Modeling Current Transfer from PV Modules Based on Meteorological Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hacke, Peter; Smith, Ryan; Kurtz, Sarah
2016-11-21
Current transferred from the active cell circuit to ground in modules undergoing potential-induced degradation (PID) stress is analyzed with respect to meteorological data. Duration and coulombs transferred as a function of whether the module is wet (from dew or rain) or the extent of uncondensed surface humidity are quantified based on meteorological indicators. With this, functions predicting the mode and rate of coulomb transfer are developed for use in estimating the relative PID stress associated with temperature, moisture, and system voltage in any climate. Current transfer in a framed crystalline silicon module is relatively high when there is no condensedmore » water on the module, whereas current transfer in a thin-film module held by edge clips is not, and displays a greater fraction of coulombs transferred when wet compared to the framed module in the natural environment.« less
Module theoretic zero structures for system matrices
NASA Technical Reports Server (NTRS)
Wyman, Bostwick F.; Sain, Michael K.
1987-01-01
The coordinate-free module-theoretic treatment of transmission zeros for MIMO transfer functions developed by Wyman and Sain (1981) is generalized to include noncontrollable and nonobservable linear dynamical systems. Rational, finitely-generated-modular, and torsion-divisible interpretations of the Rosenbrock system matrix are presented; Gamma-zero and Omega-zero modules are defined and shown to contain the output-decoupling and input-decoupling zero modules, respectively, as submodules; and the cases of left and right invertible transfer functions are considered.
Final design of a space debris removal system
NASA Technical Reports Server (NTRS)
Carlson, Erika; Casali, Steve; Chambers, Don; Geissler, Garner; Lalich, Andrew; Leipold, Manfred; Mach, Richard; Parry, John; Weems, Foley
1990-01-01
The objective is the removal of medium sized orbital debris in low Earth orbits. The design incorporates a transfer vehicle and a netting vehicle to capture the medium size debris. The system is based near an operational space station located at 28.5 degrees inclination and 400 km altitude. The system uses ground based tracking to determine the location of a satellite breakup or debris cloud. This data is unloaded to the transfer vehicle, and the transfer vehicle proceeds to rendezvous with the debris at a lower altitude parking orbit. Next, the netting vehicle is deployed, tracks the targeted debris, and captures it. After expending the available nets, the netting vehicle returns to the transfer vehicle for a new netting module and continues to capture more debris in the target area. Once all the netting modules are expended, the transfer vehicle returns to the space station's orbit, where it is resupplied with new netting modules from a space shuttle load. The new modules are launched by the shuttle from the ground, and the expended modules are taken back to Earth for removal of the captured debris, refueling, and repacking of the nets. Once the netting modules are refurbished, they are taken back into orbit for reuse. In a typical mission, the system has the ability to capture 50 pieces of orbital debris. One mission will take about six months. The system is designed to allow for a 30 degree inclination change on the outgoing and incoming trips of the transfer vehicle.
Final design of a space debris removal system
NASA Astrophysics Data System (ADS)
Carlson, Erika; Casali, Steve; Chambers, Don; Geissler, Garner; Lalich, Andrew; Leipold, Manfred; Mach, Richard; Parry, John; Weems, Foley
1990-12-01
The objective is the removal of medium sized orbital debris in low Earth orbits. The design incorporates a transfer vehicle and a netting vehicle to capture the medium size debris. The system is based near an operational space station located at 28.5 degrees inclination and 400 km altitude. The system uses ground based tracking to determine the location of a satellite breakup or debris cloud. This data is unloaded to the transfer vehicle, and the transfer vehicle proceeds to rendezvous with the debris at a lower altitude parking orbit. Next, the netting vehicle is deployed, tracks the targeted debris, and captures it. After expending the available nets, the netting vehicle returns to the transfer vehicle for a new netting module and continues to capture more debris in the target area. Once all the netting modules are expended, the transfer vehicle returns to the space station's orbit, where it is resupplied with new netting modules from a space shuttle load. The new modules are launched by the shuttle from the ground, and the expended modules are taken back to Earth for removal of the captured debris, refueling, and repacking of the nets. Once the netting modules are refurbished, they are taken back into orbit for reuse. In a typical mission, the system has the ability to capture 50 pieces of orbital debris. One mission will take about six months. The system is designed to allow for a 30 degree inclination change on the outgoing and incoming trips of the transfer vehicle.
