Adaptive controller for regenerative and friction braking system
Davis, R.I.
1990-10-16
A regenerative and friction braking system for a vehicle having one or more road wheels driven by an electric traction motor includes a driver responsive device for producing a brake demand signal having a magnitude corresponding to the level of braking force selected by the driver and friction and regenerative brakes operatively connected with the road wheels of the vehicle. A system according to this invention further includes control means for operating the friction and regenerative braking subsystems so that maximum brake torques sustainable by the road wheels of the vehicle without skidding or slipping will not be exceeded. 8 figs.
Adaptive controller for regenerative and friction braking system
Davis, Roy I.
1990-01-01
A regenerative and friction braking system for a vehicle having one or more roadwheels driven by an electric traction motor includes a driver responsive device for producing a brake demand signal having a magnitude corresponding to the level of braking force selected by the driver and friction and regenerative brakes operatively connected with the roadwheels of the vehicle. A system according to this invention further includes control means for operating the friction and regenerative braking subsystems so that maximum brake torques sustainable by the roadwheels of the vehicle without skidding or slipping will not be exceeded.
Engineering model system study for a regenerative fuel cell: Study report
NASA Technical Reports Server (NTRS)
Chang, B. J.; Schubert, F. H.; Kovach, A. J.; Wynveen, R. A.
1984-01-01
Key design issues of the regenerative fuel cell system concept were studied and a design definition of an alkaline electrolyte based engineering model system or low Earth orbit missions was completed. Definition of key design issues for a regenerative fuel cell system include gaseous reactant storage, shared heat exchangers and high pressure pumps. A power flow diagram for the 75 kW initial space station and the impact of different regenerative fuel cell modular sizes on the total 5 year to orbit weight and volume are determined. System characteristics, an isometric drawing, component sizes and mass and energy balances are determined for the 10 kW engineering model system. An open loop regenerative fuel cell concept is considered for integration of the energy storage system with the life support system of the space station. Technical problems and their solutions, pacing technologies and required developments and demonstrations for the regenerative fuel cell system are defined.
Space Station Freedom ECLSS: A step toward autonomous regenerative life support systems
NASA Technical Reports Server (NTRS)
Dewberry, Brandon S.
1990-01-01
The Environmental Control and Life Support System (ECLSS) is a Freedom Station distributed system with inherent applicability to extensive automation primarily due to its comparatively long control system latencies. These allow longer contemplation times in which to form a more intelligent control strategy and to prevent and diagnose faults. The regenerative nature of the Space Station Freedom ECLSS will contribute closed loop complexities never before encountered in life support systems. A study to determine ECLSS automation approaches has been completed. The ECLSS baseline software and system processes could be augmented with more advanced fault management and regenerative control systems for a more autonomous evolutionary system, as well as serving as a firm foundation for future regenerative life support systems. Emerging advanced software technology and tools can be successfully applied to fault management, but a fully automated life support system will require research and development of regenerative control systems and models. The baseline Environmental Control and Life Support System utilizes ground tests in development of batch chemical and microbial control processes. Long duration regenerative life support systems will require more active chemical and microbial feedback control systems which, in turn, will require advancements in regenerative life support models and tools. These models can be verified using ground and on orbit life support test and operational data, and used in the engineering analysis of proposed intelligent instrumentation feedback and flexible process control technologies for future autonomous regenerative life support systems, including the evolutionary Space Station Freedom ECLSS.
Regenerative (Regen) ECLSS Operations Water Balance
NASA Technical Reports Server (NTRS)
Tobias, Barry
2010-01-01
In November 2008, the Water Regenerative System racks were launched aboard Space Shuttle flight, STS-126 (ULF2) and installed and activated on the International Space Station (ISS). These racks, consisting of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA), completed the installation of the Regenerative (Regen) ECLSS systems which includes the Oxygen Generator Assembly (OGA) that was launched 2 years prior. With the onset of active water management on the US segment of the ISS, a new operational concept was required, that of "water balance." Even more recently, in 2010 the Sabatier system came online which converts H2 and CO2 into water and methane. The Regen ECLSS systems accept condensation from the atmosphere, urine from crew, and processes that fluid via various means into potable water which is used for crew drinking, building up skip-cycle water inventory, and water for electrolysis to produce oxygen. Specification rates of crew urine output, condensate output, O2 requirements, toilet flush water and drinking needs are well documented and used as a general plan when Regen ECLSS came online. Spec rates are useful in long term planning, however, daily or weekly rates are dependent on a number of variables. The constantly changing rates created a new challenge for the ECLSS flight controllers, who are responsible for operating the ECLSS systems onboard ISS. This paper will review the various inputs to rate changes and inputs to planning events, including but not limited to; crew personnel makeup, Regen ECLSS system operability, vehicle traffic, water containment availability, and Carbon Dioxide Removal Assembly (CDRA) capability. Along with the inputs that change the various rates, the paper will review the different systems, their constraints and finally the operational means by which flight controllers manage this new challenge of "water balance."
NASA Technical Reports Server (NTRS)
Mcelroy, J. F.
1990-01-01
Viewgraphs on SPE regenerative hydrogen/oxygen fuel cells for extraterrestrial surface and microgravity applications are presented. Topics covered include: hydrogen-oxygen regenerative fuel cell energy storage system; electrochemical cell reactions; SPE cell voltage stability; passive water removal SPE fuel cell; fuel cell performance; SPE water electrolyzers; hydrophobic oxygen phase separator; hydrophilic/electrochemical hydrogen phase separator; and unitized regenerative fuel cell.
Fuzzy logic electric vehicle regenerative antiskid braking and traction control system
Cikanek, S.R.
1994-10-25
An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control. 123 figs.
Fuzzy logic electric vehicle regenerative antiskid braking and traction control system
Cikanek, Susan R.
1994-01-01
An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control.
Run-Curve Design for Energy Saving Operation in a Modern DC-Electrification
NASA Astrophysics Data System (ADS)
Koseki, Takafumi; Noda, Takashi
Mechanical brakes are often used by electric trains. These brakes have a few problems like response speed, coefficient of friction, maintenance cost and so on. As a result, methods for actively using regenerative brakes are required. In this paper, we propose the useful pure electric braking, which would involve ordinary brakes by only regenerative brakes without any mechanical brakes at high speed. Benefits of our proposal include a DC-electrification system with regenerative substations that can return powers to the commercial power system and a train that can use the full regenerative braking force. We furthermore evaluate the effects on running time and energies saved by regenerative substations in the proposed method.
New model of inverting substation for DC traction with regenerative braking system
NASA Astrophysics Data System (ADS)
Omar, Abdul Malek Saidina; Samat, Ahmad Asri Abd; Isa, Siti Sarah Mat; Shamsuddin, Sarah Addyani; Jamaludin, Nur Fadhilah; Khyasudeen, Muhammad Farris
2017-08-01
This paper presents a power electronic devices application focus on modeling, analysis, and control of switching power converter in the inverting DC substation with regenerative braking system which is used to recycle the surplus regenerative power by feed it back to the main AC grid. The main objective of this research is to improve the switching power electronic converter of the railway inverting substation and optimize the maximum kinetic energy recovery together with minimum power losses from the railway braking system. Assess performance including efficiency and robustness will be evaluated in order to get the best solution for the design configuration. Research methodology included mathematical calculation, simulation, and detail analysis on modeling of switching power converter on inverting substation. The design stage separates to four main areas include rectification mode, regenerative mode, control inverter mode and filtering mode. The simulation result has shown that the regenerative inverter has a capability to accept a maximum recovery power on the regeneration mode. Total energy recovery has increase and power losses have decreases because inverter abilities to transfer the surplus energy back to the main AC supply. An Inverter controller with PWM Generator and PI Voltage Regulator has been designed to control voltage magnitude and frequency of the DC traction system.
Electric vehicle regenerative antiskid braking and traction control system
Cikanek, S.R.
1995-09-12
An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydraulic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control. 10 figs.
Electric vehicle regenerative antiskid braking and traction control system
Cikanek, Susan R.
1995-01-01
An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydrualic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control.
Status of the Regenerative ECLS Water Recovery System
NASA Technical Reports Server (NTRS)
Carter, Donald Layne
2010-01-01
The regenerative Water Recovery System (WRS) has completed its first full year of operation on the International Space Station (ISS). The major assemblies included in this system are the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA). This paper summarizes the on-orbit status as of May 2010, and describes the technical challenges encountered and lessons learned over the past year.
International Space Station Environmental Control and Life Support System Status: 2006 - 2007
NASA Technical Reports Server (NTRS)
Williams, David E.; Gentry, Gregory J.
2007-01-01
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between March 2006 and February 2007. The ISS continued permanent crew operations, with the start of Phase 3 of the ISS Assembly Sequence. Work continued on the Phase 3 pressurized elements and the continued manufacturing and testing of the regenerative ECLS equipment.
International Space Station Environmental Control and Life Support System Status: 2008 - 2009
NASA Technical Reports Server (NTRS)
Williams, David E.; Gentry, Gregory J.; Gentry, Gregory J.
2009-01-01
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between March 2008 and February 2009. The ISS continued permanent crew operations, with the continuation of Phase 3 of the ISS Assembly Sequence. Work continues on the last of the Phase 3 pressurized elements and the continued manufacturing and testing of the regenerative ECLS equipment.
International Space Station Environmental Control and Life Support System Status: 2005 - 2006
NASA Technical Reports Server (NTRS)
Williams, David E.; Gentry, Gregory J.
2006-01-01
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between March 2005 and February 2006. The ISS continued permanent crew operations, with the start of Phase 3 of the ISS Assembly Sequence. Work continued on the Phase 3 pressurized elements and the continued manufacturing and testing of the regenerative ECLS equipment.
International Space Station (ISS) Environmental Control and Life Support System Status: 2003-2004
NASA Technical Reports Server (NTRS)
Williams, David E.; Gentry, Gregory
2004-01-01
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between April 2003 and March 2004. The ISS continued permanent crew operations, with the start of Phase 3 of the ISS Assembly Sequence. Work continued on the Phase 3 pressurized elements and the continued manufacturing and testing of the regenerative ECLS equipment.
Long life Regenerative Fuel Cell technology development plan
NASA Technical Reports Server (NTRS)
Littman, Franklin D.; Cataldo, Robert L.; Mcelroy, James F.; Stedman, Jay K.
1992-01-01
This paper summarizes a technology roadmap for completing advanced development of a Proton Exchange Membrane (PEM) Regenerative Fuel Cell (RFC) to meet long life (20,000 hrs at 50 percent duty cycle) mobile or portable power system applications on the surface of the moon and Mars. Development of two different sized RFC power system modules is included in this plan (3 and 7.5 kWe). A conservative approach was taken which includes the development of a Ground Engineering System, Qualification Unit, and Flight Unit. This paper includes a concept description, technology assessment, development issues, development tasks, and development schedule.
Functionalized Nanostructures with Application in Regenerative Medicine
Perán, Macarena; García, María A.; López-Ruiz, Elena; Bustamante, Milán; Jiménez, Gema; Madeddu, Roberto; Marchal, Juan A.
2012-01-01
In the last decade, both regenerative medicine and nanotechnology have been broadly developed leading important advances in biomedical research as well as in clinical practice. The manipulation on the molecular level and the use of several functionalized nanoscaled materials has application in various fields of regenerative medicine including tissue engineering, cell therapy, diagnosis and drug and gene delivery. The themes covered in this review include nanoparticle systems for tracking transplanted stem cells, self-assembling peptides, nanoparticles for gene delivery into stem cells and biomimetic scaffolds useful for 2D and 3D tissue cell cultures, transplantation and clinical application. PMID:22489186
International Space Station Water Balance Operations
NASA Technical Reports Server (NTRS)
Tobias, Barry; Garr, John D., II; Erne, Meghan
2011-01-01
In November 2008, the Water Regenerative System racks were launched aboard Space Shuttle flight, STS-126 (ULF2) and installed and activated on the International Space Station (ISS). These racks, consisting of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA), completed the installation of the Regenerative (Regen) Environmental Control and Life Support Systems (ECLSS), which includes the Oxygen Generation Assembly (OGA) that was launched 2 years prior. With the onset of active water management on the US segment of the ISS, a new operational concept was required, that of water balance . In November of 2010, the Sabatier system, which converts H2 and CO2 into water and methane, was brought on line. The Regen ECLSS systems accept condensation from the atmosphere, urine from crew, and processes that fluid via various means into potable water, which is used for crew drinking, building up skip-cycle water inventory, and water for electrolysis to produce oxygen. Specification (spec) rates of crew urine output, condensate output, O2 requirements, toilet flush water, and drinking needs are well documented and used as the best guess planning rates when Regen ECLSS came online. Spec rates are useful in long term planning, however, daily or weekly rates are dependent upon a number of variables. The constantly changing rates created a new challenge for the ECLSS flight controllers, who are responsible for operating the ECLSS systems onboard ISS from Mission Control in Houston. This paper reviews the various inputs to water planning, rate changes, and dynamic events, including but not limited to: crew personnel makeup, Regen ECLSS system operability, vehicle traffic, water storage availability, and Carbon Dioxide Removal Assembly (CDRA), Sabatier, and OGA capability. Along with the inputs that change the various rates, the paper will review the different systems, their constraints, and finally the operational challenges and means by which flight controllers manage this new concept of "water balance."
NASA Technical Reports Server (NTRS)
Williams, David E.; Lewis, John F.; Gentry, Gregory
2003-01-01
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the ECLS System On-Orbit Station Development Test Objective (SDTO) status from the start of assembly until the end of February 2003.
Energy storage considerations for a robotic Mars surface sampler
NASA Technical Reports Server (NTRS)
O'Donnell, P. M.; Cataldo, R. L.; Gonzalez-Sanabria, O. D.
1988-01-01
The characteristics of various energy storage systems (including Ni-Cd, Ni-H2, Ag-Zn, Li-XS, Na-S, PbSO4, and regenerative fuel cell systems) considered for a robotic Mars surface sampler are reviewed. It is concluded that the bipolar nickel-hydrogen battery and the sodium-sulfur battery are both viable candidates as storage systems for the rover's Radioisotope Thermoelectric Generator. For a photovoltaic storage system, the regenerative fuel cell and the bipolar nickel-hydrogen battery are the primary candidates.
Status of the Regenerative ECLSS Water Recovery System
NASA Technical Reports Server (NTRS)
Carter, Donald Layne
2009-01-01
NASA has completed the delivery of the regenerative Water Recovery System (WRS) for the International Space Station (ISS). The major assemblies included in this system are the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA). This paper summarizes the final effort to deliver the hardware to the Kennedy Space Center for launch on STS-126, the on-orbit status as of April 2009, and describes some of the technical challenges encountered and lessons learned over the past year.
International Space Station Environmental Control and Life Support System Status: 2002-2003
NASA Technical Reports Server (NTRS)
Wiliams, David E.; Lewis, John F.; Gentry, Gregory
2003-01-01
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between April 2002 and March 2003. The ISS continued permanent crew operations, with the start of Phase 3 of the ISS Assembly Sequence. Work continued on the Phase 3 pressurized elements with Node 3 just completing its final design review so that it can proceed towards manufacturing and the continued manufacturing of the regenerative ECLS equipment that will be integrated into Node 3.
Molecularly Engineered Polymer-Based Systems in Drug Delivery and Regenerative Medicine.
Piluso, Susanna; Soultan, Al Halifa; Patterson, Jennifer
2017-01-01
Polymer-based systems are attractive in drug delivery and regenerative medicine due to the possibility of tailoring their properties and functions to a specific application. The present review provides several examples of molecularly engineered polymer systems, including stimuli responsive polymers and supramolecular polymers. The advent of controlled polymerization techniques has enabled the preparation of polymers with controlled molecular weight and well-defined architecture. By using these techniques coupled to orthogonal chemical modification reactions, polymers can be molecularly engineered to incorporate functional groups able to respond to small changes in the local environment or to a specific biological signal. This review highlights the properties and applications of stimuli-responsive systems and polymer therapeutics, such as polymer-drug conjugates, polymer-protein conjugates, polymersomes, and hyperbranched systems. The applications of polymeric membranes in regenerative medicine are also discussed. The examples presented in this review suggest that the combination of membranes with polymers that are molecularly engineered to respond to specific biological functions could be relevant in the field of regenerative medicine. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Emerging Roles for Extracellular Vesicles in Tissue Engineering and Regenerative Medicine
Lamichhane, Tek N.; Sokic, Sonja; Schardt, John S.; Raiker, Rahul S.; Lin, Jennifer W.
2015-01-01
Extracellular vesicles (EVs)—comprising a heterogeneous population of cell-derived lipid vesicles including exosomes, microvesicles, and others—have recently emerged as both mediators of intercellular information transfer in numerous biological systems and vehicles for drug delivery. In both roles, EVs have immense potential to impact tissue engineering and regenerative medicine applications. For example, the therapeutic effects of several progenitor and stem cell-based therapies have been attributed primarily to EVs secreted by these cells, and EVs have been recently reported to play direct roles in injury-induced tissue regeneration processes in multiple physiological systems. In addition, EVs have been utilized for targeted drug delivery in regenerative applications and possess unique potential to be harnessed as patient-derived drug delivery vehicles for personalized medicine. This review discusses EVs in the context of tissue repair and regeneration, including their utilization as drug carriers and their crucial role in cell-based therapies. Furthermore, the article highlights the growing need for bioengineers to understand, consider, and ultimately design and specifically control the activity of EVs to maximize the efficacy of tissue engineering and regenerative therapies. PMID:24957510
Low-temperature thermally regenerative electrochemical system
Loutfy, R.O.; Brown, A.P.; Yao, N.P.
1982-04-21
A thermally regenerative electrochemical system is described including an electrochemical cell with two water-based electrolytes separated by an ion exchange membrane, at least one of the electrolytes containing a complexing agent and a salt of a multivalent metal whose respective order of potentials for a pair of its redox couples is reversible by a change in the amount of the ocmplexing agent in the electrolyte, the complexing agent being removable by distillation to cause the reversal.
Low temperature thermally regenerative electrochemical system
Loutfy, Raouf O.; Brown, Alan P.; Yao, Neng-Ping
1983-01-01
A thermally regenerative electrochemical system including an electrochemical cell with two water-based electrolytes separated by an ion exchange membrane, at least one of the electrolytes containing a complexing agent and a salt of a multivalent metal whose respective order of potentials for a pair of its redox couples is reversible by a change in the amount of the complexing agent in the electrolyte, the complexing agent being removable by distillation to cause the reversal.
International Space Station Environmental Control and Life Support System Status: 2014-2015
NASA Technical Reports Server (NTRS)
Williams, David E.; Gentry, Gregory J.
2015-01-01
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year and the impacts of the international partners' activities on them, covering the period of time between March 2014 and February 2015. The ISS continued permanent crew operations including the continuation of six crew members being on ISS. Work continues on the commercial crew vehicles, and work to try and extend ISS service life.
Spacecraft Radiator Freeze Protection Using a Regenerative Heat Exchanger
NASA Technical Reports Server (NTRS)
Ungar, Eugene K.; Schunk, Richard G.
2011-01-01
An active thermal control system architecture has been modified to include a regenerative heat exchanger (regenerator) inboard of the radiator. Rather than using a radiator bypass valve a regenerative heat exchanger is placed inboard of the radiators. A regenerator cold side bypass valve is used to set the return temperature. During operation, the regenerator bypass flow is varied, mixing cold radiator return fluid and warm regenerator outlet fluid to maintain the system setpoint. At the lowest heat load for stable operation, the bypass flow is closed off, sending all of the flow through the regenerator. This lowers the radiator inlet temperature well below the system set-point while maintaining full flow through the radiators. By using a regenerator bypass flow control to maintain system setpoint, the required minimum heat load to avoid radiator freezing can be reduced by more than half compared to a radiator bypass system.
Round Trip Energy Efficiency of NASA Glenn Regenerative Fuel Cell System
NASA Technical Reports Server (NTRS)
Garcia, Christopher P.; Chang, Bei-jiann; Johnson, Donald W.; Bents, David J.; Scullin, Vincent J.; Jakupca, Ian J.; Scullin, Vincent J.; Jakupca, Ian J.
2006-01-01
NASA Glenn Research Center (GRC) has recently demonstrated a Polymer Electrolyte Membrane (PEM) based hydrogen/oxygen regenerative fuel cell system (RFCS) that operated for a charge/discharge cycle with round trip efficiency (RTE) greater than 50 percent. The regenerative fuel cell system (RFCS) demonstrated closed loop energy storage over a pressure range of 90 to 190 psig. In charge mode, a constant electrical power profile of 7.1 kWe was absorbed by the RFCS and stored as pressurized hydrogen and oxygen gas. In discharge mode, the system delivered 3 to 4 kWe of electrical power along with product water. Fuel cell and electrolyzer power profiles and polarization performance are documented in this paper. Individual cell performance and the variation of cell voltages within the electrochemical stacks are also reported. Fuel cell efficiency, electrolyzer efficiency, and the system RTE were calculated from the test data and are included below.
Mittra, J; Tait, J; Mastroeni, M; Turner, M L; Mountford, J C; Bruce, K
2015-01-25
The creation of red blood cells for the blood transfusion markets represents a highly innovative application of regenerative medicine with a medium term (5-10 year) prospect for first clinical studies. This article describes a case study analysis of a project to derive red blood cells from human embryonic stem cells, including the systemic challenges arising from (i) the selection of appropriate and viable regulatory protocols and (ii) technological constraints related to stem cell manufacture and scale up to clinical Good Manufacturing Practice (GMP) standard. The method used for case study analysis (Analysis of Life Science Innovation Systems (ALSIS)) is also innovative, demonstrating a new approach to social and natural science collaboration to foresight product development pathways. Issues arising along the development pathway include cell manufacture and scale-up challenges, affected by regulatory demands emerging from the innovation ecosystem (preclinical testing and clinical trials). Our discussion reflects on the efforts being made by regulators to adapt the current pharmaceuticals-based regulatory model to an allogeneic regenerative medicine product and the broader lessons from this case study for successful innovation and translation of regenerative medicine therapies, including the role of methodological and regulatory innovation in future development in the field. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Assessment and preliminary design of an energy buffer for regenerative braking in electric vehicles
NASA Technical Reports Server (NTRS)
Buchholz, R.; Mathur, A. K.
1979-01-01
Energy buffer systems, capable of storing the vehicle energy during braking and reusing this stored energy during acceleration, were examined. Some of these buffer systems when incorporated in an electric vehicle would result in an improvement in the performance and range under stop and go driving conditions. Buffer systems considered included flywheels, hydropneumatic, pneumatic, spring, and regenerative braking. Buffer ranking and rating criteria were established. Buffer systems were rated based on predicted range improvements, consumer acceptance, driveability, safety, reliability and durability, and initial and life cycle costs. A hydropneumatic buffer system was selected.
NASA Technical Reports Server (NTRS)
Caraccio, Anne; Poulet, Lucie; Hintze, Paul E.; Miles, John D.
2014-01-01
Future crewed missions to other planets or deep space locations will require regenerative Life Support Systems (LSS) as well as recycling processes for mission waste. Constant resupply of many commodity materials will not be a sustainable option for deep space missions, nor will storing trash on board a vehicle or at a lunar or Martian outpost. The habitable volume will decline as the volume of waste increases. A complete regenerative environmentally controlled life support system (ECLSS) on an extra-terrestrial outpost will likely include physico-chemical and biological technologies, such as bioreactors and greenhouse modules. Physico-chemical LSS do not enable food production and bio-regenerative LSS are not stable enough to be used alone in space. Mission waste that cannot be recycled into the bio-regenerative ECLSS can include excess food, food packaging, clothing, tape, urine and fecal waste. This waste will be sent to a system for converting the trash into the high value products. Two crew members on a 120 day Mars analog simulation, in collaboration with Kennedy Space Centers (KSC) Trash to Gas (TtG) project investigated a semi-closed loop system that treated non-edible biomass and other logistical waste for volume reduction and conversion into useful commodities. The purposes of this study are to show the how plant growth affects the amount of resources required by the habitat and how spent plant material can be recycled. Real-time data was sent to the reactor at KSC in Florida for replicating the analog mission waste for laboratory operation. This paper discusses the 120 day mission plant growth activity, logistical and plant waste management, power and water consumption effects of the plant and logistical waste, and potential energy conversion techniques using KSCs TtG reactor technology.
NASA Technical Reports Server (NTRS)
Caraccio, Anne; Poulet, Lucie; Hintze, Paul E.; Miles, John D.
2014-01-01
Future crewed missions to other planets or deep space locations will require regenerative Life Support Systems (LSS) as well as recycling processes for mission waste. Constant resupply of many commodity materials will not be a sustainable option for deep space missions, nor will stowing trash on board a vehicle or at a lunar or Martian outpost. The habitable volume will decline as the volume of waste increases. A complete regenerative environmentally controlled life support system (ECLSS) on an extra-terrestrial outpost will likely include physico-chemical and biological technologies, such as bioreactors and greenhouse modules. Physico-chemical LSS do not enable food production and bio-regenerative LSS are not stable enough to be used alone in space. Mission waste that cannot be recycled into the bio-regenerative ECLSS can include excess food, food packaging, clothing, tape, urine and fecal waste. This waste will be sent to a system for converting the trash into high value products. Two crew members on a 120 day Mars analog simulation, in collaboration with Kennedy Space Centers (KSC) Trash to Gas (TtG) project investigated a semi-closed loop system that treated non-edible biomass and other logistical waste for volume reduction and conversion into useful commodities. The purpose of this study is to show how plant growth affects the amount of resources required by the habitat and how spent plant material can be recycled. Real-time data was sent to the reactor at KSC in Florida for replicating the analog mission waste for laboratory operation. This paper discusses the 120 day mission plant growth activity, logistical and plant waste management, power and water consumption effects of the plant and logistical waste, and potential energy conversion techniques using KSCs TtG technology.
Alkaline water electrolysis technology for Space Station regenerative fuel cell energy storage
NASA Technical Reports Server (NTRS)
Schubert, F. H.; Hoberecht, M. A.; Le, M.
1986-01-01
The regenerative fuel cell system (RFCS), designed for application to the Space Station energy storage system, is based on state-of-the-art alkaline electrolyte technology and incorporates a dedicated fuel cell system (FCS) and water electrolysis subsystem (WES). In the present study, emphasis is placed on the WES portion of the RFCS. To ensure RFCS availability for the Space Station, the RFCS Space Station Prototype design was undertaken which included a 46-cell 0.93 cu m static feed water electrolysis module and three integrated mechanical components.
International Space Station Environmental Control and Life Support System Status: 2011-2012
NASA Technical Reports Server (NTRS)
Williams, David E.; Dake, Jason R.; Gentry, Gregory J.
2011-01-01
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year and the impacts of the international partners activities on them, covering the period of time between March 2011 and February 2012. The ISS continued permanent crew operations including the continuation of six crew members being on ISS. Work continues on the commercial cargo resupply vehicles, and work to try and extend ISS service life from 2015 to no later than 2028. 1
NASA Technical Reports Server (NTRS)
Williams, David E.; Dake, Jason R.; Gentry, Gregory J
2013-01-01
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the prior year, covering the period of time between March 2011 and February 2012. The ISS continued permanent crew operations including the continuation of six crew members being on ISS. Work continues on the last of the Phase 3 pressurized elements, the commercial cargo resupply vehicles, and work to try and extend ISS service life from 2015 to at least 2028.
NASA Technical Reports Server (NTRS)
Williams, David E.; Gentry, Gregory J.
2015-01-01
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year and the impacts of the international partners' activities on them, covering the period of time between March 2013 and February 2014. The ISS continued permanent crew operations including the continuation of six crew members being on ISS. Work continues on the commercial crew vehicles, and work to try and extend ISS service life.
Research requirements for development of regenerative engines for helicopters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semple, R.D.
1976-12-01
The improved specific fuel consumption of the regenerative engine was compared to a simple-cycle turboshaft engine. The performance improvement and fuel saving are obtained at the expense of increased engine weight, development and production costs, and maintenance costs. Costs and schedules are estimated for the elements of the research and development program. Interaction of the regenerative engine with other technology goals for an advanced civil helicopter is examined, including its impact on engine noise, hover and cruise performance, helicopter empty weight, drive-system efficiency and weight, one-engine-inoperative hover capability, and maintenance and reliability.
Research requirements for development of regenerative engines for helicopters
NASA Technical Reports Server (NTRS)
Semple, R. D.
1976-01-01
The improved specific fuel consumption of the regenerative engine was compared to a simple-cycle turboshaft engine. The performance improvement and fuel saving are obtained at the expense of increased engine weight, development and production costs, and maintenance costs. Costs and schedules are estimated for the elements of the research and development program. Interaction of the regenerative engine with other technology goals for an advanced civil helicopter is examined, including its impact on engine noise, hover and cruise performance, helicopter empty weight, drive-system efficiency and weight, one-engine-inoperative hover capability, and maintenance and reliability.
Advanced life support technology development for the Space Exploration Initiative
NASA Technical Reports Server (NTRS)
Evanich, Peggy L.; Voecks, Gerald E.; Seshan, P. K.
1990-01-01
An overview is presented of NASA's advanced life support technology development strategy for the Space Exploration Initiative. Three basic life support technology areas are discussed in detail: air revitalization, water reclamation, and solid waste management. It is projected that regenerative life support systems will become increasingly more complex as system closure is maximized. Advanced life support technology development will utilize three complementary elements, including the Research and Technology Program, the Regenerative Life Support Program, and the Technology Testbed Validations.
Regenerative braking system of PM synchronous motor
NASA Astrophysics Data System (ADS)
Gao, Qian; Lv, Chengxing; Zhao, Na; Zang, Hechao; Jiang, Huilue; Zhang, Zhaowen; Zhang, Fengli
2018-04-01
Permanent-magnet synchronous motor is widely adopted in many fields with the advantage of a high efficiency and a high torque density. Regenerative Braking Systems (RBS) provide an efficient method to assist PMSM system achieve better fuel economy and lowering exhaust emissions. This paper describes the design and testing of the regenerative braking systems of PMSM. The mode of PWM duty has been adjusted to control regenerative braking of PMSM using energy controller for the port-controlled Hamiltonian model. The simulation analysis indicates that a smooth control could be realized and the highest efficiency and the smallest current ripple could be achieved by Regenerative Braking Systems.
Regenerative fuel cell systems for space station
NASA Technical Reports Server (NTRS)
Hoberecht, M. A.; Sheibley, D. W.
1985-01-01
Regenerative fuel cell (RFC) systems are the leading energy storage candidates for Space Station. Key design features are the advanced state of technology readiness and high degree of system level design flexibility. Technology readiness was demonstrated through testing at the single cell, cell stack, mechanical ancillary component, subsystem, and breadboard levels. Design flexibility characteristics include independent sizing of power and energy storage portions of the system, integration of common reactants with other space station systems, and a wide range of various maintenance approaches. The design features led to selection of a RFC system as the sole electrochemical energy storage technology option for the space station advanced development program.
Perspective: Neuroregenerative Nutrition.
Steindler, Dennis A; Reynolds, Brent A
2017-07-01
Good health while aging depends upon optimal cellular and organ functioning that contribute to the regenerative ability of the body during the lifespan, especially when injuries and diseases occur. Although diet may help in the maintenance of cellular fitness during periods of stability or modest decline in the regenerative function of an organ, this approach is inadequate in an aged system, in which the ability to maintain homeostasis is further challenged by aging and the ensuing suboptimal functioning of the regenerative unit, tissue-specific stem cells. Focused nutritional approaches can be used as an intervention to reduce decline in the body's regenerative capacity. This article brings together nutrition-associated therapeutic approaches with the fields of aging, immunology, neurodegenerative disease, and cancer to propose ways in which diet and nutrition can work with standard-of-care and integrated medicine to help improve the brain's function as it ages. The field of regenerative medicine has exploded during the past 2 decades as a result of the discovery of stem cells in nearly every organ system of the body, including the brain, where neural stem cells persist in discrete areas throughout life. This fact, and the uncovering of the genetic basis of plasticity in somatic cells and cancer stem cells, open a door to a world where maintenance and regeneration of organ systems maintain health and extend life expectancy beyond its present limits. An area that has received little attention in regenerative medicine is the influence on regulatory mechanisms and therapeutic potential of nutrition. We propose that a strong relation exists between brain regenerative medicine and nutrition and that nutritional intervention at key times of life could be used to not only maintain optimal functioning of regenerative units as humans age but also play a primary role in therapeutic treatments to combat injury and diseases (in particular, those that occur in the latter one-third of the lifespan). © 2017 American Society for Nutrition.
Čamernik, Klemen; Barlič, Ariana; Drobnič, Matej; Marc, Janja; Jeras, Matjaž; Zupan, Janja
2018-06-01
The musculoskeletal system includes tissues that have remarkable regenerative capabilities. Bone and muscle sustain micro-damage throughout the lifetime, yet they continue to provide the body with the support that is needed for everyday activities. Our current understanding is that the regenerative capacity of the musculoskeletal system can be attributed to the mesenchymal stem/ stromal cells (MSCs) that reside within its different anatomical compartments. These MSCs can replenish various tissues with progenitor cells to form functional cells, such as osteoblasts, chondrocytes, myocytes, and others. However, with aging and in certain disorders of the musculoskeletal system such as osteoarthritis or osteoporosis, this regenerative capacity of MSCs appears to be lost or diverted for the production of other non-functional cell types, such as adipocytes and fibroblasts. In this review, we shed light on the tissue sources and subpopulations of MSCs in the musculoskeletal system that have been identified in animal models, discuss the mechanisms of their anti-inflammatory action as a prerequisite for their tissue regeneration and their current applications in regenerative medicine. While providing up-to-date evidence of the role of MSCs in different musculoskeletal pathologies, in particular in osteoporosis and osteoarthritis, we share some thoughts on their potential as diagnostic markers in musculoskeletal health and disease.
NASA Technical Reports Server (NTRS)
Coyle, D. Barry; Kay, Richard B.; Degnan, John J.; Krebs, Danny J.; Seery, Bernard D.
1992-01-01
A small, all solid state, regenerative ring amplifier designed as a prototype for space application is discussed. Novel features include dual side pumping of the Nd:YAG crystal and a triangular ring cavity design which minimizes the number of optical components and losses. The amplifier is relatively small (3 ns round trip time) even though standard optical elements are employed. The ring regeneratively amplifies a 100 ps single pulse by approximately 10(exp 5) at a repetition rate of 10 to 100 Hz. The amplifier is designed to be injection seeded with a pulsed, 100 ps laser diode at 1.06 microns, but another Nd:YAG laser system supplying higher pulse energies was employed for laboratory experiment. This system is a prototype laser oscillator for the Geoscience Laser Ranging System (GLRS) platform. Results on measurements of beam quality, astigmatism, and gain are given.
NASA Technical Reports Server (NTRS)
Williams, David E.; Dake, Jason R.; Gentry, Gregory J.
2012-01-01
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the prior year, covering the period of time between March 2010 and February 2011. The ISS continued permanent crew operations including the continuation of six crew members being on ISS. Work continues on the last of the Phase 3 pressurized elements, the commercial cargo resupply vehicles, and work to try and extend ISS service life from 2015 to no later than 2028.
NASA Technical Reports Server (NTRS)
Williams, David E.; Dake, Jason R.; Gentry, Gregory J.
2011-01-01
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between March 2010 and February 2011. The ISS continued permanent crew operations including the continuation of six crew members being on ISS. Work continues on the last of the Phase 3 pressurized elements, the commercial cargo resupply vehicles, and work to try and extend ISS service life from 2015 to no later than 2028.
Regenerative Medicine Build-Out.
Terzic, Andre; Pfenning, Michael A; Gores, Gregory J; Harper, C Michel
2015-12-01
Regenerative technologies strive to boost innate repair processes and restitute normative impact. Deployment of regenerative principles into practice is poised to usher in a new era in health care, driving radical innovation in patient management to address the needs of an aging population challenged by escalating chronic diseases. There is urgency to design, execute, and validate viable paradigms for translating and implementing the science of regenerative medicine into tangible health benefits that provide value to stakeholders. A regenerative medicine model of care would entail scalable production and standardized application of clinical grade biotherapies supported by comprehensive supply chain capabilities that integrate sourcing and manufacturing with care delivery. Mayo Clinic has rolled out a blueprint for discovery, translation, and application of regenerative medicine therapies for accelerated adoption into the standard of care. To establish regenerative medical and surgical service lines, the Mayo Clinic model incorporates patient access, enabling platforms and delivery. Access is coordinated through a designated portal, the Regenerative Medicine Consult Service, serving to facilitate patient/provider education, procurement of biomaterials, referral to specialty services, and/or regenerative interventions, often in clinical trials. Platforms include the Regenerative Medicine Biotrust and Good Manufacturing Practice facilities for manufacture of clinical grade products for cell-based, acellular, and/or biomaterial applications. Care delivery leverages dedicated interventional suites for provision of regenerative services. Performance is tracked using a scorecard system to inform decision making. The Mayo Clinic roadmap exemplifies an integrated organization in the discovery, development, and delivery of regenerative medicine within a growing community of practice at the core of modern health care. Regenerative medicine is at the vanguard of health care poised to offer solutions for many of today's incurable diseases. Accordingly, there is a pressing need to develop, deploy, and demonstrate a viable framework for rollout of a regenerative medicine model of care. Translation of regenerative medicine principles into practice is feasible, yet clinical validity and utility must be established to ensure approval and adoption. Standardized and scaled-up regenerative products and services across medical and surgical specialties must in turn achieve a value-added proposition, advancing intended outcome beyond current management strategies. ©AlphaMed Press.
Regenerative Medicine Build-Out
Pfenning, Michael A.; Gores, Gregory J.; Harper, C. Michel
2015-01-01
Summary Regenerative technologies strive to boost innate repair processes and restitute normative impact. Deployment of regenerative principles into practice is poised to usher in a new era in health care, driving radical innovation in patient management to address the needs of an aging population challenged by escalating chronic diseases. There is urgency to design, execute, and validate viable paradigms for translating and implementing the science of regenerative medicine into tangible health benefits that provide value to stakeholders. A regenerative medicine model of care would entail scalable production and standardized application of clinical grade biotherapies supported by comprehensive supply chain capabilities that integrate sourcing and manufacturing with care delivery. Mayo Clinic has rolled out a blueprint for discovery, translation, and application of regenerative medicine therapies for accelerated adoption into the standard of care. To establish regenerative medical and surgical service lines, the Mayo Clinic model incorporates patient access, enabling platforms and delivery. Access is coordinated through a designated portal, the Regenerative Medicine Consult Service, serving to facilitate patient/provider education, procurement of biomaterials, referral to specialty services, and/or regenerative interventions, often in clinical trials. Platforms include the Regenerative Medicine Biotrust and Good Manufacturing Practice facilities for manufacture of clinical grade products for cell-based, acellular, and/or biomaterial applications. Care delivery leverages dedicated interventional suites for provision of regenerative services. Performance is tracked using a scorecard system to inform decision making. The Mayo Clinic roadmap exemplifies an integrated organization in the discovery, development, and delivery of regenerative medicine within a growing community of practice at the core of modern health care. Significance Regenerative medicine is at the vanguard of health care poised to offer solutions for many of today’s incurable diseases. Accordingly, there is a pressing need to develop, deploy, and demonstrate a viable framework for rollout of a regenerative medicine model of care. Translation of regenerative medicine principles into practice is feasible, yet clinical validity and utility must be established to ensure approval and adoption. Standardized and scaled-up regenerative products and services across medical and surgical specialties must in turn achieve a value-added proposition, advancing intended outcome beyond current management strategies. PMID:26537392
NASA Astrophysics Data System (ADS)
Saito, Tatsuhito; Kondo, Keiichiro; Koseki, Takafumi
A DC-electrified railway system that is fed by diode rectifiers at a substation is unable to return the electric power to an AC grid. Accordingly, the braking cars have to restrict regenerative braking power when the power consumption of the powering cars is not sufficient. However, the characteristics of a DC-electrified railway system, including the powering cars, is not known, and a mathematical model for designing a controller has not been established yet. Hence, the object of this study is to obtain the mathematical model for an analytical design method of the regenerative braking control system. In the first part of this paper, the static characteristics of this system are presented to show the position of the equilibrium point. The linearization of this system at the equilibrium point is then performed to describe the dynamic characteristics of the system. An analytical design method is then proposed on the basis of these characteristics. The proposed design method is verified by experimental tests with a 1kW class miniature model, and numerical simulations.
High Altitude Long Endurance UAV Analysis of Alternatives and Technology Requirements Development
NASA Technical Reports Server (NTRS)
Nickol, Craig L.; Guynn, Mark D.; Kohout, Lisa L.; Ozoroski, Thomas A.
2007-01-01
An Analysis of Alternatives and a Technology Requirements Study were conducted for two mission areas utilizing various types of High Altitude Long Endurance (HALE) Unmanned Aerial Vehicles (UAV). A hurricane science mission and a communications relay mission provided air vehicle requirements which were used to derive sixteen potential HALE UAV configurations, including heavier-than-air (HTA) and lighter-than-air (LTA) concepts with both consumable fuel and solar regenerative propulsion systems. A HTA diesel-fueled wing-body-tail configuration emerged as the preferred concept given near-term technology constraints. The cost effectiveness analysis showed that simply maximizing vehicle endurance can be a sub-optimum system solution. In addition, the HTA solar regenerative configuration was utilized to perform both a mission requirements study and a technology development study. Given near-term technology constraints, the solar regenerative powered vehicle was limited to operations during the long days and short nights at higher latitudes during the summer months. Technology improvements are required in energy storage system specific energy and solar cell efficiency, along with airframe drag and mass reductions to enable the solar regenerative vehicle to meet the full mission requirements.
The continued promise of stem cell therapy in regenerative medicine.
Eve, David J
2011-12-01
The use of stem cells is galvanizing regenerative medicine research. An analysis of recent trends as typified by articles published between 2009 and 2010 in the journals Cell Transplantation--The Regenerative Medicine Journal and Medical Science Monitor demonstrate the increasing importance of stem cell research as being on the cutting edge of regenerative medicine research. The analysis revealed an even split between transplantation and non-transplantation studies, showing that both the applicability and general research is being pursued. New methods and tissue engineering are also highly important components of regenerative medicine as demonstrated by a number of the stem cell studies being involved with either ex vivo manipulation, or cotransplantation with other cells or biomaterials. This suggests that the best results may be achieved with adjuvant therapies. The non-transplantation studies were more focused on manipulation of transplantable agents including cells and scaffold systems, as well as the use of medicines and dietary supplements. The further elucidation of disease mechanisms was a major contribution. This analysis suggests that regenerative medicine is proceeding at a rapid pace and the next few years should be of considerable interest with the initial results of pioneering stem cell therapies being announced.
Stem cell research and regenerative medicine in 2014: first year of regenerative medicine in Japan.
Okano, Hideyuki
2014-09-15
It is my great pleasure to announce that we were able to publish the Japan Issue in Stem Cells and Development, especially in this year 2014. This year, 2014, is said to be the First Year of Regenerative Medicine in Japan. This movement is likely to be based on the establishment of a new law system regarding regenerative medicine (an Act for Ensuring the Safety of Regenerative Medicine or the so-called Regenerative Medicine Law) and the partial revision of the Pharmaceutical Affairs Law (PAL). Both laws will come into effect in 2014 in this country. These new law systems are expected to have a great impact on the facilitation of R&D related to regenerative medicine and stem cell biology. In the present Japan Issue, some excellent stem cell research in this country will be introduced to celebrate the First Year of Regenerative Medicine in Japan.
2010-08-19
highlight the benefits of regenerative braking . Parameters within the drive cycle may include vehicle speed, elevation/grade changes, road surface...assist to downsize the engine due to infinite maximum speed requirements • Drive cycle less suited to regenerative braking improvement compared to...will be cycle dependent. A high speed drive cycle may for example drive a focus on aerodynamic improvements, while high frequency of braking will
Preburner of Staged Combustion Rocket Engine
NASA Technical Reports Server (NTRS)
Yost, M. C.
1978-01-01
A regeneratively cooled LOX/hydrogen staged combustion assembly system with a 400:1 expansion area ratio nozzle utilizing an 89,000 Newton (20,000 pound) thrust regeneratively cooled thrust chamber and 175:1 tubular nozzle was analyzed, assembled, and tested. The components for this assembly include two spark/torch oxygen-hydrogen igniters, two servo-controlled LOX valves, a preburner injector, a preburner combustor, a main propellant injector, a regeneratively cooled combustion chamber, a regeneratively cooled tubular nozzle with an expansion area ratio of 175:1, an uncooled heavy-wall steel nozzle with an expansion area ratio of 400:1, and interconnecting ducting. The analytical effort was performed to optimize the thermal and structural characteristics of each of the new components and the ducting, and to reverify the capabilities of the previously fabricated components. The testing effort provided a demonstration of the preburner/combustor chamber operation, chamber combustion efficiency and stability, and chamber and nozzle heat transfer.
International Space Station Environmental Control and Life Support System Status: 2009 - 2010
NASA Technical Reports Server (NTRS)
Williams, David E.; Dake, Jason R.; Gentry, Gregory J.
2010-01-01
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non -regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between March 2009 and February 2010. The ISS continued permanent crew operations, with the start of Phase 3 of the ISS Assembly Sequence and an increase of the ISS crew size from three to six. Work continues on the last of the Phase 3 pressurized elements.
International Space Station Environmental Control and Life Support System Status: 2009 - 2010
NASA Technical Reports Server (NTRS)
Williams, David E.; Dake, Jason R.; Gentry, Gregory J.
2009-01-01
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between March 2009 and February 2010. The ISS continued permanent crew operations, with the start of Phase 3 of the ISS Assembly Sequence and an increase of the ISS crew size from three to six. Work continues on the last of the Phase 3 pressurized elements.
International Space Station Environmental Control and Life Support System Status: 2010 - 2011
NASA Technical Reports Server (NTRS)
Williams, David E.; Gentry, Gregory J.
2010-01-01
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between March 2010 and February 2011 and the continued permanent presence of six crew members on ISS. Work continues on the last of the Phase 3 pressurized elements, commercial cargo resupply vehicles, and extension of the ISS service life from 2015 to 2020 or beyond.
Extended mission life support systems
NASA Technical Reports Server (NTRS)
Quattrone, P. D.
1985-01-01
Extended manned space missions which include interplanetary missions require regenerative life support systems. Manned mission life support considerations are placed in perspective and previous manned space life support system technology, activities and accomplishments in current supporting research and technology (SR&T) programs are reviewed. The life support subsystem/system technologies required for an enhanced duration orbiter (EDO) and a space operations center (SOC), regenerative life support functions and technology required for manned interplanetary flight vehicles, and future development requirements are outlined. The Space Shuttle Orbiters (space transportation system) is space cabin atmosphere is maintained at Earth ambient pressure of 14.7 psia (20% O2 and 80% N2). The early Shuttle flights will be seven-day flights, and the life support system flight hardware will still utilize expendables.
NASA Technical Reports Server (NTRS)
Parker, C. D.; Tommerdahl, J. B.
1972-01-01
The instrumentation requirements for a regenerative life support systems were studied to provide the earliest possible indication of a malfunction that will permit degradation of the environment. Four categories of parameters were investigated: environmental parameters that directly and immediately influence the health and safety of the cabin crew; subsystems' inputs to the cabin that directly maintain the cabin environmental parameters; indications for maintenance or repair; and parameters useful as diagnostic indicators. A data averager concept is introduced which provides a moving average of parameter values that is not influenced by spurious changes, and is convenient for detecting parameter rates of change. A system is included to provide alarms at preselected parameter levels.
Regenerative agriculture: merging farming and natural resource conservation profitably.
LaCanne, Claire E; Lundgren, Jonathan G
2018-01-01
Most cropland in the United States is characterized by large monocultures, whose productivity is maintained through a strong reliance on costly tillage, external fertilizers, and pesticides (Schipanski et al., 2016). Despite this, farmers have developed a regenerative model of farm production that promotes soil health and biodiversity, while producing nutrient-dense farm products profitably. Little work has focused on the relative costs and benefits of novel regenerative farming operations, which necessitates studying in situ , farmer-defined best management practices. Here, we evaluate the relative effects of regenerative and conventional corn production systems on pest management services, soil conservation, and farmer profitability and productivity throughout the Northern Plains of the United States. Regenerative farming systems provided greater ecosystem services and profitability for farmers than an input-intensive model of corn production. Pests were 10-fold more abundant in insecticide-treated corn fields than on insecticide-free regenerative farms, indicating that farmers who proactively design pest-resilient food systems outperform farmers that react to pests chemically. Regenerative fields had 29% lower grain production but 78% higher profits over traditional corn production systems. Profit was positively correlated with the particulate organic matter of the soil, not yield. These results provide the basis for dialogue on ecologically based farming systems that could be used to simultaneously produce food while conserving our natural resource base: two factors that are pitted against one another in simplified food production systems. To attain this requires a systems-level shift on the farm; simply applying individual regenerative practices within the current production model will not likely produce the documented results.
Integration and dynamics of a renewable regenerative hydrogen fuel cell system
NASA Astrophysics Data System (ADS)
Bergen, Alvin Peter
2008-10-01
This thesis explores the integration and dynamics of residential scale renewable-regenerative energy systems which employ hydrogen for energy buffering. The development of the Integrated Renewable Energy Experiment (IRENE) test-bed is presented. IRENE is a laboratory-scale distributed energy system with a modular structure which can be readily re-configured to test newly developed components for generic regenerative systems. Key aspects include renewable energy conversion, electrolysis, hydrogen and electricity storage, and fuel cells. A special design feature of this test bed is the ability to accept dynamic inputs from and provide dynamic loads to real devices as well as from simulated energy sources/sinks. The integration issues encountered while developing IRENE and innovative solutions devised to overcome these barriers are discussed. Renewable energy systems that employ a regenerative approach to enable intermittent energy sources to service time varying loads rely on the efficient transfer of energy through the storage media. Experiments were conducted to evaluate the performance of the hydrogen energy buffer under a range of dynamic operating conditions. Results indicate that the operating characteristics of the electrolyser under transient conditions limit the production of hydrogen from excess renewable input power. These characteristics must be considered when designing or modeling a renewable-regenerative system. Strategies to mitigate performance degradation due to interruptions in the renewable power supply are discussed. Experiments were conducted to determine the response of the IRENE system to operating conditions that are representative of a residential scale, solar based, renewable-regenerative system. A control algorithm, employing bus voltage constraints and device current limitations, was developed to guide system operation. Results for a two week operating period that indicate that the system response is very dynamic but repeatable are presented. The overall system energy balance reveals that the energy input from the renewable source was sufficient to meet the demand load and generate a net surplus of hydrogen. The energy loss associated with the various system components as well as a breakdown of the unused renewable energy input is presented. In general, the research indicates that the technical challenges associated with hydrogen energy buffing can be overcome, but the round trip efficiency for the current technologies is low at only 22 percent.
Regenerative braking systems with torsional springs made of carbon nanotube yarn
NASA Astrophysics Data System (ADS)
Liu, S.; Martin, C.; Lashmore, D.; Schauer, M.; Livermore, C.
2014-11-01
The demonstration of large stroke, high energy density and high power density torsional springs based on carbon nanotube (CNT) yarns is reported, as well as their application as an energy-storing actuator for regenerative braking systems. Originally untwisted CNT yarn is cyclically loaded and unloaded in torsion, with the maximum rotation angle increasing until failure. The maximum extractable energy density is measured to be as high as 6.13 kJ/kg. The tests also reveal structural reorganization and hysteresis in the torsional loading curves. A regenerative braking system is built to capture the kinetic energy of a wheel and store it as elastic energy in twisted CNT yarns. When the yam's twist is released, the stored energy reaccelerates the wheel. The measured energy and mean power densities of the CNT yarns in the simple regenerative braking system are up to 4.69 kJ/kg and 1.21 kW/kg, respectively. A slightly lower energy density of up to 1.23 kJ/kg and a 0.29 kW/kg mean power density are measured for the CNT yarns in a more complex system that mimics a unidirectional rotating regenerative braking mechanism. The lower energy densities for CNT yarns in the regenerative braking systems as compared with the yarns themselves reflect the frictional losses of the regenerative systems.
Johnson Space Center's Regenerative Life Support Systems Test Bed
NASA Technical Reports Server (NTRS)
Barta, D. J.; Henninger, D. L.
1996-01-01
The Regenerative Life Support Systems (RLSS) Test Bed at NASA's Johnson Space Center is an atmospherically closed, controlled environment facility for human testing of regenerative life support systems using higher plants in conjunction with physicochemical life support systems. The facility supports NASA's Advanced Life Support (ALS) Program. The facility is comprised of two large scale plant growth chambers, each with approximately 11 m2 growing area. The root zone in each chamber is configurable for hydroponic or solid media plant culture systems. One of the two chambers, the Variable Pressure Growth Chamber (VPGC), is capable of operating at lower atmospheric pressures to evaluate a range of environments that may be used in a planetary surface habitat; the other chamber, the Ambient Pressure Growth Chamber (APGC) operates at ambient atmospheric pressure. The air lock of the VPGC is currently being outfitted for short duration (1 to 15 day) human habitation at ambient pressures. Testing with and without human subjects will focus on 1) integration of biological and physicochemical air and water revitalization systems; 2) effect of atmospheric pressure on system performance; 3) planetary resource utilization for ALS systems, in which solid substrates (simulated planetary soils or manufactured soils) are used in selected crop growth studies; 4) environmental microbiology and toxicology; 5) monitoring and control strategies; and 6) plant growth systems design. Included are descriptions of the overall design of the test facility, including discussions of the atmospheric conditioning, thermal control, lighting, and nutrient delivery systems.
Johnson Space Center's Regenerative Life Support Systems Test Bed
NASA Astrophysics Data System (ADS)
Barta, D. J.; Henninger, D. L.
1996-01-01
The Regenerative Life Support Systems (RLSS) Test Bed at NASA's Johnson Space Center is an atmospherically closed, controlled environment facility for human testing of regenerative life support systems using higher plants in conjunction with physicochemical life support systems. The facility supports NASA's Advanced Life Support (ALS) Program. The facility is comprised of two large scale plant growth chambers, each with approximately 11 m^2 growing area. The root zone in each chamber is configurable for hydroponic or solid media plant culture systems. One of the two chambers, the Variable Pressure Growth Chamber (VPGC), is capable of operating at lower atmospheric pressures to evaluate a range of environments that may be used in a planetary surface habitat; the other chamber, the Ambient Pressure Growth Chamber (APGC) operates at ambient atmospheric pressure. The air lock of the VPGC is currently being outfitted for short duration (1 to 15 day) human habitation at ambient pressures. Testing with and without human subjects will focus on 1) integration of biological and physicochemical air and water revitalization systems; 2) effect of atmospheric pressure on system performance; 3) planetary resource utilization for ALS systems, in which solid substrates (simulated planetary soils or manufactured soils) are used in selected crop growth studies; 4) environmental microbiology and toxicology; 5) monitoring and control strategies; and 6) plant growth systems design. Included are descriptions of the overall design of the test facility, including discussions of the atmospheric conditioning, thermal control, lighting, and nutrient delivery systems.
Regenerative Fuel Cell Test Rig at Glenn Research Center
NASA Technical Reports Server (NTRS)
Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.; Jakupca, Ian J.; Scullin, Vincent J.; Bents, David J.
2003-01-01
The regenerative fuel cell development effort at Glenn Research Center (GRC) involves the integration of a dedicated fuel cell and electrolyzer into an energy storage system test rig. The test rig consists of a fuel cell stack, an electrolysis stack, cooling pumps, a water transfer pump, gas recirculation pumps, phase separators, storage tanks for oxygen (O2) and hydrogen (H2), heat exchangers, isolation valves, pressure regulators, interconnecting tubing, nitrogen purge provisions, and instrumentation for control and monitoring purposes. The regenerative fuel cell (RFC) thus formed is a completely closed system which is capable of autonomous cyclic operation. The test rig provides direct current (DC) load and DC power supply to simulate power consumption and solar power input. In addition, chillers are used as the heat sink to dissipate the waste heat from the electrochemical stack operation. Various vents and nitrogen (N2) sources are included in case inert purging is necessary to safe the RFC test rig.
Murillo, Blanca; Sousa, Mónica Mendes
2018-05-08
In the adult vertebrate central nervous system, axons generally fail to regenerate. In contrast, peripheral nervous system axons are able to form a growth cone and regenerate upon lesion. Among the multiple intrinsic mechanisms leading to the formation of a new growth cone and to successful axon regrowth, cytoskeleton organization and dynamics is central. Here we discuss how multiple pathways that define the regenerative capacity converge into the regulation of the axonal microtubule cytoskeleton and transport. We further explore the use of dorsal root ganglion neurons as a model to study the neuronal regenerative ability. Finally, we address some of the unanswered questions in the field, including the mechanisms by which axonal transport might be modulated by injury, and the relationship between microtubule organization, dynamics, and axonal transport. © 2018 Wiley Periodicals, Inc. Develop Neurobiol, 2018. © 2018 Wiley Periodicals, Inc.
Aging and Adipose Tissue: Potential Interventions for Diabetes and Regenerative Medicine
Palmer, Allyson K.; Kirkland, James L.
2016-01-01
Adipose tissue dysfunction occurs with aging and has systemic effects, including peripheral insulin resistance, ectopic lipid deposition, and inflammation. Fundamental aging mechanisms, including cellular senescence and progenitor cell dysfunction, occur in adipose tissue with aging and may serve as potential therapeutic targets in age-related disease. In this review, we examine the role of adipose tissue in healthy individuals and explore how aging leads to adipose tissue dysfunction, redistribution, and changes in gene regulation. Adipose tissue plays a central role in longevity, and interventions restricted to adipose tissue may impact lifespan. Conversely, obesity may represent a state of accelerated aging. We discuss the potential therapeutic potential of targeting basic aging mechanisms, including cellular senescence, in adipose tissue, using type II diabetes and regenerative medicine as examples. We make the case that aging should not be neglected in the study of adipose-derived stem cells for regenerative medicine strategies, as elderly patients make up a large portion of individuals in need of such therapies. PMID:26924669
Empirical Knowledge Transfer and Collaboration with Self-Regenerative Systems
2007-06-01
SYSTEMS Raytheon Company Sponsored by Defense Advanced Research Projects Agency DARPA Order No. T120 APPROVED FOR PUBLIC RELEASE...FA8750-04-C-0286 5b. GRANT NUMBER 4. TITLE AND SUBTITLE EMPIRICAL KNOWLEDGE TRANSFER AND COLLABORATION WITH SELF-REGENERATIVE SYSTEMS 5c...Self-Regenerative Systems program to develop new technologies supporting granular scalable redundancy. The key focus of Raytheon’s effort was to
The NASA Advanced Space Power Systems Project
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Hoberecht, Mark A.; Bennett, William R.; Lvovich, Vadim F.; Bugga, Ratnakumar
2015-01-01
The goal of the NASA Advanced Space Power Systems Project is to develop advanced, game changing technologies that will provide future NASA space exploration missions with safe, reliable, light weight and compact power generation and energy storage systems. The development effort is focused on maturing the technologies from a technology readiness level of approximately 23 to approximately 56 as defined in the NASA Procedural Requirement 7123.1B. Currently, the project is working on two critical technology areas: High specific energy batteries, and regenerative fuel cell systems with passive fluid management. Examples of target applications for these technologies are: extending the duration of extravehicular activities (EVA) with high specific energy and energy density batteries; providing reliable, long-life power for rovers with passive fuel cell and regenerative fuel cell systems that enable reduced system complexity. Recent results from the high energy battery and regenerative fuel cell technology development efforts will be presented. The technical approach, the key performance parameters and the technical results achieved to date in each of these new elements will be included. The Advanced Space Power Systems Project is part of the Game Changing Development Program under NASAs Space Technology Mission Directorate.
Proceedings of the 2nd Annual Conference on NASA/University Advanced Space Design Program
NASA Technical Reports Server (NTRS)
1986-01-01
Topics discussed include: lunar transportation system, Mars rover, lunar fiberglass production, geosynchronous space stations, regenerative system for growing plants, lunar mining devices, lunar oxygen transporation system, mobile remote manipulator system, Mars exploration, launch/landing facility for a lunar base, and multi-megawatt nuclear power system.
40 CFR 1037.615 - Hybrid vehicles and other advanced technologies.
Code of Federal Regulations, 2014 CFR
2014-07-01
... system by chassis testing a vehicle equipped with the advanced system and an equivalent conventional vehicle, or by testing the hybrid systems and the equivalent non-hybrid systems as described in § 1037.550... include regenerative braking (or the equivalent) and energy storage systems, fuel cell vehicles, and...
