A system and method for online high-resolution mapping of gastric slow-wave activity.
Bull, Simon H; O'Grady, Gregory; Du, Peng; Cheng, Leo K
2014-11-01
High-resolution (HR) mapping employs multielectrode arrays to achieve spatially detailed analyses of propagating bioelectrical events. A major current limitation is that spatial analyses must currently be performed "off-line" (after experiments), compromising timely recording feedback and restricting experimental interventions. These problems motivated development of a system and method for "online" HR mapping. HR gastric recordings were acquired and streamed to a novel software client. Algorithms were devised to filter data, identify slow-wave events, eliminate corrupt channels, and cluster activation events. A graphical user interface animated data and plotted electrograms and maps. Results were compared against off-line methods. The online system analyzed 256-channel serosal recordings with no unexpected system terminations with a mean delay 18 s. Activation time marking sensitivity was 0.92; positive predictive value was 0.93. Abnormal slow-wave patterns including conduction blocks, ectopic pacemaking, and colliding wave fronts were reliably identified. Compared to traditional analysis methods, online mapping had comparable results with equivalent coverage of 90% of electrodes, average RMS errors of less than 1 s, and CC of activation maps of 0.99. Accurate slow-wave mapping was achieved in near real-time, enabling monitoring of recording quality and experimental interventions targeted to dysrhythmic onset. This work also advances the translation of HR mapping toward real-time clinical application.
A System and Method for Online High-Resolution Mapping of Gastric Slow-Wave Activity
Bull, Simon H.; O’Grady, Gregory; Du, Peng
2015-01-01
High-resolution (HR) mapping employs multielectrode arrays to achieve spatially detailed analyses of propagating bioelectrical events. A major current limitation is that spatial analyses must currently be performed “off-line” (after experiments), compromising timely recording feedback and restricting experimental interventions. These problems motivated development of a system and method for “online” HR mapping. HR gastric recordings were acquired and streamed to a novel software client. Algorithms were devised to filter data, identify slow-wave events, eliminate corrupt channels, and cluster activation events. A graphical user interface animated data and plotted electrograms and maps. Results were compared against off-line methods. The online system analyzed 256-channel serosal recordings with no unexpected system terminations with a mean delay 18 s. Activation time marking sensitivity was 0.92; positive predictive value was 0.93. Abnormal slow-wave patterns including conduction blocks, ectopic pacemaking, and colliding wave fronts were reliably identified. Compared to traditional analysis methods, online mapping had comparable results with equivalent coverage of 90% of electrodes, average RMS errors of less than 1 s, and CC of activation maps of 0.99. Accurate slow-wave mapping was achieved in near real-time, enabling monitoring of recording quality and experimental interventions targeted to dysrhythmic onset. This work also advances the translation of HR mapping toward real-time clinical application. PMID:24860024
Sea-floor-mounted rotating side-scan sonar for making time-lapse sonographs
Rubin, David M.; McCulloch, David S.; Hill, H. R.
1983-01-01
Records that are collected with this system offer several advantages over records that are collected with towed systems. Bottom features are presented in nearly true plan geometry, and transducer yaw, pitch, and roll are eliminated. Most importantly, repeated observations can be made from a single point, and bedform movements of <50 cm can be measured. In quiet seas the maximum useful range of the system varies from 30 m (for mapping ripples) to 200 m (for mapping 10-m wavelength sand waves) to 450 m or more (for mapping gravel patches).
NASA Technical Reports Server (NTRS)
Hasell, P. G., Jr.
1974-01-01
The development and characteristics of a multispectral band scanner for an airborne mapping system are discussed. The sensor operates in the ultraviolet, visual, and infrared frequencies. Any twelve of the bands may be selected for simultaneous, optically registered recording on a 14-track analog tape recorder. Multispectral imagery recorded on magnetic tape in the aircraft can be laboratory reproduced on film strips for visual analysis or optionally machine processed in analog and/or digital computers before display. The airborne system performance is analyzed.
CrowdMapping: A Crowdsourcing-Based Terminology Mapping Method for Medical Data Standardization.
Mao, Huajian; Chi, Chenyang; Huang, Boyu; Meng, Haibin; Yu, Jinghui; Zhao, Dongsheng
2017-01-01
Standardized terminology is the prerequisite of data exchange in analysis of clinical processes. However, data from different electronic health record systems are based on idiosyncratic terminology systems, especially when the data is from different hospitals and healthcare organizations. Terminology standardization is necessary for the medical data analysis. We propose a crowdsourcing-based terminology mapping method, CrowdMapping, to standardize the terminology in medical data. CrowdMapping uses a confidential model to determine how terminologies are mapped to a standard system, like ICD-10. The model uses mappings from different health care organizations and evaluates the diversity of the mapping to determine a more sophisticated mapping rule. Further, the CrowdMapping model enables users to rate the mapping result and interact with the model evaluation. CrowdMapping is a work-in-progress system, we present initial results mapping terminologies.
NASA Astrophysics Data System (ADS)
Bydlon, S. A.; Beroza, G. C.
2015-12-01
Recent debate on the efficacy of Probabilistic Seismic Hazard Analysis (PSHA), and the utility of hazard maps (i.e. Stein et al., 2011; Hanks et al., 2012), has prompted a need for validation of such maps using recorded strong ground motion data. Unfortunately, strong motion records are limited spatially and temporally relative to the area and time windows hazard maps encompass. We develop a framework to test the predictive powers of PSHA maps that is flexible with respect to a map's specified probability of exceedance and time window, and the strong motion receiver coverage. Using a combination of recorded and interpolated strong motion records produced through the ShakeMap environment, we compile a record of ground motion intensity measures for California from 2002-present. We use this information to perform an area-based test of California PSHA maps inspired by the work of Ward (1995). Though this framework is flexible in that it can be applied to seismically active areas where ShakeMap-like ground shaking interpolations have or can be produced, this testing procedure is limited by the relatively short lifetime of strong motion recordings and by the desire to only test with data collected after the development of the PSHA map under scrutiny. To account for this, we use the assumption that PSHA maps are time independent to adapt the testing procedure for periods of recorded data shorter than the lifetime of a map. We note that accuracy of this testing procedure will only improve as more data is collected, or as the time-horizon of interest is reduced, as has been proposed for maps of areas experiencing induced seismicity. We believe that this procedure can be used to determine whether PSHA maps are accurately portraying seismic hazard and whether discrepancies are localized or systemic.
Nursing interventions for rehabilitation in Parkinson's disease: cross mapping of terms
Tosin, Michelle Hyczy de Siqueira; Campos, Débora Moraes; de Andrade, Leonardo Tadeu; de Oliveira, Beatriz Guitton Renaud Baptista; Santana, Rosimere Ferreira
2016-01-01
ABSTRACT Objective: to perform a cross-term mapping of nursing language in the patient record with the Nursing Interventions Classification system, in rehabilitation patients with Parkinson's disease. Method: a documentary research study to perform cross mapping. A probabilistic, simple random sample composed of 67 records of patients with Parkinson's disease who participated in a rehabilitation program, between March of 2009 and April of 2013. The research was conducted in three stages, in which the nursing terms were mapped to natural language and crossed with the Nursing Interventions Classification. Results: a total of 1,077 standard interventions that, after crossing with the taxonomy and refinement performed by the experts, resulted in 32 interventions equivalent to the Nursing Interventions Classification (NIC) system. The NICs, "Education: The process of the disease.", "Contract with the patient", and "Facilitation of Learning" were present in 100% of the records. For these interventions, 40 activities were described, representing 13 activities by intervention. Conclusion: the cross mapping allowed for the identification of corresponding terms with the nursing interventions used every day in rehabilitation nursing, and compared them to the Nursing Interventions Classification. PMID:27508903
76 FR 13994 - Privacy Act of 1974; System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-15
... received which result in a contrary determination. ADDRESSES: You may submit comments, identified by dock... of Defense. Deletion: K700.03 Manpower and Personnel System (MAPS) (February 22, 1993, 58 FR 10562). Reason: Manpower and Personnel System (MAPS) has been replaced with Open Source Corporate Management...
North American forest disturbance mapped from a decadal Landsat record
Jeffrey G. Masek; Chengquan Huang; Robert Wolfe; Warren Cohen; Forrest Hall; Jonathan Kutler; Peder Nelson
2008-01-01
Forest disturbance and recovery are critical ecosystem processes, but the spatial pattern of disturbance has never been mapped across North America. The LEDAPS (Landsat Ecosystem Disturbance Adaptive Processing System) project has assembled a wall-to-wall record of stand-clearing disturbance (clearcut harvest, fire) for the United States and Canada for the period 1990-...
On the importance of image formation optics in the design of infrared spectroscopic imaging systems
Mayerich, David; van Dijk, Thomas; Walsh, Michael; Schulmerich, Matthew; Carney, P. Scott
2014-01-01
Infrared spectroscopic imaging provides micron-scale spatial resolution with molecular contrast. While recent work demonstrates that sample morphology affects the recorded spectrum, considerably less attention has been focused on the effects of the optics, including the condenser and objective. This analysis is extremely important, since it will be possible to understand effects on recorded data and provides insight for reducing optical effects through rigorous microscope design. Here, we present a theoretical description and experimental results that demonstrate the effects of commonly-employed cassegranian optics on recorded spectra. We first combine an explicit model of image formation and a method for quantifying and visualizing the deviations in recorded spectra as a function of microscope optics. We then verify these simulations with measurements obtained from spatially heterogeneous samples. The deviation of the computed spectrum from the ideal case is quantified via a map which we call a deviation map. The deviation map is obtained as a function of optical elements by systematic simulations. Examination of deviation maps demonstrates that the optimal optical configuration for minimal deviation is contrary to prevailing practice in which throughput is maximized for an instrument without a sample. This report should be helpful for understanding recorded spectra as a function of the optics, the analytical limits of recorded data determined by the optical design, and potential routes for optimization of imaging systems. PMID:24936526
On the importance of image formation optics in the design of infrared spectroscopic imaging systems.
Mayerich, David; van Dijk, Thomas; Walsh, Michael J; Schulmerich, Matthew V; Carney, P Scott; Bhargava, Rohit
2014-08-21
Infrared spectroscopic imaging provides micron-scale spatial resolution with molecular contrast. While recent work demonstrates that sample morphology affects the recorded spectrum, considerably less attention has been focused on the effects of the optics, including the condenser and objective. This analysis is extremely important, since it will be possible to understand effects on recorded data and provides insight for reducing optical effects through rigorous microscope design. Here, we present a theoretical description and experimental results that demonstrate the effects of commonly-employed cassegranian optics on recorded spectra. We first combine an explicit model of image formation and a method for quantifying and visualizing the deviations in recorded spectra as a function of microscope optics. We then verify these simulations with measurements obtained from spatially heterogeneous samples. The deviation of the computed spectrum from the ideal case is quantified via a map which we call a deviation map. The deviation map is obtained as a function of optical elements by systematic simulations. Examination of deviation maps demonstrates that the optimal optical configuration for minimal deviation is contrary to prevailing practice in which throughput is maximized for an instrument without a sample. This report should be helpful for understanding recorded spectra as a function of the optics, the analytical limits of recorded data determined by the optical design, and potential routes for optimization of imaging systems.
Designing and Testing a UAV Mapping System for Agricultural Field Surveying
Skovsen, Søren
2017-01-01
A Light Detection and Ranging (LiDAR) sensor mounted on an Unmanned Aerial Vehicle (UAV) can map the overflown environment in point clouds. Mapped canopy heights allow for the estimation of crop biomass in agriculture. The work presented in this paper contributes to sensory UAV setup design for mapping and textual analysis of agricultural fields. LiDAR data are combined with data from Global Navigation Satellite System (GNSS) and Inertial Measurement Unit (IMU) sensors to conduct environment mapping for point clouds. The proposed method facilitates LiDAR recordings in an experimental winter wheat field. Crop height estimates ranging from 0.35–0.58 m are correlated to the applied nitrogen treatments of 0–300 kgNha. The LiDAR point clouds are recorded, mapped, and analysed using the functionalities of the Robot Operating System (ROS) and the Point Cloud Library (PCL). Crop volume estimation is based on a voxel grid with a spatial resolution of 0.04 × 0.04 × 0.001 m. Two different flight patterns are evaluated at an altitude of 6 m to determine the impacts of the mapped LiDAR measurements on crop volume estimations. PMID:29168783
Designing and Testing a UAV Mapping System for Agricultural Field Surveying.
Christiansen, Martin Peter; Laursen, Morten Stigaard; Jørgensen, Rasmus Nyholm; Skovsen, Søren; Gislum, René
2017-11-23
A Light Detection and Ranging (LiDAR) sensor mounted on an Unmanned Aerial Vehicle (UAV) can map the overflown environment in point clouds. Mapped canopy heights allow for the estimation of crop biomass in agriculture. The work presented in this paper contributes to sensory UAV setup design for mapping and textual analysis of agricultural fields. LiDAR data are combined with data from Global Navigation Satellite System (GNSS) and Inertial Measurement Unit (IMU) sensors to conduct environment mapping for point clouds. The proposed method facilitates LiDAR recordings in an experimental winter wheat field. Crop height estimates ranging from 0.35-0.58 m are correlated to the applied nitrogen treatments of 0-300 kg N ha . The LiDAR point clouds are recorded, mapped, and analysed using the functionalities of the Robot Operating System (ROS) and the Point Cloud Library (PCL). Crop volume estimation is based on a voxel grid with a spatial resolution of 0.04 × 0.04 × 0.001 m. Two different flight patterns are evaluated at an altitude of 6 m to determine the impacts of the mapped LiDAR measurements on crop volume estimations.
Mapping pocket gopher burrow systems with expanding polyurethane foam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Felthauser, M.; McInroy, D.
The impetus for this study arose from the need to isolate buried chemical and radioactive waste from burrowing animals. In a study of barrier materials that inhibit burrowing by pocket gophers (Thomomys spp.) into waste material, it was necessary to map tunnel systems as a function of depth and soil type. A method of mapping burrow systems was needed that would be economical, portable, useful in a variety of soil types, and give accurate, permanent records of burrow configurations. A method is described for injecting an expanding polyurethane foam to map burrow systems in situ.
Intelligent geocoding system to locate traffic crashes.
Qin, Xiao; Parker, Steven; Liu, Yi; Graettinger, Andrew J; Forde, Susie
2013-01-01
State agencies continue to face many challenges associated with new federal crash safety and highway performance monitoring requirements that use data from multiple and disparate systems across different platforms and locations. On a national level, the federal government has a long-term vision for State Departments of Transportation (DOTs) to report state route and off-state route crash data in a single network. In general, crashes occurring on state-owned or state maintained highways are a priority at the Federal and State level; therefore, state-route crashes are being geocoded by state DOTs. On the other hand, crashes occurring on off-state highway system do not always get geocoded due to limited resources and techniques. Creating and maintaining a statewide crash geographic information systems (GIS) map with state route and non-state route crashes is a complicated and expensive task. This study introduces an automatic crash mapping process, Crash-Mapping Automation Tool (C-MAT), where an algorithm translates location information from a police report crash record to a geospatial map and creates a pinpoint map for all crashes. The algorithm has approximate 83 percent mapping rate. An important application of this work is the ability to associate the mapped crash records to underlying business data, such as roadway inventory and traffic volumes. The integrated crash map is the foundation for effective and efficient crash analyzes to prevent highway crashes. Published by Elsevier Ltd.
Johnson, Karin E; Kamineni, Aruna; Fuller, Sharon; Olmstead, Danielle; Wernli, Karen J
2014-01-01
The use of electronic health records (EHRs) for research is proceeding rapidly, driven by computational power, analytical techniques, and policy. However, EHR-based research is limited by the complexity of EHR data and a lack of understanding about data provenance, meaning the context under which the data were collected. This paper presents system flow mapping as a method to help researchers more fully understand the provenance of their EHR data as it relates to local workflow. We provide two specific examples of how this method can improve data identification, documentation, and processing. EHRs store clinical and administrative data, often in unstructured fields. Each clinical system has a unique and dynamic workflow, as well as an EHR customized for local use. The EHR customization may be influenced by a broader context such as documentation required for billing. We present a case study with two examples of using system flow mapping to characterize EHR data for a local colorectal cancer screening process. System flow mapping demonstrated that information entered into the EHR during clinical practice required interpretation and transformation before it could be accurately applied to research. We illustrate how system flow mapping shaped our knowledge of the quality and completeness of data in two examples: (1) determining colonoscopy indication as recorded in the EHR, and (2) discovering a specific EHR form that captured family history. Researchers who do not consider data provenance risk compiling data that are systematically incomplete or incorrect. For example, researchers who are not familiar with the clinical workflow under which data were entered might miss or misunderstand patient information or procedure and diagnostic codes. Data provenance is a fundamental characteristic of research data from EHRs. Given the diversity of EHR platforms and system workflows, researchers need tools for evaluating and reporting data availability, quality, and transformations. Our case study illustrates how system mapping can inform researchers about the provenance of their data as it pertains to local workflows.
RAMP: a computer system for mapping regional areas
Bradley B. Nickey
1975-01-01
Until 1972, the U.S. Forest Service's Individual Fire Reports recorded locations by the section-township-range system..These earlier fire reports, therefore, lacked congruent locations. RAMP (Regional Area Mapping Procedure) was designed to make the reports more useful for quantitative analysis. This computer-based technique converts locations expressed in...
TOMS Near Realtime System design document
NASA Technical Reports Server (NTRS)
Puccinelli, E. F.
1981-01-01
The System Design Document for the TOMS (Total Mapping Spectrometer) Near Realtime System provides detailed definition of the system functions and records the system history from a data processing and development point-of-view. The system was designed to produce map products displaying ozone concentrations over the United States as measured by the TOMS flown on the NIMBUS 7 satellite. The maps were produced and delivered to the user within six hours of round receipt of the satellite data for the period March 1, 1981 through May 15, 1981 on a daily basis. Sample system products are shown and data archival locations are listed.
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Foster, James L.; Robinson, David A.; Riggs, George A.
2004-01-01
A decade-scale record of Northern Hemisphere snow cover has been available from the National Oceanic and Atmospheric Administration (NOAA) National Environmental Satellite Data and Information Service (NESDIS) and has been reconstructed and validated by Rutgers University following adjustments for inconsistencies that were discovered in the early years of the data set. This record provides weekly, monthly (and, in recent years, daily) snow cover from 1966 to the present for the Northern Hemisphere. With the December 1999 launch of NASA's Earth observing System (EOS) Terra satellite, snow maps are being produced globally, using automated algorithms, on a daily, weekly and monthly basis from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument. The resolution of the MODIS monthly snow maps (0.05deg or about 5 km) is an improvement over that of the NESDIS-derived monthly snow maps (>approx.10 km) the maps, it is necessary to study the datasets carefully to determine if it is possible to merge the datasets into a continuous record. The months in which data are available for both the NESDIS and MODIS maps (March 2000 to the present) will be compared quantitatively to analyze differences in North American and Eurasian snow cover. Results from the NESDIS monthly maps show that for North America (including all 12 months), there is a trend toward slightly less snow cover in each succeeding decade. Interannual snow-cover extent has varied significantly since 2000 as seen in both the NESDIS and MODIS maps. As the length of the satellite record increases through the MODIS era, and into the National Polar-orbiting Environmental Satellite System (NPOESS) era, it should become easier to identify trends in areal extent of snow cover, if present, that may have climatic significance. Thus it is necessary to analyze the validity of merging the NESDIS and MODIS, and, in the future, the NPOESS datasets for determination of long-term continuity in measurement of Northern Hemisphere snow cover.
Real-time Author Co-citation Mapping for Online Searching.
ERIC Educational Resources Information Center
Lin, Xia; White, Howard D.; Buzydlowski, Jan
2003-01-01
Describes the design and implementation of a prototype visualization system, AuthorLink, to enhance author searching. AuthorLink is based on author co-citation analysis and visualization mapping algorithms. AuthorLink produces interactive author maps in real time from a database of 1.26 million records supplied by the Institute for Scientific…
Digital terrain tapes: user guide
,
1980-01-01
DMATC's digital terrain tapes are a by-product of the agency's efforts to streamline the production of raised-relief maps. In the early 1960's DMATC developed the Digital Graphics Recorder (DGR) system that introduced new digitizing techniques and processing methods into the field of three-dimensional mapping. The DGR system consisted of an automatic digitizing table and a computer system that recorded a grid of terrain elevations from traces of the contour lines on standard topographic maps. A sequence of computer accuracy checks was performed and then the elevations of grid points not intersected by contour lines were interpolated. The DGR system produced computer magnetic tapes which controlled the carving of plaster forms used to mold raised-relief maps. It was realized almost immediately that this relatively simple tool for carving plaster molds had enormous potential for storing, manipulating, and selectively displaying (either graphically or numerically) a vast number of terrain elevations. As the demand for the digital terrain tapes increased, DMATC began developing increasingly advanced digitizing systems and now operates the Digital Topographic Data Collection System (DTDCS). With DTDCS, two types of data elevations as contour lines and points, and stream and ridge lines are sorted, matched, and resorted to obtain a grid of elevation values for every 0.01 inch on each map (approximately 200 feet on the ground). Undefined points on the grid are found by either linear or or planar interpolation.
Real-Time Mapping alert system; characteristics and capabilities
Torres, L.A.; Lambert, S.C.; Liebermann, T.D.
1995-01-01
The U.S. Geological Survey has an extensive hydrologic network that records and transmits precipitation, stage, discharge, and other water-related data on a real-time basis to an automated data processing system. Data values are recorded on electronic data collection platforms at field sampling sites. These values are transmitted by means of orbiting satellites to receiving ground stations, and by way of telecommunication lines to a U.S. Geological Survey office where they are processed on a computer system. Data that exceed predefined thresholds are identified as alert values. The current alert status at monitoring sites within a state or region is of critical importance during floods, hurricanes, and other extreme hydrologic events. This report describes the characteristics and capabilities of a series of computer programs for real-time mapping of hydrologic data. The software provides interactive graphics display and query of hydrologic information from the network in a real-time, map-based, menu-driven environment.
NASA Technical Reports Server (NTRS)
Haines, R. F.; Fitzgerald, J. W.; Rositano, S. A. (Inventor)
1976-01-01
An automated visual examination apparatus for measuring visual sensitivity and mapping blind spot location including a projection system for displaying to a patient a series of visual stimuli. A response switch enables him to indicate his reaction to the stimuli, and a recording system responsive to both the visual stimuli per se and the patient's response. The recording system thereby provides a correlated permanent record of both stimuli and response from which a substantive and readily apparent visual evaluation can be made.
Data annotation, recording and mapping system for the US open skies aircraft
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, B.W.; Goede, W.F.; Farmer, R.G.
1996-11-01
This paper discusses the system developed by Northrop Grumman for the Defense Nuclear Agency (DNA), US Air Force, and the On-Site Inspection Agency (OSIA) to comply with the data annotation and reporting provisions of the Open Skies Treaty. This system, called the Data Annotation, Recording and Mapping System (DARMS), has been installed on the US OC-135 and meets or exceeds all annotation requirements for the Open Skies Treaty. The Open Skies Treaty, which will enter into force in the near future, allows any of the 26 signatory countries to fly fixed wing aircraft with imaging sensors over any of themore » other treaty participants, upon very short notice, and with no restricted flight areas. Sensor types presently allowed by the treaty are: optical framing and panoramic film cameras; video cameras ranging from analog PAL color television cameras to the more sophisticated digital monochrome and color line scanning or framing cameras; infrared line scanners; and synthetic aperture radars. Each sensor type has specific performance parameters which are limited by the treaty, as well as specific annotation requirements which must be achieved upon full entry into force. DARMS supports U.S. compliance with the Opens Skies Treaty by means of three subsystems: the Data Annotation Subsytem (DAS), which annotates sensor media with data obtained from sensors and the aircraft`s avionics system; the Data Recording System (DRS), which records all sensor and flight events on magnetic media for later use in generating Treaty mandated mission reports; and the Dynamic Sensor Mapping Subsystem (DSMS), which provides observers and sensor operators with a real-time moving map displays of the progress of the mission, complete with instantaneous and cumulative sensor coverages. This paper will describe DARMS and its subsystems in greater detail, along with the supporting avionics sub-systems. 7 figs.« less
Interactive Videodisc Learning Systems.
ERIC Educational Resources Information Center
Currier, Richard L.
1983-01-01
Discussion of capabilities of interactive videodisc, which combines video images recorded on disc and random-access, highlights interactivity; teaching techniques with videodiscs (including masking, disassembly, movie maps, tactical maps, action code, and simulation); costs; and games. Illustrative material is provided. (High Technology, P. O. Box…
Allones, J L; Martinez, D; Taboada, M
2014-10-01
Clinical terminologies are considered a key technology for capturing clinical data in a precise and standardized manner, which is critical to accurately exchange information among different applications, medical records and decision support systems. An important step to promote the real use of clinical terminologies, such as SNOMED-CT, is to facilitate the process of finding mappings between local terms of medical records and concepts of terminologies. In this paper, we propose a mapping tool to discover text-to-concept mappings in SNOMED-CT. Name-based techniques were combined with a query expansion system to generate alternative search terms, and with a strategy to analyze and take advantage of the semantic relationships of the SNOMED-CT concepts. The developed tool was evaluated and compared to the search services provided by two SNOMED-CT browsers. Our tool automatically mapped clinical terms from a Spanish glossary of procedures in pathology with 88.0% precision and 51.4% recall, providing a substantial improvement of recall (28% and 60%) over other publicly accessible mapping services. The improvements reached by the mapping tool are encouraging. Our results demonstrate the feasibility of accurately mapping clinical glossaries to SNOMED-CT concepts, by means a combination of structural, query expansion and named-based techniques. We have shown that SNOMED-CT is a great source of knowledge to infer synonyms for the medical domain. Results show that an automated query expansion system overcomes the challenge of vocabulary mismatch partially.
Khan, Wajahat Ali; Khattak, Asad Masood; Hussain, Maqbool; Amin, Muhammad Bilal; Afzal, Muhammad; Nugent, Christopher; Lee, Sungyoung
2014-08-01
Heterogeneity in the management of the complex medical data, obstructs the attainment of data level interoperability among Health Information Systems (HIS). This diversity is dependent on the compliance of HISs with different healthcare standards. Its solution demands a mediation system for the accurate interpretation of data in different heterogeneous formats for achieving data interoperability. We propose an adaptive AdapteR Interoperability ENgine mediation system called ARIEN, that arbitrates between HISs compliant to different healthcare standards for accurate and seamless information exchange to achieve data interoperability. ARIEN stores the semantic mapping information between different standards in the Mediation Bridge Ontology (MBO) using ontology matching techniques. These mappings are provided by our System for Parallel Heterogeneity (SPHeRe) matching system and Personalized-Detailed Clinical Model (P-DCM) approach to guarantee accuracy of mappings. The realization of the effectiveness of the mappings stored in the MBO is evaluation of the accuracy in transformation process among different standard formats. We evaluated our proposed system with the transformation process of medical records between Clinical Document Architecture (CDA) and Virtual Medical Record (vMR) standards. The transformation process achieved over 90 % of accuracy level in conversion process between CDA and vMR standards using pattern oriented approach from the MBO. The proposed mediation system improves the overall communication process between HISs. It provides an accurate and seamless medical information exchange to ensure data interoperability and timely healthcare services to patients.
Bedform movement recorded by sequential single-beam surveys in tidal rivers
Dinehart, R.L.
2002-01-01
A portable system for bedform-mapping was evaluated in the delta of the lower Sacramento and San Joaquin Rivers, California, from 1998 to 2000. Bedform profiles were surveyed with a two-person crew using an array of four single-beam transducers on boats about 6 m in length. Methods for processing the bedform profiles into maps with geographic coordinates were developed for spreadsheet programs and surface-contouring software. Straight reaches were surveyed every few days or weeks to determine locations of sand deposition, net transport directions, flow thresholds for bedform regimes, and bedform-transport rates. In one channel of unidirectional flow, the portable system was used to record changes in bedform regime through minor fluctuations of low discharge, and through high discharges near channel capacity. In another channel with reversing flows from tides, the portable system recorded directions of net bedload-transport that would be undetectable by standard bedload sampling alone.
NASA Technical Reports Server (NTRS)
Haines, R. F.; Fitzgerald, J. W.; Rositano, S. A. (Inventor)
1973-01-01
An automated visual examination apparatus for measuring visual sensitivity and mapping blind spot location is described. The apparatus includes a projection system for displaying to a patient a series of visual stimuli, a response switch enabling him to indicate his reaction to the stimuli, and a recording system responsive to both the visual stimuli per se and the patient's response. The recording system provides a correlated permanent record of both stimuli and response from which a substantive and readily apparent visual evaluation can be made.
2016-06-01
of technology and near-global Internet accessibility, a web -based program incorporating interactive maps to record personal combat experiences does...not exist. The Combat Stories Map addresses this deficiency. The Combat Stories Map is a web -based Geographic Information System specifically designed...iv THIS PAGE INTENTIONALLY LEFT BLANK v ABSTRACT Despite the proliferation of technology and near-global Internet accessibility, a web
Application of diffusion maps to identify human factors of self-reported anomalies in aviation.
Andrzejczak, Chris; Karwowski, Waldemar; Mikusinski, Piotr
2012-01-01
A study investigating what factors are present leading to pilots submitting voluntary anomaly reports regarding their flight performance was conducted. Diffusion Maps (DM) were selected as the method of choice for performing dimensionality reduction on text records for this study. Diffusion Maps have seen successful use in other domains such as image classification and pattern recognition. High-dimensionality data in the form of narrative text reports from the NASA Aviation Safety Reporting System (ASRS) were clustered and categorized by way of dimensionality reduction. Supervised analyses were performed to create a baseline document clustering system. Dimensionality reduction techniques identified concepts or keywords within records, and allowed the creation of a framework for an unsupervised document classification system. Results from the unsupervised clustering algorithm performed similarly to the supervised methods outlined in the study. The dimensionality reduction was performed on 100 of the most commonly occurring words within 126,000 text records describing commercial aviation incidents. This study demonstrates that unsupervised machine clustering and organization of incident reports is possible based on unbiased inputs. Findings from this study reinforced traditional views on what factors contribute to civil aviation anomalies, however, new associations between previously unrelated factors and conditions were also found.
Four-dimensional maps of the human somatosensory system
Avanzini, Pietro; Abdollahi, Rouhollah O.; Sartori, Ivana; Caruana, Fausto; Pelliccia, Veronica; Casaceli, Giuseppe; Mai, Roberto; Lo Russo, Giorgio; Rizzolatti, Giacomo; Orban, Guy A.
2016-01-01
A fine-grained description of the spatiotemporal dynamics of human brain activity is a major goal of neuroscientific research. Limitations in spatial and temporal resolution of available noninvasive recording and imaging techniques have hindered so far the acquisition of precise, comprehensive four-dimensional maps of human neural activity. The present study combines anatomical and functional data from intracerebral recordings of nearly 100 patients, to generate highly resolved four-dimensional maps of human cortical processing of nonpainful somatosensory stimuli. These maps indicate that the human somatosensory system devoted to the hand encompasses a widespread network covering more than 10% of the cortical surface of both hemispheres. This network includes phasic components, centered on primary somatosensory cortex and neighboring motor, premotor, and inferior parietal regions, and tonic components, centered on opercular and insular areas, and involving human parietal rostroventral area and ventral medial-superior-temporal area. The technique described opens new avenues for investigating the neural basis of all levels of cortical processing in humans. PMID:26976579
Four-dimensional maps of the human somatosensory system.
Avanzini, Pietro; Abdollahi, Rouhollah O; Sartori, Ivana; Caruana, Fausto; Pelliccia, Veronica; Casaceli, Giuseppe; Mai, Roberto; Lo Russo, Giorgio; Rizzolatti, Giacomo; Orban, Guy A
2016-03-29
A fine-grained description of the spatiotemporal dynamics of human brain activity is a major goal of neuroscientific research. Limitations in spatial and temporal resolution of available noninvasive recording and imaging techniques have hindered so far the acquisition of precise, comprehensive four-dimensional maps of human neural activity. The present study combines anatomical and functional data from intracerebral recordings of nearly 100 patients, to generate highly resolved four-dimensional maps of human cortical processing of nonpainful somatosensory stimuli. These maps indicate that the human somatosensory system devoted to the hand encompasses a widespread network covering more than 10% of the cortical surface of both hemispheres. This network includes phasic components, centered on primary somatosensory cortex and neighboring motor, premotor, and inferior parietal regions, and tonic components, centered on opercular and insular areas, and involving human parietal rostroventral area and ventral medial-superior-temporal area. The technique described opens new avenues for investigating the neural basis of all levels of cortical processing in humans.
Mapping South San Francisco Bay's seabed diversity for use in wetland restoration planning
Fregoso, Theresa A.; Jaffe, B.; Rathwell, G.; Collins, W.; Rhynas, K.; Tomlin, V.; Sullivan, S.
2006-01-01
Data for an acoustic seabed classification were collected as a part of a California Coastal Conservancy funded bathymetric survey of South Bay in early 2005. A QTC VIEW seabed classification system recorded echoes from a sungle bean 50 kHz echosounder. Approximately 450,000 seabed classification records were generated from an are of of about 30 sq. miles. Ten district acoustic classes were identified through an unsupervised classification system using principle component and cluster analyses. One hundred and sixty-one grab samples and forty-five benthic community composition data samples collected in the study area shortly before and after the seabed classification survey, further refined the ten classes into groups based on grain size. A preliminary map of surficial grain size of South Bay was developed from the combination of the seabed classification and the grab and benthic samples. The initial seabed classification map, the grain size map, and locations of sediment samples will be displayed along with the methods of acousitc seabed classification.
,; ,; ,
1991-01-01
Maps are, among other things, a way of making geography visual. They are world views, ways of thinking, and ways of communicating. They depict our world and guide us through it. Visual Geography probes the essence of maps and mapmaking. It follows the story of cartography through the millennia, across the globe, and beyond the solar system. It includes some of the world's most beautiful and enduring maps, some of its most historic - a map in Columbus' hand, the map that was carried to the Moon, the first map to show America - and it examines the urge to map, to measure our world, and to record it graphically.
Sabouri, Sepideh; Matene, Elhacene; Vinet, Alain; Richer, Louis-Philippe; Cardinal, René; Armour, J Andrew; Pagé, Pierre; Kus, Teresa; Jacquemet, Vincent
2014-01-01
Epicardial high-density electrical mapping is a well-established experimental instrument to monitor in vivo the activity of the atria in response to modulations of the autonomic nervous system in sinus rhythm. In regions that are not accessible by epicardial mapping, noncontact endocardial mapping performed through a balloon catheter may provide a more comprehensive description of atrial activity. We developed a computer model of the canine right atrium to compare epicardial and noncontact endocardial mapping. The model was derived from an experiment in which electroanatomical reconstruction, epicardial mapping (103 electrodes), noncontact endocardial mapping (2048 virtual electrodes computed from a 64-channel balloon catheter), and direct-contact endocardial catheter recordings were simultaneously performed in a dog. The recording system was simulated in the computer model. For simulations and experiments (after atrio-ventricular node suppression), activation maps were computed during sinus rhythm. Repolarization was assessed by measuring the area under the atrial T wave (ATa), a marker of repolarization gradients. Results showed an epicardial-endocardial correlation coefficients of 0.80 and 0.63 (two dog experiments) and 0.96 (simulation) between activation times, and a correlation coefficients of 0.57 and 0.46 (two dog experiments) and 0.92 (simulation) between ATa values. Despite distance (balloon-atrial wall) and dimension reduction (64 electrodes), some information about atrial repolarization remained present in noncontact signals.
Sabouri, Sepideh; Matene, Elhacene; Vinet, Alain; Richer, Louis-Philippe; Cardinal, René; Armour, J. Andrew; Pagé, Pierre; Kus, Teresa; Jacquemet, Vincent
2014-01-01
Epicardial high-density electrical mapping is a well-established experimental instrument to monitor in vivo the activity of the atria in response to modulations of the autonomic nervous system in sinus rhythm. In regions that are not accessible by epicardial mapping, noncontact endocardial mapping performed through a balloon catheter may provide a more comprehensive description of atrial activity. We developed a computer model of the canine right atrium to compare epicardial and noncontact endocardial mapping. The model was derived from an experiment in which electroanatomical reconstruction, epicardial mapping (103 electrodes), noncontact endocardial mapping (2048 virtual electrodes computed from a 64-channel balloon catheter), and direct-contact endocardial catheter recordings were simultaneously performed in a dog. The recording system was simulated in the computer model. For simulations and experiments (after atrio-ventricular node suppression), activation maps were computed during sinus rhythm. Repolarization was assessed by measuring the area under the atrial T wave (ATa), a marker of repolarization gradients. Results showed an epicardial-endocardial correlation coefficients of 0.80 and 0.63 (two dog experiments) and 0.96 (simulation) between activation times, and a correlation coefficients of 0.57 and 0.46 (two dog experiments) and 0.92 (simulation) between ATa values. Despite distance (balloon-atrial wall) and dimension reduction (64 electrodes), some information about atrial repolarization remained present in noncontact signals. PMID:24598778
High Temporal Resolution Mapping of Seismic Noise Sources Using Heterogeneous Supercomputers
NASA Astrophysics Data System (ADS)
Paitz, P.; Gokhberg, A.; Ermert, L. A.; Fichtner, A.
2017-12-01
The time- and space-dependent distribution of seismic noise sources is becoming a key ingredient of modern real-time monitoring of various geo-systems like earthquake fault zones, volcanoes, geothermal and hydrocarbon reservoirs. We present results of an ongoing research project conducted in collaboration with the Swiss National Supercomputing Centre (CSCS). The project aims at building a service providing seismic noise source maps for Central Europe with high temporal resolution. We use source imaging methods based on the cross-correlation of seismic noise records from all seismic stations available in the region of interest. The service is hosted on the CSCS computing infrastructure; all computationally intensive processing is performed on the massively parallel heterogeneous supercomputer "Piz Daint". The solution architecture is based on the Application-as-a-Service concept to provide the interested researchers worldwide with regular access to the noise source maps. The solution architecture includes the following sub-systems: (1) data acquisition responsible for collecting, on a periodic basis, raw seismic records from the European seismic networks, (2) high-performance noise source mapping application responsible for the generation of source maps using cross-correlation of seismic records, (3) back-end infrastructure for the coordination of various tasks and computations, (4) front-end Web interface providing the service to the end-users and (5) data repository. The noise source mapping itself rests on the measurement of logarithmic amplitude ratios in suitably pre-processed noise correlations, and the use of simplified sensitivity kernels. During the implementation we addressed various challenges, in particular, selection of data sources and transfer protocols, automation and monitoring of daily data downloads, ensuring the required data processing performance, design of a general service-oriented architecture for coordination of various sub-systems, and engineering an appropriate data storage solution. The present pilot version of the service implements noise source maps for Switzerland. Extension of the solution to Central Europe is planned for the next project phase.
Rapid Characterization of Shorelines using a Georeferenced Video Mapping System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Michael G.; Judd, Chaeli; Marcoe, K.
Increased understanding of shoreline conditions is needed, yet current approaches are limited in ability to characterize remote areas or document features at a finer resolution. Documentation using video mapping may provide a rapid and repeatable method for assessing the current state of the environment and determining changes to the shoreline over time. In this study, we compare two studies using boat-based, georeferenced video mapping in coastal Washington and the Columbia River Estuary to map and characterize coastal stressors and functional data. In both areas, mapping multiple features along the shoreline required approximation of the coastline. However, characterization of vertically orientedmore » features such as shoreline armoring and small features such as pilings and large woody debris was possible. In addition, end users noted that geovideo provides a permanent record to allow a user to examine recorded video anywhere along a transect or at discrete points.« less
A high-precision rule-based extraction system for expanding geospatial metadata in GenBank records
Weissenbacher, Davy; Rivera, Robert; Beard, Rachel; Firago, Mari; Wallstrom, Garrick; Scotch, Matthew; Gonzalez, Graciela
2016-01-01
Objective The metadata reflecting the location of the infected host (LOIH) of virus sequences in GenBank often lacks specificity. This work seeks to enhance this metadata by extracting more specific geographic information from related full-text articles and mapping them to their latitude/longitudes using knowledge derived from external geographical databases. Materials and Methods We developed a rule-based information extraction framework for linking GenBank records to the latitude/longitudes of the LOIH. Our system first extracts existing geospatial metadata from GenBank records and attempts to improve it by seeking additional, relevant geographic information from text and tables in related full-text PubMed Central articles. The final extracted locations of the records, based on data assimilated from these sources, are then disambiguated and mapped to their respective geo-coordinates. We evaluated our approach on a manually annotated dataset comprising of 5728 GenBank records for the influenza A virus. Results We found the precision, recall, and f-measure of our system for linking GenBank records to the latitude/longitudes of their LOIH to be 0.832, 0.967, and 0.894, respectively. Discussion Our system had a high level of accuracy for linking GenBank records to the geo-coordinates of the LOIH. However, it can be further improved by expanding our database of geospatial data, incorporating spell correction, and enhancing the rules used for extraction. Conclusion Our system performs reasonably well for linking GenBank records for the influenza A virus to the geo-coordinates of their LOIH based on record metadata and information extracted from related full-text articles. PMID:26911818
A high-precision rule-based extraction system for expanding geospatial metadata in GenBank records.
Tahsin, Tasnia; Weissenbacher, Davy; Rivera, Robert; Beard, Rachel; Firago, Mari; Wallstrom, Garrick; Scotch, Matthew; Gonzalez, Graciela
2016-09-01
The metadata reflecting the location of the infected host (LOIH) of virus sequences in GenBank often lacks specificity. This work seeks to enhance this metadata by extracting more specific geographic information from related full-text articles and mapping them to their latitude/longitudes using knowledge derived from external geographical databases. We developed a rule-based information extraction framework for linking GenBank records to the latitude/longitudes of the LOIH. Our system first extracts existing geospatial metadata from GenBank records and attempts to improve it by seeking additional, relevant geographic information from text and tables in related full-text PubMed Central articles. The final extracted locations of the records, based on data assimilated from these sources, are then disambiguated and mapped to their respective geo-coordinates. We evaluated our approach on a manually annotated dataset comprising of 5728 GenBank records for the influenza A virus. We found the precision, recall, and f-measure of our system for linking GenBank records to the latitude/longitudes of their LOIH to be 0.832, 0.967, and 0.894, respectively. Our system had a high level of accuracy for linking GenBank records to the geo-coordinates of the LOIH. However, it can be further improved by expanding our database of geospatial data, incorporating spell correction, and enhancing the rules used for extraction. Our system performs reasonably well for linking GenBank records for the influenza A virus to the geo-coordinates of their LOIH based on record metadata and information extracted from related full-text articles. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Ramírez, I; Pantrigo, J J; Montemayor, A S; López-Pérez, A E; Martín-Fontelles, M I; Brookes, S J H; Abalo, R
2017-08-01
When available, fluoroscopic recordings are a relatively cheap, non-invasive and technically straightforward way to study gastrointestinal motility. Spatiotemporal maps have been used to characterize motility of intestinal preparations in vitro, or in anesthetized animals in vivo. Here, a new automated computer-based method was used to construct spatiotemporal motility maps from fluoroscopic recordings obtained in conscious rats. Conscious, non-fasted, adult, male Wistar rats (n=8) received intragastric administration of barium contrast, and 1-2 hours later, when several loops of the small intestine were well-defined, a 2 minutes-fluoroscopic recording was obtained. Spatiotemporal diameter maps (Dmaps) were automatically calculated from the recordings. Three recordings were also manually analyzed for comparison. Frequency analysis was performed in order to calculate relevant motility parameters. In each conscious rat, a stable recording (17-20 seconds) was analyzed. The Dmaps manually and automatically obtained from the same recording were comparable, but the automated process was faster and provided higher resolution. Two frequencies of motor activity dominated; lower frequency contractions (15.2±0.9 cpm) had an amplitude approximately five times greater than higher frequency events (32.8±0.7 cpm). The automated method developed here needed little investigator input, provided high-resolution results with short computing times, and automatically compensated for breathing and other small movements, allowing recordings to be made without anesthesia. Although slow and/or infrequent events could not be detected in the short recording periods analyzed to date (17-20 seconds), this novel system enhances the analysis of in vivo motility in conscious animals. © 2017 John Wiley & Sons Ltd.
Cross-terminology mapping challenges: a demonstration using medication terminological systems.
Saitwal, Himali; Qing, David; Jones, Stephen; Bernstam, Elmer V; Chute, Christopher G; Johnson, Todd R
2012-08-01
Standardized terminological systems for biomedical information have provided considerable benefits to biomedical applications and research. However, practical use of this information often requires mapping across terminological systems-a complex and time-consuming process. This paper demonstrates the complexity and challenges of mapping across terminological systems in the context of medication information. It provides a review of medication terminological systems and their linkages, then describes a case study in which we mapped proprietary medication codes from an electronic health record to SNOMED CT and the UMLS Metathesaurus. The goal was to create a polyhierarchical classification system for querying an i2b2 clinical data warehouse. We found that three methods were required to accurately map the majority of actively prescribed medications. Only 62.5% of source medication codes could be mapped automatically. The remaining codes were mapped using a combination of semi-automated string comparison with expert selection, and a completely manual approach. Compound drugs were especially difficult to map: only 7.5% could be mapped using the automatic method. General challenges to mapping across terminological systems include (1) the availability of up-to-date information to assess the suitability of a given terminological system for a particular use case, and to assess the quality and completeness of cross-terminology links; (2) the difficulty of correctly using complex, rapidly evolving, modern terminologies; (3) the time and effort required to complete and evaluate the mapping; (4) the need to address differences in granularity between the source and target terminologies; and (5) the need to continuously update the mapping as terminological systems evolve. Copyright © 2012 Elsevier Inc. All rights reserved.
Movie-maps of low-latitude magnetic storm disturbance
NASA Astrophysics Data System (ADS)
Love, Jeffrey J.; Gannon, Jennifer L.
2010-06-01
We present 29 movie-maps of low-latitude horizontal-intensity magnetic disturbance for the years 1999-2006: 28 recording magnetic storms and 1 magnetically quiescent period. The movie-maps are derived from magnetic vector time series data collected at up to 25 ground-based observatories. Using a technique similar to that used in the calculation of Dst, a quiet time baseline is subtracted from the time series from each observatory. The remaining disturbance time series are shown in a polar coordinate system that accommodates both Earth rotation and the universal time dependence of magnetospheric disturbance. Each magnetic storm recorded in the movie-maps is different. While some standard interpretations about the storm time equatorial ring current appear to apply to certain moments and certain phases of some storms, the movie-maps also show substantial variety in the local time distribution of low-latitude magnetic disturbance, especially during storm commencements and storm main phases. All movie-maps are available at the U.S. Geological Survey Geomagnetism Program Web site (http://geomag.usgs.gov).
Digital mining claim density map for federal lands in Wyoming: 1996
Hyndman, Paul C.; Campbell, Harry W.
1999-01-01
This report describes a digital map generated by the U.S. Geological Survey (USGS) to provide digital spatial mining claim density information for federal lands in Wyoming as of March 1997. Mining claim data is earth science information deemed to be relevant to the assessment of historic, current, and future ecological, economic, and social systems. There is no paper map included in this Open-File report. In accordance with the Federal Land Policy and Management Act of 1976 (FLPMA), all unpatented mining claims, mill, and tunnel sites must be recorded at the appropriate BLM State office. BLM maintains a cumulative computer listing of mining claims in the Mining Claim Recordation System (MCRS) database with locations given by meridian, township, range, and section. A mining claim is considered closed when the claim is relinquished or a formal BLM decision declaring the mining claim null and void has been issued and the appeal period has expired. All other mining claims filed with BLM are considered to be open and actively held. The digital map (figure 1.) with the mining claim density database available in this report are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller.
Digital mining claim density map for federal lands in Colorado: 1996
Hyndman, Paul C.; Campbell, Harry W.
1999-01-01
This report describes a digital map generated by the U.S. Geological Survey (USGS) to provide digital spatial mining claim density information for federal lands in Colorado as of March 1997. Mining claim data is earth science information deemed to be relevant to the assessment of historic, current, and future ecological, economic, and social systems. There is no paper map included in this Open-File report. In accordance with the Federal Land Policy and Management Act of 1976 (FLPMA), all unpatented mining claims, mill, and tunnel sites must be recorded at the appropriate BLM State office. BLM maintains a cumulative computer listing of mining claims in the Mining Claim Recordation System (MCRS) database with locations given by meridian, township, range, and section. A mining claim is considered closed when the claim is relinquished or a formal BLM decision declaring the mining claim null and void has been issued and the appeal period has expired. All other mining claims filed with BLM are considered to be open and actively held. The digital map (figure 1.) with the mining claim density database available in this report are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller.
Digital mining claim density map for federal lands in Washington: 1996
Hyndman, Paul C.; Campbell, Harry W.
1999-01-01
This report describes a digital map generated by the U.S. Geological Survey (USGS) to provide digital spatial mining claim density information for federal lands in Washington as of March 1997. Mining claim data is earth science information deemed to be relevant to the assessment of historic, current, and future ecological, economic, and social systems. There is no paper map included in this Open-File report. In accordance with the Federal Land Policy and Management Act of 1976 (FLPMA), all unpatented mining claims, mill, and tunnel sites must be recorded at the appropriate BLM State office. BLM maintains a cumulative computer listing of mining claims in the Mining Claim Recordation System (MCRS) database with locations given by meridian, township, range, and section. A mining claim is considered closed when the claim is relinquished or a formal BLM decision declaring the mining claim null and void has been issued and the appeal period has expired. All other mining claims filed with BLM are considered to be open and actively held. The digital map (figure 1.) with the mining claim density database available in this report are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller.
Monsen, Karen A; Finn, Robert S; Fleming, Thea E; Garner, Erin J; LaValla, Amy J; Riemer, Judith G
2016-01-01
Rigor in clinical knowledge representation is necessary foundation for meaningful interoperability, exchange and reuse of electronic health record (EHR) data. It is critical for clinicians to understand principles and implications of using clinical standards for knowledge representation within EHRs. To educate clinicians and students about knowledge representation and to evaluate their success of applying the manual lookups method for assigning Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) concept identifiers using formally mapped concepts from the Omaha System interface terminology. Clinicians who were students in a doctoral nursing program conducted 21 lookups for Omaha System terms in publicly available SNOMED CT browsers. Lookups were deemed successful if results matched exactly with the corresponding code from the January 2013 SNOMED CT-Omaha System terminology cross-map. Of the 21 manual lookups attempted, 12 (57.1%) were successful. Errors were due to semantic gaps differences in granularity and synonymy or partial term matching. Achieving rigor in clinical knowledge representation across settings, vendors and health systems is a globally recognized challenge. Cross-maps have potential to improve rigor in SNOMED CT encoding of clinical data. Further research is needed to evaluate outcomes of using of terminology cross-maps to encode clinical terms with SNOMED CT concept identifiers based on interface terminologies.
Hernandez, Penni; Podchiyska, Tanya; Weber, Susan; Ferris, Todd; Lowe, Henry
2009-11-14
The Stanford Translational Research Integrated Database Environment (STRIDE) clinical data warehouse integrates medication information from two Stanford hospitals that use different drug representation systems. To merge this pharmacy data into a single, standards-based model supporting research we developed an algorithm to map HL7 pharmacy orders to RxNorm concepts. A formal evaluation of this algorithm on 1.5 million pharmacy orders showed that the system could accurately assign pharmacy orders in over 96% of cases. This paper describes the algorithm and discusses some of the causes of failures in mapping to RxNorm.
Huang, Xingfu; Chen, Yanjia; Huang, Zheng; He, Liwei; Liu, Shenrong; Deng, Xiaojiang; Wang, Yongsheng; Li, Rucheng; Xu, Dingli; Peng, Jian
2018-06-01
Several studies have reported the efficacy of a zero-fluoroscopy approach for catheter radiofrequency ablation of arrhythmias in a digital subtraction angiography (DSA) room. However, no reports are available on the ablation of arrhythmias in the absence of DSA in the operating room. To investigate the efficacy and safety of catheter radiofrequency ablation for arrhythmias under the guidance of a Carto 3 three-dimensional (3D) mapping system in an operating room without DSA. Patients were enrolled according to the type of arrhythmia. The Carto 3 mapping system was used to reconstruct heart models and guide the electrophysiologic examination, mapping, and ablation. The total procedure, reconstruction, electrophysiologic examination, and mapping times were recorded. Furthermore, immediate success rates and complications were also recorded. A total of 20 patients were enrolled, including 12 males. The average age was 51.3 ± 17.2 (19-76) years. Nine cases of atrioventricular nodal re-entrant tachycardia, 7 cases of frequent ventricular premature contractions, 3 cases of Wolff-Parkinson-White syndrome, and 1 case of typical atrial flutter were included. All arrhythmias were successfully ablated. The procedure time was 127.0 ± 21.0 (99-177) minutes, the reconstruction time was 6.5 ± 2.9 (3-14) minutes, the electrophysiologic study time was 10.4 ± 3.4 (6-20) minutes, and the mapping time was 11.7 ± 8.3 (3-36) minutes. No complications occurred. Radiofrequency ablation of arrhythmias without DSA is effective and feasible under the guidance of the Carto 3 mapping system. However, the electrophysiology physician must have sufficient experience, and related emergency measures must be present to ensure safety.
Yu, Ting Yue; Syeda, Fahima; Holmes, Andrew P; Osborne, Benjamin; Dehghani, Hamid; Brain, Keith L; Kirchhof, Paulus; Fabritz, Larissa
2014-08-01
We developed and validated a new optical mapping system for quantification of electrical activation and repolarisation in murine atria. The system makes use of a novel 2nd generation complementary metal-oxide-semiconductor (CMOS) camera with deliberate oversampling to allow both assessment of electrical activation with high spatial and temporal resolution (128 × 2048 pixels) and reliable assessment of atrial murine repolarisation using post-processing of signals. Optical recordings were taken from isolated, superfused and electrically stimulated murine left atria. The system reliably describes activation sequences, identifies areas of functional block, and allows quantification of conduction velocities and vectors. Furthermore, the system records murine atrial action potentials with comparable duration to both monophasic and transmembrane action potentials in murine atria. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Unconsolidated Aquifers in Tompkins County, New York
Miller, Todd S.
2000-01-01
Unconsolidated aquifers consisting of saturated sand and gravel are capable of supplying large quantities of good-quality water to wells in Tompkins County, but little published geohydrologic inform ation on such aquifers is available. In 1986, the U.S.Geological Survey (USGS) began collecting geohydrologic information and well data to construct an aquifer map showing the extent of unconsolidated aquifers in Tompkins county. Data sources included (1) water-well drillers. logs; (2) highway and other construction test-boring logs; (3) well data gathered by the Tompkins County Department of Health, (4) test-well logs from geohydrologic consultants that conducted projects for site-specific studies, and (5) well data that had been collected during past investigations by the USGS and entered into the National Water Information System (NWIS) database. In 1999, the USGS, in cooperation with the Tompkins County Department of Planning, compiled these data to construct this map. More than 600 well records were entered into the NWIS database in 1999 to supplement the 350 well records already in the database; this provided a total of 950 well records. The data were digitized and imported into a geographic information system (GIS) coverage so that well locations could be plotted on a map, and well data could be tabulated in a digital data base through ARC/INFO software. Data on the surficial geology were used with geohydrologic data from well records and previous studies to delineate the extent of aquifers on this map. This map depicts (1) the extent of unconsolidated aquifers in Tompkins County, and (2) locations of wells whose records were entered into the USGS NWIS database and made into a GIS digital coverage. The hydrologic information presented here is generalized and is not intended for detailed site evaluations. Precise locations of geohydrologic-unit boundaries, and a description of the hydrologic conditions within the units, would require additional detailed, site-specific information.
Cross-terminology mapping challenges: A demonstration using medication terminological systems
Saitwal, Himali; Qing, David; Jones, Stephen; Bernstam, Elmer; Chute, Christopher G.; Johnson, Todd R.
2015-01-01
Standardized terminological systems for biomedical information have provided considerable benefits to biomedical applications and research. However, practical use of this information often requires mapping across terminological systems—a complex and time-consuming process. This paper demonstrates the complexity and challenges of mapping across terminological systems in the context of medication information. It provides a review of medication terminological systems and their linkages, then describes a case study in which we mapped proprietary medication codes from an electronic health record to SNOMED-CT and the UMLS Metathesaurus. The goal was to create a polyhierarchical classification system for querying an i2b2 clinical data warehouse. We found that three methods were required to accurately map the majority of actively prescribed medications. Only 62.5% of source medication codes could be mapped automatically. The remaining codes were mapped using a combination of semi-automated string comparison with expert selection, and a completely manual approach. Compound drugs were especially difficult to map: only 7.5% could be mapped using the automatic method. General challenges to mapping across terminological systems include (1) the availability of up-to-date information to assess the suitability of a given terminological system for a particular use case, and to assess the quality and completeness of cross-terminology links; (2) the difficulty of correctly using complex, rapidly evolving, modern terminologies; (3) the time and effort required to complete and evaluate the mapping; (4) the need to address differences in granularity between the source and target terminologies; and (5) the need to continuously update the mapping as terminological systems evolve. PMID:22750536
Global geologic mapping of Mars: The western equatorial region
Scott, D.H.
1985-01-01
Global geologic mapping of Mars was originally accomplished following acquisition of orbital spacecraft images from the Mariner 9 mission. The mapping program represented a joint enterprise by the U.S. Geological Survey and other planetary scientists from universities in the United States and Europe. Many of the Mariner photographs had low resolution or poor albedo contrast caused by atmospheric haze and high-sun angles. Some of the early geologic maps reflect these deficiencies in their poor discrimination and subdivision of rock units. New geologic maps made from higher resolution and better quality Viking images also represent a cooperative effort, by geologists from the U.S. Geological Survey, Arizona State University, and the University of London. This second series of global maps consists of three parts: 1) western equatorial region, 2) eastern equatorial region, and 3) north and south polar regions. These maps, at 1:15 million scale, show more than 60 individual rock-stratigraphic units assigned to three Martian time-stratigraphic systems. The first completed map of the series covers the western equatorial region of Mars. Accompanying the map is a description of the sequence and distribution of major tectonic, volcanic, and fluvial episodes as recorded in the stratigraphic record. ?? 1985.
Low-cost data analysis systems for processing multispectral scanner data
NASA Technical Reports Server (NTRS)
Whitely, S. L.
1976-01-01
The basic hardware and software requirements are described for four low cost analysis systems for computer generated land use maps. The data analysis systems consist of an image display system, a small digital computer, and an output recording device. Software is described together with some of the display and recording devices, and typical costs are cited. Computer requirements are given, and two approaches are described for converting black-white film and electrostatic printer output to inexpensive color output products. Examples of output products are shown.
Space Spurred Computer Graphics
NASA Technical Reports Server (NTRS)
1983-01-01
Dicomed Corporation was asked by NASA in the early 1970s to develop processing capabilities for recording images sent from Mars by Viking spacecraft. The company produced a film recorder which increased the intensity levels and the capability for color recording. This development led to a strong technology base resulting in sophisticated computer graphics equipment. Dicomed systems are used to record CAD (computer aided design) and CAM (computer aided manufacturing) equipment, to update maps and produce computer generated animation.
Surface-Water Conditions in Georgia, Water Year 2005
Painter, Jaime A.; Landers, Mark N.
2007-01-01
INTRODUCTION The U.S. Geological Survey (USGS) Georgia Water Science Center-in cooperation with Federal, State, and local agencies-collected surface-water streamflow, water-quality, and ecological data during the 2005 Water Year (October 1, 2004-September 30, 2005). These data were compiled into layers of an interactive ArcReaderTM published map document (pmf). ArcReaderTM is a product of Environmental Systems Research Institute, Inc (ESRI?). Datasets represented on the interactive map are * continuous daily mean streamflow * continuous daily mean water levels * continuous daily total precipitation * continuous daily water quality (water temperature, specific conductance dissolved oxygen, pH, and turbidity) * noncontinuous peak streamflow * miscellaneous streamflow measurements * lake or reservoir elevation * periodic surface-water quality * periodic ecological data * historical continuous daily mean streamflow discontinued prior to the 2005 water year The map interface provides the ability to identify a station in spatial reference to the political boundaries of the State of Georgia and other features-such as major streams, major roads, and other collection stations. Each station is hyperlinked to a station summary showing seasonal and annual stream characteristics for the current year and for the period of record. For continuous discharge stations, the station summary includes a one page graphical summary page containing five graphs, a station map, and a photograph of the station. The graphs provide a quick overview of the current and period-of-record hydrologic conditions of the station by providing a daily mean discharge graph for the water year, monthly statistics graph for the water year and period of record, an annual mean streamflow graph for the period of record, an annual minimum 7-day average streamflow graph for the period of record, and an annual peak streamflow graph for the period of record. Additionally, data can be accessed through the layer's link to the National Water Inventory System Web (NWISWeb) Interface.
A Bayesian and Physics-Based Ground Motion Parameters Map Generation System
NASA Astrophysics Data System (ADS)
Ramirez-Guzman, L.; Quiroz, A.; Sandoval, H.; Perez-Yanez, C.; Ruiz, A. L.; Delgado, R.; Macias, M. A.; Alcántara, L.
2014-12-01
We present the Ground Motion Parameters Map Generation (GMPMG) system developed by the Institute of Engineering at the National Autonomous University of Mexico (UNAM). The system delivers estimates of information associated with the social impact of earthquakes, engineering ground motion parameters (gmp), and macroseismic intensity maps. The gmp calculated are peak ground acceleration and velocity (pga and pgv) and response spectral acceleration (SA). The GMPMG relies on real-time data received from strong ground motion stations belonging to UNAM's networks throughout Mexico. Data are gathered via satellite and internet service providers, and managed with the data acquisition software Earthworm. The system is self-contained and can perform all calculations required for estimating gmp and intensity maps due to earthquakes, automatically or manually. An initial data processing, by baseline correcting and removing records containing glitches or low signal-to-noise ratio, is performed. The system then assigns a hypocentral location using first arrivals and a simplified 3D model, followed by a moment tensor inversion, which is performed using a pre-calculated Receiver Green's Tensors (RGT) database for a realistic 3D model of Mexico. A backup system to compute epicentral location and magnitude is in place. A Bayesian Kriging is employed to combine recorded values with grids of computed gmp. The latter are obtained by using appropriate ground motion prediction equations (for pgv, pga and SA with T=0.3, 0.5, 1 and 1.5 s ) and numerical simulations performed in real time, using the aforementioned RGT database (for SA with T=2, 2.5 and 3 s). Estimated intensity maps are then computed using SA(T=2S) to Modified Mercalli Intensity correlations derived for central Mexico. The maps are made available to the institutions in charge of the disaster prevention systems. In order to analyze the accuracy of the maps, we compare them against observations not considered in the computations, and present some examples of recent earthquakes. We conclude that the system provides information with a fair goodness-of-fit against observations. This project is partially supported by DGAPA-PAPIIT (UNAM) project TB100313-RR170313.
Bayless, E. Randall; Arihood, Leslie D.; Reeves, Howard W.; Sperl, Benjamin J.S.; Qi, Sharon L.; Stipe, Valerie E.; Bunch, Aubrey R.
2017-01-18
As part of the National Water Availability and Use Program established by the U.S. Geological Survey (USGS) in 2005, this study took advantage of about 14 million records from State-managed collections of water-well drillers’ records and created a database of hydrogeologic properties for the glaciated United States. The water-well drillers’ records were standardized to be relatively complete and error-free and to provide consistent variables and naming conventions that span all State boundaries.Maps and geospatial grids were developed for (1) total thickness of glacial deposits, (2) total thickness of coarse-grained deposits, (3) specific-capacity based transmissivity and hydraulic conductivity, and (4) texture-based estimated equivalent horizontal and vertical hydraulic conductivity and transmissivity. The information included in these maps and grids is required for most assessments of groundwater availability, in addition to having applications to studies of groundwater flow and transport. The texture-based estimated equivalent horizontal and vertical hydraulic conductivity and transmissivity were based on an assumed range of hydraulic conductivity values for coarse- and fine-grained deposits and should only be used with complete awareness of the methods used to create them. However, the maps and grids of texture-based estimated equivalent hydraulic conductivity and transmissivity may be useful for application to areas where a range of measured values is available for re-scaling.Maps of hydrogeologic information for some States are presented as examples in this report but maps and grids for all States are available electronically at the project Web site (USGS Glacial Aquifer System Groundwater Availability Study, http://mi.water.usgs.gov/projects/WaterSmart/Map-SIR2015-5105.html) and the Science Base Web site, https://www.sciencebase.gov/catalog/item/58756c7ee4b0a829a3276352.
Real-Time Mapping alert system; user's manual
Torres, L.A.
1996-01-01
The U.S. Geological Survey has an extensive hydrologic network that records and transmits precipitation, stage, discharge, and other water- related data on a real-time basis to an automated data processing system. Data values are recorded on electronic data collection platforms at field monitoring sites. These values are transmitted by means of orbiting satellites to receiving ground stations, and by way of telecommunication lines to a U.S. Geological Survey office where they are processed on a computer system. Data that exceed predefined thresholds are identified as alert values. These alert values can help keep water- resource specialists informed of current hydrologic conditions. The current alert status at monitoring sites is of critical importance during floods, hurricanes, and other extreme hydrologic events where quick analysis of the situation is needed. This manual provides instructions for using the Real-Time Mapping software, a series of computer programs developed by the U.S. Geological Survey for quick analysis of hydrologic conditions, and guides users through a basic interactive session. The software provides interactive graphics display and query of real-time information in a map-based, menu-driven environment.
Navigation of robotic system using cricket motes
NASA Astrophysics Data System (ADS)
Patil, Yogendra J.; Baine, Nicholas A.; Rattan, Kuldip S.
2011-06-01
This paper presents a novel algorithm for self-mapping of the cricket motes that can be used for indoor navigation of autonomous robotic systems. The cricket system is a wireless sensor network that can provide indoor localization service to its user via acoustic ranging techniques. The behavior of the ultrasonic transducer on the cricket mote is studied and the regions where satisfactorily distance measurements can be obtained are recorded. Placing the motes in these regions results fine-grain mapping of the cricket motes. Trilateration is used to obtain a rigid coordinate system, but is insufficient if the network is to be used for navigation. A modified SLAM algorithm is applied to overcome the shortcomings of trilateration. Finally, the self-mapped cricket motes can be used for navigation of autonomous robotic systems in an indoor location.
Digital mining claim density map for federal lands in Idaho: 1996
Hyndman, Paul C.; Campbell, Harry W.
1999-01-01
This report describes a digital map generated by the U.S. Geological Survey (USGS) to provide digital spatial mining claim density information for federal lands in Idaho as of March 1997. Mining claim data is earth science information deemed to be relevant to the assessment of historic, current, and future ecological, economic, and social systems. There is no paper map included in this Open-File report. In accordance with the Federal Land Policy and Management Act of 1976 (FLPMA), all unpatented mining claims, mill and tunnel sites must be recorded at the appropriate Bureau of Land Management (BLM) State office. BLM maintains a cumulative computer listing of mining claims in the Mining Claim Recordation System (MCRS) database with locations given by meridian, township, range, and section. A mining claim is considered closed when the claim is relinquished or a formal BLM decision declaring the mining claim null and void has been issued and the appeal period has expired. All other mining claims filed with BLM are considered to be open and actively held. The digital map (figure 1.) with the mining claim density database available in this report are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller.
Digital mining claim density map for federal lands in Oregon: 1996
Hyndman, Paul C.; Campbell, Harry W.
1999-01-01
This report describes a digital map generated by the U.S. Geological Survey (USGS) to provide digital spatial mining claim density information for federal lands in Oregon as of March 1997. Mining claim data is earth science information deemed to be relevant to the assessment of historic, current, and future ecological, economic, and social systems. There is no paper map included in this Open-File report. In accordance with the Federal Land Policy and Management Act of 1976 (FLPMA), all unpatented mining claims, mill and tunnel sites must be recorded at the appropriate Bureau of Land Management (BLM) State office. BLM maintains a cumulative computer listing of mining claims in the Mining Claim Recordation System (MCRS) database with locations given by meridian, township, range, and section. A mining claim is considered closed when the claim is relinquished or a formal BLM decision declaring the mining claim null and void has been issued and the appeal period has expired. All other mining claims filed with BLM are considered to be open and actively held. The digital map (figure 1.) with the mining claim density database available in this report are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller.
Stevens, Alan R.
1985-01-01
Since its inception in 1974 the National Cartographic Information Center (NCIC), US Geological Survey, has rapidly developed to become a focal point for providing information on the availability of cartographic data, including maps/charts, aerial photographs, satellite imagery, geodetic control, digital mapping data, map materials and related cartographic products. In early years NCIC concentrated its efforts on encoding and entering several major National Mapping Division record collections into its systems. NCIC is now stressing the acquisition of data from sources outside the National Mapping Division, including 37 Federal agencies and more than a thousand State and private institutions. A critical review has recently been conducted by NCIC of its systems with the aim of improving its efficiency and levels of operation. Several activities which resulted include improving its existing networks, refinement of digital data distribution, study of new storage media and related projects.
NASA Astrophysics Data System (ADS)
Gallin, Louis-Jonardan; Farges, Thomas; Marchiano, Régis; Coulouvrat, François; Defer, Eric; Rison, William; Schulz, Wolfgang; Nuret, Mathieu
2016-04-01
In the framework of the European Hydrological Cycle in the Mediterranean Experiment project, a field campaign devoted to the study of electrical activity during storms took place in the south of France in 2012. An acoustic station composed of four microphones and four microbarometers was deployed within the coverage of a Lightning Mapping Array network. On the 26 October 2012, a thunderstorm passed just over the acoustic station. Fifty-six natural thunder events, due to cloud-to-ground and intracloud flashes, were recorded. This paper studies the acoustic reconstruction, in the low frequency range from 1 to 40 Hz, of the recorded flashes and their comparison with detections from electromagnetic networks. Concurrent detections from the European Cooperation for Lightning Detection lightning location system were also used. Some case studies show clearly that acoustic signal from thunder comes from the return stroke but also from the horizontal discharges which occur inside the clouds. The huge amount of observation data leads to a statistical analysis of lightning discharges acoustically recorded. Especially, the distributions of altitudes of reconstructed acoustic detections are explored in detail. The impact of the distance to the source on these distributions is established. The capacity of the acoustic method to describe precisely the lower part of nearby cloud-to-ground discharges, where the Lightning Mapping Array network is not effective, is also highlighted.
Takeuchi, Megumi; Sugie, Tomoharu; Abdelazeem, Kassim; Kato, Hironori; Shinkura, Nobuhiko; Takada, Masahiro; Yamashiro, Hiroyasu; Ueno, Takayuki; Toi, Masakazu
2012-01-01
The indocyanine green fluorescence (ICGf) navigation method provides real-time lymphatic mapping and sentinel lymph node (SLN) visualization, which enables the removal of SLNs and their associated lymphatic networks. In this study, we investigated the features of the drainage pathways detected with the ICGf navigation system and the order of metastasis in axillary nodes. From April 2008 to February 2010, 145 patients with clinically node-negative breast cancer underwent SLN surgery with ICGf navigation. The video-recorded data from 79 patients were used for lymphatic mapping analysis. We analyzed 145 patients with clinically node-negative breast cancer who underwent SLN surgery with the ICGf navigation system. Fluorescence-positive SLNs were identified in 144 (99%) of 145 patients. Both single and multiple routes to the axilla were identified in 47% of cases using video-recorded lymphatic mapping data. An internal mammary route was detected in 6% of the cases. Skip metastasis to the second or third SLNs was observed in 6 of the 28 node-positive patients. We also examined the strategy of axillary surgery using the ICGf navigation system. We found that, based on the features of nodal involvement, 4-node resection could provide precise information on the nodal status. The ICGf navigation system may provide a different lymphatic mapping result than computed tomography lymphography in clinically node-negative breast cancer patients. Furthermore, it enables the identification of lymph nodes that do not accumulate indocyanine green or dye adjacent to the SLNs in the sequence of drainage. Knowledge of the order of nodal metastasis as revealed by the ICGf system may help to personalize the surgical treatment of axilla in SLN-positive cases, although additional studies are required. © 2012 Wiley Periodicals, Inc.
Next Generation HeliMag UXO Mapping Technology
2010-01-01
Ancillary instrumentation records aircraft height above ground and attitude. A fluxgate magnetometer is used to allow for aeromagnetic compensation of... Magnetometer System WWII World War II WAA wide area assessment ACKNOWLEDGEMENTS This Next Generation HeliMag Unexploded Ordnance (UXO) Mapping...for deployment of seven total-field magnetometers on a Kevlar reinforced boom mounted on a Bell 206L helicopter. The objectives of this
Bassett, Danielle S; Sporns, Olaf
2017-01-01
Despite substantial recent progress, our understanding of the principles and mechanisms underlying complex brain function and cognition remains incomplete. Network neuroscience proposes to tackle these enduring challenges. Approaching brain structure and function from an explicitly integrative perspective, network neuroscience pursues new ways to map, record, analyze and model the elements and interactions of neurobiological systems. Two parallel trends drive the approach: the availability of new empirical tools to create comprehensive maps and record dynamic patterns among molecules, neurons, brain areas and social systems; and the theoretical framework and computational tools of modern network science. The convergence of empirical and computational advances opens new frontiers of scientific inquiry, including network dynamics, manipulation and control of brain networks, and integration of network processes across spatiotemporal domains. We review emerging trends in network neuroscience and attempt to chart a path toward a better understanding of the brain as a multiscale networked system. PMID:28230844
Quantitative Schlieren analysis applied to holograms of crystals grown on Spacelab 3
NASA Technical Reports Server (NTRS)
Brooks, Howard L.
