Technical Reports Server (NTRS)
Cruz, J. Y.
1982-01-01
Current procedures used for the global prediction of 300nm mean anomalies starting from known values of 1 deg by 1 deg mean anomalies yield unreasonable prediction results when applied to 300nm blocks which have a rapidly varying gravity anomaly field and which contain relatively few observed 60nm blocks. Improvement of overall 300nm anomaly prediction is first achieved by using area-weighted as opposed to unweighted averaging of the 25 generated 60nm mean anomalies inside the 300nm block. Then, improvement of prediction over rough 300nm blocks is realized through the use of fully known 1 deg by 1 deg mean elevations, taking advantage of the correlation that locally exists between 60nm mean anomalies and 60nm mean elevations inside the 300nm block. An improved prediction model which adapts itself to the roughness of the local anomaly field is found to be the model of Least Squares Collocation with systematic parameters, the systematic parameter being the slope b which is a type of Bouguer slope expressing the correlation that locally exists between 60nm mean anomalies and 60nm mean elevations.
NASA Technical Reports Server (NTRS)
Cess, R. D.; Zhang, M. H.; Zhou, Y.; Jing, X.; Dvortsov, V.
1996-01-01
To investigate the absorption of shortwave radiation by clouds, we have collocated satellite and surface measurements of shortwave radiation at several locations. Considerable effort has been directed toward understanding and minimizing sampling errors caused by the satellite measurements being instantaneous and over a grid that is much larger than the field of view of an upward facing surface pyranometer. The collocated data indicate that clouds absorb considerably more shortwave radiation than is predicted by theoretical models. This is consistent with the finding from both satellite and aircraft measurements that observed clouds are darker than model clouds. In the limit of thick clouds, observed top-of-the-atmosphere albedos do not exceed a value of 0.7, whereas in models the maximum albedo can be 0.8.
A study of the radiative transfer equation using a spherical harmonics-nodal collocation method
NASA Astrophysics Data System (ADS)
Capilla, M. T.; Talavera, C. F.; Ginestar, D.; Verdú, G.
2017-03-01
Optical tomography has found many medical applications that need to know how the photons interact with the different tissues. The majority of the photon transport simulations are done using the diffusion approximation, but this approximation has a limited validity when optical properties of the different tissues present large gradients, when structures near the photons source are studied or when anisotropic scattering has to be taken into account. As an alternative to the diffusion model, the PL equations for the radiative transfer problem are studied. These equations are discretized in a rectangular mesh using a nodal collocation method. The performance of this model is studied by solving different 1D and 2D benchmark problems of light propagation in tissue having media with isotropic and anisotropic scattering.
NASA Astrophysics Data System (ADS)
Dabiri, Arman; Butcher, Eric A.; Nazari, Morad
2017-02-01
Compliant impacts can be modeled using linear viscoelastic constitutive models. While such impact models for realistic viscoelastic materials using integer order derivatives of force and displacement usually require a large number of parameters, compliant impact models obtained using fractional calculus, however, can be advantageous since such models use fewer parameters and successfully capture the hereditary property. In this paper, we introduce the fractional Chebyshev collocation (FCC) method as an approximation tool for numerical simulation of several linear fractional viscoelastic compliant impact models in which the overall coefficient of restitution for the impact is studied as a function of the fractional model parameters for the first time. Other relevant impact characteristics such as hysteresis curves, impact force gradient, penetration and separation depths are also studied.
Simurda, Matej; Duggen, Lars; Basse, Nils T; Lassen, Benny
2018-02-01
A numerical model for transit-time ultrasonic flowmeters operating under multiphase flow conditions previously presented by us is extended by mesh refinement and grid point redistribution. The method solves modified first-order stress-velocity equations of elastodynamics with additional terms to account for the effect of the background flow. Spatial derivatives are calculated by a Fourier collocation scheme allowing the use of the fast Fourier transform, while the time integration is realized by the explicit third-order Runge-Kutta finite-difference scheme. The method is compared against analytical solutions and experimental measurements to verify the benefit of using mapped grids. Additionally, a study of clamp-on and in-line ultrasonic flowmeters operating under multiphase flow conditions is carried out.
Active control of transient rotordynamic vibration by optimal control methods
NASA Technical Reports Server (NTRS)
Palazzolo, A. B.; Lin, R. R.; Alexander, R. M.; Kascak, A. F.
1988-01-01
Although considerable effort has been put into the study of steady state vibration control, there are few methods applicable to transient vibration control of rotorbearing systems. In this paper optimal control theory has been adopted to minimize rotor vibration due to sudden imbalance, e.g., blade loss. The system gain matrix is obtained by choosing the weighting matrices and solving the Riccati equation. Control forces are applied to the system via a feedback loop. A seven mass rotor system is simulated for illustration. A relationship between the number of sensors and the number of modes used in the optimal control model is investigated. Comparisons of responses are made for various configurations of modes, sensors, and actuators. Furthermore, spillover effect is examined by comparing results from collocated and noncollocated sensor configurations. Results show that shaft vibration is significantly attenuated in the closed loop system.
NASA Technical Reports Server (NTRS)
Rao, P. Anil; Velden, Christopher S.; Braun, Scott A.; Einaudi, Franco (Technical Monitor)
2001-01-01
Errors in the height assignment of some satellite-derived winds exist because the satellites sense radiation emitted from a finite layer of the atmosphere rather than a specific level. Potential problems in data assimilation may arise because the motion of a measured layer is often represented by a single-level value. In this research, cloud and water vapor motion winds that are derived from the Geostationary Operational Environmental Satellites (GOES winds) are compared to collocated rawinsonde observations (RAOBs). An important aspect of this work is that in addition to comparisons at each assigned height, the GOES winds are compared to the entire profile of the collocated RAOB data to determine the vertical error characteristics of the GOES winds. The impact of these results on numerical weather prediction is then investigated. The comparisons at individual vector height assignments indicate that the error of the GOES winds range from approx. 3 to 10 m/s and generally increase with height. However, if taken as a percentage of the total wind speed, accuracy is better at upper levels. As expected, comparisons with the entire profile of the collocated RAOBs indicate that clear-air water vapor winds represent deeper layers than do either infrared or water vapor cloud-tracked winds. This is because in cloud-free regions the signal from water vapor features may result from emittance over a thicker layer. To further investigate characteristics of the clear-air water vapor winds, they are stratified into two categories that are dependent on the depth of the layer represented by the vector. It is found that if the vertical gradient of moisture is smooth and uniform from near the height assignment upwards, the clear-air water vapor wind tends to represent a relatively deep layer. The information from the comparisons is then used in numerical model simulations of two separate events to determine the forecast impacts. Four simulations are performed for each case: 1) A control simulation that assimilates no satellite wind data, 2) assimilation of all GOES winds according to their assigned single level height, 3) assimilation of all GOES winds spread over multiple levels, and 4) assimilation of all GOES winds spread over multiple levels, but with variations in the vertical influence of clear-air water vapor winds based on the moisture profile in the model. In the first case, a strong mid-latitude cyclone is present and the use of the satellite data results in improved storm tracks during the initial approx. 36 h forecast period. This is because the satellite data improves the analysis of the environment into which the storm progresses. Statistics for mean wind vector and height differences show that, with the exception of the height field at later times in the first case, the use of GOES winds improves the simulation with time. The simulation results suggest that it is beneficial to spread the GOES wind information over multiple levels, particularly when the moisture profile is used to define the vertical influence.
An Improved Nested Sampling Algorithm for Model Selection and Assessment
NASA Astrophysics Data System (ADS)
Zeng, X.; Ye, M.; Wu, J.; WANG, D.
2017-12-01
Multimodel strategy is a general approach for treating model structure uncertainty in recent researches. The unknown groundwater system is represented by several plausible conceptual models. Each alternative conceptual model is attached with a weight which represents the possibility of this model. In Bayesian framework, the posterior model weight is computed as the product of model prior weight and marginal likelihood (or termed as model evidence). As a result, estimating marginal likelihoods is crucial for reliable model selection and assessment in multimodel analysis. Nested sampling estimator (NSE) is a new proposed algorithm for marginal likelihood estimation. The implementation of NSE comprises searching the parameters' space from low likelihood area to high likelihood area gradually, and this evolution is finished iteratively via local sampling procedure. Thus, the efficiency of NSE is dominated by the strength of local sampling procedure. Currently, Metropolis-Hasting (M-H) algorithm and its variants are often used for local sampling in NSE. However, M-H is not an efficient sampling algorithm for high-dimensional or complex likelihood function. For improving the performance of NSE, it could be feasible to integrate more efficient and elaborated sampling algorithm - DREAMzs into the local sampling. In addition, in order to overcome the computation burden problem of large quantity of repeating model executions in marginal likelihood estimation, an adaptive sparse grid stochastic collocation method is used to build the surrogates for original groundwater model.
A Spaceflight Magnetic Bearing Equipped Optical Chopper with Six-Axis Active Control
NASA Technical Reports Server (NTRS)
Blumenstock, Kenneth A.; Lee, Kenneth Y.; Schepis, Joseph P.
1998-01-01
This paper describes the development of an ETU (Engineering Test Unit) rotary optical chopper with magnetic bearings. An ETU is required to be both flight-like, nearly identical to a flight unit without the need for material certifications, and demonstrate structural and performance integrity. A prototype breadboard design previously demonstrated the feasibility of meeting flight performance requirements using magnetic bearings. The chopper mechanism is a critical component of the High Resolution Dynamics Limb Sounder (HIRDLS) which will be flown on EOS-CHEM (Earth Observing System-Chemistry). Particularly noteworthy are the science requirements which demand high precision positioning and minimal power consumption along with full redundancy of coils and sensors in a miniature, lightweight package. The magnetic bearings are unique in their pole design to minimize parasitic losses and utilize collocated optical sensing. The motor is of an unusual disk-type ironless stator design. The ETU design has evolved from the breadboard design. A number of improvements have been incorporated into the ETU design. Active thrust control has been added along with changes to improve sensor stability, motor efficiency, and touchdown and launch survivability. It was necessary to do all this while simultaneously reducing the mechanism volume. Flight-like electronics utilize a DSP (Digital Signal Processor) and contain all sensor electronics and drivers on a single five inch by nine inch circuit board. Performance test results are reported including magnetic bearing and motor rotational losses.
Stability analysis of spectral methods for hyperbolic initial-boundary value systems
NASA Technical Reports Server (NTRS)
Gottlieb, D.; Lustman, L.; Tadmor, E.
1986-01-01
A constant coefficient hyperbolic system in one space variable, with zero initial data is discussed. Dissipative boundary conditions are imposed at the two points x = + or - 1. This problem is discretized by a spectral approximation in space. Sufficient conditions under which the spectral numerical solution is stable are demonstrated - moreover, these conditions have to be checked only for scalar equations. The stability theorems take the form of explicit bounds for the norm of the solution in terms of the boundary data. The dependence of these bounds on N, the number of points in the domain (or equivalently the degree of the polynomials involved), is investigated for a class of standard spectral methods, including Chebyshev and Legendre collocations.
Quasi elastic and inelastic neutron scattering study of vitamin C aqueous solutions
NASA Astrophysics Data System (ADS)
Migliardo, F.; Branca, C.; Magazù, S.; Migliardo, P.; Coppolino, S.; Villari, A.; Micali, N.
2002-02-01
In this paper, new results obtained by quasi elastic and inelastic neutron scattering experiments performed on vitamin C ( L-ascorbic acid)/H 2O mixtures are reported. The data analysis of the QENS measurements, by a separation of the diffusive dynamics of hydrated L-ascorbic acid from that of water, furnishes quantitative evidences of a random jump diffusion motion of vitamin C and shows that the water dynamics is strongly affected by the presence of L-ascorbic acid. Concerning the INS experiment, we are able, through the behaviour of neutron spectra across the glass transition temperature ( T g≈233 K for the vitamin C/water system), to collocate the investigated system in the Angell “strong-fragile” scheme.
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Hall, David G.; Miranda, Felix A.
2004-01-01
The paper describes the operation of a patented wireless RF telemetry system, consisting of a bio-MEMS implantable sensor and an external hand held unit, operating over the frequency range of few hundreds of MHz. A MEMS capacitive pressure sensor integrated with a miniature inductor/antenna together constitute the implantable sensor. Signal processing circuits collocated with a printed loop antenna together form the hand held unit, capable of inductively powering and also receiving the telemetry signals from the sensor. The paper in addition, demonstrates a technique to enhance the quality factor and inductance of the inductor in the presence of a lower ground plane and also presents the radiation characteristics of the loop antenna.
Measurement of tropospheric aerosol in São Paulo area using a new upgraded Raman LIDAR system
NASA Astrophysics Data System (ADS)
Landulfo, Eduardo; Rodrigues, Patrícia F.; da Silva Lopes, Fábio Juliano; Bourayou, Riad
2012-11-01
Elastic backscatter LIDAR systems have been used to determine aerosol profile concentration in several areas such as weather, pollution and air quality monitoring. In order to determine the aerosol extinction and backscattering profiles, the Klett inversion method is largely used, but this method suffers from lack of information since there are two unknown variables to be determined using only one measured LIDAR signal, and assumption of the LIDAR ratio (the relation between the extinction and backscattering coefficients) is needed. When a Raman LIDAR system is used, the inelastic backscattering signal is affected by aerosol extinction but not by aerosol backscatter, which allows this LIDAR to uniquely determine extinction and backscattering coefficients without any assumptions or any collocated instruments. The MSP-LIDAR system, set-up in a highly dense suburban area in the city of São Paulo, has been upgraded to a Raman LIDAR, and in its actual 6-channel configuration allows it to monitor elastic backscatter at 355 and 532 nm together with nitrogen and water vapor Raman backscatters at 387nm and 608 nm and 408nm and 660 nm, respectively. Thus, the measurements of aerosol backscattering, extinction coefficients and water vapor mixing ratio in the Planetary Boundary Layer (PBL) are becoming available. The system will provide the important meteorological parameters such as Aerosol Optical Depth (AOD) and will be used for the study of aerosol variations in lower troposphere over the city of São Paulo, air quality monitoring and for estimation of humidity impact on the aerosol optical properties, without any a priori assumption. This study will present the first results obtained with this upgraded LIDAR system, demonstrating the high quality of obtained aerosol and water vapor data. For that purpose, we compared the data obtained with the new MSP-Raman LIDAR with a mobile Raman LIDAR collocated at the Center for Lasers and Applications, Nuclear and Energy Research Institute in São Paulo and radiosonde data from Campo de Marte Airport, in São Paulo.