Enhanced Molecular Sieve CO2 Removal Evaluation
NASA Technical Reports Server (NTRS)
Rose, Susan; ElSherif, Dina; MacKnight, Allen
1996-01-01
The objective of this research is to quantitatively characterize the performance of two major types of molecular sieves for two-bed regenerative carbon dioxide removal at the conditions compatible with both a spacesuit and station application. One sorbent is a zeolite-based molecular sieve that has been substantially improved over the materials used in Skylab. The second sorbent is a recently developed carbon-based molecular sieve. Both molecular sieves offer the potential of high payoff for future manned missions by reducing system complexity, weight (including consumables), and power consumption in comparison with competing concepts. The research reported here provides the technical data required to improve CO2 removal systems for regenerative life support systems for future IVA and EVA missions.
Operation of the 25kW NASA Lewis Research Center Solar Regenerative Fuel Cell Tested Facility
NASA Technical Reports Server (NTRS)
Moore, S. H.; Voecks, G. E.
1997-01-01
Assembly of the NASA Lewis Research Center(LeRC)Solar Regenerative Fuel Cell (RFC) Testbed Facility has been completed and system testing has proceeded. This facility includes the integration of two 25kW photovoltaic solar cell arrays, a 25kW proton exchange membrane (PEM) electrolysis unit, four 5kW PEM fuel cells, high pressure hydrogen and oxygen storage vessels, high purity water storage containers, and computer monitoring, control and data acquisition.
Initial Design and Construction of a Mobil Regenerative Fuel Cell System
NASA Technical Reports Server (NTRS)
Colozza, Anthony J.; Maloney, Thomas; Hoberecht, Mark (Technical Monitor)
2003-01-01
The design and initial construction of a mobile regenerative power system is described. The main components of the power system consists of a photovoltaic array, regenerative fuel cell and electrolyzer. The system is mounted on a modified landscape trailer and is completely self contained. An operational analysis is also presented that shows predicted performance for the system at various times of the year. The operational analysis consists of performing an energy balance on the system based on array output and total desired operational time.
Vibration control of an energy regenerative seat suspension with variable external resistance
NASA Astrophysics Data System (ADS)
Ning, Donghong; Sun, Shuaishuai; Du, Haiping; Li, Weihua; Zhang, Nong
2018-06-01
In this paper, an energy regenerative seat suspension with a variable external resistance is proposed and built, and a semi-active controller for its vibration control is also designed and validated. The energy regenerative seat suspension is built with a three-phase generator and a gear reducer, which are installed in the scissors structure centre of the seat suspension, and the vibration energy is directly harvested from the rotary movement of suspension's scissors structure. The electromagnetic torque of the semi-active seat suspension actuator is controlled by an external variable resistor. An integrated model including the seat suspension's kinematics and the generator is built and proven to match the test result very well. A simplified experimental phenomenon model is also built based on the test results for the controller design. A state feedback H∞ controller is proposed for the regenerative seat suspension's semi-active vibration control. The proposed regenerative seat suspension and its controller are validated with both simulations and experiments. A well-tuned passive seat suspension is applied to evaluate the regenerative seat's performance. Based on ISO 2631-1, the frequency-weighted root mean square (FW-RMS) acceleration of the proposed seat suspension has a 22.84% reduction when compared with the passive one, which indicates the improvement of ride comfort. At the same time, the generated RMS power is 1.21 W. The proposed regenerative seat suspension can greatly improve the driver's ride comfort and has the potential to be developed to a self-powered semi-active system.
Simulation of energy buildups in solid-state regenerative amplifiers for 2-μm emitting lasers
NASA Astrophysics Data System (ADS)
Springer, Ramon; Alexeev, Ilya; Heberle, Johannes; Pflaum, Christoph
2018-02-01
A numerical model for solid-state regenerative amplifiers is presented, which is able to precisely simulate the quantitative energy buildup of stretched femtosecond pulses over passed roundtrips in the cavity. In detail, this model is experimentally validated with a Ti:Sapphire regenerative amplifier. Additionally, the simulation of a Ho:YAG based regenerative amplifier is conducted and compared to experimental data from literature. Furthermore, a bifurcation study of the investigated Ho:YAG system is performed, which leads to the identification of stable and instable operation regimes. The presented numerical model exhibits a well agreement to the experimental results from the Ti:Sapphire regenerative amplifier. Also, the gained pulse energy from the Ho:YAG system could be approximated closely, while the mismatch is explained with the monochromatic calculation of pulse amplification. Since the model is applicable to other solid-state gain media, it allows for the efficient design of future amplification systems based on regenerative amplification.
Evaluation strategy of regenerative braking energy for supercapacitor vehicle.
Zou, Zhongyue; Cao, Junyi; Cao, Binggang; Chen, Wen
2015-03-01
In order to improve the efficiency of energy conversion and increase the driving range of electric vehicles, the regenerative energy captured during braking process is stored in the energy storage devices and then will be re-used. Due to the high power density of supercapacitors, they are employed to withstand high current in the short time and essentially capture more regenerative energy. The measuring methods for regenerative energy should be investigated to estimate the energy conversion efficiency and performance of electric vehicles. Based on the analysis of the regenerative braking energy system of a supercapacitor vehicle, an evaluation system for energy recovery in the braking process is established using USB portable data-acquisition devices. Experiments under various braking conditions are carried out. The results verify the higher efficiency of energy regeneration system using supercapacitors and the effectiveness of the proposed measurement method. It is also demonstrated that the maximum regenerative energy conversion efficiency can reach to 88%. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Takahashi, Yoshiaki; Seki, Hirokazu
2009-01-01
This paper proposes a novel regenerative braking control system of electric wheelchairs for senior citizen. "Electric powered wheelchair", which generates the driving force by electric motors according to the human operation, is expected to be widely used as a mobility support system for elderly people. This study focuses on the braking control to realize the safety and smooth stopping motion using the regenerative braking control technique based on fuzzy algorithm. The ride quality improvement and energy recycling can be expected by the proposed control system with stopping distance estimation and variable frequency control on the step-up/down chopper type of capacitor regenerative circuit. Some driving experiments confirm the effectiveness of the proposed control system.
Promoting tissue regeneration by modulating the immune system.
Julier, Ziad; Park, Anthony J; Briquez, Priscilla S; Martino, Mikaël M
2017-04-15
The immune system plays a central role in tissue repair and regeneration. Indeed, the immune response to tissue injury is crucial in determining the speed and the outcome of the healing process, including the extent of scarring and the restoration of organ function. Therefore, controlling immune components via biomaterials and drug delivery systems is becoming an attractive approach in regenerative medicine, since therapies based on stem cells and growth factors have not yet proven to be broadly effective in the clinic. To integrate the immune system into regenerative strategies, one of the first challenges is to understand the precise functions of the different immune components during the tissue healing process. While remarkable progress has been made, the immune mechanisms involved are still elusive, and there is indication for both negative and positive roles depending on the tissue type or organ and life stage. It is well recognized that the innate immune response comprising danger signals, neutrophils and macrophages modulates tissue healing. In addition, it is becoming evident that the adaptive immune response, in particular T cell subset activities, plays a critical role. In this review, we first present an overview of the basic immune mechanisms involved in tissue repair and regeneration. Then, we highlight various approaches based on biomaterials and drug delivery systems that aim at modulating these mechanisms to limit fibrosis and promote regeneration. We propose that the next generation of regenerative therapies may evolve from typical biomaterial-, stem cell-, or growth factor-centric approaches to an immune-centric approach. Most regenerative strategies have not yet proven to be safe or reasonably efficient in the clinic. In addition to stem cells and growth factors, the immune system plays a crucial role in the tissue healing process. Here, we propose that controlling the immune-mediated mechanisms of tissue repair and regeneration may support existing regenerative strategies or could be an alternative to using stem cells and growth factors. The first part of this review we highlight key immune mechanisms involved in the tissue healing process and marks them as potential target for designing regenerative strategies. In the second part, we discuss various approaches using biomaterials and drug delivery systems that aim at modulating the components of the immune system to promote tissue regeneration. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Martins, Ivone M; Reis, Rui L; Azevedo, Helena S
2016-11-18
The field of regenerative medicine has been gaining momentum steadily over the past few years. The emphasis in regenerative medicine is to use various in vitro and in vivo approaches that leverage the intrinsic healing mechanisms of the body to treat patients with disabling injuries and chronic diseases such as diabetes, osteoarthritis, and degenerative disorders of the cardiovascular and central nervous system. Phage display has been successfully employed to identify peptide ligands for a wide variety of targets, ranging from relatively small molecules (enzymes, cell receptors) to inorganic, organic, and biological (tissues) materials. Over the past two decades, phage display technology has advanced tremendously and has become a powerful tool in the most varied fields of research, including biotechnology, materials science, cell biology, pharmacology, and diagnostics. The growing interest in and success of phage display libraries is largely due to its incredible versatility and practical use. This review discusses the potential of phage display technology in biomaterials engineering for applications in regenerative medicine.
Bidirectional Pressure-Regulator System
NASA Technical Reports Server (NTRS)
Burke, Kenneth; Miller, John R.
2008-01-01
A bidirectional pressure-regulator system has been devised for use in a regenerative fuel cell system. The bidirectional pressure-regulator acts as a back-pressure regulator as gas flows through the bidirectional pressure-regulator in one direction. Later, the flow of gas goes through the regulator in the opposite direction and the bidirectional pressure-regulator operates as a pressure- reducing pressure regulator. In the regenerative fuel cell system, there are two such bidirectional regulators, one for the hydrogen gas and another for the oxygen gas. The flow of gases goes from the regenerative fuel cell system to the gas storage tanks when energy is being stored, and reverses direction, flowing from the storage tanks to the regenerative fuel cell system when the stored energy is being withdrawn from the regenerative fuel cell system. Having a single bidirectional regulator replaces two unidirectional regulators, plumbing, and multiple valves needed to reverse the flow direction. The term "bidirectional" refers to both the bidirectional nature of the gas flows and capability of each pressure regulator to control the pressure on either its upstream or downstream side, regardless of the direction of flow.
Predicting Forest Regeneration in the Central Appalachians Using the REGEN Expert System
Lance A. Vickers; Thomas R. Fox; David L. Loftis; David A. Boucugnani
2011-01-01
REGEN is an expert system designed by David Loftis to predict the future species composition of dominant and codominant stems in forest stands at the onset of stem exclusion following a proposed harvest. REGEN predictions are generated using competitive rankings for advance reproduction along with other existing stand conditions. These parameters are contained within...
Adaptation and validation of the REGEN expert system for the Central Appalachians
Lance A. Vickers; Thomas R. Fox; David L. Loftis; David A. Boucugnani
2011-01-01
REGEN is an expert system that predicts future species composition at the onset of stem exclusion using preharvest stand conditions. To extend coverage into hardwood stands of the Central Appalachians, we developed REGEN knowledge bases for four site qualities (xeric, subxeric, submesic, mesic) based on relevant literature and expert opinion. Data were collected from...
Conference Report: 6th Annual International Symposium on Regenerative Rehabilitation.
Loghmani, M Terry; Roche, Joseph A
2018-04-03
The 6th International Symposium on Regenerative Rehabilitation, hosted by the Alliance for Regenerative Rehabilitation Research and Training (AR 3 T), included a preconference meeting of institutional representatives of the International Consortium of Regenerative Rehabilitation, keynote talks from distinguished scientists, platform and poster presentations from experts and trainees, panel discussions and postconference workshops. The following priorities were identified: increasing rigor in basic, preclinical and clinical studies, especially the use of better controls; developing better outcome measures for preclinical and clinical trials; focusing on developing more tissue-based interventions versus cell-based interventions; including regenerative rehabilitation in curricula of professional programs like occupational and physical therapy; and developing better instruments to quantify rehabilitative interventions.
Electrospun Silk Biomaterial Scaffolds for Regenerative Medicine
Zhang, Xiaohui; Reagan, Michaela R; Kaplan, David L.
2009-01-01
Electrospinning is a versatile technique that enables the development of nanofiber-based biomaterial scaffolds. Scaffolds can be generated that are useful for tissue engineering and regenerative medicine since they mimic the nanoscale properties of certain fibrous components of the native extracellular matrix in tissues. Silk is a natural protein with excellent biocompatibility, remarkable mechanical properties as well as tailorable degradability. Integrating these protein polymer advantages with electrospinning results in scaffolds with combined biochemical, topographical and mechanical cues with versatility for a range of biomaterial, cell and tissue studies and applications. This review covers research related to electrospinning of silk, including process parameters, post treatment of the spun fibers, functionalization of nanofibers, and the potential applications for these material systems in regenerative medicine. Research challenges and future trends are also discussed. PMID:19643154
Design and experiment study of a semi-active energy-regenerative suspension system
NASA Astrophysics Data System (ADS)
Shi, Dehua; Chen, Long; Wang, Ruochen; Jiang, Haobin; Shen, Yujie
2015-01-01
A new kind of semi-active energy-regenerative suspension system is proposed to recover suspension vibration energy, as well as to reduce the suspension cost and demands for the motor-rated capacity. The system consists of an energy-regenerative damper and a DC-DC converter-based energy-regenerative circuit. The energy-regenerative damper is composed of an electromagnetic linear motor and an adjustable shock absorber with three regulating levels. The linear motor just works as the generator to harvest the suspension vibration energy. The circuit can be used to improve the system’s energy-regenerative performance and to continuously regulate the motor’s electromagnetic damping force. Therefore, although the motor works as a generator and damps the isolation without an external power source, the motor damping force is controllable. The damping characteristics of the system are studied based on a two degrees of freedom vehicle vibration model. By further analyzing the circuit operation characteristics under different working modes, the double-loop controller is designed to track the desired damping force. The external-loop is a fuzzy controller that offers the desired equivalent damping. The inner-loop controller, on one hand, is used to generate the pulse number and the frequency to control the angle and the rotational speed of the step motor; on the other hand, the inner-loop is used to offer the duty cycle of the energy-regenerative circuit. Simulations and experiments are conducted to validate such a new suspension system. The results show that the semi-active energy-regenerative suspension can improve vehicle ride comfort with the controllable damping characteristics of the linear motor. Meanwhile, it also ensures energy regeneration.
Aging and adipose tissue: potential interventions for diabetes and regenerative medicine.
Palmer, Allyson K; Kirkland, James L
2016-12-15
Adipose tissue dysfunction occurs with aging and has systemic effects, including peripheral insulin resistance, ectopic lipid deposition, and inflammation. Fundamental aging mechanisms, including cellular senescence and progenitor cell dysfunction, occur in adipose tissue with aging and may serve as potential therapeutic targets in age-related disease. In this review, we examine the role of adipose tissue in healthy individuals and explore how aging leads to adipose tissue dysfunction, redistribution, and changes in gene regulation. Adipose tissue plays a central role in longevity, and interventions restricted to adipose tissue may impact lifespan. Conversely, obesity may represent a state of accelerated aging. We discuss the potential therapeutic potential of targeting basic aging mechanisms, including cellular senescence, in adipose tissue, using type II diabetes and regenerative medicine as examples. We make the case that aging should not be neglected in the study of adipose-derived stem cells for regenerative medicine strategies, as elderly patients make up a large portion of individuals in need of such therapies. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
CELSS scenario analysis: Breakeven calculations
NASA Technical Reports Server (NTRS)
Mason, R. M.
1980-01-01
A model of the relative mass requirements of food production components in a controlled ecological life support system (CELSS) based on regenerative concepts is described. Included are a discussion of model scope, structure, and example calculations. Computer programs for cultivar and breakeven calculations are also included.
Electric-hybrid-vehicle simulation
NASA Astrophysics Data System (ADS)
Pasma, D. C.
The simulation of electric hybrid vehicles is to be performed using experimental data to model propulsion system components. The performance of an existing ac propulsion system will be used as the baseline for comparative purposes. Hybrid components to be evaluated include electrically and mechanically driven flywheels, and an elastomeric regenerative braking system.
Biological Life Support Systems
NASA Technical Reports Server (NTRS)
1997-01-01
Session MP2 includes short reports on: (1) Crew Regenerative Life Support in Long Duration Space Missions; (2) Bioconversion Systems for Food and Water on Long Term Space Missions; (3) Novel Laboratory Approaches to Multi-purpose Aquatic Biogenerative Closed-Loop Food Production Systems; and (4) Artificial Neural Network Derived Plant Growth Models.
Yamaza, Haruyoshi; Akiyama, Kentaro; Hoshino, Yoshihiro; Song, Guangtai; Kukita, Toshio; Nonaka, Kazuaki; Shi, Songtao; Yamaza, Takayoshi
2012-01-01
Human exfoliated deciduous teeth have been considered to be a promising source for regenerative therapy because they contain unique postnatal stem cells from human exfoliated deciduous teeth (SHED) with self-renewal capacity, multipotency and immunomodulatory function. However preservation technique of deciduous teeth has not been developed. This study aimed to evaluate that cryopreserved dental pulp tissues of human exfoliated deciduous teeth is a retrievable and practical SHED source for cell-based therapy. SHED isolated from the cryopreserved deciduous pulp tissues for over 2 years (25–30 months) (SHED-Cryo) owned similar stem cell properties including clonogenicity, self-renew, stem cell marker expression, multipotency, in vivo tissue regenerative capacity and in vitro immunomodulatory function to SHED isolated from the fresh tissues (SHED-Fresh). To examine the therapeutic efficacy of SHED-Cryo on immune diseases, SHED-Cryo were intravenously transplanted into systemic lupus erythematosus (SLE) model MRL/lpr mice. Systemic SHED-Cryo-transplantation improved SLE-like disorders including short lifespan, elevated autoantibody levels and nephritis-like renal dysfunction. SHED-Cryo amended increased interleukin 17-secreting helper T cells in MRL/lpr mice systemically and locally. SHED-Cryo-transplantation was also able to recover osteoporosis bone reduction in long bones of MRL/lpr mice. Furthermore, SHED-Cryo-mediated tissue engineering induced bone regeneration in critical calvarial bone-defect sites of immunocompromised mice. The therapeutic efficacy of SHED-Cryo transplantation on immune and skeletal disorders was similar to that of SHED-Fresh. These data suggest that cryopreservation of dental pulp tissues of deciduous teeth provide a suitable and desirable approach for stem cell-based immune therapy and tissue engineering in regenerative medicine. PMID:23251621
NASA Technical Reports Server (NTRS)
Carrasquillo, Robyn L.
2003-01-01
NASA s Marshall Space Flight Center is providing three racks containing regenerative water recovery and oxygen generation systems (WRS and OGS) for flight on the lnternational Space Station s (ISS) Node 3 element. The major assemblies included in these racks are the Water Processor Assembly (WPA), Urine Processor Assembly (UPA), Oxygen Generation Assembly (OGA), and the Power Supply Module (PSM) supporting the OGA. The WPA and OGA are provided by Hamilton Sundstrand Space Systems lnternational (HSSSI), while the UPA and PSM are being designed and manufactured in-house by MSFC. The assemblies are currently in the manufacturing and test phase and are to be completed and integrated into flight racks this year. This paper gives an overview of the technologies and system designs, technical challenges encountered and solved, and the current status.
Educational and Training Opportunities in Sustainable Agriculture. 5th Edition.
ERIC Educational Resources Information Center
Gates, Jane Potter
This directory lists 151 programs in alternative farming systems (systems that aim at maintaining agricultural productivity and profitability, while protecting natural resources, especially sustainable, low-input, regenerative, biodynamic or organic farming and gardening). It includes programs conducted by colleges and universities, research…
Cocron, Peter; Bühler, Franziska; Franke, Thomas; Neumann, Isabel; Dielmann, Benno; Krems, Josef F
2013-01-01
We report results from a 1-year field study (N = 80) on user interactions with regenerative braking in electric vehicles. Designed to recapture energy in vehicles with electric powertrains, regenerative braking has an important influence on both the task of driving and energy consumption. Results from user assessments and data from onboard data loggers indicate that most drivers quickly learned to interact with the system, which was triggered via accelerator. Further, conventional braking manoeuvres decreased significantly as the majority of deceleration episodes could only be executed through regenerative braking. Still, some drivers reported difficulties when adapting to the system. These difficulties could be addressed by offering different levels of regeneration so that the intensity of the deceleration could be individually modified. In general, the system is trusted and regarded as a valuable tool for prolonging range. Regenerative braking in electric vehicles has direct implications for the driving task. We found that drivers quickly learn to use and accept a system, which is triggered via accelerator. For those reporting difficulties in the interaction, it appears reasonable to integrate options to customise or switch off the system.
NASA Technical Reports Server (NTRS)
Bazley, Jesse
2015-01-01
The International Space Station's (ISS) Regenerative Environmental Control and Life Support System (ECLSS) was launched in 2008 to continuously recycle urine and crew sweat into drinking water and oxygen using brand new technologies. This functionality was highly important to the ability of the ISS to transition to the long-term goal of 6-crew operations as well as being critical tests for long-term space habitability. Through the initial activation and long-term operations of these systems, important lessons were learned about the importance of system redundancy and operational workarounds that allow Systems Engineers to maintain functionality with limited on-orbit spares. This presentation will share some of these lessons learned including how to balance water through the different systems, store and use water for use in system failures and creating procedures to operate the systems in ways that they were not initially designed to do.
NASA Astrophysics Data System (ADS)
Cristescu, Corneliu; Drumea, Petrin; Krevey, Petrica
2009-01-01
In this work is presented the modern instrumentation used for monitoring and controlling the main parameters for one regenerative drive system, used to recovering the kinetic energy of motor vehicles, lost in the braking phase, storing and using this energy in the starting or accelerating phases. Is presented a Romanian technical solution for a regenerative driving system, based on a hybrid solution containing a hydro-mechanic module and an existing thermal motor drive, all conceived as a mechatronics system. In order to monitoring and controlling the evolution of the main parameters, the system contains a series of sensors and transducers that provide the moment, rotation, temperature, flow and pressure values. The main sensors and transducers of the regenerative drive system, their principal features and tehnical conecting solutions are presented in this paper, both with the menaging electronic and informational subsystems.
Laser system using regenerative amplifier
Emmett, John L. [Pleasanton, CA
1980-03-04
High energy laser system using a regenerative amplifier, which relaxes all constraints on laser components other than the intrinsic damage level of matter, so as to enable use of available laser system components. This can be accomplished by use of segmented components, spatial filters, at least one amplifier using solid state or gaseous media, and separated reflector members providing a long round trip time through the regenerative cavity, thereby allowing slower switching and adequate time to clear the spatial filters, etc. The laser system simplifies component requirements and reduces component cost while providing high energy output.
Li, Guanqun; Liu, Xujun; Du, Qian; Gao, Mei; An, Jing
2015-08-01
The finding that bone marrow hosts several types of multipotent stem cell has prompted extensive research aimed at regenerating organs and building models to elucidate the mechanisms of diseases. Conventional research depends on the use of two-dimensional (2D) bone marrow systems, which imposes several obstacles. The development of 3D bone marrow systems with appropriate molecules and materials however, is now showing promising results. In this review, we discuss the advantages of 3D bone marrow systems over 2D systems and then point out various factors that can enhance the 3D systems. The intensive research on 3D bone marrow systems has revealed multiple important clinical applications including disease modeling, drug screening, regenerative medicine, etc. We also discuss some possible future directions in the 3D bone marrow research field. © 2015 by the Society for Experimental Biology and Medicine.
Past, Present and Future Advanced ECLS Systems for Human Exploration of Space
NASA Technical Reports Server (NTRS)
Mitchell, Kenny
2004-01-01
This paper will review the historical record of NASA's regenerative life support systems flight hardware with emphasis on the complexity of spiral development of technology as related to the International Space Station program. A brief summary of what constitutes ECLSS designs for human habitation will be included and will provide illustrations of the complex system/system integration issues. The new technology areas which need to be addressed in our future Code T initiatives will be highlighted. The development status of the current regenerative ECLSS for Space Station will be provided for the Oxygen Generation System and the Water Recovery System. In addition, the NASA is planning to augment the existing ISS capability with a new technology development effort by Code U/Code T for CO2 reduction (Sabatier Reactor). This latest ISS spiral development activity will be highlighted in this paper.
Development of hydrogels for regenerative engineering.
Guan, Xiaofei; Avci-Adali, Meltem; Alarçin, Emine; Cheng, Hao; Kashaf, Sara Saheb; Li, Yuxiao; Chawla, Aditya; Jang, Hae Lin; Khademhosseini, Ali
2017-05-01
The aim of regenerative engineering is to restore complex tissues and biological systems through convergence in the fields of advanced biomaterials, stem cell science, and developmental biology. Hydrogels are one of the most attractive biomaterials for regenerative engineering, since they can be engineered into tissue mimetic 3D scaffolds to support cell growth due to their similarity to native extracellular matrix. Advanced nano- and micro-technologies have dramatically increased the ability to control properties and functionalities of hydrogel materials by facilitating biomimetic fabrication of more sophisticated compositions and architectures, thus extending our understanding of cell-matrix interactions at the nanoscale. With this perspective, this review discusses the most commonly used hydrogel materials and their fabrication strategies for regenerative engineering. We highlight the physical, chemical, and functional modulation of hydrogels to design and engineer biomimetic tissues based on recent achievements in nano- and micro-technologies. In addition, current hydrogel-based regenerative engineering strategies for treating multiple tissues, such as musculoskeletal, nervous and cardiac tissue, are also covered in this review. The interaction of multiple disciplines including materials science, cell biology, and chemistry, will further play an important role in the design of functional hydrogels for the regeneration of complex tissues. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Regenerative endodontics--Creating new horizons.
Dhillon, Harnoor; Kaushik, Mamta; Sharma, Roshni
2016-05-01
Trauma to the dental pulp, physical or microbiologic, can lead to inflammation of the pulp followed by necrosis. The current treatment modality for such cases is non-surgical root canal treatment. The damaged tissue is extirpated and the root canal system prepared. It is then obturated with an inert material such a gutta percha. In spite of advances in techniques and materials, 10%-15% of the cases may end in failure of treatment. Regenerative endodontics combines principles of endodontics, cell biology, and tissue engineering to provide an ideal treatment for inflamed and necrotic pulp. It utilizes mesenchymal stem cells, growth factors, and organ tissue culture to provide treatment. Potential treatment modalities include induction of blood clot for pulp revascularization, scaffold aided regeneration, and pulp implantation. Although in its infancy, successful treatment of damaged pulp tissue has been performed using principles of regenerative endodontics. This field is dynamic and exciting with the ability to shape the future of endodontics. This article highlights the fundamental concepts, protocol for treatment, and possible avenues for research in regenerative endodontics. © 2015 Wiley Periodicals, Inc.
Cell therapy, 3D culture systems and tissue engineering for cardiac regeneration.
Emmert, Maximilian Y; Hitchcock, Robert W; Hoerstrup, Simon P
2014-04-01
Ischemic Heart Disease (IHD) still represents the "Number One Killer" worldwide accounting for the death of numerous patients. However the capacity for self-regeneration of the adult heart is very limited and the loss of cardiomyocytes in the infarcted heart leads to continuous adverse cardiac-remodeling which often leads to heart-failure (HF). The concept of regenerative medicine comprising cell-based therapies, bio-engineering technologies and hybrid solutions has been proposed as a promising next-generation approach to address IHD and HF. Numerous strategies are under investigation evaluating the potential of regenerative medicine on the failing myocardium including classical cell-therapy concepts, three-dimensional culture techniques and tissue-engineering approaches. While most of these regenerative strategies have shown great potential in experimental studies, the translation into a clinical setting has either been limited or too rapid leaving many key questions unanswered. This review summarizes the current state-of-the-art, important challenges and future research directions as to regenerative approaches addressing IHD and resulting HF. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Bagdigian, Robert M.; Cloud, Dale
2005-01-01
NASA is developing three racks containing regenerative water recovery and oxygen generation systems (WRS and OGS) for deployment on the International Space Station (ISS). The major assemblies included in these racks are the Water Processor Assembly (WPA), Urine Processor Assembly (UPA), Oxygen Generation Assembly (OGA), and the Power Supply Module (PSM) supporting the OGA. The WPA and OGA are provided by Hamilton Sundstrand Space Systems International (HSSSI), Inc., while the UPA and PSM are developed in- house by the Marshall Space Flight Center (MSFC). The assemblies have completed the manufacturing phase and are in various stages of testing and integration into the flight racks. This paper summarizes the status as of April 2005 and describes some of the technical challenges encountered and lessons learned over the past year.
CMIF ECLS system test findings
NASA Technical Reports Server (NTRS)
Schunk, Richard G.; Carrasquillo, Robyn L.; Ogle, Kathyrn Y.; Wieland, Paul O.; Bagdigian, Robert M.
1989-01-01
During 1987 three Space Station integrated Environmental Control and Life Support System (ECLSS) tests were conducted at the Marshall Space Flight Center (MSFC) Core Module Integration Facility (CMIF) as part of the MSFC ECLSS Phase II test program. The three tests ranged in duration from 50 to 150 hours and were conducted inside of the CMIF module simulator. The Phase II partial integrated system test configuration consisted of four regenerative air revitalization subsystems and one regenerative water reclamation subsystem. This paper contains a discussion of results and lessons learned from the Phase II test program. The design of the Phase II test configuration and improvements made throughout the program are detailed. Future plans for the MSFC CMIF test program are provided, including an overview of planned improvements for the Phase III program.
REIMBURSEMENT OF CELL-BASED REGENERATIVE THERAPY IN THE UK AND FRANCE
Mahalatchimy, Aurélie
2016-01-01
Cell-based regenerative therapies are presented as being able to cure the diseases of the twenty-first century, especially those coming from the degeneration of the aging human body. But their specific nature based on biological materials raises particular challenging issues on how regulation should frame biomedical innovation for society's benefit regarding public health. The European Union (EU) supports the development of cell-based regenerative therapies that are medicinal products with a specific regulation providing their wide access to the European market for European patients. However, once these medicinal products have obtained a European marketing authorisation, they are still far away from being fully accessible to European patients in all EU Member States. Whereas there is much written on the EU regulatory system for new biotechnologies, there is no systematic legal study comparing the insurance provisions in two EU countries. Focussing on the situation in the UK and France that are based on two different healthcare systems, this paper is based on a comparative methodological approach. It raises the question of regulatory reimbursement mechanisms that determine access to innovative treatments and their consequences for social protection systems in the general context of public health. After having compared the French and English regulations of cell-based regenerative therapy regarding pricing and reimbursement, this papers analyses how England and France are addressing two main challenges of cell-based regenerative therapy, to take into account their long-term benefit through their potential curative nature and their high upfront cost, towards their adoption within the English and French healthcare systems. It concludes that England and France have different general legal frameworks that are not specific to the reimbursement of cell-based regenerative therapy, although their two current and respective trends would bring more convergence between the two systems while addressing the main challenges for the reimbursement of these therapies. Nevertheless, despite their current differences, neither the English nor the French national healthcare system has yet approved the reimbursement of cell-based regenerative therapies. The paper highlights where both systems could be learning from each others' experiences to favour the adoption of cell-based regenerative therapies through the adaptation of their reimbursement methodologies. It also emphasises the gap between market access and patients’ access, and it calls for research and discussions through reflexive agencies such as the Regenerative Medicine Expert Group in the UK. PMID:27083495
Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells.
Sadtler, Kaitlyn; Estrellas, Kenneth; Allen, Brian W; Wolf, Matthew T; Fan, Hongni; Tam, Ada J; Patel, Chirag H; Luber, Brandon S; Wang, Hao; Wagner, Kathryn R; Powell, Jonathan D; Housseau, Franck; Pardoll, Drew M; Elisseeff, Jennifer H
2016-04-15
Immune-mediated tissue regeneration driven by a biomaterial scaffold is emerging as an innovative regenerative strategy to repair damaged tissues. We investigated how biomaterial scaffolds shape the immune microenvironment in traumatic muscle wounds to improve tissue regeneration. The scaffolds induced a pro-regenerative response, characterized by an mTOR/Rictor-dependent T helper 2 pathway that guides interleukin-4-dependent macrophage polarization, which is critical for functional muscle recovery. Manipulating the adaptive immune system using biomaterials engineering may support the development of therapies that promote both systemic and local pro-regenerative immune responses, ultimately stimulating tissue repair. Copyright © 2016, American Association for the Advancement of Science.
Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells
Sadtler, Kaitlyn; Estrellas, Kenneth; Allen, Brian W.; Wolf, Matthew T.; Fan, Hongni; Tam, Ada J.; Patel, Chirag H.; Luber, Brandon S.; Wang, Hao; Wagner, Kathryn R.; Powell, Jonathan D.; Housseau, Franck; Pardoll, Drew M.
2016-01-01
Immune-mediated tissue regeneration driven by a biomaterial scaffold is emerging as an innovative regenerative strategy to repair damaged tissues. We investigated how biomaterial scaffolds shape the immune microenvironment in traumatic muscle wounds to improve tissue regeneration. The scaffolds induced a pro-regenerative response, characterized by an mTOR/Rictor-dependent T helper 2 pathway that guides interleukin-4–dependent macrophage polarization, which is critical for functional muscle recovery. Manipulating the adaptive immune system using biomaterials engineering may support the development of therapies that promote both systemic and local pro-regenerative immune responses, ultimately stimulating tissue repair. PMID:27081073
40 CFR 1037.615 - Hybrid vehicles and other advanced technologies.
Code of Federal Regulations, 2013 CFR
2013-07-01
... and the equivalent non-hybrid systems as described in § 1037.550. Test the vehicles as specified in...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW HEAVY-DUTY MOTOR VEHICLES Special Compliance... include regenerative braking (or the equivalent) and energy storage systems, fuel cell vehicles, and...
40 CFR 60.4219 - What definitions apply to this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... given them in the CAA and in subpart A of this part. Combustion turbine means all equipment, including but not limited to the turbine, the fuel, air, lubrication and exhaust gas systems, control systems... simple cycle combustion turbine, any regenerative/recuperative cycle combustion turbine, the combustion...
Laser system using regenerative amplifier
Emmett, J.L.
1980-03-04
High energy laser system is disclosed using a regenerative amplifier, which relaxes all constraints on laser components other than the intrinsic damage level of matter, so as to enable use of available laser system components. This can be accomplished by use of segmented components, spatial filters, at least one amplifier using solid state or gaseous media, and separated reflector members providing a long round trip time through the regenerative cavity, thereby allowing slower switching and adequate time to clear the spatial filters, etc. The laser system simplifies component requirements and reduces component cost while providing high energy output. 10 figs.
Pourrajab, Fatemeh; Babaei Zarch, Mojtaba; Baghi Yazdi, Mohammad; Rahimi Zarchi, Abolfazl; Vakili Zarch, Abbas
2014-04-15
Stem cells hold a great promise for regenerative medicine, especially for replacing cells in infarcted organ that hardly have any intrinsic renewal capacity, including heart and brain. Signaling pathways that regulate pluripotency or lineage-specific gene and protein expression have been the major focus of stem cell research. Between them, there are some well known signaling pathways such as GF/GFR systems, SDF-1α/CXC4 ligand receptor interaction and PI3K/Akt signaling, and cytokines may regulate cell fate decisions, and can be utilized to positively influence cell therapy outcomes or accentuate synergistic compliance. For example, contributing factors in the progression of heart failure are both the loss of cardiomyocytes after myocardial infarction, and the absence of an adequate endogenous repair signaling. Combining cell engraftment with therapeutic signaling factor delivery is more exciting in terms of host progenitor/donor stem cell survival and proliferation. Thus stem cell-based therapy, besides triggering signaling pathways through GF/GFR systems can become a realistic option in regenerative processes for replacing lost cells and reconstituting the damaged organ, as before. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Toshiba Display Services, a television picture-tube manufacturer in Horseheads, NY, recently was able to meet stringent state regulations to reduce emissions from two of its film applications lines by installing a regenerative catalytic oxidation system. Toshiba officials initially evaluated several technologies to control volatile organic compounds. After deciding that oxidation was the best technology for its facility, the company invited a number of suppliers to submit proposals. Because all of the oxidation technologies considered by Toshiba had the capability to achieve the destruction and removal efficiency requirement, the company combined the second and third decision elements and conducted an in-depthmore » comparison of the initial capital and ongoing operating costs for each proposal. Officials narrowed the field to two systems--the lowest-cost regenerative thermal oxidation system on the market and a regenerative catalytic oxidation system. The company selected St. Louis, Mo.-based Monsanto Enviro-Chem Systems Inc., to install its DynaCycle{reg_sign} regenerative catalytic oxidation system, marking the first Dyna-Cycle installation in a US television picture-tube facility.« less
Performance and Life Tests of a Regenerative Blower for EVA Suit Ventilation
NASA Technical Reports Server (NTRS)
Izenson, Mike; Chen, Weibo; Paul, Heather L.; Jennings, Mallory A.
2011-01-01
Ventilation fans for future space suits must meet demanding performance specifications, satisfy stringent safety requirements for operation in an oxygen atmosphere, and be able to increase output to operate in buddy mode. A regenerative blower is an attractive choice due to its ability to meet these requirements at low operating speed. This paper describes progress in the development and testing of a regenerative blower designed to meet requirements for ventilation subsystems in a future space suit Portable Life Support Systems (PLSS). The blower assembly includes a custom-designed motor that has significantly improved in efficiency during this development effort. The blower was tested at both nominal and buddy mode operating points and head/flow performance and power consumption were measured. The blower was operated for over 1000 hours to demonstrate safe operation in an oxygen test loop at prototypical pressures. In addition, the blower demonstrated operation with the introduction of simulated lunar dust.
Fraser, John K; Hicok, Kevin C; Shanahan, Rob; Zhu, Min; Miller, Scott; Arm, Douglas M
2014-01-01
Objective: To develop a closed, automated system that standardizes the processing of human adipose tissue to obtain and concentrate regenerative cells suitable for clinical treatment of thermal and radioactive burn wounds. Approach: A medical device was designed to automate processing of adipose tissue to obtain a clinical-grade cell output of stromal vascular cells that may be used immediately as a therapy for a number of conditions, including nonhealing wounds resulting from radiation damage. Results: The Celution ® System reliably and reproducibly generated adipose-derived regenerative cells (ADRCs) from tissue collected manually and from three commercial power-assisted liposuction devices. The entire process of introducing tissue into the system, tissue washing and proteolytic digestion, isolation and concentration of the nonadipocyte nucleated cell fraction, and return to the patient as a wound therapeutic, can be achieved in approximately 1.5 h. An alternative approach that applies ultrasound energy in place of enzymatic digestion demonstrates extremely poor efficiency cell extraction. Innovation: The Celution System is the first medical device validated and approved by multiple international regulatory authorities to generate autologous stromal vascular cells from adipose tissue that can be used in a real-time bedside manner. Conclusion: Initial preclinical and clinical studies using ADRCs obtained using the automated tissue processing Celution device described herein validate a safe and effective manner to obtain a promising novel cell-based treatment for wound healing.
2009-12-01
vehicles so do some electric vehicle braking systems (MIT, 2008). e. Brakes Regenerative braking on electric vehicles recoups some of the energy lost...engine is required to replace the energy lost by braking . Regenerative braking takes some of the lost energy during braking and turns it into...Motors and Tesla Motors offer regenerative breaking in their respective electric vehicles. Tesla explains regenerative braking as “engine braking
Multifunctional nanodiamonds in regenerative medicine: Recent advances and future directions.
Whitlow, Jonathan; Pacelli, Settimio; Paul, Arghya
2017-09-10
With recent advances in the field of nanomedicine, many new strategies have emerged for diagnosing and treating diseases. At the forefront of this multidisciplinary research, carbon nanomaterials have demonstrated unprecedented potential for a variety of regenerative medicine applications including novel drug delivery platforms that facilitate the localized and sustained release of therapeutics. Nanodiamonds (NDs) are a unique class of carbon nanoparticles that are gaining increasing attention for their biocompatibility, highly functional surfaces, optical properties, and robust physical properties. Their remarkable features have established NDs as an invaluable regenerative medicine platform, with a broad range of clinically relevant applications ranging from targeted delivery systems for insoluble drugs, bioactive substrates for stem cells, and fluorescent probes for long-term tracking of cells and biomolecules in vitro and in vivo. This review introduces the synthesis techniques and the various routes of surface functionalization that allow for precise control over the properties of NDs. It also provides an in-depth overview of the current progress made toward the use of NDs in the fields of drug delivery, tissue engineering, and bioimaging. Their future outlook in regenerative medicine including the current clinical significance of NDs, as well as the challenges that must be overcome to successfully translate the reviewed technologies from research platforms to clinical therapies will also be discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Regenerative Life Support Evaluation
NASA Technical Reports Server (NTRS)
Kleiner, G. N.; Thompson, C. D.
1977-01-01
This paper describes the development plan and design concept of the Regenerative Life Support Evaluation (RLSE) planned for flight testing in the European Space Agency Spacelab. The development plan encompasses the ongoing advanced life support subsystem and a systems integration effort to evolve concurrently subsystem concepts that perform their function and can be integrated with other subsystems in a flight demonstration of a regenerative life support system. The design concept for RLSE comprises water-electrolysis O2 generation, electrochemically depolarized CO2 removal, and Sabatier CO2 reduction for atmosphere regeneration, urine vapor-compression distillation, and wash-water hyperfiltration for waste-water recovery. The flight demonstration by RLSE is an important step in qualifying the regenerative concepts for life support in space stations.
NASA Technical Reports Server (NTRS)
1971-01-01
A preliminary plan and procedure are presented for conducting an extended manned test program for a regenerative life support system. Emphasis will be placed on elements associated with long-term system operation and long-term uninterrupted crew confinement.
NASA Astrophysics Data System (ADS)
Inoue, Kaoru; Ogata, Kenji; Kato, Toshiji
When the motor speed is reduced by using a regenerative brake, the mechanical energy of rotation is converted to the electrical energy. When the regenerative torque is large, the corresponding current increases so that the copper loss also becomes large. On the other hand, the damping effect of rotation increases according to the time elapse when the regenerative torque is small. In order to use the limited energy effectively, an optimal regenerative torque should be discussed in order to regenerate electrical energy as much as possible. This paper proposes a design methodology of a regenerative torque for an induction motor to maximize the regenerative electric energy by means of the variational method. Similarly, an optimal torque for acceleration is derived in order to minimize the energy to drive. Finally, an efficient motor drive system with the proposed optimal torque and the power storage system stabilizing the DC link voltage will be proposed. The effectiveness of the proposed methods are illustrated by both simulations and experiments.
Regenerative fuel cell energy storage system for a low earth orbit space station
NASA Technical Reports Server (NTRS)
Martin, R. E.; Garow, J.; Michaels, K. B.
1988-01-01
A study was conducted to define characteristics of a Regenerative Fuel Cell System (RFCS) for low earth orbit Space Station missions. The RFCS's were defined and characterized based on both an alkaline electrolyte fuel cell integrated with an alkaline electrolyte water electrolyzer and an alkaline electrolyte fuel cell integrated with an acid solid polymer electrolyte (SPE) water electrolyzer. The study defined the operating characteristics of the systems including system weight, volume, and efficiency. A maintenance philosophy was defined and the implications of system reliability requirements and modularization were determined. Finally, an Engineering Model System was defined and a program to develop and demonstrate the EMS and pacing technology items that should be developed in parallel with the EMS were identified. The specific weight of an optimized RFCS operating at 140 F was defined as a function of system efficiency for a range of module sizes. An EMS operating at a nominal temperature of 180 F and capable of delivery of 10 kW at an overall efficiency of 55.4 percent is described. A program to develop the EMS is described including a technology development effort for pacing technology items.
Combined hydraulic and regenerative braking system
Venkataperumal, R.R.; Mericle, G.E.
1979-08-09
A combined hydraulic and regenerative braking system and method for an electric vehicle is disclosed. The braking system is responsive to the applied hydraulic pressure in a brake line to control the braking of the vehicle to be completely hydraulic up to a first level of brake line pressure, to be partially hydraulic at a constant braking force and partially regenerative at a linearly increasing braking force from the first level of applied brake line pressure to a higher second level of brake line pressure, to be partially hydraulic at a linearly increasing braking force and partially regenerative at a linearly decreasing braking force from the second level of applied line pressure to a third and higher level of applied line pressure, and to be completely hydraulic at a linearly increasing braking force from the third level to all higher applied levels of line pressure.
Combined hydraulic and regenerative braking system
Venkataperumal, Rama R.; Mericle, Gerald E.
1981-06-02
A combined hydraulic and regenerative braking system and method for an electric vehicle, with the braking system being responsive to the applied hydraulic pressure in a brake line to control the braking of the vehicle to be completely hydraulic up to a first level of brake line pressure, to be partially hydraulic at a constant braking force and partially regenerative at a linearly increasing braking force from the first level of applied brake line pressure to a higher second level of brake line pressure, to be partially hydraulic at a linearly increasing braking force and partially regenerative at a linearly decreasing braking force from the second level of applied line pressure to a third and higher level of applied line pressure, and to be completely hydraulic at a linearly increasing braking force from the third level to all higher applied levels of line pressure.
Unitized Regenerative Fuel Cell System Gas Dryer/Humidifier Analytical Model Development
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.; Jakupca, Ian
2004-01-01
A lightweight Unitized Regenerative Fuel Cell (URFC) Energy Storage System concept is being developed at the NASA Glenn Research Center (GRC). This Unitized Regenerative Fuel Cell System (URFCS) is unique in that it uses Regenerative Gas Dryers/Humidifiers (RGD/H) that are mounted on the surface of the gas storage tanks that act as the radiators for thermal control of the Unitized Regenerative Fuel Cell System (URFCS). As the gas storage tanks cool down during URFCS charging the RGD/H dry the hydrogen and oxygen gases produced by electrolysis. As the gas storage tanks heat up during URFCS discharging, the RGD/H humidify the hydrogen and oxygen gases used by the fuel cell. An analytical model was developed to simulate the URFCS RGD/H. The model is in the form of a Microsoft (registered trademark of Microsoft Corporation) Excel worksheet that allows the investigation of the RGD/H performance. Finite Element Analysis (FEA) modeling of the RGD/H and the gas storage tank wall was also done to analyze spatial temperature distribution within the RGD/H and the localized tank wall. Test results obtained from the testing of the RGD/H in a thermal vacuum environment were used to corroborate the analyses.
NASA Astrophysics Data System (ADS)
Li, Liang; Li, Xujian; Wang, Xiangyu; Liu, Yahui; Song, Jian; Ran, Xu
2016-02-01
Regenerative braking is an important technology in improving fuel economy of an electric vehicle (EV). However, additional motor braking will change the dynamic characteristics of the vehicle, leading to braking instability, especially when the anti-lock braking system (ABS) is triggered. In this paper, a novel semi-brake-by-wire system, without the use of a pedal simulator and fail-safe device, is proposed. In order to compensate for the hysteretic characteristics of the designed brake system while ensure braking reliability and fuel economy when the ABS is triggered, a novel switching compensation control strategy using sliding mode control is brought forward. The proposed strategy converts the complex coupling braking process into independent control of hydraulic braking and regenerative braking, through which a balance between braking performance, braking reliability, braking safety and fuel economy is achieved. Simulation results show that the proposed strategy is effective and adaptable in different road conditions while the large wheel slip rate is triggered during a regenerative braking course. The research provides a new possibility of low-cost equipment and better control performance for the regenerative braking in the EV and the hybrid EV.
REIMBURSEMENT OF CELL-BASED REGENERATIVE THERAPY IN THE UK AND FRANCE.
Mahalatchimy, Aurélie
2016-01-01
Cell-based regenerative therapies are presented as being able to cure the diseases of the twenty-first century, especially those coming from the degeneration of the aging human body. But their specific nature based on biological materials raises particular challenging issues on how regulation should frame biomedical innovation for society's benefit regarding public health. The European Union (EU) supports the development of cell-based regenerative therapies that are medicinal products with a specific regulation providing their wide access to the European market for European patients. However, once these medicinal products have obtained a European marketing authorisation, they are still far away from being fully accessible to European patients in all EU Member States. Whereas there is much written on the EU regulatory system for new biotechnologies, there is no systematic legal study comparing the insurance provisions in two EU countries. Focussing on the situation in the UK and France that are based on two different healthcare systems, this paper is based on a comparative methodological approach. It raises the question of regulatory reimbursement mechanisms that determine access to innovative treatments and their consequences for social protection systems in the general context of public health. After having compared the French and English regulations of cell-based regenerative therapy regarding pricing and reimbursement, this papers analyses how England and France are addressing two main challenges of cell-based regenerative therapy, to take into account their long-term benefit through their potential curative nature and their high upfront cost, towards their adoption within the English and French healthcare systems. It concludes that England and France have different general legal frameworks that are not specific to the reimbursement of cell-based regenerative therapy, although their two current and respective trends would bring more convergence between the two systems while addressing the main challenges for the reimbursement of these therapies. Nevertheless, despite their current differences, neither the English nor the French national healthcare system has yet approved the reimbursement of cell-based regenerative therapies. The paper highlights where both systems could be learning from each others' experiences to favour the adoption of cell-based regenerative therapies through the adaptation of their reimbursement methodologies. It also emphasises the gap between market access and patients' access, and it calls for research and discussions through reflexive agencies such as the Regenerative Medicine Expert Group in the UK. © The Author 2016. Published by Oxford University Press; all rights reserved. For Permissions, please email: journals.permissions@oup.com.
Garcia-Godoy, Franklin; Murray, Peter E
2012-02-01
The regeneration of immature permanent teeth following trauma could be beneficial to reduce the risk of fracture and loss of millions of teeth each year. Regenerative endodontic procedures include revascularization, partial pulpotomy, and apexogenesis. Several case reports give these procedures a good prognosis as an alternative to apexification. Care is needed to deliver regenerative endodontic procedures that maintain or restore the vitality of teeth, but which also disinfect and remove necrotic tissues. Regeneration can be accomplished through the activity of the cells from the pulp, periodontium, vascular, and immune system. Most therapies use the host's own pulp or vascular cells for regeneration, but other types of dental stem cell therapies are under development. There are no standardized treatment protocols for endodontic regeneration. The purpose of this article is to review the recent literature and suggest guidelines for using regenerative endodontic procedures for the treatment of permanent immature traumatized teeth. Recommendations for the selection of regenerative and conventional procedures based on the type of tooth injury, fracture type, presence of necrosis or infection, periodontal status, presence of periapical lesions, stage of tooth development, vitality status, patient age, and patient health status will be reviewed. Because of the lack of long-term evidence to support the use of regenerative endodontic procedures in traumatized teeth with open apices, revascularization regeneration procedures should only be attempted if the tooth is not suitable for root canal obturation, and after apexogenesis, apexification, or partial pulpotomy treatments have already been attempted and have a poor prognosis. © 2011 John Wiley & Sons A/S.
Alkaline RFC Space Station prototype - 'Next step Space Station'. [Regenerative Fuel Cells
NASA Technical Reports Server (NTRS)
Hackler, I. M.
1986-01-01
The regenerative fuel cell, a candidate technology for the Space Station's energy storage system, is described. An advanced development program was initiated to design, manufacture, and integrate a regenerative fuel cell Space Station prototype (RFC SSP). The RFC SSP incorporates long-life fuel cell technology, increased cell area for the fuel cells, and high voltage cell stacks for both units. The RFC SSP's potential for integration with the Space Station's life support and propulsion systems is discussed.
Environmental Control and Life Support Integration Strategy for 6-Crew Operations
NASA Technical Reports Server (NTRS)
2009-01-01
The International Space Station (ISS) crew compliment will be increasing in size from 3 to 6 crew members in the summer of 2009. In order to support this increase in crew on ISS, the United States on-orbit Segment (USOS) has been outfitted with a suite of regenerative Environmental Control and Life Support (ECLS) hardware including an Oxygen Generation System(OGS), Waste and Hygiene Compartment (WHC), and a Water Recovery System (WRS). The WRS includes the Urine Processor Assembly (UPA) and the Water Processor Assembly (WPA). A critical step in advancing to a 6Crew support capability on ISS is a full checkedout and verification of the Regenerative ECLS hardware. With a successful checkout, the ISS will achieve full redundancy in its onorbit life support system between the USOS and Russian Segment (RS). The additional redundancy created by the Regenerative ECLS hardware creates the opportunity for independent support capabilities between segments, and for the first time since the start of ISS, the necessity to revise Life Support strategy agreements. Independent operating strategies coupled with the loss of the Space Shuttle supply and return capabilities in 2010 offers additional challenges. These challenges create the need for a higher level of onorbit consumables reserve to ensure crewmember life support during a system failure. This paper will discuss the evolution of the ISS Life Support hardware strategy in support of 6Crew on ISS, as well as the continued work which will be necessary to ensure the support of crew and ISS Program objectives through the life of station.
Regenerative Blower for EVA Suit Ventilation Fan
NASA Technical Reports Server (NTRS)
Izenson, Michael G.; Chen, Weibo; Paul, Heather L.
2010-01-01
Portable life support systems in future space suits will include a ventilation subsystem driven by a dedicated fan. This ventilation fan must meet challenging requirements for pressure rise, flow rate, efficiency, size, safety, and reliability. This paper describes research and development that showed the feasibility of a regenerative blower that is uniquely suited to meet these requirements. We proved feasibility through component tests, blower tests, and design analysis. Based on the requirements for the Constellation Space Suit Element (CSSE) Portable Life Support System (PLSS) ventilation fan, we designed the critical elements of the blower. We measured the effects of key design parameters on blower performance using separate effects tests, and used the results of these tests to design a regenerative blower that will meet the ventilation fan requirements. We assembled a proof-of-concept blower and measured its performance at sub-atmospheric pressures that simulate a PLSS ventilation loop environment. Head/flow performance and maximum efficiency point data were used to specify the design and operating conditions for the ventilation fan. We identified materials for the blower that will enhance safety for operation in a lunar environment, and produced a solid model that illustrates the final design. The proof-of-concept blower produced the flow rate and pressure rise needed for the CSSE ventilation subsystem while running at 5400 rpm, consuming only 9 W of electric power using a non-optimized, commercial motor and controller and inefficient bearings. Scaling the test results to a complete design shows that a lightweight, compact, reliable, and low power regenerative blower can meet the performance requirements for future space suit life support systems.
Manufacturing Road Map for Tissue Engineering and Regenerative Medicine Technologies
Hunsberger, Joshua; Harrysson, Ola; Shirwaiker, Rohan; Starly, Binil; Wysk, Richard; Cohen, Paul; Allickson, Julie; Yoo, James
2015-01-01
Summary The Regenerative Medicine Foundation Annual Conference held on May 6 and 7, 2014, had a vision of assisting with translating tissue engineering and regenerative medicine (TERM)-based technologies closer to the clinic. This vision was achieved by assembling leaders in the field to cover critical areas. Some of these critical areas included regulatory pathways for regenerative medicine therapies, strategic partnerships, coordination of resources, developing standards for the field, government support, priorities for industry, biobanking, and new technologies. The final day of this conference featured focused sessions on manufacturing, during which expert speakers were invited from industry, government, and academia. The speakers identified and accessed roadblocks plaguing the field where improvements in advanced manufacturing offered many solutions. The manufacturing sessions included (a) product development toward commercialization in regenerative medicine, (b) process challenges to scale up manufacturing in regenerative medicine, and (c) infrastructure needs for manufacturing in regenerative medicine. Subsequent to this, industry was invited to participate in a survey to further elucidate the challenges to translation and scale-up. This perspective article will cover the lessons learned from these manufacturing sessions and early results from the survey. We also outline a road map for developing the manufacturing infrastructure, resources, standards, capabilities, education, training, and workforce development to realize the promise of TERM. PMID:25575525
Limited Investigation into Regenerative Braking and Energy Storage for Mass Transit Systems
DOT National Transportation Integrated Search
1978-03-01
This study examines the technical and economic aspects of a regenerative braking/flywheel energy storage subway system. In order to define the analytical models accurately, it was necessary to gather data on the trains, rail network, schedules, and a...
Regenerative fuel cells for space applications
NASA Technical Reports Server (NTRS)
Appleby, A. John
1987-01-01
After several years of development of the regenerative fuel cell (RFC) as the electrochemical storage system to be carried by the future space station, the official stance has now been adopted that nickel hydrogen batteries would be a better system choice. RFCs are compared with nickel hydrogen and other battery systems for space platform applications.
Alkaline regenerative fuel cell energy storage system for manned orbital satellites
NASA Technical Reports Server (NTRS)
Martin, R. E.; Gitlow, B.; Sheibley, D. W.
1982-01-01
It is pointed out that the alkaline regenerative fuel cell system represents a highly efficient, lightweight, reliable approach for providing energy storage in an orbiting satellite. In addition to its energy storage function, the system can supply hydrogen and oxygen for attitude control of the satellite and for life support. A summary is presented of the results to date obtained in connection with the NASA-sponsored fuel cell technology advancement program, giving particular attention to the requirements of the alkaline regenerative fuel cell and the low-earth mission. Attention is given to system design guidelines, weight considerations, gold-platinum cathode cell performance, matrix development, the electrolyte reservoir plate, and the cyclical load profile tests.
Crewmember repairing the Regenerative Carbon Dioxide Removal System wiring.
NASA Technical Reports Server (NTRS)
1992-01-01
Mission Pilot Ken Bowersox, busy at work on the wiring harness for the Regenerative Carbon Dioxide Removal System located under the mid deck floor. Photo shows Bowersox splicing wires together to 'fool' a faulty sensor that caused the 'air conditioner' to shut down.
Regenerative Environmental Control and Life Support System Diagram
NASA Technical Reports Server (NTRS)
2000-01-01
This diagram shows the flow of recyclable resources in the International Space Station (ISS). The Environmental Control and Life Support System (ECLSS) Group of the Flight Projects Directorate at the Marshall Space Flight Center is responsible for the regenerative ECLSS hardware, as well as providing technical support for the rest of the system. The regenerative ECLSS, whose main components are the Water Recovery System (WRS), and the Oxygen Generation System (OGS), reclaims and recycles water and oxygen. The ECLSS maintains a pressurized habitation environment, provides water recovery and storage, maintains and provides fire detection / suppression, and provides breathable air and a comfortable atmosphere in which to live and work within the ISS. The ECLSS hardware will be located in the Node 3 module of the ISS.
High temperature sensible heat storage options
NASA Astrophysics Data System (ADS)
Wang, K. Y.; Kreith, F.; West, R. E.; Lynn, P.
1984-11-01
Design options and operation criteria for sensible heat molten salt storage with internal insulation are presented. Raft thermocline, two-tank, and two-media thermocline systems are the concepts discussed. Regenerative cooling, bottom insulation, and thermocline stability are considered in the thermal analysis. A brief discussion of the technical risks of each tank system is included. Cost estimations are also provided.
The ECLSS Advanced Automation Project Evolution and Technology Assessment
NASA Technical Reports Server (NTRS)
Dewberry, Brandon S.; Carnes, James R.; Lukefahr, Brenda D.; Rogers, John S.; Rochowiak, Daniel M.; Mckee, James W.; Benson, Brian L.
1990-01-01
Viewgraphs on Environmental Control and Life Support System (ECLSS) advanced automation project evolution and technology assessment are presented. Topics covered include: the ECLSS advanced automation project; automatic fault diagnosis of ECLSS subsystems descriptions; in-line, real-time chemical and microbial fluid analysis; and object-oriented, distributed chemical and microbial modeling of regenerative environmental control systems description.
Adsorbent testing and mathematical modeling of a solid amine regenerative CO2 and H2O removal system
NASA Technical Reports Server (NTRS)
Jeng, F. F.; Williamson, R. G.; Quellette, F. A.; Edeen, M. A.; Lin, C. H.
1991-01-01
The paper examines the design and the construction details of the test bed built for testing a solid-amine-based Regenerable CO2 Removal System (RCRS) built at the NASA/Johnson Space Center for the extended Orbiter missions. The results of tests are presented, including those for the adsorption breakthrough and the adsorption and desorption of CO2 and H2O vapor. A model for predicting the performance of regenerative CO2 and H2O vapor adsorption of the solid amine system under various operating conditions was developed in parallel with the testing of the test stand, using the coefficient of mass transfer calculated from test results. The results of simulations are shown to predict the adsorption performance of the Extended Duration Orbiter test bed fairly well. For the application to the RCRS at various operating conditions the model has to be modified.
Advanced diesel electronic fuel injection and turbocharging
NASA Astrophysics Data System (ADS)
Beck, N. J.; Barkhimer, R. L.; Steinmeyer, D. C.; Kelly, J. E.
