System design of the Pioneer Venus spacecraft. Volume 3: Systems analysis
NASA Technical Reports Server (NTRS)
Fisher, J. N.
1973-01-01
The mission, systems, operations, ground systems, and reliability analysis of the Thor/Delta baseline design used for the Pioneer Space Probe are discussed. Tradeoff decisions concerning spin axis orientation, bus antenna design, communication system design, probe descent, and reduced science payload are analyzed. The reliability analysis is made for the probe bus mission, large probe mission, and small probe mission. Detailed mission sequences were established to identify critical areas and provide phasing of critical operation.
System Analysis Applied to Autonomy: Application to Human-Rated Lunar/Mars Landers
NASA Technical Reports Server (NTRS)
Young, Larry A.
2006-01-01
System analysis is an essential technical discipline for the modern design of spacecraft and their associated missions. Specifically, system analysis is a powerful aid in identifying and prioritizing the required technologies needed for mission and/or vehicle development efforts. Maturation of intelligent systems technologies, and their incorporation into spacecraft systems, are dictating the development of new analysis tools, and incorporation of such tools into existing system analysis methodologies, in order to fully capture the trade-offs of autonomy on vehicle and mission success. A "system analysis of autonomy" methodology will be outlined and applied to a set of notional human-rated lunar/Mars lander missions toward answering these questions: 1. what is the optimum level of vehicle autonomy and intelligence required? and 2. what are the specific attributes of an autonomous system implementation essential for a given surface lander mission/application in order to maximize mission success? Future human-rated lunar/Mars landers, though nominally under the control of their crew, will, nonetheless, be highly automated systems. These automated systems will range from mission/flight control functions, to vehicle health monitoring and prognostication, to life-support and other "housekeeping" functions. The optimum degree of autonomy afforded to these spacecraft systems/functions has profound implications from an exploration system architecture standpoint.
NASA Technical Reports Server (NTRS)
1982-01-01
The Space Operations Center (SOC) orbital space station missions are analyzed. Telecommunications missions, space science, Earth sensing, and space testing missions, research and applications missions, defense missions, and satellite servicing missions are modeled and mission needs discussed. The satellite servicing missions are analyzed in detail, including construction and servicing equipment requirements, mission needs and benefits, differential drag characteristics of co-orbiting satellites, and satellite servicing transportation requirements.
NASA Technical Reports Server (NTRS)
1972-01-01
The feasibility of a satellite rendezvous, landing, and roving mission to the Martian satellites Phobos and Deimos is considered. Mission-oriented analysis, systems analysis, and conceptual design studies are presented.
Mission analysis report for single-shell tank leakage mitigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cruse, J.M.
1994-09-01
This document provides an analysis of the leakage mitigation mission applicable to past and potential future leakage from the Hanford Site`s 149 single-shell high-level waste tanks. This mission is a part of the overall missions of the Westinghouse Hanford Company Tank Waste Remediation System division to remediate the tank waste in a safe and acceptable manner. Systems engineers principles are being applied to this effort. Mission analysis supports early decision making by clearly defining program objectives. This documents identifies the initial conditions and acceptable final conditions, defines the programmatic and physical interfaces and constraints, estimates the resources to carry outmore » the mission, and establishes measures of success. The results of the mission analysis provide a consistent basis for subsequent systems engineering work.« less
NASA Systems Analysis and Concepts Directorate Mission and Trade Study Analysis
NASA Technical Reports Server (NTRS)
Ricks, Wendell; Guynn, Mark; Hahn, Andrew; Lepsch, Roger; Mazanek, Dan; Dollyhigh, Sam
2006-01-01
Mission analysis, as practiced by the NASA Langley Research Center's Systems Analysis and Concepts Directorate (SACD), consists of activities used to define, assess, and evaluate a wide spectrum of aerospace systems for given requirements. The missions for these systems encompass a broad range from aviation to space exploration. The customer, who is usually another NASA organization or another government agency, often predefines the mission. Once a mission is defined, the goals and objectives that the system will need to meet are delineated and quantified. A number of alternative systems are then typically developed and assessed relative to these goals and objectives. This is done in order to determine the most favorable design approaches for further refinement. Trade studies are performed in order to understand the impact of a requirement on each system and to select among competing design options. Items varied in trade studies typically include: design variables or design constraints; technology and subsystem options; and operational approaches. The results of trade studies are often used to refine the mission and system requirements. SACD studies have been integral to the decision processes of many organizations for decades. Many recent examples of SACD mission and trade study analyses illustrate their excellence and influence. The SACD-led, Agency-wide effort to analyze a broad range of future human lunar exploration scenarios for NASA s Exploration Systems Mission Directorate (ESMD) and the Mars airplane design study in support of the Aerial Regional-scale Environment Survey of Mars (ARES) mission are two such examples. This paper describes SACD's mission and trade study analysis activities in general and presents the lunar exploration and Mars airplane studies as examples of type of work performed by the SACD.
NASA Technical Reports Server (NTRS)
Bloetscher, F.
1975-01-01
The histroy, potential mission application, and designs of lighter-than-air (LTA) vehicles are researched and evaluated. Missions are identified to which airship vehicles are potentially suited. Results of the mission analysis are combined with the findings of a parametric analysis to formulate the mission/vehicle combinations recommended for further study. Current transportation systems are surveyed and potential areas of competition are identified as well as potential missions resulting from limitations of these systems. Potential areas of military usage are included.
Mission Operations and Navigation Toolkit Environment
NASA Technical Reports Server (NTRS)
Sunseri, Richard F.; Wu, Hsi-Cheng; Hanna, Robert A.; Mossey, Michael P.; Duncan, Courtney B.; Evans, Scott E.; Evans, James R.; Drain, Theodore R.; Guevara, Michelle M.; Martin Mur, Tomas J.;
2009-01-01
MONTE (Mission Operations and Navigation Toolkit Environment) Release 7.3 is an extensible software system designed to support trajectory and navigation analysis/design for space missions. MONTE is intended to replace the current navigation and trajectory analysis software systems, which, at the time of this reporting, are used by JPL's Navigation and Mission Design section. The software provides an integrated, simplified, and flexible system that can be easily maintained to serve the needs of future missions in need of navigation services.
Nuclear Electric Propulsion Application: RASC Mission Robotic Exploration of Venus
NASA Technical Reports Server (NTRS)
McGuire, Melissa L.; Borowski, Stanley K.; Packard, Thomas W.
2004-01-01
The following paper documents the mission and systems analysis portion of a study in which Nuclear Electric Propulsion (NEP) is used as the in-space transportation system to send a series of robotic rovers and atmospheric science airplanes to Venus in the 2020 to 2030 timeframe. As part of the NASA RASC (Revolutionary Aerospace Systems Concepts) program, this mission analysis is meant to identify future technologies and their application to far reaching NASA missions. The NEP systems and mission analysis is based largely on current technology state of the art assumptions. This study looks specifically at the performance of the NEP transfer stage when sending a series of different payload package point design options to Venus orbit.
General Mission Analysis Tool (GMAT) Mathematical Specifications
NASA Technical Reports Server (NTRS)
Hughes, Steve
2007-01-01
The General Mission Analysis Tool (GMAT) is a space trajectory optimization and mission analysis system developed by NASA and private industry in the spirit of the NASA Mission. GMAT contains new technology and is a testbed for future technology development.
The Propulsive Small Expendable Deployer System (ProSEDS)
NASA Technical Reports Server (NTRS)
Lorenzini, Enrico C.; Cosmo, Mario L.; Estes, Robert D.; Sanmartin, Juan; Pelaez, Jesus; Ruiz, Manuel
2003-01-01
This Final Report covers the following main topics: 1) Brief Description of ProSEDS; 2) Mission Analysis; 3) Dynamics Reference Mission; 4) Dynamics Stability; 5) Deployment Control; 6) Updated System Performance; 7) Updated Mission Analysis; 8) Updated Dynamics Reference Mission; 9) Updated Deployment Control Profiles and Simulations; 10) Updated Reference Mission; 11) Evaluation of Power Delivered by the Tether; 12) Deployment Control Profile Ref. #78 and Simulations; 13) Kalman Filters for Mission Estimation; 14) Analysis/Estimation of Deployment Flight Data; 15) Comparison of ED Tethers and Electrical Thrusters; 16) Dynamics Analysis for Mission Starting at a Lower Altitude; 17) Deployment Performance at a Lower Altitude; 18) Satellite Orbit after a Tether Cut; 19) Deployment with Shorter Dyneema Tether Length; 20) Interactive Software for ED Tethers.
Controlled ecological life support system: Transportation analysis
NASA Technical Reports Server (NTRS)
Gustan, E.; Vinopal, T.
1982-01-01
This report discusses a study utilizing a systems analysis approach to determine which NASA missions would benefit from controlled ecological life support system (CELSS) technology. The study focuses on manned missions selected from NASA planning forecasts covering the next half century. Comparison of various life support scenarios for the selected missions and characteristics of projected transportation systems provided data for cost evaluations. This approach identified missions that derived benefits from a CELSS, showed the magnitude of the potential cost savings, and indicated which system or combination of systems would apply. This report outlines the analytical approach used in the evaluation, describes the missions and systems considered, and sets forth the benefits derived from CELSS when applicable.
NASA Technical Reports Server (NTRS)
1974-01-01
A summary of the constraints and requirements on the Earth Observatory Satellite (EOS-A) orbit and launch vehicle analysis is presented. The propulsion system (hydrazine) and the launch vehicle (Delta 2910) selected for EOS-A are examined. The rationale for the selection of the recommended orbital altitude of 418 nautical miles is explained. The original analysis was based on the EOS-A mission with the Thematic Mapper and the High Resolution Pointable Imager. The impact of the revised mission model is analyzed to show how the new mission model affects the previously defined propulsion system, launch vehicle, and orbit. A table is provided to show all aspects of the EOS multiple mission concepts. The subjects considered include the following: (1) mission orbit analysis, (2) spacecraft parametric performance analysis, (3) launch system performance analysis, and (4) orbits/launch vehicle selection.
Hall Thruster Technology for NASA Science Missions
NASA Technical Reports Server (NTRS)
Manzella, David; Oh, David; Aadland, Randall
2005-01-01
The performance of a prototype Hall thruster designed for Discovery-class NASA science mission applications was evaluated at input powers ranging from 0.2 to 2.9 kilowatts. These data were used to construct a throttle profile for a projected Hall thruster system based on this prototype thruster. The suitability of such a Hall thruster system to perform robotic exploration missions was evaluated through the analysis of a near Earth asteroid sample return mission. This analysis demonstrated that a propulsion system based on the prototype Hall thruster offers mission benefits compared to a propulsion system based on an existing ion thruster.
Shuttle remote manipulator system mission preparation and operations
NASA Technical Reports Server (NTRS)
Smith, Ernest E., Jr.
1989-01-01
The preflight planning, analysis, procedures development, and operations support for the Space Transportation System payload deployment and retrieval missions utilizing the Shuttle Remote Manipulator System are summarized. Analysis of the normal operational loads and failure induced loads and motion are factored into all procedures. Both the astronaut flight crews and the Mission Control Center flight control teams receive considerable training for standard and mission specific operations. The real time flight control team activities are described.
NASA Technical Reports Server (NTRS)
Dudzinski, Leonard a.; Pencil, Eric J.; Dankanich, John W.
2007-01-01
The In-Space Propulsion Technology Project (ISPT) is currently NASA's sole investment in electric propulsion technologies. This project is managed at NASA Glenn Research Center (GRC) for the NASA Headquarters Science Mission Directorate (SMD). The objective of the electric propulsion project area is to develop near-term and midterm electric propulsion technologies to enhance or enable future NASA science missions while minimizing risk and cost to the end user. Systems analysis activities sponsored by ISPT seek to identify future mission applications in order to quantify mission requirements, as well as develop analytical capability in order to facilitate greater understanding and application of electric propulsion and other propulsion technologies in the ISPT portfolio. These analyses guide technology investments by informing decisions and defining metrics for technology development to meet identified mission requirements. This paper discusses the missions currently being studied for electric propulsion by the ISPT project, and presents the results of recent electric propulsion (EP) mission trades. Recent ISPT systems analysis activities include: an initiative to standardize life qualification methods for various electric propulsion systems in order to retire perceived risk to proposed EP missions; mission analysis to identify EP requirements from Discovery, New Frontiers, and Flagship classes of missions; and an evaluation of system requirements for radioisotope-powered electric propulsion. Progress and early results of these activities is discussed where available.
NASA Technical Reports Server (NTRS)
1977-01-01
An outline is given of the mission objectives and requirements, system elements, system concepts, technology requirements and forecasting, and priority analysis for LANDSAT D. User requirements and mission analysis and technological forecasting are emphasized. Mission areas considered include agriculture, range management, forestry, geology, land use, water resources, environmental quality, and disaster assessment.
Multi-Mission System Analysis for Planetary Entry (M-SAPE) Version 1
NASA Technical Reports Server (NTRS)
Samareh, Jamshid; Glaab, Louis; Winski, Richard G.; Maddock, Robert W.; Emmett, Anjie L.; Munk, Michelle M.; Agrawal, Parul; Sepka, Steve; Aliaga, Jose; Zarchi, Kerry;
2014-01-01
This report describes an integrated system for Multi-mission System Analysis for Planetary Entry (M-SAPE). The system in its current form is capable of performing system analysis and design for an Earth entry vehicle suitable for sample return missions. The system includes geometry, mass sizing, impact analysis, structural analysis, flight mechanics, TPS, and a web portal for user access. The report includes details of M-SAPE modules and provides sample results. Current M-SAPE vehicle design concept is based on Mars sample return (MSR) Earth entry vehicle design, which is driven by minimizing risk associated with sample containment (no parachute and passive aerodynamic stability). By M-SAPE exploiting a common design concept, any sample return mission, particularly MSR, will benefit from significant risk and development cost reductions. The design provides a platform by which technologies and design elements can be evaluated rapidly prior to any costly investment commitment.
General Mission Analysis Tool (GMAT)
NASA Technical Reports Server (NTRS)
Hughes, Steven P.
2007-01-01
The General Mission Analysis Tool (GMAT) is a space trajectory optimization and mission analysis system developed by NASA and private industry in the spirit of the NASA Mission. GMAT contains new technology and is a testbed for future technology development. The goal of the GMAT project is to develop new space trajectory optimization and mission design technology by working inclusively with ordinary people, universities, businesses, and other government organizations, and to share that technology in an open and unhindered way. GMAT is a free and open source software system licensed under the NASA Open Source Agreement: free for anyone to use in development of new mission concepts or to improve current missions, freely available in source code form for enhancement or further technology development.
SMART: A Propositional Logic-Based Trade Analysis and Risk Assessment Tool for a Complex Mission
NASA Technical Reports Server (NTRS)
Ono, Masahiro; Nicholas, Austin; Alibay, Farah; Parrish, Joseph
2015-01-01
This paper introduces a new trade analysis software called the Space Mission Architecture and Risk Analysis Tool (SMART). This tool supports a high-level system trade study on a complex mission, such as a potential Mars Sample Return (MSR) mission, in an intuitive and quantitative manner. In a complex mission, a common approach to increase the probability of success is to have redundancy and prepare backups. Quantitatively evaluating the utility of adding redundancy to a system is important but not straightforward, particularly when the failure of parallel subsystems are correlated.
Nuclear Thermal Propulsion Mars Mission Systems Analysis and Requirements Definition
NASA Technical Reports Server (NTRS)
Mulqueen, Jack; Chiroux, Robert C.; Thomas, Dan; Crane, Tracie
2007-01-01
This paper describes the Mars transportation vehicle design concepts developed by the Marshall Space Flight Center (MSFC) Advanced Concepts Office. These vehicle design concepts provide an indication of the most demanding and least demanding potential requirements for nuclear thermal propulsion systems for human Mars exploration missions from years 2025 to 2035. Vehicle concept options vary from large "all-up" vehicle configurations that would transport all of the elements for a Mars mission on one vehicle. to "split" mission vehicle configurations that would consist of separate smaller vehicles that would transport cargo elements and human crew elements to Mars separately. Parametric trades and sensitivity studies show NTP stage and engine design options that provide the best balanced set of metrics based on safety, reliability, performance, cost and mission objectives. Trade studies include the sensitivity of vehicle performance to nuclear engine characteristics such as thrust, specific impulse and nuclear reactor type. Tbe associated system requirements are aligned with the NASA Exploration Systems Mission Directorate (ESMD) Reference Mars mission as described in the Explorations Systems Architecture Study (ESAS) report. The focused trade studies include a detailed analysis of nuclear engine radiation shield requirements for human missions and analysis of nuclear thermal engine design options for the ESAS reference mission.
Phased-mission system analysis using Boolean algebraic methods
NASA Technical Reports Server (NTRS)
Somani, Arun K.; Trivedi, Kishor S.
1993-01-01
Most reliability analysis techniques and tools assume that a system is used for a mission consisting of a single phase. However, multiple phases are natural in many missions. The failure rates of components, system configuration, and success criteria may vary from phase to phase. In addition, the duration of a phase may be deterministic or random. Recently, several researchers have addressed the problem of reliability analysis of such systems using a variety of methods. A new technique for phased-mission system reliability analysis based on Boolean algebraic methods is described. Our technique is computationally efficient and is applicable to a large class of systems for which the failure criterion in each phase can be expressed as a fault tree (or an equivalent representation). Our technique avoids state space explosion that commonly plague Markov chain-based analysis. A phase algebra to account for the effects of variable configurations and success criteria from phase to phase was developed. Our technique yields exact (as opposed to approximate) results. The use of our technique was demonstrated by means of an example and present numerical results to show the effects of mission phases on the system reliability.
Exploration Life Support Critical Questions for Future Human Space Missions
NASA Technical Reports Server (NTRS)
Kwert, Michael K.; Barta, Daniel J.; McQuillan, Jeff
2010-01-01
Exploration Life Support (ELS) is a current project under NASA's Exploration Systems Mission Directorate. The ELS Project plans, coordinates and implements the development of advanced life support technologies for human exploration missions in space. Recent work has focused on closed loop atmosphere and water systems for long duration missions, including habitats and pressurized rovers. But, what are the critical questions facing life support system developers for these and other future human missions? This paper explores those questions and how progress in the development of ELS technologies can help answer them. The ELS Project includes the following Elements: Atmosphere Revitalization Systems, Water Recovery Systems, Waste Management Systems, Habitation Engineering, Systems Integration, Modeling and Analysis, and Validation and Testing, which includes the Sub-Elements Flight Experiments and Integrated Testing. Systems engineering analysis by ELS seeks to optimize overall mission architectures by considering all the internal and external interfaces of the life support system and the potential for reduction or reuse of commodities. In particular, various sources and sinks of water and oxygen are considered along with the implications on loop closure and the resulting launch mass requirements. Systems analysis will be validated through the data gathered from integrated testing, which will demonstrate the interfaces of a closed loop life support system. By applying a systematic process for defining, sorting and answering critical life support questions, the ELS project is preparing for a variety of future human space missions
The General Mission Analysis Tool (GMAT): Current Features And Adding Custom Functionality
NASA Technical Reports Server (NTRS)
Conway, Darrel J.; Hughes, Steven P.
2010-01-01
The General Mission Analysis Tool (GMAT) is a software system for trajectory optimization, mission analysis, trajectory estimation, and prediction developed by NASA, the Air Force Research Lab, and private industry. GMAT's design and implementation are based on four basic principles: open source visibility for both the source code and design documentation; platform independence; modular design; and user extensibility. The system, released under the NASA Open Source Agreement, runs on Windows, Mac and Linux. User extensions, loaded at run time, have been built for optimization, trajectory visualization, force model extension, and estimation, by parties outside of GMAT's development group. The system has been used to optimize maneuvers for the Lunar Crater Observation and Sensing Satellite (LCROSS) and ARTEMIS missions and is being used for formation design and analysis for the Magnetospheric Multiscale Mission (MMS).
NASA Technical Reports Server (NTRS)
Munoz Fernandez, Michela Miche
2014-01-01
The potential of Model Model Systems Engineering (MBSE) using the Architecture Analysis and Design Language (AADL) applied to space systems will be described. AADL modeling is applicable to real-time embedded systems- the types of systems NASA builds. A case study with the Juno mission to Jupiter showcases how this work would enable future missions to benefit from using these models throughout their life cycle from design to flight operations.
Towards an integral computer environment supporting system operations analysis and conceptual design
NASA Technical Reports Server (NTRS)
Barro, E.; Delbufalo, A.; Rossi, F.
1994-01-01
VITROCISET has in house developed a prototype tool named System Dynamic Analysis Environment (SDAE) to support system engineering activities in the initial definition phase of a complex space system. The SDAE goal is to provide powerful means for the definition, analysis, and trade-off of operations and design concepts for the space and ground elements involved in a mission. For this purpose SDAE implements a dedicated modeling methodology based on the integration of different modern (static and dynamic) analysis and simulation techniques. The resulting 'system model' is capable of representing all the operational, functional, and behavioral aspects of the system elements which are part of a mission. The execution of customized model simulations enables: the validation of selected concepts with respect to mission requirements; the in-depth investigation of mission specific operational and/or architectural aspects; and the early assessment of performances required by the system elements to cope with mission constraints and objectives. Due to its characteristics, SDAE is particularly tailored for nonconventional or highly complex systems, which require a great analysis effort in their early definition stages. SDAE runs under PC-Windows and is currently used by VITROCISET system engineering group. This paper describes the SDAE main features, showing some tool output examples.
NASA's SPICE System Models the Solar System
NASA Technical Reports Server (NTRS)
Acton, Charles
1996-01-01
SPICE is NASA's multimission, multidiscipline information system for assembling, distributing, archiving, and accessing space science geometry and related data used by scientists and engineers for mission design and mission evaluation, detailed observation planning, mission operations, and science data analysis.
Expert diagnostics system as a part of analysis software for power mission operations
NASA Technical Reports Server (NTRS)
Harris, Jennifer A.; Bahrami, Khosrow A.
1993-01-01
The operation of interplanetary spacecraft at JPL has become an increasingly complex activity. This complexity is due to advanced spacecraft designs and ambitious mission objectives which lead to operations requirements that are more demanding than those of any previous mission. For this reason, several productivity enhancement measures are underway at JPL within mission operations, particularly in the spacecraft analysis area. These measures aimed at spacecraft analysis include: the development of a multi-mission, multi-subsystem operations environment; the introduction of automated tools into this environment; and the development of an expert diagnostics system. This paper discusses an effort to integrate the above mentioned productivity enhancement measures. A prototype was developed that integrates an expert diagnostics system into a multi-mission, multi-subsystem operations environment using the Galileo Power / Pyro Subsystem as a testbed. This prototype will be discussed in addition to background information associated with it.
NASA Technical Reports Server (NTRS)
1993-01-01
The Second International Symposium featured 135 oral presentations in these 12 categories: Future Missions and Operations; System-Level Architectures; Mission-Specific Systems; Mission and Science Planning and Sequencing; Mission Control; Operations Automation and Emerging Technologies; Data Acquisition; Navigation; Operations Support Services; Engineering Data Analysis of Space Vehicle and Ground Systems; Telemetry Processing, Mission Data Management, and Data Archiving; and Operations Management. Topics focused on improvements in the productivity, effectiveness, efficiency, and quality of mission operations, ground systems, and data acquisition. Also emphasized were accomplishments in management of human factors; use of information systems to improve data retrieval, reporting, and archiving; design and implementation of logistics support for mission operations; and the use of telescience and teleoperations.
The asteroid rendezvous spacecraft. An adaptation study of TIROS/DMSP technology
NASA Technical Reports Server (NTRS)
1982-01-01
The feasibility of using the TIROS/DMSP Earth orbiting meteorological satellite in application to a near Earth asteroid rendezvous mission. System and subsystems analysis was carried out to develop a configuration of the spacecraft suitable for this mission. Mission analysis studies were also done and maneuver/rendezvous scenarios developed for baseline missions to both Anteros and Eros. The fact that the Asteroid mission is the most complex of the Pioneer class missions currently under consideration notwithstanding, the basic conclusion very strongly supports the suitability of the basic TIROS bus for this mission in all systems and subsystems areas, including science accommodation. Further, the modifications which are required due to the unique mission are very low risk and can be accomplished readily. The key issue is that in virtually every key subsystem, the demands of the Asteroid mission are a subset of the basic meteorological satellite mission. This allows a relatively simple reconfiguration to be accomplished without a major system redesign.
Trades Between Opposition and Conjunction Class Trajectories for Early Human Missions to Mars
NASA Technical Reports Server (NTRS)
Mattfeld, Bryan; Stromgren, Chel; Shyface, Hilary; Komar, David R.; Cirillo, William; Goodliff, Kandyce
2014-01-01
Candidate human missions to Mars, including NASA's Design Reference Architecture 5.0, have focused on conjunction-class missions with long crewed durations and minimum energy trajectories to reduce total propellant requirements and total launch mass. However, in order to progressively reduce risk and gain experience in interplanetary mission operations, it may be desirable that initial human missions to Mars, whether to the surface or to Mars orbit, have shorter total crewed durations and minimal stay times at the destination. Opposition-class missions require larger total energy requirements relative to conjunction-class missions but offer the potential for much shorter mission durations, potentially reducing risk and overall systems performance requirements. This paper will present a detailed comparison of conjunction-class and opposition-class human missions to Mars vicinity with a focus on how such missions could be integrated into the initial phases of a Mars exploration campaign. The paper will present the results of a trade study that integrates trajectory/propellant analysis, element design, logistics and sparing analysis, and risk assessment to produce a comprehensive comparison of opposition and conjunction exploration mission constructs. Included in the trade study is an assessment of the risk to the crew and the trade offs between the mission duration and element, logistics, and spares mass. The analysis of the mission trade space was conducted using four simulation and analysis tools developed by NASA. Trajectory analyses for Mars destination missions were conducted using VISITOR (Versatile ImpulSive Interplanetary Trajectory OptimizeR), an in-house tool developed by NASA Langley Research Center. Architecture elements were evaluated using EXploration Architecture Model for IN-space and Earth-to-orbit (EXAMINE), a parametric modeling tool that generates exploration architectures through an integrated systems model. Logistics analysis was conducted using NASA's Human Exploration Logistics Model (HELM), and sparing allocation predictions were generated via the Exploration Maintainability Analysis Tool (EMAT), which is a probabilistic simulation engine that evaluates trades in spacecraft reliability and sparing requirements based on spacecraft system maintainability and reparability.
Aerocapture Systems Analysis for a Neptune Mission
NASA Technical Reports Server (NTRS)
Lockwood, Mary Kae; Edquist, Karl T.; Starr, Brett R.; Hollis, Brian R.; Hrinda, Glenn A.; Bailey, Robert W.; Hall, Jeffery L.; Spilker, Thomas R.; Noca, Muriel A.; O'Kongo, N.
2006-01-01
A Systems Analysis was completed to determine the feasibility, benefit and risk of an aeroshell aerocapture system for Neptune and to identify technology gaps and technology performance goals. The systems analysis includes the following disciplines: science; mission design; aeroshell configuration; interplanetary navigation analyses; atmosphere modeling; computational fluid dynamics for aerodynamic performance and aeroheating environment; stability analyses; guidance development; atmospheric flight simulation; thermal protection system design; mass properties; structures; spacecraft design and packaging; and mass sensitivities. Results show that aerocapture is feasible and performance is adequate for the Neptune mission. Aerocapture can deliver 1.4 times more mass to Neptune orbit than an all-propulsive system for the same launch vehicle and results in a 3-4 year reduction in trip time compared to all-propulsive systems. Enabling technologies for this mission include TPS manufacturing; and aerothermodynamic methods for determining coupled 3-D convection, radiation and ablation aeroheating rates and loads.
Outer planet entry probe system study. Volume 1: Summary
NASA Technical Reports Server (NTRS)
1972-01-01
General mission considerations and science prospectus, which are of a general nature that applies to several or all planetary applications, are presented. Five probe systems are defined: nominal Jupiter probe system, and Jupiter probe-dedicated alternative probe system, Jupiter spacecraft radiation-compatible alternative probe system, Saturn probe system, and Saturn probe applicability for Uranus. Parametric analysis is summarized for mission analysis of a general nature, and then for specific missions to Jupiter, Saturn, Uranus, and Neptune. The program is also discussed from the hardware availability viewpoint and the aspect of commonality.
NASA Technical Reports Server (NTRS)
1983-01-01
Mission scenario analysis and architectural concepts, alternative systems concepts, mission operations and architectural development, architectural analysis trades, evolution, configuration, and technology development are assessed.
Laser power conversion system analysis, volume 1
NASA Technical Reports Server (NTRS)
Jones, W. S.; Morgan, L. L.; Forsyth, J. B.; Skratt, J. P.
1979-01-01
The orbit-to-orbit laser energy conversion system analysis established a mission model of satellites with various orbital parameters and average electrical power requirements ranging from 1 to 300 kW. The system analysis evaluated various conversion techniques, power system deployment parameters, power system electrical supplies and other critical supplies and other critical subsystems relative to various combinations of the mission model. The analysis show that the laser power system would not be competitive with current satellite power systems from weight, cost and development risk standpoints.
2014-08-04
Resident Space Object Proximity Analysis and IMAging) mission is carried out by a 6U Cube Sat class satellite equipped with a warm gas propulsion system... mission . The ARAPAIMA (Application for Resident Space Object Proximity Analysis and IMAging) mission is carried out by a 6 U CubeSat class satellite...attitude determination and control subsystem (ADCS) (or a proximity operation and imaging satellite mission . The ARAP AI MA (Application for
SPACE PROPULSION SYSTEM PHASED-MISSION PROBABILITY ANALYSIS USING CONVENTIONAL PRA METHODS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis Smith; James Knudsen
As part of a series of papers on the topic of advance probabilistic methods, a benchmark phased-mission problem has been suggested. This problem consists of modeling a space mission using an ion propulsion system, where the mission consists of seven mission phases. The mission requires that the propulsion operate for several phases, where the configuration changes as a function of phase. The ion propulsion system itself consists of five thruster assemblies and a single propellant supply, where each thruster assembly has one propulsion power unit and two ion engines. In this paper, we evaluate the probability of mission failure usingmore » the conventional methodology of event tree/fault tree analysis. The event tree and fault trees are developed and analyzed using Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE). While the benchmark problem is nominally a "dynamic" problem, in our analysis the mission phases are modeled in a single event tree to show the progression from one phase to the next. The propulsion system is modeled in fault trees to account for the operation; or in this case, the failure of the system. Specifically, the propulsion system is decomposed into each of the five thruster assemblies and fed into the appropriate N-out-of-M gate to evaluate mission failure. A separate fault tree for the propulsion system is developed to account for the different success criteria of each mission phase. Common-cause failure modeling is treated using traditional (i.e., parametrically) methods. As part of this paper, we discuss the overall results in addition to the positive and negative aspects of modeling dynamic situations with non-dynamic modeling techniques. One insight from the use of this conventional method for analyzing the benchmark problem is that it requires significant manual manipulation to the fault trees and how they are linked into the event tree. The conventional method also requires editing the resultant cut sets to obtain the correct results. While conventional methods may be used to evaluate a dynamic system like that in the benchmark, the level of effort required may preclude its use on real-world problems.« less
NASA In-Space Propulsion Technologies and Their Infusion Potential
NASA Technical Reports Server (NTRS)
Anderson, David J.; Pencil,Eric J.; Peterson, Todd; Vento, Daniel; Munk, Michelle M.; Glaab, Louis J.; Dankanich, John W.
2012-01-01
The In-Space Propulsion Technology (ISPT) program has been developing in-space propulsion technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (Electric and Chemical), Entry Vehicle Technologies (Aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies that will be ready for flight infusion in the near future will be Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future focuses for ISPT are sample return missions and other spacecraft bus technologies like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions; and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle-focused, and present a different set of technology infusion challenges. While the Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
Space tug propulsion system failure mode, effects and criticality analysis
NASA Technical Reports Server (NTRS)
Boyd, J. W.; Hardison, E. P.; Heard, C. B.; Orourke, J. C.; Osborne, F.; Wakefield, L. T.
1972-01-01
For purposes of the study, the propulsion system was considered as consisting of the following: (1) main engine system, (2) auxiliary propulsion system, (3) pneumatic system, (4) hydrogen feed, fill, drain and vent system, (5) oxygen feed, fill, drain and vent system, and (6) helium reentry purge system. Each component was critically examined to identify possible failure modes and the subsequent effect on mission success. Each space tug mission consists of three phases: launch to separation from shuttle, separation to redocking, and redocking to landing. The analysis considered the results of failure of a component during each phase of the mission. After the failure modes of each component were tabulated, those components whose failure would result in possible or certain loss of mission or inability to return the Tug to ground were identified as critical components and a criticality number determined for each. The criticality number of a component denotes the number of mission failures in one million missions due to the loss of that component. A total of 68 components were identified as critical with criticality numbers ranging from 1 to 2990.
General Mission Analysis Tool (GMAT) User's Guide (Draft)
NASA Technical Reports Server (NTRS)
Hughes, Steven P.
2007-01-01
4The General Mission Analysis Tool (GMAT) is a space trajectory optimization and mission analysis system. This document is a draft of the users guide for the tool. Included in the guide is information about Configuring Objects/Resources, Object Fields: Quick Look-up Tables, and Commands and Events.
The MSFC Collaborative Engineering Process for Preliminary Design and Concept Definition Studies
NASA Technical Reports Server (NTRS)
Mulqueen, Jack; Jones, David; Hopkins, Randy
2011-01-01
This paper describes a collaborative engineering process developed by the Marshall Space Flight Center's Advanced Concepts Office for performing rapid preliminary design and mission concept definition studies for potential future NASA missions. The process has been developed and demonstrated for a broad range of mission studies including human space exploration missions, space transportation system studies and in-space science missions. The paper will describe the design team structure and specialized analytical tools that have been developed to enable a unique rapid design process. The collaborative engineering process consists of integrated analysis approach for mission definition, vehicle definition and system engineering. The relevance of the collaborative process elements to the standard NASA NPR 7120.1 system engineering process will be demonstrated. The study definition process flow for each study discipline will be will be outlined beginning with the study planning process, followed by definition of ground rules and assumptions, definition of study trades, mission analysis and subsystem analyses leading to a standardized set of mission concept study products. The flexibility of the collaborative engineering design process to accommodate a wide range of study objectives from technology definition and requirements definition to preliminary design studies will be addressed. The paper will also describe the applicability of the collaborative engineering process to include an integrated systems analysis approach for evaluating the functional requirements of evolving system technologies and capabilities needed to meet the needs of future NASA programs.
A Strategic Approach to Medical Care for Exploration Missions
NASA Technical Reports Server (NTRS)
Canga, Michael A.; Shah, Ronak V.; Mindock, Jennifer A.; Antonsen, Erik L.
2016-01-01
Exploration missions will present significant new challenges to crew health, including effects of variable gravity environments, limited communication with Earth-based personnel for diagnosis and consultation for medical events, limited resupply, and limited ability for crew return. Providing health care capabilities for exploration class missions will require system trades be performed to identify a minimum set of requirements and crosscutting capabilities, which can be used in design of exploration medical systems. Medical data, information, and knowledge collected during current space missions must be catalogued and put in formats that facilitate querying and analysis. These data are used to inform the medical research and development program through analysis of risk trade studies between medical care capabilities and system constraints such as mass, power, volume, and training. Medical capability as a quantifiable variable is proposed as a surrogate risk metric and explored for trade space analysis that can improve communication between the medical and engineering approaches to mission design. The resulting medical system design approach selected will inform NASA mission architecture, vehicle, and subsystem design for the next generation of spacecraft.
Design and Application of the Exploration Maintainability Analysis Tool
NASA Technical Reports Server (NTRS)
Stromgren, Chel; Terry, Michelle; Crillo, William; Goodliff, Kandyce; Maxwell, Andrew
2012-01-01
Conducting human exploration missions beyond Low Earth Orbit (LEO) will present unique challenges in the areas of supportability and maintainability. The durations of proposed missions can be relatively long and re-supply of logistics, including maintenance and repair items, will be limited or non-existent. In addition, mass and volume constraints in the transportation system will limit the total amount of logistics that can be flown along with the crew. These constraints will require that new strategies be developed with regards to how spacecraft systems are designed and maintained. NASA is currently developing Design Reference Missions (DRMs) as an initial step in defining future human missions. These DRMs establish destinations and concepts of operation for future missions, and begin to define technology and capability requirements. Because of the unique supportability challenges, historical supportability data and models are not directly applicable for establishing requirements for beyond LEO missions. However, supportability requirements could have a major impact on the development of the DRMs. The mass, volume, and crew resources required to support the mission could all be first order drivers in the design of missions, elements, and operations. Therefore, there is a need for enhanced analysis capabilities to more accurately establish mass, volume, and time requirements for supporting beyond LEO missions. Additionally, as new technologies and operations are proposed to reduce these requirements, it is necessary to have accurate tools to evaluate the efficacy of those approaches. In order to improve the analysis of supportability requirements for beyond LEO missions, the Space Missions Analysis Branch at the NASA Langley Research Center is developing the Exploration Maintainability Analysis Tool (EMAT). This tool is a probabilistic simulator that evaluates the need for repair and maintenance activities during space missions and the logistics and crew requirements to support those activities. Using a Monte Carlo approach, the tool simulates potential failures in defined systems, based on established component reliabilities, and then evaluates the capability of the crew to repair those failures given a defined store of spares and maintenance items. Statistical analysis of Monte Carlo runs provides probabilistic estimates of overall mission safety and reliability. This paper will describe the operation of the EMAT, including historical data sources used to populate the model, simulation processes, and outputs. Analysis results are provided for a candidate exploration system, including baseline estimates of required sparing mass and volume. Sensitivity analysis regarding the effectiveness of proposed strategies to reduce mass and volume requirements and improve mission reliability is included in these results.
NASA Technical Reports Server (NTRS)
Young, Larry A.; Yetter, Jeffrey A.; Guynn, Mark D.
2006-01-01
Maturation of intelligent systems technologies and their incorporation into aerial platforms are dictating the development of new analysis tools and incorporation of such tools into existing system analysis methodologies in order to fully capture the trade-offs of autonomy on vehicle and mission success. A first-order "system analysis of autonomy" methodology is outlined in this paper. Further, this analysis methodology is subsequently applied to notional high-altitude long-endurance (HALE) aerial vehicle missions.
Multi-reactor power system configurations for multimegawatt nuclear electric propulsion
NASA Technical Reports Server (NTRS)
George, Jeffrey A.
1991-01-01
A modular, multi-reactor power system and vehicle configuration for piloted nuclear electric propulsion (NEP) missions to Mars is presented. Such a design could provide enhanced system and mission reliability, allowing a comfortable safety margin for early manned flights, and would allow a range of piloted and cargo missions to be performed with a single power system design. Early use of common power modules for cargo missions would also provide progressive flight experience and validation of standardized systems for use in later piloted applications. System and mission analysis are presented to compare single and multi-reactor configurations for piloted Mars missions. A conceptual design for the Hydra modular multi-reactor NEP vehicle is presented.
NASA Technical Reports Server (NTRS)
1975-01-01
Mission planning, systems analysis, and design concepts for the Space Shuttle/Spacelab system for extended manned operations are described. Topics discussed are: (1) payloads, (2) spacecraft docking, (3) structural design criteria, (4) life support systems, (5) power supplies, and (6) the role of man in long duration orbital operations. Also discussed are the assembling of large structures in space. Engineering drawings are included.
Analysis of System Margins on Missions Utilizing Solar Electric Propulsion
NASA Technical Reports Server (NTRS)
Oh, David Y.; Landau, Damon; Randolph, Thomas; Timmerman, Paul; Chase, James; Sims, Jon; Kowalkowski, Theresa
2008-01-01
NASA's Jet Propulsion Laboratory has conducted a study focused on the analysis of appropriate margins for deep space missions using solar electric propulsion (SEP). The purpose of this study is to understand the links between disparate system margins (power, mass, thermal, etc.) and their impact on overall mission performance and robustness. It is determined that the various sources of uncertainty and risk associated with electric propulsion mission design can be summarized into three relatively independent parameters 1) EP Power Margin, 2) Propellant Margin and 3) Duty Cycle Margin. The overall relationship between these parameters and other major sources of uncertainty is presented. A detailed trajectory analysis is conducted to examine the impact that various assumptions related to power, duty cycle, destination, and thruster performance including missed thrust periods have on overall performance. Recommendations are presented for system margins for deep space missions utilizing solar electric propulsion.
Low-thrust mission risk analysis, with application to a 1980 rendezvous with the comet Encke
NASA Technical Reports Server (NTRS)
Yen, C. L.; Smith, D. B.
1973-01-01
A computerized failure process simulation procedure is used to evaluate the risk in a solar electric space mission. The procedure uses currently available thrust-subsystem reliability data and performs approximate simulations of the thrust sybsystem burn operation, the system failure processes, and the retargeting operations. The method is applied to assess the risks in carrying out a 1980 rendezvous mission to the comet Encke. Analysis of the results and evaluation of the effects of various risk factors on the mission show that system component failure rates are the limiting factors in attaining a high mission relability. It is also shown that a well-designed trajectory and system operation mode can be used effectively to partially compensate for unreliable thruster performance.
Preliminary analysis of space mission applications for electromagnetic launchers
NASA Technical Reports Server (NTRS)
Miller, L. A.; Rice, E. E.; Earhart, R. W.; Conlon, R. J.
1984-01-01
The technical and economic feasibility of using electromagnetically launched EML payloads propelled from the Earth's surface to LEO, GEO, lunar orbit, or to interplanetary space was assessed. Analyses of the designs of rail accelerators and coaxial magnetic accelerators show that each is capable of launching to space payloads of 800 KG or more. A hybrid launcher in which EML is used for the first 2 KM/sec followed by chemical rocket stages was also tested. A cost estimates study shows that one to two EML launches per day are needed to break even, compared to a four-stage rocket. Development models are discussed for: (1) Earth orbital missions; (2) lunar base supply mission; (3) solar system escape mission; (4) Earth escape missions; (5) suborbital missions; (6) electromagnetic boost missions; and (7) space-based missions. Safety factors, environmental impacts, and EML systems analysis are discussed. Alternate systems examined include electrothermal thrustors, an EML rocket gun; an EML theta gun, and Soviet electromagnetic accelerators.
STS-71 Shuttle/Mir mission report
NASA Technical Reports Server (NTRS)
Zimpfer, Douglas J.
1995-01-01
The performance measurements of the space shuttle on-orbit flight control system from the STS-71 mission is presented in this post-flight analysis report. This system is crucial to the stabilization of large space structures and will be needed during the assembly of the International Space Station A mission overview is presented, including the in-orbit flight tests (pre-docking with Mir) and the systems analysis during the docking and undocking operations. Systems errors and lessons learned are discussed, with possible corrective procedures presented for the upcoming Mir flight tests.
The Ninevah Mission: A design summary for an unmanned mission to Venus, volume 1
NASA Technical Reports Server (NTRS)
1988-01-01
The design summary for an unmanned mission to the planet Venus, with code name Ninevah, is presented. The design includes a Hohmann transfer trajectory analysis, propulsion trade study, an overview of the communication and instrumentation systems, power requirements, probe and lander analysis, and a weight and cost analysis.
Mission and system optimization of nuclear electric propulsion vehicles for lunar and Mars missions
NASA Technical Reports Server (NTRS)
Gilland, James H.
1991-01-01
The detailed mission and system optimization of low thrust electric propulsion missions is a complex, iterative process involving interaction between orbital mechanics and system performance. Through the use of appropriate approximations, initial system optimization and analysis can be performed for a range of missions. The intent of these calculations is to provide system and mission designers with simple methods to assess system design without requiring access or detailed knowledge of numerical calculus of variations optimizations codes and methods. Approximations for the mission/system optimization of Earth orbital transfer and Mars mission have been derived. Analyses include the variation of thruster efficiency with specific impulse. Optimum specific impulse, payload fraction, and power/payload ratios are calculated. The accuracy of these methods is tested and found to be reasonable for initial scoping studies. Results of optimization for Space Exploration Initiative lunar cargo and Mars missions are presented for a range of power system and thruster options.
The Status of Spacecraft Bus and Platform Technology Development under the NASA ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David J.; Munk, Michelle M.; Pencil, Eric; Dankanich, John; Glaab, Louis; Peterson, Todd
2013-01-01
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System and ultralightweight propellant tank technologies. Future directions for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV); and 3) electric propulsion. These technologies are more vehicles and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These inspace propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
The status of spacecraft bus and platform technology development under the NASA ISPT program
NASA Astrophysics Data System (ADS)
Anderson, D. J.; Munk, M. M.; Pencil, E.; Dankanich, J.; Glaab, L.; Peterson, T.
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN& C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System and ultra-lightweight propellant tank technologies. Future directions for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV); and 3) electric propulsion. These technologies are more vehicles and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicabilit- to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
The Status of Spacecraft Bus and Platform Technology Development Under the NASA ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David J.; Munk, Michelle M.; Pencil, Eric J.; Dankanich, John; Glaab, Louis J.
2013-01-01
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance 2) NASAs Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future direction for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV) 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) and 3) electric propulsion. These technologies are more vehicle and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
Spacecraft Bus and Platform Technology Development under the NASA ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David J.; Munk, Michelle M.; Pencil, Eric; Dankanich, John; Glaab, Louis; Peterson, Todd
2013-01-01
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future direction for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions; and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
Spacecraft Bus and Platform Technology Development under the NASA ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David J.; Munk, Michelle M.; Pencil, Eric J.; Dankanich, John W.; Glaab, Louis J.; Peterson, Todd T.
2013-01-01
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance 2) NASAs Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future direction for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV) 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
Crewed Mission to Callisto Using Advanced Plasma Propulsion Systems
NASA Technical Reports Server (NTRS)
Adams, R. B.; Statham, G.; White, S.; Patton, B.; Thio, Y. C. F.; Santarius, J.; Alexander, R.; Fincher, S.; Polsgrove, T.; Chapman, J.
2003-01-01
This paper describes the engineering of several vehicles designed for a crewed mission to the Jovian satellite Callisto. Each subsystem is discussed in detail. Mission and trajectory analysis for each mission concept is described. Crew support components are also described. Vehicles were developed using both fission powered magneto plasma dynamic (MPD) thrusters and magnetized target fusion (MTF) propulsion systems. Conclusions were drawn regarding the usefulness of these propulsion systems for crewed exploration of the outer solar system.
Status and Mission Applicability of NASA's In-Space Propulsion Technology Project
NASA Technical Reports Server (NTRS)
Anderson, David J.; Munk, Michelle M.; Dankanich, John; Pencil, Eric; Liou, Larry
2009-01-01
The In-Space Propulsion Technology (ISPT) project develops propulsion technologies that will enable or enhance NASA robotic science missions. Since 2001, the ISPT project developed and delivered products to assist technology infusion and quantify mission applicability and benefits through mission analysis and tools. These in-space propulsion technologies are applicable, and potentially enabling for flagship destinations currently under evaluation, as well as having broad applicability to future Discovery and New Frontiers mission solicitations. This paper provides status of the technology development, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of advanced chemical thrusters, electric propulsion, aerocapture, and systems analysis tools. The current chemical propulsion investment is on the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. Investments in electric propulsion technologies focused on completing NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system, and the High Voltage Hall Accelerator (HiVHAC) thruster, which is a mid-term product specifically designed for a low-cost electric propulsion option. Aerocapture investments developed a family of thermal protections system materials and structures; guidance, navigation, and control models of blunt-body rigid aeroshells; atmospheric models for Earth, Titan, Mars and Venus; and models for aerothermal effects. In 2009 ISPT started the development of propulsion technologies that would enable future sample return missions. The paper describes the ISPT project's future focus on propulsion for sample return missions. The future technology development areas for ISPT is: Planetary Ascent Vehicles (PAV), with a Mars Ascent Vehicle (MAV) being the initial development focus; multi-mission technologies for Earth Entry Vehicles (MMEEV) needed for sample return missions from many different destinations; propulsion for Earth Return Vehicles (ERV), transfer stages to the destination, and Electric Propulsion for sample return and low cost missions; and Systems/Mission Analysis focused on sample return propulsion. The ISPT project is funded by NASA's Science Mission Directorate (SMD).
NASA Technical Reports Server (NTRS)
1972-01-01
Nuclear safety analysis as applied to a space base mission is presented. The nuclear safety analysis document summarizes the mission and the credible accidents/events which may lead to nuclear hazards to the general public. The radiological effects and associated consequences of the hazards are discussed in detail. The probability of occurrence is combined with the potential number of individuals exposed to or above guideline values to provide a measure of accident and total mission risk. The overall mission risk has been determined to be low with the potential exposure to or above 25 rem limited to less than 4 individuals per every 1000 missions performed. No radiological risk to the general public occurs during the prelaunch phase at KSC. The most significant risks occur from prolonged exposure to reactor debris following land impact generally associated with the disposal phase of the mission where fission product inventories can be high.
Mission specification for three generic mission classes
NASA Technical Reports Server (NTRS)
1979-01-01
Mission specifications for three generic mission classes are generated to provide a baseline for definition and analysis of data acquisition platform system concepts. The mission specifications define compatible groupings of sensors that satisfy specific earth resources and environmental mission objectives. The driving force behind the definition of sensor groupings is mission need; platform and space transportation system constraints are of secondary importance. The three generic mission classes are: (1) low earth orbit sun-synchronous; (2) geosynchronous; and (3) non-sun-synchronous, nongeosynchronous. These missions are chosen to provide a variety of sensor complements and implementation concepts. Each mission specification relates mission categories, mission objectives, measured parameters, and candidate sensors to orbits and coverage, operations compatibility, and platform fleet size.
Multi-mission space vehicle subsystem analysis tools
NASA Technical Reports Server (NTRS)
Kordon, M.; Wood, E.
2003-01-01
Spacecraft engineers often rely on specialized simulation tools to facilitate the analysis, design and operation of space systems. Unfortunately these tools are often designed for one phase of a single mission and cannot be easily adapted to other phases or other misions. The Multi-Mission Pace Vehicle Susbsystem Analysis Tools are designed to provide a solution to this problem.
NASA Technical Reports Server (NTRS)
Fordyce, Jess
1996-01-01
Work carried out to re-engineer the mission analysis segment of JPL's mission planning ground system architecture is reported on. The aim is to transform the existing software tools, originally developed for specific missions on different support environments, into an integrated, general purpose, multi-mission tool set. The issues considered are: the development of a partnership between software developers and users; the definition of key mission analysis functions; the development of a consensus based architecture; the move towards evolutionary change instead of revolutionary replacement; software reusability, and the minimization of future maintenance costs. The current status and aims of new developments are discussed and specific examples of cost savings and improved productivity are presented.
A Strategic Approach to Medical Care for Exploration Missions
NASA Technical Reports Server (NTRS)
Antonsen, E.; Canga, M.
2016-01-01
Exploration missions will present significant new challenges to crew health, including effects of variable gravity environments, limited communication with Earth-based personnel for diagnosis and consultation for medical events, limited resupply, and limited ability for crew return. Providing health care capabilities for exploration class missions will require system trades be performed to identify a minimum set of requirements and crosscutting capabilities which can be used in design of exploration medical systems. Current and future medical data, information, and knowledge must be cataloged and put in formats that facilitate querying and analysis. These data may then be used to inform the medical research and development program through analysis of risk trade studies between medical care capabilities and system constraints such as mass, power, volume, and training. These studies will be used to define a Medical Concept of Operations to facilitate stakeholder discussions on expected medical capability for exploration missions. Medical Capability as a quantifiable variable is proposed as a surrogate risk metric and explored for trade space analysis that can improve communication between the medical and engineering approaches to mission design. The resulting medical system approach selected will inform NASA mission architecture, vehicle, and subsystem design for the next generation of spacecraft.
Autonomous and Autonomic Systems: A Paradigm for Future Space Exploration Missions
NASA Technical Reports Server (NTRS)
Truszkowski, Walter F.; Hinchey, Michael G.; Rash, James L.; Rouff, Christopher A.
2004-01-01
NASA increasingly will rely on autonomous systems concepts, not only in the mission control centers on the ground, but also on spacecraft and on rovers and other assets on extraterrestrial bodies. Automomy enables not only reduced operations costs, But also adaptable goal-driven functionality of mission systems. Space missions lacking autonomy will be unable to achieve the full range of advanced mission objectives, given that human control under dynamic environmental conditions will not be feasible due, in part, to the unavoidably high signal propagation latency and constrained data rates of mission communications links. While autonomy cost-effectively supports accomplishment of mission goals, autonomicity supports survivability of remote mission assets, especially when human tending is not feasible. Autonomic system properties (which ensure self-configuring, self-optimizing self-healing, and self-protecting behavior) conceptually may enable space missions of a higher order into any previously flown. Analysis of two NASA agent-based systems previously prototyped, and of a proposed future mission involving numerous cooperating spacecraft, illustrates how autonomous and autonomic system concepts may be brought to bear on future space missions.
Effect of power system technology and mission requirements on high altitude long endurance aircraft
NASA Technical Reports Server (NTRS)
Colozza, Anthony J.
1994-01-01
An analysis was performed to determine how various power system components and mission requirements affect the sizing of a solar powered long endurance aircraft. The aircraft power system consists of photovoltaic cells and a regenerative fuel cell. Various characteristics of these components, such as PV cell type, PV cell mass, PV cell efficiency, fuel cell efficiency, and fuel cell specific mass, were varied to determine what effect they had on the aircraft sizing for a given mission. Mission parameters, such as time of year, flight altitude, flight latitude, and payload mass and power, were also altered to determine how mission constraints affect the aircraft sizing. An aircraft analysis method which determines the aircraft configuration, aspect ratio, wing area, and total mass, for maximum endurance or minimum required power based on the stated power system and mission parameters is presented. The results indicate that, for the power system, the greatest benefit can be gained by increasing the fuel cell specific energy. Mission requirements also substantially affect the aircraft size. By limiting the time of year the aircraft is required to fly at high northern or southern latitudes, a significant reduction in aircraft size or increase in payload capacity can be achieved.
Galileo and Ulysses missions safety analysis and launch readiness status
NASA Technical Reports Server (NTRS)
Cork, M. Joseph; Turi, James A.
1989-01-01
The Galileo spacecraft, which will release probes to explore the Jupiter system, was launched in October, 1989 as the payload on STS-34, and the Ulysses spacecraft, which will fly by Jupiter en route to a polar orbit of the sun, is presently entering system-test activity in preparation for an October, 1990 launch. This paper reviews the Galileo and Ulysses mission objectives and design approaches and presents details of the missions' safety analysis. The processes used to develop the safety analysis are described and the results of safety tests are presented.
NASA Astrophysics Data System (ADS)
Fusaro, Roberta; Viola, Nicole; Fenoglio, Franco; Santoro, Francesco
2017-03-01
This paper proposes a methodology to derive architectures and operational concepts for future earth-to-orbit and sub-orbital transportation systems. In particular, at first, it describes the activity flow, methods, and tools leading to the generation of a wide range of alternative solutions to meet the established goal. Subsequently, the methodology allows selecting a small number of feasible options among which the optimal solution can be found. For the sake of clarity, the first part of the paper describes the methodology from a theoretical point of view, while the second part proposes the selection of mission concepts and of a proper transportation system aimed at sub-orbital parabolic flights. Starting from a detailed analysis of the stakeholders and their needs, the major objectives of the mission have been derived. Then, following a system engineering approach, functional analysis tools as well as concept of operations techniques allowed generating a very high number of possible ways to accomplish the envisaged goals. After a preliminary pruning activity, aimed at defining the feasibility of these concepts, more detailed analyses have been carried out. Going on through the procedure, the designer should move from qualitative to quantitative evaluations, and for this reason, to support the trade-off analysis, an ad-hoc built-in mission simulation software has been exploited. This support tool aims at estimating major mission drivers (mass, heat loads, manoeuverability, earth visibility, and volumetric efficiency) as well as proving the feasibility of the concepts. Other crucial and multi-domain mission drivers, such as complexity, innovation level, and safety have been evaluated through the other appropriate analyses. Eventually, one single mission concept has been selected and detailed in terms of layout, systems, and sub-systems, highlighting also logistic, safety, and maintainability aspects.