A Least Squares Collocation Approach with GOCE gravity gradients for regional Moho-estimation
NASA Astrophysics Data System (ADS)
Rieser, Daniel; Mayer-Guerr, Torsten
2014-05-01
The depth of the Moho discontinuity is commonly derived by either seismic observations, gravity measurements or combinations of both. In this study, we aim to use the gravity gradient measurements of the GOCE satellite mission in a Least Squares Collocation (LSC) approach for the estimation of the Moho depth on regional scale. Due to its mission configuration and measurement setup, GOCE is able to contribute valuable information in particular in the medium wavelengths of the gravity field spectrum, which is also of special interest for the crust-mantle boundary. In contrast to other studies we use the full information of the gradient tensor in all three dimensions. The problem outline is formulated as isostatically compensated topography according to the Airy-Heiskanen model. By using a topography model in spherical harmonics representation the topographic influences can be reduced from the gradient observations. Under the assumption of constant mantle and crustal densities, surface densities are directly derived by LSC on regional scale, which in turn are converted in Moho depths. First investigations proofed the ability of this method to resolve the gravity inversion problem already with a small amount of GOCE data and comparisons with other seismic and gravitmetric Moho models for the European region show promising results. With the recently reprocessed GOCE gradients, an improved data set shall be used for the derivation of the Moho depth. In this contribution the processing strategy will be introduced and the most recent developments and results using the currently available GOCE data shall be presented.
NASA Astrophysics Data System (ADS)
Kit, Eliezer; Liberzon, Dan
2016-09-01
High resolution measurements of turbulence in the atmospheric boundary layer (ABL) are critical to the understanding of physical processes and parameterization of important quantities, such as the turbulent kinetic energy dissipation. Low spatio-temporal resolution of standard atmospheric instruments, sonic anemometers and LIDARs, limits their suitability for fine-scale measurements of ABL. The use of miniature hot-films is an alternative technique, although such probes require frequent calibration, which is logistically untenable in field setups. Accurate and truthful calibration is crucial for the multi-hot-films applications in atmospheric studies, because the ability to conduct calibration in situ ultimately determines the turbulence measurements quality. Kit et al (2010 J. Atmos. Ocean. Technol. 27 23-41) described a novel methodology for calibration of hot-film probes using a collocated sonic anemometer combined with a neural network (NN) approach. An important step in the algorithm is the generation of a calibration set for NN training by an appropriate low-pass filtering of the high resolution voltages, measured by the hot-film-sensors and low resolution velocities acquired by the sonic. In Kit et al (2010 J. Atmos. Ocean. Technol. 27 23-41), Kit and Grits (2011 J. Atmos. Ocean. Technol. 28 104-10) and Vitkin et al (2014 Meas. Sci. Technol. 25 75801), the authors reported on successful use of this approach for in situ calibration, but also on the method’s limitations and restricted range of applicability. In their earlier work, a jet facility and a probe, comprised of two orthogonal x-hot-films, were used for calibration and for full dataset generation. In the current work, a comprehensive laboratory study of 3D-calibration of two multi-hot-film probes (triple- and four-sensor) using a grid flow was conducted. The probes were embedded in a collocated sonic, and their relative pitch and yaw orientation to the mean flow was changed by means of motorized traverses. The study demonstrated that NN-calibration is a powerful tool for calibration of multi-sensor 3D-hot film probes embedded in a collocated sonic, and can be employed in long-lasting field campaigns.
Coexistence Analysis of Adjacent Long Term Evolution (LTE) Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aulama, Mohannad M.; Olama, Mohammed M
As the licensing and deployment of Long term evolution (LTE) systems are ramping up, the study of coexistence of LTE systems is an essential topic in civil and military applications. In this paper, we present a coexistence study of adjacent LTE systems aiming at evaluating the effect of inter-system interference on system capacity and performance as a function of some of the most common mitigation techniques: frequency guard band, base station (BS) antenna coupling loss, and user equipment (UE) antenna spacing. A system model is constructed for two collocated macro LTE networks. The developed model takes into consideration the RFmore » propagation environment, power control scheme, and adjacent channel interference. Coexistence studies are performed for a different combination of time/frequency division duplex (TDD/FDD) systems under three different guard-bands of 0MHz, 5MHz, and 10MHz. Numerical results are presented to advice the minimum frequency guard band, BS coupling loss, and UE antenna isolation required for a healthy system operation.« less
An overview of wireless structural health monitoring for civil structures.
Lynch, Jerome Peter
2007-02-15
Wireless monitoring has emerged in recent years as a promising technology that could greatly impact the field of structural monitoring and infrastructure asset management. This paper is a summary of research efforts that have resulted in the design of numerous wireless sensing unit prototypes explicitly intended for implementation in civil structures. Wireless sensing units integrate wireless communications and mobile computing with sensors to deliver a relatively inexpensive sensor platform. A key design feature of wireless sensing units is the collocation of computational power and sensors; the tight integration of computing with a wireless sensing unit provides sensors with the opportunity to self-interrogate measurement data. In particular, there is strong interest in using wireless sensing units to build structural health monitoring systems that interrogate structural data for signs of damage. After the hardware and the software designs of wireless sensing units are completed, the Alamosa Canyon Bridge in New Mexico is utilized to validate their accuracy and reliability. To improve the ability of low-cost wireless sensing units to detect the onset of structural damage, the wireless sensing unit paradigm is extended to include the capability to command actuators and active sensors.
NASA Technical Reports Server (NTRS)
Valero, Francisco P. J.; Cess, Robert D.; Zhang, Minghua; Pope, Shelly K.; Bucholtz, Anthony; Bush, Brett; Vitko, John, Jr.
1997-01-01
As part of the Atmospheric Radiation Measurement (ARM) Enhanced Shortwave Experiment (ARESE), we have obtained and analyzed measurements made from collocated aircraft of the absorption of solar radiation within the atmospheric column between the two aircraft. The measurements were taken during October 1995 at the ARM site in Oklahoma. Relative to a theoretical radiative transfer model, we find no evidence for excess solar absorption in the clear atmosphere and significant evidence for its existence in the cloudy atmosphere. This excess cloud solar absorption appears to occur in both visible (0.224-0.68 microns) and near-infrared (0.68-3.30 microns) spectral regions, although not at 0.5 microns for the visible contribution, and it is shown to be true absorption rather than an artifact of sampling errors caused by measuring three-dimensional clouds.
Contact stresses in pin-loaded orthotropic plates
NASA Technical Reports Server (NTRS)
Hyer, M. W.; Klang, E. C.
1984-01-01
The effects of pin elasticity, friction, and clearance on the stresses near the hole in a pin-loaded orthotropic plate are described. The problem is modeled as a contact elasticity problem using complex variable theory, the pin and the plate being two elastic bodies interacting through contact. This modeling is in contrast to previous works which assumed that the pin is rigid or that it exerts a known cosinusoidal radial traction on the hole boundary. Neither of these approaches explicitly involves a pin. A collocation procedure and iteration were used to obtain numerical results for a variety of plate and pin elastic properties and various levels of friction and clearance. Collocation was used to enforce the boundary and iteration was used to find the contact and no-slip regions on the boundary. Details of the numerical scheme are discussed.
Tensorial Basis Spline Collocation Method for Poisson's Equation
NASA Astrophysics Data System (ADS)
Plagne, Laurent; Berthou, Jean-Yves
2000-01-01
This paper aims to describe the tensorial basis spline collocation method applied to Poisson's equation. In the case of a localized 3D charge distribution in vacuum, this direct method based on a tensorial decomposition of the differential operator is shown to be competitive with both iterative BSCM and FFT-based methods. We emphasize the O(h4) and O(h6) convergence of TBSCM for cubic and quintic splines, respectively. We describe the implementation of this method on a distributed memory parallel machine. Performance measurements on a Cray T3E are reported. Our code exhibits high performance and good scalability: As an example, a 27 Gflops performance is obtained when solving Poisson's equation on a 2563 non-uniform 3D Cartesian mesh by using 128 T3E-750 processors. This represents 215 Mflops per processors.
NASA Technical Reports Server (NTRS)
Gatewood, B. E.
1971-01-01
The linearized integral equation for the Foucault test of a solid mirror was solved by various methods: power series, Fourier series, collocation, iteration, and inversion integral. The case of the Cassegrain mirror was solved by a particular power series method, collocation, and inversion integral. The inversion integral method appears to be the best overall method for both the solid and Cassegrain mirrors. Certain particular types of power series and Fourier series are satisfactory for the Cassegrain mirror. Numerical integration of the nonlinear equation for selected surface imperfections showed that results start to deviate from those given by the linearized equation at a surface deviation of about 3 percent of the wavelength of light. Several possible procedures for calibrating and scaling the input data for the integral equation are described.
An embedded formula of the Chebyshev collocation method for stiff problems
NASA Astrophysics Data System (ADS)
Piao, Xiangfan; Bu, Sunyoung; Kim, Dojin; Kim, Philsu
2017-12-01
In this study, we have developed an embedded formula of the Chebyshev collocation method for stiff problems, based on the zeros of the generalized Chebyshev polynomials. A new strategy for the embedded formula, using a pair of methods to estimate the local truncation error, as performed in traditional embedded Runge-Kutta schemes, is proposed. The method is performed in such a way that not only the stability region of the embedded formula can be widened, but by allowing the usage of larger time step sizes, the total computational costs can also be reduced. In terms of concrete convergence and stability analysis, the constructed algorithm turns out to have an 8th order convergence and it exhibits A-stability. Through several numerical experimental results, we have demonstrated that the proposed method is numerically more efficient, compared to several existing implicit methods.
NASA Astrophysics Data System (ADS)
Bastani, Ali Foroush; Dastgerdi, Maryam Vahid; Mighani, Abolfazl
2018-06-01
The main aim of this paper is the analytical and numerical study of a time-dependent second-order nonlinear partial differential equation (PDE) arising from the endogenous stochastic volatility model, introduced in [Bensoussan, A., Crouhy, M. and Galai, D., Stochastic equity volatility related to the leverage effect (I): equity volatility behavior. Applied Mathematical Finance, 1, 63-85, 1994]. As the first step, we derive a consistent set of initial and boundary conditions to complement the PDE, when the firm is financed by equity and debt. In the sequel, we propose a Newton-based iteration scheme for nonlinear parabolic PDEs which is an extension of a method for solving elliptic partial differential equations introduced in [Fasshauer, G. E., Newton iteration with multiquadrics for the solution of nonlinear PDEs. Computers and Mathematics with Applications, 43, 423-438, 2002]. The scheme is based on multilevel collocation using radial basis functions (RBFs) to solve the resulting locally linearized elliptic PDEs obtained at each level of the Newton iteration. We show the effectiveness of the resulting framework by solving a prototypical example from the field and compare the results with those obtained from three different techniques: (1) a finite difference discretization; (2) a naive RBF collocation and (3) a benchmark approximation, introduced for the first time in this paper. The numerical results confirm the robustness, higher convergence rate and good stability properties of the proposed scheme compared to other alternatives. We also comment on some possible research directions in this field.
NASA Astrophysics Data System (ADS)
Hua, H.; Manipon, G.; Starch, M.
2017-12-01
NASA's upcoming missions are expected to be generating data volumes at least an order of magnitude larger than current missions. A significant increase in data processing, data rates, data volumes, and long-term data archive capabilities are needed. Consequently, new challenges are emerging that impact traditional data and software management approaches. At large-scales, next generation science data systems are exploring the move onto cloud computing paradigms to support these increased needs. New implications such as costs, data movement, collocation of data systems & archives, and moving processing closer to the data, may result in changes to the stewardship, preservation, and provenance of science data and software. With more science data systems being on-boarding onto cloud computing facilities, we can expect more Earth science data records to be both generated and kept in the cloud. But at large scales, the cost of processing and storing global data may impact architectural and system designs. Data systems will trade the cost of keeping data in the cloud with the data life-cycle approaches of moving "colder" data back to traditional on-premise facilities. How will this impact data citation and processing software stewardship? What are the impacts of cloud-based on-demand processing and its affect on reproducibility and provenance. Similarly, with more science processing software being moved onto cloud, virtual machines, and container based approaches, more opportunities arise for improved stewardship and preservation. But will the science community trust data reprocessed years or decades later? We will also explore emerging questions of the stewardship of the science data system software that is generating the science data records both during and after the life of mission.
Matrix form of Legendre polynomials for solving linear integro-differential equations of high order
NASA Astrophysics Data System (ADS)
Kammuji, M.; Eshkuvatov, Z. K.; Yunus, Arif A. M.
2017-04-01
This paper presents an effective approximate solution of high order of Fredholm-Volterra integro-differential equations (FVIDEs) with boundary condition. Legendre truncated series is used as a basis functions to estimate the unknown function. Matrix operation of Legendre polynomials is used to transform FVIDEs with boundary conditions into matrix equation of Fredholm-Volterra type. Gauss Legendre quadrature formula and collocation method are applied to transfer the matrix equation into system of linear algebraic equations. The latter equation is solved by Gauss elimination method. The accuracy and validity of this method are discussed by solving two numerical examples and comparisons with wavelet and methods.
NASA Astrophysics Data System (ADS)
Zabihi, F.; Saffarian, M.
2016-07-01
The aim of this article is to obtain the numerical solution of the two-dimensional KdV-Burgers equation. We construct the solution by using a different approach, that is based on using collocation points. The solution is based on using the thin plate splines radial basis function, which builds an approximated solution with discretizing the time and the space to small steps. We use a predictor-corrector scheme to avoid solving the nonlinear system. The results of numerical experiments are compared with analytical solutions to confirm the accuracy and efficiency of the presented scheme.
InSAR datum connection using GNSS-augmented radar transponders
NASA Astrophysics Data System (ADS)
Mahapatra, Pooja; der Marel, Hans van; van Leijen, Freek; Samiei-Esfahany, Sami; Klees, Roland; Hanssen, Ramon
2018-01-01
Deformation estimates from Interferometric Synthetic Aperture Radar (InSAR) are relative: they form a `free' network referred to an arbitrary datum, e.g. by assuming a reference point in the image to be stable. However, some applications require `absolute' InSAR estimates, i.e. expressed in a well-defined terrestrial reference frame, e.g. to compare InSAR results with those of other techniques. We propose a methodology based on collocated InSAR and Global Navigation Satellite System (GNSS) measurements, achieved by rigidly attaching phase-stable millimetre-precision compact active radar transponders to GNSS antennas. We demonstrate this concept through a simulated example and practical case studies in the Netherlands.
Viscoelastic/damage modeling of filament-wound spherical pressure vessels
NASA Technical Reports Server (NTRS)
Hackett, Robert M.; Dozier, Jan D.