1993-12-01
The program investigated advanced diesel air charging and fuel injection systems to improve specific power, fuel economy, noise, exhaust emissions, and cold startability. The techniques explored included variable fuel injection rate shaping, variable injection timing, full-authority electronic engine control, turbo-compound cooling, regenerative air circulation as a cold start aid, and variable geometry turbocharging. A Servojet electronic fuel injection system was designed and manufactured for the Cummins VTA-903 engine. A special Servojet twin turbocharger exhaust system was also installed. A series of high speed combustion flame photos was taken using the single cylinder optical engine at Michigan Technological University. Various fuel injection rate shapes and nozzle configurations were evaluated. Single-cylinder bench tests were performed to evaluate regenerative inlet air heating techniques as an aid to cold starting. An exhaust-driven axial cooling air fan was manufactured and tested on the VTA-903 engine.
Fraser, John K.; Hicok, Kevin C.; Shanahan, Rob; Zhu, Min; Miller, Scott; Arm, Douglas M.
2014-01-01
Objective: To develop a closed, automated system that standardizes the processing of human adipose tissue to obtain and concentrate regenerative cells suitable for clinical treatment of thermal and radioactive burn wounds. Approach: A medical device was designed to automate processing of adipose tissue to obtain a clinical-grade cell output of stromal vascular cells that may be used immediately as a therapy for a number of conditions, including nonhealing wounds resulting from radiation damage. Results: The Celution® System reliably and reproducibly generated adipose-derived regenerative cells (ADRCs) from tissue collected manually and from three commercial power-assisted liposuction devices. The entire process of introducing tissue into the system, tissue washing and proteolytic digestion, isolation and concentration of the nonadipocyte nucleated cell fraction, and return to the patient as a wound therapeutic, can be achieved in approximately 1.5 h. An alternative approach that applies ultrasound energy in place of enzymatic digestion demonstrates extremely poor efficiency cell extraction. Innovation: The Celution System is the first medical device validated and approved by multiple international regulatory authorities to generate autologous stromal vascular cells from adipose tissue that can be used in a real-time bedside manner. Conclusion: Initial preclinical and clinical studies using ADRCs obtained using the automated tissue processing Celution device described herein validate a safe and effective manner to obtain a promising novel cell-based treatment for wound healing. PMID:24761343
NASA Astrophysics Data System (ADS)
Maloney, Thomas M.; Prokopius, Paul R.; Voecks, Gerald E.
1995-01-01
The Electrochemical Technology Branch of the NASA Lewis Research Center (LeRC) has initiated a program to develop a renewable energy system testbed to evaluate, characterize, and demonstrate fully integrated regenerative fuel cell (RFC) system for space, military, and commercial applications. A multi-agency management team, led by NASA LeRC, is implementing the program through a unique international coalition which encompasses both government and industry participants. This open-ended teaming strategy optimizes the development for space, military, and commercial RFC system technologies. Program activities to date include system design and analysis, and reactant storage sub-system design, with a major emphasis centered upon testbed fabrication and installation and testing of two key RFC system components, namely, the fuel cells and electrolyzers. Construction of the LeRC 25 kW RFC system testbed at the NASA-Jet Propulsion Labortory (JPL) facility at Edwards Air Force Base (EAFB) is nearly complete and some sub-system components have already been installed. Furthermore, planning for the first commercial RFC system demonstration is underway.
Egami, Mime; Haraguchi, Yuji; Shimizu, Tatsuya; Yamato, Masayuki; Okano, Teruo
2014-01-01
Cell sheet engineering, which allows tissue engineering to be realized without the use of biodegradable scaffolds as an original approach, using a temperature-responsive intelligent surface, has been applied in regenerative medicine for various tissues, and a number of clinical studies have been already performed for life-threatening diseases. By using the results and findings obtained from the initial clinical studies, additional investigative clinical studies in several tissues with cell sheet engineering are currently in preparation stage. For treating many patients effectively by cell sheet engineering, an automated system integrating cell culture, cell-sheet fabrication, and layering is essential, and the system should include an advanced three-dimensional suspension cell culture system and an in vitro bioreactor system to scale up the production of cultured cells and fabricate thicker vascularized tissues. In this paper, cell sheet engineering, its clinical application, and further the authors' challenge to develop innovative cell culture systems under newly legislated regulatory platform in Japan are summarized and discussed.
Industry perceptions of barriers to commercialization of regenerative medicine products in the UK.
Plagnol, Anke C; Rowley, Emma; Martin, Paul; Livesey, Finbarr
2009-07-01
Regenerative medicine is an emerging field with the potential to provide widespread improvement in healthcare and patient wellbeing via the delivery of therapies that can restore, regenerate or repair damaged tissue. As an industry, it could significantly contribute to economic growth if products are successfully commercialized. However, to date, relatively few products have reached the market owing to a variety of barriers, including a lack of funding and regulatory hurdles. The present study analyzes industry perceptions of the barriers to commercialization that currently impede the success of the regenerative medicine industry in the UK. The analysis is based on 20 interviews with leading industrialists in the field. The study revealed that scientific research in regenerative medicine is thriving in the UK. Unfortunately, lack of access to capital, regulatory hurdles, lack of clinical evidence leading to problems with reimbursement, as well as the culture of the NHS do not provide a good environment for the commercialization of regenerative medicine products. Policy interventions, including increased translational government funding, a change in NHS and NICE organization and policies, and regulatory clarity, would likely improve the general outcomes for the regenerative medicine industry in the UK.
Advanced dc-Traction-Motor Control System
NASA Technical Reports Server (NTRS)
Vittone, O.
1985-01-01
Motor-control concept for battery-powered vehicles includes stateof-the-art power-transistor switching and separate excitation of motor windings in traction and regenerative braking. Switching transistors and other components of power-conditioning subsystem operate under control of computer that coordinates traction, braking, and protective functions.
Utilization of on-site resources for regenerative life support systems at Lunar and Martian outposts
NASA Technical Reports Server (NTRS)
Ming, Douglas W.; Golden, D. C.; Henninger, Donald L.
1993-01-01
Lunar and martian materials can be processed and used at planetary outposts to reduce the need (and thus the cost) of transportng supplies from Earth. A variety of uses for indigenous, on-site materials have been suggested, including uses as rocket propellants, construction materials, and life support materials. Utilization of on-site resources will supplement Regenerative Life Support Systems (RLSS) that will be needed to regenerate air, water, wastes, and to produce food (e.g., plants) for human consumption during long-duration space missions. Natural materials on the Moon and/or Mars may be used for a variety of RLSS needs including (1) soils or solid-support substrate for plant growth, (2) sources for extraction of essential plant-growth nutrients, (3) sources of O2, H2, CO2, and water, (4) substrates for microbial populations in the degradation of wastes, and (5) shielding materials surrounding outpost structures to protect humans, plants, and microorganisms from radiation. In addition to the regolith, the martian atmosphere will provide additional resources at a Mars outpost, including water, CO2 and other atmospheric gases.
Researches on regenerative medicine-current state and prospect.
Wang, Zheng-Guo; Xiao, Kai
2012-01-01
Since 1980s, the rapid development of tissue engineering and stem cell research has pushed regenerative medicine to a new fastigium, and regenerative medicine has become a noticeable research field in the international biology and medicine. In China, about 100 million patients need repair and regeneration treatment every year, while the number is much larger in the world. Regenerative medicine could provide effective salvation for these patients. Both Chinese Academy of Sciences and Chinese Academy of Engineering have made roadmaps of 2010-2050 and 2011-2030 for regenerative medicine. The final goal of the two roadmaps is to make China go up to leading position in most research aspects of regenerative medicine. In accord with this strategy, the government and some enterprises have invested 3-5 billion RMB (0.5-0.8 billion USD) for the research on regenerative medicine. In order to push the translation of regenerative medicine forward-from bench to bedside, a strategic alliance has been established, and it includes 27 top-level research institutes, medical institutes, colleges, universities and enterprises in the field of stem cell and regeneration medicine. Recently the journal, Science, has published a special issue-Regenerative Medicine in China, consisting of 35 papers dealing with stem cell and regeneration, tissue engineering and regeneration, trauma and regeneration and bases for tissue repair and regenerative medicine. It is predicated that a greater breakthrough in theory and practice of regenerative medicine will be achieved in the near future (20 to 30 years).
Nanotechnology and regenerative therapeutics in plastic surgery: The next frontier
Tan, Aaron; Chawla, Reema; Natasha, G; Mahdibeiraghdar, Sara; Jeyaraj, Rebecca; Rajadas, Jayakumar; Hamblin, Michael R.; Seifalian, Alexander M.
2015-01-01
Summary The rapid ascent of nanotechnology and regenerative therapeutics as applied to medicine and surgery has seen an exponential rise in the scale of research generated in this field. This is evidenced not only by the sheer volume of papers dedicated to nanotechnology but also in a large number of new journals dedicated to nanotechnology and regenerative therapeutics specifically to medicine and surgery. Aspects of nanotechnology that have already brought benefits to these areas include advanced drug delivery platforms, molecular imaging and materials engineering for surgical implants. Particular areas of interest include nerve regeneration, burns and wound care, artificial skin with nanoelectronic sensors and head and neck surgery. This study presents a review of nanotechnology and regenerative therapeutics, with focus on its applications and implications in plastic surgery. PMID:26422652
An overview: recycling nutrients from crop residues for space applications.
Strayer, R F; Atkinson, C F
1997-01-01
Without some form of regenerative life support system, long duration space habitation or travel will be limited severely by the prohibitive costs of resupplying air, water, and food from Earth. Components under consideration for inclusion in a regenerative life support system are based on either physicochemical or biological processes. Physicochemical systems would use filtration and elemental phase changes to convert waste materials into usable products, while biological systems would use higher plants and bioreactors to supply crew needs. Neither a purely biological nor strictly a physicochemical approach can supply all crew needs, thus, the best each approach can offer will be combined into a hybrid regenerative life support system. Researchers at Kennedy Space Center (KSC) Advanced Life Support Breadboard Project have taken the lead on bioregenerative aspects of space life support. The major focus has been on utilization of higher plants for production of food, oxygen, and clean water. However, a key to any regenerative life support system is recycling and recovery of resources (wastes). In keeping with the emphasis at KSC on bioregenerative systems and with the focus on plants, this paper focuses on research with biologically-based options for resource recovery from inedible crop residues.
An overview: recycling nutrients from crop residues for space applications
NASA Technical Reports Server (NTRS)
Strayer, R. F.; Atkinson, C. F.
1997-01-01
Without some form of regenerative life support system, long duration space habitation or travel will be limited severely by the prohibitive costs of resupplying air, water, and food from Earth. Components under consideration for inclusion in a regenerative life support system are based on either physicochemical or biological processes. Physicochemical systems would use filtration and elemental phase changes to convert waste materials into usable products, while biological systems would use higher plants and bioreactors to supply crew needs. Neither a purely biological nor strictly a physicochemical approach can supply all crew needs, thus, the best each approach can offer will be combined into a hybrid regenerative life support system. Researchers at Kennedy Space Center (KSC) Advanced Life Support Breadboard Project have taken the lead on bioregenerative aspects of space life support. The major focus has been on utilization of higher plants for production of food, oxygen, and clean water. However, a key to any regenerative life support system is recycling and recovery of resources (wastes). In keeping with the emphasis at KSC on bioregenerative systems and with the focus on plants, this paper focuses on research with biologically-based options for resource recovery from inedible crop residues.
A novel regenerative shock absorber with a speed doubling mechanism and its Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Zhang, Ran; Wang, Xu; Liu, Zhenwei
2018-03-01
A novel regenerative shock absorber has been designed and fabricated. The novelty of the presented work is the application of the double speed regenerative shock absorber that utilizes the rack and pinion mechanism to increase the magnet speed with respect to the coils for higher power output. The simulation models with parameters identified from finite element analysis and the experiments are developed. The proposed regenerative shock absorber is compared with the regenerative shock absorber without the rack and pinion mechanism, when they are integrated into the same quarter vehicle suspension system. The sinusoidal wave road profile displacement excitation and the random road profile displacement excitation with peak amplitude of 0.035 m are applied as the inputs in the frequency range of 0-25 Hz. It is found that with the sinusoidal and random road profile displacement input, the proposed innovative design can increase the output power by 4 times comparing to the baseline design. The proposed double speed regenerative shock absorber also presents to be more sensitive to the road profile irregularity than the single speed regenerative shock absorber as suggested by Monte Carlo simulation. Lastly the coil mass and amplification factor are studied for sensitivity analysis and performance optimization, which provides a general design method of the regenerative shock absorbers. It shows that for the system power output, the proposed design becomes more sensitive to either the coil mass or amplification factor depending on the amount of the coil mass. With the specifically selected combination of the coil mass and amplification factor, the optimized energy harvesting performance can be achieved.
Use of elastomers in regenerative braking systems
NASA Astrophysics Data System (ADS)
The storage of potential energy as strain energy in elastomers was investigated. The evolution of the preferred stressing scheme is described, and test results on full-size elastomeric energy storage units sized for an automotive regenerative braking system application are presented. The need for elastomeric material improvements is also discussed.
Engineering growth factors for regenerative medicine applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Aaron C.; Briquez, Priscilla S.; Hubbell, Jeffrey A.
Growth factors are important morphogenetic proteins that instruct cell behavior and guide tissue repair and renewal. Although their therapeutic potential holds great promise in regenerative medicine applications, translation of growth factors into clinical treatments has been hindered by limitations including poor protein stability, low recombinant expression yield, and suboptimal efficacy. This review highlights current tools, technologies, and approaches to design integrated and effective growth factor-based therapies for regenerative medicine applications. The first section describes rational and combinatorial protein engineering approaches that have been utilized to improve growth factor stability, expression yield, biodistribution, and serum half-life, or alter their cell traffickingmore » behavior or receptor binding affinity. The second section highlights elegant biomaterial-based systems, inspired by the natural extracellular matrix milieu, that have been developed for effective spatial and temporal delivery of growth factors to cell surface receptors. Although appearing distinct, these two approaches are highly complementary and involve principles of molecular design and engineering to be considered in parallel when developing optimal materials for clinical applications.« less
Operator interface for vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bissontz, Jay E
2015-03-10
A control interface for drivetrain braking provided by a regenerative brake and a non-regenerative brake is implemented using a combination of switches and graphic interface elements. The control interface comprises a control system for allocating drivetrain braking effort between the regenerative brake and the non-regenerative brake, a first operator actuated control for enabling operation of the drivetrain braking, and a second operator actuated control for selecting a target braking effort for drivetrain braking. A graphic display displays to an operator the selected target braking effort and can be used to further display actual braking effort achieved by drivetrain braking.
Utilization of on-site resources for Regenerative Life Support Systems at a lunar outpost
NASA Technical Reports Server (NTRS)
Ming, D. W.; Golden, D. C.; Henninger, D. L.
1992-01-01
Regenerative life support systems (RLSS) will be required to regenerate air, water, and wastes, and to produce food for human consumption during long-duration stays on the moon. It may be possible to supplement some of the materials needed for RLSS from resources on the moon. Natural materials at the lunar surface may be used for a variety of lunar RLSS needs, including (i) soils or solid-support substrates for plant growth, (ii) sources for extraction of essential, plant-growth nutrients, (iii) substrates for microbial populations in the degradation of wastes, (iv) sources of O2 and H, which may be used to manufacture water, (v) feed stock materials for the synthesis of useful minerals (e.g., molecular sieves), and (vi) shielding materials surrounding the outpost structure to protect humans, plants, and microorganisms from harmful radiation.
NASA Astrophysics Data System (ADS)
Oleksowicz, Selim A.; Burnham, Keith J.; Southgate, Adam; McCoy, Chris; Waite, Gary; Hardwick, Graham; Harrington, Cian; McMurran, Ross
2013-05-01
The sustainable development of vehicle propulsion systems that have mainly focused on reduction of fuel consumption (i.e. CO2 emission) has led, not only to the development of systems connected with combustion processes but also to legislation and testing procedures. In recent years, the low carbon policy has made hybrid vehicles and fully electric vehicles (H/EVs) popular. The main virtue of these propulsion systems is their ability to restore some of the expended energy from kinetic movement, e.g. the braking process. Consequently new research and testing methods for H/EVs are currently being developed. This especially concerns the critical 'use-cases' for functionality tests within dynamic events for both virtual simulations, as well as real-time road tests. The use-case for conventional vehicles for numerical simulations and road tests are well established. However, the wide variety of tests and their great number (close to a thousand) creates a need for selection, in the first place, and the creation of critical use-cases suitable for testing H/EVs in both virtual and real-world environments. It is known that a marginal improvement in the regenerative braking ratio can significantly improve the vehicle range and, therefore, the economic cost of its operation. In modern vehicles, vehicle dynamics control systems play the principal role in safety, comfort and economic operation. Unfortunately, however, the existing standard road test scenarios are insufficient for H/EVs. Sector knowledge suggests that there are currently no agreed tests scenarios to fully investigate the effects of brake blending between conventional and regenerative braking as well as the regenerative braking interaction with active driving safety systems (ADSS). The paper presents seven manoeuvres, which are considered to be suitable and highly informative for the development and examination of H/EVs with regenerative braking capability. The critical manoeuvres presented are considered to be appropriate for examination of the regenerative braking mode according to ADSS. The manoeuvres are also important for investigation of regenerative braking system properties/functionalities that are specified by the legal requirements concerning H/EVs braking systems. The last part of this paper shows simulation results for one of the proposed manoeuvres that explicitly shows the usefulness of the manoeuvre.
Downward Slope Driving Control for Electric Powered Wheelchair Based on Capacitor Regenerative Brake
NASA Astrophysics Data System (ADS)
Seki, Hirokazu; Takahashi, Yoshiaki
This paper describes a novel capacitor regenerative braking control scheme of electric powered wheelchairs for efficient driving on downward slopes. An electric powered wheelchair, which generates the driving force by electric motors, is expected to be widely used as a mobility support system for elderly people and disabled people; however the energy efficiency has to be further improved because it is driven only by battery energy. This study proposes a capacitor regenerative braking circuit and two types of velocity control schemes with variable duty ratio. The proposed regenerative braking circuit is based on the step-up/down circuit with additional resistance and connects right and left motors in series in order to obtain a larger braking power. Some driving experiments on a practical downward slope show the effectiveness of the proposed control system.
Rethinking Regenerative Medicine: A Macrophage-Centered Approach
Brown, Bryan N.; Sicari, Brian M.; Badylak, Stephen F.
2014-01-01
Regenerative medicine, a multi-disciplinary approach that seeks to restore form and function to damaged or diseased tissues and organs, has evolved significantly during the past decade. By adapting and integrating fundamental knowledge from cell biology, polymer science, and engineering, coupled with an increasing understanding of the mechanisms which underlie the pathogenesis of specific diseases, regenerative medicine has the potential for innovative and transformative therapies for heretofore unmet medical needs. However, the translation of novel technologies from the benchtop to animal models and clinical settings is non-trivial and requires an understanding of the mechanisms by which the host will respond to these novel therapeutic approaches. The role of the innate immune system, especially the role of macrophages, in the host response to regenerative medicine based strategies has recently received considerable attention. Macrophage phenotype and function have been suggested as critical and determinant factors in downstream outcomes. The constructive and regulatory, and in fact essential, role of macrophages in positive outcomes represents a significant departure from the classical paradigms of host–biomaterial interactions, which typically consider activation of the host immune system as a detrimental event. It appears desirable that emerging regenerative medicine approaches should not only accommodate but also promote the involvement of the immune system to facilitate positive outcomes. Herein, we describe the current understanding of macrophage phenotype as it pertains to regenerative medicine and suggest that improvement of our understanding of context-dependent macrophage polarization will lead to concurrent improvement in outcomes. PMID:25408693
A rocket engine design expert system
NASA Technical Reports Server (NTRS)
Davidian, Kenneth J.
1989-01-01
The overall structure and capabilities of an expert system designed to evaluate rocket engine performance are described. The expert system incorporates a JANNAF standard reference computer code to determine rocket engine performance and a state-of-the-art finite element computer code to calculate the interactions between propellant injection, energy release in the combustion chamber, and regenerative cooling heat transfer. Rule-of-thumb heuristics were incorporated for the hydrogen-oxygen coaxial injector design, including a minimum gap size constraint on the total number of injector elements. One-dimensional equilibrium chemistry was employed in the energy release analysis of the combustion chamber and three-dimensional finite-difference analysis of the regenerative cooling channels was used to calculate the pressure drop along the channels and the coolant temperature as it exits the coolant circuit. Inputting values to describe the geometry and state properties of the entire system is done directly from the computer keyboard. Graphical display of all output results from the computer code analyses is facilitated by menu selection of up to five dependent variables per plot.
Implantable Sensors for Regenerative Medicine
Klosterhoff, Brett S.; Tsang, Melissa; She, Didi; Ong, Keat Ghee; Allen, Mark G.; Willett, Nick J.; Guldberg, Robert E.
2017-01-01
The translation of many tissue engineering/regenerative medicine (TE/RM) therapies that demonstrate promise in vitro are delayed or abandoned due to reduced and inconsistent efficacy when implemented in more complex and clinically relevant preclinical in vivo models. Determining mechanistic reasons for impaired treatment efficacy is challenging after a regenerative therapy is implanted due to technical limitations in longitudinally measuring the progression of key environmental cues in vivo. The ability to acquire real-time measurements of environmental parameters of interest including strain, pressure, pH, temperature, oxygen tension, and specific biomarkers within the regenerative niche in situ would significantly enhance the information available to tissue engineers to monitor and evaluate mechanisms of functional healing or lack thereof. Continued advancements in material and fabrication technologies utilized by microelectromechanical systems (MEMSs) and the unique physical characteristics of passive magnetoelastic sensor platforms have created an opportunity to implant small, flexible, low-power sensors into preclinical in vivo models, and quantitatively measure environmental cues throughout healing. In this perspective article, we discuss the need for longitudinal measurements in TE/RM research, technical progress in MEMS and magnetoelastic approaches to implantable sensors, the potential application of implantable sensors to benefit preclinical TE/RM research, and the future directions of collaborative efforts at the intersection of these two important fields. PMID:27987300
Nanotechnology and regenerative therapeutics in plastic surgery: The next frontier.
Tan, Aaron; Chawla, Reema; G, Natasha; Mahdibeiraghdar, Sara; Jeyaraj, Rebecca; Rajadas, Jayakumar; Hamblin, Michael R; Seifalian, Alexander M
2016-01-01
The rapid ascent of nanotechnology and regenerative therapeutics as applied to medicine and surgery has seen an exponential rise in the scale of research generated in this field. This is evidenced not only by the sheer volume of papers dedicated to nanotechnology but also in a large number of new journals dedicated to nanotechnology and regenerative therapeutics specifically to medicine and surgery. Aspects of nanotechnology that have already brought benefits to these areas include advanced drug delivery platforms, molecular imaging and materials engineering for surgical implants. Particular areas of interest include nerve regeneration, burns and wound care, artificial skin with nanoelectronic sensors and head and neck surgery. This study presents a review of nanotechnology and regenerative therapeutics, with focus on its applications and implications in plastic surgery. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. All rights reserved.
Integral Radiator and Storage Tank
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.; Miller, John R.; Jakupca, Ian; Sargi,Scott
2007-01-01
A simplified, lightweight system for dissipating heat of a regenerative fuel- cell system would include a heat pipe with its evaporator end placed at the heat source and its condenser end integrated into the wall of the regenerative fuel cell system gas-storage tanks. The tank walls act as heat-radiating surfaces for cooling the regenerative fuel cell system. The system was conceived for use in outer space, where radiation is the only physical mechanism available for transferring heat to the environment. The system could also be adapted for use on propellant tanks or other large-surface-area structures to convert them to space heat-radiating structures. Typically for a regenerative fuel cell system, the radiator is separate from the gas-storage tanks. By using each tank s surface as a heat-radiating surface, the need for a separate, potentially massive radiator structure is eliminated. In addition to the mass savings, overall volume is reduced because a more compact packaging scheme is possible. The underlying tank wall structure provides ample support for heat pipes that help to distribute the heat over the entire tank surface. The heat pipes are attached to the outer surface of each gas-storage tank by use of a high-thermal conductance, carbon-fiber composite-material wrap. Through proper choice of the composite layup, it is possible to exploit the high longitudinal conductivity of the carbon fibers (greater than the thermal conductivity of copper) to minimize the unevenness of the temperature distribution over the tank surface, thereby helping to maximize the overall heat-transfer efficiency. In a prototype of the system, the heat pipe and the composite wrap contribute an average mass of 340 g/sq m of radiator area. Lightweight space radiator panels have a mass of about 3,000 g/sq m of radiator area, so this technique saves almost 90 percent of the mass of separate radiator panels. In tests, the modified surface of the tank was found to have an emissivity of 0.85. The composite wrap remained tightly bound to the surface of the tank throughout the testing in thermal vacuum conditions.
Improved Round Trip Efficiency for Regenerative Fuel Cell Systems
2012-05-11
advanced components that enable closed-loop, zero emission, low signature energy storage. The system utilizes proton exchange membrane ( PEM ) fuel cell ...regenerative fuel cell (RFC) systems based on proton exchange membrane ( PEM ) technology. An RFC consists of a fuel cell powerplant, an electrolysis...based on an air independent, hydrogen-oxygen, PEM RFC is feasible within the near term if development efforts proceed forward. Fuel Cell
NASA Astrophysics Data System (ADS)
Yamamoto, Kichiro; Shinohara, Katsuji; Furukawa, Shinya
An interior permanent magnet (IPM) motor drive system which has regenerating capability augmented by double-layer capacitors is proposed. The motor is driven by a PWM inverter with voltage booster. The voltage booster is used to control the dc link voltage in high speed region to improve the system efficiency. Furthermore, the double-layer capacitor as a storage element is combined with the PWM inverter with voltage booster to gain the efficiency for the regenerating operation. In this system, normally, the regenerative power does not return to a battery directly but is stored in the double-layer capacitors for the next motoring action to suppress the excessive regenerative current to battery, and the regenerative power returns to the battery when the regenerative energy is larger than a certain value. The charging current to the battery is controlled to a constant value to extend the life-time of the battery. The transient and steady state characteristics of the system for 1.5kW IPM motor are investigated by both simulation and experiment. Finally, the effectiveness of the system is demonstrated by the simulated and experimental results.
Therapeutic modulation of growth factors and cytokines in regenerative medicine.
Ioannidou, Effie
2006-01-01
Regeneration that takes place in the human body is limited throughout life. Therefore, when organs are irreparably damaged, they are usually replaced with an artificial device or donor organ. The term "regenerative medicine" covers the restoration or replacement of cells, tissues, and organs. Stem cells play a major role in regenerative medicine by providing the way to repopulate organs damaged by disease. Stem cells have the ability to self renew and to regenerate cells of diverse lineages within the tissue in which they reside. Stem cells could originate from embryos or adult tissues. Growth factors are proteins that may act locally or systemically to affect the growth of cells in several ways. Various cell activities, including division, are influenced by growth factors. Cytokines are a family of low-molecular-weight proteins that are produced by numerous cell types and are responsible for regulating the immune response, inflammation, tissue remodeling and cellular differentiation. Target cells of growth factors and cytokines are mesenchymal, epithelial and endothelial cells. These molecules frequently have overlapping activities and can act in an autocrine or paracrine fashion. A complex network of growth factors and cytokines guides cellular differentiation and regeneration in all organs and tissues. The aim of this paper is to review the role of growth factors and cytokines in different organs or systems and explore their therapeutic application in regenerative medicine. The role of stem cells combined with growth factors and cytokines in the regeneration of vascular and hematopoietic, neural, skeletal, pancreatic, periodontal, and mucosal tissue is reviewed. There is evidence that supports the use of growth factors and cytokines in the treatment of neurological diseases, diabetes, cardiovascular disease, periodontal disease, cancer and its complication, oral mucositis. After solving the ethical issues and establishing clear and reasonable regulations, regenerative medicine through stem cell application combined with specific growth factors and cytokines will have great potential in curing a variety of human diseases.
Molecular Determinants of Cephalopod Muscles and Their Implication in Muscle Regeneration
Zullo, Letizia; Fossati, Sara M.; Imperadore, Pamela; Nödl, Marie-Therese
2017-01-01
The ability to regenerate whole-body structures has been studied for many decades and is of particular interest for stem cell research due to its therapeutic potential. Several vertebrate and invertebrate species have been used as model systems to study pathways involved in regeneration in the past. Among invertebrates, cephalopods are considered as highly evolved organisms, which exhibit elaborate behavioral characteristics when compared to other mollusks including active predation, extraordinary manipulation, and learning abilities. These are enabled by a complex nervous system and a number of adaptations of their body plan, which were acquired over evolutionary time. Some of these novel features show similarities to structures present in vertebrates and seem to have evolved through a convergent evolutionary process. Octopus vulgaris (the common octopus) is a representative of modern cephalopods and is characterized by a sophisticated motor and sensory system as well as highly developed cognitive capabilities. Due to its phylogenetic position and its high regenerative power the octopus has become of increasing interest for studies on regenerative processes. In this paper we provide an overview over the current knowledge of cephalopod muscle types and structures and present a possible link between these characteristics and their high regenerative potential. This may help identify conserved molecular pathways underlying regeneration in invertebrate and vertebrate animal species as well as discover new leads for targeted tissue treatments in humans. PMID:28555185
Energy consumption for shortcuts to adiabaticity
NASA Astrophysics Data System (ADS)
Torrontegui, E.; Lizuain, I.; González-Resines, S.; Tobalina, A.; Ruschhaupt, A.; Kosloff, R.; Muga, J. G.
2017-08-01
Shortcuts to adiabaticity let a system reach the results of a slow adiabatic process in a shorter time. We propose to quantify the "energy cost" of the shortcut by the energy consumption of the system enlarged by including the control device. A mechanical model where the dynamics of the system and control device can be explicitly described illustrates that a broad range of possible values for the consumption is possible, including zero (above the adiabatic energy increment) when friction is negligible and the energy given away as negative power is stored and reused by perfect regenerative braking.
Modeling and Optimization of Renewable and Hybrid Fuel Cell Systems for Space Power and Propulsion
2010-11-14
For that the project achieved: the optimization of SOFC and PEMFC internal structure and external shape under a volume constraint; an initial set of...subcomponent models for regenerative, renewable fuel cell system (RFC); the integration of PEMFC into RFC systems were developed; power electronic...with the same objectives and goals but using a PEMFC regenerative system instead. This research group studied and published on the optimization and
Regenerative endodontics: barriers and strategies for clinical translation.
Mao, Jeremy J; Kim, Sahng G; Zhou, Jian; Ye, Ling; Cho, Shoko; Suzuki, Takahiro; Fu, Susan Y; Yang, Rujing; Zhou, Xuedong
2012-07-01
Regenerative endodontics has encountered substantial challenges toward clinical translation. The adoption by the American Dental Association of evoked pulp bleeding in immature permanent teeth is an important step for regenerative endodontics. However, there is no regenerative therapy for most endodontic diseases. Simple recapitulation of cell therapy and tissue engineering strategies that are under development for other organ systems has not led to clinical translation in regeneration endodontics. Recent work using novel biomaterial scaffolds and growth factors that orchestrate the homing of host endogenous cells represents a departure from traditional cell transplantation approaches and may accelerate clinical translation. Copyright © 2012 Elsevier Inc. All rights reserved.
Research on motor rotational speed measurement in regenerative braking system of electric vehicle
NASA Astrophysics Data System (ADS)
Pan, Chaofeng; Chen, Liao; Chen, Long; Jiang, Haobin; Li, Zhongxing; Wang, Shaohua
2016-01-01
Rotational speed signals acquisition and processing techniques are widely used in rotational machinery. In order to realized precise and real-time control of motor drive and regenerative braking process, rotational speed measurement techniques are needed in electric vehicles. Obtaining accurate motor rotational speed signal will contribute to the regenerative braking force control steadily and realized higher energy recovery rate. This paper aims to develop a method that provides instantaneous speed information in the form of motor rotation. It addresses principles of motor rotational speed measurement in the regenerative braking systems of electric vehicle firstly. The paper then presents ideal and actual Hall position sensor signals characteristics, the relation between the motor rotational speed and the Hall position sensor signals is revealed. Finally, Hall position sensor signals conditioning and processing circuit and program for motor rotational speed measurement have been carried out based on measurement error analysis.
Hypoxia-based strategies for regenerative dentistry-Views from the different dental fields.
Müller, Anna Sonja; Janjić, Klara; Lilaj, Bledar; Edelmayer, Michael; Agis, Hermann
2017-09-01
The understanding of the cell biological processes underlying development and regeneration of oral tissues leads to novel regenerative approaches. Over the past years, knowledge on key roles of the hypoxia-based response has become more profound. Based on these findings, novel regenerative approaches for dentistry are emerging, which target cellular oxygen sensors. These approaches include hypoxia pre-conditioning and pharmacologically simulated hypoxia. The increase in studies on hypoxia and hypoxia-based strategies in regenerative dentistry highlights the growing attention to hypoxia's role in regeneration and its underlying biology, as well as its application in a therapeutic setting. In this narrative review, we present the current knowledge on the role of hypoxia in oral tissues and review the proposed hypoxia-based approaches in different fields of dentistry, including endodontics, orthodontics, periodontics, and oral surgery. Copyright © 2017 Elsevier Ltd. All rights reserved.
Baseline Testing of The EV Global E-Bike
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.; Kolacz, John S.; Tavernelli, Paul F.
2001-01-01
The NASA John H. Glenn Research Center initiated baseline testing of the EV Global E-Bike as a way to reduce pollution in urban areas, reduce fossil fuel consumption and reduce Operating costs for transportation systems. The work was done Linder the Hybrid Power Management (HPM) Program, which includes the Hybrid Electric Transit Bus (HETB). The E-Bike is a state of the art, ground up, hybrid electric bicycle. Unique features of the vehicle's power system include the use of an efficient, 400 W. electric hub motor and a 7-speed derailleur system that permits operation as fully electric, fully pedal, or a combination of the two. Other innovative features, such as regenerative braking through ultracapacitor energy storage are planned. Regenerative braking recovers much of the kinetic energy of the vehicle during deceleration. The E-Bike is an inexpensive approach to advance the state of the art in hybrid technology in a practical application. The project transfers space technology to terrestrial use via nontraditional partners, and provides power system data valuable for future space applications. A description of the E-bike, the results of performance testing, and future vehicle development plans is the subject of this report. The report concludes that the E-Bike provides excellent performance, and that the implementation of ultracapacitors in the power system can provide significant performance improvements.
NASA Technical Reports Server (NTRS)
Bazley, Jesse A.
2011-01-01
This presentation will discuss the International Space Station s (ISS) Regenerative Environmental Control and Life Support System (ECLSS) operations with discussion of the on-orbit lessons learned, specifically regarding the challenges that have been faced as the system has expanded with a growing ISS crew. Over the 10 year history of the ISS, there have been numerous challenges, failures, and triumphs in the quest to keep the crew alive and comfortable. Successful operation of the ECLSS not only requires maintenance of the hardware, but also management of the station resources in case of hardware failure or missed re-supply. This involves effective communication between the primary International Partners (NASA and Roskosmos) and the secondary partners (JAXA and ESA) in order to keep a reserve of the contingency consumables and allow for re-supply of failed hardware. The ISS ECLSS utilizes consumables storage for contingency usage as well as longer-term regenerative systems, which allow for conservation of the expensive resources brought up by re-supply vehicles. This long-term hardware, and the interactions with software, was a challenge for Systems Engineers when they were designed and require multiple operational workarounds in order to function continuously. On a day-to-day basis, the ECLSS provides big challenges to the on console controllers. Main challenges involve the utilization of the resources that have been brought up by the visiting vehicles prior to undocking, balance of contributions between the International Partners for both systems and resources, and maintaining balance between the many interdependent systems, which includes providing the resources they need when they need it. The current biggest challenge for ECLSS is the Regenerative ECLSS system, which continuously recycles urine and condensate water into drinking water and oxygen. These systems were brought to full functionality on STS-126 (ULF-2) mission. Through system failures and recovery, the ECLSS console has learned how to balance the water within the systems, store and use water for contingencies, and continue to work with the International Partners for short-term failures. Through these challenges and the system failures, the most important lesson learned has been the importance of redundancy and operational workarounds. It is only because of the flexibility of the hardware and the software that flight controllers have the opportunity to continue operating the system as a whole for mission success.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maloney, T.M.; Prokopius, P.R.; Voecks, G.E.
1995-01-25
The Electrochemical Technology Branch of the NASA Lewis Research Center (LeRC) has initiated a program to develop a renewable energy system testbed to evaluate, characterize, and demonstrate fully integrated regenerative fuel cell (RFC) system for space, military, and commercial applications. A multi-agency management team, led by NASA LeRC, is implementing the program through a unique international coalition which encompasses both government and industry participants. This open-ended teaming strategy optimizes the development for space, military, and commercial RFC system technologies. Program activities to date include system design and analysis, and reactant storage sub-system design, with a major emphasis centered upon testbedmore » fabrication and installation and testing of two key RFC system components, namely, the fuel cells and electrolyzers. Construction of the LeRC 25 kW RFC system testbed at the NASA-Jet Propulsion Labortory (JPL) facility at Edwards Air Force Base (EAFB) is nearly complete and some sub-system components have already been installed. Furthermore, planning for the first commercial RFC system demonstration is underway. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}« less
Unitized regenerative fuel cell system
NASA Technical Reports Server (NTRS)
Burke, Kenneth A. (Inventor)
2008-01-01
A Unitized Regenerative Fuel Cell system uses heat pipes to convey waste heat from the fuel cell stack to the reactant storage tanks. The storage tanks act as heat sinks/sources and as passive radiators of the waste heat from the fuel cell stack. During charge up, i.e., the electrolytic process, gases are conveyed to the reactant storage tanks by way of tubes that include dryers. Reactant gases moving through the dryers give up energy to the cold tanks, causing water vapor in with the gases to condense and freeze on the internal surfaces of the dryer. During operation in its fuel cell mode, the heat pipes convey waste heat from the fuel cell stack to the respective reactant storage tanks, thereby heating them such that the reactant gases, as they pass though the respective dryers on their way to the fuel cell stacks retrieve the water previously removed.
Viera-Vera, Jorge; García-Arrarás, José E
2018-05-15
Retinoic acid receptors (RAR) and retinoid X receptors (RXR) are ligand-mediated transcription factors that synchronize intricate signaling networks in metazoans. Dimer formation between these two nuclear receptors mediates the recruitment of co-regulatory complexes coordinating the progression of signaling cascades during developmental and regenerative events. In the present study we identified and characterized the receptors for retinoic acid in the sea cucumber Holothuria glaberrima; a model system capable of regenerative organogenesis during adulthood. Molecular characterizations revealed the presence of three isoforms of RAR and two of RXR as a consequence of alternative splicing events. Various analyses including: primary structure sequencing, phylogenetic analysis, protein domain prediction, and multiple sequence alignment further confirmed their identity. Semiquantitative reverse transcription PCR analysis of each receptor isoform herein identified showed that the retinoid receptors are expressed in all tissues sampled: the mesenteries, respiratory trees, muscles, gonads, and the digestive tract. During regenerative organogenesis two of the receptors (RAR-L and RXR-T) showed differential expression in the posterior segment while RAR-S is differentially expressed in the anterior segment of the intestine. This work presents the first description of the components relaying the signaling for retinoic acid within this model system. Copyright © 2018 Elsevier B.V. All rights reserved.
Three-dimensional bioprinting in tissue engineering and regenerative medicine.
Gao, Guifang; Cui, Xiaofeng
2016-02-01
With the advances of stem cell research, development of intelligent biomaterials and three-dimensional biofabrication strategies, highly mimicked tissue or organs can be engineered. Among all the biofabrication approaches, bioprinting based on inkjet printing technology has the promises to deliver and create biomimicked tissue with high throughput, digital control, and the capacity of single cell manipulation. Therefore, this enabling technology has great potential in regenerative medicine and translational applications. The most current advances in organ and tissue bioprinting based on the thermal inkjet printing technology are described in this review, including vasculature, muscle, cartilage, and bone. In addition, the benign side effect of bioprinting to the printed mammalian cells can be utilized for gene or drug delivery, which can be achieved conveniently during precise cell placement for tissue construction. With layer-by-layer assembly, three-dimensional tissues with complex structures can be printed using converted medical images. Therefore, bioprinting based on thermal inkjet is so far the most optimal solution to engineer vascular system to the thick and complex tissues. Collectively, bioprinting has great potential and broad applications in tissue engineering and regenerative medicine. The future advances of bioprinting include the integration of different printing mechanisms to engineer biphasic or triphasic tissues with optimized scaffolds and further understanding of stem cell biology.
Andriolo, Luca; Merli, Giulia; Tobar, Carlos; Altamura, Sante Alessandro; Kon, Elizaveta; Filardo, Giuseppe
2018-02-06
The aim of this study was to document the available evidence on the use of regenerative techniques for the treatment of femoral head osteonecrosis (or avascular necrosis of femoral head, AVN) and to understand their benefit compared to core decompression (CD) alone in avoiding failure and the need for total hip replacement (THR). The search was conducted on three medical electronic databases according to PRISMA guidelines. The studies reporting number and timing of failures were included in a meta-analysis calculating cumulative survivorship with a Kaplan-Mayer curve. Moreover, the results on failures in treatment groups reported in RCT were compared with those documented in control groups, in order to understand the benefit of biological therapies compared to CD for the treatment of AVN. Forty-eight studies were included in this systematic review, reporting results of different types of regenerative techniques: mesenchymal stem cell implantation in the osteonecrotic area, intra-arterial infiltration with mesenchymal stem cells, implantation of bioactive molecules, or platelet-rich plasma. Overall, reported results were good, with a cumulative survivorship of 80% after ten year follow-up, and better results when regenerative treatments were combined to CD compared to CD alone (89.9% vs 70.6%, p < 0.0001). Regenerative therapies offer good clinical results for the treatment of AVN. The combination of CD with regenerative techniques provides a significant improvement in terms of survivorship over time compared with CD alone. Further studies are needed to identify the best procedure and the most suitable patients to benefit from regenerative treatments for AVN.
Design of An Energy Efficient Hydraulic Regenerative circuit
NASA Astrophysics Data System (ADS)
Ramesh, S.; Ashok, S. Denis; Nagaraj, Shanmukha; Adithyakumar, C. R.; Reddy, M. Lohith Kumar; Naulakha, Niranjan Kumar
2018-02-01
Increasing cost and power demand, leads to evaluation of new method to increase through productivity and help to solve the power demands. Many researchers have break through to increase the efficiency of a hydraulic power pack, one of the promising methods is the concept of regenerative. The objective of this research work is to increase the efficiency of a hydraulic circuit by introducing a concept of regenerative circuit. A Regenerative circuit is a system that is used to speed up the extension stroke of the double acting single rod hydraulic cylinder. The output is connected to the input in the directional control value. By this concept, increase in velocity of the piston and decrease the cycle time. For the research, a basic hydraulic circuit and a regenerative circuit are designated and compared both with their results. The analysis was based on their time taken for extension and retraction of the piston. From the detailed analysis of both the hydraulic circuits, it is found that the efficiency by introducing hydraulic regenerative circuit increased by is 5.3%. The obtained results conclude that, implementing hydraulic regenerative circuit in a hydraulic power pack decreases power consumption, reduces cycle time and increases productivity in a longer run.
Saoud, Tarek Mohamed A.; Ricucci, Domenico; Lin, Louis M.; Gaengler, Peter
2016-01-01
Caries is the most common cause of pulp-periapical disease. When the pulp tissue involved in caries becomes irreversibly inflamed and progresses to necrosis, the treatment option is root canal therapy because the infected or non-infected necrotic pulp tissue in the root canal system is not accessible to the host's innate and adaptive immune defense mechanisms and antimicrobial agents. Therefore, the infected or non-infected necrotic pulp tissue must be removed from the canal space by pulpectomy. As our knowledge in pulp biology advances, the concept of treatment of pulpal and periapical disease also changes. Endodontists have been looking for biologically based treatment procedures, which could promote regeneration or repair of the dentin-pulp complex destroyed by infection or trauma for several decades. After a long, extensive search in in vitro laboratory and in vivo preclinical animal experiments, the dental stem cells capable of regenerating the dentin-pulp complex were discovered. Consequently, the biological concept of ‘regenerative endodontics’ emerged and has highlighted the paradigm shift in the treatment of immature permanent teeth with necrotic pulps in clinical endodontics. Regenerative endodontics is defined as biologically based procedures designed to physiologically replace damaged tooth structures, including dentin and root structures, as well as the pulp-dentin complex. According to the American Association of Endodontists’ Clinical Considerations for a Regenerative Procedure, the primary goal of the regenerative procedure is the elimination of clinical symptoms and the resolution of apical periodontitis. Thickening of canal walls and continued root maturation is the secondary goal. Therefore, the primary goal of regenerative endodontics and traditional non-surgical root canal therapy is the same. The difference between non-surgical root canal therapy and regenerative endodontic therapy is that the disinfected root canals in the former therapy are filled with biocompatible foreign materials and the root canals in the latter therapy are filled with the host's own vital tissue. The purpose of this article is to review the potential of using regenerative endodontic therapy for human immature and mature permanent teeth with necrotic pulps and/or apical periodontitis, teeth with persistent apical periodontitis after root canal therapy, traumatized teeth with external inflammatory root resorption, and avulsed teeth in terms of elimination of clinical symptoms and resolution of apical periodontitis. PMID:29563445
Saoud, Tarek Mohamed A; Ricucci, Domenico; Lin, Louis M; Gaengler, Peter
2016-02-27
Caries is the most common cause of pulp-periapical disease. When the pulp tissue involved in caries becomes irreversibly inflamed and progresses to necrosis, the treatment option is root canal therapy because the infected or non-infected necrotic pulp tissue in the root canal system is not accessible to the host's innate and adaptive immune defense mechanisms and antimicrobial agents. Therefore, the infected or non-infected necrotic pulp tissue must be removed from the canal space by pulpectomy. As our knowledge in pulp biology advances, the concept of treatment of pulpal and periapical disease also changes. Endodontists have been looking for biologically based treatment procedures, which could promote regeneration or repair of the dentin-pulp complex destroyed by infection or trauma for several decades. After a long, extensive search in in vitro laboratory and in vivo preclinical animal experiments, the dental stem cells capable of regenerating the dentin-pulp complex were discovered. Consequently, the biological concept of 'regenerative endodontics' emerged and has highlighted the paradigm shift in the treatment of immature permanent teeth with necrotic pulps in clinical endodontics. Regenerative endodontics is defined as biologically based procedures designed to physiologically replace damaged tooth structures, including dentin and root structures, as well as the pulp-dentin complex. According to the American Association of Endodontists' Clinical Considerations for a Regenerative Procedure, the primary goal of the regenerative procedure is the elimination of clinical symptoms and the resolution of apical periodontitis. Thickening of canal walls and continued root maturation is the secondary goal. Therefore, the primary goal of regenerative endodontics and traditional non-surgical root canal therapy is the same. The difference between non-surgical root canal therapy and regenerative endodontic therapy is that the disinfected root canals in the former therapy are filled with biocompatible foreign materials and the root canals in the latter therapy are filled with the host's own vital tissue. The purpose of this article is to review the potential of using regenerative endodontic therapy for human immature and mature permanent teeth with necrotic pulps and/or apical periodontitis, teeth with persistent apical periodontitis after root canal therapy, traumatized teeth with external inflammatory root resorption, and avulsed teeth in terms of elimination of clinical symptoms and resolution of apical periodontitis.
The past, present and future of ligament regenerative engineering
Mengsteab, Paulos Y; Nair, Lakshmi S; Laurencin, Cato T
2016-01-01
Regenerative engineering has been defined as the convergence of Advanced Materials Sciences, Stem Cell Sciences, Physics, Developmental Biology and Clinical Translation for the regeneration of complex tissues and organ systems. Anterior cruciate ligament (ACL) reconstruction necessitates the regeneration of bone, ligament and their interface to achieve superior clinical results. In the past, the ACL has been repaired with the use of autologous and allogeneic grafts, which have their respective drawbacks. Currently, investigations on the use of biodegradable matrices to achieve knee stability and permit tissue regeneration are making promising advancements. In the future, utilizing regenerative biology cues to induce an endogenous regenerative response may aid the enhancement of clinical ACL reconstruction outcomes. PMID:27879170
The past, present and future of ligament regenerative engineering.
Mengsteab, Paulos Y; Nair, Lakshmi S; Laurencin, Cato T
2016-12-01
Regenerative engineering has been defined as the convergence of Advanced Materials Sciences, Stem Cell Sciences, Physics, Developmental Biology and Clinical Translation for the regeneration of complex tissues and organ systems. Anterior cruciate ligament (ACL) reconstruction necessitates the regeneration of bone, ligament and their interface to achieve superior clinical results. In the past, the ACL has been repaired with the use of autologous and allogeneic grafts, which have their respective drawbacks. Currently, investigations on the use of biodegradable matrices to achieve knee stability and permit tissue regeneration are making promising advancements. In the future, utilizing regenerative biology cues to induce an endogenous regenerative response may aid the enhancement of clinical ACL reconstruction outcomes.
Test of Hydrogen-Oxygen PEM Fuel Cell Stack at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Bents, David J.; Scullin, Vincent J.; Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.; Jakupca, Ian J.
2003-01-01
This paper describes performance characterization tests of a 64 cell hydrogen oxygen PEM fuel cell stack at NASA Glenn Research Center in February 2003. The tests were part of NASA's ongoing effort to develop a regenerative fuel cell for aerospace energy storage applications. The purpose of the tests was to verify capability of this stack to operate within a regenerative fuel cell, and to compare performance with earlier test results recorded by the stack developer. Test results obtained include polarization performance of the stack at 50 and 100 psig system pressure, and a steady state endurance run at 100 psig. A maximum power output of 4.8 kWe was observed during polarization runs, and the stack sustained a steady power output of 4.0 kWe during the endurance run. The performance data obtained from these tests compare reasonably close to the stack developer's results although some additional spread between best to worst performing cell voltages was observed. Throughout the tests, the stack demonstrated the consistent performance and repeatable behavior required for regenerative fuel cell operation.
2009-12-31
system, being used to both harvest energy through regenerative braking and to deliver that energy for quick bursts of acceleration or low-speed...conventional braking . The most visible applications of hybrid-electric systems are for transportation, with examples ranging from compact cars to garbage...EDLCs is particularly effective for regenerative energy capture in hybrid-electric systems, but is also beneficial for addressing power quality issues
Regeneration experiments below 10K in a regenerative-cycle cryocooler
NASA Technical Reports Server (NTRS)
Sager, R. E.; Paulson, D. N.
1983-01-01
At temperatures below 10K, regenerative cycle cryocoolers are limited by regeneration losses in the helium working fluid which result from the decreasing heat capacity of the regenerating material and the increasing density of helium. Experiments examining several approaches to improving the low-temperature regeneration in a four-stage regenerative cycle cooler constructed primarily of fiberglass materials are discussed. Using an interchangeable fourth stage, the experiments included configurations with multiple regeneration passages, and a static helium volume for increased heat capacity. Experiments using helium-3 as the working fluid and a Malone stage are planned. Results indicate that, using these techniques, it should be possible to construct a regenerative cycle cooler which will operate below 6K.
Conceptual design of a piloted Mars sprint life support system
NASA Technical Reports Server (NTRS)
Cullingford, H. S.; Novara, M.
1988-01-01
This paper presents the conceptual design of a life support system sustaining a crew of six in a piloted Mars sprint. The requirements and constraints of the system are discussed along with its baseline performance parameters. An integrated operation is achieved with air, water, and waste processing and supplemental food production. The design philosophy includes maximized reliability considerations, regenerative operations, reduced expendables, and fresh harvest capability. The life support system performance will be described with characteristics of the associated physical-chemical subsystems and a greenhouse.
Advancing pig cloning technologies towards application in regenerative medicine.
Nagashima, H; Matsunari, H; Nakano, K; Watanabe, M; Umeyama, K; Nagaya, M
2012-08-01
Regenerative medicine is expected to make a significant contribution by development of novel therapeutic treatments for intractable diseases and for improving the quality of life of patients. Many advances in regenerative medicine, including basic and translational research, have been developed and tested in experimental animals; pigs have played an important role in various aspects of this work. The value of pigs as a model species is being enhanced by the generation of specially designed animals through cloning and genetic modifications, enabling more sophisticated research to be performed and thus accelerating the clinical application of regenerative medicine. This article reviews the significant aspects of the creation and application of cloned and genetically modified pigs in regenerative medicine research and considers the possible future directions of the technology. We also discuss the importance of reproductive biology as an interface between basic science and clinical medicine. © 2012 Blackwell Verlag GmbH.
Citrate-Based Biomaterials and Their Applications in Regenerative Engineering
Tran, Richard T.; Yang, Jian; Ameer, Guillermo A.
2015-01-01
Advances in biomaterials science and engineering are crucial to translating regenerative engineering, an emerging field that aims to recreate complex tissues, into clinical practice. In this regard, citrate-based biomaterials have become an important tool owing to their versatile material and biological characteristics including unique antioxidant, antimicrobial, adhesive, and fluorescent properties. This review discusses fundamental design considerations, strategies to incorporate unique functionality, and examples of how citrate-based biomaterials can be an enabling technology for regenerative engineering. PMID:27004046
Tissue engineering and regenerative medicine in applied research: a year in review of 2014.
Lin, Xunxun; Huang, Jia; Shi, Yuan; Liu, Wei
2015-04-01
Tissue engineering and regenerative medicine (TERM) remains to be one of the fastest growing fields, which covers a wide scope of topics of both basic and applied biological researches. This overview article summarized the advancements in applied researches of TERM area, including stem cell-mediated tissue regeneration, material science, and TERM clinical trial. These achievements demonstrated the great potential of clinical regenerative therapy of tissue/organ disease or defect through stem cells and tissue engineering approaches.
Thermal Design for Extra-Terrestrial Regenerative Fuel Cell System
NASA Technical Reports Server (NTRS)
Gilligan, R.; Guzik, M.; Jakupca, I.; Bennett, W.; Smith, P.; Fincannon, J.
2017-01-01
The Advanced Exploration Systems (AES) Advanced Modular Power Systems (AMPS) Project is investigating different power systems for various lunar and Martian mission concepts. The AMPS Fuel Cell (FC) team has created two system-level models to evaluate the performance of regenerative fuel cell (RFC) systems employing different fuel cell chemistries. Proton Exchange Membrane fuel cells PEMFCs contain a polymer electrolyte membrane that separates the hydrogen and oxygen cavities and conducts hydrogen cations (protons) across the cell. Solid Oxide fuel cells (SOFCs) operate at high temperatures, using a zirconia-based solid ceramic electrolyte to conduct oxygen anions across the cell. The purpose of the modeling effort is to down select one fuel cell chemistry for a more detailed design effort. Figures of merit include the system mass, volume, round trip efficiency, and electrolyzer charge power required. PEMFCs operate at around 60 C versus SOFCs which operate at temperatures greater than 700 C. Due to the drastically different operating temperatures of the two chemistries the thermal control systems (TCS) differ. The PEM TCS is less complex and is characterized by a single pump cooling loop that uses deionized water coolant and rejects heat generated by the system to the environment via a radiator. The solid oxide TCS has its own unique challenges including the requirement to reject high quality heat and to condense the steam produced in the reaction. This paper discusses the modeling of thermal control systems for an extraterrestrial RFC that utilizes either a PEM or solid oxide fuel cell.
Repairing quite swimmingly: advances in regenerative medicine using zebrafish.
Goessling, Wolfram; North, Trista E
2014-07-01
Regenerative medicine has the promise to alleviate morbidity and mortality caused by organ dysfunction, longstanding injury and trauma. Although regenerative approaches for a few diseases have been highly successful, some organs either do not regenerate well or have no current treatment approach to harness their intrinsic regenerative potential. In this Review, we describe the modeling of human disease and tissue repair in zebrafish, through the discovery of disease-causing genes using classical forward-genetic screens and by modulating clinically relevant phenotypes through chemical genetic screening approaches. Furthermore, we present an overview of those organ systems that regenerate well in zebrafish in contrast to mammalian tissue, as well as those organs in which the regenerative potential is conserved from fish to mammals, enabling drug discovery in preclinical disease-relevant models. We provide two examples from our own work in which the clinical translation of zebrafish findings is either imminent or has already proven successful. The promising results in multiple organs suggest that further insight into regenerative mechanisms and novel clinically relevant therapeutic approaches will emerge from zebrafish research in the future. © 2014. Published by The Company of Biologists Ltd.
Electrochemical Orbital Energy Storage (ECOES) technology program. [regenerative fuel cell system
NASA Technical Reports Server (NTRS)
Mcbryar, H.
1980-01-01
The versatility and flexibility of a regenerative fuel cell power and energy storage system is considered. The principal elements of a Regenerative Fuel Cell System combine the fuel cell and electrolysis cell with a photovoltaic solar cell array, along with fluid storage and transfer equipment. The power output of the array (for LEO) must be roughly triple the load requirements of the vehicle since the electrolyzers must receive about double the fuel cell output power in order to regenerate the reactants (2/3 of the array power) while 1/3 of the array power supplies the vehicle base load. The working fluids are essentially recycled indefinitely. Any resupply requirements necessitated by leakage or inefficient reclamation is water - an ideal material to handle and transport. Any variation in energy storage capacity impacts only the fluid storage portion, and the system is insensitive to use of reserve reactant capacity.
Cultivating regenerative medicine innovation in China.
McMahon, Dominique S; Thorsteinsdóttir, Halla; Singer, Peter A; Daar, Abdallah S
2010-01-01
While China has become a significant contributor and prolific publisher in regenerative medicine, its role in the field is not well understood. We analyze how capacity in regenerative medicine was built in China to identify some of its main strengths and challenges. This case study of regenerative medicine in China is primarily based on interviews with experts in China, including researchers, policy makers, clinicians, representatives of firms and regulators. Our analysis shows that diverse groups are active in this field in China. Leading research groups are contributing extensively to international peer-reviewed journals. Strong governmental support and recruitment of highly trained Chinese scientists from abroad has made it possible for China to rapidly build up capacity in regenerative medicine. However, some hospitals in China are offering stem cell therapies with limited scientific evidence supporting their efficacy/safety, and international skepticism of medical research in China presents a challenge to the development of the field. China has been able to catapult itself into the forefront of regenerative medicine but needs to address current regulatory challenges in order to secure its position in this emerging field.
NASA Technical Reports Server (NTRS)
Tri, Terry O.; Thompson, Clifford D.
1992-01-01
Future NASA manned missions to the moon and Mars will require development of robust regenerative life support system technologies which offer high reliability and minimal resupply. To support the development of such systems, early ground-based test facilities will be required to demonstrate integrated, long-duration performance of candidate regenerative air revitalization, water recovery, and thermal management systems. The advanced life support Systems Integration Research Facility (SIRF) is one such test facility currently being developed at NASA's Johnson Space Center. The SIRF, when completed, will accommodate unmanned and subsequently manned integrated testing of advanced regenerative life support technologies at ambient and reduced atmospheric pressures. This paper provides an overview of the SIRF project, a top-level description of test facilities to support the project, conceptual illustrations of integrated test article configurations for each of the three SIRF systems, and a phased project schedule denoting projected activities and milestones through the next several years.