Early Formulation Model-centric Engineering on Nasa's Europa Mission Concept Study
NASA Technical Reports Server (NTRS)
Bayer, Todd; Chung, Seung; Cole, Bjorn; Cooke, Brian; Dekens, Frank; Delp, Chris; Gontijo, I.; Lewis, Kari; Moshir, Mehrdad; Rasmussen, Robert;
2012-01-01
By leveraging the existing Model-Based Systems Engineering (MBSE) infrastructure at JPL and adding a modest investment, the Europa Mission Concept Study made striking advances in mission concept capture and analysis. This effort has reaffirmed the importance of architecting and successfully harnessed the synergistic relationship of system modeling to mission architecting. It clearly demonstrated that MBSE can provide greater agility than traditional systems engineering methods. This paper will describe the successful application of MBSE in the dynamic environment of early mission formulation, the significant results produced and lessons learned in the process.
Vehicle management and mission planning systems with shuttle applications
NASA Technical Reports Server (NTRS)
1972-01-01
A preliminary definition of a concept for an automated system is presented that will support the effective management and planning of space shuttle operations. It is called the Vehicle Management and Mission Planning System (VMMPS). In addition to defining the system and its functions, some of the software requirements of the system are identified and a phased and evolutionary method is recommended for software design, development, and implementation. The concept is composed of eight software subsystems supervised by an executive system. These subsystems are mission design and analysis, flight scheduler, launch operations, vehicle operations, payload support operations, crew support, information management, and flight operations support. In addition to presenting the proposed system, a discussion of the evolutionary software development philosophy that the Mission Planning and Analysis Division (MPAD) would propose to use in developing the required supporting software is included. A preliminary software development schedule is also included.
Optimal Mission Abort Policy for Systems Operating in a Random Environment.
Levitin, Gregory; Finkelstein, Maxim
2018-04-01
Many real-world critical systems, e.g., aircrafts, manned space flight systems, and submarines, utilize mission aborts to enhance their survivability. Specifically, a mission can be aborted when a certain malfunction condition is met and a rescue or recovery procedure is then initiated. For systems exposed to external impacts, the malfunctions are often caused by the consequences of these impacts. Traditional system reliability models typically cannot address a possibility of mission aborts. Therefore, in this article, we first develop the corresponding methodology for modeling and evaluation of the mission success probability and survivability of systems experiencing both internal failures and external shocks. We consider a policy when a mission is aborted and a rescue procedure is activated upon occurrence of the mth shock. We demonstrate the tradeoff between the system survivability and the mission success probability that should be balanced by the proper choice of the decision variable m. A detailed illustrative example of a mission performed by an unmanned aerial vehicle is presented. © 2017 Society for Risk Analysis.
NASA Technical Reports Server (NTRS)
1972-01-01
An analysis and conceptual design of a baseline mission and spacecraft are presented. Aspects of the HEAO-C discussed include: baseline experiments with X-ray observations of space, analysis of mission requirements, observatory design, structural analysis, thermal control, attitude sensing and control system, communication and data handling, and space shuttle launch and retrieval of HEAO-C.
Planning Coverage Campaigns for Mission Design and Analysis: CLASP for DESDynl
NASA Technical Reports Server (NTRS)
Knight, Russell L.; McLaren, David A.; Hu, Steven
2013-01-01
Mission design and analysis presents challenges in that almost all variables are in constant flux, yet the goal is to achieve an acceptable level of performance against a concept of operations, which might also be in flux. To increase responsiveness, automated planning tools are used that allow for the continual modification of spacecraft, ground system, staffing, and concept of operations, while returning metrics that are important to mission evaluation, such as area covered, peak memory usage, and peak data throughput. This approach was applied to the DESDynl mission design using the CLASP planning system, but since this adaptation, many techniques have changed under the hood for CLASP, and the DESDynl mission concept has undergone drastic changes. The software produces mission evaluation products, such as memory highwater marks, coverage percentages, given a mission design in the form of coverage targets, concept of operations, spacecraft parameters, and orbital parameters. It tries to overcome the lack of fidelity and timeliness of mission requirements coverage analysis during mission design. Previous techniques primarily use Excel in ad hoc fashion to approximate key factors in mission performance, often falling victim to overgeneralizations necessary in such an adaptation. The new program allows designers to faithfully represent their mission designs quickly, and get more accurate results just as quickly.
Nuclear electric propulsion mission engineering study. Volume 2: Final report
NASA Technical Reports Server (NTRS)
1973-01-01
Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies associated with the development of nuclear electric propulsion (NEP) are assessed, along with the impact of its availability on future space programs. Outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP stage development are studied.
Life Support Filtration System Trade Study for Deep Space Missions
NASA Technical Reports Server (NTRS)
Agui, Juan H.; Perry, Jay L.
2017-01-01
The National Aeronautics and Space Administrations (NASA) technical developments for highly reliable life support systems aim to maximize the viability of long duration deep space missions. Among the life support system functions, airborne particulate matter filtration is a significant driver of launch mass because of the large geometry required to provide adequate filtration performance and because of the number of replacement filters needed to a sustain a mission. A trade analysis incorporating various launch, operational and maintenance parameters was conducted to investigate the trade-offs between the various particulate matter filtration configurations. In addition to typical launch parameters such as mass, volume and power, the amount of crew time dedicated to system maintenance becomes an increasingly crucial factor for long duration missions. The trade analysis evaluated these parameters for conventional particulate matter filtration technologies and a new multi-stage particulate matter filtration system under development by NASAs Glenn Research Center. The multi-stage filtration system features modular components that allow for physical configuration flexibility. Specifically, the filtration system components can be configured in distributed, centralized, and hybrid physical layouts that can result in considerable mass savings compared to conventional particulate matter filtration technologies. The trade analysis results are presented and implications for future transit and surface missions are discussed.
ISTAR: Intelligent System for Telemetry Analysis in Real-time
NASA Technical Reports Server (NTRS)
Simmons, Charles
1994-01-01
The intelligent system for telemetry analysis in real-time (ISTAR) is an advanced vehicle monitoring environment incorporating expert systems, analysis tools, and on-line hypermedia documentation. The system was developed for the Air Force Space and Missile Systems Center (SMC) in Los Angeles, California, in support of the inertial upper stage (IUS) booster vehicle. Over a five year period the system progressed from rapid prototype to operational system. ISTAR has been used to support five IUS missions and countless mission simulations. There were a significant number of lessons learned with respect to integrating an expert system capability into an existing ground system.
NASA Technical Reports Server (NTRS)
LaPointe, Michael
2006-01-01
The Solar Electric Propulsion (SEP) technology area is tasked to develop near and mid-term SEP technology to improve or enable science mission capture while minimizing risk and cost to the end user. The solar electric propulsion investments are primarily driven by SMD cost-capped mission needs. The technology needs are determined partially through systems analysis tasks including the recent "Re-focus Studies" and "Standard Architecture Study." These systems analysis tasks transitioned the technology development to address the near term propulsion needs suitable for cost-capped open solicited missions such as Discovery and New Frontiers Class missions. Major SEP activities include NASA's Evolutionary Xenon Thruster (NEXT), implementing a Standard Architecture for NSTAR and NEXT EP systems, and developing a long life High Voltage Hall Accelerator (HiVHAC). Lower level investments include advanced feed system development and xenon recovery testing. Future plans include completion of ongoing ISP development activities and evaluating potential use of commercial electric propulsion systems for SMD applications. Examples of enhanced mission capability and technology readiness dates shall be discussed.
EPA/ECLSS consumables analyses for the Spacelab 1 flight
NASA Technical Reports Server (NTRS)
Steines, G. J.; Pipher, M. D.
1976-01-01
The results of electrical power system (EPS) and environmental control/life support system (ECLSS) consumables analyses of the Spacelab 1 mission are presented. The analyses were performed to assess the capability of the orbiter systems to support the proposed mission and to establish the various non propulsive consumables requirements. The EPS analysis was performed using the shuttle electrical power system (SEPS) analysis computer program. The ECLSS analysis was performed using the shuttle environmental consumables requirements evaluation tool (SECRET) program.
NASA Technical Reports Server (NTRS)
Rea, F. G.; Pittenger, J. L.; Conlon, R. J.; Allen, J. D.
1975-01-01
Techniques developed for identifying launch vehicle system requirements for NASA automated space missions are discussed. Emphasis is placed on development of computer programs and investigation of astrionics for OSS missions and Scout. The Earth Orbit Mission Program - 1 which performs linear error analysis of launch vehicle dispersions for both vehicle and navigation system factors is described along with the Interactive Graphic Orbit Selection program which allows the user to select orbits which satisfy mission requirements and to evaluate the necessary injection accuracy.
2003-01-01
AFRL-IF-RS-TR-2002-315 Final Technical Report January 2003 THE EMERALD MISSION-BASED CORRELATION SYSTEM – AN EXPERIMENTAL DATA...2003 3. REPORT TYPE AND DATES COVERED Final Jan 02 – Jul 02 4. TITLE AND SUBTITLE THE EMERALD MISSION-BASED CORRELATION SYSTEM – AN EXPERIMENTAL...DISTRIBUTION CODE 13. ABSTRACT (Maximum 200 Words) This project was established to experiment on the efficacy of the SRI EMERALD Mission-based
Satellite services system analysis study. Volume 1, part 2: Executive summary
NASA Technical Reports Server (NTRS)
1981-01-01
The early mission model was developed through a survey of the potential user market. Service functions were defined and a group of design reference missions were selected which represented needs for each of the service functions. Servicing concepts were developed through mission analysis and STS timeline constraint analysis. The hardware needs for accomplishing the service functions were identified with emphasis being placed on applying equipment in the current NASA inventory and that in advanced stages of planning. A more comprehensive service model was developed based on the NASA and DoD mission models segregated by mission class. The number of service events of each class were estimated based on average revisit and service assumptions. Service Kits were defined as collections of equipment applicable to performing one or more service functions. Preliminary design was carrid out on a selected set of hardware needed for early service missions. The organization and costing of the satellie service systems were addressed.
What Do Police Academy Instructors and STEM Teachers Have in Common? The "Mission Paradox"
ERIC Educational Resources Information Center
Even Zahav, Anat; Shahar, Sigalit; Hazzan, Orit
2016-01-01
This article presents the "Mission Paradox," shared by two public sector organizations in Israel: the police training system and the post-primary STEM education system. The "Mission Paradox" was identified in data analysis of two doctoral studies, which implemented a qualitative methodology. The study's purpose was to analyze…
1999-11-01
represents the linear time invariant (LTI) response of the combined analysis /synthesis system while the second repre- sents the aliasing introduced into...effectively to implement voice scrambling systems based on time - frequency permutation . The most general form of such a system is shown in Fig. 22 where...92201 NEUILLY-SUR-SEINE CEDEX, FRANCE RTO LECTURE SERIES 216 Application of Mathematical Signal Processing Techniques to Mission Systems (1
Navigation Design and Analysis for the Orion Cislunar Exploration Missions
NASA Technical Reports Server (NTRS)
D'Souza, Christopher; Holt, Greg; Gay, Robert; Zanetti, Renato
2014-01-01
This paper details the design and analysis of the cislunar optical navigation system being proposed for the Orion Earth-Moon (EM) missions. In particular, it presents the mathematics of the navigation filter. It also presents the sensitivity analysis that has been performed to understand the performance of the proposed system, with particular attention paid to entry flight path angle constraints and the DELTA V performance
Reducing the Risk of Human Space Missions with INTEGRITY
NASA Technical Reports Server (NTRS)
Jones, Harry W.; Dillon-Merill, Robin L.; Tri, Terry O.; Henninger, Donald L.
2003-01-01
The INTEGRITY Program will design and operate a test bed facility to help prepare for future beyond-LEO missions. The purpose of INTEGRITY is to enable future missions by developing, testing, and demonstrating advanced human space systems. INTEGRITY will also implement and validate advanced management techniques including risk analysis and mitigation. One important way INTEGRITY will help enable future missions is by reducing their risk. A risk analysis of human space missions is important in defining the steps that INTEGRITY should take to mitigate risk. This paper describes how a Probabilistic Risk Assessment (PRA) of human space missions will help support the planning and development of INTEGRITY to maximize its benefits to future missions. PRA is a systematic methodology to decompose the system into subsystems and components, to quantify the failure risk as a function of the design elements and their corresponding probability of failure. PRA provides a quantitative estimate of the probability of failure of the system, including an assessment and display of the degree of uncertainty surrounding the probability. PRA provides a basis for understanding the impacts of decisions that affect safety, reliability, performance, and cost. Risks with both high probability and high impact are identified as top priority. The PRA of human missions beyond Earth orbit will help indicate how the risk of future human space missions can be reduced by integrating and testing systems in INTEGRITY.
Use of Model-Based Design Methods for Enhancing Resiliency Analysis of Unmanned Aerial Vehicles
NASA Astrophysics Data System (ADS)
Knox, Lenora A.
The most common traditional non-functional requirement analysis is reliability. With systems becoming more complex, networked, and adaptive to environmental uncertainties, system resiliency has recently become the non-functional requirement analysis of choice. Analysis of system resiliency has challenges; which include, defining resilience for domain areas, identifying resilience metrics, determining resilience modeling strategies, and understanding how to best integrate the concepts of risk and reliability into resiliency. Formal methods that integrate all of these concepts do not currently exist in specific domain areas. Leveraging RAMSoS, a model-based reliability analysis methodology for Systems of Systems (SoS), we propose an extension that accounts for resiliency analysis through evaluation of mission performance, risk, and cost using multi-criteria decision-making (MCDM) modeling and design trade study variability modeling evaluation techniques. This proposed methodology, coined RAMSoS-RESIL, is applied to a case study in the multi-agent unmanned aerial vehicle (UAV) domain to investigate the potential benefits of a mission architecture where functionality to complete a mission is disseminated across multiple UAVs (distributed) opposed to being contained in a single UAV (monolithic). The case study based research demonstrates proof of concept for the proposed model-based technique and provides sufficient preliminary evidence to conclude which architectural design (distributed vs. monolithic) is most resilient based on insight into mission resilience performance, risk, and cost in addition to the traditional analysis of reliability.
NASA Technical Reports Server (NTRS)
Jones, Harry W.; Dillon-Merrill, Robin L.; Thomas, Gretchen A.
2003-01-01
The Advanced Integration Matrix (AIM) Project u7ill study and solve systems-level integration issues for exploration missions beyond Low Earth Orbit (LEO), through the design and development of a ground-based facility for developing revolutionary integrated systems for joint human-robotic missions. This paper describes a Probabilistic Risk Analysis (PRA) of human space missions that was developed to help define the direction and priorities for AIM. Risk analysis is required for all major NASA programs and has been used for shuttle, station, and Mars lander programs. It is a prescribed part of early planning and is necessary during concept definition, even before mission scenarios and system designs exist. PRA cm begin when little failure data are available, and be continually updated and refined as detail becomes available. PRA provides a basis for examining tradeoffs among safety, reliability, performance, and cost. The objective of AIM's PRA is to indicate how risk can be managed and future human space missions enabled by the AIM Project. Many critical events can cause injuries and fatalities to the crew without causing loss of vehicle or mission. Some critical systems are beyond AIM's scope, such as propulsion and guidance. Many failure-causing events can be mitigated by conducting operational tests in AIM, such as testing equipment and evaluating operational procedures, especially in the areas of communications and computers, autonomous operations, life support, thermal design, EVA and rover activities, physiological factors including habitation, medical equipment, and food, and multifunctional tools and repairable systems. AIM is well suited to test and demonstrate the habitat, life support, crew operations, and human interface. Because these account for significant crew, systems performance, and science risks, AIM will help reduce mission risk, and missions beyond LEO are far enough in the future that AIM can have significant impact.
NASA Technical Reports Server (NTRS)
1975-01-01
The transportation mass requirements developed for each mission and transportation mode were based on vehicle systems sized to fit the exact needs of each mission (i.e. rubber vehicles). The parametric data used to derive the mass requirements for each mission and transportation mode are presented to enable accommodation of possible changes in mode options or payload definitions. The vehicle sizing and functional requirements used to derive the parametric data will form the basis for conceptual configurations of the transportation elements in a later phase of study. An investigation of the weight growth approach to future space transportation systems analysis is presented. Parameters which affect weight growth, past weight histories, and the current state of future space-mission design are discussed. Weight growth factors of from 10 percent to 41 percent were derived for various missions or vehicles.
The Status of Spacecraft Bus and Platform Technology Development Under the NASA ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David; Munk, Michelle M.; Pencil, Eric; Dankanich, John; Glaab, Louis; Peterson, Todd
2014-01-01
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in three areas that include Propulsion System Technologies, Entry Vehicle Technologies, and Systems Mission Analysis. ISPTs propulsion technologies include: 1) NASAs Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; 2) a Hall-effect electric propulsion (HEP) system for sample return and low cost missions; 3) the Advanced Xenon Flow Control System (AXFS); ultra-lightweight propellant tank technologies (ULTT); and propulsion technologies for a Mars Ascent Vehicle (MAV). The AXFS and ULTT are two component technologies being developed with nearer-term flight infusion in mind, whereas NEXT and the HEP are being developed as EP systems. ISPTs entry vehicle technologies are: 1) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GNC) models of blunt-body rigid aeroshells; and aerothermal effect models; and 2) Multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions. The Systems Mission Analysis area is focused on developing tools and assessing the application of propulsion, entry vehicle, and spacecraft bus technologies to a wide variety of mission concepts. Several of the ISPT technologies are related to sample return missions and other spacecraft bus technology needs like: MAV propulsion, MMEEV, and electric propulsion. These technologies, as well as Aerocapture, are more vehicle and mission-focused, and present a different set of technology development challenges. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, Flagship and sample return missions currently under consideration. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness.
Space station needs, attributes and architectural options study. Volume 2: Mission analysis
NASA Technical Reports Server (NTRS)
1983-01-01
Space environment studies, astrophysics, Earth environment, life sciences, and material sciences are discussed. Commercial communication, materials processing, and Earth observation missions are addressed. Technology development, space operations, scenarios of operational capability, mission requirements, and benefits analysis results for space-produced gallium arsenide crystals, direct broadcasting satellite systems, and a high inclination space station are covered.
Modeling and Simulation for Mission Operations Work System Design
NASA Technical Reports Server (NTRS)
Sierhuis, Maarten; Clancey, William J.; Seah, Chin; Trimble, Jay P.; Sims, Michael H.
2003-01-01
Work System analysis and design is complex and non-deterministic. In this paper we describe Brahms, a multiagent modeling and simulation environment for designing complex interactions in human-machine systems. Brahms was originally conceived as a business process design tool that simulates work practices, including social systems of work. We describe our modeling and simulation method for mission operations work systems design, based on a research case study in which we used Brahms to design mission operations for a proposed discovery mission to the Moon. We then describe the results of an actual method application project-the Brahms Mars Exploration Rover. Space mission operations are similar to operations of traditional organizations; we show that the application of Brahms for space mission operations design is relevant and transferable to other types of business processes in organizations.
Practical Application of Model-based Programming and State-based Architecture to Space Missions
NASA Technical Reports Server (NTRS)
Horvath, Gregory; Ingham, Michel; Chung, Seung; Martin, Oliver; Williams, Brian
2006-01-01
A viewgraph presentation to develop models from systems engineers that accomplish mission objectives and manage the health of the system is shown. The topics include: 1) Overview; 2) Motivation; 3) Objective/Vision; 4) Approach; 5) Background: The Mission Data System; 6) Background: State-based Control Architecture System; 7) Background: State Analysis; 8) Overview of State Analysis; 9) Background: MDS Software Frameworks; 10) Background: Model-based Programming; 10) Background: Titan Model-based Executive; 11) Model-based Execution Architecture; 12) Compatibility Analysis of MDS and Titan Architectures; 13) Integrating Model-based Programming and Execution into the Architecture; 14) State Analysis and Modeling; 15) IMU Subsystem State Effects Diagram; 16) Titan Subsystem Model: IMU Health; 17) Integrating Model-based Programming and Execution into the Software IMU; 18) Testing Program; 19) Computationally Tractable State Estimation & Fault Diagnosis; 20) Diagnostic Algorithm Performance; 21) Integration and Test Issues; 22) Demonstrated Benefits; and 23) Next Steps
Historical trends of participation of women in robotic spacecraft missions
NASA Astrophysics Data System (ADS)
Rathbun, Julie A.; Dones, Luke; Gay, Pamela; Cohen, Barbara; Horst, Sarah; Lakdawalla, Emily; Spickard, James; Milazzo, Moses; Sayanagi, Kunio M.; Schug, Joanna
2015-11-01
For many planetary scientists, being involved in a spacecraft mission is the highlight of a career. Many young scientists hope to one day be involved in such a mission. We will look at the science teams of several flagship-class spacecraft missions to look for trends in the representation of groups that are underrepresented in science. We will start with The Galileo, Cassini, and Europa missions to the outer solar system as representing missions that began in the 1980s, 1990s and 2010s respectively. We would also like to extend our analysis to smaller missions and those to targets other than the outer solar system.
Feasibility study of a 110 watt per kilogram lightweight solar array system
NASA Technical Reports Server (NTRS)
Shepard, N. F.; Stahle, C. V.; Hanson, K. L.; Schneider, A.; Blomstrom, L. E.; Hansen, W. T.; Kirpich, A.
1973-01-01
The feasibility of a 10,000 watt solar array panel which has a minimum power-to-mass ratio of 110 watt/kg is discussed. The application of this ultralightweight solar array to three possible missions was investigated. With the interplanetary mission as a baseline, the constraining requirements for a geosynchronous mission and for a manned space station mission are presented. A review of existing lightweight solar array system concepts revealed that changes in the system approach are necessary to achieve the specified 110 watt/kg goal. A comprehensive review of existing component technology is presented in the areas of thin solar cells, solar cell covers, welded interconnectors, substrates and deployable booms. Advances in the state-of-the-art of solar cell and deployable boom technology were investigated. System level trade studies required to select the optimum boom bending stiffness, system aspect ratio, bus voltage level, and solar cell circuit arrangement are reported. Design analysis tasks included the thermal analysis of the solar cell blanket, thermal stress analysis of the solar cell interconnectors/substrate, and the thermostructural loading of the deployed boom.
Status of Propulsion Technology Development Under the NASA In-space Propulsion Technology Program
NASA Technical Reports Server (NTRS)
Anderson, David; Kamhawi, Hani; Patterson, Mike; Dankanich, John; Pencil, Eric; Pinero, Luis
2014-01-01
Since 2001, the In-Space Propulsion Technology (ISPT) program has been developing and delivering in-space propulsion technologies for NASA's Science Mission Directorate (SMD). These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, Flagship and sample return missions currently under consideration. The ISPT program is currently developing technology in three areas that include Propulsion System Technologies, Entry Vehicle Technologies, and Systems Mission Analysis. ISPT's propulsion technologies include: 1) the 0.6-7 kW NASA's Evolutionary Xenon Thruster (NEXT) gridded ion propulsion system; 2) a 0.3-3.9kW Hall-effect electric propulsion (HEP) system for low cost and sample return missions; 3) the Xenon Flow Control Module (XFCM); 4) ultra-lightweight propellant tank technologies (ULTT); and 5) propulsion technologies for a Mars Ascent Vehicle (MAV). The HEP system is composed of the High Voltage Hall Accelerator (HiVHAc) thruster, a power processing unit (PPU), and the XFCM. NEXT and the HiVHAc are throttle-able electric propulsion systems for planetary science missions. The XFCM and ULTT are two component technologies which being developed with nearer-term flight infusion in mind. Several of the ISPT technologies are related to sample return missions needs like: MAV propulsion and electric propulsion. And finally, one focus of the SystemsMission Analysis area is developing tools that aid the application or operation of these technologies on wide variety of mission concepts. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness.
Data Requirement (DR) MA-03: Payload missions integration. [Spacelab payloads
NASA Technical Reports Server (NTRS)
1985-01-01
Project management and payload integration requirements definition activities are reported. Mission peculiar equipment; systems integration; ground operations analysis and requirement definition; safety and quality assurance; and support systems development are examined for payloads planned for the following missions: EOM-1; SL-2; Sl-3 Astro-1; MSL-2; EASE/ACCESS; MPESS; and the middeck ADSF flight.
Flight Operations Analysis Tool
NASA Technical Reports Server (NTRS)
Easter, Robert; Herrell, Linda; Pomphrey, Richard; Chase, James; Wertz Chen, Julie; Smith, Jeffrey; Carter, Rebecca
2006-01-01
Flight Operations Analysis Tool (FLOAT) is a computer program that partly automates the process of assessing the benefits of planning spacecraft missions to incorporate various combinations of launch vehicles and payloads. Designed primarily for use by an experienced systems engineer, FLOAT makes it possible to perform a preliminary analysis of trade-offs and costs of a proposed mission in days, whereas previously, such an analysis typically lasted months. FLOAT surveys a variety of prior missions by querying data from authoritative NASA sources pertaining to 20 to 30 mission and interface parameters that define space missions. FLOAT provides automated, flexible means for comparing the parameters to determine compatibility or the lack thereof among payloads, spacecraft, and launch vehicles, and for displaying the results of such comparisons. Sparseness, typical of the data available for analysis, does not confound this software. FLOAT effects an iterative process that identifies modifications of parameters that could render compatible an otherwise incompatible mission set.
Altair Lander Life Support: Design Analysis Cycles 4 and 5
NASA Technical Reports Server (NTRS)
Anderson, Molly; Curley, Su; Rotter, Henry; Stambaugh, Imelda; Yagoda, Evan
2011-01-01
Life support systems are a critical part of human exploration beyond low earth orbit. NASA s Altair Lunar Lander team is pursuing efficient solutions to the technical challenges of human spaceflight. Life support design efforts up through Design Analysis Cycle (DAC) 4 focused on finding lightweight and reliable solutions for the Sortie and Outpost missions within the Constellation Program. In DAC-4 and later follow on work, changes were made to add functionality for new requirements accepted by the Altair project, and to update the design as knowledge about certain issues or hardware matured. In DAC-5, the Altair project began to consider mission architectures outside the Constellation baseline. Selecting the optimal life support system design is very sensitive to mission duration. When the mission goals and architecture change several trade studies must be conducted to determine the appropriate design. Finally, several areas of work developed through the Altair project may be applicable to other vehicle concepts for microgravity missions. Maturing the Altair life support system related analysis, design, and requirements can provide important information for developers of a wide range of other human vehicles.
Altair Lander Life Support: Design Analysis Cycles 4 and 5
NASA Technical Reports Server (NTRS)
Anderson, Molly; Curley, Su; Rotter, Henry; Yagoda, Evan
2010-01-01
Life support systems are a critical part of human exploration beyond low earth orbit. NASA s Altair Lunar Lander team is pursuing efficient solutions to the technical challenges of human spaceflight. Life support design efforts up through Design Analysis Cycle (DAC) 4 focused on finding lightweight and reliable solutions for the Sortie and Outpost missions within the Constellation Program. In DAC-4 and later follow on work, changes were made to add functionality for new requirements accepted by the Altair project, and to update the design as knowledge about certain issues or hardware matured. In DAC-5, the Altair project began to consider mission architectures outside the Constellation baseline. Selecting the optimal life support system design is very sensitive to mission duration. When the mission goals and architecture change several trade studies must be conducted to determine the appropriate design. Finally, several areas of work developed through the Altair project may be applicable to other vehicle concepts for microgravity missions. Maturing the Altair life support system related analysis, design, and requirements can provide important information for developers of a wide range of other human vehicles.
Candidate Mission from Planet Earth control and data delivery system architecture
NASA Technical Reports Server (NTRS)
Shapiro, Phillip; Weinstein, Frank C.; Hei, Donald J., Jr.; Todd, Jacqueline
1992-01-01
Using a structured, experienced-based approach, Goddard Space Flight Center (GSFC) has assessed the generic functional requirements for a lunar mission control and data delivery (CDD) system. This analysis was based on lunar mission requirements outlined in GSFC-developed user traffic models. The CDD system will facilitate data transportation among user elements, element operations, and user teams by providing functions such as data management, fault isolation, fault correction, and link acquisition. The CDD system for the lunar missions must not only satisfy lunar requirements but also facilitate and provide early development of data system technologies for Mars. Reuse and evolution of existing data systems can help to maximize system reliability and minimize cost. This paper presents a set of existing and currently planned NASA data systems that provide the basic functionality. Reuse of such systems can have an impact on mission design and significantly reduce CDD and other system development costs.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-80
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Lin, Jill D.
1997-01-01
A debris/ice/thermal protection system (TPS) assessment and integrated photographic analysis was conducted for Shuttle mission STS-80. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission Space Transportation System (STS-80) and the resulting effect on the Space Shuttle Program.
Nuclear electric propulsion mission engineering study. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1973-01-01
Results of a mission engineering analysis of nuclear-thermionic electric propulsion spacecraft for unmanned interplanetary and geocentric missions are summarized. Critical technologies associated with the development of nuclear electric propulsion (NEP) are assessed. Outer planet and comet rendezvous mission analysis, NEP stage design for geocentric and interplanetary missions, NEP system development cost and unit costs, and technology requirements for NEP stage development are studied. The NEP stage design provides both inherent reliability and high payload mass capability. The NEP stage and payload integration was found to be compatible with the space shuttle.
Satellite services system analysis study: Propellant transfer system
NASA Technical Reports Server (NTRS)
1982-01-01
General servicing requirements, a servicing mission concept and scenario, overall servicing needs, basic servicing equipment, and a general servicing mission configuration layout are addressed. Servicing needs, equipment concepts, system requirements equipment specifications, preliminary designs, and resource requirements for flight hardware for the propellant transfer system are also addressed.
Space transfer concepts and analysis for exploration missions
NASA Technical Reports Server (NTRS)
1990-01-01
The progress and results are summarized for mission/system requirements database; mission analysis; GN and C (Guidance, Navigation, and Control), aeroheating, Mars landing; radiation protection; aerobrake mass analysis; Shuttle-Z, TMIS (Trans-Mars Injection Stage); Long Duration Habitat Trade Study; evolutionary lunar and Mars options; NTR (Nuclear Thermal Rocket); NEP (Nuclear Electric Propulsion) update; SEP (Solar Electric Propulsion) update; orbital and space-based requirements; technology; piloted rover; programmatic task; and evolutionary and innovative architecture.
Aerocapture Systems Analysis for a Titan Mission
NASA Technical Reports Server (NTRS)
Lockwood, Mary K.; Queen, Eric M.; Way, David W.; Powell, Richard W.; Edquist, Karl; Starr, Brett W.; Hollis, Brian R.; Zoby, E. Vincent; Hrinda, Glenn A.; Bailey, Robert W.
2006-01-01
Performance projections for aerocapture show a vehicle mass savings of between 40 and 80%, dependent on destination, for an aerocapture vehicle compared to an all-propulsive chemical vehicle. In addition aerocapture is applicable to multiple planetary exploration destinations of interest to NASA. The 2001 NASA In-Space Propulsion Program (ISP) technology prioritization effort identified aerocapture as one of the top three propulsion technologies for solar system exploration missions. An additional finding was that aerocapture needed a better system definition and that supporting technology gaps needed to be identified. Consequently, the ISP program sponsored an aerocapture systems analysis effort that was completed in 2002. The focus of the effort was on aerocapture at Titan with a rigid aeroshell system. Titan was selected as the initial destination for the study due to potential interest in a follow-on mission to Cassini/Huygens. Aerocapture is feasible, and the performance is adequate, for the Titan mission and it can deliver 2.4 times more mass to Titan than an all-propulsive system for the same launch vehicle.
Lunar Outpost Life Support Trade Studies
NASA Technical Reports Server (NTRS)
Lange, Kevin E.; Anderson, Molly S.; Ewert, Michael K.; Barta, Daniel J.
2008-01-01
Engineering trade-off studies of life support system architecture and technology options were conducted for potential lunar surface mission scenarios within NASA's Constellation Program. The scenarios investigated are based largely on results of the NASA Lunar Architecture Team (LAT) Phase II study. In particular, the possibility of Hosted Sortie missions, the high cost of power during eclipse periods, and the potential to reduce life support consumables through scavenging, in-situ resources, and alternative EVA technologies were all examined. These trade studies were performed within the Systems Integration, Modeling and Analysis (SIMA) element of NASA's Exploration Life Support (ELS) technology development project. The tools and methodology used in the study are described briefly, followed by a discussion of mission scenarios, life support technology options and results presented in terms of equivalent system mass for various regenerative life support technologies and architectures. Three classes of repeated or extended lunar surface missions were investigated in this study along with several life support resource scenarios for each mission class. Individual mission durations of 14 days, 90 days and 180 days were considered with 10 missions assumed for each at a rate of 2 missions per year. The 14-day missions represent a class of Hosted Sortie missions where a pre-deployed and potentially mobile habitat provides life support for multiple crews at one or more locations. The 90-day and 180-day missions represent lunar outpost expeditions with a larger fixed habitat. The 180-day missions assume continuous human presence and must provide life support through eclipse periods of up to 122 hours while the 90-day missions are planned for best-case periods of nearly continuous sunlight. This paper investigates system optimization within the assumptions of each scenario and addresses how the scenario selected drives the life support system to different designs. Subsequently, these analysis results can be used to determine which technologies may be good choices throughout a broad range of architectures.
Manned Mars Mission program concepts
NASA Technical Reports Server (NTRS)
Hamilton, E. C.; Johnson, P.; Pearson, J.; Tucker, W.
1988-01-01
This paper describes the SRS Manned Mars Mission and Program Analysis study designed to support a manned expedition to Mars contemplated by NASA for the purposes of initiating human exploration and eventual habitation of this planet. The capabilities of the interactive software package being presently developed by the SRS for the mission/program analysis are described, and it is shown that the interactive package can be used to investigate the impact of various mission concepts on the sensitivity of mass required in LEO, schedules, relative costs, and risk. The results, to date, indicate the need for an earth-to-orbit transportation system much larger than the present STS, reliable long-life support systems, and either advanced propulsion or aerobraking technology.
NASA Technical Reports Server (NTRS)
Olson, R. L.; Gustan, E. A.; Vinopal, T. J.
1985-01-01
Regenerative life support systems based on the use of biological material was considered for inclusion in manned spacecraft. Biological life support systems are developed in the controlled ecological life support system (CELSS) program. Because of the progress achieved in the CELSS program, it is determined which space missions may profit from use of the developing technology. Potential transportation cost savings by using CELSS technology for selected future manned space missions was evaluated. Six representative missions were selected which ranged from a low Earth orbit mission to those associated with asteroids and a Mars sortie. The crew sizes considered varied from four persons to five thousand. Other study parameters included mission duration and life support closure percentages, with the latter ranging from complete resupply of consumable life support materials to 97% closure of the life support system. The analytical study approach and the missions and systems considered, together with the benefits derived from CELSS when applicable are described.
Exploring Operational Test and Evaluation of Unmanned Aircraft Systems: A Qualitative Case Study
NASA Astrophysics Data System (ADS)
Saliceti, Jose A.
The purpose of this qualitative case study was to explore and identify strategies that may potentially remedy operational test and evaluation procedures used to evaluate Unmanned Aircraft Systems (UAS) technology. The sample for analysis consisted of organizations testing and evaluating UASs (e.g., U.S. Air Force, U.S. Navy, U.S. Army, U.S. Marine Corps, U.S. Coast Guard, and Customs Border Protection). A purposeful sampling technique was used to select 15 subject matter experts in the field of operational test and evaluation of UASs. A questionnaire was provided to participants to construct a descriptive and robust research. Analysis of responses revealed themes related to each research question. Findings revealed operational testers utilized requirements documents to extrapolate measures for testing UAS technology and develop critical operational issues. The requirements documents were (a) developed without the contribution of stakeholders and operational testers, (b) developed with vague or unrealistic measures, and (c) developed without a systematic method to derive requirements from mission tasks. Four approaches are recommended to develop testable operational requirements and assist operational testers: (a) use a mission task analysis tool to derive requirements for mission essential tasks for the system, (b) exercise collaboration among stakeholders and testers to ensure testable operational requirements based on mission tasks, (c) ensure testable measures are used in requirements documents, and (d) create a repository list of critical operational issues by mission areas. The preparation of operational test and evaluation processes for UAS technology is not uniform across testers. The processes in place are not standardized, thus test plan preparation and reporting are different among participants. A standard method to prepare and report UAS technology should be used when preparing and reporting on UAS technology. Using a systematic process, such as mission-based test design, resonated among participants as an analytical method to link UAS mission tasks and measures of performance to the capabilities of the system under test when developing operational test plans. Further research should examine system engineering designs for system requirements traceability matrix of mission tasks and subtasks while using an analysis tool that adequately evaluates UASs with an acceptable level of confidence in the results.
Developing a Crew Time Model for Human Exploration Missions to Mars
NASA Technical Reports Server (NTRS)
Battfeld, Bryan; Stromgren, Chel; Shyface, Hilary; Cirillo, William; Goodliff, Kandyce
2015-01-01
Candidate human missions to Mars require mission lengths that could extend beyond those that have previously been demonstrated during crewed Lunar (Apollo) and International Space Station (ISS) missions. The nature of the architectures required for deep space human exploration will likely necessitate major changes in how crews operate and maintain the spacecraft. The uncertainties associated with these shifts in mission constructs - including changes to habitation systems, transit durations, and system operations - raise concerns as to the ability of the crew to complete required overhead activities while still having time to conduct a set of robust exploration activities. This paper will present an initial assessment of crew operational requirements for human missions to the Mars surface. The presented results integrate assessments of crew habitation, system maintenance, and utilization to present a comprehensive analysis of potential crew time usage. Destination operations were assessed for a short (approx. 50 day) and long duration (approx. 500 day) surface habitation case. Crew time allocations are broken out by mission segment, and the availability of utilization opportunities was evaluated throughout the entire mission progression. To support this assessment, the integrated crew operations model (ICOM) was developed. ICOM was used to parse overhead, maintenance and system repair, and destination operations requirements within each mission segment - outbound transit, Mars surface duration, and return transit - to develop a comprehensive estimation of exploration crew time allocations. Overhead operational requirements included daily crew operations, health maintenance activities, and down time. Maintenance and repair operational allocations are derived using the Exploration Maintainability and Analysis Tool (EMAT) to develop a probabilistic estimation of crew repair time necessary to maintain systems functionality throughout the mission.
Risk-Significant Adverse Condition Awareness Strengthens Assurance of Fault Management Systems
NASA Technical Reports Server (NTRS)
Fitz, Rhonda
2017-01-01
As spaceflight systems increase in complexity, Fault Management (FM) systems are ranked high in risk-based assessment of software criticality, emphasizing the importance of establishing highly competent domain expertise to provide assurance. Adverse conditions (ACs) and specific vulnerabilities encountered by safety- and mission-critical software systems have been identified through efforts to reduce the risk posture of software-intensive NASA missions. Acknowledgement of potential off-nominal conditions and analysis to determine software system resiliency are important aspects of hazard analysis and FM. A key component of assuring FM is an assessment of how well software addresses susceptibility to failure through consideration of ACs. Focus on significant risk predicted through experienced analysis conducted at the NASA Independent Verification & Validation (IV&V) Program enables the scoping of effective assurance strategies with regard to overall asset protection of complex spaceflight as well as ground systems. Research efforts sponsored by NASAs Office of Safety and Mission Assurance (OSMA) defined terminology, categorized data fields, and designed a baseline repository that centralizes and compiles a comprehensive listing of ACs and correlated data relevant across many NASA missions. This prototype tool helps projects improve analysis by tracking ACs and allowing queries based on project, mission type, domain/component, causal fault, and other key characteristics. Vulnerability in off-nominal situations, architectural design weaknesses, and unexpected or undesirable system behaviors in reaction to faults are curtailed with the awareness of ACs and risk-significant scenarios modeled for analysts through this database. Integration within the Enterprise Architecture at NASA IV&V enables interfacing with other tools and datasets, technical support, and accessibility across the Agency. This paper discusses the development of an improved workflow process utilizing this database for adaptive, risk-informed FM assurance that critical software systems will safely and securely protect against faults and respond to ACs in order to achieve successful missions.
Risk-Significant Adverse Condition Awareness Strengthens Assurance of Fault Management Systems
NASA Technical Reports Server (NTRS)
Fitz, Rhonda
2017-01-01
As spaceflight systems increase in complexity, Fault Management (FM) systems are ranked high in risk-based assessment of software criticality, emphasizing the importance of establishing highly competent domain expertise to provide assurance. Adverse conditions (ACs) and specific vulnerabilities encountered by safety- and mission-critical software systems have been identified through efforts to reduce the risk posture of software-intensive NASA missions. Acknowledgement of potential off-nominal conditions and analysis to determine software system resiliency are important aspects of hazard analysis and FM. A key component of assuring FM is an assessment of how well software addresses susceptibility to failure through consideration of ACs. Focus on significant risk predicted through experienced analysis conducted at the NASA Independent Verification Validation (IVV) Program enables the scoping of effective assurance strategies with regard to overall asset protection of complex spaceflight as well as ground systems. Research efforts sponsored by NASA's Office of Safety and Mission Assurance defined terminology, categorized data fields, and designed a baseline repository that centralizes and compiles a comprehensive listing of ACs and correlated data relevant across many NASA missions. This prototype tool helps projects improve analysis by tracking ACs and allowing queries based on project, mission type, domaincomponent, causal fault, and other key characteristics. Vulnerability in off-nominal situations, architectural design weaknesses, and unexpected or undesirable system behaviors in reaction to faults are curtailed with the awareness of ACs and risk-significant scenarios modeled for analysts through this database. Integration within the Enterprise Architecture at NASA IVV enables interfacing with other tools and datasets, technical support, and accessibility across the Agency. This paper discusses the development of an improved workflow process utilizing this database for adaptive, risk-informed FM assurance that critical software systems will safely and securely protect against faults and respond to ACs in order to achieve successful missions.
NASA Technical Reports Server (NTRS)
1975-01-01
Transportation mass requirements are developed for various mission and transportation modes based on vehicle systems sized to fit the exact needs of each mission. The parametric data used to derive the mass requirements for each mission and transportation mode are presented to enable accommodation of possible changes in mode options or payload definitions. The vehicle sizing and functional requirements used to derive the parametric data are described.
Flight Dynamics Analysis Branch End of Fiscal Year 1999 Report
NASA Technical Reports Server (NTRS)
Stengle, Thomas; Flores-Amaya, Felipe
1999-01-01
This document summarizes the major activities and accomplishments carried out by the Goddard Space Flight Center (GSFC)'s Flight Dynamics Analysis Branch (FDAB), Code 572, in support of flight projects and technology development initiatives in Fiscal Year (FY) 1999. The document is intended to serve as both an introduction to the type of support carried out by the FDAB (Flight Dynamics Analysis Branch), as well as a concise reference summarizing key analysis results and mission experience derived from the various mission support roles assumed over the past year. The major accomplishments in the FDAB in FY99 were: 1) Provided flight dynamics support to the Lunar Prospector and TRIANA missions among a variety of spacecraft missions; 2) Sponsored the Flight Mechanics Symposium; 3) Supported the Consultative Committee for Space Data Systems (CCSDS) workshops; 4) Performed numerous analyses and studies for future missions; 5) Started the Flight Dynamics Analysis Branch Lab for in-house mission analysis and support; and 6) Complied with all requirements in support of GSFC IS09000 certification.
General Mission Analysis Tool (GMAT) Architectural Specification. Draft
NASA Technical Reports Server (NTRS)
Hughes, Steven P.; Conway, Darrel, J.
2007-01-01
Early in 2002, Goddard Space Flight Center (GSFC) began to identify requirements for the flight dynamics software needed to fly upcoming missions that use formations of spacecraft to collect data. These requirements ranged from low level modeling features to large scale interoperability requirements. In 2003 we began work on a system designed to meet these requirement; this system is GMAT. The General Mission Analysis Tool (GMAT) is a general purpose flight dynamics modeling tool built on open source principles. The GMAT code is written in C++, and uses modern C++ constructs extensively. GMAT can be run through either a fully functional Graphical User Interface (GUI) or as a command line program with minimal user feedback. The system is built and runs on Microsoft Windows, Linux, and Macintosh OS X platforms. The GMAT GUI is written using wxWidgets, a cross platform library of components that streamlines the development and extension of the user interface Flight dynamics modeling is performed in GMAT by building components that represent the players in the analysis problem that is being modeled. These components interact through the sequential execution of instructions, embodied in the GMAT Mission Sequence. A typical Mission Sequence will model the trajectories of a set of spacecraft evolving over time, calculating relevant parameters during this propagation, and maneuvering individual spacecraft to maintain a set of mission constraints as established by the mission analyst. All of the elements used in GMAT for mission analysis can be viewed in the GMAT GUI or through a custom scripting language. Analysis problems modeled in GMAT are saved as script files, and these files can be read into GMAT. When a script is read into the GMAT GUI, the corresponding user interface elements are constructed in the GMAT GUI. The GMAT system was developed from the ground up to run in a platform agnostic environment. The source code compiles on numerous different platforms, and is regularly exercised running on Windows, Linux and Macintosh computers by the development and analysis teams working on the project. The system can be run using either a graphical user interface, written using the open source wxWidgets framework, or from a text console. The GMAT source code was written using open source tools. GSFC has released the code using the NASA open source license.
Large Space Systems/Low-Thrust Propulsion Technology
NASA Technical Reports Server (NTRS)
1980-01-01
The potentially critical interactions that occur between propulsion, structures and materials, and controls for large spacecraft are considered, the technology impacts within these fields are defined and the net effect on large systems and the resulting missions is determined. Topical areas are systems/mission analysis, LSS static and dynamic characterization, and propulsion systems characterization.
Exploration Life Support Critical Questions for Future Human Space Missions
NASA Technical Reports Server (NTRS)
Ewert, Michael K.; Barta, Daniel J.; McQuillan, Jeff
2009-01-01
Exploration Life Support (ELS) is a project under NASA s Exploration Technology Development Program. The ELS Project plans, coordinates and implements the development of advanced life support technologies for human exploration missions in space. Recent work has focused on closed loop atmosphere and water systems for a lunar outpost, including habitats and pressurized rovers. But, what are the critical questions facing life support system developers for these and other future human missions? This paper explores those questions and discusses how progress in the development of ELS technologies can help answer them. The ELS Project includes Atmosphere Revitalization Systems (ARS), Water Recovery Systems (WRS), Waste Management Systems (WMS), Habitation Engineering, Systems Integration, Modeling and Analysis (SIMA), and Validation and Testing, which includes the sub-elements Flight Experiments and Integrated Testing. Systems engineering analysis by ELS seeks to optimize the overall mission architecture by considering all the internal and external interfaces of the life support system and the potential for reduction or reuse of commodities. In particular, various sources and sinks of water and oxygen are considered along with the implications on loop closure and the resulting launch mass requirements.
NASA Technical Reports Server (NTRS)
1974-01-01
The work breakdown structure (WBS) dictionary for the Earth Observatory Satellite (EOS) is defined. The various elements of the EOS program are examined to include the aggregate of hardware, computer software, services, and data required to develop, produce, test, support, and operate the space vehicle and the companion ground data management system. A functional analysis of the EOS mission is developed. The operations for three typical EOS missions, Delta, Titan, and Shuttle launched are considered. The functions were determined for the top program elements, and the mission operations, function 2.0, was expanded to level one functions. Selection of ten level one functions for further analysis to level two and three functions were based on concern for the EOS operations and associated interfaces.
Apollo 15 mission report, supplement 4: Descent propulsion system final flight evaluation
NASA Technical Reports Server (NTRS)
Avvenire, A. T.; Wood, S. C.
1972-01-01
The results of a postflight analysis of the LM-10 Descent Propulsion System (DPS) during the Apollo 15 Mission are reported. The analysis determined the steady state performance of the DPS during the descent phase of the manned lunar landing. Flight measurement discrepancies are discussed. Simulated throttle performance results are cited along with overall performance results. Evaluations of the propellant quantity gaging system, propellant loading, pressurization system, and engine are reported. Graphic illustrations of the evaluations are included.
Systematic analysis of EOS data system for operations
NASA Technical Reports Server (NTRS)
Moe, K. L.; Dasgupta, R.
1985-01-01
A data management analysis methodology is being proposed. The objective of the methodology is to assist mission managers by identifying a series of ordered activities to be systematically followed in order to arrive at an effective ground system design. Existing system engineering tools and concepts have been assembled into a structured framework to facilitate the work of a mission planner. It is intended that this methodology can be gainfully applied (with probable modifications and/or changes) to the EOS payloads and their associated data systems.
NASA Technical Reports Server (NTRS)
1982-01-01
The Space Operations Center (SOC) orbital space station research missions integration, crew requirements, SOC operations, and configurations are analyzed. Potential research and applications missions and their requirements are described. The capabilities of SOC are compared with user requirements. The SOC/space shuttle and shuttle-derived vehicle flight support operations and SOC orbital operations are described. Module configurations and systems options, SOC/external tank configurations, and configurations for geostationary orbits are described. Crew and systems safety configurations are summarized.
Status of Propulsion Technology Development Under the NASA In-Space Propulsion Technology Program
NASA Technical Reports Server (NTRS)
Anderson, David; Kamhawi, Hani; Patterson, Mike; Pencil, Eric; Pinero, Luis; Falck, Robert; Dankanich, John
2014-01-01
Since 2001, the In-Space Propulsion Technology (ISPT) program has been developing and delivering in-space propulsion technologies for NASA's Science Mission Directorate (SMD). These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, Flagship and sample return missions currently under consideration. The ISPT program is currently developing technology in three areas that include Propulsion System Technologies, Entry Vehicle Technologies, and Systems/Mission Analysis. ISPT's propulsion technologies include: 1) the 0.6-7 kW NASA's Evolutionary Xenon Thruster (NEXT) gridded ion propulsion system; 2) a 0.3-3.9kW Halleffect electric propulsion (HEP) system for low cost and sample return missions; 3) the Xenon Flow Control Module (XFCM); 4) ultra-lightweight propellant tank technologies (ULTT); and 5) propulsion technologies for a Mars Ascent Vehicle (MAV). The NEXT Long Duration Test (LDT) recently exceeded 50,000 hours of operation and 900 kg throughput, corresponding to 34.8 MN-s of total impulse delivered. The HEP system is composed of the High Voltage Hall Accelerator (HIVHAC) thruster, a power processing unit (PPU), and the XFCM. NEXT and the HIVHAC are throttle-able electric propulsion systems for planetary science missions. The XFCM and ULTT are two component technologies which being developed with nearer-term flight infusion in mind. Several of the ISPT technologies are related to sample return missions needs: MAV propulsion and electric propulsion. And finally, one focus of the Systems/Mission Analysis area is developing tools that aid the application or operation of these technologies on wide variety of mission concepts. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness.
Multi-Agent Modeling and Simulation Approach for Design and Analysis of MER Mission Operations
NASA Technical Reports Server (NTRS)
Seah, Chin; Sierhuis, Maarten; Clancey, William J.
2005-01-01
A space mission operations system is a complex network of human organizations, information and deep-space network systems and spacecraft hardware. As in other organizations, one of the problems in mission operations is managing the relationship of the mission information systems related to how people actually work (practices). Brahms, a multi-agent modeling and simulation tool, was used to model and simulate NASA's Mars Exploration Rover (MER) mission work practice. The objective was to investigate the value of work practice modeling for mission operations design. From spring 2002 until winter 2003, a Brahms modeler participated in mission systems design sessions and operations testing for the MER mission held at Jet Propulsion Laboratory (JPL). He observed how designers interacted with the Brahms tool. This paper discussed mission system designers' reactions to the simulation output during model validation and the presentation of generated work procedures. This project spurred JPL's interest in the Brahms model, but it was never included as part of the formal mission design process. We discuss why this occurred. Subsequently, we used the MER model to develop a future mission operations concept. Team members were reluctant to use the MER model, even though it appeared to be highly relevant to their effort. We describe some of the tool issues we encountered.
Generic trending and analysis system
NASA Technical Reports Server (NTRS)
Keehan, Lori; Reese, Jay
1994-01-01
The Generic Trending and Analysis System (GTAS) is a generic spacecraft performance monitoring tool developed by NASA Code 511 and Loral Aerosys. It is designed to facilitate quick anomaly resolution and trend analysis. Traditionally, the job of off-line analysis has been performed using hardware and software systems developed for real-time spacecraft contacts; then, the systems were supplemented with a collection of tools developed by Flight Operations Team (FOT) members. Since the number of upcoming missions is increasing, NASA can no longer afford to operate in this manner. GTAS improves control center productivity and effectiveness because it provides a generic solution across multiple missions. Thus, GTAS eliminates the need for each individual mission to develop duplicate capabilities. It also allows for more sophisticated tools to be developed because it draws resources from several projects. In addition, the GTAS software system incorporates commercial off-the-shelf tools software (COTS) packages and reuses components of other NASA-developed systems wherever possible. GTAS has incorporated lessons learned from previous missions by involving the users early in the development process. GTAS users took a proactive role in requirements analysis, design, development, and testing. Because of user involvement, several special tools were designed and are now being developed. GTAS users expressed considerable interest in facilitating data collection for long term trending and analysis. As a result, GTAS provides easy access to large volumes of processed telemetry data directly in the control center. The GTAS archival and retrieval capabilities are supported by the integration of optical disk technology and a COTS relational database management system.
Nuclear Cryogenic Propulsion Stage Conceptual Design and Mission Analysis
NASA Technical Reports Server (NTRS)
Kos, Larry D.; Russell, Tiffany E.
2014-01-01
The Nuclear Cryogenic Propulsion Stage (NCPS) is an in-space transportation vehicle, comprised of three main elements, designed to support a long-stay human Mars mission architecture beginning in 2035. The stage conceptual design and the mission analysis discussed here support the current nuclear thermal propulsion going on within partnership activity of NASA and the Department of Energy (DOE). The transportation system consists of three elements: 1) the Core Stage, 2) the In-line Tank, and 3) the Drop Tank. The driving mission case is the piloted flight to Mars in 2037 and will be the main point design shown and discussed. The corresponding Space Launch System (SLS) launch vehicle (LV) is also presented due to it being a very critical aspect of the NCPS Human Mars Mission architecture due to the strong relationship between LV lift capability and LV volume capacity.
Using SFOC to fly the Magellan Venus mapping mission
NASA Technical Reports Server (NTRS)
Bucher, Allen W.; Leonard, Robert E., Jr.; Short, Owen G.
1993-01-01
Traditionally, spacecraft flight operations at the Jet Propulsion Laboratory (JPL) have been performed by teams of spacecraft experts utilizing ground software designed specifically for the current mission. The Jet Propulsion Laboratory set out to reduce the cost of spacecraft mission operations by designing ground data processing software that could be used by multiple spacecraft missions, either sequentially or concurrently. The Space Flight Operations Center (SFOC) System was developed to provide the ground data system capabilities needed to monitor several spacecraft simultaneously and provide enough flexibility to meet the specific needs of individual projects. The Magellan Spacecraft Team utilizes the SFOC hardware and software designed for engineering telemetry analysis, both real-time and non-real-time. The flexibility of the SFOC System has allowed the spacecraft team to integrate their own tools with SFOC tools to perform the tasks required to operate a spacecraft mission. This paper describes how the Magellan Spacecraft Team is utilizing the SFOC System in conjunction with their own software tools to perform the required tasks of spacecraft event monitoring as well as engineering data analysis and trending.
Design of the ARES Mars Airplane and Mission Architecture
NASA Technical Reports Server (NTRS)
Braun, Robert D.; Wright, Henry S.; Croom, Mark A.; Levine, Joel S.; Spencer, David A.
2006-01-01
Significant technology advances have enabled planetary aircraft to be considered as viable science platforms. Such systems fill a unique planetary science measurement gap, that of regional-scale, near-surface observation, while providing a fresh perspective for potential discovery. Recent efforts have produced mature mission and flight system concepts, ready for flight project implementation. This paper summarizes the development of a Mars airplane mission architecture that balances science, implementation risk and cost. Airplane mission performance, flight system design and technology maturation are described. The design, analysis and testing completed demonstrates the readiness of this science platform for use in a Mars flight project.