New data acquisition system for the focal plane polarimeter of the Grand Raiden spectrometer
NASA Astrophysics Data System (ADS)
Tamii, A.; Sakaguchi, H.; Takeda, H.; Yosoi, M.; Akimune, H.; Fujiwara, M.; Ogata, H.; Tanaka, M.; Togawa, H.
1996-10-01
This paper describes a new data acquisition system for the focal plane polarimeter of the Grand Raiden spectrometer at the Research Center for Nuclear Physics (RCNP) in Osaka, Japan. Data are acquired by a Creative Electronic Systems (CES) Starburst, which is a CAMAC auxiliary crate controller equipped with a Digital Equipment Corporation (DEC) J11 microprocessor. The data on the Starburst are transferred to a VME single-board computer. A VME reflective memory module broadcasts the data to other systems through a fiber-optic link. A data transfer rate of 2.0 Mbytes/s between VME modules has been achieved by reflective memories. This rate includes the overhead of buffer management. The overall transfer rate, however, is limited by the performance of the Starburst to about 160 Kbytes/s at maximum. In order to further improve the system performance, we developed a new readout module called the Rapid Data Transfer Module (RDTM). RDTM's transfer data from LeCroy PCOS III's or 4298's, and FERA/FERET's directly to CES 8170 High Speed Memories (HSM) in VME crates, the data transfer rate of the RDTM from PCOS III's to the HSM is about 4 Mbytes/s.
Administering an epoch initiated for remote memory access
Blocksome, Michael A; Miller, Douglas R
2014-03-18
Methods, systems, and products are disclosed for administering an epoch initiated for remote memory access that include: initiating, by an origin application messaging module on an origin compute node, one or more data transfers to a target compute node for the epoch; initiating, by the origin application messaging module after initiating the data transfers, a closing stage for the epoch, including rejecting any new data transfers after initiating the closing stage for the epoch; determining, by the origin application messaging module, whether the data transfers have completed; and closing, by the origin application messaging module, the epoch if the data transfers have completed.
Administering an epoch initiated for remote memory access
Blocksome, Michael A; Miller, Douglas R
2012-10-23
Methods, systems, and products are disclosed for administering an epoch initiated for remote memory access that include: initiating, by an origin application messaging module on an origin compute node, one or more data transfers to a target compute node for the epoch; initiating, by the origin application messaging module after initiating the data transfers, a closing stage for the epoch, including rejecting any new data transfers after initiating the closing stage for the epoch; determining, by the origin application messaging module, whether the data transfers have completed; and closing, by the origin application messaging module, the epoch if the data transfers have completed.
Administering an epoch initiated for remote memory access
Blocksome, Michael A.; Miller, Douglas R.
2013-01-01
Methods, systems, and products are disclosed for administering an epoch initiated for remote memory access that include: initiating, by an origin application messaging module on an origin compute node, one or more data transfers to a target compute node for the epoch; initiating, by the origin application messaging module after initiating the data transfers, a closing stage for the epoch, including rejecting any new data transfers after initiating the closing stage for the epoch; determining, by the origin application messaging module, whether the data transfers have completed; and closing, by the origin application messaging module, the epoch if the data transfers have completed.
Processing abstract language modulates motor system activity.
Glenberg, Arthur M; Sato, Marc; Cattaneo, Luigi; Riggio, Lucia; Palumbo, Daniele; Buccino, Giovanni
2008-06-01
Embodiment theory proposes that neural systems for perception and action are also engaged during language comprehension. Previous neuroimaging and neurophysiological studies have only been able to demonstrate modulation of action systems during comprehension of concrete language. We provide neurophysiological evidence for modulation of motor system activity during the comprehension of both concrete and abstract language. In Experiment 1, when the described direction of object transfer or information transfer (e.g., away from the reader to another) matched the literal direction of a hand movement used to make a response, speed of responding was faster than when the two directions mismatched (an action-sentence compatibility effect). In Experiment 2, we used single-pulse transcranial magnetic stimulation to study changes in the corticospinal motor pathways to hand muscles while reading the same sentences. Relative to sentences that do not describe transfer, there is greater modulation of activity in the hand muscles when reading sentences describing transfer of both concrete objects and abstract information. These findings are discussed in relation to the human mirror neuron system.