1986-01-01
In order to extract additional information about crystals grown in the microgravity environment of Spacelab, a quantitative schlieren analysis technique was developed for use in a Holography Ground System of the Fluid Experiment System. Utilizing the Unidex position controller, it was possible to measure deviation angles produced by refractive index gradients of 0.5 milliradians. Additionally, refractive index gradient maps for any recorded time during the crystal growth were drawn and used to create solute concentration maps for the environment around the crystal. The technique was applied to flight holograms of Cell 204 of the Fluid Experiment System that were recorded during the Spacelab 3 mission on STS 51B. A triglycine sulfate crystal was grown under isothermal conditions in the cell and the data gathered with the quantitative schlieren analysis technique is consistent with a diffusion limited growth process.
High temporal resolution mapping of seismic noise sources using heterogeneous supercomputers
NASA Astrophysics Data System (ADS)
Gokhberg, Alexey; Ermert, Laura; Paitz, Patrick; Fichtner, Andreas
2017-04-01
Time- and space-dependent distribution of seismic noise sources is becoming a key ingredient of modern real-time monitoring of various geo-systems. Significant interest in seismic noise source maps with high temporal resolution (days) is expected to come from a number of domains, including natural resources exploration, analysis of active earthquake fault zones and volcanoes, as well as geothermal and hydrocarbon reservoir monitoring. Currently, knowledge of noise sources is insufficient for high-resolution subsurface monitoring applications. Near-real-time seismic data, as well as advanced imaging methods to constrain seismic noise sources have recently become available. These methods are based on the massive cross-correlation of seismic noise records from all available seismic stations in the region of interest and are therefore very computationally intensive. Heterogeneous massively parallel supercomputing systems introduced in the recent years combine conventional multi-core CPU with GPU accelerators and provide an opportunity for manifold increase and computing performance. Therefore, these systems represent an efficient platform for implementation of a noise source mapping solution. We present the first results of an ongoing research project conducted in collaboration with the Swiss National Supercomputing Centre (CSCS). The project aims at building a service that provides seismic noise source maps for Central Europe with high temporal resolution (days to few weeks depending on frequency and data availability). The service is hosted on the CSCS computing infrastructure; all computationally intensive processing is performed on the massively parallel heterogeneous supercomputer "Piz Daint". The solution architecture is based on the Application-as-a-Service concept in order to provide the interested external researchers the regular access to the noise source maps. The solution architecture includes the following sub-systems: (1) data acquisition responsible for collecting, on a periodic basis, raw seismic records from the European seismic networks, (2) high-performance noise source mapping application responsible for generation of source maps using cross-correlation of seismic records, (3) back-end infrastructure for the coordination of various tasks and computations, (4) front-end Web interface providing the service to the end-users and (5) data repository. The noise mapping application is composed of four principal modules: (1) pre-processing of raw data, (2) massive cross-correlation, (3) post-processing of correlation data based on computation of logarithmic energy ratio and (4) generation of source maps from post-processed data. Implementation of the solution posed various challenges, in particular, selection of data sources and transfer protocols, automation and monitoring of daily data downloads, ensuring the required data processing performance, design of a general service oriented architecture for coordination of various sub-systems, and engineering an appropriate data storage solution. The present pilot version of the service implements noise source maps for Switzerland. Extension of the solution to Central Europe is planned for the next project phase.
MyHealtheVet (VA's personal health record)
... Overview Site Map Help & User Guides FAQ Privacy & Security Terms and Conditions Policies Privacy Policy Web Policies FOIA Accessibility System Use Important Links VA Home White House USA.gov Inspector ...
Adapting Nielsen’s Design Heuristics to Dual Processing for Clinical Decision Support
Taft, Teresa; Staes, Catherine; Slager, Stacey; Weir, Charlene
2016-01-01
The study objective was to improve the applicability of Nielson’s standard design heuristics for evaluating electronic health record (EHR) alerts and linked ordering support by integrating them with Dual Process theory. Through initial heuristic evaluation and a user study of 7 physicians, usability problems were identified. Through independent mapping of specific usability criteria to support for each of the Dual Cognitive processes (S1 and S2) and deliberation, agreement was reached on mapping criteria. Finally, usability errors from the heuristic and user study were mapped to S1 and S2. Adding a dual process perspective to specific heuristic analysis increases the applicability and relevance of computerized health information design evaluations. This mapping enables designers to measure that their systems are tailored to support attention allocation. System 1 will be supported by improving pattern recognition and saliency, and system 2 through efficiency and control of information access. PMID:28269915
Adapting Nielsen's Design Heuristics to Dual Processing for Clinical Decision Support.
Taft, Teresa; Staes, Catherine; Slager, Stacey; Weir, Charlene
2016-01-01
The study objective was to improve the applicability of Nielson's standard design heuristics for evaluating electronic health record (EHR) alerts and linked ordering support by integrating them with Dual Process theory. Through initial heuristic evaluation and a user study of 7 physicians, usability problems were identified. Through independent mapping of specific usability criteria to support for each of the Dual Cognitive processes (S1 and S2) and deliberation, agreement was reached on mapping criteria. Finally, usability errors from the heuristic and user study were mapped to S1 and S2. Adding a dual process perspective to specific heuristic analysis increases the applicability and relevance of computerized health information design evaluations. This mapping enables designers to measure that their systems are tailored to support attention allocation. System 1 will be supported by improving pattern recognition and saliency, and system 2 through efficiency and control of information access.
Accuracy of lineaments mapping from space
NASA Technical Reports Server (NTRS)
Short, Nicholas M.
1989-01-01
The use of Landsat and other space imaging systems for lineaments detection is analyzed in terms of their effectiveness in recognizing and mapping fractures and faults, and the results of several studies providing a quantitative assessment of lineaments mapping accuracies are discussed. The cases under investigation include a Landsat image of the surface overlying a part of the Anadarko Basin of Oklahoma, the Landsat images and selected radar imagery of major lineaments systems distributed over much of Canadian Shield, and space imagery covering a part of the East African Rift in Kenya. It is demonstrated that space imagery can detect a significant portion of a region's fracture pattern, however, significant fractions of faults and fractures recorded on a field-produced geological map are missing from the imagery as it is evident in the Kenya case.
Object-based image analysis for cadastral mapping using satellite images
NASA Astrophysics Data System (ADS)
Kohli, D.; Crommelinck, S.; Bennett, R.; Koeva, M.; Lemmen, C.
2017-10-01
Cadasters together with land registry form a core ingredient of any land administration system. Cadastral maps comprise of the extent, ownership and value of land which are essential for recording and updating land records. Traditional methods for cadastral surveying and mapping often prove to be labor, cost and time intensive: alternative approaches are thus being researched for creating such maps. With the advent of very high resolution (VHR) imagery, satellite remote sensing offers a tremendous opportunity for (semi)-automation of cadastral boundaries detection. In this paper, we explore the potential of object-based image analysis (OBIA) approach for this purpose by applying two segmentation methods, i.e. MRS (multi-resolution segmentation) and ESP (estimation of scale parameter) to identify visible cadastral boundaries. Results show that a balance between high percentage of completeness and correctness is hard to achieve: a low error of commission often comes with a high error of omission. However, we conclude that the resulting segments/land use polygons can potentially be used as a base for further aggregation into tenure polygons using participatory mapping.
A novel intra-operative, high-resolution atrial mapping approach.
Yaksh, Ameeta; van der Does, Lisette J M E; Kik, Charles; Knops, Paul; Oei, Frans B S; van de Woestijne, Pieter C; Bekkers, Jos A; Bogers, Ad J J C; Allessie, Maurits A; de Groot, Natasja M S
2015-12-01
A new technique is demonstrated for extensive high-resolution intra-operative atrial mapping that will facilitate the localization of atrial fibrillation (AF) sources and identification of the substrate perpetuating AF. Prior to the start of extra-corporal circulation, a 8 × 24-electrode array (2-mm inter-electrode distance) is placed subsequently on all the right and left epicardial atrial sites, including Bachmann's bundle, for recording of unipolar electrograms during sinus rhythm and (induced) AF. AF is induced by high-frequency pacing at the right atrial free wall. A pacemaker wire stitched to the right atrium serves as a reference signal. The indifferent pole is connected to a steal wire fixed to subcutaneous tissue. Electrograms are recorded by a computerized mapping system and, after amplification (gain 1000), filtering (bandwidth 0.5-400 Hz), sampling (1 kHz) and analogue to digital conversion (16 bits), automatically stored on hard disk. During the mapping procedure, real-time visualization secures electrogram quality. Analysis will be performed offline. This technique was performed in 168 patients of 18 years and older, with coronary and/or structural heart disease, with or without AF, electively scheduled for cardiac surgery and a ventricular ejection fraction above 40 %. The mean duration of the entire mapping procedure including preparation time was 9 ± 2 min. Complications related to the mapping procedure during or after cardiac surgery were not observed. We introduce the first epicardial atrial mapping approach with a high resolution of ≥1728 recording sites which can be performed in a procedure time of only 9±2 mins. This mapping technique can potentially identify areas responsible for initiation and persistence of AF and hopefully can individualize both diagnosis and therapy of AF.
Yau, Wei-Chuen; Phan, Raphael C-W
2013-12-01
Many authentication schemes have been proposed for telecare medicine information systems (TMIS) to ensure the privacy, integrity, and availability of patient records. These schemes are crucial for TMIS systems because otherwise patients' medical records become susceptible to tampering thus hampering diagnosis or private medical conditions of patients could be disclosed to parties who do not have a right to access such information. Very recently, Hao et al. proposed a chaotic map-based authentication scheme for telecare medicine information systems in a recent issue of Journal of Medical Systems. They claimed that the authentication scheme can withstand various attacks and it is secure to be used in TMIS. In this paper, we show that this authentication scheme is vulnerable to key-compromise impersonation attacks, off-line password guessing attacks upon compromising of a smart card, and parallel session attacks. We also exploit weaknesses in the password change phase of the scheme to mount a denial-of-service attack. Our results show that this scheme cannot be used to provide security in a telecare medicine information system.
1989-09-01
additional information on the TSV or CGV records. The added capability of directly accss ing the TSV or CGV records from the CRT display would be very...or CGV records to find the appropriate time tag and begin playback at that point. With a dual or split screen arrange, the TSV and OGV recording...features that will be needed in a computer generated video ( CGV ) map display in order to provide feedback on tactical movement as it relates to crew
Using knowledge rules for pharmacy mapping.
Shakib, Shaun C; Che, Chengjian; Lau, Lee Min
2006-01-01
The 3M Health Information Systems (HIS) Healthcare Data Dictionary (HDD) is used to encode and structure patient medication data for the Electronic Health Record (EHR) of the Department of Defense's (DoD's) Armed Forces Health Longitudinal Technology Application (AHLTA). HDD Subject Matter Experts (SMEs) are responsible for initial and maintenance mapping of disparate, standalone medication master files from all 100 DoD host sites worldwide to a single concept-based vocabulary, to accomplish semantic interoperability. To achieve higher levels of automation, SMEs began defining a growing set of knowledge rules. These knowledge rules were implemented in a pharmacy mapping tool, which enhanced consistency through automation and increased mapping rate by 29%.
NASA Astrophysics Data System (ADS)
Kersten, T. P.; Stallmann, D.; Tschirschwitz, F.
2016-06-01
For mapping of building interiors various 2D and 3D indoor surveying systems are available today. These systems essentially differ from each other by price and accuracy as well as by the effort required for fieldwork and post-processing. The Laboratory for Photogrammetry & Laser Scanning of HafenCity University (HCU) Hamburg has developed, as part of an industrial project, a lowcost indoor mapping system, which enables systematic inventory mapping of interior facilities with low staffing requirements and reduced, measurable expenditure of time and effort. The modelling and evaluation of the recorded data take place later in the office. The indoor mapping system of HCU Hamburg consists of the following components: laser range finder, panorama head (pan-tilt-unit), single-board computer (Raspberry Pi) with digital camera and battery power supply. The camera is pre-calibrated in a photogrammetric test field under laboratory conditions. However, remaining systematic image errors are corrected simultaneously within the generation of the panorama image. Due to cost reasons the camera and laser range finder are not coaxially arranged on the panorama head. Therefore, eccentricity and alignment of the laser range finder against the camera must be determined in a system calibration. For the verification of the system accuracy and the system calibration, the laser points were determined from measurements with total stations. The differences to the reference were 4-5mm for individual coordinates.
A navigation system for the visually impaired using colored navigation lines and RFID tags.
Seto, First Tatsuya
2009-01-01
In this paper, we describe about a developed navigation system that supports the independent walking of the visually impaired in the indoor space. Our developed instrument consists of a navigation system and a map information system. These systems are installed on a white cane. Our navigation system can follow a colored navigation line that is set on the floor. In this system, a color sensor installed on the tip of a white cane senses the colored navigation line, and the system informs the visually impaired that he/she is walking along the navigation line by vibration. The color recognition system is controlled by a one-chip microprocessor and this system can discriminate 6 colored navigation lines. RFID tags and a receiver for these tags are used in the map information system. The RFID tags and the RFID tag receiver are also installed on a white cane. The receiver receives tag information and notifies map information to the user by mp3 formatted pre-recorded voice. Three normal subjects who were blindfolded with an eye mask were tested with this system. All of them were able to walk along the navigation line. The performance of the map information system was good. Therefore, our system will be extremely valuable in supporting the activities of the visually impaired.
Transportations Systems Modeling and Applications in Earthquake Engineering
2010-07-01
49 Figure 6 PGA map of a M7.7 earthquake on all three New Madrid fault segments (g)............... 50...Memphis, Tennessee. The NMSZ was responsible for the devastating 1811-1812 New Madrid earthquakes , the largest earthquakes ever recorded in the...Figure 6 PGA map of a M7.7 earthquake on all three New Madrid fault segments (g) Table 1 Fragility parameters for MSC steel bridge (Padgett 2007
Clone DB: an integrated NCBI resource for clone-associated data
Schneider, Valerie A.; Chen, Hsiu-Chuan; Clausen, Cliff; Meric, Peter A.; Zhou, Zhigang; Bouk, Nathan; Husain, Nora; Maglott, Donna R.; Church, Deanna M.
2013-01-01
The National Center for Biotechnology Information (NCBI) Clone DB (http://www.ncbi.nlm.nih.gov/clone/) is an integrated resource providing information about and facilitating access to clones, which serve as valuable research reagents in many fields, including genome sequencing and variation analysis. Clone DB represents an expansion and replacement of the former NCBI Clone Registry and has records for genomic and cell-based libraries and clones representing more than 100 different eukaryotic taxa. Records provide details of library construction, associated sequences, map positions and information about resource distribution. Clone DB is indexed in the NCBI Entrez system and can be queried by fields that include organism, clone name, gene name and sequence identifier. Whenever possible, genomic clones are mapped to reference assemblies and their map positions provided in clone records. Clones mapping to specific genomic regions can also be searched for using the NCBI Clone Finder tool, which accepts queries based on sequence coordinates or features such as gene or transcript names. Clone DB makes reports of library, clone and placement data on its FTP site available for download. With Clone DB, users now have available to them a centralized resource that provides them with the tools they will need to make use of these important research reagents. PMID:23193260
NASA Technical Reports Server (NTRS)
Bonacuse, Peter J.; Kantzos, Peter T.
2002-01-01
An automated two-degree-of-freedom specimen positioning stage has been developed at the NASA Glenn Research Center to map and monitor defects in fatigue specimens. This system expedites the examination of the entire gauge section of fatigue specimens so that defects can be found using scanning electron microscopy (SEM). Translation and rotation stages are driven by microprocessor-based controllers that are, in turn, interfaced to a computer running custom-designed software. This system is currently being used to find and record the location of ceramic inclusions in powder metallurgy materials. The mapped inclusions are periodically examined during interrupted fatigue experiments. The number of cycles to initiate cracks from these inclusions and the rate of growth of initiated cracks can then be quantified. This information is necessary to quantify the effect of this type of defect on the durability of powder metallurgy materials. This system was developed with support of the Ultra Safe program.
Mapping Inhibitory Neuronal Circuits by Laser Scanning Photostimulation
Ikrar, Taruna; Olivas, Nicholas D.; Shi, Yulin; Xu, Xiangmin
2011-01-01
Inhibitory neurons are crucial to cortical function. They comprise about 20% of the entire cortical neuronal population and can be further subdivided into diverse subtypes based on their immunochemical, morphological, and physiological properties1-4. Although previous research has revealed much about intrinsic properties of individual types of inhibitory neurons, knowledge about their local circuit connections is still relatively limited3,5,6. Given that each individual neuron's function is shaped by its excitatory and inhibitory synaptic input within cortical circuits, we have been using laser scanning photostimulation (LSPS) to map local circuit connections to specific inhibitory cell types. Compared to conventional electrical stimulation or glutamate puff stimulation, LSPS has unique advantages allowing for extensive mapping and quantitative analysis of local functional inputs to individually recorded neurons3,7-9. Laser photostimulation via glutamate uncaging selectively activates neurons perisomatically, without activating axons of passage or distal dendrites, which ensures a sub-laminar mapping resolution. The sensitivity and efficiency of LSPS for mapping inputs from many stimulation sites over a large region are well suited for cortical circuit analysis. Here we introduce the technique of LSPS combined with whole-cell patch clamping for local inhibitory circuit mapping. Targeted recordings of specific inhibitory cell types are facilitated by use of transgenic mice expressing green fluorescent proteins (GFP) in limited inhibitory neuron populations in the cortex3,10, which enables consistent sampling of the targeted cell types and unambiguous identification of the cell types recorded. As for LSPS mapping, we outline the system instrumentation, describe the experimental procedure and data acquisition, and present examples of circuit mapping in mouse primary somatosensory cortex. As illustrated in our experiments, caged glutamate is activated in a spatially restricted region of the brain slice by UV laser photolysis; simultaneous voltage-clamp recordings allow detection of photostimulation-evoked synaptic responses. Maps of either excitatory or inhibitory synaptic input to the targeted neuron are generated by scanning the laser beam to stimulate hundreds of potential presynaptic sites. Thus, LSPS enables the construction of detailed maps of synaptic inputs impinging onto specific types of inhibitory neurons through repeated experiments. Taken together, the photostimulation-based technique offers neuroscientists a powerful tool for determining the functional organization of local cortical circuits. PMID:22006064
36 CFR 9.42 - Well records and reports, plots and maps, samples, tests and surveys.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Well records and reports, plots and maps, samples, tests and surveys. Any technical data gathered... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Well records and reports, plots and maps, samples, tests and surveys. 9.42 Section 9.42 Parks, Forests, and Public Property...
Forensic 3D Scene Reconstruction
DOE Office of Scientific and Technical Information (OSTI.GOV)
LITTLE,CHARLES Q.; PETERS,RALPH R.; RIGDON,J. BRIAN
Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3Dmore » measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.« less
Ultrasonic thickness measuring and imaging system and method
Bylenok, Paul J.; Patmos, William M.; Wagner, Thomas A.; Martin, Francis H.
1992-08-04
An ultrasonic thickness measuring and imaging system uses an ultrasonic fsed beam probe for measuring thickness of an object, such as a wall of a tube, a computer for controlling movement of the probe in a scanning pattern within the tube and processing an analog signal produced by the probe which is proportional to the tube wall thickness in the scanning pattern, and a line scan recorder for producing a record of the tube wall thicknesses measured by the probe in the scanning pattern. The probe is moved in the scanning pattern to sequentially scan circumferentially the interior tube wall at spaced apart adjacent axial locations. The computer processes the analog signal by converting it to a digital signal and then quantifies the digital signal into a multiplicity of thickness points with each falling in one of a plurality of thickness ranges corresponding to one of a plurality of shades of grey. From the multiplicity of quantified thickness points, a line scan recorder connected to the computer generates a pictorial map of tube wall thicknesses with each quantified thickness point thus being obtained from a minute area, e.g. 0.010 inch by 0.010 inch, of tube wall and representing one pixel of the pictorial map. In the pictorial map of tube wall thicknesses, the pixels represent different wall thicknesses having different shades of grey.
Ultrasonic thickness measuring and imaging system and method
Bylenok, Paul J.; Patmos, William M.; Wagner, Thomas A.; Martin, Francis H.
1992-01-01
An ultrasonic thickness measuring and imaging system uses an ultrasonic fsed beam probe for measuring thickness of an object, such as a wall of a tube, a computer for controlling movement of the probe in a scanning pattern within the tube and processing an analog signal produced by the probe which is proportional to the tube wall thickness in the scanning pattern, and a line scan recorder for producing a record of the tube wall thicknesses measured by the probe in the scanning pattern. The probe is moved in the scanning pattern to sequentially scan circumferentially the interior tube wall at spaced apart adjacent axial locations. The computer processes the analog signal by converting it to a digital signal and then quantifies the digital signal into a multiplicity of thickness points with each falling in one of a plurality of thickness ranges corresponding to one of a plurality of shades of grey. From the multiplicity of quantified thickness points, a line scan recorder connected to the computer generates a pictorial map of tube wall thicknesses with each quantified thickness point thus being obtained from a minute area, e.g. 0.010 inch by 0.010 inch, of tube wall and representing one pixel of the pictorial map. In the pictorial map of tube wall thicknesses, the pixels represent different wall thicknesses having different shades of grey.
The relationship of acquisition systems to automated stereo correlation.
Colvocoresses, A.P.
1983-01-01
Today a concerted effort is being made to expedite the mapping process through automated correlation of stereo data. Stereo correlation involves the comparison of radiance (brightness) signals or patterns recorded by sensors. Conventionally, two-dimensional area correlation is utilized but this is a rather slow and cumbersome procedure. Digital correlation can be performed in only one dimension where suitable signal patterns exist, and the one-dimensional mode is much faster. Electro-optical (EO) systems, suitable for space use, also have much greater flexibility than film systems. Thus, an EO space system can be designed which will optimize one-dimensional stereo correlation and lead toward the automation of topographic mapping.-from Author
Cartographic potential of SPOT image data
NASA Technical Reports Server (NTRS)
Welch, R.
1985-01-01
In late 1985, the SPOT (Systeme Probatoire d'Observation de la Terre) satellite is to be launched by the Ariane rocket from French Guiana. This satellite will have two High Resolution Visible (HRV) line array sensor systems which are capable of providing monoscopic and stereoscopic coverage of the earth. Cartographic applications are related to the recording of stereo image data and the acquisition of 20-m data in a multispectral mode. One of the objectives of this study involves a comparison of the suitability of SPOT and TM image data for mapping urban land use/cover. Another objective is concerned with a preliminary assessment of the potential of SPOT image data for map revision when merged with conventional map sheets converted to raster formats.
Angeli, T R; Du, P; Paskaranandavadivel, N; Sathar, S; Hall, A; Asirvatham, S J; Farrugia, G; Windsor, J A; Cheng, L K; O'Grady, G
2017-05-01
Gastric motility is coordinated by bioelectrical slow waves, and gastric dysrhythmias are reported in motility disorders. High-resolution (HR) mapping has advanced the accurate assessment of gastric dysrhythmias, offering promise as a diagnostic technique. However, HR mapping has been restricted to invasive surgical serosal access. This study investigates the feasibility of HR mapping from the gastric mucosal surface. Experiments were conducted in vivo in 14 weaner pigs. Reference serosal recordings were performed with flexible-printed-circuit (FPC) arrays (128-192 electrodes). Mucosal recordings were performed by two methods: (i) FPC array aligned directly opposite the serosal array, and (ii) cardiac mapping catheter modified for gastric mucosal recordings. Slow-wave propagation and morphology characteristics were quantified and compared between simultaneous serosal and mucosal recordings. Slow-wave activity was consistently recorded from the mucosal surface from both electrode arrays. Mucosally recorded slow-wave propagation was consistent with reference serosal activation pattern, frequency (P≥.3), and velocity (P≥.4). However, mucosally recorded slow-wave morphology exhibited reduced amplitude (65-72% reduced, P<.001) and wider downstroke width (18-31% wider, P≤.02), compared to serosal data. Dysrhythmias were successfully mapped and classified from the mucosal surface, accorded with serosal data, and were consistent with known dysrhythmic mechanisms in the porcine model. High-resolution gastric electrical mapping was achieved from the mucosal surface, and demonstrated consistent propagation characteristics with serosal data. However, mucosal signal morphology was attenuated, demonstrating necessity for optimized electrode designs and analytical algorithms. This study demonstrates feasibility of endoscopic HR mapping, providing a foundation for advancement of minimally invasive spatiotemporal gastric mapping as a clinical and scientific tool. © 2016 John Wiley & Sons Ltd.
CNPq/INPE LANDSAT system: Report of activities from October 1, 1983 to September 30, 1984. [Brazil
NASA Technical Reports Server (NTRS)
Debarrosaguirre, J. L. (Principal Investigator)
1984-01-01
The status of Brazilian facilities for receiving, recording, processing, and distributing LANDSAT-generated products is presented. Price lists and the revised LANDSAT-4 and -5 coverage map are included.
Assessment of Consistencies and Uncertainties between the NASA MODIS and VIIRS Snow-Cover Maps
NASA Astrophysics Data System (ADS)
Hall, D. K.; Riggs, G. A., Jr.; DiGirolamo, N. E.; Roman, M. O.
2017-12-01
Snow cover has great climatic and economic importance in part due to its high albedo and low thermal conductivity and large areal extent in the Northern Hemisphere winter, and its role as a freshwater source for about one-sixth of the world's population. The Rutgers University Global Snow Lab's 50-year climate-data record (CDR) of Northern Hemisphere snow cover is invaluable for climate studies, but, at 25-km resolution, the spatial resolution is too coarse to provide accurate snow information at the basin scale. Since 2000, global snow-cover maps have been produced from the MODerate-resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua satellites at 500-m resolution, and from the Suomi-National Polar Program (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) since 2011 at 375-m resolution. Development of a moderate-resolution (375 - 500 m) earth system data record (ESDR) that utilizes both MODIS and VIIRS snow maps is underway. There is a 6-year overlap between the data records. In late 2017 the second in a series of VIIRS sensors will be launched on the Joint Polar Satellite System-1 (JPSS-1), with the JPSS-2 satellite scheduled for launch in 2021, providing the potential to extend NASA's snow-cover ESDR for decades into the future and to create a CDR. Therefore it is important to investigate the continuity between the MODIS and VIIRS NASA snow-cover data products and evaluate whether there are any inconsistencies and biases that would affect their value as CDR. Time series of daily normalized-difference snow index (NDSI) Terra and Aqua MODIS Collection 6 (C6) and NASA VIIRS Collection 1 (C1) snow-cover tile maps (MOD10A1 and VNP10A1) are studied for North America to identify NDSI differences and possible biases between the datasets. Developing a CDR using the MODIS and VIIRS records is challenging. Though the instruments and orbits are similar, differences in bands, viewing geometry, spatial resolution, and cloud- and snow-mapping algorithms affect snow detection.
A real time QRS detection using delay-coordinate mapping for the microcontroller implementation.
Lee, Jeong-Whan; Kim, Kyeong-Seop; Lee, Bongsoo; Lee, Byungchae; Lee, Myoung-Ho
2002-01-01
In this article, we propose a new algorithm using the characteristics of reconstructed phase portraits by delay-coordinate mapping utilizing lag rotundity for a real-time detection of QRS complexes in ECG signals. In reconstructing phase portrait the mapping parameters, time delay, and mapping dimension play important roles in shaping of portraits drawn in a new dimensional space. Experimentally, the optimal mapping time delay for detection of QRS complexes turned out to be 20 ms. To explore the meaning of this time delay and the proper mapping dimension, we applied a fill factor, mutual information, and autocorrelation function algorithm that were generally used to analyze the chaotic characteristics of sampled signals. From these results, we could find the fact that the performance of our proposed algorithms relied mainly on the geometrical property such as an area of the reconstructed phase portrait. For the real application, we applied our algorithm for designing a small cardiac event recorder. This system was to record patients' ECG and R-R intervals for 1 h to investigate HRV characteristics of the patients who had vasovagal syncope symptom and for the evaluation, we implemented our algorithm in C language and applied to MIT/BIH arrhythmia database of 48 subjects. Our proposed algorithm achieved a 99.58% detection rate of QRS complexes.
Improving the Statistical Modeling of the TRMM Extreme Precipitation Monitoring System
NASA Astrophysics Data System (ADS)
Demirdjian, L.; Zhou, Y.; Huffman, G. J.
2016-12-01
This project improves upon an existing extreme precipitation monitoring system based on the Tropical Rainfall Measuring Mission (TRMM) daily product (3B42) using new statistical models. The proposed system utilizes a regional modeling approach, where data from similar grid locations are pooled to increase the quality and stability of the resulting model parameter estimates to compensate for the short data record. The regional frequency analysis is divided into two stages. In the first stage, the region defined by the TRMM measurements is partitioned into approximately 27,000 non-overlapping clusters using a recursive k-means clustering scheme. In the second stage, a statistical model is used to characterize the extreme precipitation events occurring in each cluster. Instead of utilizing the block-maxima approach used in the existing system, where annual maxima are fit to the Generalized Extreme Value (GEV) probability distribution at each cluster separately, the present work adopts the peak-over-threshold (POT) method of classifying points as extreme if they exceed a pre-specified threshold. Theoretical considerations motivate the use of the Generalized-Pareto (GP) distribution for fitting threshold exceedances. The fitted parameters can be used to construct simple and intuitive average recurrence interval (ARI) maps which reveal how rare a particular precipitation event is given its spatial location. The new methodology eliminates much of the random noise that was produced by the existing models due to a short data record, producing more reasonable ARI maps when compared with NOAA's long-term Climate Prediction Center (CPC) ground based observations. The resulting ARI maps can be useful for disaster preparation, warning, and management, as well as increased public awareness of the severity of precipitation events. Furthermore, the proposed methodology can be applied to various other extreme climate records.
An Integrated 3S and Historical Materials Analysis of the Keriya Paleoriver, NW China
NASA Astrophysics Data System (ADS)
Luo, Lei; Wang, Xinyuan; Cai, Heng
2014-03-01
Combining analysis of 3S (RS, GIS and GPS) and historical materials (historical records, ancient map and academic and literary writings) allows mapping of the Keriya Paleoriver of Southern Xinjiang, NW China. Keriya Paleoriver, one of the ancient Four Green Corridors which passes through the Taklimakan Desert from south to north in the Tarim Basin, recorded changes of the climate-environment in the ancient Silk Road of the region. According to the archaeological data, historical materials and paleoclimates information, its eco-environment and climate have had great changes since the 1.09Ma B.P., especially during the last 2,000 years, which has led to many famous ancient cities to be abandoned and the route of the ancient Silk Road to be moved southward. Using RS (optical and radar imagery), GIS (mapping and spatial analysis) and GPS (study area investigation), we mapped a major paleodrainage system of Keriya River, which have linked the Kunlun Mountains to the Tienshan Mountains through the Taklimakan Desert, possibly as far back as the early Pleistocene. This study illustrates the capability of the 3S and historical materials, in mapping the Keriya Paleoriver drainage networks and archaeological study on the ancient Silk Road.
Ebrahiminia, Vahid; Yasini, Mobin; Lamy, Jean Baptiste
2013-01-01
Lack of interoperability between health information systems is a major obstacle in implementing Clinical decision supports systems (CDSS) and their widespread disseminations. Virtual Medical Record (vMR) proposed by HL7 is a common data model for representing clinical information Inputs and outputs that can be used by CDSS and local clinical systems. A CDSS called ASTI used a similar model to represent clinical data and therapeutic history of patient. In order to evaluate the compatibility of ASTI with vMR, we started to map the ASTI model of representing patient’s therapeutic data to vMR. We compared the data elements and associated terminologies used in ASTI and vMR and we evaluated the semantic fidelity between the models. Only one data element the qualitative description of drug dosage, did not match the vMR model. However, it can be calculated in the execution engine. The semantic fidelity was satisfactorily preserved in 12 of 17 elements mapped between the models. This model of ASTI seems compatible to vMR. Further work is necessary to evaluate the compatibility of clinical data model of ASTI to vMR and the use of vMR in implementing practice guidelines. PMID:24551344
Lee, Tian-Fu
2014-12-01
Telecare medicine information systems provide a communicating platform for accessing remote medical resources through public networks, and help health care workers and medical personnel to rapidly making correct clinical decisions and treatments. An authentication scheme for data exchange in telecare medicine information systems enables legal users in hospitals and medical institutes to establish a secure channel and exchange electronic medical records or electronic health records securely and efficiently. This investigation develops an efficient and secure verified-based three-party authentication scheme by using extended chaotic maps for data exchange in telecare medicine information systems. The proposed scheme does not require server's public keys and avoids time-consuming modular exponential computations and scalar multiplications on elliptic curve used in previous related approaches. Additionally, the proposed scheme is proven secure in the random oracle model, and realizes the lower bounds of messages and rounds in communications. Compared to related verified-based approaches, the proposed scheme not only possesses higher security, but also has lower computational cost and fewer transmissions. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Using Knowledge Rules for Pharmacy Mapping
Shakib, Shaun C.; Che, Chengjian; Lau, Lee Min
2006-01-01
The 3M Health Information Systems (HIS) Healthcare Data Dictionary (HDD) is used to encode and structure patient medication data for the Electronic Health Record (EHR) of the Department of Defense’s (DoD’s) Armed Forces Health Longitudinal Technology Application (AHLTA). HDD Subject Matter Experts (SMEs) are responsible for initial and maintenance mapping of disparate, standalone medication master files from all 100 DoD host sites worldwide to a single concept-based vocabulary, to accomplish semantic interoperability. To achieve higher levels of automation, SMEs began defining a growing set of knowledge rules. These knowledge rules were implemented in a pharmacy mapping tool, which enhanced consistency through automation and increased mapping rate by 29%. PMID:17238709
Beam Position and Phase Monitor - Wire Mapping System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watkins, Heath A; Shurter, Robert B.; Gilpatrick, John D.
2012-04-10
The Los Alamos Neutron Science Center (LANSCE) deploys many cylindrical beam position and phase monitors (BPPM) throughout the linac to measure the beam central position, phase and bunched-beam current. Each monitor is calibrated and qualified prior to installation to insure it meets LANSCE requirements. The BPPM wire mapping system is used to map the BPPM electrode offset, sensitivity and higher order coefficients. This system uses a three-axis motion table to position the wire antenna structure within the cavity, simulating the beam excitation of a BPPM at a fundamental frequency of 201.25 MHz. RF signal strength is measured and recorded formore » the four electrodes as the antenna position is updated. An effort is underway to extend the systems service to the LANSCE facility by replacing obsolete electronic hardware and taking advantage of software enhancements. This paper describes the upgraded wire positioning system's new hardware and software capabilities including its revised antenna structure, motion control interface, RF measurement equipment and Labview software upgrades. The main purpose of the wire mapping system at LANSCE is to characterize the amplitude response versus beam central position of BPPMs before they are installed in the beam line. The wire mapping system is able to simulate a beam using a thin wire and measure the signal response as the wire position is varied within the BPPM aperture.« less
Mapping Perinatal Nursing Process Measurement Concepts to Standard Terminologies.
Ivory, Catherine H
2016-07-01
The use of standard terminologies is an essential component for using data to inform practice and conduct research; perinatal nursing data standardization is needed. This study explored whether 76 distinct process elements important for perinatal nursing were present in four American Nurses Association-recognized standard terminologies. The 76 process elements were taken from a valid paper-based perinatal nursing process measurement tool. Using terminology-supported browsers, the elements were manually mapped to the selected terminologies by the researcher. A five-member expert panel validated 100% of the mapping findings. The majority of the process elements (n = 63, 83%) were present in SNOMED-CT, 28% (n = 21) in LOINC, 34% (n = 26) in ICNP, and 15% (n = 11) in CCC. SNOMED-CT and LOINC are terminologies currently recommended for use to facilitate interoperability in the capture of assessment and problem data in certified electronic medical records. Study results suggest that SNOMED-CT and LOINC contain perinatal nursing process elements and are useful standard terminologies to support perinatal nursing practice in electronic health records. Terminology mapping is the first step toward incorporating traditional paper-based tools into electronic systems.
Feng, Rung-Chuang; Tseng, Kuan-Jui; Yan, Hsiu-Fang; Huang, Hsiu-Ya; Chang, Polun
2012-01-01
This study examines the capability of the Clinical Care Classification (CCC) system to represent nursing record data in a medical center in Taiwan. Nursing care records were analyzed using the process of knowledge discovery in data sets. The study data set included all the nursing care plan records from December 1998 to October 2008, totaling 2,060,214 care plan documentation entries. Results show that 75.42% of the documented diagnosis terms could be mapped using the CCC system. A total of 21 established nursing diagnoses were recommended to be added into the CCC system. Results show that one-third of the assessment and care tasks were provided by nursing professionals. This study shows that the CCC system is useful for identifying patterns in nursing practices and can be used to construct a nursing database in the acute setting. PMID:24199066
Investigation of methods and approaches for collecting and recording highway inventory data.
DOT National Transportation Integrated Search
2013-06-01
Many techniques for collecting highway inventory data have been used by state and local agencies in the U.S. These : techniques include field inventory, photo/video log, integrated GPS/GIS mapping systems, aerial photography, satellite : imagery, vir...
Hatcher, Jeffrey; Gu, He; Cheng, Zixi (Jack)
2016-01-01
Overproduction of reactive oxygen species (ROS), such as the superoxide radical (O2 ∙−), is associated with diseases which compromise cardiac autonomic function. Overexpression of SOD1 may offer protection against ROS damage to the cardiac autonomic nervous system, but reductions of O2 ∙− may interfere with normal cellular functions. We have selected the C57B6SJL-Tg (SOD1)2 Gur/J mouse as a model to determine whether SOD1 overexpression alters cardiac autonomic function, as measured by baroreflex sensitivity (BRS) and aortic depressor nerve (ADN) recordings, as well as evaluation of baseline heart rate (HR) and mean arterial pressure (MAP). Under isoflurane anesthesia, C57 wild-type and SOD1 mice were catheterized with an arterial pressure transducer and measurements of HR and MAP were taken. After establishing a baseline, hypotension and hypertension were induced by injection of sodium nitroprusside (SNP) and phenylephrine (PE), respectively, and ΔHR versus ΔMAP were recorded as a measure of baroreflex sensitivity (BRS). SNP and PE treatment were administered sequentially after a recovery period to measure arterial baroreceptor activation by recording aortic depressor nerve activity. Our findings show that overexpression of SOD1 in C57B6SJL-Tg (SOD1)2 Gur/J mouse preserved the normal HR, MAP, and BRS but enhanced aortic depressor nerve function. PMID:26823951
Solid-State Recorders Enhance Scientific Data Collection
NASA Technical Reports Server (NTRS)
2010-01-01
Under Small Business Innovation Research (SBIR) contracts with Goddard Space Flight Center, SEAKR Engineering Inc., of Centennial, Colorado, crafted a solid-state recorder (SSR) to replace the tape recorder onboard a Spartan satellite carrying NASA's Inflatable Antenna Experiment. Work for that mission and others has helped SEAKR become the world leader in SSR technology for spacecraft. The company has delivered more than 100 systems, more than 85 of which have launched onboard NASA, military, and commercial spacecraft including imaging satellites that provide much of the high-resolution imagery for online mapping services like Google Earth.
Automatic public access to documents and maps stored on and internal secure system.
NASA Astrophysics Data System (ADS)
Trench, James; Carter, Mary
2013-04-01
The Geological Survey of Ireland operates a Document Management System for providing documents and maps stored internally in high resolution and in a high level secure environment, to an external service where the documents are automatically presented in a lower resolution to members of the public. Security is devised through roles and Individual Users where role level and folder level can be set. The application is an electronic document/data management (EDM) system which has a Geographical Information System (GIS) component integrated to allow users to query an interactive map of Ireland for data that relates to a particular area of interest. The data stored in the database consists of Bedrock Field Sheets, Bedrock Notebooks, Bedrock Maps, Geophysical Surveys, Geotechnical Maps & Reports, Groundwater, GSI Publications, Marine, Mine Records, Mineral Localities, Open File, Quaternary and Unpublished Reports. The Konfig application Tool is both an internal and public facing application. It acts as a tool for high resolution data entry which are stored in a high resolution vault. The public facing application is a mirror of the internal application and differs only in that the application furnishes high resolution data into low resolution format which is stored in a low resolution vault thus, making the data web friendly to the end user for download.
Campbell, J R; Carpenter, P; Sneiderman, C; Cohn, S; Chute, C G; Warren, J
1997-01-01
To compare three potential sources of controlled clinical terminology (READ codes version 3.1, SNOMED International, and Unified Medical Language System (UMLS) version 1.6) relative to attributes of completeness, clinical taxonomy, administrative mapping, term definitions and clarity (duplicate coding rate). The authors assembled 1929 source concept records from a variety of clinical information taken from four medical centers across the United States. The source data included medical as well as ample nursing terminology. The source records were coded in each scheme by an investigator and checked by the coding scheme owner. The codings were then scored by an independent panel of clinicians for acceptability. Codes were checked for definitions provided with the scheme. Codes for a random sample of source records were analyzed by an investigator for "parent" and "child" codes within the scheme. Parent and child pairs were scored by an independent panel of medical informatics specialists for clinical acceptability. Administrative and billing code mapping from the published scheme were reviewed for all coded records and analyzed by independent reviewers for accuracy. The investigator for each scheme exhaustively searched a sample of coded records for duplications. SNOMED was judged to be significantly more complete in coding the source material than the other schemes (SNOMED* 70%; READ 57%; UMLS 50%; *p < .00001). SNOMED also had a richer clinical taxonomy judged by the number of acceptable first-degree relatives per coded concept (SNOMED* 4.56, UMLS 3.17; READ 2.14, *p < .005). Only the UMLS provided any definitions; these were found for 49% of records which had a coding assignment. READ and UMLS had better administrative mappings (composite score: READ* 40.6%; UMLS* 36.1%; SNOMED 20.7%, *p < .00001), and SNOMED had substantially more duplications of coding assignments (duplication rate: READ 0%; UMLS 4.2%; SNOMED* 13.9%, *p < .004) associated with a loss of clarity. No major terminology source can lay claim to being the ideal resource for a computer-based patient record. However, based upon this analysis of releases for April 1995, SNOMED International is considerably more complete, has a compositional nature and a richer taxonomy. Is suffers from less clarity, resulting from a lack of syntax and evolutionary changes in its coding scheme. READ has greater clarity and better mapping to administrative schemes (ICD-10 and OPCS-4), is rapidly changing and is less complete. UMLS is a rich lexical resource, with mappings to many source vocabularies. It provides definitions for many of its terms. However, due to the varying granularities and purposes of its source schemes, it has limitations for representation of clinical concepts within a computer-based patient record.
PNAS Plus: Mapping patterns of long-term settlement in Northern Mesopotamia at a large scale
NASA Astrophysics Data System (ADS)
Menze, Bjoern H.; Ur, Jason A.
2012-04-01
The landscapes of the Near East show both the first settlements and the longest trajectories of settlement systems. Mounding is a characteristic property of these settlement sites, resulting from millennia of continuing settlement activity at distinguished places. So far, however, this defining feature of ancient settlements has not received much attention, or even been the subject of systematic evaluation. We propose a remote sensing approach for comprehensively mapping the pattern of human settlement at large scale and establish the largest archaeological record for a landscape in Mesopotamia, mapping about 14,000 settlement sites-spanning eight millennia-at 15-m resolution in a 23,000-km2 area in northeastern Syria. To map both low- and high-mounded places-the latter of which are often referred to as "tells"-we develop a strategy for detecting anthrosols in time series of multispectral satellite images and measure the volume of settlement sites in a digital elevation model. Using this volume as a proxy to continued occupation, we find a dependency of the long-term attractiveness of a site on local water availability, but also a strong relation to the relevance within a basin-wide exchange network that we can infer from our record and third millennium B.C. intersite routes visible on the ground until recent times. We believe it is possible to establish a nearly comprehensive map of human settlements in the fluvial plains of northern Mesopotamia and beyond, and site volume may be a key quantity to uncover long-term trends in human settlement activity from such a record.
The hemodynamic effects of methylene blue when administered at the onset of cardiopulmonary bypass.
Maslow, Andrew D; Stearns, Gary; Butala, Parag; Batula, Parag; Schwartz, Carl S; Gough, Jeffrey; Singh, Arun K
2006-07-01
Hypotension occurs during cardiopulmonary bypass (CPB), in part because of induction of the inflammatory response, for which nitric oxide and guanylate cyclase play a central role. In this study we examined the hemodynamic effects of methylene blue (MB), an inhibitor of guanylate cyclase, administered during cardiopulmonary bypass (CPB) to patients taking angiotensin-converting enzyme inhibitors. Thirty patients undergoing cardiac surgery were randomized to receive either MB (3 mg/kg) or saline (S) after institution of CPB and cardioplegic arrest. CPB was managed similarly for all study patients. Hemodynamic data were assessed before, during, and after CPB. The use of vasopressors was recorded. All study patients experienced a similar reduction in mean arterial blood pressure (MAP) and systemic vascular resistance (SVR) with the onset of CPB and cardioplegic arrest. MB increased MAP and SVR and this effect lasted for 40 minutes. The saline group demonstrated a persistently reduced MAP and SVR throughout CPB. The saline group received phenylephrine more frequently during CPB, and more norepinephrine after CPB to maintain a desirable MAP. The MB group recorded significantly lower serum lactate levels despite equal or greater MAP and SVR. In conclusion, administration of MB after institution of CPB for patients taking angiotensin-converting enzyme inhibitors increased MAP and SVR and reduced the need for vasopressors. Furthermore, serum lactate levels were lower in MB patients, suggesting more favorable tissue perfusion.
Appropriateness of ICNP in Korean home care nursing.
Kang, Min-Jeoung; Kim, Soon-Lae; Lee, Jong-Eun; Jung, Chai Young; Kim, Sukil
2015-09-01
There are several hospitals in Korea that introduced the ICNP (International Classification for Nursing Practice) as the standard terminology for clinical and home care nursing. This research attempted to determine the appropriateness of ICNP in Korean, hospital based, home care nursing. The data was collected from a home care nursing center from January 1, 2009 to September 21, 2012. The center is operated by a Korean teaching hospital equipped with an ICNP based electronic nursing record (ENR) system. Via a refining process, 40,082 simplified sentences of nursing intervention were acquired from 41,158 nursing records. Among them, 545 preferred nursing statements were extracted, then mapped, to ICNP 2011 at both axis and sentence levels. The mapping results were classified into three categories based on the axis of concept origin and the level of hierarchy. These categories were titled: complete, incomplete and no mapping. Out of 45 unique concepts in the action axis, 42 (93.33%) concepts were completely mapped. However, only 38 (15.08%), out of 252 unique concepts, were completely mapped in the focus axis. At the statement level, only 19.63% of statements were completely mapped. The ICNP is not useful as a tool for home care nursing in its present form. The granularity of ICNP has to be improved and more concepts, specific to home care nursing, need to be added in the focus and action axes. Also, a new measure needs to be introduced to prevent information loss during mapping. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Delineation of Waters of the United States for Lawrence Livermore National Laboratory, Site 300
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preston, R E
2006-09-25
This report presents the results of a delineation of waters of the United States, including wetlands, for Lawrence Livermore National Laboratory's Site 300 in Alameda and San Joaquin Counties, California. Jones & Stokes mapped vegetation at Site 300 in August, 2001, using Global Positioning System (GPS) data recorders to collect point locations and to record linear features and map unit polygons. We identified wetlands boundaries in the field on the basis of the plant community present. We returned to collect additional information on wetland soils on July 3, 2002. Forty-six wetlands were identified, with a total area of 3.482 hectaresmore » (8.605 acres). The wetlands include vernal pools, freshwater seeps, and seasonal ponds. Wetlands appearing to meet the criteria for federal jurisdictional total 1.776 hectares (4.388 acres). A delineation map is presented and a table is provided with information on the type, size, characteristic plant species of each wetland, and a preliminary jurisdictional assessment.« less
Results of phase one of land use information Delphi study
NASA Technical Reports Server (NTRS)
Paul, C. K.; Landini, A. J.
1975-01-01
The Land Use Management Information System (LUMIS) is being developed for the city portion of the Santa Monica mountains. LUMIS incorporates data developed from maps and aerial photos as well as traditional land based data associated with routine city and county record keeping activities and traditional census data. To achieve the merging of natural resource data with governmental data LUMIS is being designed in accordance with restrictions associated with two other land use information systems currently being constructed by Los Angeles city staff. The two city systems are LUPAMS (Land Use Planning and Management System) which is based on data recorded by the County Assessor's office for each individual parcel of land in the city, and Geo-BEDS, a geographically based environmental data system.
Identifying individual sperm whales acoustically using self-organizing maps
NASA Astrophysics Data System (ADS)
Ioup, Juliette W.; Ioup, George E.
2005-09-01
The Littoral Acoustic Demonstration Center (LADC) is a consortium at Stennis Space Center comprising the University of New Orleans, the University of Southern Mississippi, the Naval Research Laboratory, and the University of Louisiana at Lafayette. LADC deployed three Environmental Acoustic Recording System (EARS) buoys in the northern Gulf of Mexico during the summer of 2001 to study ambient noise and marine mammals. Each LADC EARS was an autonomous, self-recording buoy capable of 36 days of continuous recording of a single channel at an 11.7-kHz sampling rate (bandwidth to 5859 Hz). The hydrophone selected for this analysis was approximately 50 m from the bottom in a water depth of 800 m on the continental slope off the Mississippi River delta. This paper contains recent analysis results for sperm whale codas recorded during a 3-min period. Results are presented for the identification of individual sperm whales from their codas, using the acoustic properties of the clicks within each coda. The recorded time series, the Fourier transform magnitude, and the wavelet transform coefficients are each used separately with a self-organizing map procedure for 43 codas. All show the codas as coming from four or five individual whales. [Research supported by ONR.
Vegetation mapping from ERTS imagery of the Okavango Delta. [Botswana
NASA Technical Reports Server (NTRS)
Willamson, D. T.
1974-01-01
The Okavango is Botswana's major water resource. The present study has been specifically directed at mapping vegetation types within the delta and generally concerned with finding what information of value to plant and animal ecologists could be extracted from the imagery. To date it has been found that. (1) It is possible to map broad vegetation types from the imagery. (2) Imagery of the delta records the state of the system in a manner which will facilitate long-term studies of plant succession. (3) Phenological events can be detected. (4) The imagery can be used to detect and map wild fires. This will be useful in determining the role of fire in the ecology of the region. Using the imagery it is thus possible to map existing vegetation and monitor both short and long-term changes.
NASA Astrophysics Data System (ADS)
Kosugi, Akito; Takemi, Mitsuaki; Tia, Banty; Castagnola, Elisa; Ansaldo, Alberto; Sato, Kenta; Awiszus, Friedemann; Seki, Kazuhiko; Ricci, Davide; Fadiga, Luciano; Iriki, Atsushi; Ushiba, Junichi
2018-06-01
Objective. Motor map has been widely used as an indicator of motor skills and learning, cortical injury, plasticity, and functional recovery. Cortical stimulation mapping using epidural electrodes is recently adopted for animal studies. However, several technical limitations still remain. Test-retest reliability of epidural cortical stimulation (ECS) mapping has not been examined in detail. Many previous studies defined evoked movements and motor thresholds by visual inspection, and thus, lacked quantitative measurements. A reliable and quantitative motor map is important to elucidate the mechanisms of motor cortical reorganization. The objective of the current study was to perform reliable ECS mapping of motor representations based on the motor thresholds, which were stochastically estimated by motor evoked potentials and chronically implanted micro-electrocorticographical (µECoG) electrode arrays, in common marmosets. Approach. ECS was applied using the implanted µECoG electrode arrays in three adult common marmosets under awake conditions. Motor evoked potentials were recorded through electromyographical electrodes implanted in upper limb muscles. The motor threshold was calculated through a modified maximum likelihood threshold-hunting algorithm fitted with the recorded data from marmosets. Further, a computer simulation confirmed reliability of the algorithm. Main results. Computer simulation suggested that the modified maximum likelihood threshold-hunting algorithm enabled to estimate motor threshold with acceptable precision. In vivo ECS mapping showed high test-retest reliability with respect to the excitability and location of the cortical forelimb motor representations. Significance. Using implanted µECoG electrode arrays and a modified motor threshold-hunting algorithm, we were able to achieve reliable motor mapping in common marmosets with the ECS system.
Kosugi, Akito; Takemi, Mitsuaki; Tia, Banty; Castagnola, Elisa; Ansaldo, Alberto; Sato, Kenta; Awiszus, Friedemann; Seki, Kazuhiko; Ricci, Davide; Fadiga, Luciano; Iriki, Atsushi; Ushiba, Junichi
2018-06-01
Motor map has been widely used as an indicator of motor skills and learning, cortical injury, plasticity, and functional recovery. Cortical stimulation mapping using epidural electrodes is recently adopted for animal studies. However, several technical limitations still remain. Test-retest reliability of epidural cortical stimulation (ECS) mapping has not been examined in detail. Many previous studies defined evoked movements and motor thresholds by visual inspection, and thus, lacked quantitative measurements. A reliable and quantitative motor map is important to elucidate the mechanisms of motor cortical reorganization. The objective of the current study was to perform reliable ECS mapping of motor representations based on the motor thresholds, which were stochastically estimated by motor evoked potentials and chronically implanted micro-electrocorticographical (µECoG) electrode arrays, in common marmosets. ECS was applied using the implanted µECoG electrode arrays in three adult common marmosets under awake conditions. Motor evoked potentials were recorded through electromyographical electrodes implanted in upper limb muscles. The motor threshold was calculated through a modified maximum likelihood threshold-hunting algorithm fitted with the recorded data from marmosets. Further, a computer simulation confirmed reliability of the algorithm. Computer simulation suggested that the modified maximum likelihood threshold-hunting algorithm enabled to estimate motor threshold with acceptable precision. In vivo ECS mapping showed high test-retest reliability with respect to the excitability and location of the cortical forelimb motor representations. Using implanted µECoG electrode arrays and a modified motor threshold-hunting algorithm, we were able to achieve reliable motor mapping in common marmosets with the ECS system.
Needell, S. W.; Lewis, R.S.
1982-01-01
Cruise AST 81-2 was conducted aboard the R/V ASTERIAS during September 10-18, 1981, in Block Island Sound by the U.S. Geological Survey. It was funded in part by the Connecticut Geological and Natural History Survey. The purpose of the study was to define and map the geology and shallow structure, to determine the geologic framework and late Tertiary to Holocene history, and to identify and map any potential geologic hazards of Block Island Sound.The survey was conducted using an EG&G Uniboom seismic system and an EDO Western sidescan-sonar system. Seismic signals were band-passed between 400 and 4,000 Hz and were recorded at a quarter-second sweep rate. Sidescan sonographs were collected at a 100-m scan range to each side of the ship track. In all, 702 km of seismic-reflection profiles and 402 km of sidescan-sonar records were collected. Navigation was by Loran-C, and the ship position was recorded at 5-minute intervals. Seismic-reflection profiling is continuous and good in quality. Sidescan-sonar records are varied in quality; coverage was intermittent and eventually terminated owing to difficulties with the recorder.Original records can be seen and studied at the U.S. Geological Survey Data Library at Woods Hole, MA 02543. Microfilm copies of the seismic-reflection profiles and the sidescan sonographs can be purchased only from the National Geophysical and Solar-Terrestrial Data Center, NOAA/EDIS/NGSDC, Code D621, 325 Broadway, Boulder, CO 80303 (telephone 303-497-6338).
DOT National Transportation Integrated Search
2016-12-01
DRIVE Net is a region-wide, Web-based transportation decision support system that adopts digital roadway maps as : the base, and provides data layers for integrating and analyzing a variety of data sources (e.g., traffic sensors, incident : records)....
Belbin, Gillian Morven; Odgis, Jacqueline; Sorokin, Elena P; Yee, Muh-Ching; Kohli, Sumita; Glicksberg, Benjamin S; Gignoux, Christopher R; Wojcik, Genevieve L; Van Vleck, Tielman; Jeff, Janina M; Linderman, Michael; Schurmann, Claudia; Ruderfer, Douglas; Cai, Xiaoqiang; Merkelson, Amanda; Justice, Anne E; Young, Kristin L; Graff, Misa; North, Kari E; Peters, Ulrike; James, Regina; Hindorff, Lucia; Kornreich, Ruth; Edelmann, Lisa; Gottesman, Omri; Stahl, Eli EA; Cho, Judy H; Loos, Ruth JF; Bottinger, Erwin P; Nadkarni, Girish N; Abul-Husn, Noura S
2017-01-01
Achieving confidence in the causality of a disease locus is a complex task that often requires supporting data from both statistical genetics and clinical genomics. Here we describe a combined approach to identify and characterize a genetic disorder that leverages distantly related patients in a health system and population-scale mapping. We utilize genomic data to uncover components of distant pedigrees, in the absence of recorded pedigree information, in the multi-ethnic BioMe biobank in New York City. By linking to medical records, we discover a locus associated with both elevated genetic relatedness and extreme short stature. We link the gene, COL27A1, with a little-known genetic disease, previously thought to be rare and recessive. We demonstrate that disease manifests in both heterozygotes and homozygotes, indicating a common collagen disorder impacting up to 2% of individuals of Puerto Rican ancestry, leading to a better understanding of the continuum of complex and Mendelian disease. PMID:28895531
NASA Astrophysics Data System (ADS)
Rings, Thorsten; Lehnertz, Klaus
2016-09-01
We investigate the relative merit of phase-based methods for inferring directional couplings in complex networks of weakly interacting dynamical systems from multivariate time-series data. We compare the evolution map approach and its partialized extension to each other with respect to their ability to correctly infer the network topology in the presence of indirect directional couplings for various simulated experimental situations using coupled model systems. In addition, we investigate whether the partialized approach allows for additional or complementary indications of directional interactions in evolving epileptic brain networks using intracranial electroencephalographic recordings from an epilepsy patient. For such networks, both direct and indirect directional couplings can be expected, given the brain's connection structure and effects that may arise from limitations inherent to the recording technique. Our findings indicate that particularly in larger networks (number of nodes ≫10 ), the partialized approach does not provide information about directional couplings extending the information gained with the evolution map approach.
A System for Traffic Violation Detection
Aliane, Nourdine; Fernandez, Javier; Mata, Mario; Bemposta, Sergio
2014-01-01
This paper describes the framework and components of an experimental platform for an advanced driver assistance system (ADAS) aimed at providing drivers with a feedback about traffic violations they have committed during their driving. The system is able to detect some specific traffic violations, record data associated to these faults in a local data-base, and also allow visualization of the spatial and temporal information of these traffic violations in a geographical map using the standard Google Earth tool. The test-bed is mainly composed of two parts: a computer vision subsystem for traffic sign detection and recognition which operates during both day and nighttime, and an event data recorder (EDR) for recording data related to some specific traffic violations. The paper covers firstly the description of the hardware architecture and then presents the policies used for handling traffic violations. PMID:25421737
A system for traffic violation detection.
Aliane, Nourdine; Fernandez, Javier; Mata, Mario; Bemposta, Sergio
2014-11-24
This paper describes the framework and components of an experimental platform for an advanced driver assistance system (ADAS) aimed at providing drivers with a feedback about traffic violations they have committed during their driving. The system is able to detect some specific traffic violations, record data associated to these faults in a local data-base, and also allow visualization of the spatial and temporal information of these traffic violations in a geographical map using the standard Google Earth tool. The test-bed is mainly composed of two parts: a computer vision subsystem for traffic sign detection and recognition which operates during both day and nighttime, and an event data recorder (EDR) for recording data related to some specific traffic violations. The paper covers firstly the description of the hardware architecture and then presents the policies used for handling traffic violations.
Bridging the Gap between HL7 CDA and HL7 FHIR: A JSON Based Mapping.
Rinner, Christoph; Duftschmid, Georg
2016-01-01
The Austrian electronic health record (EHR) system ELGA went live in December 2016. It is a document oriented EHR system and is based on the HL7 Clinical Document Architecture (CDA). The HL7 Fast Healthcare Interoperability Resources (FHIR) is a relatively new standard that combines the advantages of HL7 messages and CDA Documents. In order to offer easier access to information stored in ELGA we present a method based on adapted FHIR resources to map CDA documents to FHIR resources. A proof-of-concept tool using Java, the open-source FHIR framework HAPI-FHIR and publicly available FHIR servers was created to evaluate the presented mapping. In contrast to other approaches the close resemblance of the mapping file to the FHIR specification allows existing FHIR infrastructure to be reused. In order to reduce information overload and facilitate the access to CDA documents, FHIR could offer a standardized way to query CDA data on a fine granular base in Austria.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-22
... DEPARTMENT OF LABOR Mine Safety and Health Administration Proposed Extension of Existing Information Collection; Mine Mapping and Records of Opening, Closing, and Reopening of Mines (Formerly, Record of Mine Closures, Opening & Reopening of Mines) AGENCY: Mine Safety and Health Administration, Labor...
NASA Technical Reports Server (NTRS)
Wu, Xiangqian; Liu, Quanhua; Zeng, Jian; Grotenhuis, Michael; Qian, Haifeng; Caponi, Maria; Flynn, Larry; Jaross, Glen; Sen, Bhaswar; Buss, Richard H., Jr.;
2014-01-01
This paper evaluates the first 15 months of the Ozone Mapping and Profiler Suite (OMPS) Sensor Data Record (SDR) acquired by the nadir sensors and processed by the National Oceanic and Atmospheric Administration Interface Data Processing Segment. The evaluation consists of an inter-comparison with a similar satellite instrument, an analysis using a radiative transfer model, and an assessment of product stability. This is in addition to the evaluation of sensor calibration and the Environment Data Record product that are also reported in this Special Issue. All these are parts of synergetic effort to provide comprehensive assessment at every level of the products to ensure its quality. It is found that the OMPS nadir SDR quality is satisfactory for the current Provisional maturity. Methods used in the evaluation are being further refined, developed, and expanded, in collaboration with international community through the Global Space-based Inter-Calibration System, to support the upcoming long-term monitoring.
Simonaitis, Linas; McDonald, Clement J
2009-10-01
The utility of National Drug Codes (NDCs) and drug knowledge bases (DKBs) in the organization of prescription records from multiple sources was studied. The master files of most pharmacy systems include NDCs and local codes to identify the products they dispense. We obtained a large sample of prescription records from seven different sources. These records carried a national product code or a local code that could be translated into a national product code via their formulary master. We obtained mapping tables from five DKBs. We measured the degree to which the DKB mapping tables covered the national product codes carried in or associated with the sample of prescription records. Considering the total prescription volume, DKBs covered 93.0-99.8% of the product codes from three outpatient sources and 77.4-97.0% of the product codes from four inpatient sources. Among the in-patient sources, invented codes explained 36-94% of the noncoverage. Outpatient pharmacy sources rarely invented codes, which comprised only 0.11-0.21% of their total prescription volume, compared with inpatient pharmacy sources for which invented codes comprised 1.7-7.4% of their prescription volume. The distribution of prescribed products was highly skewed, with 1.4-4.4% of codes accounting for 50% of the message volume and 10.7-34.5% accounting for 90% of the message volume. DKBs cover the product codes used by outpatient sources sufficiently well to permit automatic mapping. Changes in policies and standards could increase coverage of product codes used by inpatient sources.
NASA Technical Reports Server (NTRS)
Riggs, George A.; Hall, Dorothy K.; Roman, Miguel O.
2017-01-01
Knowledge of the distribution, extent, duration and timing of snowmelt is critical for characterizing the Earth's climate system and its changes. As a result, snow cover is one of the Global Climate Observing System (GCOS) essential climate variables (ECVs). Consistent, long-term datasets of snow cover are needed to study interannual variability and snow climatology. The NASA snow-cover datasets generated from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua spacecraft and the Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) are NASA Earth System Data Records (ESDR). The objective of the snow-cover detection algorithms is to optimize the accuracy of mapping snow-cover extent (SCE) and to minimize snow-cover detection errors of omission and commission using automated, globally applied algorithms to produce SCE data products. Advancements in snow-cover mapping have been made with each of the four major reprocessings of the MODIS data record, which extends from 2000 to the present. MODIS Collection 6 (C6) and VIIRS Collection 1 (C1) represent the state-of-the-art global snow cover mapping algorithms and products for NASA Earth science. There were many revisions made in the C6 algorithms which improved snow-cover detection accuracy and information content of the data products. These improvements have also been incorporated into the NASA VIIRS snow cover algorithms for C1. Both information content and usability were improved by including the Normalized Snow Difference Index (NDSI) and a quality assurance (QA) data array of algorithm processing flags in the data product, along with the SCE map.The increased data content allows flexibility in using the datasets for specific regions and end-user applications.Though there are important differences between the MODIS and VIIRS instruments (e.g., the VIIRS 375m native resolution compared to MODIS 500 m), the snow detection algorithms and data products are designed to be as similar as possible so that the 16C year MODIS ESDR of global SCE can be extended into the future with the S-NPP VIIRS snow products and with products from future Joint Polar Satellite System (JPSS) platforms.These NASA datasets are archived and accessible through the NASA Distributed Active Archive Center at the National Snow and Ice Data Center in Boulder, Colorado.
Using electronic patient records to discover disease correlations and stratify patient cohorts.
Roque, Francisco S; Jensen, Peter B; Schmock, Henriette; Dalgaard, Marlene; Andreatta, Massimo; Hansen, Thomas; Søeby, Karen; Bredkjær, Søren; Juul, Anders; Werge, Thomas; Jensen, Lars J; Brunak, Søren
2011-08-01
Electronic patient records remain a rather unexplored, but potentially rich data source for discovering correlations between diseases. We describe a general approach for gathering phenotypic descriptions of patients from medical records in a systematic and non-cohort dependent manner. By extracting phenotype information from the free-text in such records we demonstrate that we can extend the information contained in the structured record data, and use it for producing fine-grained patient stratification and disease co-occurrence statistics. The approach uses a dictionary based on the International Classification of Disease ontology and is therefore in principle language independent. As a use case we show how records from a Danish psychiatric hospital lead to the identification of disease correlations, which subsequently can be mapped to systems biology frameworks.
Gerster, Samuel; Namer, Barbara; Elam, Mikael
2017-01-01
Abstract Skin conductance responses (SCR) are increasingly analyzed with model‐based approaches that assume a linear and time‐invariant (LTI) mapping from sudomotor nerve (SN) activity to observed SCR. These LTI assumptions have previously been validated indirectly, by quantifying how much variance in SCR elicited by sensory stimulation is explained under an LTI model. This approach, however, collapses sources of variability in the nervous and effector organ systems. Here, we directly focus on the SN/SCR mapping by harnessing two invasive methods. In an intraneural recording experiment, we simultaneously track SN activity and SCR. This allows assessing the SN/SCR relationship but possibly suffers from interfering activity of non‐SN sympathetic fibers. In an intraneural stimulation experiment under regional anesthesia, such influences are removed. In this stimulation experiment, about 95% of SCR variance is explained under LTI assumptions when stimulation frequency is below 0.6 Hz. At higher frequencies, nonlinearities occur. In the intraneural recording experiment, explained SCR variance is lower, possibly indicating interference from non‐SN fibers, but higher than in our previous indirect tests. We conclude that LTI systems may not only be a useful approximation but in fact a rather accurate description of biophysical reality in the SN/SCR system, under conditions of low baseline activity and sporadic external stimuli. Intraneural stimulation under regional anesthesia is the most sensitive method to address this question. PMID:28862764
Wang, Xiao-jun; Zhou, Yang; Yan, Yan-bin; Li, Lei
2015-01-01
Agricultural policy in China's rural heartland is driving profound changes to traditional farming systems. A case study covering four decades mapped and recorded farming patterns and processes in Shizuitou Village, a rural village in northwest Shanxi. An integrated geospatial methodology from geography and anthropology was employed in the case study to record the changing dynamics of farming systems in Shizuitou Village to discover the long-term impacts of China's agricultural policies on village farming systems. Positive and negative impacts of agricultural policies on village farming systems were mapped, inventoried and evaluated using Participatory Geographic Information Systems (PGIS). The results revealed traditional polycultures are being gradually replaced by industrialized monocultures. The driving forces behind these farming changes come from a series of government agricultural policies aiming at modernization of farming systems in China. The goal of these policies was to spur rapid development of industrial agriculture under the guise of modernization but is leading to the decay of traditional farming systems in the village that maintained local food security with healthy land for hundreds of years. The paper concluded with a recommendation that in future, agricultural policy makers should strike a more reasonable balance between short-term agricultural profits and long-term farming sustainability based on the principles of ecological sustainable development under the context of global changes.
Publishing Platform for Aerial Orthophoto Maps, the Complete Stack
NASA Astrophysics Data System (ADS)
Čepický, J.; Čapek, L.
2016-06-01
When creating set of orthophoto maps from mosaic compositions, using airborne systems, such as popular drones, we need to publish results of the work to users. Several steps need to be performed in order get large scale raster data published. As first step, data have to be shared as service (OGC WMS as view service, OGC WCS as download service). But for some applications, OGC WMTS is handy as well, for faster view of the data. Finally the data have to become a part of web mapping application, so that they can be used and evaluated by non-technical users. In this talk, we would like to present automated line of those steps, where user puts in orthophoto image and as a result, OGC Open Web Services are published as well as web mapping application with the data. The web mapping application can be used as standard presentation platform for such type of big raster data to generic user. The publishing platform - Geosense online map information system - can be also used for combination of data from various resources and for creating of unique map compositions and as input for better interpretations of photographed phenomenons. The whole process is successfully tested with eBee drone with raster data resolution 1.5-4 cm/px on many areas and result is also used for creation of derived datasets, usually suited for property management - the records of roads, pavements, traffic signs, public lighting, sewage system, grave locations, and others.
22. Historic American Buildings Survey Alameda County Recorder Office Map ...
22. Historic American Buildings Survey Alameda County Recorder Office Map Book 6, page 17 October 1960 SURVEY OF 1868 - Mission San Jose de Guadalupe, Mission & Washington Boulevards, Fremont, Alameda County, CA
NASA Astrophysics Data System (ADS)
Daanen, R. P.; Emond, A.; Liljedahl, A. K.; Walter Anthony, K. M.; Barnes, D. L.; Romanovsky, V. E.; Graham, G.
2016-12-01
An airborne electromagnetic (AEM) survey was conducted in Goldstream Valley, Alaska, to map the electrical resistivity of the ground by sending a magnetic field down from a transmitter flying 30m above the ground into the subsurface. The recorded electromagnetic data are a function of the resistivity structure in the ground. The RESOLVE system used in the survey records data for six frequencies, resulting in a depth of investigation from 1-3 meters and up to 150 meters, depending on resistivity of the ground. Recording six frequencies enables the use of inversion methods to find a solution for a discretized resistivity model providing resistivity as a function of depth below ground surface. Using the airborne RESOLVE system in a populated study area involved challenges related to signal noise, access, and public opinion. Noise issues were mainly the consequence of power lines, which produce varying levels and frequencies of noise. We were not permitted to fly directly over homes, cars, animals, or people because of safety concerns, which resulted in gaps in our dataset. Public outreach well in advance of the survey informed residents about the methods used, their benefits to understanding the environment, and their potential impacts on the environment. Inversion of the data provided resistivity models that were interpreted for frozen and thawed ground conditions; these interpretation were constrained by alternate data sources such as well logs, borehole data, ground-based geophysics, and temperature measurements. The resulting permafrost map will be used to interpret groundwater movement into the valley and methane release from thermokarst lakes.
A mapping of information security in health Information Systems in Latin America and Brazil.
Pereira, Samáris Ramiro; Fernandes, João Carlos Lopes; Labrada, Luis; Bandiera-Paiva, Paulo
2013-01-01
In health, Information Systems are patient records, hospital administration or other, have advantages such as cost, availability and integration. However, for these benefits to be fully met, it is necessary to guarantee the security of information maintained and provided by the systems. The lack of security can lead to serious consequences such as lawsuits and induction to medical errors. The management of information security is complex and is used in various fields of knowledge. Often, it is left in the background for not being the ultimate goal of a computer system, causing huge financial losses to corporations. This paper by systematic review methodologies, presented a mapping in the literature, in order to identify the most relevant aspects that are addressed by security researchers of health information, as to the development of computerized systems. They conclude through the results, some important aspects, for which the managers of computerized health systems should remain alert.
Camera system for multispectral imaging of documents
NASA Astrophysics Data System (ADS)
Christens-Barry, William A.; Boydston, Kenneth; France, Fenella G.; Knox, Keith T.; Easton, Roger L., Jr.; Toth, Michael B.
2009-02-01
A spectral imaging system comprising a 39-Mpixel monochrome camera, LED-based narrowband illumination, and acquisition/control software has been designed for investigations of cultural heritage objects. Notable attributes of this system, referred to as EurekaVision, include: streamlined workflow, flexibility, provision of well-structured data and metadata for downstream processing, and illumination that is safer for the artifacts. The system design builds upon experience gained while imaging the Archimedes Palimpsest and has been used in studies of a number of important objects in the LOC collection. This paper describes practical issues that were considered by EurekaVision to address key research questions for the study of fragile and unique cultural objects over a range of spectral bands. The system is intended to capture important digital records for access by researchers, professionals, and the public. The system was first used for spectral imaging of the 1507 world map by Martin Waldseemueller, the first printed map to reference "America." It was also used to image sections of the Carta Marina 1516 map by the same cartographer for comparative purposes. An updated version of the system is now being utilized by the Preservation Research and Testing Division of the Library of Congress.