1987-01-01
A model of the viscoelastic/damage response of a filament-wound spherical vessel used for long-term pressure containment is developed. The matrix material of the composite system is assumed to be linearly viscoelastic. Internal accumulated damage based upon a quadratic relationship between transverse modulus and maximum circumferential strain is postulated. The resulting nonlinear problem is solved by an iterative routine. The elastic-viscoelastic correspondence is employed to produce, in the Laplace domain, the associated elastic solution for the maximum circumferential strain which is inverted by the method of collocation to yield the time-dependent solution. Results obtained with the model are compared to experimental observations.
NASA Astrophysics Data System (ADS)
Wang, K. N.; Ao, C. O.; de la Torre Juarez, M.
2017-12-01
As a remote sensing technique, Global Positioning System (GPS) radio occultation (RO) is a suitable method to observe lower troposphere due to its high vertical resolution and cloud-penetrating capability. However, super-refraction (SR), or ducting, caused by large refractivity gradients usually associated with the top of the planetary boundary layer, can violate the uniqueness condition necessary for the traditional inverse Abel transform. Consequently, the retrieved refractivity, which is the minimum profile among an infinite number of potential solutions corresponding to the same bending angle profile, will be negatively biased under ducting layers. Previous research has shown that optimal estimation techniques that combine low altitude RO retrievals and the collocated precipitable water (PW) estimates can effectively reduce the negative RO bias and enhance the data quality under the ducting layer (Wang et al, 2017). Here we propose an improvement that uses the reflected RO bending angle observation information as a source for refractivity constraints. The RO signal reflected from the Earth surface profile can be reconstructed by solely using GPS-RO data without requiring external information such as PW. The radio holographic (RH) method is adapted here to calculate the reflected RO bending angle, and the forward model simulation is implemented to validate this preliminary concept. Our results suggest that this new approach can distinguish between different refractivity profiles when ducting occurs and theoretically this should reduce the negative bias. In addition, It also improves the RO observation in lower troposphere by capturing the sharpness and height of the critical layer separating the free troposphere from the boundary layer.
Utah's Regional/Urban ANSS Seismic Network---Strategies and Tools for Quality Performance
NASA Astrophysics Data System (ADS)
Burlacu, R.; Arabasz, W. J.; Pankow, K. L.; Pechmann, J. C.; Drobeck, D. L.; Moeinvaziri, A.; Roberson, P. M.; Rusho, J. A.
2007-05-01
The University of Utah's regional/urban seismic network (224 stations recorded: 39 broadband, 87 strong-motion, 98 short-period) has become a model for locally implementing the Advanced National Seismic System (ANSS) because of successes in integrating weak- and strong-motion recording and in developing an effective real-time earthquake information system. Early achievements included implementing ShakeMap, ShakeCast, point-to- multipoint digital telemetry, and an Earthworm Oracle database, as well as in-situ calibration of all broadband and strong-motion stations and submission of all data and metadata into the IRIS DMC. Regarding quality performance, our experience as a medium-size regional network affirms the fundamental importance of basics such as the following: for data acquisition, deliberate attention to high-quality field installations, signal quality, and computer operations; for operational efficiency, a consistent focus on professional project management and human resources; and for customer service, healthy partnerships---including constant interactions with emergency managers, engineers, public policy-makers, and other stakeholders as part of an effective state earthquake program. (Operational cost efficiencies almost invariably involve trade-offs between personnel costs and the quality of hardware and software.) Software tools that we currently rely on for quality performance include those developed by UUSS (e.g., SAC and shell scripts for estimating local magnitudes) and software developed by other organizations such as: USGS (Earthworm), University of Washington (interactive analysis software), ISTI (SeisNetWatch), and IRIS (PDCC, BUD tools). Although there are many pieces, there is little integration. One of the main challenges we face is the availability of a complete and coherent set of tools for automatic and post-processing to assist in achieving the goals/requirements set forth by ANSS. Taking our own network---and ANSS---to the next level will require standardized, well-designed, and supported software. Other advances in seismic network performance will come from diversified instrumentation. We have recently shown the utility of incorporating strong-motion data (even from soil sites) into the routine analysis of local seismicity, and have also collocated an acoustic array with a broadband seismic station (in collaboration with Southern Methodist University). For the latter experiment, the purpose of collocated seismic and infrasound sensors is to (1) further an understanding of the physics associated with the generation and the propagation of seismic and low-frequency acoustic energy from shallow sources and (2) explore the potential for blast discrimination and improved source location using seismic and infrasonic data in a synergetic way.
Spatial Distribution of Accuracy of Aerosol Retrievals from Multiple Satellite Sensors
NASA Technical Reports Server (NTRS)
Petrenko, Maksym; Ichoku, Charles
2012-01-01
Remote sensing of aerosols from space has been a subject of extensive research, with multiple sensors retrieving aerosol properties globally on a daily or weekly basis. The diverse algorithms used for these retrievals operate on different types of reflected signals based on different assumptions about the underlying physical phenomena. Depending on the actual retrieval conditions and especially on the geographical location of the sensed aerosol parcels, the combination of these factors might be advantageous for one or more of the sensors and unfavorable for others, resulting in disagreements between similar aerosol parameters retrieved from different sensors. In this presentation, we will demonstrate the use of the Multi-sensor Aerosol Products Sampling System (MAPSS) to analyze and intercompare aerosol retrievals from multiple spaceborne sensors, including MODIS (on Terra and Aqua), MISR, OMI, POLDER, CALIOP, and SeaWiFS. Based on this intercomparison, we are determining geographical locations where these products provide the greatest accuracy of the retrievals and identifying the products that are the most suitable for retrieval at these locations. The analyses are performed by comparing quality-screened satellite aerosol products to available collocated ground-based aerosol observations from the Aerosol Robotic Network (AERONET) stations, during the period of 2006-2010 when all the satellite sensors were operating concurrently. Furthermore, we will discuss results of a statistical approach that is applied to the collocated data to detect and remove potential data outliers that can bias the results of the analysis.
NASA Technical Reports Server (NTRS)
Smith-Taylor, Rudeen; Tanner, Sharon E.
1993-01-01
The NASA Controls-Structures Interaction (CSI) Guest Investigator program is described in terms of its support of the development of CSI technologies. The program is based on the introduction of CSI researchers from industry and academia to available test facilities for experimental validation of technologies and methods. Phase 1 experimental results are reviewed with attention given to their use of the Mini-MAST test facility and the facility for the Advance Control Evaluation of Structures. Experiments were conducted regarding the following topics: collocated/noncollocated controllers, nonlinear math modeling, controller design, passive/active suspension systems design, and system identification and fault isolation. The results demonstrate that significantly enhanced performance from the control techniques can be achieved by integrating knowledge of the structural dynamics under consideration into the approaches.
The Space Station Freedom - International cooperation and innovation in space safety
NASA Technical Reports Server (NTRS)
Rodney, George A.
1989-01-01
The Space Station Freedom (SSF) being developed by the United States, European Space Agency (ESA), Japan, and Canada poses novel safety challenges in design, operations, logistics, and program management. A brief overview discloses many features that make SSF a radical departure from earlier low earth orbit (LEO) space stations relative to safety management: size and power levels; multiphase manned assembly; 30-year planned lifetime, with embedded 'hooks and scars' forevolution; crew size and skill-mix variability; sustained logistical dependence; use of man, robotics and telepresence for on-orbit maintenance of station and free-flyer systems; closed-environment recycling; use of automation and expert systems; long-term operation of collocated life-sciences and materials-science experiments, requiring control and segregation of hazardous and chemically incompatible materials; and materials aging in space.
Transition of R&D into Operations at Fleet Numerical Meteorology and Oceanography Center
NASA Astrophysics Data System (ADS)
Clancy, R. M.
2006-12-01
The U.S. Navy's Fleet Numerical Meteorology and Oceanography Center (FNMOC) plays a significant role in the National capability for operational weather and ocean prediction through its operation of sophisticated global and regional meteorological and oceanographic models, extending from the top of the atmosphere to the bottom of the ocean. FNMOC uniquely satisfies the military's requirement for a global operational weather prediction capability based on software certified to DoD Information Assurance standards and operated in a secure classified computer environment protected from outside intrusion by DoD certified firewalls. FNMOC operates around-the-clock, 365 days per year and distributes products to military and civilian users around the world, both ashore and afloat, through a variety of means. FNMOC's customers include all branches of the Department of Defense, other government organizations such as the National Weather Service, private companies, a number of colleges and universities, and the general public. FNMOC employs three primary models, the Navy Operational Global Atmospheric Prediction System (NOGAPS), the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS), and the WaveWatch III model (WW3), along with a number of specialized models and related applications. NOGAPS is a global weather model, driving nearly all other FNMOC models and applications in some fashion. COAMPS is a high- resolution regional model that has proved to be particularly valuable for forecasting weather and ocean conditions in highly complex coastal areas. WW3 is a state-of-the-art ocean wave model that is employed both globally and regionally in support of a wide variety of naval operations. Other models support and supplement the main models with predictions of ocean thermal structure, ocean currents, sea-ice characteristics, and other data. Fleet Numerical operates at the leading edge of science and technology, and benefits greatly from collocation with its supporting R&D activity, the Marine Meteorology Division of the Naval Research Laboratory (NRL Code 7500). NRL Code 7500 is a world-class research organization, with focus on weather-related support for the warfighter. Fleet Numerical and NRL Code 7500 share space, data, software and computer systems, and together represent one of the largest concentrations of weather-related intellectual capital in the nation. As documented, for example, by the Board on Atmospheric Sciences and Climate (BASC) of the National Research Council, investment in R&D is crucial for maintaining state-of-the-art operational Numerical Weather Prediction (NWP) capabilities (see BASC, 1998). And collocation and close cooperation between research and operations, such as exists between NRL Code 7500 and Fleet Numerical, is the optimum arrangement for transitioning R&D quickly and cost-effectively into new and improved operational weather prediction capabilities.
DOT's Restructuring - Limited Progress in Streamlining Field Office Structure
DOT National Transportation Integrated Search
1998-04-30
The report characterizes two ongoing efforts in the Department involving our : analysis of opportunities to collocate field offices on an intermodal basis, and : FHWA's examination of its regional office structure. Although many aspects of : our effo...
Optimization of Low-Thrust Spiral Trajectories by Collocation
NASA Technical Reports Server (NTRS)
Falck, Robert D.; Dankanich, John W.
2012-01-01
As NASA examines potential missions in the post space shuttle era, there has been a renewed interest in low-thrust electric propulsion for both crewed and uncrewed missions. While much progress has been made in the field of software for the optimization of low-thrust trajectories, many of the tools utilize higher-fidelity methods which, while excellent, result in extremely high run-times and poor convergence when dealing with planetocentric spiraling trajectories deep within a gravity well. Conversely, faster tools like SEPSPOT provide a reasonable solution but typically fail to account for other forces such as third-body gravitation, aerodynamic drag, solar radiation pressure. SEPSPOT is further constrained by its solution method, which may require a very good guess to yield a converged optimal solution. Here the authors have developed an approach using collocation intended to provide solution times comparable to those given by SEPSPOT while allowing for greater robustness and extensible force models.
Motsa, S. S.; Magagula, V. M.; Sibanda, P.
2014-01-01
This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs). The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature. PMID:25254252
Motsa, S S; Magagula, V M; Sibanda, P
2014-01-01
This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs). The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature.
Richard V. Field, Jr.; Emery, John M.; Grigoriu, Mircea Dan
2015-05-19
The stochastic collocation (SC) and stochastic Galerkin (SG) methods are two well-established and successful approaches for solving general stochastic problems. A recently developed method based on stochastic reduced order models (SROMs) can also be used. Herein we provide a comparison of the three methods for some numerical examples; our evaluation only holds for the examples considered in the paper. The purpose of the comparisons is not to criticize the SC or SG methods, which have proven very useful for a broad range of applications, nor is it to provide overall ratings of these methods as compared to the SROM method.more » Furthermore, our objectives are to present the SROM method as an alternative approach to solving stochastic problems and provide information on the computational effort required by the implementation of each method, while simultaneously assessing their performance for a collection of specific problems.« less
The application of nonlinear programming and collocation to optimal aeroassisted orbital transfers
NASA Astrophysics Data System (ADS)
Shi, Y. Y.; Nelson, R. L.; Young, D. H.; Gill, P. E.; Murray, W.; Saunders, M. A.
1992-01-01
Sequential quadratic programming (SQP) and collocation of the differential equations of motion were applied to optimal aeroassisted orbital transfers. The Optimal Trajectory by Implicit Simulation (OTIS) computer program codes with updated nonlinear programming code (NZSOL) were used as a testbed for the SQP nonlinear programming (NLP) algorithms. The state-of-the-art sparse SQP method is considered to be effective for solving large problems with a sparse matrix. Sparse optimizers are characterized in terms of memory requirements and computational efficiency. For the OTIS problems, less than 10 percent of the Jacobian matrix elements are nonzero. The SQP method encompasses two phases: finding an initial feasible point by minimizing the sum of infeasibilities and minimizing the quadratic objective function within the feasible region. The orbital transfer problem under consideration involves the transfer from a high energy orbit to a low energy orbit.
NASA Technical Reports Server (NTRS)
Zhang, Yiqiang; Alexander, J. I. D.; Ouazzani, J.
1994-01-01
Free and moving boundary problems require the simultaneous solution of unknown field variables and the boundaries of the domains on which these variables are defined. There are many technologically important processes that lead to moving boundary problems associated with fluid surfaces and solid-fluid boundaries. These include crystal growth, metal alloy and glass solidification, melting and name propagation. The directional solidification of semi-conductor crystals by the Bridgman-Stockbarger method is a typical example of such a complex process. A numerical model of this growth method must solve the appropriate heat, mass and momentum transfer equations and determine the location of the melt-solid interface. In this work, a Chebyshev pseudospectra collocation method is adapted to the problem of directional solidification. Implementation involves a solution algorithm that combines domain decomposition, finite-difference preconditioned conjugate minimum residual method and a Picard type iterative scheme.
Pseudo spectral collocation with Maxwell polynomials for kinetic equations with energy diffusion
NASA Astrophysics Data System (ADS)
Sánchez-Vizuet, Tonatiuh; Cerfon, Antoine J.