Regeneration of Xenopus laevis spinal cord requires Sox2/3 expressing cells
Muñoz, Rosana; Edwards-Faret, Gabriela; Moreno, Mauricio; Zuñiga, Nikole; Cline, Hollis; Larraín, Juan
2016-01-01
Spinal cord regeneration is very inefficient in humans, causing paraplegia and quadriplegia. Studying model organisms that can regenerate the spinal cord in response to injury could be useful for understanding the cellular and molecular mechanisms that explain why this process fails in humans. Here, we use Xenopus laevis as a model organism to study spinal cord repair. Histological and functional analyses showed that larvae at pre-metamorphic stages restore anatomical continuity of the spinal cord and recover swimming after complete spinal cord transection. These regenerative capabilities decrease with onset of metamorphosis. The ability to study regenerative and non-regenerative stages in Xenopus laevis makes it a unique model system to study regeneration. We studied the response of Sox2/3 expressing cells to spinal cord injury and their function in the regenerative process. We found that cells expressing Sox2 and/or Sox3 are present in the ventricular zone of regenerative animals and decrease in non-regenerative froglets. Bromodeoxyuridine (BrdU) experiments and in vivo time-lapse imaging studies using green fluorescent protein (GFP) expression driven by the Sox3 promoter showed a rapid, transient and massive proliferation of Sox2/3+ cells in response to injury in the regenerative stages. The in vivo imaging also demonstrated that Sox2/3+ neural progenitor cells generate neurons in response to injury. In contrast, these cells showed a delayed and very limited response in non-regenerative froglets. Sox2 knockdown and overexpression of a dominant negative form of Sox2 disrupts locomotor and anatomical-histological recovery. We also found that neurogenesis markers increase in response to injury in regenerative but not in non-regenerative animals. We conclude that Sox2 is necessary for spinal cord regeneration and suggest a model whereby spinal cord injury activates proliferation of Sox2/3 expressing cells and their differentiation into neurons, a mechanism that is lost in non-regenerative froglets. PMID:25797152
Gilissen, L P L; Derijks, L J J; Driessen, A; Bos, L P; Hooymans, P M; Stockbrügger, R W; Engels, L G J B
2007-02-01
6-Thioguanine is used in inflammatory bowel disease since 2001, with promising short-term results. In 2003, liver histology of some 6-thioguanine treated patients showed nodular regenerative hyperplasia. Recently, magnetic resonance imaging revealed nodular regenerative hyperplasia in patients with normal histology. Investigating the presence of nodular regenerative hyperplasia in long-term 6-thioguanine treated patients. Inflammatory bowel disease patients, using 6-thioguanine minimally 24 months, were asked to undergo liver biopsy and magnetic resonance imaging. Fourteen patients used 6-thioguanine minimally 24 months, 13 participated. Mean 6-thioguanine therapy duration, daily dose and 6-thioguanine nucleotide levels were: 36 months, 18.8 mg (0.28 mg/kg) and 705 pmol/8x10(8) erythrocytes, respectively. Liver histology and magnetic resonance imaging showed no nodular regenerative hyperplasia. Liver biopsy and magnetic resonance imaging showed no nodular regenerative hyperplasia in these long-term 6-thioguanine treated inflammatory bowel disease patients. 6-thioguanine dose and metabolite levels were lower compared with previous nodular regenerative hyperplasia reports, suggesting dose or metabolite level-dependent effects. Otherwise, nodular regenerative hyperplasia is related with inflammatory bowel disease itself and immunosuppressives, including azathioprine and 6-mercaptopurine. 6-Thioguanine is debated due to nodular regenerative hyperplasia. We found no nodular regenerative hyperplasia in inflammatory bowel disease patients with long-term, low dosed 6-thioguanine, suggesting metabolite level-dependent effects. Therefore, 6-thioguanine still seems useful, but in selected patients, intolerant for other immunosuppressives, low dosed and under close surveillance of metabolite levels and hepatotoxity.
Regenerative Fuel Cells for Space Power and Energy Conversion (NaBH4/H2O2 Fuel Cell Development)
NASA Technical Reports Server (NTRS)
Valdez, Thomas I.; Miley, George H.; Luo, Nie; Burton, Rodney; Mather, Joseph; Hawkins, Glenn; Byrd, Ethan; Gu, Lifeng; Shrestha, Prajakti Joshi
2006-01-01
A viewgraph presentation describing hydrogen peroxide and sodium borohydride development is shown. The topics include: 1) Motivation; 2) The Sodium Borohydride Fuel Cell; 3) Fuel Cell Comparisons; 4) MEA Optimization; 5) 500-Watt Stack Testing; 6) System Modeling: Fuel Cell Power Source for Lunar Rovers; and 7) Conclusions
Cucchiarini, Magali
2018-01-01
Lineal (poloxamers or Pluronic®) or X-shaped (poloxamines or Tetronic®) amphiphilic tri-block copolymers of poly(ethylene oxide) and poly(propylene oxide) (PEO-PPO-PEO) have been broadly explored for controlled drug delivery in different regenerative medicine approaches. The ability of these copolymers to self-assemble as micelles and to undergo sol-to-gel transitions upon heating has endowed the denomination of “smart” or “intelligent” systems. The use of PEO-PPO-PEO copolymers as gene delivery systems is a powerful emerging strategy to improve the performance of classical gene transfer vectors. This review summarizes the state of art of the application of PEO-PPO-PEO copolymers in both nonviral and viral gene transfer approaches and their potential as gene delivery systems in different regenerative medicine approaches. PMID:29518011
Analysis of Stationary, Photovoltaic-based Surface Power System Designs at the Lunar South Pole
NASA Technical Reports Server (NTRS)
Freeh, Joshua E.
2009-01-01
Combinations of solar arrays and either batteries or regenerative fuel cells are analyzed for a surface power system module at the lunar south pole. The systems are required to produce 5 kW of net electrical power in sunlight and 2 kW of net electrical power during lunar night periods for a 10-year period between 2020 and 2030. Systems-level models for energy conservation, performance, degradation, and mass are used to compare to various systems. The sensitivities of important and/or uncertain variables including battery specific energy, fuel cell operating voltage, and DC-DC converter efficiency are compared to better understand the system. Switching unit efficiency, battery specific energy, and fuel cell operating voltage appear to be important system-level variables for this system. With reasonably sized solar arrays, the regenerative fuel cell system has significantly lower mass than the battery system based on the requirements and assumptions made herein. The total operational time is estimated at about 10,000 hours in battery discharge/fuel cell mode and about 4,000 and 8,000 hours for the battery charge and electrolyzer modes, respectively. The estimated number of significant depth-of-discharge cycles for either energy storage system is less than 100 for the 10-year period.
NASA Technical Reports Server (NTRS)
Macelroy, R. D. (Editor); Mitchell, C. A. (Editor); Andre, M. (Editor); Blackwell, C. C. (Editor); Tibbitts, T. W. (Editor); Banin, A. (Editor); Levine, J. S. (Editor)
1994-01-01
Bioregenerative life support systems will be an essential part of long duration manned space flight. Studies have been made of various components of these closed ecological systems. these studies have included those spaceborne experiments on Spacelab and Mir, as well as ground-based simulations. The effects of reduced gravity include alterations in food crop and other plant growth and vigor. Systems have also been designed and tested to provide a balanced regenerative system that recycles airborne and other wastes while providing nutrients and other input for future cycles. Hydroponic cultivation must include control of pathogens. All closed systems require sensing and automatic control.
Baseline Testing of the EV Global E-Bike with Ultracapacitors
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.; Kolacz, John S.; Tavernelli, Paul F.
2001-01-01
The NASA John H. Glenn Research Center initiated baseline testing of the EV Global E-Bike SX with ultracapacitors as a way to reduce pollution in urban areas, reduce fossil fuel consumption, and reduce operating costs for transportation systems. The E-Bike provides an inexpensive approach to advance the state of art in hybrid technology in a practical application. The project transfers space technology to terrestrial use via nontraditional partners, and provides power system data valuable for future space applications. The work was done under the Hybrid Power Management (HPM) Program, which includes the Hybrid Electric Transit Bus (HETB). The E-Bike is a state of the art, ground up, hybrid electrical bicycle. Unique features of the vehicle's power system include the use of an efficient, 400 W electric hub motor, and a seven-speed derailleur system that permits operation as fully electric, fully pedal, or a combination of the two. Other innovative features, such as regenerative braking through ultracapacitor energy storage, are planned. Regenerative braking recovers much of the kinetic energy of the vehicle during deceleration. A description of the E-bike, the results of performance testing, and future vehicle development plans are given in this report. The report concludes that the E-Bike provides excellent performance, and that the implementation of ultracapacitors in the power system can provide significant performance improvements.
Intelligent Vehicle Power Management Using Machine Learning and Fuzzy Logic
2008-06-01
batteries of similar physical size. An ultracapacitor can receive regenerative energy and give power during peak periods. Moreno et al. proposed to...use an ultracapacitor as an auxiliary energy system in combination with a primary source that is unable to accept energy from the regenerative ... braking [22]. There are other power sources that are being considered in HEV research [20-22] and future vehicle systems may use combinations of
High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage
NASA Technical Reports Server (NTRS)
Bents, David J.
1987-01-01
A hydrogen-oxygen regenerative fuel cell (RFC) energy storage system based on high temperature solid oxide fuel cell (SOFC) technology is described. The reactants are stored as gases in lightweight insulated pressure vessels. The product water is stored as a liquid in saturated equilibrium with the fuel gas. The system functions as a secondary battery and is applicable to darkside energy storage for solar photovoltaics.
2016-07-31
fueled liquid rocket engine, enthalpy is removed from the combustion chamber by a regenerative cooling system comprising a series of passages through... rocket engine, enthalpy is removed from the combustion chamber by a regenerative cooling system comprising a series of passages through which fuel flows...the unprecedented correlation of comprehensive two-dimensional gas chromatographic (GC×GC) rocket fuel data with physical and thermochemical
Johnson Space Center's regenerative life support systems test bed
NASA Technical Reports Server (NTRS)
Henninger, Donald L.; Tri, Terry O.; Barta, Daniel J.; Stahl, Randal S.
1991-01-01
The Regenerative Life Support System (RLSS) Test Bed at NASA's Johnson Space Center is an atmospherically closed, controlled environment facility for the evaluation of regenerative life support systems using higher plants in conjunction with physicochemical life support systems. When completed, the facility will be comprised of two large scale plant growth chambers, each with approximately 10 m(exp 2) growing area. One of the two chambers, the Variable Pressure Growth Chamber (VPGC), will be capable of operating at lower atmospheric pressures to evaluate a range of environments that may be used in Lunar or Martian habitats; the other chamber, the Ambient Pressure Growth Chamber (APGC) will operate at ambient atmospheric pressure. The root zone in each chamber will be configurable for hydroponic or solid state media systems. Research will focus on: (1) in situ resource utilization for CELSS systems, in which simulated lunar soils will be used in selected crop growth studies; (2) integration of biological and physicochemical air and water revitalization systems; (3) effect of atmospheric pressure on system performance; and (4) monitoring and control strategies.
NASA's Advanced Life Support Systems Human-Rated Test Facility
NASA Technical Reports Server (NTRS)
Henninger, D. L.; Tri, T. O.; Packham, N. J.
1996-01-01
Future NASA missions to explore the solar system will be long-duration missions, requiring human life support systems which must operate with very high reliability over long periods of time. Such systems must be highly regenerative, requiring minimum resupply, to enable the crews to be largely self-sufficient. These regenerative life support systems will use a combination of higher plants, microorganisms, and physicochemical processes to recycle air and water, produce food, and process wastes. A key step in the development of these systems is establishment of a human-rated test facility specifically tailored to evaluation of closed, regenerative life supports systems--one in which long-duration, large-scale testing involving human test crews can be performed. Construction of such a facility, the Advanced Life Support Program's (ALS) Human-Rated Test Facility (HRTF), has begun at NASA's Johnson Space Center, and definition of systems and development of initial outfitting concepts for the facility are underway. This paper will provide an overview of the HRTF project plan, an explanation of baseline configurations, and descriptive illustrations of facility outfitting concepts.
The coal-fired gas turbine locomotive - A new look
NASA Technical Reports Server (NTRS)
Liddle, S. G.; Bonzo, B. B.; Purohit, G. P.
1983-01-01
Advances in turbomachine technology and novel methods of coal combustion may have made possible the development of a competitive coal fired gas turbine locomotive engine. Of the combustor, thermodynamic cycle, and turbine combinations presently assessed, an external combustion closed cycle regenerative gas turbine with a fluidized bed coal combustor is judged to be the best suited for locomotive requirements. Some merit is also discerned in external combustion open cycle regenerative systems and internal combustion open cycle regenerative gas turbine systems employing a coal gasifier. The choice of an open or closed cycle depends on the selection of a working fluid and the relative advantages of loop pressurization, with air being the most attractive closed cycle working fluid on the basis of cost.
Life support and internal thermal control system design for the Space Station Freedom
NASA Technical Reports Server (NTRS)
Humphries, R.; Mitchell, K.; Reuter, J.; Carrasquillo, R.; Beverly, B.
1991-01-01
A Review of the Space Station Freedom Environmental Control and Life Support System (ECLSS) as well as the Internal Thermal Control System (ITCS) design, including recent changes resulting from an activity to restructure the program, is provided. The development state of the original Space Station Freedom ECLSS through the restructured configuration is considered and the selection of regenerative subsystems for oxygen and water reclamation is addressed. A survey of the present ground development and verification program is given.
Optical fiber sensors for life support applications
NASA Technical Reports Server (NTRS)
Lieberman, R. A.; Schmidlin, E. M.; Ferrell, D. J.; Syracuse, S. J.
1992-01-01
Preliminary experimental results on systems designed to demonstrate sensor operation in regenerative food production and crew air supply applications are presented. The systems use conventional fibers and sources in conjunction with custom wavelength division multiplexers in their optical signal processing sections and nonstandard porous optical fibers in the optical sensing elements. It is considered to be possible to create practical sensors for life-support system applications, and particularly, in regenerative food production environments, based on based on reversible sensors for oxygen, carbon monoxide, and humidity.
Ignition feedback regenerative free electron laser (FEL) amplifier
Kim, Kwang-Je; Zholents, Alexander; Zolotorev, Max
2001-01-01
An ignition feedback regenerative amplifier consists of an injector, a linear accelerator with energy recovery, and a high-gain free electron laser amplifier. A fraction of the free electron laser output is coupled to the input to operate the free electron laser in the regenerative mode. A mode filter in this loop prevents run away instability. Another fraction of the output, after suitable frequency up conversion, is used to drive the photocathode. An external laser is provided to start up both the amplifier and the injector, thus igniting the system.
Biologically active chitosan systems for tissue engineering and regenerative medicine.
Jiang, Tao; Kumbar, Sangamesh G; Nair, Lakshmi S; Laurencin, Cato T
2008-01-01
Biodegradable polymeric scaffolds are widely used as a temporary extracellular matrix in tissue engineering and regenerative medicine. By physical adsorption of biomolecules on scaffold surface, physical entrapment of biomolecules in polymer microspheres or hydrogels, and chemical immobilization of oligopeptides or proteins on biomaterials, biologically active biomaterials and scaffolds can be derived. These bioactive systems show great potential in tissue engineering in rendering bioactivity and/or specificity to scaffolds. This review highlights some of the biologically active chitosan systems for tissue engineering application and the associated strategies to develop such bioactive chitosan systems.
An Overview of a Regenerative Fuel Cell Concept for a Mars Surface Mobile Element (Mars Rover)
NASA Astrophysics Data System (ADS)
Andersson, T.
2018-04-01
This paper outlines an overview of a regenerative fuel cell concept for a Mars rover. The objectives of the system are to provide electrical and thermal power during the Mars night and to provide electrical power for the operational cycles.
Regenerative Studies: College Community and Community College.
ERIC Educational Resources Information Center
Woltz, Mary G.
This case study applies principles derived from the Center for Regenerative Studies (CRS) to a community college in North Carolina. CRS, on the campus of California State Polytechnic Institute (California), is dedicated to the education, demonstration, and research of degenerative systems in the areas of shelter, food production, energy, water and…
The Japanese artificial organs scene: current status.
Mitamura, Yoshinori; Murabayashi, Shun
2005-08-01
Artificial organs and regenerative medicine are the subjects of very active research and development (R&D) in Japan and various artificial organs are widely used in patients. Results of the R&D are presented at the annual conference of the Japanese Society for Artificial Organs (JSAO). Progress in the fields of artificial organs and regenerative medicine are reviewed annually in the Japanese Journal of Artificial Organs. The official English-language journal of JSAO, Journal of Artificial Organs, also publishes many original articles by Japanese researchers. Although the annual conference and the publications of JSAO provide the world with update information on artificial organs and regenerative medicine in Japan, the information is not always understood appropriately in the rest of the world, mainly due to language problems. This article therefore introduces the current status of artificial organs and regenerative medicine in Japan. Artificial hearts and metabolic support systems are reviewed here and other interesting areas such as regenerative medicine can be found elsewhere.
Stem Cell Therapy: Repurposing Cell-Based Regenerative Medicine Beyond Cell Replacement.
Napoli, Eleonora; Lippert, Trenton; Borlongan, Cesar V
2018-02-27
Stem cells exhibit simple and naive cellular features, yet their exact purpose for regenerative medicine continues to elude even the most elegantly designed research paradigms from developmental biology to clinical therapeutics. Based on their capacity to divide indefinitely and their dynamic differentiation into any type of tissue, the advent of transplantable stem cells has offered a potential treatment for aging-related and injury-mediated diseases. Recent laboratory evidence has demonstrated that transplanted human neural stem cells facilitate endogenous reparative mechanisms by initiating multiple regenerative processes in the brain neurogenic areas. Within these highly proliferative niches reside a myriad of potent regenerative molecules, including anti-inflammatory cytokines, proteomes, and neurotrophic factors, altogether representing a biochemical cocktail vital for restoring brain function in the aging and diseased brain. Here, we advance the concept of therapeutically repurposing stem cells not towards cell replacement per se, but rather exploiting the cells' intrinsic properties to serve as the host brain regenerative catalysts.
25th anniversary article: supramolecular materials for regenerative medicine.
Boekhoven, Job; Stupp, Samuel I
2014-03-19
In supramolecular materials, molecular building blocks are designed to interact with one another via non-covalent interactions in order to create function. This offers the opportunity to create structures similar to those found in living systems that combine order and dynamics through the reversibility of intermolecular bonds. For regenerative medicine there is a great need to develop materials that signal cells effectively, deliver or bind bioactive agents in vivo at controlled rates, have highly tunable mechanical properties, but at the same time, can biodegrade safely and rapidly after fulfilling their function. These requirements make supramolecular materials a great platform to develop regenerative therapies. This review illustrates the emerging science of these materials and their use in a number of applications for regenerative medicine. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
SPE (tm) water electrolyzers in support of mission from planet Earth
NASA Technical Reports Server (NTRS)
Mcelroy, J. F.
1991-01-01
During the 1970's, the Solid Polymer Electrolyte (SPE) water electrolyzer, which uses ion exchange membranes as its sole electrolyte, was developed for nuclear submarine metabolic oxygen production. SPE water electrolyzer developments included operation at up to 3,000 psia and at current densities in excess of 1,000 amps per square foot. The SPE water electrolyzer system has accumulated tens of thousands of system hours with the Navies of both the United States and the United Kingdom. During the 1980's, the basic SPE water electrolyzer cell structure developed for the Navies was incorporated into several demonstrators for NASA's Space Station Program. Among these were: (1) the SPE regenerative fuel cell for electrical energy storage; (2) the SPE water electrolyzer for metabolic oxygen production; and (3) the high pressure SPE water electrolyzer for reboost propellant production. In the 1990's, emphasis will be the development of SPE water electrolyzers for Mission from Planet Earth. Currently defined potential applications for the SPE water electrolyzer include: (1) SPE water electrolyzers operating at high pressure as part of a regenerative fuel cell extraterrestrial surface energy storage system; (2) SPE water electrolyzers for propellant production from extraterrestrial indigenous materials; and (3) SPE water electrolyzers for metabolic oxygen and potable water production from reclaimed water.
Environmental Control and Life Support Integration Strategy for 6-Crew Operations Stephanie Duchesne
NASA Technical Reports Server (NTRS)
Duchesne, Stephanie M.
2009-01-01
The International Space Station (ISS) crew compliment has increased in size from 3 to 6 crew members . In order to support this increase in crew on ISS, the United States on-orbit Segment (USOS) has been outfitted with a suite of regenerative Environmental Control and Life Support (ECLS) hardware including an Oxygen Generation System(OGS), Waste and Hygiene Compartment (WHC), and a Water Recovery System (WRS). The WRS includes the Urine Processor Assembly (UPA) and the Water Processor Assembly (WPA). With this additional life support hardware, the ISS has achieved full redundancy in its on-orbit life support system between the USOS and Russian Segment (RS). The additional redundancy created by the Regenerative ECLS hardware creates the opportunity for independent support capabilities between segments, and for the first time since the start of ISS, the necessity to revise Life Support strategy agreements. Independent operating strategies coupled with the loss of the Space Shuttle supply and return capabilities in 2010 offer new and unique challenges. This paper will discuss the evolution of the ISS Life Support hardware strategy in support of 6-Crew on ISS, as well as the continued work that is necessary to ensure the support of crew and ISS Program objectives through the life of station.
Environmental Control and Life Support Integration Strategy for 6-Crew Operations
NASA Technical Reports Server (NTRS)
Duchesne, Stephanie M.; Tressler, Chad H.
2010-01-01
The International Space Station (ISS) crew complement has increased in size from 3 to 6 crew members. In order to support this increase in crew on ISS, the United States on-orbit Segment (USOS) has been outfitted with a suite of regenerative Environmental Control and Life Support (ECLS) hardware including an Oxygen Generation System (OGS), Waste and Hygiene Compartment (WHC), and a Water Recovery System (WRS). The WRS includes the Urine Processor Assembly (UPA) and the Water Processor Assembly (WPA). With this additional life support hardware, the ISS has achieved full redundancy in its on-orbit life support system between the t OS and Russian Segment (RS). The additional redundancy created by the Regenerative ECLS hardware creates the opportunity for independent support capabilities between segments, and for the first time since the start of ISS, the necessity to revise Life Support strategy agreements. Independent operating strategies coupled with the loss of the Space Shuttle supply and return capabilities in 2010 offer new and unique challenges. This paper will discuss the evolution of the ISS Life Support hardware strategy in support of 6-Crew on ISS, as well as the continued work that is necessary to ensure the support of crew and ISS Program objectives through the life of station
Thermal System Modeling for Lunar and Martian Surface Regenerative Fuel Cell Systems
NASA Technical Reports Server (NTRS)
Gilligan, Ryan Patrick; Smith, Phillip James; Jakupca, Ian Joseph; Bennett, William Raymond; Guzik, Monica Christine; Fincannon, Homer J.
2017-01-01
The Advanced Exploration Systems (AES) Advanced Modular Power Systems (AMPS) Project is investigating different power systems for various lunar and Martian mission concepts. The AMPS Fuel Cell (FC) team has created two system-level models to evaluate the performance of regenerative fuel cell (RFC) systems employing different fuel cell chemistries. Proton Exchange Membrane fuel cells PEMFCs contain a polymer electrolyte membrane that separates the hydrogen and oxygen cavities and conducts hydrogen cations (protons) across the cell. Solid Oxide fuel cells (SOFCs) operate at high temperatures, using a zirconia-based solid ceramic electrolyte to conduct oxygen anions across the cell. The purpose of the modeling effort is to down select one fuel cell chemistry for a more detailed design effort. Figures of merit include the system mass, volume, round trip efficiency, and electrolyzer charge power required. PEMFCs operate at around 60 degrees Celsius versus SOFCs which operate at temperatures greater than 700 degrees Celsius. Due to the drastically different operating temperatures of the two chemistries the thermal control systems (TCS) differ. The PEM TCS is less complex and is characterized by a single pump cooling loop that uses deionized water coolant and rejects heat generated by the system to the environment via a radiator. The solid oxide TCS has its own unique challenges including the requirement to reject high quality heat and to condense the steam produced in the reaction. This paper discusses the modeling of thermal control systems for an extraterrestrial RFC that utilizes either a PEM or solid oxide fuel cell.
First pulse effect self-suppression picosecond regenerative amplifier (Conference Presentation)
NASA Astrophysics Data System (ADS)
Fan, Haitao; Chang, Liang; Zhang, Yi; Yao, Siyi; Lu, Wei; Yang, Xiaohong
2017-03-01
First pulse effect, commonly seen in nanosecond cavity-dumped lasers and picosecond regenerative amplifiers, not only leads to degradation of processing quality, but also acts as potential threat to optical switching elements. Several methods have been developed to suppress that effect, including electronic controls, polarization controls, and diffraction controls. We present a new way for first pulse self-suppression without any additional components. By carefully arranging the cavity mirror of a regenerative amplifier, we realized `parasitic lasing like' radiation. When the regenerative amplifier works in `operation ready' status, the parasitic lasing occurs and prevents the gain crystal from saturation. When the regenerative amplifier starts working and amplifying pulses, the first pulse in a pulse train will not get much more gain and energy than pulses following it. As parasitic lasing disappears at the same time, the average output power of the amplifier does not significantly reduce. This cost effective method does not require any additional component. In addition, as it is not polarization dependent, this method is widely suitable for different kinds of regenerative amplifiers. It's the easiest and cheapest way to suppress first pulse effect, to the best of our knowledge.
Lozito, Thomas P; Tuan, Rocky S
2017-03-01
The ability to regenerate damaged or lost tissues has remained the lofty goal of regenerative medicine. Unfortunately, humans, like most mammals, suffer from very minimal natural regenerative capabilities. Certain non-mammalian animal species, however, are not so limited in their healing capabilities, and several have attracted the attention of researchers hoping to recreate enhanced healing responses in humans. This review focuses on one such animal group with remarkable regenerative abilities, the lizards. As the closest relatives of mammals that exhibit enhanced regenerative abilities as adults, lizards potentially represent the most relevant model for direct comparison and subsequent improvement of mammalian healing. Lizards are able to regenerate amputated tails and exhibit adaptations that both limit tissue damage in response to injury and initiate coordinated regenerative responses. This review summarizes the salient aspects of lizard tail regeneration as they relate to the overall regenerative process and also presents the relevant information pertaining to regrowth of specific tissues, including skeletal, muscular, nervous, and vascular tissues. The goal of this review is to introduce the topic of lizard tail regeneration to new audiences with the hope of expanding the knowledge base of this underutilized but potentially powerful model organism.
de Almeida, Terezinha M B; Leitão, Regina C; Andrade, Joyce D; Beçak, Willy; Carrilho, Flair J; Sonohara, Shigueko
2004-04-01
Human cirrhosis is considered an important factor in hepatocarcinogenesis. The lack of substantial genetics and cytogenetics data in human cirrhosis led us to investigate spontaneous micronuclei formation, as an indicator of chromosomal damage. The analysis was performed in hepatocytes of regenerative, macroregenerative, and tumoral nodules from 30 cases of cirrhosis (paraffin-embedded archival material), retrospectively selected: cryptogenic, hepatitis C virus, and hepatitis C virus associated with hepatocellular carcinoma (HCC). Thirteen control liver samples of healthy organ donors were included. Micronucleated hepatocytes were analyzed with Feulgen-fast-green dyeing techniques. The spontaneous frequency of micronucleated hepatocytes in both regenerative and macroregenerative nodules of all cirrhotic patients was significantly higher than for the normal control group. There was no significant difference in frequency of micronucleated hepatocytes in regenerative nodules compared with macroregenerative nodules for all cases analyzed, whereas a significantly higher frequency of micronucleated hepatocytes was detected in tumoral nodules, compared with cirrhotic regenerative nodules and normal parenchyma. A higher frequency of the nuclear anomalies termed broken-eggs was observed in hepatitis C virus-related samples. Chromatinic losses and genotoxicity already existed in the cirrhotic regenerative nodules, which might predispose to development of HCC.
Crewmember repairing the Regenerative Carbon Dioxide Removal System wiring.
1992-07-09
STS050-20-012 (26 June 1992) --- Astronaut Kenneth D. Bowersox, pilot, performs in-flight maintenance (IFM) on the Regenerative Carbon Dioxide Removal System (RCRS) on the mid-deck of the Earth-orbiting Space Shuttle Columbia. Bowersox was joined by four other astronauts and two scientists from the private sector for a record-setting 14-day stay aboard the Space Shuttle in support of the United States Microgravity Laboratory 1 (USML-1).
Hydrogen-Oxygen PEM Regenerative Fuel Cell Energy Storage System
NASA Technical Reports Server (NTRS)
Bents, David J.; Scullin, Vincent J.; Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.
2005-01-01
An introduction to the closed cycle hydrogen-oxygen polymer electrolyte membrane (PEM) regenerative fuel cell (RFC), recently constructed at NASA Glenn Research Center, is presented. Illustrated with explanatory graphics and figures, this report outlines the engineering motivations for the RFC as a solar energy storage device, the system requirements, layout and hardware detail of the RFC unit at NASA Glenn, the construction history, and test experience accumulated to date with this unit.
Program operational summary: Operational 90 day manned test of a regenerative life support system
NASA Technical Reports Server (NTRS)
Jackson, J. K.; Wamsley, J. R.; Bonura, M. S.; Seeman, J. S.
1972-01-01
An operational 90-day manned test of a regenerative life support system was successfully completed. This test was performed with a crew of four carefully selected and trained men in a space station simulator (SSS) which had a two gas atmosphere maintained at a total pressure of 68.9, 10 psia, and composed of oxygen at a partial pressure of 3.05 psia with nitrogen as the diluent. The test was planned to provide data on regenerative life support subsystems and on integrated system operations in a closed ecology, similar to that of a space station. All crew equipment and expendables were stored onboard at the start of the mission to eliminate the need for pass-in operations. The significant accomplishments of the test, some of the pertinent test results, some of the problem areas, and conclusions are presented.
A multiobjective ? control strategy for energy harvesting in regenerative vehicle suspension systems
NASA Astrophysics Data System (ADS)
Casavola, Alessandro; Di Iorio, Fabio; Tedesco, Francesco
2018-04-01
A significant amount of energy induced by road unevenness and vehicle roll and pitch motions is usually dissipated by conventional shock-absorbers. In this paper, a novel active multiobjective ? control design methodology is proposed which explicitly includes, besides the usual control objectives on ride comfort, road handling and suspension stroke, the amount of energy to be harvested as an additional, though conflicting, control objective and allows the designer to directly trade-off among them depending on the application. An electromechanical regenerative suspension system is considered where the viscous damper is replaced by a linear electrical motor which is actively governed. It is shown that the proposed control law is able to achieve remarkable improvements on the amount of the harvested energy with respect to passive or semi-active control strategies while maintaining the other objectives at acceptable levels. Simulative studies undertaken via CarSim are also reported that confirm the potentiality and flexibility of the proposed control design strategy.
Ferretti, Patrizia
2011-09-01
All vertebrates can produce new neurons postnatally in discrete regions of their nervous system, but only some lower vertebrates (fish and amphibians) can significantly repair several neural structures, including brain, spinal cord, retina, olfactory and auditory-vestibular system, to compensate for neural tissue loss and recover significant functionality. Some regenerative ability, however, is found also in reptiles and birds, and even in mammals. The recognition that neurogenesis indeed occurs in the CNS of all adult vertebrates challenges the view that there is a simple relationship between maintenance of neurogenic regions in the adult CNS and regenerative capability. The aim of this review is to revisit this relationship in the light of recent literature focusing on selected examples of neurogenesis and regeneration, and discuss possible frameworks that may help to elucidate the relationship between adult neurogenesis and regeneration. This could provide useful paradigms for harnessing regeneration in the human CNS. © 2011 The Author. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
King, Robert Dean; DeDoncker, Rik Wivina Anna Adelson
1998-01-01
A method and apparatus for load leveling of a battery in an electrical power system includes a power regulator coupled to transfer power between a load and a DC link, a battery coupled to the DC link through a first DC-to-DC converter and an auxiliary passive energy storage device coupled to the DC link through a second DC-to-DC converter. The battery is coupled to the passive energy storage device through a unidirectional conducting device whereby the battery can supply power to the DC link through each of the first and second converters when battery voltage exceeds voltage on the passive storage device. When the load comprises a motor capable of operating in a regenerative mode, the converters are adapted for transferring power to the battery and passive storage device. In this form, resistance can be coupled in circuit with the second DC-to-DC converter to dissipate excess regenerative power.
King, R.D.; DeDoncker, R.W.A.A.
1998-01-20
A method and apparatus for load leveling of a battery in an electrical power system includes a power regulator coupled to transfer power between a load and a DC link, a battery coupled to the DC link through a first DC-to-DC converter and an auxiliary passive energy storage device coupled to the DC link through a second DC-to-DC converter. The battery is coupled to the passive energy storage device through a unidirectional conducting device whereby the battery can supply power to the DC link through each of the first and second converters when battery voltage exceeds voltage on the passive storage device. When the load comprises a motor capable of operating in a regenerative mode, the converters are adapted for transferring power to the battery and passive storage device. In this form, resistance can be coupled in circuit with the second DC-to-DC converter to dissipate excess regenerative power. 8 figs.
NASA Technical Reports Server (NTRS)
Lunn, Griffin M.
2011-01-01
Water recycling and eventual nutrient recovery is crucial for surviving in or past low earth orbit. New approaches and syste.m architecture considerations need to be addressed to meet current and future system requirements. This paper proposes a flexible system architecture that breaks down pretreatment , steps into discrete areas where multiple unit operations can be considered. An overview focusing on the urea and ammonia conversion steps allows an analysis on each process's strengths and weaknesses and synergy with upstream and downstream processing. Process technologies to be covered include chemical pretreatment, biological urea hydrolysis, chemical urea hydrolysis, combined nitrification-denitrification, nitrate nitrification, anammox denitrification, and regenerative ammonia absorption through struvite formation. Biological processes are considered mainly for their ability to both maximize water recovery and to produce nutrients for future plant systems. Unit operations can be considered for traditional equivalent system mass requirements in the near term or what they can provide downstream in the form of usable chemicals or nutrients for the long term closed-loop ecological control and life support system. Optimally this would allow a system to meet the former but to support the latter without major modification.
Research planning criteria for regenerative life-support systems applicable to space habitats
NASA Technical Reports Server (NTRS)
Spurlock, J.; Cooper, W.; Deal, P.; Harlan, A.; Karel, M.; Modell, M.; Moe, P.; Phillips, J.; Putnam, D.; Quattrone, P.
1979-01-01
The second phase of analyses that were conducted by the Life Support Systems Group of the 1977 NASA Ames Summer Study is described. This phase of analyses included a preliminary review of relevant areas of technology that can contribute to the development of closed life-support systems for space habitats, the identification of research options in these areas of technology, and the development of guidelines for an effective research program. The areas of technology that were studied included: (1) nutrition, diet, and food processing; (2) higher plant agriculture; (3) animal agriculture; (4) waste conversion and resource recovery; and (5) system stability and safety. Results of these analyses, including recommended research options and criteria for establishing research priorities among these many options, are discussed.
Endurance Test and Evaluation of Alkaline Water Electrolysis Cells
NASA Technical Reports Server (NTRS)
Kovach, Andrew J.; Schubert, Franz H.; Chang, B. J.; Larkins, Jim T.
1985-01-01
The overall objective of this program is to assess the state of alkaline water electrolysis cell technology and its potential as part of a Regenerative Fuel Cell System (RFCS) of a multikilowatt orbiting powerplant. The program evaluates the endurance capabilities of alkaline electrolyte water electrolysis cells under various operating conditions, including constant condition testing, cyclic testing and high pressure testing. The RFCS demanded the scale-up of existing cell hardware from 0.1 sq ft active electrode area to 1.0 sq ft active electrode area. A single water electrolysis cell and two six-cell modules of 1.0 sq ft active electrode area were designed and fabricated. The two six-cell 1.0 sq ft modules incorporate 1.0 sq ft utilized cores, which allow for minimization of module assembly complexity and increased tolerance to pressure differential. A water electrolysis subsystem was designed and fabricated to allow testing of the six-cell modules. After completing checkout, shakedown, design verification and parametric testing, a module was incorporated into the Regenerative Fuel Cell System Breadboard (RFCSB) for testing at Life Systems, Inc., and at NASA JSC.
Organ regeneration based on developmental biology: past and future.
Takeo, Makoto; Tsuji, Takashi
2018-06-05
In this decade, great progress has been made in the field of organ regeneration by incorporating emerging concepts from the fields of stem cell biology and developmental biology, and this progress has pioneered a new frontier in regenerative medicine. The generation of bioengineered organ germ-utilizing, fate-determined, organ-inductive epithelial and mesenchymal cells has provided evidence for the concept of functional organ regeneration in vivo. Organoid studies have verified that nearly all organs can be generated in the form of a mini-organ by recapitulating embryonic body patterning and establishing an organ-forming field among self-organizing pluripotent stem cells by utilizing cytokines that mimic the patterning and positional signals of organogenesis. More recently, the regeneration of an integumentary organ system composed of multiple organs, including hair follicles, has been achieved, demonstrating that regenerative medicine is forthcoming. In this review, we will introduce current research trends aimed at regenerating a functional three-dimensional (3D) organ, and we will discuss the potential use of these recent achievements and future directions needed to realize the next-generation of regenerative therapy for organ replacement. Copyright © 2018 Elsevier Ltd. All rights reserved.
Tissue engineering and microRNAs: future perspectives in regenerative medicine.
Gori, Manuele; Trombetta, Marcella; Santini, Daniele; Rainer, Alberto
2015-01-01
Tissue engineering is a growing area of biomedical research, holding great promise for a broad range of potential applications in the field of regenerative medicine. In recent decades, multiple tissue engineering strategies have been adopted to mimic and improve specific biological functions of tissues and organs, including biomimetic materials, drug-releasing scaffolds, stem cells, and dynamic culture systems. MicroRNAs (miRNAs), noncoding small RNAs that negatively regulate the expression of downstream target mRNAs, are considered a novel class of molecular targets and therapeutics that may play an important role in tissue engineering. Herein, we highlight the latest achievements in regenerative medicine, focusing on the role of miRNAs as key modulators of gene expression, stem cell self-renewal, proliferation and differentiation, and eventually in driving cell fate decisions. Finally, we will discuss the contribution of miRNAs in regulating the rearrangement of the tissue microenvironment and angiogenesis, and the range of strategies for miRNA delivery into target cells and tissues. Manipulation of miRNAs is an alternative approach and an attractive strategy for controlling several aspects of tissue engineering, although some issues concerning their in vivo effects and optimal delivery methods still remain uncovered.
High voltage bus and auxiliary heater control system for an electric or hybrid vehicle
Murty, Balarama Vempaty
2000-01-01
A control system for an electric or hybrid electric vehicle includes a vehicle system controller and a control circuit having an electric immersion heater. The heater is electrically connected to the vehicle's high voltage bus and is thermally coupled to a coolant loop containing a heater core for the vehicle's climate control system. The system controller responds to cabin heat requests from the climate control system by generating a pulse width modulated signal that is used by the control circuit to operate the heater at a duty cycle appropriate for the amount of cabin heating requested. The control system also uses the heater to dissipate excess energy produced by an auxiliary power unit and to provide electric braking when regenerative braking is not desirable and manual braking is not necessary. The control system further utilizes the heater to provide a safe discharge of a bank of energy storage capacitors following disconnection of the battery or one of the high voltage connectors used to transmit high voltage operating power to the various vehicle systems. The control circuit includes a high voltage clamping circuit that monitors the voltage on the bus and operates the heater to clamp down the bus voltage when it exceeds a pre-selected maximum voltage. The control system can also be used to phase in operation of the heater when the bus voltage exceeds a lower threshold voltage and can be used to phase out the auxiliary power unit charging and regenerative braking when the battery becomes fully charged.
Hydrogen-Oxygen PEM Regenerative Fuel Cell Development at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Bents, David J.; Scullin, Vincent J.; Chang, B. J.; Johnson, Donald W.; Garcia, Christopher P.; Jakupca, Ian J.
2006-01-01
The closed-cycle hydrogen-oxygen PEM regenerative fuel cell (RFC) at NASA Glenn Research Center has demonstrated multiple back to back contiguous cycles at rated power, and round trip efficiencies up to 52 percent. It is the first fully closed cycle regenerative fuel cell ever demonstrated (entire system is sealed: nothing enters or escapes the system other than electrical power and heat). During FY2006 the system has undergone numerous modifications and internal improvements aimed at reducing parasitic power, heat loss and noise signature, increasing its functionality as an unattended automated energy storage device, and in-service reliability. It also serves as testbed towards development of a 600 W-hr/kg flight configuration, through the successful demonstration of lightweight fuel cell and electrolyser stacks and supporting components. The RFC has demonstrated its potential as an energy storage device for aerospace solar power systems such as solar electric aircraft, lunar and planetary surface installations; any airless environment where minimum system weight is critical. Its development process continues on a path of risk reduction for the flight system NASA will eventually need for the manned lunar outpost.
Antarctic analogs as a testbed for regenerative life support technologies
NASA Technical Reports Server (NTRS)
Roberts, D. R.; Andersen, D. T.; Mckay, C. P.; Wharton, R. A., Jr.; Rummel, J. D.
1991-01-01
The feasibility of using Antarctica as a platform for creating earth-based simulations of regenerative life support systems (LSSs) for future space missions is discussed. The requirements for a bioregenerative LSS and the types of technologies that may be used in such a system are examined. Special attention is given to the objectives and the organization of the NASA's CELSS program for the development of regenerative LSSs to support long-duration human missions in space, largely independent of resupply, in a safe and reliable manner. There are two types of locations on the continent of Antarctica suitable for the placement of simulation facilities: the polar plateau and the ice-free dry valleys. The unique attributes that lend each type of location to very different functions as simulation facilities are discussed.
The zebrafish as a model for complex tissue regeneration
Gemberling, Matthew; Bailey, Travis J.; Hyde, David R.; Poss, Kenneth D.
2013-01-01
For centuries, philosophers and scientists have been fascinated by the principles and implications of regeneration in lower vertebrate species. Two features have made zebrafish an informative model system for determining mechanisms of regenerative events. First, they are highly regenerative, able to regrow amputated fins, as well as a lesioned brain, retina, spinal cord, heart, and other tissues. Second, they are amenable to both forward and reverse genetic approaches, with a research toolset regularly updated by an expanding community of zebrafish researchers. Zebrafish studies have helped identify new mechanistic underpinnings of regeneration in multiple tissues, and in some cases have served as a guide for contemplating regenerative strategies in mammals. Here, we review the recent history of zebrafish as a genetic model system for understanding how and why tissue regeneration occurs. PMID:23927865
Regeneratively Cooled Liquid Oxygen/Methane Technology Development
NASA Technical Reports Server (NTRS)
Robinson, Joel W.; Greene, Christopher B.; Stout, Jeffrey
2012-01-01
The National Aeronautics & Space Administration (NASA) has identified Liquid Oxygen (LOX)/Liquid Methane (LCH4) as a potential propellant combination for future space vehicles based upon exploration studies. The technology is estimated to have higher performance and lower overall systems mass compared to existing hypergolic propulsion systems. NASA-Marshall Space Flight Center (MSFC) in concert with industry partner Pratt & Whitney Rocketdyne (PWR) utilized a Space Act Agreement to test an oxygen/methane engine system in the Summer of 2010. PWR provided a 5,500 lbf (24,465 N) LOX/LCH4 regenerative cycle engine to demonstrate advanced thrust chamber assembly hardware and to evaluate the performance characteristics of the system. The chamber designs offered alternatives to traditional regenerative engine designs with improvements in cost and/or performance. MSFC provided the test stand, consumables and test personnel. The hot fire testing explored the effective cooling of one of the thrust chamber designs along with determining the combustion efficiency with variations of pressure and mixture ratio. The paper will summarize the status of these efforts.
Controlled Ecological Life Support System. Life Support Systems in Space Travel
NASA Technical Reports Server (NTRS)
Macelroy, R. D. (Editor); Smernoff, D. T. (Editor); Klein, H. P. (Editor)
1985-01-01
Life support systems in space travel, in closed ecological systems were studied. Topics discussed include: (1) problems of life support and the fundamental concepts of bioregeneration; (2) technology associated with physical/chemical regenerative life support; (3) projection of the break even points for various life support techniques; (4) problems of controlling a bioregenerative life support system; (5) data on the operation of an experimental algal/mouse life support system; (6) industrial concepts of bioregenerative life support; and (7) Japanese concepts of bioregenerative life support and associated biological experiments to be conducted in the space station.
Carbon nanotube torsional springs for regenerative braking systems
NASA Astrophysics Data System (ADS)
Liu, Sanwei; Martin, Corbin; Lashmore, David; Schauer, Mark; Livermore, Carol
2015-10-01
The modeling and demonstration of large stroke, high energy density and high power density torsional springs based on carbon nanotube (CNT) yarns is reported, as well as their application as energy-storing actuators for regenerative braking systems. An originally untwisted CNT yarn is cyclically loaded and unloaded in torsion, with the maximum rotation angle increasing incrementally until failure. The measured average extractable energy density values are 2.9 kJ kg-1 ± 1.2 kJ kg-1 and 3.4 kJ kg-1 ± 0.4 kJ kg-1 for 1-ply CNT yarns and 2-ply CNT yarns, respectively. Additionally, a regenerative braking system is demonstrated to capture the kinetic energy of a wheel and store it as elastic energy in twisted CNT yarns. When the yarn’s twist is released, the stored energy reaccelerates the wheel. The measured energy and mean power densities of the CNT yarns in the simple regenerative braking setup are on average 3.3 kJ kg-1 and 0.67 kW kg-1, respectively, with maximum measured values of up to 4.7 kJ kg-1 and 1.2 kW kg-1, respectively. A slightly lower energy density of up to 1.2 kJ kg-1 and a 0.29 kW kg-1 mean power density are measured for CNT yarns in a more complex setup that mimics a unidirectional rotating regenerative braking mechanism.
Early Human Testing Initiative Phase 1 Regenerative Life Support Systems
1995-08-08
Early Human Testing (EHT) Initiative Phase 1 Regenerative Life Support Systems Laboratory (RLSSL). Nigel Packham activities in the Variable Pressure Growth Chamber which he lived inside for 15 days. A crowd of well-wishers outside the test chamber, at the console are John Lewis, Ed Mohr and Marybeth Edeen (15577). Packham exiting the chamber (15578-81). Packham is the focus of television cameras and reporters (15582-3). Don Henninger interviewed by reporters (15584). Packham is presented with a jacket after his stay in the chamber (15585). Packham inside the wheat growth chamber checking the condition of the plants (15586-7, 15597). Packham exercising on a recumbant bicycle (15588, 15592). Packham, through the window into the growth chamber, displays a handful of wheat plants to console monitor Dan Barta (15589-90). Group portrait of the team conducting the Early Human Testing Initiative Phase 1 Regenerative Life Support Systems test and include, front row, from left: Jeff Dominick and Don Overton and back row, from left, unidentified member, Marybeth Edeen, Nigel Packham, John Lewis, Ed Mohr, Dan Barta and Tim Monk (15591). Harry Halford prepares to send a package through the airlock to Packham (15593). Packham displays a handful of wheat plants (15594). Packham fixes himself a bowl of cereal (15595) and retrieves a carton of milk from the refrigerator (15596). Packham retrieves a package from the airlock (15598). Packham packs up trash in plastic bag (15599-600) and sends it back through the airlock (15601). Packham gets a cup of water (15602) and heats it in the microwave (15603).
Environmental Control and Life Support System (ECLSS) System Engineering Workshop
NASA Technical Reports Server (NTRS)
Peterson, Laurie J.
2009-01-01
This slide presentation begins with a recap on a previous lecture on the ECLSS subsystems, and the various types (i.e., Non-regenerative vs Regenerative, open loop vs closed loop, and physical-chemical vs bioregenerative) It also recaps the Equivalent system mass (ESM) metric. The presentation continues with a review of the ECLSS of the various NASA manned space exploration programs from Mercury, to the current planned Altair lunar landing, and Lunar base operations. There is also a team project to establish the ESM of two conceptualized missions.
Regenerative adsorbent heat pump
NASA Technical Reports Server (NTRS)
Jones, Jack A. (Inventor)
1991-01-01
A regenerative adsorbent heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system and at least a portion of the heat of adsorption. A series of at least four compressors containing an adsorbent is provided. A large amount of heat is transferred from compressor to compressor so that heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.
20 mJ, 1 ps Yb:YAG Thin-disk Regenerative Amplifier
Alismail, Ayman; Wang, Haochuan; Brons, Jonathan; Fattahi, Hanieh
2017-01-01
This is a report on a 100 W, 20 mJ, 1 ps Yb:YAG thin-disk regenerative amplifier. A homemade Yb:YAG thin-disk, Kerr-lens mode-locked oscillator with turn-key performance and microjoule-level pulse energy is used to seed the regenerative chirped-pulse amplifier. The amplifier is placed in airtight housing. It operates at room temperature and exhibits stable operation at a 5 kHz repetition rate, with a pulse-to-pulse stability less than 1%. By employing a 1.5 mm-thick beta barium borate crystal, the frequency of the laser output is doubled to 515 nm, with an average power of 70 W, which corresponds to an optical-to-optical efficiency of 70%. This superior performance makes the system an attractive pump source for optical parametric chirped-pulse amplifiers in the near-infrared and mid-infrared spectral range. Combining the turn-key performance and the superior stability of the regenerative amplifier, the system facilitates the generation of a broadband, CEP-stable seed. Providing the seed and pump of the optical parametric chirped-pulse amplification (OPCPA) from one laser source eliminates the demand of active temporal synchronization between these pulses. This work presents a detailed guide to set up and operate a Yb:YAG thin-disk regenerative amplifier, based on chirped-pulse amplification (CPA), as a pump source for an optical parametric chirped-pulse amplifier. PMID:28745636
An expert systems approach to automated fault management in a regenerative life support subsystem
NASA Technical Reports Server (NTRS)
Malin, J. T.; Lance, N., Jr.
1986-01-01
This paper describes FIXER, a prototype expert system for automated fault management in a regenerative life support subsystem typical of Space Station applications. The development project provided an evaluation of the use of expert systems technology to enhance controller functions in space subsystems. The software development approach permitted evaluation of the effectiveness of direct involvement of the expert in design and development. The approach also permitted intensive observation of the knowledge and methods of the expert. This paper describes the development of the prototype expert system and presents results of the evaluation.
High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage
NASA Technical Reports Server (NTRS)
Bents, David J.
1987-01-01
A hydrogen-oxygen regenerative fuel cell energy storage system based on high temperature solid oxide fuel cell technology is discussed which has application to darkside energy storage for solar photovoltaics. The forward and reverse operating cycles are described, and heat flow, mass, and energy balance data are presented to characterize the system's performance and the variation of performance with changing reactant storage pressure. The present system weighs less than nickel hydrogen battery systems after 0.7 darkside operation, and it maintains a specific weight advantage over radioisotope generators for discharge periods up to 72 hours.
High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage
NASA Astrophysics Data System (ADS)
Bents, David J.
A hydrogen-oxygen regenerative fuel cell energy storage system based on high temperature solid oxide fuel cell technology is discussed which has application to darkside energy storage for solar photovoltaics. The forward and reverse operating cycles are described, and heat flow, mass, and energy balance data are presented to characterize the system's performance and the variation of performance with changing reactant storage pressure. The present system weighs less than nickel hydrogen battery systems after 0.7 darkside operation, and it maintains a specific weight advantage over radioisotope generators for discharge periods up to 72 hours.
Is nanotechnology the key to unravel and engineer biological processes?
Navarro, Melba; Planell, Josep A
2012-01-01
Regenerative medicine is an emerging field aiming to the development of new reparative strategies to treat degenerative diseases, injury, and trauma through developmental pathways in order to rebuild the architecture of the original injured organ and take over its functionality. Most of the processes and interactions involved in the regenerative process take place at subcellular scale. Nanotechnology provides the tools and technology not only to detect, to measure, or to image the interactions between the different biomolecules and biological entities, but also to control and guide the regenerative process. The relevance of nanotechnology for the development of regenerative medicine as well as an overview of the different tools that contribute to unravel and engineer biological systems are presented in this chapter. In addition, general data about the social impact and global investment in nanotechnology are provided.
Wolff, Silje A; Coelho, Liz H; Karoliussen, Irene; Jost, Ann-Iren Kittang
2014-05-05
Due to logistical challenges, long-term human space exploration missions require a life support system capable of regenerating all the essentials for survival. Higher plants can be utilized to provide a continuous supply of fresh food, atmosphere revitalization, and clean water for humans. Plants can adapt to extreme environments on Earth, and model plants have been shown to grow and develop through a full life cycle in microgravity. However, more knowledge about the long term effects of the extraterrestrial environment on plant growth and development is necessary. The European Space Agency (ESA) has developed the Micro-Ecological Life Support System Alternative (MELiSSA) program to develop a closed regenerative life support system, based on micro-organisms and higher plant processes, with continuous recycling of resources. In this context, a literature review to analyze the impact of the space environments on higher plants, with focus on gravity levels, magnetic fields and radiation, has been performed. This communication presents a roadmap giving directions for future scientific activities within space plant cultivation. The roadmap aims to identify the research activities required before higher plants can be included in regenerative life support systems in space.
Wolff, Silje A.; Coelho, Liz H.; Karoliussen, Irene; Jost, Ann-Iren Kittang
2014-01-01
Due to logistical challenges, long-term human space exploration missions require a life support system capable of regenerating all the essentials for survival. Higher plants can be utilized to provide a continuous supply of fresh food, atmosphere revitalization, and clean water for humans. Plants can adapt to extreme environments on Earth, and model plants have been shown to grow and develop through a full life cycle in microgravity. However, more knowledge about the long term effects of the extraterrestrial environment on plant growth and development is necessary. The European Space Agency (ESA) has developed the Micro-Ecological Life Support System Alternative (MELiSSA) program to develop a closed regenerative life support system, based on micro-organisms and higher plant processes, with continuous recycling of resources. In this context, a literature review to analyze the impact of the space environments on higher plants, with focus on gravity levels, magnetic fields and radiation, has been performed. This communication presents a roadmap giving directions for future scientific activities within space plant cultivation. The roadmap aims to identify the research activities required before higher plants can be included in regenerative life support systems in space. PMID:25370192
Design of Long-Endurance Unmanned Airplanes Incorporating Solar and Fuel Cell Propulsion
NASA Technical Reports Server (NTRS)
Youngblood, James W.; Talay, Theodore A.; Pegg, Robert J.
1984-01-01
Preliminary performance analysis and conceptual design are described for a class of unmanned airplanes possessing multi-day endurance capability. A mixed-mode electric power system incorporates solar cells for daytime energy production and a non-regenerative H2-02 fuel cell to supply energy for night flight. The power system provides energy for all onboard systems, including propulsion., payload, and avionics. Excess solar energy is available during significant portions of the day, and may be used for climbing, maneuvering, or payload functions. By jettisoning fuel cell reactant product (water) during flight, vehicle endurance may be increased under certain conditions. Empirical structure sizing algorithms are combined with low-Reynolds number aerodynamics algorithms to estimate airplane size and geometry to meet prescribed mission requirements. Initial calculations for summertime, high-altitude flight (above 40,000 ft (12 km)) at moderate latitude (31 deg N) indicate that mission endurance of several days may be possible for configurations having wing loadings on the order of 0.9 to 1.3 lb/ft(exp 2). These aircraft tend to be somewhat smaller than solar-powered aircraft previously conceived for multi-month endurance utilizing regenerative fuel cell systems for night flight.
Stoll, Elizabeth A
2014-01-01
Over recent years, there has been a great deal of interest in the prospects of stem cell-based therapies for the treatment of nervous system disorders. The eagerness of scientists, clinicians, and spin-out companies to develop new therapies led to premature clinical trials in human patients, and now the initial excitement has largely turned to skepticism. Rather than embracing a defeatist attitude or pressing blindly ahead, I argue it is time to evaluate the challenges encountered by regenerative medicine in the central nervous system and the progress that is being made to solve these problems. In the twenty years since the adult brain was discovered to have an endogenous regenerative capacity, much basic research has been done to elucidate mechanisms controlling proliferation and cellular identity; how stem cells may be directed into neuronal lineages; genetic, pharmacological, and behavioral interventions that modulate neurogenic activity; and the exact nature of limitations to regeneration in the adult, aged, diseased and injured CNS. These findings should prove valuable in designing realistic clinical strategies to improve the prospects of stem cell-based therapies. In this review, I discuss how basic research continues to play a critical role in identifying both barriers and potential routes to regenerative therapy in the CNS.
Cell and gene therapy for severe heart failure patients: The time and place for Pim-1 Kinase
Siddiqi, Sailay; Sussman, Mark A
2014-01-01
Regenerative therapy in severe heart failure patients presents a challenging set of circumstances including a damaged myocardial environment that accelerates senescence in myocytes and cardiac progenitor cells. Failing myocardium suffers from deterioration of contractile function coupled with impaired regenerative potential that drives the heart toward decompensation. Efficacious regenerative cell therapy for severe heart failure requires disruption of this vicious circle that can be accomplished by alteration of the compromised myocyte phenotype and rejuvenation of progenitor cells. This review focuses upon potential for Pim-1 kinase to mitigate chronic heart failure by improving myocyte quality through preservation of mitochondrial integrity, prevention of hypertrophy and inhibition of apoptosis. In addition, cardiac progenitors engineered with Pim-1 possess enhanced regenerative potential, making Pim-1 an important player in future treatment of severe heart failure. PMID:23984924
Best, Thomas M; Caplan, Arnold; Coleman, Michael; Goodrich, Laurie; Hurd, Jason; Kaplan, Lee D; Noonan, Ben; Schoettle, Philip; Scott, Christopher; Stiene, Henry; Huard, Johnny
In August 2016, a group including sport medicine clinicians, researchers, and a bioethicist met in Vail, Colorado to discuss regenerative medicine and its potential role in youth sports injuries. There was consensus that a call to action is urgently needed to understand the current evidence base, the risks and rewards, and future directions of research and clinical practice for regenerative medicine therapies in youth sports. We present here a summary of our meeting, which was supported by the National Youth Sports Health and Safety Institute (NYSHSI), a partnership between the American College of Sports Medicine (ACSM) and Sanford Health. The group's goal is to educate practitioners and the public, and to pioneer a means of accumulating meaningful clinical data on regenerative medicine therapies in pediatric and adolescent athletes.
Teleost fish as a model system to study successful regeneration of the central nervous system.
Zupanc, Günther K H; Sîrbulescu, Ruxandra F
2013-01-01
Traumatic brain injury and spinal cord injury are devastating conditions that may result in death or long-term disability. A promising strategy for the development of effective cell replacement therapies involves the study of regeneration-competent organisms. Among this group, teleost fish are distinguished by their excellent potential to regenerate nervous tissue and to regain function after injury to the central nervous system. In this chapter, we summarize our current understanding of the cellular processes that mediate this regenerative potential, and we show that several of these processes are shared with the normal development of the intact central nervous system; we describe how the spontaneous self-repair of the teleostean central nervous system leads to functional recovery, at physiological and behavioral levels; we discuss the possible function of molecular factors associated with the degenerative and regenerative processes after injury; and, finally, we speculate on evolutionary aspects of adult neurogenesis and neuronal regeneration, and on how a better understanding of these aspects could catalyze the development of therapeutic strategies to overcome the regenerative limits of the mammalian CNS.
Regenerative Endodontics: Barriers and Strategies for Clinical Translation
Kim, Sahng G.; Zhou, Jian; Ye, Ling; Cho, Shoko; Suzuki, Takahiro; Fu, Susan Y.; Yang, Rujing; Zhou, Xuedong; Mao, Jeremy J.
2014-01-01
SYNOPSIS Despite a great deal of enthusiasm and effort, regenerative endodontics has encountered substantial challenges towards clinical translation. Recent adoption by the American Dental Association (ADA) of evoked pulp bleeding in immature permanent teeth is an important step for regenerative endodontics. However, there is no regenerative therapy for the majority of endodontic diseases. Simple recapitulation of cell therapy and tissue engineering strategies that are under development for other organ systems has not led to clinical translation in regeneration endodontics. Dental pulp stem cells may appear to be a priori choice for dental pulp regeneration. However, dental pulp stem cells may not be available in a patient who is in need of pulp regeneration. Even if dental pulp stem cells are available autologously or perhaps allogeneically, one must address a multitude of scientific, regulatory and commercialization barriers, and unless these issues are resolved, transplantation of dental pulp stem cells will remain a scientific exercise, rather than a clinical reality. Recent work using novel biomaterial scaffolds and growth factors that orchestrate the homing of host endogenous cells represents a departure from traditional cell transplantation approaches and may accelerate clinical translation. Given the functions and scale of dental pulp and dentin, regenerative endodontics is poised to become one of the early biological solutions in regenerative dental medicine. PMID:22835543
Nagai, Sumimasa; Ozawa, Keiya
2017-01-01
In Japan, the Pharmaceuticals and Medical Devices Law was passed in 2014. In this new law, regenerative medical products were defined, and a conditional and term-limited approval system only for regenerative medical products was instituted. Therefore, regenerative medical products can be approved based on phase I and/or II trials. Gene therapy and adoptive cellular therapy are categorized as regenerative medical products. This law is intended for registration trials for marketing authorization. The Act on the Safety of Regenerative Medicine was also implemented in 2014. This act is intended for clinical research and medical practice involving processed cells other than registration trials. Under this act, a review of plans on medical treatments or clinical studies by a certified committee and submission of the plans to the Ministry of Health, Labour and Welfare (MHLW) are mandatory. The MHLW instituted the SAKIGAKE (meaning a pioneer or forerunner in Japanese) designation system in 2015. This designation is similar to the breakthrough therapy designation in the US and PRIME in the EU. In addition, the MHLW started the "Project for Enhanced Practical Application of Innovative Drugs, Medical Devices and Regenerative Medical Products" to promote personnel exchange and cooperation in writing of guidelines on the evaluation of innovative medical products between the Pharmaceuticals and Medical Devices Agency and academia. Some new guidelines regarding gene and cellular therapy were published. In this review, we comprehensively described these complicated regulations and problems to be solved in order to facilitate global readers' understanding of Japanese regulatory frameworks. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Baseline Testing of the Club Car Carryall With Asymmetric Ultracapacitors
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.