Wireless power using magnetic resonance coupling for neural sensing applications
NASA Astrophysics Data System (ADS)
Yoon, Hargsoon; Kim, Hyunjung; Choi, Sang H.; Sanford, Larry D.; Geddis, Demetris; Lee, Kunik; Kim, Jaehwan; Song, Kyo D.
2012-04-01
Various wireless power transfer systems based on electromagnetic coupling have been investigated and applied in many biomedical applications including functional electrical stimulation systems and physiological sensing in humans and animals. By integrating wireless power transfer modules with wireless communication devices, electronic systems can deliver data and control system operation in untethered freely-moving conditions without requiring access through the skin, a potential source of infection. In this presentation, we will discuss a wireless power transfer module using magnetic resonance coupling that is specifically designed for neural sensing systems and in-vivo animal models. This research presents simple experimental set-ups and circuit models of magnetic resonance coupling modules and discusses advantages and concerns involved in positioning and sizing of source and receiver coils compared to conventional inductive coupling devices. Furthermore, the potential concern of tissue heating in the brain during operation of the wireless power transfer systems will also be addressed.
New data acquisition system for the focal plane polarimeter of the Grand Raiden spectrometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamii, A.; Sakaguchi, H.; Takeda, H.
1996-10-01
This paper describes a new data acquisition system for the focal plane polarimeter of the Grand Raiden spectrometer at the Research Center for Nuclear Physics (RCNP) in Osaka, Japan. Data are acquired by a Creative Electronic Systems (CES) Starburst, which is a CAMAC auxiliary crate controller equipped with a Digital Equipment Corporation (DEC) J11 microprocessor., The data on the Starburst are transferred to a VME single-board computer. A VME reflective memory module broadcasts the data to other systems through a fiber-optic link. A data transfer rate of 2.0 Mbytes/s between VME modules has been achieved by reflective memories. This ratemore » includes the overhead of buffer management. The overall transfer rate, however, is limited by the performance of the Starburst to about 160 Kbytes/s at maximum. In order to further improve the system performance, the authors developed a new readout module called the Rapid Data Transfer Module (RDTM). RDTM`s transfer data from LeCroy PCOS III`s or 4298`s, and FERA/FERET`s directly to CES 8170 High Speed Memories (HSM) in VME crates. The data transfer rate of the RDTM from PCOS III`s to the HSM is about 4 Mbytes/s.« less
Thermal equilibrium control by frequent bang-bang modulation.
Yang, Cheng-Xi; Wang, Xiang-Bin
2010-05-01
In this paper, we investigate the non-Markovian heat transfer between a weakly damped harmonic oscillator (system) and a thermal bath. When the system is initially in a thermal state and not correlated with the environment, the mean energy of the system always first increases, then oscillates, and finally reaches equilibrium with the bath, no matter what the initial temperature of the system is. Moreover, the heat transfer between the system and the bath can be controlled by fast bang-bang modulation. This modulation does work on the system, and temporarily inverts the direction of heat flow. In this case, the common sense that heat always transfers from hot to cold does not hold any more. At the long time scale, a new dynamic equilibrium is established between the system and the bath. At this equilibrium, the energy of the system can be either higher or lower than its normal equilibrium value. A comprehensive analysis of the relationship between the dynamic equilibrium and the parameters of the modulation as well as the environment is presented.
Controlling data transfers from an origin compute node to a target compute node
Archer, Charles J [Rochester, MN; Blocksome, Michael A [Rochester, MN; Ratterman, Joseph D [Rochester, MN; Smith, Brian E [Rochester, MN
2011-06-21
Methods, apparatus, and products are disclosed for controlling data transfers from an origin compute node to a target compute node that include: receiving, by an application messaging module on the target compute node, an indication of a data transfer from an origin compute node to the target compute node; and administering, by the application messaging module on the target compute node, the data transfer using one or more messaging primitives of a system messaging module in dependence upon the indication.