A Spatiotemporal Database to Track Human Scrub Typhus Using the VectorMap Application
Kelly, Daryl J.; Foley, Desmond H.; Richards, Allen L.
2015-01-01
Scrub typhus is a potentially fatal mite-borne febrile illness, primarily of the Asia-Pacific Rim. With an endemic area greater than 13 million km2 and millions of people at risk, scrub typhus remains an underreported, often misdiagnosed febrile illness. A comprehensive, updatable map of the true distribution of cases has been lacking, and therefore the true risk of disease within the very large endemic area remains unknown. The purpose of this study was to establish a database and map to track human scrub typhus. An online search using PubMed and the United States Armed Forces Pest Management Board Literature Retrieval System was performed to identify articles describing human scrub typhus cases both within and outside the traditionally accepted endemic regions. Using World Health Organization guidelines, stringent criteria were used to establish diagnoses for inclusion in the database. The preliminary screening of 181 scrub typhus publications yielded 145 publications that met the case criterion, 267 case records, and 13 serosurvey records that could be georeferenced, describing 13,739 probable or confirmed human cases in 28 countries. A map service has been established within VectorMap (www.vectormap.org) to explore the role that relative location of vectors, hosts, and the pathogen play in the transmission of mite-borne scrub typhus. The online display of scrub typhus cases in VectorMap illustrates their presence and provides an up-to-date geographic distribution of proven scrub typhus cases. PMID:26678263
A Spatiotemporal Database to Track Human Scrub Typhus Using the VectorMap Application.
Kelly, Daryl J; Foley, Desmond H; Richards, Allen L
2015-12-01
Scrub typhus is a potentially fatal mite-borne febrile illness, primarily of the Asia-Pacific Rim. With an endemic area greater than 13 million km2 and millions of people at risk, scrub typhus remains an underreported, often misdiagnosed febrile illness. A comprehensive, updatable map of the true distribution of cases has been lacking, and therefore the true risk of disease within the very large endemic area remains unknown. The purpose of this study was to establish a database and map to track human scrub typhus. An online search using PubMed and the United States Armed Forces Pest Management Board Literature Retrieval System was performed to identify articles describing human scrub typhus cases both within and outside the traditionally accepted endemic regions. Using World Health Organization guidelines, stringent criteria were used to establish diagnoses for inclusion in the database. The preliminary screening of 181 scrub typhus publications yielded 145 publications that met the case criterion, 267 case records, and 13 serosurvey records that could be georeferenced, describing 13,739 probable or confirmed human cases in 28 countries. A map service has been established within VectorMap (www.vectormap.org) to explore the role that relative location of vectors, hosts, and the pathogen play in the transmission of mite-borne scrub typhus. The online display of scrub typhus cases in VectorMap illustrates their presence and provides an up-to-date geographic distribution of proven scrub typhus cases.
NASA Astrophysics Data System (ADS)
Thomasson, A.; Geffroy, S.; Frejafon, E.; Weidauer, D.; Fabian, R.; Godet, Y.; Nominé, M.; Ménard, T.; Rairoux, P.; Moeller, D.; Wolf, J. P.
Continuous mapping of an ozone episode in Paris in June 1999 has been performed using a differential absorption lidar system. The 2D ozone concentration vertical maps recorded over 33 h at the Champ de Mars are compiled in a video clip that gives access to local photochemical dynamics with unprecedented precision. The lidar data are compared over the whole period with point monitors located at 0-, 50-, and 300-m altitudes on the Eiffel Tower. Very good agreement is found when spatial resolution, acquisition time, and required concentration accuracy are optimized. Sensitivity to these parameters for successful intercomparison in urban areas is discussed.
Applications of remote sensor data by state and Federal user agencies in Arizona
NASA Technical Reports Server (NTRS)
Schumann, H. H.
1972-01-01
The use of NASA high altitude aerial photography of south eastern Arizona to develop a natural resources information system for Federal lands is discussed. The data are to be used by local, State, and Federal agencies in connection with geologic mapping projects, water resources investigations, and land use studies to determine the alignment of a proposed major aqueduct. In addition, the data are used to confirm land ownership boundaries, detect changes in land use, and legislative reappointment mapping. Other applications include mapping vegetive cover, evaluation of changes in wildlife habitat, location of deer kills, and as a base for recording telemetry data from radio-collared big game animals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martini, B; Silver, E; Pickles, W
2004-03-25
Growing interest and exploration dollars within the geothermal sector have paved the way for increasingly sophisticated suites of geophysical and geochemical tools and methodologies. The efforts to characterize and assess known geothermal fields and find new, previously unknown resources has been aided by the advent of higher spatial resolution airborne geophysics (e.g. aeromagnetics), development of new seismic processing techniques, and the genesis of modern multi-dimensional fluid flow and structural modeling algorithms, just to name a few. One of the newest techniques on the scene, is hyperspectral imaging. Really an optical analytical geochemical tool, hyperspectral imagers (or imaging spectrometers as theymore » are also called), are generally flown at medium to high altitudes aboard mid-sized aircraft and much in the same way more familiar geophysics are flown. The hyperspectral data records a continuous spatial record of the earth's surface, as well as measuring a continuous spectral record of reflected sunlight or emitted thermal radiation. This high fidelity, uninterrupted spatial and spectral record allows for accurate material distribution mapping and quantitative identification at the pixel to sub-pixel level. In volcanic/geothermal regions, this capability translates to synoptic, high spatial resolution, large-area mineral maps generated at time scales conducive to both the faster pace of the exploration and drilling managers, as well as to the slower pace of geologists and other researchers trying to understand the geothermal system over the long run.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pickles, W L; Martini, B A; Silver, E A
2004-03-03
Growing interest and exploration dollars within the geothermal sector have paved the way for increasingly sophisticated suites of geophysical and geochemical tools and methodologies. The efforts to characterize and assess known geothermal fields and find new, previously unknown resources has been aided by the advent of higher spatial resolution airborne geophysics (e.g. aeromagnetics), development of new seismic processing techniques, and the genesis of modern multi-dimensional fluid flow and structural modeling algorithms, just to name a few. One of the newest techniques on the scene, is hyperspectral imaging. Really an optical analytical geochemical tool, hyperspectral imagers (or imaging spectrometers as theymore » are also called), are generally flown at medium to high altitudes aboard mid-sized aircraft and much in the same way more familiar geophysics are flown. The hyperspectral data records a continuous spatial record of the earth's surface, as well as measuring a continuous spectral record of reflected sunlight or emitted thermal radiation. This high fidelity, uninterrupted spatial and spectral record allows for accurate material distribution mapping and quantitative identification at the pixel to sub-pixel level. In volcanic/geothermal regions, this capability translates to synoptic, high spatial resolution, large-area mineral maps generated at time scales conducive to both the faster pace of the exploration and drilling managers, as well as to the slower pace of geologists and other researchers trying to understand the geothermal system over the long run.« less
Haacke, Jon E.; Barclay, C. S. Venable; Hettinger, Robert D.
2016-09-30
In the 1970s and 1980s, C.S. Venable Barclay conducted geologic mapping of areas primarily underlain by Cretaceous coals in the eastern part of the Little Snake River coal field (LSR) in Carbon County, southwest Wyoming. With some exceptions, most of the mapping data were never published. Subsequently, after his retirement from the U.S. Geological Survey (USGS), his field maps and field notebooks were archived in the USGS Field Records. Due to a pending USGS coal assessment of the Little Snake River coal field area and planned geological mapping to be conducted by the Wyoming State Geological Survey, Barclay’s mapping data needed to be published to support these efforts. Subsequently, geologic maps were scanned and georeferenced into a geographic information system, and project and field notes were scanned into Portable Document Format (PDF) files. Data for seventeen 7½-minute quadrangles are presented in this report. This publication is solely intended to compile the mapping data as it was last worked on by Barclay and provides no interpretation or modification of his work.
Coastal Area Tactical-mapping System (CATS)
2007-09-30
file (I.STD) file. A direct comparison to the timetag of the scanner index wedge times should then yield the shot number that corresponds to the...output of 4 relevant timing files. They are as follows: A.STD: The time at which the A-Scan Wedge index mark was detected. This is recorded as...a coarse time (seconds) and a fine time (microseconds). B.STD: The time at which the B-Scan Wedge index mark was detected. This is recorded as a
NASA Technical Reports Server (NTRS)
Manista, E. J.
1972-01-01
The effect of collector, guard-ring potential imbalance on the observed collector-current-density J, collector-to-emitter voltage V characteristic was evaluated in a planar, fixed-space, guard-ringed thermionic converter. The J,V characteristic was swept in a period of 15 msec by a variable load. A computerized data acquisition system recorded test parameters. The results indicate minimal distortion of the J,V curve in the power output quadrant for the nominal guard-ring circuit configuration. Considerable distortion, along with a lowering of the ignited-mode striking voltage, was observed for the configuration with the emitter shorted to the guard ring. A limited-range performance map of an etched-rhenium, niobium, planar converter was obtained by using an improved computer program for the data acquisition system.
Duan, Xiaojie; Lieber, Charles M.
2013-01-01
High spatio-temporal resolution interfacing between electrical sensors and biological systems, from single live cells to tissues, is crucial for many areas, including fundamental biophysical studies as well as medical monitoring and intervention. This focused review summarizes recent progresses in the development and application of novel nanoscale devices for intracellular electrical recordings of action potentials, and the effort of merging electronic and biological systems seamlessly in three dimension using macroporous nanoelectronic scaffolds. The uniqueness of these nanoscale devices for minimally invasive, large scale, high spatial resolution, and three dimensional neural activity mapping will be highlighted. PMID:23946279
Automatic detection and decoding of honey bee waggle dances.
Wario, Fernando; Wild, Benjamin; Rojas, Raúl; Landgraf, Tim
2017-01-01
The waggle dance is one of the most popular examples of animal communication. Forager bees direct their nestmates to profitable resources via a complex motor display. Essentially, the dance encodes the polar coordinates to the resource in the field. Unemployed foragers follow the dancer's movements and then search for the advertised spots in the field. Throughout the last decades, biologists have employed different techniques to measure key characteristics of the waggle dance and decode the information it conveys. Early techniques involved the use of protractors and stopwatches to measure the dance orientation and duration directly from the observation hive. Recent approaches employ digital video recordings and manual measurements on screen. However, manual approaches are very time-consuming. Most studies, therefore, regard only small numbers of animals in short periods of time. We have developed a system capable of automatically detecting, decoding and mapping communication dances in real-time. In this paper, we describe our recording setup, the image processing steps performed for dance detection and decoding and an algorithm to map dances to the field. The proposed system performs with a detection accuracy of 90.07%. The decoded waggle orientation has an average error of -2.92° (± 7.37°), well within the range of human error. To evaluate and exemplify the system's performance, a group of bees was trained to an artificial feeder, and all dances in the colony were automatically detected, decoded and mapped. The system presented here is the first of this kind made publicly available, including source code and hardware specifications. We hope this will foster quantitative analyses of the honey bee waggle dance.
Introducing Systems Approaches
NASA Astrophysics Data System (ADS)
Reynolds, Martin; Holwell, Sue
Systems Approaches to Managing Change brings together five systems approaches to managing complex issues, each having a proven track record of over 25 years. The five approaches are: System Dynamics (SD) developed originally in the late 1950s by Jay Forrester Viable Systems Model (VSM) developed originally in the late 1960s by Stafford Beer Strategic Options Development and Analysis (SODA: with cognitive mapping) developed originally in the 1970s by Colin Eden Soft Systems Methodology (SSM) developed originally in the 1970s by Peter Checkland Critical Systems Heuristics (CSH) developed originally in the late 1970s by Werner Ulrich
Sahakian, A V; Peterson, M S; Shkurovich, S; Hamer, M; Votapka, T; Ji, T; Swiryn, S
2001-03-01
While the recording of extracellular monophasic action potentials (MAPs) from single epicardial or endocardial sites has been performed for over a century, we are unaware of any previous successful attempt to record MAPs simultaneously from a large number of sites in vivo. We report here the design and validation of an array of MAP electrodes which records both depolarization and repolarization simultaneously at up to 16 epicardial sites in a square array on the heart in vivo. The array consists of 16 sintered Ag-AgCl electrodes mounted in a common housing with individual suspensions allowing each electrode to exert a controlled pressure on the epicardial surface. The electrodes are arranged in a square array, with each quadrant of four having an additional recessed sintered Ag-AgCl reference electrode at its center. A saline-soaked sponge establishes ionic contact between the reference electrodes and the tissue. The array was tested on six anesthetized open-chested pigs. Simultaneous diagnostic-quality MAP recordings were obtained from up to 13 out of 16 ventricular sites. Ventricular MAPs had amplitudes of 10-40 mV with uniform morphologies and stable baselines for up to 30 min. MAP duration at 90% repolarization was measured and shown to vary as expected with cycle length during sustained pacing. The relationship between MAP duration and effective refractory period was also confirmed. The ability of the array to detect local differences in repolarization was tested in two ways. Placement of the array straddling the atrioventricular (AV) junction yielded simultaneous atrial or ventricular recordings at corresponding sites during 1:1 and 2:1 AV conduction. Localized ischemia via constriction of a coronary artery branch resulted in shortening of the repolarization phase at the ischemic, but not the nonischemic, sites. In conclusion, these results indicate that the simultaneous multichannel MAP electrode array is a viable method for in vivo epicardial repolarization mapping. The array has the potential to be expanded to increase the number of sites and spatial resolution.
Surficial geology and stratigraphy of Pleistocene Lake Manix, San Bernardino County, California
Reheis, Marith C.; Redwine, Joanna R.; Wan, Elmira; McGeehin, John P.; VanSistine, D. Paco
2014-01-01
Pluvial Lake Manix and its surrounding drainage basin, in the central Mojave Desert of California, has been a focus of paleoclimate, surficial processes, and neotectonic studies by the U.S. Geological Survey (USGS) since about 2004. The USGS initiated studies of Lake Manix deposits to improve understanding of the paleoclimatic record and the shifts in atmospheric circulation that controlled precipitation in the Mojave Desert. Until approximately 25,000 years ago, Lake Manix was the terminus of the Mojave River, which drains northeasterly from the San Bernardino Mountains; the river currently terminates in the Soda Lake and Silver Lake playas. Pleistocene Lake Manix occupied several subbasins at its maximum extent. This map focuses on the extensive exposures created by incision of the Mojave River and its tributaries into the interbedded lacustrine and alluvial deposits within the central (Cady) and northeastern (Afton) subbasins of Lake Manix, and extends from the head of Afton Canyon to Manix Wash. The map illuminates the geomorphic development and depositional history of the lake and alluvial fans within the active tectonic setting of the eastern California shear zone, especially interactions with the left-lateral Manix fault. Lake Manix left an extraordinarily detailed but complex record of numerous transgressive-regressive sequences separated by desiccation and deposition of fan, eolian, and fluvial deposits, and punctuated by tectonic movements and a catastrophic flood that reconfigured the lake basin. Through careful observation of the intercalated lacustrine and fan sequences and by determining the precise elevations of unit contacts, this record was decoded to understand the response of the lake and river system to the interplay of climatic, geomorphic, and tectonic forces. These deposits are exposed in steep badland topography. Mapping was carried out mostly at scales of 1:12,000, although the map is presented at 1:24,000 scale, and employs custom unit nomenclature, with multiple subdivided lacustrine and alluvial fan units. In addition, many important units are very thin and cannot be mapped separately, or are covered by thin eolian sand, so these are commonly portrayed as stacks of units or combined units. These details are more accurately portrayed in the measured sections that accompany the map. Altitudes of many contacts were obtained using differentially corrected Global Positioning System (GPS) or, in some cases, lidar (light detection and ranging) data.
Utilizing multi-sensor fire detections to map fires in the United States
Howard, Stephen M.; Picotte, Joshua J.; Coan, Michael
2014-01-01
In 2006, the Monitoring Trends in Burn Severity (MTBS) project began a cooperative effort between the US Forest Service (USFS) and the U.S.Geological Survey (USGS) to map and assess burn severity all large fires that have occurred in the United States since 1984. Using Landsat imagery, MTBS is mandated to map wildfire and prescribed fire that meet specific size criteria: greater than 1000 acres in the west and 500 acres in the east, regardless of ownership. Relying mostly on federal and state fire occurrence records, over 15,300 individual fires have been mapped. While mapping recorded fires, an additional 2,700 “unknown” or undocumented fires were discovered and assessed. It has become apparent that there are perhaps thousands of undocumented fires in the US that are yet to be mapped. Fire occurrence records alone are inadequate if MTBS is to provide a comprehensive accounting of fire across the US. Additionally, the sheer number of fires to assess has overwhelmed current manual procedures. To address these problems, the National Aeronautics and Space Administration (NASA) Applied Sciences Program is helping to fund the efforts of the USGS and its MTBS partners (USFS, National Park Service) to develop, and implement a system to automatically identify fires using satellite data. In near real time, USGS will combine active fire satellite detections from MODIS, AVHRR and GOES satellites with Landsat acquisitions. Newly acquired Landsat imagery will be routinely scanned to identify freshly burned area pixels, derive an initial perimeter and tag the burned area with the satellite date and time of detection. Landsat imagery from the early archive will be scanned to identify undocumented fires. Additional automated fire assessment processes will be developed. The USGS will develop these processes using open source software packages in order to provide freely available tools to local land managers providing them with the capability to assess fires at the local level.
Utilizing Multi-Sensor Fire Detections to Map Fires in the United States
NASA Astrophysics Data System (ADS)
Howard, S. M.; Picotte, J. J.; Coan, M. J.
2014-11-01
In 2006, the Monitoring Trends in Burn Severity (MTBS) project began a cooperative effort between the US Forest Service (USFS) and the U.S.Geological Survey (USGS) to map and assess burn severity all large fires that have occurred in the United States since 1984. Using Landsat imagery, MTBS is mandated to map wildfire and prescribed fire that meet specific size criteria: greater than 1000 acres in the west and 500 acres in the east, regardless of ownership. Relying mostly on federal and state fire occurrence records, over 15,300 individual fires have been mapped. While mapping recorded fires, an additional 2,700 "unknown" or undocumented fires were discovered and assessed. It has become apparent that there are perhaps thousands of undocumented fires in the US that are yet to be mapped. Fire occurrence records alone are inadequate if MTBS is to provide a comprehensive accounting of fire across the US. Additionally, the sheer number of fires to assess has overwhelmed current manual procedures. To address these problems, the National Aeronautics and Space Administration (NASA) Applied Sciences Program is helping to fund the efforts of the USGS and its MTBS partners (USFS, National Park Service) to develop, and implement a system to automatically identify fires using satellite data. In near real time, USGS will combine active fire satellite detections from MODIS, AVHRR and GOES satellites with Landsat acquisitions. Newly acquired Landsat imagery will be routinely scanned to identify freshly burned area pixels, derive an initial perimeter and tag the burned area with the satellite date and time of detection. Landsat imagery from the early archive will be scanned to identify undocumented fires. Additional automated fire assessment processes will be developed. The USGS will develop these processes using open source software packages in order to provide freely available tools to local land managers providing them with the capability to assess fires at the local level.
Repeatability of measurements: Non-Hermitian observables and quantum Coriolis force
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardas, Bartłomiej; Deffner, Sebastian; Saxena, Avadh
A noncommuting measurement transfers, via the apparatus, information encoded in a system's state to the external “observer.” Classical measurements determine properties of physical objects. In the quantum realm, the very same notion restricts the recording process to orthogonal states as only those are distinguishable by measurements. Thus, even a possibility to describe physical reality by means of non-Hermitian operators should volens nolens be excluded as their eigenstates are not orthogonal. We show that non-Hermitian operators with real spectra can be treated within the standard framework of quantum mechanics. Further, we propose a quantum canonical transformation that maps Hermitian systems ontomore » non-Hermitian ones. Similar to classical inertial forces this map is accompanied by an energetic cost, pinning the system on the unitary path.« less
Repeatability of measurements: Non-Hermitian observables and quantum Coriolis force
Gardas, Bartłomiej; Deffner, Sebastian; Saxena, Avadh
2016-08-26
A noncommuting measurement transfers, via the apparatus, information encoded in a system's state to the external “observer.” Classical measurements determine properties of physical objects. In the quantum realm, the very same notion restricts the recording process to orthogonal states as only those are distinguishable by measurements. Thus, even a possibility to describe physical reality by means of non-Hermitian operators should volens nolens be excluded as their eigenstates are not orthogonal. We show that non-Hermitian operators with real spectra can be treated within the standard framework of quantum mechanics. Further, we propose a quantum canonical transformation that maps Hermitian systems ontomore » non-Hermitian ones. Similar to classical inertial forces this map is accompanied by an energetic cost, pinning the system on the unitary path.« less
,
1979-01-01
The National Cartographic Information Center (NCIC) is the information branch of the National Mapping Program. NCIC gathers descriptions of cartographic products held by Federal, State and local agencies, and private companies. Computerized information systems are used to edit, store, and distribute these descriptions. The Aerial Photography Summary Record System (APSRS) is NCIC's system for determining if photographs of a particular area, with a particular set of characteristics, are available, and if so, where they can be found. This guide defines the procedures for planning and conducting visits to potential contributors to the APSRS data base. The guide also defines acquisition responsibilities of the contributor, State affiliates, mapping centers, and NCIC headquarters. As a Data Acquisition specialist, you are encouraged to seek innovative approaches to acquiring data and to suggest additions or changes to this guide.
Magnetic electroanatomical mapping for ablation of focal atrial tachycardias.
Marchlinski, F; Callans, D; Gottlieb, C; Rodriguez, E; Coyne, R; Kleinman, D
1998-08-01
Uniform success for ablation of focal atrial tachycardias has been difficult to achieve using standard catheter mapping and ablation techniques. In addition, our understanding of the complex relationship between atrial anatomy, electrophysiology, and surface ECG P wave morphology remains primitive. The magnetic electroanatomical mapping and display system (CARTO) offers an on-line display of electrical activation and/or signal amplitude related to the anatomical location of the recorded sites in the mapped chamber. A window of electrical interest is established based on signals timed from an electrical reference that usually represents a fixed electrogram recording from the coronary sinus or the atrial appendage. This window of electrical interest is established to include atrial activation prior to the onset of the P wave activity associated with the site of origin of a focal atrial tachycardia. Anatomical and electrical landmarks are defined with limited fluoroscopic imaging support and more detailed global chamber and more focal atrial mapping can be performed with minimal fluoroscopic guidance. A three-dimensional color map representing atrial activation or voltage amplitude at the magnetically defined anatomical sites is displayed with on-line data acquisition. This display can be manipulated to facilitate viewing from any angle. Altering the zoom control, triangle fill threshold, clipping plane, or color range can all enhance the display of a more focal area of interest. We documented the feasibility of using this single mapping catheter technique for localizing and ablating focal atrial tachycardias. In a consecutive series of 8 patients with 9 focal atrial tachycardias, the use of the single catheter CARTO mapping system was associated with ablation success in all but one patient who had a left atrial tachycardia localized to the medial aspect of the orifice of the left atrial appendage. Only low power energy delivery was used in this patient because of the unavailability of temperature monitoring in the early version of the Navistar catheter, the location of the arrhythmia, and the history of arrhythmia control with flecainide. No attempt was made to limit fluoroscopy time in our study population. Nevertheless, despite data acquisition from 120-320 anatomically distinct sites during global and more detailed focal atrial mapping, total fluoroscopy exposure was typically < 30 minutes and was as little as 12 minutes. The detailed display capabilities of the CARTO system appear to offer the potential of enhancing our understanding of atrial anatomy, atrial activation, and their relationship to surface ECG P wave morphology during focal atrial tachycardias.
Walter, Brittany S; Schultz, John J
2013-05-10
Scene mapping is an integral aspect of processing a scene with scattered human remains. By utilizing the appropriate mapping technique, investigators can accurately document the location of human remains and maintain a precise geospatial record of evidence. One option that has not received much attention for mapping forensic evidence is the differential global positioning (DGPS) unit, as this technology now provides decreased positional error suitable for mapping scenes. Because of the lack of knowledge concerning this utility in mapping a scene, controlled research is necessary to determine the practicality of using newer and enhanced DGPS units in mapping scattered human remains. The purpose of this research was to quantify the accuracy of a DGPS unit for mapping skeletal dispersals and to determine the applicability of this utility in mapping a scene with dispersed remains. First, the accuracy of the DGPS unit in open environments was determined using known survey markers in open areas. Secondly, three simulated scenes exhibiting different types of dispersals were constructed and mapped in an open environment using the DGPS. Variables considered during data collection included the extent of the dispersal, data collection time, data collected on different days, and different postprocessing techniques. Data were differentially postprocessed and compared in a geographic information system (GIS) to evaluate the most efficient recordation methods. Results of this study demonstrate that the DGPS is a viable option for mapping dispersed human remains in open areas. The accuracy of collected point data was 11.52 and 9.55 cm for 50- and 100-s collection times, respectfully, and the orientation and maximum length of long bones was maintained. Also, the use of error buffers for point data of bones in maps demonstrated the error of the DGPS unit, while showing that the context of the dispersed skeleton was accurately maintained. Furthermore, the application of a DGPS for accurate scene mapping is discussed and guidelines concerning the implementation of this technology for mapping human scattered skeletal remains in open environments are provided. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Mapping the criminal mind: idiographic assessment of criminal belief systems.
Walters, Glenn D
2005-02-01
An idiographic procedure designed to assess the belief systems of criminal offenders is described, investigated, and clarified. This measure, the Cognitive Map of Major Belief Systems (CMMBS), assesses the five belief systems (self-view, world-view, past-view, present-view, future-view) held to occupy the higher echelons of human cognition. Modest to moderate test-retest reliability was achieved when 19 inmates, enrolled in one of three drug-counseling groups, completed the CMMBS on two separate occasions, 2 weeks apart. It was also ascertained that the drug treatment specialist who served as therapist for all three groups "blindly" matched the 19 CMMBS records to the inmates who produced them. A case study of one of the 19 participants was used to illustrate how the CMMBS is employed with individual offenders and how belief systems interact with major schematic subnetworks such as attributions, outcome expectancies, efficacy expectancies, goals, values, and thinking styles to create crime-supporting lifestyles.
Poulos, Helen M.; Chernoff, Barry; Fuller, Pam L.; Butman, David
2012-01-01
Predicting the future spread of non-native aquatic species continues to be a high priority for natural resource managers striving to maintain biodiversity and ecosystem function. Modeling the potential distributions of alien aquatic species through spatially explicit mapping is an increasingly important tool for risk assessment and prediction. Habitat modeling also facilitates the identification of key environmental variables influencing species distributions. We modeled the potential distribution of an aggressive invasive minnow, the red shiner (Cyprinella lutrensis), in waterways of the conterminous United States using maximum entropy (Maxent). We used inventory records from the USGS Nonindigenous Aquatic Species Database, native records for C. lutrensis from museum collections, and a geographic information system of 20 raster climatic and environmental variables to produce a map of potential red shiner habitat. Summer climatic variables were the most important environmental predictors of C. lutrensis distribution, which was consistent with the high temperature tolerance of this species. Results from this study provide insights into the locations and environmental conditions in the US that are susceptible to red shiner invasion.
NASA Astrophysics Data System (ADS)
Prasanth, Chandra Sekhar; Betsy, Joseph; Jayanthi, Jayaraj L.; Nisha, Unni G.; Prasantila, Janam; Subhash, Narayanan
2013-02-01
Since conventional techniques using periodontal probes have inherent drawbacks in the diagnosis of different grades of gingival inflammation, development of noninvasive screening devices becomes significant. Diffuse reflectance (DR) spectra recorded with white light illumination is utilized to detect periodontal inflammation from the oxygenated hemoglobin absorption ratio R620/R575. A multispectral imaging system is utilized to record narrow-band DR images at 575 and 620 nm from the anterior sextant of the gingivia of 15 healthy volunteers and 25 patients (N=40). An experienced periodontist assesses the level of gingival inflammation at each site through periodontal probing and assigns diagnosis as healthy, mild, moderate, or severe inflammation. The DR image ratio R620/R575 computed for each pixel (8-μm resolution) from the monochrome images is pseudo-color-mapped to identify gingival inflammation sites. The DR image ratio values at each site are compared with clinical diagnosis to estimate the specificity and sensitivity of the DR imaging technique in inflammation mapping. The high diagnostic accuracy is utilized to detect underlying inflammation in six patients with a previous history of periodontitis.
Correlation of Geophysical and Geotechnical Methods for Sediment Mapping in Sungai Batu, Kedah
NASA Astrophysics Data System (ADS)
Zakaria, M. T.; Taib, A.; Saidin, M. M.; Saad, R.; Muztaza, N. M.; Masnan, S. S. K.
2018-04-01
Exploration geophysics is widely used to map the subsurface characteristics of a region, to understand the underlying rock structures and spatial distribution of rock units. 2-D resistivity and seismic refraction methods were conducted in Sungai Batu locality with objective to identify and map the sediment deposit with correlation of borehole record. 2-D resistivity data was acquire using ABEM SAS4000 system with Pole-dipole array and 2.5 m minimum electrode spacing while for seismic refraction ABEM MK8 seismograph was used to record the seismic data and 5 kg sledgehammer used as a seismic source with geophones interval of 5 m spacing. The inversion model of 2-D resistivity result shows that, the resistivity values <100 Ωm was interpreted as saturated zone with while high resistivity values >500 Ωm as the hard layer for this study area. The seismic result indicates that the velocity values <2000 m/s represent as the highly-weathered soil consists of clay and sand while high velocity values >3600 m/s interpreted as the hard layer in this locality.
NASA Astrophysics Data System (ADS)
Cuttler, R. T. H.; Tonner, T. W. W.; Al-Naimi, F. A.; Dingwall, L. M.; Al-Hemaidi, N.
2013-07-01
The development of the Qatar National Historic Environment Record (QNHER) by the Qatar Museums Authority and the University of Birmingham in 2008 was based on a customised, bilingual Access database and ArcGIS. While both platforms are stable and well supported, neither was designed for the documentation and retrieval of cultural heritage data. As a result it was decided to develop a custom application using Open Source code. The core module of this application is now completed and is orientated towards the storage and retrieval of geospatial heritage data for the curation of heritage assets. Based on MIDAS Heritage data standards and regionally relevant thesauri, it is a truly bilingual system. Significant attention has been paid to the user interface, which is userfriendly and intuitive. Based on a suite of web services and accessed through a web browser, the system makes full use of internet resources such as Google Maps and Bing Maps. The application avoids long term vendor ''tie-ins'' and as a fully integrated data management system, is now an important tool for both cultural resource managers and heritage researchers in Qatar.
Munyaneza, Fabien; Hirschhorn, Lisa R; Amoroso, Cheryl L; Nyirazinyoye, Laetitia; Birru, Ermyas; Mugunga, Jean Claude; Murekatete, Rachel M; Ntaganira, Joseph
2014-12-06
Geographic Information Systems (GIS) have become an important tool in monitoring and improving health services, particularly at local levels. However, GIS data are often unavailable in rural settings and village-level mapping is resource-intensive. This study describes the use of community health workers' (CHW) supervisors to map villages in a mountainous rural district of Northern Rwanda and subsequent use of these data to map village-level variability in safe water availability. We developed a low literacy and skills-focused training in the local language (Kinyarwanda) to train 86 CHW Supervisors and 25 nurses in charge of community health at the health center (HC) and health post (HP) levels to collect the geographic coordinates of the villages using Global Positioning Systems (GPS). Data were validated through meetings with key stakeholders at the sub-district and district levels and joined using ArcMap 10 Geo-processing tools. Costs were calculated using program budgets and activities' records, and compared with the estimated costs of mapping using a separate, trained GIS team. To demonstrate the usefulness of this work, we mapped drinking water sources (DWS) from data collected by CHW supervisors from the chief of the village. DWSs were categorized as safe versus unsafe using World Health Organization definitions. Following training, each CHW Supervisor spent five days collecting data on the villages in their coverage area. Over 12 months, the CHW supervisors mapped the district's 573 villages using 12 shared GPS devices. Sector maps were produced and distributed to local officials. The cost of mapping using CHW supervisors was $29,692, about two times less than the estimated cost of mapping using a trained and dedicated GIS team ($60,112). The availability of local mapping was able to rapidly identify village-level disparities in DWS, with lower access in populations living near to lakes and wetlands (p < .001). Existing national CHW system can be leveraged to inexpensively and rapidly map villages even in mountainous rural areas. These data are important to provide managers and decision makers with local-level GIS data to rapidly identify variability in health and other related services to better target and evaluate interventions.
Phase II Evaluation of Clinical Coding Schemes
Campbell, James R.; Carpenter, Paul; Sneiderman, Charles; Cohn, Simon; Chute, Christopher G.; Warren, Judith
1997-01-01
Abstract Objective: To compare three potential sources of controlled clinical terminology (READ codes version 3.1, SNOMED International, and Unified Medical Language System (UMLS) version 1.6) relative to attributes of completeness, clinical taxonomy, administrative mapping, term definitions and clarity (duplicate coding rate). Methods: The authors assembled 1929 source concept records from a variety of clinical information taken from four medical centers across the United States. The source data included medical as well as ample nursing terminology. The source records were coded in each scheme by an investigator and checked by the coding scheme owner. The codings were then scored by an independent panel of clinicians for acceptability. Codes were checked for definitions provided with the scheme. Codes for a random sample of source records were analyzed by an investigator for “parent” and “child” codes within the scheme. Parent and child pairs were scored by an independent panel of medical informatics specialists for clinical acceptability. Administrative and billing code mapping from the published scheme were reviewed for all coded records and analyzed by independent reviewers for accuracy. The investigator for each scheme exhaustively searched a sample of coded records for duplications. Results: SNOMED was judged to be significantly more complete in coding the source material than the other schemes (SNOMED* 70%; READ 57%; UMLS 50%; *p <.00001). SNOMED also had a richer clinical taxonomy judged by the number of acceptable first-degree relatives per coded concept (SNOMED* 4.56; UMLS 3.17; READ 2.14, *p <.005). Only the UMLS provided any definitions; these were found for 49% of records which had a coding assignment. READ and UMLS had better administrative mappings (composite score: READ* 40.6%; UMLS* 36.1%; SNOMED 20.7%, *p <. 00001), and SNOMED had substantially more duplications of coding assignments (duplication rate: READ 0%; UMLS 4.2%; SNOMED* 13.9%, *p <. 004) associated with a loss of clarity. Conclusion: No major terminology source can lay claim to being the ideal resource for a computer-based patient record. However, based upon this analysis of releases for April 1995, SNOMED International is considerably more complete, has a compositional nature and a richer taxonomy. It suffers from less clarity, resulting from a lack of syntax and evolutionary changes in its coding scheme. READ has greater clarity and better mapping to administrative schemes (ICD-10 and OPCS-4), is rapidly changing and is less complete. UMLS is a rich lexical resource, with mappings to many source vocabularies. It provides definitions for many of its terms. However, due to the varying granularities and purposes of its source schemes, it has limitations for representation of clinical concepts within a computer-based patient record. PMID:9147343
Code of Federal Regulations, 2014 CFR
2014-07-01
..., maps, and other evidence and accounting procedures and practices, sufficient to reflect properly— (1... contractors for professional services, shall maintain books, documents, papers, maps, and records which are... contractors, including professional services contracts, shall be subject at all reasonable times to inspection...
Earthquakes in South Carolina and Vicinity 1698-2009
Dart, Richard L.; Talwani, Pradeep; Stevenson, Donald
2010-01-01
This map summarizes more than 300 years of South Carolina earthquake history. It is one in a series of three similar State earthquake history maps. The current map and the previous two for Virginia and Ohio are accessible at http://pubs.usgs.gov/of/2006/1017/ and http://pubs.usgs.gov/of/2008/1221/. All three State earthquake maps were collaborative efforts between the U.S. Geological Survey and respective State agencies. Work on the South Carolina map was done in collaboration with the Department of Geological Sciences, University of South Carolina. As with the two previous maps, the history of South Carolina earthquakes was derived from letters, journals, diaries, newspaper accounts, academic journal articles, and, beginning in the early 20th century, instrumental recordings (seismograms). All historical (preinstrumental) earthquakes that were large enough to be felt have been located based on felt reports. Some of these events caused damage to buildings and their contents. The more recent widespread use of seismographs has allowed many smaller earthquakes, previously undetected, to be recorded and accurately located. The seismicity map shows historically located and instrumentally recorded earthquakes in and near South Carolina
NASA Technical Reports Server (NTRS)
Mcgill, J. W.; Glass, C. E.; Sternberg, B. K.
1990-01-01
The ultimate goal is to create an extraterrestrial unmanned system for subsurface mapping and exploration. Neural networks are to be used to recognize anomalies in the profiles that correspond to potentially exploitable subsurface features. The ground penetrating radar (GPR) techniques are likewise identical. Hence, the preliminary research focus on GPR systems will be directly applicable to seismic systems once such systems can be designed for continuous operation. The original GPR profile may be very complex due to electrical behavior of the background, targets, and antennas, much as the seismic record is made complex by multiple reflections, ghosting, and ringing. Because the format of the GPR data is similar to the format of seismic data, seismic processing software may be applied to GPR data to help enhance the data. A neural network may then be trained to more accurately identify anomalies from the processed record than from the original record.
Development of a brain monitoring system for multimodality investigation in awake rats.
Limnuson, Kanokwan; Narayan, Raj K; Chiluwal, Amrit; Bouton, Chad; Ping Wang; Chunyan Li
2016-08-01
Multimodal brain monitoring is an important approach to gain insight into brain function, modulation, and pathology. We have developed a unique micromachined neural probe capable of real-time continuous monitoring of multiple physiological, biochemical and electrophysiological variables. However, to date, it has only been used in anesthetized animals due to a lack of an appropriate interface for awake animals. We have developed a versatile headstage for recording the small neural signal and bridging the sensors to the remote sensing units for multimodal brain monitoring in awake rats. The developed system has been successfully validated in awake rats by simultaneously measuring four cerebral variables: electrocorticography, oxygen tension, temperature and cerebral blood flow. Reliable signal recordings were obtained with minimal artifacts from movement and environmental noise. For the first time, multiple variables of cerebral function and metabolism were simultaneously recorded from awake rats using a single neural probe. The system is envisioned for studying the effects of pharmacologic treatments, mapping the development of central nervous system diseases, and better understanding normal cerebral physiology.
Pathik, Bhupesh; Kalman, Jonathan M; Walters, Tomos; Kuklik, Pawel; Zhao, Jichao; Madry, Andrew; Sanders, Prashanthan; Kistler, Peter M; Lee, Geoffrey
2018-02-01
Current phase mapping systems for atrial fibrillation create 2-dimensional (2D) maps. This process may affect the accurate detection of rotors. We developed a 3-dimensional (3D) phase mapping technique that uses the 3D locations of basket electrodes to project phase onto patient-specific left atrial 3D surface anatomy. We sought to determine whether rotors detected in 2D phase maps were present at the corresponding time segments and anatomical locations in 3D phase maps. One-minute left atrial atrial fibrillation recordings were obtained in 14 patients using the basket catheter and analyzed off-line. Using the same phase values, 2D and 3D phase maps were created. Analysis involved determining the dominant propagation patterns in 2D phase maps and evaluating the presence of rotors detected in 2D phase maps in the corresponding 3D phase maps. Using 2D phase mapping, the dominant propagation pattern was single wavefront (36.6%) followed by focal activation (34.0%), disorganized activity (23.7%), rotors (3.3%), and multiple wavefronts (2.4%). Ten transient rotors were observed in 9 of 14 patients (64%). The mean rotor duration was 1.1 ± 0.7 seconds. None of the 10 rotors observed in 2D phase maps were seen at the corresponding time segments and anatomical locations in 3D phase maps; 4 of 10 corresponded with single wavefronts in 3D phase maps, 2 of 10 with 2 simultaneous wavefronts, 1 of 10 with disorganized activity, and in 3 of 10 there was no coverage by the basket catheter at the corresponding 3D anatomical location. Rotors detected in 2D phase maps were not observed in the corresponding 3D phase maps. These findings may have implications for current systems that use 2D phase mapping. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Two-Phase chief complaint mapping to the UMLS metathesaurus in Korean electronic medical records.
Kang, Bo-Yeong; Kim, Dae-Won; Kim, Hong-Gee
2009-01-01
The task of automatically determining the concepts referred to in chief complaint (CC) data from electronic medical records (EMRs) is an essential component of many EMR applications aimed at biosurveillance for disease outbreaks. Previous approaches that have been used for this concept mapping have mainly relied on term-level matching, whereby the medical terms in the raw text and their synonyms are matched with concepts in a terminology database. These previous approaches, however, have shortcomings that limit their efficacy in CC concept mapping, where the concepts for CC data are often represented by associative terms rather than by synonyms. Therefore, herein we propose a concept mapping scheme based on a two-phase matching approach, especially for application to Korean CCs, which uses term-level complete matching in the first phase and concept-level matching based on concept learning in the second phase. The proposed concept-level matching suggests the method to learn all the terms (associative terms as well as synonyms) that represent the concept and predict the most probable concept for a CC based on the learned terms. Experiments on 1204 CCs extracted from 15,618 discharge summaries of Korean EMRs showed that the proposed method gave significantly improved F-measure values compared to the baseline system, with improvements of up to 73.57%.
Inferring the most probable maps of underground utilities using Bayesian mapping model
NASA Astrophysics Data System (ADS)
Bilal, Muhammad; Khan, Wasiq; Muggleton, Jennifer; Rustighi, Emiliano; Jenks, Hugo; Pennock, Steve R.; Atkins, Phil R.; Cohn, Anthony
2018-03-01
Mapping the Underworld (MTU), a major initiative in the UK, is focused on addressing social, environmental and economic consequences raised from the inability to locate buried underground utilities (such as pipes and cables) by developing a multi-sensor mobile device. The aim of MTU device is to locate different types of buried assets in real time with the use of automated data processing techniques and statutory records. The statutory records, even though typically being inaccurate and incomplete, provide useful prior information on what is buried under the ground and where. However, the integration of information from multiple sensors (raw data) with these qualitative maps and their visualization is challenging and requires the implementation of robust machine learning/data fusion approaches. An approach for automated creation of revised maps was developed as a Bayesian Mapping model in this paper by integrating the knowledge extracted from sensors raw data and available statutory records. The combination of statutory records with the hypotheses from sensors was for initial estimation of what might be found underground and roughly where. The maps were (re)constructed using automated image segmentation techniques for hypotheses extraction and Bayesian classification techniques for segment-manhole connections. The model consisting of image segmentation algorithm and various Bayesian classification techniques (segment recognition and expectation maximization (EM) algorithm) provided robust performance on various simulated as well as real sites in terms of predicting linear/non-linear segments and constructing refined 2D/3D maps.
Rainfall thresholds and susceptibility mapping for shallow landslides and debris flows in Scotland
NASA Astrophysics Data System (ADS)
Postance, Benjamin; Hillier, John; Dijkstra, Tom; Dixon, Neil
2017-04-01
Shallow translational slides and debris flows (hereafter 'landslides') pose a significant threat to life and cause significant annual economic impacts (e.g. by damage and disruption of infrastructure). The focus of this research is on the definition of objective rainfall thresholds using a weather radar system and landslide susceptibility mapping. In the study area Scotland, an inventory of 75 known landslides was used for the period 2003 to 2016. First, the effect of using different rain records (i.e. time series length) on two threshold selection techniques in receiver operating characteristic (ROC) analysis was evaluated. The results show that thresholds selected by 'Threat Score' (minimising false alarms) are sensitive to rain record length and which is not routinely considered, whereas thresholds selected using 'Optimal Point' (minimising failed alarms) are not; therefore these may be suited to establishing lower limit thresholds and be of interest to those developing early warning systems. Robust thresholds are found for combinations of normalised rain duration and accumulation at 1 and 12 day's antecedence respectively; these are normalised using the rainy-day normal and an equivalent measure for rain intensity. This research indicates that, in Scotland, rain accumulation provides a better indicator than rain intensity and that landslides may be generated by threshold conditions lower than previously thought. Second, a landslide susceptibility map is constructed using a cross-validated logistic regression model. A novel element of the approach is that landslide susceptibility is calculated for individual hillslope sections. The developed thresholds and susceptibility map are combined to assess potential hazards and impacts posed to the national highway network in Scotland.
Buscema, Massimo; Grossi, Enzo; Montanini, Luisa; Street, Maria E.
2015-01-01
Objectives Intra-uterine growth retardation is often of unknown origin, and is of great interest as a “Fetal Origin of Adult Disease” has been now well recognized. We built a benchmark based upon a previously analysed data set related to Intrauterine Growth Retardation with 46 subjects described by 14 variables, related with the insulin-like growth factor system and pro-inflammatory cytokines, namely interleukin -6 and tumor necrosis factor -α. Design and Methods We used new algorithms for optimal information sorting based on the combination of two neural network algorithms: Auto-contractive Map and Activation and Competition System. Auto-Contractive Map spatializes the relationships among variables or records by constructing a suitable embedding space where ‘closeness’ among variables or records reflects accurately their associations. The Activation and Competition System algorithm instead works as a dynamic non linear associative memory on the weight matrices of other algorithms, and is able to produce a prototypical variable profile of a given target. Results Classical statistical analysis, proved to be unable to distinguish intrauterine growth retardation from appropriate-for-gestational age (AGA) subjects due to the high non-linearity of underlying functions. Auto-contractive map succeeded in clustering and differentiating completely the conditions under study, while Activation and Competition System allowed to develop the profile of variables which discriminated the two conditions under study better than any other previous form of attempt. In particular, Activation and Competition System showed that ppropriateness for gestational age was explained by IGF-2 relative gene expression, and by IGFBP-2 and TNF-α placental contents. IUGR instead was explained by IGF-I, IGFBP-1, IGFBP-2 and IL-6 gene expression in placenta. Conclusion This further analysis provided further insight into the placental key-players of fetal growth within the insulin-like growth factor and cytokine systems. Our previous published analysis could identify only which variables were predictive of fetal growth in general, and identified only some relationships. PMID:26158499
Design and Evaluation of Simulations for the Development of Complex Decision-Making Skills.
ERIC Educational Resources Information Center
Hartley, Roger; Varley, Glen
2002-01-01
Command and Control Training Using Simulation (CACTUS) is a computer digital mapping system used by police to manage large-scale public events. Audio and video records of adaptive training scenarios using CACTUS show how the simulation develops decision-making skills for strategic and tactical event management. (SK)
Fiáth, Richárd; Beregszászi, Patrícia; Horváth, Domonkos; Wittner, Lucia; Aarts, Arno A. A.; Ruther, Patrick; Neves, Hercules P.; Bokor, Hajnalka; Acsády, László
2016-01-01
Recording simultaneous activity of a large number of neurons in distributed neuronal networks is crucial to understand higher order brain functions. We demonstrate the in vivo performance of a recently developed electrophysiological recording system comprising a two-dimensional, multi-shank, high-density silicon probe with integrated complementary metal-oxide semiconductor electronics. The system implements the concept of electronic depth control (EDC), which enables the electronic selection of a limited number of recording sites on each of the probe shafts. This innovative feature of the system permits simultaneous recording of local field potentials (LFP) and single- and multiple-unit activity (SUA and MUA, respectively) from multiple brain sites with high quality and without the actual physical movement of the probe. To evaluate the in vivo recording capabilities of the EDC probe, we recorded LFP, MUA, and SUA in acute experiments from cortical and thalamic brain areas of anesthetized rats and mice. The advantages of large-scale recording with the EDC probe are illustrated by investigating the spatiotemporal dynamics of pharmacologically induced thalamocortical slow-wave activity in rats and by the two-dimensional tonotopic mapping of the auditory thalamus. In mice, spatial distribution of thalamic responses to optogenetic stimulation of the neocortex was examined. Utilizing the benefits of the EDC system may result in a higher yield of useful data from a single experiment compared with traditional passive multielectrode arrays, and thus in the reduction of animals needed for a research study. PMID:27535370
AN ANNOTATED BIBLIOGRAPHY OF CLIMATIC MAPS OF ANGOLA,
Contents: Map of political divisions of Africa; Map of Angola; Sources with abstracts listed alphabetically by author; Alphabetical author index ; Subject heading index with period of record; Subject heading index with map scales.
NASA Astrophysics Data System (ADS)
Arsenault, K. R.; Shukla, S.; Getirana, A.; Peters-Lidard, C. D.; Kumar, S.; McNally, A.; Zaitchik, B. F.; Badr, H. S.; Funk, C. C.; Koster, R. D.; Narapusetty, B.; Jung, H. C.; Roningen, J. M.
2017-12-01
Drought and water scarcity are among the important issues facing several regions within Africa and the Middle East. In addition, these regions typically have sparse ground-based data networks, where sometimes remotely sensed observations may be the only data available. Long-term satellite records can help with determining historic and current drought conditions. In recent years, several new satellites have come on-line that monitor different hydrological variables, including soil moisture and terrestrial water storage. Though these recent data records may be considered too short for the use in identifying major droughts, they do provide additional information that can better characterize where water deficits may occur. We utilize recent satellite data records of Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage (TWS) and the European Space Agency's Advanced Scatterometer (ASCAT) soil moisture retrievals. Combining these records with land surface models (LSMs), NASA's Catchment and the Noah Multi-Physics (MP), is aimed at improving the land model states and initialization for seasonal drought forecasts. The LSMs' total runoff is routed through the Hydrological Modeling and Analysis Platform (HyMAP) to simulate surface water dynamics, which can provide an additional means of validation against in situ streamflow data. The NASA Land Information System (LIS) software framework drives the LSMs and HyMAP and also supports the capability to assimilate these satellite retrievals, such as soil moisture and TWS. The LSMs are driven for 30+ years with NASA's Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), and the USGS/UCSB Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) rainfall dataset. The seasonal water deficit forecasts are generated using downscaled and bias-corrected versions of NASA's Goddard Earth Observing System Model (GEOS-5), and NOAA's Climate Forecast System (CFSv2) forecasts. These combined satellite and model records and forecasts are intended for use in different decision support tools, like the Famine Early Warning Systems Network (FEWS NET) and the Middle East-North Africa (MENA) Regional Drought Management System, for aiding and forecasting in water and food insecure regions.
NASA Astrophysics Data System (ADS)
Bevilacqua, Andrea; Neri, Augusto; Esposti Ongaro, Tomaso; Isaia, Roberto; Flandoli, Franco; Bisson, Marina
2016-04-01
Today hundreds of thousands people live inside the Campi Flegrei caldera (Italy) and in the adjacent part of the city of Naples making a future eruption of such volcano an event with huge consequences. Very high risks are associated with the occurrence of pyroclastic density currents (PDCs). Mapping of background or long-term PDC hazard in the area is a great challenge due to the unknown eruption time, scale and vent location of the next event as well as the complex dynamics of the flow over the caldera topography. This is additionally complicated by the remarkable epistemic uncertainty on the eruptive record, affecting the time of past events, the location of vents as well as the PDCs areal extent estimates. First probability maps of PDC invasion were produced combining a vent-opening probability map, statistical estimates concerning the eruptive scales and a Cox-type temporal model including self-excitement effects, based on the eruptive record of the last 15 kyr. Maps were produced by using a Monte Carlo approach and adopting a simplified inundation model based on the "box model" integral approximation tested with 2D transient numerical simulations of flow dynamics. In this presentation we illustrate the independent effects of eruption scale, vent location and time of forecast of the next event. Specific focus was given to the remarkable differences between the eastern and western sectors of the caldera and their effects on the hazard maps. The analysis allowed to identify areas with elevated probabilities of flow invasion as a function of the diverse assumptions made. With the quantification of some sources of uncertainty in relation to the system, we were also able to provide mean and percentile maps of PDC hazard levels.
Wong, Benjamin T; Glassford, Neil J; Bion, Victoria; Chai, Syn Y; Bellomo, Rinaldo
2014-03-01
Blood pressure management (assessed using nursing charts) in the early phase of septic shock may have an effect on renal outcomes. Assessment of mean arterial pressure (MAP) values as recorded on nursing charts may be inaccurate. To determine the difference between hourly blood pressure values as recorded on the nursing charts and hourly average blood pressure values over the corresponding period obtained electronically from the bedside monitor. We studied 20 patients with shock requiring vasopressor support and invasive blood pressure monitoring. Hourly blood pressure measurements were recorded on the nursing charts over a 12-hour period. Blood pressure values recorded every 10 minutes were downloaded from electronic patient monitors over the corresponding period. The hourly average of the 10-minute blood pressure values was compared with the measurements recorded on the nursing charts. We assessed 240 chart readings and 1440 electronic recordings. Average chart MAP was 72.54 mmHg and average electronic monitor MAP was 71.54 mmHg. MAP data from the two sources showed a strong correlation (ρ0.71, P < 0.005). Bland-Altman assessment revealed acceptable agreement, with a mean bias of 1mmHg and 95% limits of agreement of -11.76 mmHg and 13.76 mmHg. Using average data over 6 hours, 95% limits of agreement narrowed to -6.79mmHg and 8.79mmHg. With multiple measurements over time, mean blood pressure as recorded on nursing charts reasonably approximates mean blood pressure recorded on the monitor.
NASA Astrophysics Data System (ADS)
De Carlo, E. H.; Drupp, P. S.; Thompson, R. W.; Mackenzie, F. T.; Muscielewicz, S.; Jones, S. M.; Feely, R. A.; Sabine, C. L.
2012-12-01
A series of MAP-CO2 buoys deployed in the coastal waters of Hawaii have produced multiyear high temporal resolution CO2 records in four different coral reef environments of the island of Oahu, Hawaii. This study is part of an integrated effort to understand the factors that influence the dynamics of CO2-carbonic acid system parameters in waters bathing Pacific high island coral reef ecosystems and subject to differing natural and anthropogenic stresses. The MAP-CO2 buoys are located in backreef, lagoonal, and fringing reef sites, and measure CO2 and O2 in seawater and in the atmosphere. Other sensors on the buoys record physical and biogeochemical parameters (CTD, chl-a, turbidity, pH, nitrate). The buoy records, when combined with data from synoptic spatial sampling, have allowed us to examine the interplay between biological cycles of productivity/respiration and calcification/dissolution and biogeochemical and physical forcing on hourly to inter-annual time scales, including those of land runoff. Our data demonstrate that coral reefs are subject to a wide range of pCO2, both on short and long time scales, and significant differences in the CO2-carbonic acid system dynamics across these various settings. We report that coral communities currently thrive in areas where the concentrations of CO2 can range from extremes as low as 200 ppm to as high as 1000 ppm and can fluctuate by ~500 ppm on any given day. The data provide evidence that net ecosystem calcification currently occurs in the presence of levels of CO2 predicted to occur well into the next century, although these coral reef ecosystems are only exposed to the extremes for short periods of time each day.
Vandenbussche, Pierre-Yves; Cormont, Sylvie; André, Christophe; Daniel, Christel; Delahousse, Jean; Charlet, Jean; Lepage, Eric
2013-01-01
This study shows the evolution of a biomedical observation dictionary within the Assistance Publique Hôpitaux Paris (AP-HP), the largest European university hospital group. The different steps are detailed as follows: the dictionary creation, the mapping to logical observation identifier names and codes (LOINC), the integration into a multiterminological management platform and, finally, the implementation in the health information system. AP-HP decided to create a biomedical observation dictionary named AnaBio, to map it to LOINC and to maintain the mapping. A management platform based on methods used for knowledge engineering has been put in place. It aims at integrating AnaBio within the health information system and improving both the quality and stability of the dictionary. This new management platform is now active in AP-HP. The AnaBio dictionary is shared by 120 laboratories and currently includes 50 000 codes. The mapping implementation to LOINC reaches 40% of the AnaBio entries and uses 26% of LOINC records. The results of our work validate the choice made to develop a local dictionary aligned with LOINC. This work constitutes a first step towards a wider use of the platform. The next step will support the entire biomedical production chain, from the clinician prescription, through laboratory tests tracking in the laboratory information system to the communication of results and the use for decision support and biomedical research. In addition, the increase in the mapping implementation to LOINC ensures the interoperability allowing communication with other international health institutions.
NASA Astrophysics Data System (ADS)
O'Loingsigh, T.; McTainsh, G. H.; Tews, E. K.; Strong, C. L.; Leys, J. F.; Shinkfield, P.; Tapper, N. J.
2014-03-01
Wind erosion of soils is a natural process that has shaped the semi-arid and arid landscapes for millennia. This paper describes the Dust Storm Index (DSI); a methodology for monitoring wind erosion using Australian Bureau of Meteorology (ABM) meteorological observational data since the mid-1960s (long-term), at continental scale. While the 46 year length of the DSI record is its greatest strength from a wind erosion monitoring perspective, there are a number of technical challenges to its use because when the World Meteorological Organisation (WMO) recording protocols were established the use of the data for wind erosion monitoring was never intended. Data recording and storage protocols are examined, including the effects of changes to the definition of how observers should interpret and record dust events. A method is described for selecting the 180 long-term ABM stations used in this study and the limitations of variable observation frequencies between stations are in part resolved. The rationale behind the DSI equation is explained and the examples of temporal and spatial data visualisation products presented include; a long term national wind erosion record (1965-2011), continental DSI maps, and maps of the erosion event types that are factored into the DSI equation. The DSI is tested against dust concentration data and found to provide an accurate representation of wind erosion activity. As the ABM observational records used here were collected according to WMO protocols, the DSI methodology could be used in all countries with WMO-compatible meteorological observation and recording systems.
Lin, Changjian; Pehrson, Steen; Jacobsen, Peter Karl; Chen, Xu
2017-12-01
There have been advancements of sophisticated mapping systems used for ablation procedures over the last decade. Utilization of these novel mapping systems in combination with remote magnetic navigation (RMN) needs to be established. We investigated the new EnSite Precision mapping system (St. Jude Medical, Inc., St. Paul, MN, USA), which collects magnetic data for checking navigation field stability and is built on an open platform, allowing physicians to choose diagnostic and ablation catheters. We address its compatibility with RMN. To assess the clinical utility of a novel 3D mapping system (EnSite Precision mapping system) combined with RMN (Niobe ES, Stereotaxis, Inc., St. Louis, MO, USA) for atrial fibrillation (AF) ablation. In this prospective nonrandomized study, two groups of patients were treated in our center for drug refractory AF. Patients were consecutively enrolled in each group. Group A (n = 35, 14 persistent AF [PsAF]) was treated using the novel 3D mapping system combined with RMN. Group B (n = 38, 16 PsAF) was treated using Carto ® 3 (Biosense Webster, Inc., Diamond Bar, CA, USA) combined with RMN. In Group A, the left atrium (LA) was mapped with a circular magnetic catheter manually and was then replaced by a RMN ablation catheter. At the end of the procedures in Group A, the circular catheter was used for confirming field stability. In Group B, an ablation catheter was controlled by RMN to perform both LA mapping and ablation. All patients underwent pulmonary vein antrum isolation. Additional complex fractionated atrial electrograms (CFAEs) ablation was performed for PsAF. Procedural, ablation, and fluoroscopy times were recorded and complications were assessed. Electrophysiological end points were achieved in all patients. Using the novel mapping system, LA mapping time was fast (308 ± 60 seconds) with detailed anatomy points (178,831 ± 70,897) collected and magnetic points throughout LA. At the end of the procedures in Group A, the LA model was confirmed to be stable and its location was within the distance threshold (1 mm). Procedure time (117.9 ± 29.6 minutes vs. 119.2 ± 29.7 minutes, P = 0.89), fluoroscopy time (6.1 ± 2.4 minutes vs. 4.8 ± 2.2 minutes, P = 0.07), and ablation time (28.0 ± 12.9 minutes vs. 27.9 ± 15.8 minutes, P = 0.98) were similar in Group A versus Group B, respectively. No complications occurred in either group. LA mapped by the novel system is stable and reliable. Combined with RMN, it could be effectively used for AF ablation without impacting overall procedural times. © 2017 Wiley Periodicals, Inc.
A Comparative Review of North American Tundra Delineations
NASA Technical Reports Server (NTRS)
Silver, Kirk C.; Carroll, Mark
2013-01-01
Recent profound changes have been observed in the Arctic environment, including record low sea ice extents and high latitude greening. Studying the Arctic and how it is changing is an important element of climate change science. The Tundra, an ecoregion of the Arctic, is directly related to climate change due to its effects on the snow ice feedback mechanism and greenhouse gas cycling. Like all ecoregions, the Tundra border is shifting, yet studies and policies require clear delineation of boundaries. There are many options for ecoregion classification systems, as well as resources for creating custom maps. To help decision makers identify the best classification system possible, we present a review of North American Tundra ecoregion delineations and further explore the methodologies, purposes, limitations, and physical properties of five common ecoregion classification systems. We quantitatively compare the corresponding maps by area using a geographic information system.
Heran, William D.; Smith, Bruce D.
1980-01-01
The data presented herein is from an airborne electromagnetic INPUT* survey conducted by Geoterrex Limited of Canada for the U.S. Geological Survey. The survey area is located in the central part of the Upper Peninsula of Michigan, within parts of Iron, Baraga, and Dickinson Counties. The general area covered is between 46°00' and 46°30' latitude and 88°00' and 88°30' longitude (fig. 1).The INPUT survey was flown as part of a U.S. Geological Survey CUSMAP (Conterminous United States Mineral Appraisal Program) project focusing on the Iron River 2° quadrangle. The survey was flown in order to provide geophysical information which will aid in an integrated geological assessment of mineral potentials of this part of the Iron River 2 quadrangle. The flight-line spacing was chosen to maximize the aerial coverage without a loss of resolution of major lithologic and structural features. East-west flight lines were flown 400 feet above ground at 1/2-mile intervals. Aerial photos were used for navigation and the flight path was recorded on continuous-strip film. A continuously recording total field ground magnetic station was used to monitor variations in the Earth's magnetic field. One north-south line was flown to provide a tie for the magnetic data which was recorded simultaneously with the electromagnetic data by a sensor mounted in the tail of the aircraft. This report is one of two open-file reports. The map in the present report contains locations of the fiducial points, the flight lines, and preliminary locations of anomalies and conductive zones, all plotted on an air photomosaic. The latitude and longitude ticks marked on this map are only approximate due to distortion in air photos used to recover the flight line position. This map is preliminary and is not to be considered a final interpretation. The other report (Reran and Smith, 1980) contains a description of the instrument specifications, a copy of the ground station magnetic data, and a microfilm record of the electromagnetic and magnetic data, with reference to the digital data of the flight records. The purpose of two reports is to make the analog and digital records available separate from the anomaly map. The following sections on the general description of the INPUT system are abridged from a typical interpretation report prepared by Geoterrex Limited of Ottawa, Canada for the U.S. Geological Survey.
Hawryluk, Gregory; Whetstone, William; Saigal, Rajiv; Ferguson, Adam; Talbott, Jason; Bresnahan, Jacqueline; Dhall, Sanjay; Pan, Jonathan; Beattie, Michael
2015-01-01
Abstract Current guidelines for the care of patients with acute spinal cord injuries (SCIs) recommend maintaining mean arterial pressure (MAP) values of 85–90 mm Hg for 7 days after an acute SCI however, little evidence supports this recommendation. We sought to better inform the relationship between MAP values and neurological recovery. A computer system automatically collected and stored q1 min physiological data from intensive care unit monitors on patients with SCI over a 6-year period. Data for 100 patients with acute SCI were collected. 74 of these patients had American Spinal Injury Association Impairment Scale (AIS) grades determined by physical examination on admission and at time of hospital discharge. Average MAP values as well as the proportion of MAP values below thresholds were explored for values from 120 mm Hg to 40 mm Hg in 1 mm Hg increments; the relationship between these measures and outcome was explored at various time points up to 30 days from the time of injury. A total of 994,875 q1 min arterial line blood pressure measurements were recorded for the included patients amid 1,688,194 min of recorded intensive care observations. A large proportion of measures were below 85 mm Hg despite generally acceptable average MAP values. Higher average MAP values correlated with improved recovery in the first 2–3 days after SCI while the proportion of MAP values below the accepted threshold of 85 mm Hg seemed a stronger correlate, decreasing in strength over the first 5–7 days after injury. This study provides strong evidence supporting a correlation between MAP values and neurological recovery. It does not, however, provide evidence of a causal relationship. Duration of hypotension may be more important than average MAP. It provides support for the notion of MAP thresholds in SCI recovery, and the highest MAP values correlated with the greatest degree of neurological recovery. The results are concordant with current guidelines in suggesting that MAP thresholds >85 mm Hg may be appropriate after acute SCI. PMID:25669633
Thunderstorm distribution and frequency in Saudi Arabia
NASA Astrophysics Data System (ADS)
Shwehdi, M. H.
2005-09-01
A new average annual thunder day map for Saudi Arabia is presented. Based on this map, the distribution of thunderstorms over Saudi Arabia is analysed in terms of the factors related to the lightning performance of transmission lines such as thunderstorm days per year (Td/yr). Lightning activity continues for the present to be represented by thunderstorm frequency, which is routinely recorded at meteorological observation sites. Thunderstorm occurrence at a particular location is usually expressed as the number of days in a calendar year when thunder was heard, averaged over several years. This paper examines thunderstorm days in different areas of Saudi Arabia and specifically those areas where lightning strikes are more frequent; for this purpose, the software ArcGIS is used to produce contour maps which demonstrate areas of concern in Saudi Arabia in the period 1985-2003. Establishing the annual and seasonal Td/yr for Saudi Arabia enables transmission and distribution line engineers to calculate and better design a lightning protection system. Maps of thunder days/year (Td/yr) were constructed on the basis of the database records available on lightning incidence in Saudi Arabia at the Presidency of Meteorology and Environment (PME) (http://www.pme.gov.sa/). Annual thunderstorms are most frequent over the southwestern parts of the country, and generally decrease towards the west and east. Due to its low latitude and less temporal change, the west coast of the Red Sea recorded the lowest Td/yr. A secondary maximum Td/yr is apparent in the southeast to central part of the country. Thunderstorm frequency does not, in general, appear to vary in any consistent way with rainfall. There appears to be no evidence of any widespread temporal trend in thunderstorm frequency. The southern region in general, and especially the cities of Abha, Taif and Al-Baha, has shown greater numbers of thunderstorm days all year round. Similarly, this variation did show higher frequency throughout the year. The development of lightning incidence and the counting of Td/yr, as well as the establishment of annual and seasonal lightning maps of Saudi Arabia, are initiating a new era of producing and archiving thunderstorm maps and data records which serve the PME, the utilities, industry and the public.
NASA Astrophysics Data System (ADS)
Riggs, George A.; Hall, Dorothy K.; Román, Miguel O.
2017-10-01
Knowledge of the distribution, extent, duration and timing of snowmelt is critical for characterizing the Earth's climate system and its changes. As a result, snow cover is one of the Global Climate Observing System (GCOS) essential climate variables (ECVs). Consistent, long-term datasets of snow cover are needed to study interannual variability and snow climatology. The NASA snow-cover datasets generated from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua spacecraft and the Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) are NASA Earth System Data Records (ESDR). The objective of the snow-cover detection algorithms is to optimize the accuracy of mapping snow-cover extent (SCE) and to minimize snow-cover detection errors of omission and commission using automated, globally applied algorithms to produce SCE data products. Advancements in snow-cover mapping have been made with each of the four major reprocessings of the MODIS data record, which extends from 2000 to the present. MODIS Collection 6 (C6; https://nsidc.org/data/modis/data_summaries) and VIIRS Collection 1 (C1; https://doi.org/10.5067/VIIRS/VNP10.001) represent the state-of-the-art global snow-cover mapping algorithms and products for NASA Earth science. There were many revisions made in the C6 algorithms which improved snow-cover detection accuracy and information content of the data products. These improvements have also been incorporated into the NASA VIIRS snow-cover algorithms for C1. Both information content and usability were improved by including the Normalized Snow Difference Index (NDSI) and a quality assurance (QA) data array of algorithm processing flags in the data product, along with the SCE map. The increased data content allows flexibility in using the datasets for specific regions and end-user applications. Though there are important differences between the MODIS and VIIRS instruments (e.g., the VIIRS 375 m native resolution compared to MODIS 500 m), the snow detection algorithms and data products are designed to be as similar as possible so that the 16+ year MODIS ESDR of global SCE can be extended into the future with the S-NPP VIIRS snow products and with products from future Joint Polar Satellite System (JPSS) platforms. These NASA datasets are archived and accessible through the NASA Distributed Active Archive Center at the National Snow and Ice Data Center in Boulder, Colorado.
Duan, Xiaojie; Lieber, Charles M
2013-10-01
High spatiotemporal resolution interfaces between electrical sensors and biological systems, from single live cells to tissues, is crucial for many areas, including fundamental biophysical studies as well as medical monitoring and intervention. Herein, we summarize recent progress in the development and application of novel nanoscale devices for intracellular electrical recording of action potentials and the effort of merging electronic and biological systems seamlessly in three dimensions by using macroporous nanoelectronic scaffolds. The uniqueness of these nanoscale devices for minimally invasive, large-scale, high spatial resolution, and three-dimensional neural activity mapping are highlighted. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Clinical records anonymisation and text extraction (CRATE): an open-source software system.
Cardinal, Rudolf N
2017-04-26
Electronic medical records contain information of value for research, but contain identifiable and often highly sensitive confidential information. Patient-identifiable information cannot in general be shared outside clinical care teams without explicit consent, but anonymisation/de-identification allows research uses of clinical data without explicit consent. This article presents CRATE (Clinical Records Anonymisation and Text Extraction), an open-source software system with separable functions: (1) it anonymises or de-identifies arbitrary relational databases, with sensitivity and precision similar to previous comparable systems; (2) it uses public secure cryptographic methods to map patient identifiers to research identifiers (pseudonyms); (3) it connects relational databases to external tools for natural language processing; (4) it provides a web front end for research and administrative functions; and (5) it supports a specific model through which patients may consent to be contacted about research. Creation and management of a research database from sensitive clinical records with secure pseudonym generation, full-text indexing, and a consent-to-contact process is possible and practical using entirely free and open-source software.
Identifying UMLS concepts from ECG Impressions using KnowledgeMap
Denny, Joshua C.; Spickard, Anderson; Miller, Randolph A; Schildcrout, Jonathan; Darbar, Dawood; Rosenbloom, S. Trent; Peterson, Josh F.
2005-01-01
Electrocardiogram (ECG) impressions represent a wealth of medical information for potential decision support and drug-effect discovery. Much of this information is inaccessible to automated methods in the free-text portion of the ECG report. We studied the application of the KnowledgeMap concept identifier (KMCI) to map Unified Medical Language System (UMLS) concepts from ECG impressions. ECGs were processed by KMCI and the results scored for accuracy by multiple raters. Reviewers also recorded unidentified concepts through the scoring interface. Overall, KMCI correctly identified 1059 out of 1171 concepts for a recall of 0.90. Precision, indicating the proportion of ECG concepts correctly identified, was 0.94. KMCI was particularly effective at identifying ECG rhythms (330/333), perfusion changes (65/66), and noncardiac medical concepts (11/11). In conclusion, KMCI is an effective method for mapping ECG impressions to UMLS concepts. PMID:16779029
Brisinda, Donatella; Caristo, Maria Emiliana; Fenici, Riccardo
2006-07-01
Magnetocardiography (MCG) is the recording of the magnetic field (MF) generated by cardiac electrophysiological activity. Because it is a contactless method, MCG is ideal for noninvasive cardiac mapping of small experimental animals. The aim of this study was to assess age-related changes of cardiac intervals and ventricular repolarization (VR) maps in intact rats by means of MCG mapping. Twenty-four adult Wistar rats (12 male and 12 female) were studied, under anesthesia, with the same unshielded 36-channel MCG instrumentation used for clinical recordings. Two sets of measurements were obtained from each animal: 1) at 5 mo of age (297.5 +/- 21 g body wt) and 2) at 14 mo of age (516.8 +/- 180 g body wt). RR and PR intervals, QRS segment, and QTpeak, QTend, JTpeak, JTend, and Tpeak-end were measured from MCG waveforms. MCG imaging was automatically obtained as MF maps and as inverse localization of cardiac sources with equivalent current dipole and effective magnetic dipole models. After 300 s of continuous recording were averaged, the signal-to-noise ratio was adequate for study of atrial and ventricular MF maps and for three-dimensional localization of the underlying cardiac sources. Clear-cut age-related differences in VR duration were demonstrated by significantly longer QTend, JTend, and Tpeak-end in older Wistar rats. Reproducible multisite noninvasive cardiac mapping of anesthetized rats is simpler with MCG methodology than with ECG recording. In addition, MCG mapping provides new information based on quantitative analysis of MF and equivalent sources. In this study, statistically significant age-dependent variations in VR intervals were found.