2003-01-01
The NASA John H. Glenn Research Center initiated baseline testing of the Club Car Carryall with asymmetric ultracapacitors as a way to reduce pollution in industrial settings, reduce fossil fuel consumption, and reduce operating costs for transportation systems. The Club Car Carryall provides an inexpensive approach to advance the state of the art in electric vehicle technology in a practical application. The project transfers space technology to terrestrial use via non-traditional partners, and provides power system data valuable for future space applications. The work was done under the Hybrid Power Management (HPM) Program, which includes the Hybrid Electric Transit Bus (HETB). The Carryall is a state of the art, ground up, electric utility vehicle. A unique aspect of the project was the use of a state of the art, long life ultracapacitor energy storage system. Innovative features, such as regenerative braking through ultracapacitor energy storage, are planned. Regenerative braking recovers much of the kinetic energy of the vehicle during deceleration. The Carryall was tested with the standard lead acid battery energy storage system, as well as with an asymmetric ultracapacitor energy storage system. The report concludes that the Carryall provides excellent performance, and that the implementation of asymmetric ultracapacitors in the power system can provide significant performance improvements.
Baseline Testing of the EV Global E-Bike SX
NASA Technical Reports Server (NTRS)
Eichenherg, Dennis J.; Kolacz, John S.; Tavernelli, Paul F.
2001-01-01
The NASA John H. Glenn Research Center initiated baseline testing of the EV Global E-Bike SX as an update of the state of the art in hybrid electric bicycles. The E-bike is seen as a way to reduce pollution in urban areas, reduce fossil fuel consumption, and reduce operating costs for transportation systems. The work was done under the Hybrid Power Management (HPM) Program, which includes the Hybrid Electric Transit Bus (HETB). The SX is a high performance, state of the art, ground up, hybrid electric bicycle. Unique features of the SX's 36 V power system include the use of an efficient, 400 W, electric hub motor, and a seven-speed derailleur system that permits operation as fully electric, fully pedal, or a combination of the two. Other innovative features, such as regenerative braking through ultracapacitor energy storage, are planned. Regenerative braking recovers much of the kinetic energy of the vehicle during deceleration. The E-Bike is an inexpensive approach to advance the state of the art in hybrid technology in a practical application. The project transfers space technology to terrestrial use via nontraditional partners, and provides power system data valuable for future space applications. A description of the SX, the results of performance testing, and future vehicle development plans are given in this report. The report concludes that the SX provides excellent performance, and that the implementation of ultracapacitors in the power system can provide significant performance improvements.
Regenerative endodontics: a true paradigm shift or a bandwagon about to be derailed?
Nazzal, H; Duggal, M S
2017-02-01
Regenerative endodontic techniques (RETs) have been hailed as a paradigm shift for the management of traumatised non-vital immature permanent anterior teeth. In this article the aim was to critically appraise the literature with regards to the outcome of regenerative endodontics on root development. Critical review of the literature where regenerative endodontic techniques have been used in the management of immature non-vital teeth with continuation of root development as the main outcome reported. Most studies published were in the form of case reports and series with very few randomised controlled trials with a high risk of bias. Continuation of root development following the use of RET has been shown to be unpredictable at best with lower success in those teeth losing vitality as a result of dental trauma. Despite the high success of regenerative endodontics in terms of periodontal healing including resolution of clinical and radiographic signs and symptoms of infection, continuation of root development remains an unpredictable outcome. The use of a blood clot as a scaffold in regenerative endodontics should be reviewed carefully as that might offer an environment for repair rather than regeneration. In addition, preservation of structures, such as Hertwig's epithelial root sheath, may have an important bearing on the success of this approach and should be further investigated.
A survey of attitude and opinions of endodontic residents towards regenerative endodontics
Utneja, Shivani; Nawal, Ruchika Roongta; Ansari, Mohammed Irfan; Talwar, Sangeeta; Verma, Mahesh
2013-01-01
Aim: The objective of this survey was to study the level of awareness, current state of knowledge and opinions towards regenerative endodontic treatments amongst the endodontic residents of India. Settings and Design: Questionnaire based survey was designed. Materials and Methods: After approval from the organizing committee of 26th Federation of Operative Dentistry of India and 19th Indian Endodontic Society National conference 2011, 200 copies of the questionnaire were circulated amongst the endodontic residents in conservative dentistry and endodontics at various colleges across the country about regenerative endodontic procedures. The survey included profile of the respondents and consisted of 23 questions about their knowledge, attitude and opinions regarding use of these procedures as part of future dental treatment. Results: The survey showed that half the participants (50.6%) had received continued education in stem cells and/or regenerative dental treatments. The majority of participants were of the opinion (86.6%) that regenerative therapy should be incorporated into dentistry, and most of them (88%) were willing to acquire training in learning this new treatment strategy. The results indicated that half of the participants (52.6%) were already using some type of regenerative therapy in their clinical practice; however, with a majority of these limited to use of membranes, scaffolds or bioactive materials. Conclusions: These results reflect that endodontic residents are optimistic about the use of regenerative endodontic procedures; however, a need for more research and training was felt. PMID:23956532
NASA/ASEE Summer Faculty Fellowship Program, 1990, Volume 1
NASA Technical Reports Server (NTRS)
Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)
1990-01-01
The 1990 Johnson Space Center (JSC) NASA/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston-University Park and JSC. A compilation of the final reports on the research projects are presented. The topics covered include: the Space Station; the Space Shuttle; exobiology; cell biology; culture techniques; control systems design; laser induced fluorescence; spacecraft reliability analysis; reduced gravity; biotechnology; microgravity applications; regenerative life support systems; imaging techniques; cardiovascular system; physiological effects; extravehicular mobility units; mathematical models; bioreactors; computerized simulation; microgravity simulation; and dynamic structural analysis.
Cell/tissue processing information system for regenerative medicine.
Iwayama, Daisuke; Yamato, Masayuki; Tsubokura, Tetsuya; Takahashi, Minoru; Okano, Teruo
2016-11-01
When conducting clinical studies of regenerative medicine, compliance to good manufacturing practice (GMP) is mandatory, and thus much time is needed for manufacturing and quality management. It is therefore desired to introduce the manufacturing execution system (MES), which is being adopted by factories manufacturing pharmaceutical products. Meanwhile, in manufacturing human cell/tissue processing autologous products, it is necessary to protect patients' personal information, prevent patients from being identified and obtain information for cell/tissue identification. We therefore considered it difficult to adopt conventional MES to regenerative medicine-related clinical trials, and so developed novel software for production/quality management to be used in cell-processing centres (CPCs), conforming to GMP. Since this system satisfies the requirements of regulations in Japan and the USA for electronic records and electronic signatures (ER/ES), the use of ER/ES has been allowed, and the risk of contamination resulting from the use of recording paper has been eliminated, thanks to paperless operations within the CPC. Moreover, to reduce the risk of mix-up and cross-contamination due to contact during production, we developed a touchless input device with built-in radio frequency identification (RFID) reader-writer devices and optical sensors. The use of this system reduced the time to prepare and issue manufacturing instructions by 50% or more, compared to the conventional handwritten system. The system contributes to producing more large-scale production and to reducing production costs for cell and tissue products in regenerative medicine. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.
Design of Nanostructured Biological Materials Through Self-Assembly of Peptides and Proteins
2002-01-01
of applications, including scaffolding for tissue repair in regenerative medicine, drug delivery and biological surface engineering. Tirrell and...colleagues [2] designed artificial proteins that undergo self-assembly to form hydrogels responsive to pH and other environmental changes. Ghadiri and...showed that other β-sheet peptide systems can also undergo self-assembly into regular nanofiber structures. Although they share no sequence
Caenorhabditis elegans in regenerative medicine: a simple model for a complex discipline.
Aitlhadj, Layla; Stürzenbaum, Stephen R
2014-06-01
Stem cell research is a major focus of regenerative medicine, which amalgamates diverse disciplines ranging from developmental cell biology to chemical and genetic therapy. Although embryonic stem cells have provided the foundation of stem cell therapy, they offer an in vitro study system that might not provide the best insight into mechanisms and behaviour of cells within living organisms. Caenorhabditis elegans is a well defined model organism with highly conserved cell development and signalling processes that specify cell fate. Its genetic amenability coupled with its chemical screening applicability make the nematode well suited as an in vivo system in which regenerative therapy and stem cell processes can be explored. Here, we describe some of the major advances in stem cell research from the worm's perspective. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Hoffman, David J.
2001-01-01
The relative importance of electrical power systems as compared with other spacecraft bus systems is examined. The quantified benefits of advanced space power architectures for NASA Earth Science, Space Science, and Human Exploration and Development of Space (HEDS) missions is then presented. Advanced space power technologies highlighted include high specific power solar arrays, regenerative fuel cells, Stirling radioisotope power sources, flywheel energy storage and attitude control, lithium ion polymer energy storage and advanced power management and distribution.
1989-06-01
regenerating optic nerve CNS - Central nervous system FCS - Fetal calf serum Galc - Galactocerebroside G AP - Glial fibriliary acidic protein NGF...nent confinment of the casualty to a wheel chair. Laceration in the upper spinal cord leads to paralysis of the four limbs and a cut in the optic...of microtiter plates in Dulbecco’s modified Eagle medium (DVIEM) containing 10% fetal calf serum (FCS). When the cells reached confluency the medium
Summary of Fuel Cell Programs at the NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Perez-Davis, Marla
2000-01-01
The objective of this program is to develop passive ancillary component technology to be teamed with a hydrogen-oxygen unitized regenerative fuel cell (URFC) stack to form a revolutionary new regenerative fuel cell energy (RFC) storage system for aerospace applications. Replacement of active RFC ancillary components with passive components minimizes parasitic power losses and allows the RFC to operate as a H2/O2 battery. The goal of this program is to demonstrate an integrated passive lkW URFC system.
Exploiting the Bioactive Properties of the Dentin-Pulp Complex in Regenerative Endodontics.
Smith, Anthony J; Duncan, Henry F; Diogenes, Anibal; Simon, Stephane; Cooper, Paul R
2016-01-01
The development of regenerative endodontic therapies offers exciting opportunities for future improvements in treatment outcomes. Advances in our understanding of regenerative events at the molecular and cellular levels are helping to underpin development of these therapies, although the various strategies differ in the translational challenges they pose. The identification of a variety of bioactive molecules, including growth factors, cytokines, chemokines, and matrix molecules, sequestered within dentin and dental pulp provides the opportunity to present key signaling molecules promoting reparative and regenerative events after injury. The protection of the biological activity of these molecules by mineral in dentin before their release allows a continuing supply of these molecules, while avoiding the short half-life and the non-human origin of exogenous molecules. The ready release of these bioactive molecules by the various tissue preparation agents, medicaments, and materials commonly used in endodontics highlights the opportunities for translational regenerative strategies exploiting these molecules with little change to existing clinical practice. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Stem cell bioprinting for applications in regenerative medicine.
Tricomi, Brad J; Dias, Andrew D; Corr, David T
2016-11-01
Many regenerative medicine applications seek to harness the biologic power of stem cells in architecturally complex scaffolds or microenvironments. Traditional tissue engineering methods cannot create such intricate structures, nor can they precisely control cellular position or spatial distribution. These limitations have spurred advances in the field of bioprinting, aimed to satisfy these structural and compositional demands. Bioprinting can be defined as the programmed deposition of cells or other biologics, often with accompanying biomaterials. In this concise review, we focus on recent advances in stem cell bioprinting, including performance, utility, and applications in regenerative medicine. More specifically, this review explores the capability of bioprinting to direct stem cell fate, engineer tissue(s), and create functional vascular networks. Furthermore, the unique challenges and concerns related to bioprinting living stem cells, such as viability and maintaining multi- or pluripotency, are discussed. The regenerative capacity of stem cells, when combined with the structural/compositional control afforded by bioprinting, provides a unique and powerful tool to address the complex demands of tissue engineering and regenerative medicine applications. © 2016 New York Academy of Sciences.
Current Therapeutic Strategies for Stem Cell-Based Cartilage Regeneration
Nam, Yoojun; Lee, Jennifer
2018-01-01
The process of cartilage destruction in the diarthrodial joint is progressive and irreversible. This destruction is extremely difficult to manage and frustrates researchers, clinicians, and patients. Patients often take medication to control their pain. Surgery is usually performed when pain becomes uncontrollable or joint function completely fails. There is an unmet clinical need for a regenerative strategy to treat cartilage defect without surgery due to the lack of a suitable regenerative strategy. Clinicians and scientists have tried to address this using stem cells, which have a regenerative potential in various tissues. Cartilage may be an ideal target for stem cell treatment because it has a notoriously poor regenerative potential. In this review, we describe past, present, and future strategies to regenerate cartilage in patients. Specifically, this review compares a surgical regenerative technique (microfracture) and cell therapy, cell therapy with and without a scaffold, and therapy with nonaggregated and aggregated cells. We also review the chondrogenic potential of cells according to their origin, including autologous chondrocytes, mesenchymal stem cells, and induced pluripotent stem cells. PMID:29765426
Alssat Development Status and Its Applications in Trade Studies
NASA Technical Reports Server (NTRS)
Yeh, H. Y. (Jannivine); Brown, Cheryl B.; Jeng, Frank F.; Lin, Chin H.; Ewert, Michael K.
2004-01-01
The development of the Advanced Life Support (ALS) Sizing Analysis Tool (ALSSAT) using Microsoft® Excel was initiated by the Crew and Thermal Systems Division (CTSD) of Johnson Space Center (JSC) in 1997 to support the ALS and Exploration Offices in Environmental Control and Life Support System (ECLSS) design and studies. It aids the user in performing detailed sizing of the ECLSS based on suggested default values or user inputs for different combinations of the ALS regenerative system technologies (Ref. 1, 2). This analysis tool will assist the user in performing ECLSS preliminary design and trade studies as well as system optimization efficiently and economically. Since ALSSAT's latest publication in ICES 2001 (Ref. 1) describing the development of ALSSAT with its Air Revitalization Subsystem (ARS), Water Management Subsystem (WMS), and Biomass Subsystem (Biomass) mass balance sheets, ALSSAT has been expanded to include mass balance and sizing models for the remaining three ALS subsystems, namely, the Solid Waste Management Subsystem (SWMS), the Food Management Subsystem (FMS), and the Thermal Control Subsystem (TCS). The external interfaces, including the Extravehicular Activities (EVA) and Human Accommodations (HA), were implemented into ALSSAT in 2002. The overall mass balance sheet, which integrates the six ALS subsystems and the external interfaces applicable to the ECLSS, was also developed. In 2003, ALSSAT was upgraded to include the consideration of redundancy and contingency options in the ECLSS, as well as more ALS regenerative technology selections. ALSSAT has been used for the Metric Calculation for FY02 and FY03 (Ref. 3). Several trade studies were conducted in 2003. The analytical results will be presented in this paper.
DuBuc, Timothy Q; Traylor-Knowles, Nikki; Martindale, Mark Q
2014-03-26
Wound healing is the first stage of a series of cellular events that are necessary to initiate a regenerative response. Defective wound healing can block regeneration even in animals with a high regenerative capacity. Understanding how signals generated during wound healing promote regeneration of lost structures is highly important, considering that virtually all animals have the ability to heal but many lack the ability to regenerate missing structures. Cnidarians are the phylogenetic sister taxa to bilaterians and are highly regenerative animals. To gain a greater understanding of how early animals generate a regenerative response, we examined the cellular and molecular components involved during wound healing in the anthozoan cnidarian Nematostella vectensis. Pharmacological inhibition of extracellular signal-regulated kinases (ERK) signaling blocks regeneration and wound healing in Nematostella. We characterized early and late wound healing events through genome-wide microarray analysis, quantitative PCR, and in situ hybridization to identify potential wound healing targets. We identified a number of genes directly related to the wound healing response in other animals (metalloproteinases, growth factors, transcription factors) and suggest that glycoproteins (mucins and uromodulin) play a key role in early wound healing events. This study also identified a novel cnidarian-specific gene, for a thiamine biosynthesis enzyme (vitamin B synthesis), that may have been incorporated into the genome by lateral gene transfer from bacteria and now functions during wound healing. Lastly, we suggest that ERK signaling is a shared element of the early wound response for animals with a high regenerative capacity. This research describes the temporal events involved during Nematostella wound healing, and provides a foundation for comparative analysis with other regenerative and non-regenerative species. We have shown that the same genes that heal puncture wounds are also activated after oral-aboral bisection, indicating a clear link with the initiation of regenerative healing. This study demonstrates the strength of using a forward approach (microarray) to characterize a developmental phenomenon (wound healing) at a phylogenetically important crossroad of animal evolution (cnidarian-bilaterian ancestor). Accumulation of data on the early wound healing events across numerous systems may provide clues as to why some animals have limited regenerative abilities.
2014-01-01
Background Wound healing is the first stage of a series of cellular events that are necessary to initiate a regenerative response. Defective wound healing can block regeneration even in animals with a high regenerative capacity. Understanding how signals generated during wound healing promote regeneration of lost structures is highly important, considering that virtually all animals have the ability to heal but many lack the ability to regenerate missing structures. Cnidarians are the phylogenetic sister taxa to bilaterians and are highly regenerative animals. To gain a greater understanding of how early animals generate a regenerative response, we examined the cellular and molecular components involved during wound healing in the anthozoan cnidarian Nematostella vectensis. Results Pharmacological inhibition of extracellular signal-regulated kinases (ERK) signaling blocks regeneration and wound healing in Nematostella. We characterized early and late wound healing events through genome-wide microarray analysis, quantitative PCR, and in situ hybridization to identify potential wound healing targets. We identified a number of genes directly related to the wound healing response in other animals (metalloproteinases, growth factors, transcription factors) and suggest that glycoproteins (mucins and uromodulin) play a key role in early wound healing events. This study also identified a novel cnidarian-specific gene, for a thiamine biosynthesis enzyme (vitamin B synthesis), that may have been incorporated into the genome by lateral gene transfer from bacteria and now functions during wound healing. Lastly, we suggest that ERK signaling is a shared element of the early wound response for animals with a high regenerative capacity. Conclusions This research describes the temporal events involved during Nematostella wound healing, and provides a foundation for comparative analysis with other regenerative and non-regenerative species. We have shown that the same genes that heal puncture wounds are also activated after oral-aboral bisection, indicating a clear link with the initiation of regenerative healing. This study demonstrates the strength of using a forward approach (microarray) to characterize a developmental phenomenon (wound healing) at a phylogenetically important crossroad of animal evolution (cnidarian-bilaterian ancestor). Accumulation of data on the early wound healing events across numerous systems may provide clues as to why some animals have limited regenerative abilities. PMID:24670243
Accelerating regenerative medicine: the Japanese experiment in ethics and regulation.
Lysaght, Tamra
2017-09-01
In 2014, the Japanese National Diet introduced new laws aimed at promoting the clinical translation of stem cells and regenerative medicine. The basic action of these laws is to allow the early introduction of regenerative medicine products into the Japanese market through an accelerated approval process, while providing patients with access to certain types of stem cell and cell-based therapies in the context of private clinical practice. While this framework appears to offer enormous opportunities for the translation of stem cell science, it raises ethical challenges that have not yet been fully explored. This paper critically analyzes this framework with respect to the prioritization of safety over clinical benefit, distributive justice and public trust in science and medicine. It is argued that the framework unfairly burdens patients and strained healthcare systems without any clear benefits, and may undermine the credibility of the regenerative medicine field as it emerges.
Immunosuppression-free transplantation reconsidered from a regenerative medicine perspective.
Orlando, Giuseppe
2012-02-01
Recent groundbreaking progress in regenerative medicine has shown its potential to meet the two major needs of solid organ transplantation, namely the achievement of an immunosuppression-free state (IFS) and the identification of a new, potentially inexhaustible source of organs. This review illustrates how regenerative medicine technology may contribute to the achievement of IFS. There are three possible strategies: organ bioengineering, immuno-isolation and thymus bioengineering. The goal of organ bioengineering is to manufacture organs ex vivo from autologous cells. Immuno-isolation technology implements strategies aiming to prevent recognition of nonself antigens by the host immune system. Thymus organoids have been bioengineered with scaffold-seeding methods to allow deletion of T-cell clones responsible for allograft rejection. Despite the several hurdles that must be overcome, regenerative medicine technologies offer alternative strategies aimed at establishing immediate, stable and durable IFS in solid organ graft recipients.
Design, clinical translation and immunological response of biomaterials in regenerative medicine
NASA Astrophysics Data System (ADS)
Sadtler, Kaitlyn; Singh, Anirudha; Wolf, Matthew T.; Wang, Xiaokun; Pardoll, Drew M.; Elisseeff, Jennifer H.
2016-07-01
The field of regenerative medicine aims to replace tissues lost as a consequence of disease, trauma or congenital abnormalities. Biomaterials serve as scaffolds for regenerative medicine to deliver cells, provide biological signals and physical support, and mobilize endogenous cells to repair tissues. Sophisticated chemistries are used to synthesize materials that mimic and modulate native tissue microenvironments, to replace form and to elucidate structure-function relationships of cell-material interactions. The therapeutic relevance of these biomaterial properties can only be studied after clinical translation, whereby key parameters for efficacy can be defined and then used for future design. In this Review, we present the development and translation of biomaterials for two tissue engineering targets, cartilage and cornea, both of which lack the ability to self-repair. Finally, looking to the future, we discuss the role of the immune system in regeneration and the potential for biomaterial scaffolds to modulate immune signalling to create a pro-regenerative environment.
Sato, Yoji
2014-01-01
In 2013, the Japanese Diet passed the Regenerative Medicine Promotion Act and the revisions to the Pharmaceutical Affairs Act, which was also renamed as the Therapeutic Products Act (TPA). One of the aims of the new/revised Acts is to promote the development and translation of and access to regenerative/cellular therapies. In the TPA, a product derived from processing cells is categorized as a subgroup of "regenerative medicine, cellular therapy and gene therapy products" (RCGPs), products distinct from pharmaceuticals and medical devices, allowing RCGPs to obtain a conditional and time- limited marketing authorization much earlier than that under the conventional system. To foster not only RCGPs, but also innovative pharmaceuticals and medical devices, the Ministry of Health, Labour and Welfare recently launched Translational Research Program for Innovative Pharmaceuticals, Medical Devices and RCGPs. This mini-review introduces contributions of the National Institute of Health Sciences (NIHS) to research projects on RCGPs in the Program.
High power Yb:CALGO ultrafast regenerative amplifier for industrial application
NASA Astrophysics Data System (ADS)
Caracciolo, E.; Guandalini, A.; Pirzio, F.; Kemnitzer, M.; Kienle, F.; Agnesi, A.; Aus der Au, J.
2017-02-01
We present a high-power, single-crystal based, Yb:CALGO regenerative amplifier. The system delivers more than 50 W output power in continuous-wave regime, with diffraction limited beam quality. In Q-switching regime the spectrum is centered at 1043 nm and is 11 nm wide. In regenerative amplification experiments we achieved 34 W at 500 kHz with 12.7 nm FWHM wide spectra centered at 1044 nm seeding with a broadly tunable, single-prism SESAM mode-locked Yb:CALGO laser providing 9 nm wide spectra at 1049 nm. Pulse duration after compression was 140 fs, with excellent beam quality (M2 < 1.25).
Power system requirements and definition for lunar and Mars outposts
NASA Technical Reports Server (NTRS)
Petri, D. A.; Cataldo, R. L.; Bozek, J. M.
1990-01-01
Candidate power systems being considered for outpost facilities (stationary power systems) and vehicles (mobile systems) are discussed, including solar, chemical, isotopic, and reactor. The current power strategy was an initial outpost power system composed of photovoltaic arrays for daytime energy needs and regenerative fuel cells for power during the long lunar night. As day and night power demands grow, the outpost transitions to nuclear-based power generation, using thermoelectric conversion initially and evolving to a dynamic conversion system. With this concept as a guideline, a set of requirements has been established, and a reference definition of candidate power systems meeting these requirements has been identified.
Bioactive Molecule Delivery Systems for Dentin-pulp Tissue Engineering.
Shrestha, Suja; Kishen, Anil
2017-05-01
Regenerative endodontic procedures use bioactive molecules (BMs), which are active signaling molecules that initiate and maintain cell responses and interactions. When applied in a bolus form, they may undergo rapid diffusion and denaturation resulting in failure to induce the desired effects on target cells. The controlled release of BMs from a biomaterial carrier is expected to enhance and accelerate functional tissue engineering during regenerative endodontic procedures. This narrative review presents a comprehensive review of different polymeric BM release strategies with relevance to dentin-pulp engineering. Carrier systems designed to allow the preprogrammed release of BMs in a spatial- and temporal-controlled manner would aid in mimicking the natural wound healing process while overcoming some of the challenges faced in clinical translation of regenerative endodontic procedures. Spatial- and temporal-controlled BM release systems have become an exciting option in dentin-pulp tissue engineering; nonetheless, further validation of this concept and knowledge is required for their potential clinical translation. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Recent Advances in Biohybrid Materials for Tissue Engineering and Regenerative Medicine
NASA Astrophysics Data System (ADS)
Wan, Ying; Li, Xing; Wang, Shenqi
2016-07-01
Biohybrid materials play an important role in tissue engineering, artificial organs and regenerative medicine due to their regulation of cell function through specific cell-matrix interactions involving integrins, mostly those of fibroblasts and myofibroblasts, and ligands on the matrix surface, which have become current research focus. In this paper, recent progress of biohybrid materials, mainly including main types of biohybrid materials, rapid prototype (RP) technique for construction of 3D biohybrid materials, was reviewed in detail; moreover, their applications in tissue engineering, artificial organs and regenerative medicine were also reviewed in detail. At last, we address the challenges biohybrid materials may face.
Induced pluripotent stem cells for regenerative medicine.
Hirschi, Karen K; Li, Song; Roy, Krishnendu
2014-07-11
With the discovery of induced pluripotent stem (iPS) cells, it is now possible to convert differentiated somatic cells into multipotent stem cells that have the capacity to generate all cell types of adult tissues. Thus, there is a wide variety of applications for this technology, including regenerative medicine, in vitro disease modeling, and drug screening/discovery. Although biological and biochemical techniques have been well established for cell reprogramming, bioengineering technologies offer novel tools for the reprogramming, expansion, isolation, and differentiation of iPS cells. In this article, we review these bioengineering approaches for the derivation and manipulation of iPS cells and focus on their relevance to regenerative medicine.
WIDE BAND REGENERATIVE FREQUENCY DIVIDER AND MULTIPLIER
Laine, E.F.
1959-11-17
A regenerative frequency divider and multiplier having wide band input characteristics is presented. The circuit produces output oscillations having frequencies related by a fixed ratio to input oscillations over a wide band of frequencies. In accomplishing this end, the divider-multiplier includes a wide band input circuit coupled by mixer means to a wide band output circuit having a pass band related by a fixed ratio to that of the input circuit. A regenerative feedback circuit derives a fixed frequency ratio feedback signal from the output circuit and applies same to the mixer means in proper phase relation to sustain fixed frequency ratio oscillations in the output circuit.
Regenerative Fuel Cell System Testbed Program for Government and Commercial Applications
NASA Technical Reports Server (NTRS)
1996-01-01
NASA Lewis Research Center's Electrochemical Technology Branch has led a multiagency effort to design, fabricate, and operate a regenerative fuel cell (RFC) system testbed. Key objectives of this program are to evaluate, characterize, and demonstrate fully integrated RFC's for space, military, and commercial applications. The Lewis-led team is implementing the program through a unique international coalition that encompasses both Government and industry participants. Construction of the 25-kW RFC testbed at the NASA facility at Edwards Air Force Base was completed in January 1995, and the system has been operational since that time.
Regeneratively Cooled Liquid Oxygen/Methane Technology Development Between NASA MSFC and PWR
NASA Technical Reports Server (NTRS)
Robinson, Joel W.; Greene, Christopher B.; Stout, Jeffrey B.
2012-01-01
The National Aeronautics & Space Administration (NASA) has identified Liquid Oxygen (LOX)/Liquid Methane (LCH4) as a potential propellant combination for future space vehicles based upon exploration studies. The technology is estimated to have higher performance and lower overall systems mass compared to existing hypergolic propulsion systems. NASA-Marshall Space Flight Center (MSFC) in concert with industry partner Pratt & Whitney Rocketdyne (PWR) utilized a Space Act Agreement to test an oxygen/methane engine system in the Summer of 2010. PWR provided a 5,500 lbf (24,465 N) LOX/LCH4 regenerative cycle engine to demonstrate advanced thrust chamber assembly hardware and to evaluate the performance characteristics of the system. The chamber designs offered alternatives to traditional regenerative engine designs with improvements in cost and/or performance. MSFC provided the test stand, consumables and test personnel. The hot fire testing explored the effective cooling of one of the thrust chamber designs along with determining the combustion efficiency with variations of pressure and mixture ratio. The paper will summarize the status of these efforts.
Wray, Lindsay S; Rnjak-Kovacina, Jelena; Mandal, Biman B; Schmidt, Daniel F; Gil, Eun Seok; Kaplan, David L
2012-12-01
In the field of tissue engineering and regenerative medicine there is significant unmet need for critically-sized, fully degradable biomaterial scaffold systems with tunable properties for optimizing tissue formation in vitro and tissue regeneration in vivo. To address this need, we have developed a silk-based scaffold platform that has tunable material properties, including localized and bioactive functionalization, degradation rate, and mechanical properties and that provides arrays of linear hollow channels for delivery of oxygen and nutrients throughout the scaffold bulk. The scaffolds can be assembled with dimensions that range from millimeters to centimeters, addressing the need for a critically-sized platform for tissue formation. We demonstrate that the hollow channel arrays support localized and confluent endothelialization. This new platform offers a unique and versatile tool for engineering 'tailored' scaffolds for a range of tissue engineering and regenerative medicine needs. Copyright © 2012 Elsevier Ltd. All rights reserved.
Regenerative Fuel Cell Test Rig Completed and Operational at Glenn Research Center
NASA Technical Reports Server (NTRS)
Bents, David J.
2004-01-01
The NASA Glenn Research Center has completed construction of its first closed-cycle hydrogen-oxygen regenerative fuel cell (RFC). The RFC is an electrochemical system that collects and stores solar energy during the day then releases that energy at night, thus making the Sun's energy available all 24 hours. It consists of a dedicated hydrogen-oxygen fuel cell stack and an electrolyzer stack, the interconnecting plumbing and valves, cooling pumps, water transfer pumps, gas recirculation pumps, phase separators, storage tanks for oxygen (O2) and hydrogen (H2), heat exchangers, isolation valves, pressure regulators, nitrogen purge provisions, instrumentation, and other components. It includes all the equipment required to (1) absorb electrical power from an outside source and store it as pressurized hydrogen and oxygen and (2) make electrical power from the stored gases, saving the product water for reuse during the next cycle.
Macroenvironmental regulation of hair cycling and collective regenerative behavior.
Plikus, Maksim V; Chuong, Cheng-Ming
2014-01-01
The hair follicle (HF) regeneration paradigm provides a unique opportunity for studying the collective behavior of stem cells in living animals. Activation of HF stem cells depends on the core inhibitory BMP and activating WNT signals operating within the HF microenvironment. Additionally, HFs receive multilayered signaling inputs from the extrafollicular macroenvironment, which includes dermis, adipocytes, neighboring HFs, hormones, and external stimuli. These activators/inhibitors are integrated across multiple stem-cell niches to produce dynamic hair growth patterns. Because of their pigmentation, these patterns can be easily studied on live shaved animals. Comparing to autonomous regeneration of one HF, populations of HFs display coupled decision making, allowing for more robust and adaptable regenerative behavior to occur collectively. The generic cellular automata model used to simulate coordinated HF cycling here can be extended to study population-level behavior of other complex biological systems made of cycling elements.
Macroenvironmental Regulation of Hair Cycling and Collective Regenerative Behavior
Plikus, Maksim V.; Chuong, Cheng-Ming
2014-01-01
The hair follicle (HF) regeneration paradigm provides a unique opportunity for studying the collective behavior of stem cells in living animals. Activation of HF stem cells depends on the core inhibitory BMP and activating WNT signals operating within the HF microenvironment. Additionally, HFs receive multilayered signaling inputs from the extrafollicular macroenvironment, which includes dermis, adipocytes, neighboring HFs, hormones, and external stimuli. These activators/inhibitors are integrated across multiple stem-cell niches to produce dynamic hair growth patterns. Because of their pigmentation, these patterns can be easily studied on live shaved animals. Comparing to autonomous regeneration of one HF, populations of HFs display coupled decision making, allowing for more robust and adaptable regenerative behavior to occur collectively. The generic cellular automata model used to simulate coordinated HF cycling here can be extended to study population-level behavior of other complex biological systems made of cycling elements. PMID:24384813
The planarian flatworm: an in vivo model for stem cell biology and nervous system regeneration
Gentile, Luca; Cebrià, Francesc; Bartscherer, Kerstin
2011-01-01
Planarian flatworms are an exception among bilaterians in that they possess a large pool of adult stem cells that enables them to promptly regenerate any part of their body, including the brain. Although known for two centuries for their remarkable regenerative capabilities, planarians have only recently emerged as an attractive model for studying regeneration and stem cell biology. This revival is due in part to the availability of a sequenced genome and the development of new technologies, such as RNA interference and next-generation sequencing, which facilitate studies of planarian regeneration at the molecular level. Here, we highlight why planarians are an exciting tool in the study of regeneration and its underlying stem cell biology in vivo, and discuss the potential promises and current limitations of this model organism for stem cell research and regenerative medicine. PMID:21135057
Kim, J H; Park, H Y; Jung, M; Choi, E H
2013-01-01
Regenerative therapy is a relatively new dermatological field. However, the currently available topical agents are unsuitable for transdermal drug delivery because of their high molecular weight and low liposolubility. Therefore, a more effective transdermal drug delivery system is needed in order to achieve better therapeutic effects with these agents. A recently introduced microneedle therapy system (MTS), which is a mechanical method for making minute holes in the skin, improves transdermal delivery. A recently developed refinement of this technique, the automicroneedle therapy system (AMTS), has several advantages over the traditional MTS, as it can achieve consistent results because of its automatic punching method. To evaluate the cutaneous effects of an AMTS in combination with topical tretinoin. Twelve hairless mice were divided into two groups, and the dorsal skin of each mouse was marked down the centre. The first group was treated with the AMTS plus 0.025% tretinoin on one side of the back, and with 0.025% tretinoin only on the other side. The other group was treated with the AMTS and vehicle on one side, while the other side was left untreated. The effects on cutaneous regeneration and the treatment side-effects were evaluated by functional assessment including transepidermal water loss and skin hydration, and by histopathology including epidermal and dermal thickness, and density of collagen fibres. Western blotting and real-time reverse transcriptase PCR were also performed to determine protein and mRNA expression of procollagen type 1 and matrix metalloproteinase-13. Compared with the individual treatments (the AMTS alone or tretinoin alone) the combination of tretinoin plus the AMTS produced greater dermal regeneration as a result of increased proliferation of collagen fibres. This combination therapy did not result in treatment-related adverse effects. An AMTS combined with topical tretinoin is a safe and effective method for skin regeneration, which works by increasing collagen production, and might be a new therapeutic option for regenerative therapy. © The Author(s). CED © 2012 British Association of Dermatologists.
Chueh, Shan-Chang; Lin, Sung-Jan; Chen, Chih-Chiang; Lei, Mingxing; Wang, Ling Mei; Widelitz, Randall B.; Hughes, Michael W.; Jiang, Ting-Xing; Chuong, Cheng Ming
2013-01-01
Introduction There are major new advancements in the fields of stem cell biology, developmental biology, regenerative hair cycling, and tissue engineering. The time is ripe to integrate, translate and apply these findings to tissue engineering and regenerative medicine. Readers will learn about new progress in cellular and molecular aspects of hair follicle development, regeneration and potential therapeutic opportunities these advances may offer. Areas covered Here we use hair follicle formation to illustrate this progress and to identify targets for potential strategies in therapeutics. Hair regeneration is discussed in four different categories. (1) Intra-follicle regeneration (or renewal) is the basic production of hair fibers from hair stem cells and dermal papillae in existing follicles. (2) Chimeric follicles via epithelial-mesenchymal recombination to identify stem cells and signaling centers. (3) Extra-follicular factors including local dermal and systemic factors can modulate the regenerative behavior of hair follicles, and may be relatively easy therapeutic targets. (4) Follicular neogenesis means the de novo formation of new follicles. In addition, scientists are working to engineer hair follicles, which require hair forming competent epidermal cells and hair inducing dermal cells. Expert opinion Ideally self-organizing processes similar to those occurring during embryonic development should be elicited with some help from biomaterials. PMID:23289545
NASA Astrophysics Data System (ADS)
Zhang, Junzhi; Li, Yutong; Lv, Chen; Gou, Jinfang; Yuan, Ye
2017-03-01
The flexibility of the electrified powertrain system elicits a negative effect upon the cooperative control performance between regenerative and hydraulic braking and the active damping control performance. Meanwhile, the connections among sensors, controllers, and actuators are realized via network communication, i.e., controller area network (CAN), that introduces time-varying delays and deteriorates the control performances of the closed-loop control systems. As such, the goal of this paper is to develop a control algorithm to cope with all these challenges. To this end, the models of the stochastic network induced time-varying delays, based on a real in-vehicle network topology and on a flexible electrified powertrain, were firstly built. In order to further enhance the control performances of active damping and cooperative control of regenerative and hydraulic braking, the time-varying delays compensation algorithm for the electrified powertrain active damping during regenerative braking was developed based on a predictive scheme. The augmented system is constructed and the H∞ performance is analyzed. Based on this analysis, the control gains are derived by solving a nonlinear minimization problem. The simulations and hardware-in-loop (HIL) tests were carried out to validate the effectiveness of the developed algorithm. The test results show that the active damping and cooperative control performances are enhanced significantly.
Regenerative medicine for the respiratory system: distant future or tomorrow's treatment?
Brouwer, Katrien M; Hoogenkamp, Henk R; Daamen, Willeke F; van Kuppevelt, Toin H
2013-03-01
Regenerative medicine (RM) is a new field of biomedical science that focuses on the regeneration of tissues and organs and the restoration of organ function. Although regeneration of organ systems such as bone, cartilage, and heart has attracted intense scientific research over recent decades, RM research regarding the respiratory system, including the trachea, the lung proper, and the diaphragm, has lagged behind. However, the last 5 years have witnessed novel approaches and initial clinical applications of tissue-engineered constructs to restore organ structure and function. In this regard, this article briefly addresses the basics of RM and introduces the key elements necessary for tissue regeneration, including (stem) cells, biomaterials, and extracellular matrices. In addition, the current status of the (clinical) application of RM to the respiratory system is discussed, and bottlenecks and recent approaches are identified. For the trachea, several initial clinical studies have been reported and have used various combinations of cells and scaffolds. Although promising, the methods used in these studies require optimization and standardization. For the lung proper, only (stem) cell-based approaches have been probed clinically, but it is becoming apparent that combinations of cells and scaffolds are required to successfully restore the lung's architecture and function. In the case of the diaphragm, clinical applications have focused on the use of decellularized scaffolds, but novel scaffolds, with or without cells, are clearly needed for true regeneration of diaphragmatic tissue. We conclude that respiratory treatment with RM will not be realized tomorrow, but its future looks promising.
NASA Technical Reports Server (NTRS)
Yeh, H. Y. Jannivine; Brown, Cheryl B.; Jeng, Frank F.; Anderson, Molly; Ewert, Michael K.
2009-01-01
The development of the Advanced Life Support (ALS) Sizing Analysis Tool (ALSSAT) using Microsoft(Registered TradeMark) Excel was initiated by the Crew and Thermal Systems Division (CTSD) of Johnson Space Center (JSC) in 1997 to support the ALS and Exploration Offices in Environmental Control and Life Support System (ECLSS) design and studies. It aids the user in performing detailed sizing of the ECLSS for different combinations of the Exploration Life support (ELS) regenerative system technologies. This analysis tool will assist the user in performing ECLSS preliminary design and trade studies as well as system optimization efficiently and economically. The latest ALSSAT related publication in ICES 2004 detailed ALSSAT s development status including the completion of all six ELS Subsystems (ELSS), namely, the Air Management Subsystem, the Biomass Subsystem, the Food Management Subsystem, the Solid Waste Management Subsystem, the Water Management Subsystem, and the Thermal Control Subsystem and two external interfaces, including the Extravehicular Activity and the Human Accommodations. Since 2004, many more regenerative technologies in the ELSS were implemented into ALSSAT. ALSSAT has also been used for the ELS Research and Technology Development Metric Calculation for FY02 thru FY06. It was also used to conduct the Lunar Outpost Metric calculation for FY08 and was integrated as part of a Habitat Model developed at Langley Research Center to support the Constellation program. This paper will give an update on the analysis tool s current development status as well as present the analytical results of one of the trade studies that was performed.
Staubli, Noémie; Schmidt, Julia C; Buset, Sabrina L; Gutekunst, Claudia J; Rodriguez, Fabiola R; Schmidlin, Patrick R; Walter, Clemens
2018-01-01
The objective is to compare the amount and content of publications regarding traditional or regenerative periodontal surgery in the years 1982/1983 and 2012/2013 in two leading periodontal journals of North America and Europe. The search was carried out in the Journal of Periodontology and Journal of Clinical Periodontology. Four reviewers screened the articles and allocated the topics with respect to periodontal surgery. The distribution of articles with respect to traditional or regenerative periodontal surgery was then compared between the journals and the respective time periods. Out of 1084 screened articles, 145 articles were included. Articles with periodontal surgery content amounted to 18% for the first time period and to 11% for the second time period. In the years 1982/1983, 7% of articles in the Journal of Periodontology and 8% in the Journal of Clinical Periodontology referred to traditional periodontal surgery, while 8% (Journal of Periodontology) and 5% (Journal of Clinical Periodontology) examined regenerative periodontal surgery. The distribution changed 30 years later, with 1% (Journal of Periodontology) and 3% (Journal of Clinical Periodontology) traditional periodontal surgery and 7% and 6% regenerative periodontal surgery content. While the clinical need for traditional periodontal surgery remained, research in this important field decreased. Publications rather tended to focus on adjunctive regenerative measures. Periodontal surgery with adjunctive regenerative measures is an established and well-documented clinical procedure. However, with respect to the dominance of horizontal bone loss in periodontally diseased patients, there is a need for ongoing research with focus on traditional periodontal surgery.
Hydrogen-Oxygen PEM Regenerative Fuel Cell at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Bents, David J.
2004-01-01
The NASA Glenn Research Center has constructed a closed-cycle hydrogen-oxygen PEM regenerative fuel cell (RFC) to explore its potential use as an energy storage device for a high altitude solar electric aircraft. Built up over the last 2 years from specialized hardware and off the shelf components the Glenn RFC is a complete "brassboard" energy storage system which includes all the equipment required to (1) absorb electrical power from an outside source and store it as pressurized hydrogen and oxygen and (2) make electrical power from the stored gases, saving the product water for re-use during the next cycle. It consists of a dedicated hydrogen-oxygen fuel cell stack and an electrolyzer stack, the interconnecting plumbing and valves, cooling pumps, water transfer pumps, gas recirculation pumps, phase separators, storage tanks for oxygen (O2) and hydrogen (H2), heat exchangers, isolation valves, pressure regulators, nitrogen purge provisions, instrumentation, and other components. It specific developmental functions include: (1) Test fuel cells and fuel cell components under repeated closed-cycle operation (nothing escapes; everything is used over and over again). (2) Simulate diurnal charge-discharge cycles (3) Observe long-term system performance and identify degradation and loss mechanisms. (4) Develop safe and convenient operation and control strategies leading to the successful development of mission-capable, flight-weight RFC's.
Classification of anemia for gastroenterologists
Moreno Chulilla, Jose Antonio; Romero Colás, Maria Soledad; Gutiérrez Martín, Martín
2009-01-01
Most anemia is related to the digestive system by dietary deficiency, malabsorption, or chronic bleeding. We review the World Health Organization definition of anemia, its morphological classification (microcytic, macrocytic and normocytic) and pathogenic classification (regenerative and hypo regenerative), and integration of these classifications. Interpretation of laboratory tests is included, from the simplest (blood count, routine biochemistry) to the more specific (iron metabolism, vitamin B12, folic acid, reticulocytes, erythropoietin, bone marrow examination and Schilling test). In the text and various algorithms, we propose a hierarchical and logical way to reach a diagnosis as quickly as possible, by properly managing the medical interview, physical examination, appropriate laboratory tests, bone marrow examination, and other complementary tests. The prevalence is emphasized in all sections so that the gastroenterologist can direct the diagnosis to the most common diseases, although the tables also include rare diseases. Digestive diseases potentially causing anemia have been studied in preference, but other causes of anemia have been included in the text and tables. Primitive hematological diseases that cause anemia are only listed, but are not discussed in depth. The last section is dedicated to simplifying all items discussed above, using practical rules to guide diagnosis and medical care with the greatest economy of resources and time. PMID:19787825
NASA Technical Reports Server (NTRS)
Malone, G. A.; Vecchies, L.; Wood, R.
1974-01-01
The capabilities and limitations of nondestructive evaluation methods were studied to detect and locate bond deficiencies in regeneratively cooled thrust chambers for rocket engines. Flat test panels and a cylinder were produced to simulate regeneratively cooled thrust chamber walls. Planned defects with various bond integrities were produced in the panels to evaluate the sensitivity, accuracy, and limitations of nondestructive methods to define and locate bond anomalies. Holography, acoustic emission, and ultrasonic scan were found to yield sufficient data to discern bond quality when used in combination and in selected sequences. Bonding techniques included electroforming and brazing. Materials of construction included electroformed nickel bonded to Nickel 200 and OFHC copper, electroformed copper bonded to OFHC copper, and 300 series stainless steel brazed to OFHC copper. Variations in outer wall strength, wall thickness, and defect size were evaluated for nondestructive test response.
Electrospinning: An enabling nanotechnology platform for drug delivery and regenerative medicine.
Chen, Shixuan; Li, Ruiquan; Li, Xiaoran; Xie, Jingwei
2018-05-02
Electrospinning provides an enabling nanotechnology platform for generating a rich variety of novel structured materials in many biomedical applications including drug delivery, biosensing, tissue engineering, and regenerative medicine. In this review article, we begin with a thorough discussion on the method of producing 1D, 2D, and 3D electrospun nanofiber materials. In particular, we emphasize on how the 3D printing technology can contribute to the improvement of traditional electrospinning technology for the fabrication of 3D electrospun nanofiber materials as drug delivery devices/implants, scaffolds or living tissue constructs. We then highlight several notable examples of electrospun nanofiber materials in specific biomedical applications including cancer therapy, guiding cellular responses, engineering in vitro 3D tissue models, and tissue regeneration. Finally, we finish with conclusions and future perspectives of electrospun nanofiber materials for drug delivery and regenerative medicine. Copyright © 2018 Elsevier B.V. All rights reserved.
Comparative energy storage assessment item
NASA Astrophysics Data System (ADS)
Giudici, B.
1984-11-01
This analysis, a Space Station application study, rediscovered Integrated Power and Attitude Control (IPAC) and found the approach to have lower initial and resupply weight and lower initial and resupply cost than either battery/CMG or regenerative fuel cell/CMG systems. Preliminary trade studies were performed comparing (IPAC) with equivalent independent electrochemical power and control moment gyro (CMG) control approaches. Technologies considered to have adequate status for an initial Space Station were: (1) nickel cadmium batteries (NiCd batteries), (2) regenerative fuel cells (RFC), (3) Skylab class CMG's, and (4) state of the art IPAC using metal wheels and ball bearing suspension (SOA-IPAC). An advanced IPAC (ADV-IPAC) employing composite rotor material and magnetic suspension was included in the comparisons to illustrate a possible range of performance and cost of inertial systems. The candidates were compared on the basis of initial weight and cost and on the basis of resupply weight and cost for a 15 year mission. Thus, SOA-IPAC would appear to be an attractive approach for the initial Space Station and possible technology improvements would further the appeal for the initial and/or growth Space Station.
Cord blood in regenerative medicine: do we need immune suppression?
Riordan, Neil H; Chan, Kyle; Marleau, Annette M; Ichim, Thomas E
2007-01-01
Cord blood is currently used as an alternative to bone marrow as a source of stem cells for hematopoietic reconstitution after ablation. It is also under intense preclinical investigation for a variety of indications ranging from stroke, to limb ischemia, to myocardial regeneration. A major drawback in the current use of cord blood is that substantial morbidity and mortality are associated with pre-transplant ablation of the recipient hematopoietic system. Here we raise the possibility that due to unique immunological properties of both the stem cell and non-stem cell components of cord blood, it may be possible to utilize allogeneic cells for regenerative applications without needing to fully compromise the recipient immune system. Issues raised will include: graft versus host potential, the immunogeneicity of the cord blood graft, and the parallels between cord blood transplantation and fetal to maternal trafficking. The previous use of unmatched cord blood in absence of any immune ablation, as well as potential steps for widespread clinical implementation of allogeneic cord blood grafts will also be discussed. PMID:17261200
A review of gradient stiffness hydrogels used in tissue engineering and regenerative medicine.
Xia, Tingting; Liu, Wanqian; Yang, Li
2017-06-01
Substrate stiffness is known to impact characteristics including cell differentiation, proliferation, migration and apoptosis. Hydrogels are polymeric materials distinguished by high water content and diverse physical properties. Gradient stiffness hydrogels are designed by the need to develop biologically friendly materials as extracellular matrix (ECM) alternatives to replace the separated and narrow-ranged hydrogel substrates. Important new discoveries in cell behaviors have been realized with model gradient stiffness hydrogel systems from the two-dimensional (2D) to three-dimensional (3D) scale. Basic and clinical applications for gradient stiffness hydrogels in tissue engineering and regenerative medicine continue to drive the development of stiffness and structure varied hydrogels. Given the importance of gradient stiffness hydrogels in basic research and biomedical applications, there is a clear need for systems for gradient stiffness hydrogel design strategies and their applications. This review will highlight past work in the field of gradient stiffness hydrogels fabrication methods, mechanical property test, applications as well as areas for future study. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1799-1812, 2017. © 2017 Wiley Periodicals, Inc.
Refurbishment of one-person regenerative air revitalization system
NASA Technical Reports Server (NTRS)
Powell, Ferolyn T.
1989-01-01
Regenerative processes for the revitalization of spacecraft atmospheres and reclamation of waste waters are essential for making long-term manned space missions a reality. Processes studied include: static feed water electrolysis for oxygen generation, Bosch carbon dioxide reduction, electrochemical carbon dioxide concentration, vapor compression distillation water recovery, and iodine monitoring. The objectives were to: provide engineering support to Marshall Space Flight Center personnel throughout all phases of the test program, e.g., planning through data analysis; fabricate, test, and deliver to Marshall Space Flight Center an electrochemical carbon dioxide module and test stand; fabricate and deliver an iodine monitor; evaluate the electrochemical carbon dioxide concentrator subsystem configuration and its ability to ensure safe utilization of hydrogen gas; evaluate techniques for recovering oxygen from a product oxygen and carbon dioxide stream; and evaluate the performance of an electrochemical carbon dioxide concentrator module to operate without hydrogen as a method of safe haven operation. Each of the tasks were related in that all focused on providing a better understanding of the function, operation, and performance of developmental pieces of environmental control and life support system hardware.
Comparative energy storage assessment item
NASA Technical Reports Server (NTRS)
Giudici, B.
1984-01-01
This analysis, a Space Station application study, rediscovered Integrated Power and Attitude Control (IPAC) and found the approach to have lower initial and resupply weight and lower initial and resupply cost than either battery/CMG or regenerative fuel cell/CMG systems. Preliminary trade studies were performed comparing (IPAC) with equivalent independent electrochemical power and control moment gyro (CMG) control approaches. Technologies considered to have adequate status for an initial Space Station were: (1) nickel cadmium batteries (NiCd batteries), (2) regenerative fuel cells (RFC), (3) Skylab class CMG's, and (4) state of the art IPAC using metal wheels and ball bearing suspension (SOA-IPAC). An advanced IPAC (ADV-IPAC) employing composite rotor material and magnetic suspension was included in the comparisons to illustrate a possible range of performance and cost of inertial systems. The candidates were compared on the basis of initial weight and cost and on the basis of resupply weight and cost for a 15 year mission. Thus, SOA-IPAC would appear to be an attractive approach for the initial Space Station and possible technology improvements would further the appeal for the initial and/or growth Space Station.
The Application of Microwave Incineration to Regenerative Life Support
NASA Technical Reports Server (NTRS)
Sun, Sidney C.; Srinivasan, Venkatesh; Covington, Al (Technical Monitor)
1995-01-01
Future human exploration missions will require life support systems that are highly regenerative, requiring minimum resupply, enabling the crews to be largely self-sufficient. Solid wastes generated in space will be processed to recover usable material. Researchers at NASA Ames Research Center are studying a commercially-produced microwave incinerator as a solid waste processor. This paper will describe the results of testing to-date.
NASA Astrophysics Data System (ADS)
Lee, Hansang; Jung, Seungmin; Cho, Yoonsung; Yoon, Donghee; Jang, Gilsoo
2013-11-01
This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed.
Chen, Shouyuan; Chini, Michael; Wang, He; Yun, Chenxia; Mashiko, Hiroki; Wu, Yi; Chang, Zenghu
2009-10-20
Carrier-envelope (CE) phase stabilization of a two-stage chirped pulse amplifier laser system with regenerative amplification as the preamplifier is demonstrated. The CE phase stability of this laser system is found to have a 90 mrad rms error averaged over 50 laser shots for a locking period of 4.5 h. The CE phase locking was confirmed unambiguously by experimental observation of the 2pi periodicity of the high-order harmonic spectrum generated by double optical gating.
Environmental control and life support technologies for advanced manned space missions
NASA Technical Reports Server (NTRS)
Powell, F. T.; Wynveen, R. A.; Lin, C.
1986-01-01
Regenerative environmental control and life support system (ECLSS) technologies are found by the present evaluation to have reached a degree of maturity that recommends their application to long duration manned missions. The missions for which regenerative ECLSSs are attractive in virtue of the need to avoid expendables and resupply requirements have been identified as that of the long duration LEO Space Station, long duration stays at GEO, a permanently manned lunar base (or colony), manned platforms located at the earth-moon libration points L4 or L5, a Mars mission, deep space exploration, and asteroid exploration. A comparison is made between nonregenerative and regenerative ECLSSs in the cases of 10 essential functions.
Interaction of nNOS with PSD-95 negatively controls regenerative repair after stroke.
Luo, Chun-Xia; Lin, Yu-Hui; Qian, Xiao-Dan; Tang, Ying; Zhou, Hai-Hui; Jin, Xing; Ni, Huan-Yu; Zhang, Feng-Yun; Qin, Cheng; Li, Fei; Zhang, Yu; Wu, Hai-Yin; Chang, Lei; Zhu, Dong-Ya
2014-10-01
Stroke is a major public health concern. The lack of effective therapies heightens the need for new therapeutic targets. Mammalian brain has the ability to rewire itself to restore lost functionalities. Promoting regenerative repair, including neurogenesis and dendritic remodeling, may offer a new therapeutic strategy for the treatment of stroke. Here, we report that interaction of neuronal nitric oxide synthase (nNOS) with the protein postsynaptic density-95 (PSD-95) negatively controls regenerative repair after stroke in rats. Dissociating nNOS-PSD-95 coupling in neurons promotes neuronal differentiation of neural stem cells (NSCs), facilitates the migration of newborn cells into the injured area, and enhances neurite growth of newborn neurons and dendritic spine formation of mature neurons in the ischemic brain of rats. More importantly, blocking nNOS-PSD-95 binding during the recovery stage improves stroke outcome via the promotion of regenerative repair in rats. Histone deacetylase 2 in NSCs may mediate the role of nNOS-PSD-95 association. Thus, nNOS-PSD-95 can serve as a target for regenerative repair after stroke. Copyright © 2014 the authors 0270-6474/14/3413535-14$15.00/0.
[Progress in stem cells and regenerative medicine].
Wang, Libin; Zhu, He; Hao, Jie; Zhou, Qi
2015-06-01
Stem cells have the ability to differentiate into all types of cells in the body and therefore have great application potential in regenerative medicine, in vitro disease modelling and drug screening. In recent years, stem cell technology has made great progress, and induced pluripotent stem cell technology revolutionizes the whole stem cell field. At the same time, stem cell research in our country has also achieved great progress and becomes an indispensable power in the worldwide stem cell research field. This review mainly focuses on the research progress in stem cells and regenerative medicine in our country since the advent of induced pluripotent stem cell technology, including induced pluripotent stem cells, transdifferentiation, haploid stem cells, and new gene editing tools.
Adipose-derived mesenchymal stem cells and regenerative medicine.
Konno, Masamitsu; Hamabe, Atsushi; Hasegawa, Shinichiro; Ogawa, Hisataka; Fukusumi, Takahito; Nishikawa, Shimpei; Ohta, Katsuya; Kano, Yoshihiro; Ozaki, Miyuki; Noguchi, Yuko; Sakai, Daisuke; Kudoh, Toshihiro; Kawamoto, Koichi; Eguchi, Hidetoshi; Satoh, Taroh; Tanemura, Masahiro; Nagano, Hiroaki; Doki, Yuichiro; Mori, Masaki; Ishii, Hideshi
2013-04-01
Adipose tissue-derived mesenchymal stem cells (ADSCs) are multipotent and can differentiate into various cell types, including osteocytes, adipocytes, neural cells, vascular endothelial cells, cardiomyocytes, pancreatic β-cells, and hepatocytes. Compared with the extraction of other stem cells such as bone marrow-derived mesenchymal stem cells (BMSCs), that of ADSCs requires minimally invasive techniques. In the field of regenerative medicine, the use of autologous cells is preferable to embryonic stem cells or induced pluripotent stem cells. Therefore, ADSCs are a useful resource for drug screening and regenerative medicine. Here we present the methods and mechanisms underlying the induction of multilineage cells from ADSCs. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.
Regenerative nanomedicines: an emerging investment prospective?
Prescott, Catherine
2010-01-01
Cells respond to their structural surrounding and within nanostructures exhibit unique proliferative and differentiation properties. The application of nanotechnologies to the field of regenerative medicine offers the potential to direct cell fate, target the delivery of cells and reduce immune rejection (via encapsulation), thereby supporting the development of regenerative medicines. The overall objective of any therapy is the delivery of the product not just into the clinic but also to patients on a routine basis. Such a goal typically requires a commercial vehicle and substantial levels of investment in scientific, clinical, regulatory and business expertise, resources, time and funding. Therefore, this paper focuses on some of the challenges facing this emerging industry, including investment by the venture capital community. PMID:20826478
Picosecond laser system with 30-W average power via cavity dumping and amplifying
NASA Astrophysics Data System (ADS)
Fu, J.; Pang, Q. S.; Chang, L.; Bai, Z. A.; Ai, Q. K.; Chen, L. Y.; Chen, M.; Li, G.; Ma, Y. F.; Fan, Z. W.; Niu, G.; Yu, J.; Liu, Y.; Zhang, X.; Kang, W. Y.; He, K.
2011-06-01
We present a picosecond laser system with high energy by technologies of cavity dumping and amplifying. Firstly, pulses with 10 ps and ˜520 nJ were obtained by cavity-dumped mode-locked laser at 10 kHz repetition rate. Secondly those pulses were seeded into a side-pumped regenerative amplifier (RA). Then pulses output from the regenerative amplifier were amplified by two four-pass post amplifiers. From the laser system pulses with an average power of 30 W corresponding to 3 mJ pulse energy were achieved with the pulse-width of 25.4 ps at repetition rate of 10 kHz.
Polyanskiy, Mikhail N.
2015-01-01
We describe a computer code for simulating the amplification of ultrashort mid-infrared laser pulses in CO 2 amplifiers and their propagation through arbitrary optical systems. This code is based on a comprehensive model that includes an accurate consideration of the CO 2 active medium and a physical optics propagation algorithm, and takes into account the interaction of the laser pulse with the material of the optical elements. Finally, the application of the code for optimizing an isotopic regenerative amplifier is described.