Multiple channel data acquisition system
Crawley, H. Bert; Rosenberg, Eli I.; Meyer, W. Thomas; Gorbics, Mark S.; Thomas, William D.; McKay, Roy L.; Homer, Jr., John F.
1990-05-22
A multiple channel data acquisition system for the transfer of large amounts of data from a multiplicity of data channels has a plurality of modules which operate in parallel to convert analog signals to digital data and transfer that data to a communications host via a FASTBUS. Each module has a plurality of submodules which include a front end buffer (FEB) connected to input circuitry having an analog to digital converter with cache memory for each of a plurality of channels. The submodules are interfaced with the FASTBUS via a FASTBUS coupler which controls a module bus and a module memory. The system is triggered to effect rapid parallel data samplings which are stored to the cache memories. The cache memories are uploaded to the FEBs during which zero suppression occurs. The data in the FEBs is reformatted and compressed by a local processor during transfer to the module memory. The FASTBUS coupler is used by the communications host to upload the compressed and formatted data from the module memory. The local processor executes programs which are downloaded to the module memory through the FASTBUS coupler.
Multiple channel data acquisition system
Crawley, H.B.; Rosenberg, E.I.; Meyer, W.T.; Gorbics, M.S.; Thomas, W.D.; McKay, R.L.; Homer, J.F. Jr.
1990-05-22
A multiple channel data acquisition system for the transfer of large amounts of data from a multiplicity of data channels has a plurality of modules which operate in parallel to convert analog signals to digital data and transfer that data to a communications host via a FASTBUS. Each module has a plurality of submodules which include a front end buffer (FEB) connected to input circuitry having an analog to digital converter with cache memory for each of a plurality of channels. The submodules are interfaced with the FASTBUS via a FASTBUS coupler which controls a module bus and a module memory. The system is triggered to effect rapid parallel data samplings which are stored to the cache memories. The cache memories are uploaded to the FEBs during which zero suppression occurs. The data in the FEBs is reformatted and compressed by a local processor during transfer to the module memory. The FASTBUS coupler is used by the communications host to upload the compressed and formatted data from the module memory. The local processor executes programs which are downloaded to the module memory through the FASTBUS coupler. 25 figs.
NASA Astrophysics Data System (ADS)
Farges, Bérangère; Duchez, David; Dussap, Claude-Gilles; Cornet, Jean-François
2012-01-01
In microgravity, one of the major challenge encountered in biological life support systems (BLSS) is the gas-liquid transfer with, for instance, the necessity to provide CO2 (carbon source, pH control) and to recover the evolved O2 in photobioreactors used as atmosphere bioregenerative systems.This paper describes first the development of a system enabling the accurate characterization of the mass transfer limiting step for a PTFE membrane module used as a possible efficient solution to the microgravity gas-liquid transfer. This original technical apparatus, together with a technical assessment of membrane permeability to different gases, is associated with a balance model, determining thus completely the CO2 mass transfer problem between phases. First results are given and discussed for the CO2 mass transfer coefficient kLCO obtained in case of absorption experiments at pH 8 using the hollow fiber membrane module. The consistency of the proposed method, based on a gas and liquid phase balances verifying carbon conservation enables a very accurate determination of the kLCO value as a main limiting step of the whole process. Nevertheless, further experiments are still needed to demonstrate that the proposed method could serve in the future as reference method for mass transfer coefficient determination if using membrane modules for BLSS in reduced or microgravity conditions.
Orbit Transfer Systems with Emphasis on Shuttle Applications, 1986-1991
NASA Technical Reports Server (NTRS)
1977-01-01
A systems study is presented for a transportation system which will follow the interim upper stage and spinning solid upper stage. Included are concepts, concept comparisons, trends, parametric data, etc. associated with the future system. Relevant technical and programmatic information is developed. This information is intended to focus future activity to identify attractive options and to summarize the major issues associated with the future development of the system. To establish a common basis for identifying current transportation concepts, an orbit transfer vehicle (OTV) is defined as a propulsive (velocity producing) rocket or stage. When used with a crew transfer module, a manned sortie module or other payloads, the combination becomes an orbit transfer system (OTS). Standardization of OTV's and OTS's is required.