2018-02-01
We study the approximation and stability properties of a recently popularized discretization strategy for the speed variable in kinetic equations, based on pseudo-spectral collocation on a grid defined by the zeros of a non-standard family of orthogonal polynomials called Maxwell polynomials. Taking a one-dimensional equation describing energy diffusion due to Fokker-Planck collisions with a Maxwell-Boltzmann background distribution as the test bench for the performance of the scheme, we find that Maxwell based discretizations outperform other commonly used schemes in most situations, often by orders of magnitude. This provides a strong motivation for their use in high-dimensional gyrokinetic simulations. However, we also show that Maxwell based schemes are subject to a non-modal time stepping instability in their most straightforward implementation, so that special care must be given to the discrete representation of the linear operators in order to benefit from the advantages provided by Maxwell polynomials.
Optimal spacecraft attitude control using collocation and nonlinear programming
NASA Astrophysics Data System (ADS)
Herman, A. L.; Conway, B. A.
1992-10-01
Direct collocation with nonlinear programming (DCNLP) is employed to find the optimal open-loop control histories for detumbling a disabled satellite. The controls are torques and forces applied to the docking arm and joint and torques applied about the body axes of the OMV. Solutions are obtained for cases in which various constraints are placed on the controls and in which the number of controls is reduced or increased from that considered in Conway and Widhalm (1986). DCLNP works well when applied to the optimal control problem of satellite attitude control. The formulation is straightforward and produces good results in a relatively small amount of time on a Cray X/MP with no a priori information about the optimal solution. The addition of joint acceleration to the controls significantly reduces the control magnitudes and optimal cost. In all cases, the torques and acclerations are modest and the optimal cost is very modest.
Assessing XCTD Fall Rate Errors using Concurrent XCTD and CTD Profiles in the Southern Ocean
NASA Astrophysics Data System (ADS)
Millar, J.; Gille, S. T.; Sprintall, J.; Frants, M.
2010-12-01
Refinements in the fall rate equation for XCTDs are not as well understood as those for XBTs, due in part to the paucity of concurrent and collocated XCTD and CTD profiles. During February and March 2010, the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES) conducted 31 collocated 1000-meter XCTD and CTD casts in the Drake Passage. These XCTD/CTD profile pairs are closely matched in space and time, with a mean distance between casts of 1.19 km and a mean lag time of 39 minutes. The profile pairs are well suited to address the XCTD fall rate problem specifically in higher latitude waters, where existing fall rate corrections have rarely been assessed. Many of these XCTD/CTD profile pairs reveal an observable depth offset in measurements of both temperature and conductivity. Here, the nature and extent of this depth offset is evaluated.
NASA Astrophysics Data System (ADS)
Wattanasakulpong, Nuttawit; Chaikittiratana, Arisara; Pornpeerakeat, Sacharuck
2018-06-01
In this paper, vibration analysis of functionally graded porous beams is carried out using the third-order shear deformation theory. The beams have uniform and non-uniform porosity distributions across their thickness and both ends are supported by rotational and translational springs. The material properties of the beams such as elastic moduli and mass density can be related to the porosity and mass coefficient utilizing the typical mechanical features of open-cell metal foams. The Chebyshev collocation method is applied to solve the governing equations derived from Hamilton's principle, which is used in order to obtain the accurate natural frequencies for the vibration problem of beams with various general and elastic boundary conditions. Based on the numerical experiments, it is revealed that the natural frequencies of the beams with asymmetric and non-uniform porosity distributions are higher than those of other beams with uniform and symmetric porosity distributions.
Modelling and simulation of a moving interface problem: freeze drying of black tea extract
NASA Astrophysics Data System (ADS)
Aydin, Ebubekir Sıddık; Yucel, Ozgun; Sadikoglu, Hasan
2017-06-01
The moving interface separates the material that is subjected to the freeze drying process as dried and frozen. Therefore, the accurate modeling the moving interface reduces the process time and energy consumption by improving the heat and mass transfer predictions during the process. To describe the dynamic behavior of the drying stages of the freeze-drying, a case study of brewed black tea extract in storage trays including moving interface was modeled that the heat and mass transfer equations were solved using orthogonal collocation method based on Jacobian polynomial approximation. Transport parameters and physical properties describing the freeze drying of black tea extract were evaluated by fitting the experimental data using Levenberg-Marquardt algorithm. Experimental results showed good agreement with the theoretical predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marrinan, Thomas; Leigh, Jason; Renambot, Luc
Mixed presence collaboration involves remote collaboration between multiple collocated groups. This paper presents the design and results of a user study that focused on mixed presence collaboration using large-scale tiled display walls. The research was conducted in order to compare data synchronization schemes for multi-user visualization applications. Our study compared three techniques for sharing data between display spaces with varying constraints and affordances. The results provide empirical evidence that using data sharing techniques with continuous synchronization between the sites lead to improved collaboration for a search and analysis task between remotely located groups. We have also identified aspects of synchronizedmore » sessions that result in increased remote collaborator awareness and parallel task coordination. It is believed that this research will lead to better utilization of large-scale tiled display walls for distributed group work.« less
Combining Real-time Seismic and Geodetic Data to Improve Rapid Earthquake Information
NASA Astrophysics Data System (ADS)
Murray, M. H.; Neuhauser, D. S.; Gee, L. S.; Dreger, D. S.; Basset, A.; Romanowicz, B.
2002-12-01
The Berkeley Seismological Laboratory operates seismic and geodetic stations in the San Francisco Bay area and northern California for earthquake and deformation monitoring. The seismic systems, part of the Berkeley Digital Seismic Network (BDSN), include strong motion and broadband sensors, and 24-bit dataloggers. The data from 20 GPS stations, part of the Bay Area Regional Deformation (BARD) network of more than 70 stations in northern California, are acquired in real-time. We have developed methods to acquire GPS data at 12 stations that are collocated with the seismic systems using the seismic dataloggers, which have large on-site data buffer and storage capabilities, merge it with the seismic data stream in MiniSeed format, and continuously stream both data types using reliable frame relay and/or radio modem telemetry. Currently, the seismic data are incorporated into the Rapid Earthquake Data Integration (REDI) project to provide notification of earthquake magnitude, location, moment tensor, and strong motion information for hazard mitigation and emergency response activities. The geodetic measurements can provide complementary constraints on earthquake faulting, including the location and extent of the rupture plane, unambiguous resolution of the nodal plane, and distribution of slip on the fault plane, which can be used, for example, to refine strong motion shake maps. We are developing methods to rapidly process the geodetic data to monitor transient deformation, such as coseismic station displacements, and for combining this information with the seismic observations to improve finite-fault characterization of large earthquakes. The GPS data are currently processed at hourly intervals with 2-cm precision in horizontal position, and we are beginning a pilot project in the Bay Area in collaboration with the California Spatial Reference Center to do epoch-by-epoch processing with greater precision.
A system concept for gradual deployment of geostationary lightsats
NASA Astrophysics Data System (ADS)
Peters, Graham C.; Garry, James R. C.
1993-10-01
Small satellites provide an attractive option for developing countries wishing to own and operate a satellite for the first time. It is proposed that space segment capacity could be built-up in response to increasing traffic requirements by launching small satellites at intervals into a single orbital slot to form a cluster. This paper, which results from an ESA study, reviews the various system aspects which must be considered and develops a suitable approach for multi-satellite deployment and collocation. Particular attention is paid to the system and payload configuration required to achieve effective mutual sparing between the satellites' payloads as the constellation is expanded. Mission and operational aspects are examined to obtain an acceptable risk of collisions between the satellites in a single orbit slot. The complexity and cost of operations are investigated to obtain the optimum size of satellite required to satisfy different demand requirements taken from real market scenarios.
Surface Energy Balance System (SEBS) Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, D. R.
2016-01-01
A Surface Energy Balance System (SEBS) has been installed collocated with each deployed Eddy Correlation Flux Measurement System (ECOR) at the Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) site, North Slope of Alaska (NSA) site, first ARM Mobile Facility (AMF1), second ARM Mobile Facility (AMF2), and third ARM Mobile Facility (AMF3) at Oliktok Point (OLI). A SEBS was also deployed with the Tropical Western Pacific (TWP) site, before it was decommissioned. Data from these sites, including the retired TWP, are available in the ARM Data Archive. The SEBS consists of upwelling and downwelling solar and infraredmore » radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes.« less
NASA Astrophysics Data System (ADS)
Toth, Travis D.; Campbell, James R.; Reid, Jeffrey S.; Tackett, Jason L.; Vaughan, Mark A.; Zhang, Jianglong; Marquis, Jared W.
2018-01-01
Due to instrument sensitivities and algorithm detection limits, level 2 (L2) Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) 532 nm aerosol extinction profile retrievals are often populated with retrieval fill values (RFVs), which indicate the absence of detectable levels of aerosol within the profile. In this study, using 4 years (2007-2008 and 2010-2011) of CALIOP version 3 L2 aerosol data, the occurrence frequency of daytime CALIOP profiles containing all RFVs (all-RFV profiles) is studied. In the CALIOP data products, the aerosol optical thickness (AOT) of any all-RFV profile is reported as being zero, which may introduce a bias in CALIOP-based AOT climatologies. For this study, we derive revised estimates of AOT for all-RFV profiles using collocated Moderate Resolution Imaging Spectroradiometer (MODIS) Dark Target (DT) and, where available, AErosol RObotic NEtwork (AERONET) data. Globally, all-RFV profiles comprise roughly 71 % of all daytime CALIOP L2 aerosol profiles (i.e., including completely attenuated profiles), accounting for nearly half (45 %) of all daytime cloud-free L2 aerosol profiles. The mean collocated MODIS DT (AERONET) 550 nm AOT is found to be near 0.06 (0.08) for CALIOP all-RFV profiles. We further estimate a global mean aerosol extinction profile, a so-called noise floor
, for CALIOP all-RFV profiles. The global mean CALIOP AOT is then recomputed by replacing RFV values with the derived noise-floor values for both all-RFV and non-all-RFV profiles. This process yields an improvement in the agreement of CALIOP and MODIS over-ocean AOT.
NASA Astrophysics Data System (ADS)
Barzaghi, Riccardo; Vergos, Georgios S.; Albertella, Alberta; Carrion, Daniela; Cazzaniga, Noemi; Tziavos, Ilias N.; Grigoriadis, Vassilios N.; Natsiopoulos, Dimitrios A.; Bruinsma, Sean; Bonvalot, Sylvain; Lequentrec-Lalancette, Marie-Françoise; Bonnefond, Pascal; Knudsen, Per; Andersen, Ole; Simav, Mehmet; Yildiz, Hasan; Basic, Tomislav; Gil, Antonio J.
2016-04-01
The unique features of the Mediterranean Sea, with its large gravity variations, complex circulation, and geodynamic peculiarities have always constituted this semi-enclosed sea area as a unique geodetic, geodynamics and ocean laboratory. The main scope of the GEOMED 2 project is the collection of all available gravity, topography/bathymetry and satellite altimetry data in order to improve the representation of the marine geoid and estimate the Mean Dynamic sea surface Topography (MDT) and the circulation with higher accuracy and resolution. Within GEOMED2, the data employed are land and marine gravity data, GOCE/GRACE based Global Geopotential Models and a combination after proper validation of MISTRAL, HOMONIM and SRTM/bathymetry terrain models. In this work we present the results achieved for an inner test region spanning the Adriatic Sea area, bounded between 36o < φ < 48o and 10o < λ < 22o. Within this test region, the available terrain/bathymetry models have been evaluated in terms of their contribution to geoid modeling, the processing methodologies have been tested in terms of the provided geoid accuracy and finally some preliminary results on the MDT determination have been compiled. The aforementioned will server as the guide for the Mediterranean-wide marine geoid estimation. The processing methodology was based on the well-known remove-compute-restore method following both stochastic and spectral methods. Classic least-squares collocation (LSC) with errors has been employed, along with fast Fourier transform (FFT)-based techniques, the Least-Squares Modification of Stokes' Formula (KTH) method and windowed LSC. All methods have been evaluated against in-situ collocated GPS/Levelling geoid heights, using EGM2008 as a reference, in order to conclude on the one(s) to be used for the basin-wide geoid evaluation.
Evaluation of the New Version of the Laser-Optical Disdrometer, OTT Parsivel2
NASA Technical Reports Server (NTRS)
Tokay, Ali; Wolff, David B.; Petersen, Walter A.
2014-01-01
A comparative study of raindrop size distribution measurements has been conducted at NASA's Goddard Space Flight Center where the focus was to evaluate the performance of the upgraded laser-optical OTT Particle Size Velocity (Parsivel2; P2) disdrometer. The experimental setup included a collocated pair of tipping-bucket rain gauges, OTT Parsivel (P1) and P2 disdrometers, and Joss-Waldvogel (JW) disdrometers. Excellent agreement between the two collocated rain gauges enabled their use as a relative reference for event rain totals. A comparison of event total showed that the P2 had a 6%absolute bias with respect to the reference gauges, considerably lower than the P1 and JW disdrometers. Good agreement was also evident between the JW and P2 in hourly raindrop spectra for drop diameters between 0.5 and 4 mm. The P2 drop concentrations mostly increased toward small sizes, and the peak concentrations were mostly observed in the first three measurable size bins. The P1, on the other hand, underestimated small drops and overestimated the large drops, particularly in heavy rain rates. From the analysis performed, it appears that the P2 is an improvement over the P1 model for both drop size and rainfall measurements. P2 mean fall velocities follow accepted terminal fall speed relationships at drop sizes less than 1 mm. As a caveat, the P2 had approximately 1ms21 slower mean fall speed with respect to the terminal fall speed near 1 mm, and the difference between the mean measured and terminal fall speeds reduced with increasing drop size. This caveat was recognized as a software bug by the manufacturer and is currently being investigated.
Odum, Jack K.; Stephenson, William J.; Williams, Robert A.; von Hillebrandt-Andrade, Christa
2013-01-01
Shear‐wave velocity (VS) and time‐averaged shear‐wave velocity to 30 m depth (VS30) are the key parameters used in seismic site response modeling and earthquake engineering design. Where VS data are limited, available data are often used to develop and refine map‐based proxy models of VS30 for predicting ground‐motion intensities. In this paper, we present shallow VS data from 27 sites in Puerto Rico. These data were acquired using a multimethod acquisition approach consisting of noninvasive, collocated, active‐source body‐wave (refraction/reflection), active‐source surface wave at nine sites, and passive‐source surface‐wave refraction microtremor (ReMi) techniques. VS‐versus‐depth models are constructed and used to calculate spectral response plots for each site. Factors affecting method reliability are analyzed with respect to site‐specific differences in bedrock VS and spectral response. At many but not all sites, body‐ and surface‐wave methods generally determine similar depths to bedrock, and it is the difference in bedrock VS that influences site amplification. The predicted resonant frequencies for the majority of the sites are observed to be within a relatively narrow bandwidth of 1–3.5 Hz. For a first‐order comparison of peak frequency position, predictive spectral response plots from eight sites are plotted along with seismograph instrument spectra derived from the time series of the 16 May 2010 Puerto Rico earthquake. We show how a multimethod acquisition approach using collocated arrays compliments and corroborates VS results, thus adding confidence that reliable site characterization information has been obtained.