Mars power system concept definition study. Volume 1: Study results
NASA Technical Reports Server (NTRS)
Littman, Franklin D.
1994-01-01
A preliminary top level study was completed to define power system concepts applicable to Mars surface applications. This effort included definition of power system requirements and selection of power systems with the potential for high commonality. These power systems included dynamic isotope, Proton Exchange Membrane (PEM) regenerative fuel cell, sodium sulfur battery, photovoltaic, and reactor concepts. Design influencing factors were identified. Characterization studies were then done for each concept to determine system performance, size/volume, and mass. Operations studies were done to determine emplacement/deployment maintenance/servicing, and startup/shutdown requirements. Technology development roadmaps were written for each candidate power system (included in Volume 2). Example power system architectures were defined and compared on a mass basis. The dynamic isotope power system and nuclear reactor power system architectures had significantly lower total masses than the photovoltaic system architectures. Integrated development and deployment time phasing plans were completed for an example DIPS and reactor architecture option to determine the development strategies required to meet the mission scenario requirements.
Space shuttle orbit maneuvering engine reusable thrust chamber program
NASA Technical Reports Server (NTRS)
Senneff, J. M.
1975-01-01
Reusable thrust chamber and injector concepts were evaluated for the space shuttle orbit maneuvering engine (OME). Parametric engine calculations were carried out by computer program for N2O4/amine, LOX/amine and LOX/hydrocarbon propellant combinations for engines incorporating regenerative cooled and insulated columbium thrust chambers. The calculation methods are described including the fuel vortex film cooling method of combustion gas temperature control, and performance prediction. A method of acceptance of a regeneratively cooled heat rejection reduction using a silicone oil additive was also demonstrated by heated tube heat transfer testing. Regeneratively cooled thrust chamber operation was also demonstrated where the injector was characterized for the OME application with a channel wall regenerative thrust chamber. Bomb stability testing of the demonstration chambers/injectors demonstrated recovery for the nominal design of acoustic cavities. Cavity geometry changes were also evaluated to assess their damping margin. Performance and combustion stability was demonstrated of the originally developed 10 inch diameter combustion pattern operating in an 8 inch diameter thrust chamber.
kW picosecond thin-disk regenerative amplifier
NASA Astrophysics Data System (ADS)
Michel, Knut; Wandt, Christoph; Klingebiel, Sandro; Schultze, Marcel; Prinz, Stephan; Teisset, Catherine Y.; Stark, Sebastian; Grebing, Christian; Bessing, Robert; Herzig, Tobias; Häfner, Matthias; Budnicki, Aleksander; Sutter, Dirk; Metzger, Thomas
2018-02-01
TRUMPF Scientific Lasers provides ultrafast laser sources for the scientific community with high pulse energies and high average power. All systems are based on the industrialized TRUMPF thin-disk technology. Regenerative amplifiers systems with multi-millijoule pulses, kilohertz repetition rates and picosecond pulse durations are available. Record values of 220mJ at 1kHz could be demonstrated originally developed for pumping optical parametric amplifiers. The ultimate goal is to combine high energies, <100mJ per pulse, with average powers of several hundred watts to a kilowatt. Based on a regenerative amplifier containing two Ytterbium doped thin-disks operated at ambient temperature pulses with picosecond duration and more than 100mJ could be generated at a repetition rate of 10kHz reaching 1kW of average output power. This system is designed to operate at different repetition rates from 100kHz down to 5kHz so that even higher pulse energies can be reached. This type of ultrafast sources uncover new application fields in science. Laser based lightning rods, X-ray lasers and Compton backscatter sources are among them.
Development of design information for molecular-sieve type regenerative CO2-removal systems
NASA Technical Reports Server (NTRS)
Wright, R. M.; Ruder, J. M.; Dunn, V. B.; Hwang, K. C.
1973-01-01
Experimental and analytic studies were conducted with molecular sieve sorbents to provide basic design information, and to develop a system design technique for regenerable CO2-removal systems for manned spacecraft. Single sorbate equilibrium data were obtained over a wide range of conditions for CO2, water, nitrogen, and oxygen on several molecular sieve and silica gel sorbents. The coadsorption of CO2 with water preloads, and with oxygen and nitrogen was experimentally evaluated. Mass-transfer, and some limited heat-transfer performance evaluations were accomplished under representative operating conditions, including the coadsorption of CO2 and water. CO2-removal system performance prediction capability was derived.
Brake blending strategy for a hybrid vehicle
Boberg, Evan S.
2000-12-05
A hybrid electric powertrain system is provided including a transmission for driving a pair of wheels of a vehicle and a heat engine and an electric motor/generator coupled to the transmission. A friction brake system is provided for applying a braking torque to said vehicle. A controller unit generates control signals to the electric motor/generator and the friction brake system for controllably braking the vehicle in response to a drivers brake command. The controller unit determines and amount of regenerative torque available and compares this value to a determined amount of brake torque requested for determining the control signals to the electric motor/generator and the friction brake system.
Challenges and opportunities for stem cell therapy in patients with chronic kidney disease
Hickson, LaTonya J.; Eirin, Alfonso; Lerman, Lilach O.
2016-01-01
Chronic kidney disease (CKD) is a global healthcare burden affecting billions of individuals worldwide. The kidney has limited regenerative capacity from chronic insults, and for the most common causes of CKD, no effective treatment exists to prevent progression to end-stage kidney failure. Therefore, novel interventions, such as regenerative cell-based therapies, need to be developed for CKD. Given the risk of allosensitization, autologous transplantation of cells to boost regenerative potential is preferred. Therefore, verification of cell function and vitality in CKD patients is imperative. Two cell types have been most commonly applied in regenerative medicine. Endothelial progenitor cells contribute to neovasculogenesis primarily through paracrine angiogenic activity and partly by differentiation into mature endothelial cells in situ. Mesenchymal stem cells also exert paracrine effects, including pro-angiogenic, anti-inflammatory, and anti-fibrotic activity. However, in CKD, multiple factors may contribute to reduced cell function, including older age, coexisting cardiovascular disease, diabetes, chronic inflammatory states, and uremia, which may limit the effectiveness of an autologous cell-based therapy approach. This review highlights current knowledge on stem and progenitor cell function and vitality, aspects of the uremic milieu that may serve as a barrier to therapy, and novel methods to improve stem cell function for potential transplantation. PMID:26924058
Challenges and opportunities for stem cell therapy in patients with chronic kidney disease.
Hickson, LaTonya J; Eirin, Alfonso; Lerman, Lilach O
2016-04-01
Chronic kidney disease (CKD) is a global health care burden affecting billions of individuals worldwide. The kidney has limited regenerative capacity from chronic insults, and for the most common causes of CKD, no effective treatment exists to prevent progression to end-stage kidney failure. Therefore, novel interventions, such as regenerative cell-based therapies, need to be developed for CKD. Given the risk of allosensitization, autologous transplantation of cells to boost regenerative potential is preferred. Therefore, verification of cell function and vitality in CKD patients is imperative. Two cell types have been most commonly applied in regenerative medicine. Endothelial progenitor cells contribute to neovasculogenesis primarily through paracrine angiogenic activity and partly by differentiation into mature endothelial cells in situ. Mesenchymal stem cells also exert paracrine effects, including proangiogenic, anti-inflammatory, and antifibrotic activity. However, in CKD, multiple factors may contribute to reduced cell function, including older age, coexisting cardiovascular disease, diabetes, chronic inflammatory states, and uremia, which may limit the effectiveness of an autologous cell-based therapy approach. This Review highlights current knowledge on stem and progenitor cell function and vitality, aspects of the uremic milieu that may serve as a barrier to therapy, and novel methods to improve stem cell function for potential transplantation. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Stem cells and regenerative medicine in domestic and companion animals: a multispecies perspective.
Gonçalves, N N; Ambrósio, C E; Piedrahita, J A
2014-10-01
Since their original isolation, the majority of the work on embryonic stem cells (ESC) has been carried out in mice. While the mouse is an outstanding model for basic research, it also has considerable limitations for translational work, especially in the area of regenerative medicine. This is due to a combination of factors that include physiological and size differences when compared to humans. In contrast, domestic animal species, such as swine, and companion animal species, such as dogs, provide unique opportunities to develop regenerative medicine protocols that can then be utilized in humans. Unfortunately, at present, the state of knowledge related to, and availability of, ESC from domestic animals vary among species such as pig, horse, dog and cat, and without exception lags significantly behind the mouse and human. It is clear that much still needs to be discovered. The 'stem cell-like' cell lines being reported are still not satisfactorily used in regenerative medicine, due to reasons such as heterogeneity and chromosomal instability. As a result, investigators have searched for alternate source of cells that can be used for regenerative medicine. This approach has uncovered a range of adult stem cells and adult progenitor cells that have utility in both human and veterinary medicine. Here, we review a range of stem cells, from ESC to induced pluripotent stem cells, and discuss their potential application in the field of regenerative medicine. © 2014 Blackwell Verlag GmbH.
Huang, Jiansheng; Schriefer, Andrew E; Yang, Wei; Cliften, Paul F; Rudnick, David A
2014-11-01
Liver regeneration has been well studied with hope of discovering strategies to improve liver disease outcomes. Nevertheless, the signals that initiate such regeneration remain incompletely defined, and translation of mechanism-based pro-regenerative interventions into new treatments for hepatic diseases has not yet been achieved. We previously reported the isoform-specific regulation and essential function of zinc-dependent histone deacetylases (Zn-HDACs) during mouse liver regeneration. Those data suggest that epigenetically regulated anti-proliferative genes are deacetylated and transcriptionally suppressed by Zn-HDAC activity or that pro-regenerative factors are acetylated and induced by such activity in response to partial hepatectomy (PH). To investigate these possibilities, we conducted genome-wide interrogation of the liver histone acetylome during early PH-induced liver regeneration in mice using acetyL-histone chromatin immunoprecipitation and next generation DNA sequencing. We also compared the findings of that study to those seen during the impaired regenerative response that occurs with Zn-HDAC inhibition. The results reveal an epigenetic signature of early liver regeneration that includes both hyperacetylation of pro-regenerative factors and deacetylation of anti-proliferative and pro-apoptotic genes. Our data also show that administration of an anti-regenerative regimen of the Zn-HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) not only disrupts gene-specific pro-regenerative changes in liver histone deacetylation but also reverses PH-induced effects on histone hyperacetylation. Taken together, these studies offer new insight into and suggest novel hypotheses about the epigenetic mechanisms that regulate liver regeneration.
Zhao, Yannan; Tang, Fengwu; Xiao, Zhifeng; Han, Guang; Wang, Nuo; Yin, Na; Chen, Bing; Jiang, Xianfeng; Yun, Chen; Han, Wanjun; Zhao, Changyu; Cheng, Shixiang; Zhang, Sai; Dai, Jianwu
2017-01-01
Regeneration of damaged neurons and recovery of sensation and motor function after complete spinal cord injury (SCI) are challenging. We previously developed a collagen scaffold, NeuroRegen, to promote axonal growth along collagen fibers and inhibit glial scar formation after SCI. When functionalized with multiple biomolecules, this scaffold promoted neurological regeneration and functional recovery in animals with SCI. In this study, eight patients with chronic complete SCI were enrolled to examine the safety and efficacy of implanting NeuroRegen scaffold with human umbilical cord mesenchymal stem cells (hUCB-MSCs). Using intraoperative neurophysiological monitoring, we identified and surgically resected scar tissues to eliminate the inhibitory effect of glial scarring on nerve regeneration. We then implanted NeuroRegen scaffold loaded with hUCB-MSCs into the resection sites. No adverse events (infection, fever, headache, allergic reaction, shock, perioperative complications, aggravation of neurological status, or cancer) were observed during 1 year of follow-up. Primary efficacy outcomes, including expansion of sensation level and motor-evoked potential (MEP)-responsive area, increased finger activity, enhanced trunk stability, defecation sensation, and autonomic neural function recovery, were observed in some patients. Our findings suggest that combined application of NeuroRegen scaffold and hUCB-MSCs is safe and feasible for clinical therapy in patients with chronic SCI. Our study suggests that construction of a regenerative microenvironment using a scaffold-based strategy may be a possible future approach to SCI repair. PMID:28185615
Tabata, Yoshikuni; Murai, Norio; Sasaki, Takeo; Taniguchi, Sachie; Suzuki, Shuichi; Yamazaki, Kazuto; Ito, Masashi
2015-10-01
Stem cell research has been progressing rapidly, contributing to regenerative biology and regenerative medicine. In this field, small-molecule compounds affecting stem cell proliferation/differentiation have been explored to understand stem cell biology and support regenerative medicine. In this study, we established a multiparametric screening system to detect bioactive compounds affecting the cell fate of human neural stem/progenitor cells (NSCs/NPCs), using human fetal hippocampal NSCs/NPCs, HIP-009 cells. We examined effects of 410 compounds, which were collected based on mechanisms of action (MOAs) and chemotypes, on HIP-009's cell fate (self-renewal, neuronal and astrocytic differentiation) and morphology by automated multiparametric assays and profiled induced cellular phenotypes. We found that this screening classified compounds with the same MOAs into subgroups according to additional pharmacological effects (e.g., mammalian target of rapamycin complex 1 [mTORC1] inhibitors and mTORC1/mTORC2 dual inhibitors among mTOR inhibitors). Moreover, it identified compounds that have off-target effects under matrix analyses of MOAs and structure similarities (e.g., neurotropic effects of amitriptyline among tri- and tetracyclic compounds). Therefore, this automated, medium-throughput and multiparametric screening system is useful for finding compounds that affect the cell fate of human NSCs/NPCs for supporting regenerative medicine and to fingerprint compounds based on human stem cells' multipotency, leading to understanding of stem cell biology. © 2015 Society for Laboratory Automation and Screening.
NASA Technical Reports Server (NTRS)
Khan, Z.; Vranis, A.; Zavoico, A.; Freid, S.; Manners, B.
2006-01-01
This paper will review potential power system concepts for the development of the lunar outpost including power generation, energy storage, and power management and distribution (PMAD). In particular, the requirements of the initial robotic missions will be discussed and the technologies considered will include cryogenics and regenerative fuel cells (RFC), AC and DC transmission line technology, high voltage and low voltage power transmission, conductor materials of construction and power beaming concepts for transmitting power to difficult to access locations such as at the bottom of craters. Operating conditions, component characteristics, reliability, maintainability, constructability, system safety, technology gaps/risk and adaptability for future lunar missions will be discussed for the technologies considered.
High Energy Density Regenerative Fuel Cell Systems for Terrestrial Applications
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.
1999-01-01
Regenerative Fuel Cell System (RFCS) technology for energy storage has been a NASA power system concept for many years. Compared to battery-based energy storage systems, RFCS has received relatively little attention or resources for development because the energy density and electrical efficiency were not sufficiently attractive relative to advanced battery systems. Even today, RFCS remains at a very low technology readiness level (TRL of about 2 indicating feasibility has been demonstrated). Commercial development of the Proton Exchange Membrane (PEM) fuel cells for automobiles and other terrestrial applications and improvements in lightweight pressure vessel design to reduce weight and improve performance make possible a high energy density RFCS energy storage system. The results from this study of a lightweight RFCS energy storage system for a remotely piloted, solar-powered, high altitude aircraft indicate an energy density up to 790 w-h/kg with electrical efficiency of 53.4% is attainable. Such an energy storage system would allow a solar-powered aircraft to carry hundreds of kilograms of payload and remain in flight indefinitely for use in atmospheric research, earth observation, resource mapping. and telecommunications. Future developments in the areas of hydrogen and oxygen storage, pressure vessel design, higher temperature and higher- pressure fuel cell operation, unitized regenerative fuel cells, and commercial development of fuel cell technology will improve both the energy density and electrical efficiency of the RFCS.
Texas A&M vortex type phase separator
NASA Astrophysics Data System (ADS)
Best, Frederick
2000-01-01
Phase separation is required for regenerative biological and chemical process systems as well as thermal transport and rejection systems. Liquid and gas management requirements for future spacecraft will demand small, passive systems able to operate over wide ranges of inlet qualities. Conservation and recycling of air and water is a necessary part of the construction and operation of the International Space Station as well as future long duration space missions. Space systems are sensitive to volume, mass, and power. Therefore, it is necessary to develop a method to recycle wastewater with minimal power consumption. Regenerative life support systems currently being investigated require phase separation to separate the liquid from the gas produced. The microgravity phase separator designed and fabricated at Texas A&M University relies on centripetal driven buoyancy forces to form a gas-liquid vortex within a fixed, right-circular cylinder. Two-phase flow is injected tangentially along the inner wall of this cylinder producing a radial acceleration gradient. The gradient produced from the intrinsic momentum of the injected mixture results in a rotating flow that drives the buoyancy process by the production of a hydrostatic pressure gradient. Texas A&M has flown several KC-135 flights with separator. These flights have included scaling studies, stability and transient investigations, and tests for inventory instrumentation. Among the hardware tested have been passive devices for separating mixed vapor/liquid streams into single-phase streams of vapor only and liquid only. .
Modeling hydraulic regenerative hybrid vehicles using AMESim and Matlab/Simulink
NASA Astrophysics Data System (ADS)
Lynn, Alfred; Smid, Edzko; Eshraghi, Moji; Caldwell, Niall; Woody, Dan
2005-05-01
This paper presents the overview of the simulation modeling of a hydraulic system with regenerative braking used to improve vehicle emissions and fuel economy. Two simulation software packages were used together to enhance the simulation capability for fuel economy results and development of vehicle and hybrid control strategy. AMESim, a hydraulic simulation software package modeled the complex hydraulic circuit and component hardware and was interlinked with a Matlab/Simulink model of the vehicle, engine and the control strategy required to operate the vehicle and the hydraulic hybrid system through various North American and European drive cycles.
Regenerative Hydrogen-oxygen Fuel Cell-electrolyzer Systems for Orbital Energy Storage
NASA Technical Reports Server (NTRS)
Sheibley, D. W.
1984-01-01
Fuel cells have found application in space since Gemini. Over the years technology advances have been factored into the mainstream hardware programs. Performance levels and service lives have been gradually improving. More recently, the storage application for fuel cell-electrolyzer combinations are receiving considerable emphasis. The regenerative system application described here is part of a NASA Fuel Cell Program which was developed to advance the fuel cell and electrolyzer technology required to satisfy the identified power generation and energy storage need of the Agency for space transportation and orbital applications to the year 2000.
The Promise of Mesenchymal Stem Cell Therapy for Diabetic Kidney Disease.
Griffin, Tomás P; Martin, William Patrick; Islam, Nahidul; O'Brien, Timothy; Griffin, Matthew D
2016-05-01
Diabetes mellitus (DM) commonly leads to progressive chronic kidney disease despite current best medical practice. The pathogenesis of diabetic kidney disease (DKD) involves a complex network of primary and secondary mechanisms with both intra-renal and systemic components. Apart from inhibition of the renin angiotensin aldosterone system, targeting individual pathogenic mediators with drug therapy has not, thus far, been proven to have high clinical value. Stem or progenitor cell therapies offer an alternative strategy for modulating complex disease processes through suppressing multiple pathogenic pathways and promoting pro-regenerative mechanisms. Mesenchymal stem cells (MSCs) have shown particular promise based on their accessibility from adult tissues and their diverse mechanisms of action including secretion of paracrine anti-inflammatory and cyto-protective factors. In this review, the progress toward clinical translation of MSC therapy for DKD is critically evaluated. Results from animal models suggest distinct potential for systemic MSC infusion to favourably modulate DKD progression. However, only a few early phase clinical trials have been initiated and efficacy in humans remains to be proven. Key knowledge gaps and research opportunities exist in this field. These include the need to gain greater understanding of in vivo mechanism of action, to identify quantifiable biomarkers of response to therapy and to define the optimal source, dose and timing of MSC administration. Given the rising prevalence of DM and DKD worldwide, continued progress toward harnessing the inherent regenerative functions of MSCs and other progenitor cells for even a subset of those affected has potential for profound societal benefits.
Feasibility Study of Regenerative Burners in Aluminum Holding Furnaces
NASA Astrophysics Data System (ADS)
Hassan, Mohamed I.; Al Kindi, Rashid
2014-09-01
Gas-fired aluminum holding reverberatory furnaces are currently considered to be the lowest efficiency fossil fuel system. A considerable volume of gas is consumed to hold the molten metal at temperature that is much lower than the flame temperature. This will lead to more effort and energy consumption to capture the excessive production of the CO2. The concern of this study is to investigate the feasibility of the regenerative-burners' furnaces to increase the furnace efficiency to reduce gas consumption per production and hence result in less CO2 production. Energy assessments for metal holding furnaces are considered at different operation conditions. Onsite measurements, supervisory control and data acquisition data, and thermodynamics analysis are performed to provide feasible information about the gas consumption and CO2 production as well as area of improvements. In this study, onsite measurements are used with thermodynamics modeling to assess a 130 MT rectangular furnace with two regenerative burners and one cold-air holding burner. The assessment showed that the regenerative burner furnaces are not profitable in saving energy, in addition to the negative impact on the furnace life. However, reducing the holding and door opening time would significantly increase the operation efficiency and hence gain the benefit of the regenerative technology.
NASA Technical Reports Server (NTRS)
Mckhann, G.
1977-01-01
Solar array power systems for the space construction base are discussed. Nickel cadmium and nickel hydrogen batteries are equally attractive relative to regenerative fuel cell systems at 5 years life. Further evaluation of energy storage system life (low orbit conditions) is required. Shuttle and solid polymer electrolyte fuel cell technology appears adequate; large units (approximately four times shuttle) are most appropriate and should be studied for a 100 KWe SCB system. A conservative NiH2 battery DOD (18.6%) was elected due to lack of test data and offers considerable improvement potential. Multiorbit load averaging and reserve capacity requirements limit nominal DOD to 30% to 50% maximum, independent of life considerations.
Alkaline regenerative fuel cell systems for energy storage
NASA Technical Reports Server (NTRS)
Schubert, F. H.; Reid, M. A.; Martin, R. E.
1981-01-01
A description is presented of the results of a preliminary design study of a regenerative fuel cell energy storage system for application to future low-earth orbit space missions. The high energy density storage system is based on state-of-the-art alkaline electrolyte cell technology and incorporates dedicated fuel cell and electrolysis cell modules. In addition to providing energy storage, the system can provide hydrogen and oxygen for attitude control of the satellite and for life support. During the daylight portion of the orbit the electrolysis module uses power provided by the solar array to generate H2 and O2 from the product water produced by the fuel cell module. The fuel cell module supplies electrical power during the dark period of the orbit.
International Space Station (ISS)
2000-01-01
This diagram shows the flow of recyclable resources in the International Space Station (ISS). The Environmental Control and Life Support System (ECLSS) Group of the Flight Projects Directorate at the Marshall Space Flight Center is responsible for the regenerative ECLSS hardware, as well as providing technical support for the rest of the system. The regenerative ECLSS, whose main components are the Water Recovery System (WRS), and the Oxygen Generation System (OGS), reclaims and recycles water and oxygen. The ECLSS maintains a pressurized habitation environment, provides water recovery and storage, maintains and provides fire detection / suppression, and provides breathable air and a comfortable atmosphere in which to live and work within the ISS. The ECLSS hardware will be located in the Node 3 module of the ISS.
International Space Station (ISS)
2000-01-01
This diagram shows the flow of water recovery and management in the International Space Station (ISS). The Environmental Control and Life Support System (ECLSS) Group of the Flight Projects Directorate at the Marshall Space Flight Center is responsible for the regenerative ECLSS hardware, as well as providing technical support for the rest of the system. The regenerative ECLSS, whose main components are the Water Recovery System (WRS), and the Oxygen Generation System (OGS), reclaims and recycles water oxygen. The ECLSS maintains a pressurized habitation environment, provides water recovery and storage, maintains and provides fire detection/ suppression, and provides breathable air and a comfortable atmosphere in which to live and work within the ISS. The ECLSS hardware will be located in the Node 3 module of the ISS.
de Sanctis, Massimo; Goracci, Cecilia; Zucchelli, Giovanni
2013-01-01
Over the last few decades, many authors have investigated the effect of periodontal disease and treatment on pulpal status with controversial results. This study was conducted to verify whether periodontal disease in a deep intrabony defect and complex therapy, including aggressive root planing such as in periodontal regeneration, have an influence on tooth vitality. One hundred thirty-seven patients who fulfilled the requirements were included. The collected data did not support the need for "preventive" root canal treatment in severely compromised teeth that are planned to undergo periodontal regenerative surgery.
Stem cells in dentistry--review of literature.
Dziubińska, P; Jaskólska, M; Przyborowska, P; Adamiak, Z
2013-01-01
Stem cells have been successfully isolated from a variety of human and animal tissues, including dental pulp. This achievement marks progress in regenerative dentistry. This article reviews the latest improvements made in regenerative dental medicine with the involvement of stem cells. Although, various types of multipotent somatic cells can be applied in dentistry, two types of cells have been investigated in this review. Dental pulp cells are classified as: DPSCs, SCAPs and SHEDs.The third group includes two types of cell associated with the periodontium: PDL and DFPC. This review aims to systematize basic knowledge about cellular engineering in dentistry.
Stem cells as delivery vehicles for regenerative medicine-challenges and perspectives
Labusca, Luminita; Herea, Dumitru Daniel; Mashayekhi, Kaveh
2018-01-01
The use of stem cells as carriers for therapeutic agents is an appealing modality for targeting tissues or organs of interest. Combined delivery of cells together with various information molecules as therapeutic agents has the potential to enhance, modulate or even initiate local or systemic repair processes, increasing stem cell efficiency for regenerative medicine applications. Stem-cell-mediated delivery of genes, proteins or small molecules takes advantage of the innate capability of stem cells to migrate and home to injury sites. As the native migratory properties are affected by in vitro expansion, the existent methods for enhancing stem cell targeting capabilities (modified culture methods, genetic modification, cell surface engineering) are described. The role of various nanoparticles in equipping stem cells with therapeutic small molecules is revised together with their class-specific advantages and shortcomings. Modalities to circumvent common challenges when designing a stem-cell-mediated targeted delivery system are described as well as future prospects in using this approach for regenerative medicine applications. PMID:29849930
Andorko, James I.
2017-01-01
Abstract Recent research in the vaccine and immunotherapy fields has revealed that biomaterials have the ability to activate immune pathways, even in the absence of other immune‐stimulating signals. Intriguingly, new studies reveal these responses are influenced by the physicochemical properties of the material. Nearly all of this work has been done in the vaccine and immunotherapy fields, but there is tremendous opportunity to apply this same knowledge to tissue engineering and regenerative medicine. This review discusses recent findings that reveal how material properties—size, shape, chemical functionality—impact immune response, and links these changes to emerging opportunities in tissue engineering and regenerative medicine. We begin by discussing what has been learned from studies conducted in the contexts of vaccines and immunotherapies. Next, research is highlighted that elucidates the properties of materials that polarize innate immune cells, including macrophages and dendritic cells, toward either inflammatory or wound healing phenotypes. We also discuss recent studies demonstrating that scaffolds used in tissue engineering applications can influence cells of the adaptive immune system—B and T cell lymphocytes—to promote regenerative tissue microenvironments. Through greater study of the intrinsic immunogenic features of implantable materials and scaffolds, new translational opportunities will arise to better control tissue engineering and regenerative medicine applications. PMID:28932817
Elixir of Life: Thwarting Aging With Regenerative Reprogramming.
Beyret, Ergin; Martinez Redondo, Paloma; Platero Luengo, Aida; Izpisua Belmonte, Juan Carlos
2018-01-05
All living beings undergo systemic physiological decline after ontogeny, characterized as aging. Modern medicine has increased the life expectancy, yet this has created an aged society that has more predisposition to degenerative disorders. Therefore, novel interventions that aim to extend the healthspan in parallel to the life span are needed. Regeneration ability of living beings maintains their biological integrity and thus is the major leverage against aging. However, mammalian regeneration capacity is low and further declines during aging. Therefore, modalities that reinforce regeneration can antagonize aging. Recent advances in the field of regenerative medicine have shown that aging is not an irreversible process. Conversion of somatic cells to embryonic-like pluripotent cells demonstrated that the differentiated state and age of a cell is not fixed. Identification of the pluripotency-inducing factors subsequently ignited the idea that cellular features can be reprogrammed by defined factors that specify the desired outcome. The last decade consequently has witnessed a plethora of studies that modify cellular features including the hallmarks of aging in addition to cellular function and identity in a variety of cell types in vitro. Recently, some of these reprogramming strategies have been directly used in animal models in pursuit of rejuvenation and cell replacement. Here, we review these in vivo reprogramming efforts and discuss their potential use to extend the longevity by complementing or augmenting the regenerative capacity. © 2017 American Heart Association, Inc.
Closed-Cycle Hydrogen-Oxygen Regenerative Fuel Cell at the NASA Glenn Research Center-An Update
NASA Technical Reports Server (NTRS)
Bents, David J.; Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.
2008-01-01
The closed cycle hydrogen-oxygen proton exchange membrane (PEM) regenerative fuel cell (RFC) at the NASA Glenn Research Center has demonstrated multiple back-to-back contiguous cycles at rated power and round-trip efficiencies up to 52 percent. It is the first fully closed cycle RFC ever demonstrated. (The entire system is sealed; nothing enters or escapes the system other than electrical power and heat.) During fiscal year fiscal year (FY) FY06 to FY07, the system s numerous modifications and internal improvements focused on reducing parasitic power, heat loss, and noise signature; increasing its functionality as an unattended automated energy storage device; and in-service reliability.
NASA Technical Reports Server (NTRS)
Wise, Stephen A.; Holt, James M.
2002-01-01
The complexity of International Space Station (ISS) systems modeling often necessitates the concurrence of various dissimilar, parallel analysis techniques to validate modeling. This was the case with a feasibility and performance study of the ISS Node 3 Regenerative Heat Exchanger (RHX). A thermo-hydraulic network model was created and analyzed in SINDA/FLUINT. A less complex, closed form solution of the systems dynamics was created using an Excel Spreadsheet. The purpose of this paper is to provide a brief description of the modeling processes utilized, the results and benefits of each to the ISS Node 3 RHX study.
NASA Technical Reports Server (NTRS)
Wise, Stephen A.; Holt, James M.; Turner, Larry D. (Technical Monitor)
2001-01-01
The complexity of International Space Station (ISS) systems modeling often necessitates the concurrence of various dissimilar, parallel analysis techniques to validate modeling. This was the case with a feasibility and performance study of the ISS Node 3 Regenerative Heat Exchanger (RHX). A thermo-hydraulic network model was created and analyzed in SINDA/FLUINT. A less complex, closed form solution of the system dynamics was created using Excel. The purpose of this paper is to provide a brief description of the modeling processes utilized, the results and benefits of each to the ISS Node 3 RHX study.
Definition study for an extended manned test of a regenerative life support system
NASA Technical Reports Server (NTRS)
1971-01-01
A program was defined which consists of extended ground-based manned tests of regenerative life support systems. The tests are to evaluate prototypes of advanced life support systems under operational, integrated conditions, thus providing data for the design of efficient environmental control and life support systems for use in long-duration space missions. The requirements are defined for test operations to provide a simulation of an orbiting space laboratory. The features of Phase A and B programs are described. These tests use proven backup equipment to ensure successful evaluation of the advanced subsystems. A pre-tests all-systems checkout period is provided to minimize equipment problems during extended testing and to familiarize all crew and operating staff members with test equipment and procedures.
Advanced photovoltaic power system technology for lunar base applications
NASA Astrophysics Data System (ADS)
Brinker, David J.; Flood, Dennis J.
1992-09-01
The development of an advanced photovoltaic power system that would have application for a manned lunar base is currently planned under the Surface Power element of Pathfinder. Significant mass savings over state-of-the-art photovoltaic/battery systems are possible with the use of advanced lightweight solar arrays coupled with regenerative fuel cell storage. The solar blanket, using either ultrathin GaAs or amorphous silicon solar cells, would be integrated with a reduced-g structure. Regenerative fuel cells with high-pressure gas storage in filament-wound tanks are planned for energy storage. An advanced PV/RFC power system is a leading candidate for a manned lunar base as it offers a tremendous weight advantage over state-of-the-art photovoltaic/battery systems and is comparable in mass to other advanced power generation technologies.
Alkaline static feed electrolyzer based oxygen generation system
NASA Technical Reports Server (NTRS)
Noble, L. D.; Kovach, A. J.; Fortunato, F. A.; Schubert, F. H.; Grigger, D. J.
1988-01-01
In preparation for the future deployment of the Space Station, an R and D program was established to demonstrate integrated operation of an alkaline Water Electrolysis System and a fuel cell as an energy storage device. The program's scope was revised when the Space Station Control Board changed the energy storage baseline for the Space Station. The new scope was aimed at the development of an alkaline Static Feed Electrolyzer for use in an Environmental Control/Life Support System as an oxygen generation system. As a result, the program was divided into two phases. The phase 1 effort was directed at the development of the Static Feed Electrolyzer for application in a Regenerative Fuel Cell System. During this phase, the program emphasized incorporation of the Regenerative Fuel Cell System design requirements into the Static Feed Electrolyzer electrochemical module design and the mechanical components design. The mechanical components included a Pressure Control Assembly, a Water Supply Assembly and a Thermal Control Assembly. These designs were completed through manufacturing drawing during Phase 1. The Phase 2 effort was directed at advancing the Alkaline Static Feed Electrolyzer database for an oxygen generation system. This development was aimed at extending the Static Feed Electrolyzer database in areas which may be encountered from initial fabrication through transportation, storage, launch and eventual Space Station startup. During this Phase, the Program emphasized three major areas: materials evaluation, electrochemical module scaling and performance repeatability and Static Feed Electrolyzer operational definition and characterization.
Waterless Clothes-Cleaning Machine
NASA Technical Reports Server (NTRS)
Johnson, Glenn; Ganske, Shane
2013-01-01
A waterless clothes-cleaning machine has been developed that removes loose particulates and deodorizes dirty laundry with regenerative chemical processes to make the clothes more comfortable to wear and have a fresher smell. This system was initially developed for use in zero-g, but could be altered for 1-g environments where water or other re sources are scarce. Some of these processes include, but are not limited to, airflow, filtration, ozone generation, heat, ultraviolet light, and photocatalytic titanium oxide.
Physical-Chemical Solid Waste Processing for Space Missions at Ames Research Center
NASA Technical Reports Server (NTRS)
Fisher, John W.; Pisharody, Suresh; Moran, Mark; Wignarajah, K.; Tleimat, Maher; Pace, Greg
2001-01-01
As space missions become longer in duration and reach out to more distant locations such as Mars, solids waste processing progresses from storage technologies to reclamation technologies. Current low Earth orbit technologies consist of store-and dispose to space or return to Earth. Fully regenerative technologies recycle wastes. The materials reclaimed from waste can be used to provide the basic materials to support plant growth for food including carbon dioxide, water, and nutrients. Other products can also be reclaimed from waste such as hydrocarbons and activated carbon. This poster describes development at Ames Research Center of a process to make activated carbon from space mission wastes and to make an incineration system that produces clean flue gas. Inedible biomass and feces contain hydrocarbons in a form that can be pyrolyzed and converted to activated carbon. The activated carbon can then be used to clean up contaminants from various other life support systems; in particular, the activated carbon can be used regeneratively to remove NOx from incinerator flue gas. Incinerator flue gas can also be cleaned up by the use of reductive and oxidative catalysts. A catalytic incinerator flue gas cleanup system has been developed at ARC that produces flue gas clean enough (with the exception of carbon dioxide) to meet the Space Minimum Allowable Concentration limits for human exposure.
Advances in tissue engineering through stem cell-based co-culture.
Paschos, Nikolaos K; Brown, Wendy E; Eswaramoorthy, Rajalakshmanan; Hu, Jerry C; Athanasiou, Kyriacos A
2015-05-01
Stem cells are the future in tissue engineering and regeneration. In a co-culture, stem cells not only provide a target cell source with multipotent differentiation capacity, but can also act as assisting cells that promote tissue homeostasis, metabolism, growth and repair. Their incorporation into co-culture systems seems to be important in the creation of complex tissues or organs. In this review, critical aspects of stem cell use in co-culture systems are discussed. Direct and indirect co-culture methodologies used in tissue engineering are described, along with various characteristics of cellular interactions in these systems. Direct cell-cell contact, cell-extracellular matrix interaction and signalling via soluble factors are presented. The advantages of stem cell co-culture strategies and their applications in tissue engineering and regenerative medicine are portrayed through specific examples for several tissues, including orthopaedic soft tissues, bone, heart, vasculature, lung, kidney, liver and nerve. A concise review of the progress and the lessons learned are provided, with a focus on recent developments and their implications. It is hoped that knowledge developed from one tissue can be translated to other tissues. Finally, we address challenges in tissue engineering and regenerative medicine that can potentially be overcome via employing strategies for stem cell co-culture use. Copyright © 2014 John Wiley & Sons, Ltd.
Novel clinical uses for cord blood derived mesenchymal stromal cells.
Olson, Amanda L; McNiece, Ian K
2015-06-01
Regenerative medicine offers new hope for many debilitating diseases that result in damage to tissues and organs. The concept is straightforward with replacement of damaged cells with new functional cells. However, most tissues and organs are complex structures involving multiple cell types, supportive structures, a microenvironment producing cytokines and growth factors and a vascular system to supply oxygen and other nutrients. Therefore repair, particularly in the setting of ischemic damage, may require delivery of multiple cell types providing new vessel formation, a new microenvironment and functional cells. The field of stem cell biology has identified a number of stem cell sources including embryonic stem cells and adult stem cells that offer the potential to replace virtually all functional cells of the body. The focus of this article is a discussion of the potential of mesenchymal stromal cells (MSCs) from cord blood (CB) for regenerative medicine approaches. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine
Murphy, Matthew B; Moncivais, Kathryn; Caplan, Arnold I
2013-01-01
Mesenchymal stem cells (MSCs) are partially defined by their ability to differentiate into tissues including bone, cartilage and adipose in vitro, but it is their trophic, paracrine and immunomodulatory functions that may have the greatest therapeutic impact in vivo. Unlike pharmaceutical treatments that deliver a single agent at a specific dose, MSCs are site regulated and secrete bioactive factors and signals at variable concentrations in response to local microenvironmental cues. Significant progress has been made in understanding the biochemical and metabolic mechanisms and feedback associated with MSC response. The anti-inflammatory and immunomodulatory capacity of MSC may be paramount in the restoration of localized or systemic conditions for normal healing and tissue regeneration. Allogeneic MSC treatments, categorized as a drug by regulatory agencies, have been widely pursued, but new studies demonstrate the efficacy of autologous MSC therapies, even for individuals affected by a disease state. Safety and regulatory concerns surrounding allogeneic cell preparations make autologous and minimally manipulated cell therapies an attractive option for many regenerative, anti-inflammatory and autoimmune applications. PMID:24232253
Current concepts: tissue engineering and regenerative medicine applications in the ankle joint
Correia, S. I.; Pereira, H.; Silva-Correia, J.; Van Dijk, C. N.; Espregueira-Mendes, J.; Oliveira, J. M.; Reis, R. L.
2014-01-01
Tissue engineering and regenerative medicine (TERM) has caused a revolution in present and future trends of medicine and surgery. In different tissues, advanced TERM approaches bring new therapeutic possibilities in general population as well as in young patients and high-level athletes, improving restoration of biological functions and rehabilitation. The mainstream components required to obtain a functional regeneration of tissues may include biodegradable scaffolds, drugs or growth factors and different cell types (either autologous or heterologous) that can be cultured in bioreactor systems (in vitro) prior to implantation into the patient. Particularly in the ankle, which is subject to many different injuries (e.g. acute, chronic, traumatic and degenerative), there is still no definitive and feasible answer to ‘conventional’ methods. This review aims to provide current concepts of TERM applications to ankle injuries under preclinical and/or clinical research applied to skin, tendon, bone and cartilage problems. A particular attention has been given to biomaterial design and scaffold processing with potential use in osteochondral ankle lesions. PMID:24352667
Current concepts: tissue engineering and regenerative medicine applications in the ankle joint.
Correia, S I; Pereira, H; Silva-Correia, J; Van Dijk, C N; Espregueira-Mendes, J; Oliveira, J M; Reis, R L
2014-03-06
Tissue engineering and regenerative medicine (TERM) has caused a revolution in present and future trends of medicine and surgery. In different tissues, advanced TERM approaches bring new therapeutic possibilities in general population as well as in young patients and high-level athletes, improving restoration of biological functions and rehabilitation. The mainstream components required to obtain a functional regeneration of tissues may include biodegradable scaffolds, drugs or growth factors and different cell types (either autologous or heterologous) that can be cultured in bioreactor systems (in vitro) prior to implantation into the patient. Particularly in the ankle, which is subject to many different injuries (e.g. acute, chronic, traumatic and degenerative), there is still no definitive and feasible answer to 'conventional' methods. This review aims to provide current concepts of TERM applications to ankle injuries under preclinical and/or clinical research applied to skin, tendon, bone and cartilage problems. A particular attention has been given to biomaterial design and scaffold processing with potential use in osteochondral ankle lesions.
NASA Astrophysics Data System (ADS)
Sun, Fengchun; Liu, Wei; He, Hongwen; Guo, Hongqiang
2016-08-01
For an electric vehicle with independently driven axles, an integrated braking control strategy was proposed to coordinate the regenerative braking and the hydraulic braking. The integrated strategy includes three modes, namely the hybrid composite mode, the parallel composite mode and the pure hydraulic mode. For the hybrid composite mode and the parallel composite mode, the coefficients of distributing the braking force between the hydraulic braking and the two motors' regenerative braking were optimised offline, and the response surfaces related to the driving state parameters were established. Meanwhile, the six-sigma method was applied to deal with the uncertainty problems for reliability. Additionally, the pure hydraulic mode is activated to ensure the braking safety and stability when the predictive failure of the response surfaces occurs. Experimental results under given braking conditions showed that the braking requirements could be well met with high braking stability and energy regeneration rate, and the reliability of the braking strategy was guaranteed on general braking conditions.
Human adipose-derived stem cells: definition, isolation, tissue-engineering applications.
Nae, S; Bordeianu, I; Stăncioiu, A T; Antohi, N
2013-01-01
Recent researches have demonstrated that the most effective repair system of the body is represented by stem cells - unspecialized cells, capable of self-renewal through successive mitoses, which have also the ability to transform into different cell types through differentiation. The discovery of adult stem cells represented an important step in regenerative medicine because they no longer raises ethical or legal issues and are more accessible. Only in 2002, stem cells isolated from adipose tissue were described as multipotent stem cells. Adipose tissue stem cells benefits in tissue engineering and regenerative medicine are numerous. Development of adipose tissue engineering techniques offers a great potential in surpassing the existing limits faced by the classical approaches used in plastic and reconstructive surgery. Adipose tissue engineering clinical applications are wide and varied, including reconstructive, corrective and cosmetic procedures. Nowadays, adipose tissue engineering is a fast developing field, both in terms of fundamental researches and medical applications, addressing issues related to current clinical pathology or trauma management of soft tissue injuries in different body locations.
Composite Biomaterials Based on Sol-Gel Mesoporous Silicate Glasses: A Review
Baino, Francesco; Fiorilli, Sonia; Vitale-Brovarone, Chiara
2017-01-01
Bioactive glasses are able to bond to bone and stimulate the growth of new tissue while dissolving over time, which makes them ideal materials for regenerative medicine. The advent of mesoporous glasses, which are typically synthesized via sol-gel routes, allowed researchers to develop a broad and versatile class of novel biomaterials that combine superior bone regenerative potential (compared to traditional melt-derived glasses) with the ability of incorporating drugs and various biomolecules for targeted therapy in situ. Mesoporous glass particles can be directly embedded as a bioactive phase within a non-porous (e.g., microspheres), porous (3D scaffolds) or injectable matrix, or be processed to manufacture a surface coating on inorganic or organic (macro)porous substrates, thereby obtaining hierarchical structures with multiscale porosity. This review provides a picture of composite systems and coatings based on mesoporous glasses and highlights the challenges for the future, including the great potential of inorganic–organic hybrid sol-gel biomaterials. PMID:28952496
Huang, Jiansheng; Schriefer, Andrew E; Yang, Wei; Cliften, Paul F; Rudnick, David A
2014-01-01
Liver regeneration has been well studied with hope of discovering strategies to improve liver disease outcomes. Nevertheless, the signals that initiate such regeneration remain incompletely defined, and translation of mechanism-based pro-regenerative interventions into new treatments for hepatic diseases has not yet been achieved. We previously reported the isoform-specific regulation and essential function of zinc-dependent histone deacetylases (Zn-HDACs) during mouse liver regeneration. Those data suggest that epigenetically regulated anti-proliferative genes are deacetylated and transcriptionally suppressed by Zn-HDAC activity or that pro-regenerative factors are acetylated and induced by such activity in response to partial hepatectomy (PH). To investigate these possibilities, we conducted genome-wide interrogation of the liver histone acetylome during early PH-induced liver regeneration in mice using acetyL-histone chromatin immunoprecipitation and next generation DNA sequencing. We also compared the findings of that study to those seen during the impaired regenerative response that occurs with Zn-HDAC inhibition. The results reveal an epigenetic signature of early liver regeneration that includes both hyperacetylation of pro-regenerative factors and deacetylation of anti-proliferative and pro-apoptotic genes. Our data also show that administration of an anti-regenerative regimen of the Zn-HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) not only disrupts gene-specific pro-regenerative changes in liver histone deacetylation but also reverses PH-induced effects on histone hyperacetylation. Taken together, these studies offer new insight into and suggest novel hypotheses about the epigenetic mechanisms that regulate liver regeneration. PMID:25482284
Unitized Regenerative Fuel Cell System Gas Storage-Radiator Development
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.; Jakupta, Ian
2005-01-01
High-energy-density regenerative fuel cell systems that are used for energy storage require novel approaches to integrating components in order to preserve mass and volume. A lightweight unitized regenerative fuel cell (URFC) energy storage system concept is being developed at the NASA Glenn Research Center. This URFC system minimizes mass by using the surface area of the hydrogen and oxygen storage tanks as radiating heat surfaces for overall thermal control of the system. The waste heat generated by the URFC stack during charging and discharging is transferred from the cell stack to the surface of each tank by loop heat pipes, which are coiled around each tank and covered with a thin layer of thermally conductive carbon composite. The thin layer of carbon composite acts as a fin structure that spreads the heat away from the heat pipe and across the entire tank surface. Two different-sized commercial-grade composite tanks were constructed with integral heat pipes and tested in a thermal vacuum chamber to examine the feasibility of using the storage tanks as system radiators. The storage tank-radiators were subjected to different steady-state heat loads and varying heat load profiles. The surface emissivity and specific heat capacity of each tank were calculated. In the future, the results will be incorporated into a model that simulates the performance of similar radiators using lightweight, spacerated carbon composite tanks.
Stem cell sources for regenerative medicine.
Riazi, Ali M; Kwon, Sarah Y; Stanford, William L
2009-01-01
Tissue-resident stem cells or primitive progenitors play an integral role in homeostasis of most organ systems. Recent developments in methodologies to isolate and culture embryonic and somatic stem cells have many new applications poised for clinical and preclinical trials, which will enable the potential of regenerative medicine to be realized. Here, we overview the current progress in therapeutic applications of various stem cells and discuss technical and social hurdles that must be overcome for their potential to be realized.
MicroRNA delivery for regenerative medicine.
Peng, Bo; Chen, Yongming; Leong, Kam W
2015-07-01
MicroRNA (miRNA) directs post-transcriptional regulation of a network of genes by targeting mRNA. Although relatively recent in development, many miRNAs direct differentiation of various stem cells including induced pluripotent stem cells (iPSCs), a major player in regenerative medicine. An effective and safe delivery of miRNA holds the key to translating miRNA technologies. Both viral and nonviral delivery systems have seen success in miRNA delivery, and each approach possesses advantages and disadvantages. A number of studies have demonstrated success in augmenting osteogenesis, improving cardiogenesis, and reducing fibrosis among many other tissue engineering applications. A scaffold-based approach with the possibility of local and sustained delivery of miRNA is particularly attractive since the physical cues provided by the scaffold may synergize with the biochemical cues induced by miRNA therapy. Herein, we first briefly cover the application of miRNA to direct stem cell fate via replacement and inhibition therapies, followed by the discussion of the promising viral and nonviral delivery systems. Next we present the unique advantages of a scaffold-based delivery in achieving lineage-specific differentiation and tissue development. Copyright © 2015 Elsevier B.V. All rights reserved.
Early evaluation and value-based pricing of regenerative medicine technologies.
Koerber, Florian; Rolauffs, Bernd; Rogowski, Wolf
2013-11-01
Since the first pioneering scientists explored the potential of using human cells for therapeutic purposes the branch of regenerative medicine has evolved to become a mature industry. The focus has switched from 'what can be done' to 'what can be commercialized'. Timely health economic evaluation supports successful marketing by establishing the value of a product from a healthcare system perspective. This article reports results from a research project on early health economic evaluation in collaboration with developers, clinicians and manufacturers. We present an approach to determine an early value-based price for a new treatment of cartilage defects of the knee from the area of regenerative medicine. Examples of using evaluation results for the purpose of business planning, market entry, preparing the coverage decision and managed entry are discussed.
Integration of regenerative shock absorber into vehicle electric system
NASA Astrophysics Data System (ADS)
Zhang, Chongxiao; Li, Peng; Xing, Shaoxu; Kim, Junyoung; Yu, Liangyao; Zuo, Lei
2014-03-01
Regenerative/Energy harvesting shock absorbers have a great potential to increase fuel efficiency and provide suspension damping simultaneously. In recent years there's intensive work on this topic, but most researches focus on electricity extraction from vibration and harvesting efficiency improvement. The integration of electricity generated from regenerative shock absorbers into vehicle electric system, which is very important to realize the fuel efficiency benefit, has not been investigated. This paper is to study and demonstrate the integration of regenerative shock absorber with vehicle alternator, battery and in-vehicle electrical load together. In the presented system, the shock absorber is excited by a shaker and it converts kinetic energy into electricity. The harvested electricity flows into a DC/DC converter which realizes two functions: controlling the shock absorber's damping and regulating the output voltage. The damping is tuned by controlling shock absorber's output current, which is also the input current of DC/DC converter. By adjusting the duty cycles of switches in the converter, its input impedance together with input current can be adjusted according to dynamic damping requirements. An automotive lead-acid battery is charged by the DC/DC converter's output. To simulate the working condition of combustion engine, an AC motor is used to drive a truck alternator, which also charges the battery. Power resistors are used as battery's electrical load to simulate in-vehicle electrical devices. Experimental results show that the proposed integration strategy can effectively utilize the harvested electricity and power consumption of the AC motor is decreased accordingly. This proves the combustion engine's load reduction and fuel efficiency improvement.
Samsonraj, Rebekah M.; Raghunath, Michael; Nurcombe, Victor; Hui, James H.
2017-01-01
Abstract Mesenchymal stem cells (MSC) hold great potential for regenerative medicine because of their ability for self‐renewal and differentiation into tissue‐specific cells such as osteoblasts, chondrocytes, and adipocytes. MSCs orchestrate tissue development, maintenance and repair, and are useful for musculoskeletal regenerative therapies to treat age‐related orthopedic degenerative diseases and other clinical conditions. Importantly, MSCs produce secretory factors that play critical roles in tissue repair that support both engraftment and trophic functions (autocrine and paracrine). The development of uniform protocols for both preparation and characterization of MSCs, including standardized functional assays for evaluation of their biological potential, are critical factors contributing to their clinical utility. Quality control and release criteria for MSCs should include cell surface markers, differentiation potential, and other essential cell parameters. For example, cell surface marker profiles (surfactome), bone‐forming capacities in ectopic and orthotopic models, as well as cell size and granularity, telomere length, senescence status, trophic factor secretion (secretome), and immunomodulation, should be thoroughly assessed to predict MSC utility for regenerative medicine. We propose that these and other functionalities of MSCs should be characterized prior to use in clinical applications as part of comprehensive and uniform guidelines and release criteria for their clinical‐grade production to achieve predictably favorable treatment outcomes for stem cell therapy. Stem Cells Translational Medicine 2017;6:2173–2185 PMID:29076267
Nakahara, Taka
2011-07-01
Multipotent mesenchymal stem cells from bone marrow are expected to be a somatic stem cell source for the development of new cell-based therapy in regenerative medicine. However, dental clinicians are unlikely to carry out autologous cell/tissue collection from patients (i.e., marrow aspiration) as a routine procedure in their clinics; hence, the utilization of bone marrow stem cells seems impractical in the dental field. Dental tissues harvested from extracted human teeth are well known to contain highly proliferative and multipotent stem cell compartments and are considered to be an alternative autologous cell source in cell-based medicine. This article provides a short overview of the ongoing studies for the potential application of dental stem cells and suggests the utilization of 2 concepts in future regenerative medicine: (1) dental stem cell-based therapy for hepatic and other systemic diseases and (2) tooth replacement therapy using the bioengineered human whole tooth, called the "test-tube dental implant." Regenerative therapies will bring new insights and benefits to the fields of clinical medicine and dentistry.
Nowacki, Maciej; Nowacka, Katarzyna; Kloskowski, Tomasz; Pokrywczyńska, Marta; Tyloch, Dominik; Rasmus, Marta; Warda, Karolina; Drewa, Tomasz
2017-05-11
[b] Abstract Introduction and objectives[/b]. As tissue engineering and regenerative medicine have continued to evolve within the field of biomedicine, the fundamental importance of bio-products has become increasingly apparent. This true not only in cases where they are derived directly from the natural environment, but also when animals and plants are specially bred and cultivated for their production. [b]Objective.[/b] The study aims to present and assess the global influence and importance of selected bio-products in current regenerative medicine via a broad review of the existing literature. In particular, attention is paid to the matrices, substances and grafts created from plants and animals which could potentially be used in experimental and clinical regeneration, or in reconstructive procedures. [b]Summary.[/b] Evolving trends in agriculture are likely to play a key role in the future development of a number of systemic and local medical procedures within tissue engineering and regenerative medicine. This is in addition to the use of bio-products derived from the natural environment which are found to deliver positive results in the treatment of prospective patients.
NASA Astrophysics Data System (ADS)
Peng, ZhiGang; Chen, Meng; Yang, Chao; Chang, Liang; Li, Gang
2015-02-01
We report a high-energy, high-repetition CW pumped Nd:YVO4 amplifier system, that produces 10.5 W, 14.2 ps pulses at 1064 nm wavelength and 5 W pulses at 532 nm wavelength with a repetition rate of 10 kHz. Pulses from a passively mode-locked Nd:YVO4 oscillator are first generated by cavity dumping, and then further amplified in a regenerative amplifier from 545 nJ to 1 mJ with a CW diode-pumped Nd:YVO4. After frequency doubling, 0.5 mJ pulses are obtained with a wavelength of 532 nm.
Advanced Regenerative Environmental Control and Life Support Systems: Air and Water Regeneration
NASA Technical Reports Server (NTRS)
Schubert, F. H.; Wynveen, R. A.; Quattrone, P. D.
1985-01-01
Extended manned space missions will require regenerative life support techniques. Past manned missions used nonregenerative expendables, except for a molecular sieve based carbon dioxide removal system aboard Skylab. The resupply penalties associated with expendables becomes prohibitive as crew size and mission duration increase. The Space Station scheduled to be operational in the 1990's is based on a crew of four to sixteen and a resupply period of 90 days or greater. It will be the first major spacecraft to employ regenerable techniques for life support. The techniques to be used in the requirements for the space station are addressed.
Advanced regenerative environmental control and life support systems - Air and water regeneration
NASA Technical Reports Server (NTRS)
Schubert, F. H.; Wynveen, R. A.; Quattrone, P. D.
1984-01-01
Extended manned space missions will require regenerative life support techniques. Past U.S. manned missions used nonregenerative expendables, except for a molecular sieve-based carbon dioxide removal system aboard Skylab. The resupply penalties associated with expandables becomes prohibitive as crew size and mission duration increase. The U.S. Space Station, scheduled to be operational in the 1990's, is based on a crew of four to sixteen and a resupply period of 90 days or greater. It will be the first major spacecraft to employ regenerable techniques for life support. The paper uses the requirements for the Space Station to address these techniques.
Alkaline fuel cells for the regenerative fuel cell energy storage system
NASA Technical Reports Server (NTRS)
Martin, R. E.
1983-01-01
The development of the alkaline Regenerative Fuel Cell System, whose fuel cell module would be a derivative of the 12-kW fuel cell power plant currently being produced for the Space Shuttle Orbiter, is reviewed. Long-term endurance testing of full-size fuel cell modules has demonstrated: (1) the extended endurance capability of potassium titanate matrix cells, (2) the long-term performance stability of the anode catalyst, and (3) the suitability of a lightweight graphite structure for use at the anode. These approaches, developed in the NASA-sponsored fuel cell technology advancement program, would also reduce cell weight by nearly one half.
Diagram of the Water Recovery and Management for the International Space Station
NASA Technical Reports Server (NTRS)
2000-01-01
This diagram shows the flow of water recovery and management in the International Space Station (ISS). The Environmental Control and Life Support System (ECLSS) Group of the Flight Projects Directorate at the Marshall Space Flight Center is responsible for the regenerative ECLSS hardware, as well as providing technical support for the rest of the system. The regenerative ECLSS, whose main components are the Water Recovery System (WRS), and the Oxygen Generation System (OGS), reclaims and recycles water oxygen. The ECLSS maintains a pressurized habitation environment, provides water recovery and storage, maintains and provides fire detection/ suppression, and provides breathable air and a comfortable atmosphere in which to live and work within the ISS. The ECLSS hardware will be located in the Node 3 module of the ISS.
Exergy analysis and optimisation of waste heat recovery systems for cement plants
NASA Astrophysics Data System (ADS)
Mohammadi, Amin; Ashjari, Muhammad Ali; Sadreddini, Amirhassan
2018-02-01
In the last decades, heat recovery systems have received much attention due to the increase in fuel cost and the increase in environmental issues. In this study, different heat recovery systems for a cement plant are compared in terms of electricity generation and exergy analysis. The heat sources are available in high temperature (HT) and low temperature (LT). For the HT section a dual pressure Rankine cycle, a simple dual pressure Organic Rankine Cycle (ORC) and a regenerative dual pressure ORC are compared. Also, for the LT section, a simple ORC is compared with transcritical carbon dioxide cycle. To find the best system, an optimisation algorithm is applied to all proposed cycles. The results show that for the HT section, regenerative ORC has the highest exergy efficiency and has the capability of producing nearly 7 MW electricity for a cement factory with the capacity of 3400 ton per day. The main reason for this is introducing the regenerative heat exchanger to the cycle. For the LT section, ORC showed a better performance than the CO2 cycle. It is worth mentioning that the generated power in this section is far lower than that of the HT section and is equal to nearly 300 kW.
Design considerations for a 10-kW integrated hydrogen-oxygen regenerative fuel cell system
NASA Technical Reports Server (NTRS)
Hoberecht, M. A.; Miller, T. B.; Rieker, L. L.; Gonzalez-Sanabria, O. D.
1984-01-01
Integration of an alkaline fuel cell subsystem with an alkaline electrolysis subsystem to form a regenerative fuel cell (RFC) system for low earth orbit (LEO) applications characterized by relatively high overall round trip electrical efficiency, long life, and high reliability is possible with present state of the art technology. A hypothetical 10 kW system computer modeled and studied based on data from ongoing contractual efforts in both the alkaline fuel cell and alkaline water electrolysis areas. The alkaline fuel cell technology is under development utilizing advanced cell components and standard Shuttle Orbiter system hardware. The alkaline electrolysis technology uses a static water vapor feed technique and scaled up cell hardware is developed. The computer aided study of the performance, operating, and design parameters of the hypothetical system is addressed.
Stem cell- and scaffold-based tissue engineering approaches to osteochondral regenerative medicine
Sundelacruz, Sarah; Kaplan, David L.