NASA Technical Reports Server (NTRS)
Hopkins, Randy
2009-01-01
This slide presentation reviews the proposed design for the Xenia mission spacecraft. The goal of this study is to perform a mission concept study for the mission. Included in this study are: the overall ground rules and assumptions (GR&A), a mission analysis, the configuration, the mass properties, the guidance, Navigation and control, the proposed avionics, the power system, the thermal protection system, the propulsion system, and the proposed structures. Conclusions from the study indicate that the observatory fits within the Falcon 9 mass and volume envelope for launching from Omelek, the pointing, slow slewing, and fast slewing requirements and the thermal requirements are met.
Feasibility analysis of cislunar flight using the Shuttle Orbiter
NASA Technical Reports Server (NTRS)
Haynes, Davy A.
1991-01-01
A first order orbital mechanics analysis was conducted to examine the possibility of utilizing the Space Shuttle Orbiter to perform payload delivery missions to lunar orbit. In the analysis, the earth orbit of departure was constrained to be that of Space Station Freedom. Furthermore, no enhancements of the Orbiter's thermal protection system were assumed. Therefore, earth orbit insertion maneuvers were constrained to be all propulsive. Only minimal constraints were placed on the lunar orbits and no consideration was given to possible landing sites for lunar surface payloads. The various phases and maneuvers of the mission are discussed for both a conventional (Apollo type) and an unconventional mission profile. The velocity impulses needed, and the propellant masses required are presented for all of the mission maneuvers. Maximum payload capabilities were determined for both of the mission profiles examined. In addition, other issues relating to the feasibility of such lunar shuttle missions are discussed. The results of the analysis indicate that the Shuttle Orbiter would be a poor vehicle for payload delivery missions to lunar orbit.
Workshop proceedings: Information Systems for Space Astrophysics in the 21st Century, volume 1
NASA Technical Reports Server (NTRS)
Cutts, James (Editor); Ng, Edward (Editor)
1991-01-01
The Astrophysical Information Systems Workshop was one of the three Integrated Technology Planning workshops. Its objectives were to develop an understanding of future mission requirements for information systems, the potential role of technology in meeting these requirements, and the areas in which NASA investment might have the greatest impact. Workshop participants were briefed on the astrophysical mission set with an emphasis on those missions that drive information systems technology, the existing NASA space-science operations infrastructure, and the ongoing and planned NASA information systems technology programs. Program plans and recommendations were prepared in five technical areas: Mission Planning and Operations; Space-Borne Data Processing; Space-to-Earth Communications; Science Data Systems; and Data Analysis, Integration, and Visualization.
Combined EDL-Mobility Planning for Planetary Missions
NASA Technical Reports Server (NTRS)
Kuwata, Yoshiaki; Balaram, Bob
2011-01-01
This paper presents an analysis framework for planetary missions that have coupled mobility and EDL (Entry-Descent-Landing) systems. Traditional systems engineering approaches to mobility missions such as MERs (Mars Exploration Rovers) and MSL (Mars Science Laboratory) independently study the EDL system and the mobility system, and does not perform explicit trade-off between them or risk minimization of the overall system. A major challenge is that EDL operation is inherently uncertain and its analysis results such as landing footprint are described using PDF (Probability Density Function). The proposed approach first builds a mobility cost-to-go map that encodes the driving cost of any point on the map to a science target location. The cost could include variety of metrics such as traverse distance, time, wheel rotation on soft soil, and closeness to hazards. It then convolves the mobility cost-to-go map with the landing PDF given by the EDL system, which provides a histogram of driving cost, which can be used to evaluate the overall risk of the mission. By capturing the coupling between EDL and mobility explicitly, this analysis framework enables quantitative tradeoff between EDL and mobility system performance, as well as the characterization of risks in a statistical way. The simulation results are presented with a realistic Mars terrain data
Mission Evaluation Room Intelligent Diagnostic and Analysis System (MIDAS)
NASA Technical Reports Server (NTRS)
Pack, Ginger L.; Falgout, Jane; Barcio, Joseph; Shnurer, Steve; Wadsworth, David; Flores, Louis
1994-01-01
The role of Mission Evaluation Room (MER) engineers is to provide engineering support during Space Shuttle missions, for Space Shuttle systems. These engineers are concerned with ensuring that the systems for which they are responsible function reliably, and as intended. The MER is a central facility from which engineers may work, in fulfilling this obligation. Engineers participate in real-time monitoring of shuttle telemetry data and provide a variety of analyses associated with the operation of the shuttle. The Johnson Space Center's Automation and Robotics Division is working to transfer advances in intelligent systems technology to NASA's operational environment. Specifically, the MER Intelligent Diagnostic and Analysis System (MIDAS) project provides MER engineers with software to assist them with monitoring, filtering and analyzing Shuttle telemetry data, during and after Shuttle missions. MIDAS off-loads to computers and software, the tasks of data gathering, filtering, and analysis, and provides the engineers with information which is in a more concise and usable form needed to support decision making and engineering evaluation. Engineers are then able to concentrate on more difficult problems as they arise. This paper describes some, but not all of the applications that have been developed for MER engineers, under the MIDAS Project. The sampling described herewith was selected to show the range of tasks that engineers must perform for mission support, and to show the various levels of automation that have been applied to assist their efforts.
Debris/ice/tps Assessment and Integrated Photographic Analysis of Shuttle Mission STS-81
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Lin, Jill D.
1997-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-81. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-81 and the resulting effect on the Space Shuttle Program.
Debris/ice/tps Assessment and Integrated Photographic Analysis of Shuttle Mission STS-83
NASA Technical Reports Server (NTRS)
Lin, Jill D.; Katnik, Gregory N.
1997-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-83. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-83 and the resulting effect on the Space Shuttle Program.
Debris/ice/TPS assessment and integrated photographic analysis of Shuttle Mission STS-71
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Bowen, Barry C.; Davis, J. Bradley
1995-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-71. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanner data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-71 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-102
NASA Technical Reports Server (NTRS)
Rivera, Jorge E.; Kelly, J. David (Technical Monitor)
2001-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-102. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch were analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or inflight anomalies. This report documents the debris/ice /thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-102 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-94
NASA Technical Reports Server (NTRS)
Bowen, Barry C.; Lin, Jill D.
1997-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-94. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-94 and the resulting effect on the Space Shuttle Program.
Debris/ice/tps Assessment and Integrated Photographic Analysis of Shuttle Mission STS-79
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Lin, Jill D.
1996-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-79. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-79 and the resulting effect on the Space Shuttle Program.
Debris/ice/TPS assessment and integrated photographic analysis of Shuttle mission STS-73
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Bowen, Barry C.; Lin, Jill D.
1995-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-73. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanner data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle Mission STS-73 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS assessment and integrated photographic analysis of Shuttle Mission STS-77
NASA Technical Reports Server (NTRS)
Katnik, GregoryN.; Lin, Jill D. (Compiler)
1996-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-77. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-77 and the resulting effect on the Space Shuttle Program.
Debris/ice/TPS assessment and integrated photographic analysis of Shuttle Mission STS-70
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Bowen, Barry C.; Davis, J. Bradley
1995-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-70. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanner data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-70 and the resulting effect on the Space Shuttle Program.
Debris/ice/TPS assessment and integrated photographic analysis of Shuttle mission STS-69
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Bowen, Barry C.; Davis, J. Bradley
1995-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-69. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanner data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in flight anomalies. This report documents the ice/debris/thermal protection system condition and integrated photographic analysis of Shuttle Mission STS-69 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-106
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Kelley, J. David (Technical Monitor)
2000-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-106. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-106 and the resulting effect on the Space Shuttle Program.
Preliminary Design and Analysis of the ARES Atmospheric Flight Vehicle Thermal Control System
NASA Technical Reports Server (NTRS)
Gasbarre, J. F.; Dillman, R. A.
2003-01-01
The Aerial Regional-scale Environmental Survey (ARES) is a proposed 2007 Mars Scout Mission that will be the first mission to deploy an atmospheric flight vehicle (AFV) on another planet. This paper will describe the preliminary design and analysis of the AFV thermal control system for its flight through the Martian atmosphere and also present other analyses broadening the scope of that design to include other phases of the ARES mission. Initial analyses are discussed and results of trade studies are presented which detail the design process for AFV thermal control. Finally, results of the most recent AFV thermal analysis are shown and the plans for future work are discussed.
Debris/Ice/TPS assessment and integrated photographic analysis of shuttle mission STS-76
NASA Technical Reports Server (NTRS)
Lin, Jill D.
1996-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-76. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-76 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-72
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Bowen, Barry C.; Lin, Jill D.
1996-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-72. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-72 and the resulting effect on the Space Shuttle Program.
NASA Technical Reports Server (NTRS)
Craft, H.
1984-01-01
The role of the mission manager in coordinating the payload with the space transportation system is studied. The establishment of the investigators working group to assist in achieving the mission objectives is examined. Analysis of the scientific requirements to assure compatibility with available resources, and analysis of the payload in order to define orbital flight requirements are described. The training of payload specialists, launch site integration, and defining the requirements for the operation of the integrated payload and the payload operations control center are functions of the mission manager. The experiences gained from the management of the Spacelab One Mission, which can be implemented in future missions, are discussed. Examples of material processing, earth observations, and life sciences advances from the First Spacelab Mission are presented.
NASA Technical Reports Server (NTRS)
Dwyer Ciancolo, Alicia M.; Davis, Jody L.; Engelund, Walter C.; Komar, D. R.; Queen, Eric M.; Samareh, Jamshid A.; Way, David W.; Zang, Thomas A.; Murch, Jeff G.; Krizan, Shawn A.;
2011-01-01
NASA senior management commissioned the Entry, Descent and Landing Systems Analysis (EDL-SA) Study in 2008 to identify and roadmap the Entry, Descent and Landing (EDL) technology investments that the agency needed to successfully land large payloads at Mars for both robotic and human-scale missions. Year 1 of the study focused on technologies required for Exploration-class missions to land payloads of 10 to 50 t. Inflatable decelerators, rigid aeroshell and supersonic retro-propulsion emerged as the top candidate technologies. In Year 2 of the study, low TRL technologies identified in Year 1, inflatables aeroshells and supersonic retropropulsion, were combined to create a demonstration precursor robotic mission. This part of the EDL-SA Year 2 effort, called Exploration Feed Forward (EFF), took much of the systems analysis simulation and component model development from Year 1 to the next level of detail.
Planning Coverage Campaigns for Mission Design and Analysis: Clasp for the Proposed DESDynI Mission
NASA Technical Reports Server (NTRS)
Knight, Russell; McLaren, David; Hu, Steven
2012-01-01
Mission design and analysis present challenges in that almost all variables are in constant flux, yet the goal is to achieve an acceptable level of performance against a concept of operations, which might also be in flux. To increase responsiveness, our approach is to use automated planning tools that allow for the continual modification of spacecraft, ground system, staffing, and concept of operations while returning metrics that are important to mission evaluation, such as area covered, peak memory usage, and peak data throughput. We have applied this approach to DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice) mission design concept using the CLASP (Compressed Large-scale Activity Scheduler/Planner) planning system [7], but since this adaptation many techniques have changed under the hood for CLASP and the DESDynI mission concept has undergone drastic changes, including that it has been renamed the Earth Radar Mission. Over the past two years, we have run more than fifty simulations with the CLASP-DESDynI adaptation, simulating different mission scenarios with changing parameters including targets, swaths, instrument modes, and data and downlink rates. We describe the evolution of simulations through the DESDynI MCR (Mission Concept Review) and afterwards.
High Altitude Long Endurance UAV Analysis of Alternatives and Technology Requirements Development
NASA Technical Reports Server (NTRS)
Nickol, Craig L.; Guynn, Mark D.; Kohout, Lisa L.; Ozoroski, Thomas A.
2007-01-01
An Analysis of Alternatives and a Technology Requirements Study were conducted for two mission areas utilizing various types of High Altitude Long Endurance (HALE) Unmanned Aerial Vehicles (UAV). A hurricane science mission and a communications relay mission provided air vehicle requirements which were used to derive sixteen potential HALE UAV configurations, including heavier-than-air (HTA) and lighter-than-air (LTA) concepts with both consumable fuel and solar regenerative propulsion systems. A HTA diesel-fueled wing-body-tail configuration emerged as the preferred concept given near-term technology constraints. The cost effectiveness analysis showed that simply maximizing vehicle endurance can be a sub-optimum system solution. In addition, the HTA solar regenerative configuration was utilized to perform both a mission requirements study and a technology development study. Given near-term technology constraints, the solar regenerative powered vehicle was limited to operations during the long days and short nights at higher latitudes during the summer months. Technology improvements are required in energy storage system specific energy and solar cell efficiency, along with airframe drag and mass reductions to enable the solar regenerative vehicle to meet the full mission requirements.
Space Station Systems Analysis Study. Volume 1: Executive summary, part 1 and 2
NASA Technical Reports Server (NTRS)
1977-01-01
The elements of space station programs required to support an operational base theme, a space laboratory theme, and advanced missions relatable to public needs/national interests are defined. Missions satisfying the foregoing requirements are identified, program scenarios/options are established. System options are evaluated for a selected number of program options. Subsystem analysis and programmatic comparisons are performed for selected primary concepts.
NASA Technical Reports Server (NTRS)
Marr, Greg C.
2003-01-01
The Triana spacecraft was designed to be launched by the Space Shuttle. The nominal Triana mission orbit will be a Sun-Earth L1 libration point orbit. Using the NASA Goddard Space Flight Center's Orbit Determination Error Analysis System (ODEAS), orbit determination (OD) error analysis results are presented for all phases of the Triana mission from the first correction maneuver through approximately launch plus 6 months. Results are also presented for the science data collection phase of the Fourier Kelvin Stellar Interferometer Sun-Earth L2 libration point mission concept with momentum unloading thrust perturbations during the tracking arc. The Triana analysis includes extensive analysis of an initial short arc orbit determination solution and results using both Deep Space Network (DSN) and commercial Universal Space Network (USN) statistics. These results could be utilized in support of future Sun-Earth libration point missions.
Application of State Analysis and Goal-based Operations to a MER Mission Scenario
NASA Technical Reports Server (NTRS)
Morris, John Richard; Ingham, Michel D.; Mishkin, Andrew H.; Rasmussen, Robert D.; Starbird, Thomas W.
2006-01-01
State Analysis is a model-based systems engineering methodology employing a rigorous discovery process which articulates operations concepts and operability needs as an integrated part of system design. The process produces requirements on system and software design in the form of explicit models which describe the system behavior in terms of state variables and the relationships among them. By applying State Analysis to an actual MER flight mission scenario, this study addresses the specific real world challenges of complex space operations and explores technologies that can be brought to bear on future missions. The paper first describes the tools currently used on a daily basis for MER operations planning and provides an in-depth description of the planning process, in the context of a Martian day's worth of rover engineering activities, resource modeling, flight rules, science observations, and more. It then describes how State Analysis allows for the specification of a corresponding goal-based sequence that accomplishes the same objectives, with several important additional benefits.
Entry, Descent and Landing Systems Analysis: Exploration Class Simulation Overview and Results
NASA Technical Reports Server (NTRS)
DwyerCianciolo, Alicia M.; Davis, Jody L.; Shidner, Jeremy D.; Powell, Richard W.
2010-01-01
NASA senior management commissioned the Entry, Descent and Landing Systems Analysis (EDL-SA) Study in 2008 to identify and roadmap the Entry, Descent and Landing (EDL) technology investments that the agency needed to make in order to successfully land large payloads at Mars for both robotic and exploration or human-scale missions. The year one exploration class mission activity considered technologies capable of delivering a 40-mt payload. This paper provides an overview of the exploration class mission study, including technologies considered, models developed and initial simulation results from the EDL-SA year one effort.
Comparison of Spares Logistics Analysis Techniques for Long Duration Human Spaceflight
NASA Technical Reports Server (NTRS)
Owens, Andrew; de Weck, Olivier; Mattfeld, Bryan; Stromgren, Chel; Cirillo, William
2015-01-01
As the durations and distances involved in human exploration missions increase, the logistics associated with the repair and maintenance becomes more challenging. Whereas the operation of the International Space Station (ISS) depends upon regular resupply from the Earth, this paradigm may not be feasible for future missions. Longer mission durations result in higher probabilities of component failures as well as higher uncertainty regarding which components may fail, and longer distances from Earth increase the cost of resupply as well as the speed at which the crew can abort to Earth in the event of an emergency. As such, mission development efforts must take into account the logistics requirements associated with maintenance and spares. Accurate prediction of the spare parts demand for a given mission plan and how that demand changes as a result of changes to the system architecture enables full consideration of the lifecycle cost associated with different options. In this paper, we utilize a range of analysis techniques - Monte Carlo, semi-Markov, binomial, and heuristic - to examine the relationship between the mass of spares and probability of loss of function related to the Carbon Dioxide Removal System (CRS) for a notional, simplified mission profile. The Exploration Maintainability Analysis Tool (EMAT), developed at NASA Langley Research Center, is utilized for the Monte Carlo analysis. We discuss the implications of these results and the features and drawbacks of each method. In particular, we identify the limitations of heuristic methods for logistics analysis, and the additional insights provided by more in-depth techniques. We discuss the potential impact of system complexity on each technique, as well as their respective abilities to examine dynamic events. This work is the first step in an effort that will quantitatively examine how well these techniques handle increasingly more complex systems by gradually expanding the system boundary.
NASA Technical Reports Server (NTRS)
1981-01-01
A study was performed to determine the types of manned missions that will likely be performed in the late 1980's or early 1990's timeframe, to define MOTV configurations which satisfy these missions requirements, and to develop a program plan for its development. Twenty generic missions were originally defined for MOTV but, to simplify the selection process, five of these missions were selected as typical and used as Design Reference Missions. Systems and subsystems requirements were re-examined and sensitivity analyses performed to determine optimum point designs. Turnaround modes were considered to determine the most effective combination of ground based and spaced based activities. A preferred concept for the crew capsule and for the mission mode was developed.
Concurrent Mission and Systems Design at NASA Glenn Research Center: The Origins of the COMPASS Team
NASA Technical Reports Server (NTRS)
McGuire, Melissa L.; Oleson, Steven R.; Sarver-Verhey, Timothy R.
2012-01-01
Established at the NASA Glenn Research Center (GRC) in 2006 to meet the need for rapid mission analysis and multi-disciplinary systems design for in-space and human missions, the Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) team is a multidisciplinary, concurrent engineering group whose primary purpose is to perform integrated systems analysis, but it is also capable of designing any system that involves one or more of the disciplines present in the team. The authors were involved in the development of the COMPASS team and its design process, and are continuously making refinements and enhancements. The team was unofficially started in the early 2000s as part of the distributed team known as Team JIMO (Jupiter Icy Moons Orbiter) in support of the multi-center collaborative JIMO spacecraft design during Project Prometheus. This paper documents the origins of a concurrent mission and systems design team at GRC and how it evolved into the COMPASS team, including defining the process, gathering the team and tools, building the facility, and performing studies.
Results of Evaluation of Solar Thermal Propulsion
NASA Technical Reports Server (NTRS)
Woodcock, Gordon; Byers, Dave
2003-01-01
The solar thermal propulsion evaluation reported here relied on prior research for all information on solar thermal propulsion technology and performance. Sources included personal contacts with experts in the field in addition to published reports and papers. Mission performance models were created based on this information in order to estimate performance and mass characteristics of solar thermal propulsion systems. Mission analysis was performed for a set of reference missions to assess the capabilities and benefits of solar thermal propulsion in comparison with alternative in-space propulsion systems such as chemical and electric propulsion. Mission analysis included estimation of delta V requirements as well as payload capabilities for a range of missions. Launch requirements and costs, and integration into launch vehicles, were also considered. The mission set included representative robotic scientific missions, and potential future NASA human missions beyond low Earth orbit. Commercial communications satellite delivery missions were also included, because if STP technology were selected for that application, frequent use is implied and this would help amortize costs for technology advancement and systems development. A C3 Topper mission was defined, calling for a relatively small STP. The application is to augment the launch energy (C3) available from launch vehicles with their built-in upper stages. Payload masses were obtained from references where available. The communications satellite masses represent the range of payload capabilities for the Delta IV Medium and/or Atlas launch vehicle family. Results indicated that STP could improve payload capability over current systems, but that this advantage cannot be realized except in a few cases because of payload fairing volume limitations on current launch vehicles. It was also found that acquiring a more capable (existing) launch vehicle, rather than adding an STP stage, is the most economical in most cases.
The Propulsive Small Expendable Deployer System (ProSEDS)
NASA Technical Reports Server (NTRS)
Lorenzini, Enrico C.; Estes, Robert D.; Cosmo, Mario L.
2001-01-01
This is the Annual Report #2 entitled "The Propulsive Small Expendable Deployer System (ProSEDS)" prepared by the Smithsonian Astrophysical Observatory for NASA Marshall Space Flight Center. This report covers the period of activity from 1 August 2000 through 30 July 2001. The topics include: 1) Updated System Performance; 2) Mission Analysis; 3) Updated Dynamics Reference Mission; 4) Updated Deployment Control Profiles and Simulations; 5) Comparison of ED tethers and electrical thrusters; 6) Kalman filters for mission estimation; and 7) Delivery of interactive software for ED tethers.
NASA Astrophysics Data System (ADS)
Costa, Marc
2018-05-01
JUICE is a mission chosen in the framework of the Cosmic Vision 2015-2024 program of the SRE. JUICE will survey the Jovian system with a special focus on the three Galilean Moons. Currently the mission is under study activities during its Definition Phase. For this period the future mission scenarios are being studied by the Science Working Team (SWT). The Mission Analysis and Payload Support (MAPPS) and the Solar System Science Operations Laboratory (SOLab) tools are being used to provide active support to the SWT in synergy with other operational tools used in the Department in order to evaluate the feasibility of those scenarios. This contribution will outline the capabilities, synergies as well as use cases of the mentioned tools focusing on the support provided to JUICEÃs study phase on the study of its critical operational scenarios and the early developments of its Science Ground Segment demonstrating the added value that such a tool provides to planetary science missions.
Space station systems: A bibliography with indexes (supplement 6)
NASA Technical Reports Server (NTRS)
1988-01-01
This bibliography lists 1,133 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1, 1987 and December 31, 1987. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems. The coverage includes documents that define major systems and subsystems, servicing and support requirements, procedures and operations, and missions for the current and future Space Station.
Space station systems: A bibliography with indexes (supplement 3)
NASA Technical Reports Server (NTRS)
1987-01-01
This bibliography lists 780 reports, articles and other documents introduced into the NASA scientific and technical information system between January 1, 1986 and June 30, 1986. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite system. The coverage includes documents that define major systems and subsystems, servicing and support requirements, procedures and operations, and missions for the current and future space station.
Space station systems: A bibliography with indexes (supplement 2)
NASA Technical Reports Server (NTRS)
1986-01-01
This bibliography lists 904 reports, articles and other documents introduced into the NASA scientific and technical information system between July 1, 1985 and December 31, 1985. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems. The coverage includes documents that define major systems and subsystems, servicing and support requirements, procedures and operations, and missions for the current and future space station.
Space station systems: A bibliography with indexes
NASA Technical Reports Server (NTRS)
1987-01-01
This bibliography lists 967 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1987 and June 30, 1987. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems. The coverage includes documents that define major systems and subsystems, servicing and support requirements, procedures and operations, and missions for the current and future space station.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abercrombie, Robert K; Sheldon, Frederick T; Grimaila, Michael R
2010-01-01
In earlier works, we presented a computational infrastructure that allows an analyst to estimate the security of a system in terms of the loss that each stakeholder stands to sustain as a result of security breakdowns. In this paper, we discuss how this infrastructure can be used in the subject domain of mission assurance as defined as the full life-cycle engineering process to identify and mitigate design, production, test, and field support deficiencies of mission success. We address the opportunity to apply the Cyberspace Security Econometrics System (CSES) to Carnegie Mellon University and Software Engineering Institute s Mission Assurance Analysismore » Protocol (MAAP) in this context.« less
Structural Analysis Using NX Nastran 9.0
NASA Technical Reports Server (NTRS)
Rolewicz, Benjamin M.
2014-01-01
NX Nastran is a powerful Finite Element Analysis (FEA) software package used to solve linear and non-linear models for structural and thermal systems. The software, which consists of both a solver and user interface, breaks down analysis into four files, each of which are important to the end results of the analysis. The software offers capabilities for a variety of types of analysis, and also contains a respectable modeling program. Over the course of ten weeks, I was trained to effectively implement NX Nastran into structural analysis and refinement for parts of two missions at NASA's Kennedy Space Center, the Restore mission and the Orion mission.
2011-06-01
alternative technologies early in the product life cycle. Use case 3 reflects SLAD’s response to changes in the way the Army acquires technical...development on the one hand, and to systems evaluated for production and deployment on the other. Together, these three use cases provide the Army...Package E x a m p le P ro b le m Mission based SLVA of networked-enabled small units subject to one or more threats. Mission based early
Solar Electric Propulsion for Primitive Body Science Missions
NASA Technical Reports Server (NTRS)
Witzberger, Kevin E.
2006-01-01
This paper describes work that assesses the performance of solar electric propulsion (SEP) for three different primitive body science missions: 1) Comet Rendezvous 2) Comet Surface Sample Return (CSSR), and 3) a Trojan asteroid/Centaur object Reconnaissance Flyby. Each of these missions launches from Earth between 2010 and 2016. Beginning-of-life (BOL) solar array power (referenced at 1 A.U.) varies from 10 to 18 kW. Launch vehicle selections range from a Delta II to a Delta IV medium-class. The primary figure of merit (FOM) is net delivered mass (NDM). This analysis considers the effects of imposing various mission constraints on the Comet Rendezvous and CSSR missions. Specifically, the Comet Rendezvous mission analysis examines an arrival date constraint with a launch year variation, whereas the CSSR mission analysis investigates an Earth entry velocity constraint commensurate with past and current missions. Additionally, the CSSR mission analysis establishes NASA's New Frontiers (NF) Design Reference Mission (DRM) in order to evaluate current and future SEP technologies. The results show that transfer times range from 5 to 9 years (depending on the mission). More importantly, the spacecraft's primary propulsion system performs an average 5-degree plane change on the return leg of the CSSR mission to meet the previously mentioned Earth entry velocity constraint. Consequently, these analyses show that SEP technologies that have higher thrust-to-power ratios can: 1) reduce flight time, and 2) change planes more efficiently.
NASA Technical Reports Server (NTRS)
Kofal, Allen E.
1987-01-01
The mission and system requirements for the concept definition and system analysis of the Orbital Transfer Vehicle (OTV) are established. The requirements set forth constitute the single authority for the selection, evaluation, and optimization of the technical performance and design of the OTV. This requirements document forms the basis for the Ground and Space Based OTV concept definition analyses and establishes the physical, functional, performance and design relationships to STS, Space Station, Orbital Maneuvering Vehicle (OMV), and payloads.
NASA Technical Reports Server (NTRS)
Kumar, L.
1978-01-01
A computer program is described for calculating the flexibility coefficients as arm design changes are made for the remote manipulator system. The coefficients obtained are required as input for a second program which reduces the number of payload deployment and retrieval system simulation runs required to simulate the various remote manipulator system maneuvers. The second program calculates end effector flexibility and joint flexibility terms for the torque model of each joint for any arbitrary configurations. The listing of both programs is included in the appendix.
NASA Technical Reports Server (NTRS)
1991-01-01
NASA's two Office of Space Flight (Code M) Space Transfer Vehicle (STV) contractors supported development of Space Exploration Initiative (SEI) lunar transportation concepts. This work treated lunar SEI missions as the far end of a more near-term STV program, most of whose missions were satellite delivery and servicing requirements derived from Civil Needs Data Base (CNDB) projections. Space Transfer Concepts and Analysis for Exploration Missions (STCAEM) began to address the complete design of a lunar transportation system. The following challenges were addressed: (1) the geometry of aerobraking; (2) accommodation of mixed payloads; (3) cryogenic propellant transfer in Low Lunar Orbit (LLO); (4) fully re-usable design; and (5) growth capability. The leveled requirements, derived requirements, and assumptions applied to the lunar transportation system design are discussed. The mission operations section includes data on mission analysis studies and performance parametrics as well as the operating modes and performance evaluations which include the STCAEM recommendations. Element descriptions for the lunar transportation family included are a listing of the lunar transfer vehicle/lunar excursion vehicle (LTV/LEV) components; trade studies and mass analyses of the transfer and excursion modules; advanced crew recovery vehicle (ACRV) (modified crew recovery vehicle (MCRV)) modifications required to fulfill lunar operations; the aerobrake shape and L/D to be used; and some costing methods and results. Commonality and evolution issues are also discussed.
Automatic Data Processing Equipment (ADPE) acquisition plan for the medical sciences
NASA Technical Reports Server (NTRS)
1979-01-01
An effective mechanism for meeting the SLSD/MSD data handling/processing requirements for Shuttle is discussed. The ability to meet these requirements depends upon the availability of a general purpose high speed digital computer system. This system is expected to implement those data base management and processing functions required across all SLSD/MSD programs during training, laboratory operations/analysis, simulations, mission operations, and post mission analysis/reporting.
The NASA In-Space Propulsion Technology Project, Products, and Mission Applicability
NASA Technical Reports Server (NTRS)
Anderson, David J.; Pencil, Eric; Liou, Larry; Dankanich, John; Munk, Michelle M.; Kremic, Tibor
2009-01-01
The In-Space Propulsion Technology (ISPT) Project, funded by NASA s Science Mission Directorate (SMD), is continuing to invest in propulsion technologies that will enable or enhance NASA robotic science missions. This overview provides development status, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of aerocapture, electric propulsion, advanced chemical thrusters, and systems analysis tools. Aerocapture investments improved: guidance, navigation, and control models of blunt-body rigid aeroshells; atmospheric models for Earth, Titan, Mars, and Venus; and models for aerothermal effects. Investments in electric propulsion technologies focused on completing NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6 to 7 kW throttle-able gridded ion system. The project is also concluding its High Voltage Hall Accelerator (HiVHAC) mid-term product specifically designed for a low-cost electric propulsion option. The primary chemical propulsion investment is on the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. The project is also delivering products to assist technology infusion and quantify mission applicability and benefits through mission analysis and tools. In-space propulsion technologies are applicable, and potentially enabling for flagship destinations currently under evaluation, as well as having broad applicability to future Discovery and New Frontiers mission solicitations.
NASA's In-Space Propulsion Technology Project Overview, Near-term Products and Mission Applicability
NASA Technical Reports Server (NTRS)
Dankanich, John; Anderson, David J.
2008-01-01
The In-Space Propulsion Technology (ISPT) Project, funded by NASA's Science Mission Directorate (SMD), is continuing to invest in propulsion technologies that will enable or enhance NASA robotic science missions. This overview provides development status, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of aerocapture, electric propulsion, advanced chemical thrusters, and systems analysis tools. Aerocapture investments improved (1) guidance, navigation, and control models of blunt-body rigid aeroshells, 2) atmospheric models for Earth, Titan, Mars and Venus, and 3) models for aerothermal effects. Investments in electric propulsion technologies focused on completing NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system. The project is also concluding its High Voltage Hall Accelerator (HiVHAC) mid-term product specifically designed for a low-cost electric propulsion option. The primary chemical propulsion investment is on the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. The project is also delivering products to assist technology infusion and quantify mission applicability and benefits through mission analysis and tools. In-space propulsion technologies are applicable, and potentially enabling for flagship destinations currently under evaluation, as well as having broad applicability to future Discovery and New Frontiers mission solicitations.
NASA Technical Reports Server (NTRS)
1974-01-01
A system baseline design oriented to the requirements of the next generation of Earth Observatory Satellite missions is presented. The first mission (EOS-A) is envisioned as a two-fold mission which (1) provides a continuum of data of the type being supplied by ERTS for the emerging operational applications and also (2) expands the research and development activities for future instrumentation and analysis techniques. The baseline system specifically satisfies the requirements of this first mission. However, EOS-A is expected to be the first of a series of earth observation missions. Thus the baseline design has been developed so as to accommodate these latter missions effectively as the transition is made from conventional, expendable launch vehicles and spacecraft to the Shuttle Space Transportation System era. Further, a subset of alternative missions requirements including Seasat, SEOS, SMM and MSS-5 have been analyzed to verify that the spacecraft design to serve a multi-mission role is economically sound. A key feature of the baseline system design is the concept of a modular observatory system whose elements are compatible with varying levels of launch vehicle capability. The design configuration can be used with either the Delta or Titan launch vehicles and will adapt readily to the space shuttle when that system becomes available in the early 1980's.
Research and Technology Report. Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Soffen, Gerald (Editor); Truszkowski, Walter (Editor); Ottenstein, Howard (Editor); Frost, Kenneth (Editor); Maran, Stephen (Editor); Walter, Lou (Editor); Brown, Mitch (Editor)
1996-01-01
This issue of Goddard Space Flight Center's annual report highlights the importance of mission operations and data systems covering mission planning and operations; TDRSS, positioning systems, and orbit determination; ground system and networks, hardware and software; data processing and analysis; and World Wide Web use. The report also includes flight projects, space sciences, Earth system science, and engineering and materials.
2010-06-01
Management System (C2RMS) .........................16 Mission Service Automation Architecture (MSAA) ...............................................17 Camus ...2. Mission Assurance Strategy (Adapted from Alberts & Dorofee, 2005, p. 14) 14 Figure 3. Content Analysis Coding Scheme... Alberts , 2002; Alberts , Garstka, & Stein, 1999; Department of Defense [DoD], 2009b; Rubin, 2010). This is especially true in military
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-103
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.
2000-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-103. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-103 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-91
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.
1998-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-91. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-91 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-93
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.
1999-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-93. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis findings of Space Shuttle mission STS-93 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-95
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.
1999-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-95. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-95 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-90
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.
1998-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-90. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system-conditions and integrated photographic analysis of Space Shuttle mission STS-90 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-89
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.
1998-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-89. Debris inspections of the flight element and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection systems conditions and integrated photographic analysis of Space Shuttle mission STS-89 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-112
NASA Technical Reports Server (NTRS)
Oliu, Armando
2002-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-112. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The report documents the debris/ice/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-112 and the resulting effect of the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-74
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Bowen, Barry C.; Lin, Jill D.
1996-01-01
A debris/ice/thermal protection system (TPS) assessment and integrated photographic analysis was conducted for shuttle mission STS-74. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanner data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of shuttle mission STS-74 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-87
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.
1998-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-87. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the-use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-87 and the resulting effect on the Space Shuttle Program.
Debris/ice/tps Assessment and Integrated Photographic Analysis of Shuttle Mission STS-96
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.
1999-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-96. Debris inspections of the flight elements and launch pad were performed before and after launch. icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-96 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-101
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.
2000-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle Mission STS-101. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-101 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-88
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.
1999-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-88. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-88 and the resulting effect on the Space Shuttle Program.
NASA Technical Reports Server (NTRS)
Davis, J. Bradley; Bowen, Barry C.; Rivera, Jorge E.; Speece, Robert F.; Katnik, Gregory N.
1994-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-64. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-64, and the resulting effect on the Space Shuttle Program.
Debris/ice/TPS assessment and integrated photographic analysis of Shuttle mission STS-68
NASA Technical Reports Server (NTRS)
Rivera, Jorge E.; Bowen, Barry C.; Davis, J. Bradley; Speece, Robert F.
1994-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-68. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report-documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-68, and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-111
NASA Technical Reports Server (NTRS)
Oliu, Armando
2005-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-111. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The report documents the debris/ice/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-111 and the resulting effect of the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-99
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.
2000-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-99. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris/ice/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-99 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-98
NASA Technical Reports Server (NTRS)
Speece, Robert F.
2004-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle Mission STS-98. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris/ice/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-98 and the resulting effect on the Space Shuttle Program.
Debris/ice/TPS assessment and integrated photographic analysis of shuttle mission STS-63
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Bowen, Barry C.; Davis, J. Bradley
1995-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for shuttle mission STS-63. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the external tank were assessed by the use of computer programs, monographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of shuttle mission STS-63, and the resulting effect on the space shuttle program.
Debris/ice/TPS assessment and integrated photographic analysis of Shuttle mission STS-66
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Bowen, Barry C.; Davis, J. Bradley
1995-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-66. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer program nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Shuttle mission STS-66, and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-97
NASA Technical Reports Server (NTRS)
Rivera, Jorge E.; Kelly, J. David (Technical Monitor)
2001-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-97. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch were analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris /ice/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-97 and the resulting effect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-86
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Lin, Jill D.
1997-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-86. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-86 and the resulting affect on the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-100
NASA Technical Reports Server (NTRS)
Oliu, Armando
2004-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-100. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The report documents the debris/ice/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-100 and the resulting effect of the Space Shuttle Program.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-92
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.
2000-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for Shuttle mission STS-92. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs and infrared scanned data during cryogenic loading of the vehicle, followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris/ice/thermal protection system conditions and integrated photographic analysis of Space Shuttle mission STS-92 and the resulting effect, if any, on the Space Shuttle Program.
Debris/ice/TPS assessment and integrated photographic analysis of Shuttle Mission STS-65
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Bowen, Barry C.; Davis, J. Bradley
1994-01-01
A debris/ice/thermal protection system assessment and integrated photographic analysis was conducted for shuttle mission STS-65. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the external tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/thermal protection system conditions and integrated photographic analysis of shuttle mission STS-65, and the resulting effect on the Space Shuttle Program.
Evolutionary use of nuclear electric propulsion
NASA Technical Reports Server (NTRS)
Hack, K. J.; George, J. A.; Riehl, J. P.; Gilland, J. H.
1990-01-01
Evolving new propulsion technologies through a rational and conscious effort to minimize development costs and program risks while maximizing the performance benefits is intuitively practical. A phased approach to the evolution of nuclear electric propulsion from use on planetary probes, to lunar cargo vehicles, and finally to manned Mars missions with a concomitant growth in technology is considered. Technology levels and system component makeup are discussed for nuclear power systems and both ion and magnetoplasmadynamic thrusters. Mission scenarios are described, which include analysis of a probe to Pluto, a lunar cargo mission, Martian split, all-up, and quick-trip mission options. Evolutionary progression of the use of NEP in such missions is discussed.
Requirements management and control
NASA Technical Reports Server (NTRS)
Robbins, Red
1993-01-01
The systems engineering process for thermal nuclear propulsion requirements and configuration definition is described in outline and graphic form. Functional analysis and mission attributes for a Mars exploration mission are also addressed.
NASA Technical Reports Server (NTRS)
Garrett, L. Bernard; Wright, Robert L.; Badi, Deborah; Findlay, John T.
1988-01-01
This publication summarizes the software needs and available analysis tools presented at the OEXP Analysis Tools Workshop held at the NASA Langley Research Center, Hampton, Virginia on June 21 to 22, 1988. The objective of the workshop was to identify available spacecraft system (and subsystem) analysis and engineering design tools, and mission planning and analysis software that could be used for various NASA Office of Exploration (code Z) studies, specifically lunar and Mars missions.
Using the General Mission Analysis Tool (GMAT)
NASA Technical Reports Server (NTRS)
Hughes, Steven P.; Conway, Darrel J.; Parker, Joel
2017-01-01
This is a software tutorial and presentation demonstrating the application of the General Mission Analysis Tool (GMAT). These slides will be used to accompany the demonstration. The demonstration discusses GMAT basics, then presents a detailed example of GMAT application to the Transiting Exoplanet Survey Satellite (TESS) mission. This talk is a combination of existing presentations and material; system user guide and technical documentation; a GMAT basics and overview, and technical presentations from the TESS projects on their application of GMAT to critical mission design. The GMAT basics slides are taken from the open source training material. The TESS slides are a streamlined version of the CDR package provided by the project with SBU and ITAR data removed by the TESS project. Slides for navigation and optimal control are borrowed from system documentation and training material.
NASA Technical Reports Server (NTRS)
Reil, Robin L.
2014-01-01
Model Based Systems Engineering (MBSE) has recently been gaining significant support as a means to improve the "traditional" document-based systems engineering (DBSE) approach to engineering complex systems. In the spacecraft design domain, there are many perceived and propose benefits of an MBSE approach, but little analysis has been presented to determine the tangible benefits of such an approach (e.g. time and cost saved, increased product quality). This paper presents direct examples of how developing a small satellite system model can improve traceability of the mission concept to its requirements. A comparison of the processes and approaches for MBSE and DBSE is made using the NASA Ames Research Center SporeSat CubeSat mission as a case study. A model of the SporeSat mission is built using the Systems Modeling Language standard and No Magic's MagicDraw modeling tool. The model incorporates mission concept and requirement information from the mission's original DBSE design efforts. Active dependency relationships are modeled to demonstrate the completeness and consistency of the requirements to the mission concept. Anecdotal information and process-duration metrics are presented for both the MBSE and original DBSE design efforts of SporeSat.
Improved Traceability of Mission Concept to Requirements Using Model Based Systems Engineering
NASA Technical Reports Server (NTRS)
Reil, Robin
2014-01-01
Model Based Systems Engineering (MBSE) has recently been gaining significant support as a means to improve the traditional document-based systems engineering (DBSE) approach to engineering complex systems. In the spacecraft design domain, there are many perceived and propose benefits of an MBSE approach, but little analysis has been presented to determine the tangible benefits of such an approach (e.g. time and cost saved, increased product quality). This thesis presents direct examples of how developing a small satellite system model can improve traceability of the mission concept to its requirements. A comparison of the processes and approaches for MBSE and DBSE is made using the NASA Ames Research Center SporeSat CubeSat mission as a case study. A model of the SporeSat mission is built using the Systems Modeling Language standard and No Magics MagicDraw modeling tool. The model incorporates mission concept and requirement information from the missions original DBSE design efforts. Active dependency relationships are modeled to analyze the completeness and consistency of the requirements to the mission concept. Overall experience and methodology are presented for both the MBSE and original DBSE design efforts of SporeSat.
NASA Technical Reports Server (NTRS)
1983-01-01
User alignment plan, physical and life sciences and applications, commercial requirements national security, space operations, user needs, foreign contacts, mission scenario analysis and architectural concepts, alternative systems concepts, mission operations architectural development, architectural analysis trades, evolution, configuration, and technology development are discussed.
Mars Hybrid Propulsion System Trajectory Analysis. Part I; Crew Missions
NASA Technical Reports Server (NTRS)
Chai, Patrick R.; Merrill, Raymond G.; Qu, Min
2015-01-01
NASAs Human spaceflight Architecture team is developing a reusable hybrid transportation architecture in which both chemical and electric propulsion systems are used to send crew and cargo to Mars destinations such as Phobos, Deimos, the surface of Mars, and other orbits around Mars. By combining chemical and electrical propulsion into a single space- ship and applying each where it is more effective, the hybrid architecture enables a series of Mars trajectories that are more fuel-efficient than an all chemical architecture without significant increases in flight times. This paper provides the analysis of the interplanetary segments of the three Evolvable Mars Campaign crew missions to Mars using the hybrid transportation architecture. The trajectory analysis provides departure and arrival dates and propellant needs for the three crew missions that are used by the campaign analysis team for campaign build-up and logistics aggregation analysis. Sensitivity analyses were performed to investigate the impact of mass growth, departure window, and propulsion system performance on the hybrid transportation architecture. The results and system analysis from this paper contribute to analyses of the other human spaceflight architecture team tasks and feed into the definition of the Evolvable Mars Campaign.
The methodology of multi-viewpoint clustering analysis
NASA Technical Reports Server (NTRS)
Mehrotra, Mala; Wild, Chris
1993-01-01
One of the greatest challenges facing the software engineering community is the ability to produce large and complex computer systems, such as ground support systems for unmanned scientific missions, that are reliable and cost effective. In order to build and maintain these systems, it is important that the knowledge in the system be suitably abstracted, structured, and otherwise clustered in a manner which facilitates its understanding, manipulation, testing, and utilization. Development of complex mission-critical systems will require the ability to abstract overall concepts in the system at various levels of detail and to consider the system from different points of view. Multi-ViewPoint - Clustering Analysis MVP-CA methodology has been developed to provide multiple views of large, complicated systems. MVP-CA provides an ability to discover significant structures by providing an automated mechanism to structure both hierarchically (from detail to abstract) and orthogonally (from different perspectives). We propose to integrate MVP/CA into an overall software engineering life cycle to support the development and evolution of complex mission critical systems.
Summary Report of Mission Acceleration Measurements for STS-78. Launched June 20, 1996
NASA Technical Reports Server (NTRS)
Hakimzadeh, Roshanak; Hrovat, Kenneth; McPherson, Kevin M.; Moskowitz, Milton E.; Rogers, Melissa J. B.
1997-01-01
The microgravity environment of the Space Shuttle Columbia was measured during the STS-78 mission using accelerometers from three different instruments: the Orbital Acceleration Research Experiment, the Space Acceleration Measurement System and the Microgravity Measurement Assembly. The quasi-steady environment was also calculated in near real-time during the mission by the Microgravity Analysis Workstation. The Orbital Acceleration Research Experiment provided investigators with real-time quasi-steady acceleration measurements. The Space Acceleration Measurement System recorded higher frequency data on-board for post-mission analysis. The Microgravity Measurement Assembly provided investigators with real-time quasi-steady and higher frequency acceleration measurements. The Microgravity Analysis Workstation provided calculation of the quasi-steady environment. This calculation was presented to the science teams in real-time during the mission. The microgravity environment related to several different Orbiter, crew and experiment operations is presented and interpreted in this report. A radiator deploy, the Flight Control System checkout, and a vernier reaction control system reboost demonstration had minimal effects on the acceleration environment, with excitation of frequencies in the 0.01 to 10 Hz range. Flash Evaporator System venting had no noticeable effect on the environment while supply and waste water dumps caused excursions of 2 x lO(exp -6) to 4 x 10(exp -6) g in the Y(sub b) and Z(sub b) directions. Crew sleep and ergometer exercise periods can be clearly seen in the acceleration data, as expected. Accelerations related to the two Life Science Laboratory Equipment Refrigerator/Freezers were apparent in the data as are accelerations caused by the Johnson Space Center Projects Centrifuge. As on previous microgravity missions, several signals are present in the acceleration data for which a source has not been identified. The causes of these accelerations are under investigation.
Flight Mechanics of the Entry, Descent and Landing of the ExoMars Mission
NASA Technical Reports Server (NTRS)
HayaRamos, Rodrigo; Boneti, Davide
2007-01-01
ExoMars is ESA's current mission to planet Mars. A high mobility rover and a fixed station will be deployed on the surface of Mars. This paper regards the flight mechanics of the Entry, Descent and Landing (EDL) phases used for the mission analysis and design of the Baseline and back-up scenarios of the mission. The EDL concept is based on a ballistic entry, followed by a descent under parachutes and inflatable devices (airbags) for landing. The mission analysis and design is driven by the flexibility in terms of landing site, arrival dates and the very stringent requirement in terms of landing accuracy. The challenging requirements currently imposed to the mission need innovative analysis and design techniques to support system design trade-offs to cope with the variability in entry conditions. The concept of the Global Entry Corridor has been conceived, designed, implemented and successfully validated as a key tool to provide a global picture of the mission capabilities in terms of landing site reachability.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-109
NASA Technical Reports Server (NTRS)
Oliu, Armando
2005-01-01
The Debris Team has developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center Photo/Video Analysis, reports from Johnson Space Center and Marshall Space Flight Center are also included in this document to provide an integrated assessment of the mission.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-110
NASA Technical Reports Server (NTRS)
Oliu, Armando
2005-01-01
The Debris Team has developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center Photo/Video Analysis, reports from Johnson Space Center and Marshall Space Flight Center are also included in this document to provide an integrated assessment of the mission.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-105
NASA Technical Reports Server (NTRS)
Oliu, Armando
2005-01-01
The Debris Team has developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center Photo/Video Analysis, reports from Johnson Space Center and Marshall Space Flight Center are also included in this document to provide an integrated assessment of the mission.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-104
NASA Technical Reports Server (NTRS)
Oliu, Armando
2005-01-01
The Debris Team has developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center Photo/Video Analysis, reports from Johnson Space Center and Marshall Space Flight Center are also included in this document to provide an integrated assessment of the mission.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-108
NASA Technical Reports Server (NTRS)
Oliu, Armando
2005-01-01
The Debris Team has developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center Photo/Video Analysis, reports from Johnson Space Center and Marshall Space Flight Center are also included in this document to provide an integrated assessment of the mission.
PROS: An IRAF based system for analysis of x ray data
NASA Technical Reports Server (NTRS)
Conroy, M. A.; Deponte, J.; Moran, J. F.; Orszak, J. S.; Roberts, W. P.; Schmidt, D.
1992-01-01
PROS is an IRAF based software package for the reduction and analysis of x-ray data. The use of a standard, portable, integrated environment provides for both multi-frequency and multi-mission analysis. The analysis of x-ray data differs from optical analysis due to the nature of the x-ray data and its acquisition during constantly varying conditions. The scarcity of data, the low signal-to-noise ratio and the large gaps in exposure time make data screening and masking an important part of the analysis. PROS was developed to support the analysis of data from the ROSAT and Einstein missions but many of the tasks have been used on data from other missions. IRAF/PROS provides a complete end-to-end system for x-ray data analysis: (1) a set of tools for importing and exporting data via FITS format -- in particular, IRAF provides a specialized event-list format, QPOE, that is compatible with its IMAGE (2-D array) format; (2) a powerful set of IRAF system capabilities for both temporal and spatial event filtering; (3) full set of imaging and graphics tasks; (4) specialized packages for scientific analysis such as spatial, spectral and timing analysis -- these consist of both general and mission specific tasks; and (5) complete system support including ftp and magnetic tape releases, electronic and conventional mail hotline support, electronic mail distribution of solutions to frequently asked questions and current known bugs. We will discuss the philosophy, architecture and development environment used by PROS to generate a portable, multimission software environment. PROS is available on all platforms that support IRAF, including Sun/Unix, VAX/VMS, HP, and Decstations. It is available on request at no charge.
Navigation Design and Analysis for the Orion Earth-Moon Mission
NASA Technical Reports Server (NTRS)
DSouza, Christopher; Zanetti, Renato
2014-01-01
This paper details the design of the cislunar optical navigation system being proposed for the Orion Earth-Moon (EM) missions. In particular, it presents the mathematics of the navigation filter. The unmodeled accelerations and their characterization are detailed. It also presents the analysis that has been performed to understand the performance of the proposed system, with particular attention paid to entry flight path angle constraints and the delta-V performance.
Will Astronauts Wash Clothes on the Way to Mars?
NASA Technical Reports Server (NTRS)
Ewert, Michael K.; Jeng, Frank F.
2015-01-01
Future human space exploration missions will lengthen to years, and keeping crews clothed without a huge resupply burden is an important consideration for habitation systems. A space laundry system could be the solution; however, the resources it uses must be accounted for and must win out over the reliable practice of simply bringing along enough spare underwear. NASA has conducted trade-off studies through its Logistics Reduction Project to compare current space clothing systems, life extension of that clothing, traditional water-based clothes washing, and other sanitizing techniques. The best clothing system depends on the mission and assumptions but, in general, analysis results indicate that washing clothes on space missions will start to pay off as mission durations approach a year.
Is a Space Laundry Needed for Exploration?
NASA Technical Reports Server (NTRS)
Ewert, Michael K.; Jeng, Frank F.
2014-01-01
Future human space exploration missions will lengthen to years, and keeping crews clothed without a huge resupply burden is an important consideration for habitation systems. A space laundry system could be the solution; however, the resources it uses must be accounted for and must win out over the very reliable practice of bringing along enough spare underwear. Through NASA's Logistics Reduction and Repurposing project, trade off studies have been conducted to compare current space clothing systems, life extension of that clothing, traditional water based clothes washing and other sanitizing techniques. The best clothing system of course depends on the mission and assumptions, but in general, analysis results indicate that washing clothes on space missions will start to pay off as mission durations push past a year.
NASA Technical Reports Server (NTRS)
Dwyer Cianciolo, Alicia M. (Editor)
2011-01-01
NASA senior management commissioned the Entry, Descent and Landing Systems Analysis (EDL-SA) Study in 2008 to identify and roadmap the Entry, Descent and Landing (EDL) technology investments that the agency needed to successfully land large payloads at Mars for both robotic and human-scale missions. Year 1 of the study focused on technologies required for Exploration-class missions to land payloads of 10 to 50 mt. Inflatable decelerators, rigid aeroshell and supersonic retro-propulsion emerged as the top candidate technologies. In Year 2 of the study, low TRL technologies identified in Year 1, inflatables aeroshells and supersonic retropropulsion, were combined to create a demonstration precursor robotic mission. This part of the EDL-SA Year 2 effort, called Exploration Feed Forward (EFF), took much of the systems analysis simulation and component model development from Year 1 to the next level of detail.
Earth Observatory Satellite system definition study. Report no. 7: EOS system definition report
NASA Technical Reports Server (NTRS)
1974-01-01
The design concept and operational aspects of the Earth Observatory Satellite (EOS) are presented. A table of the planned EOS missions is included to show the purpose of the mission, the instruments involved, and the launch date. The subjects considered in the analysis of the EOS development are: (1) system requirements, (2) design/cost trade methodology, (3) observatory design alternatives, (4) the data management system, (5) the design evaluation and preferred approach, (6) program cost compilation, (7) follow-on mission accommodation, and (8) space shuttle interfaces and utilization. Illustrations and block diagrams of the spacecraft configurations are provided.
Systems-level study of a nonsurvivable Jupiter turbopause probe. Volume 1: Summary
NASA Technical Reports Server (NTRS)
Wiltshire, R. S.
1972-01-01
The design of a space probe to explore the atmosphere of the planet Jupiter is discussed. Five major areas were considered: (1) definition of science requirements, (2) mission evaluation, (3) definition of probe system, (4) definition of spacecraft support requirements, and (5) nonequilibrium flow field analysis for communications blackout evaluation. The overall mission and system design are emphasized. The integration of the various technologies into complete systems designs is described. Results showed that a nonsurvivable turbopause probe mission to Jupiter with adequate data return to meet the science objectives is feasible and practical.
NASA Technical Reports Server (NTRS)
Matson, Jack E.
1992-01-01
The Spacelab Mission Independent Training Program provides an overview of payload operations. Most of the training material is currently presented in workbook form with some lecture sessions to supplement selected topics. The goal of this project was to develop a prototype interactive learning system for one of the Mission Independent Training topics to demonstrate how the learning process can be improved by incorporating multi-media technology into an interactive system. This report documents the development process and some of the problems encountered during the analysis, design, and production phases of this system.
NASA Astrophysics Data System (ADS)
Obousy, R.
While interstellar missions have been explored in the literature, one mission architecture has not received much attention, namely the interstellar rendezvous and return mission that could be accomplished on timescales comparable with a working scientist's career. Such a mission would involve an initial boost phase followed by a coasting phase to the target system. Next would be the deceleration and rendezvous phase, which would be followed by a period of scientific data gathering. Finally, there would be a second boost phase, aimed at returning the spacecraft back to the solar system, and subsequent coasting and deceleration phases upon return to our solar system. Such a mission would represent a precursor to a future manned interstellar mission; which in principle could safely return any astronauts back to Earth. In this paper a novel architecture is proposed that would allow for an unmanned interstellar rendezvous and return mission. The approach utilized for the Vacuum to Antimatter-Rocket Interstellar Explorer System (VARIES) would lead to system components and mission approaches that could be utilized for autonomous operation of other deep-space probes. Engineering solutions for such a mission will have a significant impact on future exploration and sample return missions for the outer planets. This paper introduces the general concept, with a mostly qualitative analysis. However, a full research program is introduced, and as this program progresses, more quantitative papers will be released.