Parallel Aircraft Trajectory Optimization with Analytic Derivatives
NASA Technical Reports Server (NTRS)
Falck, Robert D.; Gray, Justin S.; Naylor, Bret
2016-01-01
Trajectory optimization is an integral component for the design of aerospace vehicles, but emerging aircraft technologies have introduced new demands on trajectory analysis that current tools are not well suited to address. Designing aircraft with technologies such as hybrid electric propulsion and morphing wings requires consideration of the operational behavior as well as the physical design characteristics of the aircraft. The addition of operational variables can dramatically increase the number of design variables which motivates the use of gradient based optimization with analytic derivatives to solve the larger optimization problems. In this work we develop an aircraft trajectory analysis tool using a Legendre-Gauss-Lobatto based collocation scheme, providing analytic derivatives via the OpenMDAO multidisciplinary optimization framework. This collocation method uses an implicit time integration scheme that provides a high degree of sparsity and thus several potential options for parallelization. The performance of the new implementation was investigated via a series of single and multi-trajectory optimizations using a combination of parallel computing and constraint aggregation. The computational performance results show that in order to take full advantage of the sparsity in the problem it is vital to parallelize both the non-linear analysis evaluations and the derivative computations themselves. The constraint aggregation results showed a significant numerical challenge due to difficulty in achieving tight convergence tolerances. Overall, the results demonstrate the value of applying analytic derivatives to trajectory optimization problems and lay the foundation for future application of this collocation based method to the design of aircraft with where operational scheduling of technologies is key to achieving good performance.
Finite length Taylor Couette flow
NASA Technical Reports Server (NTRS)
Streett, C. L.; Hussaini, M. Y.
1987-01-01
Axisymmetric numerical solutions of the unsteady Navier-Stokes equations for flow between concentric rotating cylinders of finite length are obtained by a spectral collocation method. These representative results pertain to two-cell/one-cell exchange process, and are compared with recent experiments.
40 CFR 63.5686 - How do I demonstrate that my facility is not a major source?
Code of Federal Regulations, 2010 CFR
2010-07-01
... manufacturing facility and all other sources that are collocated and under common ownership or control with the... coatings, aluminum wipedown solvents, application gun cleaning solvents, and carpet and fabric adhesives...
40 CFR 63.5686 - How do I demonstrate that my facility is not a major source?
Code of Federal Regulations, 2011 CFR
2011-07-01
... manufacturing facility and all other sources that are collocated and under common ownership or control with the... coatings, aluminum wipedown solvents, application gun cleaning solvents, and carpet and fabric adhesives...
Electromagnetomechanical elastodynamic model for Lamb wave damage quantification in composites
NASA Astrophysics Data System (ADS)
Borkowski, Luke; Chattopadhyay, Aditi
2014-03-01
Physics-based wave propagation computational models play a key role in structural health monitoring (SHM) and the development of improved damage quantification methodologies. Guided waves (GWs), such as Lamb waves, provide the capability to monitor large plate-like aerospace structures with limited actuators and sensors and are sensitive to small scale damage; however due to the complex nature of GWs, accurate and efficient computation tools are necessary to investigate the mechanisms responsible for dispersion, coupling, and interaction with damage. In this paper, the local interaction simulation approach (LISA) coupled with the sharp interface model (SIM) solution methodology is used to solve the fully coupled electro-magneto-mechanical elastodynamic equations for the piezoelectric and piezomagnetic actuation and sensing of GWs in fiber reinforced composite material systems. The final framework provides the full three-dimensional displacement as well as electrical and magnetic potential fields for arbitrary plate and transducer geometries and excitation waveform and frequency. The model is validated experimentally and proven computationally efficient for a laminated composite plate. Studies are performed with surface bonded piezoelectric and embedded piezomagnetic sensors to gain insight into the physics of experimental techniques used for SHM. The symmetric collocation of piezoelectric actuators is modeled to demonstrate mode suppression in laminated composites for the purpose of damage detection. The effect of delamination and damage (i.e., matrix cracking) on the GW propagation is demonstrated and quantified. The developed model provides a valuable tool for the improvement of SHM techniques due to its proven accuracy and computational efficiency.
Optimality in Data Assimilation
NASA Astrophysics Data System (ADS)
Nearing, Grey; Yatheendradas, Soni
2016-04-01
It costs a lot more to develop and launch an earth-observing satellite than it does to build a data assimilation system. As such, we propose that it is important to understand the efficiency of our assimilation algorithms at extracting information from remote sensing retrievals. To address this, we propose that it is necessary to adopt completely general definition of "optimality" that explicitly acknowledges all differences between the parametric constraints of our assimilation algorithm (e.g., Gaussianity, partial linearity, Markovian updates) and the true nature of the environmetnal system and observing system. In fact, it is not only possible, but incredibly straightforward, to measure the optimality (in this more general sense) of any data assimilation algorithm as applied to any intended model or natural system. We measure the information content of remote sensing data conditional on the fact that we are already running a model and then measure the actual information extracted by data assimilation. The ratio of the two is an efficiency metric, and optimality is defined as occurring when the data assimilation algorithm is perfectly efficient at extracting information from the retrievals. We measure the information content of the remote sensing data in a way that, unlike triple collocation, does not rely on any a priori presumed relationship (e.g., linear) between the retrieval and the ground truth, however, like triple-collocation, is insensitive to the spatial mismatch between point-based measurements and grid-scale retrievals. This theory and method is therefore suitable for use with both dense and sparse validation networks. Additionally, the method we propose is *constructive* in the sense that it provides guidance on how to improve data assimilation systems. All data assimilation strategies can be reduced to approximations of Bayes' law, and we measure the fractions of total information loss that are due to individual assumptions or approximations in the prior (i.e., the model uncertainty distribution), and in the likelihood (i.e., the observation operator and observation uncertainty distribution). In this way, we can directly identify the parts of a data assimilation algorithm that contribute most to assimilation error in a way that (unlike traditional DA performance metrics) considers nonlinearity in the model and observation and non-optimality in the fit between filter assumptions and the real system. To reiterate, the method we propose is theoretically rigorous but also dead-to-rights simple, and can be implemented in no more than a few hours by a competent programmer. We use this to show that careful applications of the Ensemble Kalman Filter use substantially less than half of the information contained in remote sensing soil moisture retrievals (LPRM, AMSR-E, SMOS, and SMOPS). We propose that this finding may explain some of the results from several recent large-scale experiments that show lower-than-expected value to assimilating soil moisture retrievals into land surface models forced by high-quality precipitation data. Our results have important implications for the SMAP mission because over half of the SMAP-affiliated "early adopters" plan to use the EnKF as their primary method for extracting information from SMAP retrievals.
Boundary conditions in Chebyshev and Legendre methods
NASA Technical Reports Server (NTRS)
Canuto, C.
1984-01-01
Two different ways of treating non-Dirichlet boundary conditions in Chebyshev and Legendre collocation methods are discussed for second order differential problems. An error analysis is provided. The effect of preconditioning the corresponding spectral operators by finite difference matrices is also investigated.
A 3D Cloud-Construction Algorithm for the EarthCARE Satellite Mission
NASA Technical Reports Server (NTRS)
Barker, H. W.; Jerg, M. P.; Wehr, T.; Kato, S.; Donovan, D. P.; Hogan, R. J.
2011-01-01
This article presents and assesses an algorithm that constructs 3D distributions of cloud from passive satellite imagery and collocated 2D nadir profiles of cloud properties inferred synergistically from lidar, cloud radar and imager data.
ERIC Educational Resources Information Center
Brown, Dorothy F.
1988-01-01
A discussion of vocabulary development for intermediate and advanced students preparing for the Australian certification test for Teaching English as a Foreign Language focuses on nine areas: collocations, clines, clusters, cloze procedures, context, consultation or checking, cards, creativity, and guessing. (seven references) (LB)
Lexical Resources and Their Application.
ERIC Educational Resources Information Center
Gellerstam, Martin
This paper discusses computer-based resources for lexical data and their uses. First, the kinds of lexical data available are described, including those related to form (spelling, pronunciation, inflection, word class), meaning (definition/equivalent, synonyms/antonyms/hyperonyms, thesaurus classification), context (grammatical collocations,…
Code of Federal Regulations, 2010 CFR
2010-10-01
... FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) INTERCONNECTION Pricing of Elements § 51.501 Scope. (a) The rules in this subpart apply to the pricing of network elements, interconnection, and methods of obtaining access to unbundled elements, including physical collocation and virtual...
Geographical Text Analysis: A new approach to understanding nineteenth-century mortality.
Porter, Catherine; Atkinson, Paul; Gregory, Ian
2015-11-01
This paper uses a combination of Geographic Information Systems (GIS) and corpus linguistic analysis to extract and analyse disease related keywords from the Registrar-General's Decennial Supplements. Combined with known mortality figures, this provides, for the first time, a spatial picture of the relationship between the Registrar-General's discussion of disease and deaths in England and Wales in the nineteenth and early twentieth centuries. Techniques such as collocation, density analysis, the Hierarchical Regional Settlement matrix and regression analysis are employed to extract and analyse the data resulting in new insight into the relationship between the Registrar-General's published texts and the changing mortality patterns during this time. Copyright © 2015 Elsevier Ltd. All rights reserved.
High-order cyclo-difference techniques: An alternative to finite differences
NASA Technical Reports Server (NTRS)
Carpenter, Mark H.; Otto, John C.
1993-01-01
The summation-by-parts energy norm is used to establish a new class of high-order finite-difference techniques referred to here as 'cyclo-difference' techniques. These techniques are constructed cyclically from stable subelements, and require no numerical boundary conditions; when coupled with the simultaneous approximation term (SAT) boundary treatment, they are time asymptotically stable for an arbitrary hyperbolic system. These techniques are similar to spectral element techniques and are ideally suited for parallel implementation, but do not require special collocation points or orthogonal basis functions. The principal focus is on methods of sixth-order formal accuracy or less; however, these methods could be extended in principle to any arbitrary order of accuracy.
Data fusion: principles and applications in air defense
NASA Astrophysics Data System (ADS)
Maltese, Dominique; Lucas, Andre
1998-07-01
Within a Surveillance and Reconnaissance System, the Fusion Process is an essential part of the software package since the different sensors measurements are combined by this process; each sensor sends its data to a fusion center whose task is to elaborate the best tactical situation. In this paper, a practical algorithm of data fusion applied to a military application context is presented; the case studied here is a medium-range surveillance situation featuring a dual-sensor platform which combines a surveillance Radar and an IRST; both sensors are collocated. The presented performances were obtained on validation scenarios via simulations performed by SAGEM with the ESSOR ('Environnement de Simulation de Senseurs Optroniques et Radar') multisensor simulation test bench.
NASA Astrophysics Data System (ADS)
Doha, E.; Bhrawy, A.
2006-06-01
It is well known that spectral methods (tau, Galerkin, collocation) have a condition number of ( is the number of retained modes of polynomial approximations). This paper presents some efficient spectral algorithms, which have a condition number of , based on the Jacobi?Galerkin methods of second-order elliptic equations in one and two space variables. The key to the efficiency of these algorithms is to construct appropriate base functions, which lead to systems with specially structured matrices that can be efficiently inverted. The complexities of the algorithms are a small multiple of operations for a -dimensional domain with unknowns, while the convergence rates of the algorithms are exponentials with smooth solutions.
Conference on Satellite Meteorology and Oceanography, 6th, Atlanta, GA, Jan. 5-10, 1992, Preprints
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The present volume on satellite meteorology and oceanography discusses cloud retrieval from collocated IR sounder data and imaging systems, satellite retrievals of marine stratiform cloud systems, multispectral analysis of satellite observations of smoke and dust, and image and graphical analysis of principal components of satellite sounding channels. Attention is given to an evaluation of results from classification retrieval methods, the use of TOVS radiances, estimation of path radiance on the basis of remotely sensed data, and a reexamination of SST as a predictor for tropical storm intensity. Topics addressed include optimal smoothing of GOES VAS for upper-atmosphere thermal waves, obtainingmore » cloud motion vectors from polar orbiting satellites, the use of cloud relative animation in the analysis of satellite data, and investigations of a polar low using geostationary satellite data.« less
Low-Thrust Transfers from Distant Retrograde Orbits to L2 Halo Orbits in the Earth-Moon System
NASA Technical Reports Server (NTRS)
Parrish, Nathan L.; Parker, Jeffrey S.; Hughes, Steven P.; Heiligers, Jeannette
2016-01-01
This paper presents a study of transfers between distant retrograde orbits (DROs) and L2 halo orbits in the Earth-Moon system that could be flown by a spacecraft with solar electric propulsion (SEP). Two collocation-based optimal control methods are used to optimize these highly-nonlinear transfers: Legendre pseudospectral and Hermite-Simpson. Transfers between DROs and halo orbits using low-thrust propulsion have not been studied previously. This paper offers a study of several families of trajectories, parameterized by the number of orbital revolutions in a synodic frame. Even with a poor initial guess, a method is described to reliably generate families of solutions. The circular restricted 3-body problem (CRTBP) is used throughout the paper so that the results are autonomous and simpler to understand.
Control Augmented Structural Synthesis
NASA Technical Reports Server (NTRS)
Lust, Robert V.; Schmit, Lucien A.
1988-01-01
A methodology for control augmented structural synthesis is proposed for a class of structures which can be modeled as an assemblage of frame and/or truss elements. It is assumed that both the plant (structure) and the active control system dynamics can be adequately represented with a linear model. The structural sizing variables, active control system feedback gains and nonstructural lumped masses are treated simultaneously as independent design variables. Design constraints are imposed on static and dynamic displacements, static stresses, actuator forces and natural frequencies to ensure acceptable system behavior. Multiple static and dynamic loading conditions are considered. Side constraints imposed on the design variables protect against the generation of unrealizable designs. While the proposed approach is fundamentally more general, here the methodology is developed and demonstrated for the case where: (1) the dynamic loading is harmonic and thus the steady state response is of primary interest; (2) direct output feedback is used for the control system model; and (3) the actuators and sensors are collocated.
Latysh, Natalie E.; Wetherbee, Gregory A.