2009-01-01
In osteochondral tissue engineering, cell recruitment, proliferation, differentiation, and patterning are critical for forming biologically and structurally viable constructs for repair of damaged or diseased tissue. However, since constructs prepared ex vivo lack the multitude of cues present in the in vivo microenvironment, cells often need to be supplied with external biological and physical stimuli to coax them towards targeted tissue functions. To determine which stimuli to present to cells, bioengineering strategies can benefit significantly from endogenous examples of skeletogenesis. As an example of developmental skeletogenesis, the developing limb bud serves as an excellent model system in which to study how an osteochondral structures form from undifferentiated precursor cells. Alongside skeletal formation during embryogenesis, bone also possesses innate regenerative capacity, displaying remarkable ability to heal after damage. Bone fracture healing shares many features with bone development, driving the hypothesis that the regenerative process generally recapitulates development. Similarities and differences between the two modes of bone formation may offer insight into the special requirements for healing damaged or diseased bone. Thus, endogenous fracture healing, as an example of regenerative skeletogenesis, may also inform bioengineering strategies. In this review, we summarize the key cellular events involving stem and progenitor cells in developmental and regenerative skeletogenesis, and discuss in parallel the corresponding cell- and scaffold-based strategies that tissue engineers employ to recapitulate these events in vitro. PMID:19508851
NASA Technical Reports Server (NTRS)
1972-01-01
Prior to beginning a 90-day test of a regenerative life support system, a need was identified for a training and certification program to qualify an operating staff for conducting the test. The staff was responsible for operating and maintaining the test facility, monitoring and ensuring crew safety, and implementing procedures to ensure effective mission performance with good data collection and analysis. The training program was designed to ensure that each operating staff member was capable of performing his assigned function and was sufficiently cross-trained to serve at certain other positions on a contingency basis. Complicating the training program were budget and schedule limitations, and the high level of sophistication of test systems.
Vertès, A
2016-10-01
In its third edition, the Stem Cell and Regenerative Medicine Global Conference (SCRGC) organized by the Global Stem Cell & Regenerative Medicine Acceleration Center (GSRAC) was focused on breaking barriers to accelerate the pace of innovation and development of the regenerative medicine industry. GSRAC is both a think tank and a global network of key opinion leaders from the public and the private sectors. GSRAC was commissioned in 2011 by the Ministry of Health and Welfare (MOHW) of Korea. GSRAC's primary mission is to enable and accelerate the delivery of innovative technologies to patients who are affected by currently untreatable diseases. This goal is notably achieved by resolving hurdles in the field of regenerative medicine. With a total of 30 speakers and panelists from 8 different countries and more than 400 attendees from an array of institutions including hospitals, clinics, biotechnology companies, pharmaceutical companies, scientists, as well as policy makers, the 2-day SCRGC highlighted critical challenges and paths to resolving them in policy and regulatory, and industrial-scale manufacturing of gene-based and cell-based therapies, comprising plenary lectures and sessions covering strategic policy, regulatory, reimbursement and business development, and business of manufacturing, and production technologies. Several of these presentations are summarized in this report. Copyright 2016 Prous Science, S.A.U. or its licensors. All rights reserved.
Analysis of an algae-based CELSS. II - Options and weight analysis
NASA Technical Reports Server (NTRS)
Holtzapple, Mark T.; Little, Frank E.; Moses, William M.; Patterson, C. O.
1989-01-01
Life support components are evaluated for application to an idealized closed life support system which includes an algal reactor for food production. Weight-based trade studies are reported as 'break-even' time for replacing food stores with a regenerative bioreactor. It is concluded that closure of the life support gases (oxygen recovery) depends on the carbon dioxide reduction chemistry and that an algae-based food production can provide an attractive alternative to re-supply for longer duration missions.
Analysis of an algae-based CELSS. Part 2: options and weight analysis
NASA Technical Reports Server (NTRS)
Holtzapple, M. T.; Little, F. E.; Moses, W. M.; Patterson, C. O.
1989-01-01
Life support components are evaluated for application to an idealized closed life support system which includes an algal reactor for food production. Weight-based trade studies are reported as "break-even" time for replacing food stores with a regenerative bioreactor. It is concluded that closure of the life support gases (oxygen recovery) depends on the carbon dioxide reduction chemistry and that an algae-based food production can provide an attractive alternative to re-supply for longer duration missions.
Feasibility analysis of reciprocating magnetic heat pumps
NASA Technical Reports Server (NTRS)
Larson, A. V.; Hartley, J. G.; Shelton, S. V.; Smith, M. M.
1986-01-01
The conceptual design selected for detailed system analysis and optimization is the reciprocating gadolinium core in a regenerative fluid column within the bore of a superconducting magnet. The thermodynamic properties of gadolinium are given. A computerized literature search for relevant papers was conducted and is being analyzed. Contact was made with suppliers of superconducting magnets and accessories, magnetic materials, and various types of hardware. A description of the model for the thermal analysis of the core and regenerator fluids is included.
NASA Technical Reports Server (NTRS)
Wheeler, D. B.; Kirby, F. M.
1978-01-01
The potential for converting the space shuttle main engine (SSME) to a dual-fuel, dual-mode engine using LOX/hydrocarbon propellants in mode 1 and LOX/H2 in mode 2 was examined. Various engine system concepts were formulated that included staged combustion and gas generator turbine power cycles, and LOX/RP-1, LOX/CH4, and LOX/C3H8 mode 1 propellants. Both oxidizer and fuel regenerative cooling were considered. All of the SSME major components were examined to determine their adaptability to the candidate dual-fuel engines.
Efficient, diode-laser-pumped, diode-laser-seeded, high-peak-power Nd:YLF regenerative amplifier.
Selker, M D; Afzal, R S; Dallas, J L; Yu, A W
1994-04-15
Optical amplification of 11 orders of magnitude in a microlens-collimated, diode-laser-pumped regenerative amplifier has been demonstrated. The amplifier was seeded with 20-ps pulses from an FM mode-locked oscillator and with 0.9-ns pulses from a modulated diode laser. Seed pulses from both sources were amplified to energies exceeding 2.5 mJ. With the thermoelectric coolers and the Pockels cell electronics neglected, the diode-seeded system exhibited an electrical-to-optical efficiency of 2.2%.
Space Station CMIF extended duration metabolic control test
NASA Technical Reports Server (NTRS)
Schunk, Richard G.; Bagdigian, Robert M.; Carrasquillo, Robyn L.; Ogle, Kathryn Y.; Wieland, Paul O.
1989-01-01
The Space Station Extended Duration Metabolic Control Test (EMCT) was conducted at the MSFC Core Module Integration Facility. The primary objective of the EMCT was to gather performance data from a partially-closed regenerative Environmental Control and Life Support (ECLS) system functioning under steady-state conditions. Included is a description of the EMCT configuration, a summary of events, a discussion of anomalies that occurred during the test, and detailed results and analysis from individual measurements of water and gas samples taken during the test. A comparison of the physical, chemical, and microbiological methods used in the post test laboratory analyses of the water samples is included. The preprototype ECLS hardware used in the test, providing an overall process description and theory of operation for each hardware item. Analytical results pertaining to a system level mass balance and selected system power estimates are also included.
Space power technology into the 21st century
NASA Technical Reports Server (NTRS)
Faymon, K. A.; Fordyce, J. S.
1984-01-01
This paper discusses the space power systems of the early 21st century. The focus is on those capabilities which are anticipated to evolve from today's state-of-the-art and the technology development programs presently in place or planned for the remainder of the century. The power system technologies considered include solar thermal, nuclear, radioisotope, photovoltaic, thermionic, thermoelectric, and dynamic conversion systems such as the Brayton and Stirling cycles. Energy storage technologies considered include nickel hydrogen biopolar batteries, advanced high energy rechargeable batteries, regenerative fuel cells, and advanced primary batteries. The present state-of-the-art of these space power and energy technologies is discussed along with their projections, trends and goals. A speculative future mission model is postulated which includes manned orbiting space stations, manned lunar bases, unmanned earth orbital and interplanetary spacecraft, manned interplanetary missions, military applications, and earth to space and space to space transportation systems. The various space power/energy system technologies anticipated to be operational by the early 21st century are matched to these missions.
Space power technology into the 21st Century
NASA Technical Reports Server (NTRS)
Faymon, K. A.; Fordyce, J. S.
1983-01-01
The space power systems of the early 21st century are discussed. The capabilities which are anticipated to evolve from today's state of the art and the technology development programs presently in place or planned for the remainder of the century are emphasized. The power system technologies considered include: solar thermal, nuclear, radioisotope, photovoltaic, thermionic, thermoelectric, and dynamic conversion systems such as the Brayton and Stirling cycles. Energy storage technologies considered include: nickel hydrogen biopolar batteries, advanced high energy rechargeable batteries, regenerative fuel cells, and advanced primary batteries. The present state of the art of these space power and energy technologies is discussed along with their projections, trends and goals. A speculative future mission model is postulated which includes manned orbiting space stations, manned lunar bases, unmanned Earth orbital and interplanetary spacecraft, manned interplanetary missions, military applications, and Earth to space and space to space transportation systems. The various space power/energy system technologies which are anticipated to be operational by the early 21st century are matched to these missions.
Transient three-dimensional startup side load analysis of a regeneratively cooled nozzle
NASA Astrophysics Data System (ADS)
Wang, Ten-See
2009-07-01
The objective of this effort is to develop a computational methodology to capture the side load physics and to anchor the computed aerodynamic side loads with the available data by simulating the startup transient of a regeneratively cooled, high-aspect-ratio nozzle, hot-fired at sea level. The computational methodology is based on an unstructured-grid, pressure-based, reacting flow computational fluid dynamics and heat transfer formulation, and a transient inlet history based on an engine system simulation. Emphases were put on the effects of regenerative cooling on shock formation inside the nozzle, and ramp rate on side load reduction. The results show that three types of asymmetric shock physics incur strong side loads: the generation of combustion wave, shock transitions, and shock pulsations across the nozzle lip, albeit the combustion wave can be avoided with sparklers during hot-firing. Results from both regenerative cooled and adiabatic wall boundary conditions capture the early shock transitions with corresponding side loads matching the measured secondary side load. It is theorized that the first transition from free-shock separation to restricted-shock separation is caused by the Coanda effect. After which the regeneratively cooled wall enhances the Coanda effect such that the supersonic jet stays attached, while the hot adiabatic wall fights off the Coanda effect, and the supersonic jet becomes detached most of the time. As a result, the computed peak side load and dominant frequency due to shock pulsation across the nozzle lip associated with the regeneratively cooled wall boundary condition match those of the test, while those associated with the adiabatic wall boundary condition are much too low. Moreover, shorter ramp time results show that higher ramp rate has the potential in reducing the nozzle side loads.
The potential role of aerobic biological waste treatment in regenerative life support systems
NASA Technical Reports Server (NTRS)
Shuler, M. L.; Nafis, D.; Sze, E.
1981-01-01
The purpose of the paper is to make a preliminary assessment of the feasibility of using aerobic biological waste treatment in closed systems. Issues that are addressed in this paper are: (1) how high a degree of material balance is possible, (2) how much might such a system weigh, and (3) how would system closure and weight be affected if animals were included in the system. A computer model has been developed to calculate for different scenarios the compositions and amounts of the streams entering or leaving the waste treatment system and to estimate the launch weight of such a system. A bench scale apparatus has been built to mimic the proposed waste treatment system; the experiments are used to verify model predictions and to improve model parameter estimations.
NASA Astrophysics Data System (ADS)
Rousek, Tomáš; Eriksson, Katarina; Doule, Ondřej
2012-05-01
This project describes a design study for a core module on a Lunar South Pole outpost, constructed by 3D printing technology with the use of in-situ resources and equipped with a bio-regenerative life support system. The module would be a hybrid of deployable (CLASS II) and in-situ built (CLASS III) structures. It would combine deployable membrane structures and pre-integrated rigid elements with a sintered regolith shell for enhanced radiation and micrometeorite shielding. The closed loop ecological system would support a sustainable presence on the Moon with particular focus on research activities. The core module accommodates from four to eight people, and provides laboratories as a test bed for development of new lunar technologies directly in the environment where they will be used. SinterHab also includes an experimental garden for development of new bio-regenerative life support system elements. The project explores these various concepts from an architectural point-of-view particularly, as they constitute the building, construction and interior elements. The construction method for SinterHab is based on 3D printing by sintering of the lunar regolith. Sinterator robotics 3D printing technology proposed by NASA JPL enables construction of future generations of large lunar settlements with little imported material and the use of solar energy. The regolith is processed, placed and sintered by the Sinterator robotics system which combines the NASA ATHLETE and the Chariot remotely controlled rovers. Microwave sintering creates a rigid structure in the form of walls, vaults and other architectural elements. The interior is coated with a layer of inflatable membranes inspired by the TransHab project. The life-support system is mainly bio-regenerative and several parts of the system are intrinsically multifunctional and serve more than one purpose. The plants for food production are also an efficient part of atmosphere revitalization and water treatment. Moreover, the plants will be used as a "winter garden" for psychological and recreational purposes. The water in the revitalization system has a multifunctional use, as radiation shielding in the safe-haven habitat core. The garden module creates an artificial outdoor environment mitigating the notion of confinement on the lunar surface. Fiber optics systems and plasma lamps are used for transmission of natural and artificial light into the interior.
Design study of toroidal traction CVT for electric vehicles
NASA Technical Reports Server (NTRS)
Raynard, A. E.; Kraus, J.; Bell, D. D.
1980-01-01
The development, evaluation, and optimization of a preliminary design concept for a continuously variable transmission (CVT) to couple the high-speed output shaft of an energy storage flywheel to the drive train of an electric vehicle is discussed. An existing computer simulation program was modified and used to compare the performance of five CVT design configurations. Based on this analysis, a dual-cavity full-toroidal drive with regenerative gearing is selected for the CVT design configuration. Three areas are identified that will require some technological development: the ratio control system, the traction fluid properities, and evaluation of the traction contact performance. Finally, the suitability of the selected CVT design concept for alternate electric and hybrid vehicle applications and alternate vehicle sizes and maximum output torques is determined. In all cases the toroidal traction drive design concept is applicable to the vehicle system. The regenerative gearing could be eliminated in the electric powered vehicle because of the reduced ratio range requirements. In other cases the CVT with regenerative gearing would meet the design requirements after appropriate adjustments in size and reduction gearing ratio.
The Hematopoietic System in the Context of Regenerative Medicine
Porada, Christopher D.; Atala, Anthony J.; Almeida-Porada, Graça
2015-01-01
Hematopoietic stem cells (HSC) represent the prototype stem cell within the body. Since their discovery, HSC have been the focus of intensive research, and have proven invaluable clinically to restore hematopoiesis following inadvertent radiation exposure and following radio/chemotherapy to eliminate hematologic tumors. While they were originally discovered in the bone marrow, HSC can also be isolated from umbilical cord blood and can be “mobilized” peripheral blood, making them readily available in relatively large quantities. While their ability to repopulate the entire hematopoietic system would already guarantee HSC a valuable place in regenerative medicine, the finding that hematopoietic chimerism can induce immunological tolerance to solid organs and correct autoimmune diseases has dramatically broadened their clinical utility. The demonstration that these cells, through a variety of mechanisms, can also promote repair/regeneration of non-hematopoietic tissues as diverse as liver, heart, and brain has further increased their clinical value. The goal of this review is to provide the reader with a brief glimpse into the remarkable potential HSC possess, and to highlight their tremendous value as therapeutics in regenerative medicine. PMID:26319943
1978-04-18
Artist: Rick Guidice Space Colonization regenerative life support systems. This concept from a summer study done in 1977 depicts a closed loop life support system for long duration space settlements or space industrialization.
Trans-differentiation via Epigenetics: A New Paradigm in the Bone Regeneration.
Cho, Young-Dan; Ryoo, Hyun-Mo
2018-02-01
In regenerative medicine, growing cells or tissues in the laboratory is necessary when damaged cells can not heal by themselves. Acquisition of the required cells from the patient's own cells or tissues is an ideal option without additive side effects. In this context, cell reprogramming methods, including the use of induced pluripotent stem cells (iPSCs) and trans-differentiation, have been widely studied in regenerative research. Both approaches have advantages and disadvantages, and the possibility of de-differentiation because of the epigenetic memory of iPSCs has strengthened the need for controlling the epigenetic background for successful cell reprogramming. Therefore, interest in epigenetics has increased in the field of regenerative medicine. Herein, we outline in detail the cell trans-differentiation method using epigenetic modification for bone regeneration in comparison to the use of iPSCs.
A hybrid regenerative water recovery system for lunar/Mars life support applications
NASA Technical Reports Server (NTRS)
Verostko, Charles E.; Edeen, Marybeth A.; Packham, Nigel J. C.
1992-01-01
Long-duration manned space missions will require integrated biological and physicochemical processes for recovery of resources from wastes. This paper discusses a hybrid regenerative biological and physicochemical water recovery system designed and built at NASA's Crew and Thermal Systems Division at Johnson Space Center. The system is sized for a four-person crew and consists of a two-stage, aerobic, trickling filter bioreactor; a reverse osmosis system; and a photocatalytic oxidation system. The system was designed to accommodate high organic and inorganic loadings and a low hydraulic loading. The bioreactor was designed to oxidize organics to carbon dioxide and water; the reverse osmosis system reduces inorganic content to potable quality; and the photocatalytic oxidation unit removes residual organic impurities (part per million range) and provides in situ disinfection. The design and performance of the hybrid system for producing potable/hygiene water is described. Aspects of the system such as closure, automation and integration are discussed and preliminary results presented.
Chitosan and Its Potential Use as a Scaffold for Tissue Engineering in Regenerative Medicine
Rodríguez-Vázquez, Martin; Vega-Ruiz, Brenda; Ramos-Zúñiga, Rodrigo; Saldaña-Koppel, Daniel Alexander; Quiñones-Olvera, Luis Fernando
2015-01-01
Tissue engineering is an important therapeutic strategy to be used in regenerative medicine in the present and in the future. Functional biomaterials research is focused on the development and improvement of scaffolding, which can be used to repair or regenerate an organ or tissue. Scaffolds are one of the crucial factors for tissue engineering. Scaffolds consisting of natural polymers have recently been developed more quickly and have gained more popularity. These include chitosan, a copolymer derived from the alkaline deacetylation of chitin. Expectations for use of these scaffolds are increasing as the knowledge regarding their chemical and biological properties expands, and new biomedical applications are investigated. Due to their different biological properties such as being biocompatible, biodegradable, and bioactive, they have given the pattern for use in tissue engineering for repair and/or regeneration of different tissues including skin, bone, cartilage, nerves, liver, and muscle. In this review, we focus on the intrinsic properties offered by chitosan and its use in tissue engineering, considering it as a promising alternative for regenerative medicine as a bioactive polymer. PMID:26504833
Transient Three-Dimensional Analysis of Nozzle Side Load in Regeneratively Cooled Engines
NASA Technical Reports Server (NTRS)
Wang, Ten-See
2005-01-01
Three-dimensional numerical investigations on the start-up side load physics for a regeneratively cooled, high-aspect-ratio nozzle were performed. The objectives of this study are to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet condition based on an engine system simulation. Computations were performed for both the adiabatic and cooled walls in order to understand the effect of boundary conditions. Finite-rate chemistry was used throughout the study so that combustion effect is always included. The results show that three types of shock evolution are responsible for side loads: generation of combustion wave; transitions among free-shock separation, restricted-shock separation, and simultaneous free-shock and restricted shock separations; along with oscillation of shocks across the lip. Wall boundary conditions drastically affect the computed side load physics: the adiabatic nozzle prefers free-shock separation while the cooled nozzle favors restricted-shock separation, resulting in higher peak side load for the cooled nozzle than that of the adiabatic nozzle. By comparing the computed physics with those of test observations, it is concluded that cooled wall is a more realistic boundary condition, and the oscillation of the restricted-shock separation flow pattern across the lip along with its associated tangential shock motion are the dominant side load physics for a regeneratively cooled, high aspect-ratio rocket engine.
Regenerative Engineering and Bionic Limbs.
James, Roshan; Laurencin, Cato T
2015-03-01
Amputations of the upper extremity are severely debilitating, current treatments support very basic limb movement, and patients undergo extensive physiotherapy and psychological counselling. There is no prosthesis that allows the amputees near-normal function. With increasing number of amputees due to injuries sustained in accidents, natural calamities and international conflicts, there is a growing requirement for novel strategies and new discoveries. Advances have been made in technological, material and in prosthesis integration where researchers are now exploring artificial prosthesis that integrate with the residual tissues and function based on signal impulses received from the residual nerves. Efforts are focused on challenging experts in different disciplines to integrate ideas and technologies to allow for the regeneration of injured tissues, recording on tissue signals and feed-back to facilitate responsive movements and gradations of muscle force. A fully functional replacement and regenerative or integrated prosthesis will rely on interface of biological process with robotic systems to allow individual control of movement such as at the elbow, forearm, digits and thumb in the upper extremity. Regenerative engineering focused on the regeneration of complex tissue and organ systems will be realized by the cross-fertilization of advances over the past thirty years in the fields of tissue engineering, nanotechnology, stem cell science, and developmental biology. The convergence of toolboxes crated within each discipline will allow interdisciplinary teams from engineering, science, and medicine to realize new strategies, mergers of disparate technologies, such as biophysics, smart bionics, and the healing power of the mind. Tackling the clinical challenges, interfacing the biological process with bionic technologies, engineering biological control of the electronic systems, and feed-back will be the important goals in regenerative engineering over the next two decades.
Regenerative Engineering and Bionic Limbs
James, Roshan; Laurencin, Cato T.
2015-01-01
Amputations of the upper extremity are severely debilitating, current treatments support very basic limb movement, and patients undergo extensive physiotherapy and psychological counselling. There is no prosthesis that allows the amputees near-normal function. With increasing number of amputees due to injuries sustained in accidents, natural calamities and international conflicts, there is a growing requirement for novel strategies and new discoveries. Advances have been made in technological, material and in prosthesis integration where researchers are now exploring artificial prosthesis that integrate with the residual tissues and function based on signal impulses received from the residual nerves. Efforts are focused on challenging experts in different disciplines to integrate ideas and technologies to allow for the regeneration of injured tissues, recording on tissue signals and feed-back to facilitate responsive movements and gradations of muscle force. A fully functional replacement and regenerative or integrated prosthesis will rely on interface of biological process with robotic systems to allow individual control of movement such as at the elbow, forearm, digits and thumb in the upper extremity. Regenerative engineering focused on the regeneration of complex tissue and organ systems will be realized by the cross-fertilization of advances over the past thirty years in the fields of tissue engineering, nanotechnology, stem cell science, and developmental biology. The convergence of toolboxes crated within each discipline will allow interdisciplinary teams from engineering, science, and medicine to realize new strategies, mergers of disparate technologies, such as biophysics, smart bionics, and the healing power of the mind. Tackling the clinical challenges, interfacing the biological process with bionic technologies, engineering biological control of the electronic systems, and feed-back will be the important goals in regenerative engineering over the next two decades. PMID:25983525
Regeneration of Tissues and Organs Using Autologous Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anthony Atala, M D
2012-10-11
The proposed work aims to address three major challenges to the field of regenerative medicine: 1) the growth and expansion of regenerative cells outside the body in controlled in vitro environments, 2) supportive vascular supply for large tissue engineered constructs, and 3) interactive biomaterials that can orchestrate tissue development in vivo. Toward this goal, we have engaged a team of scientists with expertise in cell and molecular biology, physiology, biomaterials, controlled release, nanomaterials, tissue engineering, bioengineering, and clinical medicine to address all three challenges. This combination of resources, combined with the vast infrastructure of the WFIRM, have brought to bearmore » on projects to discover and test new sources of autologous cells that can be used therapeutically, novel methods to improve vascular support for engineered tissues in vivo, and to develop intelligent biomaterials and bioreactor systems that interact favorably with stem and progenitor cells to drive tissue maturation. The Institute's ongoing programs are aimed at developing regenerative medicine technologies that employ a patient's own cells to help restore or replace tissue and organ function. This DOE program has provided a means to solve some of the vexing problems that are germane to many tissue engineering applications, regardless of tissue type or target disease. By providing new methods that are the underpinning of tissue engineering, this program facilitated advances that can be applied to conditions including heart disease, diabetes, renal failure, nerve damage, vascular disease, and cancer, to name a few. These types of conditions affect millions of Americans at a cost of more than $400 billion annually. Regenerative medicine holds the promise of harnessing the body's own power to heal itself. By addressing the fundamental challenges of this field in a comprehensive and focused fashion, this DOE program has opened new opportunities to treat conditions where other approaches have failed.« less
Facilities and support systems for a 90-day test of a regenerative life support system
NASA Technical Reports Server (NTRS)
Malin, R. L.
1972-01-01
A 90-day test is reported of a regenerative life support system which was completed in a space station simulator. The long duration of the test and the fact that it was manned, imposed rigid reliability and safety requirements on the facility. Where adequate reliability could not be built into essential facility systems, either backup systems or components were provided. Awareness was intensified by: (1) placing signs on every piece of equipment that could affect the test, (2) painting switches on all breaker panels a bright contrasting color, (3) restricting access to the test control area, and (4) informing personnel in the facility (other than test personnel) of test activities. It is concluded that the basic facility is satisfactory for conducting long-duration manned tests, and it is recommended that all monitor and alarm functions be integrated into a single operation.
Samsonraj, Rebekah M; Raghunath, Michael; Nurcombe, Victor; Hui, James H; van Wijnen, Andre J; Cool, Simon M
2017-12-01
Mesenchymal stem cells (MSC) hold great potential for regenerative medicine because of their ability for self-renewal and differentiation into tissue-specific cells such as osteoblasts, chondrocytes, and adipocytes. MSCs orchestrate tissue development, maintenance and repair, and are useful for musculoskeletal regenerative therapies to treat age-related orthopedic degenerative diseases and other clinical conditions. Importantly, MSCs produce secretory factors that play critical roles in tissue repair that support both engraftment and trophic functions (autocrine and paracrine). The development of uniform protocols for both preparation and characterization of MSCs, including standardized functional assays for evaluation of their biological potential, are critical factors contributing to their clinical utility. Quality control and release criteria for MSCs should include cell surface markers, differentiation potential, and other essential cell parameters. For example, cell surface marker profiles (surfactome), bone-forming capacities in ectopic and orthotopic models, as well as cell size and granularity, telomere length, senescence status, trophic factor secretion (secretome), and immunomodulation, should be thoroughly assessed to predict MSC utility for regenerative medicine. We propose that these and other functionalities of MSCs should be characterized prior to use in clinical applications as part of comprehensive and uniform guidelines and release criteria for their clinical-grade production to achieve predictably favorable treatment outcomes for stem cell therapy. Stem Cells Translational Medicine 2017;6:2173-2185. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
Artificial organs versus regenerative medicine: is it true?
Nosé, Yukihiko; Okubo, Hisashi
2003-09-01
Individuals engaged in the fields of artificial kidney and artificial heart have often mistakenly stated that "the era of artificial organs is over; regenerative medicine is the future." Contrarily, we do not believe artificial organs and regenerative medicine are different medical technologies. As a matter of fact, artificial organs developed during the last 50 years have been used as a bridge to regeneration. The only difference between regenerative medicine and artificial organs is that artificial organs for the bridge to regeneration promote tissue regeneration in situ, instead of outside the body (for example, vascular prostheses, neuroprostheses, bladder substitutes, skin prostheses, bone prostheses, cartilage prostheses, ligament prostheses, etc.). All of these artificial organs are successful because tissue regeneration over a man-made prosthesis is established inside the patient's body (artificial organs to support regeneration). Another usage of the group of artificial organs for the bridge to regeneration is to sustain the functions of the patient's diseased organs during the regeneration process of the body's healthy tissues and/or organs. This particular group includes artificial kidney, hepatic assist, respiratory assist, and circulatory assist. Proof of regeneration of these healthy tissues and/or organs is demonstrated in the short-term recovery of end-stage organ failure patients (artificial organs for bridge to regeneration). A third group of artificial organs for the bridge to regeneration accelerates the regenerating process of the patient's healthy tissues and organs. This group includes neurostimulators, artificial blood (red cells) blood oxygenators, and plasmapheresis devices, including hemodiafiltrators. So-called "therapeutic artificial organs" fall into this category (artificial organs to accelerate regeneration). Thus, almost all of today's artificial organs are useful in the bridge to regeneration of healthy natural tissues and organs. It does not matter whether these tissues are cultivated inside or outside the patient's body. Thus, we strongly believe in the need for joint development programs between artificial organ technologies and regenerative medicine technologies. In particular, the importance of using both man-made substitute organ technologies and natural tissue-derived substitute organ technologies is stressed for improved medical care in the future.
The Physical/Chemical Closed-Loop Life Support Research Project
NASA Technical Reports Server (NTRS)
Bilardo, Vincent J., Jr.
1990-01-01
The various elements of the Physical/Chemical Closed-Loop Life Support Research Project (P/C CLLS) are described including both those currently funded and those planned for implementation at ARC and other participating NASA field centers. The plan addresses the entire range of regenerative life support for Space Exploration Initiative mission needs, and focuses initially on achieving technology readiness for the Initial Lunar Outpost by 1995-97. Project elements include water reclamation, air revitalization, solid waste management, thermal and systems control, and systems integration. Current analysis estimates that each occupant of a space habitat will require a total of 32 kg/day of supplies to live and operate comfortably, while an ideal P/C CLLS system capable of 100 percent reclamation of air and water, but excluding recycling of solid wastes or foods, will reduce this requirement to 3.4 kg/day.
Developments in REDES: The rocket engine design expert system
NASA Technical Reports Server (NTRS)
Davidian, Kenneth O.
1990-01-01
The Rocket Engine Design Expert System (REDES) is being developed at the NASA-Lewis to collect, automate, and perpetuate the existing expertise of performing a comprehensive rocket engine analysis and design. Currently, REDES uses the rigorous JANNAF methodology to analyze the performance of the thrust chamber and perform computational studies of liquid rocket engine problems. The following computer codes were included in REDES: a gas properties program named GASP, a nozzle design program named RAO, a regenerative cooling channel performance evaluation code named RTE, and the JANNAF standard liquid rocket engine performance prediction code TDK (including performance evaluation modules ODE, ODK, TDE, TDK, and BLM). Computational analyses are being conducted by REDES to provide solutions to liquid rocket engine thrust chamber problems. REDES is built in the Knowledge Engineering Environment (KEE) expert system shell and runs on a Sun 4/110 computer.
Developments in REDES: The Rocket Engine Design Expert System
NASA Technical Reports Server (NTRS)
Davidian, Kenneth O.
1990-01-01
The Rocket Engine Design Expert System (REDES) was developed at NASA-Lewis to collect, automate, and perpetuate the existing expertise of performing a comprehensive rocket engine analysis and design. Currently, REDES uses the rigorous JANNAF methodology to analyze the performance of the thrust chamber and perform computational studies of liquid rocket engine problems. The following computer codes were included in REDES: a gas properties program named GASP; a nozzle design program named RAO; a regenerative cooling channel performance evaluation code named RTE; and the JANNAF standard liquid rocket engine performance prediction code TDK (including performance evaluation modules ODE, ODK, TDE, TDK, and BLM). Computational analyses are being conducted by REDES to provide solutions to liquid rocket engine thrust chamber problems. REDES was built in the Knowledge Engineering Environment (KEE) expert system shell and runs on a Sun 4/110 computer.
Conceptual design for a lunar-base CELSS
NASA Technical Reports Server (NTRS)
Schwartzkopf, Steven H.; Cullingford, Hatice S.
1990-01-01
Future human exploration is key to the United States National Space Policy goal of maintaining a world leadership position in space. In the past, spacecraft life support systems have used open-loop technologies that were simple and sufficiently reliable to demonstrate the feasibility of spaceflight. A critical technology area needing development in support of both long duration missions and the establishment of lunar or planetary bases is regenerative life support. The information presented in this paper describes a conceptual design of a Lunar Base Controlled Ecological Life Support System (LCELSS) which supports a crew size ranging from 4 to 100. The system includes, or incorporates interfaces with, eight primary subsystems. An initial description of the Lunar-Base CELSS subsystems is provided within the framework of the conceptual design. The system design includes both plant (algae and higher plant) and animal species as potential food sources.
Cell therapy for spinal cord injury informed by electromagnetic waves.
Finnegan, Jack; Ye, Hui
2016-10-01
Spinal cord injury devastates the CNS, besetting patients with symptoms including but not limited to: paralysis, autonomic nervous dysfunction, pain disorders and depression. Despite the identification of several molecular and genetic factors, a reliable regenerative therapy has yet to be produced for this terminal disease. Perhaps the missing piece of this puzzle will be discovered within endogenous electrotactic cellular behaviors. Neurons and stem cells both show mediated responses (growth rate, migration, differentiation) to electromagnetic waves, including direct current electric fields. This review analyzes the pathophysiology of spinal cord injury, the rationale for regenerative cell therapy and the evidence for directing cell therapy via electromagnetic waves shown by in vitro experiments.
Regenerative medicine in Europe: global competition and innovation governance.
Hogarth, Stuart; Salter, Brian
2010-11-01
Leading European nations with strong biotech sectors, such as the UK and Germany, are investing heavily in regenerative medicine, seeking competitive advantage in this emerging sector. However, in the broader biopharmaceutical sector, the EU is outperformed by the USA on all metrics, reflecting longstanding problems: limited venture capital finance, a fragmented patent system, and relatively weak relations between academia and industry. The current global downturn has exacerbated these difficulties. The crisis comes at a time when the EU is reframing its approach to the governance of innovation and renewing its commitment to the goal of making Europe the leading player in the global knowledge economy. If the EU is to gain a competitive advantage in the regenerative medicine sector then it must coordinate a complex multilevel governance framework that encompasses the EU, member states and regional authorities. This article takes stock of Europe's current competitive position within the global bioeconomy, drawing on a variety of metrics in the three intersecting spheres of innovation governance: science, market and society. These data then provide a platform for reviewing the problems of innovation governance faced by the EU and the strategic choices that have to be confronted in the regenerative medicine sector.
The blastema and epimorphic regeneration in mammals.
Seifert, Ashley W; Muneoka, Ken
2018-01-15
Studying regeneration in animals where and when it occurs is inherently interesting and a challenging research topic within developmental biology. Historically, vertebrate regeneration has been investigated in animals that display enhanced regenerative abilities and we have learned much from studying organ regeneration in amphibians and fish. From an applied perspective, while regeneration biologists will undoubtedly continue to study poikilothermic animals (i.e., amphibians and fish), studies focused on homeotherms (i.e., mammals and birds) are also necessary to advance regeneration biology. Emerging mammalian models of epimorphic regeneration are poised to help link regenerative biology and regenerative medicine. The regenerating rodent digit tip, which parallels human fingertip regeneration, and the regeneration of large circular defects through the ear pinna in spiny mice and rabbits, provide tractable, experimental systems where complex tissue structures are regrown through blastema formation and morphogenesis. Using these models as examples, we detail similarities and differences between the mammalian blastema and its classical counterpart to arrive at a broad working definition of a vertebrate regeneration blastema. This comparison leads us to conclude that regenerative failure is not related to the availability of regeneration-competent progenitor cells, but is most likely a function of the cellular response to the microenvironment that forms following traumatic injury. Recent studies demonstrating that targeted modification of this microenvironment can restrict or enhance regenerative capabilities in mammals helps provide a roadmap for eventually pushing the limits of human regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.
Regenerative Medicine for the Heart: Perspectives on Stem-Cell Therapy
Cho, Gun-Sik; Fernandez, Laviel
2014-01-01
Abstract Significance: Despite decades of progress in cardiovascular biology and medicine, heart disease remains the leading cause of death, and there is no cure for the failing heart. Since heart failure is mostly caused by loss or dysfunction of cardiomyocytes (CMs), replacing dead or damaged CMs with new CMs might be an ideal way to reverse the disease. However, the adult heart is composed mainly of terminally differentiated CMs that have no significant self-regeneration capacity. Recent Advances: Stem cells have tremendous regenerative potential and, thus, current cardiac regenerative research has focused on developing stem cell sources to repair damaged myocardium. Critical Issues: In this review, we examine the potential sources of cells that could be used for heart therapies, including embryonic stem cells and induced pluripotent stem cells, as well as alternative methods for activating the endogenous regenerative mechanisms of the heart via transdifferentiation and cell reprogramming. We also discuss the current state of knowledge of cell purification, delivery, and retention. Future Directions: Efforts are underway to improve the current stem cell strategies and methodologies, which will accelerate the development of innovative stem-cell therapies for heart regeneration. Antioxid. Redox Signal. 21, 2018–2031. PMID:25133793
Regenerative life support systems--why do we need them?
Barta, D J; Henninger, D L
1994-11-01
Human exploration of the solar system will include missions lasting years at a time. Such missions mandate extensive regeneration of life support consumables with efficient utilization of local planetary resources. As mission durations extend beyond one or two years, regenerable human life support systems which supply food and recycle air, water, and wastes become feasible; resupply of large volumes and masses of food, water, and atmospheric gases become unrealistic. Additionally, reduced dependency on resupply or self sufficiency can be an added benefit to human crews in hostile environments far from the security of Earth. Comparisons of resupply and regeneration will be discussed along with possible scenarios for developing and implementing human life support systems on the Moon and Mars.
Hu, Chenxia; Li, Lanjuan
2016-01-01
Induced pluripotent stem cells (iPSCs) paved the way for research fields including cell therapy, drug screening, disease modeling and the mechanism of embryonic development. Although iPSC technology has been improved by various delivery systems, direct transduction and small molecule regulation, low reprogramming efficiency and genomic modification steps still inhibit its clinical use. Improvements in current vectors and the exploration of novel vectors are required to balance efficiency and genomic modification for reprogramming. Herein, we set out a comprehensive analysis of current reprogramming systems for the generation of iPSCs from somatic cells. By clarifying advantages and disadvantages of the current reprogramming systems, we are striding toward an effective route to generate clinical grade iPSCs.
Tiwary, Abhishek; Kumar, Prashant
2014-07-15
This paper evaluates the role of urban green infrastructure (GI) in maintaining integrity of built-space. The latter is considered as a lateral ecosystem function, worth including in future assessments of integrated ecosystem services. The basic tenet is that integrated green-grey infrastructures (GGIs) would have three influences on built-spaces: (i) reduced wind withering from flow deviation; (ii) reduced material corrosion/degeneration from pollution removal; and (iii) act as a biophysical buffer in altering the micro-climate. A case study is presented, combining the features of computational fluid dynamics (CFD) in micro-environmental modelling with the emerging science on interactions of GGIs. The coupled seasonal dynamics of the above three effects are assessed for two building materials (limestone and steel) using the following three scenarios: (i) business as usual (BAU), (ii) summer (REGEN-S), and (iii) winter (REGEN-W). Apparently, integrated ecosystem service from green-grey interaction, as scoped in this paper, has strong seasonal dependence. Compared to BAU our results suggest that REGEN-S leads to slight increment in limestone recession (<10%), mainly from exacerbation in ozone damage, while large reduction in steel recession (up to 37%) is observed. The selection of vegetation species, especially their bVOC emission potential and seasonal foliage profile, appears to play a vital role in determining the impact GI has on the integrity of the neighbouring built-up environment. Copyright © 2014 Elsevier B.V. All rights reserved.
Li, Qiankun; Chen, Yan; Ma, Kui; Zhao, Along; Zhang, Cuiping; Fu, Xiaobing
2016-01-01
ABSTRACT Epidermal cells are an important regenerative source for skin wound healing. Aged epidermal cells have a low ability to renew themselves and repair skin injury. Ultraviolet (UV) radiation, particularly UVB, can cause photo-aging of the skin by suppressing the viability of human epidermal cells. A chorion-derived stem cell conditioned medium (CDSC-CNM) is thought to have regenerative properties. This study aimed to determine the regenerative effects of CDSC-CNM on UVB-induced photo-aged epidermal cells. Epidermal cells were passaged four times and irradiated with quantitative UVB, and non-irradiated cells served as a control group. Cells were then treated with different concentrations of CDSC-CNM. Compared to the non-irradiated group, the proliferation rates and migration rates of UVB-induced photo-aged epidermal cells significantly decreased (p < 0.05) with increasing intracellular radical oxygen species (ROS) generation and DNA damage. After treatment with CDSC-CNM, photo-aged epidermal cells significantly improved their viability, and their ROS generation and DNA damage decreased. The secretory factors in CDSC-CNM, including epidermal growth factor (EGF), transforming growth factor-β (TGF-β), interleukin (IL)-6, and IL-8 and the related signaling pathway protein levels, increased compared to the control medium (CM). The potential regenerative and reparative effects of CDSC-CNM indicate that it may be a candidate material for the treatment of prematurely aged skin. The functions of the secretory factors and the mechanisms of CDSC-CNM therapy deserve further attention. PMID:27097375
Neuroinflammation as Fuel for Axonal Regeneration in the Injured Vertebrate Central Nervous System
Van houcke, Jessie
2017-01-01
Damage to the central nervous system (CNS) is one of the leading causes of morbidity and mortality in elderly, as repair after lesions or neurodegenerative disease usually fails because of the limited capacity of CNS regeneration. The causes underlying this limited regenerative potential are multifactorial, but one critical aspect is neuroinflammation. Although classically considered as harmful, it is now becoming increasingly clear that inflammation can also promote regeneration, if the appropriate context is provided. Here, we review the current knowledge on how acute inflammation is intertwined with axonal regeneration, an important component of CNS repair. After optic nerve or spinal cord injury, inflammatory stimulation and/or modification greatly improve the regenerative outcome in rodents. Moreover, the hypothesis of a beneficial role of inflammation is further supported by evidence from adult zebrafish, which possess the remarkable capability to repair CNS lesions and even restore functionality. Lastly, we shed light on the impact of aging processes on the regenerative capacity in the CNS of mammals and zebrafish. As aging not only affects the CNS, but also the immune system, the regeneration potential is expected to further decline in aged individuals, an element that should definitely be considered in the search for novel therapeutic strategies. PMID:28203046
Much Lower Launch Costs Make Resupply Cheaper than Recycling for Space Life Support
NASA Technical Reports Server (NTRS)
Jones, Harry W.
2017-01-01
The development of commercial launch vehicles by SpaceX has greatly reduced the cost of launching mass to Low Earth Orbit (LEO). Reusable launch vehicles may further reduce the launch cost per kilogram. The new low launch cost makes open loop life support much cheaper than before. Open loop systems resupply water and oxygen in tanks for crew use and provide disposable lithium hydroxide (LiOH) in canisters to remove carbon dioxide. Short human space missions such as Apollo and shuttle have used open loop life support, but the long duration International Space Station (ISS) recycles water and oxygen and removes carbon dioxide with a regenerative molecular sieve. These ISS regenerative and recycling life support systems have significantly reduced the total launch mass needed for life support. But, since the development cost of recycling systems is much higher than the cost of tanks and canisters, the relative cost savings have been much less than the launch mass savings. The Life Cycle Cost (LCC) includes development, launch, and operations. If another space station was built in LEO, resupply life support would be much cheaper than the current recycling systems. The mission most favorable to recycling would be a long term lunar base, since the resupply mass would be large, the proximity to Earth would reduce the need for recycling reliability and spares, and the launch cost would be much higher than for LEO due to the need for lunar transit and descent propulsion systems. For a ten-year lunar base, the new low launch costs make resupply cheaper than recycling systems similar to ISS life support.
Clinical translation of controlled protein delivery systems for tissue engineering.
Spiller, Kara L; Vunjak-Novakovic, Gordana
2015-04-01
Strategies that utilize controlled release of drugs and proteins for tissue engineering have enormous potential to regenerate damaged organs and tissues. The multiple advantages of controlled release strategies merit overcoming the significant challenges to translation, including high costs and long, difficult regulatory pathways. This review highlights the potential of controlled release of proteins for tissue engineering and regenerative medicine. We specifically discuss treatment modalities that have reached preclinical and clinical trials, with emphasis on controlled release systems for bone tissue engineering, the most advanced application with several products already in clinic. Possible strategies to address translational and regulatory concerns are also discussed.
Clinical translation of controlled protein delivery systems for tissue engineering
Spiller, Kara L.; Vunjak-Novakovic, Gordana
2013-01-01
Strategies that utilize controlled release of drugs and proteins for tissue engineering have enormous potential to regenerate damaged organs and tissues. The multiple advantages of controlled release strategies merit overcoming the significant challenges to translation, including high costs and long, difficult regulatory pathways. This review highlights the potential of controlled release of proteins for tissue engineering and regenerative medicine. We specifically discuss treatment modalities that have reached preclinical and clinical trials, with emphasis on controlled release systems for bone tissue engineering, the most advanced application with several products already in clinic. Possible strategies to address translational and regulatory concerns are also discussed. PMID:25787736
Lung development: orchestrating the generation and regeneration of a complex organ
Herriges, Michael; Morrisey, Edward E.
2014-01-01
The respiratory system, which consists of the lungs, trachea and associated vasculature, is essential for terrestrial life. In recent years, extensive progress has been made in defining the temporal progression of lung development, and this has led to exciting discoveries, including the derivation of lung epithelium from pluripotent stem cells and the discovery of developmental pathways that are targets for new therapeutics. These discoveries have also provided new insights into the regenerative capacity of the respiratory system. This Review highlights recent advances in our understanding of lung development and regeneration, which will hopefully lead to better insights into both congenital and acquired lung diseases. PMID:24449833
Nowacki, Maciej; Nazarewski, Łukasz; Kloskowski, Tomasz; Tyloch, Dominik; Pokrywczyńska, Marta; Pietkun, Katarzyna; Jundziłł, Arkadiusz; Tyloch, Janusz; Habib, Samy L; Drewa, Tomasz
2016-10-01
On the 60 th anniversary of the first successfully performed renal transplantation, we summarize the historical, current and potential future status of kidney transplantation. We discuss three different aspects with a potential significant influence on kidney transplantation progress: the development of surgical techniques, the influence of regenerative medicine and tissue engineering, and changes in immunosuppression. We evaluate the standard open surgical procedures with modern techniques and compare them to less invasive videoscopic as well as robotic techniques. The role of tissue engineering and regenerative medicine as a potential method for future kidney regeneration or replacement and the interesting search for novel solutions in the field of immunosuppression will be discussed. After 60 years since the first successfully performed kidney transplantation, we can conclude that the greatest achievements are associated with the development of surgical techniques and with planned systemic immunosuppression.
Nowacki, Maciej; Nazarewski, Łukasz; Tyloch, Dominik; Pokrywczyńska, Marta; Pietkun, Katarzyna; Jundziłł, Arkadiusz; Tyloch, Janusz; Habib, Samy L.; Drewa, Tomasz
2016-01-01
On the 60th anniversary of the first successfully performed renal transplantation, we summarize the historical, current and potential future status of kidney transplantation. We discuss three different aspects with a potential significant influence on kidney transplantation progress: the development of surgical techniques, the influence of regenerative medicine and tissue engineering, and changes in immunosuppression. We evaluate the standard open surgical procedures with modern techniques and compare them to less invasive videoscopic as well as robotic techniques. The role of tissue engineering and regenerative medicine as a potential method for future kidney regeneration or replacement and the interesting search for novel solutions in the field of immunosuppression will be discussed. After 60 years since the first successfully performed kidney transplantation, we can conclude that the greatest achievements are associated with the development of surgical techniques and with planned systemic immunosuppression. PMID:27695507
NASA Astrophysics Data System (ADS)
Xu, Kun; Xu, Guo-Qing; Zheng, Chun-Hua
2016-04-01
The wheel-rail adhesion control for regenerative braking systems of high speed electric multiple unit trains is crucial to maintaining the stability, improving the adhesion utilization, and achieving deep energy recovery. There remain technical challenges mainly because of the nonlinear, uncertain, and varying features of wheel-rail contact conditions. This research analyzes the torque transmitting behavior during regenerative braking, and proposes a novel methodology to detect the wheel-rail adhesion stability. Then, applications to the wheel slip prevention during braking are investigated, and the optimal slip ratio control scheme is proposed, which is based on a novel optimal reference generation of the slip ratio and a robust sliding mode control. The proposed methodology achieves the optimal braking performance without the wheel-rail contact information. Numerical simulation results for uncertain slippery rails verify the effectiveness of the proposed methodology.
Shared molecular and cellular mechanisms of premature ageing and ageing-associated diseases.
Kubben, Nard; Misteli, Tom
2017-10-01
Ageing is the predominant risk factor for many common diseases. Human premature ageing diseases are powerful model systems to identify and characterize cellular mechanisms that underpin physiological ageing. Their study also leads to a better understanding of the causes, drivers and potential therapeutic strategies of common diseases associated with ageing, including neurological disorders, diabetes, cardiovascular diseases and cancer. Using the rare premature ageing disorder Hutchinson-Gilford progeria syndrome as a paradigm, we discuss here the shared mechanisms between premature ageing and ageing-associated diseases, including defects in genetic, epigenetic and metabolic pathways; mitochondrial and protein homeostasis; cell cycle; and stem cell-regenerative capacity.
2008-10-07
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a worker carries one of the stowage containers into the Multi-Purpose Logistics Module Leonardo for the STS-126 mission to the International Space Station. The 15-day flight will deliver equipment and supplies to the International Space Station in preparation for expansion from a three- to six-person resident crew aboard the complex. The mission also will include four spacewalks to service the station Solar Alpha Rotary Joints. Leonardo holds supplies and equipment, including equipment for the regenerative life support system, additional crew quarters and exercise equipment and spare hardware. Photo credit: NASA/Kim Shiflett
2008-10-07
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, workers check the equipment in the Multi-Purpose Logistics Module Leonardo, which is the payload for the STS-126 mission to the International Space Station. The 15-day flight will deliver equipment and supplies to the International Space Station in preparation for expansion from a three- to six-person resident crew aboard the complex. The mission also will include four spacewalks to service the station Solar Alpha Rotary Joints. Leonardo holds supplies and equipment, including equipment for the regenerative life support system, additional crew quarters and exercise equipment and spare hardware. Photo credit: NASA/Kim Shiflett
2008-10-07
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, workers check the equipment in the Multi-Purpose Logistics Module Leonardo, which is the payload for the STS-126 mission to the International Space Station. The 15-day flight will deliver equipment and supplies to the International Space Station in preparation for expansion from a three- to six-person resident crew aboard the complex. The mission also will include four spacewalks to service the station Solar Alpha Rotary Joints. Leonardo holds supplies and equipment, including equipment for the regenerative life support system, additional crew quarters and exercise equipment and spare hardware. Photo credit: NASA/Kim Shiflett
2008-10-07
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, workers place a stowage container in a rack of the Multi-Purpose Logistics Module Leonardo for the STS-126 mission to the International Space Station. The 15-day flight will deliver equipment and supplies to the International Space Station in preparation for expansion from a three- to six-person resident crew aboard the complex. The mission also will include four spacewalks to service the station Solar Alpha Rotary Joints. Leonardo holds supplies and equipment, including equipment for the regenerative life support system, additional crew quarters and exercise equipment and spare hardware. Photo credit: NASA/Kim Shiflett
2008-10-07
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, workers prepare supply packages that will be stowed in the Multi-Purpose Logistics Module Leonardo, at left, for the STS-126 mission to the International Space Station. The 15-day flight will deliver equipment and supplies to the International Space Station in preparation for expansion from a three- to six-person resident crew aboard the complex. The mission also will include four spacewalks to service the station Solar Alpha Rotary Joints. Leonardo holds supplies and equipment, including equipment for the regenerative life support system, additional crew quarters and exercise equipment and spare hardware. Photo credit: NASA/Kim Shiflett
2008-10-07
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the Multi-Purpose Logistics Module Leonardo is open to receive the final supplies for the STS-126 mission to the International Space Station. The 15-day flight will deliver equipment and supplies to the International Space Station in preparation for expansion from a three- to six-person resident crew aboard the complex. The mission also will include four spacewalks to service the station Solar Alpha Rotary Joints. Leonardo holds supplies and equipment, including equipment for the regenerative life support system, additional crew quarters and exercise equipment and spare hardware. Photo credit: NASA/Kim Shiflett
2008-10-07
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, workers check data sheets associated with stowing supply packages in the Multi-Purpose Logistics Module Leonardo for the STS-126 mission to the International Space Station. The 15-day flight will deliver equipment and supplies to the International Space Station in preparation for expansion from a three- to six-person resident crew aboard the complex. The mission also will include four spacewalks to service the station Solar Alpha Rotary Joints. Leonardo holds supplies and equipment, including equipment for the regenerative life support system, additional crew quarters and exercise equipment and spare hardware. Photo credit: NASA/Kim Shiflett
Development of a preprototype vapor compression distillation water recovery subsystem
NASA Technical Reports Server (NTRS)
Johnson, K. L.
1978-01-01
The activities involved in the design, development, and test of a preprototype vapor compression distillation water recovery subsystem are described. This subsystem, part of a larger regenerative life support evaluation system, is designed to recover usable water from urine, urinal rinse water, and concentrated shower and laundry brine collected from three space vehicle crewmen for a period of 180 days without resupply. Details of preliminary design and testing as well as component developments are included. Trade studies, considerations leading to concept selections, problems encountered, and test data are also presented. The rework of existing hardware, subsystem development including computer programs, assembly verification, and comprehensive baseline test results are discussed.
NASA Technical Reports Server (NTRS)
Manzo, M. A.; Hoberecht, M. A.
1984-01-01
Nickel-cadmium batteries, bipolar nickel-hydrogen batteries, and regenerative fuel cell storage subsystems were evaluated for use as the storage subsystem in a 37.5 kW power system for Space Station. Design requirements were set in order to establish a common baseline for comparison purposes. The storage subsystems were compared on the basis of effective energy density, round trip electrical efficiency, total subsystem weight and volume, and life.
NASA Technical Reports Server (NTRS)
Manzo, M. A.; Hoberecht, M. A.
1984-01-01
Nickel-cadmium batteries, bipolar nickel-hydrogen batteries, and regenerative fuel cell storage subsystems were evaluated for use as the storage subsystem in a 37.5 kW power system for space station. Design requirements were set in order to establish a common baseline for comparison purposes. The storage subsystems were compared on the basis of effective energy density, round trip electrical efficiency, total subsystem weight and volume, and life.
Design of biomimetic cellular scaffolds for co-culture system and their application
Kook, Yun-Min; Jeong, Yoon; Lee, Kangwon; Koh, Won-Gun
2017-01-01
The extracellular matrix of most natural tissues comprises various types of cells, including fibroblasts, stem cells, and endothelial cells, which communicate with each other directly or indirectly to regulate matrix production and cell functionality. To engineer multicellular interactions in vitro, co-culture systems have achieved tremendous success achieving a more realistic microenvironment of in vivo metabolism than monoculture system in the past several decades. Recently, the fields of tissue engineering and regenerative medicine have primarily focused on three-dimensional co-culture systems using cellular scaffolds, because of their physical and biological relevance to the extracellular matrix of actual tissues. This review discusses several materials and methods to create co-culture systems, including hydrogels, electrospun fibers, microfluidic devices, and patterning for biomimetic co-culture system and their applications for specific tissue regeneration. Consequently, we believe that culture systems with appropriate physical and biochemical properties should be developed, and direct or indirect cell–cell interactions in the remodeled tissue must be considered to obtain an optimal tissue-specific microenvironment. PMID:29081966
Design of biomimetic cellular scaffolds for co-culture system and their application.
Kook, Yun-Min; Jeong, Yoon; Lee, Kangwon; Koh, Won-Gun
2017-01-01
The extracellular matrix of most natural tissues comprises various types of cells, including fibroblasts, stem cells, and endothelial cells, which communicate with each other directly or indirectly to regulate matrix production and cell functionality. To engineer multicellular interactions in vitro, co-culture systems have achieved tremendous success achieving a more realistic microenvironment of in vivo metabolism than monoculture system in the past several decades. Recently, the fields of tissue engineering and regenerative medicine have primarily focused on three-dimensional co-culture systems using cellular scaffolds, because of their physical and biological relevance to the extracellular matrix of actual tissues. This review discusses several materials and methods to create co-culture systems, including hydrogels, electrospun fibers, microfluidic devices, and patterning for biomimetic co-culture system and their applications for specific tissue regeneration. Consequently, we believe that culture systems with appropriate physical and biochemical properties should be developed, and direct or indirect cell-cell interactions in the remodeled tissue must be considered to obtain an optimal tissue-specific microenvironment.
Prototype space station automation system delivered and demonstrated at NASA
NASA Technical Reports Server (NTRS)
Block, Roger F.
1987-01-01
The Automated Subsystem Control for Life Support System (ASCLSS) program has successfully developed and demonstrated a generic approach to the automation and control of Space Station subsystems. The hierarchical and distributed real time controls system places the required controls authority at every level of the automation system architecture. As a demonstration of the automation technique, the ASCLSS system automated the Air Revitalization Group (ARG) of the Space Station regenerative Environmental Control and Life Support System (ECLSS) using real-time, high fidelity simulators of the ARG processess. This automation system represents an early flight prototype and an important test bed for evaluating Space Station controls technology including future application of ADA software in real-time control and the development and demonstration of embedded artificial intelligence and expert systems (AI/ES) in distributed automation and controls systems.
Situation Awareness of Onboard System Autonomy
NASA Technical Reports Server (NTRS)
Schreckenghost, Debra; Thronesbery, Carroll; Hudson, Mary Beth
2005-01-01
We have developed intelligent agent software for onboard system autonomy. Our approach is to provide control agents that automate crew and vehicle systems, and operations assistants that aid humans in working with these autonomous systems. We use the 3 Tier control architecture to develop the control agent software that automates system reconfiguration and routine fault management. We use the Distributed Collaboration and Interaction (DCI) System to develop the operations assistants that provide human services, including situation summarization, event notification, activity management, and support for manual commanding of autonomous system. In this paper we describe how the operations assistants aid situation awareness of the autonomous control agents. We also describe our evaluation of the DCI System to support control engineers during a ground test at Johnson Space Center (JSC) of the Post Processing System (PPS) for regenerative water recovery.
The TMI Regenerative Solid Oxide Fuel Cell
NASA Technical Reports Server (NTRS)
Cable, Thomas L.; Ruhl, Robert C.; Petrik, Michael
1996-01-01
Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. Systems generally consist of photovoltaic solar arrays which operate (during sunlight cycles) to provide system power and regenerate fuel (hydrogen) via water electrolysis and (during dark cycles) fuel cells convert hydrogen into electricity. Common configurations use two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Reliability, power to weight and power to volume ratios could be greatly improved if both power production (fuel cells) and power storage (electrolysis) functions can be integrated into a single unit. The solid oxide fuel cell (SOFC) based design integrates fuel cell and electrolyzer functions and potentially simplifies system requirements. The integrated fuel cell/electrolyzer design also utilizes innovative gas storage concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H20 electrode (SOFC anode/electrolyzer cathode) materials for regenerative fuel cells. Tests have shown improved cell performance in both fuel and electrolysis modes in reversible fuel cell tests. Regenerative fuel cell efficiencies, ratio of power out (fuel cell mode) to power in (electrolyzer mode), improved from 50 percent using conventional electrode materials to over 80 percent. The new materials will allow a single SOFC system to operate as both the electolyzer and fuel cell. Preliminary system designs have also been developed to show the technical feasibility of using the design for space applications requiring high energy storage efficiencies and high specific energy. Small space systems also have potential for dual-use, terrestrial applications.
Development Status of PEM Non-Flow-Through Fuel Cell System Technology for NASA Applications
NASA Technical Reports Server (NTRS)
Hoberecht, Mark A.; Jakupca, Ian J.
2011-01-01
Today s widespread development of proton-exchange-membrane (PEM) fuel cell technology for commercial users owes its existence to NASA, where fuel cell technology saw its first applications. Beginning with the early Gemini and Apollo programs, and continuing to this day with the Shuttle Orbiter program, fuel cells have been a primary source of electrical power for many NASA missions. This is particularly true for manned missions, where astronauts are able to make use of the by-product of the fuel cell reaction, potable water. But fuel cells also offer advantages for unmanned missions, specifically when power requirements exceed several hundred watts and primary batteries are not a viable alternative. In recent years, NASA s Exploration Technology Development Program (ETDP) funded the development of fuel cell technology for applications that provide both primary power and regenerative fuel cell energy storage for planned Exploration missions that involved a return to the moon. Under this program, the Altair Lunar Lander was a mission requiring fuel cell primary power. There were also various Lunar Surface System applications requiring regenerative fuel cell energy storage, in which a fuel cell and electrolyzer combine to form an energy storage system with hydrogen, oxygen, and water as common reactants. Examples of these systems include habitat modules and large rovers. In FY11, the ETDP has been replaced by the Enabling Technology Development and Demonstration Program (ETDDP), with many of the same technology goals and requirements applied against NASA s revised Exploration portfolio.
NASA Astrophysics Data System (ADS)
Ward, David B.; Gunn, Natasha L. O.; Uwigena, Nadine; Davies, Trevor J.