Difficult Decisions Made Easier
NASA Technical Reports Server (NTRS)
2006-01-01
NASA missions are extremely complex and prone to sudden, catastrophic failure if equipment falters or if an unforeseen event occurs. For these reasons, NASA trains to expect the unexpected. It tests its equipment and systems in extreme conditions, and it develops risk-analysis tests to foresee any possible problems. The Space Agency recently worked with an industry partner to develop reliability analysis software capable of modeling complex, highly dynamic systems, taking into account variations in input parameters and the evolution of the system over the course of a mission. The goal of this research was multifold. It included performance and risk analyses of complex, multiphase missions, like the insertion of the Mars Reconnaissance Orbiter; reliability analyses of systems with redundant and/or repairable components; optimization analyses of system configurations with respect to cost and reliability; and sensitivity analyses to identify optimal areas for uncertainty reduction or performance enhancement.
Mission control of multiple unmanned aerial vehicles: a workload analysis.
Dixon, Stephen R; Wickens, Christopher D; Chang, Dervon
2005-01-01
With unmanned aerial vehicles (UAVs), 36 licensed pilots flew both single-UAV and dual-UAV simulated military missions. Pilots were required to navigate each UAV through a series of mission legs in one of the following three conditions: a baseline condition, an auditory autoalert condition, and an autopilot condition. Pilots were responsible for (a) mission completion, (b) target search, and (c) systems monitoring. Results revealed that both the autoalert and the autopilot automation improved overall performance by reducing task interference and alleviating workload. The autoalert system benefited performance both in the automated task and mission completion task, whereas the autopilot system benefited performance in the automated task, the mission completion task, and the target search task. Practical implications for the study include the suggestion that reliable automation can help alleviate task interference and reduce workload, thereby allowing pilots to better handle concurrent tasks during single- and multiple-UAV flight control.
Spreadsheets for Analyzing and Optimizing Space Missions
NASA Technical Reports Server (NTRS)
Some, Raphael R.; Agrawal, Anil K.; Czikmantory, Akos J.; Weisbin, Charles R.; Hua, Hook; Neff, Jon M.; Cowdin, Mark A.; Lewis, Brian S.; Iroz, Juana; Ross, Rick
2009-01-01
XCALIBR (XML Capability Analysis LIBRary) is a set of Extensible Markup Language (XML) database and spreadsheet- based analysis software tools designed to assist in technology-return-on-investment analysis and optimization of technology portfolios pertaining to outer-space missions. XCALIBR is also being examined for use in planning, tracking, and documentation of projects. An XCALIBR database contains information on mission requirements and technological capabilities, which are related by use of an XML taxonomy. XCALIBR incorporates a standardized interface for exporting data and analysis templates to an Excel spreadsheet. Unique features of XCALIBR include the following: It is inherently hierarchical by virtue of its XML basis. The XML taxonomy codifies a comprehensive data structure and data dictionary that includes performance metrics for spacecraft, sensors, and spacecraft systems other than sensors. The taxonomy contains >700 nodes representing all levels, from system through subsystem to individual parts. All entries are searchable and machine readable. There is an intuitive Web-based user interface. The software automatically matches technologies to mission requirements. The software automatically generates, and makes the required entries in, an Excel return-on-investment analysis software tool. The results of an analysis are presented in both tabular and graphical displays.
Prototype Development of a Tradespace Analysis Tool for Spaceflight Medical Resources.
Antonsen, Erik L; Mulcahy, Robert A; Rubin, David; Blue, Rebecca S; Canga, Michael A; Shah, Ronak
2018-02-01
The provision of medical care in exploration-class spaceflight is limited by mass, volume, and power constraints, as well as limitations of available skillsets of crewmembers. A quantitative means of exploring the risks and benefits of inclusion or exclusion of onboard medical capabilities may help to inform the development of an appropriate medical system. A pilot project was designed to demonstrate the utility of an early tradespace analysis tool for identifying high-priority resources geared toward properly equipping an exploration mission medical system. Physician subject matter experts identified resources, tools, and skillsets required, as well as associated criticality scores of the same, to meet terrestrial, U.S.-specific ideal medical solutions for conditions concerning for exploration-class spaceflight. A database of diagnostic and treatment actions and resources was created based on this input and weighed against the probabilities of mission-specific medical events to help identify common and critical elements needed in a future exploration medical capability. Analysis of repository data demonstrates the utility of a quantitative method of comparing various medical resources and skillsets for future missions. Directed database queries can provide detailed comparative estimates concerning likelihood of resource utilization within a given mission and the weighted utility of tangible and intangible resources. This prototype tool demonstrates one quantitative approach to the complex needs and limitations of an exploration medical system. While this early version identified areas for refinement in future version development, more robust analysis tools may help to inform the development of a comprehensive medical system for future exploration missions.Antonsen EL, Mulcahy RA, Rubin D, Blue RS, Canga MA, Shah R. Prototype development of a tradespace analysis tool for spaceflight medical resources. Aerosp Med Hum Perform. 2018; 89(2):108-114.
Advanced solar dynamic space power systems perspectives, requirements and technology needs
NASA Technical Reports Server (NTRS)
Dustin, M. O.; Savino, J. M.; Lacy, D. E.; Migra, R. P.; Juhasz, A. J.; Coles, C. E.
1986-01-01
Projected NASA, Civil, Commercial, and Military missions will require space power systems of increased versatility and power levels. The Advanced Solar Dynamic (ASD) Power systems offer the potential for efficient, lightweight, survivable, relatively compact, long-lived space power systems applicable to a wide range of power levels (3 to 300 kWe), and a wide variety of orbits. The successful development of these systems could satisfy the power needs for a wide variety of these projected missions. Thus, the NASA Lewis Research Center has embarked upon an aggressive ASD reserach project under the direction of NASA's Office of Aeronautics and Space Technology (DAST). The project is being implemented through a combination of in-house and contracted efforts. Key elements of this project are missions analysis to determine the power systems requirements, systems analysis to identify the most attractive ASD power systems to meet these requirements, and to guide the technology development efforts, and technology development of key components.
NASA Technical Reports Server (NTRS)
1975-01-01
Cost analyses and tradeoff studies are given for waste management in the Space Station, Lunar Surface Bases, and interplanetary space missions. Crew drinking water requirements are discussed and various systems to recycle water are examined. The systems were evaluated for efficiency and weight savings. The systems considered effective for urine water recovery were vapor compression, flash evaporation, and air evaporation with electrolytic pretreatment. For wash water recovery, the system of multifiltration was selected. A wet oxidation system, which can process many kinds of wastes, is also considered.
Application of State Analysis and Goal-Based Operations to a MER Mission Scenario
NASA Technical Reports Server (NTRS)
Morris, J. Richard; Ingham, Michel D.; Mishkin, Andrew H.; Rasmussen, Robert D.; Starbird, Thomas W.
2006-01-01
State Analysis is a model-based systems engineering methodology employing a rigorous discovery process which articulates operations concepts and operability needs as an integrated part of system design. The process produces requirements on system and software design in the form of explicit models which describe the behavior of states and the relationships among them. By applying State Analysis to an actual MER flight mission scenario, this study addresses the specific real world challenges of complex space operations and explores technologies that can be brought to bear on future missions. The paper describes the tools currently used on a daily basis for MER operations planning and provides an in-depth description of the planning process, in the context of a Martian day's worth of rover engineering activities, resource modeling, flight rules, science observations, and more. It then describes how State Analysis allows for the specification of a corresponding goal-based sequence that accomplishes the same objectives, with several important additional benefits.
Space and Earth Sciences, Computer Systems, and Scientific Data Analysis Support, Volume 1
NASA Technical Reports Server (NTRS)
Estes, Ronald H. (Editor)
1993-01-01
This Final Progress Report covers the specific technical activities of Hughes STX Corporation for the last contract triannual period of 1 June through 30 Sep. 1993, in support of assigned task activities at Goddard Space Flight Center (GSFC). It also provides a brief summary of work throughout the contract period of performance on each active task. Technical activity is presented in Volume 1, while financial and level-of-effort data is presented in Volume 2. Technical support was provided to all Division and Laboratories of Goddard's Space Sciences and Earth Sciences Directorates. Types of support include: scientific programming, systems programming, computer management, mission planning, scientific investigation, data analysis, data processing, data base creation and maintenance, instrumentation development, and management services. Mission and instruments supported include: ROSAT, Astro-D, BBXRT, XTE, AXAF, GRO, COBE, WIND, UIT, SMM, STIS, HEIDI, DE, URAP, CRRES, Voyagers, ISEE, San Marco, LAGEOS, TOPEX/Poseidon, Pioneer-Venus, Galileo, Cassini, Nimbus-7/TOMS, Meteor-3/TOMS, FIFE, BOREAS, TRMM, AVHRR, and Landsat. Accomplishments include: development of computing programs for mission science and data analysis, supercomputer applications support, computer network support, computational upgrades for data archival and analysis centers, end-to-end management for mission data flow, scientific modeling and results in the fields of space and Earth physics, planning and design of GSFC VO DAAC and VO IMS, fabrication, assembly, and testing of mission instrumentation, and design of mission operations center.
Research & Technology Report Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Soffen, Gerald A. (Editor); Truszkowski, Walter (Editor); Ottenstein, Howard (Editor); Frost, Kenneth (Editor); Maran, Stephen (Editor); Walter, Lou (Editor); Brown, Mitch (Editor)
1995-01-01
The main theme of this edition of the annual Research and Technology Report is Mission Operations and Data Systems. Shifting from centralized to distributed mission operations, and from human interactive operations to highly automated operations is reported. The following aspects are addressed: Mission planning and operations; TDRSS, Positioning Systems, and orbit determination; hardware and software associated with Ground System and Networks; data processing and analysis; and World Wide Web. Flight projects are described along with the achievements in space sciences and earth sciences. Spacecraft subsystems, cryogenic developments, and new tools and capabilities are also discussed.
General Mission Analysis Tool (GMAT): Mission, Vision, and Business Case
NASA Technical Reports Server (NTRS)
Hughes, Steven P.
2007-01-01
The Goal of the GMAT project is to develop new space trajectory optimization and mission design technology by working inclusively with ordinary people, universities businesses and other government organizations; and to share that technology in an open and unhindered way. GMAT's a free and open source software system; free for anyone to use in development of new mission concepts or to improve current missions, freely available in source code form for enhancement or future technology development.
The Advanced Modeling, Simulation and Analysis Capability Roadmap Vision for Engineering
NASA Technical Reports Server (NTRS)
Zang, Thomas; Lieber, Mike; Norton, Charles; Fucik, Karen
2006-01-01
This paper summarizes a subset of the Advanced Modeling Simulation and Analysis (AMSA) Capability Roadmap that was developed for NASA in 2005. The AMSA Capability Roadmap Team was chartered to "To identify what is needed to enhance NASA's capabilities to produce leading-edge exploration and science missions by improving engineering system development, operations, and science understanding through broad application of advanced modeling, simulation and analysis techniques." The AMSA roadmap stressed the need for integration, not just within the science, engineering and operations domains themselves, but also across these domains. Here we discuss the roadmap element pertaining to integration within the engineering domain, with a particular focus on implications for future observatory missions. The AMSA products supporting the system engineering function are mission information, bounds on information quality, and system validation guidance. The Engineering roadmap element contains 5 sub-elements: (1) Large-Scale Systems Models, (2) Anomalous Behavior Models, (3) advanced Uncertainty Models, (4) Virtual Testing Models, and (5) space-based Robotics Manufacture and Servicing Models.
NASA Technical Reports Server (NTRS)
Nelson, James H.; Mohrman, Gordon W.; Callan, Daniel R.
1986-01-01
The key system and program trade studies performed to arrive at a preferred Orbital Transfer Vehicle (OTV) system concept and evolutionary approach to the acquisition of the requisite capabilites is documented. These efforts were expanded to encompass a Space Transportation Architecture Study (STAS) mission model and recommended unmanned cargo vehicle. The most important factors affecting the results presented are the mission model requirements and selection criteria. The reason for conducting the OTV concept definition and system analyses study is to select a concept and acquisition approach that meets a delivery requirement reflected by the mission model.
Technology developments integrating a space network communications testbed
NASA Technical Reports Server (NTRS)
Kwong, Winston; Jennings, Esther; Clare, Loren; Leang, Dee
2006-01-01
As future manned and robotic space explorations missions involve more complex systems, it is essential to verify, validate, and optimize such systems through simulation and emulation in a low cost testbed environment. The goal of such a testbed is to perform detailed testing of advanced space and ground communications networks, technologies, and client applications that are essential for future space exploration missions. We describe the development of new technologies enhancing our Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) that enables its integration in a distributed space communications testbed. MACHETE combines orbital modeling, link analysis, and protocol and service modeling to quantify system performance based on comprehensive considerations of different aspects of space missions.
Son'kin, V D; Egorov, A D; Zaĭtseva, V V; Son'kin, V V; Stepantsov, V I
2003-01-01
The concept of in-flight expert system for controlling (ESC) the physical training program during extended, including Martian, space missions has been developed based on the literature dedicated to the microgravity countermeasures and a retrospective analysis of effectiveness of the known ESC methods. This concept and the principle of crew autonomy were used as prime assumptions for defining the structure of ESC-based training in long-duration and planetary missions.
Acceleration Noise Considerations for Drag-free Satellite Geodesy Missions
NASA Astrophysics Data System (ADS)
Hong, S. H.; Conklin, J. W.
2016-12-01
The GRACE mission, which launched in 2002, opened a new era of satellite geodesy by providing monthly mass variation solutions with spatial resolution of less than 200 km. GRACE proved the usefulness of a low-low satellite-to-satellite tracking formation. Analysis of the GRACE data showed that the K-Band ranging system, which is used to measure the range between the two satellites, is the limiting factor for the precision of the solution. Consequently, the GRACE-FO mission, schedule for launch in 2017, will continue the work of GRACE, but will also test a new, higher precision laser ranging interferometer compared with the K-Band ranging system. Beyond GRACE-FO, drag-free systems are being considered for satellite geodesy missions. GOCE tested a drag-free attitude control system with a gravity gradiometer and showed improvements in the acceleration noise compensation compared to the electrostatic accelerometers used in GRACE. However, a full drag-free control system with a gravitational reference sensor has not yet been applied to satellite geodesy missions. More recently, this type of drag-free system was used in LISA Pathfinder, launched in 2016, with an acceleration noise performance two orders of magnitude better than that of GOCE. We explore the effects of drag-free performance in satellite geodesy missions similar to GRACE-FO by applying three different residual acceleration noises from actual space missions: GRACE, GOCE and LISA Pathfinder. Our solutions are limited to degree 60 spherical harmonic coefficients with biweekly time resolution. Our analysis shows that a drag-free system with acceleration noise performance comparable to GOCE and LISA-Pathfinder would greatly improve the accuracy of gravity solutions. In addition to these results, we also present the covariance shaping process used in the estimation. In the future, we plan to use actual acceleration noise data measured using the UF torsion pendulum. This apparatus is a ground facility at University of Florida used to test the performance of precision inertial sensors. We also plan to evaluate the importance of acceleration noise when a second inclined pair of satellites is included in the analysis, following the work of Weise in 2012, which showed that two satellite pairs decreased aliasing errors.
Phobos lander coding system: Software and analysis
NASA Technical Reports Server (NTRS)
Cheung, K.-M.; Pollara, F.
1988-01-01
The software developed for the decoding system used in the telemetry link of the Phobos Lander mission is described. Encoders and decoders are provided to cover the three possible telemetry configurations. The software can be used to decode actual data or to simulate the performance of the telemetry system. The theoretical properties of the codes chosen for this mission are analyzed and discussed.
Magnetospheric Multiscale Mission Navigation Performance During Apogee-Raising and Beyond
NASA Technical Reports Server (NTRS)
Farahmand, Mitra; Long, Anne; Hollister, Jacob; Rose, Julie; Godine, Dominic
2017-01-01
The primary objective of the Magnetospheric Multiscale (MMS) Mission is to study the magnetic reconnection phenomena in the Earths magnetosphere. The MMS mission consists of four identical spinning spacecraft with the science objectives requiring a tetrahedral formation in highly elliptical orbits. The MMS spacecraft are equipped with onboard orbit and time determination software, provided by a weak-signal Global Positioning System (GPS) Navigator receiver hosting the Goddard Enhanced Onboard Navigation System (GEONS). This paper presents the results of MMS navigation performance analysis during the Phase 2a apogee-raising campaign and Phase 2b science segment of the mission.
Evaluation of radioisotope electric propulsion for selected interplanetary science missions
NASA Technical Reports Server (NTRS)
Oh, David; Bonfiglio, Eugene; Cupples, Mike; Belcher, Jeremy; Witzberger, Kevin; Fiehler, Douglas; Robinson Artis, Gwen
2005-01-01
This study assessed the benefits and applicability of REP to missions relevant to the In-Space Propulsion Program (ISPP) using first and second generation RPS with specific powers of 4 We/kg and 8 We/kg, respectively. Three missions representing small body targets, medium outer planet class, and main belt asteroids and comets were evaluated. Those missions were a Trojan Asteroid Orbiter, Comet Surface Sample Return (CSSR), and Jupiter Polar Orbiter with Probes (JPOP). For each mission, REP cost and performance was compared with solar electric propulsion system (SEPS) and SOA chemical propulsion system (SCPS) cost and performance. The outcome of the analysis would be a determinant for potential inclusion in the ISPP investment portfolio.
NASA Technical Reports Server (NTRS)
Handley, Thomas H., Jr.
1993-01-01
The issues of how to avoid future surprise growth in Mission Operations and Data Analysis (MO&DA) costs and how to minimize total MO&DA costs for planetary missions are discussed within the context of JPL mission operations support. It is argued that there is no simple, single solution: the entire Project life-cycle must be addressed. It is concluded that cost models that can predict both MO&DA cost as well as Ground System development costs are needed. The first year MO&DA budget plotted against the total of ground and flight systems developments is shown. In order to better recognize changes and control costs in general, a modified funding line item breakdown is recommended to distinguish between development costs (prelaunch and postlaunch) and MO&DA costs.
Apollo experience report: S-band system signal design and analysis
NASA Technical Reports Server (NTRS)
Rosenberg, H. R. (Editor)
1972-01-01
A description is given of the Apollo communications-system engineering-analysis effort that ensured the adequacy, performance, and interface compatibility of the unified S-band system elements for a successful lunar-landing mission. The evolution and conceptual design of the unified S-band system are briefly reviewed from a historical viewpoint. A comprehensive discussion of the unified S-band elements includes the salient design features of the system and serves as a basis for a better understanding of the design decisions and analyses. The significant design decisions concerning the Apollo communications-system signal design are discussed providing an insight into the role of systems analysis in arriving at the current configuration of the Apollo communications system. Analyses are presented concerning performance estimation (mathematical-model development through real-time mission support) and system deficiencies, modifications, and improvements.
Astronomy sortie missions definition study. Volume 3, book 1: Design analysis and trade studies
NASA Technical Reports Server (NTRS)
1972-01-01
A study to define the astronomy sortie missions was conducted. The design analyses and tradeoff studies conducted for candidate concepts are presented. The subjects discussed are: (1) system and subsystem requirements, (2) space shuttle interfaces, (3) infrared telescope development, and (4) experiments to be conducted during the mission.
Mission-Based Reporting in Academic Psychiatry
ERIC Educational Resources Information Center
Anders, Thomas F.; Hales, Robert E.; Shahrokh, Narriman C.; Howell, Lydia P.
2004-01-01
Objective: This article describes a data entry and analysis system called Mission-Based Reporting (MBR) that is used to measure faculty and department activities related to specific academic missions and objectives. The purpose of MBR is to provide a reporting tool useful in evaluating faculty effort and in helping chairs 1) to better assess their…
Satellite services system analysis study. Volume 3A: Service equipment requirements, appendix
NASA Technical Reports Server (NTRS)
1981-01-01
Spacecraft descriptions and mission sequences, mission and servicing operations functional analyses, servicing requirements, and servicing equipment are discussed for five reference satellites: the X-ray Timing Explorer, the Upper Atmospheric Research Satellite, the Advanced X-ray Astrophysics Facility, the Earth Gravity Field Survey Mission, and the Orbiting Astronomical Observatory.
Space Launch System Upper Stage Technology Assessment
NASA Technical Reports Server (NTRS)
Holladay, Jon; Hampton, Bryan; Monk, Timothy
2014-01-01
The Space Launch System (SLS) is envisioned as a heavy-lift vehicle that will provide the foundation for future beyond low-Earth orbit (LEO) exploration missions. Previous studies have been performed to determine the optimal configuration for the SLS and the applicability of commercial off-the-shelf in-space stages for Earth departure. Currently NASA is analyzing the concept of a Dual Use Upper Stage (DUUS) that will provide LEO insertion and Earth departure burns. This paper will explore candidate in-space stages based on the DUUS design for a wide range of beyond LEO missions. Mission payloads will range from small robotic systems up to human systems with deep space habitats and landers. Mission destinations will include cislunar space, Mars, Jupiter, and Saturn. Given these wide-ranging mission objectives, a vehicle-sizing tool has been developed to determine the size of an Earth departure stage based on the mission objectives. The tool calculates masses for all the major subsystems of the vehicle including propellant loads, avionics, power, engines, main propulsion system components, tanks, pressurization system and gases, primary structural elements, and secondary structural elements. The tool uses an iterative sizing algorithm to determine the resulting mass of the stage. Any input into one of the subsystem sizing routines or the mission parameters can be treated as a parametric sweep or as a distribution for use in Monte Carlo analysis. Taking these factors together allows for multi-variable, coupled analysis runs. To increase confidence in the tool, the results have been verified against two point-of-departure designs of the DUUS. The tool has also been verified against Apollo moon mission elements and other manned space systems. This paper will focus on trading key propulsion technologies including chemical, Nuclear Thermal Propulsion (NTP), and Solar Electric Propulsion (SEP). All of the key performance inputs and relationships will be presented and discussed in light of the various missions. For each mission there are several trajectory options and each will be discussed in terms of delta-v required and transit duration. Each propulsion system will be modeled, sized, and judged based on their applicability to the whole range of beyond LEO missions. Criteria for scoring will include the resulting dry mass of the stage, resulting propellant required, time to destination, and an assessment of key enabling technologies. In addition to the larger metrics, this paper will present the results of several coupled sensitivity studies. The ultimate goals of these tools and studies are to provide NASA with the most mass-, technology-, and cost-effective in-space stage for its future exploration missions.
Addressing the Hard Factors for Command File Errors by Probabilistic Reasoning
NASA Technical Reports Server (NTRS)
Meshkat, Leila; Bryant, Larry
2014-01-01
Command File Errors (CFE) are managed using standard risk management approaches at the Jet Propulsion Laboratory. Over the last few years, more emphasis has been made on the collection, organization, and analysis of these errors for the purpose of reducing the CFE rates. More recently, probabilistic modeling techniques have been used for more in depth analysis of the perceived error rates of the DAWN mission and for managing the soft factors in the upcoming phases of the mission. We broadly classify the factors that can lead to CFE's as soft factors, which relate to the cognition of the operators and hard factors which relate to the Mission System which is composed of the hardware, software and procedures used for the generation, verification & validation and execution of commands. The focus of this paper is to use probabilistic models that represent multiple missions at JPL to determine the root cause and sensitivities of the various components of the mission system and develop recommendations and techniques for addressing them. The customization of these multi-mission models to a sample interplanetary spacecraft is done for this purpose.
Overview of NASA Langley's Systems Analysis Capabilities
NASA Technical Reports Server (NTRS)
Cavanaugh, Stephen; Kumar, Ajay; Brewer, Laura; Kimmel, Bill; Korte, John; Moul, Tom
2006-01-01
The Systems Analysis and Concepts Directorate (SACD) has been in the systems analysis business line supporting National Aeronautics and Space Administration (NASA) aeronautics, exploration, space operations and science since the 1960 s. Our current organization structure is shown in Figure 1. SACD mission can be summed up in the following statements: 1. We conduct advanced concepts for Agency decision makers and programs. 2. We provide aerospace systems analysis products such as mission architectures, advanced system concepts, system and technology trades, life cycle cost and risk analysis, system integration and pre-decisional sensitive information. 3. Our work enables informed technical, programmatic and budgetary decisions. SACD has a complement of 114 government employees and approximately 50 on-site contractors which is equally split between supporting aeronautics and exploration. SACD strives for technical excellence and creditability of the systems analysis products delivered to its customers. The Directorate office is continuously building market intelligence and working with other NASA centers and external partners to expand our business base. The Branches strive for technical excellence and credibility of our systems analysis products by seeking out existing and new partnerships that are critical for successful systems analysis. The Directorates long term goal is to grow the amount of science systems analysis business base.
Mission analysis for cross-site transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riesenweber, S.D.; Fritz, R.L.; Shipley, L.E.
1995-11-01
The Mission Analysis Report describes the requirements and constraints associated with the Transfer Waste Function as necessary to support the Manage Tank Waste, Retrieve Waste, and Process Tank Waste Functions described in WHC-SD-WM-FRD-020, Tank Waste Remediation System (TWRS) Functions and Requirements Document and DOE/RL-92-60, Revision 1, TWRS Functions and Requirements Document, March 1994. It further assesses the ability of the ``initial state`` (or current cross-site transfer system) to meet the requirements and constraints.
Telemetry and Science Data Software System
NASA Technical Reports Server (NTRS)
Bates, Lakesha; Hong, Liang
2011-01-01
The Telemetry and Science Data Software System (TSDSS) was designed to validate the operational health of a spacecraft, ease test verification, assist in debugging system anomalies, and provide trending data and advanced science analysis. In doing so, the system parses, processes, and organizes raw data from the Aquarius instrument both on the ground and while in space. In addition, it provides a user-friendly telemetry viewer, and an instant pushbutton test report generator. Existing ground data systems can parse and provide simple data processing, but have limitations in advanced science analysis and instant report generation. The TSDSS functions as an offline data analysis system during I&T (integration and test) and mission operations phases. After raw data are downloaded from an instrument, TSDSS ingests the data files, parses, converts telemetry to engineering units, and applies advanced algorithms to produce science level 0, 1, and 2 data products. Meanwhile, it automatically schedules upload of the raw data to a remote server and archives all intermediate and final values in a MySQL database in time order. All data saved in the system can be straightforwardly retrieved, exported, and migrated. Using TSDSS s interactive data visualization tool, a user can conveniently choose any combination and mathematical computation of interesting telemetry points from a large range of time periods (life cycle of mission ground data and mission operations testing), and display a graphical and statistical view of the data. With this graphical user interface (GUI), the data queried graphs can be exported and saved in multiple formats. This GUI is especially useful in trending data analysis, debugging anomalies, and advanced data analysis. At the request of the user, mission-specific instrument performance assessment reports can be generated with a simple click of a button on the GUI. From instrument level to observatory level, the TSDSS has been operating supporting functional and performance tests and refining system calibration algorithms and coefficients, in sync with the Aquarius/SAC-D spacecraft. At the time of this reporting, it was prepared and set up to perform anomaly investigation for mission operations preceding the Aquarius/SAC-D spacecraft launch on June 10, 2011.
Space Human Factors Engineering Gap Analysis Project Final Report
NASA Technical Reports Server (NTRS)
Hudy, Cynthia; Woolford, Barbara
2006-01-01
Humans perform critical functions throughout each phase of every space mission, beginning with the mission concept and continuing to post-mission analysis (Life Sciences Division, 1996). Space missions present humans with many challenges - the microgravity environment, relative isolation, and inherent dangers of the mission all present unique issues. As mission duration and distance from Earth increases, in-flight crew autonomy will increase along with increased complexity. As efforts for exploring the moon and Mars advance, there is a need for space human factors research and technology development to play a significant role in both on-orbit human-system interaction, as well as the development of mission requirements and needs before and after the mission. As part of the Space Human Factors Engineering (SHFE) Project within the Human Research Program (HRP), a six-month Gap Analysis Project (GAP) was funded to identify any human factors research gaps or knowledge needs. The overall aim of the project was to review the current state of human factors topic areas and requirements to determine what data, processes, or tools are needed to aid in the planning and development of future exploration missions, and also to prioritize proposals for future research and technology development.
Design and Analysis of a Formation Flying System for the Cross-Scale Mission Concept
NASA Technical Reports Server (NTRS)
Cornara, Stefania; Bastante, Juan C.; Jubineau, Franck
2007-01-01
The ESA-funded "Cross-Scale Technology Reference Study has been carried out with the primary aim to identify and analyse a mission concept for the investigation of fundamental space plasma processes that involve dynamical non-linear coupling across multiple length scales. To fulfill this scientific mission goal, a constellation of spacecraft is required, flying in loose formations around the Earth and sampling three characteristic plasma scale distances simultaneously, with at least two satellites per scale: electron kinetic (10 km), ion kinetic (100-2000 km), magnetospheric fluid (3000-15000 km). The key Cross-Scale mission drivers identified are the number of S/C, the space segment configuration, the reference orbit design, the transfer and deployment strategy, the inter-satellite localization and synchronization process and the mission operations. This paper presents a comprehensive overview of the mission design and analysis for the Cross-Scale concept and outlines a technically feasible mission architecture for a multi-dimensional investigation of space plasma phenomena. The main effort has been devoted to apply a thorough mission-level trade-off approach and to accomplish an exhaustive analysis, so as to allow the characterization of a wide range of mission requirements and design solutions.
Risk Interfaces to Support Integrated Systems Analysis and Development
NASA Technical Reports Server (NTRS)
Mindock, Jennifer; Lumpkins, Sarah; Shelhamer, Mark; Anton, Wilma; Havenhill, Maria
2016-01-01
Objectives for systems analysis capability: Develop integrated understanding of how a complex human physiological-socio-technical mission system behaves in spaceflight. Why? Support development of integrated solutions that prevent unwanted outcomes (Implementable approaches to minimize mission resources(mass, power, crew time, etc.)); Support development of tools for autonomy (need for exploration) (Assess and maintain resilience -individuals, teams, integrated system). Output of this exercise: -Representation of interfaces based on Human System Risk Board (HSRB) Risk Summary information and simple status based on Human Research Roadmap; Consolidated HSRB information applied to support communication; Point-of-Departure for HRP Element planning; Ability to track and communicate status of collaborations. 4
NASA Technical Reports Server (NTRS)
Hughes, William O.; McNelis, Anne M.
2010-01-01
The Earth Observing System (EOS) Terra spacecraft was launched on an Atlas IIAS launch vehicle on its mission to observe planet Earth in late 1999. Prior to launch, the new design of the spacecraft's pyroshock separation system was characterized by a series of 13 separation ground tests. The analysis methods used to evaluate this unusually large amount of shock data will be discussed in this paper, with particular emphasis on population distributions and finding statistically significant families of data, leading to an overall shock separation interface level. The wealth of ground test data also allowed a derivation of a Mission Assurance level for the flight. All of the flight shock measurements were below the EOS Terra Mission Assurance level thus contributing to the overall success of the EOS Terra mission. The effectiveness of the statistical methodology for characterizing the shock interface level and for developing a flight Mission Assurance level from a large sample size of shock data is demonstrated in this paper.
Nuclear powered Mars cargo transport mission utilizing advanced ion propulsion
NASA Technical Reports Server (NTRS)
Galecki, Diane L.; Patterson, Michael J.
1987-01-01
Nuclear-powered ion propulsion technology was combined with detailed trajectory analysis to determine propulsion system and trajectory options for an unmanned cargo mission to Mars in support of manned Mars missions. A total of 96 mission scenarios were identified by combining two power levels, two propellants, four values of specific impulse per propellant, three starting altitudes, and two starting velocities. Sixty of these scenarios were selected for a detailed trajectory analysis; a complete propulsion system study was then conducted for 20 of these trajectories. Trip times ranged from 344 days for a xenon propulsion system operating at 300 kW total power and starting from lunar orbit with escape velocity, to 770 days for an argon propulsion system operating at 300 kW total power and starting from nuclear start orbit with circular velocity. Trip times for the 3 MW cases studied ranged from 356 to 413 days. Payload masses ranged from 5700 to 12,300 kg for the 300 kW power level, and from 72,200 to 81,500 kg for the 3 MW power level.
SHARP: Automated monitoring of spacecraft health and status
NASA Technical Reports Server (NTRS)
Atkinson, David J.; James, Mark L.; Martin, R. Gaius
1991-01-01
Briefly discussed here are the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory (JPL). Some of the difficulties associated with the existing technology used in mission operations are highlighted. A new automated system based on artificial intelligence technology is described which seeks to overcome many of these limitations. The system, called the Spacecraft Health Automated Reasoning Prototype (SHARP), is designed to automate health and status analysis for multi-mission spacecraft and ground data systems operations. The system has proved to be effective for detecting and analyzing potential spacecraft and ground systems problems by performing real-time analysis of spacecraft and ground data systems engineering telemetry. Telecommunications link analysis of the Voyager 2 spacecraft was the initial focus for evaluation of the system in real-time operations during the Voyager spacecraft encounter with Neptune in August 1989.
SHARP - Automated monitoring of spacecraft health and status
NASA Technical Reports Server (NTRS)
Atkinson, David J.; James, Mark L.; Martin, R. G.
1990-01-01
Briefly discussed here are the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory (JPL). Some of the difficulties associated with the existing technology used in mission operations are highlighted. A new automated system based on artificial intelligence technology is described which seeks to overcome many of these limitations. The system, called the Spacecraft Health Automated Reasoning Prototype (SHARP), is designed to automate health and status analysis for multi-mission spacecraft and ground data systems operations. The system has proved to be effective for detecting and analyzing potential spacecraft and ground systems problems by performing real-time analysis of spacecraft and ground data systems engineering telemetry. Telecommunications link analysis of the Voyager 2 spacecraft was the initial focus for evaluation of the system in real-time operations during the Voyager spacecraft encounter with Neptune in August 1989.
NASA Technical Reports Server (NTRS)
Gallagher, D. L.; Fok, M.-C.; Fuselier, S.; Gladstone, G. R.; Green, J. L.; Fung, S. F.; Perez, J.; Reiff, P.; Roelof, E. C.; Wilson, G.
1998-01-01
Simultaneous, global measurement of major magnetospheric plasma systems will be performed for the first time with the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) Mission. The ring current, plasmasphere, and auroral systems will be imaged using energetic neutral and ultraviolet cameras. Quantitative remote measurement of the magnetosheath, plasmaspheric, and magnetospheric densities will be obtained through radio sounding by the Radio Plasma Imager. The IMAGE Mission will open a new era in global magnetospheric physics, while bringing with it new challenges in data analysis. An overview of the IMAGE Theory and Modeling team efforts will be presented, including the state of development of Internet tools that will be available to the science community for access and analysis of IMAGE observations.
Debris/ice/TPS assessment and integrated photographic analysis for Shuttle Mission STS-45
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley
1992-01-01
The Debris Team has developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center (KSC) Photo/Video Analysis, reports from Johnson Space Center, Marshall Space Flight Center, and Rockwell International-Downey are also included to provide an integrated assessment of each Shuttle mission.
Systems Analysis of Life Support for Long-Duration Missions
NASA Technical Reports Server (NTRS)
Drysdale, Alan E.; Maxwell, Sabrina; Ewert, Michael K.; Hanford, Anthony J.
2000-01-01
Work defining advanced life support (ALS) technologies and evaluating their applicability to various long-duration missions has continued. Time-dependent and time-invariant costs have been estimated for a variety of life support technology options, including International Space Station (ISS) environmental control and life support systems (ECLSS) technologies and improved options under development by the ALS Project. These advanced options include physicochemical (PC) and bioregenerative (BIO) technologies, and may in the future include in-situ resource utilization (ISRU) in an attempt to reduce both logistics costs and dependence on supply from Earth. PC and bioregenerative technologies both provide possibilities for reducing mission equivalent system mass (ESM). PC technologies are most advantageous for missions of up to several years in length, while bioregenerative options are most appropriate for longer missions. ISRU can be synergistic with both PC and bioregenerative options.
NASA Technical Reports Server (NTRS)
2005-01-01
The purpose of this document is to identify the general flight/mission planning requirements for same-day file-and-fly access to the NAS for both civil and military High-Altitude Long Endurance (HALE) Unmanned Aircraft System (UAS). Currently the scope of this document is limited to Step 1, operations above flight level 43,000 feet (FL430). This document describes the current applicable mission planning requirements and procedures for both manned and unmanned aircraft and addresses HALE UAS flight planning considerations in the future National Airspace System (NAS). It also discusses the unique performance and operational capabilities of HALE UAS associated with the Access 5 Project, presents some of the projected performance characteristics and conceptual missions for future systems, and provides detailed analysis of the recommended mission planning elements for operating HALE UAS in the NAS.
SRG110 Stirling Generator Dynamic Simulator Vibration Test Results and Analysis Correlation
NASA Technical Reports Server (NTRS)
Lewandowski, Edward J.; Suarez, Vicente J.; Goodnight, Thomas W.; Callahan, John
2007-01-01
The U.S. Department of Energy (DOE), Lockheed Martin (LM), and NASA Glenn Research Center (GRC) have been developing the Stirling Radioisotope Generator (SRG110) for use as a power system for space science missions. The launch environment enveloping potential missions results in a random input spectrum that is significantly higher than historical radioisotope power system (RPS) launch levels and is a challenge for designers. Analysis presented in prior work predicted that tailoring the compliance at the generator-spacecraft interface reduced the dynamic response of the system thereby allowing higher launch load input levels and expanding the range of potential generator missions. To confirm analytical predictions, a dynamic simulator representing the generator structure, Stirling convertors and heat sources were designed and built for testing with and without a compliant interface. Finite element analysis was performed to guide the generator simulator and compliant interface design so that test modes and frequencies were representative of the SRG110 generator. This paper presents the dynamic simulator design, the test setup and methodology, test article modes and frequencies and dynamic responses, and post-test analysis results. With the compliant interface, component responses to an input environment exceeding the SRG110 qualification level spectrum were all within design allowables. Post-test analysis included finite element model tuning to match test frequencies and random response analysis using the test input spectrum. Analytical results were in good overall agreement with the test results and confirmed previous predictions that the SRG110 power system may be considered for a broad range of potential missions, including those with demanding launch environments.
Neptune Aerocapture Systems Analysis
NASA Technical Reports Server (NTRS)
Lockwood, Mary Kae
2004-01-01
A Neptune Aerocapture Systems Analysis is completed to determine the feasibility, benefit and risk of an aeroshell aerocapture system for Neptune and to identify technology gaps and technology performance goals. The high fidelity systems analysis is completed by a five center NASA team and includes the following disciplines and analyses: science; mission design; aeroshell configuration screening and definition; interplanetary navigation analyses; atmosphere modeling; computational fluid dynamics for aerodynamic performance and database definition; initial stability analyses; guidance development; atmospheric flight simulation; computational fluid dynamics and radiation analyses for aeroheating environment definition; thermal protection system design, concepts and sizing; mass properties; structures; spacecraft design and packaging; and mass sensitivities. Results show that aerocapture can deliver 1.4 times more mass to Neptune orbit than an all-propulsive system for the same launch vehicle. In addition aerocapture results in a 3-4 year reduction in trip time compared to all-propulsive systems. Aerocapture is feasible and performance is adequate for the Neptune aerocapture mission. Monte Carlo simulation results show 100% successful capture for all cases including conservative assumptions on atmosphere and navigation. Enabling technologies for this mission include TPS manufacturing; and aerothermodynamic methods and validation for determining coupled 3-D convection, radiation and ablation aeroheating rates and loads, and the effects on surface recession.
Mars Mission Analysis Trades Based on Legacy and Future Nuclear Propulsion Options
NASA Astrophysics Data System (ADS)
Joyner, Russell; Lentati, Andrea; Cichon, Jaclyn
2007-01-01
The purpose of this paper is to discuss the results of mission-based system trades when using a nuclear thermal propulsion (NTP) system for Solar System exploration. The results are based on comparing reactor designs that use a ceramic-metallic (CERMET), graphite matrix, graphite composite matrix, or carbide matrix fuel element designs. The composite graphite matrix and CERMET designs have been examined for providing power as well as propulsion. Approaches to the design of the NTP to be discussed will include an examination of graphite, composite, carbide, and CERMET core designs and the attributes of each in regards to performance and power generation capability. The focus is on NTP approaches based on tested fuel materials within a prismatic fuel form per the Argonne National Laboratory testing and the ROVER/NERVA program. NTP concepts have been examined for several years at Pratt & Whitney Rocketdyne for use as the primary propulsion for human missions beyond earth. Recently, an approach was taken to examine the design trades between specific NTP concepts; NERVA-based (UC)C-Graphite, (UC,ZrC)C-Composite, (U,Zr)C-Solid Carbide and UO2-W CERMET. Using Pratt & Whitney Rocketdyne's multidisciplinary design analysis capability, a detailed mission and vehicle model has been used to examine how several of these NTP designs impact a human Mars mission. Trends for the propulsion system mass as a function of power level (i.e. thrust size) for the graphite-carbide and CERMET designs were established and correlated against data created over the past forty years. These were used for the mission trade study. The resulting mission trades presented in this paper used a comprehensive modeling approach that captures the mission, vehicle subsystems, and NTP sizing.
Radiation analysis for manned missions to the Jupiter system
NASA Technical Reports Server (NTRS)
De Angelis, G.; Clowdsley, M. S.; Nealy, J. E.; Tripathi, R. K.; Wilson, J. W.
2004-01-01
An analysis for manned missions targeted to the Jovian system has been performed in the framework of the NASA RASC (Revolutionary Aerospace Systems Concepts) program on Human Exploration beyond Mars. The missions were targeted to the Jupiter satellite Callisto. The mission analysis has been divided into three main phases, namely the interplanetary cruise, the Jupiter orbital insertion, and the surface landing and exploration phases. The interplanetary phase is based on departure from the Earth-Moon L1 point. Interplanetary trajectories based on the use of different propulsion systems have been considered, with resulting overall cruise phase duration varying between two and five years. The Jupiter-approach and the orbital insertion trajectories are considered in detail, with the spacecraft crossing the Jupiter radiation belts and staying around the landing target. In the surface exploration phase the stay on the Callisto surface is considered. The satellite surface composition has been modeled based on the most recent results from the GALILEO spacecraft. In the transport computations the surface backscattering has been duly taken into account. Particle transport has been performed with the HZETRN heavy ion code for hadrons and with an in-house developed transport code for electrons and bremsstrahlung photons. The obtained doses have been compared to dose exposure limits. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
Radiation analysis for manned missions to the Jupiter system.
De Angelis, G; Clowdsley, M S; Nealy, J E; Tripathi, R K; Wilson, J W
2004-01-01
An analysis for manned missions targeted to the Jovian system has been performed in the framework of the NASA RASC (Revolutionary Aerospace Systems Concepts) program on Human Exploration beyond Mars. The missions were targeted to the Jupiter satellite Callisto. The mission analysis has been divided into three main phases, namely the interplanetary cruise, the Jupiter orbital insertion, and the surface landing and exploration phases. The interplanetary phase is based on departure from the Earth-Moon L1 point. Interplanetary trajectories based on the use of different propulsion systems have been considered, with resulting overall cruise phase duration varying between two and five years. The Jupiter-approach and the orbital insertion trajectories are considered in detail, with the spacecraft crossing the Jupiter radiation belts and staying around the landing target. In the surface exploration phase the stay on the Callisto surface is considered. The satellite surface composition has been modeled based on the most recent results from the GALILEO spacecraft. In the transport computations the surface backscattering has been duly taken into account. Particle transport has been performed with the HZETRN heavy ion code for hadrons and with an in-house developed transport code for electrons and bremsstrahlung photons. The obtained doses have been compared to dose exposure limits. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
Outer planet entry probe system study. Volume 2: Supporting technical studies
NASA Technical Reports Server (NTRS)
1972-01-01
The environment, science investigations, and general mission analysis considerations are given first. These data are followed by discussions of the studies pertaining to the planets Jupiter, Saturn, Uranus, and Neptune. Except for Neptune, each planet discussion is divided into two parts: (1) parametric activities and (2) probe definition for that planet, or the application of a given probe for that planet. The Neptune discussion is limited to parametrics in the area of science and mission analysis. Each of the probe system definitions consists of system and subsystem details including telecommunications, data handling, power pyrotechnics, attitude control, structures, propulsion, thermal control, and probe to spacecraft integration. The first configuration is discussed in detail and the subsequent configuration discussions are limited to the differences. Finally, the hardware availability to support a probe system and commonality of science, missions, and subsystems for use at the various planets are considered.
NASA Technical Reports Server (NTRS)
Hawthorne, E. I.
1977-01-01
Several thrust system design concepts were evaluated and compared using the specifications of the most advanced 30 cm engineering model thruster as the technology base. Emphasis was placed on relatively high power missions. The extensions in thruster performance required for the Halley's comet mission were defined and alternative thrust system concepts were designed in sufficient detail for comparing mass, efficiency, reliability, structure, and thermal characteristics. Confirmation testing and analysis of thruster and power-processing components were performed. A baseline design was selected from the alternatives considered, and the design analysis and documentation were refined. A program development plan was formulated that outlines the work structure considered necessary for developing, qualifying, and fabricating the flight hardware for the baseline thrust system within the time frame of a project to rendezvous with Halley's comet. An assessment was made of the costs and risks associated with a baseline thrust system as provided to the mission project under this plan. Critical procurements and interfaces were identified and defined.
Two implementations of the Expert System for the Flight Analysis System (ESFAS) project
NASA Technical Reports Server (NTRS)
Wang, Lui
1988-01-01
A comparison is made between the two most sophisticated expert system building tools, the Automated Reasoning Tool (ART) and the Knowledge Engineering Environment (KEE). The same problem domain (ESFAS) was used in making the comparison. The Expert System for the Flight Analysis System (ESFAS) acts as an intelligent front end for the Flight Analysis System (FAS). FAS is a complex configuration controlled set of interrelated processors (FORTRAN routines) which will be used by the Mission Planning and Analysis Div. (MPAD) to design and analyze Shuttle and potential Space Station missions. Implementations of ESFAS are described. The two versions represent very different programming paradigms; ART uses rules and KEE uses objects. Due to each of the tools philosophical differences, KEE is implemented using a depth first traversal algorithm, whereas ART uses a user directed traversal method. Either tool could be used to solve this particular problem.
Mars Exploration Rover Heat Shield Recontact Analysis
NASA Technical Reports Server (NTRS)
Raiszadeh, Behzad; Desai, Prasun N.; Michelltree, Robert
2011-01-01
The twin Mars Exploration Rover missions landed successfully on Mars surface in January of 2004. Both missions used a parachute system to slow the rover s descent rate from supersonic to subsonic speeds. Shortly after parachute deployment, the heat shield, which protected the rover during the hypersonic entry phase of the mission, was jettisoned using push-off springs. Mission designers were concerned about the heat shield recontacting the lander after separation, so a separation analysis was conducted to quantify risks. This analysis was used to choose a proper heat shield ballast mass to ensure successful separation with low probability of recontact. This paper presents the details of such an analysis, its assumptions, and the results. During both landings, the radar was able to lock on to the heat shield, measuring its distance, as it descended away from the lander. This data is presented and is used to validate the heat shield separation/recontact analysis.
Space construction system analysis. Part 2: Construction analysis
NASA Technical Reports Server (NTRS)
Roebuck, J. A.; Buck, P. A.; Gimlich, G. W.; Greenberg, H. S.; Hart, R. J.; Indrikis, J.; Lefever, A. E.; Lillenas, A. N.; Mcbaine, C. K.
1980-01-01
The construction methods specific to the end to end construction process for building the ETVP in low Earth orbit, using the space shuttle orbiter as a construction base, are analyzed. The analyses concerned three missions required to build the basic platform. The first mission involved performing the fabrication of beams in space and assembling the beams into a basic structural framework. The second mission was to install the forward support structure and aft support structure, the forward assembly, and a TT&C antenna. The third mission plan was to complete the construction of the platform and activate it to begin operations in low Earth orbit. The integration of the activities for each mission is described along with the construction requirements and construction logic.
MW-Class Electric Propulsion System Designs
NASA Technical Reports Server (NTRS)
LaPointe, Michael R.; Oleson, Steven; Pencil, Eric; Mercer, Carolyn; Distefano, Salvador
2011-01-01
Electric propulsion systems are well developed and have been in commercial use for several years. Ion and Hall thrusters have propelled robotic spacecraft to encounters with asteroids, the Moon, and minor planetary bodies within the solar system, while higher power systems are being considered to support even more demanding future space science and exploration missions. Such missions may include orbit raising and station-keeping for large platforms, robotic and human missions to near earth asteroids, cargo transport for sustained lunar or Mars exploration, and at very high-power, fast piloted missions to Mars and the outer planets. The Advanced In-Space Propulsion Project, High Efficiency Space Power Systems Project, and High Power Electric Propulsion Demonstration Project were established within the NASA Exploration Technology Development and Demonstration Program to develop and advance the fundamental technologies required for these long-range, future exploration missions. Under the auspices of the High Efficiency Space Power Systems Project, and supported by the Advanced In-Space Propulsion and High Power Electric Propulsion Projects, the COMPASS design team at the NASA Glenn Research Center performed multiple parametric design analyses to determine solar and nuclear electric power technology requirements for representative 300-kW class and pulsed and steady-state MW-class electric propulsion systems. This paper describes the results of the MW-class electric power and propulsion design analysis. Starting with the representative MW-class vehicle configurations, and using design reference missions bounded by launch dates, several power system technology improvements were introduced into the parametric COMPASS simulations to determine the potential system level benefits such technologies might provide. Those technologies providing quantitative system level benefits were then assessed for technical feasibility, cost, and time to develop. Key assumptions and primary results of the COMPASS MW-class electric propulsion power system study are reported, and discussion is provided on how the analysis might be used to guide future technology investments as NASA moves to more capable high power in-space propulsion systems.
MOS 2.0: Modeling the Next Revolutionary Mission Operations System
NASA Technical Reports Server (NTRS)
Delp, Christopher L.; Bindschadler, Duane; Wollaeger, Ryan; Carrion, Carlos; McCullar, Michelle; Jackson, Maddalena; Sarrel, Marc; Anderson, Louise; Lam, Doris
2011-01-01
Designed and implemented in the 1980's, the Advanced Multi-Mission Operations System (AMMOS) was a breakthrough for deep-space NASA missions, enabling significant reductions in the cost and risk of implementing ground systems. By designing a framework for use across multiple missions and adaptability to specific mission needs, AMMOS developers created a set of applications that have operated dozens of deep-space robotic missions over the past 30 years. We seek to leverage advances in technology and practice of architecting and systems engineering, using model-based approaches to update the AMMOS. We therefore revisit fundamental aspects of the AMMOS, resulting in a major update to the Mission Operations System (MOS): MOS 2.0. This update will ensure that the MOS can support an increasing range of mission types, (such as orbiters, landers, rovers, penetrators and balloons), and that the operations systems for deep-space robotic missions can reap the benefits of an iterative multi-mission framework.12 This paper reports on the first phase of this major update. Here we describe the methods and formal semantics used to address MOS 2.0 architecture and some early results. Early benefits of this approach include improved stakeholder input and buy-in, the ability to articulate and focus effort on key, system-wide principles, and efficiency gains obtained by use of well-architected design patterns and the use of models to improve the quality of documentation and decrease the effort required to produce and maintain it. We find that such methods facilitate reasoning, simulation, analysis on the system design in terms of design impacts, generation of products (e.g., project-review and software-delivery products), and use of formal process descriptions to enable goal-based operations. This initial phase yields a forward-looking and principled MOS 2.0 architectural vision, which considers both the mission-specific context and long-term system sustainability.
In-Space Transportation with Tethers
NASA Technical Reports Server (NTRS)
Lorenzini, Enrico; Estes, Robert D.; Cosmo, Mario L.
1998-01-01
The annual report covers the research conducted on the following topics related to the use of spaceborne tethers for in-space transportation: ProSEDS tether modeling (current collection analyses, influence of a varying tether temperature); proSEDS mission analysis and system dynamics (tether thermal model, thermo-electro-dynamics integrated simulations); proSEDS-tether development and testing (tether requirements, deployment test plan, tether properties testing, deployment tests); and tethers for reboosting the space-based laser (mission analysis, tether system preliminary design, evaluation of attitude constraints).
NASA Technical Reports Server (NTRS)
1991-01-01
Recommendations are made after 32 interviews, lesson identification, lesson analysis, and mission characteristics identification. The major recommendations are as follows: (1) to develop end-to-end planning and scheduling operations concepts by mission class and to ensure their consideration in system life cycle documentation; (2) to create an organizational infrastructure at the Code 500 level, supported by a Directorate level steering committee with project representation, responsible for systems engineering of end-to-end planning and scheduling systems; (3) to develop and refine mission capabilities to assess impacts of early mission design decisions on planning and scheduling; and (4) to emphasize operational flexibility in the development of the Advanced Space Network, other institutional resources, external (e.g., project) capabilities and resources, operational software and support tools.
Evaluation of solar electric propulsion technologies for discovery class missions
NASA Technical Reports Server (NTRS)
Oh, David Y.
2005-01-01
A detailed study examines the potential benefits that advanced electric propulsion (EP) technologies offer to the cost-capped missions in NASA's Discovery program. The study looks at potential cost and performance benefits provided by three EP technologies that are currently in development: NASA's Evolutionary Xenon Thruster (NEXT), an Enhanced NSTAR system, and a Low Power Hall effect thruster. These systems are analyzed on three straw man Discovery class missions and their performance is compared to a state of the art system using the NSTAR ion thruster. An electric propulsion subsystem cost model is used to conduct a cost-benefit analysis for each option. The results show that each proposed technology offers a different degree of performance and/or cost benefit for Discovery class missions.
A spaceborne optical interferometer: The JPL CSI mission focus
NASA Astrophysics Data System (ADS)
Laskin, R. A.
1989-08-01
The JPL Control Structure Interaction (CSI) program is part of the larger NASA-wide CSI program. Within this larger context, the JPL CSI program will emphasize technology for systems that demand micron or sub-micron level control, so-called Micro-Precision Controlled Structures (u-PCS). The development of such technology will make it practical to fly missions with large optical or large precision antenna systems. In keeping with the focused nature of the desired technology, the JPL approach is to identify a focus mission, develop the focus mission CSI system design to a preliminary level, and then use this design to drive out requirements for CSI technology development in the design and analysis, ground test bed, and flight experiment areas.
NASA Technical Reports Server (NTRS)
Phillips, Veronica J.
2017-01-01
The Ames Engineering Directorate is the principal engineering organization supporting aerospace systems and spaceflight projects at NASA's Ames Research Center in California's Silicon Valley. The Directorate supports all phases of engineering and project management for flight and mission projects-from R&D to Close-out-by leveraging the capabilities of multiple divisions and facilities.The Mission Design Center (MDC) has full end-to-end mission design capability with sophisticated analysis and simulation tools in a collaborative concurrent design environment. Services include concept maturity level (CML) maturation, spacecraft design and trades, scientific instruments selection, feasibility assessments, and proposal support and partnerships. The Engineering Systems Division provides robust project management support as well as systems engineering, mechanical and electrical analysis and design, technical authority and project integration support to a variety of programs and projects across NASA centers. The Applied Manufacturing Division turns abstract ideas into tangible hardware for aeronautics, spaceflight and science applications, specializing in fabrication methods and management of complex fabrication projects. The Engineering Evaluation Lab (EEL) provides full satellite or payload environmental testing services including vibration, temperature, humidity, immersion, pressure/altitude, vacuum, high G centrifuge, shock impact testing and the Flight Processing Center (FPC), which includes cleanrooms, bonded stores and flight preparation resources. The Multi-Mission Operations Center (MMOC) is composed of the facilities, networks, IT equipment, software and support services needed by flight projects to effectively and efficiently perform all mission functions, including planning, scheduling, command, telemetry processing and science analysis.
Intrasectoral variation in mission and values: the case of the Catholic health systems.