2005-01-01
The U.S. Geological Survey, Branch of Quality Systems, operates the external quality-assurance programs for the National Atmospheric Deposition Program/National Trends Network (NADP/NTN). Beginning in 1978, six different programs have been implemented?the intersite-comparison program, the blind-audit program, the sample-handling evaluation program, the field-audit program, the interlaboratory-comparison program, and the collocated-sampler program. Each program was designed to measure error contributed by specific components in the data-collection process. The intersite-comparison program, which was discontinued in 2004, was designed to assess the accuracy and reliability of field pH and specific-conductance measurements made by site operators. The blind-audit and sample-handling evaluation programs, which also were discontinued in 2002 and 2004, respectively, assessed contamination that may result from sampling equipment and routine handling and processing of the wet-deposition samples. The field-audit program assesses the effects of sample handling, processing, and field exposure. The interlaboratory-comparison program evaluates bias and precision of analytical results produced by the contract laboratory for NADP, the Illinois State Water Survey, Central Analytical Laboratory, and compares its performance with the performance of international laboratories. The collocated-sampler program assesses the overall precision of wet-deposition data collected by NADP/NTN. This report documents historical operations and the operating procedures for each of these external quality-assurance programs. USGS quality-assurance information allows NADP/NTN data users to discern between actual environmental trends and inherent measurement variability.
Ground-based SMART-COMMIT Measurements for Studying Aerosol and Cloud Properties
NASA Technical Reports Server (NTRS)
Tsay, Si-Chee
2008-01-01
From radiometric principles, it is expected that the retrieved properties of extensive aerosols and clouds from reflected/emitted measurements by satellite (and/or aircraft) should be consistent with those retrieved from transmitted/emitted radiance observed at the surface. Although space-borne remote sensing observations cover large spatial domain, they are often plagued by contamination of surface signatures. Thus, ground-based in-situ and remote-sensing measurements, where signals come directly from atmospheric constituents, the sun, and/or the Earth-atmosphere interactions, provide additional information content for comparisons that confirm quantitatively the usefulness of the integrated surface, aircraft, and satellite data sets. The development and deployment of SMARTCOMMIT (Surface-sensing Measurements for Atmospheric Radiative Transfer - Chemical, Optical & Microphysical Measurements of In-situ Troposphere) mobile facilities are aimed for the optimal utilization of collocated ground-based observations as constraints to yield higher fidelity satellite retrievals and to determine any sampling bias due to target conditions. To quantify the energetics of the surface-atmosphere system and the atmospheric processes, SMART-COMMIT instruments fall into three categories: flux radiometer, radiance sensor and in-situ probe. In this paper, we will demonstrate the capability of SMART-COMMIT in recent field campaigns (e.g., CRYSTAL-FACE, UAE 2, BASEASIA, NAMMA) that were designed and executed to study the compelling variability in temporal scale of both anthropogenic and natural aerosols (e.g., biomass-burning smoke, airborne dust) and cirrus clouds. We envision robust approaches in which well-collocated ground-based measurements and space-borne observations will greatly advance our knowledge of extensive aerosols and clouds.
Interest of the MICROSTAR Accelerometer to improve the GRASP Mission.
NASA Astrophysics Data System (ADS)
Perrot, E.; Lebat, V.; Foulon, B.; Christophe, B.; Liorzou, F.; Huynh, P. A.
2015-12-01
The Geodetic Reference Antenna in Space (GRASP) is a micro satellite mission concept proposed by JPL to improve the definition of the Terrestrial Reference Frame (TRF). GRASP collocates GPS, SLR, VLBI, and DORIS sensors on a dedicated spacecraft in order to establish precise and stable ties between the key geodetic techniques used to define and disseminate the TRF. GRASP also offers a space-based reference antenna for the present and future Global Navigation Satellite Systems (GNSS). By taking advantage of the new testing possibilities offer by the catapult facility at the ZARM drop tower, the ONERA's space accelerometer team proposes an up-dated version, called MICROSTAR, of its ultra sensitive electrostatic accelerometers which have contributed to the success of the last Earth's gravity missions GRACE and GOCE. Built around a cubic proof-mass, it provides the 3 linear accelerations with a resolution better than 10-11 ms-2/Hz1/2 into a measurement bandwidth between 10-3 Hz and 0.1 Hz and the 3 angular accelerations about its 3 orthogonal axes with 5´10-10 rad.s-2/Hz1/2 resolution. Integrated at the centre of mass of the satellite, MICROSTAR improves the Precise Orbit Determination (POD) by accurate measurement of the non-gravitational force acting on the satellite. It offers also the possibility to calibrate the change in the position of the satellite center of mass with an accuracy better than 100 μm as demonstrated in the GRACE mission. Assuming a sufficiently rigid structure between the antennas and the accelerometer, its data can participate to reach the mission objective of 1 mm precision for the TRF position.
2007-01-01
Fabry - Perot inter- ferometers. The hydrophones are passively multiplexed both in time and in wavelength to allow hundreds of channels to be carried...sensing fiber wrapped on a solid plastic mandrel. For this demon- stration, the laser and the demodulation electronics were collocated with the fiber
47 CFR 51.5 - Terms and definitions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... technologies include, but are not limited to, traditional or new cable plant, wireless technologies, and power..., that maintains a collocation arrangement in an incumbent LEC wire center, with active electrical power... wireless service. A mobile wireless service is any mobile wireless telecommunications service, including...
NASA Astrophysics Data System (ADS)
Boytard, Mai-Lan; Royer, Philippe; Chazette, Patrick; Shang, Xiaoxia; Marnas, Fabien; Totems, Julien; Bizard, Anthony; Bennai, Baya; Sauvage, Laurent
2013-04-01
The HyMeX program (Hydrological cycle in Mediterranean eXperiment) aims at improving our understanding of hydrological cycle in the Mediterranen and at a better quantification and forecast of high-impact weather events in numerical weather prediction models. The first Special Observation Period (SOP1) took place in September/October 2012. During this period two aerosol Raman lidars have been deployed at Menorca Island (Spain) : one Water-vapor and Aerosol Raman LIdar (WALI) operated by LSCE/CEA (Laboratoire des Sciences du Climat et de l'Environnement/Commissariat à l'Energie Atomique) and one aerosol Raman and dual-polarization lidar (R-Man510) developed and commercialized by LEOSPHERE company. Both lidars have been continuously running during the campaign and have provided information on aerosol and cloud optical properties under various atmospheric conditions (maritime background aerosols, dust events, cirrus clouds...). We will present here the results of intercomparisons between R-Man510, and WALI aerosol lidar systems and collocated sunphotometer measurements. Limitations and uncertainties on the retrieval of extinction coefficients, depolarization ratio, aerosol optical depths and detection of atmospheric structures (planetary boundary layer height, aerosol/cloud layers) will be discussed according atmospheric conditions. The results will also be compared with theoretical uncertainty assessed with direct/inverse model of lidar profiles.
Ng, Reuben; Allore, Heather G.; Trentalange, Mark; Monin, Joan K.; Levy, Becca R.
2015-01-01
Scholars argue about whether age stereotypes (beliefs about old people) are becoming more negative or positive over time. No previous study has systematically tested the trend of age stereotypes over more than 20 years, due to lack of suitable data. Our aim was to fill this gap by investigating whether age stereotypes have changed over the last two centuries and, if so, what may be associated with this change. We hypothesized that age stereotypes have increased in negativity due, in part, to the increasing medicalization of aging. This study applied computational linguistics to the recently compiled Corpus of Historical American English (COHA), a database of 400 million words that includes a range of printed sources from 1810 to 2009. After generating a comprehensive list of synonyms for the term elderly for these years from two historical thesauri, we identified 100 collocates (words that co-occurred most frequently with these synonyms) for each of the 20 decades. Inclusion criteria for the collocates were: (1) appeared within four words of the elderly synonym, (2) referred to an old person, and (3) had a stronger association with the elderly synonym than other words appearing in the database for that decade. This yielded 13,100 collocates that were rated for negativity and medicalization. We found that age stereotypes have become more negative in a linear way over 200 years. In 1880, age stereotypes switched from being positive to being negative. In addition, support was found for two potential explanations. Medicalization of aging and the growing proportion of the population over the age of 65 were both significantly associated with the increase in negative age stereotypes. The upward trajectory of age-stereotype negativity makes a case for remedial action on a societal level. PMID:25675438
[On-orbit radiometric calibration accuracy of FY-3A MERSI thermal infrared channel].
Xu, Na; Hu, Xiu-qing; Chen, Lin; Zhang, Yong; Hu, Ju-yang; Sun, Ling
2014-12-01
Accurate satellite radiance measurements are significant for data assimilations and quantitative retrieval applications. In the present paper, radiometric calibration accuracy of FungYun-3A (FY-3A) Medium Resolution Spectral Imager (MERSI) thermal infrared (TIR) channel was evaluated based on simultaneous nadir observation (SNO) intercalibration method. Hyperspectral and high-quality measurements of METOP-A/IASI were used as reference. Assessment uncertainty from intercalibration method was also investigated by examining the relation between BT bias against four main collocation factors, i. e. observation time difference, view geometric difference related to zenith angles and azimuth angles, and scene spatial homogeneity. It was indicated that the BT bias is evenly distributed across the collocation variables with no significant linear relationship in MERSI IR channel. Among the four collocation factors, the scene spatial homogeneity may be the most important factor with the uncertainty less than 2% of BT bias. Statistical analysis of monitoring biases during one and a half years indicates that the brightness temperature measured by MERSI is much warmer than that of IASI. The annual mean bias (MERSI-IASI) in 2012 is (3.18±0.34) K. Monthly averaged BT biases show a little seasonal variation character, and fluctuation range is less than 0.8 K. To further verify the reliability, our evaluation result was also compared with the synchronous experiment results at Dunhuang and Qinghai Lake sites, which showed excellent agreement. Preliminary analysis indicates that there are two reasons leading to the warm bias. One is the overestimation of blackbody emissivity, and the other is probably the incorrect spectral respond function which has shifted to window spectral. Considering the variation character of BT biases, SRF error seems to be the dominant factor.
Evaluating the impact of aerosol particles above cloud on cloud optical depth retrievals from MODIS
NASA Astrophysics Data System (ADS)
Alfaro-Contreras, Ricardo; Zhang, Jianglong; Campbell, James R.; Holz, Robert E.; Reid, Jeffrey S.
2014-05-01
Using two different operational Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical depth (COD) retrievals (0.86 versus 1.6 µm), we evaluate the impact of above-cloud smoke aerosol particles on near-IR (0.86 µm) COD retrievals. Aerosol Index (AI) from the collocated Ozone Monitoring Instrument (OMI) are used to identify above-cloud aerosol particle loading over the southern Atlantic Ocean, including both smoke and dust from the African subcontinent. Collocated Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation data constrain cloud phase and provide contextual above-cloud aerosol optical depth. The frequency of occurrence of above-cloud aerosol events is depicted on a global scale for the spring and summer seasons from OMI and Cloud Aerosol Lidar with Orthogonal Polarization. Seasonal frequencies for smoke-over-cloud off the southwestern Africa coastline reach 20-50% in boreal summer. We find a corresponding low COD bias of 10-20% for standard MODIS COD retrievals when averaged OMI AI are larger than 1. No such bias is found over the Saharan dust outflow region off northern Africa, since both MODIS 0.86 and 1.6 µm channels are vulnerable to radiance attenuation due to dust particles. A similar result is found for a smaller domain, in the Gulf of Tonkin region, from smoke advection over marine stratocumulus clouds and outflow into the northern South China Sea in spring. This study shows the necessity of accounting for the above-cloud aerosol events for future studies using standard MODIS cloud products in biomass burning outflow regions, through the use of collocated OMI AI and supplementary MODIS 1.6 µm COD products.
NASA Astrophysics Data System (ADS)
Belikov, Dmitry A.; Maksyutov, Shamil; Ganshin, Alexander; Zhuravlev, Ruslan; Deutscher, Nicholas M.; Wunch, Debra; Feist, Dietrich G.; Morino, Isamu; Parker, Robert J.; Strong, Kimberly; Yoshida, Yukio; Bril, Andrey; Oshchepkov, Sergey; Boesch, Hartmut; Dubey, Manvendra K.; Griffith, David; Hewson, Will; Kivi, Rigel; Mendonca, Joseph; Notholt, Justus; Schneider, Matthias; Sussmann, Ralf; Velazco, Voltaire A.; Aoki, Shuji
2017-01-01
The Total Carbon Column Observing Network (TCCON) is a network of ground-based Fourier transform spectrometers (FTSs) that record near-infrared (NIR) spectra of the sun. From these spectra, accurate and precise observations of CO2 column-averaged dry-air mole fractions (denoted XCO2) are retrieved. TCCON FTS observations have previously been used to validate satellite estimations of XCO2; however, our knowledge of the short-term spatial and temporal variations in XCO2 surrounding the TCCON sites is limited. In this work, we use the National Institute for Environmental Studies (NIES) Eulerian three-dimensional transport model and the FLEXPART (FLEXible PARTicle dispersion model) Lagrangian particle dispersion model (LPDM) to determine the footprints of short-term variations in XCO2 observed by operational, past, future and possible TCCON sites. We propose a footprint-based method for the collocation of satellite and TCCON XCO2 observations and estimate the performance of the method using the NIES model and five GOSAT (Greenhouse Gases Observing Satellite) XCO2 product data sets. Comparison of the proposed approach with a standard geographic method shows a higher number of collocation points and an average bias reduction up to 0.15 ppm for a subset of 16 stations for the period from January 2010 to January 2014. Case studies of the Darwin and Reunion Island sites reveal that when the footprint area is rather curved, non-uniform and significantly different from a geographical rectangular area, the differences between these approaches are more noticeable. This emphasises that the collocation is sensitive to local meteorological conditions and flux distributions.
Mean gravity anomalies and sea surface heights derived from GEOS-3 altimeter data
NASA Technical Reports Server (NTRS)
Rapp, R. H.
1978-01-01
Approximately 2000 GEOS-3 altimeter arcs were analyzed to improve knowledge of the geoid and gravity field. An adjustment procedure was used to fit the sea surface heights (geoid undulations) in an adjustment process that incorporated cross-over constraints. The error model used for the fit was a one or two parameter model which was designed to remove altimeter bias and orbit error. The undulations on the adjusted arcs were used to produce geoid maps in 20 regions. The adjusted data was used to derive 301 5 degree equal area anomalies and 9995 1 x 1 degree anomalies in areas where the altimeter data was most dense, using least squares collocation techniques. Also emphasized was the ability of the altimeter data to imply rapid anomaly changes of up to 240 mgals in adjacent 1 x 1 degree blocks.