SAFSIM theory manual: A computer program for the engineering simulation of flow systems
NASA Astrophysics Data System (ADS)
Dobranich, Dean
1993-12-01
SAFSIM (System Analysis Flow SIMulator) is a FORTRAN computer program for simulating the integrated performance of complex flow systems. SAFSIM provides sufficient versatility to allow the engineering simulation of almost any system, from a backyard sprinkler system to a clustered nuclear reactor propulsion system. In addition to versatility, speed and robustness are primary SAFSIM development goals. SAFSIM contains three basic physics modules: (1) a fluid mechanics module with flow network capability; (2) a structure heat transfer module with multiple convection and radiation exchange surface capability; and (3) a point reactor dynamics module with reactivity feedback and decay heat capability. Any or all of the physics modules can be implemented, as the problem dictates. SAFSIM can be used for compressible and incompressible, single-phase, multicomponent flow systems. Both the fluid mechanics and structure heat transfer modules employ a one-dimensional finite element modeling approach. This document contains a description of the theory incorporated in SAFSIM, including the governing equations, the numerical methods, and the overall system solution strategies.
Juhas, Mario; Dimopoulou, Ioanna; Robinson, Esther; Elamin, Abdel; Harding, Rosalind; Hood, Derek; Crook, Derrick
2013-09-01
A significant part of horizontal gene transfer is facilitated by genomic islands. Haemophilus influenzae genomic island ICEHin1056 is an archetype of a genomic island that accounts for pandemic spread of antibiotics resistance. ICEHin1056 has modular structure and harbors modules involved in type IV secretion and integration. Previous studies have shown that ICEHin1056 encodes a functional type IV secretion system; however, other modules have not been characterized yet. Here we show that the module on the 5' extremity of ICEHin1056 consists of 15 genes that are well conserved in a number of related genomic islands. Furthermore by disrupting six genes of the investigated module of ICEHin1056 by site-specific mutagenesis we demonstrate that in addition to type IV secretion system module, the investigated module is also important for the successful conjugal transfer of ICEHin1056 from donor to recipient cells. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Cao, Y.; Faghri, A.
1991-01-01
The performance of a thermal energy storage module is simulated numerically. The change of phase of the phase-change material (PCM) and the transient forced convective heat transfer for the transfer fluid with low Prandtl numbers are solved simultaneously as a conjugate problem. A parametric study and a system optimization are conducted. The numerical results show that module geometry is crucial to the design of a space-based thermal energy storage system.
Modulation Transfer Through Coherence and Its Application to Atomic Frequency Offset Locking
NASA Astrophysics Data System (ADS)
Jagatap, B. N.; Ray, Ayan; Kale, Y. B.; Singh, Niharika; Lawande, Q. V.
We discuss the process of modulation transfer in a coherently prepared three-level atomic medium and its prospective application to atomic frequency offset locking (AFOL). The issue of modulation transfer through coherence is treated in the framework of temporal evolution of dressed atomic system with externally superimposed deterministic flow. This dynamical description of the atom-field system offers distinctive advantage of using a single modulation source to dither passively the coherent phenomenon as probed by an independent laser system under pump-probe configuration. Modulation transfer is demonstrated experimentally using frequency modulation spectroscopy on a subnatural linewidth electromagnetically induced transparency (EIT) and a sub-Doppler linewidth Autler-Townes (AT) resonance in Doppler broadened alkali vapor medium, and AFOL is realized by stabilizing the probe laser on the first/third derivative signals. The stability of AFOL is discussed in terms of the frequency noise power spectral density and Allan variance. Analysis of AFOL schemes is carried out at the backdrop of closed loop active frequency control in a conventional master-slave scheme to point out the contrasting behavior of AFOL schemes based on EIT and AT resonances. This work adds up to the discussion on the subtle link between dressed state spectroscopy and AFOL, which is relevant for developing a master-slave type laser system in the domain of coherent photon-atom interaction.
Description of the docking module ECS for the Apollo-Soyuz Test Project.