Geological mapping of the Kuiper quadrangle (H06) of Mercury
NASA Astrophysics Data System (ADS)
Giacomini, Lorenza; Massironi, Matteo; Galluzzi, Valentina
2017-04-01
Kuiper quadrangle (H06) is located at the equatorial zone of Mercury and encompasses the area between longitudes 288°E - 360°E and latitudes 22.5°N - 22.5°S. The quadrangle was previously mapped for its most part by De Hon et al. (1981) that, using Mariner10 data, produced a final 1:5M scale map of the area. In this work we present the preliminary results of a more detailed geological map (1:3M scale) of the Kuiper quadrangle that we compiled using the higher resolution of MESSENGER data. The main basemap used for the mapping is the MDIS (Mercury Dual Imaging System) 166 m/pixel BDR (map-projected Basemap reduced Data Record) mosaic. Additional datasets were also taken into account, such as DLR stereo-DEM of the region (Preusker et al., 2016), global mosaics with high-incidence illumination from the east and west (Chabot et al., 2016) and MDIS global color mosaic (Denevi et al., 2016). The preliminary geological map shows that the western part of the quadrangle is characterized by a prevalence of crater materials (i.e. crater floor, crater ejecta) which were distinguished into three classes on the basis of their degradation degree (Galluzzi et al., 2016). Different plain units were also identified and classified as: (i) intercrater plains, represented by densely cratered terrains, (ii) intermediate plains, which are terrains with a moderate density of superposed craters, and (iii) smooth plains, which are poorly cratered volcanic deposits emplaced mainly on the larger crater floors. Finally, several structures were mapped all over the quadrangle. Most of these features are represented by thrusts, some of which appear to form systematic alignments. In particular, two main thrust systems have been identified: i) the "Thakur" system, a 1500 km-long system including several scarps with a NNE-SSW orientation, located at the edge between the Kuiper and Beethoven (H07) quadrangles; ii) the "Santa Maria" system, located at the centre of the quadrangle. It is a 1700 km-long system encompassing faults with a prevalent NNW-SSE orientation. Once the mapping activity is accomplished, the geological map of Kuiper quadrangle will be integrated into the global 1:3M geological map of Mercury (Galluzzi et al., 2017). References Chabot et al., 2016, LPS XLVII, #1256. De Hon et al., 1981, IMAP #1233. Denevi et al., 2016 LPS XLVII, #1264. Galluzzi et al., 2016, Geology, J. Maps, 12, 226-238. Galluzzi et al., 2017, EGU General Assembly 2017, #13822. Preusker et al., 2016, Earth and Planet. Astrophys., arXiv:1608.08487.
NASA Astrophysics Data System (ADS)
Nkambwe, Musisi
Data acquisition and information organization are major constraits in monitoring developments in traditional African urban environments. The internal arrangements and developments of housing units, land uses, communication routes, etc., in these urban areas make it difficult to use cadastral mapping techniques from other continents in building an information base useful for planning. In particular, sub-divisions of plots eventually make the "plot" less meaningful for planning as they are not recorded over time. Ideas expressed in an earlier proposal for a framework for an urban information system that included a temporal component to partially overcome this problem were used to build URBANIFE, a geographical information systemfor mapping and monitoring internal developments in the urban area of Ile-Ife, in southwestern Nigeria. URBANIFE provides an information system in which x- y coordinates from cadastral maps are used to identify the location of individual buildings, while multidate aerial photographs are interpreted and supplemented with field work to provide the temporal dimensions of some of the buildings' attributes considered important in planning and administration.
NASA Astrophysics Data System (ADS)
Suzuki, Yutaka; Fukasawa, Mizuya; Sakata, Osamu; Kato, Hatsuhiro; Hattori, Asobu; Kato, Takaya
Vascular access for hemodialysis is a lifeline for over 280,000 chronic renal failure patients in Japan. Early detection of stenosis may facilitate long-term use of hemodialysis shunts. Stethoscope auscultation of vascular murmurs has some utility in the assessment of access patency; however, the sensitivity of this diagnostic approach is skill dependent. This study proposes a novel diagnosis support system to detect stenosis by using vascular murmurs. The system is based on a self-organizing map (SOM) and short-time maximum entropy method (STMEM) for data analysis. SOM is an artificial neural network, which is trained using unsupervised learning to produce a feature map that is useful for visualizing the analogous relationship between input data. The author recorded vascular murmurs before and after percutaneous transluminal angioplasty (PTA). The SOM-based classification was consistent with to the classification based on MEM spectral and spectrogram characteristics. The ratio of pre-PTA murmurs in the stenosis category was much higher than the post-PTA murmurs. The results suggest that the proposed method may be an effective tool in the determination of shunt stenosis.
Global land information system (GLIS) access to worldwide Landsat data
Smith, Timothy B.; Goodale, Katherine L.
1993-01-01
The Landsat Technical Working Group (LTWG) and the Landsat Ground Station Operations Working Group (LGSOWG) have encouraged Landsat receiving stations around the world to share information about their data holdings through the exchange of metadata records. Receiving stations forward their metadata records to the U.S. Geological Survey's EROS Data Center (EDC) on a quarterly basis. The EDC maintains the records for each station, coordinates changes to the database, and provides metadata to the stations as requested. The result is a comprehensive international database listing most of the world's Landsat data acquisitions This exchange of information began in the early 1980's with the inclusion in the EDC database os scenes acquired by a receiving station in Italy. Through the years other stations have agreed to participate; currently ten of the seventeen stations actively share their metadata records. Coverage maps have been generated to depict the status of the database. The Worldwide Landsat database is also available though the Global Land Information System (GLIS).
Mobility Patterns of Children of Migrant Agricultural Workers.
ERIC Educational Resources Information Center
Cox, J. Lamarr; And Others
Narrative text, tables, and maps summarize information derived from a random sample of 20% of the Migrant Student Record Transfer System (MSRTS) data base as it existed in June 1976 related to the mobility patterns of migrant children in the contiguous United States and Puerto Rico from January 1975 to April 1976. The data base is a tabulation of…
De La Vega, Francisco M; Dailey, David; Ziegle, Janet; Williams, Julie; Madden, Dawn; Gilbert, Dennis A
2002-06-01
Since public and private efforts announced the first draft of the human genome last year, researchers have reported great numbers of single nucleotide polymorphisms (SNPs). We believe that the availability of well-mapped, quality SNP markers constitutes the gateway to a revolution in genetics and personalized medicine that will lead to better diagnosis and treatment of common complex disorders. A new generation of tools and public SNP resources for pharmacogenomic and genetic studies--specifically for candidate-gene, candidate-region, and whole-genome association studies--will form part of the new scientific landscape. This will only be possible through the greater accessibility of SNP resources and superior high-throughput instrumentation-assay systems that enable affordable, highly productive large-scale genetic studies. We are contributing to this effort by developing a high-quality linkage disequilibrium SNP marker map and an accompanying set of ready-to-use, validated SNP assays across every gene in the human genome. This effort incorporates both the public sequence and SNP data sources, and Celera Genomics' human genome assembly and enormous resource ofphysically mapped SNPs (approximately 4,000,000 unique records). This article discusses our approach and methodology for designing the map, choosing quality SNPs, designing and validating these assays, and obtaining population frequency ofthe polymorphisms. We also discuss an advanced, high-performance SNP assay chemisty--a new generation of the TaqMan probe-based, 5' nuclease assay-and high-throughput instrumentation-software system for large-scale genotyping. We provide the new SNP map and validation information, validated SNP assays and reagents, and instrumentation systems as a novel resource for genetic discoveries.
Structured product labeling improves detection of drug-intolerance issues.
Schadow, Gunther
2009-01-01
This study sought to assess the value of the Health Level 7/U.S. Food and Drug Administration Structured Product Labeling (SPL) drug knowledge representation standard and its associated terminology sources for drug-intolerance (allergy) decision support in computerized provider order entry (CPOE) systems. The Regenstrief Institute CPOE drug-intolerance issue detection system and its knowledge base was compared with a method based on existing SPL label content enriched with knowledge sources used with SPL (NDF-RT/MeSH). Both methods were applied to a large set of drug-intolerance (allergy) records, drug orders, and medication dispensing records covering >50,000 patients over 30 years. The number of drug-intolerance issues detected by both methods was counted, as well as the number of patients with issues, number of distinct drugs, and number of distinct intolerances. The difference between drug-intolerance issues detected or missed by either method was qualitatively analyzed. Although <70% of terms were mapped to SPL, the new approach detected four times as many drug-intolerance issues on twice as many patients. The SPL-based approach is more sensitive and suggests that mapping local dictionaries to SPL, and enhancing the depth and breadth of coverage of SPL content are worth accelerating. The study also highlights specificity problems known to trouble drug-intolerance decision support and suggests how terminology and methods of recording drug intolerances could be improved.
Structured Product Labeling Improves Detection of Drug-intolerance Issues
Schadow, Gunther
2009-01-01
Objectives This study sought to assess the value of the Health Level 7/U.S. Food and Drug Administration Structured Product Labeling (SPL) drug knowledge representation standard and its associated terminology sources for drug-intolerance (allergy) decision support in computerized provider order entry (CPOE) systems. Design The Regenstrief Institute CPOE drug-intolerance issue detection system and its knowledge base was compared with a method based on existing SPL label content enriched with knowledge sources used with SPL (NDF-RT/MeSH). Both methods were applied to a large set of drug-intolerance (allergy) records, drug orders, and medication dispensing records covering >50,000 patients over 30 years. Measurements The number of drug-intolerance issues detected by both methods was counted, as well as the number of patients with issues, number of distinct drugs, and number of distinct intolerances. The difference between drug-intolerance issues detected or missed by either method was qualitatively analyzed. Results Although <70% of terms were mapped to SPL, the new approach detected four times as many drug-intolerance issues on twice as many patients. Conclusion The SPL-based approach is more sensitive and suggests that mapping local dictionaries to SPL, and enhancing the depth and breadth of coverage of SPL content are worth accelerating. The study also highlights specificity problems known to trouble drug-intolerance decision support and suggests how terminology and methods of recording drug intolerances could be improved. PMID:18952933
Reciprocal Space Mapping of Macromolecular Crystals in the Laboratory
NASA Technical Reports Server (NTRS)
Snell, Edward H.; Boggon, T. J.; Fewster, P. F.; Siddons, D. P.; Stojanof, V.; Pusey, M. L.
1998-01-01
The technique of reciprocal space mapping applied to the physical measurement of macromolecular crystals will be described. This technique uses a triple axis diffractometer setup whereby the monochromator is the first crystal, the sample is the second and the third crystal (of the same material as the monochromator) analyzes the diffracted beam. The geometry is such that it is possible to separate mosaic volume effects from lattice strain effects. The deconvolution of the instrument parameters will also be addressed. Results from measurements at Brookhaven National Synchrotron Radiation Source carried out on microgravity and ground-grown crystals will be presented. The required beam characteristics for reciprocal space mapping are also ideal for topographic studies and the first topographs ever recorded from microgravity protein crystal samples will be shown. We are now working on a system which will enable reciprocal space mapping, mosaicity and topography studies to be carried out in the home laboratory. This system uses a rotating anode X-ray source to provide an intense beam then a Bartels double crystal, four reflection monochromator to provide the spectral and geometric beam conditioning necessary such that the instrument characteristics do not mask the measurement. This is coupled to a high precision diffractometer and sensitive detector. Commissioning data and first results from the system will be presented.
Updating the planetary time scale: focus on Mars
Tanaka, Kenneth L.; Quantin-Nataf, Cathy
2013-01-01
Formal stratigraphic systems have been developed for the surface materials of the Moon, Mars, Mercury, and the Galilean satellite Ganymede. These systems are based on geologic mapping, which establishes relative ages of surfaces delineated by superposition, morphology, impact crater densities, and other relations and features. Referent units selected from the mapping determine time-stratigraphic bases and/or representative materials characteristic of events and periods for definition of chronologic units. Absolute ages of these units in some cases can be estimated using crater size-frequency data. For the Moon, the chronologic units and cratering record are calibrated by radiometric ages measured from samples collected from the lunar surface. Model ages for other cratered planetary surfaces are constructed primarily by estimating cratering rates relative to that of the Moon. Other cratered bodies with estimated surface ages include Venus and the Galilean satellites of Jupiter. New global geologic mapping and crater dating studies of Mars are resulting in more accurate and detailed reconstructions of its geologic history.
CortiQ-based Real-Time Functional Mapping for Epilepsy Surgery.
Kapeller, Christoph; Korostenskaja, Milena; Prueckl, Robert; Chen, Po-Ching; Lee, Ki Heyeong; Westerveld, Michael; Salinas, Christine M; Cook, Jane C; Baumgartner, James E; Guger, Christoph
2015-06-01
To evaluate the use of the cortiQ-based mapping system (g.tec medication engineering GmbH, Austria) for real-time functional mapping (RTFM) and to compare it to results from electrical cortical stimulation mapping (ESM) and functional magnetic resonance imaging (fMRI). Electrocorticographic activity was recorded in 3 male patients with intractable epilepsy by using cortiQ mapping system and analyzed in real time. Activation related to motor, sensory, and receptive language tasks was determined by evaluating the power of the high gamma frequency band (60-170 Hz). The sensitivity and specificity of RTFM were tested against ESM and fMRI results. "Next-neighbor" approach demonstrated [sensitivity/specificity %] (1) RTFM against ESM: 100.00/79.70 for hand motor; 100.00/73.87 for hand sensory; -/87 for language (it was not identified by the ESM); (2) RTFM against fMRI: 100.00/84.4 for hand motor; 66.70/85.35 for hand sensory; and 87.85/77.70 for language. The results of the quantitative "next-neighbor" RTFM evaluation were concordant to those from ESM and fMRI. The RTFM correlates well with localization of hand motor function provided by ESM and fMRI, which may offer added localization in the operating room and guidance for extraoperative ESM mapping. Real-time functional mapping correlates with fMRI language activation when ESM findings are negative. It has fewer limitations than ESM and greater flexibility in activation paradigms and measuring responses.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-21
... for OMB Review; Comment Request; Mine Mapping and Records of Opening, Closing, and Reopening of Mines ACTION: Notice. SUMMARY: The Department of Labor (DOL) is submitting the Mine Safety and Health Administration (MSHA) sponsored information collection request (ICR) titled, ``Mine Mapping and Records of...
Inversion of Acoustic and Electromagnetic Recordings for Mapping Current Flow in Lightning Strikes
NASA Astrophysics Data System (ADS)
Anderson, J.; Johnson, J.; Arechiga, R. O.; Thomas, R. J.
2012-12-01
Acoustic recordings can be used to map current-carrying conduits in lightning strikes. Unlike stepped leaders, whose very high frequency (VHF) radio emissions have short (meter-scale) wavelengths and can be located by lightning-mapping arrays, current pulses emit longer (kilometer-scale) waves and cannot be mapped precisely by electromagnetic observations alone. While current pulses are constrained to conductive channels created by stepped leaders, these leaders often branch as they propagate, and most branches fail to carry current. Here, we present a method to use thunder recordings to map current pulses, and we apply it to acoustic and VHF data recorded in 2009 in the Magdalena mountains in central New Mexico, USA. Thunder is produced by rapid heating and expansion of the atmosphere along conductive channels in response to current flow, and therefore can be used to recover the geometry of the current-carrying channel. Toward this goal, we use VHF pulse maps to identify candidate conductive channels where we treat each channel as a superposition of finely-spaced acoustic point sources. We apply ray tracing in variable atmospheric structures to forward model the thunder that our microphone network would record for each candidate channel. Because multiple channels could potentially carry current, a non-linear inversion is performed to determine the acoustic source strength of each channel. For each combination of acoustic source strengths, synthetic thunder is modeled as a superposition of thunder signals produced by each channel, and a power envelope of this stack is then calculated. The inversion iteratively minimizes the misfit between power envelopes of recorded and modeled thunder. Because the atmospheric sound speed structure through which the waves propagate during these events is unknown, we repeat the procedure on many plausible atmospheres to find an optimal fit. We then determine the candidate channel, or channels, that minimizes residuals between synthetic and acoustic recordings. We demonstrate the usefulness of this method on both intracloud and cloud-to-ground strikes, and discuss factors affecting our ability to replicate recorded thunder.
Fiáth, Richárd; Beregszászi, Patrícia; Horváth, Domonkos; Wittner, Lucia; Aarts, Arno A A; Ruther, Patrick; Neves, Hercules P; Bokor, Hajnalka; Acsády, László; Ulbert, István
2016-11-01
Recording simultaneous activity of a large number of neurons in distributed neuronal networks is crucial to understand higher order brain functions. We demonstrate the in vivo performance of a recently developed electrophysiological recording system comprising a two-dimensional, multi-shank, high-density silicon probe with integrated complementary metal-oxide semiconductor electronics. The system implements the concept of electronic depth control (EDC), which enables the electronic selection of a limited number of recording sites on each of the probe shafts. This innovative feature of the system permits simultaneous recording of local field potentials (LFP) and single- and multiple-unit activity (SUA and MUA, respectively) from multiple brain sites with high quality and without the actual physical movement of the probe. To evaluate the in vivo recording capabilities of the EDC probe, we recorded LFP, MUA, and SUA in acute experiments from cortical and thalamic brain areas of anesthetized rats and mice. The advantages of large-scale recording with the EDC probe are illustrated by investigating the spatiotemporal dynamics of pharmacologically induced thalamocortical slow-wave activity in rats and by the two-dimensional tonotopic mapping of the auditory thalamus. In mice, spatial distribution of thalamic responses to optogenetic stimulation of the neocortex was examined. Utilizing the benefits of the EDC system may result in a higher yield of useful data from a single experiment compared with traditional passive multielectrode arrays, and thus in the reduction of animals needed for a research study. Copyright © 2016 the American Physiological Society.
Do, Nhan V; Barnhill, Rick; Heermann-Do, Kimberly A; Salzman, Keith L; Gimbel, Ronald W
2011-01-01
To design, build, implement, and evaluate a personal health record (PHR), tethered to the Military Health System, that leverages Microsoft® HealthVault and Google® Health infrastructure based on user preference. A pilot project was conducted in 2008-2009 at Madigan Army Medical Center in Tacoma, Washington. Our PHR was architected to a flexible platform that incorporated standards-based models of Continuity of Document and Continuity of Care Record to map Department of Defense-sourced health data, via a secure Veterans Administration data broker, to Microsoft® HealthVault and Google® Health based on user preference. The project design and implementation were guided by provider and patient advisory panels with formal user evaluation. The pilot project included 250 beneficiary users. Approximately 73.2% of users were < 65 years of age, and 38.4% were female. Of the users, 169 (67.6%) selected Microsoft® HealthVault, and 81 (32.4%) selected Google® Health as their PHR of preference. Sample evaluation of users reflected 100% (n = 60) satisfied with convenience of record access and 91.7% (n = 55) satisfied with overall functionality of PHR. Key lessons learned related to data-transfer decisions (push vs pull), purposeful delays in reporting sensitive information, understanding and mapping PHR use and clinical workflow, and decisions on information patients may choose to share with their provider. Currently PHRs are being viewed as empowering tools for patient activation. Design and implementation issues (eg, technical, organizational, information security) are substantial and must be thoughtfully approached. Adopting standards into design can enhance the national goal of portability and interoperability.
Dioptric defocus maps across the visual field for different indoor environments.
García, Miguel García; Ohlendorf, Arne; Schaeffel, Frank; Wahl, Siegfried
2018-01-01
One of the factors proposed to regulate the eye growth is the error signal derived from the defocus in the retina and actually, this might arise from defocus not only in the fovea but the whole visual field. Therefore, myopia could be better predicted by spatio-temporally mapping the 'environmental defocus' over the visual field. At present, no devices are available that could provide this information. A 'Kinect sensor v1' camera (Microsoft Corp.) and a portable eye tracker were used for developing a system for quantifying 'indoor defocus error signals' across the central 58° of the visual field. Dioptric differences relative to the fovea (assumed to be in focus) were recorded over the visual field and 'defocus maps' were generated for various scenes and tasks.
Lin, Eric; Craig, Calvin; Lamothe, Marcel; Sarunic, Marinko V.; Beg, Mirza Faisal
2015-01-01
Zebrafish are increasingly being used as a model of vertebrate cardiology due to mammalian-like cardiac properties in many respects. The size and fecundity of zebrafish make them suitable for large-scale genetic and pharmacological screening. In larger mammalian hearts, optical mapping is often used to investigate the interplay between voltage and calcium dynamics and to investigate their respective roles in arrhythmogenesis. This report outlines the construction of an optical mapping system for use with zebrafish hearts, using the voltage-sensitive dye RH 237 and the calcium indicator dye Rhod-2 using two industrial-level CCD cameras. With the use of economical cameras and a common 532-nm diode laser for excitation, the rate dependence of voltage and calcium dynamics within the atrial and ventricular compartments can be simultaneously determined. At 140 beats/min, the atrial action potential duration was 36 ms and the transient duration was 53 ms. With the use of a programmable electrical stimulator, a shallow rate dependence of 3 and 4 ms per 100 beats/min was observed, respectively. In the ventricle the action potential duration was 109 ms and the transient duration was 124 ms, with a steeper rate dependence of 12 and 16 ms per 100 beats/min. Synchronous electrocardiograms and optical mapping recordings were recorded, in which the P-wave aligns with the atrial voltage peak and R-wave aligns with the ventricular peak. A simple optical pathway and imaging chamber are detailed along with schematics for the in-house construction of the electrocardiogram amplifier and electrical stimulator. Laboratory procedures necessary for zebrafish heart isolation, cannulation, and loading are also presented. PMID:25740339
Yu, Ki Jun; Kuzum, Duygu; Hwang, Suk-Won; Kim, Bong Hoon; Juul, Halvor; Kim, Nam Heon; Won, Sang Min; Chiang, Ken; Trumpis, Michael; Richardson, Andrew G; Cheng, Huanyu; Fang, Hui; Thomson, Marissa; Bink, Hank; Talos, Delia; Seo, Kyung Jin; Lee, Hee Nam; Kang, Seung-Kyun; Kim, Jae-Hwan; Lee, Jung Yup; Huang, Younggang; Jensen, Frances E; Dichter, Marc A; Lucas, Timothy H; Viventi, Jonathan; Litt, Brian; Rogers, John A
2016-07-01
Bioresorbable silicon electronics technology offers unprecedented opportunities to deploy advanced implantable monitoring systems that eliminate risks, cost and discomfort associated with surgical extraction. Applications include postoperative monitoring and transient physiologic recording after percutaneous or minimally invasive placement of vascular, cardiac, orthopaedic, neural or other devices. We present an embodiment of these materials in both passive and actively addressed arrays of bioresorbable silicon electrodes with multiplexing capabilities, which record in vivo electrophysiological signals from the cortical surface and the subgaleal space. The devices detect normal physiologic and epileptiform activity, both in acute and chronic recordings. Comparative studies show sensor performance comparable to standard clinical systems and reduced tissue reactivity relative to conventional clinical electrocorticography (ECoG) electrodes. This technology offers general applicability in neural interfaces, with additional potential utility in treatment of disorders where transient monitoring and modulation of physiologic function, implant integrity and tissue recovery or regeneration are required.
Wagenaar, Daniel A
2017-01-01
Studies of neuronal network emergence during sensory processing and motor control are greatly facilitated by technologies that allow us to simultaneously record the membrane potential dynamics of a large population of neurons in single cell resolution. To achieve whole-brain recording with the ability to detect both small synaptic potentials and action potentials, we developed a voltage-sensitive dye (VSD) imaging technique based on a double-sided microscope that can image two sides of a nervous system simultaneously. We applied this system to the segmental ganglia of the medicinal leech. Double-sided VSD imaging enabled simultaneous recording of membrane potential events from almost all of the identifiable neurons. Using data obtained from double-sided VSD imaging, we analyzed neuronal dynamics in both sensory processing and generation of behavior and constructed functional maps for identification of neurons contributing to these processes. PMID:28944754
High-resolution behavioral mapping of electric fishes in Amazonian habitats.
Madhav, Manu S; Jayakumar, Ravikrishnan P; Demir, Alican; Stamper, Sarah A; Fortune, Eric S; Cowan, Noah J
2018-04-11
The study of animal behavior has been revolutionized by sophisticated methodologies that identify and track individuals in video recordings. Video recording of behavior, however, is challenging for many species and habitats including fishes that live in turbid water. Here we present a methodology for identifying and localizing weakly electric fishes on the centimeter scale with subsecond temporal resolution based solely on the electric signals generated by each individual. These signals are recorded with a grid of electrodes and analyzed using a two-part algorithm that identifies the signals from each individual fish and then estimates the position and orientation of each fish using Bayesian inference. Interestingly, because this system involves eavesdropping on electrocommunication signals, it permits monitoring of complex social and physical interactions in the wild. This approach has potential for large-scale non-invasive monitoring of aquatic habitats in the Amazon basin and other tropical freshwater systems.
Sentinel lymph node detection in gynecologic malignancies by a handheld fluorescence camera
NASA Astrophysics Data System (ADS)
Hirsch, Ole; Szyc, Lukasz; Muallem, Mustafa Zelal; Ignat, Iulia; Chekerov, Radoslav; Macdonald, Rainer; Sehouli, Jalid; Braicu, Ioana; Grosenick, Dirk
2017-02-01
Near-infrared fluorescence imaging using indocyanine green (ICG) as a tracer is a promising technique for mapping the lymphatic system and for detecting sentinel lymph nodes (SLN) during cancer surgery. In our feasibility study we have investigated the application of a custom-made handheld fluorescence camera system for the detection of lymph nodes in gynecological malignancies. It comprises a low cost CCD camera with enhanced NIR sensitivity and two groups of LEDs emitting at wavelengths of 735 nm and 830 nm for interlaced recording of fluorescence and reflectance images of the tissue, respectively. With the help of our system, surgeons can observe fluorescent tissue structures overlaid onto the anatomical image on a monitor in real-time. We applied the camera system for intraoperative lymphatic mapping in 5 patients with vulvar cancer, 5 patients with ovarian cancer, 3 patients with cervical cancer, and 3 patients with endometrial cancer. ICG was injected at four loci around the primary malignant tumor during surgery. After a residence time of typically 15 min fluorescence images were taken in order to visualize the lymph nodes closest to the carcinomas. In cases with vulvar cancer about half of the lymph nodes detected by routinely performed radioactive SLN mapping have shown fluorescence in vivo as well. In the other types of carcinomas several lymph nodes could be detected by fluorescence during laparotomy. We conclude that our low cost camera system has sufficient sensitivity for lymphatic mapping during surgery.
Grouiller, Frédéric; Thornton, Rachel C.; Groening, Kristina; Spinelli, Laurent; Duncan, John S.; Schaller, Karl; Siniatchkin, Michael; Lemieux, Louis; Seeck, Margitta; Michel, Christoph M.
2011-01-01
In patients with medically refractory focal epilepsy who are candidates for epilepsy surgery, concordant non-invasive neuroimaging data are useful to guide invasive electroencephalographic recordings or surgical resection. Simultaneous electroencephalography and functional magnetic resonance imaging recordings can reveal regions of haemodynamic fluctuations related to epileptic activity and help localize its generators. However, many of these studies (40–70%) remain inconclusive, principally due to the absence of interictal epileptiform discharges during simultaneous recordings, or lack of haemodynamic changes correlated to interictal epileptiform discharges. We investigated whether the presence of epilepsy-specific voltage maps on scalp electroencephalography correlated with haemodynamic changes and could help localize the epileptic focus. In 23 patients with focal epilepsy, we built epilepsy-specific electroencephalographic voltage maps using averaged interictal epileptiform discharges recorded during long-term clinical monitoring outside the scanner and computed the correlation of this map with the electroencephalographic recordings in the scanner for each time frame. The time course of this correlation coefficient was used as a regressor for functional magnetic resonance imaging analysis to map haemodynamic changes related to these epilepsy-specific maps (topography-related haemodynamic changes). The method was first validated in five patients with significant haemodynamic changes correlated to interictal epileptiform discharges on conventional analysis. We then applied the method to 18 patients who had inconclusive simultaneous electroencephalography and functional magnetic resonance imaging studies due to the absence of interictal epileptiform discharges or absence of significant correlated haemodynamic changes. The concordance of the results with subsequent intracranial electroencephalography and/or resection area in patients who were seizure free after surgery was assessed. In the validation group, haemodynamic changes correlated to voltage maps were similar to those obtained with conventional analysis in 5/5 patients. In 14/18 patients (78%) with previously inconclusive studies, scalp maps related to epileptic activity had haemodynamic correlates even when no interictal epileptiform discharges were detected during simultaneous recordings. Haemodynamic changes correlated to voltage maps were spatially concordant with intracranial electroencephalography or with the resection area. We found better concordance in patients with lateral temporal and extratemporal neocortical epilepsy compared to medial/polar temporal lobe epilepsy, probably due to the fact that electroencephalographic voltage maps specific to lateral temporal and extratemporal epileptic activity are more dissimilar to maps of physiological activity. Our approach significantly increases the yield of simultaneous electroencephalography and functional magnetic resonance imaging to localize the epileptic focus non-invasively, allowing better targeting for surgical resection or implantation of intracranial electrode arrays. PMID:21752790
4D light-field sensing system for people counting
NASA Astrophysics Data System (ADS)
Hou, Guangqi; Zhang, Chi; Wang, Yunlong; Sun, Zhenan
2016-03-01
Counting the number of people is still an important task in social security applications, and a few methods based on video surveillance have been proposed in recent years. In this paper, we design a novel optical sensing system to directly acquire the depth map of the scene from one light-field camera. The light-field sensing system can count the number of people crossing the passageway, and record the direction and intensity of rays at a snapshot without any assistant light devices. Depth maps are extracted from the raw light-ray sensing data. Our smart sensing system is equipped with a passive imaging sensor, which is able to naturally discern the depth difference between the head and shoulders for each person. Then a human model is built. Through detecting the human model from light-field images, the number of people passing the scene can be counted rapidly. We verify the feasibility of the sensing system as well as the accuracy by capturing real-world scenes passing single and multiple people under natural illumination.
Sand fairway mapping as a tool for tectonic restoration in orogenic belts
NASA Astrophysics Data System (ADS)
Butler, Rob
2016-04-01
The interplay between regional subsidence mechanisms and local deformation associated with individual fold-thrust structures is commonly investigated in neotectonic subaerial systems using tectonic geomorphology. Taking these approaches back into the early evolution of mountain belts is difficult as much of the key evidence is lost through erosion. The challenge is to develop appropriate tools for investigating these early stages of orogenesis. However, many such systems developed under water. In these settings the connections between regional and local tectonics are manifest in complex bathymetry. Turbidity currents flowing between and across these structures will interact with their substrate and thus their deposits, tied to stratigraphic ages, can chart tectonic evolution. Understanding the depositional processes of the turbidity currents provides substantial further insight on confining seabed geometry and thus can establish significant control on the evolution of bathymetric gradients and continuity through basins. However, reading these records commonly demands working in structurally deformed terrains that hitherto have discouraged sedimentological study. This is now changing. Sand fairway mapping provides a key approach. Fairway maps chart connectivity between basins and hence their relative elevation through time. Larger-scale tectonic reconstructions may be tested by linking fairway maps to sand composition and other provenance data. More detailed turbidite sedimentology provides substantial further insight. In confined turbidite systems, it is the coarser sand component that accumulates in the deeper basin with fines fractionated onto the flanks. Flow bypass, evidenced by abrupt breaks in grading within individual event beds, can be used to predict sand fraction distribution down fairways. Integrating sedimentology into fairway maps can chart syntectonic slope evolution and thus provide high resolution tools equivalent to those in subaerial tectonic geomorphology. The stratigraphic records are preserved in many parts of the Alpine-Mediterranean region. Examples are drawn from the Eo-Oligocene of the western Alps and the early Miocene of the Maghreb-Apennine system to illustrate how turbidite sedimentology, linked to studies of basin structure, can inform understanding of tectonic processes on regional and local scales. In both examples, sediment was delivered across deforming basin arrays containing contractional structures, sourced from beyond the immediate orogenic segments. The depositional systems show that multiple structures were active in parallel, rather than develop in any particular sequence. Both systems show that significant deformation occurs, emerging to the syn-orogenic surface ahead of the main orogenic wedge. The cycling of uplift and subsidence of "massifs" can be significantly more complex that the histories resolved from thermochronological data alone.
Vandenbussche, Pierre-Yves; Cormont, Sylvie; André, Christophe; Daniel, Christel; Delahousse, Jean; Charlet, Jean; Lepage, Eric
2013-01-01
Objective This study shows the evolution of a biomedical observation dictionary within the Assistance Publique Hôpitaux Paris (AP-HP), the largest European university hospital group. The different steps are detailed as follows: the dictionary creation, the mapping to logical observation identifier names and codes (LOINC), the integration into a multiterminological management platform and, finally, the implementation in the health information system. Methods AP-HP decided to create a biomedical observation dictionary named AnaBio, to map it to LOINC and to maintain the mapping. A management platform based on methods used for knowledge engineering has been put in place. It aims at integrating AnaBio within the health information system and improving both the quality and stability of the dictionary. Results This new management platform is now active in AP-HP. The AnaBio dictionary is shared by 120 laboratories and currently includes 50 000 codes. The mapping implementation to LOINC reaches 40% of the AnaBio entries and uses 26% of LOINC records. The results of our work validate the choice made to develop a local dictionary aligned with LOINC. Discussion and Conclusions This work constitutes a first step towards a wider use of the platform. The next step will support the entire biomedical production chain, from the clinician prescription, through laboratory tests tracking in the laboratory information system to the communication of results and the use for decision support and biomedical research. In addition, the increase in the mapping implementation to LOINC ensures the interoperability allowing communication with other international health institutions. PMID:23635601
Dynamics of Stability of Orientation Maps Recorded with Optical Imaging.
Shumikhina, S I; Bondar, I V; Svinov, M M
2018-03-15
Orientation selectivity is an important feature of visual cortical neurons. Optical imaging of the visual cortex allows for the generation of maps of orientation selectivity that reflect the activity of large populations of neurons. To estimate the statistical significance of effects of experimental manipulations, evaluation of the stability of cortical maps over time is required. Here, we performed optical imaging recordings of the visual cortex of anesthetized adult cats. Monocular stimulation with moving clockwise square-wave gratings that continuously changed orientation and direction was used as the mapping stimulus. Recordings were repeated at various time intervals, from 15 min to 16 h. Quantification of map stability was performed on a pixel-by-pixel basis using several techniques. Map reproducibility showed clear dynamics over time. The highest degree of stability was seen in maps recorded 15-45 min apart. Averaging across all time intervals and all stimulus orientations revealed a mean shift of 2.2 ± 0.1°. There was a significant tendency for larger shifts to occur at longer time intervals. Shifts between 2.8° (mean ± 2SD) and 5° were observed more frequently at oblique orientations, while shifts greater than 5° appeared more frequently at cardinal orientations. Shifts greater than 5° occurred rarely overall (5.4% of cases) and never exceeded 11°. Shifts of 10-10.6° (0.7%) were seen occasionally at time intervals of more than 4 h. Our findings should be considered when evaluating the potential effect of experimental manipulations on orientation selectivity mapping studies. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
2009-01-01
Background Insertional mutagenesis is an effective method for functional genomic studies in various organisms. It can rapidly generate easily tractable mutations. A large-scale insertional mutagenesis with the piggyBac (PB) transposon is currently performed in mice at the Institute of Developmental Biology and Molecular Medicine (IDM), Fudan University in Shanghai, China. This project is carried out via collaborations among multiple groups overseeing interconnected experimental steps and generates a large volume of experimental data continuously. Therefore, the project calls for an efficient database system for recording, management, statistical analysis, and information exchange. Results This paper presents a database application called MP-PBmice (insertional mutation mapping system of PB Mutagenesis Information Center), which is developed to serve the on-going large-scale PB insertional mutagenesis project. A lightweight enterprise-level development framework Struts-Spring-Hibernate is used here to ensure constructive and flexible support to the application. The MP-PBmice database system has three major features: strict access-control, efficient workflow control, and good expandability. It supports the collaboration among different groups that enter data and exchange information on daily basis, and is capable of providing real time progress reports for the whole project. MP-PBmice can be easily adapted for other large-scale insertional mutation mapping projects and the source code of this software is freely available at http://www.idmshanghai.cn/PBmice. Conclusion MP-PBmice is a web-based application for large-scale insertional mutation mapping onto the mouse genome, implemented with the widely used framework Struts-Spring-Hibernate. This system is already in use by the on-going genome-wide PB insertional mutation mapping project at IDM, Fudan University. PMID:19958505
Pathik, Bhupesh; Kalman, Jonathan M; Walters, Tomos; Kuklik, Pawel; Zhao, Jichao; Madry, Andrew; Prabhu, Sandeep; Nalliah, Chrishan; Kistler, Peter; Lee, Geoffrey
2018-01-01
This study sought to validate a 3-dimensional (3D) phase mapping system and determine the distribution of dominant propagation patterns in persistent atrial fibrillation (AF). Currently available systems display phase as simplified 2-dimensional maps. We developed a novel 3D phase mapping system that uses the 3D location of basket catheter electrodes and the patient's 3D left atrial surface geometry to interpolate phase and create a 3D representation of phase progression. Six-min AF recordings from the left atrium were obtained in 14 patients using the Constellation basket catheter and analyzed offline. Exported signals underwent both phase and traditional activation analysis and were then visualized using a novel 3D mapping system. Analysis involved: 1) validation of phase analysis by comparing beat-to-beat AF cycle length calculated using phase inversion with that determined from activation timing in the same 20-s segment; 2) validation of 3D phase by comparing propagation patterns observed using 3D phase with 3D activation in the same 1-min segment; and 3) determining the distribution of dominant propagation patterns in 6-min recordings using 3D phase. There was strong agreement of beat-to-beat AF cycle length between activation analysis and phase inversion (R 2 = 0.91). There was no significant difference between 3D activation and 3D phase in mean percentage of propagation patterns classified as single wavefronts (p = 0.99), focal activations (p = 0.26), disorganized activity (p = 0.76), or multiple wavefronts (p = 0.70). During prolonged 3D phase, single wavefronts were the most common propagation pattern (50.2%). A total of 34 rotors were seen in 9 of 14 patients. All rotors were transient with mean duration of 1.0 ± 0.6 s. Rotors were only observed in areas of high electrode density where the interelectrode distance was significantly shorter than nonrotor sites (7.4 [interquartile range: 6.3 to 14.6] vs. 15.3 mm [interquartile range: 10.1 to 22.2]; p < 0.001). During prolonged 3D phase mapping, transient rotors were observed in 64% of patients and reformed at the same anatomic location in 44% of patients. The electrode density of the basket catheter may limit the detection of rotors. Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Heran, William D.; Smith, Bruce D.
1980-01-01
The data presented herein is from an airborne electromagnetic INPUT* survey conducted by Geoterrex Limited of Canada for the U.S. Geological Survey. The survey area is located in the central part of the Upper Peninsula of Michigan, within parts of Iron, Baraga, and Dickinson Counties. The general area covered is between 46°00' and 46°30' latitude and 88°00' and 88°30' longitude (fig. 1).The INPUT survey was flown as part of a U.S. Geological Survey CUSMAP (Conterminous United States Mineral Appraisal Program) project focusing on the Iron River 2° quadrangle. The survey was flown in order to provide geophysical information which will aid in an integrated geological assessment of mineral potentials of this part of the Iron River 2° quadrangle. The flight line spacing was chosen to maximize the areal coverage without a loss of resolution of major lithologic and structural features.East-west flight lines were flown 400 feet above ground at 1/2 mile intervals. Aerial photos were used for navigation, and the flight path was recorded on continuous-strip film. A continuously recording total field ground magnetic station was used to monitor variations in the Earth's magnetic field. One north-south line was flown to provide a tie for the magnetic data, which was recorded simultaneously with the electromagnetic data by a sensor mounted in the tail of the aircraft. This report is one of two open-file reports. The map in the other report Heran and Smith (1980) shows locations of the fiducial points, the flight lines, preliminary locations of anomalies and conductive zones; all plotted on an air photomosaic. The latitude and longitude ticks marked on this map are only approximate due to distortion in air photos used to recover the flight line position. This map is preliminary and is not to be considered a final interpretation. The present report contains a description of the instrument specifications, a copy of the ground station magnetic data, and a record of the electromagnetic and magnetic data, with reference to the digital data of the flight records. The purpose of two reports is to make the analog and magnetic records available separate from the anomaly map. The following sections on the general description of the INPUT system are abridged from a typical interpretation report prepared by Geoterrex Limited of Ottawa, Canada for the U.S. Geological Survey.
Digital mining claim density map for federal lands in Nevada: 1996
Hyndman, Paul C.; Campbell, Harry W.
1999-01-01
This report describes a digital map generated by the U.S. Geological Survey (USGS) to provide digital spatial mining claim density information for federal lands in Nevada as of March 1997. Mining claim data is earth science information deemed to be relevant to the assessment of historic, current, and future ecological, economic, and social systems. There is no paper map included in this Open-File report. In accordance with the Federal Land Policy and Management Act of 1976 (FLPMA), all unpatented mining claims, mill, and tunnel sites must be recorded at the appropriate Bureau of Land Management (BLM) State office. BLM maintains a cumulative computer listing of mining claims in the MCRS database with locations given by meridian, township, range, and section. A mining claim is considered closed when the claim is relinquished or a formal BLM decision declaring the mining claim null and void has been issued and the appeal period has expired. All other mining claims filed with BLM are considered to be open and actively held. The digital map (figure 1.) with the mining claim density database available in this report are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller.
Digital mining claim density map for federal lands in Utah: 1996
Hyndman, Paul C.; Campbell, Harry W.
1999-01-01
This report describes a digital map generated by the U.S. Geological Survey (USGS) to provide digital spatial mining claim density information for federal lands in Utah as of March 1997. Mining claim data is earth science information deemed to be relevant to the assessment of historic, current, and future ecological, economic, and social systems. There is no paper map included in this Open-File report. In accordance with the Federal Land Policy and Management Act of 1976 (FLPMA), all unpatented mining claims, mill, and tunnel sites must be recorded at the appropriate BLM State office. BLM maintains a cumulative computer listing of mining claims in the MCRS database with locations given by meridian, township, range, and section. A mining claim is considered closed when the claim is relinquished or a formal BLM decision declaring the mining claim null and void has been issued and the appeal period has expired. All other mining claims filed with BLM are considered to be open and actively held. The digital map (figure 1.) with the mining claim density database available in this report are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller.
Digital mining claim density map for federal lands in California: 1996
Hyndman, Paul C.; Campbell, Harry W.
1999-01-01
This report describes a digital map generated by the U.S. Geological Survey (USGS) to provide digital spatial mining claim density information for federal lands in California as of March 1997. Mining claim data is earth science information deemed to be relevant to the assessment of historic, current, and future ecological, economic, and social systems. There is no paper map included in this Open-File report. In accordance with the Federal Land Policy and Management Act of 1976 (FLPMA), all unpatented mining claims, mill, and tunnel sites must be recorded at the appropriate BLM State office. BLM maintains a cumulative computer listing of mining claims in the MCRS database with locations given by meridian, township, range, and section. A mining claim is considered closed when the claim is relinquished or a formal BLM decision declaring the mining claim null and void has been issued and the appeal period has expired. All other mining claims filed with BLM are considered to be open and actively held. The digital map (figure 1.) with the mining claim density database available in this report are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller.
Digital mining claim density map for federal lands in New Mexico: 1996
Hyndman, Paul C.; Campbell, Harry W.
1999-01-01
This report describes a digital map generated by the U.S. Geological Survey (USGS) to provide digital spatial mining claim density information for federal lands in New Mexico as of March 1997. Mining claim data is earth science information deemed to be relevant to the assessment of historic, current, and future ecological, economic, and social systems. There is no paper map included in this Open-File report. In accordance with the Federal Land Policy and Management Act of 1976 (FLPMA), all unpatented mining claims, mill, and tunnel sites must be recorded at the appropriate BLM State office. BLM maintains a cumulative computer listing of mining claims in the MCRS database with locations given by meridian, township, range, and section. A mining claim is considered closed when the claim is relinquished or a formal BLM decision declaring the mining claim null and void has been issued and the appeal period has expired. All other mining claims filed with BLM are considered to be open and actively held. The digital map (figure 1.) with the mining claim density database available in this report are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller.
Digital mining claim density map for federal lands in Arizona: 1996
Hyndman, Paul C.; Campbell, Harry W.
1999-01-01
This report describes a digital map generated by the U.S. Geological Survey (USGS) to provide digital spatial mining claim density information for federal lands in Arizona as of March 1997. Mining claim data is earth science information deemed to be relevant to the assessment of historic, current, and future ecological, economic, and social systems. There is no paper map included in this Open-File report. In accordance with the Federal Land Policy and Management Act of 1976 (FLPMA), all unpatented mining claims, mill, and tunnel sites must be recorded at the appropriate BLM State office. BLM maintains a cumulative computer listing of mining claims in the MCRS database with locations given by meridian, township, range, and section. A mining claim is considered closed when the claim is relinquished or a formal BLM decision declaring the mining claim null and void has been issued and the appeal period has expired. All other mining claims filed with BLM are considered to be open and actively held. The digital map (figure 1.) with the mining claim density database available in this report are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller.
Analysis of Student Performance on the Undergraduate Record Examinations (1973).
ERIC Educational Resources Information Center
Litwin, James L.
This report examines the performance of students in the Modular Achievement Program (MAP) at Bowling Green State University using the Undergraduate Record Examinations (URE) as the primary criterion. The performances of students in MAP on the URE is delineated and compared to the performance of freshman and sophomore norm groups at Bowling Green…
Self-organizing map classifier for stressed speech recognition
NASA Astrophysics Data System (ADS)
Partila, Pavol; Tovarek, Jaromir; Voznak, Miroslav
2016-05-01
This paper presents a method for detecting speech under stress using Self-Organizing Maps. Most people who are exposed to stressful situations can not adequately respond to stimuli. Army, police, and fire department occupy the largest part of the environment that are typical of an increased number of stressful situations. The role of men in action is controlled by the control center. Control commands should be adapted to the psychological state of a man in action. It is known that the psychological changes of the human body are also reflected physiologically, which consequently means the stress effected speech. Therefore, it is clear that the speech stress recognizing system is required in the security forces. One of the possible classifiers, which are popular for its flexibility, is a self-organizing map. It is one type of the artificial neural networks. Flexibility means independence classifier on the character of the input data. This feature is suitable for speech processing. Human Stress can be seen as a kind of emotional state. Mel-frequency cepstral coefficients, LPC coefficients, and prosody features were selected for input data. These coefficients were selected for their sensitivity to emotional changes. The calculation of the parameters was performed on speech recordings, which can be divided into two classes, namely the stress state recordings and normal state recordings. The benefit of the experiment is a method using SOM classifier for stress speech detection. Results showed the advantage of this method, which is input data flexibility.
,
2002-01-01
In genealogical research, maps can provide clues to where our ancestors may have lived and where to look for written records about them. Beginners should master basic genealogical research techniques before starting to use topographic maps.
24 CFR 200.1545 - Appeals of MAP Lender Review Board decisions.
Code of Federal Regulations, 2011 CFR
2011-04-01
...): MAP Lender Quality Assurance Enforcement § 200.1545 Appeals of MAP Lender Review Board decisions. (a... information included in the administrative record and any new information presented at the appeal conference... to overturn will be posted on HUD's MAP Web site. ...
24 CFR 200.1545 - Appeals of MAP Lender Review Board decisions.
Code of Federal Regulations, 2012 CFR
2012-04-01
...): MAP Lender Quality Assurance Enforcement § 200.1545 Appeals of MAP Lender Review Board decisions. (a... information included in the administrative record and any new information presented at the appeal conference... to overturn will be posted on HUD's MAP Web site. ...
24 CFR 200.1545 - Appeals of MAP Lender Review Board decisions.
Code of Federal Regulations, 2014 CFR
2014-04-01
...): MAP Lender Quality Assurance Enforcement § 200.1545 Appeals of MAP Lender Review Board decisions. (a... information included in the administrative record and any new information presented at the appeal conference... to overturn will be posted on HUD's MAP Web site. ...
24 CFR 200.1545 - Appeals of MAP Lender Review Board decisions.
Code of Federal Regulations, 2013 CFR
2013-04-01
...): MAP Lender Quality Assurance Enforcement § 200.1545 Appeals of MAP Lender Review Board decisions. (a... information included in the administrative record and any new information presented at the appeal conference... to overturn will be posted on HUD's MAP Web site. ...
Pattern Separation, Pattern Completion, and New Neuronal Codes within a Continuous CA3 Map
ERIC Educational Resources Information Center
Leutgeb, Stefan; Leutgeb, Jill K.
2007-01-01
The hippocampal CA3 subregion is critical for rapidly encoding new memories, which suggests that neuronal computations are implemented in its circuitry that cannot be performed elsewhere in the hippocampus or in the neocortex. Recording studies show that CA3 cells are bound to a large degree to a spatial coordinate system, while CA1 cells can…
Mapping Phonetic Features for Voice-Driven Sound Synthesis
NASA Astrophysics Data System (ADS)
Janer, Jordi; Maestre, Esteban
In applications where the human voice controls the synthesis of musical instruments sounds, phonetics convey musical information that might be related to the sound of the imitated musical instrument. Our initial hypothesis is that phonetics are user- and instrument-dependent, but they remain constant for a single subject and instrument. We propose a user-adapted system, where mappings from voice features to synthesis parameters depend on how subjects sing musical articulations, i.e. note to note transitions. The system consists of two components. First, a voice signal segmentation module that automatically determines note-to-note transitions. Second, a classifier that determines the type of musical articulation for each transition based on a set of phonetic features. For validating our hypothesis, we run an experiment where subjects imitated real instrument recordings with their voice. Performance recordings consisted of short phrases of saxophone and violin performed in three grades of musical articulation labeled as: staccato, normal, legato. The results of a supervised training classifier (user-dependent) are compared to a classifier based on heuristic rules (user-independent). Finally, from the previous results we show how to control the articulation in a sample-concatenation synthesizer by selecting the most appropriate samples.
Extracting and standardizing medication information in clinical text - the MedEx-UIMA system.
Jiang, Min; Wu, Yonghui; Shah, Anushi; Priyanka, Priyanka; Denny, Joshua C; Xu, Hua
2014-01-01
Extraction of medication information embedded in clinical text is important for research using electronic health records (EHRs). However, most of current medication information extraction systems identify drug and signature entities without mapping them to standard representation. In this study, we introduced the open source Java implementation of MedEx, an existing high-performance medication information extraction system, based on the Unstructured Information Management Architecture (UIMA) framework. In addition, we developed new encoding modules in the MedEx-UIMA system, which mapped an extracted drug name/dose/form to both generalized and specific RxNorm concepts and translated drug frequency information to ISO standard. We processed 826 documents by both systems and verified that MedEx-UIMA and MedEx (the Python version) performed similarly by comparing both results. Using two manually annotated test sets that contained 300 drug entries from medication list and 300 drug entries from narrative reports, the MedEx-UIMA system achieved F-measures of 98.5% and 97.5% respectively for encoding drug names to corresponding RxNorm generic drug ingredients, and F-measures of 85.4% and 88.1% respectively for mapping drug names/dose/form to the most specific RxNorm concepts. It also achieved an F-measure of 90.4% for normalizing frequency information to ISO standard. The open source MedEx-UIMA system is freely available online at http://code.google.com/p/medex-uima/.
Brain Mapping of drug addiction in witdrawal condition based P300 Signals
NASA Astrophysics Data System (ADS)
Turnip, Arjon; Esti Kusumandari, Dwi; Hidayat, Teddy
2018-04-01
Drug abuse for a long time will slowly cause changes in brain structure and performance. These changes tend to occur in the front of the brain which is directly interfere the concentration and the decision-making process. In this study an experiment involving 10 drug users was performed. The process of recording data with EEG system is conducted during craving condition and 1 hour after taking methadone. From brain mapping results obtained that brain activity tend to occur in the upper layer of the brain during craving conditions and tend to be in the midle layer of the brain after one hour of taking methadone.
AtomicJ: An open source software for analysis of force curves
NASA Astrophysics Data System (ADS)
Hermanowicz, Paweł; Sarna, Michał; Burda, Kvetoslava; Gabryś, Halina
2014-06-01
We present an open source Java application for analysis of force curves and images recorded with the Atomic Force Microscope. AtomicJ supports a wide range of contact mechanics models and implements procedures that reduce the influence of deviations from the contact model. It generates maps of mechanical properties, including maps of Young's modulus, adhesion force, and sample height. It can also calculate stacks, which reveal how sample's response to deformation changes with indentation depth. AtomicJ analyzes force curves concurrently on multiple threads, which allows for high speed of analysis. It runs on all popular operating systems, including Windows, Linux, and Macintosh.
Biewick, Laura
2008-01-01
This report contains maps and associated spatial data showing historical oil and gas exploration and production in the United States. Because of the proprietary nature of many oil and gas well databases, the United States was divided into cells one-quarter square mile and the production status of all wells in a given cell was aggregated. Base-map reference data are included, using the U.S. Geological Survey (USGS) National Map, the USGS and American Geological Institute (AGI) Global GIS, and a World Shaded Relief map service from the ESRI Geography Network. A hardcopy map was created to synthesize recorded exploration data from 1859, when the first oil well was drilled in the U.S., to 2005. In addition to the hardcopy map product, the data have been refined and made more accessible through the use of Geographic Information System (GIS) tools. The cell data are included in a GIS database constructed for spatial analysis via the USGS Internet Map Service or by importing the data into GIS software such as ArcGIS. The USGS internet map service provides a number of useful and sophisticated geoprocessing and cartographic functions via an internet browser. Also included is a video clip of U.S. oil and gas exploration and production through time.
NASA Astrophysics Data System (ADS)
Brendryen, J.; Hannisdal, B.; Haaga, K. A.; Haflidason, H.; Castro, D. D.; Grasmo, K. J.; Sejrup, H. P.; Edwards, R. L.; Cheng, H.; Kelly, M. J.; Lu, Y.
2016-12-01
Abrupt millennial scale climatic events known as Dansgaard-Oeschger events are a defining feature of the Quaternary climate system dynamics in the North Atlantic and beyond. We present a high-resolution multi-proxy record of ocean-ice sheet interactions in the Norwegian Sea spanning the interval between 50 and 150 ka BP. A comparison with low latitude records indicates a very close connection between the high northern latitude ocean-ice sheet interactions and large scale changes in low latitude atmospheric circulation and hydrology even on sub-millennial scales. The records are placed on a common precise radiometric chronology based on correlations to U/Th dated speleothem records from China and the Alps. This enables a comparison of the records to orbital and other climatically important parameters such as U/Th dated sea-level data from corals and speleothems. We explore the drive-response relationships in these coupled systems with the information transfer (IT) and the convergent cross mapping (CCM) analytical techniques. These methods employ conceptually different approaches to detect the relative strength and directionality of potentially chaotic and nonlinearly coupled systems. IT is a non-parametric measure of information transfer between data records based on transfer entropy, while CCM relies on delay reconstructions using Takens' theorem. This approach enables us to address how the climate system processes interact and how this interaction is affected by external forcing from for example greenhouse gases and orbital variability.
NASA Astrophysics Data System (ADS)
Laurence, Audrey; Pichette, Julien; Angulo-Rodríguez, Leticia M.; Saint Pierre, Catherine; Lesage, Frédéric; Bouthillier, Alain; Nguyen, Dang Khoa; Leblond, Frédéric
2016-03-01
Following normal neuronal activity, there is an increase in cerebral blood flow and cerebral blood volume to provide oxygenated hemoglobin to active neurons. For abnormal activity such as epileptiform discharges, this hemodynamic response may be inadequate to meet the high metabolic demands. To verify this hypothesis, we developed a novel hyperspectral imaging system able to monitor real-time cortical hemodynamic changes during brain surgery. The imaging system is directly integrated into a surgical microscope, using the white-light source for illumination. A snapshot hyperspectral camera is used for detection (4x4 mosaic filter array detecting 16 wavelengths simultaneously). We present calibration experiments where phantoms made of intralipid and food dyes were imaged. Relative concentrations of three dyes were recovered at a video rate of 30 frames per second. We also present hyperspectral recordings during brain surgery of epileptic patients with concurrent electrocorticography recordings. Relative concentration maps of oxygenated and deoxygenated hemoglobin were extracted from the data, allowing real-time studies of hemodynamic changes with a good spatial resolution. Finally, we present preliminary results on phantoms obtained with an integrated spatial frequency domain imaging system to recover tissue optical properties. This additional module, used together with the hyperspectral imaging system, will allow quantification of hemoglobin concentrations maps. Our hyperspectral imaging system offers a new tool to analyze hemodynamic changes, especially in the case of epileptiform discharges. It also offers an opportunity to study brain connectivity by analyzing correlations between hemodynamic responses of different tissue regions.
Schönweiler, R; Kaese, S; Möller, S; Rinscheid, A; Ptok, M
1996-12-05
Neuronal networks are computer-based techniques for the evaluation and control of complex information systems and processes. So far, they have been used in engineering, telecommunications, artificial speech and speech recognition. A new approach in neuronal network is the self-organizing map (Kohonen map). In the phase of 'learning', the map adapts to the patterns of the primary signals. If, the phase of 'using the map', the input signal hits the field of the primary signals, it resembles them and is called a 'winner'. In our study, we recorded the cries of newborns and young infants using digital audio tape (DAT) and a high quality microphone. The cries were elicited by tactile stimuli wearing headphones. In 27 cases, delayed auditory feedback was presented to the children using a headphone and an additional three-head tape-recorder. Spectrographic characteristics of the cries were classified by 20-step bark spectra and then applied to the neuronal networks. It was possible to recognize similarities of different cries of the same children as well as interindividual differences, which are also audible to experienced listeners. Differences were obvious in profound hearing loss. We know much about the cries of both healthy and sick infants, but a reliable investigation regimen, which can be used for clinical routine purposes, has yet not been developed. If, in the future, it becomes possible to classify spectrographic characteristics automatically, even if they are not audible, neuronal networks may be helpful in the early diagnosis of infant diseases.
Semantic extraction and processing of medical records for patient-oriented visual index
NASA Astrophysics Data System (ADS)
Zheng, Weilin; Dong, Wenjie; Chen, Xiangjiao; Zhang, Jianguo
2012-02-01
To have comprehensive and completed understanding healthcare status of a patient, doctors need to search patient medical records from different healthcare information systems, such as PACS, RIS, HIS, USIS, as a reference of diagnosis and treatment decisions for the patient. However, it is time-consuming and tedious to do these procedures. In order to solve this kind of problems, we developed a patient-oriented visual index system (VIS) to use the visual technology to show health status and to retrieve the patients' examination information stored in each system with a 3D human model. In this presentation, we present a new approach about how to extract the semantic and characteristic information from the medical record systems such as RIS/USIS to create the 3D Visual Index. This approach includes following steps: (1) Building a medical characteristic semantic knowledge base; (2) Developing natural language processing (NLP) engine to perform semantic analysis and logical judgment on text-based medical records; (3) Applying the knowledge base and NLP engine on medical records to extract medical characteristics (e.g., the positive focus information), and then mapping extracted information to related organ/parts of 3D human model to create the visual index. We performed the testing procedures on 559 samples of radiological reports which include 853 focuses, and achieved 828 focuses' information. The successful rate of focus extraction is about 97.1%.
Recording and assessment of evoked potentials with electrode arrays.
Miljković, N; Malešević, N; Kojić, V; Bijelić, G; Keller, T; Popović, D B
2015-09-01
In order to optimize procedure for the assessment of evoked potentials and to provide visualization of the flow of action potentials along the motor systems, we introduced array electrodes for stimulation and recording and developed software for the analysis of the recordings. The system uses a stimulator connected to an electrode array for the generation of evoked potentials, an electrode array connected to the amplifier, A/D converter and computer for the recording of evoked potentials, and a dedicated software application. The method has been tested for the assessment of the H-reflex on the triceps surae muscle in six healthy humans. The electrode array with 16 pads was positioned over the posterior aspect of the thigh, while the recording electrode array with 16 pads was positioned over the triceps surae muscle. The stimulator activated all the pads of the stimulation electrode array asynchronously, while the signals were recorded continuously at all the recording sites. The results are topography maps (spatial distribution of evoked potentials) and matrices (spatial visualization of nerve excitability). The software allows the automatic selection of the lowest stimulation intensity to achieve maximal H-reflex amplitude and selection of the recording/stimulation pads according to predefined criteria. The analysis of results shows that the method provides rich information compared with the conventional recording of the H-reflex with regard the spatial distribution.
NASA Astrophysics Data System (ADS)
Elliott, A. J.; Walker, R. T.; Parsons, B.; Ren, Z.; Ainscoe, E. A.; Abdrakhmatov, K.; Mackenzie, D.; Arrowsmith, R.; Gruetzner, C.
2016-12-01
In regions of the planet with long historical records, known past seismic events can be attributed to specific fault sources through the identification and measurement of single-event scarps in high-resolution imagery and topography. The level of detail captured by modern remote sensing is now sufficient to map and measure complete earthquake ruptures that were originally only sparsely mapped or overlooked entirely. We can thus extend the record of mapped earthquake surface ruptures into the preinstrumental period and capture the wealth of information preserved in the numerous historical earthquake ruptures throughout regions like Central Asia. We investigate two major late 19th and early 20th century earthquakes that are well located macroseismically but whose fault sources had proved enigmatic in the absence of detailed imagery and topography. We use high-resolution topographic models derived from photogrammetry of satellite, low-altitude, and ground-based optical imagery to map and measure the coseismic scarps of the 1889 M8.3 Chilik, Kazakhstan and 1932 M7.6 Changma, China earthquakes. Measurement of the scarps on the combined imagery and topography reveals the extent and slip distribution of coseismic rupture in each of these events, showing both earthquakes involved multiple faults with variable kinematics. We use a 1-m elevation model of the Changma fault derived from Pleiades satellite imagery to map the changing kinematics of the 1932 rupture along strike. For the 1889 Chilik earthquake we use 1.5-m SPOT-6 satellite imagery to produce a regional elevation model of the fault ruptures, from which we identify three distinct, intersecting fault systems that each have >20 km of fresh, single-event scarps. Along sections of each of these faults we construct high resolution (330 points per sq m) elevation models using quadcopter- and helikite-mounted cameras. From the detailed topography we measure single-event oblique offsets of 6-10 m, consistent with the large inferred magnitude of the 1889 Chilik event. High resolution, photogrammetric topography offers a low-cost, effective way to thoroughly map rupture traces and measure coseismic displacements for past fault ruptures, extending our record of coseismic displacements into a past rich with formerly sparsely documented ruptures.
Large-Scale, High-Resolution Neurophysiological Maps Underlying fMRI of Macaque Temporal Lobe
Papanastassiou, Alex M.; DiCarlo, James J.
2013-01-01
Maps obtained by functional magnetic resonance imaging (fMRI) are thought to reflect the underlying spatial layout of neural activity. However, previous studies have not been able to directly compare fMRI maps to high-resolution neurophysiological maps, particularly in higher level visual areas. Here, we used a novel stereo microfocal x-ray system to localize thousands of neural recordings across monkey inferior temporal cortex (IT), construct large-scale maps of neuronal object selectivity at subvoxel resolution, and compare those neurophysiology maps with fMRI maps from the same subjects. While neurophysiology maps contained reliable structure at the sub-millimeter scale, fMRI maps of object selectivity contained information at larger scales (>2.5 mm) and were only partly correlated with raw neurophysiology maps collected in the same subjects. However, spatial smoothing of neurophysiology maps more than doubled that correlation, while a variety of alternative transforms led to no significant improvement. Furthermore, raw spiking signals, once spatially smoothed, were as predictive of fMRI maps as local field potential signals. Thus, fMRI of the inferior temporal lobe reflects a spatially low-passed version of neurophysiology signals. These findings strongly validate the widespread use of fMRI for detecting large (>2.5 mm) neuronal domains of object selectivity but show that a complete understanding of even the most pure domains (e.g., faces vs nonface objects) requires investigation at fine scales that can currently only be obtained with invasive neurophysiological methods. PMID:24048850
Clinical Impact and Implication of Real-Time Oscillation Analysis for Language Mapping.
Ogawa, Hiroshi; Kamada, Kyousuke; Kapeller, Christoph; Prueckl, Robert; Takeuchi, Fumiya; Hiroshima, Satoru; Anei, Ryogo; Guger, Christoph
2017-01-01
We developed a functional brain analysis system that enabled us to perform real-time task-related electrocorticography (ECoG) and evaluated its potential in clinical practice. We hypothesized that high gamma activity (HGA) mapping would provide better spatial and temporal resolution with high signal-to-noise ratios. Seven awake craniotomy patients were evaluated. ECoG was recorded during language tasks using subdural grids, and HGA (60-170 Hz) maps were obtained in real time. The patients also underwent electrocortical stimulation (ECS) mapping to validate the suspected functional locations on HGA mapping. The results were compared and calculated to assess the sensitivity and specificity of HGA mapping. For reference, bedside HGA-ECS mapping was performed in 5 epilepsy patients. HGA mapping demonstrated functional brain areas in real time and was comparable with ECS mapping. Sensitivity and specificity for the language area were 90.1% ± 11.2% and 90.0% ± 4.2%, respectively. Most HGA-positive areas were consistent with ECS-positive regions in both groups, and there were no statistical between-group differences. Although this study included a small number of subjects, it showed real-time HGA mapping with the same setting and tasks under different conditions. This study demonstrates the clinical feasibility of real-time HGA mapping. Real-time HGA mapping enabled simple and rapid detection of language functional areas in awake craniotomy. The mapping results were highly accurate, although the mapping environment was noisy. Further studies of HGA mapping may provide the potential to elaborate complex brain functions and networks. Copyright © 2016 Elsevier Inc. All rights reserved.
,
1999-01-01
Maps are one of many sources you may need to complete a family tree. In genealogical research, maps can provide clues to where our ancestors may have lived and where to look for written records about them. Beginners should master basic genealogical research techniques before starting to use topographic maps.
,
1994-01-01
In genealogy, maps are most often used as clues to where public or other records about an ancestor are likely to be found. Searching for maps seldom begins until a newcomer to genealogy has mastered basic genealogical routines
Facial nerve mapping and monitoring in lymphatic malformation surgery.
Chiara, Jospeh; Kinney, Greg; Slimp, Jefferson; Lee, Gi Soo; Oliaei, Sepehr; Perkins, Jonathan A
2009-10-01
Establish the efficacy of preoperative facial nerve mapping and continuous intraoperative EMG monitoring in protecting the facial nerve during resection of cervicofacial lymphatic malformations. Retrospective study in which patients were clinically followed for at least 6 months postoperatively, and long-term outcome was evaluated. Patient demographics, lesion characteristics (i.e., size, stage, location) were recorded. Operative notes revealed surgical techniques, findings, and complications. Preoperative, short-/long-term postoperative facial nerve function was standardized using the House-Brackmann Classification. Mapping was done prior to incision by percutaneously stimulating the facial nerve and its branches and recording the motor responses. Intraoperative monitoring and mapping were accomplished using a four-channel, free-running EMG. Neurophysiologists continuously monitored EMG responses and blindly analyzed intraoperative findings and final EMG interpretations for abnormalities. Seven patients collectively underwent 8 lymphatic malformation surgeries. Median age was 30 months (2-105 months). Lymphatic malformation diagnosis was recorded in 6/8 surgeries. Facial nerve function was House-Brackmann grade I in 8/8 cases preoperatively. Facial nerve was abnormally elongated in 1/8 cases. EMG monitoring recorded abnormal activity in 4/8 cases--two suggesting facial nerve irritation, and two with possible facial nerve damage. Transient or long-term facial nerve paresis occurred in 1/8 cases (House-Brackmann grade II). Preoperative facial nerve mapping combined with continuous intraoperative EMG and mapping is a successful method of identifying the facial nerve course and protecting it from injury during resection of cervicofacial lymphatic malformations involving the facial nerve.
Stoppini, L; Duport, S; Corrèges, P
1997-03-01
The present paper describes a new multirecording device which performs continuous electrophysiological studies on organotypic cultures. This device is formed by a card (Physiocard) carrying the culture which is inserted into an electronic module. Electrical activities are recorded by an array of 30 biocompatible microelectrodes which are adjusted into close contact with the upper surface of the slice culture. The microelectrode array is integrated into the card enabling electrical stimulation and recording of neurons over periods ranging from several hours to a few days outside a Faraday cage. Neuronal responses are recorded and analyzed by a dedicated electronic and acquisition chain. A perfusion chamber is contained in the card, allowing continuous perfusion in sterile conditions. Electrophysiological extracellular recordings and some drugs' effects obtained with this system in hippocampal slice cultures were identical to conventional electrophysiological set-up results with tetrodotoxin, bicuculline, kainate, dexamethasone and NBQX. The Physiocard system allows new insights for studies on nervous tissue and allows sophisticated approaches to be used quicker and more easily. It could be used for various neurophysiological studies or screening tests such as neural network mapping, nervous recovery, epilepsy, neurotoxicity or neuropharmacology.
Stable long-term chronic brain mapping at the single-neuron level.
Fu, Tian-Ming; Hong, Guosong; Zhou, Tao; Schuhmann, Thomas G; Viveros, Robert D; Lieber, Charles M
2016-10-01
Stable in vivo mapping and modulation of the same neurons and brain circuits over extended periods is critical to both neuroscience and medicine. Current electrical implants offer single-neuron spatiotemporal resolution but are limited by such factors as relative shear motion and chronic immune responses during long-term recording. To overcome these limitations, we developed a chronic in vivo recording and stimulation platform based on flexible mesh electronics, and we demonstrated stable multiplexed local field potentials and single-unit recordings in mouse brains for at least 8 months without probe repositioning. Properties of acquired signals suggest robust tracking of the same neurons over this period. This recording and stimulation platform allowed us to evoke stable single-neuron responses to chronic electrical stimulation and to carry out longitudinal studies of brain aging in freely behaving mice. Such advantages could open up future studies in mapping and modulating changes associated with learning, aging and neurodegenerative diseases.
Automatic detection and decoding of honey bee waggle dances
Wild, Benjamin; Rojas, Raúl; Landgraf, Tim
2017-01-01
The waggle dance is one of the most popular examples of animal communication. Forager bees direct their nestmates to profitable resources via a complex motor display. Essentially, the dance encodes the polar coordinates to the resource in the field. Unemployed foragers follow the dancer’s movements and then search for the advertised spots in the field. Throughout the last decades, biologists have employed different techniques to measure key characteristics of the waggle dance and decode the information it conveys. Early techniques involved the use of protractors and stopwatches to measure the dance orientation and duration directly from the observation hive. Recent approaches employ digital video recordings and manual measurements on screen. However, manual approaches are very time-consuming. Most studies, therefore, regard only small numbers of animals in short periods of time. We have developed a system capable of automatically detecting, decoding and mapping communication dances in real-time. In this paper, we describe our recording setup, the image processing steps performed for dance detection and decoding and an algorithm to map dances to the field. The proposed system performs with a detection accuracy of 90.07%. The decoded waggle orientation has an average error of -2.92° (± 7.37°), well within the range of human error. To evaluate and exemplify the system’s performance, a group of bees was trained to an artificial feeder, and all dances in the colony were automatically detected, decoded and mapped. The system presented here is the first of this kind made publicly available, including source code and hardware specifications. We hope this will foster quantitative analyses of the honey bee waggle dance. PMID:29236712
Astronomical observations with the University College London balloon borne telescope
NASA Technical Reports Server (NTRS)
Jennings, R. E.
1974-01-01
The characteristics of a telescope system which was developed for high altitude balloon astronomy are discussed. A drawing of the optical system of the telescope is provided. A sample of the signals recorded during one of the flights is included. The correlation between the infrared flux and the radio continuum flux is analyzed. A far infrared map of the radio and infrared peaks of selected stars is developed. The spectrum of the planet Saturn is plotted to show intensity as compared with wavenumber.
Braae, Uffe Christian; Devleesschauwer, Brecht; Sithole, Fortune; Wang, Ziqi; Willingham, Arve Lee
2017-09-18
This study aimed to map the occurrence of Taenia solium taeniosis/cysticercosis at national level within Central America and the Caribbean basin, and to map the distribution of porcine cysticercosis at first-level administrative subdivision level (department level) and the porcine population at risk. This zoonotic parasite is believed to be widely endemic across most of Latin America. However, there is little information readily available for Central America and the Caribbean basin. Taenia solium has been ranked the most important foodborne parasitic hazard globally and within endemic areas is a common cause of preventable epilepsy. We conducted a structured literature search in PubMed, supplemented and crossed-referenced with relevant academic databases, grey literature, and active searches in identified literature, to identify all records of T. solium presence in Central America and the Caribbean basin between 1986 and April 2017. To retrieve grey literature, government entities, researchers and relevant institutions across the region were contacted in an attempt to cover all countries and territories. Identified records containing data on porcine cysticercosis were geo-referenced to identify department level distribution and compared to modelled distributions of pigs reared under extensive production systems. We identified 51 records of T. solium at the national level, covering 13 countries and an additional three countries were included based on World Organisation for Animal Health (OIE) reports, giving a total of 16 countries out of 41 with evidence of the parasite's presence. Screening records for porcine cysticercosis data at the departmental level confirmed porcine cysticercosis presence in 11 departments across six countries (Colombia, Guatemala, Honduras, Mexico, Nicaragua and Venezuela). When comparing these results to areas where pigs were kept in extensive production systems and areas where no information on porcine cysticercosis exists, it is apparent that porcine cysticercosis is likely to be underreported, and that a substantial part of the regional pig population could be at risk of contracting porcine cysticercosis. More detailed information on the distribution of T. solium and accurate burden estimations are urgently needed to grasp the true extent of this zoonotic parasite and the public health and agricultural problems it potentially poses.
Interpretation of geographic patterns in simulated orbital television imagery of earth resources
NASA Technical Reports Server (NTRS)
Latham, J. P.; Cross, C. I.; Kuyper, W. H.; Witmer, R. E.
1972-01-01
In order to better determine the effects of the television imagery characteristics upon the interpretation of geographic patterns obtainable from orbital television sensors, and in order to better evaluate the influences of alternative sensor system parameters such as changes in orbital altitudes or scan line rates, a team of three professional interpreters independently mapped thematically the selected geographic phenomena that they could detect in orbital television imagery produced on a fourteen inch monitor and recorded photographically for analysis. Three thematic maps were compiled by each interpreter. The maps were: (1) transportation patterns; (2) other land use; and (3) physical regions. The results from the three interpreters are compared, agreements noted, and differences analyzed for cause such as disagreement on identification of phenomenon, visual acuity, differences in interpretation techniques, and differing professional backgrounds.