White, Kenneth R; Dandi, Roberto
2009-01-01
Catholic health systems represent a unique sector of nonprofit health care delivery organizations because they must be accountable to institutional pressures of the Roman Catholic Church, in addition to responsiveness to market pressures. Mission statements and values are purported to be the driving force of Catholic institutional identity. Central to the understanding of the Catholic health care delivery sector is the exploration of variation in mission and values statements across the homogeneous field of organizations. The purposes of this study were to identify expressed organizational identity variation-in terms of keywords in mission statements and values-of Catholic health systems in the United States by applying a methodology that integrates text and social network analytical techniques. Data were obtained from the Web site of The Catholic Health Association of the United States and the Web sites of 50 Catholic health systems in 2007. Catholic health system mission statements and values were assessed using a cross-sectional study design. Text analysis and social network techniques were employed to identify the most central words in the texts and linkages among mission statement components and values. This study identifies the components of a common mission statement and the most shared and unique values for a Catholic health system. Even with tremendous similarity, there is also evidence of intrasectoral variation between Catholic health system keywords in mission statements and values. Management implications include the consideration of word relationships developing and constructing mission and values statements to form the framework for strategic vision and management decision making, to assess potential partnership arrangements based on expressed mission statements and values, and to use in executing due diligence in mergers and partnerships.
NASA Technical Reports Server (NTRS)
1979-01-01
This document addresses requirements for post-test data reduction in support of the Orbital Flight Tests (OFT) mission evaluation team, specifically those which are planned to be implemented in the ODRC (Orbiter Data Reduction Complex). Only those requirements which have been previously baselined by the Data Systems and Analysis Directorate configuration control board are included. This document serves as the control document between Institutional Data Systems Division and the Integration Division for OFT mission evaluation data processing requirements, and shall be the basis for detailed design of ODRC data processing systems.
APGEN Scheduling: 15 Years of Experience in Planning Automation
NASA Technical Reports Server (NTRS)
Maldague, Pierre F.; Wissler, Steve; Lenda, Matthew; Finnerty, Daniel
2014-01-01
In this paper, we discuss the scheduling capability of APGEN (Activity Plan Generator), a multi-mission planning application that is part of the NASA AMMOS (Advanced Multi- Mission Operations System), and how APGEN scheduling evolved over its applications to specific Space Missions. Our analysis identifies two major reasons for the successful application of APGEN scheduling to real problems: an expressive DSL (Domain-Specific Language) for formulating scheduling algorithms, and a well-defined process for enlisting the help of auxiliary modeling tools in providing high-fidelity, system-level simulations of the combined spacecraft and ground support system.
Design and systems analysis of a chemical interorbital shuttle. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Nissim, W.
1972-01-01
An interorbital shuttle that can be utilized to carry payloads between low earth orbit (180 n mi, 37.6 deg) and lunar or geosynchronous orbits, and also to interplanetary trajectories is discussed. After each mission the stage returns to its earth parking orbit where it delivers the inbound payloads, and where it is maintained and refueled for the subsequent missions. The stage can also be utilized to carry large payloads (150 to 200 KLBS) to the Space Station orbit (270 n mi, 55 deg) when it is used as a second or parallel burn stage to the space shuttle booster. The mission and systems analysis, as well as the results of structural, mechanical and propulsion, and avionics subsystems analysis and design are described. A development plan and cost estimates are also included.
NASA Technical Reports Server (NTRS)
1973-01-01
Parametric studies and subsystem comparisons for the orbital radar mapping mission to planet Venus are presented. Launch vehicle requirements and primary orbiter propulsion system requirements are evaluated. The systems parametric analysis indicated that orbit size and orientation interrelated with almost all of the principal spacecraft systems and influenced significantly the definition of orbit insertion propulsion requirements, weight in orbit capability, radar system design, and mapping strategy.
Summary Status of the Space Acceleration Measurement System (SAMS), September 1993
NASA Technical Reports Server (NTRS)
DeLombard, Richard
1993-01-01
The Space Acceleration Measurement System (SAMS) was developed to measure the microgravity acceleration environment to which NASA science payloads are exposed during microgravity science missions on the shuttle. Six flight units have been fabricated to date. The inaugural flight of a SAMS unit was on STS-40 in June 1991 as part of the flrst Spacelab Life Sciences mission. Since that time, SAMS has flown on six additional missions and gathered 18 gigabytes of data representing 68 days of microgravity environment. The SAMS units have been flown in the shuttle middeck and cargo bay, in the Spacelab module, and in the Spacehab module. This paper summarizes the missions and experiments which SAMS has supported. The quantity of data and the utilization of the SAMS data is described. Future activities are briefly described for the SAMS project and.the Microgravity Measurement and Analysis Project (MMAP) to support science experiments and scientists with microgravity environment measurement and analysis.
NASA Technical Reports Server (NTRS)
Williams, Craig Hamilton
1995-01-01
A simple, analytic approximation is derived to calculate trip time and performance for propulsion systems of very high specific impulse (50,000 to 200,000 seconds) and very high specific power (10 to 1000 kW/kg) for human interplanetary space missions. The approach assumed field-free space, constant thrust/constant specific power, and near straight line (radial) trajectories between the planets. Closed form, one dimensional equations of motion for two-burn rendezvous and four-burn round trip missions are derived as a function of specific impulse, specific power, and propellant mass ratio. The equations are coupled to an optimizing parameter that maximizes performance and minimizes trip time. Data generated for hypothetical one-way and round trip human missions to Jupiter were found to be within 1% and 6% accuracy of integrated solutions respectively, verifying that for these systems, credible analysis does not require computationally intensive numerical techniques.
Plasma brake model for preliminary mission analysis
NASA Astrophysics Data System (ADS)
Orsini, Leonardo; Niccolai, Lorenzo; Mengali, Giovanni; Quarta, Alessandro A.
2018-03-01
Plasma brake is an innovative propellantless propulsion system concept that exploits the Coulomb collisions between a charged tether and the ions in the surrounding environment (typically, the ionosphere) to generate an electrostatic force orthogonal to the tether direction. Previous studies on the plasma brake effect have emphasized the existence of a number of different parameters necessary to obtain an accurate description of the propulsive acceleration from a physical viewpoint. The aim of this work is to discuss an analytical model capable of estimating, with the accuracy required by a preliminary mission analysis, the performance of a spacecraft equipped with a plasma brake in a (near-circular) low Earth orbit. The simplified mathematical model is first validated through numerical simulations, and is then used to evaluate the plasma brake performance in some typical mission scenarios, in order to quantify the influence of the system parameters on the mission performance index.
Artificial intelligence for multi-mission planetary operations
NASA Technical Reports Server (NTRS)
Atkinson, David J.; Lawson, Denise L.; James, Mark L.
1990-01-01
A brief introduction is given to an automated system called the Spacecraft Health Automated Reasoning Prototype (SHARP). SHARP is designed to demonstrate automated health and status analysis for multi-mission spacecraft and ground data systems operations. The SHARP system combines conventional computer science methodologies with artificial intelligence techniques to produce an effective method for detecting and analyzing potential spacecraft and ground systems problems. The system performs real-time analysis of spacecraft and other related telemetry, and is also capable of examining data in historical context. Telecommunications link analysis of the Voyager II spacecraft is the initial focus for evaluation of the prototype in a real-time operations setting during the Voyager spacecraft encounter with Neptune in August, 1989. The preliminary results of the SHARP project and plans for future application of the technology are discussed.
A Passive Earth-Entry Capsule for Mars Sample Return
NASA Technical Reports Server (NTRS)
Mitcheltree, Robert A.; Kellas, Sotiris
1999-01-01
A combination of aerodynamic analysis and testing, aerothermodynamic analysis, structural analysis and testing, impact analysis and testing, thermal analysis, ground characterization tests, configuration packaging, and trajectory simulation are employed to determine the feasibility of an entirely passive Earth entry capsule for the Mars Sample Return mission. The design circumvents the potential failure modes of a parachute terminal descent system by replacing that system with passive energy absorbing material to cushion the Mars samples during ground impact. The suggested design utilizes a spherically blunted 45-degree half-angle cone forebody with an ablative heat shield. The primary structure is a hemispherical, composite sandwich enclosing carbon foam energy absorbing material. Though no demonstration test of the entire system is included, results of the tests and analysis presented indicate that the design is a viable option for the Mars Sample Return Mission.
Life support systems analysis and technical trades for a lunar outpost
NASA Technical Reports Server (NTRS)
Ferrall, J. F.; Ganapathi, G. B.; Rohatgi, N. K.; Seshan, P. K.
1994-01-01
The NASA/JPL life support systems analysis (LISSA) software tool was used to perform life support system analysis and technology trades for a Lunar Outpost. The life support system was modeled using a chemical process simulation program on a steady-state, one-person, daily basis. Inputs to the LiSSA model include metabolic balance load data, hygiene load data, technology selection, process operational assumptions and mission parameter assumptions. A baseline set of technologies has been used against which comparisons have been made by running twenty-two cases with technology substitutions. System, subsystem, and technology weights and powers are compared for a crew of 4 and missions of 90 and 600 days. By assigning a weight value to power, equivalent system weights are compared. Several less-developed technologies show potential advantages over the baseline. Solid waste treatment technologies show weight and power disadvantages but one could have benefits associated with the reduction of hazardous wastes and very long missions. Technology development towards reducing the weight of resupplies and lighter materials of construction was recommended. It was also recommended that as technologies are funded for development, contractors should be required to generate and report data useful for quantitative technology comparisons.
Incorporation of quality updates for JPSS CGS Products
NASA Astrophysics Data System (ADS)
Cochran, S.; Grant, K. D.; Ibrahim, W.; Brueske, K. F.; Smit, P.
2016-12-01
NOAA's next-generation environmental satellite, the Joint Polar Satellite System (JPSS) replaces the current Polar-orbiting Operational Environmental Satellites (POES). JPSS satellites carry sensors which collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The first JPSS satellite was launched in 2011 and is currently NOAA's primary operational polar satellite. The JPSS ground system is the Common Ground System (CGS), and provides command, control, and communications (C3) and data processing (DP). A multi-mission system, CGS provides combinations of C3/DP for numerous NASA, NOAA, DoD, and international missions. In preparation for the next JPSS satellite, CGS improved its multi-mission capabilities to enhance mission operations for larger constellations of earth observing satellites with the added benefit of streamlining mission operations for other NOAA missions. This paper will discuss both the theoretical basis and the actual practices used to date to identify, test and incorporate algorithm updates into the CGS processing baseline. To provide a basis for this support, Raytheon developed a theoretical analysis framework, and the application of derived engineering processes, for the maintenance of consistency and integrity of remote sensing operational algorithm outputs. The framework is an abstraction of the operationalization of the science-grade algorithm (Sci2Ops) process used throughout the JPSS program. By combining software and systems engineering controls, manufacturing disciplines to detect and reduce defects, and a standard process to control analysis, an environment to maintain operational algorithm maturity is achieved. Results of the use of this approach to implement algorithm changes into operations will also be detailed.
Methods and Tools for Product Quality Maintenance in JPSS CGS
NASA Astrophysics Data System (ADS)
Cochran, S.; Smit, P.; Grant, K. D.; Jamilkowski, M. L.
2015-12-01
NOAA's next-generation environmental satellite, the Joint Polar Satellite System (JPSS) replaces the current Polar-orbiting Operational Environmental Satellites (POES). JPSS satellites carry sensors which collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The first JPSS satellite was launched in 2011 and is currently NOAA's primary operational polar satellite. The JPSS ground system is the Common Ground System (CGS), and provides command, control, and communications (C3) and data processing (DP). A multi-mission system, CGS provides combinations of C3/DP for numerous NASA, NOAA, DoD, and international missions. In preparation for the next JPSS satellite, CGS improved its multi-mission capabilities to enhance mission operations for larger constellations of earth observing satellites with the added benefit of streamlining mission operations for other NOAA missions. This paper will discuss both the theoretical basis and the actual practices used to date to identify, test and incorporate algorithm updates into the CGS processing baseline. To provide a basis for this support, Raytheon developed a theoretical analysis framework, and the application of derived engineering processes, for the maintenance of consistency and integrity of remote sensing operational algorithm outputs. The framework is an abstraction of the operationalization of the science-grade algorithm (Sci2Ops) process used throughout the JPSS program. By combining software and systems engineering controls, manufacturing disciplines to detect and reduce defects, and a standard process to control analysis, an environment to maintain operational algorithm maturity is achieved. Results of the use of this approach to implement algorithm changes into operations will also be detailed.
Combustion-based power source for Venus surface missions
NASA Astrophysics Data System (ADS)
Miller, Timothy F.; Paul, Michael V.; Oleson, Steven R.
2016-10-01
The National Research Council has identified in situ exploration of Venus as an important mission for the coming decade of NASA's exploration of our solar system (Squyers, 2013 [1]). Heavy cloud cover makes the use of solar photovoltaics extremely problematic for power generation for Venus surface missions. In this paper, we propose a class of planetary exploration missions (for use on Venus and elsewhere) in solar-deprived situations where photovoltaics cannot be used, batteries do not provide sufficient specific energy and mission duration, and nuclear systems may be too costly or complex to justify or simply unavailable. Metal-fueled, combustion-based powerplants have been demonstrated for application in the terrestrial undersea environment. Modified or extended versions of the undersea-based systems may be appropriate for these sunless missions. We describe systems carrying lithium fuel and sulfur-hexafluoride oxidizer that have the potential for many days of operation in the sunless craters of the moon. On Venus a system level specific energy of 240 to 370 We-hr/kg should be possible if the oxidizer is brought from earth. By using either lithium or a magnesium-based alloy fuel, it may be possible to operate a similar system with CO2 derived directly from the Venus atmosphere, thus providing an estimated system specific energy of 1100 We+PV-hr/kg (the subscript refers to both electrical and mechanical power), thereby providing mission durations that enable useful scientific investigation. The results of an analysis performed by the NASA Glenn COMPASS team describe a mission operating at 2.3 kWe+PV for 5 days (120 h), with less than 260 kg power/energy system mass total. This lander would be of a size and cost suitable for a New Frontiers class of mission.
Propulsion Technology Development for Sample Return Missions Under NASA's ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David J.; Pencil, Eric J.; Vento, Daniel; Dankanich, John W.; Munk, Michelle M.; Hahne, David
2011-01-01
The In-Space Propulsion Technology (ISPT) Program was tasked in 2009 to start development of propulsion technologies that would enable future sample return missions. Sample return missions could be quite varied, from collecting and bringing back samples of comets or asteroids, to soil, rocks, or atmosphere from planets or moons. The paper will describe the ISPT Program s propulsion technology development activities relevant to future sample return missions. The sample return propulsion technology development areas for ISPT are: 1) Sample Return Propulsion (SRP), 2) Planetary Ascent Vehicles (PAV), 3) Entry Vehicle Technologies (EVT), and 4) Systems/mission analysis and tools that focuses on sample return propulsion. The Sample Return Propulsion area is subdivided into: a) Electric propulsion for sample return and low cost Discovery-class missions, b) Propulsion systems for Earth Return Vehicles (ERV) including transfer stages to the destination, and c) Low TRL advanced propulsion technologies. The SRP effort will continue work on HIVHAC thruster development in FY2011 and then transitions into developing a HIVHAC system under future Electric Propulsion for sample return (ERV and transfer stages) and low-cost missions. Previous work on the lightweight propellant-tanks will continue under advanced propulsion technologies for sample return with direct applicability to a Mars Sample Return (MSR) mission and with general applicability to all future planetary spacecraft. A major effort under the EVT area is multi-mission technologies for Earth Entry Vehicles (MMEEV), which will leverage and build upon previous work related to Earth Entry Vehicles (EEV). The major effort under the PAV area is the Mars Ascent Vehicle (MAV). The MAV is a new development area to ISPT, and builds upon and leverages the past MAV analysis and technology developments from the Mars Technology Program (MTP) and previous MSR studies.
NASA Technical Reports Server (NTRS)
1972-01-01
The Accident Model Document is one of three documents of the Preliminary Safety Analysis Report (PSAR) - Reactor System as applied to a Space Base Program. Potential terrestrial nuclear hazards involving the zirconium hydride reactor-Brayton power module are identified for all phases of the Space Base program. The accidents/events that give rise to the hazards are defined and abort sequence trees are developed to determine the sequence of events leading to the hazard and the associated probabilities of occurence. Source terms are calculated to determine the magnitude of the hazards. The above data is used in the mission accident analysis to determine the most probable and significant accidents/events in each mission phase. The only significant hazards during the prelaunch and launch ascent phases of the mission are those which arise form criticality accidents. Fission product inventories during this time period were found to be very low due to very limited low power acceptance testing.
NASA Technical Reports Server (NTRS)
Takamura, Eduardo; Mangum, Kevin
2016-01-01
The National Aeronautics and Space Administration (NASA) invests millions of dollars in spacecraft and ground system development, and in mission operations in the pursuit of scientific knowledge of the universe. In recent years, NASA sent a probe to Mars to study the Red Planet's upper atmosphere, obtained high resolution images of Pluto, and it is currently preparing to find new exoplanets, rendezvous with an asteroid, and bring a sample of the asteroid back to Earth for analysis. The success of these missions is enabled by mission assurance. In turn, mission assurance is backed by information assurance. The information systems supporting NASA missions must be reliable as well as secure. NASA - like every other U.S. Federal Government agency - is required to manage the security of its information systems according to federal mandates, the most prominent being the Federal Information Security Management Act (FISMA) of 2002 and the legislative updates that followed it. Like the management of enterprise information technology (IT), federal information security management takes a "one-size fits all" approach for protecting IT systems. While this approach works for most organizations, it does not effectively translate into security of highly specialized systems such as those supporting NASA missions. These systems include command and control (C&C) systems, spacecraft and instrument simulators, and other elements comprising the ground segment. They must be carefully configured, monitored and maintained, sometimes for several years past the missions' initially planned life expectancy, to ensure the ground system is protected and remains operational without any compromise of its confidentiality, integrity and availability. Enterprise policies, processes, procedures and products, if not effectively tailored to meet mission requirements, may not offer the needed security for protecting the information system, and they may even become disruptive to mission operations. Certain protective measures for the general enterprise may not be as efficient within the ground segment. This is what the authors have concluded through observations and analysis of patterns identified from the various security assessments performed on NASA missions such as MAVEN, OSIRIS-REx, New Horizons and TESS, to name a few. The security audits confirmed that the framework for managing information system security developed by the National Institute of Standards and Technology (NIST) for the federal government, and adopted by NASA, is indeed effective. However, the selection of the technical, operational and management security controls offered by the NIST model - and how they are implemented - does not always fit the nature and the environment where the ground system operates in even though there is no apparent impact on mission success. The authors observed that unfit controls, that is, controls that are not necessarily applicable or sufficiently effective in protecting the mission systems, are often selected to facilitate compliance with security requirements and organizational expectations even if the selected controls offer minimum or non-existent protection. This paper identifies some of the standard security controls that can in fact protect the ground system, and which of them offer little or no benefit at all. It offers multiple scenarios from real security audits in which the controls are not effective without, of course, disclosing any sensitive information about the missions assessed. In addition to selection and implementation of controls, the paper also discusses potential impact of recent legislation such as the Federal Information Security Modernization Act (FISMA) of 2014 - aimed at the enterprise - on the ground system, and offers other recommendations to Information System Owners (ISOs).
Exploration Life Support Technology Development for Lunar Missions
NASA Technical Reports Server (NTRS)
Ewert, Michael K.; Barta, Daniel J.; McQuillan, Jeffrey
2009-01-01
Exploration Life Support (ELS) is one of NASA's Exploration Technology Development Projects. ELS plans, coordinates and implements the development of new life support technologies for human exploration missions as outlined in NASA's Vision for Space Exploration. ELS technology development currently supports three major projects of the Constellation Program - the Orion Crew Exploration Vehicle (CEV), the Altair Lunar Lander and Lunar Surface Systems. ELS content includes Air Revitalization Systems (ARS), Water Recovery Systems (WRS), Waste Management Systems (WMS), Habitation Engineering, Systems Integration, Modeling and Analysis (SIMA), and Validation and Testing. The primary goal of the ELS project is to provide different technology options to Constellation which fill gaps or provide substantial improvements over the state-of-the-art in life support systems. Since the Constellation missions are so challenging, mass, power, and volume must be reduced from Space Shuttle and Space Station technologies. Systems engineering analysis also optimizes the overall architecture by considering all interfaces with the life support system and potential for reduction or reuse of resources. For long duration missions, technologies which aid in closure of air and water loops with increased reliability are essential as well as techniques to minimize or deal with waste. The ELS project utilizes in-house efforts at five NASA centers, aerospace industry contracts, Small Business Innovative Research contracts and other means to develop advanced life support technologies. Testing, analysis and reduced gravity flight experiments are also conducted at the NASA field centers. This paper gives a current status of technologies under development by ELS and relates them to the Constellation customers who will eventually use them.
NASA Technical Reports Server (NTRS)
Frost, J. D., Jr.; Salamy, J. G.
1973-01-01
The Skylab sleep-monitoring experiment simulated the timelines and environment expected during a 56-day Skylab mission. Two crewmembers utilized the data acquisition and analysis hardware, and their sleep characteristics were studied in an online fashion during a number of all night recording sessions. Comparison of the results of online automatic analysis with those of postmission visual data analysis was favorable, confirming the feasibility of obtaining reliable objective information concerning sleep characteristics during the Skylab missions. One crewmember exhibited definite changes in certain sleep characteristics (e.g., increased sleep latency, increased time Awake during first third of night, and decreased total sleep time) during the mission.
Systems design and comparative analysis of large antenna concepts
NASA Technical Reports Server (NTRS)
Garrett, L. B.; Ferebee, M. J., Jr.
1983-01-01
Conceptual designs are evaluated and comparative analyses conducted for several large antenna spacecraft for Land Mobile Satellite System (LMSS) communications missions. Structural configurations include trusses, hoop and column and radial rib. The study was conducted using the Interactive Design and Evaluation of Advanced Spacecraft (IDEAS) system. The current capabilities, development status, and near-term plans for the IDEAS system are reviewed. Overall capabilities are highlighted. IDEAS is an integrated system of computer-aided design and analysis software used to rapidly evaluate system concepts and technology needs for future advanced spacecraft such as large antennas, platforms, and space stations. The system was developed at Langley to meet a need for rapid, cost-effective, labor-saving approaches to the design and analysis of numerous missions and total spacecraft system options under consideration. IDEAS consists of about 40 technical modules efficient executive, data-base and file management software, and interactive graphics display capabilities.
Self-Aware Vehicles: Mission and Performance Adaptation to System Health
NASA Technical Reports Server (NTRS)
Gregory, Irene M.; Leonard, Charles; Scotti, Stephen J.
2016-01-01
Advances in sensing (miniaturization, distributed sensor networks) combined with improvements in computational power leading to significant gains in perception, real-time decision making/reasoning and dynamic planning under uncertainty as well as big data predictive analysis have set the stage for realization of autonomous system capability. These advances open the design and operating space for self-aware vehicles that are able to assess their own capabilities and adjust their behavior to either complete the assigned mission or to modify the mission to reflect their current capabilities. This paper discusses the self-aware vehicle concept and associated technologies necessary for full exploitation of the concept. A self-aware aircraft, spacecraft or system is one that is aware of its internal state, has situational awareness of its environment, can assess its capabilities currently and project them into the future, understands its mission objectives, and can make decisions under uncertainty regarding its ability to achieve its mission objectives.
Follow the plume: the habitability of Enceladus.
McKay, Christopher P; Anbar, Ariel D; Porco, Carolyn; Tsou, Peter
2014-04-01
The astrobiological exploration of other worlds in our Solar System is moving from initial exploration to more focused astrobiology missions. In this context, we present the case that the plume of Enceladus currently represents the best astrobiology target in the Solar System. Analysis of the plume by the Cassini mission indicates that the steady plume derives from a subsurface liquid water reservoir that contains organic carbon, biologically available nitrogen, redox energy sources, and inorganic salts. Furthermore, samples from the plume jetting out into space are accessible to a low-cost flyby mission. No other world has such well-studied indications of habitable conditions. Thus, the science goals that would motivate an Enceladus mission are more advanced than for any other Solar System body. The goals of such a mission must go beyond further geophysical characterization, extending to the search for biomolecular evidence of life in the organic-rich plume. This will require improved in situ investigations and a sample return.
Recent Advances in Nuclear Powered Electric Propulsion for Space Exploration
NASA Technical Reports Server (NTRS)
Cassady, R. Joseph; Frisbee, Robert H.; Gilland, James H.; Houts, Michael G.; LaPointe, Michael R.; Maresse-Reading, Colleen M.; Oleson, Steven R.; Polk, James E.; Russell, Derrek; Sengupta, Anita
2007-01-01
Nuclear and radioisotope powered electric thrusters are being developed as primary in-space propulsion systems for potential future robotic and piloted space missions. Possible applications for high power nuclear electric propulsion include orbit raising and maneuvering of large space platforms, lunar and Mars cargo transport, asteroid rendezvous and sample return, and robotic and piloted planetary missions, while lower power radioisotope electric propulsion could significantly enhance or enable some future robotic deep space science missions. This paper provides an overview of recent U.S. high power electric thruster research programs, describing the operating principles, challenges, and status of each technology. Mission analysis is presented that compares the benefits and performance of each thruster type for high priority NASA missions. The status of space nuclear power systems for high power electric propulsion is presented. The paper concludes with a discussion of power and thruster development strategies for future radioisotope electric propulsion systems,
The Space Transportation System. [Space Shuttle-Spacelab-Space Tug system
NASA Technical Reports Server (NTRS)
Donlan, C. J.; Brazill, E. J.
1976-01-01
The Space Transportation System, consisting of the Space Shuttle, Spacelab, and the Space Tug, is discussed from the viewpoint of reductions in the cost of space operations. Each of the three vehicles is described along with its mission capabilities, and the time table for system development activities is outlined. Basic attributes of the Space Transportation System are reviewed, all operational modes are considered, and the total cost picture of the system is examined from the standpoint of a mission economic analysis. It is concluded that as the features of the Space Transportation System, especially the Shuttle and the Tug, are put to more efficient use during the maturing-operation phase, the total cost of conducting space missions should be about half of what it would be if any other system were employed.
Integrated operations/payloads/fleet analysis. Volume 2: Payloads
NASA Technical Reports Server (NTRS)
1971-01-01
The payloads for NASA and non-NASA missions of the integrated fleet are analyzed to generate payload data for the capture and cost analyses for the period 1979 to 1990. Most of the effort is on earth satellites, probes, and planetary missions because of the space shuttle's ability to retrieve payloads for repair, overhaul, and maintenance. Four types of payloads are considered: current expendable payload; current reusable payload; low cost expendable payload, (satellite to be used with expendable launch vehicles); and low cost reusable payload (satellite to be used with the space shuttle/space tug system). Payload weight analysis, structural sizing analysis, and the influence of mean mission duration on program cost are also discussed. The payload data were computerized, and printouts of the data for payloads for each program or mission are included.
Influence of Alternative Engine Concepts on LCTR2 Sizing and Mission Profile
2012-01-01
II), and engine performance was estimated with the Numerical Propulsion System Simulation ( NPSS ). Design trades for the ACE vs. VSPT are presented...Maximum Continuous Power MRP Maximum Rated Power (take-off power) NDARC NASA Design and Analysis of Rotorcraft NPSS Numerical Propulsion System...System Simulation ( NPSS ). Design trades for the ACE vs. VSPT are presented in terms of vehicle weight empty for variations in mission altitude and
Mission Benefits Analysis of Logistics Reduction Technologies
NASA Technical Reports Server (NTRS)
Ewert, Michael K.; Broyan, James Lee, Jr.
2013-01-01
Future space exploration missions will need to use less logistical supplies if humans are to live for longer periods away from our home planet. Anything that can be done to reduce initial mass and volume of supplies or reuse or recycle items that have been launched will be very valuable. Reuse and recycling also reduce the trash burden and associated nuisances, such as smell, but require good systems engineering and operations integration to reap the greatest benefits. A systems analysis was conducted to quantify the mass and volume savings of four different technologies currently under development by NASA s Advanced Exploration Systems (AES) Logistics Reduction and Repurposing project. Advanced clothing systems lead to savings by direct mass reduction and increased wear duration. Reuse of logistical items, such as packaging, for a second purpose allows fewer items to be launched. A device known as a heat melt compactor drastically reduces the volume of trash, recovers water and produces a stable tile that can be used instead of launching additional radiation protection. The fourth technology, called trash-to-gas, can benefit a mission by supplying fuel such as methane to the propulsion system. This systems engineering work will help improve logistics planning and overall mission architectures by determining the most effective use, and reuse, of all resources.
Mission Benefits Analysis of Logistics Reduction Technologies
NASA Technical Reports Server (NTRS)
Ewert, Michael K.; Broyan, James L.
2012-01-01
Future space exploration missions will need to use less logistical supplies if humans are to live for longer periods away from our home planet. Anything that can be done to reduce initial mass and volume of supplies or reuse or recycle items that have been launched will be very valuable. Reuse and recycling also reduce the trash burden and associated nuisances, such as smell, but require good systems engineering and operations integration to reap the greatest benefits. A systems analysis was conducted to quantify the mass and volume savings of four different technologies currently under development by NASA fs Advanced Exploration Systems (AES) Logistics Reduction and Repurposing project. Advanced clothing systems lead to savings by direct mass reduction and increased wear duration. Reuse of logistical items, such as packaging, for a second purpose allows fewer items to be launched. A device known as a heat melt compactor drastically reduces the volume of trash, recovers water and produces a stable tile that can be used instead of launching additional radiation protection. The fourth technology, called trash ]to ]supply ]gas, can benefit a mission by supplying fuel such as methane to the propulsion system. This systems engineering work will help improve logistics planning and overall mission architectures by determining the most effective use, and reuse, of all resources.
Analysis and control of macro - and microorganisms interactions for missions of different duration
NASA Astrophysics Data System (ADS)
Somova, L.; Pechurkin, N.
In developing different t pes of life support systems for use in space or extremey environments Earth, researchers should pay attention to the functional state and stability of such systems. Special attention has been given to the interactions between macro- and microorganisms. Microorganisms are considered the most suitable indicators of a system's health and its component links. We can divide all space missions into types by which the behavior of man microbe interactions may be categorized: short missions and long ones. For short missions sanitary and hygiene procedures can be used to control the microflora of open and / or physico -chemical systems of life support. F r more prolonged missions hygieneo provisions may become inadequate and opportunistic infection occur rapidly. In general we should understand that the task of maintaining the heals of human being under conditions of stress is not only a question of sanitation and hygiene, but also a problem of the ecological balance within the habitat.
Mission to Mars using integrated propulsion concepts: considerations, opportunities, and strategies.
Accettura, Antonio G; Bruno, Claudio; Casotto, Stefano; Marzari, Francesco
2004-04-01
The aim of this paper is to evaluate the feasibility of a mission to Mars using the Integrated Propulsion Systems (IPS) which means to couple Nuclear-MPD-ISPU propulsion systems. In particular both mission analysis and propulsion aspects are analyzed together with technological aspects. Identifying possible mission scenarios will lead to the study of possible strategies for Mars Exploration and also of methods for reducing cost. As regard to IPS, the coupling between Nuclear Propulsion (Rubbia's engine) and Superconductive MPD propulsion is considered for the Earth-Mars trajectories: major emphasis is given to the advantages of such a system. The In Situ Resource Utilization (ISRU) concerns on-Mars operations; In Situ Propellant Utilization (ISPU) is foreseen particularly for LOX-CH4 engines for Mars Ascent Vehicles and this possibility is analyzed from a technological point of view. Tether Systems are also considered during interplanetary trajectories and as space elevators on Mars orbit. Finally strategic considerations associated to this mission are considered also. c2003 Elsevier Ltd. All rights reserved.
NASA Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Carter, David; Wetzel, Scott
2000-01-01
The NASA SLR Operational Center is responsible for: 1) NASA SLR network control, sustaining engineering, and logistics; 2) ILRS mission operations; and 3) ILRS and NASA SLR data operations. NASA SLR network control and sustaining engineering tasks include technical support, daily system performance monitoring, system scheduling, operator training, station status reporting, system relocation, logistics and support of the ILRS Networks and Engineering Working Group. These activities ensure the NASA SLR systems are meeting ILRS and NASA mission support requirements. ILRS mission operations tasks include mission planning, mission analysis, mission coordination, development of mission support plans, and support of the ILRS Missions Working Group. These activities ensure than new mission and campaign requirements are coordinated with the ILRS. Global Normal Points (NP) data, NASA SLR FullRate (FR) data, and satellite predictions are managed as part of data operations. Part of this operation includes supporting the ILRS Data Formats and Procedures Working Group. Global NP data operations consist of receipt, format and data integrity verification, archiving and merging. This activity culminates in the daily electronic transmission of NP files to the CDDIS. Currently of all these functions are automated. However, to ensure the timely and accurate flow of data, regular monitoring and maintenance of the operational software systems, computer systems and computer networking are performed. Tracking statistics between the stations and the data centers are compared periodically to eliminate lost data. Future activities in this area include sub-daily (i.e., hourly) NP data management, more stringent data integrity tests, and automatic station notification of format and data integrity issues.
NASA Technical Reports Server (NTRS)
Newman, Lauri K.
2009-01-01
This viewgraph presentation reviews NASA's Space Situational Awareness (SSA) activities as preparation for robotic missions and Goddard's role in this work. The presentation includes the preparations that Goddard Space Flight Center (GSFC) has made to provide consolidated space systems protection indluding consolidating GSFC support for Orbit Debris analysis, conjunction assessment and collision avoidance, commercial and foreign support, and protection of GSFC managed missions.
Neptune aerocapture mission and spacecraft design overview
NASA Technical Reports Server (NTRS)
Bailey, Robert W.; Hall, Jeff L.; Spliker, Tom R.; O'Kongo, Nora
2004-01-01
A detailed Neptune aerocapture systems analysis and spacecraft design study was performed as part of NASA's In-Space Propulsion Program. The primary objectives were to assess the feasibility of a spacecraft point design for a Neptune/Triton science mission. That uses aerocapture as the Neptune orbit insertion mechanism. This paper provides an overview of the science, mission and spacecraft design resulting from that study.
Probabilistic Risk Assessment (PRA): A Practical and Cost Effective Approach
NASA Technical Reports Server (NTRS)
Lee, Lydia L.; Ingegneri, Antonino J.; Djam, Melody
2006-01-01
The Lunar Reconnaissance Orbiter (LRO) is the first mission of the Robotic Lunar Exploration Program (RLEP), a space exploration venture to the Moon, Mars and beyond. The LRO mission includes spacecraft developed by NASA Goddard Space Flight Center (GSFC) and seven instruments built by GSFC, Russia, and contractors across the nation. LRO is defined as a measurement mission, not a science mission. It emphasizes the overall objectives of obtaining data to facilitate returning mankind safely to the Moon in preparation for an eventual manned mission to Mars. As the first mission in response to the President's commitment of the journey of exploring the solar system and beyond: returning to the Moon in the next decade, then venturing further into the solar system, ultimately sending humans to Mars and beyond, LRO has high-visibility to the public but limited resources and a tight schedule. This paper demonstrates how NASA's Lunar Reconnaissance Orbiter Mission project office incorporated reliability analyses in assessing risks and performing design tradeoffs to ensure mission success. Risk assessment is performed using NASA Procedural Requirements (NPR) 8705.5 - Probabilistic Risk Assessment (PRA) Procedures for NASA Programs and Projects to formulate probabilistic risk assessment (PRA). As required, a limited scope PRA is being performed for the LRO project. The PRA is used to optimize the mission design within mandated budget, manpower, and schedule constraints. The technique that LRO project office uses to perform PRA relies on the application of a component failure database to quantify the potential mission success risks. To ensure mission success in an efficient manner, low cost and tight schedule, the traditional reliability analyses, such as reliability predictions, Failure Modes and Effects Analysis (FMEA), and Fault Tree Analysis (FTA), are used to perform PRA for the large system of LRO with more than 14,000 piece parts and over 120 purchased or contractor built components.
Mission definition study for Stanford relativity satellite. Volume 3: Appendices
NASA Technical Reports Server (NTRS)
1971-01-01
An analysis is presented for the cost of the mission as a function of the following variables: amount of redundancy in the spacecraft, amount of care taken in building the spacecraft (functional and environmental tests, screening of components, quality control, etc), and the number of flights necessary to accomplish the mission. Thermal analysis and mathematical models for the experimental components are presented. The results of computer structural and stress analyses for support and cylinders are discussed. Reliability, quality control, and control system simulation by computer are also considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leonard, S.L.; Munjal, P.K.; Rattin, E.J.
1976-06-01
The main emphasis of the activity during the second quarter of this project continued to be on Task 1, Analysis of Near-Term Missions, and on Task 2, Analysis of Major Mid-Term Missions. In addition, considerable progress was also made on Task 6, Comparison of the True Societal Costs of Conventional and Photovoltaic Power Production, and starts were made on Task 3, Review and Updating of the ERDA Technology Implementation Plan, and Task 4, Critical External Issues. As was planned, work on Task 5, Impact of Incentives, was deferred to the second half of the program. Progress is reported. (WHK)
Radio astronomy Explorer-B in-flight mission control system development effort
NASA Technical Reports Server (NTRS)
Lutsky, D. A.; Bjorkman, W. S.; Uphoff, C.
1973-01-01
A description is given of the development for the Mission Analysis Evaluation and Space Trajectory Operations (MAESTRO) program to be used for the in-flight decision making process during the translunar and lunar orbit adjustment phases of the flight of the Radio Astronomy Explorer-B. THe program serves two functions: performance and evaluation of preflight mission analysis, and in-flight support for the midcourse and lunar insertion command decisions that must be made by the flight director. The topics discussed include: analysis of program and midcourse guidance capabilities; methods for on-line control; printed displays of the MAESTRO program; and in-flight operational logistics and testing.
Debris/Ice/TPS Assessment and Photographic Analysis for Shuttle Mission STS-39
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley
1991-01-01
A Debris/Ice/TPS (thermal protection system) assessment and photographic analysis was conducted for Space Shuttle Mission STS-39. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the external tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of launch was analyzed to identify ice/debris anomalies. The debris/ice/TPS conditions and photographic analysis of Mission STS-39, and their overall effect on the Space Shuttle Program are documented.
NASA Technical Reports Server (NTRS)
Cataldo, Robert L.
2014-01-01
The NASA Glenn Research Center (GRC) Radioisotope Power System Program Office (RPSPO) sponsored two studies lead by their mission analysis team. The studies were performed by NASA GRCs Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) team. Typically a complete toplevel design reference mission (DRM) is performed assessing conceptual spacecraft design, launch mass, trajectory, science strategy and sub-system design such as, power, propulsion, structure and thermal.
Analyzing human errors in flight mission operations
NASA Technical Reports Server (NTRS)
Bruno, Kristin J.; Welz, Linda L.; Barnes, G. Michael; Sherif, Josef
1993-01-01
A long-term program is in progress at JPL to reduce cost and risk of flight mission operations through a defect prevention/error management program. The main thrust of this program is to create an environment in which the performance of the total system, both the human operator and the computer system, is optimized. To this end, 1580 Incident Surprise Anomaly reports (ISA's) from 1977-1991 were analyzed from the Voyager and Magellan projects. A Pareto analysis revealed that 38 percent of the errors were classified as human errors. A preliminary cluster analysis based on the Magellan human errors (204 ISA's) is presented here. The resulting clusters described the underlying relationships among the ISA's. Initial models of human error in flight mission operations are presented. Next, the Voyager ISA's will be scored and included in the analysis. Eventually, these relationships will be used to derive a theoretically motivated and empirically validated model of human error in flight mission operations. Ultimately, this analysis will be used to make continuous process improvements continuous process improvements to end-user applications and training requirements. This Total Quality Management approach will enable the management and prevention of errors in the future.
Technical Feasibility Assessment of Lunar Base Mission Scenarios
NASA Astrophysics Data System (ADS)
Magelssen, Trygve ``Spike''; Sadeh, Eligar
2005-02-01
Investigation of the literature pertaining to lunar base (LB) missions and the technologies required for LB development has revealed an information gap that hinders technical feasibility assessment. This information gap is the absence of technical readiness levels (TRL) (Mankins, 1995) and information pertaining to the criticality of the critical enabling technologies (CETs) that enable mission success. TRL is a means of identifying technical readiness stages of a technology. Criticality is defined as the level of influence the CET has on the mission scenario. The hypothesis of this research study is that technical feasibility is a function of technical readiness and technical readiness is a function of criticality. A newly developed research analysis method is used to identify the technical feasibility of LB mission scenarios. A Delphi is used to ascertain technical readiness levels and CET criticality-to-mission. The research analysis method is applied to the Delphi results to determine the technical feasibility of the LB mission scenarios that include: observatory, science research, lunar settlement, space exploration gateway, space resource utilization, and space tourism. The CETs identified encompasses four major system level technologies of: transportation, life support, structures, and power systems. Results of the technical feasibility assessment show the observatory and science research LB mission scenarios to be more technical ready out of all the scenarios, but all mission scenarios are in very close proximity to each other in regard to criticality and TRL and no one mission scenario stands out as being absolutely more technically ready than any of the other scenarios. What is significant and of value are the Delphi results concerning CET criticality-to-mission and the TRL values evidenced in the Tables that can be used by anyone assessing the technical feasibility of LB missions.
NASA Astrophysics Data System (ADS)
Reed, David W.; Lilley, Stewart; Sirman, Melinda; Bolton, Paul; Elliott, Susan; Hamilton, Doug; Nickelson, James; Shelton, Artemus
1992-12-01
With the downturn of the world economy, the priority of unmanned exploration of the solar system has been lowered. Instead of foregoing all missions to our neighbors in the solar system, a new philosophy of exploration mission design has evolved to insure the continued exploration of the solar system. The 'Discovery-class' design philosophy uses a low cost, limited mission, available technology spacecraft instead of the previous 'Voyager-class' design philosophy that uses a 'do-everything at any cost' spacecraft. The Percival Mission to Mars was proposed by Ares Industries as one of the new 'Discovery-class' of exploration missions. The spacecraft will be christened Percival in honor of American astronomer Percival Lowell who proposed the existence of life on Mars in the early twentieth century. The main purpose of the Percival mission to Mars is to collect and relay scientific data to Earth suitable for designing future manned and unmanned missions to Mars. The measurements and observations made by Percival will help future mission designers to choose among landing sites based on the feasibility and scientific interest of the sites. The primary measurements conducted by the Percival mission include gravity field determination, surface and atmospheric composition, sub-surface soil composition, sub-surface seismic activity, surface weather patterns, and surface imaging. These measurements will be taken from the orbiting Percival spacecraft and from surface penetrators deployed from Mars orbit. The design work for the Percival Mission to Mars was divided among four technical areas: Orbits and Propulsion System, Surface Penetrators, Gravity and Science Instruments, and Spacecraft Structure and Systems. The results for each of the technical areas is summarized and followed by a design cost analysis and recommendations for future analyses.
NASA Technical Reports Server (NTRS)
Reed, David W.; Lilley, Stewart; Sirman, Melinda; Bolton, Paul; Elliott, Susan; Hamilton, Doug; Nickelson, James; Shelton, Artemus
1992-01-01
With the downturn of the world economy, the priority of unmanned exploration of the solar system has been lowered. Instead of foregoing all missions to our neighbors in the solar system, a new philosophy of exploration mission design has evolved to insure the continued exploration of the solar system. The 'Discovery-class' design philosophy uses a low cost, limited mission, available technology spacecraft instead of the previous 'Voyager-class' design philosophy that uses a 'do-everything at any cost' spacecraft. The Percival Mission to Mars was proposed by Ares Industries as one of the new 'Discovery-class' of exploration missions. The spacecraft will be christened Percival in honor of American astronomer Percival Lowell who proposed the existence of life on Mars in the early twentieth century. The main purpose of the Percival mission to Mars is to collect and relay scientific data to Earth suitable for designing future manned and unmanned missions to Mars. The measurements and observations made by Percival will help future mission designers to choose among landing sites based on the feasibility and scientific interest of the sites. The primary measurements conducted by the Percival mission include gravity field determination, surface and atmospheric composition, sub-surface soil composition, sub-surface seismic activity, surface weather patterns, and surface imaging. These measurements will be taken from the orbiting Percival spacecraft and from surface penetrators deployed from Mars orbit. The design work for the Percival Mission to Mars was divided among four technical areas: Orbits and Propulsion System, Surface Penetrators, Gravity and Science Instruments, and Spacecraft Structure and Systems. The results for each of the technical areas is summarized and followed by a design cost analysis and recommendations for future analyses.
NASA Technical Reports Server (NTRS)
Himansu, Ananda; Freeh, Joshua E.; Steffen, Christopher J., Jr.; Tornabene, Robert T.; Wang, Xiao-Yen J.
2006-01-01
A system level analysis, inclusive of mass, is carried out for a cryogenic hydrogen fueled hybrid solid oxide fuel cell and bottoming gas turbine (SOFC/GT) power system. The system is designed to provide primary or secondary electrical power for an unmanned aerial vehicle (UAV) over a high altitude, long endurance mission. The net power level and altitude are parametrically varied to examine their effect on total system mass. Some of the more important technology parameters, including turbomachinery efficiencies and the SOFC area specific resistance, are also studied for their effect on total system mass. Finally, two different solid oxide cell designs are compared to show the importance of the individual solid oxide cell design on the overall system. We show that for long mission durations of 10 days or more, the fuel mass savings resulting from the high efficiency of a SOFC/GT system more than offset the larger powerplant mass resulting from the low specific power of the SOFC/GT system. These missions therefore favor high efficiency, low power density systems, characteristics typical of fuel cell systems in general.
Atmosphere explorer missions C, D, and E. Spacecraft experiment interface definition study
NASA Technical Reports Server (NTRS)
1972-01-01
The Atmosphere Explorer Missions C, D, & E Spacecraft/Experiment Interface Definition Study is discussed. The objectives of the study included an analysis of the accommodation requirements of the experiments for the three missions, an assessment of the overall effect of these requirements on the spacecraft system design and performance, and the detailed definition of all experiment/spacecraft electrical, mechanical, and environmental interfaces. In addition, the study included the identification and definition of system characteristics required to ensure compatibility with the consolidated STADAN and MSFN communications networks.
NASA Technical Reports Server (NTRS)
Simon, Matthew A.; Toups, Larry; Howe, A. Scott; Wald, Samuel I.
2015-01-01
The Evolvable Mars Campaign (EMC) is the current NASA Mars mission planning effort which seeks to establish sustainable, realistic strategies to enable crewed Mars missions in the mid-2030s timeframe. The primary outcome of the Evolvable Mars Campaign is not to produce "The Plan" for sending humans to Mars, but instead its intent is to inform the Human Exploration and Operations Mission Directorate near-term key decisions and investment priorities to prepare for those types of missions. The FY'15 EMC effort focused upon analysis of integrated mission architectures to identify technically appealing transportation strategies, logistics build-up strategies, and vehicle designs for reaching and exploring Mars moons and Mars surface. As part of the development of this campaign, long duration habitats are required which are capable of supporting crew with limited resupply and crew abort during the Mars transit, Mars moons, and Mars surface segments of EMC missions. In particular, the EMC design team sought to design a single, affordable habitation system whose manufactured units could be outfitted uniquely for each of these missions and reused for multiple crewed missions. This habitat system must provide all of the functionality to safely support 4 crew for long durations while meeting mass and volume constraints for each of the mission segments set by the chosen transportation architecture and propulsion technologies. This paper describes several proposed long-duration habitation strategies to enable the Evolvable Mars Campaign through improvements in mass, cost, and reusability, and presents results of analysis to compare the options and identify promising solutions. The concepts investigated include several monolithic concepts: monolithic clean sheet designs, and concepts which leverage the co-manifested payload capability of NASA's Space Launch System (SLS) to deliver habitable elements within the Universal Payload Adaptor between the SLS upper stage and the Orion/Service module on the top of the vehicle. Multiple modular habitat options for Mars surface and in-space missions are also considered with various functionality and volume splits between modules to find the best balance of reducing the single largest mass which must be delivered to a destination and reducing the number of separate elements which must be launched. Analysis results presented for each of these concepts in this paper include mass/volume/power sizing using parametric sizing tools, identification of unique operational constraints, and limited comments on the additional impacts of reusability/dormancy on system design. Finally, recommendations will be made for promising solutions which will be carried forward for consideration in the Evolvable Mars Campaign work.
Interaction of the Climate System and the Solid Earth: Analysis of Observations and Models
NASA Technical Reports Server (NTRS)
Bryan, Frank
2001-01-01
Under SENH funding we have carried out a number of diverse analyses of interactions of the climate system (atmosphere, ocean, land surface hydrology) with the solid Earth. While the original work plan emphasized analysis of excitation of variations in Earth rotation, with a lesser emphasis on time variable gravity, opportunities that developed during the proposal period in connection with preparations for the GRACE mission led us to a more balanced effort between these two topics. The results of our research are outlined in several topical sections: (1) oceanic excitation of variations in Earth rotation; (2) short period atmosphere-ocean excitation of variations in Earth rotation; (3) analysis of coupled climate system simulation; (4) observing system simulation studies for GRACE mission design; and (5) oceanic response to atmospheric pressure loading.
Global Precipitation Measurement (GPM) Orbit Design and Autonomous Maneuvers
NASA Technical Reports Server (NTRS)
Folta, David; Mendelsohn, Chad
2003-01-01
The NASA Goddard Space Flight Center's Global Precipitation Measurement (GPM) mission will meet a challenge of measuring worldwide precipitation every three hours. The GPM spacecraft, part of a constellation, will be required to maintain a circular orbit in a high drag environment to accomplish this challenge. Analysis by the Flight Dynamics Analysis Branch has shown that the prime orbit altitude of 40% is necessary to prevent ground track repeating. Combined with goals to minimize maneuver impacts to science data collection and enabling reasonable long-term orbit predictions, the GPM project has decided to fly an autonomous maneuver system. This system is a derivative of the successful New Millennium Program technology flown onboard the Earth Observing-1 mission. This paper presents the driving science requirements and goals of the mission and shows how they will be met. Analysis of the orbit optimization and the AV requirements for several ballistic properties are presented. The architecture of the autonomous maneuvering system to meet the goals and requirements is presented along with simulations using a GPM prototype. Additionally, the use of the GPM autonomous system to mitigate possible collision avoidance and to aid other spacecraft systems during navigation outages is explored.
SPICE Module for the Satellite Orbit Analysis Program (SOAP)
NASA Technical Reports Server (NTRS)
Coggi, John; Carnright, Robert; Hildebrand, Claude
2008-01-01
A SPICE module for the Satellite Orbit Analysis Program (SOAP) precisely represents complex motion and maneuvers in an interactive, 3D animated environment with support for user-defined quantitative outputs. (SPICE stands for Spacecraft, Planet, Instrument, Camera-matrix, and Events). This module enables the SOAP software to exploit NASA mission ephemeris represented in the JPL Ancillary Information Facility (NAIF) SPICE formats. Ephemeris types supported include position, velocity, and orientation for spacecraft and planetary bodies including the Sun, planets, natural satellites, comets, and asteroids. Entire missions can now be imported into SOAP for 3D visualization, playback, and analysis. The SOAP analysis and display features can now leverage detailed mission files to offer the analyst both a numerically correct and aesthetically pleasing combination of results that can be varied to study many hypothetical scenarios. The software provides a modeling and simulation environment that can encompass a broad variety of problems using orbital prediction. For example, ground coverage analysis, communications analysis, power and thermal analysis, and 3D visualization that provide the user with insight into complex geometric relations are included. The SOAP SPICE module allows distributed science and engineering teams to share common mission models of known pedigree, which greatly reduces duplication of effort and the potential for error. The use of the software spans all phases of the space system lifecycle, from the study of future concepts to operations and anomaly analysis. It allows SOAP software to correctly position and orient all of the principal bodies of the Solar System within a single simulation session along with multiple spacecraft trajectories and the orientation of mission payloads. In addition to the 3D visualization, the user can define numeric variables and x-y plots to quantitatively assess metrics of interest.
NASA Technical Reports Server (NTRS)
Sapp, C. A.; Dragg, J. L.; Snyder, M. W.; Gaunce, M. T.; Decker, J. E.
1998-01-01
This report documents the photogrammetric assessment of the Hubble Space Telescope (HST) solar arrays conducted by the NASA c Center Image Science and Analysis Group during Second Servicing Mission 2 (SM-2) on STS-82 in February 1997. Two type solar array analyses were conducted during the mission using Space Shuttle payload bay video: (1) measurement of solar array motion due to induced loads, and (2) measurement of the solar array static or geometric twist caused by the cumulative array loading. The report describes pre-mission planning and analysis technique development activities conducted to acquire and analyze solar array imagery data during SM-2. This includes analysis of array motion obtained during SM-1 as a proof-of-concept of the SM-2 measurement techniques. The report documents the results of real-time analysis conducted during the mission and subsequent analysis conducted post-flight. This report also provides a summary of lessons learned on solar array imagery analysis from SM-2 and recommendations for future on-orbit measurements applicable to HST SM-3 and to the International Space Station. This work was performed under the direction of the Goddard Space Flight Center HST Flight Systems and Servicing Project.
Simplified Phased-Mission System Analysis for Systems with Independent Component Repairs
NASA Technical Reports Server (NTRS)
Somani, Arun K.
1996-01-01
Accurate analysis of reliability of system requires that it accounts for all major variations in system's operation. Most reliability analyses assume that the system configuration, success criteria, and component behavior remain the same. However, multiple phases are natural. We present a new computationally efficient technique for analysis of phased-mission systems where the operational states of a system can be described by combinations of components states (such as fault trees or assertions). Moreover, individual components may be repaired, if failed, as part of system operation but repairs are independent of the system state. For repairable systems Markov analysis techniques are used but they suffer from state space explosion. That limits the size of system that can be analyzed and it is expensive in computation. We avoid the state space explosion. The phase algebra is used to account for the effects of variable configurations, repairs, and success criteria from phase to phase. Our technique yields exact (as opposed to approximate) results. We demonstrate our technique by means of several examples and present numerical results to show the effects of phases and repairs on the system reliability/availability.
Space station payload operations scheduling with ESP2
NASA Technical Reports Server (NTRS)
Stacy, Kenneth L.; Jaap, John P.
1988-01-01
The Mission Analysis Division of the Systems Analysis and Integration Laboratory at the Marshall Space Flight Center is developing a system of programs to handle all aspects of scheduling payload operations for Space Station. The Expert Scheduling Program (ESP2) is the heart of this system. The task of payload operations scheduling can be simply stated as positioning the payload activities in a mission so that they collect their desired data without interfering with other activities or violating mission constraints. ESP2 is an advanced version of the Experiment Scheduling Program (ESP) which was developed by the Mission Integration Branch beginning in 1979 to schedule Spacelab payload activities. The automatic scheduler in ESP2 is an expert system that embodies the rules that expert planners would use to schedule payload operations by hand. This scheduler uses depth-first searching, backtracking, and forward chaining techniques to place an activity so that constraints (such as crew, resources, and orbit opportunities) are not violated. It has an explanation facility to show why an activity was or was not scheduled at a certain time. The ESP2 user can also place the activities in the schedule manually. The program offers graphical assistance to the user and will advise when constraints are being violated. ESP2 also has an option to identify conflict introduced into an existing schedule by changes to payload requirements, mission constraints, and orbit opportunities.
Precise and Scalable Static Program Analysis of NASA Flight Software
NASA Technical Reports Server (NTRS)
Brat, G.; Venet, A.
2005-01-01
Recent NASA mission failures (e.g., Mars Polar Lander and Mars Orbiter) illustrate the importance of having an efficient verification and validation process for such systems. One software error, as simple as it may be, can cause the loss of an expensive mission, or lead to budget overruns and crunched schedules. Unfortunately, traditional verification methods cannot guarantee the absence of errors in software systems. Therefore, we have developed the CGS static program analysis tool, which can exhaustively analyze large C programs. CGS analyzes the source code and identifies statements in which arrays are accessed out of bounds, or, pointers are used outside the memory region they should address. This paper gives a high-level description of CGS and its theoretical foundations. It also reports on the use of CGS on real NASA software systems used in Mars missions (from Mars PathFinder to Mars Exploration Rover) and on the International Space Station.
A Comparative Study of Aerocapture Missions with a Mars Destination
NASA Technical Reports Server (NTRS)
Vaughan, Diane; Miller, Heather C.; Griffin, Brand; James, Bonnie F.; Munk, Michelle M.