Improved vertical optical fiber borehole strainmeter design for measuring Earth strain.
DeWolf, Scott; Wyatt, Frank K; Zumberge, Mark A; Hatfield, William
2015-11-01
Fiber-based interferometers provide the means to sense very small displacements over long baselines, and have the advantage of being nearly completely passive in their operation, making them particularly well suited for geophysical applications. A new 250 m, interferometric vertical borehole strainmeter has been developed based completely on passive optical components. Details of the design and deployment at the Piñon Flat Observatory are presented. Power spectra show an intertidal noise level of -130 dB (re. 1 ϵ(2)/Hz), consistent within 1-3 dB between redundant components. Examination of its response to Earth tides and earthquakes relative to the areal strain recorded by an orthogonal pair of collocated, 730 m horizontal laser strainmeters yield a Poisson's ratio for local near surface material of 0.25 that is consistent with previous results.
Humanoid robot Lola: design and walking control.
Buschmann, Thomas; Lohmeier, Sebastian; Ulbrich, Heinz
2009-01-01
In this paper we present the humanoid robot LOLA, its mechatronic hardware design, simulation and real-time walking control. The goal of the LOLA-project is to build a machine capable of stable, autonomous, fast and human-like walking. LOLA is characterized by a redundant kinematic configuration with 7-DoF legs, an extremely lightweight design, joint actuators with brushless motors and an electronics architecture using decentralized joint control. Special emphasis was put on an improved mass distribution of the legs to achieve good dynamic performance. Trajectory generation and control aim at faster, more flexible and robust walking. Center of mass trajectories are calculated in real-time from footstep locations using quadratic programming and spline collocation methods. Stabilizing control uses hybrid position/force control in task space with an inner joint position control loop. Inertial stabilization is achieved by modifying the contact force trajectories.
A hybrid approach to near-optimal launch vehicle guidance
NASA Technical Reports Server (NTRS)
Leung, Martin S. K.; Calise, Anthony J.
1992-01-01
This paper evaluates a proposed hybrid analytical/numerical approach to launch-vehicle guidance for ascent to orbit injection. The feedback-guidance approach is based on a piecewise nearly analytic zero-order solution evaluated using a collocation method. The zero-order solution is then improved through a regular perturbation analysis, wherein the neglected dynamics are corrected in the first-order term. For real-time implementation, the guidance approach requires solving a set of small dimension nonlinear algebraic equations and performing quadrature. Assessment of performance and reliability are carried out through closed-loop simulation for a vertically launched 2-stage heavy-lift capacity vehicle to a low earth orbit. The solutions are compared with optimal solutions generated from a multiple shooting code. In the example the guidance approach delivers over 99.9 percent of optimal performance and terminal constraint accuracy.
NASA Astrophysics Data System (ADS)
Zulueta, R. C.; Metzger, S.; Ayres, E.; Luo, H.; Meier, C. L.; Barnett, D.; Sanclements, M.; Elmendorf, S.
2013-12-01
The National Ecological Observatory Network (NEON) is a continental-scale research platform currently in development to assess the causes of ecological change and biological responses to change across a projected 30-year timeframe. A suite of standardized sensor-based measurements (i.e., Terrestrial Instrument System (TIS) measurements) and in-situ field sampling and observations (i.e., Terrestrial Observation System (TOS) activities) will be conducted across 20 ecoclimatic domains in the U.S. where NEON is establishing 60 terrestrial research sites. NEON's TIS measurements and TOS activities are designed to observe the temporal and spatial dynamics of key drivers and ecological processes and responses to change within each of the 60 terrestrial research sites. The TIS measurements are non-destructive and designed to provide in-situ, continuous, and areally integrated observations of the surrounding ecosystem and environment, while TOS sampling and observation activities are designed to encompass a hierarchy of measurable biological states and processes including diversity, abundance, phenology, demography, infectious disease prevalence, ecohydrology, and biogeochemistry. To establish valid relationships between these drivers and site-specific responses, two contradicting requirements must be fulfilled: (i) both types of observations shall be representative of the same ecosystem, and (ii) they shall not significantly influence one another. Here we outline the theoretical background and algorithmic process for determining areas of mutual representativeness and exclusion around NEON's TIS measurements and develop a procedure which quantitatively optimizes this trade-off through: (i) quantifying the source area distributions of TIS measurements, (ii) determining the ratio of user-defined impact threshold to effective impact area for different TOS activities, and (iii) determining the range of feasible distances between TIS locations and TOS activities. This approach provides an evidence-based and repeatable method for combining sensor-based measurements and field sampling and observations at predefined levels of disturbance and spatial representativeness. The developed approach represents a general framework which is applicable to other environmental research sites where similar collocation is desired.
Top-of-the-Atmosphere Shortwave Flux Estimation from UV Observations: An Empirical Approach
NASA Technical Reports Server (NTRS)
Gupta, P.; Joiner, Joanna; Vasilkov, A.; Bhartia, P. K.; da Silva, Arlindo
2012-01-01
Measurements of top of the atmosphere (TOA) radiation are essential to the understanding of Earth's climate. Clouds, aerosols, and ozone (0,) are among the most important agents impacting the Earth's short-wave (SW) radiation budget. There are several sensors in orbit that provide independent information related to the Earth's SW radiation budget. Having coincident information from these sensors is important for understanding their potential contributions. The A-train constellation of satellites provides a unique opportunity to analyze near-simultaneous data from several of these sensors. They include the Ozone Monitoring Instrument (OMI), on the NASA Aura satellite, that makes TOA hyper-spectral measurements from ultraviolet (UV) to visible wavelengths, and Clouds and the Earth's Radiant Energy System (CERES) instrument, on the NASA Aqua satellite, that makes broadband measurements in both the long- and short-wave. OMI measurements have been successfully utilized to derive the information on trace gases (e.g., 0 1, NO" and SO,), clouds, and absorbing aerosols. TOA SW fluxes are estimated using a combination of data from CERES and the Aqua MODerate-resolution Imaging Spectroradiometer (MODIS). In this paper, OMI retrievals of cloud/aerosol parameters and 0 1 have been collocated with CERES TOA SW flux retrievals. We use this collocated data to develop a neural network that estimates TOA shortwave flux globally over ocean using data from OMI and meteorological analyses. This input data include the effective cloud fraction, cloud optical centroid pressure (OCP), total-column 0" and sun-satellite viewing geometry from OMI as well as wind speed and water vapor from the Goddard Earth Observing System 5 Modern Era Retrospective-analysis for Research and Applications (GEOS-5 MERRA) along with a climatology of chlorophyll content. We train the neural network using a subset of CERES retrievals of TOA SW flux as the target output (truth) and withhold a different subset of the CERES data to be used for validation.
New Radiosonde Temperature Bias Adjustments for Potential NWP Applications Based on GPS RO Data
NASA Astrophysics Data System (ADS)
Sun, B.; Reale, A.; Ballish, B.; Seidel, D. J.
2014-12-01
Conventional radiosonde observations (RAOBs), along with satellite and other in situ data, are assimilated in numerical weather prediction (NWP) models to generate a forecast. Radiosonde temperature observations, however, have solar and thermal radiation induced biases (typically a warm daytime bias from sunlight heating the sensor and a cold bias at night as the sensor emits longwave radiation). Radiation corrections made at stations based on algorithms provided by radiosonde manufacturers or national meteorological agencies may not be adequate, so biases remain. To adjust these biases, NWP centers may make additional adjustments to radiosonde data. However, the radiation correction (RADCOR) schemes used in the NOAA NCEP data assimilation and forecasting system is outdated and does not cover several widely-used contemporary radiosonde types. This study focuses on work whose objective is to improve these corrections and test their impacts on the NWP forecasting and analysis. GPS Radio Occultation (RO) dry temperature (Tdry) is considered to be highly accurate in the upper troposphere and low stratosphere where atmospheric water vapor is negligible. This study uses GPS RO Tdry from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) as the reference to quantify the radiation induced RAOB temperature errors by analyzing ~ 3-yr collocated RAOB and COSMIC GPS RO data compile by the NOAA Products Validation System (NPROVS). The new radiation adjustments are developed for different solar angle categories and for all common sonde types flown in the WMO global operational upper air network. Results for global and several commonly used sondes are presented in the context of NCEP Global Forecast System observation-minus-background analysis, indicating projected impacts in reducing forecast error. Dedicated NWP impact studies to quantify the impact of the new RADCOR schemes on the NCEP analyses and forecast are under consideration.
"Community", Semiotic Flows, and Mediated Contribution to Activity
ERIC Educational Resources Information Center
Thorne, Steven L.
2009-01-01
This article begins with an overview and problematization of the term "community" through a brief assessment of its history, diverse uses, core attributes, heterogeneous elements, and collocational companions. Following this, I describe demographics and processes associated with collective engagement in digitally mediated environments. Utilizing…
A conforming spectral collocation strategy for Stokes flow through a channel contraction
NASA Technical Reports Server (NTRS)
Phillips, Timothy N.; Karageorghis, Andreas
1989-01-01
A formula expressing the coefficients of an expansion of ultraspherical polynomials which has been differentiated an arbitrary number of times in terms of the coefficients of the original expansion is proved. The particular examples of Chebyshev and Legendre polynomials are considered.
Extracting Useful Semantic Information from Large Scale Corpora of Text
ERIC Educational Resources Information Center
Mendoza, Ray Padilla, Jr.
2012-01-01
Extracting and representing semantic information from large scale corpora is at the crux of computer-assisted knowledge generation. Semantic information depends on collocation extraction methods, mathematical models used to represent distributional information, and weighting functions which transform the space. This dissertation provides a…
PREDICTION OF FINE PARTICULATE LEVELS AT UNMONITORED LOCATIONS
In November and December of 1999, air concentrations of ultrafine, fine, and coarse particulate matter were measured at two intensive sites in El Paso, Texas. The intensive sites included collocated measurements of NO2 and volatile organic compounds (VOCs) in the air from both...
Triple collocation based merging of satellite soil moisture retrievals
USDA-ARS?s Scientific Manuscript database
We propose a method for merging soil moisture retrievals from space borne active and passive microwave instruments based on weighted averaging taking into account the error characteristics of the individual data sets. The merging scheme is parameterized using error variance estimates obtained from u...
NASA Technical Reports Server (NTRS)
Fromme, J. A.; Golberg, M. A.
1979-01-01
Lift interference effects are discussed based on Bland's (1968) integral equation. A mathematical existence theory is utilized for which convergence of the numerical method has been proved for general (square-integrable) downwashes. Airloads are computed using orthogonal airfoil polynomial pairs in conjunction with a collocation method which is numerically equivalent to Galerkin's method and complex least squares. Convergence exhibits exponentially decreasing error with the number n of collocation points for smooth downwashes, whereas errors are proportional to 1/n for discontinuous downwashes. The latter can be reduced to 1/n to the m+1 power with mth-order Richardson extrapolation (by using m = 2, hundredfold error reductions were obtained with only a 13% increase of computer time). Numerical results are presented showing acoustic resonance, as well as the effect of Mach number, ventilation, height-to-chord ratio, and mode shape on wind-tunnel interference. Excellent agreement with experiment is obtained in steady flow, and good agreement is obtained for unsteady flow.
NASA Astrophysics Data System (ADS)
Belyaev, V. A.; Shapeev, V. P.
2017-10-01
New versions of the collocations and least squares method of high-order accuracy are proposed and implemented for the numerical solution of the boundary value problems for the biharmonic equation in non-canonical domains. The solution of the biharmonic equation is used for simulating the stress-strain state of an isotropic plate under the action of transverse load. The differential problem is projected into a space of fourth-degree polynomials by the CLS method. The boundary conditions for the approximate solution are put down exactly on the boundary of the computational domain. The versions of the CLS method are implemented on the grids which are constructed in two different ways. It is shown that the approximate solution of problems converges with high order. Thus it matches with high accuracy with the analytical solution of the test problems in the case of known solution in the numerical experiments on the convergence of the solution of various problems on a sequence of grids.
NASA Astrophysics Data System (ADS)
Zhang, Z.; Song, H.; Wang, M.; Ghan, S. J.; Dong, X.
2016-12-01
he main objective of this study is to systematically evaluate the MBL cloud properties simulated in CAM5 family models using a combination of satellite-based CloudSat/MODIS observations and ground-based observations from the ARM Azores site, with a special focus on MBL cloud microphysics and warm rain process. First, we will present a global evaluation based on satellite observations and retrievals. We will compare global cloud properties (e.g., cloud fraction, cloud vertical structure, cloud CER, COT, and LWP, as well as drizzle frequency and intensity diagnosed using the CAM5-COSP instrumental simulators) simulated in the CAM5 models with the collocated CloudSat and MODIS observations. We will also present some preliminary results from a regional evaluation based mainly on ground observations from ARM Azores site. We will compare MBL cloud properties simulated in CAM5 models over the ARM Azores site with collocated satellite (MODIS and CloudSat) and ground-based observations from the ARM site.
NASA Astrophysics Data System (ADS)
Wang, S.; Huang, G. H.; Huang, W.; Fan, Y. R.; Li, Z.
2015-10-01
In this study, a fractional factorial probabilistic collocation method is proposed to reveal statistical significance of hydrologic model parameters and their multi-level interactions affecting model outputs, facilitating uncertainty propagation in a reduced dimensional space. The proposed methodology is applied to the Xiangxi River watershed in China to demonstrate its validity and applicability, as well as its capability of revealing complex and dynamic parameter interactions. A set of reduced polynomial chaos expansions (PCEs) only with statistically significant terms can be obtained based on the results of factorial analysis of variance (ANOVA), achieving a reduction of uncertainty in hydrologic predictions. The predictive performance of reduced PCEs is verified by comparing against standard PCEs and the Monte Carlo with Latin hypercube sampling (MC-LHS) method in terms of reliability, sharpness, and Nash-Sutcliffe efficiency (NSE). Results reveal that the reduced PCEs are able to capture hydrologic behaviors of the Xiangxi River watershed, and they are efficient functional representations for propagating uncertainties in hydrologic predictions.
NASA Astrophysics Data System (ADS)
Reuter, Bryan; Oliver, Todd; Lee, M. K.; Moser, Robert
2017-11-01
We present an algorithm for a Direct Numerical Simulation of the variable-density Navier-Stokes equations based on the velocity-vorticity approach introduced by Kim, Moin, and Moser (1987). In the current work, a Helmholtz decomposition of the momentum is performed. Evolution equations for the curl and the Laplacian of the divergence-free portion are formulated by manipulation of the momentum equations and the curl-free portion is reconstructed by enforcing continuity. The solution is expanded in Fourier bases in the homogeneous directions and B-Spline bases in the inhomogeneous directions. Discrete equations are obtained through a mixed Fourier-Galerkin and collocation weighted residual method. The scheme is designed such that the numerical solution conserves mass locally and globally by ensuring the discrete divergence projection is exact through the use of higher order splines in the inhomogeneous directions. The formulation is tested on multiple variable-density flow problems.