Graph-based signal integration for high-throughput phenotyping
2012-01-01
Background Electronic Health Records aggregated in Clinical Data Warehouses (CDWs) promise to revolutionize Comparative Effectiveness Research and suggest new avenues of research. However, the effectiveness of CDWs is diminished by the lack of properly labeled data. We present a novel approach that integrates knowledge from the CDW, the biomedical literature, and the Unified Medical Language System (UMLS) to perform high-throughput phenotyping. In this paper, we automatically construct a graphical knowledge model and then use it to phenotype breast cancer patients. We compare the performance of this approach to using MetaMap when labeling records. Results MetaMap's overall accuracy at identifying breast cancer patients was 51.1% (n=428); recall=85.4%, precision=26.2%, and F1=40.1%. Our unsupervised graph-based high-throughput phenotyping had accuracy of 84.1%; recall=46.3%, precision=61.2%, and F1=52.8%. Conclusions We conclude that our approach is a promising alternative for unsupervised high-throughput phenotyping. PMID:23320851
History of wildland fires on Vandenberg Air Force Base, California
NASA Technical Reports Server (NTRS)
Hickson, Diana E.
1988-01-01
The fire history of the past 50 years for Vandenberg AFB, California was determined using aerial photography, field investigation, and historical and current written records. This constitutes a record of the vegetation age classes for the entire base. The location, cause, and fuel type for sixty fires from this time period were determined. The fires were mapped and entered into a geographic infomation system (GIS) for Vandenberg. Fire history maps derived from this GIS were printed at 1:9600 scale and are on deposit at the Vandenberg Environmental Task Force Office. Although some ecologically significant plant communities on Vandenberg are adapted to fire, no natural fire frequency could be determined, since only one fire possibly caused by lightning occurred in the area now within the base since 1937. Observations made during this study suggest that burning may encourage the invasion of exotic species into chaparral, in particular Burton Mesa or sandhill chaparral, an unusual and geographically limited form of chaparral found on the base.
Smith, Dianna; Mathur, Rohini; Robson, John; Greenhalgh, Trisha
2012-01-01
Objective To explore the feasibility of producing small-area geospatial maps of chronic disease risk for use by clinical commissioning groups and public health teams. Study design Cross-sectional geospatial analysis using routinely collected general practitioner electronic record data. Sample and setting Tower Hamlets, an inner-city district of London, UK, characterised by high socioeconomic and ethnic diversity and high prevalence of non-communicable diseases. Methods The authors used type 2 diabetes as an example. The data set was drawn from electronic general practice records on all non-diabetic individuals aged 25–79 years in the district (n=163 275). The authors used a validated instrument, QDScore, to calculate 10-year risk of developing type 2 diabetes. Using specialist mapping software (ArcGIS), the authors produced visualisations of how these data varied by lower and middle super output area across the district. The authors enhanced these maps with information on examples of locality-based social determinants of health (population density, fast food outlets and green spaces). Data were piloted as three types of geospatial map (basic, heat and ring). The authors noted practical, technical and information governance challenges involved in producing the maps. Results Usable data were obtained on 96.2% of all records. One in 11 adults in our cohort was at ‘high risk’ of developing type 2 diabetes with a 20% or more 10-year risk. Small-area geospatial mapping illustrated ‘hot spots’ where up to 17.3% of all adults were at high risk of developing type 2 diabetes. Ring maps allowed visualisation of high risk for type 2 diabetes by locality alongside putative social determinants in the same locality. The task of downloading, cleaning and mapping data from electronic general practice records posed some technical challenges, and judgement was required to group data at an appropriate geographical level. Information governance issues were time consuming and required local and national consultation and agreement. Conclusions Producing small-area geospatial maps of diabetes risk calculated from general practice electronic record data across a district-wide population was feasible but not straightforward. Geovisualisation of epidemiological and environmental data, made possible by interdisciplinary links between public health clinicians and human geographers, allows presentation of findings in a way that is both accessible and engaging, hence potentially of value to commissioners and policymakers. Impact studies are needed of how maps of chronic disease risk might be used in public health and urban planning. PMID:22337817
Cerebral cartography and connectomics
Sporns, Olaf
2015-01-01
Cerebral cartography and connectomics pursue similar goals in attempting to create maps that can inform our understanding of the structural and functional organization of the cortex. Connectome maps explicitly aim at representing the brain as a complex network, a collection of nodes and their interconnecting edges. This article reflects on some of the challenges that currently arise in the intersection of cerebral cartography and connectomics. Principal challenges concern the temporal dynamics of functional brain connectivity, the definition of areal parcellations and their hierarchical organization into large-scale networks, the extension of whole-brain connectivity to cellular-scale networks, and the mapping of structure/function relations in empirical recordings and computational models. Successfully addressing these challenges will require extensions of methods and tools from network science to the mapping and analysis of human brain connectivity data. The emerging view that the brain is more than a collection of areas, but is fundamentally operating as a complex networked system, will continue to drive the creation of ever more detailed and multi-modal network maps as tools for on-going exploration and discovery in human connectomics. PMID:25823870
Map showing selected surface-water data for the Manti 30 x 60-minute Quadrangle, Utah
Price, Don
1984-01-01
This is one of a series of maps that describe the geology and related natural resources of the Manti 30 x 60 minute quadrangle. Streamflow records used to compile this map were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Transportation. The principal runoff-producing areas shown on the map were delineated from a work map (scale 1:250,000) compiled to estimate water yields in Utah (Bagley and others, 1964). Sources of information about recorded floods resulting from cloudbursts included Woolley (1946) and Butler and Marsell (1972); sources of information about the chemical quality of streamflow included Hahl and Cabell (1965) and Mundorff and Thompson (1982).
Map showing selected surface-water data for the Huntington 30 x 60-minute quadrangle, Utah
Price, Don
1984-01-01
This is one of a series of maps that describe the geology and related natural resources of the Huntington 30 x 60-minute quadrangle, Utah. Streamflow records used to compile this map were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Transportation. The principal runoff-producing area shown on the map was delineated from a work map (scale 1:250,000) compiled to estimate water yields in Utah (Bagley and others, 1964). Sources of information about recorded floods resulting from cloudbursts included Woolley (1946) and Butler and Marsell (1972); sources of information about the chemical quality of streamflow included Mundorff (1972) and Mundorff and Thompson (1982).
Map showing selected surface-water data for the Price 30 x 60-minute Quadrangle, Utah
Price, Don
1984-01-01
This is one of a series of maps that describe the geology and related natural resources of the Price 30 x 60-minute quadrangle, Utah. Streamflow records used to compile this map were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Transportation. The principal runoff-producing areas shown on the map were delineated from a work map (scale 1:250,000) compiled to estimate water yields in Utah (Bagley and others, 1964). Sources of information about recorded floods resulting from cloudbursts included Woolley (1946) and Butler and Marsell (1972); sources of information about the chemical quality of streamflow included Mundorff (1972; 1977), and Waddell and others (1982).
Dynamic population mapping using mobile phone data.
Deville, Pierre; Linard, Catherine; Martin, Samuel; Gilbert, Marius; Stevens, Forrest R; Gaughan, Andrea E; Blondel, Vincent D; Tatem, Andrew J
2014-11-11
During the past few decades, technologies such as remote sensing, geographical information systems, and global positioning systems have transformed the way the distribution of human population is studied and modeled in space and time. However, the mapping of populations remains constrained by the logistics of censuses and surveys. Consequently, spatially detailed changes across scales of days, weeks, or months, or even year to year, are difficult to assess and limit the application of human population maps in situations in which timely information is required, such as disasters, conflicts, or epidemics. Mobile phones (MPs) now have an extremely high penetration rate across the globe, and analyzing the spatiotemporal distribution of MP calls geolocated to the tower level may overcome many limitations of census-based approaches, provided that the use of MP data is properly assessed and calibrated. Using datasets of more than 1 billion MP call records from Portugal and France, we show how spatially and temporarily explicit estimations of population densities can be produced at national scales, and how these estimates compare with outputs produced using alternative human population mapping methods. We also demonstrate how maps of human population changes can be produced over multiple timescales while preserving the anonymity of MP users. With similar data being collected every day by MP network providers across the world, the prospect of being able to map contemporary and changing human population distributions over relatively short intervals exists, paving the way for new applications and a near real-time understanding of patterns and processes in human geography.
Dynamic population mapping using mobile phone data
Deville, Pierre; Martin, Samuel; Gilbert, Marius; Stevens, Forrest R.; Gaughan, Andrea E.; Blondel, Vincent D.; Tatem, Andrew J.
2014-01-01
During the past few decades, technologies such as remote sensing, geographical information systems, and global positioning systems have transformed the way the distribution of human population is studied and modeled in space and time. However, the mapping of populations remains constrained by the logistics of censuses and surveys. Consequently, spatially detailed changes across scales of days, weeks, or months, or even year to year, are difficult to assess and limit the application of human population maps in situations in which timely information is required, such as disasters, conflicts, or epidemics. Mobile phones (MPs) now have an extremely high penetration rate across the globe, and analyzing the spatiotemporal distribution of MP calls geolocated to the tower level may overcome many limitations of census-based approaches, provided that the use of MP data is properly assessed and calibrated. Using datasets of more than 1 billion MP call records from Portugal and France, we show how spatially and temporarily explicit estimations of population densities can be produced at national scales, and how these estimates compare with outputs produced using alternative human population mapping methods. We also demonstrate how maps of human population changes can be produced over multiple timescales while preserving the anonymity of MP users. With similar data being collected every day by MP network providers across the world, the prospect of being able to map contemporary and changing human population distributions over relatively short intervals exists, paving the way for new applications and a near real-time understanding of patterns and processes in human geography. PMID:25349388
Mapping species distributions: a comparison of skilled naturalist and lay citizen science recording.
van der Wal, René; Anderson, Helen; Robinson, Annie; Sharma, Nirwan; Mellish, Chris; Roberts, Stuart; Darvill, Ben; Siddharthan, Advaith
2015-11-01
To assess the ability of traditional biological recording schemes and lay citizen science approaches to gather data on species distributions and changes therein, we examined bumblebee records from the UK's national repository (National Biodiversity Network) and from BeeWatch. The two recording approaches revealed similar relative abundances of bumblebee species but different geographical distributions. For the widespread common carder (Bombus pascuorum), traditional recording scheme data were patchy, both spatially and temporally, reflecting active record centre rather than species distribution. Lay citizen science records displayed more extensive geographic coverage, reflecting human population density, thus offering better opportunities to account for recording effort. For the rapidly spreading tree bumblebee (Bombus hypnorum), both recording approaches revealed similar distributions due to a dedicated mapping project which overcame the patchy nature of naturalist records. We recommend, where possible, complementing skilled naturalist recording with lay citizen science programmes to obtain a nation-wide capability, and stress the need for timely uploading of data to the national repository.
Johnson, Claude W.; Browden, Leonard W.; Pease, Robert W.
1969-01-01
Interpretation results of the small scale ClR photography of the Imperial Valley (California) taken on March 12, 1969 by the Apollo 9 earth orbiting satellite have shown that world wide agricultural land use mapping can be accomplished from satellite ClR imagery if sufficient a priori information is available for the region being mapped. Correlation of results with actual data is encouraging although the accuracy of identification of specific crops from the single image is poor. The poor results can be partly attributed to only one image taken during mid-season when the three major crops were reflecting approximately the same and their ClR image appears to indicate the same crop type. However, some incapacity can be attributed to lack of understanding of the subtle variations of visual and infrared color reflectance of vegetation and surrounding environment. Analysis of integrated color variations of the vegetation and background environment recorded on ClR imagery is discussed. Problems associated with the color variations may be overcome by development of a semi-automatic processing system which considers individual field units or cells. Design criteria for semi-automatic processing system are outlined.
Geomorphologic Mapping of a Last Glacial Maximum Moraine Sequence in the Far Eastern Tibetan Plateau
NASA Astrophysics Data System (ADS)
Lindsay, B. J.; Putnam, A. E.; Strand, P.; Radue, M. J.; Dong, G.; Kong, X.; Li, M.; Sheriff, M.; Stevens, J.
2017-12-01
The abrupt millennial-scale climate events of the last glacial cycle constitute an important component of the ice-age puzzle. A complete explanation of glacial cycles, and their rapid terminations, must account for these millennial climatic `flickers'. Here we present a glacial geomorphologic map of a moraine system in a formerly glaciated valley within the mountains of Litang County in the eastern Tibetan Plateau of China. Geomorphologic mapping was conducted by interpreting satellite imagery, structure-from-motion imagery and digital elevation models, and field observations. This map provides context for a parallel ongoing 10Be exposure-dating effort, the preliminary results of which may be available by the time of this 2017 AGU Fall Meeting. We interpret the mapped moraines to document the millennial-scale pulsebeat of glacier advances in this region during the peak of the last ice age. Because changes in mountain glacier extent in this region are driven by atmospheric temperature, these moraines record past millennial climate changes. Altogether this mapping and exposure-dating approach will provide insight into the mechanisms for millennial-scale glacier and climate fluctuations in the interior of Asia.
National Geothermal Data System: Open Access to Geoscience Data, Maps, and Documents
NASA Astrophysics Data System (ADS)
Caudill, C. M.; Richard, S. M.; Musil, L.; Sonnenschein, A.; Good, J.
2014-12-01
The U.S. National Geothermal Data System (NGDS) provides free open access to millions of geoscience data records, publications, maps, and reports via distributed web services to propel geothermal research, development, and production. NGDS is built on the US Geoscience Information Network (USGIN) data integration framework, which is a joint undertaking of the USGS and the Association of American State Geologists (AASG), and is compliant with international standards and protocols. NGDS currently serves geoscience information from 60+ data providers in all 50 states. Free and open source software is used in this federated system where data owners maintain control of their data. This interactive online system makes geoscience data easily discoverable, accessible, and interoperable at no cost to users. The dynamic project site http://geothermaldata.org serves as the information source and gateway to the system, allowing data and applications discovery and availability of the system's data feed. It also provides access to NGDS specifications and the free and open source code base (on GitHub), a map-centric and library style search interface, other software applications utilizing NGDS services, NGDS tutorials (via YouTube and USGIN site), and user-created tools and scripts. The user-friendly map-centric web-based application has been created to support finding, visualizing, mapping, and acquisition of data based on topic, location, time, provider, or key words. Geographic datasets visualized through the map interface also allow users to inspect the details of individual GIS data points (e.g. wells, geologic units, etc.). In addition, the interface provides the information necessary for users to access the GIS data from third party software applications such as GoogleEarth, UDig, and ArcGIS. A redistributable, free and open source software package called GINstack (USGIN software stack) was also created to give data providers a simple way to release data using interoperable and shareable standards, upload data and documents, and expose those data as a node in the NGDS or any larger data system through a CSW endpoint. The easy-to-use interface is supported by back-end software including Postgres, GeoServer, and custom CKAN extensions among others.
Geologic map of MTM -45252 and-45257 quadrangles, Reull Vallis region of Mars
Mest, Scott C.; Crown, David A.
2003-01-01
Mars Transverse Mercator (MTM) quadrangles -45252 and -45257 (latitude 42.5° S. to 47.5°S., longitude 250° W. to 260° W.) cover a portion of the highlands of Promethei Terra east of Hellas basin. The map area consists of heavily cratered ancient highland materials having moderate to high relief, isolated knobs and massifs of rugged mountainous material, and extensive tracts of smooth and channeled plains. Part of the ~1,500-km-long Reull Vallis outflow system is within the map area. The area also contains surficial deposits, such as the prominent large debris aprons that commonly surround highland massifs. Regional slopes are to the west, toward the Hellas basin, as indicated by topographic maps of Mars. Approximately 60 percent of the surface of Mars is covered by rugged, heavily cratered terrains believed to represent the effects of heavy bombardment in the inner solar system about 4.0 billion years ago. Much of this terrain, including that within the map area, records a long history of modification by tectonism, fluvial processes, mass wasting, and eolian activity. The presence of fluvial features to the east of Hellas basin, including Reull Vallis and other smaller channels, has significant implications for past environmental conditions. The degraded terrains surrounding Hellas basin provide constraints on the role and timing of volatile-driven activity in the evolution of the highlands. Current photogeologic mapping at 1:500,000 scale (see also Mest and Crown, 2002) from analysis of Viking Orbiter images complements previous geomorphic studies of Reull Vallis and other highland outflow systems, drainage networks, and highland debris aprons, as well as regional geologic mapping studies and geologic mapping of Hellas basin as a whole at 1:5,000,000 scale. Viking Orbiter image coverage of the map area generally ranges from 160 to 220 m/pixel; the central part of the map area is covered by higher resolution images of about 47 m/pixel. Crater size-frequency distributions have been compiled to constrain the relative ages of geologic units and determine the timing and duration of inferred geologic processes.
A navigation system for the visually impaired an intelligent white cane.
Fukasawa, A Jin; Magatani, Kazusihge
2012-01-01
In this paper, we describe about a developed navigation system that supports the independent walking of the visually impaired in the indoor space. Our developed instrument consists of a navigation system and a map information system. These systems are installed on a white cane. Our navigation system can follow a colored navigation line that is set on the floor. In this system, a color sensor installed on the tip of a white cane, this sensor senses a color of navigation line and the system informs the visually impaired that he/she is walking along the navigation line by vibration. This color recognition system is controlled by a one-chip microprocessor. RFID tags and a receiver for these tags are used in the map information system. RFID tags are set on the colored navigation line. An antenna for RFID tags and a tag receiver are also installed on a white cane. The receiver receives the area information as a tag-number and notifies map information to the user by mp3 formatted pre-recorded voice. And now, we developed the direction identification technique. Using this technique, we can detect a user's walking direction. A triaxiality acceleration sensor is used in this system. Three normal subjects who were blindfolded with an eye mask were tested with our developed navigation system. All of them were able to walk along the navigation line perfectly. We think that the performance of the system is good. Therefore, our system will be extremely valuable in supporting the activities of the visually impaired.
Tianxiao Jiang; Siddiqui, Hasan; Ray, Shruti; Asman, Priscella; Ozturk, Musa; Ince, Nuri F
2017-07-01
This paper presents a portable platform to collect and review behavioral data simultaneously with neurophysiological signals. The whole system is comprised of four parts: a sensor data acquisition interface, a socket server for real-time data streaming, a Simulink system for real-time processing and an offline data review and analysis toolbox. A low-cost microcontroller is used to acquire data from external sensors such as accelerometer and hand dynamometer. The micro-controller transfers the data either directly through USB or wirelessly through a bluetooth module to a data server written in C++ for MS Windows OS. The data server also interfaces with the digital glove and captures HD video from webcam. The acquired sensor data are streamed under User Datagram Protocol (UDP) to other applications such as Simulink/Matlab for real-time analysis and recording. Neurophysiological signals such as electroencephalography (EEG), electrocorticography (ECoG) and local field potential (LFP) recordings can be collected simultaneously in Simulink and fused with behavioral data. In addition, we developed a customized Matlab Graphical User Interface (GUI) software to review, annotate and analyze the data offline. The software provides a fast, user-friendly data visualization environment with synchronized video playback feature. The software is also capable of reviewing long-term neural recordings. Other featured functions such as fast preprocessing with multithreaded filters, annotation, montage selection, power-spectral density (PSD) estimate, time-frequency map and spatial spectral map are also implemented.
Brown, Ninita H.; Dobrovolny, Hana M.; Gauthier, Daniel J.; Wolf, Patrick D.
2007-01-01
Optical fiber-based mapping systems are used to record the cardiac action potential (AP) throughout the myocardium. The optical AP contains a contraction-induced motion artifact (MA), which makes it difficult to accurately measure the action potential duration (APD). MA is removed by preventing contraction with electrical-mechanical uncoupling drugs, such as 2,3-butanedione monoxime (BDM). We designed a novel fiber-based ratiometric optical channel using a blue light emitting diode, a diffraction grating, and a split photodetector that can accurately measure the cardiac AP without the need for BDM. The channel was designed based on simulations using the optical design software ZEMAX. The channel has an electrical bandwidth of 150 Hz and an root mean-square dark noise of 742 μV. The channel successfully recorded the cardiac AP from the wall of five rabbit heart preparations without the use of BDM. After 20-point median filtering, the mean signal/noise ratio was 25.3 V/V. The APD measured from the base of a rabbit heart was 134 ± 8.4 ms, compared to 137.6 ± 3.3 ms from simultaneous microelectrode recordings. This difference was not statistically significant (p-value = 0.3). The quantity of MA removed was also measured using the motion ratio. The reduction in MA was significant (p-value = 0.0001). This fiber-based system is the first of its kind to enable optical APD measurements in the beating heart wall without the use of BDM. PMID:17416627
Mapping the droplet transfer modes for an ER100S-1 GMAW electrode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heald, P.R.; Madigan, R.B.; Siewert, T.A.
1994-02-01
Welds were made with a 1.2-mm-diameter AWS ER100S-1 electrode using Ar-2% O[sub 2] shielding gas to map the effects of contact-tube-to-work distance (13, 19 and 25 mm), current, voltage, and wire feed rate on metal transfer. The droplet transfer modes were identified for each map by both the sound of the arc and images from a laser back-lit high-speed video system. The modes were correlated to digital records of the voltage and current fluctuations. The maps contain detailed information on the spray transfer mode, including the boundaries of drop spray, streaming spray and rotating spray modes. The metal transfer modemore » boundaries shifted with an increase in contact-tube-to-work distance. Increasing the contact-tube-to-work distance from 13 to 19 mm resulted in a 15 mm/s increase in the wire feet rate for the globular-to-drop-spray transition.« less
Nalavany, Blace Arthur; Carawan, Lena Williams; Rennick, Robyn A
2011-01-01
Concept mapping (a mixed qualitative-quantitative methodology) was used to describe and understand the psychosocial experiences of adults with confirmed and self-identified dyslexia. Using innovative processes of art and photography, Phase 1 of the study included 15 adults who participated in focus groups and in-depth interviews and were asked to elucidate their experiences with dyslexia. On index cards, 75 statements and experiences with dyslexia were recorded. The second phase of the study included 39 participants who sorted these statements into self-defined categories and rated each statement to reflect their personal experiences to produce a visual representation, or concept map, of their experience. The final concept map generated nine distinct cluster themes: Organization Skills for Success; Finding Success; A Good Support System Makes the Difference; On Being Overwhelmed; Emotional Downside; Why Can't They See It?; Pain, Hurt, and Embarrassment From Past to Present; Fear of Disclosure; and Moving Forward. Implications of these findings are discussed.
In Situ Optical Mapping of Voltage and Calcium in the Heart
Ewart, Paul; Ashley, Euan A.; Loew, Leslie M.; Kohl, Peter; Bollensdorff, Christian; Woods, Christopher E.
2012-01-01
Electroanatomic mapping the interrelation of intracardiac electrical activation with anatomic locations has become an important tool for clinical assessment of complex arrhythmias. Optical mapping of cardiac electrophysiology combines high spatiotemporal resolution of anatomy and physiological function with fast and simultaneous data acquisition. If applied to the clinical setting, this could improve both diagnostic potential and therapeutic efficacy of clinical arrhythmia interventions. The aim of this study was to explore this utility in vivo using a rat model. To this aim, we present a single-camera imaging and multiple light-emitting-diode illumination system that reduces economic and technical implementation hurdles to cardiac optical mapping. Combined with a red-shifted calcium dye and a new near-infrared voltage-sensitive dye, both suitable for use in blood-perfused tissue, we demonstrate the feasibility of in vivo multi-parametric imaging of the mammalian heart. Our approach combines recording of electrophysiologically-relevant parameters with observation of structural substrates and is adaptable, in principle, to trans-catheter percutaneous approaches. PMID:22876327
Bellmann, Barbara; Lin, Tina; Ruppersberg, Peter; Zettwitz, Marit; Guttmann, Selma; Tscholl, Verena; Nagel, Patrick; Roser, Mattias; Landmesser, Ulf; Rillig, Andreas
2018-05-09
The optimal ablation approach for the treatment of persistent atrial fibrillation (AF) is still under debate; however, the identification and elimination of AF sources is thought to play a key role. Currently available technologies for the identification of AF sources are not able to differentiate between active rotors or focal impulse (FI) and passive circular turbulences as generated by the interaction of a wave front with a functional obstacle such as fibrotic tissue. This study introduces electrographic flow (EGF) mapping as a novel technology for the identification and characterization of AF sources in humans. Twenty-five patients with AF (persistent: n = 24, long-standing persistent: n = 1; mean age 70.0 ± 8.3 years, male: n = 17) were included in this prospective study. Focal impulse and Rotor-Mapping (FIRM) was performed in addition to pulmonary vein isolation using radiofrequency in conjunction with a 3D-mapping-system. One-minute epochs were exported from the EP-recording-system and re-analyzed using EGF mapping after the procedure. 44 potential AF sources (43 rotors and one FI) were identified with FIRM and 39 of these rotors were targeted for ablation. EGF mapping verified 40 of these patterns and identified 24/40 (60%) as active sources while 16/40 (40%) were classified as passive circular turbulences. Four rotors were not identified by EGF mapping. EGF is the first method to identify active AF sources during AF ablation procedures in humans and discriminate them from passive rotational phenomena, which occur if the excitation wavefront passes conduction bariers. EGF mapping may allow improved guidance of AF ablation procedures.
Photogrammetric Applications of Immersive Video Cameras
NASA Astrophysics Data System (ADS)
Kwiatek, K.; Tokarczyk, R.
2014-05-01
The paper investigates immersive videography and its application in close-range photogrammetry. Immersive video involves the capture of a live-action scene that presents a 360° field of view. It is recorded simultaneously by multiple cameras or microlenses, where the principal point of each camera is offset from the rotating axis of the device. This issue causes problems when stitching together individual frames of video separated from particular cameras, however there are ways to overcome it and applying immersive cameras in photogrammetry provides a new potential. The paper presents two applications of immersive video in photogrammetry. At first, the creation of a low-cost mobile mapping system based on Ladybug®3 and GPS device is discussed. The amount of panoramas is much too high for photogrammetric purposes as the base line between spherical panoramas is around 1 metre. More than 92 000 panoramas were recorded in one Polish region of Czarny Dunajec and the measurements from panoramas enable the user to measure the area of outdoors (adverting structures) and billboards. A new law is being created in order to limit the number of illegal advertising structures in the Polish landscape and immersive video recorded in a short period of time is a candidate for economical and flexible measurements off-site. The second approach is a generation of 3d video-based reconstructions of heritage sites based on immersive video (structure from immersive video). A mobile camera mounted on a tripod dolly was used to record the interior scene and immersive video, separated into thousands of still panoramas, was converted from video into 3d objects using Agisoft Photoscan Professional. The findings from these experiments demonstrated that immersive photogrammetry seems to be a flexible and prompt method of 3d modelling and provides promising features for mobile mapping systems.
Barnhill, Rick; Heermann-Do, Kimberly A; Salzman, Keith L; Gimbel, Ronald W
2011-01-01
Objective To design, build, implement, and evaluate a personal health record (PHR), tethered to the Military Health System, that leverages Microsoft® HealthVault and Google® Health infrastructure based on user preference. Materials and methods A pilot project was conducted in 2008–2009 at Madigan Army Medical Center in Tacoma, Washington. Our PHR was architected to a flexible platform that incorporated standards-based models of Continuity of Document and Continuity of Care Record to map Department of Defense-sourced health data, via a secure Veterans Administration data broker, to Microsoft® HealthVault and Google® Health based on user preference. The project design and implementation were guided by provider and patient advisory panels with formal user evaluation. Results The pilot project included 250 beneficiary users. Approximately 73.2% of users were <65 years of age, and 38.4% were female. Of the users, 169 (67.6%) selected Microsoft® HealthVault, and 81 (32.4%) selected Google® Health as their PHR of preference. Sample evaluation of users reflected 100% (n=60) satisfied with convenience of record access and 91.7% (n=55) satisfied with overall functionality of PHR. Discussion Key lessons learned related to data-transfer decisions (push vs pull), purposeful delays in reporting sensitive information, understanding and mapping PHR use and clinical workflow, and decisions on information patients may choose to share with their provider. Conclusion Currently PHRs are being viewed as empowering tools for patient activation. Design and implementation issues (eg, technical, organizational, information security) are substantial and must be thoughtfully approached. Adopting standards into design can enhance the national goal of portability and interoperability. PMID:21292705
Daily High-Resolution Flood Maps of Africa: 1992-present with Near Real Time Updates
NASA Astrophysics Data System (ADS)
Picton, J.; Galantowicz, J. F.; Root, B.
2016-12-01
The ability to characterize past and current flood extents frequently, accurately, and at high resolution is needed for many applications including risk assessment, wetlands monitoring, and emergency management. However, remote sensing methods have not been capable of meeting all of these requirements simultaneously. Cloud cover too often obscures the surface for visual and infrared sensors and observations from radar sensors are too infrequent to create consistent historical databases or monitor evolving events. Lower-resolution (10-50 km) passive microwave sensors, such as SSM/I, AMSR-E, and AMSR2, are sensitive to water cover, acquire useful data during clear and cloudy conditions, have revisit periods of up to twice daily, and provide a continuous record of data from 1992 to the present. What they lack most is the resolution needed to map flood extent. We will present results from a flood mapping system capable of producing high-resolution (90-m) flood extent depictions from lower resolution microwave data. The system uses the strong sensitivity of microwave data to surface water coverage combined with land surface and atmospheric data to derive daily flooded fraction estimates on a sensor-footprint basis. The system downscales flooded fraction to make high-resolution Boolean flood extent depictions that are spatially continuous and consistent with the lower resolution data. The downscaling step is based on a relative floodability (RF) index derived from higher-resolution topographic and hydrological data. We process RF to create a flooded fraction threshold map that relates each 90-m grid point to the surrounding terrain at the microwave scale. We have derived daily, 90-m resolution flood maps for Africa covering 1992-present using SSM/I, AMSR-E, and AMSR2 data and we are now producing new daily maps in near real time. The flood maps are being used by the African Risk Capacity (ARC) Agency to underpin an intergovernmental river flood insurance program in Africa. We will present results showing daily flood extents during major events and discuss: validation of the flood maps against MODIS-derived maps; analyses of minimum detectable flood size; aggregate analyses of flood extent over time; flood map use in ARC's insurance model; and results applying the system to the Americas.
The Gap in Big Data: Getting to Wellbeing, Strengths, and a Whole-person Perspective
Peters, Judith; Schlesner, Sara; Vanderboom, Catherine E.; Holland, Diane E.
2015-01-01
Background: Electronic health records (EHRs) provide a clinical view of patient health. EHR data are becoming available in large data sets and enabling research that will transform the landscape of healthcare research. Methods are needed to incorporate wellbeing dimensions and strengths in large data sets. The purpose of this study was to examine the potential alignment of the Wellbeing Model with a clinical interface terminology standard, the Omaha System, for documenting wellbeing assessments. Objective: To map the Omaha System and Wellbeing Model for use in a clinical EHR wellbeing assessment and to evaluate the feasibility of describing strengths and needs of seniors generated through this assessment. Methods: The Wellbeing Model and Omaha System were mapped using concept mapping techniques. Based on this mapping, a wellbeing assessment was developed and implemented within a clinical EHR. Strengths indicators and signs/symptoms data for 5 seniors living in a residential community were abstracted from wellbeing assessments and analyzed using standard descriptive statistics and pattern visualization techniques. Results: Initial mapping agreement was 93.5%, with differences resolved by consensus. Wellbeing data analysis showed seniors had an average of 34.8 (range=22-49) strengths indicators for 22.8 concepts. They had an average of 6.4 (range=4-8) signs/symptoms for an average of 3.2 (range=2-5) concepts. The ratio of strengths indicators to signs/symptoms was 6:1 (range 2.8-9.6). Problem concepts with more signs/symptoms had fewer strengths. Conclusion: Together, the Wellbeing Model and the Omaha System have potential to enable a whole-person perspective and enhance the potential for a wellbeing perspective in big data research in healthcare. PMID:25984416
The Gap in Big Data: Getting to Wellbeing, Strengths, and a Whole-person Perspective.
Monsen, Karen A; Peters, Judith; Schlesner, Sara; Vanderboom, Catherine E; Holland, Diane E
2015-05-01
Electronic health records (EHRs) provide a clinical view of patient health. EHR data are becoming available in large data sets and enabling research that will transform the landscape of healthcare research. Methods are needed to incorporate wellbeing dimensions and strengths in large data sets. The purpose of this study was to examine the potential alignment of the Wellbeing Model with a clinical interface terminology standard, the Omaha System, for documenting wellbeing assessments. To map the Omaha System and Wellbeing Model for use in a clinical EHR wellbeing assessment and to evaluate the feasibility of describing strengths and needs of seniors generated through this assessment. The Wellbeing Model and Omaha System were mapped using concept mapping techniques. Based on this mapping, a wellbeing assessment was developed and implemented within a clinical EHR. Strengths indicators and signs/symptoms data for 5 seniors living in a residential community were abstracted from wellbeing assessments and analyzed using standard descriptive statistics and pattern visualization techniques. Initial mapping agreement was 93.5%, with differences resolved by consensus. Wellbeing data analysis showed seniors had an average of 34.8 (range=22-49) strengths indicators for 22.8 concepts. They had an average of 6.4 (range=4-8) signs/symptoms for an average of 3.2 (range=2-5) concepts. The ratio of strengths indicators to signs/symptoms was 6:1 (range 2.8-9.6). Problem concepts with more signs/symptoms had fewer strengths. Together, the Wellbeing Model and the Omaha System have potential to enable a whole-person perspective and enhance the potential for a wellbeing perspective in big data research in healthcare.
Simultaneous electrical recording of cardiac electrophysiology and contraction on chip
Qian, Fang; Huang, Chao; Lin, Yi-Dong; ...
2017-04-18
Prevailing commercialized cardiac platforms for in vitro drug development utilize planar microelectrode arrays to map action potentials, or impedance sensing to record contraction in real time, but cannot record both functions on the same chip with high spatial resolution. We report a novel cardiac platform that can record cardiac tissue adhesion, electrophysiology, and contractility on the same chip. The platform integrates two independent yet interpenetrating sensor arrays: a microelectrode array for field potential readouts and an interdigitated electrode array for impedance readouts. Together, these arrays provide real-time, non-invasive data acquisition of both cardiac electrophysiology and contractility under physiological conditions andmore » under drug stimuli. Furthermore, we cultured human induced pluripotent stem cell-derived cardiomyocytes as a model system, and used to validate the platform with an excitation–contraction decoupling chemical. Preliminary data using the platform to investigate the effect of the drug norepinephrine are combined with computational efforts. Finally, this platform provides a quantitative and predictive assay system that can potentially be used for comprehensive assessment of cardiac toxicity earlier in the drug discovery process.« less
Simultaneous electrical recording of cardiac electrophysiology and contraction on chip
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, Fang; Huang, Chao; Lin, Yi-Dong
Prevailing commercialized cardiac platforms for in vitro drug development utilize planar microelectrode arrays to map action potentials, or impedance sensing to record contraction in real time, but cannot record both functions on the same chip with high spatial resolution. We report a novel cardiac platform that can record cardiac tissue adhesion, electrophysiology, and contractility on the same chip. The platform integrates two independent yet interpenetrating sensor arrays: a microelectrode array for field potential readouts and an interdigitated electrode array for impedance readouts. Together, these arrays provide real-time, non-invasive data acquisition of both cardiac electrophysiology and contractility under physiological conditions andmore » under drug stimuli. Furthermore, we cultured human induced pluripotent stem cell-derived cardiomyocytes as a model system, and used to validate the platform with an excitation–contraction decoupling chemical. Preliminary data using the platform to investigate the effect of the drug norepinephrine are combined with computational efforts. Finally, this platform provides a quantitative and predictive assay system that can potentially be used for comprehensive assessment of cardiac toxicity earlier in the drug discovery process.« less
Emilyn Sheffield; Leslie Furr; Charles Nelson
1992-01-01
Filevision IV is a multilayer imaging and data-base management system that combines drawing, filing and extensive report-writing capabilities (Filevision IV, 1988). Filevision IV users access data by attaching graphics to text-oriented data-base records. Tourist attractions, support services, and geo-graphic features can be located on a base map of an area or region....
An automatic locating system for cloud-to-ground lightning. [which utilizes a microcomputer
NASA Technical Reports Server (NTRS)
Krider, E. P.; Pifer, A. E.; Uman, M. A.
1980-01-01
Automatic locating systems which respond to cloud to ground lightning and which discriminate against cloud discharges and background noise are described. Subsystems of the locating system, which include the direction finder and the position analyzer, are discussed. The direction finder senses the electromagnetic fields radiated by lightning on two orthogonal magnetic loop antennas and on a flat plate electric antenna. The position analyzer is a preprogrammed microcomputer system which automatically computes, maps, and records lightning locations in real time using data inputs from the direction finder. The use of the locating systems for wildfire management and fire weather forecasting is discussed.
Duan, Xiaojie; Fu, Tian-Ming; Liu, Jia; Lieber, Charles M
2013-08-01
Semiconductor nanowires configured as the active channels of field-effect transistors (FETs) have been used as detectors for high-resolution electrical recording from single live cells, cell networks, tissues and organs. Extracellular measurements with substrate supported silicon nanowire (SiNW) FETs, which have projected active areas orders of magnitude smaller than conventional microfabricated multielectrode arrays (MEAs) and planar FETs, recorded action potential and field potential signals with high signal-to-noise ratio and temporal resolution from cultured neurons, cultured cardiomyocytes, acute brain slices and whole animal hearts. Measurements made with modulation-doped nanoscale active channel SiNW FETs demonstrate that signals recorded from cardiomyocytes are highly localized and have improved time resolution compared to larger planar detectors. In addition, several novel three-dimensional (3D) transistor probes, which were realized using advanced nanowire synthesis methods, have been implemented for intracellular recording. These novel probes include (i) flexible 3D kinked nanowire FETs, (ii) branched intracellular nanotube SiNW FETs, and (iii) active silicon nanotube FETs. Following phospholipid modification of the probes to mimic the cell membrane, the kinked nanowire, branched intracellular nanotube and active silicon nanotube FET probes recorded full-amplitude intracellular action potentials from spontaneously firing cardiomyocytes. Moreover, these probes demonstrated the capability of reversible, stable, and long-term intracellular recording, thus indicating the minimal invasiveness of the new nanoscale structures and suggesting biomimetic internalization via the phospholipid modification. Simultaneous, multi-site intracellular recording from both single cells and cell networks were also readily achieved by interfacing independently addressable nanoprobe devices with cells. Finally, electronic and biological systems have been seamlessly merged in 3D for the first time using macroporous nanoelectronic scaffolds that are analogous to synthetic tissue scaffold and the extracellular matrix in tissue. Free-standing 3D nanoelectronic scaffolds were cultured with neurons, cardiomyocytes and smooth muscle cells to yield electronically-innervated synthetic or 'cyborg' tissues. Measurements demonstrate that innervated tissues exhibit similar cell viability as with conventional tissue scaffolds, and importantly, demonstrate that the real-time response to drugs and pH changes can be mapped in 3D through the tissues. These results open up a new field of research, wherein nanoelectronics are merged with biological systems in 3D thereby providing broad opportunities, ranging from a nanoelectronic/tissue platform for real-time pharmacological screening in 3D to implantable 'cyborg' tissues enabling closed-loop monitoring and treatment of diseases. Furthermore, the capability of high density scale-up of the above extra- and intracellular nanoscopic probes for action potential recording provide important tools for large-scale high spatio-temporal resolution electrical neural activity mapping in both 2D and 3D, which promises to have a profound impact on many research areas, including the mapping of activity within the brain.
Duan, Xiaojie; Fu, Tian-Ming; Liu, Jia; Lieber, Charles M.
2013-01-01
Summary Semiconductor nanowires configured as the active channels of field-effect transistors (FETs) have been used as detectors for high-resolution electrical recording from single live cells, cell networks, tissues and organs. Extracellular measurements with substrate supported silicon nanowire (SiNW) FETs, which have projected active areas orders of magnitude smaller than conventional microfabricated multielectrode arrays (MEAs) and planar FETs, recorded action potential and field potential signals with high signal-to-noise ratio and temporal resolution from cultured neurons, cultured cardiomyocytes, acute brain slices and whole animal hearts. Measurements made with modulation-doped nanoscale active channel SiNW FETs demonstrate that signals recorded from cardiomyocytes are highly localized and have improved time resolution compared to larger planar detectors. In addition, several novel three-dimensional (3D) transistor probes, which were realized using advanced nanowire synthesis methods, have been implemented for intracellular recording. These novel probes include (i) flexible 3D kinked nanowire FETs, (ii) branched intracellular nanotube SiNW FETs, and (iii) active silicon nanotube FETs. Following phospholipid modification of the probes to mimic the cell membrane, the kinked nanowire, branched intracellular nanotube and active silicon nanotube FET probes recorded full-amplitude intracellular action potentials from spontaneously firing cardiomyocytes. Moreover, these probes demonstrated the capability of reversible, stable, and long-term intracellular recording, thus indicating the minimal invasiveness of the new nanoscale structures and suggesting biomimetic internalization via the phospholipid modification. Simultaneous, multi-site intracellular recording from both single cells and cell networks were also readily achieved by interfacing independently addressable nanoprobe devices with cells. Finally, electronic and biological systems have been seamlessly merged in 3D for the first time using macroporous nanoelectronic scaffolds that are analogous to synthetic tissue scaffold and the extracellular matrix in tissue. Free-standing 3D nanoelectronic scaffolds were cultured with neurons, cardiomyocytes and smooth muscle cells to yield electronically-innervated synthetic or ‘cyborg’ tissues. Measurements demonstrate that innervated tissues exhibit similar cell viability as with conventional tissue scaffolds, and importantly, demonstrate that the real-time response to drugs and pH changes can be mapped in 3D through the tissues. These results open up a new field of research, wherein nanoelectronics are merged with biological systems in 3D thereby providing broad opportunities, ranging from a nanoelectronic/tissue platform for real-time pharmacological screening in 3D to implantable ‘cyborg’ tissues enabling closed-loop monitoring and treatment of diseases. Furthermore, the capability of high density scale-up of the above extra- and intracellular nanoscopic probes for action potential recording provide important tools for large-scale high spatio-temporal resolution electrical neural activity mapping in both 2D and 3D, which promises to have a profound impact on many research areas, including the mapping of activity within the brain. PMID:24073014
Temporal and spatial mapping of red grouper Epinephelus morio sound production.
Wall, C C; Simard, P; Lindemuth, M; Lembke, C; Naar, D F; Hu, C; Barnes, B B; Muller-Karger, F E; Mann, D A
2014-11-01
The goals of this project were to determine the daily, seasonal and spatial patterns of red grouper Epinephelus morio sound production on the West Florida Shelf (WFS) using passive acoustics. An 11 month time series of acoustic data from fixed recorders deployed at a known E. morio aggregation site showed that E. morio produce sounds throughout the day and during all months of the year. Increased calling (number of files containing E. morio sound) was correlated to sunrise and sunset, and peaked in late summer (July and August) and early winter (November and December). Due to the ubiquitous production of sound, large-scale spatial mapping across the WFS of E. morio sound production was feasible using recordings from shorter duration-fixed location recorders and autonomous underwater vehicles (AUVs). Epinephelus morio were primarily recorded in waters 15-93 m deep, with increased sound production detected in hard bottom areas and within the Steamboat Lumps Marine Protected Area (Steamboat Lumps). AUV tracks through Steamboat Lumps, an offshore marine reserve where E. morio hole excavations have been previously mapped, showed that hydrophone-integrated AUVs could accurately map the location of soniferous fish over spatial scales of <1 km. The results show that passive acoustics is an effective, non-invasive tool to map the distribution of this species over large spatial scales. © 2014 The Fisheries Society of the British Isles.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Records. 735.27 Section 735.27 Mineral... AND ENFORCEMENT § 735.27 Records. (a) The agency shall maintain complete records in accordance with... professional services, shall maintain books, documents, papers, maps, and records which are pertinent to...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Records. 735.27 Section 735.27 Mineral... AND ENFORCEMENT § 735.27 Records. (a) The agency shall maintain complete records in accordance with... professional services, shall maintain books, documents, papers, maps, and records which are pertinent to...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Records. 735.27 Section 735.27 Mineral... AND ENFORCEMENT § 735.27 Records. (a) The agency shall maintain complete records in accordance with... professional services, shall maintain books, documents, papers, maps, and records which are pertinent to...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Records. 735.27 Section 735.27 Mineral... AND ENFORCEMENT § 735.27 Records. (a) The agency shall maintain complete records in accordance with... professional services, shall maintain books, documents, papers, maps, and records which are pertinent to...
Hierarchical Kohonenen net for anomaly detection in network security.
Sarasamma, Suseela T; Zhu, Qiuming A; Huff, Julie
2005-04-01
A novel multilevel hierarchical Kohonen Net (K-Map) for an intrusion detection system is presented. Each level of the hierarchical map is modeled as a simple winner-take-all K-Map. One significant advantage of this multilevel hierarchical K-Map is its computational efficiency. Unlike other statistical anomaly detection methods such as nearest neighbor approach, K-means clustering or probabilistic analysis that employ distance computation in the feature space to identify the outliers, our approach does not involve costly point-to-point computation in organizing the data into clusters. Another advantage is the reduced network size. We use the classification capability of the K-Map on selected dimensions of data set in detecting anomalies. Randomly selected subsets that contain both attacks and normal records from the KDD Cup 1999 benchmark data are used to train the hierarchical net. We use a confidence measure to label the clusters. Then we use the test set from the same KDD Cup 1999 benchmark to test the hierarchical net. We show that a hierarchical K-Map in which each layer operates on a small subset of the feature space is superior to a single-layer K-Map operating on the whole feature space in detecting a variety of attacks in terms of detection rate as well as false positive rate.
Processing the CONSOL Energy, Inc. Mine Maps and Records Collection at the University of Pittsburgh
ERIC Educational Resources Information Center
Rougeux, Debora A.
2011-01-01
This article describes the efforts of archivists and student assistants at the University of Pittsburgh's Archives Service Center to organize, describe, store, and provide timely and efficient access to over 8,000 maps of underground coal mines in southwestern Pennsylvania, as well the records that accompanied them, donated by CONSOL Energy, Inc.…
Southwest Alaska Regional Geothermal Energy Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holdmann, Gwen
2015-04-30
The village of Elim, Alaska is 96 miles west of Nome, on the Seward Peninsula. The Darby Mountains north of the village are rich with hydrothermal systems associated with the Darby granitic pluton(s). In addition to the hot springs that have been recorded and studied over the last 100 years, additional hot springs exist. They are known through a rich oral history of the region, though they are not labeled on geothermal maps. This research primarily focused on Kwiniuk Hot Springs, Clear Creek Hot Springs and Molly’s Hot Springs. The highest recorded surface temperatures of these resources exist at Clearmore » Creek Hot Springs (67°C). Repeated water sampling of the resources shows that maximum temperatures at all of the systems are below boiling.« less
NASA Technical Reports Server (NTRS)
Dan, Dan; Hoag, Jeffrey B.; Ellenbogen, Kenneth A.; Wood, Mark A.; Eckberg, Dwain L.; Gilligan, David M.
2002-01-01
OBJECTIVES: We studied hemodynamic changes leading to orthostatic vasovagal presyncope to determine whether changes of cerebral artery blood flow velocity precede or follow reductions of arterial pressure. BACKGROUND: Some evidence suggests that disordered cerebral autoregulation contributes to the occurrence of orthostatic vasovagal syncope. We studied cerebral hemodynamics with transcranial Doppler recordings, and we closely examined the temporal sequence of changes of cerebral artery blood flow velocity and systemic arterial pressure in 15 patients who did or did not faint during passive 70 degrees head-up tilt. METHODS: We recorded photoplethysmographic arterial pressure, RR intervals (electrocardiogram) and middle cerebral artery blood flow velocities (mean, total, mean/RR interval; Gosling's pulsatility index; and cerebrovascular resistance [mean cerebral velocity/mean arterial pressure, MAP]). RESULTS: Eight men developed presyncope, and six men and one woman did not. Presyncopal patients reported light-headedness, diaphoresis, or a sensation of fatigue 155 s (range: 25 to 414 s) before any cerebral or systemic hemodynamic change. Average cerebral blood flow velocity (CBFV) changes (defined by an iterative linear regression algorithm) began 67 s (range: 9 to 198 s) before reductions of MAP. Cerebral and systemic hemodynamic measurements remained constant in nonsyncopal patients. CONCLUSIONS: Presyncopal symptoms and CBFV changes precede arterial pressure reductions in patients with orthostatic vasovagal syncope. Therefore, changes of cerebrovascular regulation may contribute to the occurrence of vasovagal reactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Treitz, P.M.; Howarth, P.J.; Gong, Peng
1992-04-01
SPOT HRV multispectral and panchromatic data were recorded and coregistered for a portion of the rural-urban fringe of Toronto, Canada. A two-stage digital analysis algorithm incorporating a spectral-class frequency-based contextual classification of eight land-cover and land-use classes resulted in an overall Kappa coefficient of 82.2 percent for training-area data and a Kappa coefficient of 70.3 percent for test-area data. A matrix-overlay analysis was then performed within the geographic information system (GIS) to combine the land-cover and land-use classes generated from the SPOT digital classification with zoning information for the area. The map that was produced has an estimated interpretation accuracymore » of 78 percent. Global Positioning System (GPS) data provided a positional reference for new road networks. These networks, in addition to the new land-cover and land-use map derived from the SPOT HRV data, provide an up-to-date synthesis of change conditions in the area. 51 refs.« less
Hyperchromatic lens for recording time-resolved phenomena
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frayer, Daniel K.
A method and apparatus for the capture of a high number of quasi-continuous effective frames of 2-D data from an event at very short time scales (from less than 10.sup.-12 to more than 10.sup.-8 seconds) is disclosed which allows for short recording windows and effective number of frames. Active illumination, from a chirped laser pulse directed to the event creates a reflection where wavelength is dependent upon time and spatial position is utilized to encode temporal phenomena onto wavelength. A hyperchromatic lens system receives the reflection and maps wavelength onto axial position. An image capture device, such as holography ormore » plenoptic imaging device, captures the resultant focal stack from the hyperchromatic lens system in both spatial (imaging) and longitudinal (temporal) axes. The hyperchromatic lens system incorporates a combination of diffractive and refractive components to maximally separate focal position as a function of wavelength.« less
Hoppa, Eric Christopher; Porter, Stephen C
2011-06-01
We investigated the potential value of information shared by parents on a written form designed to capture needs and expectations for care to an emergency department (ED) system that values patient-centeredness. We conducted a retrospective content analysis of parent-completed written forms collected during an improvement project focused on parent-provider communication in a pediatric ED. The primary outcome was potential value of the completed forms to a patient-centered ED system, defined as a form that was legible, included observations that mapped to medical problems, and included reasonable parental requests. We analyzed variation in potential value and other form attributes across a priori-defined visit type and acuity. Visit type was validated by a separate, blinded medical record review. A random stratified sample of 1008 forms was established from 6937 parent-completed forms collected during the 6-month improvement project; 995 of 1008 forms had matching medical records; 922 (92.7%) of 995 forms demonstrated potential value; 990 (99.5%) of 995 forms were legible; 948 (95.3%) of 995 forms included observations that mapped to a medical problem, and 599 (93.3%) of 642 forms contained reasonable parental requests. There was good agreement between the form and medical record for visit type (κ = 0.62). The potential value of forms did not vary significantly across visit type (88.2%-92.8%) or acuity (88.9%-93.4%). Information shared by parents on written forms designed to capture needs and expectations provides potential value to a patient-centered ED system. The high level of informational value is consistent across patient type and acuity level.
Navigable Waters Web Map Disclaimer
/ Department of Law Reports & Letters Recordable Disclaimers of Interest Fact Sheet (PDF) State's Recordable Disclaimers of Interest for Navigable Waters BLM's website for Recordable Disclaimers of Interest
Map showing selected surface-water data for the Nephi 30 x 60-minute quadrangle, Utah
Price, Don
1984-01-01
This is one of a series of maps that describe the geology and related natural resources of the Nephi 30 x 60 minute quadrangle, Utah. Streamflow records used to compile this map were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Transportation. The principal runoff-producing areas shown on the map were delineated from a work map (scale 1:250,000) compiled to estimate water yields in Utah (Bagley and others, 1964). Sources of information about recorded floods resulting from cloudbursts included Woolley (1946) and Butler and Marsell (1972); sources of information about the chemical quality of streamflow included Hahl and Cabell (1965) Mundorff (1972 and 1974), and Waddell and others (1982).
Analysis of chaos attractors of MCG-recordings.
Jiang, Shiqin; Yang, Fan; Yi, Panke; Chen, Bo; Luo, Ming; Wang, Lemin
2006-01-01
By studying the chaos attractor of cardiac magnetic induction strength B(z) generated by the electrical activity of the heart, we found that its projection in the reconstructed phase space has a similar shape with the map of the total current dipole vector. It is worth noting that the map of the total current dipole vector is computed with MCG recordings measured at 36 locations, whereas the chaos attractor of B(z) is generated by only one cardiac magnetic field recordings on the measured plan. We discuss only two subjects of different ages in this paper.
Flood monitoring network in southeastern Louisiana
McCallum, Brian E.
1994-01-01
A flood monitoring network has been established to alert emergency operations personnel and the public about hydrologic conditions in the Amite River Basin. The U.S. Geological Survey (USGS), in cooperation with the Louisiana Office of Emergency Preparedness (LOEP), has installed a real-time data acquisition system to monitor rainfall and river stages in the basin. These data will be transmitted for use by emergency operations personnel to develop flood control and evacuation strategies. The current river stages at selected gaging stations in the basin also will be broadcast by local television and radio stations during a flood. Residents can record the changing river stages on a basin monitoring map, similar to a hurricane tracking map.
Use of scientific social networking to improve the research strategies of PubMed readers.
Evdokimov, Pavel; Kudryavtsev, Alexey; Ilgisonis, Ekaterina; Ponomarenko, Elena; Lisitsa, Andrey
2016-02-18
Keeping up with journal articles on a daily basis is an important activity of scientists engaged in biomedical research. Usually, journal articles and papers in the field of biomedicine are accessed through the Medline/PubMed electronic library. In the process of navigating PubMed, researchers unknowingly generate user-specific reading profiles that can be shared within a social networking environment. This paper examines the structure of the social networking environment generated by PubMed users. A web browser plugin was developed to map [in Medical Subject Headings (MeSH) terms] the reading patterns of individual PubMed users. We developed a scientific social network based on the personal research profiles of readers of biomedical articles. A browser plugin is used to record the digital object identifier or PubMed ID of web pages. Recorded items are posted on the activity feed and automatically mapped to PubMed abstract. Within the activity feed a user can trace back previously browsed articles and insert comments. By calculating the frequency with which specific MeSH occur, the research interests of PubMed users can be visually represented with a tag cloud. Finally, research profiles can be searched for matches between network users. A social networking environment was created using MeSH terms to map articles accessed through the Medline/PubMed online library system. In-network social communication is supported by the recommendation of articles and by matching users with similar scientific interests. The system is available at http://bioknol.org/en/.
A Codasyl-Type Schema for Natural Language Medical Records
Sager, N.; Tick, L.; Story, G.; Hirschman, L.
1980-01-01
This paper describes a CODASYL (network) database schema for information derived from narrative clinical reports. The goal of this work is to create an automated process that accepts natural language documents as input and maps this information into a database of a type managed by existing database management systems. The schema described here represents the medical events and facts identified through the natural language processing. This processing decomposes each narrative into a set of elementary assertions, represented as MEDFACT records in the database. Each assertion in turn consists of a subject and a predicate classed according to a limited number of medical event types, e.g., signs/symptoms, laboratory tests, etc. The subject and predicate are represented by EVENT records which are owned by the MEDFACT record associated with the assertion. The CODASYL-type network structure was found to be suitable for expressing most of the relations needed to represent the natural language information. However, special mechanisms were developed for storing the time relations between EVENT records and for recording connections (such as causality) between certain MEDFACT records. This schema has been implemented using the UNIVAC DMS-1100 DBMS.
Extracting and standardizing medication information in clinical text – the MedEx-UIMA system
Jiang, Min; Wu, Yonghui; Shah, Anushi; Priyanka, Priyanka; Denny, Joshua C.; Xu, Hua
2014-01-01
Extraction of medication information embedded in clinical text is important for research using electronic health records (EHRs). However, most of current medication information extraction systems identify drug and signature entities without mapping them to standard representation. In this study, we introduced the open source Java implementation of MedEx, an existing high-performance medication information extraction system, based on the Unstructured Information Management Architecture (UIMA) framework. In addition, we developed new encoding modules in the MedEx-UIMA system, which mapped an extracted drug name/dose/form to both generalized and specific RxNorm concepts and translated drug frequency information to ISO standard. We processed 826 documents by both systems and verified that MedEx-UIMA and MedEx (the Python version) performed similarly by comparing both results. Using two manually annotated test sets that contained 300 drug entries from medication list and 300 drug entries from narrative reports, the MedEx-UIMA system achieved F-measures of 98.5% and 97.5% respectively for encoding drug names to corresponding RxNorm generic drug ingredients, and F-measures of 85.4% and 88.1% respectively for mapping drug names/dose/form to the most specific RxNorm concepts. It also achieved an F-measure of 90.4% for normalizing frequency information to ISO standard. The open source MedEx-UIMA system is freely available online at http://code.google.com/p/medex-uima/. PMID:25954575
An Approach to Extract Moving Objects from Mls Data Using a Volumetric Background Representation
NASA Astrophysics Data System (ADS)
Gehrung, J.; Hebel, M.; Arens, M.; Stilla, U.
2017-05-01
Data recorded by mobile LiDAR systems (MLS) can be used for the generation and refinement of city models or for the automatic detection of long-term changes in the public road space. Since for this task only static structures are of interest, all mobile objects need to be removed. This work presents a straightforward but powerful approach to remove the subclass of moving objects. A probabilistic volumetric representation is utilized to separate MLS measurements recorded by a Velodyne HDL-64E into mobile objects and static background. The method was subjected to a quantitative and a qualitative examination using multiple datasets recorded by a mobile mapping platform. The results show that depending on the chosen octree resolution 87-95% of the measurements are labeled correctly.
Forest fire risk assessment-an integrated approach based on multicriteria evaluation.
Goleiji, Elham; Hosseini, Seyed Mohsen; Khorasani, Nematollah; Monavari, Seyed Masoud
2017-11-06
The present study deals with application of the weighted linear combination method for zoning of forest fire risk in Dohezar and Sehezar region of Mazandaran province in northern Iran. In this study, the effective criteria for fires were identified by the Delphi method, and these included ecological and socioeconomic parameters. In this regard, the first step comprised of digital layers; the required data were provided from databases, related centers, and field data collected in the region. Then, the map of criteria was digitized in a geographic information system, and all criteria and indexes were normalized by fuzzy logic. After that, the geographic information system (GIS 10.3) was integrated with the Weighted Linear Combination and the Analytical Network Process, to produce zonation of the forest fire risk map in the Dohezar and Sehezar region. In order to analyze accuracy of the evaluation, the results obtained from the study were compared to records of former fire incidents in the region. This was done using the Kappa coefficient test and a receiver operating characteristic curve. The model showing estimations for forest fire risk explained that the prepared map had accuracy of 90% determined by the Kappa coefficient test and the value of 0.924 by receiver operating characteristic. These results showed that the prepared map had high accuracy and efficacy.
Challenges of interoperability using HL7 v3 in Czech healthcare.
Nagy, Miroslav; Preckova, Petra; Seidl, Libor; Zvarova, Jana
2010-01-01
The paper describes several classification systems that could improve patient safety through semantic interoperability among contemporary electronic health record systems (EHR-Ss) with support of the HL7 v3 standard. We describe a proposal and a pilot implementation of a semantic interoperability platform (SIP) interconnecting current EHR-Ss by using HL7 v3 messages and concepts mappings on most widely used classification systems. The increasing number of classification systems and nomenclatures requires designing of various conversion tools for transfer between main classification systems. We present the so-called LIM filler module and the HL7 broker, which are parts of the SIP, playing the role of such conversion tools. The analysis of suitability and usability of individual terminological thesauri has been started by mapping of clinical contents of the Minimal Data Model for Cardiology (MDMC) to various terminological classification systems. A national-wide implementation of the SIP would include adopting and translating international coding systems and nomenclatures, and developing implementation guidelines facilitating the migration from national standards to international ones. Our research showed that creation of such a platform is feasible; however, it will require a huge effort to adapt fully the Czech healthcare system to the European environment.
Mapping America in 1880: The Urban Transition Historical GIS Project
Logan, John R.; Jindrich, Jason; Shin, Hyoungjin; Zhang, Weiwei
2011-01-01
The Urban Transition Historical GIS Project is a new data resource for United States counties and cities that takes advantage of NAPP’s 100% digital transcription of records from the 1880 Census. It has developed several additional resources to make possible analysis of social patterns at the level of individuals and households while also taking into account information about their communities. One key contribution is the creation of historically accurate GIS maps showing the boundaries of enumeration districts in 39 major cities. These materials are now publicly available through a web-based mapping system. Addresses of all households in these cities are also being geocoded, a step that will enable spatial analyses of residential patterns at any geographic scale. Preliminary analyses demonstrate the utility of multiple scales and the ability to combine information about individuals with data about their neighborhoods. PMID:21475614
GIS and local knowledge in disaster management: a case study of flood risk mapping in Viet Nam.
Tran, Phong; Shaw, Rajib; Chantry, Guillaume; Norton, John
2009-03-01
Linking community knowledge with modern techniques to record and analyse risk related data is one way of engaging and mobilising community capacity. This paper discusses the use of the Geographic Information System (GIS) at the local level and the need for integrating modern technology and indigenous knowledge into disaster management. It suggests a way to mobilise available human and technical resources in order to strengthen a good partnership between local communities and local and national institutions. The paper also analyses the current vulnerability of two communes by correlating hazard risk and loss/damage caused by disasters and the contribution that domestic risk maps in the community can make to reduce this risk. The disadvantages, advantages and lessons learned from the GIS flood risk mapping project are presented through the case study of the Quang Tho Commune in Thua Thien Hue province, central Viet Nam.
Clickstream data yields high-resolution maps of science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bollen, Johan; Van De Sompel, Herbert; Hagberg, Aric
2009-01-01
Intricate maps of science have been created from citation data to visualize the structure of scientific activity. However, most scientific publications are now accessed online. Scholarly web portals record detailed log data at a scale that exceeds the number of all existing citations combined. Such log data is recorded immediately upon publication and keeps track of the sequences of user requests (clickstreams) that are issued by a variety of users across many different domains. Given these advantagees of log datasets over citation data, we investigate whether they can produce high-resolution, more current maps of science.
NASA Astrophysics Data System (ADS)
Hsu, L.; Bristol, S.; Lehnert, K. A.; Arko, R. A.; Peters, S. E.; Uhen, M. D.; Song, L.
2014-12-01
The U.S. Geological Survey (USGS) is an exemplar of the need for improved cyberinfrastructure for its vast holdings of invaluable physical geoscience data. Millions of discrete paleobiological and geological specimens lie in USGS warehouses and at the Smithsonian Institution. These specimens serve as the basis for many geologic maps and geochemical databases, and are a potential treasure trove of new scientific knowledge. The extent of this treasure is virtually unknown and inaccessible outside a small group of paleogeoscientists and geochemists. A team from the USGS, the Integrated Earth Data Applications (IEDA) facility, and the Paleobiology Database (PBDB) are working to expose information on paleontological and geochemical specimens for discovery by scientists and citizens. This project uses existing infrastructure of the System for Earth Sample Registration (SESAR) and PBDB, which already contains much of the fundamental data schemas that are necessary to accommodate USGS records. The project is also developing a new Linked Data interface for the USGS National Geochemical Database (NGDB). The International Geo Sample Number (IGSN) is the identifier that links samples between all systems. For paleontological specimens, SESAR and PBDB will be the primary repositories for USGS records, with a data syncing process to archive records within the USGS ScienceBase system. The process began with mapping the metadata fields necessary for USGS collections to the existing SESAR and PBDB data structures, while aligning them with the Observations & Measurements and Darwin Core standards. New functionality needed in SESAR included links to a USGS locality registry, fossil classifications, a spatial qualifier attribution for samples with sensitive locations, and acknowledgement of data and metadata licensing. The team is developing a harvesting mechanism to periodically transfer USGS records from within PBDB and SESAR to ScienceBase. For the NGDB, the samples are being registered with IGSNs in SESAR and the geochemical data are being published as Linked Data. This system allows the USGS collections to benefit from disciplinary and institutional strengths of the participating resources, while simultaneously increasing the discovery, accessibility, and citation of USGS physical collection holdings.
NASA Astrophysics Data System (ADS)
Shao, Weber; Kupelian, Patrick A.; Wang, Jason; Low, Daniel A.; Ruan, Dan
2014-03-01
We devise a paradigm for representing the DICOM-RT structure sets in a database management system, in such way that secondary calculations of geometric information can be performed quickly from the existing contour definitions. The implementation of this paradigm is achieved using the PostgreSQL database system and the PostGIS extension, a geographic information system commonly used for encoding geographical map data. The proposed paradigm eliminates the overhead of retrieving large data records from the database, as well as the need to implement various numerical and data parsing routines, when additional information related to the geometry of the anatomy is desired.
Evaluation of the MSFC facsimile camera system as a tool for extraterrestrial geologic exploration
NASA Technical Reports Server (NTRS)
Wolfe, E. W.; Alderman, J. D.
1971-01-01
Utility of the Marshall Space Flight (MSFC) facsimile camera system for extraterrestrial geologic exploration was investigated during the spring of 1971 near Merriam Crater in northern Arizona. Although the system with its present hard-wired recorder operates erratically, the imagery showed that the camera could be developed as a prime imaging tool for automated missions. Its utility would be enhanced by development of computer techniques that utilize digital camera output for construction of topographic maps, and it needs increased resolution for examining near field details. A supplementary imaging system may be necessary for hand specimen examination at low magnification.
Carson, Matthew B; Lee, Young Ji; Benacka, Corrine; Mutharasan, R. Kannan; Ahmad, Faraz S; Kansal, Preeti; Yancy, Clyde W; Anderson, Allen S; Soulakis, Nicholas D
2017-01-01
Objective: Using Failure Mode and Effects Analysis (FMEA) as an example quality improvement approach, our objective was to evaluate whether secondary use of orders, forms, and notes recorded by the electronic health record (EHR) during daily practice can enhance the accuracy of process maps used to guide improvement. We examined discrepancies between expected and observed activities and individuals involved in a high-risk process and devised diagnostic measures for understanding discrepancies that may be used to inform quality improvement planning. Methods: Inpatient cardiology unit staff developed a process map of discharge from the unit. We matched activities and providers identified on the process map to EHR data. Using four diagnostic measures, we analyzed discrepancies between expectation and observation. Results: EHR data showed that 35% of activities were completed by unexpected providers, including providers from 12 categories not identified as part of the discharge workflow. The EHR also revealed sub-components of process activities not identified on the process map. Additional information from the EHR was used to revise the process map and show differences between expectation and observation. Conclusion: Findings suggest EHR data may reveal gaps in process maps used for quality improvement and identify characteristics about workflow activities that can identify perspectives for inclusion in an FMEA. Organizations with access to EHR data may be able to leverage clinical documentation to enhance process maps used for quality improvement. While focused on FMEA protocols, findings from this study may be applicable to other quality activities that require process maps. PMID:27589944
Preparing Documents Recorder Terms District Info District Contact Info Find Your District RO District Map FAQs Closures/Notices Contact Us State of Alaska / Natural Resources / Recorder's Office Recording imply an endorsement of that organization, site, product, or service. Simplifile contact information
NASA Astrophysics Data System (ADS)
De Martini, P. M.; Pucci, S.; Villani, F.; Civico, R.; Del Rio, L.; Cinti, F. R.; Pantosti, D.
2017-12-01
In 2016-2017 a series of moderate to large normal faulting earthquakes struck central Italy producing severe damage in many towns including Amatrice, Norcia and Visso and resulting in 299 casualties and >20,000 homeless. The complex seismic sequence depicts a multiple activation of the Mt. Vettore-Mt. Bove (VBFS) and the Laga Mts. fault systems, which were considered in literature as independent segments characterizing a recent seismic gap in the region comprised between two modern seismic sequences: the 1997-1998 Colfiorito and the 2009 L'Aquila. We mapped in detail the coseismic surface ruptures following three mainshocks (Mw 6.0 on 24th August, Mw 5.9 and Mw 6.5 on 26th and 30th October, 2016, respectively). Primary surface ruptures were observed and recorded for a total length of 5.2 km, ≅10 km and ≅25 km, respectively, along closely-spaced, parallel or subparallel, overlapping or step-like synthetic and antithetic fault splays of the activated fault systems, in some cases rupturing repeatedly the same location. Some coseismic ruptures were mapped also along the Norcia Fault System, paralleling the VBFS about 10 km westward. We recorded geometric and kinematic characteristics of the normal faulting ruptures with an unprecedented detail thanks to almost 11,000 oblique photographs taken from helicopter flights soon after the mainshocks, verified and integrated with field data (more than 7000 measurements). We analyze the along-strike coseismic slip and slip vectors distribution to be observed in the context of the geomorphic expression of the disrupted slopes and their depositional and erosive processes. Moreover, we constructed 1:10.000 scale geologic cross-sections based on updated maps, and we reconstructed the net offset distribution of the activated fault system to be compared with the morphologic throws and to test a cause-effect relationship between faulting and first-order landforms. We provide a reconstruction of the 2016 coseismic rupture pattern as representative of the VBFS behavior, a discussion on the fault system boundaries persistence, and on the significance of the repeated surface faulting at same location.
EPA Tribal Areas (4 of 4): Alaska Native Allotments
This dataset is a spatial representation of the Public Land Survey System (PLSS) in Alaska, generated from land survey records. The data represents a seamless spatial portrayal of native allotment land parcels, their legal descriptions, corner positioning and markings, and survey measurements. This data is intended for mapping purposes only and is not a substitute or replacement for the legal land survey records or other legal documents.Measurement and attribute data are collected from survey records using data entry screens into a relational database. The database design is based upon the FGDC Cadastral Content Data Standard. Corner positions are derived by geodetic calculations using measurement records. Closure and edgematching are applied to produce a seamless dataset. The resultant features do not preserve the original geometry of survey measurements, but the record measurements are reported as attributes. Additional boundary data are derived by spatial capture, protraction and GIS processing. The spatial features are stored and managed within the relational database, with active links to the represented measurement and attribute data.
NASA Technical Reports Server (NTRS)
Morrison, D.; Samz, J.
1980-01-01
Early observations of the Jovian system are reviewed as well as the scientific objectives of the Pioneer and Voyager flyby missions. Launch vehicles, spacecraft trajectories, and the instruments carried are described. Photographs obtained by both voyage spacecraft are presented along with day-by-day summaries of the findings recorded by the various instruments and experiments carried by each spacecraft. Pictorial maps of the Galilean satellites, and lists of the Voyager science and managements teams are included.
Using Distributed Data over HBase in Big Data Analytics Platform for Clinical Services
Zamani, Hamid
2017-01-01
Big data analytics (BDA) is important to reduce healthcare costs. However, there are many challenges of data aggregation, maintenance, integration, translation, analysis, and security/privacy. The study objective to establish an interactive BDA platform with simulated patient data using open-source software technologies was achieved by construction of a platform framework with Hadoop Distributed File System (HDFS) using HBase (key-value NoSQL database). Distributed data structures were generated from benchmarked hospital-specific metadata of nine billion patient records. At optimized iteration, HDFS ingestion of HFiles to HBase store files revealed sustained availability over hundreds of iterations; however, to complete MapReduce to HBase required a week (for 10 TB) and a month for three billion (30 TB) indexed patient records, respectively. Found inconsistencies of MapReduce limited the capacity to generate and replicate data efficiently. Apache Spark and Drill showed high performance with high usability for technical support but poor usability for clinical services. Hospital system based on patient-centric data was challenging in using HBase, whereby not all data profiles were fully integrated with the complex patient-to-hospital relationships. However, we recommend using HBase to achieve secured patient data while querying entire hospital volumes in a simplified clinical event model across clinical services. PMID:29375652
Using Distributed Data over HBase in Big Data Analytics Platform for Clinical Services.
Chrimes, Dillon; Zamani, Hamid
2017-01-01
Big data analytics (BDA) is important to reduce healthcare costs. However, there are many challenges of data aggregation, maintenance, integration, translation, analysis, and security/privacy. The study objective to establish an interactive BDA platform with simulated patient data using open-source software technologies was achieved by construction of a platform framework with Hadoop Distributed File System (HDFS) using HBase (key-value NoSQL database). Distributed data structures were generated from benchmarked hospital-specific metadata of nine billion patient records. At optimized iteration, HDFS ingestion of HFiles to HBase store files revealed sustained availability over hundreds of iterations; however, to complete MapReduce to HBase required a week (for 10 TB) and a month for three billion (30 TB) indexed patient records, respectively. Found inconsistencies of MapReduce limited the capacity to generate and replicate data efficiently. Apache Spark and Drill showed high performance with high usability for technical support but poor usability for clinical services. Hospital system based on patient-centric data was challenging in using HBase, whereby not all data profiles were fully integrated with the complex patient-to-hospital relationships. However, we recommend using HBase to achieve secured patient data while querying entire hospital volumes in a simplified clinical event model across clinical services.