2005-01-01
Conventional interplanetary spacecraft use propulsive systems to decelerate into orbit. Aerocapture is an alternative approach for orbit capture, in which the spacecraft makes a single pass through a target destination's atmosphere. Although this technique has never been performed, studies show there are substantial benefits of using aerocapture for reduction of propellant mass, spacecraft size, and mission cost. The In-Space Propulsion (ISP) Program, part of NASA's Science Mission Directorate, has invested in aerocapture technology development since 2002. Aerocapture investments within ISP are largely driven by mission systems analysis studies, The purpose of this NASA-funded report is to identify and document the fundamental parameters of aerocapture within previous human and robotic Mars mission studies which will assist the community in identifying technology research gaps in human and robotic missions, and provide insight for future technology investments. Upon examination of the final data set, some key attributes within the aerocapture disciplines are identified.
Open Source Next Generation Visualization Software for Interplanetary Missions
NASA Technical Reports Server (NTRS)
Trimble, Jay; Rinker, George
2016-01-01
Mission control is evolving quickly, driven by the requirements of new missions, and enabled by modern computing capabilities. Distributed operations, access to data anywhere, data visualization for spacecraft analysis that spans multiple data sources, flexible reconfiguration to support multiple missions, and operator use cases, are driving the need for new capabilities. NASA's Advanced Multi-Mission Operations System (AMMOS), Ames Research Center (ARC) and the Jet Propulsion Laboratory (JPL) are collaborating to build a new generation of mission operations software for visualization, to enable mission control anywhere, on the desktop, tablet and phone. The software is built on an open source platform that is open for contributions (http://nasa.github.io/openmct).
Manned Mars mission accommodation: Sprint mission
NASA Technical Reports Server (NTRS)
Cirillo, William M.; Kaszubowski, Martin J.; Ayers, J. Kirk; Llewellyn, Charles P.; Weidman, Deene J.; Meredith, Barry D.
1988-01-01
The results of a study conducted at the NASA-LaRC to assess the impacts on the Phase 2 Space Station of Accommodating a Manned Mission to Mars are documented. In addition, several candidate transportation node configurations are presented to accommodate the assembly and verification of the Mars Mission vehicles. This study includes an identification of a life science research program that would need to be completed, on-orbit, prior to mission departure and an assessment of the necessary orbital technology development and demonstration program needed to accomplish the mission. Also included is an analysis of the configuration mass properties and a preliminary analysis of the Space Station control system sizing that would be required to control the station. Results of the study indicate the Phase 2 Space Station can support a manned mission to Mars with the addition of a supporting infrastructure that includes a propellant depot, assembly hangar, and a heavy lift launch vehicle to support the large launch requirements.
Near Earth asteroid rendezvous
NASA Technical Reports Server (NTRS)
1992-01-01
The Spacecraft Design Course is the capstone design class for the M.S. in astronautics at the Naval Postgraduate School. The Fall 92 class designed a spacecraft for the Near Earth Asteroid Rendezvous Mission (NEAR). The NEAR mission uses a robotic spacecraft to conduct up-close reconnaissance of a near-earth asteroid. Such a mission will provide information on Solar System formation and possible space resources. The spacecraft is intended to complete a NEAR mission as a relatively low-budget program while striving to gather as much information about the target asteroid as possible. A complete mission analysis and detailed spacecraft design were completed. Mission analysis includes orbit comparison and selection, payload and telemetry requirements, spacecraft configuration, and launch vehicle selection. Spacecraft design includes all major subsystems: structure, electrical power, attitude control, propulsion, payload integration, and thermal control. The resulting spacecraft demonstrates the possibility to meet the NEAR mission requirements using existing technology, 'off-the-shelf' components, and a relatively low-cost launch vehicle.
Family System of Advanced Charring Ablators for Planetary Exploration Missions
NASA Technical Reports Server (NTRS)
Congdon, William M.; Curry, Donald M.
2005-01-01
Advanced Ablators Program Objectives: 1) Flight-ready(TRL-6) ablative heat shields for deep-space missions; 2) Diversity of selection from family-system approach; 3) Minimum weight systems with high reliability; 4) Optimized formulations and processing; 5) Fully characterized properties; and 6) Low-cost manufacturing. Definition and integration of candidate lightweight structures. Test and analysis database to support flight-vehicle engineering. Results from production scale-up studies and production-cost analyses.
Astrobiological relevance and feasibility of a sample collection mission to the atmosphere of Venus
NASA Astrophysics Data System (ADS)
Schulze-Makuch, Dirk; Irwin, Louis N.; Irwin, Troy
2002-11-01
The lower cloud level of the Venusian atmosphere is an environmental niche that could harbor microbial life. Particularly the mode 3 particles that are enriched in this atmospheric layer are of astrobiological interest. We propose here a sample collection mission to the atmosphere of Venus and evaluate three mission options. The first option is a Stardust-type spacecraft used for sample collection, the second option is a Rotating Probe Tether System, and the third option is a Parachute Drop - Balloon Floatation System. Given the current state of technology, the result of our preliminary analysis is that the Parachute Drop - Balloon Floatation Mission is the most feasible and practical option.
MAVEN Information Security Governance, Risk Management, and Compliance (GRC): Lessons Learned
NASA Technical Reports Server (NTRS)
Takamura, Eduardo; Gomez-Rosa, Carlos A.; Mangum, Kevin; Wasiak, Fran
2014-01-01
As the first interplanetary mission managed by the NASA Goddard Space Flight Center, the Mars Atmosphere and Volatile EvolutioN (MAVEN) had three IT security goals for its ground system: COMPLIANCE, (IT) RISK REDUCTION, and COST REDUCTION. In a multiorganizational environment in which government, industry and academia work together in support of the ground system and mission operations, information security governance, risk management, and compliance (GRC) becomes a challenge as each component of the ground system has and follows its own set of IT security requirements. These requirements are not necessarily the same or even similar to each other's, making the auditing of the ground system security a challenging feat. A combination of standards-based information security management based on the National Institute of Standards and Technology (NIST) Risk Management Framework (RMF), due diligence by the Mission's leadership, and effective collaboration among all elements of the ground system enabled MAVEN to successfully meet NASA's requirements for IT security, and therefore meet Federal Information Security Management Act (FISMA) mandate on the Agency. Throughout the implementation of GRC on MAVEN during the early stages of the mission development, the Project faced many challenges some of which have been identified in this paper. The purpose of this paper is to document these challenges, and provide a brief analysis of the lessons MAVEN learned. The historical information documented herein, derived from an internal pre-launch lessons learned analysis, can be used by current and future missions and organizations implementing and auditing GRC.
MW-Class Electric Propulsion System Designs for Mars Cargo Transport
NASA Technical Reports Server (NTRS)
Gilland, James H.; LaPointe, Michael R.; Oleson, Steven; Mercer, Carolyn; Pencil, Eric; Maosn, Lee
2011-01-01
Multi-kilowatt electric propulsion systems are well developed and have been used on commercial and military satellites in Earth orbit for several years. Ion and Hall thrusters have also propelled robotic spacecraft to encounters with asteroids, the Moon, and minor planetary bodies within the solar system. High power electric propulsion systems are currently being considered to support piloted missions to near earth asteroids, as cargo transport for sustained lunar or Mars exploration, and for very high-power piloted missions to Mars and the outer planets. Using NASA Mars Design Architecture 5.0 as a reference, a preliminary parametric analysis was performed to determine the suitability of a nuclear powered, MW-class electric propulsion system for Mars cargo transport. For this initial analysis, high power 100-kW Hall thrusters and 250-kW VASIMR engines were separately evaluated to determine optimum vehicle architecture and estimated performance. The DRA 5.0 cargo mission closed for both propulsion options, delivering a 100 t payload to Mars orbit and reducing the number of heavy lift launch vehicles from five in the baseline DRA 5.0 architecture to two using electric propulsion. Under an imposed single engine-out mission success criteria, the VASIMR system took longer to reach Mars than did the Hall system, arising from the need to operate the VASIMR thrusters in pairs during the spiral out from low Earth orbit.
Matrix evaluation of science objectives
NASA Technical Reports Server (NTRS)
Wessen, Randii R.
1994-01-01
The most fundamental objective of all robotic planetary spacecraft is to return science data. To accomplish this, a spacecraft is fabricated and built, software is planned and coded, and a ground system is designed and implemented. However, the quantitative analysis required to determine how the collection of science data drives ground system capabilities has received very little attention. This paper defines a process by which science objectives can be quantitatively evaluated. By applying it to the Cassini Mission to Saturn, this paper further illustrates the power of this technique. The results show which science objectives drive specific ground system capabilities. In addition, this process can assist system engineers and scientists in the selection of the science payload during pre-project mission planning; ground system designers during ground system development and implementation; and operations personnel during mission operations.
NASA Technical Reports Server (NTRS)
Sepka, Steven A.; Zarchi, Kerry; Maddock, Robert W.; Samareh, Jamshid A.
2013-01-01
Part of NASAs In-Space Propulsion Technology (ISPT) program is the development of the tradespace to support the design of a family of multi-mission Earth Entry Vehicles (MMEEV) to meet a wide range of mission requirements. An integrated tool called the Multi Mission System Analysis for Planetary Entry Descent and Landing or M-SAPE tool is being developed as part of Entry Vehicle Technology project under In-Space Technology program. The analysis and design of an Earth Entry Vehicle (EEV) is multidisciplinary in nature, requiring the application many disciplines. Part of M-SAPE's application required the development of parametric mass estimating relationships (MERs) to determine the vehicle's required Thermal Protection System (TPS) for safe Earth entry. For this analysis, the heat shield was assumed to be made of a constant thickness TPS. This resulting MERs will then e used to determine the pre-flight mass of the TPS. Two Mers have been developed for the vehicle forebaody. One MER was developed for PICA and the other consisting of Carbon Phenolic atop an Advanced Carbon-Carbon composition. For the the backshell, MERs have been developed for SIRCA, Acusil II, and LI-900. How these MERs were developed, the resulting equations, model limitations, and model accuracy are discussed in this poster.
A Satellite Mortality Study to Support Space Systems Lifetime Prediction
NASA Technical Reports Server (NTRS)
Fox, George; Salazar, Ronald; Habib-Agahi, Hamid; Dubos, Gregory
2013-01-01
Estimating the operational lifetime of satellites and spacecraft is a complex process. Operational lifetime can differ from mission design lifetime for a variety of reasons. Unexpected mortality can occur due to human errors in design and fabrication, to human errors in launch and operations, to random anomalies of hardware and software or even satellite function degradation or technology change, leading to unrealized economic or mission return. This study focuses on data collection of public information using, for the first time, a large, publically available dataset, and preliminary analysis of satellite lifetimes, both operational lifetime and design lifetime. The objective of this study is the illustration of the relationship of design life to actual lifetime for some representative classes of satellites and spacecraft. First, a Weibull and Exponential lifetime analysis comparison is performed on the ratio of mission operating lifetime to design life, accounting for terminated and ongoing missions. Next a Kaplan-Meier survivor function, standard practice for clinical trials analysis, is estimated from operating lifetime. Bootstrap resampling is used to provide uncertainty estimates of selected survival probabilities. This study highlights the need for more detailed databases and engineering reliability models of satellite lifetime that include satellite systems and subsystems, operations procedures and environmental characteristics to support the design of complex, multi-generation, long-lived space systems in Earth orbit.
Upgrades to the NESS (Nuclear Engine System Simulation) Code
NASA Technical Reports Server (NTRS)
Fittje, James E.
2007-01-01
In support of the President's Vision for Space Exploration, the Nuclear Thermal Rocket (NTR) concept is being evaluated as a potential propulsion technology for human expeditions to the moon and Mars. The need for exceptional propulsion system performance in these missions has been documented in numerous studies, and was the primary focus of a considerable effort undertaken during the 1960's and 1970's. The NASA Glenn Research Center is leveraging this past NTR investment in their vehicle concepts and mission analysis studies with the aid of the Nuclear Engine System Simulation (NESS) code. This paper presents the additional capabilities and upgrades made to this code in order to perform higher fidelity NTR propulsion system analysis and design.
SRG110 Stirling Generator Dynamic Simulator Vibration Test Results and Analysis Correlation
NASA Technical Reports Server (NTRS)
Suarez, Vicente J.; Lewandowski, Edward J.; Callahan, John
2006-01-01
The U.S. Department of Energy (DOE), Lockheed Martin (LM), and NASA Glenn Research Center (GRC) have been developing the Stirling Radioisotope Generator (SRG110) for use as a power system for space science missions. The launch environment enveloping potential missions results in a random input spectrum that is significantly higher than historical RPS launch levels and is a challenge for designers. Analysis presented in prior work predicted that tailoring the compliance at the generator-spacecraft interface reduced the dynamic response of the system thereby allowing higher launch load input levels and expanding the range of potential generator missions. To confirm analytical predictions, a dynamic simulator representing the generator structure, Stirling convertors and heat sources was designed and built for testing with and without a compliant interface. Finite element analysis was performed to guide the generator simulator and compliant interface design so that test modes and frequencies were representative of the SRG110 generator. This paper presents the dynamic simulator design, the test setup and methodology, test article modes and frequencies and dynamic responses, and post-test analysis results. With the compliant interface, component responses to an input environment exceeding the SRG110 qualification level spectrum were all within design allowables. Post-test analysis included finite element model tuning to match test frequencies and random response analysis using the test input spectrum. Analytical results were in good overall agreement with the test results and confirmed previous predictions that the SRG110 power system may be considered for a broad range of potential missions, including those with demanding launch environments.
Mission analysis for the Martian Moons Explorer (MMX) mission
NASA Astrophysics Data System (ADS)
Campagnola, Stefano; Yam, Chit Hong; Tsuda, Yuichi; Ogawa, Naoko; Kawakatsu, Yasuhiro
2018-05-01
Mars Moon eXplorer (MMX) is JAXA's next candidate flagship mission to be launched in the early 2020s. MMX will explore the Martian moons and return a sample from Phobos. This paper presents the mission analysis work, focusing on the transfer legs and comparing several architectures, such as hybrid options with chemical and electric propulsion modules. The selected baseline is a chemical-propulsion Phobos sample return, which is discussed in detail with the launch- and return-window analysis. The trajectories are optimized with the jTOP software, using planetary ephemerides for Mars and the Earth; Earth re-entry constraints are modeled with simple analytical equations. Finally, we introduce an analytical approximation of the three-burn capture strategy used in the Mars system. The approximation can be used together with a Lambert solver to quickly determine the transfer Δ v costs.
Conceptual Drivers for an Exploration Medical System
NASA Technical Reports Server (NTRS)
Antonsen, E.; Canga, M.
2016-01-01
Interplanetary spaceflight provides unique challenges that have not been encountered in prior spaceflight experience. Extended distance and timeframes introduce new challenges such as an inability to resupply medications and consumables, inability to evacuate injured or ill crew, and communication delays that introduce a requirement for some level of autonomous medical capability. Because of these challenges the approaches used in prior programs have limited application to a proposed three year Mars mission. This paper proposes a paradigm shift in the approach to medical risk mitigation for crew health and mission objectives threatened by inadequate medical capabilities in the setting of severely limited resources. A conceptual approach is outlined to derive medical system and vehicle needs from an integrated vision of how medical care will be provided within this new paradigm. Using NASA Design Reference Missions this process assesses each mission phase to deconstruct medical needs at any point during a mission. Two operational categories are proposed, nominal operations (pre-planned activities) and contingency operations (medical conditions requiring evaluation) that meld clinical needs and research needs into a single system. These definitions are used to derive a task level analysis to support quantifiable studies into a medical capabilities trade. This trade allows system design to proceed from both a mission centric and ethics-based approach to medical limitations in an exploration class mission.
Project Report: Automatic Sequence Processor Software Analysis
NASA Technical Reports Server (NTRS)
Benjamin, Brandon
2011-01-01
The Mission Planning and Sequencing (MPS) element of Multi-Mission Ground System and Services (MGSS) provides space missions with multi-purpose software to plan spacecraft activities, sequence spacecraft commands, and then integrate these products and execute them on spacecraft. Jet Propulsion Laboratory (JPL) is currently is flying many missions. The processes for building, integrating, and testing the multi-mission uplink software need to be improved to meet the needs of the missions and the operations teams that command the spacecraft. The Multi-Mission Sequencing Team is responsible for collecting and processing the observations, experiments and engineering activities that are to be performed on a selected spacecraft. The collection of these activities is called a sequence and ultimately a sequence becomes a sequence of spacecraft commands. The operations teams check the sequence to make sure that no constraints are violated. The workflow process involves sending a program start command, which activates the Automatic Sequence Processor (ASP). The ASP is currently a file-based system that is comprised of scripts written in perl, c-shell and awk. Once this start process is complete, the system checks for errors and aborts if there are any; otherwise the system converts the commands to binary, and then sends the resultant information to be radiated to the spacecraft.
NASA Technical Reports Server (NTRS)
Ballard, Richard O.
2007-01-01
In 2005-06, the Prometheus program funded a number of tasks at the NASA-Marshall Space Flight Center (MSFC) to support development of a Nuclear Thermal Propulsion (NTP) system for future manned exploration missions. These tasks include the following: 1. NTP Design Develop Test & Evaluate (DDT&E) Planning 2. NTP Mission & Systems Analysis / Stage Concepts & Engine Requirements 3. NTP Engine System Trade Space Analysis and Studies 4. NTP Engine Ground Test Facility Assessment 5. Non-Nuclear Environmental Simulator (NTREES) 6. Non-Nuclear Materials Fabrication & Evaluation 7. Multi-Physics TCA Modeling. This presentation is a overview of these tasks and their accomplishments
Development of a Crosslink Channel Simulator for Simulation of Formation Flying Satellite Systems
NASA Technical Reports Server (NTRS)
Hart, Roger; Hunt, Chris; Burns, Rich D.
2003-01-01
Multi-vehicle missions are an integral part of NASA s and other space agencies current and future business. These multi-vehicle missions generally involve collectively utilizing the array of instrumentation dispersed throughout the system of space vehicles, and communicating via crosslinks to achieve mission goals such as formation flying, autonomous operation, and collective data gathering. NASA s Goddard Space Flight Center (GSFC) is developing the Formation Flying Test Bed (FFTB) to provide hardware-in- the-loop simulation of these crosslink-based systems. The goal of the FFTB is to reduce mission risk, assist in mission planning and analysis, and provide a technology development platform that allows algorithms to be developed for mission hctions such as precision formation flying, synchronization, and inter-vehicle data synthesis. The FFTB will provide a medium in which the various crosslink transponders being used in multi-vehicle missions can be plugged in for development and test. An integral part of the FFTB is the Crosslink Channel Simulator (CCS),which is placed into the communications channel between the crosslinks under test, and is used to simulate on-orbit effects to the communications channel due to relative vehicle motion or antenna misalignment. The CCS is based on the Starlight software programmable platform developed at General Dynamics Decision Systems which provides the CCS with the ability to be modified on the fly to adapt to new crosslink formats or mission parameters.
NASA Technical Reports Server (NTRS)
Bufton, Jack L.; Harding, David J.; Garvin, James B.
1999-01-01
The Shuttle Laser Altimeter (SLA) is a Hitchhiker experiment that has flown twice; first on STS-72 in January 1996 and then on STS-85 in August 1997. Both missions produced successful laser altimetry and surface lidar data products from approximately 80 hours per mission of SLA data operations. A total of four Shuttle missions are planned for the SLA series. This paper documents SLA mission results and explains SLA pathfinder accomplishments at the mid-point in this series of Hitchhiker missions. The overall objective of the SLA mission series is the transition of the Goddard Space Flight Center airborne laser altimeter and lidar technology to low Earth orbit as a pathfinder for NASA operational space-based laser remote sensing devices. Future laser altimeter sensors will utilize systems and approaches being tested with SLA, including the Multi-Beam Laser Altimeter (MBLA) and the Geoscience Laser Altimeter System (GLAS). MBLA is the land and vegetation laser sensor for the NASA Earth System Sciences Pathfinder Vegetation Canopy Lidar (VCL) Mission, and GLAS is the Earth Observing System facility instrument on the Ice, Cloud, and Land Elevation Satellite (ICESat). The Mars Orbiting Laser Altimeter, now well into a multi-year mapping mission at the red planet, is also directly benefiting from SLA data analysis methods, just as SLA benefited from MOLA spare parts and instrument technology experience [5] during SLA construction in the early 1990s.
Development of the ECLSS Sizing Analysis Tool and ARS Mass Balance Model Using Microsoft Excel
NASA Technical Reports Server (NTRS)
McGlothlin, E. P.; Yeh, H. Y.; Lin, C. H.
1999-01-01
The development of a Microsoft Excel-compatible Environmental Control and Life Support System (ECLSS) sizing analysis "tool" for conceptual design of Mars human exploration missions makes it possible for a user to choose a certain technology in the corresponding subsystem. This tool estimates the mass, volume, and power requirements of every technology in a subsystem and the system as a whole. Furthermore, to verify that a design sized by the ECLSS Sizing Tool meets the mission requirements and integrates properly, mass balance models that solve for component throughputs of such ECLSS systems as the Water Recovery System (WRS) and Air Revitalization System (ARS) must be developed. The ARS Mass Balance Model will be discussed in this paper.
NASA Astrophysics Data System (ADS)
Bearden, David A.; Duclos, Donald P.; Barrera, Mark J.; Mosher, Todd J.; Lao, Norman Y.
1997-12-01
Emerging technologies and micro-instrumentation are changing the way remote sensing spacecraft missions are developed and implemented. Government agencies responsible for procuring space systems are increasingly requesting analyses to estimate cost, performance and design impacts of advanced technology insertion for both state-of-the-art systems as well as systems to be built 5 to 10 years in the future. Numerous spacecraft technology development programs are being sponsored by Department of Defense (DoD) and National Aeronautics and Space Administration (NASA) agencies with the goal of enhancing spacecraft performance, reducing mass, and reducing cost. However, it is often the case that technology studies, in the interest of maximizing subsystem-level performance and/or mass reduction, do not anticipate synergistic system-level effects. Furthermore, even though technical risks are often identified as one of the largest cost drivers for space systems, many cost/design processes and models ignore effects of cost risk in the interest of quick estimates. To address these issues, the Aerospace Corporation developed a concept analysis methodology and associated software tools. These tools, collectively referred to as the concept analysis and design evaluation toolkit (CADET), facilitate system architecture studies and space system conceptual designs focusing on design heritage, technology selection, and associated effects on cost, risk and performance at the system and subsystem level. CADET allows: (1) quick response to technical design and cost questions; (2) assessment of the cost and performance impacts of existing and new designs/technologies; and (3) estimation of cost uncertainties and risks. These capabilities aid mission designers in determining the configuration of remote sensing missions that meet essential requirements in a cost- effective manner. This paper discuses the development of CADET modules and their application to several remote sensing satellite mission concepts.
NASA's Solar System Treks: Online Portals for Planetary Mapping and Modeling
NASA Technical Reports Server (NTRS)
Day, Brian
2017-01-01
NASA's Solar System Treks are a suite of web-based of lunar and planetary mapping and modeling portals providing interactive visualization and analysis tools enabling mission planners, planetary scientists, students, and the general public to access mapped lunar data products from past and current missions for the Moon, Mars, Vesta, and more. New portals for additional planetary bodies are being planned. This presentation will recap significant enhancements to these toolsets during the past year and look ahead to future features and releases. Moon Trek is a new portal replacing its predecessor, the Lunar Mapping and Modeling Portal (LMMP), that significantly upgrades and builds upon the capabilities of LMMP. It features greatly improved navigation, 3D visualization, fly-overs, performance, and reliability. Additional data products and tools continue to be added. These include both generalized products as well as polar data products specifically targeting potential sites for NASA's Resource Prospector mission as well as for missions being planned by NASA's international partners. The latest release of Mars Trek includes new tools and data products requested by NASA's Planetary Science Division to support site selection and analysis for Mars Human Landing Exploration Zone Sites. Also being given very high priority by NASA Headquarters is Mars Trek's use as a means to directly involve the public in upcoming missions, letting them explore the areas the agency is focusing upon, understand what makes these sites so fascinating, follow the selection process, and get caught up in the excitement of exploring Mars. Phobos Trek, the latest effort in the Solar System Treks suite, is being developed in coordination with the International Phobos/Deimos Landing Site Working Group, with landing site selection and analysis for JAXA's MMX (Martian Moons eXploration) mission as a primary driver.
NASA's Solar System Treks: Online Portals for Planetary Mapping and Modeling
NASA Astrophysics Data System (ADS)
Day, B. H.; Law, E.
2017-12-01
NASA's Solar System Treks are a suite of web-based of lunar and planetary mapping and modeling portals providing interactive visualization and analysis tools enabling mission planners, planetary scientists, students, and the general public to access mapped lunar data products from past and current missions for the Moon, Mars, Vesta, and more. New portals for additional planetary bodies are being planned. This presentation will recap significant enhancements to these toolsets during the past year and look ahead to future features and releases. Moon Trek is a new portal replacing its predecessor, the Lunar Mapping and Modeling Portal (LMMP), that significantly upgrades and builds upon the capabilities of LMMP. It features greatly improved navigation, 3D visualization, fly-overs, performance, and reliability. Additional data products and tools continue to be added. These include both generalized products as well as polar data products specifically targeting potential sites for NASA's Resource Prospector mission as well as for missions being planned by NASA's international partners. The latest release of Mars Trek includes new tools and data products requested by NASA's Planetary Science Division to support site selection and analysis for Mars Human Landing Exploration Zone Sites. Also being given very high priority by NASA Headquarters is Mars Trek's use as a means to directly involve the public in upcoming missions, letting them explore the areas the agency is focusing upon, understand what makes these sites so fascinating, follow the selection process, and get caught up in the excitement of exploring Mars. Phobos Trek, the latest effort in the Solar System Treks suite, is being developed in coordination with the International Phobos/Deimos Landing Site Working Group, with landing site selection and analysis for JAXA's MMX mission as a primary driver.
Status of NASA In-Space Propulsion Technologies and Their Infusion Potential
NASA Technical Reports Server (NTRS)
Anderson, David; Pencil, Eric; Vento, Dan; Peterson, Todd; Dankanich, John; Hahne, David; Munk, Michelle
2011-01-01
Since 2001, the In-Space Propulsion Technology (ISPT) program has been developing in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies have broad applicability to future competed Discovery and New Frontiers mission solicitations, and are potentially enabling for future NASA flagship and sample return missions currently being considered. This paper provides status of the technology development of several in-space propulsion technologies that are ready for infusion into future missions. The technologies that are ready for flight infusion are: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies that will be ready for flight infusion in FY12/13 are 1) Advanced Xenon Flow Control System, and 2) ultra-lightweight propellant tank technology advancements and their infusion potential will be also discussed. The paper will also describe the ISPT project s future focus on propulsion for sample return missions: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) needed for sample return missions from many different destinations; and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle-focused, and present a different set of technology infusion challenges. Systems/Mission Analysis focused on developing tools and assessing the application of propulsion technologies to a wide variety of mission concepts.
HSI top-down requirements analysis for ship manpower reduction
NASA Astrophysics Data System (ADS)
Malone, Thomas B.; Bost, J. R.
2000-11-01
U.S. Navy ship acquisition programs such as DD 21 and CVNX are increasingly relying on top down requirements analysis (TDRA) to define and assess design approaches for workload and manpower reduction, and for ensuring required levels of human performance, reliability, safety, and quality of life at sea. The human systems integration (HSI) approach to TDRA begins with a function analysis which identifies the functions derived from the requirements in the Operational Requirements Document (ORD). The function analysis serves as the function baseline for the ship, and also supports the definition of RDT&E and Total Ownership Cost requirements. A mission analysis is then conducted to identify mission scenarios, again based on requirements in the ORD, and the Design Reference Mission (DRM). This is followed by a mission/function analysis which establishes the function requirements to successfully perform the ship's missions. Function requirements of major importance for HSI are information, performance, decision, and support requirements associated with each function. An allocation of functions defines the roles of humans and automation in performing the functions associated with a mission. Alternate design concepts, based on function allocation strategies, are then described, and task networks associated with the concepts are developed. Task network simulations are conducted to assess workloads and human performance capabilities associated with alternate concepts. An assessment of the affordability and risk associated with alternate concepts is performed, and manning estimates are developed for feasible design concepts.
Micro-Logistics Analysis for Human Space Exploration
NASA Technical Reports Server (NTRS)
Cirillo, William; Stromgren, Chel; Galan, Ricardo
2008-01-01
Traditionally, logistics analysis for space missions has focused on the delivery of elements and goods to a destination. This type of logistics analysis can be referred to as "macro-logistics". While the delivery of goods is a critical component of mission analysis, it captures only a portion of the constraints that logistics planning may impose on a mission scenario. The other component of logistics analysis concerns the local handling of goods at the destination, including storage, usage, and disposal. This type of logistics analysis, referred to as "micro-logistics", may also be a primary driver in the viability of a human lunar exploration scenario. With the rigorous constraints that will be placed upon a human lunar outpost, it is necessary to accurately evaluate micro-logistics operations in order to develop exploration scenarios that will result in an acceptable level of system performance.
Sample Return Propulsion Technology Development Under NASA's ISPT Project
NASA Technical Reports Server (NTRS)
Anderson, David J.; Dankanich, John; Hahne, David; Pencil, Eric; Peterson, Todd; Munk, Michelle M.
2011-01-01
Abstract In 2009, the In-Space Propulsion Technology (ISPT) program was tasked to start development of propulsion technologies that would enable future sample return missions. Sample return missions can be quite varied, from collecting and bringing back samples of comets or asteroids, to soil, rocks, or atmosphere from planets or moons. As a result, ISPT s propulsion technology development needs are also broad, and include: 1) Sample Return Propulsion (SRP), 2) Planetary Ascent Vehicles (PAV), 3) Multi-mission technologies for Earth Entry Vehicles (MMEEV), and 4) Systems/mission analysis and tools that focuses on sample return propulsion. The SRP area includes electric propulsion for sample return and low cost Discovery-class missions, and propulsion systems for Earth Return Vehicles (ERV) including transfer stages to the destination. Initially the SRP effort will transition ongoing work on a High-Voltage Hall Accelerator (HIVHAC) thruster into developing a full HIVHAC system. SRP will also leverage recent lightweight propellant-tanks advancements and develop flight-qualified propellant tanks with direct applicability to the Mars Sample Return (MSR) mission and with general applicability to all future planetary spacecraft. ISPT s previous aerocapture efforts will merge with earlier Earth Entry Vehicles developments to form the starting point for the MMEEV effort. The first task under the Planetary Ascent Vehicles (PAV) effort is the development of a Mars Ascent Vehicle (MAV). The new MAV effort will leverage past MAV analysis and technology developments from the Mars Technology Program (MTP) and previous MSR studies. This paper will describe the state of ISPT project s propulsion technology development for future sample return missions.12
Assurance of Fault Management: Risk-Significant Adverse Condition Awareness
NASA Technical Reports Server (NTRS)
Fitz, Rhonda
2016-01-01
Fault Management (FM) systems are ranked high in risk-based assessment of criticality within flight software, emphasizing the importance of establishing highly competent domain expertise to provide assurance for NASA projects, especially as spaceflight systems continue to increase in complexity. Insight into specific characteristics of FM architectures seen embedded within safety- and mission-critical software systems analyzed by the NASA Independent Verification Validation (IVV) Program has been enhanced with an FM Technical Reference (TR) suite. Benefits are aimed beyond the IVV community to those that seek ways to efficiently and effectively provide software assurance to reduce the FM risk posture of NASA and other space missions. The identification of particular FM architectures, visibility, and associated IVV techniques provides a TR suite that enables greater assurance that critical software systems will adequately protect against faults and respond to adverse conditions. The role FM has with regard to overall asset protection of flight software systems is being addressed with the development of an adverse condition (AC) database encompassing flight software vulnerabilities.Identification of potential off-nominal conditions and analysis to determine how a system responds to these conditions are important aspects of hazard analysis and fault management. Understanding what ACs the mission may face, and ensuring they are prevented or addressed is the responsibility of the assurance team, which necessarily should have insight into ACs beyond those defined by the project itself. Research efforts sponsored by NASAs Office of Safety and Mission Assurance defined terminology, categorized data fields, and designed a baseline repository that centralizes and compiles a comprehensive listing of ACs and correlated data relevant across many NASA missions. This prototype tool helps projects improve analysis by tracking ACs, and allowing queries based on project, mission type, domain component, causal fault, and other key characteristics. The repository has a firm structure, initial collection of data, and an interface established for informational queries, with plans for integration within the Enterprise Architecture at NASA IVV, enabling support and accessibility across the Agency. The development of an improved workflow process for adaptive, risk-informed FM assurance is currently underway.
Debris/ice/TPS assessment and photographic analysis for Shuttle Mission STS-33R
NASA Technical Reports Server (NTRS)
Stevenson, Charles G.; Katnik, Gregory N.; Higginbotham, Scott A.
1989-01-01
A debris/ice/Thermal Protection System (TPS) assessment and photographic analysis was conducted for Space Shuttle Mission STS-33R. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/frost conditions on the external tank are assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography is analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris/ice/TPS conditions and photographic analysis of Mission STS-33R, and their overall effect on the Space Shuttle Program.
Debris/ice/TPS assessment and photographic analysis for shuttle mission STS-31R
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley
1990-01-01
A Debris/Ice/Thermal Protection System (TPS) assessment and photographic analysis was conducted for Space Shuttle Mission STS-31R. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/frost conditions on the External Tank are assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography is analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The debris/ice/TPS conditions and photographic analysis of Mission STS-31R, is presented along with their overall effect on the Space Shuttle Program.
Debris/ice/TPS assessment and integrated photographic analysis for Shuttle Mission STS-50
NASA Technical Reports Server (NTRS)
Higginbotham, Scott A.; Davis, J. Bradley; Katnik, Gregory N.
1992-01-01
Thermal Protection System (TPS) assessment and integrated photographic analysis was conducted for Shuttle Mission STS-50. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the external tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The debris/ice/TPS conditions and integrated photographic analysis of Shuttle Mission STS-50, and the resulting effect on the Space Shuttle Program are documented.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis for Shuttle Mission STS-49
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley
1992-01-01
A debris/ice/Thermal Protection System (TPS) assessment and integrated photographic analysis was conducted for Shuttle Mission STS-49. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. Debris/ice/TPS conditions and integrated photographic analysis of Shuttle Mission STS-49, and the resulting effect on the Space Shuttle Program are discussed.
Debris/ice/TPS assessment and integrated photographic analysis for Shuttle Mission STS-51
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Bowen, Barry C.; Davis, J. Bradley
1993-01-01
A debris/ice/thermal protection system (TPS) assessment and integrated photographic analysis was conducted for shuttle mission STS-51. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the external tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris/ice/TPS conditions and integrated photographic analysis of Shuttle mission STS-51 and the resulting effect on the Space Shuttle Program.
Debris/ice/TPS assessment and photographic analysis for Shuttle Mission STS-36
NASA Technical Reports Server (NTRS)
Stevenson, Charles G.; Katnik, Gregory N.; Higginbotham, Scott A.
1990-01-01
A Debris/Ice/TPS (Thermal Protection System) assessment and photographic analysis was conducted for Space Shuttle Mission STS-36. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/frost conditions on the External Tank are assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography is analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The debris/ice/TPS conditions and photographic analysis of Mission STS-36, and their overall effect on the Space Shuttle Program are documented.
Debris/ice/TPS assessment and photographic analysis for Shuttle Mission STS-42
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley
1992-01-01
A Debris/Ice/TPS (Thermal Protection System) assessment and photographic analysis was conducted for Shuttle Mission STS-42. Debris inspection of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flighr anomalies. The debris/ice/TPS conditions are documented along with photographic analysis of Mission STS-42, and their overall effect on the Space Shuttle Program.
Debris/ice/TPS assessment and integrated photographic analysis for Shuttle Mission STS-52
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley
1992-01-01
A debris/ice/Thermal Protection System (TPS) assessment and integrated photographic analysis was conducted for Shuttle Mission STS-47. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the external tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the debris/ice/TPS conditions and integrated photographic analysis of Shuttle Mission STS-52, and the resulting effect on the Space Shuttle Program.
Debris/ice/TPS assessment and photographic analysis for Shuttle Mission STS-34
NASA Technical Reports Server (NTRS)
Stevenson, Charles G.; Katnik, Gregory N.; Higginbotham, Scott A.
1989-01-01
A Debris/Ice/Thermal Protection System (TPS) assessment and photographic analysis was conducted for Space Shuttle Mission STS-34. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/frost conditions on the External Tank are assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography is analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The debris/ice/TPS conditions and photographic analysis of Mission STS-34, and their overall effect on the Space Shuttle Program are documented.
Debris/Ice/TPS Assessment and Photographic Analysis for Shuttle Mission STS-41
NASA Technical Reports Server (NTRS)
Higginbotham, Scott A.; Davis, J. Bradley
1990-01-01
A Debris/Ice/Thermal Protection System (TPS) assessment and photographic analysis was conducted for Space Shuttle Mission STS-41. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. Documented here are the debris/ice/TPS conditions and photographic analysis of Mission STS-41, and their overall effect on the Space Shuttle Program.
Debris/Ice/TPS assessment and integrated photographic analysis for Shuttle Mission STS-61
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Bowen, Barry C.; Davis, J. Bradley
1994-01-01
A debris/ice/thermal protection system (TPS) assessment and integrated photographic analysis was conducted for shuttle mission STS-61. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the external tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. This report documents the ice/debris/TPS conditions and integrated photographic analysis of shuttle mission STS-61, and the resulting effect on the space shuttle program.
Debris/ice/TPS assessment and integrated photographic analysis for Shuttle mission STS-58
NASA Technical Reports Server (NTRS)
Davis, J. Bradley; Rivera, Jorge E.; Katnik, Gregory N.; Bowen, Barry C.; Speece, Robert F.; Rosado, Pedro J.
1994-01-01
A debris/ice/thermal protection system (TPS) assessment and integrated photographic analysis was conducted for Shuttle mission STS-58. Debris inspections of the flight elements and launch pad were performed before and after launch. Icing conditions on the External Tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of the launch was analyzed to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. The ice/debris/TPS conditions and integrated photographic analysis of Shuttle mission STS-58, and the resulting effect on the Space Shuttle Program are documented.
NASA Astrophysics Data System (ADS)
Campbell, Bruce A.
Several scientifically important space flight missions have been identified that, at this time, can only be practically achieved using a solar sail propulsion system. These missions take advantage of the potentially continuous force on the sail, provided by solar radiation, to produce significant changes in the spacecraft's velocity, in both magnitude and/or direction, without the need for carrying the enormous amount of fuel that conventional propulsion systems would require to provide the same performance. However, to provide thrust levels that would support these missions requires solar sail areas in the (tens of) thousands of square meter sizes. To realize this, many technical areas must be developed further and demonstrated in space before solar sails will be accepted as a viable space mission propulsion system. One of these areas concerns understanding the propulsion performance of a realistic solar sail well enough for mission planning. Without this understanding, solar sail orbits could not be predicted well enough to meet defined mission requirements, such as rendezvous or station-keeping, and solar sail orbit optimization, such as minimizing flight time, could be close to impossible. In most mission studies, either an "ideal" sail's performance is used for mission planning, or some top-level assumptions of certain nonideal sail characteristics are incorporated to give a slightly better estimate of the sail performance. This paper identifies the major sources of solar sail thrust performance uncertainty, and analyzes the most significant ones to provide a more comprehensive understanding of thrust generation by a "realistic" solar sail. With this understanding, mission planners will be able to more confidently and accurately estimate the capabilities of such a system. The first solar sail mission will likely be a system validation mission, using a relatively small sail in a geocentric (Earth-centered) orbit. The author has been involved in conceptual design of such missions, and through this became aware of the current status in solar sail system development, and the need for a better understanding of the thrust performance of a "realistic" solar sail. Such a validation mission is significantly different than most of the "operational" science missions envisioned to utilize a solar sail propulsion system. These future missions will likely use very large, very light sails in heliocentric orbits far away from major gravity fields like planets, have very long mission lifetimes (years), and will conduct relatively minor and slow orbital and attitude control maneuvers. Nonetheless, most of the capabilities of later systems can be gleaned from a small geocentric validation mission. This paper is a significant step toward understanding the thrust characteristics and performance of a realistic solar sail, and provides insight to the methods by which this understanding can be corroborated by a solar sail validation mission.
From Science To Design: Systems Engineering For The Lsst
NASA Astrophysics Data System (ADS)
Claver, Chuck F.; Axelrod, T.; Fouts, K.; Kantor, J.; Nordby, M.; Sebag, J.; LSST Collaboration
2009-01-01
The LSST is a universal-purpose survey telescope that will address scores of scientific missions. To assist the technical teams to convergence to a specific engineering design, the LSST Science Requirements Document (SRD) selects four stressing principle scientific missions: 1) Constraining Dark Matter and Dark Energy; 2) taking an Inventory of the Solar System; 3) Exploring the Transient Optical Sky; and 4) mapping the Milky Way. From these 4 missions the SRD specifies the needed requirements for single images and the full 10 year survey that enables a wide range of science beyond the 4 principle missions. Through optical design and analysis, operations simulation, and throughput modeling the systems engineering effort in the LSST has largely focused on taking the SRD specifications and deriving system functional requirements that define the system design. A Model Based Systems Engineering approach with SysML is used to manage the flow down of requirements from science to system function to sub-system. The rigor of requirements flow and management assists the LSST in keeping the overall scope, hence budget and schedule, under control.
Modernization of the Cassini Ground System
NASA Technical Reports Server (NTRS)
Razo, Gus; Fujii, Tammy J.
2014-01-01
The Cassini Spacecraft and its ground system have been operational for over 16 years. Modernization presents several challenges due to the personnel, processes, and tools already invested and embedded into the current ground system structure. Every mission's ground system has its own unique complexities and challenges, involving various organizational units. As any mission from its inception to its execution, schedules are always tight. This forces GDS engineers to implement a working ground system that is not necessarily fully optimized. Ground system challenges increase as technology evolves and cyber threats become more sophisticated. Cassini's main challenges were due to its ground system existing before many security requirements were levied on the multi-mission tools and networks. This caused a domino effect on Cassini GDS tools that relied on outdated technological features. In the aerospace industry reliable and established technology is preferred over innovative yet less proven technology. Loss of data for a spacecraft mission can be catastrophic; therefore, there is a reluctance to make changes and updates to the ground system. Nevertheless, all missions and associated teams face the need to modernize their processes and tools. Systems development methods from well-known system analysis and design principles can be applied to many missions' ground systems. Modernization should always be considered, but should be done in such a way that it does not affect flexibility nor interfere with established practices. Cassini has accomplished a secure and efficient ground data system through periodic updates. The obstacles faced while performing the modernization of the Cassini ground system will be outlined, as well as the advantages and challenges that were encountered.
Improving the Operations of the Earth Observing One Mission via Automated Mission Planning
NASA Technical Reports Server (NTRS)
Chien, Steve A.; Tran, Daniel; Rabideau, Gregg; Schaffer, Steve; Mandl, Daniel; Frye, Stuart
2010-01-01
We describe the modeling and reasoning about operations constraints in an automated mission planning system for an earth observing satellite - EO-1. We first discuss the large number of elements that can be naturally represented in an expressive planning and scheduling framework. We then describe a number of constraints that challenge the current state of the art in automated planning systems and discuss how we modeled these constraints as well as discuss tradeoffs in representation versus efficiency. Finally we describe the challenges in efficiently generating operations plans for this mission. These discussions involve lessons learned from an operations model that has been in use since Fall 2004 (called R4) as well as a newer more accurate operations model operational since June 2009 (called R5). We present analysis of the R5 software documenting a significant (greater than 50%) increase in the number of weekly observations scheduled by the EO-1 mission. We also show that the R5 mission planning system produces schedules within 15% of an upper bound on optimal schedules. This operational enhancement has created value of millions of dollars US over the projected remaining lifetime of the EO-1 mission.
Development of a Relay Performance Web Tool for the Mars Network
NASA Technical Reports Server (NTRS)
Allard, Daniel A.; Edwards, Charles D.
2009-01-01
Modern Mars surface missions rely upon orbiting spacecraft to relay communications to and from Earth systems. An important component of this multi-mission relay process is the collection of relay performance statistics supporting strategic trend analysis and tactical anomaly identification and tracking.
Summary Status of the Space Acceleration Measurement System (SAMS), September 1993
NASA Technical Reports Server (NTRS)
DeLombard, Richard
1994-01-01
The Space Acceleration Measurement System (SAMS) was developed to measure the microgravity acceleration environment to which NASA science payloads are exposed during microgravity science missions on the shuttle. Six flight units have been fabricated to date. The inaugural flight of a SAMS unit was on STS-40 in June 1991 as part of the First Spacelab Life Sciences mission. Since that time, SAMS has flown on six additional missions and gathered eighteen gigabytes of data representing sixty-eight days of microgravity environment. The SAMS units have been flown in the shuttle middeck and cargo bay, in the Spacelab module, and in the Spacehab module. This paper summarizes the missions and experiments which SAMS has supported. The quantity of data and the utilization of the SAMS data is described. Future activities are briefly described for the SAMS project and the Microgravity Measurement and Analysis project (MMAP) to support science experiments and scientists with microgravity environment measurement and analysis.
NASA Technical Reports Server (NTRS)
Gerberich, Matthew W.; Oleson, Steven R.
2013-01-01
The Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) team at Glenn Research Center has performed integrated system analysis of conceptual spacecraft mission designs since 2006 using a multidisciplinary concurrent engineering process. The set of completed designs was archived in a database, to allow for the study of relationships between design parameters. Although COMPASS uses a parametric spacecraft costing model, this research investigated the possibility of using a top-down approach to rapidly estimate the overall vehicle costs. This paper presents the relationships between significant design variables, including breakdowns of dry mass, wet mass, and cost. It also develops a model for a broad estimate of these parameters through basic mission characteristics, including the target location distance, the payload mass, the duration, the delta-v requirement, and the type of mission, propulsion, and electrical power. Finally, this paper examines the accuracy of this model in regards to past COMPASS designs, with an assessment of outlying spacecraft, and compares the results to historical data of completed NASA missions.
NASA Technical Reports Server (NTRS)
Nickol, Craig L.; Guynn, Mark D.; Kohout, Lisa L.; Ozoroski, Thomas A.
2007-01-01
The objective of this study was to develop a variety of High Altitude Long Endurance (HALE) Unmanned Aerial Vehicle (UAV) conceptual designs for two operationally useful missions (hurricane science and communications relay) and compare their performance and cost characteristics. Sixteen potential HALE UAV configurations were initially developed, including heavier-than-air (HTA) and lighter-than-air (LTA) concepts with both consumable fuel and solar regenerative (SR) propulsion systems. Through an Analysis of Alternatives (AoA) down select process, the two leading consumable fuel configurations (one each from the HTA and LTA alternatives) and an HTA SR configuration were selected for further analysis. Cost effectiveness analysis of the consumable fuel configurations revealed that simply maximizing vehicle endurance can lead to a sub-optimum system solution. An LTA concept with a hybrid propulsion system (solar arrays and a hydrogen-air proton exchange membrane fuel cell) was found to have the best mission performance; however, an HTA diesel-fueled wing-body-tail configuration emerged as the preferred consumable fuel concept because of the large size and technical risk of the LTA concept. The baseline missions could not be performed by even the best HTA SR concept. Mission and SR technology trade studies were conducted to enhance understanding of the potential capabilities of such a vehicle. With near-term technology SR-powered HTA vehicles are limited to operation in favorable solar conditions, such as the long days and short nights of summer at higher latitudes. Energy storage system specific energy and solar cell efficiency were found to be the key technology areas for enhancing HTA SR performance.
NASA Intelligent Systems Project: Results, Accomplishments and Impact on Science Missions.
NASA Astrophysics Data System (ADS)
Coughlan, J. C.
2005-12-01
The Intelligent Systems Project was responsible for much of NASA's programmatic investment in artificial intelligence and advanced information technologies. IS has completed three major project milestones which demonstrated increased capabilities in autonomy, human centered computing, and intelligent data understanding. Autonomy involves the ability of a robot to place an instrument on a remote surface with a single command cycle, human centered computing supported a collaborative, mission centric data and planning system for the Mars Exploration Rovers and data understanding has produced key components of a terrestrial satellite observation system with automated modeling and data analysis capabilities. This paper summarizes the technology demonstrations and metrics which quantify and summarize these new technologies which are now available for future NASA missions.
NASA Intelligent Systems Project: Results, Accomplishments and Impact on Science Missions
NASA Technical Reports Server (NTRS)
Coughlan, Joseph C.
2005-01-01
The Intelligent Systems Project was responsible for much of NASA's programmatic investment in artificial intelligence and advanced information technologies. IS has completed three major project milestones which demonstrated increased capabilities in autonomy, human centered computing, and intelligent data understanding. Autonomy involves the ability of a robot to place an instrument on a remote surface with a single command cycle. Human centered computing supported a collaborative, mission centric data and planning system for the Mars Exploration Rovers and data understanding has produced key components of a terrestrial satellite observation system with automated modeling and data analysis capabilities. This paper summarizes the technology demonstrations and metrics which quantify and summarize these new technologies which are now available for future Nasa missions.
Summary Report of Mission Acceleration Measurements for STS-75, Launched February 22, 1996
NASA Technical Reports Server (NTRS)
Rogers, Melissa J. B.; Hrovat, Kenneth; Moskowitz, Milton E.; McPherson, Kevin M.; DeLombard, Richard
1996-01-01
Two accelerometers provided acceleration data during the STS-75 mission in support of the third United States Microgravity Payload (USMP-3) experiments. The Orbital Acceleration Research Experiment (OARE) and the Space Acceleration Measurement System (SAMS) provided a measure of the microgravity environment of the Space Shuttle Columbia. The OARE provided investigators with quasi-steady acceleration measurements after about a six hour time lag dictated by downlink constraints. SAMS data were downlinked in near-real-time and recorded on-board for post-mission analysis. An overview of the mission is provided as are brief discussions of these two accelerometer systems. Data analysis techniques used to process SAMS and OARE data are discussed Using a combination of these techniques, the microgravity environment related to several different Orbiter, crew, and experiment operations is presented and interpreted. The microgravity environment represented by SAMS and OARE data is comparable to the environments measured by the instruments on earlier microgravity science missions. The OARE data compared well with predictions of the quasi-steady environment. The SAMS data show the influence of thruster firings and crew motion (transient events) and of crew exercise, Orbiter systems, and experiment operations (oscillatory events). Thruster activity on this mission appears to be somewhat more frequent than on other microgravity missions with the combined firings of the F5L and F5R jets producing significant acceleration transients. The specific crew activities performed in the middeck and flight deck, the SPREE table rotations, the waste collection system compaction, and the fuel cell purge had negligible effects on the microgravity environment of the USMP-3 carriers. The Ku band antenna repositioning activity resulted in a brief interruption of the ubiquitous 17 Hz signal in the SAMS data. In addition, the auxiliary power unit operations during the Flight Control System checkout appeared to have a significant impact on the microgravity environment.
NASA Technical Reports Server (NTRS)
1977-01-01
An analysis of construction operation is presented as well as power system sizing requirements. Mission hardware requirements are reviewed in detail. Space construction base and design configurations are also examined.
Trajectory and System Analysis For Outer-Planet Solar-Electric Propulsion Missions
NASA Technical Reports Server (NTRS)
Cupples, Michael; Woo, Byoungsam; Coverstone, Victoria L.; Hartmann, John W.
2004-01-01
Outer-planet mission and systems analyses are performed using three next generation solar-electric ion thruster models. The impact of variations in thruster model, flight time, launch vehicle, propulsion and power systems characteristics is investigated. All presented trajectories have a single Venus gravity assist and maximize the delivered mass to Saturn or Neptune. The effect of revolution ratio - the ratio of Venusian orbital period to the flight time between launch and flyby dates - is also discussed.
Radioisotope Power Systems Reference Book for Mission Designers and Planners
NASA Technical Reports Server (NTRS)
Lee, Young; Bairstow, Brian
2015-01-01
The RPS Program's Program Planning and Assessment (PPA) Office commissioned the Mission Analysis team to develop the Radioisotope Power Systems (RPS) Reference Book for Mission Planners and Designers to define a baseline of RPS technology capabilities with specific emphasis on performance parameters and technology readiness. The main objective of this book is to provide RPS technology information that could be utilized by future mission concept studies and concurrent engineering practices. A progress summary from the major branches of RPS technology research provides mission analysis teams with a vital tool for assessing the RPS trade space, and provides concurrent engineering centers with a consistent set of guidelines for RPS performance characteristics. This book will be iterated when substantial new information becomes available to ensure continued relevance, serving as one of the cornerstone products of the RPS PPA Office. This book updates the original 2011 internal document, using data from the relevant publicly released RPS technology references and consultations with RPS technologists. Each performance parameter and RPS product subsection has been reviewed and cleared by at least one subject matter representative. A virtual workshop was held to reach consensus on the scope and contents of the book, and the definitions and assumptions that should be used. The subject matter experts then reviewed and updated the appropriate sections of the book. The RPS Mission Analysis Team then performed further updates and crosschecked the book for consistency. Finally, a second virtual workshop was held to ensure all subject matter experts and stakeholders concurred on the contents.
Human exploration mission studies
NASA Technical Reports Server (NTRS)
Cataldo, Robert L.
1989-01-01
The Office of Exploration has established a process whereby all NASA field centers and other NASA Headquarters offices participate in the formulation and analysis of a wide range of mission strategies. These strategies were manifested into specific scenarios or candidate case studies. The case studies provided a systematic approach into analyzing each mission element. First, each case study must address several major themes and rationale including: national pride and international prestige, advancement of scientific knowledge, a catalyst for technology, economic benefits, space enterprise, international cooperation, and education and excellence. Second, the set of candidate case studies are formulated to encompass the technology requirement limits in the life sciences, launch capabilities, space transfer, automation, and robotics in space operations, power, and propulsion. The first set of reference case studies identify three major strategies: human expeditions, science outposts, and evolutionary expansion. During the past year, four case studies were examined to explore these strategies. The expeditionary missions include the Human Expedition to Phobos and Human Expedition to Mars case studies. The Lunar Observatory and Lunar Outpost to Early Mars Evolution case studies examined the later two strategies. This set of case studies established the framework to perform detailed mission analysis and system engineering to define a host of concepts and requirements for various space systems and advanced technologies. The details of each mission are described and, specifically, the results affecting the advanced technologies required to accomplish each mission scenario are presented.
Quality Assurance and T&E of Inertial Systems for RLV Mission
NASA Astrophysics Data System (ADS)
Sathiamurthi, S.; Thakur, Nayana; Hari, K.; Peter, Pilmy; Biju, V. S.; Mani, K. S.
2017-12-01
This work describes the quality assurance and Test and Evaluation (T&E) activities carried out for the inertial systems flown successfully in India's first reusable launch vehicle technology demonstrator hypersonic experiment mission. As part of reliability analysis, failure mode effect and criticality analysis and derating analysis were carried out in the initial design phase, findings presented to design review forums and the recommendations were implemented. T&E plan was meticulously worked out and presented to respective forums for review and implementation. Test data analysis, health parameter plotting and test report generation was automated and these automations significantly reduced the time required for these activities and helped to avoid manual errors. Further, T&E cycle is optimized without compromising on quality aspects. These specific measures helped to achieve zero defect delivery of inertial systems for RLV application.
Triple F - A Comet Nucleus Sample Return Mission
NASA Technical Reports Server (NTRS)
Kueppers, Michael; Keller, Horst Uwe; Kuhrt, Ekkehard; A'Hearn, Michael; Altwegg, Kathrin; Betrand, Regis; Busemann, Henner; Capria, Maria Teresa; Colangeli, Luigi
2008-01-01
The Triple F (Fresh From the Fridge) mission, a Comet Nucleus Sample Return, has been proposed to ESA s Cosmic Vision program. A sample return from a comet enables us to reach the ultimate goal of cometary research. Since comets are the least processed bodies in the solar system, the proposal goes far beyond cometary science topics (like the explanation of cometary activity) and delivers invaluable information about the formation of the solar system and the interstellar molecular cloud from which it formed. The proposed mission would extract three samples of the upper 50 cm from three locations on a cometary nucleus and return them cooled to Earth for analysis in the laboratory. The simple mission concept with a touch-and-go sampling by a single spacecraft was proposed as an M-class mission in collaboration with the Russian space agency ROSCOSMOS.