2018-01-01
The direct reduction of oxygen in conventional polymer electrolyte fuel cells (PEFCs) is seen by many researchers as a key challenge in PEFC development. Chemically regenerative redox cathode (CRRC) polymer electrolyte fuel cells offer an alternative approach via the indirect reduction of oxygen, improving durability and reducing cost. These systems substitute gaseous oxygen for a liquid catalyst that is reduced at the cathode then oxidised in a regeneration vessel via air bubbling. A key component of a CRRC system is the liquid catalyst or catholyte. To date, phosphomolybdovanadium polyoxometalates with empirical formula H3+nPVnMo12-nO40 have shown the most promise for CRRC PEFC systems. In this work, four catholyte formulations are studied and compared against each other. The catholytes vary in vanadium content, pH and counter ion, with empirical formulas H6PV3Mo9O40, H7PV4Mo8O40, Na3H3PV3Mo9O40 and Na4H3PV4Mo8O40. Thermodynamic properties, cell performance and regeneration rates are measured, generating new insights into how formulation chemistry affects the components of a CRRC system. The results include the best CRRC PEFC performance reported to date, with noticeable advantages over conventional PEFCs. The optimum catholyte formulation is then determined via steady state tests, the results of which will guide further optimization of the catholyte formulation.
Closure of regenerative life support systems: results of the Lunar-Mars Life Support Test Project
NASA Astrophysics Data System (ADS)
Barta, D.; Henninger, D.; Edeen, M.; Lewis, J.; Smith, F.; Verostko, C.
Future long duration human exploration missions away from Earth will require closed-loop regenerative life support systems to reduce launch mass reduce dependency on resupply and increase the level of mission self sufficiency Such systems may be based on the integration of biological and physiocochemical processes to produce potable water breathable atmosphere and nutritious food from metabolic and other mission wastes Over the period 1995 to 1998 a series of ground-based tests were conducted at the National Aeronautics and Space Administration Johnson Space Center to evaluate the performance of advanced closed-loop life support technologies with real human metabolic and hygiene loads Named the Lunar-Mars Life Support Test Project LMLSTP four integrated human tests were conducted with increasing duration complexity and closure The first test LMLSTP Phase I was designed to demonstrate the ability of higher plants to revitalize cabin atmosphere A single crew member spent 15 days within an atmospherically closed chamber containing 11 2 square meters of actively growing wheat Atmospheric carbon dioxide and oxygen levels were maintained by control of the rate of photosynthesis through manipulation of light intensity or the availability of carbon dioxide and included integrated physicochemical systems During the second and third tests LMLSTP Phases II IIa four crew members spent 30 days and 60 days respectively in a larger sealed chamber Advanced physicochemical life support hardware was used to regenerate the atmosphere and produce potable water
Systems Modeling of a Hypothetical SSME Channel-Wall Nozzle
NASA Technical Reports Server (NTRS)
Greene, William D.; Thames, Mignon P.; Polsgrove, Robert H.
2003-01-01
A future upgrade to the Space Shuttle Main Engine (SSME) may be the replacement of the current regenerative cooled tube-wall nozzle with a nozzle using a regeneratively-cooled channel-wall design. The current tube-wall design represents the only major piece of SSME hardware that has not been dramatically updated throughout thc long history of the engine. There are a number of advantages to a channel-wall design including the promise of faster and lower cost fabrication and greater reliability in the field. The technical obstacles in the path of making this happen are many, particularly in the realms of metallurgy and manufacturing techniques. However, one technical area that can and should be addressed in the near term as part of the development of detailed component requirements is a systems type model of the fluid flow and heat transfer processes to which the new design will be exposed. This paper presents the results of an effort to develop a mathematical model of the internal flow for a generic channel-wall nozzle functioning as a direct replacement for the current tube-wall nozzle with a minimum of systems-level changes. Comparisons will be made to mathematical modeling results for the current tube-wall design and the results of various geometrical trade studies will be presented. It is the intent of this work to examine the feasibility of the concept of a direct replacement component with minimum systems-!eve impacts and to highlight potential areas of concern requiring further work in the future.
Vehicular hydrogen storage using lightweight tanks (regenerative fuel cell systems)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitlitsky, F; Myers, B; Weisberg, A H
1999-06-01
Energy storage systems with extremely high specific energy (>400 Wh/kg) have been designed that use lightweight tankage to contain the gases generated by reversible (unitized) regenerative fuel cells (URFCs). Lawrence Livermore National Laboratory (LLNL) will leverage work for aerospace applications supported by other sponsors (including BMDO, NASA, and USAF) to develop URFC systems for transportation and utility applications. Lightweight tankage is important for primary fuel cell powered vehicles that use on-board storage of hydrogen. Lightweight pressure vessels with state-of-the-art performance factors were designed, and prototypes are being fabricated to meet the DOE 2000 goals (4000 Wh/kg, 12% hydrogen by weight,more » 700 Wh/liter, and $20/kWh in high volume production). These pressure vessels use technologies that are easily adopted by industrial partners. Advanced liners provide permeation barriers for gas storage and are mandrels for composite overwrap. URFCs are important to the efficient use of hydrogen as a transportation fuel and enabler of renewable energy. H{sub 2}/halogen URFCs may be advantageous for stationary applications whereas H{sub 2}/O{sub 2} or H{sub 2}/air URFCs are advantageous for vehicular applications. URFC research and development is required to improve performance (efficiency), reduce catalyst loading, understand engineering operation, and integrate systems. LLNL has the experimental equipment and advanced URFC membrane electrode assemblies (some with reduced catalyst loading) for evaluating commercial hardware (not funded by DOE in FY1999).« less
Jessop, Zita M; Javed, Muhammad; Otto, Iris A; Combellack, Emman J; Morgan, Siân; Breugem, Corstiaan C; Archer, Charles W; Khan, Ilyas M; Lineaweaver, William C; Kon, Moshe; Malda, Jos; Whitaker, Iain S
2016-01-28
Recent advances in regenerative medicine place us in a unique position to improve the quality of engineered tissue. We use auricular cartilage as an exemplar to illustrate how the use of tissue-specific adult stem cells, assembly through additive manufacturing and improved understanding of postnatal tissue maturation will allow us to more accurately replicate native tissue anisotropy. This review highlights the limitations of autologous auricular reconstruction, including donor site morbidity, technical considerations and long-term complications. Current tissue-engineered auricular constructs implanted into immune-competent animal models have been observed to undergo inflammation, fibrosis, foreign body reaction, calcification and degradation. Combining biomimetic regenerative medicine strategies will allow us to improve tissue-engineered auricular cartilage with respect to biochemical composition and functionality, as well as microstructural organization and overall shape. Creating functional and durable tissue has the potential to shift the paradigm in reconstructive surgery by obviating the need for donor sites.
Performance and Life Tests of a Regenerative Blower for EVA Suit Ventilation
NASA Technical Reports Server (NTRS)
Izenson, Michael G.; Chen, Weibo; McCormick, John; Paul, Heather L.; Jennings, Mallory A.
2012-01-01
Ventilation fans for future space suits must meet demanding performance specifications, satisfy stringent safety requirements for operation in an oxygen atmosphere, and be able to increase output to operate in buddy mode. A regenerative blower is an attractive choice due to its ability to meet these requirements at low operating speed. This paper describes progress in the development and testing of a regenerative blower designed to meet requirements for ventilation subsystems in future space suits. The blower includes a custom-designed motor that has significantly improved its efficiency. We have measured the blower s head/flow performance and power consumption under conditions that simulate both the normal and buddy mode operating points. We have operated the blower for TBD hours and demonstrated safe operation in an oxygen test loop at prototypical pressures. We also demonstrated operation with simulated lunar dust.
Design and Development of a Regenerative Blower for EVA Suit Ventilation
NASA Technical Reports Server (NTRS)
Izenson, Michael G.; Chen, Weibo; Hill, Roger W.; Phillips, Scott D.; Paul, Heather L.
2011-01-01
Ventilation subsystems in future space suits require a dedicated ventilation fan. The unique requirements for the ventilation fan - including stringent safety requirements and the ability to increase output to operate in buddy mode - combine to make a regenerative blower an attractive choice. This paper describes progress in the design, development, and testing of a regenerative blower designed to meet requirements for ventilation subsystems in future space suits. We have developed analysis methods for the blower s complex, internal flows and identified impeller geometries that enable significant improvements in blower efficiency. We verified these predictions by test, measuring aerodynamic efficiencies of 45% at operating conditions that correspond to the ventilation fan s design point. We have developed a compact motor/controller to drive the blower efficiently at low rotating speed (4500 rpm). Finally, we have assembled a low-pressure oxygen test loop to demonstrate the blower s reliability under prototypical conditions.
Regenerative medicine using dental pulp stem cells for liver diseases.
Ohkoshi, Shogo; Hara, Hajime; Hirono, Haruka; Watanabe, Kazuhiko; Hasegawa, Katsuhiko
2017-02-06
Acute liver failure is a refractory disease and its prognosis, if not treated using liver transplantation, is extremely poor. It is a good candidate for regenerative medicine, where stem cell-based therapies play a central role. Mesenchymal stem cells (MSCs) are known to differentiate into multiple cell lineages including hepatocytes. Autologous cell transplant without any foreign gene induction is feasible using MSCs, thereby avoiding possible risks of tumorigenesis and immune rejection. Dental pulp also contains an MSC population that differentiates into hepatocytes. A point worthy of special mention is that dental pulp can be obtained from deciduous teeth during childhood and can be subsequently harvested when necessary after deposition in a tooth bank. MSCs have not only a regenerative capacity but also act in an anti-inflammatory manner via paracrine mechanisms. Promising efficacies and difficulties with the use of MSC derived from teeth are summarized in this review.
Clay nanoparticles for regenerative medicine and biomaterial design: A review of clay bioactivity.
Mousa, Mohamed; Evans, Nicholas D; Oreffo, Richard O C; Dawson, Jonathan I
2018-03-01
Clay nanoparticles, composites and hydrogels are emerging as a new class of biomaterial with exciting potential for tissue engineering and regenerative medicine applications. Clay particles have been extensively explored in polymeric nanocomposites for self-assembly and enhanced mechanical properties as well as for their potential as drug delivery modifiers. In recent years, a cluster of studies have explored cellular interactions with clay nanoparticles alone or in combination with polymeric matrices. These pioneering studies have suggested new and unforeseen utility for certain clays as bioactive additives able to enhance cellular functions including adhesion, proliferation and differentiation, most notably for osteogenesis. This review examines the recent literature describing the potential effects of clay-based nanomaterials on cell function and examines the potential role of key clay physicochemical properties in influencing such interactions and their exciting possibilities for regenerative medicine. Copyright © 2018 Elsevier Ltd. All rights reserved.
The mammalian blastema: regeneration at our fingertips
Simkin, Jennifer; Sammarco, Mimi C.; Dawson, Lindsay A.; Schanes, Paula P.; Yu, Ling
2015-01-01
Abstract In the mouse, digit tip regeneration progresses through a series of discrete stages that include inflammation, histolysis, epidermal closure, blastema formation, and redifferentiation. Recent studies reveal how each regenerative stage influences subsequent stages to establish a blastema that directs the successful regeneration of a complex mammalian structure. The focus of this review is on early events of healing and how an amputation wound transitions into a functional blastema. The stepwise formation of a mammalian blastema is proposed to provide a model for how specific targeted treatments can enhance regenerative performance in humans. PMID:27499871
Biofabrication: reappraising the definition of an evolving field.
Groll, Jürgen; Boland, Thomas; Blunk, Torsten; Burdick, Jason A; Cho, Dong-Woo; Dalton, Paul D; Derby, Brian; Forgacs, Gabor; Li, Qing; Mironov, Vladimir A; Moroni, Lorenzo; Nakamura, Makoto; Shu, Wenmiao; Takeuchi, Shoji; Vozzi, Giovanni; Woodfield, Tim B F; Xu, Tao; Yoo, James J; Malda, Jos
2016-01-08
Biofabrication is an evolving research field that has recently received significant attention. In particular, the adoption of Biofabrication concepts within the field of Tissue Engineering and Regenerative Medicine has grown tremendously, and has been accompanied by a growing inconsistency in terminology. This article aims at clarifying the position of Biofabrication as a research field with a special focus on its relation to and application for Tissue Engineering and Regenerative Medicine. Within this context, we propose a refined working definition of Biofabrication, including Bioprinting and Bioassembly as complementary strategies within Biofabrication.
Inflammation and immunity in organ regeneration.
Mescher, Anthony L; Neff, Anton W; King, Michael W
2017-01-01
The ability of vertebrates to regenerate amputated appendages is increasingly well-understood at the cellular level. Cells mediating an innate immune response and inflammation in the injured tissues are a prominent feature of the limb prior to formation of a regeneration blastema, with macrophage activity necessary for blastema growth and successful development of the new limb. Studies involving either anti-inflammatory or pro-inflammatory agents suggest that the local inflammation produced by injury and its timely resolution are both important for regeneration, with blastema patterning inhibited in the presence of unresolved inflammation. Various experiments with Xenopus larvae at stages where regenerative competence is declining show improved digit formation after treatment with certain immunosuppressive, anti-inflammatory, or antioxidant agents. Similar work with the larval Xenopus tail has implicated adaptive immunity with regenerative competence and suggests a requirement for regulatory T cells in regeneration, which also occurs in many systems of tissue regeneration. Recent analyses of the human nail organ indicate a capacity for local immune tolerance, suggesting roles for adaptive immunity in the capacity for mammalian appendage regeneration. New information and better understanding regarding the neuroendocrine-immune axis in the response to stressors, including amputation, suggest additional approaches useful for investigating effects of the immune system during repair and regeneration. Copyright © 2016 Elsevier Ltd. All rights reserved.
Regenerative life support system research and concepts
NASA Technical Reports Server (NTRS)
1988-01-01
Life support systems that involve recycling of atmospheres, water, food and waste are so complex that models incorporating all the interactions and relationships are vital to design, development, simulations, and ultimately to control of space qualified systems. During early modeling studies, FORTRAN and BASIC programs were used to obtain numerical comparisons of the performance of different regenerative concepts. Recently, models were made by combining existing capabilities with expert systems to establish an Intelligent Design Support Environment for simpliflying user interfaces and to address the need for the engineering aspects. Progress was also made toward modeling and evaluating the operational aspects of closed loop life support systems using Time-step and Dynamic simulations over a period of time. Example models are presented which show the status and potential of developed modeling techniques. For instance, closed loop systems involving algae systeMs for atmospheric purification and food supply augmentation, plus models employing high plants and solid waste electrolysis are described and results of initial evaluations are presented.
Gee, Adrian P.; Richman, Sara; Durett, April; McKenna, David; Traverse, Jay; Henry, Timothy; Fisk, Diann; Pepine, Carl; Bloom, Jeannette; Willerson, James; Prater, Karen; Zhao, David; Koç, Jane Reese; Ellis, Steven; Taylor, Doris; Cogle, Christopher; Moyé, Lemuel; Simari, Robert; Skarlatos, Sonia
2013-01-01
Background Aims Multi-center cellular therapy clinical trials require the establishment and implementation of standardized cell processing protocols and associated quality control mechanisms. The aims here were to develop such an infrastructure in support of the Cardiovascular Cell Therapy Research Network (CCTRN) and to report on the results of processing for the first 60 patients. Methods Standardized cell preparations, consisting of autologous bone marrow mononuclear cells, prepared using the Sepax device were manufactured at each of the five processing facilities that supported the clinical treatment centers. Processing staff underwent centralized training that included proficiency evaluation. Quality was subsequently monitored by a central quality control program that included product evaluation by the CCTRN biorepositories. Results Data from the first 60 procedures demonstrate that uniform products, that met all release criteria, could be manufactured at all five sites within 7 hours of receipt of the bone marrow. Uniformity was facilitated by use of the automated systems (the Sepax for processing and the Endosafe device for endotoxin testing), standardized procedures and centralized quality control. Conclusions Complex multicenter cell therapy and regenerative medicine protocols can, where necessary, successfully utilize local processing facilities once an effective infrastructure is in place to provide training, and quality control. PMID:20524773
Regenerative Rehabilitation: Applied Biophysics Meets Stem Cell Therapeutics.
Rando, Thomas A; Ambrosio, Fabrisia
2018-03-01
The emerging field of regenerative rehabilitation integrates biological and bioengineering advances in regenerative medicine with rehabilitative sciences. Here we highlight recent stem cell-based examples of the regenerative rehabilitation paradigm to promote tissue repair and regeneration, and we discuss remaining challenges and future directions for the field. Published by Elsevier Inc.
Biodegradable Polyphosphazene-Based Blends for Regenerative Engineering
Ogueri, Kenneth S.; Escobar Ivirico, Jorge L.; Nair, Lakshmi S.; Allcock, Harry R.; Laurencin, Cato T.
2017-01-01
The occurrence of musculoskeletal tissue injury or disease and the subsequent functional impairment is at an alarming rate. It continues to be one of the most challenging problems in the human health care. Regenerative engineering offers a promising transdisciplinary strategy for tissues regeneration based on the convergence of tissue engineering, advanced materials science, stem cell science, developmental biology and clinical translation. Biomaterials are emerging as extracellular-mimicking matrices designed to provide instructive cues to control cell behavior and ultimately, be applied as therapies to regenerate damaged tissues. Biodegradable polymers constitute an attractive class of biomaterials for the development of scaffolds due to their flexibility in chemistry and the ability to be excreted or resorbed by the body. Herein, the focus will be on biodegradable polyphosphazene-based blend systems. The synthetic flexibility of polyphosphazene, combined with the unique inorganic backbone, has provided a springboard for more research and subsequent development of numerous novel materials that are capable of forming miscible blends with poly (lactide-co-glycolide) (PLAGA). Laurencin and co-workers has demonstrated the exploitation of the synthetic flexibility of Polyphosphazene that will allow the design of novel polymers, which can form miscible blends with PLAGA for biomedical applications. These novel blends, due to their well-tuned biodegradability, and mechanical and biological properties coupled with the buffering capacity of the degradation products, constitute ideal materials for regeneration of various musculoskeletal tissues. Lay Summary Regenerative engineering aims to regenerate complex tissues to address the clinical challenge of organ damage. Tissue engineering has largely focused on the restoration and repair of individual tissues and organs, but over the past 25 years, scientific, engineering, and medical advances have led to the introduction of this new approach which involves the regeneration of complex tissues and biological systems such as a knee or a whole limb. While a number of excellent advanced biomaterials have been developed, the choice of biomaterials, however, has increased over the past years to include polymers that can be designed with a range of mechanical properties, degradation rates, and chemical functionality. The polyphosphazenes are one good example. Their chemical versatility and hydrogen bonding capability encourages blending with other biologically relevant polymers. The further development of Polyphosphazene-based blends will present a wide spectrum of advanced biomaterials that can be used as scaffolds for regenerative engineering and as well as other biomedical applications. PMID:28596987
Biodegradable Polyphosphazene-Based Blends for Regenerative Engineering.
Ogueri, Kenneth S; Escobar Ivirico, Jorge L; Nair, Lakshmi S; Allcock, Harry R; Laurencin, Cato T
2017-03-01
The occurrence of musculoskeletal tissue injury or disease and the subsequent functional impairment is at an alarming rate. It continues to be one of the most challenging problems in the human health care. Regenerative engineering offers a promising transdisciplinary strategy for tissues regeneration based on the convergence of tissue engineering, advanced materials science, stem cell science, developmental biology and clinical translation. Biomaterials are emerging as extracellular-mimicking matrices designed to provide instructive cues to control cell behavior and ultimately, be applied as therapies to regenerate damaged tissues. Biodegradable polymers constitute an attractive class of biomaterials for the development of scaffolds due to their flexibility in chemistry and the ability to be excreted or resorbed by the body. Herein, the focus will be on biodegradable polyphosphazene-based blend systems. The synthetic flexibility of polyphosphazene, combined with the unique inorganic backbone, has provided a springboard for more research and subsequent development of numerous novel materials that are capable of forming miscible blends with poly (lactide-co-glycolide) (PLAGA). Laurencin and co-workers has demonstrated the exploitation of the synthetic flexibility of Polyphosphazene that will allow the design of novel polymers, which can form miscible blends with PLAGA for biomedical applications. These novel blends, due to their well-tuned biodegradability, and mechanical and biological properties coupled with the buffering capacity of the degradation products, constitute ideal materials for regeneration of various musculoskeletal tissues. Regenerative engineering aims to regenerate complex tissues to address the clinical challenge of organ damage. Tissue engineering has largely focused on the restoration and repair of individual tissues and organs, but over the past 25 years, scientific, engineering, and medical advances have led to the introduction of this new approach which involves the regeneration of complex tissues and biological systems such as a knee or a whole limb. While a number of excellent advanced biomaterials have been developed, the choice of biomaterials, however, has increased over the past years to include polymers that can be designed with a range of mechanical properties, degradation rates, and chemical functionality. The polyphosphazenes are one good example. Their chemical versatility and hydrogen bonding capability encourages blending with other biologically relevant polymers. The further development of Polyphosphazene-based blends will present a wide spectrum of advanced biomaterials that can be used as scaffolds for regenerative engineering and as well as other biomedical applications.
Air Force electrochemical power research and technology program for space applications
NASA Technical Reports Server (NTRS)
Allen, Douglas
1987-01-01
An overview is presented of the existing Air Force electrochemical power, battery, and fuel cell programs for space application. Present thrusts are described along with anticipated technology availability dates. Critical problems to be solved before system applications occur are highlighted. Areas of needed performance improvement of batteries and fuel cells presently used are outlined including target dates for key demonstrations of advanced technology. Anticipated performance and current schedules for present technology programs are reviewed. Programs that support conventional military satellite power systems and special high power applications are reviewed. Battery types include bipolar lead-acid, nickel-cadmium, silver-zinc, nickel-hydrogen, sodium-sulfur, and some candidate advanced couples. Fuel cells for pulsed and transportation power applications are discussed as are some candidate advanced regenerative concepts.
Bond Graph Modeling and Validation of an Energy Regenerative System for Emulsion Pump Tests
Li, Yilei; Zhu, Zhencai; Chen, Guoan
2014-01-01
The test system for emulsion pump is facing serious challenges due to its huge energy consumption and waste nowadays. To settle this energy issue, a novel energy regenerative system (ERS) for emulsion pump tests is briefly introduced at first. Modeling such an ERS of multienergy domains needs a unified and systematic approach. Bond graph modeling is well suited for this task. The bond graph model of this ERS is developed by first considering the separate components before assembling them together and so is the state-space equation. Both numerical simulation and experiments are carried out to validate the bond graph model of this ERS. Moreover the simulation and experiments results show that this ERS not only satisfies the test requirements, but also could save at least 25% of energy consumption as compared to the original test system, demonstrating that it is a promising method of energy regeneration for emulsion pump tests. PMID:24967428
NASA Astrophysics Data System (ADS)
Bhansali, Gaurav; Singh, Bhanu Pratap; Kumar, Rajesh
2016-09-01
In this paper, the problem of microgrid optimisation with storage has been addressed in an unaccounted way rather than confining it to loss minimisation. Unitised regenerative fuel cell (URFC) systems have been studied and employed in microgrids to store energy and feed it back into the system when required. A value function-dependent on line losses, URFC system operational cost and stored energy at the end of the day are defined here. The function is highly complex, nonlinear and multi dimensional in nature. Therefore, heuristic optimisation techniques in combination with load flow analysis are used here to resolve the network and time domain complexity related with the problem. Particle swarm optimisation with the forward/backward sweep algorithm ensures optimal operation of microgrid thereby minimising the operational cost of the microgrid. Results are shown and are found to be consistently improving with evolution of the solution strategy.
Driving Control for Electric Power Assisted Wheelchair Based on Regenerative Brake
NASA Astrophysics Data System (ADS)
Seki, Hirokazu; Takahashi, Kazuki; Tadakuma, Susumu
This paper describes a novel safety driving control scheme for electric power assisted wheelchairs based on the regenerative braking system. “Electric power assisted wheelchair” which assists the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people, however, the safe and secure driving performance especially on downhill roads must be further improved because electric power assisted wheelchairs have no braking devices. The proposed control system automatically switches the driving mode, from “assisting mode” to “braking mode”, based on the wheelchair's velocity and the declined angle and smoothly suppresses the wheelchair's acceleration based on variable duty ratio control in order to realize the safety driving and to improve the ride quality. Some experiments on the practical roads and subjective evaluation show the effectiveness of the proposed control system.
Shimizu, Shinobu; Yamamoto, Tokunori; Nakayama, Shinobu; Hirakawa, Akihiro; Kuwatsuka, Yachiyo; Funahashi, Yasuhito; Matsukawa, Yoshihisa; Takanari, Keisuke; Toriyama, Kazuhiro; Kamei, Yuzuru; Narimoto, Kazutaka; Yamanishi, Tomonori; Ishizuka, Osamu; Mizuno, Masaaki; Gotoh, Momokazu
2017-09-25
Male stress urinary incontinence is a prevalent condition after radical prostatectomy. While the standard recommendation for the management of urine leakage is pelvic floor muscle training, its efficacy is still unsatisfactory. Therefore, we have focused on regenerative therapy, which consists of administering a periurethral injection of autologous regenerative cells from adipose tissue, separated using the Celution® system. Based on an interim data analysis of our exploratory study, we confirmed the efficacy and acceptable safety profile of this treatment. Accordingly, we began discussions with Japanese regulatory authorities regarding the development of this therapy in Japan. The Ministry of Health, Labour and Welfare suggested that we implement a clinical trial of a new medical device based on the Pharmaceutical Affaires Act in Japan. Next, we discussed the design of this investigator-initiated clinical trial (the ADRESU study) aimed at evaluating the efficacy and safety of this therapy, in a consultation meeting with the Pharmaceuticals and Medical Device Agency. The ADRESU study is an open-label, multi-center, single-arm study involving a total of 45 male stress urinary incontinence patients with mild-to-moderate urine leakage persisting more than 1 year after prostatectomy, in spite of behavioral and pharmacological therapies. The primary endpoint is the rate of patients at 52 weeks with improvement of urine leakage volume defined as a reduction from baseline greater than 50% by 24-h pad test. Our specific hypothesis is that the primary endpoint result will be higher than a pre-specified threshold of 10%. The ADRESU study is the first clinical trial of regenerative treatment for stress urinary incontinence by adipose-derived regenerative cells using the Celution® system based on the Japanese Pharmaceutical Affaires Act. We will evaluate the efficacy and safety in this trial to provide an adequate basis for marketing approval with the final objective of making this novel therapy widely available for Japanese patients. This trial was registered at the University Hospital Medical information Network Clinical Trial Registry (UMIN-CTR Unique ID: UMIN000017901 ; Registered July 1, 2015) and at ClinicalTrials.gov (ClinicalTrials.gov Identifier: NCT02529865 ; Registered August 18, 2015).
Regenerative Rehabilitation: Combining Stem Cell Therapies and Activity-Dependent Stimulation.
Moritz, Chet T; Ambrosio, Fabrisia
2017-07-01
The number of clinical trials in regenerative medicine is burgeoning, and stem cell/tissue engineering technologies hold the possibility of becoming the standard of care for a multitude of diseases and injuries. Advances in regenerative biology reveal novel molecular and cellular targets, with potential to optimize tissue healing and functional recovery, thereby refining rehabilitation clinical practice. The purpose of this review is to (1) highlight the potential for synergy between the fields of regenerative medicine and rehabilitation, a convergence of disciplines known as regenerative rehabilitation; (2) provide translational examples of regenerative rehabilitation within the context of neuromuscular injuries and diseases; and (3) offer recommendations for ways to leverage activity dependence via combined therapy and technology, with the goal of enhancing long-term recovery. The potential clinical benefits of regenerative rehabilitation will likely become a critical aspect in the standard of care for many neurological and musculoskeletal disorders.
A review of the regenerative endodontic treatment procedure
Lee, Bin-Na; Moon, Jong-Wook; Chang, Hoon-Sang; Hwang, In-Nam; Oh, Won-Mann
2015-01-01
Traditionally, apexification has been used to treat immature permanent teeth that have lost pulp vitality. This technique promotes the formation of an apical barrier to close the open apex so that the filling materials can be confined to the root canal. Because tissue regeneration cannot be achieved with apexification, a new technique called regenerative endodontic treatment was presented recently to treat immature permanent teeth. Regenerative endodontic treatment is a treatment procedure designed to replace damaged pulp tissue with viable tissue which restores the normal function of the pulp-dentin structure. After regenerative endodontic treatment, continued root development and hard tissue deposition on the dentinal wall can occur under ideal circumstances. However, it is difficult to predict the result of regenerative endodontic treatment. Therefore, the purpose of this study was to summarize multiple factors effects on the result of regenerative endodontic treatment in order to achieve more predictable results. In this study, we investigated the features of regenerative endodontic treatment in comparison with those of other pulp treatment procedures and analyzed the factors that have an effect on regenerative endodontic treatment. PMID:26295020
NASA Technical Reports Server (NTRS)
2004-01-01
Contents include the following: High power density motors. The training process of the organization development and training office. Modeling and analysis of a regenerative fuel cell propulsion system for a high altitude long endurance. Increasing the thermal stability of aluminum titanate for solid oxide mJEL cell anodes. Microstructural evaluation of forging parameters for superalloy disks. Epoxy adgesives for stator magnet assembly in stirling radioisotope generator. Nickel-Hydrogen and lithium ion space batteries. Statistical and prediction modeling of the Ka band using experimental results from ACTS propagation terminals at 20.185 and 27.505 GHz.
NASA Technical Reports Server (NTRS)
1979-01-01
Hardware and controls developed for an electrolysis demonstration unit for use with the life sciences payload program and in NASA's regenerative life support evaluation program are described. Components discussed include: the electrolysis module; power conditioner; phase separator-pump and hydrogen differential regulator; pressure regulation of O2, He, and N2; air-cooled heat exchanger; water accumulator; fluid flow sight gage assembly; catalytic O2/H2 sensor; gas flow sensors; low voltage power supply; 100 Amp DC contactor assembly; and the water purifier design.
NASA Technical Reports Server (NTRS)
Proctor, B. W.; Reysa, R. P.; Russell, D. J.
1975-01-01
Viable crew appliance concepts were identified by means of a thorough literature search. Studies were made of the food management, personal hygiene, housekeeping, and off-duty habitability functions to determine which concepts best satisfy the Space Shuttle Orbiter and Modular Space Station mission requirements. Models of selected appliance concepts not currently included in the generalized environmental-thermal control and life support systems computer program were developed and validated. Development plans of selected concepts were generated for future reference. A shuttle freezer conceptual design was developed and a test support activity was provided for regenerative environmental control life support subsystems.
NASA Technical Reports Server (NTRS)
1972-01-01
The activities leading to a tentative concept selection for a pressure-fed engine and propulsion support are outlined. Multiple engine concepts were evaluted through parallel engine major component and system analyses. Booster vehicle coordination, tradeoffs, and technology/development aspects are included. The concept selected for further evaluation has a regeneratively cooled combustion chamber and nozzle in conjuction with an impinging element injector. The propellants chosen are LOX/RP-1, and combustion stabilizing baffles are used to assure dynamic combustion stability.
LEO-to-GEO low thrust chemical propulsion
NASA Technical Reports Server (NTRS)
Shoji, J. M.
1980-01-01
One approach being considered for transporting large space structures from low Earth orbit (LEO) to geosynchronous equatorial orbit (GEO) is the use of low thrust chemical propulsion systems. A variety of chemical rocket engine cycles evaluated for this application for oxygen/hydrogen and oxygen/hydrocarbon propellants (oxygen/methane and oxygen/RF-1) are discussed. These cycles include conventional propellant turbine drives, turboalternator/electric motor pump drive, and fuel cell/electric motor pump drive as well as pressure fed engines. Thrust chamber cooling analysis results are presented for regenerative/radiation and film/radiation cooling.
Terzic, Andre; Nelson, Timothy J
2013-07-01
The pandemic of chronic diseases, compounded by the scarcity of usable donor organs, mandates radical innovation to address the growing unmet needs of individuals and populations. Beyond life-extending measures that are often the last available option, regenerative strategies offer transformative solutions in treating degenerative conditions. By leveraging newfound knowledge of the intimate processes fundamental to organogenesis and healing, the emerging regenerative armamentarium aims to boost the aptitude of human tissues for self-renewal. Regenerative technologies strive to promote, augment, and reestablish native repair processes, restituting organ structure and function. Multimodal regenerative approaches incorporate transplant of healthy tissues into damaged environments, prompt the body to enact a regenerative response in damaged tissues, and use tissue engineering to manufacture new tissue. Stem cells and their products have a unique aptitude to form specialized tissues and promote repair signaling, providing active ingredients of regenerative regimens. Concomitantly, advances in materials science and biotechnology have unlocked additional prospects for growing tissue grafts and engineering organs. Translation of regenerative principles into practice is feasible and safe in the clinical setting. Regenerative medicine and surgery are, thus, poised to transit from proof-of-principle studies toward clinical validation and, ultimately, standardization, paving the way for next-generation individualized management algorithms. Copyright © 2013 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.
China's landscape in regenerative medicine.
Tang, Xin; Qin, Hua; Gu, Xiaosong; Fu, Xiaobing
2017-04-01
Regenerative medicine is a burgeoning interdisciplinary research field that can impact healthcare by offering new therapeutic strategies to replace or regenerate human cells, tissues, or organs with the ultimate goal of restoring or establishing normal human functions. The past decade has seen significant progress of regenerative medicine in China, the world's most populous developing country. With government backing, the progress in regenerative medicine is driven by increasing medical demands of people, accompanied by the economic growth, population aging, and lifestyle change in China. Although regenerative medicine encompasses many components, tissue engineering and stem cell technology are generally considered the two key players. In this review article, we outline the representative achievements in the research and application of tissue engineering, stem cell technology, and other regenerative medical strategies attained by various research groups in China, and highlight the major contributions and features of several outstanding studies made by leading Chinese researchers. Where possible, we discuss the unique opportunities and challenges for advancement of regenerative medicine in China. It is our hope that this review will stimulate new research directions for regenerative medicine in general, and encourage strategic collaborations between the east and the west in particular, so that the clinical translation of regenerative medicine can be accelerated to benefit mankind. Copyright © 2017 Elsevier Ltd. All rights reserved.
49 CFR 229.13 - Control of locomotives.
Code of Federal Regulations, 2010 CFR
2010-10-01
... coupled in remote or multiple control, the propulsion system, the sanders, and the power brake system of each locomotive shall respond to control from the cab of the controlling locomotive. If a dynamic brake or regenerative brake system is in use, that portion of the system in use shall respond to control...
Direct diode pumped Ti:sapphire ultrafast regenerative amplifier system
Backus, Sterling; Durfee, Charles; Lemons, Randy; ...
2017-02-10
Here, we report on a direct diode-pumped Ti:sapphire ultrafast regenerative amplifier laser system producing multi-uJ energies with repetition rate from 50 to 250 kHz. By combining cryogenic cooling of Ti:sapphire with high brightness fiber-coupled 450nm laser diodes, we for the first time demonstrate a power-scalable CW-pumped architecture that can be directly applied to demanding ultrafast applications such as coherent high-harmonic EUV generation without any complex post-amplification pulse compression. Initial results promise a new era for Ti:sapphire amplifiers not only for ultrafast laser applications, but also for tunable CW sources. We discuss the unique challenges to implementation, as well as themore » solutions to these challenges.« less
Direct diode pumped Ti:sapphire ultrafast regenerative amplifier system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backus, Sterling; Durfee, Charles; Lemons, Randy
Here, we report on a direct diode-pumped Ti:sapphire ultrafast regenerative amplifier laser system producing multi-uJ energies with repetition rate from 50 to 250 kHz. By combining cryogenic cooling of Ti:sapphire with high brightness fiber-coupled 450nm laser diodes, we for the first time demonstrate a power-scalable CW-pumped architecture that can be directly applied to demanding ultrafast applications such as coherent high-harmonic EUV generation without any complex post-amplification pulse compression. Initial results promise a new era for Ti:sapphire amplifiers not only for ultrafast laser applications, but also for tunable CW sources. We discuss the unique challenges to implementation, as well as themore » solutions to these challenges.« less
Application of Superconducting Power Cables to DC Electric Railway Systems
NASA Astrophysics Data System (ADS)
Ohsaki, Hiroyuki; Lv, Zhen; Sekino, Masaki; Tomita, Masaru
For novel design and efficient operation of next-generation DC electric railway systems, especially for their substantial energy saving, we have studied the feasibility of applying superconducting power cables to them. In this paper it is assumed that a superconducting power cable is applied to connect substations supplying electric power to trains. An analysis model line was described by an electric circuit, which was analyzed with MATLAB-Simulink. From the calculated voltages and currents of the circuit, the regenerative brake and the energy losses were estimated. In addition, assuming the heat loads of superconducting power cables and the cryogenic efficiency, the energy saving of the total system was evaluated. The results show that the introduction of superconducting power cables could achieve the improved use of regenerative brake, the loss reduction, the decreased number of substations, the reduced maintenance, etc.
Regenerative Life Support Systems Test Bed performance - Lettuce crop characterization
NASA Technical Reports Server (NTRS)
Barta, Daniel J.; Edeen, Marybeth A.; Eckhardt, Bradley D.
1992-01-01
System performance in terms of human life support requirements was evaluated for two crops of lettuce (Lactuca sative cv. Waldmann's Green) grown in the Regenerative Life Support Systems Test Bed. Each crop, grown in separate pots under identical environmental and cultural conditions, was irrigated with half-strength Hoagland's nutrient solution, with the frequency of irrigation being increased as the crop aged over the 30-day crop tests. Averaging over both crop tests, the test bed met the requirements of 2.1 person-days of oxygen production, 2.4 person-days of CO2 removal, and 129 person-days of potential potable water production. Gains in the mass of water and O2 produced and CO2 removed could be achieved by optimizing environmental conditions to increase plant growth rate and by optimizing cultural management methods.
Emerging trends and new developments in regenerative medicine: a scientometric update (2000 - 2014).
Chen, Chaomei; Dubin, Rachael; Kim, Meen Chul
2014-09-01
Our previous scientometric review of regenerative medicine provides a snapshot of the fast-growing field up to the end of 2011. The new review identifies emerging trends and new developments appearing in the literature of regenerative medicine based on relevant articles and reviews published between 2000 and the first month of 2014. Multiple datasets of publications relevant to regenerative medicine are constructed through topic search and citation expansion to ensure adequate coverage of the field. Networks of co-cited references representing the literature of regenerative medicine are constructed and visualized based on a combined dataset of 71,393 articles published between 2000 and 2014. Structural and temporal dynamics are identified in terms of most active topical areas and cited references. New developments are identified in terms of newly emerged clusters and research areas. Disciplinary-level patterns are visualized in dual-map overlays. While research in induced pluripotent stem cells remains the most prominent area in the field of regenerative medicine, research related to clinical and therapeutic applications in regenerative medicine has experienced a considerable growth. In addition, clinical and therapeutic developments in regenerative medicine have demonstrated profound connections with the induced pluripotent stem cell research and stem cell research in general. A rapid adaptation of graphene-based nanomaterials in regenerative medicine is evident. Both basic research represented by stem cell research and application-oriented research typically found in tissue engineering are now increasingly integrated in the scientometric landscape of regenerative medicine. Tissue engineering is an interdisciplinary field in its own right. Advances in multiple disciplines such as stem cell research and graphene research have strengthened the connections between tissue engineering and regenerative medicine.
Gong, Ting; Heng, Boon Chin; Lo, Edward Chin Man; Zhang, Chengfei
2016-01-01
Recent advances in biomaterial science and tissue engineering technology have greatly spurred the development of regenerative endodontics. This has led to a paradigm shift in endodontic treatment from simply filling the root canal systems with biologically inert materials to restoring the infected dental pulp with functional replacement tissues. Currently, cell transplantation has gained increasing attention as a scientifically valid method for dentin-pulp complex regeneration. This multidisciplinary approach which involves the interplay of three key elements of tissue engineering—stem cells, scaffolds, and signaling molecules—has produced an impressive number of favorable outcomes in preclinical animal studies. Nevertheless, many practical hurdles need to be overcome prior to its application in clinical settings. Apart from the potential health risks of immunological rejection and pathogenic transmission, the lack of a well-established banking system for the isolation and storage of dental-derived stem cells is the most pressing issue that awaits resolution and the properties of supportive scaffold materials vary across different studies and remain inconsistent. This review critically examines the classic triad of tissue engineering utilized in current regenerative endodontics and summarizes the possible techniques developed for dentin/pulp regeneration. PMID:27069484
NASA Technical Reports Server (NTRS)
Omori, S.
1973-01-01
As described in Vol. 1, the eddy viscosity is calculated through the turbulent kinetic energy, in order to include the history of the flow and the effect of chemical reaction on boundary layer characteristics. Calculations can be performed for two different cooling concepts; that is, transpiration and regeneratively cooled wall cases. For the regenerative cooling option, coolant and gas side wall temperature and coolant bulk temperature in a rocket engine can be computed along the nozzle axis. Thus, this computer program is useful in designing coolant flow rate and cooling tube geometry, including the tube wall thickness as well as in predicting the effects of boundary layers along the gas side wall on thrust performances.
Regenerative medicine in kidney disease: where we stand and where to go.
Borges, Fernanda T; Schor, Nestor
2017-07-22
The kidney is a complex organ with more than 20 types of specialized cells that play an important role in maintaining the body's homeostasis. The epithelial tubular cell is formed during embryonic development and has little proliferative capacity under physiological conditions, but after acute injury the kidney does have regenerative capacity. However, after repetitive or severe lesions, it may undergo a maladaptation process that predisposes it to chronic kidney injury. Regenerative medicine includes various repair and regeneration techniques, and these have gained increasing attention in the scientific literature. In the future, not only will these techniques contribute to the repair and regeneration of the human kidney, but probably also to the construction of an entire organ. New mechanisms studied for kidney regeneration and repair include circulating stem cells as mesenchymal stromal/stem cells and their paracrine mechanisms of action; renal progenitor stem cells; the leading role of tubular epithelial cells in the tubular repair process; the study of zebrafish larvae to understand the process of nephron development, kidney scaffold and its repopulation; and, finally, the development of organoids. This review elucidates where we are in terms of current scientific knowledge regarding these mechanisms and the promises of future scientific perspectives.
NASA Astrophysics Data System (ADS)
Matsumoto, Jun; Okaya, Shunichi; Igoh, Hiroshi; Kawaguchi, Junichiro
2017-04-01
A new propellant feed system referred to as a self-pressurized feed system is proposed for liquid rocket engines. The self-pressurized feed system is a type of gas-pressure feed system; however, the pressurization source is retained in the liquid state to reduce tank volume. The liquid pressurization source is heated and gasified using heat exchange from the hot propellant using a regenerative cooling strategy. The liquid pressurization source is raised to critical pressure by a pressure booster referred to as a charger in order to avoid boiling and improve the heat exchange efficiency. The charger is driven by a part of the generated pressurization gas using a closed-loop self-pressurized feed system. The purpose of this study is to propose a propellant feed system that is lighter and simpler than traditional gas pressure feed systems. The proposed system can be applied to all liquid rocket engines that use the regenerative cooling strategy. The concept and mathematical models of the self-pressurized feed system are presented first. Experiment results for verification are then shown and compared with the mathematical models.
Dorati, Rossella; DeTrizio, Antonella; Modena, Tiziana; Conti, Bice; Benazzo, Francesco; Gastaldi, Giulia; Genta, Ida
2017-01-01
A great deal of research is ongoing in the area of tissue engineering (TE) for bone regeneration. A possible improvement in restoring damaged tissues involves the loading of drugs such as proteins, genes, growth factors, antibiotics, and anti-inflammatory drugs into scaffolds for tissue regeneration. This mini-review is focused on the combination of the local delivery of antibiotic agents with bone regenerative therapy for the treatment of a severe bone infection such as osteomyelitis. The review includes a brief explanation of scaffolds for bone regeneration including scaffolds characteristics and types, a focus on severe bone infections (especially osteomyelitis and its treatment), and a literature review of local antibiotic delivery by the combination of scaffolds and drug-delivery systems. Some examples related to published studies on gentamicin sulfate-loaded drug-delivery systems combined with scaffolds are discussed, and future perspectives are highlighted. PMID:29231857
Free radical scavenging injectable hydrogels for regenerative therapy.
Komeri, Remya; Thankam, Finosh Gnanaprakasam; Muthu, Jayabalan
2017-02-01
Pathological free radicals generated from inflamed and infarcted cardiac tissues interferes natural tissue repair mechanisms. Hypoxic microenvironment at the injured zone of non-regenerating cardiac tissues hinders the therapeutic attempts including cell therapy. Here we report an injectable, cytocompatible, free radical scavenging synthetic hydrogel formulation for regenerative therapy. New hydrogel (PEAX-P) is prepared with D-xylitol-co-fumarate-co-poly ethylene adipate-co-PEG comaromer (PEAX) and PEGDiacrylate. PEAX-P hydrogel swells 4.9 times the initial weight and retains 100.07kPa Young modulus at equilibrium swelling, which is suitable for cardiac applications. PEAX-P hydrogel retains elastic nature even at 60% compressive strain, which is favorable to fit with the dynamic and elastic natural tissue counterparts. PEAX-P hydrogel scavenges 51% DPPH radical, 40% hydroxyl radicals 41% nitrate radicals with 31% reducing power. The presence of hydrogel protects 62% cardiomyoblast cells treated with stress inducing media at LD 50 concentration. The free hydroxyl groups in sugar alcohols of the comacromer influence the free radical scavenging. Comparatively, PEAX-P hydrogel based on xylitol evinces slightly lower scavenging characteristics than with previously reported PEAM-P hydrogel containing mannitol having more hydroxyl groups. The possible free radical scavenging mechanism of the present hydrogel relies on the free π electrons associated with uncrosslinked fumarate bonds, hydrogen atoms associated with sugar alcohols/PEG and radical dilution by free water in the matrix. Briefly, the present PEAX-P hydrogel is a potential injectable system for combined antioxidant and regenerative therapy. Copyright © 2016 Elsevier B.V. All rights reserved.
Microfluidic Systems for Biosensing
Liu, Kuo-Kang; Wu, Ren-Guei; Chuang, Yun-Ju; Khoo, Hwa Seng; Huang, Shih-Hao; Tseng, Fan-Gang
2010-01-01
In the past two decades, Micro Fluidic Systems (MFS) have emerged as a powerful tool for biosensing, particularly in enriching and purifying molecules and cells in biological samples. Compared with conventional sensing techniques, distinctive advantages of using MFS for biomedicine include ultra-high sensitivity, higher throughput, in-situ monitoring and lower cost. This review aims to summarize the recent advancements in two major types of micro fluidic systems, continuous and discrete MFS, as well as their biomedical applications. The state-of-the-art of active and passive mechanisms of fluid manipulation for mixing, separation, purification and concentration will also be elaborated. Future trends of using MFS in detection at molecular or cellular level, especially in stem cell therapy, tissue engineering and regenerative medicine, are also prospected. PMID:22163570
Fully relayed regenerative amplifier
Glass, Alexander J.
1981-01-01
A regenerative laser apparatus and method using the optical relay concept to maintain high fill factors, to suppress diffraction effects, and to minimize phase distortions in a regenerative amplifier.
Innovative regenerative medicines in the EU: a better future in evidence?
Corbett, Mark S; Webster, Andrew; Hawkins, Robert; Woolacott, Nerys
2017-03-08
Despite a steady stream of headlines suggesting they will transform the future of healthcare, high-tech regenerative medicines have, to date, been quite inaccessible to patients, with only eight having been granted an EU marketing licence in the last 7 years. Here, we outline some of the historical reasons for this paucity of licensed innovative regenerative medicines. We discuss the challenges to be overcome to expedite the development of this complex and rapidly changing area of medicine, together with possible reasons to be more optimistic for the future. Several factors have contributed to the scarcity of cutting-edge regenerative medicines in clinical practice. These include the great expense and difficulties involved in planning how individual therapies will be developed, manufactured to commercial levels and ultimately successfully delivered to patients. Specific challenges also exist when evaluating the safety, efficacy and cost-effectiveness of these therapies. Furthermore, many treatments are used without a licence from the European Medicines Agency, under "Hospital Exemption" from the EC legislation. For products which are licensed, alternative financing approaches by healthcare providers may be needed, since many therapies will have significant up-front costs but uncertain benefits and harms in the long-term. However, increasing political interest and more flexible mechanisms for licensing and financing of therapies are now evident; these could be key to the future growth and development of regenerative medicine in clinical practice. Recent developments in regulatory processes, coupled with increasing political interest, may offer some hope for improvements to the long and often difficult routes from laboratory to marketplace for leading-edge cell or tissue therapies. Collaboration between publicly-funded researchers and the pharmaceutical industry could be key to the future development of regenerative medicine in clinical practice; such collaborations might also offer a possible antidote to the innovation crisis in the pharmaceutical industry.
Connective Tissue Fibroblast Properties Are Position-Dependent during Mouse Digit Tip Regeneration
Wu, Yuanyuan; Wang, Karen; Karapetyan, Adrine; Fernando, Warnakulusuriya Akash; Simkin, Jennifer; Han, Manjong; Rugg, Elizabeth L.; Muneoka, Ken
2013-01-01
A key factor that contributes to the regenerative ability of regeneration-competent animals such as the salamander is their use of innate positional cues that guide the regeneration process. The limbs of mammals has severe regenerative limitations, however the distal most portion of the terminal phalange is regeneration competent. This regenerative ability of the adult mouse digit is level dependent: amputation through the distal half of the terminal phalanx (P3) leads to successful regeneration, whereas amputation through a more proximal location, e.g. the subterminal phalangeal element (P2), fails to regenerate. Do the connective tissue cells of the mammalian digit play a role similar to that of the salamander limb in controlling the regenerative response? To begin to address this question, we isolated and cultured cells of the connective tissue surrounding the phalangeal bones of regeneration competent (P3) and incompetent (P2) levels. Despite their close proximity and localization, these cells show very distinctive profiles when characterized in vitro and in vivo. In vitro studies comparing their proliferation and position-specific interactions reveal that cells isolated from the P3 and P2 are both capable of organizing and differentiating epithelial progenitors, but with different outcomes. The difference in interactions are further characterized with three-dimension cultures, in which P3 regenerative cells are shown to lack a contractile response that is seen in other fibroblast cultures, including the P2 cultures. In in vivo engraftment studies, the difference between these two cell lines is made more apparent. While both P2 and P3 cells participated in the regeneration of the terminal phalanx, their survival and proliferative indices were distinct, thus suggesting a key difference in their ability to interact within a regeneration permissive environment. These studies are the first to demonstrate distinct positional characteristics of connective tissue cells that are associated with their regenerative capabilities. PMID:23349966
Mack, David L; Guan, Xuan; Wagoner, Ashley; Walker, Stephen J; Childers, Martin K
2014-11-01
Advances in regenerative medicine technologies will lead to dramatic changes in how patients in rehabilitation medicine clinics are treated in the upcoming decades. The multidisciplinary field of regenerative medicine is developing new tools for disease modeling and drug discovery based on induced pluripotent stem cells. This approach capitalizes on the idea of personalized medicine by using the patient's own cells to discover new drugs, increasing the likelihood of a favorable outcome. The search for compounds that can correct disease defects in the culture dish is a conceptual departure from how drug screens were done in the past. This system proposes a closed loop from sample collection from the diseased patient, to in vitro disease model, to drug discovery and Food and Drug Administration approval, to delivering that drug back to the same patient. Here, recent progress in patient-specific induced pluripotent stem cell derivation, directed differentiation toward diseased cell types, and how those cells can be used for high-throughput drug screens are reviewed. Given that restoration of normal function is a driving force in rehabilitation medicine, the authors believe that this drug discovery platform focusing on phenotypic rescue will become a key contributor to therapeutic compounds in regenerative rehabilitation.
Regenerative Fuel Cell Power Systems for Lunar and Martian Surface Exploration
NASA Technical Reports Server (NTRS)
Guzik, Monica C.; Jakupca, Ian J.; Gilligan, Ryan P.; Bennett, William R.; Smith, Phillip J.; Fincannon, James
2017-01-01
This paper presents the preliminary results of a recent National Aeronautics and Space Administration (NASA) study funded under the Advanced Exploration Systems (AES) Modular Power Systems (AMPS) project. This study evaluated multiple surface locations on both the Moon and Mars, with the goal of establishing a common approach towards technology development and system design for surface power systems that use Regenerative Fuel Cell (RFC) energy storage methods. One RFC design may not be applicable to all surface locations; however, AMPS seeks to find a unified architecture, or series of architectures, that leverages a single development approach to answer the technology need for RFC systems. Early system trades were performed to select the most effective fuel cell and electrolyzer architectures based on current state-of-the-art technology, whereas later trades will establish a detailed system design to enable a near-term ground (non-flight) demonstration. This paper focuses on the initial trade studies, presents the selected fuel cell and electrolyzer architectures for follow-on system design studies, and suggests areas for further technology investment.
Rui, Jia-bai; Zheng, Chuan-xian; Zeng, Qing-tang
2002-12-01
Objective. To test and demonstrate embryonic form of our future space station ECLSS, which will also form an advanced research and test ground facility. Method. The following functions of the system were tested and demonstrated: integrated solid amine CO2 collection and concentration, Sabatier CO2 reduction, urine processing thermoelectric integrated membrane evaporation, solid polymer water electrolysis O2 generation, concentrated ventilation, temperature and humidity control, the measurement and control system, and other non-regenerative techniques. All of these were demonstrated in a sealed adiabatic module, and passed the proof-tests. Result. The principal technical requirements of the system and each regenerative subsystem were met. The integration of system general and each subsystem was successful, and the partial closed loop of the system's integration has been realized basically. Conclusion. The reasonableness of the project design was verified, and the major system technical requirements were satisfied. The suitability and harmonization among system general and each subsystem were good, the system operated normally, and the parameters measured were correct.
NASA Technical Reports Server (NTRS)
Oser, H. (Editor); Oro, J. (Editor); Macelroy, R. D. (Editor); Klein, H. P. (Editor); Devincenzi, D. L. (Editor); Young, R. S. (Editor)
1984-01-01
Space-based and space-related research in the life sciences is presented in reviews and reports. Topics examined include the long-term effects of weightlessness, cosmic chemistry and chemical and biological evolution, life-support systems for space travel, planetary protection, and the g-scale factor in gravitational biology. Consideration is given to the role of Ca ions in cytological effects of hypogravity, the organic aerosols of Titan, the role of meteorite impacts in the formation of organic molecules, prebiotic synthesis of purines and pyrimidines, atmosphere behavior of gas-closed mouse-algal systems, air and water regeneration in advanced regenerative environmental-control and life-support systems, and the influence of gravity on the development of animal systems.
Tissue Engineering and Regenerative Medicine 2017: A Year in Review.
Park, Kyung Min; Shin, Young Min; Kim, Kyobum; Shin, Heungsoo
2018-04-26
In 2017, a new paradigm change caused by artificial intelligence and big data analysis resulted in innovation in each field of science and technology, and also significantly influenced progress in tissue engineering and regenerative medicine (TERM). TERM has continued to make technological advances based on interdisciplinary approaches and has contributed to the overall field of biomedical technology, including cancer biology, personalized medicine, development biology, and cell-based therapeutics. While researchers are aware that there is still a long way to go until TERM reaches the ultimate goal of patient treatment through clinical translation, the rapid progress in convergence studies led by technological improvements in TERM has been encouraging. In this review, we highlighted the significant advances made in TERM in 2017 (with an overlap of 5 months in 2016). We identified major progress in TERM in a manner similar to previous reviews published in the last few years. In addition, we carefully considered all four previous reviews during the selection process and chose main themes that minimize the duplication of the topics. Therefore, we have identified three areas that have been the focus of most journal publications in the TERM community in 2017: (i) advanced biomaterials and three-dimensional (3D) cell printing, (ii) exosomes as bioactive agents for regenerative medicine, and (iii) 3D culture in regenerative medicine.
Recent Progress in Stem Cell Modification for Cardiac Regeneration
Voronina, Natalia; Steinhoff, Gustav
2018-01-01
During the past decades, stem cell-based therapy has acquired a promising role in regenerative medicine. The application of novel cell therapeutics for the treatment of cardiovascular diseases could potentially achieve the ambitious aim of effective cardiac regeneration. Despite the highly positive results from preclinical studies, data from phase I/II clinical trials are inconsistent and the improvement of cardiac remodeling and heart performance was found to be quite limited. The major issues which cardiac stem cell therapy is facing include inefficient cell delivery to the site of injury, accompanied by low cell retention and weak effectiveness of remaining stem cells in tissue regeneration. According to preclinical and clinical studies, various stem cells (adult stem cells, embryonic stem cells, and induced pluripotent stem cells) represent the most promising cell types so far. Beside the selection of the appropriate cell type, researchers have developed several strategies to produce “second-generation” stem cell products with improved regenerative capacity. Genetic and nongenetic modifications, chemical and physical preconditioning, and the application of biomaterials were found to significantly enhance the regenerative capacity of transplanted stem cells. In this review, we will give an overview of the recent developments in stem cell engineering with the goal to facilitate stem cell delivery and to promote their cardiac regenerative activity. PMID:29535769
Human dental pulp stem cells: Applications in future regenerative medicine
Potdar, Pravin D; Jethmalani, Yogita D
2015-01-01
Stem cells are pluripotent cells, having a property of differentiating into various types of cells of human body. Several studies have developed mesenchymal stem cells (MSCs) from various human tissues, peripheral blood and body fluids. These cells are then characterized by cellular and molecular markers to understand their specific phenotypes. Dental pulp stem cells (DPSCs) are having a MSCs phenotype and they are differentiated into neuron, cardiomyocytes, chondrocytes, osteoblasts, liver cells and β cells of islet of pancreas. Thus, DPSCs have shown great potentiality to use in regenerative medicine for treatment of various human diseases including dental related problems. These cells can also be developed into induced pluripotent stem cells by incorporation of pluripotency markers and use for regenerative therapies of various diseases. The DPSCs are derived from various dental tissues such as human exfoliated deciduous teeth, apical papilla, periodontal ligament and dental follicle tissue. This review will overview the information about isolation, cellular and molecular characterization and differentiation of DPSCs into various types of human cells and thus these cells have important applications in regenerative therapies for various diseases. This review will be most useful for postgraduate dental students as well as scientists working in the field of oral pathology and oral medicine. PMID:26131314
NASA Astrophysics Data System (ADS)
Carlowitz, Christian; Girg, Thomas; Ghaleb, Hatem; Du, Xuan-Quang
2017-09-01
For ultra-high speed communication systems at high center frequencies above 100 GHz, we propose a disruptive change in system architecture to address major issues regarding amplifier chains with a large number of amplifier stages. They cause a high noise figure and high power consumption when operating close to the frequency limits of the underlying semiconductor technologies. Instead of scaling a classic homodyne transceiver system, we employ repeated amplification in single-stage amplifiers through positive feedback as well as synthesizer-free self-mixing demodulation at the receiver to simplify the system architecture notably. Since the amplitude and phase information for the emerging oscillation is defined by the input signal and the oscillator is only turned on for a very short time, it can be left unstabilized and thus come without a PLL. As soon as gain is no longer the most prominent issue, relaxed requirements for all the other major components allow reconsidering their implementation concepts to achieve further improvements compared to classic systems. This paper provides the first comprehensive overview of all major design aspects that need to be addressed upon realizing a SPARS-based transceiver. At system level, we show how to achieve high data rates and a noise performance comparable to classic systems, backed by scaled demonstrator experiments. Regarding the transmitter, design considerations for efficient quadrature modulation are discussed. For the frontend components that replace PA and LNA amplifier chains, implementation techniques for regenerative sampling circuits based on super-regenerative oscillators are presented. Finally, an analog-to-digital converter with outstanding performance and complete interfaces both to the analog baseband as well as to the digital side completes the set of building blocks for efficient ultra-high speed communication.
Entropy Generation in Regenerative Systems
NASA Technical Reports Server (NTRS)
Kittel, Peter
1995-01-01
Heat exchange to the oscillating flows in regenerative coolers generates entropy. These flows are characterized by oscillating mass flows and oscillating temperatures. Heat is transferred between the flow and heat exchangers and regenerators. In the former case, there is a steady temperature difference between the flow and the heat exchangers. In the latter case, there is no mean temperature difference. In this paper a mathematical model of the entropy generated is developed for both cases. Estimates of the entropy generated by this process are given for oscillating flows in heat exchangers and in regenerators. The practical significance of this entropy is also discussed.