Digital Field Mapping with the British Geological Survey
NASA Astrophysics Data System (ADS)
Leslie, Graham; Smith, Nichola; Jordan, Colm
2014-05-01
The BGS•SIGMA project was initiated in 2001 in response to a major stakeholder review of onshore mapping within the British Geological Survey (BGS). That review proposed a significant change for BGS with the recommendation that digital methods should be implemented for field mapping and data compilation. The BGS•SIGMA project (System for Integrated Geoscience MApping) is an integrated workflow for geoscientific surveying and visualisation using digital methods for geological data visualisation, recording and interpretation, in both 2D and 3D. The project has defined and documented an underpinning framework of best practice for survey and information management, best practice that has then informed the design brief and specification for a toolkit to support this new methodology. The project has now delivered BGS•SIGMA2012. BGS•SIGMA2012 is a integrated toolkit which enables assembly and interrogation/visualisation of existing geological information; capture of, and integration with, new data and geological interpretations; and delivery of 3D digital products and services. From its early days as a system which used PocketGIS run on Husky Fex21 hardware, to the present day system which runs on ruggedized tablet PCs with integrated GPS units, the system has evolved into a complete digital mapping and compilation system. BGS•SIGMA2012 uses a highly customised version of ESRI's ArcGIS 10 and 10.1 with a fully relational Access 2007/2010 geodatabase. BGS•SIGMA2012 is the third external release of our award-winning digital field mapping toolkit. The first free external release of the award-winning digital field mapping toolkit was in 2009, with the third version (BGS-SIGMAmobile2012 v1.01) released on our website (http://www.bgs.ac.uk/research/sigma/home.html) in 2013. The BGS•SIGMAmobile toolkit formed the major part of the first two releases but this new version integrates the BGS•SIGMAdesktop functionality that BGS routinely uses to transform our field data into corporate standard geological models and derivative map outputs. BGS•SIGMA2012 is the default toolkit within BGS for bedrock and superficial geological mapping and other data acquisition projects across the UK, both onshore and offshore. It is used in mapping projects in Africa, the Middle East and the USA, and has been taken to Japan as part of the Tohoku tsunami damage assessment project. It is also successfully being used worldwide by other geological surveys e.g. Norway and Tanzania; by universities including Leicester, Keele and Kyoto, and by organisations such as Vale Mining in Brazil and the Montana Bureau of Mines and Geology. It is used globally, with over 2000 licenses downloaded worldwide to date and in use on all seven continents. Development of the system is still ongoing as a result of both user feedback and the changing face of technology. Investigations into the development of a BGS•SIGMA smartphone app are currently taking place alongside system developments such as a new and more streamlined data entry system.
Solti, Imre; Aaronson, Barry; Fletcher, Grant; Solti, Magdolna; Gennari, John H; Cooper, Melissa; Payne, Tom
2008-11-06
Detailed problem lists that comply with JCAHO requirements are important components of electronic health records. Besides improving continuity of care electronic problem lists could serve as foundation infrastructure for clinical trial recruitment, research, biosurveillance and billing informatics modules. However, physicians rarely maintain problem lists. Our team is building a system using MetaMap and UMLS to automatically populate the problem list. We report our early results evaluating the application. Three physicians generated gold standard problem lists for 100 cardiology ambulatory progress notes. Our application had 88% sensitivity and 66% precision using a non-modified UMLS dataset. The systemâs misses concentrated in the group of ambiguous problem list entries (Chi-square=27.12 p<0.0001). In addition to the explicit entries, the notes included 10% implicit entry candidates. MetaMap and UMLS are readily applicable to automate the problem list. Ambiguity in medical documents has consequences for performance evaluation of automated systems.
NASA Astrophysics Data System (ADS)
Ramsey, M.; Nytch, C. J.; Branoff, B.
2016-12-01
Socio-hydrological studies that explore feedbacks between social and biophysical processes related to flood risk can help managers identify strategies that increase a community's freshwater security. However, knowledge uncertainty due to coarse spatio-temporal coverage of hydrological monitoring data, missing riverine discharge and precipitation records, assumptions of flood risk models, and effects of urbanization, can limit the ability of these studies to isolate hydrological responses to social drivers of flooding and a changing climate. Local experiential knowledge can provide much needed information about 1) actual flood spatio-temporal patterns, 2) human impacts and perceptions of flood events, and 3) mechanisms to validate flood risk studies and understand key social elements of the system. We addressed these knowledge gaps by comparing the location and timing of flood events described in resident interviews and resident drawn maps (total = 97) from two San Juan communities with NOAA and USGS precipitation and riverine discharge data archives, and FEMA flood maps. Analyses of five focal flood events revealed 1) riverine monitoring data failed to record a major flood event caused by localized blockage of the river, 2) residents did not mention multiple extreme riverine discharge events, 3) resident and FEMA flood maps matched closely but resident maps provided finer spatial information about frequency of flooding, and 4) only a small percentage of residents remembered the dates of flood events. Local knowledge provided valuable social data about flood impacts on human economic and physical/psychological wellbeing, perceptions about factors causing flooding, and what residents use as sources of flood information. A simple mechanism or tool for residents to record their flood experiences in real-time will address the uncertainties in local knowledge and improve social memory. The integration of local experiential knowledge with simulated and empirical hydro-meteorological data can be a powerful approach to increase the quality of socio-hydrological studies about flooding and freshwater security.
Map showing surface ruptures associated with the Mammoth Lakes, California, earthquakes of May 1980
Clark, M.M.; Yount, J.C.; Vaughn, P.R.; Zepeda, R.L.
1982-01-01
This map shows surface ruptures associated with the M 6 Mammoth Lakes earthquakes of May 25-27, 1980 (Sherburne, 1980). The ruptures were mapped during USGS field investigations May 28 to June 4 and July 14-19, 1980. The map also includes some of the ruptures recorded by California Division of Mines and Geology investigators May 26-31, June 26-27, and July 7-11, 1980 (Taylor and Bryant, 1980). Because most of the surface ruptures developed in either unconsolidated pumice, alluvium, or till (and many were on slopes of scarps created by earlier faulting), wind, rain and animals quickly erased many of the ruptures. In places, the minimum detectable slip was 3-10 mm. Thus the lines on the map do not record all of the ruptures that formed at the time of the earthquake. Many of the areas were we show gaps between lines on the map probably had cracks originally.
Leveraging Geographic Information Systems in an Integrated Health Care Delivery Organization
Clift, Kathryn; Scott, Luther; Johnson, Michael; Gonzalez, Carlos
2014-01-01
A handful of the many changes resulting from the Affordable Care Act underscore the need for a geographic understanding of existing and prospective member communities. Health exchanges require that health provider networks are geographically accessible to underserved populations, and nonprofit hospitals nationwide are required to conduct community health needs assessments every three years. Beyond these requirements, health care providers are using maps and spatial analysis to better address health outcomes that are related in complex ways to social and economic factors. Kaiser Permanente is applying geographic information systems, with spatial analytics and map-based visualizations, to data sourced from its electronic medical records and from publicly and commercially available datasets. The results are helping to shape an understanding of the health needs of Kaiser Permanente members in the context of their communities. This understanding is part of a strategy to inform partnerships and interventions in and beyond traditional care delivery settings. PMID:24694317
The GEOS-5 Neural Network Retrieval for AOD
NASA Astrophysics Data System (ADS)
Castellanos, P.; da Silva, A. M., Jr.
2017-12-01
One of the difficulties in data assimilation is the need for multi-sensor data merging that can account for temporal and spatial biases between satellite sensors. In the Goddard Earth Observing System Model Version 5 (GEOS-5) aerosol data assimilation system, a neural network retrieval (NNR) is used as a mapping between satellite observed top of the atmosphere (TOA) reflectance and AOD, which is the target variable that is assimilated in the model. By training observations of TOA reflectance from multiple sensors to map to a common AOD dataset (in this case AOD observed by the ground based Aerosol Robotic Network, AERONET), we are able to create a global, homogenous, satellite data record of AOD from MODIS observations on board the Terra and Aqua satellites. In this talk, I will present the implementation of and recent updates to the GEOS-5 NNR for MODIS collection 6 data.
Thirty-one years of debris-flow observation and monitoring near La Honda, California, USA
Wieczorek, G.F.; Wilson, R.C.; Ellen, S.D.; Reid, M.E.; Jayko, A.S.
2007-01-01
From 1975 until 2006,18 intense storms triggered at least 248 debris flows within 10 km2 northwest of the town of La Honda within the Santa Cruz Mountains, California. In addition to mapping debris flows and other types of landslides, studies included soil sampling and geologic mapping, piezometric and tensiometer monitoring, and rainfall measurement and recording. From 1985 until 1995, a system with radio telemetered rain gages and piezometers within the La Honda region was used for issuing six debris-flow warnings within the San Francisco Bay region through the NOAA ALERT system. Depending upon the relative intensity of rainfall during storms, debris flows were generated from deep slumps, shallow slumps, shallow slides in colluvium and shallow slides over bedrock. Analysis shows the storms with abundant antecedent rainfall followed by several days of steady heavy intense rainfall triggered the most abundant debris flows. ?? 2007 millpress.
The GEOS-5 Neural Network Retrieval (NNR) for AOD
NASA Technical Reports Server (NTRS)
Castellanos, Patricia; Da Silva, Arlindo
2017-01-01
One of the difficulties in data assimilation is the need for multi-sensor data merging that can account for temporal and spatial biases between satellite sensors. In the Goddard Earth Observing System Model Version 5 (GEOS-5) aerosol data assimilation system, a neural network retrieval (NNR) is used as a mapping between satellite observed top of the atmosphere (TOA) reflectance and AOD, which is the target variable that is assimilated in the model. By training observations of TOA reflectance from multiple sensors to map to a common AOD dataset (in this case AOD observed by the ground based Aerosol Robotic Network, AERONET), we are able to create a global, homogenous, satellite data record of AOD from MODIS observations on board the Terra and Aqua satellites. In this talk, I will present the implementation of and recent updates to the GEOS-5 NNR for MODIS collection 6 data.
Map showing location of observation wells in Massachusetts and Rhode Island
Rader, J.C.
1995-01-01
This map shows the locations of the 136 observation wells from the observation-well network maintained by the U.S. Geological Survey in Massachusetts and Rhode Island. The wells are identified by town name and well number. The map shows the location of the 10 observation wells that have digital recorders and the 126 observation wells that are measured by local observers. The aquifer material (sand, till, or bedrock) in which a well is located is noted. County and town boundaries are shown on the map. These features are presented at a scale of 1:400,000 (map size is about 38 by 30 inches). The map includes textual information describing the uses of observation-well data. The information is organized by construction, water supply, water quality, and statistical analysis. The map also presents observation well information, which was obtained from the annual data report of the Massachusetts--Rhode Island District. This infor- mation is presented in tabular form and includes town name, well number, aquifer material in which the well is located, and well depth below the land surface. The map was produced from a digital data base using a Geographic Information System. State boundaries were generated from digital line graphs maintained by the U.S. Geological Survey. Town and county boundaries were digitized from stable-base materials maintained by State agencies. The map was prepared in cooperation with State agencies of Massachusetts and Rhode Island.
Powell, E S; Pyburn, R E; Hill, E; Smith, K S; Ribbands, M S; Mickelborough, J; Pomeroy, V M
2002-09-01
Evaluation of the effectiveness of therapy to improve sitting balance has been hampered by the limited number of sensitive objective clinical measures. We developed the Manchester Active Position Seat (MAPS) to provide a portable system to track change in the position of centre of force over time. (1) To investigate whether there is correspondence between the measurement of position change by a forceplate and by MAPS. (2) To explore whether and how MAPS measures changes in position when seated healthy adults change posture. A feasibility study. (1) An adult subject sat on MAPS placed on top of a forceplate. The x and y coordinates of the centre of pressure recorded from the forceplate and centre of force from MAPS during movement were compared graphically. (2) Four adults sat on MAPS using a standardized starting position and moving into six sets of six standardized target postures in a predetermined randomized order. The absolute shift in centre of force from the starting position was calculated. (1) The pattern of change of position over time was similar for the forceplate and for MAPS although there was a measurement difference, which increased with distance from the centre. (2) The direction of change of position corresponded to the direction of movement to the target postures but the amount of change varied between subjects. MAPS shows promise as an objective clinical measure of sitting balance, but peripheral accuracy of measurement needs to be improved.
Musser, Jonathan W.; Watson, Kara M.; Painter, Jaime A.; Gotvald, Anthony J.
2016-02-22
Heavy rainfall occurred across South Carolina during October 1–5, 2015, as a result of an upper atmospheric low-pressure system that funneled tropical moisture from Hurricane Joaquin into the State. The storm caused major flooding in the central and coastal parts of South Carolina. Almost 27 inches of rain fell near Mount Pleasant in Charleston County during this period. U.S. Geological Survey (USGS) streamgages recorded peaks of record at 17 locations, and 15 other locations had peaks that ranked in the top 5 for the period of record. During the October 2015 flood event, USGS personnel made about 140 streamflow measurements at 86 locations to verify, update, or extend existing rating curves (which are used to compute streamflow from monitored river stage). Immediately after the storm event, USGS personnel documented 602 high-water marks, noting the location and height of the water above land surface. Later in October, 50 additional high-water marks were documented near bridges for South Carolina Department of Transportation. Using a subset of these high-water marks, 20 flood-inundation maps of 12 communities were created. Digital datasets of the inundation area, modeling boundary, and water depth rasters are all available for download.
Optical mapping system with real-time control capability.
Iravanian, Shahriar; Christini, David J
2007-10-01
Real-time, closed-loop intervention is an emerging experiment-control method that promises to provide invaluable new insight into cardiac electrophysiology. One example is the investigation of closed-loop feedback control of cardiac activity (e.g., alternans) as a possible method of preventing arrhythmia onset. To date, such methods have been investigated only in vitro using microelectrode systems, which are hindered by poor spatial resolution and are not well suited for atrial or ventricular tissue preparations. We have developed a system that uses optical mapping techniques and an electrical stimulator as the sensory and effector arms, respectively, of a closed-loop, real-time control system. The system consists of a 2,048 x 1 pixel line-scan charge-coupled device camera that records optical signals from the tissue. Custom-image processing and control software, which is implemented on top of a hard real-time operation system (RTAI Linux), process the data and make control decisions with a deterministic delay of <1 ms. The system is tested in two ways: 1) it is used to control, in real time, simulated optical signals of electrical alternans; and 2) it uses precisely timed, feedback-controlled initiation of antitachycardia pacing to terminate reentrant arrhythmias in an arterially perfused swine right ventricle stained with voltage-sensitive fluorescent dye 4{beta-[2-(di-n-butylamino)-6-napathy]vinyl}pyridinium (di-4-ANEPPS). Thus real-time control of cardiac activity using optical mapping techniques is feasible. Such a system is attractive because it offers greater measurement resolution than the electrode-based systems with which real-time control has been used previously.
NASA Astrophysics Data System (ADS)
Zhao, Jianlin; Zhang, Jiwei; Dai, Siqing; Di, Jianglei; Xi, Teli
2018-02-01
Surface plasmon microscopy (SPM) is widely applied for label-free detection of changes of refractive index and concentration, as well as mapping thin films in near field. Traditionally, the SPM systems are based on the detection of light intensity or phase changes. Here, we present two kinds of surface plasmon holographic microscopy (SPHM) systems for amplitude- and phase-contrast imaging simultaneously. Through recording off-axis holograms and numerical reconstruction, the complex amplitude distributions of surface plasmon resonance (SPR) images can be obtained. According to the Fresnel's formula, in a prism/ gold/ dielectric structure, the reflection phase shift is uniquely decided by refractive index of the dielectric. By measuring the phase shift difference of the reflected light exploiting prism-coupling SPHM system based on common-path interference configuration, monitoring tiny refractive index variation and imaging biological tissue are performed. Furthermore, to characterize the thin film thickness in near field, we employ a four-layer SPR model in which the third film layer is within the evanescent field. The complex reflection coefficient, including the reflectivity and reflection phase shift, is uniquely decided by the film thickness. By measuring the complex amplitude distributions of the SPR images exploiting objective-coupling SPHM system based on common-path interference configuration, the thickness distributions of thin films are mapped with sub-nanometer resolution theoretically. Owing to its high temporal stability, the recommended SPHMs show great potentials for monitoring tiny refractive index variations, imaging biological tissues and mapping thin films in near field with dynamic, nondestructive and full-field measurement capabilities in chemistry, biomedicine field, etc.
Surface mapping of spike potential fields: experienced EEGers vs. computerized analysis.
Koszer, S; Moshé, S L; Legatt, A D; Shinnar, S; Goldensohn, E S
1996-03-01
An EEG epileptiform spike focus recorded with scalp electrodes is clinically localized by visual estimation of the point of maximal voltage and the distribution of its surrounding voltages. We compared such estimated voltage maps, drawn by experienced electroencephalographers (EEGers), with a computerized spline interpolation technique employed in the commercially available software package FOCUS. Twenty-two spikes were recorded from 15 patients during long-term continuous EEG monitoring. Maps of voltage distribution from the 28 electrodes surrounding the points of maximum change in slope (the spike maximum) were constructed by the EEGer. The same points of maximum spike and voltage distributions at the 29 electrodes were mapped by computerized spline interpolation and a comparison between the two methods was made. The findings indicate that the computerized spline mapping techniques employed in FOCUS construct voltage maps with similar maxima and distributions as the maps created by experienced EEGers. The dynamics of spike activity, including correlations, are better visualized using the computerized technique than by manual interpretation alone. Its use as a technique for spike localization is accurate and adds information of potential clinical value.
Integrated nanoscale tools for interrogating living cells
NASA Astrophysics Data System (ADS)
Jorgolli, Marsela
The development of next-generation, nanoscale technologies that interface biological systems will pave the way towards new understanding of such complex systems. Nanowires -- one-dimensional nanoscale structures -- have shown unique potential as an ideal physical interface to biological systems. Herein, we focus on the development of nanowire-based devices that can enable a wide variety of biological studies. First, we built upon standard nanofabrication techniques to optimize nanowire devices, resulting in perfectly ordered arrays of both opaque (Silicon) and transparent (Silicon dioxide) nanowires with user defined structural profile, densities, and overall patterns, as well as high sample consistency and large scale production. The high-precision and well-controlled fabrication method in conjunction with additional technologies laid the foundation for the generation of highly specialized platforms for imaging, electrochemical interrogation, and molecular biology. Next, we utilized nanowires as the fundamental structure in the development of integrated nanoelectronic platforms to directly interrogate the electrical activity of biological systems. Initially, we generated a scalable intracellular electrode platform based on vertical nanowires that allows for parallel electrical interfacing to multiple mammalian neurons. Our prototype device consisted of 16 individually addressable stimulation/recording sites, each containing an array of 9 electrically active silicon nanowires. We showed that these vertical nanowire electrode arrays could intracellularly record and stimulate neuronal activity in dissociated cultures of rat cortical neurons similar to patch clamp electrodes. In addition, we used our intracellular electrode platform to measure multiple individual synaptic connections, which enables the reconstruction of the functional connectivity maps of neuronal circuits. In order to expand and improve the capability of this functional prototype device we designed and fabricated a new hybrid chip that combines a front-side nanowire-based interface for neuronal recording with backside complementary metal oxide semiconductor (CMOS) circuits for on-chip multiplexing, voltage control for stimulation, signal amplification, and signal processing. Individual chips contain 1024 stimulation/recording sites enabling large-scale interfacing of neuronal networks with single cell resolution. Through electrical and electrochemical characterization of the devices, we demonstrated their enhanced functionality at a massively parallel scale. In our initial cell experiments, we achieved intracellular stimulations and recordings of changes in the membrane potential in a variety of cells including: HEK293T, cardiomyocytes, and rat cortical neurons. This demonstrated the device capability for single-cell-resolution recording/stimulation which when extended to a large number of neurons in a massively parallel fashion will enable the functional mapping of a complex neuronal network.
NASA Astrophysics Data System (ADS)
Altschuler, Bruce R.; Monson, Keith L.
1998-03-01
Representation of crime scenes as virtual reality 3D computer displays promises to become a useful and important tool for law enforcement evaluation and analysis, forensic identification and pathological study and archival presentation during court proceedings. Use of these methods for assessment of evidentiary materials demands complete accuracy of reproduction of the original scene, both in data collection and in its eventual virtual reality representation. The recording of spatially accurate information as soon as possible after first arrival of law enforcement personnel is advantageous for unstable or hazardous crime scenes and reduces the possibility that either inadvertent measurement error or deliberate falsification may occur or be alleged concerning processing of a scene. Detailed measurements and multimedia archiving of critical surface topographical details in a calibrated, uniform, consistent and standardized quantitative 3D coordinate method are needed. These methods would afford professional personnel in initial contact with a crime scene the means for remote, non-contacting, immediate, thorough and unequivocal documentation of the contents of the scene. Measurements of the relative and absolute global positions of object sand victims, and their dispositions within the scene before their relocation and detailed examination, could be made. Resolution must be sufficient to map both small and large objects. Equipment must be able to map regions at varied resolution as collected from different perspectives. Progress is presented in devising methods for collecting and archiving 3D spatial numerical data from crime scenes, sufficient for law enforcement needs, by remote laser structured light and video imagery. Two types of simulation studies were done. One study evaluated the potential of 3D topographic mapping and 3D telepresence using a robotic platform for explosive ordnance disassembly. The second study involved using the laser mapping system on a fixed optical bench with simulated crime scene models of the people and furniture to assess feasibility, requirements and utility of such a system for crime scene documentation and analysis.
Bedrock mapping of buried valley networks using seismic reflection and airborne electromagnetic data
NASA Astrophysics Data System (ADS)
Oldenborger, G. A.; Logan, C. E.; Hinton, M. J.; Pugin, A. J.-M.; Sapia, V.; Sharpe, D. R.; Russell, H. A. J.
2016-05-01
In glaciated terrain, buried valleys often host aquifers that are significant groundwater resources. However, given the range of scales, spatial complexity and depth of burial, buried valleys often remain undetected or insufficiently mapped. Accurate and thorough mapping of bedrock topography is a crucial step in detecting and delineating buried valleys and understanding formative valley processes. We develop a bedrock mapping procedure supported by the combination of seismic reflection data and helicopter time-domain electromagnetic data with water well records for the Spiritwood buried valley aquifer system in Manitoba, Canada. The limited spatial density of water well bedrock observations precludes complete depiction of the buried valley bedrock topography and renders the water well records alone inadequate for accurate hydrogeological model building. Instead, we leverage the complementary strengths of seismic reflection and airborne electromagnetic data for accurate local detection of the sediment-bedrock interface and for spatially extensive coverage, respectively. Seismic reflection data are used to define buried valley morphology in cross-section beneath survey lines distributed over a regional area. A 3D model of electrical conductivity is derived from inversion of the airborne electromagnetic data and used to extrapolate buried valley morphology over the entire survey area. A spatially variable assignment of the electrical conductivity at the bedrock surface is applied to different features of the buried valley morphology identified in the seismic cross-sections. Electrical conductivity is then used to guide construction of buried valley shapes between seismic sections. The 3D locus of points defining each morphological valley feature is constructed using a path optimization routine that utilizes deviation from the assigned electrical conductivities as the cost function. Our resulting map represents a bedrock surface of unprecedented detail with more complexity than has been suggested by previous investigations. Our procedure is largely data-driven with an adaptable degree of expert user input that provides a clear protocol for incorporating different types of geophysical data into the bedrock mapping procedure.
Noise Maps for Quantitative and Clinical Severity Towards Long-Term ECG Monitoring.
Everss-Villalba, Estrella; Melgarejo-Meseguer, Francisco Manuel; Blanco-Velasco, Manuel; Gimeno-Blanes, Francisco Javier; Sala-Pla, Salvador; Rojo-Álvarez, José Luis; García-Alberola, Arcadi
2017-10-25
Noise and artifacts are inherent contaminating components and are particularly present in Holter electrocardiogram (ECG) monitoring. The presence of noise is even more significant in long-term monitoring (LTM) recordings, as these are collected for several days in patients following their daily activities; hence, strong artifact components can temporarily impair the clinical measurements from the LTM recordings. Traditionally, the noise presence has been dealt with as a problem of non-desirable component removal by means of several quantitative signal metrics such as the signal-to-noise ratio (SNR), but current systems do not provide any information about the true impact of noise on the ECG clinical evaluation. As a first step towards an alternative to classical approaches, this work assesses the ECG quality under the assumption that an ECG has good quality when it is clinically interpretable. Therefore, our hypotheses are that it is possible (a) to create a clinical severity score for the effect of the noise on the ECG, (b) to characterize its consistency in terms of its temporal and statistical distribution, and (c) to use it for signal quality evaluation in LTM scenarios. For this purpose, a database of external event recorder (EER) signals is assembled and labeled from a clinical point of view for its use as the gold standard of noise severity categorization. These devices are assumed to capture those signal segments more prone to be corrupted with noise during long-term periods. Then, the ECG noise is characterized through the comparison of these clinical severity criteria with conventional quantitative metrics taken from traditional noise-removal approaches, and noise maps are proposed as a novel representation tool to achieve this comparison. Our results showed that neither of the benchmarked quantitative noise measurement criteria represent an accurate enough estimation of the clinical severity of the noise. A case study of long-term ECG is reported, showing the statistical and temporal correspondences and properties with respect to EER signals used to create the gold standard for clinical noise. The proposed noise maps, together with the statistical consistency of the characterization of the noise clinical severity, paves the way towards forthcoming systems providing us with noise maps of the noise clinical severity, allowing the user to process different ECG segments with different techniques and in terms of different measured clinical parameters.
The transitional depositional environment and sequence stratigraphy of Chasma Boreale
NASA Astrophysics Data System (ADS)
Brothers, S. C.; Kocurek, G.
2018-07-01
The depositional system within Chasma Boreale is unique in that it contains active aeolian environments, expressed as dune fields, and active cryosphere environments, present as layered ice deposits, as well as environments that transition between these. This work presents a new analysis of the Chasma Boreale sediment system that creates an interpretative framework addressing: (a) controls on the balance between aeolian and cryospheric processes in the modern depositional system, (b) the stratigraphic architecture of related sedimentary deposits, and (c) processes of sediment accumulation and preservation. Images from Context Camera (CTX; 6 m/pixel) are used to classify and map sedimentary environments, surfaces, and deposits on the reentrant floor, to refine the established geologic map of the reentrant, and to infer the stratigraphic record of the accumulation from Chasma Boreale's depositional system. A spectrum of sedimentary environments occurring between those dominated by aeolian and by cryospheric processes are identified. Through time, the boundaries of these sedimentary environments have shifted, resulting in complex lateral changes in the configuration of sedimentary environments on the reentrant's floor. Vertically, the stratigraphic record is characterized by the punctuation of sandy aeolian deposits by icy surfaces that indicate episodes of ice growth that preserve underlying deposits, resulting in accumulation. Stabilized icy surfaces occur at multiple vertical (temporal) scales and lateral extents, suggesting the influence of both regional climate change due to allogenic forcing, as well as autogenic dynamics within the transitional system. These observations demonstrate that the Chasma Boreale accumulation can be interpreted in an aeolian sequence stratigraphic framework. This work contributes the first detailed description of the processes forming polar aeolian sequences, with an emphasis on the competing and complementary dynamics between aeolian and cryospheric systems.
Airborne seeker evaluation and test system
NASA Astrophysics Data System (ADS)
Jollie, William B.
1991-08-01
The Airborne Seeker Evaluation Test System (ASETS) is an airborne platform for development, test, and evaluation of air-to-ground seekers and sensors. ASETS consists of approximately 10,000 pounds of equipment, including sixteen racks of control, display, and recording electronics, and a very large stabilized airborne turret, all carried by a modified C- 130A aircraft. The turret measures 50 in. in diameter and extends over 50 in. below the aircraft. Because of the low ground clearance of the C-130, a unique retractor mechanism was designed to raise the turret inside the aircraft for take-offs and landings, and deploy the turret outside the aircraft for testing. The turret has over 7 cubic feet of payload space and can accommodate up to 300 pounds of instrumentation, including missile seekers, thermal imagers, infrared mapping systems, laser systems, millimeter wave radar units, television cameras, and laser rangers. It contains a 5-axis gyro-stabilized gimbal system that will maintain a line of sight in the pitch, roll, and yaw axes to an accuracy better than +/- 125 (mu) rad. The rack-mounted electronics in the aircraft cargo bay can be interchanged to operate any type of sensor and record the data. Six microcomputer subsystems operate and maintain all of the system components during a test mission. ASETS is capable of flying at altitudes between 200 and 20,000 feet, and at airspeeds ranging from 100 to 250 knots. Mission scenarios can include air-to-surface seeker testing, terrain mapping, surface target measurement, air-to-air testing, atmospheric transmission studies, weather data collection, aircraft or missile tracking, background signature measurements, and surveillance. ASETS is fully developed and available to support test programs.
Cerebral cartography and connectomics.
Sporns, Olaf
2015-05-19
Cerebral cartography and connectomics pursue similar goals in attempting to create maps that can inform our understanding of the structural and functional organization of the cortex. Connectome maps explicitly aim at representing the brain as a complex network, a collection of nodes and their interconnecting edges. This article reflects on some of the challenges that currently arise in the intersection of cerebral cartography and connectomics. Principal challenges concern the temporal dynamics of functional brain connectivity, the definition of areal parcellations and their hierarchical organization into large-scale networks, the extension of whole-brain connectivity to cellular-scale networks, and the mapping of structure/function relations in empirical recordings and computational models. Successfully addressing these challenges will require extensions of methods and tools from network science to the mapping and analysis of human brain connectivity data. The emerging view that the brain is more than a collection of areas, but is fundamentally operating as a complex networked system, will continue to drive the creation of ever more detailed and multi-modal network maps as tools for on-going exploration and discovery in human connectomics. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Influence of long-range Coulomb interaction in velocity map imaging.
Barillot, T; Brédy, R; Celep, G; Cohen, S; Compagnon, I; Concina, B; Constant, E; Danakas, S; Kalaitzis, P; Karras, G; Lépine, F; Loriot, V; Marciniak, A; Predelus-Renois, G; Schindler, B; Bordas, C
2017-07-07
The standard velocity-map imaging (VMI) analysis relies on the simple approximation that the residual Coulomb field experienced by the photoelectron ejected from a neutral or ion system may be neglected. Under this almost universal approximation, the photoelectrons follow ballistic (parabolic) trajectories in the externally applied electric field, and the recorded image may be considered as a 2D projection of the initial photoelectron velocity distribution. There are, however, several circumstances where this approximation is not justified and the influence of long-range forces must absolutely be taken into account for the interpretation and analysis of the recorded images. The aim of this paper is to illustrate this influence by discussing two different situations involving isolated atoms or molecules where the analysis of experimental images cannot be performed without considering long-range Coulomb interactions. The first situation occurs when slow (meV) photoelectrons are photoionized from a neutral system and strongly interact with the attractive Coulomb potential of the residual ion. The result of this interaction is the formation of a more complex structure in the image, as well as the appearance of an intense glory at the center of the image. The second situation, observed also at low energy, occurs in the photodetachment from a multiply charged anion and it is characterized by the presence of a long-range repulsive potential. Then, while the standard VMI approximation is still valid, the very specific features exhibited by the recorded images can be explained only by taking into consideration tunnel detachment through the repulsive Coulomb barrier.
Felger, Tracey J.; Beard, Sue
2010-01-01
Regional stratigraphic units and structural features of the Lake Mead region are presented as a 1:250,000 scale map, and as a Geographic Information System database. The map, which was compiled from existing geologic maps of various scales, depicts geologic units, bedding and foliation attitudes, faults and folds. Units and structural features were generalized to highlight the regional stratigraphic and tectonic aspects of the geology of the Lake Mead region. This map was prepared in support of the papers presented in this volume, Special Paper 463, as well as to facilitate future investigations in the region. Stratigraphic units exposed within the area record 1800 million years of geologic history and include Proterozoic crystalline rocks, Paleozoic and Mesozoic sedimentary rocks, Mesozoic plutonic rocks, Cenozoic volcanic and intrusive rocks, sedimentary rocks and surfi cial deposits. Following passive margin sedimentation in the Paleozoic and Mesozoic, late Mesozoic (Sevier) thrusting and Late Cretaceous and early Tertiary compression produced major folding, reverse faulting, and thrust faulting in the Basin and Range, and resulted in regional uplift and monoclinal folding in the Colorado Plateau. Cenozoic extensional deformation, accompanied by sedimentation and volcanism, resulted in large-magnitude high- and low-angle normal faulting and strike-slip faulting in the Basin and Range; on the Colorado Plateau, extension produced north-trending high-angle normal faults. The latest history includes integration of the Colorado River system, dissection, development of alluvial fans, extensive pediment surfaces, and young faulting.
An Interactive Web System for Field Data Sharing and Collaboration
NASA Astrophysics Data System (ADS)
Weng, Y.; Sun, F.; Grigsby, J. D.
2010-12-01
A Web 2.0 system is designed and developed to facilitate data collection for the field studies in the Geological Sciences department at Ball State University. The system provides a student-centered learning platform that enables the users to first upload their collected data in various formats, interact and collaborate dynamically online, and ultimately create a shared digital repository of field experiences. The data types considered for the system and their corresponding format and requirements are listed in the table below. The system has six main functionalities as follows. (1) Only the registered users can access the system with confidential identification and password. (2) Each user can upload/revise/delete data in various formats such as image, audio, video, and text files to the system. (3) Interested users are allowed to co-edit the contents and join the collaboration whiteboard for further discussion. (4) The system integrates with Google, Yahoo, or Flickr to search for similar photos with same tags. (5) Users can search the web system according to the specific key words. (6) Photos with recorded GPS readings can be mashed and mapped to Google Maps/Earth for visualization. Application of the system to geology field trips at Ball State University will be demonstrated to assess the usability of the system.Data Requirements
32 CFR 518.7 - FOIA terms defined.
Code of Federal Regulations, 2013 CFR
2013-07-01
... books, papers, maps, photographs, and machine readable materials, inclusive of those in electronic form... create or compile a record to satisfy a FOIA request. (3) Hard copy or electronic records that are... conduct. (h) Electronic record. Records (including e-mail) that are created, stored, and retrievable by...
Mind mapping in qualitative research.
Tattersall, Christopher; Powell, Julia; Stroud, James; Pringle, Jan
We tested a theory that mind mapping could be used as a tool in qualitative research to transcribe and analyse an interview. We compared results derived from mind mapping with those from interpretive phenomenological analysis by examining patients' and carers' perceptions of a new nurse-led service. Mind mapping could be used to rapidly analyse simple qualitative audio-recorded interviews. More research is needed to establish the extent to which mind mapping can assist qualitative researchers.
[Identification and mapping of prescribed nursing actions for patients in an adult ICU].
Salgado, Patricia Oliveira; Tannure, Meire Chucre; Oliveira, Cleydson Rodrigues; Chianca, Tânia Couto Machado
2012-01-01
Descriptive study that aimed to identify nursing actions prescribed by nurses in the medical records of patients admitted to an Intensive Care Unit (ICU) for adults, in Belo Horizonte (MG), the terms used, their frequency and map the actions to the Theory of Basic Human Needs and NIC interventions. It was obtained a sample of 44 patient records. It was identified 2,260 nursing actions. After exclusion of repetitions, it was found 124 different actions. All nursing actions have been mapped to physiological needs and also to NIC interventions. It was obtained 100% of agreement among experts in the validation of the mapping process. It is suggested that similar studies in ICUs from other locations and different contexts / specialties should be driven to identify nursing actions developed and its evolution.
Long-term biatrial recordings in post-operative atrial fibrillation.
Masè, M; Graffigna, A; Sinelli, S; Pallaoro, G; Nollo, G; Ravelli, F
2010-01-01
Although atrial fibrillation (AF) is a common complication of cardiac surgery, its pathophysiology remains unclear. The study of post-operative AF demands for the recording of cardiac electrical activity in correspondence of AF onset and progression. Long-term recordings in post-surgery patients could provide this information, but, to date, have been limited to surface signals, which precludes a characterization of the arrhythmic triggers and substrate. In this study we demonstrate the feasibility of a continuous long-term recording of atrial electrical activities from the right and left atria in post-surgery patients. Local atrial epicardial electrograms are acquired by positioning temporary pacing wires in the right and left atria at the end of the intervention, while three day recordings are obtained by a digital holter recorder, adapted to epicardial signal features. The capability of the system to map local atrial activity and the possibility to obtain quantitative information on atrial rate and synchronization from the processed epicardial signals are proven in representative examples. The quantitative description of local atrial properties opens new perspective in the investigation of post-surgery AF.
Rapid Offline-Online Post-Disaster Landslide Mapping Tool: A case study from Nepal
NASA Astrophysics Data System (ADS)
Olyazadeh, Roya; Jaboyedoff, Michel; Sudmeier-Rieux, Karen; Derron, Marc-Henri; Devkota, Sanjaya
2016-04-01
One of the crucial components of post disaster management is the efficient mapping of impacted areas. Here we present a tool designed to map landslides and affected objects after the earthquakes of 2015 in Nepal as well as for intense rainfall impact. Because internet is not available in many rural areas of Nepal, we developed an offline-online prototype based on Open-Source WebGIS technologies to make data on hazard impacts, including damaged infrastructure, landslides or flooding events available to authorities and the general public. This mobile application was designed as a low-cost, rapid and participatory method for recording impacts from hazard events. It is possible to record such events offline and upload them through a server, where internet connection is available. This application allows user authentication, image capturing, and information collation such as geolocation, event description, interactive mapping and finally storing all the data in the server for further analysis and visualisation. This application can be accessed by a mobile phone (Android) or a tablet as a hybrid version for both offline and online versions. The offline version has an interactive-offline map function which allows users to upload satellites image in order to improve ground truthing interpretation. After geolocation, the user can start mapping and then save recorded data into Geojson-TXT files that can be easily uploaded to the server whenever internet is available. This prototype was tested specifically for a rapid assessment of landslides and relevant land use characteristics such as roads, forest area, rivers in the Phewa Lake watershed near Pokhara, Nepal where a large number landslides were activated or reactivated after the 2015 monsoon season. More than 60 landslides were recorded during two days of field trip. Besides, it is possible to use this application for any other kind of hazard event like flood, avalanche, etc. Keywords: Offline, Online, Open source, WebGIS, Android, Post-Disaster, Landslide mapping
[Multiplexing mapping of human cDNAs]. Final report, September 1, 1991--February 28, 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Using PCR with automated product analysis, 329 human brain cDNA sequences have been assigned to individual human chromosomes. Primers were designed from single-pass cDNA sequences expressed sequence tags (ESTs). Primers were used in PCR reactions with DNA from somatic cell hybrid mapping panels as templates, often with multiplexing. Many ESTs mapped match sequence database records. To evaluate of these matches, the position of the primers relative to the matching region (In), the BLAST scores and the Poisson probability values of the EST/sequence record match were determined. In cases where the gene product was stringently identified by the sequence match hadmore » already been mapped, the gene locus determined by EST was consistent with the previous position which strongly supports the validity of assigning unknown genes to human chromosomes based on the EST sequence matches. In the present cases mapping the ESTs to a chromosome can also be considered to have mapped the known gene product: rolipram-sensitive cAMP phosphodiesterase, chromosome 1; protein phosphatase 2A{beta}, chromosome 4; alpha-catenin, chromosome 5; the ELE1 oncogene, chromosome 10q11.2 or q2.1-q23; MXII protein, chromosome l0q24-qter; ribosomal protein L18a homologue, chromosome 14; ribosomal protein L3, chromosome 17; and moesin, Xp11-cen. There were also ESTs mapped that were closely related to non-human sequence records. These matches therefore can be considered to identify human counterparts of known gene products, or members of known gene families. Examples of these include membrane proteins, translation-associated proteins, structural proteins, and enzymes. These data then demonstrate that single pass sequence information is sufficient to design PCR primers useful for assigning cDNA sequences to human chromosomes. When the EST sequence matches previous sequence database records, the chromosome assignments of the EST can be used to make preliminary assignments of the human gene to a chromosome.« less
High-speed polarization sensitive optical coherence tomography for retinal diagnostics
NASA Astrophysics Data System (ADS)
Yin, Biwei; Wang, Bingqing; Vemishetty, Kalyanramu; Nagle, Jim; Liu, Shuang; Wang, Tianyi; Rylander, Henry G., III; Milner, Thomas E.
2012-01-01
We report design and construction of an FPGA-based high-speed swept-source polarization-sensitive optical coherence tomography (SS-PS-OCT) system for clinical retinal imaging. Clinical application of the SS-PS-OCT system is accurate measurement and display of thickness, phase retardation and birefringence maps of the retinal nerve fiber layer (RNFL) in human subjects for early detection of glaucoma. The FPGA-based SS-PS-OCT system provides three incident polarization states on the eye and uses a bulk-optic polarization sensitive balanced detection module to record two orthogonal interference fringe signals. Interference fringe signals and relative phase retardation between two orthogonal polarization states are used to obtain Stokes vectors of light returning from each RNFL depth. We implement a Levenberg-Marquardt algorithm on a Field Programmable Gate Array (FPGA) to compute accurate phase retardation and birefringence maps. For each retinal scan, a three-state Levenberg-Marquardt nonlinear algorithm is applied to 360 clusters each consisting of 100 A-scans to determine accurate maps of phase retardation and birefringence in less than 1 second after patient measurement allowing real-time clinical imaging-a speedup of more than 300 times over previous implementations. We report application of the FPGA-based SS-PS-OCT system for real-time clinical imaging of patients enrolled in a clinical study at the Eye Institute of Austin and Duke Eye Center.
Lammert-Siepmann, Nils; Bestgen, Anne-Kathrin; Edler, Dennis; Kuchinke, Lars; Dickmann, Frank
2017-01-01
Knowing the correct location of a specific object learned from a (topographic) map is fundamental for orientation and navigation tasks. Spatial reference systems, such as coordinates or cardinal directions, are helpful tools for any geometric localization of positions that aims to be as exact as possible. Considering modern visualization techniques of multimedia cartography, map elements transferred through the auditory channel can be added easily. Audiovisual approaches have been discussed in the cartographic community for many years. However, the effectiveness of audiovisual map elements for map use has hardly been explored so far. Within an interdisciplinary (cartography-cognitive psychology) research project, it is examined whether map users remember object-locations better if they do not just read the corresponding place names, but also listen to them as voice recordings. This approach is based on the idea that learning object-identities influences learning object-locations, which is crucial for map-reading tasks. The results of an empirical study show that the additional auditory communication of object names not only improves memory for the names (object-identities), but also for the spatial accuracy of their corresponding object-locations. The audiovisual communication of semantic attribute information of a spatial object seems to improve the binding of object-identity and object-location, which enhances the spatial accuracy of object-location memory.
Bestgen, Anne-Kathrin; Edler, Dennis; Kuchinke, Lars; Dickmann, Frank
2017-01-01
Knowing the correct location of a specific object learned from a (topographic) map is fundamental for orientation and navigation tasks. Spatial reference systems, such as coordinates or cardinal directions, are helpful tools for any geometric localization of positions that aims to be as exact as possible. Considering modern visualization techniques of multimedia cartography, map elements transferred through the auditory channel can be added easily. Audiovisual approaches have been discussed in the cartographic community for many years. However, the effectiveness of audiovisual map elements for map use has hardly been explored so far. Within an interdisciplinary (cartography-cognitive psychology) research project, it is examined whether map users remember object-locations better if they do not just read the corresponding place names, but also listen to them as voice recordings. This approach is based on the idea that learning object-identities influences learning object-locations, which is crucial for map-reading tasks. The results of an empirical study show that the additional auditory communication of object names not only improves memory for the names (object-identities), but also for the spatial accuracy of their corresponding object-locations. The audiovisual communication of semantic attribute information of a spatial object seems to improve the binding of object-identity and object-location, which enhances the spatial accuracy of object-location memory. PMID:29059237
Mapping soil erosion risk in Serra de Grândola (Portugal)
NASA Astrophysics Data System (ADS)
Neto Paixão, H. M.; Granja Martins, F. M.; Zavala, L. M.; Jordán, A.; Bellinfante, N.
2012-04-01
Geomorphological processes can pose environmental risks to people and economical activities. Information and a better knowledge of the genesis of these processes is important for environmental planning, since it allows to model, quantify and classify risks, what can mitigate the threats. The objective of this research is to assess the soil erosion risk in Serra de Grândola, which is a north-south oriented mountain ridge with an altitude of 383 m, located in southwest of Alentejo (southern Portugal). The study area is 675 km2, including the councils of Grândola, Santiago do Cacém and Sines. The process for mapping of erosive status was based on the guidelines for measuring and mapping the processes of erosion of coastal areas of the Mediterranean proposed by PAP/RAC (1997), developed and later modified by other authors in different areas. This method is based on the application of a geographic information system that integrates different types of spatial information inserted into a digital terrain model and in their derivative models. Erosive status are classified using information from soil erodibility, slope, land use and vegetation cover. The rainfall erosivity map was obtained using the modified Fournier index, calculated from the mean monthly rainfall, as recorded in 30 meteorological stations with influence in the study area. Finally, the soil erosion risk map was designed by ovelaying the erosive status map and the rainfall erosivity map.
Pande, Paritosh; Shelton, Ryan L; Monroy, Guillermo L; Nolan, Ryan M; Boppart, Stephen A
2016-10-01
The thickness of the human tympanic membrane (TM) is known to vary considerably across different regions of the TM. Quantitative determination of the thickness distribution and mapping of the TM is of significant importance in hearing research, particularly in mathematical modeling of middle-ear dynamics. Change in TM thickness is also associated with several middle-ear pathologies. Determination of the TM thickness distribution could therefore also enable a more comprehensive diagnosis of various otologic diseases. Despite its importance, very limited data on human TM thickness distribution, obtained almost exclusively from ex vivo samples, are available in the literature. In this study, the thickness distribution for the in vivo human TM is reported for the first time. A hand-held imaging system, which combines a low coherence interferometry (LCI) technique for single-point thickness measurement, with video-otoscopy for recording the image of the TM, was used to collect the data used in this study. Data were acquired by pointing the imaging probe over different regions of the TM, while simultaneously recording the LCI and concomitant TM surface video image data from an average of 500 locations on the TM. TM thickness distribution maps were obtained by mapping the LCI imaging sites onto an anatomically accurate wide-field image of the TM, which was generated by mosaicking the sequence of multiple small field-of-view video-otoscopy images. Descriptive statistics of the thickness measurements obtained from the different regions of the TM are presented, and the general thickness distribution trends are discussed.
Marcos, Mar; Maldonado, Jose A; Martínez-Salvador, Begoña; Boscá, Diego; Robles, Montserrat
2013-08-01
Clinical decision-support systems (CDSSs) comprise systems as diverse as sophisticated platforms to store and manage clinical data, tools to alert clinicians of problematic situations, or decision-making tools to assist clinicians. Irrespective of the kind of decision-support task CDSSs should be smoothly integrated within the clinical information system, interacting with other components, in particular with the electronic health record (EHR). However, despite decades of developments, most CDSSs lack interoperability features. We deal with the interoperability problem of CDSSs and EHRs by exploiting the dual-model methodology. This methodology distinguishes a reference model and archetypes. A reference model is represented by a stable and small object-oriented model that describes the generic properties of health record information. For their part, archetypes are reusable and domain-specific definitions of clinical concepts in the form of structured and constrained combinations of the entities of the reference model. We rely on archetypes to make the CDSS compatible with EHRs from different institutions. Concretely, we use archetypes for modelling the clinical concepts that the CDSS requires, in conjunction with a series of knowledge-intensive mappings relating the archetypes to the data sources (EHR and/or other archetypes) they depend on. We introduce a comprehensive approach, including a set of tools as well as methodological guidelines, to deal with the interoperability of CDSSs and EHRs based on archetypes. Archetypes are used to build a conceptual layer of the kind of a virtual health record (VHR) over the EHR whose contents need to be integrated and used in the CDSS, associating them with structural and terminology-based semantics. Subsequently, the archetypes are mapped to the EHR by means of an expressive mapping language and specific-purpose tools. We also describe a case study where the tools and methodology have been employed in a CDSS to support patient recruitment in the framework of a clinical trial for colorectal cancer screening. The utilisation of archetypes not only has proved satisfactory to achieve interoperability between CDSSs and EHRs but also offers various advantages, in particular from a data model perspective. First, the VHR/data models we work with are of a high level of abstraction and can incorporate semantic descriptions. Second, archetypes can potentially deal with different EHR architectures, due to their deliberate independence of the reference model. Third, the archetype instances we obtain are valid instances of the underlying reference model, which would enable e.g. feeding back the EHR with data derived by abstraction mechanisms. Lastly, the medical and technical validity of archetype models would be assured, since in principle clinicians should be the main actors in their development. Copyright © 2013 Elsevier Inc. All rights reserved.
System for critical infrastructure security based on multispectral observation-detection module
NASA Astrophysics Data System (ADS)
Trzaskawka, Piotr; Kastek, Mariusz; Życzkowski, Marek; Dulski, Rafał; Szustakowski, Mieczysław; Ciurapiński, Wiesław; Bareła, Jarosław
2013-10-01
Recent terrorist attacks and possibilities of such actions in future have forced to develop security systems for critical infrastructures that embrace sensors technologies and technical organization of systems. The used till now perimeter protection of stationary objects, based on construction of a ring with two-zone fencing, visual cameras with illumination are efficiently displaced by the systems of the multisensor technology that consists of: visible technology - day/night cameras registering optical contrast of a scene, thermal technology - cheap bolometric cameras recording thermal contrast of a scene and active ground radars - microwave and millimetre wavelengths that record and detect reflected radiation. Merging of these three different technologies into one system requires methodology for selection of technical conditions of installation and parameters of sensors. This procedure enables us to construct a system with correlated range, resolution, field of view and object identification. Important technical problem connected with the multispectral system is its software, which helps couple the radar with the cameras. This software can be used for automatic focusing of cameras, automatic guiding cameras to an object detected by the radar, tracking of the object and localization of the object on the digital map as well as target identification and alerting. Based on "plug and play" architecture, this system provides unmatched flexibility and simplistic integration of sensors and devices in TCP/IP networks. Using a graphical user interface it is possible to control sensors and monitor streaming video and other data over the network, visualize the results of data fusion process and obtain detailed information about detected intruders over a digital map. System provide high-level applications and operator workload reduction with features such as sensor to sensor cueing from detection devices, automatic e-mail notification and alarm triggering. The paper presents a structure and some elements of critical infrastructure protection solution which is based on a modular multisensor security system. System description is focused mainly on methodology of selection of sensors parameters. The results of the tests in real conditions are also presented.
Hill, N. Jeremy; Gupta, Disha; Brunner, Peter; Gunduz, Aysegul; Adamo, Matthew A.; Ritaccio, Anthony; Schalk, Gerwin
2012-01-01
Neuroimaging studies of human cognitive, sensory, and motor processes are usually based on noninvasive techniques such as electroencephalography (EEG), magnetoencephalography or functional magnetic-resonance imaging. These techniques have either inherently low temporal or low spatial resolution, and suffer from low signal-to-noise ratio and/or poor high-frequency sensitivity. Thus, they are suboptimal for exploring the short-lived spatio-temporal dynamics of many of the underlying brain processes. In contrast, the invasive technique of electrocorticography (ECoG) provides brain signals that have an exceptionally high signal-to-noise ratio, less susceptibility to artifacts than EEG, and a high spatial and temporal resolution (i.e., <1 cm/<1 millisecond, respectively). ECoG involves measurement of electrical brain signals using electrodes that are implanted subdurally on the surface of the brain. Recent studies have shown that ECoG amplitudes in certain frequency bands carry substantial information about task-related activity, such as motor execution and planning1, auditory processing2 and visual-spatial attention3. Most of this information is captured in the high gamma range (around 70-110 Hz). Thus, gamma activity has been proposed as a robust and general indicator of local cortical function1-5. ECoG can also reveal functional connectivity and resolve finer task-related spatial-temporal dynamics, thereby advancing our understanding of large-scale cortical processes. It has especially proven useful for advancing brain-computer interfacing (BCI) technology for decoding a user's intentions to enhance or improve communication6 and control7. Nevertheless, human ECoG data are often hard to obtain because of the risks and limitations of the invasive procedures involved, and the need to record within the constraints of clinical settings. Still, clinical monitoring to localize epileptic foci offers a unique and valuable opportunity to collect human ECoG data. We describe our methods for collecting recording ECoG, and demonstrate how to use these signals for important real-time applications such as clinical mapping and brain-computer interfacing. Our example uses the BCI2000 software platform8,9 and the SIGFRIED10 method, an application for real-time mapping of brain functions. This procedure yields information that clinicians can subsequently use to guide the complex and laborious process of functional mapping by electrical stimulation. Prerequisites and Planning: Patients with drug-resistant partial epilepsy may be candidates for resective surgery of an epileptic focus to minimize the frequency of seizures. Prior to resection, the patients undergo monitoring using subdural electrodes for two purposes: first, to localize the epileptic focus, and second, to identify nearby critical brain areas (i.e., eloquent cortex) where resection could result in long-term functional deficits. To implant electrodes, a craniotomy is performed to open the skull. Then, electrode grids and/or strips are placed on the cortex, usually beneath the dura. A typical grid has a set of 8 x 8 platinum-iridium electrodes of 4 mm diameter (2.3 mm exposed surface) embedded in silicon with an inter-electrode distance of 1cm. A strip typically contains 4 or 6 such electrodes in a single line. The locations for these grids/strips are planned by a team of neurologists and neurosurgeons, and are based on previous EEG monitoring, on a structural MRI of the patient's brain, and on relevant factors of the patient's history. Continuous recording over a period of 5-12 days serves to localize epileptic foci, and electrical stimulation via the implanted electrodes allows clinicians to map eloquent cortex. At the end of the monitoring period, explantation of the electrodes and therapeutic resection are performed together in one procedure. In addition to its primary clinical purpose, invasive monitoring also provides a unique opportunity to acquire human ECoG data for neuroscientific research. The decision to include a prospective patient in the research is based on the planned location of their electrodes, on the patient's performance scores on neuropsychological assessments, and on their informed consent, which is predicated on their understanding that participation in research is optional and is not related to their treatment. As with all research involving human subjects, the research protocol must be approved by the hospital's institutional review board. The decision to perform individual experimental tasks is made day-by-day, and is contingent on the patient's endurance and willingness to participate. Some or all of the experiments may be prevented by problems with the clinical state of the patient, such as post-operative facial swelling, temporary aphasia, frequent seizures, post-ictal fatigue and confusion, and more general pain or discomfort. At the Epilepsy Monitoring Unit at Albany Medical Center in Albany, New York, clinical monitoring is implemented around the clock using a 192-channel Nihon-Kohden Neurofax monitoring system. Research recordings are made in collaboration with the Wadsworth Center of the New York State Department of Health in Albany. Signals from the ECoG electrodes are fed simultaneously to the research and the clinical systems via splitter connectors. To ensure that the clinical and research systems do not interfere with each other, the two systems typically use separate grounds. In fact, an epidural strip of electrodes is sometimes implanted to provide a ground for the clinical system. Whether research or clinical recording system, the grounding electrode is chosen to be distant from the predicted epileptic focus and from cortical areas of interest for the research. Our research system consists of eight synchronized 16-channel g.USBamp amplifier/digitizer units (g.tec, Graz, Austria). These were chosen because they are safety-rated and FDA-approved for invasive recordings, they have a very low noise-floor in the high-frequency range in which the signals of interest are found, and they come with an SDK that allows them to be integrated with custom-written research software. In order to capture the high-gamma signal accurately, we acquire signals at 1200Hz sampling rate-considerably higher than that of the typical EEG experiment or that of many clinical monitoring systems. A built-in low-pass filter automatically prevents aliasing of signals higher than the digitizer can capture. The patient's eye gaze is tracked using a monitor with a built-in Tobii T-60 eye-tracking system (Tobii Tech., Stockholm, Sweden). Additional accessories such as joystick, bluetooth Wiimote (Nintendo Co.), data-glove (5th Dimension Technologies), keyboard, microphone, headphones, or video camera are connected depending on the requirements of the particular experiment. Data collection, stimulus presentation, synchronization with the different input/output accessories, and real-time analysis and visualization are accomplished using our BCI2000 software8,9. BCI2000 is a freely available general-purpose software system for real-time biosignal data acquisition, processing and feedback. It includes an array of pre-built modules that can be flexibly configured for many different purposes, and that can be extended by researchers' own code in C++, MATLAB or Python. BCI2000 consists of four modules that communicate with each other via a network-capable protocol: a Source module that handles the acquisition of brain signals from one of 19 different hardware systems from different manufacturers; a Signal Processing module that extracts relevant ECoG features and translates them into output signals; an Application module that delivers stimuli and feedback to the subject; and the Operator module that provides a graphical interface to the investigator. A number of different experiments may be conducted with any given patient. The priority of experiments will be determined by the location of the particular patient's electrodes. However, we usually begin our experimentation using the SIGFRIED (SIGnal modeling For Realtime Identification and Event Detection) mapping method, which detects and displays significant task-related activity in real time. The resulting functional map allows us to further tailor subsequent experimental protocols and may also prove as a useful starting point for traditional mapping by electrocortical stimulation (ECS). Although ECS mapping remains the gold standard for predicting the clinical outcome of resection, the process of ECS mapping is time consuming and also has other problems, such as after-discharges or seizures. Thus, a passive functional mapping technique may prove valuable in providing an initial estimate of the locus of eloquent cortex, which may then be confirmed and refined by ECS. The results from our passive SIGFRIED mapping technique have been shown to exhibit substantial concurrence with the results derived using ECS mapping10. The protocol described in this paper establishes a general methodology for gathering human ECoG data, before proceeding to illustrate how experiments can be initiated using the BCI2000 software platform. Finally, as a specific example, we describe how to perform passive functional mapping using the BCI2000-based SIGFRIED system. PMID:22782131
Analytical report of the 2016 dengue outbreak in Córdoba city, Argentina.
Rotela, Camilo; Lopez, Laura; Frías Céspedes, María; Barbas, Gabriela; Lighezzolo, Andrés; Porcasi, Ximena; Lanfri, Mario A; Scavuzzo, Carlos M; Gorla, David E
2017-11-06
After elimination of the Aedes aegypti vector in South America in the 1960s, dengue outbreaks started to reoccur during the 1990s; strongly in Argentina since 1998. In 2016, Córdoba City had the largest dengue outbreak in its history. In this article we report this outbreak including spatio-temporal analysis of cases and vectors in the city. A total of 653 dengue cases were recorded by the laboratory-based dengue surveillance system and georeferenced by their residential addresses. Case maps were generated from the epidemiological week 1 (beginning of January) to week 19 (mid-May). Dengue outbreak temporal evolution was analysed globally and three specific, high-incidence zones were detected using Knox analysis to characterising its spatio-temporal attributes. Field and remotely sensed data were collected and analysed in real time and a vector presence map based on the MaxEnt approach was generated to define hotspots, towards which the pesticide- based strategy was then targeted. The recorded pattern of cases evolution within the community suggests that dengue control measures should be improved.
Correlate Life Predictions and Condition Indicators in Helicopter Tail Gearbox Bearings
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Bolander, Nathan; Haynes, Chris; Branning, Jeremy; Wade, Daniel R.
2010-01-01
Research to correlate bearing remaining useful life (RUL) predictions with Helicopter Health Usage Monitoring Systems (HUMS) condition indicators (CI) to indicate the damage state of a transmission component has been developed. Condition indicators were monitored and recorded on UH-60M (Black Hawk) tail gearbox output shaft thrust bearings, which had been removed from helicopters and installed in a bearing spall propagation test rig. Condition indicators monitoring the tail gearbox output shaft thrust bearings in UH-60M helicopters were also recorded from an on-board HUMS. The spal-lpropagation data collected in the test rig was used to generate condition indicators for bearing fault detection. A damage progression model was also developed from this data. Determining the RUL of this component in a helicopter requires the CI response to be mapped to the damage state. The data from helicopters and a test rig were analyzed to determine if bearing remaining useful life predictions could be correlated with HUMS condition indicators (CI). Results indicate data fusion analysis techniques can be used to map the CI response to the damage levels.
Segregation and Neighborhood Change in Northern Cities: New Historical GIS Data from 1900-1930.
Shertzer, Allison; Walsh, Randall P; Logan, John R
2016-01-01
Most quantitative research on segregation and neighborhood change in American cities prior to 1940 has utilized data published by the Census Bureau at the ward level. The transcription of census manuscripts has made it possible to aggregate individual records to a finer level, the enumeration district (ED). Advances in Geographic Information Systems (GIS) have facilitated mapping these data, opening new possibilities for historical GIS research. We report here the creation of a mapped public use data set for EDs in ten northern cities for each decade from 1900 to 1930. We illustrate a range of research topics that can now be pursued: recruitment into ethnic neighborhoods, the effects of comprehensive zoning on neighborhood change, and white flight from black neighbors.
McCallum, Brian E.; Hickey, Andrew C.
2000-01-01
Water resources data for the 2000 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in one volume in a digital format on a CD-ROM. This volume contains discharge records of 125 gaging stations; stage for 20 gaging stations; information for 18 lakes and reservoirs; continuous water-quality records for 10 stations; the annual peak stage and annual peak discharge for 77 crest-stage partial-record stations; and miscellaneous streamflow measurements at 21 stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia. Note: Historically, this report was published as a paper report. For the 1999 and subsequent water-year reports, the Water Resources Data for Georgia changed to a new, more informative and functional format on CD-ROM. The format is based on a geographic information system (GIS) user interface that allows the user to view map locations of the hydrologic monitoring stations and networks within respective river basins.
NASA Technical Reports Server (NTRS)
Head, James W.; Hurwitz, D. M.; Ivanov, M. A.; Basilevsky, A. T.; Kumar, P. Senthil
2008-01-01
The geological features, structures, thermal conditions, interpreted processes, and outstanding questions related to both the Earth's Archean and Venus share many similarities and we are using a problem-oriented approach to Venus mapping, guided by perspectives from the Archean record of the Earth, to gain new insight into both. The Earth's preserved and well-documented Archean record provides important insight into high heat-flux tectonic and magmatic environments and structures and Venus reveals the current configuration and recent geological record of analogous high-temperature environments unmodified by subsequent several billion years of segmentation and overprinting, as on Earth. We have problems on which progress might be made through comparison. Here we present the major goals of the geological mapping of the V-1 Snegurochka Planitia Quadrangle, and themes that could provide important insights into both planets:
Code of Federal Regulations, 2011 CFR
2011-07-01
..., Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION JFK ASSASSINATION RECORDS... COLLECTION ACT OF 1992 (JFK ACT) § 1290.4 Types of materials included in scope of assassination record and... information includes, for purposes of interpreting and implementing the JFK Act: (a) Papers, maps, and other...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION JFK ASSASSINATION RECORDS... COLLECTION ACT OF 1992 (JFK ACT) § 1290.4 Types of materials included in scope of assassination record and... information includes, for purposes of interpreting and implementing the JFK Act: (a) Papers, maps, and other...
Code of Federal Regulations, 2012 CFR
2012-07-01
..., Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION JFK ASSASSINATION RECORDS... COLLECTION ACT OF 1992 (JFK ACT) § 1290.4 Types of materials included in scope of assassination record and... information includes, for purposes of interpreting and implementing the JFK Act: (a) Papers, maps, and other...
Code of Federal Regulations, 2014 CFR
2014-07-01
..., Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION JFK ASSASSINATION RECORDS... COLLECTION ACT OF 1992 (JFK ACT) § 1290.4 Types of materials included in scope of assassination record and... information includes, for purposes of interpreting and implementing the JFK Act: (a) Papers, maps, and other...
Code of Federal Regulations, 2010 CFR
2010-07-01
..., Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION JFK ASSASSINATION RECORDS... COLLECTION ACT OF 1992 (JFK ACT) § 1290.4 Types of materials included in scope of assassination record and... information includes, for purposes of interpreting and implementing the JFK Act: (a) Papers, maps, and other...
Dynamic elasticity measurement for prosthetic socket design.
Kim, Yujin; Kim, Junghoon; Son, Hyeryon; Choi, Youngjin
2017-07-01
The paper proposes a novel apparatus to measure the dynamic elasticity of human limb in order to help the design and fabrication of the personalized prosthetic socket. To take measurements of the dynamic elasticity, the desired force generated as an exponential chirp signal in which the frequency increases and amplitude is maintained according to time progress is applied to human limb and then the skin deformation is recorded, ultimately, to obtain the frequency response of its elasticity. It is referred to as a Dynamic Elasticity Measurement Apparatus (DEMA) in the paper. It has three core components such as linear motor to provide the desired force, loadcell to implement the force feedback control, and potentiometer to record the skin deformation. After measuring the force/deformation and calculating the dynamic elasticity of the limb, it is visualized as 3D color map model of the limb so that the entire dynamic elasticity can be shown at a glance according to the locations and frequencies. For the visualization, the dynamic elasticities measured at specific locations and frequencies are embodied using the color map into 3D limb model acquired by using 3D scanner. To demonstrate the effectiveness, the visualized dynamic elasticities are suggested as outcome of the proposed system, although we do not have any opportunity to apply the proposed system to the amputees. Ultimately, it is expected that the proposed system can be utilized to design and fabricate the personalized prosthetic socket in order for releasing the wearing pain caused by the conventional prosthetic socket.
Adams, Derk; Schreuder, Astrid B; Salottolo, Kristin; Settell, April; Goss, J Richard
2011-07-01
There are significant changes in the abbreviated injury scale (AIS) 2005 system, which make it impractical to compare patients coded in AIS version 98 with patients coded in AIS version 2005. Harborview Medical Center created a computer algorithm "Harborview AIS Mapping Program (HAMP)" to automatically convert AIS 2005 to AIS 98 injury codes. The mapping was validated using 6 months of double-coded patient injury records from a Level I Trauma Center. HAMP was used to determine how closely individual AIS and injury severity scores (ISS) were converted from AIS 2005 to AIS 98 versions. The kappa statistic was used to measure the agreement between manually determined codes and HAMP-derived codes. Seven hundred forty-nine patient records were used for validation. For the conversion of AIS codes, the measure of agreement between HAMP and manually determined codes was [kappa] = 0.84 (95% confidence interval, 0.82-0.86). The algorithm errors were smaller in magnitude than the manually determined coding errors. For the conversion of ISS, the agreement between HAMP versus manually determined ISS was [kappa] = 0.81 (95% confidence interval, 0.78-0.84). The HAMP algorithm successfully converted injuries coded in AIS 2005 to AIS 98. This algorithm will be useful when comparing trauma patient clinical data across populations coded in different versions, especially for longitudinal studies.
[Introduction of neuroethics: out of clinic, beyond academia in human brain research].
Fukushi, Tamami; Sakura, Osamu
2008-11-01
Higher cognitive function in human brain is one of well-developed fields of neuroscience research in the 21st century. Especially functional magnetic resonance imaging (fMRI) and near infrared recording system have brought so many non-clinical researchers whose background is such as cognitive psychology, economics, politics, pedagogy, and so on, to the human brain mapping study. Authors have introduced the ethical issues related to incidental findings during the fMRI recording for non-clinical purpose, which is a typical problem derived from such expanded human brain research under non clinical condition, that is, neuroethics. In the present article we would introduce neuroethical issues in contexts of "out of clinic" and "beyond academia".
Luo, Y.; Xu, Y.; Liu, Q.; Xia, J.
2008-01-01
In recent years, multichannel analysis of surface waves (MASW) has been increasingly used for obtaining vertical shear-wave velocity profiles within near-surface materials. MASW uses a multichannel recording approach to capture the time-variant, full-seismic wavefield where dispersive surface waves can be used to estimate near-surface S-wave velocity. The technique consists of (1) acquisition of broadband, high-frequency ground roll using a multichannel recording system; (2) efficient and accurate algorithms that allow the extraction and analysis of 1D Rayleigh-wave dispersion curves; (3) stable and efficient inversion algorithms for estimating S-wave velocity profiles; and (4) construction of the 2D S-wave velocity field map.
WGISS-45 International Directory Network (IDN) Report
NASA Technical Reports Server (NTRS)
Morahan, Michael
2018-01-01
The objective of this presentation is to provide IDN (International Directory Network) updates on features and activities to the Committee on Earth Observation Satellites (CEOS) Working Group on Information Systems and Services (WGISS) and provider community. The following topics will be will be discussed during the presentation: Transition of Providers DIF-9 (Directory Interchange Format-9) to DIF-10 Metadata Records in the Common Metadata Repository (CMR); GCMD (Global Change Master Directory) Keyword Update; DIF-10 and UMM-C (Unified Metadata Model-Collections) Schema Changes; Metadata Validation of Provider Metadata; docBUILDER for Submitting IDN Metadata to the CMR (i.e. Registration); and Mapping WGClimate Essential Climate Variable (ECV) Inventory to IDN Records.
A Portable Computer System for Auditing Quality of Ambulatory Care
McCoy, J. Michael; Dunn, Earl V.; Borgiel, Alexander E.
1987-01-01
Prior efforts to effectively and efficiently audit quality of ambulatory care based on comprehensive process criteria have been limited largely by the complexity and cost of data abstraction and management. Over the years, several demonstration projects have generated large sets of process criteria and mapping systems for evaluating quality of care, but these paper-based approaches have been impractical to implement on a routine basis. Recognizing that portable microcomputers could solve many of the technical problems in abstracting data from medical records, we built upon previously described criteria and developed a microcomputer-based abstracting system that facilitates reliable and cost-effective data abstraction.
Geoelectric monitoring at the Boulder magnetic observatory
Blum, Cletus; White, Tim; Sauter, Edward A.; Stewart, Duff; Bedrosian, Paul A.; Love, Jeffrey J.
2017-01-01
Despite its importance to a range of applied and fundamental studies, and obvious parallels to a robust network of magnetic-field observatories, long-term geoelectric field monitoring is rarely performed. The installation of a new geoelectric monitoring system at the Boulder magnetic observatory of the US Geological Survey is summarized. Data from the system are expected, among other things, to be used for testing and validating algorithms for mapping North American geoelectric fields. An example time series of recorded electric and magnetic fields during a modest magnetic storm is presented. Based on our experience, we additionally present operational aspects of a successful geoelectric field monitoring system.
LOINC, a universal standard for identifying laboratory observations: a 5-year update.
McDonald, Clement J; Huff, Stanley M; Suico, Jeffrey G; Hill, Gilbert; Leavelle, Dennis; Aller, Raymond; Forrey, Arden; Mercer, Kathy; DeMoor, Georges; Hook, John; Williams, Warren; Case, James; Maloney, Pat
2003-04-01
The Logical Observation Identifier Names and Codes (LOINC) database provides a universal code system for reporting laboratory and other clinical observations. Its purpose is to identify observations in electronic messages such as Health Level Seven (HL7) observation messages, so that when hospitals, health maintenance organizations, pharmaceutical manufacturers, researchers, and public health departments receive such messages from multiple sources, they can automatically file the results in the right slots of their medical records, research, and/or public health systems. For each observation, the database includes a code (of which 25 000 are laboratory test observations), a long formal name, a "short" 30-character name, and synonyms. The database comes with a mapping program called Regenstrief LOINC Mapping Assistant (RELMA(TM)) to assist the mapping of local test codes to LOINC codes and to facilitate browsing of the LOINC results. Both LOINC and RELMA are available at no cost from http://www.regenstrief.org/loinc/. The LOINC medical database carries records for >30 000 different observations. LOINC codes are being used by large reference laboratories and federal agencies, e.g., the CDC and the Department of Veterans Affairs, and are part of the Health Insurance Portability and Accountability Act (HIPAA) attachment proposal. Internationally, they have been adopted in Switzerland, Hong Kong, Australia, and Canada, and by the German national standards organization, the Deutsches Instituts für Normung. Laboratories should include LOINC codes in their outbound HL7 messages so that clinical and research clients can easily integrate these results into their clinical and research repositories. Laboratories should also encourage instrument vendors to deliver LOINC codes in their instrument outputs and demand LOINC codes in HL7 messages they get from reference laboratories to avoid the need to lump so many referral tests under the "send out lab" code.
Yuksel, Mustafa; Dogac, Asuman
2011-07-01
Medical devices are essential to the practice of modern healthcare services. Their benefits will increase if clinical software applications can seamlessly acquire the medical device data. The need to represent medical device observations in a format that can be consumable by clinical applications has already been recognized by the industry. Yet, the solutions proposed involve bilateral mappings from the ISO/IEEE 11073 Domain Information Model (DIM) to specific message or document standards. Considering that there are many different types of clinical applications such as the electronic health record and the personal health record systems, the clinical workflows, and the clinical decision support systems each conforming to different standard interfaces, detailing a mapping mechanism for every one of them introduces significant work and, thus, limits the potential health benefits of medical devices. In this paper, to facilitate the interoperability of clinical applications and the medical device data, we use the ISO/IEEE 11073 DIM to derive an HL7 v3 Refined Message Information Model (RMIM) of the medical device domain from the HL7 v3 Reference Information Mode (RIM). This makes it possible to trace the medical device data back to a standard common denominator, that is, HL7 v3 RIM from which all the other medical domains under HL7 v3 are derived. Hence, once the medical device data are obtained in the RMIM format, it can easily be transformed into HL7-based standard interfaces through XML transformations because these interfaces all have their building blocks from the same RIM. To demonstrate this, we provide the mappings from the developed RMIM to some of the widely used HL7 v3-based standard interfaces.