Triple F - A Comet Nucleus Sample Return Mission
NASA Technical Reports Server (NTRS)
Kueppers, Michael; Keller, H. U.; Kuehrt, E.; A'Hearn, M. F.; Altwegg, K.; Bertrand, R.; Busemann, H.; Capria, M. T.; Colangeli, L.; Davidsson, B.;
2008-01-01
The Triple F (Fresh From the Fridge) mission, a Comet Nucleus Sample Return, has been proposed to ESA's Cosmic Vision program. A sample return from a comet enables us to reach the ultimate goal of cometary research. Since comets are the least processed bodies in the solar system, the proposal goes far beyond cometary science topics (like the explanation of cometary activity) and delivers invaluable information about the formation of the solar system and the interstellar molecular cloud from which it formed. The proposed mission would extract three sample cores of the upper 50 cm from three locations on a cometary nucleus and return them cooled to Earth for analysis in the laboratory. The simple mission concept with a touch-andgo sampling by a single spacecraft was proposed as an M-class mission in collaboration with the Russian space agency ROSCOSMOS.
The Application of a Residual Risk Evaluation Technique Used for Expendable Launch Vehicles
NASA Technical Reports Server (NTRS)
Latimer, John A.
2009-01-01
This presentation provides a Residual Risk Evaluation Technique (RRET) developed by Kennedy Space Center (KSC) Safety and Mission Assurance (S&MA) Launch Services Division. This technique is one of many procedures used by S&MA at KSC to evaluate residual risks for each Expendable Launch Vehicle (ELV) mission. RRET is a straight forward technique that incorporates the proven methodology of risk management, fault tree analysis, and reliability prediction. RRET derives a system reliability impact indicator from the system baseline reliability and the system residual risk reliability values. The system reliability impact indicator provides a quantitative measure of the reduction in the system baseline reliability due to the identified residual risks associated with the designated ELV mission. An example is discussed to provide insight into the application of RRET.
NASA Astrophysics Data System (ADS)
Do, Sydney; Owens, Andrew; Ho, Koki; Schreiner, Samuel; de Weck, Olivier
2016-03-01
In recent years, the Mars One program has gained significant publicity for its plans to colonize the red planet. Beginning in 2025, the program plans to land four people on Mars every 26 months via a series of one-way missions, using exclusively existing technology. This one-way approach has frequently been cited as a key enabler of accelerating the first crewed landing on Mars. While the Mars One program has received considerable attention, little has been published in the technical literature regarding the formulation of its mission architecture. In light of this, we perform an independent analysis of the technical feasibility of the Mars One mission plan, focusing on the architecture of the life support and in-situ resource utilization (ISRU) systems, and their impact on sparing and space logistics. To perform this analysis, we adopt an iterative analysis approach in which we model and simulate the mission architecture, assess its feasibility, implement any applicable modifications while attempting to remain within the constraints set forth by Mars One, and then resimulate and reanalyze the revised version of the mission architecture. Where required information regarding the Mars One mission architecture is not available, we assume numerical values derived from standard spaceflight design handbooks and documents. Through four iterations of this process, our analysis finds that the Mars One mission plan, as publicly described, is not feasible. This conclusion is obtained from analyses based on mission assumptions derived from and constrained by statements made by Mars One, and is the result of the following findings: (1) several technologies including ISRU, life support, and entry, descent, and landing (EDL) are not currently "existing, validated and available" as claimed by Mars One; (2) the crop growth area described by Mars One is insufficient to feed their crew; (3) increasing the crop growth area to provide sufficient food for the crew leads to atmospheric imbalances that requires a prohibitively large ISRU atmospheric processor or a notably different system architecture to manage; and (4) at least 13 Falcon Heavy launches are needed to deliver a portion of the required equipment to the Martian surface, a value that is at least double that planned by Mars One for the same mission phase. Most importantly, we find that the one-way nature of the Mars One mission, coupled with its plans to increase its crew population every 26 months, causes the operating costs of the program to grow continually over time. This is due to the fact that maintaining a growing colony on the Martian surface incurs increasing equipment and spare parts resupply requirements and hence launch costs over time. Based on published launch vehicle and lander estimates, our analysis finds that by the launch of the fifth crew, the cost associated with launching a portion of all required equipment and spares is approximately equal to half of the total NASA FY2015 budget - and this cost will grow when other critical systems outside the scope of this analysis are included. To mitigate these costs and bring the plan closer towards feasibility, we recommend a number of mission architecture modifications and technology development efforts be implemented before the initiation of any Mars settlement campaign. These include the further development of EDL, life support, and ISRU technologies, as well as additive manufacturing technology that utilizes ISRU-derived Martian feedstock as a potential means to address the growing cost of resupply.
NASA Technical Reports Server (NTRS)
1972-01-01
The Reference Design Document, of the Preliminary Safety Analysis Report (PSAR) - Reactor System provides the basic design and operations data used in the nuclear safety analysis of the Rector Power Module as applied to a Space Base program. A description of the power module systems, facilities, launch vehicle and mission operations, as defined in NASA Phase A Space Base studies is included. Each of two Zirconium Hydride Reactor Brayton power modules provides 50 kWe for the nominal 50 man Space Base. The INT-21 is the prime launch vehicle. Resupply to the 500 km orbit over the ten year mission is provided by the Space Shuttle. At the end of the power module lifetime (nominally five years), a reactor disposal system is deployed for boost into a 990 km high altitude (long decay time) earth orbit.
A Spacebased Ocean Surface Exchange Data Analysis System
NASA Technical Reports Server (NTRS)
Tang, Wenqing; Liu, W. Timothy
2000-01-01
Emerging technologies have provided unprecedented opportunities to transform information into knowledge and disseminate them in a much faster, cheaper, and userfriendly mode. We have set up a system to produce and disseminate high level (gridded) ocean surface wind data from the NASA Scatterometer and European Remote Sensing missions. The data system is being expanded to produce real-time gridded ocean surface winds from an improved sensor SeaWinds on the Quikscat Mission. The wind field will be combined with hydrologic parameters from the Tropical Rain Measuring Mission to monitor evolving weather systems and natural hazard in real time. It will form the basis for spacebased Ocean Surface Exchange Data Analysis System (SOSEDAS) which will include the production of ocean surface momentum, heat, and water fluxes needed for interdisciplinary studies of ocean-atmosphere interaction. Various commercial or non-commercial software tools have been compared and selected in terms of their ability in database management, remote data accessing, graphical interface, data quality, storage needs and transfer speed, etc. Issues regarding system security and user authentication, distributed data archiving and accessing, strategy to compress large-volume geophysical and satellite data/image. and increasing transferring speed are being addressed. A simple and easy way to access information and derive knowledge from spacebased data of multiple missions is being provided. The evolving 'knowledge system' will provide relevant infrastructure to address Earth System Science, make inroads in educating an informed populace, and illuminate decision and policy making.
NASA Technical Reports Server (NTRS)
1990-01-01
Now that Voyager II has completed its grand tour of the solar system, all the planets in the solar system, with the exception of Pluto, have been studied. Even now, missions to return to Mercury, Venus, Mars Jupiter, and Saturn are currently flying or are planned. However, a mission to explore Pluto is not, at the present time, being considered seriously. The design problem presented to the students was very general, i.e., design an unmanned mission to Pluto with a launch window constraint of the years 2000 to 2010. All other characteristics of the mission, such as mission type (flyby, orbiter, lander, penetrator), scientific objectives and payload, and the propulsion system were to be determined by the design teams. The design studies exposed several general problems to be solved. Due to the extreme distance to Pluto (and a corresponding travel time in the range of 10 to 25 years), the spacecraft had to be lighter and more robust than current spacecraft designs. In addition, advanced propulsion concepts had to be considered. These included the new generation of launch vehicles and upper stages and nuclear electric propulsion. The probe design offered an abundance of synthesis and analysis problems. These included sizing trade studies, selection of subsystem components, analysis of spacecraft dynamics, stability and control, structural design and material selection, trajectory design, and selection of scientific equipment. Since the characteristics of the mission, excluding the launch window, were to be determined by the design teams, the solutions varied widely.
NASA Technical Reports Server (NTRS)
Woeppel, Eric A.; Balsamo, James M.; Fischer, Karl J.; East, Matthew J.; Styborski, Jeremy A.; Roche, Christopher A.; Ott, Mackenzie D.; Scorza, Matthew J.; Doherty, Christopher D.; Trovato, Andrew J.;
2014-01-01
This paper describes a microsatellite spacecraft with supporting mission profile and architecture, designed to enable preliminary in-situ characterization of a significant number of Near Earth Objects (NEOs) at reasonably low cost. The spacecraft will be referred to as the NEO-Scout. NEO-Scout spacecraft are to be placed in Geosynchronous Equatorial Orbit (GEO), cis-lunar space, or on earth escape trajectories as secondary payloads on launch vehicles headed for GEO or beyond, and will begin their mission after deployment from the launcher. A distinguishing key feature of the NEO-Scout system is to design the spacecraft and mission timeline so as to enable rendezvous with and landing on the target NEO during NEO close approach (<0.3 AU) to the Earth-Moon system using low-thrust/high-impulse propulsion systems. Mission durations are on the order 100 to 400 days. Mission feasibility and preliminary design analysis are presented, along with detailed trajectory calculations.
Postflight analysis for Delta Program Mission no. 113: COS-B Mission
NASA Technical Reports Server (NTRS)
1976-01-01
On 8 August 1975, the COS-B spacecraft was launched successfully from the Western Test Range (Delta Program Mission No. 113). The launch vehicle was a three stage Extended Long Tank Delta DSV-3P-11B vehicle. Postflight analyses performed in connection with flight are presented. Vehicle trajectory, stage performance, vehicle reliability and the propulsion, guidance, flight control, electronics, mechanical and structural systems are evaluated.
Orbital Spacecraft Consumables Resupply System (OSCRS). Volume 3: Program Cost Estimate
NASA Technical Reports Server (NTRS)
Perry, D. L.
1986-01-01
A cost analysis for the design, development, qualification, and production of the monopropellant and bipropellant Orbital Spacecraft Consumable Resupply System (OSCRS) tankers, their associated avionics located in the Orbiter payload bay, and the unique ground support equipment (GSE) and airborne support equipment (ASE) required to support operations is presented. Monopropellant resupply for the Gamma Ray Observatory (GRO) in calendar year 1991 is the first defined resupply mission with bipropellant resupply missions expected in the early to mid 1990's. The monopropellant program estimate also includes contractor costs associated with operations support through the first GRO resupply mission.
Review of European microgravity measurements
NASA Technical Reports Server (NTRS)
Hamacher, Hans
1994-01-01
AA In a French/Russion cooperation, CNES developed a microgravity detection system for analyzing the Mir space station micro-g-environment for the first time. European efforts to characterize the microgravity (1/9) environment within a space laboratory began in the late seventies with the design of the First Spacelab Mission SL-1. Its Material Science Double Rack was the first payload element to carry its own tri-axial acceleration package. Even though incapable for any frequency analysis, the data provided a wealth of novel information for optimal experiment and hardware design and operations for missions to come. Theoretical investigations under ESA contract demonstrated the significance of the detailed knowledge of micro-g data for a thorough experiment analysis. They especially revealed the high sensitivity of numerous phenomena to low frequency acceleration. Accordingly, the payloads of the Spacelab missions D-1 and D-2 were furnished with state-of-the-art detection systems to ensure frequency analysis between 0.1 and 100 Hz. The Microgravity Measurement Assembly (MMA) of D-2 was a centralized system comprising fixed installed as well as mobile tri-axial packages showing real-time data processing and transmission to ground. ESA's free flyer EURECA carried a system for continuous measurement over the entire mission. All EURECA subsystems and experimental facilities had to meet tough requirements defining the upper acceleration limits. In a French/Russion cooperation, CNES developed a mi crogravity detection system for analyzing the Mir space station micro-g-environment for the first time. An approach to get access to low frequency acceleration between 0 and 0.02 Hz will be realized by QSAM (Quasi-steady Acceleration Measurement) on IML-2, complementary to the NASA system Spacelab Acceleration Measurement System SAMS. A second flight of QSAM is planned for the Russian free flyer FOTON.
NASA Technical Reports Server (NTRS)
Koeberlein, Ernest, III; Pender, Shaw Exum
1994-01-01
This paper describes the Multimission Telemetry Visualization (MTV) data acquisition/distribution system. MTV was developed by JPL's Multimedia Communications Laboratory (MCL) and designed to process and display digital, real-time, science and engineering data from JPL's Mission Control Center. The MTV system can be accessed using UNIX workstations and PC's over common datacom and telecom networks from worldwide locations. It is designed to lower data distribution costs while increasing data analysis functionality by integrating low-cost, off-the-shelf desktop hardware and software. MTV is expected to significantly lower the cost of real-time data display, processing, distribution, and allow for greater spacecraft safety and mission data access.
Sortie laboratory, phase B technical summary. [design and operational requirements
NASA Technical Reports Server (NTRS)
1973-01-01
The design and operational requirements which evolved from Sortie Lab (SL) analysis are summarized. A source of requirements for systems is given along with experimental support for the SL, baseline. Basic design data covered include: configuration definition, mission analysis, experimental integration, safety, and logistics. A technical summary outlines characteristics which reflect the influence of the growth in SL capability and the results of the mission and operational analysis. Each of the selected areas is described in terms of objectives, equipment, operational concept, and support requirements.
Analysis of Chemical, REP, and SEP missions to the Trojan asteroids
NASA Technical Reports Server (NTRS)
Bonfiglio, Eugene P.; Oh, David; Yen, Chen-Wan
2005-01-01
Recent studies suggest significant benefits from using 1st and 2nd generation Radioisotope Power Systems (RPS) as a power source for electric propulsion (EP) missions to the outer planets. This study focuses on trajectories to the Trojan asteroids. A high level analysis is performed with chemical trajectories to determine potential canidates for REP trajectory optimization. Extensive analysis of direct trajectories using REP is performed on these candidates. Solar Electric Propulsion (SEP) trajectories are also considered for comparison against REP trajectories.
Launching AI in NASA ground systems
NASA Technical Reports Server (NTRS)
Perkins, Dorothy C.; Truszkowski, Walter F.
1990-01-01
This paper will discuss recent operational successes in implementing expert systems to support the complex functions of NASA mission control systems at the Goddard Space Flight Center, including fault detection and diagnosis for real time and engineering analysis functions in the Cosmic Background Explorer and Gamma Ray Observatory missions and automation of resource planning and scheduling functions for various missions. It will also discuss ongoing developments and prototypes that will lead to increasingly sophisticated applications of artificial intelligence. These include the use of neural networks to perform telemetry monitoring functions, the implementation of generic expert system shells that can be customized to telemetry handling functions specific to NASA control centers, the applications of AI in training and user support, the long-term potential of implementing systems based around distributed, cooperative problem solving, and the use of AI to control and assist system development activities.
Leveraging natural dynamical structures to explore multi-body systems
NASA Astrophysics Data System (ADS)
Bosanac, Natasha
Multi-body systems have become the target of an increasing number of mission concepts and observations, supplying further information about the composition, origin and dynamical environment of bodies within the solar system and beyond. In many of these scenarios, identification and characterization of the particular solutions that exist in a circular restricted three-body model is valuable. This insight into the underlying natural dynamical structures is achieved via the application of dynamical systems techniques. One application of such analysis is trajectory design for CubeSats, which are intended to explore cislunar space and other planetary systems. These increasingly complex mission objectives necessitate innovative trajectory design strategies for spacecraft within our solar system, as well as the capability for rapid and well-informed redesign. Accordingly, a trajectory design framework is constructed using dynamical systems techniques and demonstrated for the Lunar IceCube mission. An additional application explored in this investigation involves the motion of an exoplanet near a binary star system. Due to the strong gravitational field near a binary star, physicists have previously leveraged these systems as testbeds for examining the validity of gravitational and relativistic theories. In this investigation, a preliminary analysis into the effect of an additional three-body interaction on the dynamical environment near a large mass ratio binary system is conducted. As demonstrated through both of these sample applications, identification and characterization of the natural particular solutions that exist within a multi-body system supports a well-informed and guided analysis.
Solar Power System Analyses for Electric Propulsion Missions
NASA Technical Reports Server (NTRS)
Kerslake, Thomas W.; Gefert, Leon P.
1999-01-01
Solar electric propulsion (SEP) mission architectures are applicable to a wide range of NASA missions including human Mars exploration and robotic exploration of the outer planets. In this paper, we discuss the conceptual design and detailed performance analysis of an SEP stage electric power system (EPS). EPS performance, mass and area predictions are compared for several PV array technologies. Based on these studies, an EPS design for a 1-MW class, Human Mars Mission SEP stage was developed with a reasonable mass, 9.4 metric tons, and feasible deployed array area, 5800 sq m. An EPS was also designed for the Europa Mapper spacecraft and had a mass of 151 kg and a deployed array area of 106 sq m.
Earth Entry Vehicle Design for Sample Return Missions Using M-SAPE
NASA Technical Reports Server (NTRS)
Samareh, Jamshid
2015-01-01
Most mission concepts that return sample material to Earth share one common element: an Earth entry vehicle (EEV). The primary focus of this paper is the examination of EEV design space for relevant sample return missions. Mission requirements for EEV concepts can be divided into three major groups: entry conditions (e.g., velocity and flight path angle), payload (e.g., mass, volume, and g-load limit), and vehicle characteristics (e.g., thermal protection system, structural topology, and landing concepts). The impacts of these requirements on the EEV design have been studied with an integrated system analysis tool, and the results will be discussed in details. In addition, through sensitivities analyses, critical design drivers that have been identified will be reviewed.
Autonomous Mars ascent and orbit rendezvous for earth return missions
NASA Technical Reports Server (NTRS)
Edwards, H. C.; Balmanno, W. F.; Cruz, Manuel I.; Ilgen, Marc R.
1991-01-01
The details of tha assessment of autonomous Mars ascent and orbit rendezvous for earth return missions are presented. Analyses addressing navigation system assessments, trajectory planning, targeting approaches, flight control guidance strategies, and performance sensitivities are included. Tradeoffs in the analysis and design process are discussed.
The Chandra X-ray Center data system: supporting the mission of the Chandra X-ray Observatory
NASA Astrophysics Data System (ADS)
Evans, Janet D.; Cresitello-Dittmar, Mark; Doe, Stephen; Evans, Ian; Fabbiano, Giuseppina; Germain, Gregg; Glotfelty, Kenny; Hall, Diane; Plummer, David; Zografou, Panagoula
2006-06-01
The Chandra X-ray Center Data System provides end-to-end scientific software support for Chandra X-ray Observatory mission operations. The data system includes the following components: (1) observers' science proposal planning tools; (2) science mission planning tools; (3) science data processing, monitoring, and trending pipelines and tools; and (4) data archive and database management. A subset of the science data processing component is ported to multiple platforms and distributed to end-users as a portable data analysis package. Web-based user tools are also available for data archive search and retrieval. We describe the overall architecture of the data system and its component pieces, and consider the design choices and their impacts on maintainability. We discuss the many challenges involved in maintaining a large, mission-critical software system with limited resources. These challenges include managing continually changing software requirements and ensuring the integrity of the data system and resulting data products while being highly responsive to the needs of the project. We describe our use of COTS and OTS software at the subsystem and component levels, our methods for managing multiple release builds, and adapting a large code base to new hardware and software platforms. We review our experiences during the life of the mission so-far, and our approaches for keeping a small, but highly talented, development team engaged during the maintenance phase of a mission.
NASA Technical Reports Server (NTRS)
Davis, George; Cary, Everett; Higinbotham, John; Burns, Richard; Hogie, Keith; Hallahan, Francis
2003-01-01
The paper will provide an overview of the web-based distributed simulation software system developed for end-to-end, multi-spacecraft mission design, analysis, and test at the NASA Goddard Space Flight Center (GSFC). This software system was developed for an internal research and development (IR&D) activity at GSFC called the Distributed Space Systems (DSS) Distributed Synthesis Environment (DSE). The long-term goal of the DSS-DSE is to integrate existing GSFC stand-alone test beds, models, and simulation systems to create a "hands on", end-to-end simulation environment for mission design, trade studies and simulations. The short-term goal of the DSE was therefore to develop the system architecture, and then to prototype the core software simulation capability based on a distributed computing approach, with demonstrations of some key capabilities by the end of Fiscal Year 2002 (FY02). To achieve the DSS-DSE IR&D objective, the team adopted a reference model and mission upon which FY02 capabilities were developed. The software was prototyped according to the reference model, and demonstrations were conducted for the reference mission to validate interfaces, concepts, etc. The reference model, illustrated in Fig. 1, included both space and ground elements, with functional capabilities such as spacecraft dynamics and control, science data collection, space-to-space and space-to-ground communications, mission operations, science operations, and data processing, archival and distribution addressed.
A Distributed Simulation Software System for Multi-Spacecraft Missions
NASA Technical Reports Server (NTRS)
Burns, Richard; Davis, George; Cary, Everett
2003-01-01
The paper will provide an overview of the web-based distributed simulation software system developed for end-to-end, multi-spacecraft mission design, analysis, and test at the NASA Goddard Space Flight Center (GSFC). This software system was developed for an internal research and development (IR&D) activity at GSFC called the Distributed Space Systems (DSS) Distributed Synthesis Environment (DSE). The long-term goal of the DSS-DSE is to integrate existing GSFC stand-alone test beds, models, and simulation systems to create a "hands on", end-to-end simulation environment for mission design, trade studies and simulations. The short-term goal of the DSE was therefore to develop the system architecture, and then to prototype the core software simulation capability based on a distributed computing approach, with demonstrations of some key capabilities by the end of Fiscal Year 2002 (FY02). To achieve the DSS-DSE IR&D objective, the team adopted a reference model and mission upon which FY02 capabilities were developed. The software was prototyped according to the reference model, and demonstrations were conducted for the reference mission to validate interfaces, concepts, etc. The reference model, illustrated in Fig. 1, included both space and ground elements, with functional capabilities such as spacecraft dynamics and control, science data collection, space-to-space and space-to-ground communications, mission operations, science operations, and data processing, archival and distribution addressed.
NASA Astrophysics Data System (ADS)
Corbin, B. A.; Seager, S.; Ross, A.; Hoffman, J.
2017-12-01
Distributed satellite systems (DSS) have emerged as an effective and cheap way to conduct space science, thanks to advances in the small satellite industry. However, relatively few space science missions have utilized multiple assets to achieve their primary scientific goals. Previous research on methods for evaluating mission concepts designs have shown that distributed systems are rarely competitive with monolithic systems, partially because it is difficult to quantify the added value of DSSs over monolithic systems. Comparatively little research has focused on how DSSs can be used to achieve new, fundamental space science goals that cannot be achieved with monolithic systems or how to choose a design from a larger possible tradespace of options. There are seven emergent capabilities of distributed satellites: shared sampling, simultaneous sampling, self-sampling, census sampling, stacked sampling, staged sampling, and sacrifice sampling. These capabilities are either fundamentally, analytically, or operationally unique in their application to distributed science missions, and they can be leveraged to achieve science goals that are either impossible or difficult and costly to achieve with monolithic systems. The Responsive Systems Comparison (RSC) method combines Multi-Attribute Tradespace Exploration with Epoch-Era Analysis to examine benefits, costs, and flexible options in complex systems over the mission lifecycle. Modifications to the RSC method as it exists in previously published literature were made in order to more accurately characterize how value is derived from space science missions. New metrics help rank designs by the value derived over their entire mission lifecycle and show more accurate cumulative value distributions. The RSC method was applied to four case study science missions that leveraged the emergent capabilities of distributed satellites to achieve their primary science goals. In all four case studies, RSC showed how scientific value was gained that would be impossible or unsatisfactory with monolithic systems and how changes in design and context variables affected the overall mission value. Each study serves as a blueprint for how to conduct a Pre-Phase A study using these methods to learn more about the tradespace of a particular mission.
Launch Window Trade Analysis for the James Webb Space Telescope
NASA Technical Reports Server (NTRS)
Yu, Wayne H.; Richon, Karen
2014-01-01
The James Webb Space Telescope (JWST) is a large-scale space telescope mission designed to study fundamental astrophysical questions ranging from the formation of the universe to the origin of planetary systems and the origins of life. JWSTs orbit design is a Libration Point Orbit (LPO) around the Sun-Earth/Moon (SEM) L2 point for a planned mission lifetime of 10.5 years. The launch readiness period for JWST is from Oct 1st, 2018 November 30th, 2018. This paper presents the first launch window analysis for the JWST observatory using finite-burn modeling; previous analysis assumed a single impulsive midcourse correction to achieve the mission orbit. The physical limitations of the JWST hardware stemming primarily from propulsion, communication and thermal requirements alongside updated mission design requirements result in significant launch window within the launch readiness period. Future plans are also discussed.
James Webb Space Telescope Launch Window Trade Analysis
NASA Technical Reports Server (NTRS)
Yu, Wayne; Richon, Karen
2014-01-01
The James Webb Space Telescope (JWST) is a large-scale space telescope mission designed to study fundamental astrophysical questions ranging from the formation of the universe to the origin of planetary systems and the origins of life. JWSTs orbit design is a Libration Point Orbit (LPO) around the Sun-EarthMoon (SEM) L2 point for a planned mission lifetime of 10.5 years. The launch readiness period for JWST is from Oct 1st, 2018 November 30th, 2018. This paper presents the first launch window analysis for the JWST observatory using finite-burn modeling; previous analysis assumed a single impulsive midcourse correction to achieve the mission orbit. The physical limitations of the JWST hardware stemming primarily from propulsion, communication and thermal requirements alongside updated mission design requirements result in significant launch window within the launch readiness period. Future plans are also discussed.
Solid Waste Program technical baseline description
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, A.B.
1994-07-01
The system engineering approach has been taken to describe the technical baseline under which the Solid Waste Program is currently operating. The document contains a mission analysis, function analysis, system definition, documentation requirements, facility and project bases, and uncertainties facing the program.
Spaceborne power systems preference analyses. Volume 1: Summary
NASA Technical Reports Server (NTRS)
Smith, J. H.; Feinberg, A.; Miles, R. F., Jr.
1985-01-01
Sixteen alternative spaceborne nuclear power system concepts were ranked using multiattribute decision analysis to identify promising concepts for further technology development. Four groups interviewed were: safety, systems definition and design, technology assessment, and mission analysis. The ranking results were consistent from group and for different utility function models for individuals.
The Integrated Hazard Analysis Integrator
NASA Technical Reports Server (NTRS)
Morris, A. Terry; Massie, Michael J.
2009-01-01
Hazard analysis addresses hazards that arise in the design, development, manufacturing, construction, facilities, transportation, operations and disposal activities associated with hardware, software, maintenance, operations and environments. An integrated hazard is an event or condition that is caused by or controlled by multiple systems, elements, or subsystems. Integrated hazard analysis (IHA) is especially daunting and ambitious for large, complex systems such as NASA s Constellation program which incorporates program, systems and element components that impact others (International Space Station, public, International Partners, etc.). An appropriate IHA should identify all hazards, causes, controls and verifications used to mitigate the risk of catastrophic loss of crew, vehicle and/or mission. Unfortunately, in the current age of increased technology dependence, there is the tendency to sometimes overlook the necessary and sufficient qualifications of the integrator, that is, the person/team that identifies the parts, analyzes the architectural structure, aligns the analysis with the program plan and then communicates/coordinates with large and small components, each contributing necessary hardware, software and/or information to prevent catastrophic loss. As viewed from both Challenger and Columbia accidents, lack of appropriate communication, management errors and lack of resources dedicated to safety were cited as major contributors to these fatalities. From the accident reports, it would appear that the organizational impact of managers, integrators and safety personnel contributes more significantly to mission success and mission failure than purely technological components. If this is so, then organizations who sincerely desire mission success must put as much effort in selecting managers and integrators as they do when designing the hardware, writing the software code and analyzing competitive proposals. This paper will discuss the necessary and sufficient requirements of one of the significant contributors to mission success, the IHA integrator. Discussions will be provided to describe both the mindset required as well as deleterious assumptions/behaviors to avoid when integrating within a large scale system.
Automating Trend Analysis for Spacecraft Constellations
NASA Technical Reports Server (NTRS)
Davis, George; Cooter, Miranda; Updike, Clark; Carey, Everett; Mackey, Jennifer; Rykowski, Timothy; Powers, Edward I. (Technical Monitor)
2001-01-01
Spacecraft trend analysis is a vital mission operations function performed by satellite controllers and engineers, who perform detailed analyses of engineering telemetry data to diagnose subsystem faults and to detect trends that may potentially lead to degraded subsystem performance or failure in the future. It is this latter function that is of greatest importance, for careful trending can often predict or detect events that may lead to a spacecraft's entry into safe-hold. Early prediction and detection of such events could result in the avoidance of, or rapid return to service from, spacecraft safing, which not only results in reduced recovery costs but also in a higher overall level of service for the satellite system. Contemporary spacecraft trending activities are manually intensive and are primarily performed diagnostically after a fault occurs, rather than proactively to predict its occurrence. They also tend to rely on information systems and software that are oudated when compared to current technologies. When coupled with the fact that flight operations teams often have limited resources, proactive trending opportunities are limited, and detailed trend analysis is often reserved for critical responses to safe holds or other on-orbit events such as maneuvers. While the contemporary trend analysis approach has sufficed for current single-spacecraft operations, it will be unfeasible for NASA's planned and proposed space science constellations. Missions such as the Dynamics, Reconnection and Configuration Observatory (DRACO), for example, are planning to launch as many as 100 'nanospacecraft' to form a homogenous constellation. A simple extrapolation of resources and manpower based on single-spacecraft operations suggests that trending for such a large spacecraft fleet will be unmanageable, unwieldy, and cost-prohibitive. It is therefore imperative that an approach to automating the spacecraft trend analysis function be studied, developed, and applied to missions such as DRACO with the intent that mission operations costs be significantly reduced. The goal of the Constellation Spacecraft Trend Analysis Toolkit (CSTAT) project is to serve as the pathfinder for a fully automated trending system to support spacecraft constellations. The development approach to be taken is evolutionary. In the first year of the project, the intent is to significantly advance the state of the art in current trending systems through improved functionality and increased automation. In the second year, the intent is to add an expert system shell, likely through the adaptation of an existing commercial-off-the-shelf (COTS) or government-off-the-shelf (GOTS) tool to implement some level of the trending intelligence that humans currently provide in manual operations. In the third year, the intent is to infuse the resulting technology into a near-term constellation or formation-flying mission to test it and gain experience in automated trending. The lessons learned from the real missions operations experience will then be used to improve the system, and to ultimately incorporate it into a fully autonomous, closed-loop mission operations system that is truly capable of supporting large constellations. In this paper, the process of automating trend analysis for spacecraft constellations will be addressed. First, the results of a survey on automation in spacecraft mission operations in general, and in trending systems in particular will be presented to provide an overview of the current state of the art. Next, a rule-based model for implementing intelligent spacecraft subsystem trending will be then presented, followed by a survey of existing COTS/GOTS tools that could be adapted for implementing such a model. The baseline design and architecture of the CSTAT system will be presented. Finally, some results obtained from initial software tests and demonstrations will be presented.
Need for Cost Optimization of Space Life Support Systems
NASA Technical Reports Server (NTRS)
Jones, Harry W.; Anderson, Grant
2017-01-01
As the nation plans manned missions that go far beyond Earth orbit to Mars, there is an urgent need for a robust, disciplined systems engineering methodology that can identify an optimized Environmental Control and Life Support (ECLSS) architecture for long duration deep space missions. But unlike the previously used Equivalent System Mass (ESM), the method must be inclusive of all driving parameters and emphasize the economic analysis of life support system design. The key parameter for this analysis is Life Cycle Cost (LCC). LCC takes into account the cost for development and qualification of the system, launch costs, operational costs, maintenance costs and all other relevant and associated costs. Additionally, an effective methodology must consider system technical performance, safety, reliability, maintainability, crew time, and other factors that could affect the overall merit of the life support system.
On-Line Analysis of Physiologic and Neurobehavioral Variables During Long-Duration Space Missions
NASA Technical Reports Server (NTRS)
Brown, Emery N.
1999-01-01
The goal of this project is to develop reliable statistical algorithms for on-line analysis of physiologic and neurobehavioral variables monitored during long-duration space missions. Maintenance of physiologic and neurobehavioral homeostasis during long-duration space missions is crucial for ensuring optimal crew performance. If countermeasures are not applied, alterations in homeostasis will occur in nearly all-physiologic systems. During such missions data from most of these systems will be either continually and/or continuously monitored. Therefore, if these data can be analyzed as they are acquired and the status of these systems can be continually assessed, then once alterations are detected, appropriate countermeasures can be applied to correct them. One of the most important physiologic systems in which to maintain homeostasis during long-duration missions is the circadian system. To detect and treat alterations in circadian physiology during long duration space missions requires development of: 1) a ground-based protocol to assess the status of the circadian system under the light-dark environment in which crews in space will typically work; and 2) appropriate statistical methods to make this assessment. The protocol in Project 1, Circadian Entrainment, Sleep-Wake Regulation and Neurobehavioral will study human volunteers under the simulated light-dark environment of long-duration space missions. Therefore, we propose to develop statistical models to characterize in near real time circadian and neurobehavioral physiology under these conditions. The specific aims of this project are to test the hypotheses that: 1) Dynamic statistical methods based on the Kronauer model of the human circadian system can be developed to estimate circadian phase, period, amplitude from core-temperature data collected under simulated light- dark conditions of long-duration space missions. 2) Analytic formulae and numerical algorithms can be developed to compute the error in the estimates of circadian phase, period and amplitude determined from the data in Specific Aim 1. 3) Statistical models can detect reliably in near real- time (daily) significant alternations in the circadian physiology of individual subjects by analyzing the circadian and neurobehavioral data collected in Project 1. 4) Criteria can be developed using the Kronauer model and the recently developed Jewett model of cognitive -performance and subjective alertness to define altered circadian and neurobehavioral physiology and to set conditions for immediate administration of countermeasures.
Immune system changes during simulated planetary exploration on Devon Island, high arctic
Crucian, Brian; Lee, Pascal; Stowe, Raymond; Jones, Jeff; Effenhauser, Rainer; Widen, Raymond; Sams, Clarence
2007-01-01
Background Dysregulation of the immune system has been shown to occur during spaceflight, although the detailed nature of the phenomenon and the clinical risks for exploration class missions have yet to be established. Also, the growing clinical significance of immune system evaluation combined with epidemic infectious disease rates in third world countries provides a strong rationale for the development of field-compatible clinical immunology techniques and equipment. In July 2002 NASA performed a comprehensive immune assessment on field team members participating in the Haughton-Mars Project (HMP) on Devon Island in the high Canadian Arctic. The purpose of the study was to evaluate the effect of mission-associated stressors on the human immune system. To perform the study, the development of techniques for processing immune samples in remote field locations was required. Ten HMP-2002 participants volunteered for the study. A field protocol was developed at NASA-JSC for performing sample collection, blood staining/processing for immunophenotype analysis, whole-blood mitogenic culture for functional assessments and cell-sample preservation on-location at Devon Island. Specific assays included peripheral leukocyte distribution; constitutively activated T cells, intracellular cytokine profiles, plasma cortisol and EBV viral antibody levels. Study timepoints were 30 days prior to mission start, mid-mission and 60 days after mission completion. Results The protocol developed for immune sample processing in remote field locations functioned properly. Samples were processed on Devon Island, and stabilized for subsequent analysis at the Johnson Space Center in Houston. The data indicated that some phenotype, immune function and stress hormone changes occurred in the HMP field participants that were largely distinct from pre-mission baseline and post-mission recovery data. These immune changes appear similar to those observed in astronauts following spaceflight. Conclusion The immune system changes described during the HMP field deployment validate the use of the HMP as a ground-based spaceflight/planetary exploration analog for some aspects of human physiology. The sample processing protocol developed for this study may have applications for immune studies in remote terrestrial field locations. Elements of this protocol could possibly be adapted for future in-flight immunology studies conducted during space missions. PMID:17521440
A silicone column for GC analysis of polar and nonpolar chemicals
NASA Technical Reports Server (NTRS)
Shen, T. C.
1991-01-01
The investigation of the Saturnian System is being proposed jointly by NASA and the European Space Agency (ESA). The mission is scheduled for a launch in 1996. The mission provides an opportunity for close observation and exploration of Saturn's atmosphere, the complex Saturnian System of satellites and rings, Titan (Saturn's planet-sized moon), and Saturn's magnetosphere. The mission gives special attention to Titan which is blanketed by a thick, opaque atmosphere. An atmospheric probe will be deposited into the Titan Atmosphere for in situ measurement during a slow, three hour descent to the surface. The results from this analysis may provide the information which is important to the research of chemical evolution, and the origin of life. An analytical system was developed as a part of the Titan Aerosol Gas Experiment (TAGEX), a proposed experiment for the Cassini Mission. This system will use two highly sensitive detectors, the Metastable Ionization Detector (MID) and the Ion Mobility Spectrometer (IMS). Unfortunately, when commercial columns are utilized with these highly sensitive detectors, volatile components continuously bleed from the column and interfere with the detector. In addition, light columns must be able to separate polar and nonpolar organic chemicals within 10-15 minutes under isothermal conditions for the Titan Mission. Therefore, a highly crosslinked silicone polymeric packed column was developed which is able to efficiently separate amines, alcohols, and hydrocarbons with retention times less that 15 minutes at 100 C isothermal condition.
Increasing the Operational Value of Event Messages
NASA Technical Reports Server (NTRS)
Li, Zhenping; Savkli, Cetin; Smith, Dan
2003-01-01
Assessing the health of a space mission has traditionally been performed using telemetry analysis tools. Parameter values are compared to known operational limits and are plotted over various time periods. This presentation begins with the notion that there is an incredible amount of untapped information contained within the mission s event message logs. Through creative advancements in message handling tools, the event message logs can be used to better assess spacecraft and ground system status and to highlight and report on conditions not readily apparent when messages are evaluated one-at-a-time during a real-time pass. Work in this area is being funded as part of a larger NASA effort at the Goddard Space Flight Center to create component-based, middleware-based, standards-based general purpose ground system architecture referred to as GMSEC - the GSFC Mission Services Evolution Center. The new capabilities and operational concepts for event display, event data analyses and data mining are being developed by Lockheed Martin and the new subsystem has been named GREAT - the GMSEC Reusable Event Analysis Toolkit. Planned for use on existing and future missions, GREAT has the potential to increase operational efficiency in areas of problem detection and analysis, general status reporting, and real-time situational awareness.
NASA Technical Reports Server (NTRS)
Chakrabarti, Suman; Schmidt, George R.; Thio, Y. C.; Hurst, Chantelle M.
1999-01-01
A preliminary model for spacecraft propulsion performance analysis based on nuclear gain and subsystem mass-power balances are presented in viewgraph form. For very fast missions with straight-line trajectories, it has been shown that mission trip time is proportional to the cube root of alpha. Analysis of spacecraft power systems via a power balance and examination of gain vs. mass-power ratio has shown: 1) A minimum gain is needed to have enough power for thruster and driver operation; and 2) Increases in gain result in decreases in overall mass-power ratio, which in turn leads to greater achievable accelerations. However, subsystem mass-power ratios and efficiencies are crucial: less efficient values for these can partially offset the effect of nuclear gain. Therefore, it is of interest to monitor the progress of gain-limited subsystem technologies and it is also possible that power-limited systems with sufficiently low alpha may be competitive for such ambitious missions. Topics include Space flight requirements; Spacecraft energy gain; Control theory for performance; Mission assumptions; Round trips: Time and distance; Trip times; Vehicle acceleration; and Minimizing trip times.
NASA Technical Reports Server (NTRS)
Austin, L. D., Jr.
1977-01-01
The results are documented of an analysis conducted to determine space shuttle vehicle (SSV) subsystem margins for the reference flight profile for the first orbital flight test (OFT-1). In general, the results show increased margins for the OFT-1 indicators when compared to Mission 3A resutls. The inclusion of element and wing aerodynamic variations on OFT-1, in combination with winds and systems dispersions, resulted in the forward Z (FTO1) attach load indicator exceeding specified limits. The inboard and outboard elevon hinge moment margins (9 percent and 3 percent, respectively) on OFT-1 reflect values consistent with the load relief requirements dictated by elevon hinge moment variations. All other structural load indicators for OFT-1 had margins in excess of 10 percent. The SSV first stage stagnation heating indicators for OFT-1 were about 45 percent less than for Mission 3A. The hydraulic systems demands for both missions were essentially the same. The results also show OFT-1 performance requirements from the consideration of winds and dispersions to be approximately 3,300 lbs greater than Mission 3A.
Science opportunities from the Topex/Poseidon mission
NASA Technical Reports Server (NTRS)
Stewart, R.; Fu, L. L.; Lefebvre, M.
1986-01-01
The U.S. National Aeronautics and Space Administration (NASA) and the French Centre National d'Etudes Spatiales (CNES) propose to conduct a Topex/Poseidon Mission for studying the global ocean circulation from space. The mission will use the techniques of satellite altimetry to make precise and accurate measurements of sea level for several years. The measurements will then be used by Principal Investigators (selected by NASA and CNES) and by the wider oceanographic community working closely with large international programs for observing the Earth, on studies leading to an improved understanding of global ocean dynamics and the interaction of the ocean with other processes influencing life on Earth. The major elements of the mission include a satellite carrrying an altimetric system for measuring the height of the satellite above the sea surface; a precision orbit determination system for referring the altimetric measurements to geodetic coordinates; a data analysis and distribution system for processing the satellite data, verifying their accuracy, and making them available to the scientific community; and a principal investigator program for scientific studies based on the satellite observations. This document describes the satellite, its sensors, its orbit, the data analysis system, and plans for verifying and distributing the data. It then discusses the expected accuracy of the satellite's measurements and their usefulness to oceanographic, geophysical, and other scientific studies. Finally, it outlines the relationship of the Topex/Poseidon mission to other large programs, including the World Climate Research Program, the U.S. Navy's Remote Ocean Sensing System satellite program and the European Space Agency's ERS-1 satellite program.
NASA Technical Reports Server (NTRS)
1991-01-01
This document presents the solar electric propulsion (SEP) concept design developed as part of the Space Transfer Concepts and Analysis for Exploration Missions (STCAEM) study. The evolution of the SEP concept is described along with the requirements, guidelines and assumptions for the design. Operating modes and options are defined and a systems description of the vehicle is presented. Artificial gravity configuration options and space and ground support systems are discussed. Finally, an implementation plan is presented which addresses technology needs, schedules, facilities, and costs.
NASA Technical Reports Server (NTRS)
1991-01-01
The cryogenic/aerobrake (CAB) and the cryogenic all-propulsive (CAP) concept designs developed in support of the Space Transfer Concepts and Analysis for Exploration Missions (STCAEM) study are presented. The evolution of the CAB and CAP concepts is described along with the requirements, guidelines and assumptions for the designs. Operating modes and options are defined and systems descriptions of the vehicles are presented. Artificial gravity configuration options and space and ground support systems are discussed. Finally, an implementation plan is presented which addresses technology needs, schedules, facilities, and costs.
NASA Technical Reports Server (NTRS)
1991-01-01
The nuclear electric propulsion (NEP) concept design developed in support of the Space Transfer Concepts and Analysis for Exploration Missions (STCAEM) study is presented. The evolution of the NEP concept is described along with the requirements, guidelines, and assumptions for the design. Operating modes and options are defined and a systems description of the vehicle is presented. Artificial gravity configuration options and space and ground support systems are discussed. Finally, an implementation plan is presented which addresses technology needs, schedules, facilities and costs.
NASA Technical Reports Server (NTRS)
1991-01-01
This document presents the nuclear thermal rocket (NTR) concept design developed in support of the Space Transfer Concepts and Analysis for Exploration Missions (STCAEM) study. The evolution of the NTR concept is described along with the requirements, guidelines and assumptions for the design. Operating modes and options are defined and a systems description of the vehicle is presented. Artificial gravity configuration options and space and ground support systems are discussed. Finally, an implementation plan is presented which addresses technology needs, schedules, facilities and costs.
NASA Technical Reports Server (NTRS)
Willcockson, W. H.
1988-01-01
Work conducted in the second extension of the Phase A Orbit Transfer Vehicle Concept Definition and Systems Analysis Study is summarized. Four major tasks were identified: (1) define an initial OTV program consistent with near term Civil Space Leadership Initiative missions; (2) develop program evolution to long term advanced missions; (3) investigate the implications of current STS safety policy on an Aft Cargo Carrier based OTV; and (4) expand the analysis of high entry velocity aeroassist. An increased emphasis on the breath of OTV applications was undertaken to show the need for the program on the basis of the expansion of the nation's capabilities in space.
Launch Vehicle Systems Analysis
NASA Technical Reports Server (NTRS)
Olds, John R.
1999-01-01
This report summaries the key accomplishments of Georgia Tech's Space Systems Design Laboratory (SSDL) under NASA Grant NAG8-1302 from NASA - Marshall Space Flight Center. The report consists of this summary white paper, copies of technical papers written under this grant, and several viewgraph-style presentations. During the course of this grant four main tasks were completed: (1)Simulated Combined-Cycle Rocket Engine Analysis Module (SCCREAM), a computer analysis tool for predicting the performance of various RBCC engine configurations; (2) Hyperion, a single stage to orbit vehicle capable of delivering 25,000 pound payloads to the International Space Station Orbit; (3) Bantam-X Support - a small payload mission; (4) International Trajectory Support for interplanetary human Mars missions.
Lunar Exploration Architecture Level Key Drivers and Sensitivities
NASA Technical Reports Server (NTRS)
Goodliff, Kandyce; Cirillo, William; Earle, Kevin; Reeves, J. D.; Shyface, Hilary; Andraschko, Mark; Merrill, R. Gabe; Stromgren, Chel; Cirillo, Christopher
2009-01-01
Strategic level analysis of the integrated behavior of lunar transportation and lunar surface systems architecture options is performed to assess the benefit, viability, affordability, and robustness of system design choices. This analysis employs both deterministic and probabilistic modeling techniques so that the extent of potential future uncertainties associated with each option are properly characterized. The results of these analyses are summarized in a predefined set of high-level Figures of Merit (FOMs) so as to provide senior NASA Constellation Program (CxP) and Exploration Systems Mission Directorate (ESMD) management with pertinent information to better inform strategic level decision making. The strategic level exploration architecture model is designed to perform analysis at as high a level as possible but still capture those details that have major impacts on system performance. The strategic analysis methodology focuses on integrated performance, affordability, and risk analysis, and captures the linkages and feedbacks between these three areas. Each of these results leads into the determination of the high-level FOMs. This strategic level analysis methodology has been previously applied to Space Shuttle and International Space Station assessments and is now being applied to the development of the Constellation Program point-of-departure lunar architecture. This paper provides an overview of the strategic analysis methodology and the lunar exploration architecture analyses to date. In studying these analysis results, the strategic analysis team has identified and characterized key drivers affecting the integrated architecture behavior. These key drivers include inclusion of a cargo lander, mission rate, mission location, fixed-versus- variable costs/return on investment, and the requirement for probabilistic analysis. Results of sensitivity analysis performed on lunar exploration architecture scenarios are also presented.
Trajectory Design for the Transiting Exoplanet Survey Satellite
NASA Technical Reports Server (NTRS)
Dichmann, Donald J.; Parker, Joel J. K.; Williams, Trevor W.; Mendelsohn, Chad R.
2014-01-01
The Transiting Exoplanet Survey Satellite (TESS) is a National Aeronautics and Space Administration (NASA) mission, scheduled to be launched in 2017. TESS will travel in a highly eccentric orbit around Earth, with initial perigee radius near 17 Earth radii (Re) and apogee radius near 59 Re. The orbit period is near 2:1 resonance with the Moon, with apogee nearly 90 degrees out-of-phase with the Moon, in a configuration that has been shown to be operationally stable. TESS will execute phasing loops followed by a lunar flyby, with a final maneuver to achieve 2:1 resonance with the Moon. The goals of a resonant orbit with long-term stability, short eclipses and limited oscillations of perigee present significant challenges to the trajectory design. To rapidly assess launch opportunities, we adapted the Schematics Window Methodology (SWM76) launch window analysis tool to assess the TESS mission constraints. To understand the long-term dynamics of such a resonant orbit in the Earth-Moon system we employed Dynamical Systems Theory in the Circular Restricted 3-Body Problem (CR3BP). For precise trajectory analysis we use a high-fidelity model and multiple shooting in the General Mission Analysis Tool (GMAT) to optimize the maneuver delta-V and meet mission constraints. Finally we describe how the techniques we have developed can be applied to missions with similar requirements. Keywords: resonant orbit, stability, lunar flyby, phasing loops, trajectory optimization
Reliability Impacts in Life Support Architecture and Technology Selection
NASA Technical Reports Server (NTRS)
Lange Kevin E.; Anderson, Molly S.
2012-01-01
Quantitative assessments of system reliability and equivalent system mass (ESM) were made for different life support architectures based primarily on International Space Station technologies. The analysis was applied to a one-year deep-space mission. System reliability was increased by adding redundancy and spares, which added to the ESM. Results were thus obtained allowing a comparison of the ESM for each architecture at equivalent levels of reliability. Although the analysis contains numerous simplifications and uncertainties, the results suggest that achieving necessary reliabilities for deep-space missions will add substantially to the life support ESM and could influence the optimal degree of life support closure. Approaches for reducing reliability impacts were investigated and are discussed.
NASA Technical Reports Server (NTRS)
Mclees, Robert E.; Cohen, Gerald C.
1991-01-01
The requirements are presented for an Advanced Subsonic Civil Transport (ASCT) flight control system generated using structured techniques. The requirements definition starts from initially performing a mission analysis to identify the high level control system requirements and functions necessary to satisfy the mission flight. The result of the study is an example set of control system requirements partially represented using a derivative of Yourdon's structured techniques. Also provided is a research focus for studying structured design methodologies and in particular design-for-validation philosophies.
Toward Baseline Software Anomalies in NASA Missions
NASA Technical Reports Server (NTRS)
Layman, Lucas; Zelkowitz, Marvin; Basili, Victor; Nikora, Allen P.
2012-01-01
In this fast abstract, we provide preliminary findings an analysis of 14,500 spacecraft anomalies from unmanned NASA missions. We provide some baselines for the distributions of software vs. non-software anomalies in spaceflight systems, the risk ratings of software anomalies, and the corrective actions associated with software anomalies.
The NASA In-Space Propulsion Technology Project's Current Products and Future Directions
NASA Technical Reports Server (NTRS)
Anderson, David J.; Dankanich, John; Munk, Michelle M.; Pencil, Eric; Liou, Larry
2010-01-01
Since its inception in 2001, the objective of the In-Space Propulsion Technology (ISPT) project has been developing and delivering in-space propulsion technologies that enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling for future NASA flagship and sample return missions currently under consideration, as well as having broad applicability to future Discovery and New Frontiers mission solicitations. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that recently completed, or will be completing within the next year, their technology development and are ready for infusion into missions. The paper also describes the ISPT project s future focus on propulsion for sample return missions. The ISPT technologies completing their development are: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) aerocapture technologies which include thermal protection system (TPS) materials and structures, guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and atmospheric and aerothermal effect models. The future technology development areas for ISPT are: 1) Planetary Ascent Vehicles (PAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) needed for sample return missions from many different destinations; 3) propulsion for Earth Return Vehicles (ERV) and transfer stages, and electric propulsion for sample return and low cost missions; 4) advanced propulsion technologies for sample return; and 5) Systems/Mission Analysis focused on sample return propulsion.
NASA Technical Reports Server (NTRS)
Ketchum, W. J.
1986-01-01
The objectives of the Phase 2 study were to improve the orbit transfer vehicle (OTV) concept definition by focusing on the following issues: the impact of mission requirements on OTV system design; OTV basing concepts on the Space Shuttle, separate platforms, and/or remote locations; cost reduction of an OTV program to improve its economic benefits and support its acquisition. The OTV mission scenario includes a wide range of missions the main drivers of which are manned GEO servicing, mid-inclination/polar DOD, and lunar/planetary projects. A mission model is presented which includes the type and number of missions per year and the estimated propellant requirements. To accomplish the missions, many OTV concepts were defined including ground-based OTVs launched either in the STS orbiter, the aft cargo carrier, or a heavy lift launch vehicle, and a space-based OTV. System and program trade studies were conducted using performance, cost, safety/risk, and operations/growth criteria. The study shows that mission requirements and substantial economic benefits justify a reusable, cryogenic (H2/O2) space-based OTV. Such a system would not be subjected to Earth-to-orbit launch loads and would not be constained in size or weight. Safety is enhanced by the fact that the system components are launched unfueled. Its inherent reusability and ability to be refueled in space make the space-based OTV very economical to operate.
NASA Technical Reports Server (NTRS)
1973-01-01
The traffic analyses and system requirements data generated in the study resulted in the development of two traffic models; the baseline traffic model and the new traffic model. The baseline traffic model provides traceability between the numbers and types of geosynchronous missions considered in the study and the entire spectrum of missions foreseen in the total national space program. The information presented pertaining to the baseline traffic model includes: (1) definition of the baseline traffic model, including identification of specific geosynchronous missions and their payload delivery schedules through 1990; (2) Satellite location criteria, including the resulting distribution of the satellite population; (3) Geosynchronous orbit saturation analyses, including the effects of satellite physical proximity and potential electromagnetic interference; and (4) Platform system requirements analyses, including satellite and mission equipment descriptions, the options and limitations in grouping satellites, and on-orbit servicing criteria (both remotely controlled and man-attended).
Mission science value-cost savings from the Advanced Imaging Communication System (AICS)
NASA Technical Reports Server (NTRS)
Rice, R. F.
1984-01-01
An Advanced Imaging Communication System (AICS) was proposed in the mid-1970s as an alternative to the Voyager data/communication system architecture. The AICS achieved virtually error free communication with little loss in the downlink data rate by concatenating a powerful Reed-Solomon block code with the Voyager convolutionally coded, Viterbi decoded downlink channel. The clean channel allowed AICS sophisticated adaptive data compression techniques. Both Voyager and the Galileo mission have implemented AICS components, and the concatenated channel itself is heading for international standardization. An analysis that assigns a dollar value/cost savings to AICS mission performance gains is presented. A conservative value or savings of $3 million for Voyager, $4.5 million for Galileo, and as much as $7 to 9.5 million per mission for future projects such as the proposed Mariner Mar 2 series is shown.
System concepts and enabling technologies for an ESA low-cost mission to Jupiter / Europa
NASA Astrophysics Data System (ADS)
Renard, P.; Koeck, C.; Kemble, Steve; Atzei, Alessandro; Falkner, Peter
2004-11-01
The European Space Agency is currently studying the Jovian Minisat Explorer (JME), as part of its Technology Reference Studies (TRS), used for its development plan of technologies enabling future scientific missions. The JME focuses on the exploration of the Jovian system and particularly of Europa. The Jupiter Minisat Orbiter (JMO) study concerns the first mission phase of JME that counts up to three missions using pairs of minisats. The scientific objectives are the investigation of Europa's global topography, the composition of its (sub)surface and the demonstration of existence of a subsurface ocean below its icy crust. The present paper describes the candidate JMO system concept, based on a Europa Orbiter (JEO) supported by a communications relay satellite (JRS), and its associated technology development plan. It summarizes an analysis performed in 2004 jointly by ESA and the EADS-Astrium Company in the frame of an industrial technical assistance to ESA.