Probabilistic Parameter Uncertainty Analysis of Single Input Single Output Control Systems
NASA Technical Reports Server (NTRS)
Smith, Brett A.; Kenny, Sean P.; Crespo, Luis G.
2005-01-01
The current standards for handling uncertainty in control systems use interval bounds for definition of the uncertain parameters. This approach gives no information about the likelihood of system performance, but simply gives the response bounds. When used in design, current methods of m-analysis and can lead to overly conservative controller design. With these methods, worst case conditions are weighted equally with the most likely conditions. This research explores a unique approach for probabilistic analysis of control systems. Current reliability methods are examined showing the strong areas of each in handling probability. A hybrid method is developed using these reliability tools for efficiently propagating probabilistic uncertainty through classical control analysis problems. The method developed is applied to classical response analysis as well as analysis methods that explore the effects of the uncertain parameters on stability and performance metrics. The benefits of using this hybrid approach for calculating the mean and variance of responses cumulative distribution functions are shown. Results of the probabilistic analysis of a missile pitch control system, and a non-collocated mass spring system, show the added information provided by this hybrid analysis.
Dynamic modeling and ascent flight control of Ares-I Crew Launch Vehicle
NASA Astrophysics Data System (ADS)
Du, Wei
This research focuses on dynamic modeling and ascent flight control of large flexible launch vehicles such as the Ares-I Crew Launch Vehicle (CLV). A complete set of six-degrees-of-freedom dynamic models of the Ares-I, incorporating its propulsion, aerodynamics, guidance and control, and structural flexibility, is developed. NASA's Ares-I reference model and the SAVANT Simulink-based program are utilized to develop a Matlab-based simulation and linearization tool for an independent validation of the performance and stability of the ascent flight control system of large flexible launch vehicles. A linearized state-space model as well as a non-minimum-phase transfer function model (which is typical for flexible vehicles with non-collocated actuators and sensors) are validated for ascent flight control design and analysis. This research also investigates fundamental principles of flight control analysis and design for launch vehicles, in particular the classical "drift-minimum" and "load-minimum" control principles. It is shown that an additional feedback of angle-of-attack can significantly improve overall performance and stability, especially in the presence of unexpected large wind disturbances. For a typical "non-collocated actuator and sensor" control problem for large flexible launch vehicles, non-minimum-phase filtering of "unstably interacting" bending modes is also shown to be effective. The uncertainty model of a flexible launch vehicle is derived. The robust stability of an ascent flight control system design, which directly controls the inertial attitude-error quaternion and also employs the non-minimum-phase filters, is verified by the framework of structured singular value (mu) analysis. Furthermore, nonlinear coupled dynamic simulation results are presented for a reference model of the Ares-I CLV as another validation of the feasibility of the ascent flight control system design. Another important issue for a single main engine launch vehicle is stability under mal-function of the roll control system. The roll motion of the Ares-I Crew Launch Vehicle under nominal flight conditions is actively stabilized by its roll control system employing thrusters. This dissertation describes the ascent flight control design problem of Ares-I in the event of disabled or failed roll control. A simple pitch/yaw control logic is developed for such a technically challenging problem by exploiting the inherent versatility of a quaternion-based attitude control system. The proposed scheme requires only the desired inertial attitude quaternion to be re-computed using the actual uncontrolled roll angle information to achieve an ascent flight trajectory identical to the nominal flight case with active roll control. Another approach that utilizes a simple adjustment of the proportional-derivative gains of the quaternion-based flight control system without active roll control is also presented. This approach doesn't require the re-computation of desired inertial attitude quaternion. A linear stability criterion is developed for proper adjustments of attitude and rate gains. The linear stability analysis results are validated by nonlinear simulations of the ascent flight phase. However, the first approach, requiring a simple modification of the desired attitude quaternion, is recommended for the Ares-I as well as other launch vehicles in the event of no active roll control. Finally, the method derived to stabilize a large flexible launch vehicle in the event of uncontrolled roll drift is generalized as a modified attitude quaternion feedback law. It is used to stabilize an axisymmetric rigid body by two independent control torques.
Prototype Earthquake Early Warning System for Areas of Highest Seismic Risk in the Western U.S.
NASA Astrophysics Data System (ADS)
Bock, Y.; Geng, J.; Goldberg, D.; Saunders, J. K.; Haase, J. S.; Squibb, M. B.; Melgar, D.; Crowell, B. W.; Clayton, R. W.; Yu, E.; Walls, C. P.; Mann, D.; Mencin, D.; Mattioli, G. S.
2015-12-01
We report on a prototype earthquake early warning system for the Western U.S. based on GNSS (GPS+GLONASS) observations, and where available collocated GNSS and accelerometer data (seismogeodesy). We estimate with latency of 2-3 seconds GNSS displacement waveforms from more than 120 stations, focusing on the southern segment of the San Andreas fault, the Hayward and Rodgers Creek faults and Cascadia. The displacements are estimated using precise point positioning with ambiguity resolution (PPP-AR), which provides for efficient processing of hundreds of "clients" within the region of interest with respect to a reference frame well outside the expected zone of deformation. The GNSS displacements are useful for alleviating magnitude saturation concerns, rapid earthquake magnitude estimation using peak ground displacements, CMT solutions and finite fault slip models. However, GNSS alone is insufficient for strict earthquake early warning (i.e., P wave detection). Therefore, we employ a self-contained seismogeodetic technique, where collocations of GNSS and accelerometer instruments are available, to estimate real-time displacement and velocity waveforms using PPP-AR with accelerometers (PPP-ARA). Using the velocity waveforms we can detect the P wave arrival for earthquakes of interest (>M 5.5), estimate a hypocenter, S wave propagation, and earthquake magnitude using Pd scaling relationships within seconds. Currently we are gearing up to receive observatory-grade accelerometer data from the CISN. We have deployed 25 inexpensive MEMS accelerometers at existing GNSS stations. The SIO Geodetic Modules that control the flow of the GNSS and accelerometer data are being upgraded with in situ PPP-ARA and P wave picking. In situ processing allows us to use the data at the highest sampling rate of the GNSS receiver (10 Hz or higher), in combination with the 100 Hz accelerometer data. Adding the GLONASS data allows for increased precision in the vertical, an important factor in P wave detection, and by reducing outliers, increasing the number of visible satellites and significantly reducing the time required for reinitialization of phase ambiguities. We plan to make our displacement and velocity waveforms available to the USGS ShakeAlert system and others in Earthworm format.
Implicit Formulation of Muscle Dynamics in OpenSim
NASA Technical Reports Server (NTRS)
Humphreys, Brad; Dembia, Chris; Lewandowski, Beth; Van Den Bogert, Antonie
2017-01-01
Astronauts lose bone and muscle mass during spaceflight. Exercise countermeasure is the primary method for counteracting bone and muscle mass loss in space. New spacecraft exercise device concepts are currently being developed for the NASAs new crew exploration vehicle. The NASA Digital Astronaut Project (DAP) uses computational modeling to help determine if the new exercise devices will be effective as countermeasures. The NASA Digital Astronaut Project is developing the ability to utilize predictive simulation to provide insight into the change in kinematics and kinetics with a change in device and gravitational environment (1-g versus 0-g). For example, in space exercise the subject's body weight is applied in addition to the loads prescribed for musculoskeletal maintenance. How and where these loads are applied obviously directly impacts bone and tissue loads. Additionally, due to space vehicle structural requirements, exercise devices are often placed on vibration isolation systems. This changes the apparent impedance or stiffness of the device as seen by the user. Data collection under these conditions is often impractical and limited. Predictive modeling provides a means to have a virtual subject to test hypotheses. Predictive simulation provides a virtual subject for which we are able to perform studies such as sensitivity to device loading and vibration isolation without the need for laboratory kinematic or kinetic test data.Direct Collocation optimization provides an efficient means to perform task based optimization and predictive modeling. It is relatively straight forward to structure a physical exercise task in a Direct Collocation mathematical formulation: perform a motion such that you start at an initial pose, achieve a given amount of deflection i.e a squat, return to the initial pose, and minimize muscle activation cost. Direct Collocation is advantageous in that it does not require numerical integration to evaluate the objective function. Instead, the system dynamics are transformed to discrete time and the optimizer is constrained such that the solution is not considered to be a valid unless the dynamic equations are satisfied at all time points. The simulation and optimization are effectively done simultaneously. Due to the implicit integration, time steps can be more coarse than in a differential equation solver. In a gait scenario this means that that the model constraints and cost function are evaluated at 100 nodes in the gait cycle versus 10,000 integration steps in a variable-step forward dynamic simulation. Furthermore, no time is wasted on accurate simulations of movements that are far from the optimum. Constrained optimization algorithms require a Jacobian matrix that contains the partial derivatives of each of the dynamic constraints with respect to of each of the state and control variables at all time points. This is a large but sparse matrix. An implicit dynamics formulation requires computation of the dynamic residuals f as a function of the states x and their derivatives, and controls u:f(x, dxdt, u) 0If the dynamics of musculoskeletal system are formulated implicitly, the Jacobian elements are often available analytically, eliminating the need for numerical differentiation; this is obviously computationally advantageous. Additionally, implicit formulation of musculoskeletal dynamics do not suffer from singularities from low mass bodies, zero muscle activation, or other stiff system or
Polar cloud observatory at Ny-Ålesund in GRENE Arctic Climate Change Research Project
NASA Astrophysics Data System (ADS)
Yamanouchi, Takashi; Takano, Toshiaki; Shiobara, Masataka; Okamoto, Hajime; Koike, Makoto; Ukita, Jinro
2016-04-01
Cloud is one of the main processes in the climate system and especially a large feed back agent for Arctic warming amplification (Yoshimori et al., 2014). From this reason, observation of polar cloud has been emphasized and 95 GHz cloud profiling radar in high precision was established at Ny-Ålesund, Svalbard in 2013 as one of the basic infrastructure in the GRENE (Green Network of Excellence Program) Arctic Climate Change Research Project. The radar, "FALCON-A", is a FM-CW (frequency modulated continuous wave) Doppler radar, developed for Arctic use by Chiba University (PI: T. Takano) in 2012, following its prototype, "FALCON-1" which was developed in 2006 (Takano et al., 2010). The specifications of the radar are, central frequency: 94.84 GHz; antenna power: 1 W; observation height: up to 15 km; range resolution: 48 m; beam width: 0.2 degree (15 m at 5 km); Doppler width: 3.2 m/s; time interval: 10 sec, and capable of archiving high sensitivity and high spatial and time resolution. An FM-CW type radar realizes similar sensitivity with much smaller parabolic antennas separated 1.4 m from each other used for transmitting and receiving the wave. Polarized Micro-Pulse Lidar (PMPL, Sigma Space MPL-4B-IDS), which is capable to measure the backscatter and depolarization ratio, has also been deployed to Ny-Ålesund in March 2012, and now operated to perform collocated measurements with FALCON-A. Simultaneous measurement data from collocated PMPL and FALCON-A are available for synergetic analyses of cloud microphysics. Cloud mycrophysics, such as effective radius of ice particles and ice water content, are obtained from the analysis based on algorithm, which is modified for ground-based measurements from Okamoto's retrieval algorithm for satellite based cloud profiling radar and lidar (CloudSat and CALIPSO; Okamoto et al., 2010). Results of two years will be shown in the presentation. Calibration is a point to derive radar reflectivity (dBZ) from original intensity data. Degradation of transmission power was monitored and sensitivity of receiving system was derived with estimating antenna gain by using radio wave absorber and considering antenna geometry of two antenna system. In order to estimate final results, altitude dependent detection limit curve was also calculated. Original intensity data in real time and calibrated radar reflectivity data are archived on "Arctic Data archive System (ADS)". Other collocated observations were made with fog monitor (particle size distribution), MPS (particle image) for continuous measurements at Zeppelin Mountain, 450 m height a. s. l., and tethered balloon for intense observing period. From these measurements together with aerosol and meteorological monitoring made by collaborating institutes (Stockholm University, University of Florence, AWI, NILU, NCAR and NPI) microphysics of low level cloud and aerosol-cloud interactions are discussed. Ground based remote sensors provide a powerful validation for satellite cloud observations. Radar reflectivity (dBZ) by FALCON-A was compared with that by CPR on CloudSAT during several overpasses around Ny-Ålesund, and though some difference due to the different vertical resolution was seen, overall agreement was confirmed. We are planning to establish Ny-Ålesund observatory as the super site for validation for EarthCARE (JAXA-ESA) mission.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 24 one-hour consecutive measurements. CO means carbon monoxide. Collocated means two or more air... appropriate, the same general requirements as an ISO 9001-registered facility for the design and manufacture... means nitrogen dioxide. NO X means oxides of nitrogen and is defined as the sum of the concentrations of...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 24 one-hour consecutive measurements. CO means carbon monoxide. Collocated means two or more air... appropriate, the same general requirements as an ISO 9001-registered facility for the design and manufacture... means nitrogen dioxide. NO X means oxides of nitrogen and is defined as the sum of the concentrations of...
Evaluating Remotely-Sensed Soil Moisture Retrievals Using Triple Collocation Techniques
USDA-ARS?s Scientific Manuscript database
The validation is footprint-scale (~40 km) surface soil moisture retrievals from space is complicated by a lack of ground-based soil moisture instrumentation and challenges associated with up-scaling point-scale measurements from such instrumentation. Recent work has demonstrated the potential of e...
Military Review. Volume 90, Number 2, March-April 2000
2000-04-01
additional safety and security concerns and re- quirements for workers� and drivers� life support. Integration. Integration went smoothly at Puerto Quetzal ...the SPOD for initial deployment in Gua- temala. Quetzal was only 10 kilome- ters from the forward operating base and was collocated with the main
Spectral methods on arbitrary grids
NASA Technical Reports Server (NTRS)
Carpenter, Mark H.; Gottlieb, David
1995-01-01
Stable and spectrally accurate numerical methods are constructed on arbitrary grids for partial differential equations. These new methods are equivalent to conventional spectral methods but do not rely on specific grid distributions. Specifically, we show how to implement Legendre Galerkin, Legendre collocation, and Laguerre Galerkin methodology on arbitrary grids.