Solari, Paolo; Stoffolano, John G; Fitzpatrick, Joanna; Gelperin, Alan; Thomson, Alan; Talani, Giuseppe; Sanna, Enrico; Liscia, Anna
2013-09-01
Bioassays and electrophysiological recordings were conducted in the adult blowfly Phormia regina to provide new insights into the regulatory mechanisms governing the crop filling and emptying processes of the supercontractile crop muscles. The cibarial pump drives ingestion. Simultaneous multisite extracellular recordings show that crop lobe (P5) distension during ingestion of a 4.7 μl sugar meal does not require muscle activity by any of the other pumps of the system. Conversely, pumping of fluids toward the anterior of the crop system during crop emptying is brought about by active muscle contraction, in the form of a highly coordinated peristaltic wave starting from P5 and progressively propagating to P6, P4 and P3 pumps, with P5 contracting with a frequency about 3.4 times higher than the other pumps. The crop contraction rate is also modulated by hemolymph-borne factors such as sugars, through ligand recognition at a presumptive receptor site rather than by an osmotic effect, as assessed by both behavioural and electrophysiological experiments. In this respect, sugars of equal osmolarity produce different effects, glucose being inhibitory and mannose ineffective for crop muscles, while trehalose enhances crop activity. Finally, voltage and current clamp experiments show that the muscle action potentials (mAPs) at the P4 pump are sustained by a serotonin-sensitive calcium conductance. Serotonin enhances calcium entry into the muscle cells and this could lead, as an indirect modulatory effect, to activation of a Ca(2+)-activated K(+) conductance (IK(Ca)), which sustains the following mAP repolarization phase in such a way that further mAPs can be generated early and the frequency consequently increased. Copyright © 2013 Elsevier Ltd. All rights reserved.
GeneLab Analysis Working Group Kick-Off Meeting
NASA Technical Reports Server (NTRS)
Costes, Sylvain V.
2018-01-01
Goals to achieve for GeneLab AWG - GL vision - Review of GeneLab AWG charter Timeline and milestones for 2018 Logistics - Monthly Meeting - Workshop - Internship - ASGSR Introduction of team leads and goals of each group Introduction of all members Q/A Three-tier Client Strategy to Democratize Data Physiological changes, pathway enrichment, differential expression, normalization, processing metadata, reproducibility, Data federation/integration with heterogeneous bioinformatics external databases The GLDS currently serves over 100 omics investigations to the biomedical community via open access. In order to expand the scope of metadata record searches via the GLDS, we designed a metadata warehouse that collects and updates metadata records from external systems housing similar data. To demonstrate the capabilities of federated search and retrieval of these data, we imported metadata records from three open-access data systems into the GLDS metadata warehouse: NCBI's Gene Expression Omnibus (GEO), EBI's PRoteomics IDEntifications (PRIDE) repository, and the Metagenomics Analysis server (MG-RAST). Each of these systems defines metadata for omics data sets differently. One solution to bridge such differences is to employ a common object model (COM) to which each systems' representation of metadata can be mapped. Warehoused metadata records are then transformed at ETL to this single, common representation. Queries generated via the GLDS are then executed against the warehouse, and matching records are shown in the COM representation (Fig. 1). While this approach is relatively straightforward to implement, the volume of the data in the omics domain presents challenges in dealing with latency and currency of records. Furthermore, the lack of a coordinated has been federated data search for and retrieval of these kinds of data across other open-access systems, so that users are able to conduct biological meta-investigations using data from a variety of sources. Such meta-investigations are key to corroborating findings from many kinds of assays and translating them into systems biology knowledge and, eventually, therapeutics.
The design and integration of retinal CAD-SR to diabetes patient ePR system
NASA Astrophysics Data System (ADS)
Wu, Huiqun; Wei, Yufang; Liu, Brent J.; Shang, Yujuan; Shi, Lili; Jiang, Kui; Dong, Jiancheng
2017-03-01
Diabetic retinopathy (DR) is one of the serious complications of diabetes that could lead to blindness. Digital fundus camera is often used to detect retinal changes but the diagnosis relies too much on ophthalmologist's experience. Based on our previously developed algorithms for quantifying retinal vessels and lesions, we developed a computer aided detection-structured report (CAD-SR) template and implemented it into picture archiving and communication system (PACS). Furthermore, we mapped our CAD-SR into HL7 CDA to integrate CAD findings into diabetes patient electronic patient record (ePR) system. Such integration could provide more quantitative features from fundus image into ePR system, which is valuable for further data mining researches.
NASA Technical Reports Server (NTRS)
1980-01-01
Van is used by Land Inventory Systems to measure and map property for tax assessment purposes. It is adapted from navigation system of the Lunar Rover wheeled vehicle in which moon-exploring astronauts traveled as much as 20 miles from their Lunar Module base. Astronauts had to know their precise position so that in case of emergency they could take the shortest route back. Computerized navigational system kept a highly accurate record of the directional path providing continuous position report. Distance measuring subsystem was a more accurate counterpart of automobile odometer system counts revolutions of wheels and encoders generate electrical pulses for each fractional revolution and the computer analyzed the pulses to determine the distance traveled in a given direction.
Water depth measurement using an airborne pulsed neon laser system
NASA Technical Reports Server (NTRS)
Hoge, F. E.; Swift, R. N.; Frederick, E. B.
1980-01-01
The paper presents the water depth measurement using an airborne pulsed neon laser system. The results of initial base-line field test results of NASA airborne oceanographic lidar in the bathymetry mode are given, with water-truth measurements of depth and beam attenuation coefficients by boat taken at the same time as overflights to aid in determining the system's operational performance. The nadir-angle tests and field-of-view data are presented; this laser bathymetry system is an improvement over prior models in that (1) the surface-to-bottom pulse waveform is digitally recorded on magnetic tape, and (2) wide-swath mapping data may be routinely acquired using a 30 deg full-angle conical scanner.
Lee, Peter; Yan, Ping; Ewart, Paul; Kohl, Peter
2012-01-01
Whole-heart multi-parametric optical mapping has provided valuable insight into the interplay of electro-physiological parameters, and this technology will continue to thrive as dyes are improved and technical solutions for imaging become simpler and cheaper. Here, we show the advantage of using improved 2nd-generation voltage dyes, provide a simple solution to panoramic multi-parametric mapping, and illustrate the application of flash photolysis of caged compounds for studies in the whole heart. For proof of principle, we used the isolated rat whole-heart model. After characterising the blue and green isosbestic points of di-4-ANBDQBS and di-4-ANBDQPQ, respectively, two voltage and calcium mapping systems are described. With two newly custom-made multi-band optical filters, (1) di-4-ANBDQBS and fluo-4 and (2) di-4-ANBDQPQ and rhod-2 mapping are demonstrated. Furthermore, we demonstrate three-parameter mapping using di-4-ANBDQPQ, rhod-2 and NADH. Using off-the-shelf optics and the di-4-ANBDQPQ and rhod-2 combination, we demonstrate panoramic multi-parametric mapping, affording a 360° spatiotemporal record of activity. Finally, local optical perturbation of calcium dynamics in the whole heart is demonstrated using the caged compound, o-nitrophenyl ethylene glycol tetraacetic acid (NP-EGTA), with an ultraviolet light-emitting diode (LED). Calcium maps (heart loaded with di-4-ANBDQPQ and rhod-2) demonstrate successful NP-EGTA loading and local flash photolysis. All imaging systems were built using only a single camera. In conclusion, using novel 2nd-generation voltage dyes, we developed scalable techniques for multi-parametric optical mapping of the whole heart from one point of view and panoramically. In addition to these parameter imaging approaches, we show that it is possible to use caged compounds and ultraviolet LEDs to locally perturb electrophysiological parameters in the whole heart. PMID:22886365
Spatial tools for managing hemlock woolly adelgid in the southern Appalachians
NASA Astrophysics Data System (ADS)
Koch, Frank Henry, Jr.
The hemlock woolly adelgid (Adelges tsugae) has recently spread into the southern Appalachians. This insect attacks both native hemlock species (Tsuga canadensis and T. caroliniana ), has no natural enemies, and can kill hemlocks within four years. Biological control displays promise for combating the pest, but counter-measures are impeded because adelgid and hemlock distribution patterns have been detailed poorly. We developed a spatial management system to better target control efforts, with two components: (1) a protocol for mapping hemlock stands, and (2) a technique to map areas at risk of imminent infestation. To construct a hemlock classifier, we used topographically normalized satellite images from Great Smoky Mountains National Park. Employing a decision tree approach that supplemented image spectral data with several environmental variables, we generated rules distinguishing hemlock areas from other forest types. We then implemented these rules in a geographic information system and generated hemlock distribution maps. Assessment yielded an overall thematic accuracy of 90% for one study area, and 75% accuracy in capturing hemlocks in a second study area. To map areas at risk, we combined first-year infestation locations from Great Smoky Mountains National Park and the Blue Ridge Parkway with points from uninfested hemlock stands, recording a suite of environmental variables for each point. We applied four different multivariate classification techniques to generate models from this sample predicting locations with high infestation risk, and used the resulting models to generate risk maps for the study region. All techniques performed well, accurately capturing 70--90% of training and validation samples, with the logistic regression model best balancing accuracy and regional applicability. Areas close to trails, roads, and streams appear to have the highest initial risk, perhaps due to bird- or human-mediated dispersal. Both components of our management system are general enough for use throughout the southern Appalachians. Overlay of derived maps will allow forest managers to reduce the area where they must focus their control efforts and thus allocate resources more efficiently.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1976-01-01
A record of the conclusions of a three-day meeting and workshop of the Committee for a National Magnetic Anomaly Map held in February 1976 is presented. The purpose of he workshop was to prepare a statement of the benefits, objectives, specifications, and requirements of a NMAM and establish a working plan for producing the map. (ACR)
Code of Federal Regulations, 2010 CFR
2010-01-01
... permit location or retrieval of the record. (b) Records includes all books, papers, manuals, maps... in disseminating information, for the requester to inform the public concerning actual or alleged...
Applications of Mobile GIS in Forestry South Australia
NASA Astrophysics Data System (ADS)
Battad, D. T.; Mackenzie, P.
2012-07-01
South Australian Forestry Corporation (ForestrySA) had been actively investigating the applications of mobile GIS in forestry for the past few years. The main objective is to develop an integrated mobile GIS capability that allows staff to collect new spatial information, verify existing data, and remotely access and post data from the field. Two (2) prototype mobile GIS applications have been developed already using the Environmental Systems Research Institute (ESRI) ARCGISR technology as the main spatial component. These prototype systems are the Forest Health Surveillance System and the Mobile GIS for Wetlands System. The Forest Health Surveillance System prototype is used primarily for aerial forest health surveillance. It was developed using a tablet PC with ArcMapR GIS. A customised toolbar was developed using ArcObjectsR in the Visual Basic 6 Integrated Development Environment (IDE). The resulting dynamic linked library provides a suite of custom tools which enables the following: - quickly create spatial features and attribute the data - full utilisation of global positioning system (GPS) technology - excellent screen display navigation tools, i.e. pan, rotate map, capture of flight path - seamless integration of data into GIS as geodatabase (GDB) feature classes - screen entry of text and conversion to annotation feature classes The Mobile GIS for Wetlands System prototype was developed for verifying existing wetland areas within ForestrySA's plantation estate, collect new wetland data, and record wetland conditions. Mapping of actual wetlands within ForestrySA's plantation estate is very critical because of the need to establish protection buffers around these features during the implementation of plantation operations. System development has been focussed on a mobile phone platform (HTC HD2R ) with WindowsR Mobile 6, ESRI's ArcGISR Mobile software development kit (SDK) employing ArcObjectsR written on C#.NET IDE, and ArcGIS ServerR technology. The system is also implemented in the VILIVR X70. The system has undergone testing by ForestrySA staff and the refinements had been incorporated in the latest version of the system. The system has the following functionalities: - display and query strategic data layers - collect and edit spatial and attribute data - full utilisation of global positioning GPS technology - distance and area measurements - display of high resolution imagery - seamless integration of data into GIS as feature classes - screen display and navigation tools, i.e. pan, zoom in/out, rotate map - capture of flight path The next stages in the development of mobile GIS technologies at ForestrySA are to enhance the systems' capabilities as one of the organization main data capture systems. These include incorporating other applications, e.g. roads/tracks mapping, mapping of significant sites, etc., and migration of the system to Windows Phone7.
High-resolution diapycnal mixing map of the Alboran Sea thermocline from seismic reflection images
NASA Astrophysics Data System (ADS)
Mojica, Jhon F.; Sallarès, Valentí; Biescas, Berta
2018-06-01
The Alboran Sea is a dynamically active region where the salty and warm Mediterranean water first encounters the incoming milder and cooler Atlantic water. The interaction between these two water masses originates a set of sub-mesoscale structures and a complex sequence of processes that entail mixing close to the thermocline. Here we present a high-resolution map of the diapycnal diffusivity around the thermocline depth obtained using acoustic data recorded with a high-resolution multichannel seismic system. The map reveals a patchy thermocline, with spots of strong diapycnal mixing juxtaposed with areas of weaker mixing. The patch size is of a few kilometers in the horizontal scale and of 10-15 m in the vertical one. The comparison of the obtained maps with the original acoustic images shows that mixing tends to concentrate in areas where internal waves, which are ubiquitous in the surveyed area, become unstable and shear instabilities develop, enhancing energy transfer towards the turbulent regime. These results are also compared with others obtained using more conventional oceanographic probes. The values estimated based on the seismic data are within the ranges of values obtained from oceanographic data analysis, and they are also consistent with reference theoretical values. Overall, our results demonstrate that high-resolution seismic systems allow the remote quantification of mixing at the thermocline depth with unprecedented resolution.
Electrocorticographic high gamma activity versus electrical cortical stimulation mapping of naming.
Sinai, Alon; Bowers, Christopher W; Crainiceanu, Ciprian M; Boatman, Dana; Gordon, Barry; Lesser, Ronald P; Lenz, Frederick A; Crone, Nathan E
2005-07-01
Subdural electrocorticographic (ECoG) recordings in patients undergoing epilepsy surgery have shown that functional activation is associated with event-related broadband gamma activity in a higher frequency range (>70 Hz) than previously studied in human scalp EEG. To investigate the utility of this high gamma activity (HGA) for mapping language cortex, we compared its neuroanatomical distribution with functional maps derived from electrical cortical stimulation (ECS), which remains the gold standard for predicting functional impairment after surgery for epilepsy, tumours or vascular malformations. Thirteen patients had undergone subdural electrode implantation for the surgical management of intractable epilepsy. Subdural ECoG signals were recorded while each patient verbally named sequentially presented line drawings of objects, and estimates of event-related HGA (80-100 Hz) were made at each recording site. Routine clinical ECS mapping used a subset of the same naming stimuli at each cortical site. If ECS disrupted mouth-related motor function, i.e. if it affected the mouth, lips or tongue, naming could not be tested with ECS at the same cortical site. Because naming during ECoG involved these muscles of articulation, the sensitivity and specificity of ECoG HGA were estimated relative to both ECS-induced impairments of naming and ECS disruption of mouth-related motor function. When these estimates were made separately for 12 electrode sites per patient (the average number with significant HGA), the specificity of ECoG HGA with respect to ECS was 78% for naming and 81% for mouth-related motor function, and equivalent sensitivities were 38% and 46%, respectively. When ECS maps of naming and mouth-related motor function were combined, the specificity and sensitivity of ECoG HGA with respect to ECS were 84% and 43%, respectively. This study indicates that event-related ECoG HGA during confrontation naming predicts ECS interference with naming and mouth-related motor function with good specificity but relatively low sensitivity. Its favourable specificity suggests that ECoG HGA can be used to construct a preliminary functional map that may help identify cortical sites of lower priority for ECS mapping. Passive recordings of ECoG gamma activity may be done simultaneously at all electrode sites without the risk of after-discharges associated with ECS mapping, which must be done sequentially at pairs of electrodes. We discuss the relative merits of these two functional mapping techniques.
NASA Astrophysics Data System (ADS)
Morris, Phillip A.
The prevalence of low-cost side scanning sonar systems mounted on small recreational vessels has created improved opportunities to identify and map submerged navigational hazards in freshwater impoundments. However, these economical sensors also present unique challenges for automated techniques. This research explores related literature in automated sonar imagery processing and mapping technology, proposes and implements a framework derived from these sources, and evaluates the approach with video collected from a recreational grade sonar system. Image analysis techniques including optical character recognition and an unsupervised computer automated detection (CAD) algorithm are employed to extract the transducer GPS coordinates and slant range distance of objects protruding from the lake bottom. The retrieved information is formatted for inclusion into a spatial mapping model. Specific attributes of the sonar sensors are modeled such that probability profiles may be projected onto a three dimensional gridded map. These profiles are computed from multiple points of view as sonar traces crisscross or come near each other. As lake levels fluctuate over time so do the elevation points of view. With each sonar record, the probability of a hazard existing at certain elevations at the respective grid points is updated with Bayesian mechanics. As reinforcing data is collected, the confidence of the map improves. Given a lake's current elevation and a vessel draft, a final generated map can identify areas of the lake that have a high probability of containing hazards that threaten navigation. The approach is implemented in C/C++ utilizing OpenCV, Tesseract OCR, and QGIS open source software and evaluated in a designated test area at Lake Lavon, Collin County, Texas.
NASA Astrophysics Data System (ADS)
Demir, Gökhan; aytekin, mustafa; banu ikizler, sabriye; angın, zekai
2013-04-01
The North Anatolian Fault is know as one of the most active and destructive fault zone which produced many earthquakes with high magnitudes. Along this fault zone, the morphology and the lithological features are prone to landsliding. However, many earthquake induced landslides were recorded by several studies along this fault zone, and these landslides caused both injuiries and live losts. Therefore, a detailed landslide susceptibility assessment for this area is indispancable. In this context, a landslide susceptibility assessment for the 1445 km2 area in the Kelkit River valley a part of North Anatolian Fault zone (Eastern Black Sea region of Turkey) was intended with this study, and the results of this study are summarized here. For this purpose, geographical information system (GIS) and a bivariate statistical model were used. Initially, Landslide inventory maps are prepared by using landslide data determined by field surveys and landslide data taken from General Directorate of Mineral Research and Exploration. The landslide conditioning factors are considered to be lithology, slope gradient, slope aspect, topographical elevation, distance to streams, distance to roads and distance to faults, drainage density and fault density. ArcGIS package was used to manipulate and analyze all the collected data Logistic regression method was applied to create a landslide susceptibility map. Landslide susceptibility maps were divided into five susceptibility regions such as very low, low, moderate, high and very high. The result of the analysis was verified using the inventoried landslide locations and compared with the produced probability model. For this purpose, Area Under Curvature (AUC) approach was applied, and a AUC value was obtained. Based on this AUC value, the obtained landslide susceptibility map was concluded as satisfactory. Keywords: North Anatolian Fault Zone, Landslide susceptibility map, Geographical Information Systems, Logistic Regression Analysis.
Sophia: A Expedient UMLS Concept Extraction Annotator.
Divita, Guy; Zeng, Qing T; Gundlapalli, Adi V; Duvall, Scott; Nebeker, Jonathan; Samore, Matthew H
2014-01-01
An opportunity exists for meaningful concept extraction and indexing from large corpora of clinical notes in the Veterans Affairs (VA) electronic medical record. Currently available tools such as MetaMap, cTAKES and HITex do not scale up to address this big data need. Sophia, a rapid UMLS concept extraction annotator was developed to fulfill a mandate and address extraction where high throughput is needed while preserving performance. We report on the development, testing and benchmarking of Sophia against MetaMap and cTAKEs. Sophia demonstrated improved performance on recall as compared to cTAKES and MetaMap (0.71 vs 0.66 and 0.38). The overall f-score was similar to cTAKES and an improvement over MetaMap (0.53 vs 0.57 and 0.43). With regard to speed of processing records, we noted Sophia to be several fold faster than cTAKES and the scaled-out MetaMap service. Sophia offers a viable alternative for high-throughput information extraction tasks.
Sophia: A Expedient UMLS Concept Extraction Annotator
Divita, Guy; Zeng, Qing T; Gundlapalli, Adi V.; Duvall, Scott; Nebeker, Jonathan; Samore, Matthew H.
2014-01-01
An opportunity exists for meaningful concept extraction and indexing from large corpora of clinical notes in the Veterans Affairs (VA) electronic medical record. Currently available tools such as MetaMap, cTAKES and HITex do not scale up to address this big data need. Sophia, a rapid UMLS concept extraction annotator was developed to fulfill a mandate and address extraction where high throughput is needed while preserving performance. We report on the development, testing and benchmarking of Sophia against MetaMap and cTAKEs. Sophia demonstrated improved performance on recall as compared to cTAKES and MetaMap (0.71 vs 0.66 and 0.38). The overall f-score was similar to cTAKES and an improvement over MetaMap (0.53 vs 0.57 and 0.43). With regard to speed of processing records, we noted Sophia to be several fold faster than cTAKES and the scaled-out MetaMap service. Sophia offers a viable alternative for high-throughput information extraction tasks. PMID:25954351
Sundvall, Erik; Wei-Kleiner, Fang; Freire, Sergio M; Lambrix, Patrick
2017-01-01
Archetype-based Electronic Health Record (EHR) systems using generic reference models from e.g. openEHR, ISO 13606 or CIMI should be easy to update and reconfigure with new types (or versions) of data models or entries, ideally with very limited programming or manual database tweaking. Exploratory research (e.g. epidemiology) leading to ad-hoc querying on a population-wide scale can be a challenge in such environments. This publication describes implementation and test of an archetype-aware Dewey encoding optimization that can be used to produce such systems in environments supporting relational operations, e.g. RDBMs and distributed map-reduce frameworks like Hadoop. Initial testing was done using a nine-node 2.2 GHz quad-core Hadoop cluster querying a dataset consisting of targeted extracts from 4+ million real patient EHRs, query results with sub-minute response time were obtained.
Tile Drainage Expansion Detection using Satellite Soil Moisture Dynamics
NASA Astrophysics Data System (ADS)
Jacobs, J. M.; Cho, E.; Jia, X.
2017-12-01
In the past two decades, tile drainage installation has accelerated throughout the Red River of the North Basin (RRB) in parts of western Minnesota, eastern North Dakota, and a small area of northeastern South Dakota, because the flat topography and low-permeability soils in this region necessitated the removal of excess water to improve crop production. Interestingly, streamflow in the Red River has markedly increased and six of 13 major floods during the past century have occurred since the late 1990s. It has been suggested that the increase in RRB flooding could be due to change in agricultural practices, including extensive tile drainage installation. Reliable information on existing and future tile drainage installation is greatly needed to capture the rapid extension of tile drainage systems and to locate tile drainage systems in the north central U.S. including the RRB region. However, there are few reliable data of tile drainage installation records, except tile drainage permit records in the Bois de Sioux watershed (a sub-basin in southern part of the RRB where permits are required for tile drainage installation). This study presents a tile drainage expansion detection method based on a physical principle that the soil-drying rate may increase with increasing tile drainage for a given area. In order to capture the rate of change in soil drying rate with time over entire RRB (101,500 km2), two satellite-based microwave soil moisture records from the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) and AMSR2 were used during 2002 to 2016. In this study, a sub-watershed level (HUC10) potential tile drainage growth map was developed and the results show good agreement with tile drainage permit records of six sub-watersheds in the Bois de Sioux watershed. Future analyses will include improvement of the potential tile drainage map through additional information using optical- and thermal-based sensor products and evaluation of its hydrological impacts on intensity, duration, and frequency of extreme streamflow from watershed to basin scale.
Surface electromyographic mapping of the orbicularis oculi muscle for real-time blink detection.
Frigerio, Alice; Cavallari, Paolo; Frigeni, Marta; Pedrocchi, Alessandra; Sarasola, Andrea; Ferrante, Simona
2014-01-01
Facial paralysis is a life-altering condition that significantly impairs function, appearance, and communication. Facial rehabilitation via closed-loop pacing represents a potential but as yet theoretical approach to reanimation. A first critical step toward closed-loop facial pacing in cases of unilateral paralysis is the detection of healthy movements to use as a trigger to prosthetically elicit automatic artificial movements on the contralateral side of the face. To test and to maximize the performance of an electromyography (EMG)-based blink detection system for applications in closed-loop facial pacing. Blinking was detected across the periocular region by means of multichannel surface EMG at an academic neuroengineering and medical robotics laboratory among 15 healthy volunteers. Real-time blink detection was accomplished by mapping the surface of the orbicularis oculi muscle on one side of the face with a multichannel surface EMG. The biosignal from each channel was independently processed; custom software registered a blink when an amplitude-based or slope-based suprathreshold activity was detected. The experiments were performed when participants were relaxed and during the production of particular orofacial movements. An F1 score metric was used to analyze software performance in detecting blinks. The maximal software performance was achieved when a blink was recorded from the superomedial orbit quadrant. At this recording location, the median F1 scores were 0.89 during spontaneous blinking, 0.82 when chewing gum, 0.80 when raising the eyebrows, and 0.70 when smiling. The overall performance of blink detection was significantly better at the superomedial quadrant (F1 score, 0.75) than at the traditionally used inferolateral quadrant (F1 score, 0.40) (P < .05). Electromyographic recording represents an accurate tool to detect spontaneous blinks as part of closed-loop facial pacing systems. The early detection of blink activity may allow real-time pacing via rapid triggering of contralateral muscles. Moreover, an EMG detection system can be integrated in external devices and in implanted neuroprostheses. A potential downside to this approach involves cross talk from adjacent muscles, which can be notably reduced by recording from the superomedial quadrant of the orbicularis oculi muscle and by applying proper signal processing. NA.
A web-based tool for groundwater mapping and drought analysis
NASA Astrophysics Data System (ADS)
Christensen, S.; Burns, M.; Jones, N.; Strassberg, G.
2012-12-01
In 2011-2012, the state of Texas saw the worst one-year drought on record. Fluctuations in gravity measured by GRACE satellites indicate that as much as 100 cubic kilometers of water was lost during this period. Much of this came from reservoirs and shallow soil moisture, but a significant amount came from aquifers. In response to this crisis, a Texas Drought Technology Steering Committee (TDTSC) consisting of academics and water managers was formed to develop new tools and strategies to assist the state in monitoring, predicting, and responding to drought events. In this presentation, we describe one of the tools that was developed as part of this effort. When analyzing the impact of drought on groundwater levels, it is fairly common to examine time series data at selected monitoring wells. However, accurately assessing impacts and trends requires both spatial and temporal analysis involving the development of detailed water level maps at various scales. Creating such maps in a flexible and rapid fashion is critical for effective drought analysis, but can be challenging due to the massive amounts of data involved and the processing required to generate such maps. Furthermore, wells are typically not sampled at the same points in time, and so developing a water table map for a particular date requires both spatial and temporal interpolation of water elevations. To address this challenge, a Cloud-based water level mapping system was developed for the state of Texas. The system is based on the Texas Water Development Board (TWDB) groundwater database, but can be adapted to use other databases as well. The system involves a set of ArcGIS workflows running on a server with a web-based front end and a Google Earth plug-in. A temporal interpolation geoprocessing tool was developed to estimate the piezometric heads for all wells in a given region at a specific date using a regression analysis. This interpolation tool is coupled with other geoprocessing tools to filter data and interpolate point elevations spatially to produce water level, drawdown, and depth to groundwater maps. The web interface allows for users to generate these maps at locations and times of interest. A sequence of maps can be generated over a period of time and animated to visualize how water levels are changing. The time series regression analysis can also be used to do short-term predictions of future water levels.
Jacobs, Jeffrey P
2002-01-01
The field of congenital heart surgery has the opportunity to create the first comprehensive international database for a medical subspecialty. An understanding of the demographics of congenital heart disease and the rapid growth of computer technology leads to the realization that creating a comprehensive international database for pediatric cardiac surgery represents an important and achievable goal. The evolution of computer-based data analysis creates an opportunity to develop software to manage an international congenital heart surgery database and eventually become an electronic medical record. The same database data set for congenital heart surgery is now being used in Europe and North America. Additional work is under way to involve Africa, Asia, Australia, and South America. The almost simultaneous publication of the European Association for Cardio-thoracic Surgery/Society of Thoracic Surgeons coding system and the Association for European Paediatric Cardiology coding system resulted in the potential for multiple coding. Representatives of the Association for European Paediatric Cardiology, Society of Thoracic Surgeons, European Association for Cardio-thoracic Surgery, and European Congenital Heart Surgeons Foundation agree that these hierarchical systems are complementary and not competitive. An international committee will map the two systems. The ideal coding system will permit a diagnosis or procedure to be coded only one time with mapping allowing this code to be used for patient care, billing, practice management, teaching, research, and reporting to governmental agencies. The benefits of international data gathering and sharing are global, with the long-term goal of the continued upgrade in the quality of congenital heart surgery worldwide. Copyright 2002 by W.B. Saunders Company
Munasinghe, A; Chang, D; Mamidanna, R; Middleton, S; Joy, M; Penninckx, F; Darzi, A; Livingston, E; Faiz, O
2014-07-01
Significant variation in colorectal surgery outcomes exists between different countries. Better understanding of the sources of variable outcomes using administrative data requires alignment of differing clinical coding systems. We aimed to map similar diagnoses and procedures across administrative coding systems used in different countries. Administrative data were collected in a central database as part of the Global Comparators (GC) Project. In order to unify these data, a systematic translation of diagnostic and procedural codes was undertaken. Codes for colorectal diagnoses, resections, operative complications and reoperative interventions were mapped across the respective national healthcare administrative coding systems. Discharge data from January 2006 to June 2011 for patients who had undergone colorectal surgical resections were analysed to generate risk-adjusted models for mortality, length of stay, readmissions and reoperations. In all, 52 544 case records were collated from 31 institutions in five countries. Mapping of all the coding systems was achieved so that diagnosis and procedures from the participant countries could be compared. Using the aligned coding systems to develop risk-adjusted models, the 30-day mortality rate for colorectal surgery was 3.95% (95% CI 0.86-7.54), the 30-day readmission rate was 11.05% (5.67-17.61), the 28-day reoperation rate was 6.13% (3.68-9.66) and the mean length of stay was 14 (7.65-46.76) days. The linkage of international hospital administrative data that we developed enabled comparison of documented surgical outcomes between countries. This methodology may facilitate international benchmarking. Colorectal Disease © 2014 The Association of Coloproctology of Great Britain and Ireland.
Shear-wave velocity compilation for Northridge strong-motion recording sites
Borcherdt, Roger D.; Fumal, Thomas E.
2002-01-01
Borehole and other geotechnical information collected at the strong-motion recording sites of the Northridge earthquake of January 17, 1994 provide an important new basis for the characterization of local site conditions. These geotechnical data, when combined with analysis of strong-motion recordings, provide an empirical basis to evaluate site coefficients used in current versions of US building codes. Shear-wave-velocity estimates to a depth of 30 meters are derived for 176 strong-motion recording sites. The estimates are based on borehole shear-velocity logs, physical property logs, correlations with physical properties and digital geologic maps. Surface-wave velocity measurements and standard penetration data are compiled as additional constraints. These data as compiled from a variety of databases are presented via GIS maps and corresponding tables to facilitate use by other investigators.
A Review of Aeromagnetic Anomalies in the Sawatch Range, Central Colorado
Bankey, Viki
2010-01-01
This report contains digital data and image files of aeromagnetic anomalies in the Sawatch Range of central Colorado. The primary product is a data layer of polygons with linked data records that summarize previous interpretations of aeromagnetic anomalies in this region. None of these data files and images are new; rather, they are presented in updated formats that are intended to be used as input to geographic information systems, standard graphics software, or map-plotting packages.
Atomic-scale diffractive imaging of sub-cycle electron dynamics in condensed matter
Yakovlev, Vladislav S.; Stockman, Mark I.; Krausz, Ferenc; Baum, Peter
2015-01-01
For interaction of light with condensed-matter systems, we show with simulations that ultrafast electron and X-ray diffraction can provide a time-dependent record of charge-density maps with sub-cycle and atomic-scale resolutions. Using graphene as an example material, we predict that diffraction can reveal localised atomic-scale origins of optical and electronic phenomena. In particular, we point out nontrivial relations between microscopic electric current and density in undoped graphene. PMID:26412407
System and Mass Storage Study for Defense Mapping Agency Topographic Center (DMATC/HC)
1977-04-01
34•»-—•—■»■—- view. The assessment should be based on carefully designed control condi- tions—data volume, resolution, function, etc...egories: hardware control and library management support. This software is designed to interface with IBM 360/370 OS and OS/VS. No interface with a...laser re- cording unit includes a programmable recorder control subsystem which can be designed to provide a hardware and software interface compatible
Booth, Richard G; Sinclair, Barbara; Strudwick, Gillian; Brennan, Laura; Morgan, Lisa; Collings, Stephanie; Johnston, Jessica; Loggie, Brittany; Tong, James; Singh, Chantal
The purpose of this quality improvement project was to better understand how to teach medication administration underpinned by an electronic medication administration record (eMAR) system used in simulated, prelicensure nursing education. Methods included a workflow and integration analysis and a detailed process mapping of both an oral and a sublingual medication administration. Procedural and curriculum development considerations related to medication administration using eMAR technology are presented for nurse educators.
Atomic-scale diffractive imaging of sub-cycle electron dynamics in condensed matter
Yakovlev, Vladislav S.; Stockman, Mark I.; Krausz, Ferenc; ...
2015-09-28
For interaction of light with condensed-matter systems, we show with simulations that ultrafast electron and X-ray diffraction can provide a time-dependent record of charge-density maps with sub-cycle and atomic-scale resolutions. Using graphene as an example material, we predict that diffraction can reveal localised atomic-scale origins of optical and electronic phenomena. Here, we point out nontrivial relations between microscopic electric current and density in undoped graphene.
NASA Technical Reports Server (NTRS)
Moffitt, J. A.; Foley, C. M.; Schadt, J. C.; Laughlin, M. H.; Hasser, E. M.
1998-01-01
The effect of cardiovascular deconditioning on baroreflex control of the sympathetic nervous system was evaluated after 14 days of hindlimb unloading (HU) or the control condition. Rats were chronically instrumented with catheters and sympathetic nerve recording electrodes for measurement of mean arterial pressure (MAP) and heart rate (HR) and recording of lumbar (LSNA) or renal (RSNA) sympathetic nerve activity. Experiments were conducted 24 h after surgery, with the animals in a normal posture. Baroreflex function was assessed using a logistic function that related HR and LSNA or RSNA to MAP during infusion of phenylephrine and nitroprusside. Baroreflex influence on HR was not affected by HU. Maximum baroreflex-elicited LSNA was significantly reduced in HU rats (204 +/- 11.9 vs. 342 +/- 30.6% baseline LSNA), as was maximum reflex gain (-4.0 +/- 0.6 vs. -7.8 +/- 1.3 %LSNA/mmHg). Maximum baroreflex-elicited RSNA (259 +/- 10.8 vs. 453 +/- 28.0% baseline RSNA), minimum baroreflex-elicited RSNA (-2 +/- 2.8 vs. 13 +/- 4.5% baseline RSNA), and maximum gain (-5.8 +/- 0.5 vs. -13.6 +/- 3.1 %RSNA/mmHg) were significantly decreased in HU rats. Results demonstrate that baroreflex modulation of sympathetic nervous system activity is attenuated after cardiovascular deconditioning in rodents. Data suggest that alterations in the arterial baroreflex may contribute to orthostatic intolerance after a period of bedrest or spaceflight in humans.
Slamming pressures on the bottom of a free-falling vertical wedge
NASA Astrophysics Data System (ADS)
Ikeda, C. M.; Judge, C. Q.
2013-11-01
High-speed planing boats are subjected to repeat impacts due to slamming, which can cause structural damage and injury to passengers. A first step in understanding and predicting the physics of a craft re-entering the water after becoming partially airborne is an experimental vertical drop test of a prismastic wedge (deadrise angle, β =20° beam, B = 300 mm; and length, L = 600 mm). The acrylic wedge was mounted to a rig allowing it to free-fall into a deep-water tank (5.2m × 5.2m × 4.2m deep) from heights 0 <= H <= 635 mm, measured from the keel to the free surface. The wedge was instrumented to record vertical position, acceleration, and pressure on the bottom surface. A pressure mapping system, capable of measuring several points over the area of the thin (0.1 mm) film sensor at sampling rates up to 20 kHz, is used and compared to surface-mounted pressure transducers (sampled at 10 kHz). A high speed camera (1000 fps, resolution of 1920 × 1200 pixels) is mounted above the wedge model to record the wetted surface as the wedge descended below the free surface. The pressure measurements taken with both conventional surface pressure transducers and the pressure mapping system agree within 10% of the peak pressure values (0.7 bar, typical). Supported by the Office of Naval Research.
Standardizing clinical laboratory data for secondary use.
Abhyankar, Swapna; Demner-Fushman, Dina; McDonald, Clement J
2012-08-01
Clinical databases provide a rich source of data for answering clinical research questions. However, the variables recorded in clinical data systems are often identified by local, idiosyncratic, and sometimes redundant and/or ambiguous names (or codes) rather than unique, well-organized codes from standard code systems. This reality discourages research use of such databases, because researchers must invest considerable time in cleaning up the data before they can ask their first research question. Researchers at MIT developed MIMIC-II, a nearly complete collection of clinical data about intensive care patients. Because its data are drawn from existing clinical systems, it has many of the problems described above. In collaboration with the MIT researchers, we have begun a process of cleaning up the data and mapping the variable names and codes to LOINC codes. Our first step, which we describe here, was to map all of the laboratory test observations to LOINC codes. We were able to map 87% of the unique laboratory tests that cover 94% of the total number of laboratory tests results. Of the 13% of tests that we could not map, nearly 60% were due to test names whose real meaning could not be discerned and 29% represented tests that were not yet included in the LOINC table. These results suggest that LOINC codes cover most of laboratory tests used in critical care. We have delivered this work to the MIMIC-II researchers, who have included it in their standard MIMIC-II database release so that researchers who use this database in the future will not have to do this work. Published by Elsevier Inc.
14 CFR 1206.101 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... definitions shall apply: (a) The term Agency records or records means any information that would be an Agency record subject to the requirements of the Freedom of Information Act (FOIA) when maintained by NASA in any format, including an electronic format. Such information includes all books, papers, maps...
14 CFR 1206.101 - Definitions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... definitions shall apply: (a) The term Agency records or records means any information that would be an Agency record subject to the requirements of the Freedom of Information Act (FOIA) when maintained by NASA in any format, including an electronic format. Such information includes all books, papers, maps...
14 CFR 1206.101 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... definitions shall apply: (a) The term Agency records or records means any information that would be an Agency record subject to the requirements of the Freedom of Information Act (FOIA) when maintained by NASA in any format, including an electronic format. Such information includes all books, papers, maps...
King, Andrew J; Hochheiser, Harry; Visweswaran, Shyam; Clermont, Gilles; Cooper, Gregory F
2017-01-01
Eye-tracking is a valuable research tool that is used in laboratory and limited field environments. We take steps toward developing methods that enable widespread adoption of eye-tracking and its real-time application in clinical decision support. Eye-tracking will enhance awareness and enable intelligent views, more precise alerts, and other forms of decision support in the Electronic Medical Record (EMR). We evaluated a low-cost eye-tracking device and found the device's accuracy to be non-inferior to a more expensive device. We also developed and evaluated an automatic method for mapping eye-tracking data to interface elements in the EMR (e.g., a displayed laboratory test value). Mapping was 88% accurate across the six participants in our experiment. Finally, we piloted the use of the low-cost device and the automatic mapping method to label training data for a Learning EMR (LEMR) which is a system that highlights the EMR elements a physician is predicted to use.
King, Andrew J.; Hochheiser, Harry; Visweswaran, Shyam; Clermont, Gilles; Cooper, Gregory F.
2017-01-01
Eye-tracking is a valuable research tool that is used in laboratory and limited field environments. We take steps toward developing methods that enable widespread adoption of eye-tracking and its real-time application in clinical decision support. Eye-tracking will enhance awareness and enable intelligent views, more precise alerts, and other forms of decision support in the Electronic Medical Record (EMR). We evaluated a low-cost eye-tracking device and found the device’s accuracy to be non-inferior to a more expensive device. We also developed and evaluated an automatic method for mapping eye-tracking data to interface elements in the EMR (e.g., a displayed laboratory test value). Mapping was 88% accurate across the six participants in our experiment. Finally, we piloted the use of the low-cost device and the automatic mapping method to label training data for a Learning EMR (LEMR) which is a system that highlights the EMR elements a physician is predicted to use. PMID:28815151
NASA Astrophysics Data System (ADS)
Clinton, J.
2017-12-01
Much of Hawaii's history is recorded in archeological sites. Researchers and cultural practitioners have been studying and reconstructing significant archeological sites for generations. Climate change, and more specifically, sea level rise may threaten these sites. Our research records current sea levels and then projects possible consequences to these cultural monuments due to sea level rise. In this mixed methods study, research scientists, cultural practitioners, and secondary students use plane-table mapping techniques to create maps of coastlines and historic sites. Students compare historical records to these maps, analyze current sea level rise trends, and calculate future sea levels. They also gather data through interviews with community experts and kupuna (elders). If climate change continues at projected rates, some historic sites will be in danger of negative impact due to sea level rise. Knowing projected sea levels at specific sites allows for preventative action and contributes to raised awareness of the impacts of climate change to the Hawaiian Islands. Students will share results with the community and governmental agencies in hopes of inspiring action to minimize climate change. It will take collaboration between scientists and cultural communities to inspire future action on climate change.
ComVisMD - compact visualization of multidimensional data: experimenting with cricket players data
NASA Astrophysics Data System (ADS)
Dandin, Shridhar B.; Ducassé, Mireille
2018-03-01
Database information is multidimensional and often displayed in tabular format (row/column display). Presented in aggregated form, multidimensional data can be used to analyze the records or objects. Online Analytical database Processing (OLAP) proposes mechanisms to display multidimensional data in aggregated forms. A choropleth map is a thematic map in which areas are colored in proportion to the measurement of a statistical variable being displayed, such as population density. They are used mostly for compact graphical representation of geographical information. We propose a system, ComVisMD inspired by choropleth map and the OLAP cube to visualize multidimensional data in a compact way. ComVisMD displays multidimensional data like OLAP Cube, where we are mapping an attribute a (first dimension, e.g. year started playing cricket) in vertical direction, object coloring based on b (second dimension, e.g. batting average), mapping varying-size circles based on attribute c (third dimension, e.g. highest score), mapping numbers based on attribute d (fourth dimension, e.g. matches played). We illustrate our approach on cricket players data, namely on two tables Country and Player. They have a large number of rows and columns: 246 rows and 17 columns for players of one country. ComVisMD’s visualization reduces the size of the tabular display by a factor of about 4, allowing users to grasp more information at a time than the bare table display.
NASA Technical Reports Server (NTRS)
1994-01-01
STS-59's MAPS (Measurement of Air Pollution from Satellites) experiment is sending real-time data that provides the most comprehensive view of carbon monoxide concentrations on Earth ever recorded. This computer image shows a summary of 'quick look' data obtained by the MAPS instrument during its first days of operations as part of the Space Shuttle Endeavour's SRL-1 payload.
In Search of L1 Evidence for Diachronic Reanalysis: Mapping Modal Verbs
ERIC Educational Resources Information Center
Cournane, Ailís
2014-01-01
The lexical mapping of abstract functional words like modal verbs is an open problem in acquisition (e.g., Gleitman et al. 2005). In diachronic linguistics it has been proposed that learner mapping errors are responsible for innovations in the historical record (see Kiparsky 1974; Roberts & Roussou 2003, among others). This suggests that child…
Beta Testing StraboSpot: Perspectives on mobile field mapping and data collection
NASA Astrophysics Data System (ADS)
Bunse, E.; Graham, K. A.; Rufledt, C.; Walker, J. D.; Müller, A.; Tikoff, B.
2017-12-01
Geologic field mapping has recently transitioned away from traditional techniques (e.g. field notebooks, paper mapping, Brunton compasses) and towards mobile `app' mapping technology. The StraboSpot system (Strabo) is an open-source solution for collection and storage for geologic field, microstructural, and lab-based data. Strabo's mission is to "enable recording and sharing data within the geoscience community, encourage interdisciplinary research, and facilitate the investigation of scientific questions that cannot currently be addressed" (Walker et al., 2015). Several mobile application beta tests of the system, on both Android and Apple iOS platforms using smartphones and tablets, began in Summer 2016. Students at the 2016 and 2017 University of Kansas Field Camps used Strabo in place of ArcGIS for Desktop on Panasonic Toughbooks, to field map two study areas. Strabo was also field tested by students of graduate and undergraduate level for both geo/thermochronologic sample collection and reconnaissance mapping associated with regional tectonic analysis in California. Throughout this period of testing, the app was geared toward structural and tectonic geologic data collection, but is versatile enough for other communities to currently use and is expanding to accommodate the sedimentology and petrology communities. Overall, users in each of the beta tests acclimated quickly to using Strabo for field data collection. Some key advantages to using Strabo over traditional mapping methods are: (1) Strabo allows for consolidation of materials in the field; (2) helps students track their position in the field with integrated GPS; and (3) Strabo data is in a uniform format making it simple for geologists to collaborate. While traditional field methods are not likely to go out of style in the near future, Strabo acts as a bridge between professional and novice geologists by providing a tool that is intuitive on all levels of geological and technological experience and allows for more effective collaboration in the field. Walker, J. Douglas, et al. (2015), Development of Structural Geology and Tectonics Data System with Field and Lab Interface, Abstract IN21E-04 presented at 2015 Fall Meeting, AGU, San Francisco, Calif., 14-18 Dec.
Ischemic stroke risk reduction following cardiac surgery by carotid compression
NASA Astrophysics Data System (ADS)
Isingoma, Paul
Every year over 500,000 cardiovascular procedures requiring cardiopulmonary bypass (CPB) are performed in the United States. CPB is a technique that temporarily takes over the function of the heart and lungs during surgery, maintaining the circulation of blood and the oxygen content of the body. During CPB, an aortic cross-clamp is used to clamp the aorta and separate the systemic circulation from the outflow of the heart. Unfortunately, these procedures have been found to cause most cerebral emboli, which produce clinical, subclinical and silent neurologic injuries. Many clinical neurologic injuries occur in the postoperative period, with over 20% of the clinical strokes occurring during this period. In this study, we focus on visualizing the flow distribution in the aortic arch, the effect of carotid compression and the influence of compression time and MAP during CPB on reducing cerebral emboli. Experiments are performed with an aortic arch model in a mock cardiovascular system. Fluorescent particles are used to simulate emboli that are released into circulation immediately after carotid compression. The LVAD is used as the pump to produce flow in the system by gradually adjusting the speed to maintain desired clinical conditions. Aortic and proximal branches MAP of 65.0 +/- 5.0 mmHg (normal MAP) or 95.0 +/- 5.0 mmHg (high MAP), aortic flow of 4.0 +/- 0.5 L/min, and all branches flow (left and right carotids, and subclavian arteries) of 10% of the aortic flow. Flow distribution of particles is visualized using LaVision's DaVis imaging software and analyzed using imagej's particle analysis tool to track, count, and record particle properties from the aortic arch. Carotid compression for 10-20 seconds reduces the number of particles entering the carotid arteries by over 73% at normal MAP, and by over 85% at high MAP. A higher MAP resulted in fewer particles entering the branching vessels both at baseline and during occlusion conditions. A compression duration of 20s does not result in greater particle reduction than one of 10s. Our results demonstrate that brief compression of the common carotid arteries during an embolic shower can reduce the number of dangerous emboli by over 85%.
Stereo imaging velocimetry for microgravity applications
NASA Technical Reports Server (NTRS)
Miller, Brian B.; Meyer, Maryjo B.; Bethea, Mark D.
1994-01-01
Stereo imaging velocimetry is the quantitative measurement of three-dimensional flow fields using two sensors recording data from different vantage points. The system described in this paper, under development at NASA Lewis Research Center in Cleveland, Ohio, uses two CCD cameras placed perpendicular to one another, laser disk recorders, an image processing substation, and a 586-based computer to record data at standard NTSC video rates (30 Hertz) and reduce it offline. The flow itself is marked with seed particles, hence the fluid must be transparent. The velocimeter tracks the motion of the particles, and from these we deduce a multipoint (500 or more), quantitative map of the flow. Conceptually, the software portion of the velocimeter can be divided into distinct modules. These modules are: camera calibration, particle finding (image segmentation) and centroid location, particle overlap decomposition, particle tracking, and stereo matching. We discuss our approach to each module, and give our currently achieved speed and accuracy for each where available.
A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology.
Viventi, Jonathan; Kim, Dae-Hyeong; Moss, Joshua D; Kim, Yun-Soung; Blanco, Justin A; Annetta, Nicholas; Hicks, Andrew; Xiao, Jianliang; Huang, Younggang; Callans, David J; Rogers, John A; Litt, Brian
2010-03-24
In all current implantable medical devices such as pacemakers, deep brain stimulators, and epilepsy treatment devices, each electrode is independently connected to separate control systems. The ability of these devices to sample and stimulate tissues is hindered by this configuration and by the rigid, planar nature of the electronics and the electrode-tissue interfaces. Here, we report the development of a class of mechanically flexible silicon electronics for multiplexed measurement of signals in an intimate, conformal integrated mode on the dynamic, three-dimensional surfaces of soft tissues in the human body. We demonstrate this technology in sensor systems composed of 2016 silicon nanomembrane transistors configured to record electrical activity directly from the curved, wet surface of a beating porcine heart in vivo. The devices sample with simultaneous submillimeter and submillisecond resolution through 288 amplified and multiplexed channels. We use this system to map the spread of spontaneous and paced ventricular depolarization in real time, at high resolution, on the epicardial surface in a porcine animal model. This demonstration is one example of many possible uses of this technology in minimally invasive medical devices.
Laser electro-optic system for rapid three-dimensional /3-D/ topographic mapping of surfaces
NASA Technical Reports Server (NTRS)
Altschuler, M. D.; Altschuler, B. R.; Taboada, J.
1981-01-01
It is pointed out that the generic utility of a robot in a factory/assembly environment could be substantially enhanced by providing a vision capability to the robot. A standard videocamera for robot vision provides a two-dimensional image which contains insufficient information for a detailed three-dimensional reconstruction of an object. Approaches which supply the additional information needed for the three-dimensional mapping of objects with complex surface shapes are briefly considered and a description is presented of a laser-based system which can provide three-dimensional vision to a robot. The system consists of a laser beam array generator, an optical image recorder, and software for controlling the required operations. The projection of a laser beam array onto a surface produces a dot pattern image which is viewed from one or more suitable perspectives. Attention is given to the mathematical method employed, the space coding technique, the approaches used for obtaining the transformation parameters, the optics for laser beam array generation, the hardware for beam array coding, and aspects of image acquisition.
Identifying Centres of Plant Biodiversity in South Australia
Guerin, Greg R.; Biffin, Ed; Baruch, Zdravko; Lowe, Andrew J.
2016-01-01
We aimed to identify regional centres of plant biodiversity in South Australia, a sub-continental land area of 983,482 km2, by mapping a suite of metrics. Broad-brush conservation issues associated with the centres were mapped, specifically climate sensitivity, exposure to habitat fragmentation, introduced species and altered fire regimes. We compiled 727,417 plant species records from plot-based field surveys and herbarium records and mapped the following: species richness (all species; South Australian endemics; conservation-dependent species; introduced species); georeferenced weighted endemism, phylogenetic diversity, georeferenced phylogenetic endemism; and measures of beta diversity at local and state-wide scales. Associated conservation issues mapped were: climate sensitivity measured via ordination and non-linear modelling; habitat fragmentation represented by the proportion of remnant vegetation within a moving window; fire prone landscapes assessed using fire history records; invasive species assessed through diversity metrics, species distribution and literature. Compared to plots, herbarium data had higher spatial and taxonomic coverage but records were more biased towards major transport corridors. Beta diversity was influenced by sampling intensity and scale of comparison. We identified six centres of high plant biodiversity for South Australia: Western Kangaroo Island; Southern Mount Lofty Ranges; Anangu Pitjantjatjara Yankunytjatjara lands; Southern Flinders Ranges; Southern Eyre Peninsula; Lower South East. Species composition in the arid-mediterranean ecotone was the most climate sensitive. Fragmentation mapping highlighted the dichotomy between extensive land-use and high remnancy in the north and intensive land-use and low remnancy in the south. Invasive species were most species rich in agricultural areas close to population centres. Fire mapping revealed large variation in frequency across the state. Biodiversity scores were not always congruent between metrics or datasets, notably for categorical endemism to South Australia versus georeferenced weighted endemism, justifying diverse approaches and cautious interpretation. The study could be extended to high resolution assessments of biodiversity centres and cost:benefit analysis for interventions. PMID:26735131
ERIC Educational Resources Information Center
Stigner, Kenneth J.
2001-01-01
Discusses how aerial photography and photogrammetry technology can help schools create visual records of their campus, land, and properties. Addresses efficiency and cost effectiveness of this method. Discusses how to develop the digital photogrammetry method for mapping from aerial photos. (GR)
Dai, Xiaochuan; Zhou, Wei; Gao, Teng; Liu, Jia; Lieber, Charles M
2016-09-01
Real-time mapping and manipulation of electrophysiology in three-dimensional (3D) tissues could have important impacts on fundamental scientific and clinical studies, yet realization is hampered by a lack of effective methods. Here we introduce tissue-scaffold-mimicking 3D nanoelectronic arrays consisting of 64 addressable devices with subcellular dimensions and a submillisecond temporal resolution. Real-time extracellular action potential (AP) recordings reveal quantitative maps of AP propagation in 3D cardiac tissues, enable in situ tracing of the evolving topology of 3D conducting pathways in developing cardiac tissues and probe the dynamics of AP conduction characteristics in a transient arrhythmia disease model and subsequent tissue self-adaptation. We further demonstrate simultaneous multisite stimulation and mapping to actively manipulate the frequency and direction of AP propagation. These results establish new methodologies for 3D spatiotemporal tissue recording and control, and demonstrate the potential to impact regenerative medicine, pharmacology and electronic therapeutics.
Dai, Xiaochuan; Zhou, Wei; Gao, Teng; Liu, Jia; Lieber, Charles M.
2016-01-01
Real-time mapping and manipulation of electrophysiology in three-dimensional (3D) tissues could impact broadly fundamental scientific and clinical studies, yet realization lacks effective methods. Here we introduce tissue-scaffold-mimicking 3D nanoelectronic arrays consisting of 64 addressable devices with subcellular dimensions and sub-millisecond time-resolution. Real-time extracellular action potential (AP) recordings reveal quantitative maps of AP propagation in 3D cardiac tissues, enable in situ tracing of the evolving topology of 3D conducting pathways in developing cardiac tissues, and probe the dynamics of AP conduction characteristics in a transient arrhythmia disease model and subsequent tissue self-adaptation. We further demonstrate simultaneous multi-site stimulation and mapping to manipulate actively the frequency and direction of AP propagation. These results establish new methodologies for 3D spatiotemporal tissue recording and control, and demonstrate the potential to impact regenerative medicine, pharmacology and electronic therapeutics. PMID:27347837
NASA Astrophysics Data System (ADS)
Aharoni, Daniel Benjamin
The integration of multimodal sensory information into a common neural code is a critical function of all complex nervous systems. This process is required for adaptive responding to incoming stimuli as well as the formation of a cognitive map of the external sensory environment. The underlying neural mechanisms of multimodal integration are poorly understood due, in part, to the technical difficulties of manipulating multimodal sensory information in combination with simultaneous in-vivo electrophysiological recording in awake behaving animals. We therefore developed a non-invasive multimodal virtual reality system that is conducive to wired electrophysiological recording techniques. This system allows for the dynamic presentation of highly immersive audiovisual virtual environments to rats maintained in a body fixed position on top of a quiet spherical treadmill. Notably, this allows the rats to remain at the same spatial location in the real world without the need for head fixation. This method opens the door for a wide array of future studies aimed at elucidating the underlying neural mechanisms of multimodal integration.
Damage mapping in structural health monitoring using a multi-grid architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathews, V. John
2015-03-31
This paper presents a multi-grid architecture for tomography-based damage mapping of composite aerospace structures. The system employs an array of piezo-electric transducers bonded on the structure. Each transducer may be used as an actuator as well as a sensor. The structure is excited sequentially using the actuators and the guided waves arriving at the sensors in response to the excitations are recorded for further analysis. The sensor signals are compared to their baseline counterparts and a damage index is computed for each actuator-sensor pair. These damage indices are then used as inputs to the tomographic reconstruction system. Preliminary damage mapsmore » are reconstructed on multiple coordinate grids defined on the structure. These grids are shifted versions of each other where the shift is a fraction of the spatial sampling interval associated with each grid. These preliminary damage maps are then combined to provide a reconstruction that is more robust to measurement noise in the sensor signals and the ill-conditioned problem formulation for single-grid algorithms. Experimental results on a composite structure with complexity that is representative of aerospace structures included in the paper demonstrate that for sufficiently high sensor densities, the algorithm of this paper is capable of providing damage detection and characterization with accuracy comparable to traditional C-scan and A-scan-based ultrasound non-destructive inspection systems quickly and without human supervision.« less
NASA Astrophysics Data System (ADS)
Pampalone, Vincenzo; Milici, Barbara
2015-12-01
The drone Ecomapper AUV (Autonomous Underwater Vehicle) is a rare example of highly technological instrument in the environmental coastal monitoring field. The YSI EcoMapper is a one-man deployable, Autonomous Underwater Vehicle (AUV) designed to collect bathymetry and water quality data. The submarine-like vehicle follows a programmed course and employs sensors mounted in the nose to record pertinent information. Once the vehicle has started its mission, it operates independently of the user and utilizes GPS waypoints navigation to complete its programmed course. Throughout the course, the vehicle constantly steers toward the line drawn in the mission planning software (VectorMap), essentially following a more accurate road of coordinates instead of transversing waypoint-to-waypoint. It has been equipped with a Doppler Velocity Log (DVL) to increase its underwater navigation accuracy. Potential EcoMapper applications include baseline environmental mapping in freshwater, estuarine or near-coastal environments, bathymetric mapping, dissolved oxygen studies, event monitoring (algal blooms, storm impacts, low dissolved oxygen), non-point source studies, point-source dispersion mapping, security, search & rescue, inspection, shallow water mapping, thermal dissipation mapping of cooling outfalls, trace-dye studies. The AUV is used in the coastal area of the Augusta Bay (Italy), located in the eastern part of Sicily. Due to the heavy contamination generated by the several chemical and petrochemical industries active in the zone, the harbour was declared a Contaminated Site of National Interest. The ecomapper allows for a simultaneous data collection of water quality and bathymetric data providing a complete environmental mapping system of the Harbour.
Integration of tools for binding archetypes to SNOMED CT.
Sundvall, Erik; Qamar, Rahil; Nyström, Mikael; Forss, Mattias; Petersson, Håkan; Karlsson, Daniel; Ahlfeldt, Hans; Rector, Alan
2008-10-27
The Archetype formalism and the associated Archetype Definition Language have been proposed as an ISO standard for specifying models of components of electronic healthcare records as a means of achieving interoperability between clinical systems. This paper presents an archetype editor with support for manual or semi-automatic creation of bindings between archetypes and terminology systems. Lexical and semantic methods are applied in order to obtain automatic mapping suggestions. Information visualisation methods are also used to assist the user in exploration and selection of mappings. An integrated tool for archetype authoring, semi-automatic SNOMED CT terminology binding assistance and terminology visualization was created and released as open source. Finding the right terms to bind is a difficult task but the effort to achieve terminology bindings may be reduced with the help of the described approach. The methods and tools presented are general, but here only bindings between SNOMED CT and archetypes based on the openEHR reference model are presented in detail.
Integration of tools for binding archetypes to SNOMED CT
Sundvall, Erik; Qamar, Rahil; Nyström, Mikael; Forss, Mattias; Petersson, Håkan; Karlsson, Daniel; Åhlfeldt, Hans; Rector, Alan
2008-01-01
Background The Archetype formalism and the associated Archetype Definition Language have been proposed as an ISO standard for specifying models of components of electronic healthcare records as a means of achieving interoperability between clinical systems. This paper presents an archetype editor with support for manual or semi-automatic creation of bindings between archetypes and terminology systems. Methods Lexical and semantic methods are applied in order to obtain automatic mapping suggestions. Information visualisation methods are also used to assist the user in exploration and selection of mappings. Results An integrated tool for archetype authoring, semi-automatic SNOMED CT terminology binding assistance and terminology visualization was created and released as open source. Conclusion Finding the right terms to bind is a difficult task but the effort to achieve terminology bindings may be reduced with the help of the described approach. The methods and tools presented are general, but here only bindings between SNOMED CT and archetypes based on the openEHR reference model are presented in detail. PMID:19007444
Manies, K.L.; Mladenoff, D.J.
2000-01-01
The U.S. Public Land Survey (PLS) notebooks are one of the best records of the pre-European settlement landscape and are widely used to recreate presettlement vegetation maps. The purpose of this study was to evaluate the relative ability of several interpolation techniques to map this vegetation, as sampled by the PLS surveyors, at the landscape level. Field data from Sylvania Wilderness Area, MI (U.S.A.), sampled at the same scale as the PLS data, were used for this test. Sylvania is comprised of a forested landscape similar to that present during presettlement times. Data were analyzed using two Arc/Info interpolation processes and indicator kriging. The resulting maps were compared to a 'correct' map of Sylvania, which was classified from aerial photographs. We found that while the interpolation methods used accurately estimated the relative forest composition of the landscape and the order of dominance of different vegetation types, they were unable to accurately estimate the actual area occupied by each vegetation type. Nor were any of the methods we tested able to recreate the landscape patterns found in the natural landscape. The most likely cause for these inabilities is the scale at which the field data (and hence the PLS data) were recorded. Therefore, these interpolation methods should not be used with the PLS data to recreate pre-European settlement vegetation at small scales (e.g., less than several townships or areas < 104 ha). Recommendations are given for ways to increase the accuracy of these vegetation maps.
Linking brain, mind and behavior.
Makeig, Scott; Gramann, Klaus; Jung, Tzyy-Ping; Sejnowski, Terrence J; Poizner, Howard
2009-08-01
Cortical brain areas and dynamics evolved to organize motor behavior in our three-dimensional environment also support more general human cognitive processes. Yet traditional brain imaging paradigms typically allow and record only minimal participant behavior, then reduce the recorded data to single map features of averaged responses. To more fully investigate the complex links between distributed brain dynamics and motivated natural behavior, we propose the development of wearable mobile brain/body imaging (MoBI) systems that continuously capture the wearer's high-density electrical brain and muscle signals, three-dimensional body movements, audiovisual scene and point of regard, plus new data-driven analysis methods to model their interrelationships. The new imaging modality should allow new insights into how spatially distributed brain dynamics support natural human cognition and agency.
Mapping thunder sources by inverting acoustic and electromagnetic observations
NASA Astrophysics Data System (ADS)
Anderson, J. F.; Johnson, J. B.; Arechiga, R. O.; Thomas, R. J.
2014-12-01
We present a new method of locating current flow in lightning strikes by inversion of thunder recordings constrained by Lightning Mapping Array observations. First, radio frequency (RF) pulses are connected to reconstruct conductive channels created by leaders. Then, acoustic signals that would be produced by current flow through each channel are forward modeled. The recorded thunder is considered to consist of a weighted superposition of these acoustic signals. We calculate the posterior distribution of acoustic source energy for each channel with a Markov Chain Monte Carlo inversion that fits power envelopes of modeled and recorded thunder; these results show which parts of the flash carry current and produce thunder. We examine the effects of RF pulse location imprecision and atmospheric winds on quality of results and apply this method to several lightning flashes over the Magdalena Mountains in New Mexico, USA. This method will enable more detailed study of lightning phenomena by allowing researchers to map current flow in addition to leader propagation.
System for photometric calibration of optoelectronic imaging devices especially streak cameras
Boni, Robert; Jaanimagi, Paul
2003-11-04
A system for the photometric calibration of streak cameras and similar imaging devices provides a precise knowledge of the camera's flat-field response as well as a mapping of the geometric distortions. The system provides the flat-field response, representing the spatial variations in the sensitivity of the recorded output, with a signal-to-noise ratio (SNR) greater than can be achieved in a single submicrosecond streak record. The measurement of the flat-field response is carried out by illuminating the input slit of the streak camera with a signal that is uniform in space and constant in time. This signal is generated by passing a continuous wave source through an optical homogenizer made up of a light pipe or pipes in which the illumination typically makes several bounces before exiting as a spatially uniform source field. The rectangular cross-section of the homogenizer is matched to the usable photocathode area of the streak tube. The flat-field data set is obtained by using a slow streak ramp that may have a period from one millisecond (ms) to ten seconds (s), but may be nominally one second in duration. The system also provides a mapping of the geometric distortions, by spatially and temporarily modulating the output of the homogenizer and obtaining a data set using the slow streak ramps. All data sets are acquired using a CCD camera and stored on a computer, which is used to calculate all relevant corrections to the signal data sets. The signal and flat-field data sets are both corrected for geometric distortions prior to applying the flat-field correction. Absolute photometric calibration is obtained by measuring the output fluence of the homogenizer with a "standard-traceable" meter and relating that to the CCD pixel values for a self-corrected flat-field data set.
Niemoczynski, Michal J.; Watson, Kara M.
2016-10-19
Digital flood-inundation maps for an approximate 7.5-mile reach of the Peckman River in New Jersey, which extends from Verona Lake Dam in the Township of Verona downstream through the Township of Cedar Grove and the Township of Little Falls to the confluence with the Passaic River in the Borough of Woodland Park, were created by the U.S. Geological Survey (USGS) in cooperation with the New Jersey Department of Environmental Protection. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ depict estimates of the probable areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the Peckman River at Ozone Avenue at Verona, New Jersey (station number 01389534). Near-real-time stages at this streamgage may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/.Flood profiles were simulated for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated using the most current stage-discharge relations at USGS streamgages on the Peckman River at Ozone Avenue at Verona, New Jersey (station number 01389534) and the Peckman River at Little Falls, New Jersey (station number 01389550). The hydraulic model was then used to compute eight water-surface profiles for flood stages at 0.5-foot (ft) intervals ranging from 3.0 ft or near bankfull to 6.5 ft, which is approximately the highest recorded water level during the period of record (1979–2014) at USGS streamgage 01389534, Peckman River at Ozone Avenue at Verona, New Jersey. The simulated water-surface profiles were then combined with a geographic information system digital elevation model derived from light detection and ranging (lidar) data to delineate the area flooded at each water level.The availability of these maps along with Internet information regarding current stage from the USGS streamgage provides emergency management personnel and residents with information, such as estimates of inundation extents, based on water stage, that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.
HTML5 microdata as a semantic container for medical information exchange.
Kimura, Eizen; Kobayashi, Shinji; Ishihara, Ken
2014-01-01
Achieving interoperability between clinical electronic medical records (EMR) systems and cloud computing systems is challenging because of the lack of a universal reference method as a standard for information exchange with a secure connection. Here we describe an information exchange scheme using HTML5 microdata, where the standard semantic container is an HTML document. We embed HL7 messages describing laboratory test results in the microdata. We also annotate items in the clinical research report with the microdata. We mapped the laboratory test result data into the clinical research report using an HL7 selector specified in the microdata. This scheme can provide secure cooperation between the cloud-based service and the EMR system.
F. O. Kern, Elizabeth; Beischel, Scott; Stalnaker, Randal; Aron, David C.; Kirsh, Susan R.; Watts, Sharon A.
2008-01-01
Background Little information is available describing how to implement a disease registry from an electronic patient record system. The aim of this report is to describe the technology, methods, and utility of a diabetes registry populated by the Veterans Health Information Systems Architecture (VistA), which underlies the computerized patient record system of the Veterans Health Administration (VHA) in Veteran Affairs Integrated Service Network 10 (VISN 10). Methods VISN 10 data from VistA were mapped to a relational SQL-based data system using KB_SQL software. Operational definitions for diabetes, active clinical management, and responsible providers were used to create views of patient-level data in the diabetes registry. Query Analyzer was used to access the data views directly. Semicustomizable reports were created by linking the diabetes registry to a Web page using Microsoft asp.net2. A retrospective observational study design was used to analyze trends in the process of care and outcomes. Results Since October 2001, 81,227 patients with diabetes have enrolled in VISN 10: approximately 42,000 are currently under active management by VISN 10 providers. By tracking primary care visits, we assigned 91% to a clinic group responsible for diabetes care. In the Cleveland Veterans Affairs Medical Center (VAMC), the frequency of mean annual hemoglobin A1c levels ≥9% has declined significantly over 5 years. Almost 4000 patients have been seen in diabetes intervention programs in the Cleveland VAMC over the past 4 years. Conclusions A diabetes registry can be populated from the database underlying the VHA electronic patient record database system and linked to Web-based and ad hoc queries useful for quality improvement. PMID:19885172
Continuity of MODIS and VIIRS Snow-Cover Maps during Snowmelt in the Catskill Mountains in New York
NASA Astrophysics Data System (ADS)
Hall, D. K.; Riggs, G. A., Jr.; Roman, M. O.; DiGirolamo, N. E.
2015-12-01
We investigate the local and regional differences and possible biases between the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible-Infrared Imager Radiometer Suite (VIIRS) snow-cover maps in the winter of 2012 during snowmelt conditions in the Catskill Mountains in New York using a time series of cloud-gap filled daily snow-cover maps. The MODIS Terra instrument has been providing daily global snow-cover maps since February 2000 (Riggs and Hall, 2015). Using the VIIRS instrument, launched in 2011, NASA snow products are being developed based on the heritage MODIS snow-mapping algorithms, and will soon be available to the science community. Continuity of the standard NASA MODIS and VIIRS snow-cover maps is essential to enable environmental-data records (EDR) to be developed for analysis of snow-cover trends using a consistent data record. For this work, we compare daily MODIS and VIIRS snow-cover maps of the Catskill Mountains from 29 February through 14 March 2012. The entire region was snow covered on 29 February and by 14 March the snow had melted; we therefore have a daily time series available to compare normalized difference snow index (NDSI), as an indicator of snow-cover fraction. The MODIS and VIIRS snow-cover maps have different spatial resolutions (500 m for MODIS and 375 m for VIIRS) and different nominal overpass times (10:30 AM for MODIS Terra and 2:30 PM for VIIRS) as well as different cloud masks. The results of this work will provide a quantitative assessment of the continuity of the snow-cover data records for use in development of an EDR of snow cover.http://modis-snow-ice.gsfc.nasa.gov/Riggs, G.A. and D.K. Hall, 2015: MODIS Snow Products User Guide to Collection 6, http://modis-snow-ice.gsfc.nasa.gov/?c=userguides
Rapid multichannel impact-echo scanning of concrete bridge decks from a continuously moving platform
NASA Astrophysics Data System (ADS)
Mazzeo, Brian A.; Larsen, Jacob; McElderry, Joseph; Guthrie, W. Spencer
2017-02-01
Impact-echo testing is a non-destructive evaluation technique for determining the presence of defects in reinforced concrete bridge decks based on the acoustic response of the bridge deck when struck by an impactor. In this work, we build on our prior research with a single-channel impactor to demonstrate a seven-channel impact-echo scanning system with independent control of the impactors. This system is towed by a vehicle and integrated with distance measurement for registering the locations of the impacts along a bridge deck. The entire impact and recording system is computer-controlled. Because of a winch system and hinged frame construction of the apparatus, setup, measurement, and take-down of the apparatus can be achieved in a matter of minutes. Signal processing of the impact responses is performed on site and can produce a map of delaminations immediately after data acquisition. This map can then be used to guide other testing and/or can be referenced with the results of other testing techniques to facilitate comprehensive condition assessments of concrete bridge decks. This work demonstrates how impact-echo testing can be performed in a manner that makes complete bridge deck scanning for delaminations rapid and practical.
Elevation of the March-April 2010 flood high water in selected river reaches in Rhode Island
Zarriello, Phillip J.; Bent, Gardner C.
2011-01-01
A series of widespread, large, low-pressure systems in southern New England in late February through late March 2010 resulted in record, or near record, rainfall and runoff. The total rainfall in the region during this period ranged from about 19 to 25 inches, which coupled with seasonal low evaporation, resulted in record or near record peak flows at 21 of 25 streamgages in Rhode Island and southeastern Massachusetts. The highest record peaks occurred in late March-early April and generally greatly exceeded the earlier March peaks that were near or exceeded the peak of record for 10 of the 25 streamgages. Determination of the flood-peak high-water elevation is a critical part of the recovery operations and post-flood analysis for improving future flood-hazard maps and flood-management practices. High-water marks (HWMs) were identified by the U.S. Geological Survey (USGS) from April 2-7, 2010, and by the U.S. Army Corps of Engineers (USACE) from April 3-7, 2010, in five major river basins including the Blackstone, Hunt, Moshassuck, Pawtuxet, and Woonasquatucket along the mainstems and in many tributaries. The USGS identified 276 HWMs at 137 sites. A site may have more than one HWM, typically upstream and downstream of a bridge. The USACE identified 144 HWMs at 127 sites. The HWMs identified by the USGS and USACE covered about 170 river miles, determined from the upstream and downstream HWMs. Elevation of HWMs were later determined to a standard vertical datum (NAVD 88) using the Global Navigation Satellite System and survey-grade Global Positioning System (GPS) receivers along with standard optical surveying equipment.