Safe landing area determination for a Moon lander by reachability analysis
NASA Astrophysics Data System (ADS)
Arslantaş, Yunus Emre; Oehlschlägel, Thimo; Sagliano, Marco
2016-11-01
In the last decades developments in space technology paved the way to more challenging missions like asteroid mining, space tourism and human expansion into the Solar System. These missions result in difficult tasks such as guidance schemes for re-entry, landing on celestial bodies and implementation of large angle maneuvers for spacecraft. There is a need for a safety system to increase the robustness and success of these missions. Reachability analysis meets this requirement by obtaining the set of all achievable states for a dynamical system starting from an initial condition with given admissible control inputs of the system. This paper proposes an algorithm for the approximation of nonconvex reachable sets (RS) by using optimal control. Therefore subset of the state space is discretized by equidistant points and for each grid point a distance function is defined. This distance function acts as an objective function for a related optimal control problem (OCP). Each infinite dimensional OCP is transcribed into a finite dimensional Nonlinear Programming Problem (NLP) by using Pseudospectral Methods (PSM). Finally, the NLPs are solved using available tools resulting in approximated reachable sets with information about the states of the dynamical system at these grid points. The algorithm is applied on a generic Moon landing mission. The proposed method computes approximated reachable sets and the attainable safe landing region with information about propellant consumption and time.
Robotic Lunar Landers for Science and Exploration
NASA Technical Reports Server (NTRS)
Cohen, Barbara A.
2012-01-01
The MSFC/APL Robotic Lunar Landing Project (RLLDP) team has developed lander concepts encompassing a range of mission types and payloads for science, exploration, and technology demonstration missions: (1) Developed experience and expertise in lander systems, (2) incorporated lessons learned from previous efforts to improve the fidelity of mission concepts, analysis tools, and test beds Mature small and medium lander designs concepts have been developed: (1) Share largely a common design architecture. (2) Flexible for a large number of mission and payload options. High risk development areas have been successfully addressed Landers could be selected for a mission with much of the concept formulation phase work already complete
Analysis of selected deep space missions
NASA Technical Reports Server (NTRS)
West, W. S.; Holman, M. L.; Bilsky, H. W.
1971-01-01
Task 1 of the NEW MOONS (NASA Evaluation With Models of Optimized Nuclear Spacecraft) study is discussed. Included is an introduction to considerations of launch vehicles, spacecraft, spacecraft subsystems, and scientific objectives associated with precursory unmanned missions to Jupiter and thence out of the ecliptic plane, as well as other missions to Jupiter and other outer planets. Necessity for nuclear power systems is indicated. Trajectories are developed using patched conic and n-body computer techniques.
Remote Sensing of Battlefield Weather Conditions Using Unmanned Air Vehicles
1982-09-01
November 1981 - 1 September 1982 September 1982 DTIC S•’ ELECTE FEB 1 o1983 AIR FORCE GEMPHYSICS LABORATORY j AIR FORCE SYSTEMS COMMAND UNITED STATES AIR...1982 AIR VEHICLES 6. PERFORMING ORG, REPORT NUMBER 7. AUTHOR(@) 8 a. CONTRACT OR GRANT NUMBER(a) Maynard L. Hill Contributors: E. Lucero, J . Rowland...of MQM107A BWOFS Mission ........... . . . 27 Table 3 Roller-coaster Mission Analysis Summary . . . . . . . . . . . . . 30 J Table 4 Metfly Mission
NASA Technical Reports Server (NTRS)
Williams-Byrd, Julie; Antol, Jeff; Jefferies, Sharon; Goodliff, Kandyce; Williams, Phillip; Ambrose, Rob; Sylvester, Andre; Anderson, Molly; Dinsmore, Craig; Hoffman, Stephen;
2016-01-01
NASA is transforming human spaceflight. The Agency is shifting from an exploration-based program with human activities in low Earth orbit (LEO) and targeted robotic missions in deep space to a more sustainable and integrated pioneering approach. However, pioneering space involves daunting technical challenges of transportation, maintaining health, and enabling crew productivity for long durations in remote, hostile, and alien environments. Subject matter experts from NASA's Human Exploration and Operations Mission Directorate (HEOMD) are currently studying a human exploration campaign that involves deployment of assets for planetary exploration. This study, called the Evolvable Mars Campaign (EMC) study, explores options with solar electric propulsion as a central component of the transportation architecture. This particular in-space transportation option often results in long duration transit to destinations. The EMC study is also investigating deployed human rated systems like landers, habitats, rovers, power systems and ISRU system to the surface of Mars, which also will involve long dormant periods when these systems are staged on the surface. In order to enable the EMC architecture, campaign and element design leads along with system and capability development experts from HEOMD's System Maturation Team (SMT) have identified additional capabilities, systems and operation modes that will sustain these systems especially during these dormant phases of the mission. Dormancy is defined by the absence of crew and relative inactivity of the systems. For EMC missions, dormant periods could range from several months to several years. Two aspects of uncrewed dormant operations are considered herein: (1) the vehicle systems that are placed in a dormant state and (2) the autonomous vehicle systems and robotic capabilities that monitor, maintain, and repair the vehicle and systems. This paper describes the mission stages of dormancy operations, phases of dormant operations, and critical system capabilities that are needed for dormant operations. This paper will compare dormancy operations of past robotic missions to identify lessons that can be applied to planned human exploration missions. Finally, this paper will also identify future work and analysis planned to assess system performance metrics and integrated system operations.
Manned space flight nuclear system safety. Volume 1: base nuclear system safety
NASA Technical Reports Server (NTRS)
1972-01-01
The mission and terrestrial nuclear safety aspects of future long duration manned space missions in low earth orbit are discussed. Nuclear hazards of a typical low earth orbit Space Base mission (from natural sources and on-board nuclear hardware) have been identified and evaluated. Some of the principal nuclear safety design and procedural considerations involved in launch, orbital, and end of mission operations are presented. Areas of investigation include radiation interactions with the crew, subsystems, facilities, experiments, film, interfacing vehicles, nuclear hardware and the terrestrial populace. Results of the analysis indicate: (1) the natural space environment can be the dominant radiation source in a low earth orbit where reactors are effectively shielded, (2) with implementation of safety guidelines the reactor can present a low risk to the crew, support personnel, the terrestrial populace, flight hardware and the mission, (3) ten year missions are feasible without exceeding integrated radiation limits assigned to flight hardware, and (4) crew stay-times up to one year are feasible without storm shelter provisions.
Cascade Storage and Delivery System for a Multi Mission Space Exploration Vehicle (MMSEV)
NASA Technical Reports Server (NTRS)
Yagoda, Evan; Swickrath, Michael; Stambaugh, Imelda
2012-01-01
NASA is developing a Multi Mission Space Exploration Vehicle (MMSEV) for missions beyond Low Earth Orbit (LEO). The MMSEV is a pressurized vehicle used to extend the human exploration envelope for Lunar, Near Earth Object (NEO), and Deep Space missions. The Johnson Space Center is developing the Environmental Control and Life Support System (ECLSS) for the MMSEV. The MMSEV s intended use is to support longer sortie lengths with multiple Extra Vehicular Activities (EVAs) on a higher magnitude than any previous vehicle. This paper presents an analysis of a high pressure oxygen cascade storage and delivery system that will accommodate the crew during long duration Intra Vehicular Activity (IVA) and capable of multiple high pressure oxygen fills to the Portable Life Support System (PLSS) worn by the crew during EVAs. A cascade is a high pressure gas cylinder system used for the refilling of smaller compressed gas cylinders. Each of the large cylinders are filled by a compressor, but the cascade system allows small cylinders to be filled without the need of a compressor. In addition, the cascade system is useful as a "reservoir" to accommodate low pressure needs. A regression model was developed to provide the mechanism to size the cascade systems subject to constraints such as number of crew, extravehicular activity duration and frequency, and ullage gas requirements under contingency scenarios. The sizing routine employed a numerical integration scheme to determine gas compressibility changes during depressurization and compressibility effects were captured using the Soave-Redlich-Kwong (SRK) equation of state. A multi-dimensional nonlinear optimization routine was used to find the minimum cascade tank system mass that meets the mission requirements. The sizing algorithms developed in this analysis provide a powerful framework to assess cascade filling, compressor, and hybrid systems to design long duration vehicle ECLSS architecture. 1
Debris/ice/TPS assessment and photographic analysis for shuttle mission STS-35
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Higginbotham, Scott A.; Davis, James Bradley
1991-01-01
A debris/ice/Thermal Protection System (TPS) assessment and photographic analysis was conducted for Space Shuttle Mission STS-35. Debris inspections of the flight elements and launch pad were performed before and after the launch. Ice/frost conditions on the External Tank were assessed by the use of computer programs, monographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography was analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage and/or in-flight anomalies. Documented here are the debris/ice/TPS conditions and photographic analysis of Mission STS-35, and the overall effect of these conditions on the Space Shuttle Program.
Photo-realistic Terrain Modeling and Visualization for Mars Exploration Rover Science Operations
NASA Technical Reports Server (NTRS)
Edwards, Laurence; Sims, Michael; Kunz, Clayton; Lees, David; Bowman, Judd
2005-01-01
Modern NASA planetary exploration missions employ complex systems of hardware and software managed by large teams of. engineers and scientists in order to study remote environments. The most complex and successful of these recent projects is the Mars Exploration Rover mission. The Computational Sciences Division at NASA Ames Research Center delivered a 30 visualization program, Viz, to the MER mission that provides an immersive, interactive environment for science analysis of the remote planetary surface. In addition, Ames provided the Athena Science Team with high-quality terrain reconstructions generated with the Ames Stereo-pipeline. The on-site support team for these software systems responded to unanticipated opportunities to generate 30 terrain models during the primary MER mission. This paper describes Viz, the Stereo-pipeline, and the experiences of the on-site team supporting the scientists at JPL during the primary MER mission.
NASA Technical Reports Server (NTRS)
Kwadrat, Carl F.; Horne, William D.; Edwards, Bernard L.
2002-01-01
In order to avoid selecting inadequate inter-spacecraft cross-link communications standards for Distributed Spacecraft System (DSS) missions, it is first necessary to identify cross-link communications strategies and requirements common to a cross-section of proposed missions. This paper addresses the cross-link communication strategies and requirements derived from a survey of 39 DSS mission descriptions that are projected for potential launch within the next 20 years. The inter-spacecraft communications strategies presented are derived from the topological and communications constraints from the DSS missions surveyed. Basic functional requirements are derived from an analysis of the fundamental activities that must be undertaken to establish and maintain a cross-link between two DSS spacecraft. Cross-link bandwidth requirements are derived from high-level assessments of mission science objectives and operations concepts. Finally, a preliminary assessment of possible cross-link standards is presented within the context of the basic operational and interoperability requirements.
NASA Technical Reports Server (NTRS)
1973-01-01
A comprehensive analysis and parametric design effort was conducted under the earth-storable phase of the program. Passive Acquisition/expulsion system concepts were evaluated for a reusable Orbital Maneuvering System (OMS) application. The passive surface tension technique for providing gas free liquid on demand was superior to other propellant acquisition methods. Systems using fine mesh screens can provide the requisite stability and satisfy OMS mission requirements. Both fine mesh screen liner and trap systems were given detailed consideration in the parametric design, and trap systems were selected for this particular application. These systems are compatible with the 100- to 500-manned mission reuse requirements.
Mission Architecture and Technology Options for a Flagship Class Venus In Situ Mission
NASA Technical Reports Server (NTRS)
Balint, Tibor S.; Kwok, Johnny H.; Kolawa, Elizabeth A.; Cutts, James A.; Senske, David A.
2008-01-01
Venus, as part of the inner triad with Earth and Mars, represents an important exploration target if we want to learn more about solar system formation and evolution. Comparative planetology could also elucidate the differences between the past, present, and future of these three planets, and can help with the characterization of potential habitable zones in our solar system and, by extension, extrasolar systems. A long lived in situ Venus mission concept, called the Venus Mobile Explorer, was prominently featured in NASA's 2006 SSE Roadmap and supported in the community White Paper by the Venus Exploration Analysis Group (VEXAG). Long-lived in situ missions are expected to belong to the largest (Flagship) mission class, which would require both enabling and enhancing technologies beside mission architecture options. Furthermore, extreme environment mitigation technologies for Venus are considered long lead development items and are expected to require technology development through a dedicated program. To better understand programmatic and technology needs and the motivating science behind them, in this fiscal year (FY08) NASA is funding a Venus Flaghip class mission study, based on key science and technology drivers identified by a NASA appointed Venus Science and Technology Definition Team (STDT). These mission drivers are then assembled around a suitable mission architecture to further refine technology and cost elements. In this paper we will discuss the connection between the final mission architecture and the connected technology drivers from this NASA funded study, which - if funded - could enable a future Flagship class Venus mission and potentially drive a proposed Venus technology development program.
System design requirements for advanced rotary-wing agricultural aircraft
NASA Technical Reports Server (NTRS)
Lemont, H. E.
1979-01-01
Helicopter aerial dispersal systems were studied to ascertain constraints to the system, the effects of removal of limitations (technical and FAA regulations), and subsystem improvements. Productivity indices for the aircraft and swath effects were examined. Typical missions were formulated through conversations with operators, and differing gross weight aircraft were synthesized to perform these missions. Economic analysis of missions and aircraft indicated a general correlation of small aircraft (3000 lb gross weight) suitability for small fields (25 acres), and low dispersion rates (less than 32 lb/acre), with larger aircraft (12,000 lb gross weight) being more favorable for bigger fields (200 acres) and heavier dispersal rates (100 lb/acre). Operator problems, possible aircraft and system improvements, and selected removal of operating limitations were reviewed into recommendations for future NASA research items.
Study of binary asteroids with three space missions
NASA Astrophysics Data System (ADS)
Kovalenko, Irina; Doressoundiram, Alain; Hestroffer, Daniel
Binary and multiple asteroids are common in the Solar system and encountered in various places going from Near-Earth region, to the main-belt, Trojans and Centaurs, and beyond Neptune. Their study can provide insight on the Solar System formation and its subsequent dynamical evolution. Binaries are also objects of high interest because they provide fundamental physical parameters such as mass and density, and hence clues on the early Solar System, or other processes that are affecting asteroid over time. We will present our current project on analysis of such systems based on three space missions. The first one is the Herschel space observatory (ESA), the largest infrared telescope ever launched. Thirty Centaurs and trans-Neptunian binaries were observed by Herschel and the measurement allowed to define size, albedo and thermal properties [1]. The second one is the satellite Gaia (ESA). This mission is designed to chart a three-dimensional map of the Galaxy. Gaia will provide positional measurements of Solar System Objects - including asteroid binaries - with unprecedented accuracy [2]. And the third one is the proposed mission AIDA, which would study the effects of crashing a spacecraft into an asteroid [3]. The objectives are to demonstrate the ability to modify the trajectory of an asteroid, to precisely measure its trajectory change, and to characterize its physical properties. The target of this mission is a binary system: (65803) Didymos. This encompasses orbital characterisations for both astrometric and resolved binaries, as well as unbound orbit, study of astrometric binaries, derivation of densities, and general statistical analysis of physical and orbital properties of trans-Neptunian and other asteroid binaries. Acknowledgements : work supported by Labex ESEP (ANR N° 2011-LABX-030) [1] Müller T., Lellouch E., Stansberry J. et al. 2009. TNOs are Cool: A Survey of the Transneptunian Region. EM&P 105, 209-219. [2] Mignard F., Cellino A., Muinonen K. et al. 2007. The Gaia Mission: Expected Applications to Asteroid Science. EM&P 1001, 97-125. [3] Galvez A., Carnelli I. et al. 2013. AIDA: The Asteroid Impact & Deflection Assessment Mission. EPSC 2013 - 1043.
NASA Astrophysics Data System (ADS)
Cardesin Moinelo, Alejandro; Vallat, Claire; Altobelli, Nicolas; Frew, David; Llorente, Rosario; Costa, Marc; Almeida, Miguel; Witasse, Olivier
2016-10-01
JUICE is the first large mission in the framework of ESA's Cosmic Vision 2015-2025 program. JUICE will survey the Jovian system with a special focus on three of the Galilean Moons: Europa, Ganymede and Callisto.The mission has recently been adopted and big efforts are being made by the Science Operations Center (SOC) at the European Space and Astronomy Centre (ESAC) in Madrid for the development of tools to provide the necessary support to the Science Working Team (SWT) for science opportunity analysis and early assessment of science operation scenarios. This contribution will outline some of the tools being developed within ESA and in collaboration with the Navigation and Ancillary Information Facility (NAIF) at JPL.The Mission Analysis and Payload Planning Support (MAPPS) is developed by ESA and has been used by most of ESA's planetary missions to generate and validate science observation timelines for the simulation of payload and spacecraft operations. MAPPS has the capability to compute and display all the necessary geometrical information such as the distances, illumination angles and projected field-of-view of an imaging instrument on the surface of the given body and a preliminary setup is already in place for the early assessment of JUICE science operations.NAIF provides valuable SPICE support to the JUICE mission and several tools are being developed to compute and visualize science opportunities. In particular the WebGeoCalc and Cosmographia systems are provided by NAIF to compute time windows and create animations of the observation geometry available via traditional SPICE data files, such as planet orbits, spacecraft trajectory, spacecraft orientation, instrument field-of-view "cones" and instrument footprints. Other software tools are being developed by ESA and other collaborating partners to support the science opportunity analysis for all missions, like the SOLab (Science Operations Laboratory) or new interfaces for observation definitions and opportunity window databases.
Periods of High Intensity Solar Proton Flux
NASA Technical Reports Server (NTRS)
Xapsos, Michael A.; Stauffer, Craig A.; Jordan, Thomas M.; Adams, James H.; Dietrich, William F.
2012-01-01
Analysis is presented for times during a space mission that specified solar proton flux levels are exceeded. This includes both total time and continuous time periods during missions. Results for the solar maximum and solar minimum phases of the solar cycle are presented and compared for a broad range of proton energies and shielding levels. This type of approach is more amenable to reliability analysis for spacecraft systems and instrumentation than standard statistical models.
Toward lowering the cost of mission operations
NASA Technical Reports Server (NTRS)
Wall, S. D.; Ledbetter, K. W.
1993-01-01
The mission operations system is one of the more significant drivers of the cost of the mission operations and data analysis segment of missions. In large or long-lived projects, the MOS can also be a driver in total mission cost. Larger numbers of missions, together with an increasingly cost-conscious environment, dictate that future missions must more strictly control costs as they perform to their requirements. It is therefore prudent to examine the conduct of past missions for ways to conserve resources. In this paper we review inputs made to past projects' 'lessons-learned' activities, in which personnel from past projects (among other things) identified major cost drivers of MOS's and considered how economies were or might have been realized in both design and performance of their MOS. Common themes among four such reviews are summarized in an attempt to provide suggestions for cost reduction in future missions.
Software Construction and Analysis Tools for Future Space Missions
NASA Technical Reports Server (NTRS)
Lowry, Michael R.; Clancy, Daniel (Technical Monitor)
2002-01-01
NASA and its international partners will increasingly depend on software-based systems to implement advanced functions for future space missions, such as Martian rovers that autonomously navigate long distances exploring geographic features formed by surface water early in the planet's history. The software-based functions for these missions will need to be robust and highly reliable, raising significant challenges in the context of recent Mars mission failures attributed to software faults. After reviewing these challenges, this paper describes tools that have been developed at NASA Ames that could contribute to meeting these challenges; 1) Program synthesis tools based on automated inference that generate documentation for manual review and annotations for automated certification. 2) Model-checking tools for concurrent object-oriented software that achieve memorability through synergy with program abstraction and static analysis tools.
Navigation Strategies for Primitive Solar System Body Rendezvous and Proximity Operations
NASA Technical Reports Server (NTRS)
Getzandanner, Kenneth M.
2011-01-01
A wealth of scientific knowledge regarding the composition and evolution of the solar system can be gained through reconnaissance missions to primitive solar system bodies. This paper presents analysis of a baseline navigation strategy designed to address the unique challenges of primitive body navigation. Linear covariance and Monte Carlo error analysis was performed on a baseline navigation strategy using simulated data from a· design reference mission (DRM). The objective of the DRM is to approach, rendezvous, and maintain a stable orbit about the near-Earth asteroid 4660 Nereus. The outlined navigation strategy and resulting analyses, however, are not necessarily limited to this specific target asteroid as they may he applicable to a diverse range of mission scenarios. The baseline navigation strategy included simulated data from Deep Space Network (DSN) radiometric tracking and optical image processing (OpNav). Results from the linear covariance and Monte Carlo analyses suggest the DRM navigation strategy is sufficient to approach and perform proximity operations in the vicinity of the target asteroid with meter-level accuracy.
Roche, Stephanie; Hall-Clifford, Rachel
2015-01-01
Each year, thousands of Guatemalans receive non-emergent surgical care from short-term medical missions (STMMs) hosted by local non-governmental organizations (NGOs) and staffed by foreign visiting medical teams (VMTs). The purpose of this study was to explore the perspectives of individuals based in NGOs involved in the coordination of surgical missions to better understand how these missions articulate with the larger Guatemalan health care system. During the summers of 2011 and 2013, in-depth interviews were conducted with 25 representatives from 11 different Guatemalan NGOs with experience with surgical missions. Transcripts were analysed for major themes using an inductive qualitative data analysis process. NGOs made use of the formal health care system but were limited by several factors, including cost, issues of trust and current ministry of health policy. Participants viewed the government health care system as a potential resource and expressed a desire for more collaboration. The current practices of STMMs are not conducive to health system strengthening. The role of STMMs must be defined and widely understood by all stakeholders in order to improve patient safety and effectively utilise health resources. Priority should be placed on aligning the work of VMTs with that of the larger health care system.
Probabilistic Analysis of Space Shuttle Body Flap Actuator Ball Bearings
NASA Technical Reports Server (NTRS)
Oswald, Fred B.; Jett, Timothy R.; Predmore, Roamer E.; Zaretsky, Erin V.
2007-01-01
A probabilistic analysis, using the 2-parameter Weibull-Johnson method, was performed on experimental life test data from space shuttle actuator bearings. Experiments were performed on a test rig under simulated conditions to determine the life and failure mechanism of the grease lubricated bearings that support the input shaft of the space shuttle body flap actuators. The failure mechanism was wear that can cause loss of bearing preload. These tests established life and reliability data for both shuttle flight and ground operation. Test data were used to estimate the failure rate and reliability as a function of the number of shuttle missions flown. The Weibull analysis of the test data for a 2-bearing shaft assembly in each body flap actuator established a reliability level of 99.6 percent for a life of 12 missions. A probabilistic system analysis for four shuttles, each of which has four actuators, predicts a single bearing failure in one actuator of one shuttle after 22 missions (a total of 88 missions for a 4-shuttle fleet). This prediction is comparable with actual shuttle flight history in which a single actuator bearing was found to have failed by wear at 20 missions.
Probabilistic Analysis of Space Shuttle Body Flap Actuator Ball Bearings
NASA Technical Reports Server (NTRS)
Oswald, Fred B.; Jett, Timothy R.; Predmore, Roamer E.; Zaretsky, Erwin V.
2008-01-01
A probabilistic analysis, using the 2-parameter Weibull-Johnson method, was performed on experimental life test data from space shuttle actuator bearings. Experiments were performed on a test rig under simulated conditions to determine the life and failure mechanism of the grease lubricated bearings that support the input shaft of the space shuttle body flap actuators. The failure mechanism was wear that can cause loss of bearing preload. These tests established life and reliability data for both shuttle flight and ground operation. Test data were used to estimate the failure rate and reliability as a function of the number of shuttle missions flown. The Weibull analysis of the test data for the four actuators on one shuttle, each with a 2-bearing shaft assembly, established a reliability level of 96.9 percent for a life of 12 missions. A probabilistic system analysis for four shuttles, each of which has four actuators, predicts a single bearing failure in one actuator of one shuttle after 22 missions (a total of 88 missions for a 4-shuttle fleet). This prediction is comparable with actual shuttle flight history in which a single actuator bearing was found to have failed by wear at 20 missions.
NASA Technical Reports Server (NTRS)
Gisser, D. G.; Frederick, D. K.; Lashmet, P. K.; Sandor, G. N.; Shen, C. N.; Yerazunis, S. Y.
1975-01-01
Problems related to an unmanned exploration of the planet Mars by means of an autonomous roving planetary vehicle are investigated. These problems include: design, construction and evaluation of the vehicle itself and its control and operating systems. More specifically, vehicle configuration, dynamics, control, propulsion, hazard detection systems, terrain sensing and modelling, obstacle detection concepts, path selection, decision-making systems, and chemical analyses of samples are studied. Emphasis is placed on development of a vehicle capable of gathering specimens and data for an Augmented Viking Mission or to provide the basis for a Sample Return Mission.
SEP thrust subsystem performance sensitivity analysis
NASA Technical Reports Server (NTRS)
Atkins, K. L.; Sauer, C. G., Jr.; Kerrisk, D. J.
1973-01-01
This is a two-part report on solar electric propulsion (SEP) performance sensitivity analysis. The first part describes the preliminary analysis of the SEP thrust system performance for an Encke rendezvous mission. A detailed description of thrust subsystem hardware tolerances on mission performance is included together with nominal spacecraft parameters based on these tolerances. The second part describes the method of analysis and graphical techniques used in generating the data for Part 1. Included is a description of both the trajectory program used and the additional software developed for this analysis. Part 2 also includes a comprehensive description of the use of the graphical techniques employed in this performance analysis.
NASA Technical Reports Server (NTRS)
Truszkowski, Walt; Obenschain, Arthur F. (Technical Monitor)
2002-01-01
Currently, spacecraft ground systems have a well defined and somewhat standard architecture and operations concept. Based on domain analysis studies of various control centers conducted over the years it is clear that ground systems have core capabilities and functionality that are common across all ground systems. This observation alone supports the realization of reuse. Additionally, spacecraft ground systems are increasing in their ability to do things autonomously. They are being engineered using advanced expert systems technology to provide automated support for operators. A clearer understanding of the possible roles of agent technology is advancing the prospects of greater autonomy for these systems. Many of their functional and management tasks are or could be supported by applied agent technology, the dynamics of the ground system's infrastructure could be monitored by agents, there are intelligent agent-based approaches to user-interfaces, etc. The premise of this paper is that the concepts associated with software reuse, applicable in consideration of classically-engineered ground systems, can be updated to address their application in highly agent-based realizations of future ground systems. As a somewhat simplified example consider the following situation, involving human agents in a ground system context. Let Group A of controllers be working on Mission X. They are responsible for the command, control and health and safety of the Mission X spacecraft. Let us suppose that mission X successfully completes it mission and is turned off. Group A could be dispersed or perhaps move to another Mission Y. In this case there would be reuse of the human agents from Mission X to Mission Y. The Group A agents perform their well-understood functions in a somewhat but related context. There will be a learning or familiarization process that the group A agents go through to make the new context, determined by the new Mission Y, understood. This simplified scenario highlights some of the major issues that need to be addressed when considering the situation where Group A is composed of software-based agents (not their human counterparts) and they migrate from one mission support system to another. This paper will address: - definition of an agent architecture appropriate to support reuse; - identification of non-mission-specific agent capabilities required; - appropriate knowledge representation schemes for mission-specific knowledge; - agent interface with mission-specific knowledge (a type of Learning); development of a fully-operational group of cooperative software agents for ground system support; architecture and operation of a repository of reusable agents that could be the source of intelligent components for realizing an autonomous (or nearly autonomous) agent-based ground system, and an agent-based approach to repository management and operation (an intelligent interface for human use of the repository in a ground-system development activity).
Discovery and New Frontiers Project Budget Analysis Tool
NASA Technical Reports Server (NTRS)
Newhouse, Marilyn E.
2011-01-01
The Discovery and New Frontiers (D&NF) programs are multi-project, uncoupled programs that currently comprise 13 missions in phases A through F. The ability to fly frequent science missions to explore the solar system is the primary measure of program success. The program office uses a Budget Analysis Tool to perform "what-if" analyses and compare mission scenarios to the current program budget, and rapidly forecast the programs ability to meet their launch rate requirements. The tool allows the user to specify the total mission cost (fixed year), mission development and operations profile by phase (percent total mission cost and duration), launch vehicle, and launch date for multiple missions. The tool automatically applies inflation and rolls up the total program costs (in real year dollars) for comparison against available program budget. Thus, the tool allows the user to rapidly and easily explore a variety of launch rates and analyze the effect of changes in future mission or launch vehicle costs, the differing development profiles or operational durations of a future mission, or a replan of a current mission on the overall program budget. Because the tool also reports average monthly costs for the specified mission profile, the development or operations cost profile can easily be validate against program experience for similar missions. While specifically designed for predicting overall program budgets for programs that develop and operate multiple missions concurrently, the basic concept of the tool (rolling up multiple, independently-budget lines) could easily be adapted to other applications.
Architectural development of an advanced EVA Electronic System
NASA Technical Reports Server (NTRS)
Lavelle, Joseph
1992-01-01
An advanced electronic system for future EVA missions (including zero gravity, the lunar surface, and the surface of Mars) is under research and development within the Advanced Life Support Division at NASA Ames Research Center. As a first step in the development, an optimum system architecture has been derived from an analysis of the projected requirements for these missions. The open, modular architecture centers around a distributed multiprocessing concept where the major subsystems independently process their own I/O functions and communicate over a common bus. Supervision and coordination of the subsystems is handled by an embedded real-time operating system kernel employing multitasking software techniques. A discussion of how the architecture most efficiently meets the electronic system functional requirements, maximizes flexibility for future development and mission applications, and enhances the reliability and serviceability of the system in these remote, hostile environments is included.
A Mission Planning Approach for Precision Farming Systems Based on Multi-Objective Optimization.
Zhai, Zhaoyu; Martínez Ortega, José-Fernán; Lucas Martínez, Néstor; Rodríguez-Molina, Jesús
2018-06-02
As the demand for food grows continuously, intelligent agriculture has drawn much attention due to its capability of producing great quantities of food efficiently. The main purpose of intelligent agriculture is to plan agricultural missions properly and use limited resources reasonably with minor human intervention. This paper proposes a Precision Farming System (PFS) as a Multi-Agent System (MAS). Components of PFS are treated as agents with different functionalities. These agents could form several coalitions to complete the complex agricultural missions cooperatively. In PFS, mission planning should consider several criteria, like expected benefit, energy consumption or equipment loss. Hence, mission planning could be treated as a Multi-objective Optimization Problem (MOP). In order to solve MOP, an improved algorithm, MP-PSOGA, is proposed, taking advantages of the Genetic Algorithms and Particle Swarm Optimization. A simulation, called precise pesticide spraying mission, is performed to verify the feasibility of the proposed approach. Simulation results illustrate that the proposed approach works properly. This approach enables the PFS to plan missions and allocate scarce resources efficiently. The theoretical analysis and simulation is a good foundation for the future study. Once the proposed approach is applied to a real scenario, it is expected to bring significant economic improvement.
Instrumentation for Mars Environments
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.
1997-01-01
The main portion of the project was to support the "MAE" experiment on the Mars Pathfinder mission and to design instrumentation for future space missions to measure dust deposition on Mars and to characterize the properties of the dust. A second task was to analyze applications for photovoltaics in new space environments, and a final task was analysis of advanced applications for solar power, including planetary probes, photovoltaic system operation on Mars, and satellite solar power systems.
1991-01-01
Estimates, in support force structure, and identifying of cost- effectiveness studies , other system characteristics. system analysis efforts, and trade- A...mission effectiveness studies , used to justify technology evaluate the results in terms funding. These technology of benefit vs. cost, and marketers often...the formal studies serve on mission effectiveness and to rubber stamp these prede- ultimately, benefit vs. cost termined solutions. In an 101 attempt to
The Case for Deep Space Telecommunications Relay Stations
NASA Technical Reports Server (NTRS)
Chandler, Charles W.; Miranda, Felix A. (Technical Monitor)
2004-01-01
Each future mission to Jupiter and beyond must carry the traditional suite of telecommunications systems for command and control and for mission data transmission to earth. The telecommunications hardware includes the large antenna and the high-power transmitters that enable the communications link. Yet future spacecraft will be scaled down from the hallmark missions of Galileo and Cassini to Jupiter and Saturn, respectively. This implies that a higher percentage of the spacecraft weight and power must be dedicated to telecommunications system. The following analysis quantifies this impact to future missions and then explores the merits of an alternative approach using deep space relay stations for the link back to earth. It will be demonstrated that a telecommunications relay satellite would reduce S/C telecommunications weight and power sufficiently to add one to two more instruments.
NASA Astrophysics Data System (ADS)
Diehl, Roger E.; Schinnerer, Ralph G.; Williamson, Walton E.; Boden, Daryl G.
The present conference discusses topics in orbit determination, tethered satellite systems, celestial mechanics, guidance optimization, flexible body dynamics and control, attitude dynamics and control, Mars mission analyses, earth-orbiting mission analysis/debris, space probe mission analyses, and orbital computation numerical analyses. Attention is given to electrodynamic forces for control of tethered satellite systems, orbiting debris threats to asteroid flyby missions, launch velocity requirements for interceptors of short range ballistic missiles, transfers between libration-point orbits in the elliptic restricted problem, minimum fuel spacecraft reorientation, orbital guidance for hitting a fixed point at maximum speed, efficient computation of satellite visibility periods, orbit decay and reentry prediction for space debris, and the determination of satellite close approaches.
NASA Technical Reports Server (NTRS)
Diehl, Roger E. (Editor); Schinnerer, Ralph G. (Editor); Williamson, Walton E. (Editor); Boden, Daryl G. (Editor)
1992-01-01
The present conference discusses topics in orbit determination, tethered satellite systems, celestial mechanics, guidance optimization, flexible body dynamics and control, attitude dynamics and control, Mars mission analyses, earth-orbiting mission analysis/debris, space probe mission analyses, and orbital computation numerical analyses. Attention is given to electrodynamic forces for control of tethered satellite systems, orbiting debris threats to asteroid flyby missions, launch velocity requirements for interceptors of short range ballistic missiles, transfers between libration-point orbits in the elliptic restricted problem, minimum fuel spacecraft reorientation, orbital guidance for hitting a fixed point at maximum speed, efficient computation of satellite visibility periods, orbit decay and reentry prediction for space debris, and the determination of satellite close approaches.
Solid Waste Management Requirements Definition for Advanced Life Support Missions: Results
NASA Technical Reports Server (NTRS)
Alazraki, Michael P.; Hogan, John; Levri, Julie; Fisher, John; Drysdale, Alan
2002-01-01
Prior to determining what Solid Waste Management (SWM) technologies should be researched and developed by the Advanced Life Support (ALS) Project for future missions, there is a need to define SWM requirements. Because future waste streams will be highly mission-dependent, missions need to be defined prior to developing SWM requirements. The SWM Working Group has used the mission architecture outlined in the System Integration, Modeling and Analysis (SIMA) Element Reference Missions Document (RMD) as a starting point in the requirement development process. The missions examined include the International Space Station (ISS), a Mars Dual Lander mission, and a Mars Base. The SWM Element has also identified common SWM functionalities needed for future missions. These functionalities include: acceptance, transport, processing, storage, monitoring and control, and disposal. Requirements in each of these six areas are currently being developed for the selected missions. This paper reviews the results of this ongoing effort and identifies mission-dependent resource recovery requirements.
Titan exploration with advanced systems. A study of future mission concepts
NASA Technical Reports Server (NTRS)
1983-01-01
The requirements, capabilities, and programmatic issues associated with science-intensive mission concepts for the advanced exploration of Saturn's largest satellite are assessed. The key questions to be answered by a Titan exploratory mission are: (1) the atmospheric composition; (2) the atmospheric structure; (3) the nature of the surface; and (4) the nature of the interior of Titan. Five selected mission concepts are described in terms of their design requirements. Mission hardware concepts include balloons and/or blimps which will allow both atmospheric and surface observations for a long period of time. Key aspects of performance analysis are presented. Mission profiles and cost summaries are given. Candidate payloads are identified for imaging and nonimaging orbiters, a buoyant station, a haze probe, and a penetrator.
Simulation Framework for Rapid Entry, Descent, and Landing (EDL) Analysis. Volume 2; Appendices
NASA Technical Reports Server (NTRS)
Murri, Daniel G.
2010-01-01
The NASA Engineering and Safety Center (NESC) was requested to establish the Simulation Framework for Rapid Entry, Descent, and Landing (EDL) Analysis assessment, which involved development of an enhanced simulation architecture using the Program to Optimize Simulated Trajectories II (POST2) simulation tool. The assessment was requested to enhance the capability of the Agency to provide rapid evaluation of EDL characteristics in systems analysis studies, preliminary design, mission development and execution, and time-critical assessments. Many of the new simulation framework capabilities were developed to support the Agency EDL Systems Analysis (EDL-SA) team, that is conducting studies of the technologies and architectures that are required to enable higher mass robotic and human mission to Mars. The appendices to the original report are contained in this document.
Simulation Framework for Rapid Entry, Descent, and Landing (EDL) Analysis, Phase 2 Results
NASA Technical Reports Server (NTRS)
Murri, Daniel G.
2011-01-01
The NASA Engineering and Safety Center (NESC) was requested to establish the Simulation Framework for Rapid Entry, Descent, and Landing (EDL) Analysis assessment, which involved development of an enhanced simulation architecture using the Program to Optimize Simulated Trajectories II simulation tool. The assessment was requested to enhance the capability of the Agency to provide rapid evaluation of EDL characteristics in systems analysis studies, preliminary design, mission development and execution, and time-critical assessments. Many of the new simulation framework capabilities were developed to support the Agency EDL-Systems Analysis (SA) team that is conducting studies of the technologies and architectures that are required to enable human and higher mass robotic missions to Mars. The findings, observations, and recommendations from the NESC are provided in this report.
Simulation Framework for Rapid Entry, Descent, and Landing (EDL) Analysis. Volume 1
NASA Technical Reports Server (NTRS)
Murri, Daniel G.
2010-01-01
The NASA Engineering and Safety Center (NESC) was requested to establish the Simulation Framework for Rapid Entry, Descent, and Landing (EDL) Analysis assessment, which involved development of an enhanced simulation architecture using the Program to Optimize Simulated Trajectories II (POST2) simulation tool. The assessment was requested to enhance the capability of the Agency to provide rapid evaluation of EDL characteristics in systems analysis studies, preliminary design, mission development and execution, and time-critical assessments. Many of the new simulation framework capabilities were developed to support the Agency EDL Systems Analysis (EDL-SA) team, that is conducting studies of the technologies and architectures that are required to enable higher mass robotic and human mission to Mars. The findings of the assessment are contained in this report.
Revalidation of the Huygens Descent Control Sub-System
NASA Technical Reports Server (NTRS)
2005-01-01
The Huygens probe, part of the Cassini mission to Saturn, is designed to investigate the atmosphere of Titan, Saturn's largest moon. The passage of the probe through the atmosphere is controlled by the Descent Control Sub-System (DCSS), which consists of three parachutes and associated mechanisms. The Cassini / Huygens mission was launched in October 1997 and was designed during the early 1990's. During the time since the design and launch, analysis capabilities have improved significantly, knowledge of the Titan environment has improved and the baseline mission has been modified. Consequently, a study was performed to revalidate the DCSS design against the current predictions.
NASA Technical Reports Server (NTRS)
1991-01-01
This document presents trade studies and reference concept designs accomplished during a study of Space Transfer Concepts and Analyses for Exploration Missions (STCAEM). This volume contains the major top level trades, level 2 trades conducted in support of NASA's Lunar/Mars Exploration Program Office, and a synopsis of the vehicles for different propulsion systems under trade consideration. The vehicles are presented in more detail in other volumes of this report. Book 1 of Volume 1 covers the following analyses: lunar/Mars commonality trades, lunar/Mars mission operations, and Mars transfer systems.
NASA Technical Reports Server (NTRS)
1972-01-01
The results are reported of additional studies which were conducted to supplement conclusions drawn in the MSC Mission Report and analyses which were not completed in time to meet the Mission Report dealine. A detailed evaluation of the Abort Guidance System sensor assembly and results from the investigation of the X gyro loop anomaly are included. Further evidence is presented substantiating the excellent LM IMU performance obtained from preliminary indications. A detailed study is presented of the procedural changes implemented on Apollo 16 to diminish the number and duration of interruptions to the CSM DAP attitude maneuver during P20 Option 5 operations.
System analysis for the Huntsville Operational Support Center distributed computer system
NASA Technical Reports Server (NTRS)
Ingels, F. M.; Mauldin, J.
1984-01-01
The Huntsville Operations Support Center (HOSC) is a distributed computer system used to provide real time data acquisition, analysis and display during NASA space missions and to perform simulation and study activities during non-mission times. The primary purpose is to provide a HOSC system simulation model that is used to investigate the effects of various HOSC system configurations. Such a model would be valuable in planning the future growth of HOSC and in ascertaining the effects of data rate variations, update table broadcasting and smart display terminal data requirements on the HOSC HYPERchannel network system. A simulation model was developed in PASCAL and results of the simulation model for various system configuraions were obtained. A tutorial of the model is presented and the results of simulation runs are presented. Some very high data rate situations were simulated to observe the effects of the HYPERchannel switch over from contention to priority mode under high channel loading.
A Virtual Mission Operations Center: Collaborative Environment
NASA Technical Reports Server (NTRS)
Medina, Barbara; Bussman, Marie; Obenschain, Arthur F. (Technical Monitor)
2002-01-01
The Virtual Mission Operations Center - Collaborative Environment (VMOC-CE) intent is to have a central access point for all the resources used in a collaborative mission operations environment to assist mission operators in communicating on-site and off-site in the investigation and resolution of anomalies. It is a framework that as a minimum incorporates online chat, realtime file sharing and remote application sharing components in one central location. The use of a collaborative environment in mission operations opens up the possibilities for a central framework for other project members to access and interact with mission operations staff remotely. The goal of the Virtual Mission Operations Center (VMOC) Project is to identify, develop, and infuse technology to enable mission control by on-call personnel in geographically dispersed locations. In order to achieve this goal, the following capabilities are needed: Autonomous mission control systems Automated systems to contact on-call personnel Synthesis and presentation of mission control status and history information Desktop tools for data and situation analysis Secure mechanism for remote collaboration commanding Collaborative environment for remote cooperative work The VMOC-CE is a collaborative environment that facilitates remote cooperative work. It is an application instance of the Virtual System Design Environment (VSDE), developed by NASA Goddard Space Flight Center's (GSFC) Systems Engineering Services & Advanced Concepts (SESAC) Branch. The VSDE is a web-based portal that includes a knowledge repository and collaborative environment to serve science and engineering teams in product development. It is a "one stop shop" for product design, providing users real-time access to product development data, engineering and management tools, and relevant design specifications and resources through the Internet. The initial focus of the VSDE has been to serve teams working in the early portion of the system/product lifecycle - concept development, proposal preparation, and formulation. The VMOC-CE expands the application of the VSDE into the operations portion of the system lifecycle. It will enable meaningful and real-time collaboration regardless of the geographical distribution of project team members. Team members will be able to interact in satellite operations, specifically for resolving anomalies, through access to a desktop computer and the Internet. Mission Operations Management will be able to participate and monitor up to the minute status of anomalies or other mission operations issues. In this paper we present the VMOC-CE project, system capabilities, and technologies.
Nuclear reactor descriptions for space power systems analysis
NASA Technical Reports Server (NTRS)
Mccauley, E. W.; Brown, N. J.
1972-01-01
For the small, high performance reactors required for space electric applications, adequate neutronic analysis is of crucial importance, but in terms of computational time consumed, nuclear calculations probably yield the least amount of detail for mission analysis study. It has been found possible, after generation of only a few designs of a reactor family in elaborate thermomechanical and nuclear detail to use simple curve fitting techniques to assure desired neutronic performance while still performing the thermomechanical analysis in explicit detail. The resulting speed-up in computation time permits a broad detailed examination of constraints by the mission analyst.
MUSE - Mission to the Uranian system: Unveiling the evolution and formation of ice giants
NASA Astrophysics Data System (ADS)
Bocanegra-Bahamón, Tatiana; Bracken, Colm; Costa Sitjà, Marc; Dirkx, Dominic; Gerth, Ingo; Konstantinidis, Kostas; Labrianidis, Christos; Laneuville, Matthieu; Luntzer, Armin; MacArthur, Jane L.; Maier, Andrea; Morschhauser, Achim; Nordheim, Tom A.; Sallantin, Renaud; Tlustos, Reinhard
2015-05-01
The planet Uranus, one of the two ice giants in the Solar System, has only been visited once by the Voyager 2 spacecraft in 1986. Ice giants represent a fundamental class of planets, and many known exoplanets fall within this category. Therefore, a dedicated mission to an ice giant is crucial to improve the understanding of the formation, evolution and current characteristics of such planets in order to extend the knowledge of both the Solar System and exoplanetary systems. In the study at hand, the rationale, selection, and conceptual design for a mission to investigate the Uranian system, as an archetype for ice giants, is presented. A structured analysis of science questions relating to the Uranian system is performed, categorized by the themes atmosphere, interior, moons and rings, and magnetosphere. In each theme, science questions are defined, with their relative importance in the theme quantified. Additionally, top-level weights for each theme are defined, with atmosphere and interior weighted the strongest, as they are more related to both exoplanetary systems and the Uranian system, than the other two themes (which are more specific for the planet itself). Several top level mission architecture aspects have been defined, from which the most promising concepts were generated using heuristic methods. A trade-off analysis of these concepts is presented, separately, for engineering aspects, such as cost, complexity, and risk, and for science aspects. The science score for each mission is generated from the capability of each mission concept to answer the science questions. The trade-off results in terms of relative science and engineering weight are presented, and competitive mission concepts are analyzed based on the preferred mission type. A mission design point for a typical flagship science mission is selected from the trade space. It consists of a Uranus orbiter with a dry mass of 2073 kg including 402 kg of payload and a Uranus entry probe, which is to perform measurements down 100 bar atmospheric pressure. The orbiter science phase will consist of a Uranus orbit phase of approximately 2 years in a highly elliptical orbit, during which 36 Uranus orbits are performed. Subsequently, a moon phase is performed, during which the periapsis will be raised in five steps, facilitating 9 flybys of each of Uranus' major moons. A preliminary vehicle design is presented, seeking the best compromise between the design drivers, which basically derive from the large distance between Uranus and the Earth (e.g., high thermal load during Venus flyby, low thermal load during Uranus science phase, low data-rate during Uranus science phase, the need of radioisotope power source, etc). This paper is the result of a study carried out during the Alpbach Summer School 2012 "Exploration of the icy planets and their systems" and a one-week follow-up meeting in Graz, Austria. The results of this study show that a flagship ESA L-class mission - consisting of an orbiter with a single atmospheric entry probe and flybys of the main satellites - would be able to address the set of science questions which are identified in the study at hand as the most essential for the understanding of Uranus and its system. The spacecraft, as currently designed, could be launched with an Ariane 5, in 2026, arriving at Uranus in 2044, and operating until 2050. The development of a radioactive power source is the main requirement for feasibility for this mission.
NASA Technical Reports Server (NTRS)
Lawson, Denise L.; James, Mark L.
1989-01-01
The Spacecraft Health Automated Reasoning Prototype (SHARP) is a system designed to demonstrate automated health and status analysis for multi-mission spacecraft and ground data systems operations. Telecommunications link analysis of the Voyager 2 spacecraft is the initial focus for the SHARP system demonstration which will occur during Voyager's encounter with the planet Neptune in August, 1989, in parallel with real time Voyager operations. The SHARP system combines conventional computer science methodologies with artificial intelligence techniques to produce an effective method for detecting and analyzing potential spacecraft and ground systems problems. The system performs real time analysis of spacecraft and other related telemetry, and is also capable of examining data in historical context. A brief introduction is given to the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory. The current method of operation for monitoring the Voyager Telecommunications subsystem is described, and the difficulties associated with the existing technology are highlighted. The approach taken in the SHARP system to overcome the current limitations is also described, as well as both the conventional and artificial intelligence solutions developed in SHARP.
SHARP: A multi-mission AI system for spacecraft telemetry monitoring and diagnosis
NASA Technical Reports Server (NTRS)
Lawson, Denise L.; James, Mark L.
1989-01-01
The Spacecraft Health Automated Reasoning Prototype (SHARP) is a system designed to demonstrate automated health and status analysis for multi-mission spacecraft and ground data systems operations. Telecommunications link analysis of the Voyager II spacecraft is the initial focus for the SHARP system demonstration which will occur during Voyager's encounter with the planet Neptune in August, 1989, in parallel with real-time Voyager operations. The SHARP system combines conventional computer science methodologies with artificial intelligence techniques to produce an effective method for detecting and analyzing potential spacecraft and ground systems problems. The system performs real-time analysis of spacecraft and other related telemetry, and is also capable of examining data in historical context. A brief introduction is given to the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory. The current method of operation for monitoring the Voyager Telecommunications subsystem is described, and the difficulties associated with the existing technology are highlighted. The approach taken in the SHARP system to overcome the current limitations is also described, as well as both the conventional and artificial intelligence solutions developed in SHARP.
Evaluation of Recent Upgrades to the NESS (Nuclear Engine System Simulation) Code
NASA Technical Reports Server (NTRS)
Fittje, James E.; Schnitzler, Bruce G.
2008-01-01
The Nuclear Thermal Rocket (NTR) concept is being evaluated as a potential propulsion technology for exploratory expeditions to the moon, Mars, and beyond. The need for exceptional propulsion system performance in these missions has been documented in numerous studies, and was the primary focus of a considerable effort undertaken during the Rover/NERVA program from 1955 to 1973. The NASA Glenn Research Center is leveraging this past NTR investment in their vehicle concepts and mission analysis studies with the aid of the Nuclear Engine System Simulation (NESS) code. This paper presents the additional capabilities and upgrades made to this code in order to perform higher fidelity NTR propulsion system analysis and design, and a comparison of its results to the Small Nuclear Rocket Engine (SNRE) design.
A fuzzy logic intelligent diagnostic system for spacecraft integrated vehicle health management
NASA Technical Reports Server (NTRS)
Wu, G. Gordon
1995-01-01
Due to the complexity of future space missions and the large amount of data involved, greater autonomy in data processing is demanded for mission operations, training, and vehicle health management. In this paper, we develop a fuzzy logic intelligent diagnostic system to perform data reduction, data analysis, and fault diagnosis for spacecraft vehicle health management applications. The diagnostic system contains a data filter and an inference engine. The data filter is designed to intelligently select only the necessary data for analysis, while the inference engine is designed for failure detection, warning, and decision on corrective actions using fuzzy logic synthesis. Due to its adaptive nature and on-line learning ability, the diagnostic system is capable of dealing with environmental noise, uncertainties, conflict information, and sensor faults.
The Space Launch System and Missions to the Outer Solar System
NASA Astrophysics Data System (ADS)
Klaus, Kurt K.; Post, Kevin
2015-11-01
Introduction: America’s heavy lift launch vehicle, the Space Launch System, enables a variety of planetary science missions. The SLS can be used for most, if not all, of the National Research Council’s Planetary Science Decadal Survey missions to the outer planets. The SLS performance enables larger payloads and faster travel times with reduced operational complexity.Europa Clipper: Our analysis shows that a launch on the SLS would shorten the Clipper mission travel time by more than four years over earlier mission concept studies.Jupiter Trojan Tour and Rendezvous: Our mission concept replaces Advanced Stirling Radioisotope Generators (ASRGs) in the original design with solar arrays. The SLS capability offers many more target opportunities.Comet Surface Sample Return: Although in our mission concept, the SLS launches later than the NRC mission study (November 2022 instead of the original launch date of January 2021), it reduces the total mission time, including sample return, by two years.Saturn Apmospheric Entry Probe: Though Saturn arrivial time remains the same in our concept as the arrival date in the NRC study (2034), launching on the SLS shortens the mission travel time by three years with a direct ballistic trajectory.Uranus Orbiter with Probes: The SLS shortens travel time for an Uranus mission by four years with a Jupiter swing-by trajectory. It removes the need for a solar electric propulsion (SEP) stage used in the NRC mission concept study.Other SLS Science Mission Candidates: Two other mission concepts we are investigating that may be of interest to this community are the Advanced Technology Large Aperature Space Telescope (ATLAST) and the Interstellar Explorer also referred to as the Interstellar Probe.Summary: The first launch of the SLS is scheduled for 2018 followed by the first human launch in 2021. The SLS in its evolving configurations will enable a broad range of exploration missions which will serve to recapture the enthusiasm and commitment that permeated the planetary exploration community during the early years of robotic exploration.
Study of solid rocket motor for space shuttle booster, volume 2, book 3, appendix A
NASA Technical Reports Server (NTRS)
1972-01-01
A systems requirements analysis for the solid propellant rocket engine to be used with the space shuttle was conducted. The systems analysis was developed to define the physical and functional requirements for the systems and subsystems. The operations analysis was performed to identify the requirements of the various launch operations, mission operations, ground operations, and logistic and flight support concepts.
2008-09-01
greatest coverage. Coverage rates will vary depending on the type of orbit. Orbits are generally optimized for the spacecraft mission. Imaging ... DETERMINING MEASURES OF EFFECTIVENESS (MOE) ............. 46 1. MOE Attributes...101 A. DETERMINING COST ALTERNATIVES ......................................... 101 1. All
NASA Technical Reports Server (NTRS)
Arnold, J.; Cheatwood, N.; Powell, D.; Wolf, A.; Guensey, C.; Rivellini, T.; Venkatapathy, E.; Beard, T.; Beutter, B.; Laub, B.
2005-01-01
Contents include the following: 3 Listing of critical capabilities (knowledge, procedures, training, facilities) and metrics for validating that they are mission ready. Examples of critical capabilities and validation metrics: ground test and simulations. Flight testing to prove capabilities are mission ready. Issues and recommendations.
NASA Technical Reports Server (NTRS)
Izygon, Michel
1993-01-01
The work accomplished during the past nine months in order to help three different organizations involved in Flight Planning and in Mission Operations systems, to transition to Object-Oriented Technology, by adopting one of the currently most widely used Object-Oriented analysis and Design Methodology is summarized.
Flight dynamics facility operational orbit determination support for the ocean topography experiment
NASA Technical Reports Server (NTRS)
Bolvin, D. T.; Schanzle, A. F.; Samii, M. V.; Doll, C. E.
1991-01-01
The Ocean Topography Experiment (TOPEX/POSEIDON) mission is designed to determine the topography of the Earth's sea surface across a 3 yr period, beginning with launch in June 1992. The Goddard Space Flight Center Dynamics Facility has the capability to operationally receive and process Tracking and Data Relay Satellite System (TDRSS) tracking data. Because these data will be used to support orbit determination (OD) aspects of the TOPEX mission, the Dynamics Facility was designated to perform TOPEX operational OD. The scientific data require stringent OD accuracy in navigating the TOPEX spacecraft. The OD accuracy requirements fall into two categories: (1) on orbit free flight; and (2) maneuver. The maneuver OD accuracy requirements are of two types; premaneuver planning and postmaneuver evaluation. Analysis using the Orbit Determination Error Analysis System (ODEAS) covariance software has shown that, during the first postlaunch mission phase of the TOPEX mission, some postmaneuver evaluation OD accuracy requirements cannot be met. ODEAS results also show that the most difficult requirements to meet are those that determine the change in the components of velocity for postmaneuver evaluation.
NASA Technical Reports Server (NTRS)
Stysley, Paul
2016-01-01
Applicability to Early Stage Innovation NIAC Cutting edge and innovative technologies are needed to achieve the demanding requirements for NASA origin missions that require sample collection as laid out in the NRC Decadal Survey. This proposal focused on fully understanding the state of remote laser optical trapping techniques for capturing particles and returning them to a target site. In future missions, a laser-based optical trapping system could be deployed on a lander that would then target particles in the lower atmosphere and deliver them to the main instrument for analysis, providing remote access to otherwise inaccessible samples. Alternatively, for a planetary mission the laser could combine ablation and trapping capabilities on targets typically too far away or too hard for traditional drilling sampling systems. For an interstellar mission, a remote laser system could gather particles continuously at a safe distance; this would avoid the necessity of having a spacecraft fly through a target cloud such as a comet tail. If properly designed and implemented, a laser-based optical trapping system could fundamentally change the way scientists designand implement NASA missions that require mass spectroscopy and particle collection.