Alaska Department of Natural Resources
Land Records Information/Status Plats Office of History and Archaeology Applications and many others many of these applications and pages Posted: March 7, 2013 DNR applications, including mapping recorded documents UCC Online Filing Search land case files and abstracts Search for land records More
Diaz-Ruelas, Alvaro; Jeldtoft Jensen, Henrik; Piovani, Duccio; Robledo, Alberto
2016-12-01
It is well known that low-dimensional nonlinear deterministic maps close to a tangent bifurcation exhibit intermittency and this circumstance has been exploited, e.g., by Procaccia and Schuster [Phys. Rev. A 28, 1210 (1983)], to develop a general theory of 1/f spectra. This suggests it is interesting to study the extent to which the behavior of a high-dimensional stochastic system can be described by such tangent maps. The Tangled Nature (TaNa) Model of evolutionary ecology is an ideal candidate for such a study, a significant model as it is capable of reproducing a broad range of the phenomenology of macroevolution and ecosystems. The TaNa model exhibits strong intermittency reminiscent of punctuated equilibrium and, like the fossil record of mass extinction, the intermittency in the model is found to be non-stationary, a feature typical of many complex systems. We derive a mean-field version for the evolution of the likelihood function controlling the reproduction of species and find a local map close to tangency. This mean-field map, by our own local approximation, is able to describe qualitatively only one episode of the intermittent dynamics of the full TaNa model. To complement this result, we construct a complete nonlinear dynamical system model consisting of successive tangent bifurcations that generates time evolution patterns resembling those of the full TaNa model in macroscopic scales. The switch from one tangent bifurcation to the next in the sequences produced in this model is stochastic in nature, based on criteria obtained from the local mean-field approximation, and capable of imitating the changing set of types of species and total population in the TaNa model. The model combines full deterministic dynamics with instantaneous parameter random jumps at stochastically drawn times. In spite of the limitations of our approach, which entails a drastic collapse of degrees of freedom, the description of a high-dimensional model system in terms of a low-dimensional one appears to be illuminating.
2016-01-01
Medial olivocochlear (MOC) neurons provide an efferent innervation to outer hair cells (OHCs) of the cochlea, but their tonotopic mapping is incompletely known. In the present study of anesthetized guinea pigs, the MOC mapping was investigated using in vivo, extracellular recording, and labeling at a site along the cochlear course of the axons. The MOC axons enter the cochlea at its base and spiral apically, successively turning out to innervate OHCs according to their characteristic frequencies (CFs). Recordings made at a site in the cochlear basal turn yielded a distribution of MOC CFs with an upper limit, or “edge,” due to usually absent higher-CF axons that presumably innervate more basal locations. The CFs at the edge, normalized across preparations, were equal to the CFs of the auditory nerve fibers (ANFs) at the recording sites (near 16 kHz). Corresponding anatomical data from extracellular injections showed spiraling MOC axons giving rise to an edge of labeling at the position of a narrow band of labeled ANFs. Overall, the edges of the MOC CFs and labeling, with their correspondences to ANFs, suggest similar tonotopic mappings of these efferent and afferent fibers, at least in the cochlear basal turn. They also suggest that MOC axons miss much of the position of the more basally located cochlear amplifier appropriate for their CF; instead, the MOC innervation may be optimized for protection from damage by acoustic overstimulation. PMID:26823515
Brown, M Christian
2016-03-01
Medial olivocochlear (MOC) neurons provide an efferent innervation to outer hair cells (OHCs) of the cochlea, but their tonotopic mapping is incompletely known. In the present study of anesthetized guinea pigs, the MOC mapping was investigated using in vivo, extracellular recording, and labeling at a site along the cochlear course of the axons. The MOC axons enter the cochlea at its base and spiral apically, successively turning out to innervate OHCs according to their characteristic frequencies (CFs). Recordings made at a site in the cochlear basal turn yielded a distribution of MOC CFs with an upper limit, or "edge," due to usually absent higher-CF axons that presumably innervate more basal locations. The CFs at the edge, normalized across preparations, were equal to the CFs of the auditory nerve fibers (ANFs) at the recording sites (near 16 kHz). Corresponding anatomical data from extracellular injections showed spiraling MOC axons giving rise to an edge of labeling at the position of a narrow band of labeled ANFs. Overall, the edges of the MOC CFs and labeling, with their correspondences to ANFs, suggest similar tonotopic mappings of these efferent and afferent fibers, at least in the cochlear basal turn. They also suggest that MOC axons miss much of the position of the more basally located cochlear amplifier appropriate for their CF; instead, the MOC innervation may be optimized for protection from damage by acoustic overstimulation. Copyright © 2016 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Ohl, Ricky
In this case study, computer supported argument visualisation has been applied to the analysis and representation of the draft South East Queensland Regional Plan Consultation discourse, demonstrating how argument mapping can help deliver the transparency and accountability required in participatory democracy. Consultative democracy for regional planning falls into a category of problems known as “wicked problems”. Inherent in this environment is heterogeneous viewpoints, agendas and voices, built on disparate and often contradictory logic. An argument ontology and notation that was designed specifically to deal with consultative urban planning around wicked problems is the Issue Based Information System (IBIS) and IBIS notation (Rittel & Webber, 1984). The software used for argument visualisation in this case was Compendium, a derivative of IBIS. The high volume of stakeholders and discourse heterogeneity in this environment calls for a unique approach to argument mapping. The map design model developed from this research has been titled a “Consultation Map”. The design incorporates the IBIS ontology within a hybrid of mapping approaches, amalgamating elements from concept, dialogue, argument, debate, thematic and tree-mapping. The consultation maps developed from the draft South East Queensland Regional Plan Consultation provide a transparent visual record to give evidence of the themes of citizen issues within the consultation discourse. The consultation maps also link the elicited discourse themes to related policies from the SEQ Regional Plan providing explicit evidence of SEQ Regional Plan policy-decisions matching citizen concerns. The final consultation map in the series provides explicit links between SEQ Regional Plan policy items and monitoring activities reporting on the ongoing implementation of the SEQ Regional Plan. This map provides updatable evidence of and accountability for SEQ Regional Plan policy implementation and developments.
Near Real-Time Photometric Data Processing for the Solar Mass Ejection Imager (SMEI)
NASA Astrophysics Data System (ADS)
Hick, P. P.; Buffington, A.; Jackson, B. V.
2004-12-01
The Solar Mass Ejection Imager (SMEI) records a photometric white-light response of the interplanetary medium from Earth over most of the sky in near real time. In the first two years of operation the instrument has recorded the inner heliospheric response to several hundred CMEs, including the May 28, 2003 and the October 28, 2003 halo CMEs. In this preliminary work we present the techniques required to process the SMEI data from the time the raw CCD images become available to their final assembly in photometrically accurate maps of the sky brightness relative to a long-term time base. Processing of the SMEI data includes integration of new data into the SMEI data base; a conditioning program that removes from the raw CCD images an electronic offset ("pedestal") and a temperature-dependent dark current pattern; an "indexing" program that places these CCD images onto a high-resolution sidereal grid using known spacecraft pointing information. At this "indexing" stage further conditioning removes the bulk of the the effects of high-energy-particle hits ("cosmic rays"), space debris inside the field of view, and pixels with a sudden state change ("flipper pixels"). Once the high-resolution grid is produced, it is reformatted to a lower-resolution set of sidereal maps of sky brightness. From these sidereal maps we remove bright stars, background stars, and a zodiacal cloud model (their brightnesses are retained as additional data products). The final maps can be represented in any convenient sky coordinate system. Common formats are Sun-centered Hammer-Aitoff or "fisheye" maps. Time series at selected locations on these maps are extracted and processed further to remove aurorae, variable stars and other unwanted signals. These time series (with a long-term base removed) are used in 3D tomographic reconstructions. The data processing is distributed over multiple PCs running Linux, and, runs as much as possible automatically using recurring batch jobs ('cronjobs'). The batch scrips are controlled by Python scripts. The core data processing routines are written in several computer languages: Fortran, C++ and IDL.
Wang, Chengdong; Zhang, Shenyan; Yan, Wanglin; Wang, Renqing; Liu, Jian; Wang, Yutao
2016-11-18
Renewable natural resources, such as solar radiation, rainfall, wind, and geothermal heat, together with ecosystem services, provide the elementary supports for the sustainable development of human society. To improve regional sustainability, we studied the spatial distributions and quantities of renewable natural resources and net primary productivity (NPP) in Hokkaido, which is the second largest island of Japan. With the help of Geographic Information System (GIS) software, distribution maps for each type of renewable natural resource were generated by kriging interpolation based on statistical records. A composite map of the flow of all types of renewable natural resources was also generated by map layer overlapping. Additionally, we utilized emergy analysis to convert each renewable flow with different attributes into a unified unit (i.e., solar equivalent joules [sej]). As a result, the spatial distributions of the flow of renewable natural resources of the Hokkaido region are presented in the form of thematic emergy maps. Thus, the areas with higher renewable emergy can be easily visualized and identified. The dominant renewable flow in certain areas can also be directly distinguished. The results can provide useful information for regional sustainable development, environmental conservation and ecological management.
NASA Astrophysics Data System (ADS)
Pang, Guanghua; Feng, Jikun; Lin, Jun
2016-11-01
We imaged the crust structure beneath Jilin Province and Liaoning Province in China with fundamental mode Rayleigh waves recorded by 60 broadband stations deployed in the region. Surface-wave empirical Green's functions were retrieved from cross-correlations of inter-station data and phase velocity dispersions were measured using a frequency-time analysis method. Dispersion measurements were then utilized to construct 2D phase velocity maps for periods between 5 and 35 s. Subsequently, the phase-dispersion curves extracted from each cell of the 2D phase velocity maps were inverted to determine the 3D shear wave velocity structures of the crust. The phase velocity maps at different periods reflected the average velocity structures corresponding to different depth ranges. The maps in short periods, in particular, were in excellent agreement with known geological features of the surface. In addition to imaging shear wave velocity structures of the volcanoes, we show that obvious low-velocity anomalies imaged in the Changbaishan-Tianchi Volcano, the Longgang-Jinlongdingzi Volcano, and the system of the Dunmi Fault crossing the Jingbohu Volcano, all of which may be due to geothermal anomalies.
Wang, Chengdong; Zhang, Shenyan; Yan, Wanglin; Wang, Renqing; Liu, Jian; Wang, Yutao
2016-01-01
Renewable natural resources, such as solar radiation, rainfall, wind, and geothermal heat, together with ecosystem services, provide the elementary supports for the sustainable development of human society. To improve regional sustainability, we studied the spatial distributions and quantities of renewable natural resources and net primary productivity (NPP) in Hokkaido, which is the second largest island of Japan. With the help of Geographic Information System (GIS) software, distribution maps for each type of renewable natural resource were generated by kriging interpolation based on statistical records. A composite map of the flow of all types of renewable natural resources was also generated by map layer overlapping. Additionally, we utilized emergy analysis to convert each renewable flow with different attributes into a unified unit (i.e., solar equivalent joules [sej]). As a result, the spatial distributions of the flow of renewable natural resources of the Hokkaido region are presented in the form of thematic emergy maps. Thus, the areas with higher renewable emergy can be easily visualized and identified. The dominant renewable flow in certain areas can also be directly distinguished. The results can provide useful information for regional sustainable development, environmental conservation and ecological management. PMID:27857230
Cannon, William F.; Schulte, Ruth; Bickerstaff, Damon
2018-04-04
The U.S. Geological Survey (USGS) conducted a program of bedrock geologic mapping in much of the central and western Upper Peninsula of Michigan from the 1940s until the late 1990s. Geologic studies in this region are hampered by a scarcity of bedrock exposures because of a nearly continuous blanket of unconsolidated sediments resulting from glaciation of the region during the Pleistocene ice ages. The USGS mapping, done largely at a scale of 1:24,000, routinely recorded the location and extent of exposed bedrock to provide both an indication of where direct observations were made and a guide for future investigations to expedite location of observable rock exposures. The locations of outcrops were generally shown as colored or patterned overlays on printed geologic maps. Although those maps have been scanned and are available as Portable Document Format (PDF) files, no further digital portrayal of the outcrops had been done. We have conducted a prototype study of digitizing and improving locational accuracy of the outcrop locations in parts of Dickinson County, Michigan, to form a data layer that can be used with other data layers in geographic information system applications.
Geographical distribution of Musa gracilis Holttum in Peninsular Malaysia
NASA Astrophysics Data System (ADS)
Norfazlina, B.; Wickneswari, R.; Choong, C. Y.
2016-11-01
Musa gracilis (Musaceae) is placed under section Callimusa and was considered endemic to Peninsular Malaysia. The objective of this study was to evaluate the current occurrence of Musa gracilis in Peninsular Malaysia. The coordinates of each population was recorded using the Global Positioning System (GPS) and mapped to show the geographical distribution of Musa gracilis. This study revealed that Musa gracilis exhibits specific pattern of distribution, which exists only in a lowland areas on the eastern and southern part of Peninsular Malaysia.
Cler, Meredith J.; Stepp, Cara E.
2015-01-01
Individuals with high spinal cord injuries are unable to operate a keyboard and mouse with their hands. In this experiment, we compared two systems using surface electromyography (sEMG) recorded from facial muscles to control an onscreen keyboard to type five-letter words. Both systems used five sEMG sensors to capture muscle activity during five distinct facial gestures that were mapped to five cursor commands: move left, move right, move up, move down, and “click”. One system used a discrete movement and feedback algorithm in which the user produced one quick facial gesture, causing a corresponding discrete movement to an adjacent letter. The other system was continuously updated and allowed the user to control the cursor’s velocity by relative activation between different sEMG channels. Participants were trained on one system for four sessions on consecutive days, followed by one crossover session on the untrained system. Information transfer rates (ITRs) were high for both systems compared to other potential input modalities, both initially and with training (Session 1: 62.1 bits/min, Session 4: 105.1 bits/min). Users of the continuous system showed significantly higher ITRs than the discrete users. Future development will focus on improvements to both systems, which may offer differential advantages for users with various motor impairments. PMID:25616053
Fast Mapping of Novel Word Forms Traced Neurophysiologically
Shtyrov, Yury
2011-01-01
Human capacity to quickly learn new words, critical for our ability to communicate using language, is well-known from behavioral studies and observations, but its neural underpinnings remain unclear. In this study, we have used event-related potentials to record brain activity to novel spoken word forms as they are being learnt by the human nervous system through passive auditory exposure. We found that the brain response dynamics change dramatically within the short (20 min) exposure session: as the subjects become familiarized with the novel word forms, the early (∼100 ms) fronto-central activity they elicit increases in magnitude and becomes similar to that of known real words. At the same time, acoustically similar real words used as control stimuli show a relatively stable response throughout the recording session; these differences between the stimulus groups are confirmed using both factorial and linear regression analyses. Furthermore, acoustically matched novel non-speech stimuli do not demonstrate similar response increase, suggesting neural specificity of this rapid learning phenomenon to linguistic stimuli. Left-lateralized perisylvian cortical networks appear to be underlying such fast mapping of novel word forms unto the brain’s mental lexicon. PMID:22125543
Transmission imaging for integrated PET-MR systems.
Bowen, Spencer L; Fuin, Niccolò; Levine, Michael A; Catana, Ciprian
2016-08-07
Attenuation correction for PET-MR systems continues to be a challenging problem, particularly for body regions outside the head. The simultaneous acquisition of transmission scan based μ-maps and MR images on integrated PET-MR systems may significantly increase the performance of and offer validation for new MR-based μ-map algorithms. For the Biograph mMR (Siemens Healthcare), however, use of conventional transmission schemes is not practical as the patient table and relatively small diameter scanner bore significantly restrict radioactive source motion and limit source placement. We propose a method for emission-free coincidence transmission imaging on the Biograph mMR. The intended application is not for routine subject imaging, but rather to improve and validate MR-based μ-map algorithms; particularly for patient implant and scanner hardware attenuation correction. In this study we optimized source geometry and assessed the method's performance with Monte Carlo simulations and phantom scans. We utilized a Bayesian reconstruction algorithm, which directly generates μ-map estimates from multiple bed positions, combined with a robust scatter correction method. For simulations with a pelvis phantom a single torus produced peak noise equivalent count rates (34.8 kcps) dramatically larger than a full axial length ring (11.32 kcps) and conventional rotating source configurations. Bias in reconstructed μ-maps for head and pelvis simulations was ⩽4% for soft tissue and ⩽11% for bone ROIs. An implementation of the single torus source was filled with (18)F-fluorodeoxyglucose and the proposed method quantified for several test cases alone or in comparison with CT-derived μ-maps. A volume average of 0.095 cm(-1) was recorded for an experimental uniform cylinder phantom scan, while a bias of <2% was measured for the cortical bone equivalent insert of the multi-compartment phantom. Single torus μ-maps of a hip implant phantom showed significantly less artifacts and improved dynamic range, and differed greatly for highly attenuating materials in the case of the patient table, compared to CT results. Use of a fixed torus geometry, in combination with translation of the patient table to perform complete tomographic sampling, generated highly quantitative measured μ-maps and is expected to produce images with significantly higher SNR than competing fixed geometries at matched total acquisition time.
Transmission imaging for integrated PET-MR systems
NASA Astrophysics Data System (ADS)
Bowen, Spencer L.; Fuin, Niccolò; Levine, Michael A.; Catana, Ciprian
2016-08-01
Attenuation correction for PET-MR systems continues to be a challenging problem, particularly for body regions outside the head. The simultaneous acquisition of transmission scan based μ-maps and MR images on integrated PET-MR systems may significantly increase the performance of and offer validation for new MR-based μ-map algorithms. For the Biograph mMR (Siemens Healthcare), however, use of conventional transmission schemes is not practical as the patient table and relatively small diameter scanner bore significantly restrict radioactive source motion and limit source placement. We propose a method for emission-free coincidence transmission imaging on the Biograph mMR. The intended application is not for routine subject imaging, but rather to improve and validate MR-based μ-map algorithms; particularly for patient implant and scanner hardware attenuation correction. In this study we optimized source geometry and assessed the method’s performance with Monte Carlo simulations and phantom scans. We utilized a Bayesian reconstruction algorithm, which directly generates μ-map estimates from multiple bed positions, combined with a robust scatter correction method. For simulations with a pelvis phantom a single torus produced peak noise equivalent count rates (34.8 kcps) dramatically larger than a full axial length ring (11.32 kcps) and conventional rotating source configurations. Bias in reconstructed μ-maps for head and pelvis simulations was ⩽4% for soft tissue and ⩽11% for bone ROIs. An implementation of the single torus source was filled with 18F-fluorodeoxyglucose and the proposed method quantified for several test cases alone or in comparison with CT-derived μ-maps. A volume average of 0.095 cm-1 was recorded for an experimental uniform cylinder phantom scan, while a bias of <2% was measured for the cortical bone equivalent insert of the multi-compartment phantom. Single torus μ-maps of a hip implant phantom showed significantly less artifacts and improved dynamic range, and differed greatly for highly attenuating materials in the case of the patient table, compared to CT results. Use of a fixed torus geometry, in combination with translation of the patient table to perform complete tomographic sampling, generated highly quantitative measured μ-maps and is expected to produce images with significantly higher SNR than competing fixed geometries at matched total acquisition time.
Flood-inundation maps for the St. Marys River at Fort Wayne, Indiana
Menke, Chad D.; Kim, Moon H.; Fowler, Kathleen K.
2012-01-01
Digital flood-inundation maps for a 9-mile reach of the St. Marys River that extends from South Anthony Boulevard to Main Street at Fort Wayne, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the City of Fort Wayne. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site, depict estimates of the areal extent of flooding corresponding to selected water levels (stages) at the USGS streamgage 04182000 St. Marys River near Fort Wayne, Ind. Current conditions at the USGS streamgages in Indiana may be obtained from the National Water Information System: Web Interface. In addition, the information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system. The NWS forecasts flood hydrographs at many places that are often collocated at USGS streamgages. That forecasted peak-stage information, also available on the Internet, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, water-surface profiles were simulated for the stream reach by means of a hydraulic one-dimensional step-backwater model. The model was calibrated using the most current stage-discharge relation at the USGS streamgage 04182000 St. Marys River near Fort Wayne, Ind. The hydraulic model was then used to simulate 11 water-surface profiles for flood stages at 1-ft intervals referenced to the streamgage datum and ranging from bankfull to approximately the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from Light Detection and Ranging (LiDAR) data) in order to delineate the area flooded at each water level. A flood inundation map was generated for each water-surface profile stage (11 maps in all) so that for any given flood stage users will be able to view the estimated area of inundation. The availability of these maps along with current stage from USGS streamgages and forecasted stream stages from the NWS provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures as well as for post flood recovery efforts.
An Atlas of ShakeMaps for Landslide and Liquefaction Modeling
NASA Astrophysics Data System (ADS)
Johnson, K. L.; Nowicki, M. A.; Mah, R. T.; Garcia, D.; Harp, E. L.; Godt, J. W.; Lin, K.; Wald, D. J.
2012-12-01
The human consequences of a seismic event are often a result of subsequent hazards induced by the earthquake, such as landslides. While the United States Geological Survey (USGS) ShakeMap and Prompt Assessment of Global Earthquakes for Response (PAGER) systems are, in conjunction, capable of estimating the damage potential of earthquake shaking in near-real time, they do not currently provide estimates for the potential of further damage by secondary processes. We are developing a sound basis for providing estimates of the likelihood and spatial distribution of landslides for any global earthquake under the PAGER system. Here we discuss several important ingredients in this effort. First, we report on the development of a standardized hazard layer from which to calibrate observed landslide distributions; in contrast, prior studies have used a wide variety of means for estimating the hazard input. This layer now takes the form of a ShakeMap, a standardized approach for computing geospatial estimates for a variety of shaking metrics (both peak ground motions and shaking intensity) from any well-recorded earthquake. We have created ShakeMaps for about 20 historical landslide "case history" events, significant in terms of their landslide occurrence, as part of an updated release of the USGS ShakeMap Atlas. We have also collected digitized landslide data from open-source databases for many of the earthquake events of interest. When these are combined with up-to-date topographic and geologic maps, we have the basic ingredients for calibrating landslide probabilities for a significant collection of earthquakes. In terms of modeling, rather than focusing on mechanistic models of landsliding, we adopt a strictly statistical approach to quantify landslide likelihood. We incorporate geology, slope, peak ground acceleration, and landslide data as variables in a logistic regression, selecting the best explanatory variables given the standardized new hazard layers (see Nowicki et al., this meeting, for more detail on the regression). To make the ShakeMap and PAGER systems more comprehensive in terms of secondary losses, we are working to calibrate a similarly constrained regression for liquefaction estimation using a suite of well-studied earthquakes for which detailed, digitized liquefaction datasets are available; here variants of wetness index and soil strength replace geology and slope. We expect that this Atlas of ShakeMaps for landslide and liquefaction case history events, which will soon be publicly available via the internet, will aid in improving the accuracy of loss-modeling systems such as PAGER, as well as allow for a common framework for numerous other mechanistic and empirical studies.
NASA Astrophysics Data System (ADS)
Dornback, M.; Hourigan, T.; Etnoyer, P.; McGuinn, R.; Cross, S. L.
2014-12-01
Research on deep-sea corals has expanded rapidly over the last two decades, as scientists began to realize their value as long-lived structural components of high biodiversity habitats and archives of environmental information. The NOAA Deep Sea Coral Research and Technology Program's National Database for Deep-Sea Corals and Sponges is a comprehensive resource for georeferenced data on these organisms in U.S. waters. The National Database currently includes more than 220,000 deep-sea coral records representing approximately 880 unique species. Database records from museum archives, commercial and scientific bycatch, and from journal publications provide baseline information with relatively coarse spatial resolution dating back as far as 1842. These data are complemented by modern, in-situ submersible observations with high spatial resolution, from surveys conducted by NOAA and NOAA partners. Management of high volumes of modern high-resolution observational data can be challenging. NOAA is working with our data partners to incorporate this occurrence data into the National Database, along with images and associated information related to geoposition, time, biology, taxonomy, environment, provenance, and accuracy. NOAA is also working to link associated datasets collected by our program's research, to properly archive them to the NOAA National Data Centers, to build a robust metadata record, and to establish a standard protocol to simplify the process. Access to the National Database is provided through an online mapping portal. The map displays point based records from the database. Records can be refined by taxon, region, time, and depth. The queries and extent used to view the map can also be used to download subsets of the database. The database, map, and website is already in use by NOAA, regional fishery management councils, and regional ocean planning bodies, but we envision it as a model that can expand to accommodate data on a global scale.
Evaluating the Effect of Display Realism on Natural Resource Decision Making
NASA Astrophysics Data System (ADS)
Chong, Steven S.
2018-05-01
Geographic information systems (GIS) facilitate location-based decision making. Despite the improved availability of GIS software to non-professionals, training in cartographic design has not followed suit. Prior research indicates that when presented with map choices, users are influenced by naïve realism, a preference for realistic displays cotaining irrelevant, extraneous details, leading to decreased task efficiency. This study investigated the role of naïve realism in decision making for natural resource management, a field that often employs geospatial tools. Data was collected through a GIS user ability test, a questionnaire and direct observation. Forty volunteer expert and non-expert resource managers evaluated the suitability of different sites for a land management scenario. Each participant was tested on two map display treatments containing different levels of realism - a simpler 2D display and a more complex 3D display - to compare task performance. Performance was measured by task accuracy and task completion time. User perceptions and preferences about the displays were also recorded. Display realism had an impact on performance and there were indications naïve realism was present. Users completed tasks significantly faster on the 2D display and many individuals misjudged which display they were most accurate or fastest with. The results are informative for designing information systems containing interactive maps, particularly for resource management applications. The results also suggest that the order displays were presented had a significant effect and may have implications for teaching users map-based tasks.
Photocopy of drawing (from PAFB Real Property Records Office) Cartographer ...
Photocopy of drawing (from PAFB -Real Property Records Office) Cartographer Unknown, 1994 1978 PLATTSBURGH AIR FORCE BASE LAND USE MAP - Plattsburgh Air Force Base, U.S. Route 9, Plattsburgh, Clinton County, NY
Photocopy of drawing (from PAFB Real Property Records Office) Cartographer ...
Photocopy of drawing (from PAFB -Real Property Records Office) Cartographer Unknown, 1994 1993 PLATTSBURGH AIR FORCE BASE LAND USE MAP - Plattsburgh Air Force Base, U.S. Route 9, Plattsburgh, Clinton County, NY
Photocopy of drawing (from PAFB Real Property Records Office) Cartographer ...
Photocopy of drawing (from PAFB -Real Property Records Office) Cartographer Unknown, 1994 1958 PLATTSBURGH AIR FORCE BASE LAND USE MAP - Plattsburgh Air Force Base, U.S. Route 9, Plattsburgh, Clinton County, NY
Photocopy of drawing (from PAFB Real Property Records Office) Cartographer ...
Photocopy of drawing (from PAFB -Real Property Records Office) Cartographer Unknown, 1994 1943 PLATTSBURGH AIR FORCE BASE LAND USE MAP - Plattsburgh Air Force Base, U.S. Route 9, Plattsburgh, Clinton County, NY
Precipitation Records-HDSC/OWP
resources and services. Greatest observed point precipitation values for the world and the USA US Comparison of the greatest point precipitation values for the world and the USA. World records (map, table) USA
A new web-based system to improve the monitoring of snow avalanche hazard in France
NASA Astrophysics Data System (ADS)
Bourova, Ekaterina; Maldonado, Eric; Leroy, Jean-Baptiste; Alouani, Rachid; Eckert, Nicolas; Bonnefoy-Demongeot, Mylene; Deschatres, Michael
2016-05-01
Snow avalanche data in the French Alps and Pyrenees have been recorded for more than 100 years in several databases. The increasing amount of observed data required a more integrative and automated service. Here we report the comprehensive web-based Snow Avalanche Information System newly developed to this end for three important data sets: an avalanche chronicle (Enquête Permanente sur les Avalanches, EPA), an avalanche map (Carte de Localisation des Phénomènes d'Avalanche, CLPA) and a compilation of hazard and vulnerability data recorded on selected paths endangering human settlements (Sites Habités Sensibles aux Avalanches, SSA). These data sets are now integrated into a common database, enabling full interoperability between all different types of snow avalanche records: digitized geographic data, avalanche descriptive parameters, eyewitness reports, photographs, hazard and risk levels, etc. The new information system is implemented through modular components using Java-based web technologies with Spring and Hibernate frameworks. It automates the manual data entry and improves the process of information collection and sharing, enhancing user experience and data quality, and offering new outlooks to explore and exploit the huge amount of snow avalanche data available for fundamental research and more applied risk assessment.
Ultrasound Current Source Density Imaging in live rabbit hearts using clinical intracardiac catheter
NASA Astrophysics Data System (ADS)
Li, Qian
Ultrasound Current Source Density Imaging (UCSDI) is a noninvasive modality for mapping electrical activities in the body (brain and heart) in 4-dimensions (space + time). Conventional cardiac mapping technologies for guiding the radiofrequency ablation procedure for treatment of cardiac arrhythmias have certain limitations. UCSDI can potentially overcome these limitations and enhance the electrophysiology mapping of the heart. UCSDI exploits the acoustoelectric (AE) effect, an interaction between ultrasound pressure and electrical resistivity. When an ultrasound beam intersects a current path in a material, the local resistivity of the material is modulated by the ultrasonic pressure, and a change in voltage signal can be detected based on Ohm's Law. The degree of modulation is determined by the AE interaction constant K. K is a fundamental property of any type of material, and directly affects the amplitude of the AE signal detected in UCSDI. UCSDI requires detecting a small AE signal associated with electrocardiogram. So sensitivity becomes a major challenge for transferring UCSDI to the clinic. This dissertation will determine the limits of sensitivity and resolution for UCSDI, balancing the tradeoff between them by finding the optimal parameters for electrical cardiac mapping, and finally test the optimized system in a realistic setting. This work begins by describing a technique for measuring K, the AE interaction constant, in ionic solution and biological tissue, and reporting the value of K in excised rabbit cardiac tissue for the first time. K was found to be strongly dependent on concentration for the divalent salt CuSO4, but not for the monovalent salt NaCl, consistent with their different chemical properties. In the rabbit heart tissue, K was determined to be 0.041 +/- 0.012 %/MPa, similar to the measurement of K in physiologic saline: 0.034 +/- 0.003 %/MPa. Next, this dissertation investigates the sensitivity limit of UCSDI by quantifying the relation between the recording electrode distance and the measured AE signal amplitude in gel phantoms and excised porcine heart tissue using a clinical intracardiac catheter. Sensitivity of UCSDI with catheter was 4.7 microV/mA (R2 = 0.999) in cylindrical gel (0.9% NaCl), and 3.2 microV/mA (R2 = 0.92) in porcine heart tissue. The AE signal was detectable more than 25 mm away from the source in cylindrical gel (0.9% NaCl). Effect of transducer properties on UCSDI sensitivity is also investigated using simulation. The optimal ultrasound transducer parameters chosen for cardiac imaging are center frequency = 0.5 MHz and f/number = 1.4. Last but not least, this dissertation shows the result of implementing the optimized ultrasound parameters in live rabbit heart preparation, the comparison of different recording electrode configuration and multichannel UCSDI recording and reconstruction. The AE signal detected using the 0.5 MHz transducer was much stronger (2.99 microV/MPa) than the 1.0 MHz transducer (0.42 microV/MPa). The clinical lasso catheter placed on the epicardium exhibited excellent sensitivity without being too invasive. 3-dimensional cardiac activation maps of the live rabbit heart using only one pair of recording electrodes were also demonstrated for the first time. Cardiac conduction velocity for atrial (1.31 m/s) and apical (0.67 m/s) pacing were calculated based on the activation maps. The future outlook of this dissertation includes integrating UCSDI with 2-dimensional ultrasound transducer array for fast imaging, and developing a multi-modality catheter with 4-dimensional UCSDI, multi-electrode recording and echocardiography capacity.
Abstracts of the Annual Meeting of Planetary Geologic Mappers, Flagstaff, AZ, 2010
NASA Technical Reports Server (NTRS)
Bleamaster, Leslie F., III (Editor); Tanaka, Kenneth L. (Editor); Kelley, Michael S. (Editor)
2010-01-01
Topics covered include: Detailed Analysis of the Intra-Ejecta Dark Plains of Caloris Basin, Mercury; The Formation and Evolution of Tessera and Insights into the Beginning of Recorded History on Venus: Geology of the Fortuna Tessera Quadrangle (V-2); Geologic Map of the Snegurochka Planitia Quadrangle (V-1): Implications for the Volcanic History of the North Polar Region of Venus; Geological Map of the Fredegonade (V-57) Quadrangle, Venus: Status Report; Geologic Mapping of V-19; Geology of the Lachesis Tessera Quadrangle (V-18), Venus; Comparison of Mapping Tessera Terrain in the Phoebe Regio (V-41) and Tellus Tessera (V-10) Quadrangles; Geologic Mapping of the Devana Chasma (V-29) Quadrangle, Venus; Geologic Mapping of the Aristarchus Plateau Region on the Moon; Geologic Mapping of the Lunar South Pole Quadrangle (LQ-30); The Pilot Lunar Geologic Mapping Project: Summary Results and Recommendations from the Copernicus Quadrangle; Geologic Mapping of the Nili Fossae Region of Mars: MTM Quadrangles 20287, 20282, 25287, 25282, 30287, and 30282; Geologic Mapping of the Mawrth Vallis Region, Mars: MTM Quadrangles 25022, 25017, 25012, 20022, 20017, and 20012; Evidence for an Ancient Buried Landscape on the NW Rim of Hellas Basin, Mars; New Geologic Map of the Argyre Region of Mars: Deciphering the Geologic History Through Mars Global Surveyor, Mars Odyssey, and Mars Express Data; Geologic Mapping in the Hesperia Planum Region of Mars; Geologic Mapping of the Meridiani Region of Mars; Geologic Mapping in Southern Margaritifer Terra; Geology of -30247, -35247, and -40247 Quadrangles, Southern Hesperia Planum, Mars; The Interaction of Impact Melt, Impact-Derived Sediment, and Volatiles at Crater Tooting, Mars; Geologic Map of the Olympia Cavi Region of Mars (MTM 85200): A Summary of Tactical Approaches; Geology of the Terra Cimmeria-Utopia Planitia Highland Lowland Transitional Zone: Final Technical Approach and Scientific Results; Geology of Libya Montes and the Interbasin Plains of Northern Tyrrhena Terra, Mars: First Year Results and Second Year Work Plan; Mars Global Geologic Mapping Progress and Suggested Geographic-Based Hierarchal Systems for Unit Grouping and Naming; Progress in the Scandia Region Geologic Map of Mars; Geomorphic Mapping of MTMS -20022 and -20017; Geologic Mapping of the Medusae Fossae Formation, Mars, and the Northern Lowland Plains, Venus; Volcanism on Io: Results from Global Geologic Mapping; Employing Geodatabases for Planetary Mapping Conduct - Requirements, Concepts and Solutions; and Planetary Geologic Mapping Handbook - 2010.
Re-evaluation and updating of the seismic hazard of Lebanon
NASA Astrophysics Data System (ADS)
Huijer, Carla; Harajli, Mohamed; Sadek, Salah
2016-01-01
This paper presents the results of a study undertaken to evaluate the implications of the newly mapped offshore Mount Lebanon Thrust (MLT) fault system on the seismic hazard of Lebanon and the current seismic zoning and design parameters used by the local engineering community. This re-evaluation is critical, given that the MLT is located at close proximity to the major cities and economic centers of the country. The updated seismic hazard was assessed using probabilistic methods of analysis. The potential sources of seismic activities that affect Lebanon were integrated along with any/all newly established characteristics within an updated database which includes the newly mapped fault system. The earthquake recurrence relationships of these sources were developed from instrumental seismology data, historical records, and earlier studies undertaken to evaluate the seismic hazard of neighboring countries. Maps of peak ground acceleration contours, based on 10 % probability of exceedance in 50 years (as per Uniform Building Code (UBC) 1997), as well as 0.2 and 1 s peak spectral acceleration contours, based on 2 % probability of exceedance in 50 years (as per International Building Code (IBC) 2012), were also developed. Finally, spectral charts for the main coastal cities of Beirut, Tripoli, Jounieh, Byblos, Saida, and Tyre are provided for use by designers.
NASA Technical Reports Server (NTRS)
Witte, Jacquelyn C.; Thompson, Anne M.; Ziemke, Jerald R.; Wargan, Krzysztof
2014-01-01
The Ozone Mapping Profile Suite (OMPS) was launched October 28, 2011 on-board the Suomi NPP satellite (http://npp.gsfc.nasa.gov). OMPS is the next generation total column ozone mapping instrument for monitoring the global distribution of stratospheric ozone. OMPS includes a limb profiler to measure the vertical structure of stratosphere ozone down to the mid-troposphere. This study uses tropical ozonesonde profile measurements from the Southern Hemisphere Additional Ozonesondes (SHADOZ, http://croc.gsfc.nasa.gov/shadoz) archive to evaluate total column ozone retrievals from OMPS and concurrent measurements from the Aura Ozone Monitoring Instrument (OMI), the predecessor of OMPS with a data record going back to 2004. We include ten SHADOZ stations that contain data overlapping the OMPS time period (2012-2013). This study capitalizes on the ozone profile measurements from SHADOZ to evaluate OMPS limb profile retrievals. Finally, we use SHADOZ sondes and OMPS retrievals to examine the agreement with the GEOS-5 Ozone Assimilation System (GOAS). The GOAS uses data from the OMI and the Microwave Limb Sounder (MLS) to constrain the total column and stratospheric profiles of ozone. The most recent version of the assimilation system is well constrained to the total column compared with SHADOZ ozonesonde data.
Optical Sensing of Weed Infestations at Harvest.
Barroso, Judit; McCallum, John; Long, Dan
2017-10-19
Kochia ( Kochia scoparia L.), Russian thistle ( Salsola tragus L.), and prickly lettuce ( Lactuca serriola L.) are economically important weeds infesting dryland wheat ( Triticum aestivum L.) production systems in the western United States. Those weeds produce most of their seeds post-harvest. The objectives of this study were to determine the ability of an optical sensor, installed for on-the-go measurement of grain protein concentration, to detect the presence of green plant matter in flowing grain and assess the potential usefulness of this information for mapping weeds at harvest. Spectra of the grain stream were recorded continuously at a rate of 0.33 Hz during harvest of two spring wheat fields of 1.9 and 5.4 ha. All readings were georeferenced using a Global Positioning System (GPS) receiver with 1 m positional accuracy. Chlorophyll of green plant matter was detectable in the red (638-710 nm) waveband. Maps of the chlorophyll signal from both fields showed an overall agreement of 78.1% with reference maps, one constructed prior to harvest and the other at harvest time, both based on visual evaluations of the three green weed species conducted by experts. Information on weed distributions at harvest may be useful for controlling post-harvest using variable rate technology for herbicide applications.
Optical Sensing of Weed Infestations at Harvest
Barroso, Judit; McCallum, John; Long, Dan
2017-01-01
Kochia (Kochia scoparia L.), Russian thistle (Salsola tragus L.), and prickly lettuce (Lactuca serriola L.) are economically important weeds infesting dryland wheat (Triticum aestivum L.) production systems in the western United States. Those weeds produce most of their seeds post-harvest. The objectives of this study were to determine the ability of an optical sensor, installed for on-the-go measurement of grain protein concentration, to detect the presence of green plant matter in flowing grain and assess the potential usefulness of this information for mapping weeds at harvest. Spectra of the grain stream were recorded continuously at a rate of 0.33 Hz during harvest of two spring wheat fields of 1.9 and 5.4 ha. All readings were georeferenced using a Global Positioning System (GPS) receiver with 1 m positional accuracy. Chlorophyll of green plant matter was detectable in the red (638–710 nm) waveband. Maps of the chlorophyll signal from both fields showed an overall agreement of 78.1% with reference maps, one constructed prior to harvest and the other at harvest time, both based on visual evaluations of the three green weed species conducted by experts. Information on weed distributions at harvest may be useful for controlling post-harvest using variable rate technology for herbicide applications. PMID:29048342
Cicmil, Nela; Bridge, Holly; Parker, Andrew J.; Woolrich, Mark W.; Krug, Kristine
2014-01-01
Magnetoencephalography (MEG) allows the physiological recording of human brain activity at high temporal resolution. However, spatial localization of the source of the MEG signal is an ill-posed problem as the signal alone cannot constrain a unique solution and additional prior assumptions must be enforced. An adequate source reconstruction method for investigating the human visual system should place the sources of early visual activity in known locations in the occipital cortex. We localized sources of retinotopic MEG signals from the human brain with contrasting reconstruction approaches (minimum norm, multiple sparse priors, and beamformer) and compared these to the visual retinotopic map obtained with fMRI in the same individuals. When reconstructing brain responses to visual stimuli that differed by angular position, we found reliable localization to the appropriate retinotopic visual field quadrant by a minimum norm approach and by beamforming. Retinotopic map eccentricity in accordance with the fMRI map could not consistently be localized using an annular stimulus with any reconstruction method, but confining eccentricity stimuli to one visual field quadrant resulted in significant improvement with the minimum norm. These results inform the application of source analysis approaches for future MEG studies of the visual system, and indicate some current limits on localization accuracy of MEG signals. PMID:24904268
Wang, Yanjun; Zheng, Jianzhong; Zhang, Ailian; Zhou, Wei; Dong, Haiyuan
2018-03-01
The aim of this study was to reveal research hotspots in the field of regional health information networks (RHINs) and use visualization techniques to explore their evolution over time and differences between countries. We conducted a literature review for a 50-year period and compared the prevalence of certain index terms during the periods 1963-1993 and 1994-2014 and in six countries. We applied keyword frequency analysis, keyword co-occurrence analysis, multidimensional scaling analysis, and network visualization technology. The total number of keywords was found to increase with time. From 1994 to 2014, the research priorities shifted from hospital planning to community health planning. The number of keywords reflecting information-based research increased. The density of the knowledge network increased significantly, and partial keywords condensed into knowledge groups. All six countries focus on keywords including Information Systems; Telemedicine; Information Service; Medical Records Systems, Computerized; Internet; etc.; however, the level of development and some research priorities are different. RHIN research has generally increased in popularity over the past 50 years. The research hotspots are evolving and are at different levels of development in different countries. Knowledge network mapping and perceptual maps provide useful information for scholars, managers, and policy-makers.
Marshall, Peter J.; Meltzoff, Andrew N.
2015-01-01
Researchers have examined representations of the body in the adult brain, but relatively little attention has been paid to ontogenetic aspects of neural body maps in human infants. Novel applications of methods for recording brain activity in infants are delineating cortical body maps in the first months of life. Body maps may facilitate infants’ registration of similarities between self and other—an ability that is foundational to developing social cognition. Alterations in interpersonal aspects of body representations might also contribute to social deficits in certain neurodevelopmental disorders. PMID:26231760
Overcoming the momentum of anachronism: American geologic mapping in a twenty-first-century world
House, P. Kyle; Clark, Ryan; Kopera, Joe
2013-01-01
The practice of geologic mapping is undergoing conceptual and methodological transformation. Profound changes in digital technology in the past 10 yr have potential to impact all aspects of geologic mapping. The future of geologic mapping as a relevant scientific enterprise depends on widespread adoption of new technology and ideas about the collection, meaning, and utility of geologic map data. It is critical that the geologic community redefine the primary elements of the traditional paper geologic map and improve the integration of the practice of making maps in the field and office with the new ways to record, manage, share, and visualize their underlying data. A modern digital geologic mapping model will enhance scientific discovery, meet elevated expectations of modern geologic map users, and accommodate inevitable future changes in technology.
Floods of June 2012 in northeastern Minnesota
Czuba, Christiana R.; Fallon, James D.; Kessler, Erich W.
2012-01-01
During June 19–20, 2012, heavy rainfall, as much as 10 inches locally reported, caused severe flooding across northeastern Minnesota. The floods were exacerbated by wet antecedent conditions from a relatively rainy spring, with May 2012 as one of the wettest Mays on record in Duluth. The June 19–20, 2012, rainfall event set new records in Duluth, including greatest 2-day precipitation with 7.25 inches of rain. The heavy rains fell on three major watersheds: the Mississippi Headwaters; the St. Croix, which drains to the Mississippi River; and Western Lake Superior, which includes the St. Louis River and other tributaries to Lake Superior. Widespread flash and river flooding that resulted from the heavy rainfall caused evacuations of residents, and damages to residences, businesses, and infrastructure. In all, nine counties in northeastern Minnesota were declared Federal disaster areas as a result of the flooding. Peak-of-record streamflows were recorded at 13 U.S. Geological Survey streamgages as a result of the heavy rainfall. Flood-peak gage heights, peak streamflows, and annual exceedance probabilities were tabulated for 35 U.S. Geological Survey streamgages. Flood-peak streamflows in June 2012 had annual exceedance probabilities estimated to be less than 0.002 (0.2 percent; recurrence interval greater than 500 years) for five streamgages, and between 0.002 and 0.01 (1 percent; recurrence interval greater than 100 years) for four streamgages. High-water marks were identified and tabulated for the most severely affected communities of Barnum (Moose Horn River), Carlton (Otter Creek), Duluth Heights neighborhood of Duluth (Miller Creek), Fond du Lac neighborhood of Duluth (St. Louis River), Moose Lake (Moose Horn River and Moosehead Lake), and Thomson (Thomson Reservoir outflow near the St. Louis River). Flood-peak inundation maps and water-surface profiles were produced for these six severely affected communities. The inundation maps were constructed in a geographic information system by combining high-water-mark data with high-resolution digital elevation model data. The flood maps and profiles show the extent and depth of flooding through the communities and can be used for flood response and recovery efforts by local, county, State, and Federal agencies.
Floods of June 24-25, 1966 in southwest-central North Dakota
Crosby, Orlo A.
1966-01-01
A severe thunderstorm accompanied by much hail swept through southwest-central North Dakota on the afternoon of June 24. Rainfall of up to 13 inches caused floods higher than any previously known in the area. The isohyetal map (fig. 1) indicates the extent and magnitude of the storm. This map was derived from rainfall data at 20 U.S. Weather Bureau gages (4 recording), 26 Geological Survey gages (5 recording) and 124 sites located in a bucket survey made by the Geological Survey (table 1).
Zhao, Dong-Jie; Wang, Zhong-Yi; Huang, Lan; Jia, Yong-Peng; Leng, John Q.
2014-01-01
Damaging thermal stimuli trigger long-lasting variation potentials (VPs) in higher plants. Owing to limitations in conventional plant electrophysiological recording techniques, recorded signals are composed of signals originating from all of the cells that are connected to an electrode. This limitation does not enable detailed spatio-temporal distributions of transmission and electrical activities in plants to be visualised. Multi-electrode array (MEA) enables the recording and imaging of dynamic spatio-temporal electrical activities in higher plants. Here, we used an 8 × 8 MEA with a polar distance of 450 μm to measure electrical activities from numerous cells simultaneously. The mapping of the data that were recorded from the MEA revealed the transfer mode of the thermally induced VPs in the leaves of Helianthus annuus L. seedlings in situ. These results suggest that MEA can enable recordings with high spatio-temporal resolution that facilitate the determination of the bioelectrical response mode of higher plants under stress. PMID:24961469
Zhao, Dong-Jie; Wang, Zhong-Yi; Huang, Lan; Jia, Yong-Peng; Leng, John Q
2014-06-25
Damaging thermal stimuli trigger long-lasting variation potentials (VPs) in higher plants. Owing to limitations in conventional plant electrophysiological recording techniques, recorded signals are composed of signals originating from all of the cells that are connected to an electrode. This limitation does not enable detailed spatio-temporal distributions of transmission and electrical activities in plants to be visualised. Multi-electrode array (MEA) enables the recording and imaging of dynamic spatio-temporal electrical activities in higher plants. Here, we used an 8 × 8 MEA with a polar distance of 450 μm to measure electrical activities from numerous cells simultaneously. The mapping of the data that were recorded from the MEA revealed the transfer mode of the thermally induced VPs in the leaves of Helianthus annuus L. seedlings in situ. These results suggest that MEA can enable recordings with high spatio-temporal resolution that facilitate the determination of the bioelectrical response mode of higher plants under stress.
NASA Astrophysics Data System (ADS)
Ramsdale, Jason D.; Balme, Matthew R.; Conway, Susan J.; Gallagher, Colman; van Gasselt, Stephan A.; Hauber, Ernst; Orgel, Csilla; Séjourné, Antoine; Skinner, James A.; Costard, Francois; Johnsson, Andreas; Losiak, Anna; Reiss, Dennis; Swirad, Zuzanna M.; Kereszturi, Akos; Smith, Isaac B.; Platz, Thomas
2017-06-01
The increased volume, spatial resolution, and areal coverage of high-resolution images of Mars over the past 15 years have led to an increased quantity and variety of small-scale landform identifications. Though many such landforms are too small to represent individually on regional-scale maps, determining their presence or absence across large areas helps form the observational basis for developing hypotheses on the geological nature and environmental history of a study area. The combination of improved spatial resolution and near-continuous coverage significantly increases the time required to analyse the data. This becomes problematic when attempting regional or global-scale studies of metre and decametre-scale landforms. Here, we describe an approach for mapping small features (from decimetre to kilometre scale) across large areas, formulated for a project to study the northern plains of Mars, and provide context on how this method was developed and how it can be implemented. Rather than ;mapping; with points and polygons, grid-based mapping uses a ;tick box; approach to efficiently record the locations of specific landforms (we use an example suite of glacial landforms; including viscous flow features, the latitude dependant mantle and polygonised ground). A grid of squares (e.g. 20 km by 20 km) is created over the mapping area. Then the basemap data are systematically examined, grid-square by grid-square at full resolution, in order to identify the landforms while recording the presence or absence of selected landforms in each grid-square to determine spatial distributions. The result is a series of grids recording the distribution of all the mapped landforms across the study area. In some ways, these are equivalent to raster images, as they show a continuous distribution-field of the various landforms across a defined (rectangular, in most cases) area. When overlain on context maps, these form a coarse, digital landform map. We find that grid-based mapping provides an efficient solution to the problems of mapping small landforms over large areas, by providing a consistent and standardised approach to spatial data collection. The simplicity of the grid-based mapping approach makes it extremely scalable and workable for group efforts, requiring minimal user experience and producing consistent and repeatable results. The discrete nature of the datasets, simplicity of approach, and divisibility of tasks, open up the possibility for citizen science in which crowdsourcing large grid-based mapping areas could be applied.
Mapping fire scars in a southern African savannah using Landsat imagery
A. T. Hudak; B. H. Brockett
2004-01-01
The spectral, spatial and temporal characteristics of the Landsat data record make it appropriate for mapping fire scars. Twenty-two annual fire scar maps from 1972-Â2002 were produced from historical Landsat imagery for a semi-arid savannah landscape on the South Africa-ÂBotswana border, centred over Madikwe Game Reserve (MGR) in South Africa. A principal components...
NASA Technical Reports Server (NTRS)
Elstad, M.; Toska, K.; Chon, K. H.; Raeder, E. A.; Cohen, R. J.
2001-01-01
1. Are arterial blood pressure fluctuations buffered or reinforced by respiratory sinus arrhythmia (RSA)? There is still considerable debate about this simple question. Different results have been obtained, triggering a discussion as to whether or not the baroreflexes are responsible for RSA. We suspected that the measurements of different aspects of arterial pressure (mean arterial pressure (MAP) and systolic pressure (SP)) can explain the conflicting results. 2. Simultaneous recordings of beat-to-beat MAP, SP, left cardiac stroke volume (SV, pulsed ultrasound Doppler), heart rate (HR) and respiration (RE) were obtained in 10 healthy young adults during spontaneous respiration. In order to eliminate HR variations at respiratory frequency we used propranolol and atropine administration in the supine and tilted positions. Respiration-synchronous variation in the recorded variables was quantified by spectral analysis of the recordings of each of these variables, and the phase relations between them were determined by cross-spectral analysis. 3. MAP fluctuations increased after removing heart rate variations in both supine and tilted position, whereas SP fluctuations decreased in the supine position and increased in the head-up tilted position. 4. RSA buffers respiration-synchronous fluctuations in MAP in both positions. However, fluctuations in SP were reinforced by RSA in the supine and buffered in the tilted position.
Siesto, Gabriele; Romano, Fabrizio; Fiamengo, Barbara; Vitobello, Domenico
2016-01-01
Sentinel lymph node (SLN) mapping has emerged as the new frontier for the surgical staging of apparently early-stage cervical and endometrial cancer. Different colorimetric and radioactive tracers, alone and in combination, have been proposed with encouraging results. Fluorometric mapping using indocyanine green (ICG) appears to be a suitable and attractive alternative to provide reliable staging [1-4]. In this video, we present the technique of SLN mapping in 2 cases (1 endometrial and 1 cervical cancer, respectively) using ICG and the near-infrared technology provided by the newest Da Vinci Xi robotic system (Intuitive Surgical Inc., Sunnyvale, CA). Together we report the results of our preliminary experience on the first 20 cases performed. The new robotic Da Vinci Xi system was available at our institution since May 2015. Upon institutional review board/ethical committee approval, all consecutive patients with early-stage endometrial and cervical cancer who were judged suitable for robotic surgery have been enrolled for SLN mapping with ICG. We adopted the Memorial Sloan Kettering Cancer Center SLN algorithm; the tracer was delivered into the cervix in all cases. Four milliliters (1.25 mg/mL) of ICG was injected divided into the 3- and 9-o'clock positions of the cervix alone, with 1 mL deep into the stroma and 1 mL submucosally at the skin incision. Sentinel lymph nodes were examined with a protocol including both ultrastaging with immunohistochemistry [3] and 1-step nucleic acid amplification assay [5,6] under a parallel protocol of study. During the study period, 20 cases were managed; 14 and 6 patients had endometrial and cervical cancer, respectively. SLN was detected in all cases (20/20, 100%). Bilateral SLNs were detected in 17 of 20 (85.0%) cases. Based on preoperative and intraoperative findings, 13 (65.0%) patients received systematic pelvic lymphadenectomy after SLN mapping. Three (15.0%) patients had microscopic nodal metastases on SLN. No patients had positive regional nodes other than SLN. No perioperative complications were recorded. SLN mapping has been acknowledged by the National Comprehensive Cancer Network guidelines as a viable option for the management of selected uterine malignancies [7,8]. Currently, the near-infrared technology built in the Da Vinci Xi system provides an enhanced real-time imaging system that improves the advantages given by ICG. Together with our experience, these conditions indicate that SLN mapping is an effective and safe procedure with high overall detection and low false-negative rates. Copyright © 2016 AAGL. Published by Elsevier Inc. All rights reserved.
Bennett-Martin, Paulita; Visaggi, Christy C; Hawthorne, Timothy L
2015-10-01
Monitoring of marine debris (also known as marine litter) is an essential step in the process to eradicate ecological dangers in marine ecosystems caused by humans. This study examines marine debris in the Caribbean country of Belize using geographic information systems (GIS) to develop (1) a detailed data library for use on handheld Global Positioning System (GPS) units and tablets with mobile mapping applications for deployment in the field and (2) a freely available, online mapping portal to share data with Belizeans to encourage future citizen science efforts. Four diverse communities were targeted ranging from larger more populated towns, to smaller villages across central and southern Belize: San Pedro, Caye Caulker, Punta Gorda, and Monkey River. Fieldwork was conducted over 1 month, during which data points were collected in 50-m surveys followed by debris cleanup and removal. Features in our database included material, quantity, item, brand, and condition. Over 6000 pieces of debris were recorded in GIS for further analysis, and 299 gal of debris were removed from the shores of Belize. The most abundant form of debris observed was plastic (commonly bottles) across all locations; plastic comprised 77.6 % of all debris items observed. Through GIS, a detailed snapshot understanding of debris patterns across multiple settings in Belize was documented. Ongoing collaborations with local organizations in Belize have demonstrated significant interest and utility for such GIS approaches in analyzing and managing marine debris. The data, methodology, visual representations, and online mapping platform resulting from this research are a first step in directly supporting local Belizean community advocacy and policy, while contributing to larger institutional strategies for addressing marine debris issues in the Caribbean.
Digital mine claim density map for Federal lands in Montana, 1996
Campbell, Harry W.; Hyndman, Paul C.
1998-01-01
This report describes a digital map and data files generated by the U.S. Geological Survey (USGS) to provide digital spatial mining claim information for Federal lands in Montana as of March, 1997. Statewide, 159,704 claims had been recorded with the Bureau of Land Management since 1975. Of those claims, 21,055 (13%) are still actively held while 138,649 (87%) are closed and are no longer held. Montana contains 147,704 sections (usually 1 section equals 1 square mile) in the Public Land Survey System, with 8,569 sections (6%) containing claim data. Of the sections with claim data, 2,192 (26%) contain actively held claims. Only 1.5% of Montana’s sections contains actively held mining claims. The four types of mining claim are lode, placer, mill, and tunnel. A mill claim may be as much as 5 acres or 1/128th (0.78125%) of a square mile. A lode claim, about 20 acres, would cover 1/32nd (3.125%) of a square mile. Mining claim data is earth science information deemed to be relevant to the assessment of historic, current, and future ecological, economic, and social systems. The digital map and data files that are available in this report are suitable for geographic information system (GIS)-based regional assessments at a scale of 1:100,000 or smaller. Campbell (1996) summarized the methodology and GIS techniques that were used to produce the mining claim density map of the Pacific Northwest. Campbell and Hyndman (1997) displayed mining claim information for the Pacific Northwest that used data acquired in 1994. Appendix A of this report lists the attribute data for the digital data files. Appendix B contains the GIS metadata.
ShakeMapple : tapping laptop motion sensors to map the felt extents of an earthquake
NASA Astrophysics Data System (ADS)
Bossu, Remy; McGilvary, Gary; Kamb, Linus
2010-05-01
There is a significant pool of untapped sensor resources available in portable computer embedded motion sensors. Included primarily to detect sudden strong motion in order to park the disk heads to prevent damage to the disks in the event of a fall or other severe motion, these sensors may also be tapped for other uses as well. We have developed a system that takes advantage of the Apple Macintosh laptops' embedded Sudden Motion Sensors to record earthquake strong motion data to rapidly build maps of where and to what extent an earthquake has been felt. After an earthquake, it is vital to understand the damage caused especially in urban environments as this is often the scene for large amounts of damage caused by earthquakes. Gathering as much information from these impacts to determine where the areas that are likely to be most effected, can aid in distributing emergency services effectively. The ShakeMapple system operates in the background, continuously saving the most recent data from the motion sensors. After an earthquake has occurred, the ShakeMapple system calculates the peak acceleration within a time window around the expected arrival and sends that to servers at the EMSC. A map plotting the felt responses is then generated and presented on the web. Because large-scale testing of such an application is inherently difficult, we propose to organize a broadly distributed "simulated event" test. The software will be available for download in April, after which we plan to organize a large-scale test by the summer. At a specified time, participating testers will be asked to create their own strong motion to be registered and submitted by the ShakeMapple client. From these responses, a felt map will be produced representing the broadly-felt effects of the simulated event.
STS-99 Crew Interviews: Janet L. Kavandi
NASA Technical Reports Server (NTRS)
1999-01-01
This NASA JSC video release is one in a series of space shuttle astronaut interviews and was recorded Aug. 9, 1999. Mission Specialist, Janet L. Kavandi, Ph.D. provides answers to questions regarding her role in the Shuttle Radar Topography Mission (SRTM), mission objectives, which center on the three-dimensional mapping of the entire Earth's surface, shuttle imaging radar, payload mast deploy and retraction, data recording vs. downlinking, the fly cast maneuver, applications of recorded data, international participation (DLR), the National Imaging and Mapping Agency (NIMA), and EarthCam (educational middle school project). The interview is summed up by Dr. Kavandi explaining that the mission's objective, if successful, will result in the the most complete high-resolution digital topographic database of the Earth.
2013-01-01
Background Hybridogenesis (hemiclonal inheritance) is a kind of clonal reproduction in which hybrids between parental species are reproduced by crossing with one of the parental species. European water frogs (Pelophylax esculentus complex) represent an appropriate model for studying interspecies hybridization, processes of hemiclonal inheritance and polyploidization. P. esculentus complex consists of two parental species, P. ridibundus (the lake frog) and P. lessonae (the pool frog), and their hybridogenetic hybrid – P. esculentus (the edible frog). Parental and hybrid frogs can reproduce syntopically and form hemiclonal population systems. For studying mechanisms underlying the maintenance of water frog population systems it is required to characterize the karyotypes transmitted in gametes of parental and different hybrid animals of both sexes. Results In order to obtain an instrument for characterization of oocyte karyotypes in hybrid female frogs, we constructed cytological maps of lampbrush chromosomes from oocytes of both parental species originating in Eastern Ukraine. We further identified certain molecular components of chromosomal marker structures and mapped coilin-rich spheres and granules, chromosome associated nucleoli and special loops accumulating splicing factors. We recorded the dissimilarities between P. ridibundus and P. lessonae lampbrush chromosomes in the length of orthologous chromosomes, number and location of marker structures and interstitial (TTAGGG)n-repeat sites as well as activity of nucleolus organizer. Satellite repeat RrS1 was mapped in centromere regions of lampbrush chromosomes of the both species. Additionally, we discovered transcripts of RrS1 repeat in oocytes of P. ridibundus and P. lessonae. Moreover, G-rich transcripts of telomere repeat were revealed in association with terminal regions of P. ridibundus and P. lessonae lampbrush chromosomes. Conclusions The constructed cytological maps of lampbrush chromosomes of P. ridibundus and P. lessonae provide basis to define the type of genome transmitted within individual oocytes of P. esculentus females with different ploidy and from various population systems. PMID:23590698
Network Physiology: How Organ Systems Dynamically Interact
Bartsch, Ronny P.; Liu, Kang K. L.; Bashan, Amir; Ivanov, Plamen Ch.
2015-01-01
We systematically study how diverse physiologic systems in the human organism dynamically interact and collectively behave to produce distinct physiologic states and functions. This is a fundamental question in the new interdisciplinary field of Network Physiology, and has not been previously explored. Introducing the novel concept of Time Delay Stability (TDS), we develop a computational approach to identify and quantify networks of physiologic interactions from long-term continuous, multi-channel physiological recordings. We also develop a physiologically-motivated visualization framework to map networks of dynamical organ interactions to graphical objects encoded with information about the coupling strength of network links quantified using the TDS measure. Applying a system-wide integrative approach, we identify distinct patterns in the network structure of organ interactions, as well as the frequency bands through which these interactions are mediated. We establish first maps representing physiologic organ network interactions and discover basic rules underlying the complex hierarchical reorganization in physiologic networks with transitions across physiologic states. Our findings demonstrate a direct association between network topology and physiologic function, and provide new insights into understanding how health and distinct physiologic states emerge from networked interactions among nonlinear multi-component complex systems. The presented here investigations are initial steps in building a first atlas of dynamic interactions among organ systems. PMID:26555073
Low Latency Workflow Scheduling and an Application of Hyperspectral Brightness Temperatures
NASA Astrophysics Data System (ADS)
Nguyen, P. T.; Chapman, D. R.; Halem, M.
2012-12-01
New system analytics for Big Data computing holds the promise of major scientific breakthroughs and discoveries from the exploration and mining of the massive data sets becoming available to the science community. However, such data intensive scientific applications face severe challenges in accessing, managing and analyzing petabytes of data. While the Hadoop MapReduce environment has been successfully applied to data intensive problems arising in business, there are still many scientific problem domains where limitations in the functionality of MapReduce systems prevent its wide adoption by those communities. This is mainly because MapReduce does not readily support the unique science discipline needs such as special science data formats, graphic and computational data analysis tools, maintaining high degrees of computational accuracies, and interfacing with application's existing components across heterogeneous computing processors. We address some of these limitations by exploiting the MapReduce programming model for satellite data intensive scientific problems and address scalability, reliability, scheduling, and data management issues when dealing with climate data records and their complex observational challenges. In addition, we will present techniques to support the unique Earth science discipline needs such as dealing with special science data formats (HDF and NetCDF). We have developed a Hadoop task scheduling algorithm that improves latency by 2x for a scientific workflow including the gridding of the EOS AIRS hyperspectral Brightness Temperatures (BT). This workflow processing algorithm has been tested at the Multicore Computing Center private Hadoop based Intel Nehalem cluster, as well as in a virtual mode under the Open Source Eucalyptus cloud. The 55TB AIRS hyperspectral L1b Brightness Temperature record has been gridded at the resolution of 0.5x1.0 degrees, and we have computed a 0.9 annual anti-correlation to the El Nino Southern oscillation in the Nino 4 region, as well as a 1.9 Kelvin decadal Arctic warming in the 4u and 12u spectral regions. Additionally, we will present the frequency of extreme global warming events by the use of a normalized maximum BT in a grid cell relative to its local standard deviation. A low-latency Hadoop scheduling environment maintains data integrity and fault tolerance in a MapReduce data intensive Cloud environment while improving the "time to solution" metric by 35% when compared to a more traditional parallel processing system for the same dataset. Our next step will be to improve the usability of our Hadoop task scheduling system, to enable rapid prototyping of data intensive experiments by means of processing "kernels". We will report on the performance and experience of implementing these experiments on the NEX testbed, and propose the use of a graphical directed acyclic graph (DAG) interface to help us develop on-demand scientific experiments. Our workflow system works within Hadoop infrastructure as a replacement for the FIFO or FairScheduler, thus the use of Apache "Pig" latin or other Apache tools may also be worth investigating on the NEX system to improve the usability of our workflow scheduling infrastructure for rapid experimentation.
Zuellig, Robert E.; Heinold, Brian D.; Kondratieff, Boris C.; Ruiter, David E.
2012-01-01
The U.S. Geological Survey, in cooperation with the C.P. Gillette Museum of Arthropod Diversity (Colorado State University, Fort Collins, Colorado), compiled collection record data to document the historical and present-day occurrence of mayfly, stonefly, and caddisfly species in the South Platte River Basin. Data were compiled from records collected between 1873 and 2010 to identify where regional knowledge about species occurrence in the basin is lacking and to encourage future researchers to locate additional populations of these poorly understood but very important organisms. This report provides a description of how data were compiled, a map of approximate collection locations, a listing of the most recent collection records from unique locations, general remarks for each species, a species list with selected summary information, and distribution maps of species collection records.
Ghaderi, Parviz; Marateb, Hamid R
2017-07-01
The aim of this study was to reconstruct low-quality High-density surface EMG (HDsEMG) signals, recorded with 2-D electrode arrays, using image inpainting and surface reconstruction methods. It is common that some fraction of the electrodes may provide low-quality signals. We used variety of image inpainting methods, based on partial differential equations (PDEs), and surface reconstruction methods to reconstruct the time-averaged or instantaneous muscle activity maps of those outlier channels. Two novel reconstruction algorithms were also proposed. HDsEMG signals were recorded from the biceps femoris and brachial biceps muscles during low-to-moderate-level isometric contractions, and some of the channels (5-25%) were randomly marked as outliers. The root-mean-square error (RMSE) between the original and reconstructed maps was then calculated. Overall, the proposed Poisson and wave PDE outperformed the other methods (average RMSE 8.7 μV rms ± 6.1 μV rms and 7.5 μV rms ± 5.9 μV rms ) for the time-averaged single-differential and monopolar map reconstruction, respectively. Biharmonic Spline, the discrete cosine transform, and the Poisson PDE outperformed the other methods for the instantaneous map reconstruction. The running time of the proposed Poisson and wave PDE methods, implemented using a Vectorization package, was 4.6 ± 5.7 ms and 0.6 ± 0.5 ms, respectively, for each signal epoch or time sample in each channel. The proposed reconstruction algorithms could be promising new tools for reconstructing muscle activity maps in real-time applications. Proper reconstruction methods could recover the information of low-quality recorded channels in HDsEMG signals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sailer, Anna M., E-mail: anni.sailer@mumc.nl; Haan, Michiel W. de, E-mail: m.de.haan@mumc.nl; Graaf, Rick de, E-mail: r.de.graaf@mumc.nl
PurposeThis study was designed to evaluate the feasibility of endovascular guidance by means of live fluoroscopy fusion with magnetic resonance angiography (MRA) and computed tomography angiography (CTA).MethodsFusion guidance was evaluated in 20 endovascular peripheral artery interventions in 17 patients. Fifteen patients had received preinterventional diagnostic MRA and two patients had undergone CTA. Time for fluoroscopy with MRA/CTA coregistration was recorded. Feasibility of fusion guidance was evaluated according to the following criteria: for every procedure the executing interventional radiologists recorded whether 3D road-mapping provided added value (yes vs. no) and whether PTA and/or stenting could be performed relying on the fusionmore » road-map without need for diagnostic contrast-enhanced angiogram series (CEAS) (yes vs. no). Precision of the fusion road-map was evaluated by recording maximum differences between the position of the vasculature on the virtual CTA/MRA images and conventional angiography.ResultsAverage time needed for image coregistration was 5 ± 2 min. Three-dimensional road-map added value was experienced in 15 procedures in 12 patients. In half of the patients (8/17), intervention was performed relying on the fusion road-map only, without diagnostic CEAS. In two patients, MRA roadmap showed a false-positive lesion. Excluding three patients with inordinate movements, mean difference in position of vasculature on angiography and MRA/CTA road-map was 1.86 ± 0.95 mm, implying that approximately 95 % of differences were between 0 and 3.72 mm (2 ± 1.96 standard deviation).ConclusionsFluoroscopy with MRA/CTA fusion guidance for peripheral artery interventions is feasible. By reducing the number of CEAS, this technology may contribute to enhance procedural safety.« less
Mathematical analysis of running performance and world running records.
Péronnet, F; Thibault, G
1989-07-01
The objective of this study was to develop an empirical model relating human running performance to some characteristics of metabolic energy-yielding processes using A, the capacity of anaerobic metabolism (J/kg); MAP, the maximal aerobic power (W/kg); and E, the reduction in peak aerobic power with the natural logarithm of race duration T, when T greater than TMAP = 420 s. Accordingly, the model developed describes the average power output PT (W/kg) sustained over any T as PT = [S/T(1 - e-T/k2)] + 1/T integral of T O [BMR + B(1 - e-t/k1)]dt where S = A and B = MAP - BMR (basal metabolic rate) when T less than TMAP; and S = A + [Af ln(T/TMAP)] and B = (MAP - BMR) + [E ln(T/TMAP)] when T greater than TMAP; k1 = 30 s and k2 = 20 s are time constants describing the kinetics of aerobic and anaerobic metabolism, respectively, at the beginning of exercise; f is a constant describing the reduction in the amount of energy provided from anaerobic metabolism with increasing T; and t is the time from the onset of the race. This model accurately estimates actual power outputs sustained over a wide range of events, e.g., average absolute error between actual and estimated T for men's 1987 world records from 60 m to the marathon = 0.73%. In addition, satisfactory estimations of the metabolic characteristics of world-class male runners were made as follows: A = 1,658 J/kg; MAP = 83.5 ml O2.kg-1.min-1; 83.5% MAP sustained over the marathon distance. Application of the model to analysis of the evolution of A, MAP, and E, and of the progression of men's and women's world records over the years, is presented.
Approximating Long-Term Statistics Early in the Global Precipitation Measurement Era
NASA Technical Reports Server (NTRS)
Stanley, Thomas; Kirschbaum, Dalia B.; Huffman, George J.; Adler, Robert F.
2017-01-01
Long-term precipitation records are vital to many applications, especially the study of extreme events. The Tropical Rainfall Measuring Mission (TRMM) has served this need, but TRMMs successor mission, Global Precipitation Measurement (GPM), does not yet provide a long-term record. Quantile mapping, the conversion of values across paired empirical distributions, offers a simple, established means to approximate such long-term statistics, but only within appropriately defined domains. This method was applied to a case study in Central America, demonstrating that quantile mapping between TRMM and GPM data maintains the performance of a real-time landslide model. Use of quantile mapping could bring the benefits of the latest satellite-based precipitation dataset to existing user communities such as those for hazard assessment, crop forecasting, numerical weather prediction, and disease tracking.
Using Google Earth for Submarine Operations at Pavilion Lake
NASA Astrophysics Data System (ADS)
Deans, M. C.; Lees, D. S.; Fong, T.; Lim, D. S.
2009-12-01
During the July 2009 Pavilion Lake field test, we supported submarine "flight" operations using Google Earth. The Intelligent Robotics Group at NASA Ames has experience with ground data systems for NASA missions, earth analog field tests, disaster response, and the Gigapan camera system. Leveraging this expertise and existing software, we put together a set of tools to support sub tracking and mapping, called the "Surface Data System." This system supports flight planning, real time flight operations, and post-flight analysis. For planning, we make overlays of the regional bedrock geology, sonar bathymetry, and sonar backscatter maps that show geology, depth, and structure of the bottom. Placemarks show the mooring locations for start and end points. Flight plans are shown as polylines with icons for waypoints. Flight tracks and imagery from previous field seasons are embedded in the map for planning follow-on activities. These data provide context for flight planning. During flights, sub position is updated every 5 seconds from the nav computer on the chase boat. We periodically update tracking KML files and refresh them with network links. A sub icon shows current location of the sub. A compass rose shows bearings to indicate heading to the next waypoint. A "Science Stenographer" listens on the voice loop and transcribes significant observations in real time. Observations called up to the surface immediately appear on the map as icons with date, time, position, and what was said. After each flight, the science back room immediately has the flight track and georeferenced notes from the pilots. We add additional information in post-processing. The submarines record video continuously, with "event" timestamps marked by the pilot. We cross-correlate the event timestamps with position logs to geolocate events and put a preview image and compressed video clip into the map. Animated flight tracks are also generated, showing timestamped position and providing timelapse playback of the flight. Neogeography tools are increasing in popularity and offer an excellent platform for geoinformatics. The scientists on the team are already familiar with Google Earth, eliminating up-front training on new tools. The flight maps and archived data are available immediately and in a usable format. Google Earth provides lots of measurement tools, annotation tools, and other built-in functions that we can use to create and analyze the map. All of this information is saved to a shared filesystem so that everyone on the team has access to all of the same map data. After the field season, the map data will be used by the team to analyse and correlate information from across the lake and across different flights to support their research, and to plan next year's activities.