NASA Technical Reports Server (NTRS)
Guy, W. W.; Jaax, J. R.
1973-01-01
The role of the Docking Module ECS (Environmental Control System) to be used on the Apollo-Soyuz Test mission is to provide a means for crewmen to transfer safely between the Apollo and Soyuz vehicles in a shirtsleeve environment. This paper describes the Docking Module ECS and includes the philosophy and rationale used in evaluating and selecting the capabilities that are required to satisfy the Docking Module's airlock function: (1) adjusting the pressure and composition of the atmosphere to effect crew transfer and (2) providing a shirtsleeve environment during transfer operations. An analytical evaluation is given of the environmental parameters (including CO2 level, humidity, and temperature) during a normal transfer timeline.
Horizontal modular dry irradiated fuel storage system
Fischer, Larry E.; McInnes, Ian D.; Massey, John V.
1988-01-01
A horizontal, modular, dry, irradiated fuel storage system (10) includes a thin-walled canister (12) for containing irradiated fuel assemblies (20), which canister (12) can be positioned in a transfer cask (14) and transported in a horizontal manner from a fuel storage pool (18), to an intermediate-term storage facility. The storage system (10) includes a plurality of dry storage modules (26) which accept the canister (12) from the transfer cask (14) and provide for appropriate shielding about the canister (12). Each module (26) also provides for air cooling of the canister (12) to remove the decay heat of the irradiated fuel assemblies (20). The modules (26) can be interlocked so that each module (26) gains additional shielding from the next adjacent module (26). Hydraulic rams (30) are provided for inserting and removing the canisters (12) from the modules (26).
Modulation transfer function cascade model for a sampled IR imaging system.
de Luca, L; Cardone, G
1991-05-01
The performance of the infrared scanning radiometer (IRSR) is strongly stressed in convective heat transfer applications where high spatial frequencies in the signal that describes the thermal image are present. The need to characterize more deeply the system spatial resolution has led to the formulation of a cascade model for the evaluation of the actual modulation transfer function of a sampled IR imaging system. The model can yield both the aliasing band and the averaged modulation response for a general sampling subsystem. For a line scan imaging system, which is the case of a typical IRSR, a rule of thumb that states whether the combined sampling-imaging system is either imaging-dependent or sampling-dependent is proposed. The model is tested by comparing it with other noncascade models as well as by ad hoc measurements performed on a commercial digitized IRSR.
NASA Technical Reports Server (NTRS)
Mazanek, Daniel D. (Inventor); Mankins, John C. (Inventor)
2004-01-01
A space module has an outer structure designed for traveling in space, a docking mechanism for facilitating a docking operation therewith in space, a first storage system storing a first propellant that burns as a result of a chemical reaction therein, a second storage system storing a second propellant that burns as a result of electrical energy being added thereto, and a bi-directional transfer interface coupled to each of the first and second storage systems to transfer the first and second propellants into and out thereof. The space module can be part of a propellant supply architecture that includes at least two of the space modules placed in an orbit in space.
Modulation transfer function of a triangular pixel array detector.
Karimzadeh, Ayatollah
2014-07-01
The modulation transfer function (MTF) is the main parameter that is used to evaluate image quality in electro-optical systems. Detector sampling MTF in most electro-optical systems determines the cutoff frequency of the system. The MTF of the detector depends on its pixel shape. In this work, we calculated the MTF of a detector with an equilateral triangular pixel shape. Some new results were found in deriving the MTF for the equilateral triangular pixel shape.
Wang, Fang; Zhang, Yonglai; Liu, Yang; Wang, Xuefeng; Shen, Mingrong; Lee, Shuit-Tong; Kang, Zhenhui
2013-03-07
Here we show a bias-mediated electron/energy transfer process at the CQDs-TiO(2) interface for the dynamic modulation of opto-electronic properties. Different energy and electron transfer states have been observed in the CQDs-TNTs system due to the up-conversion photoluminescence and the electron donation/acceptance properties of the CQDs decorated on TNTs.
Versatile Desktop Experiment Module (DEMo) on Heat Transfer
ERIC Educational Resources Information Center
Minerick, Adrienne R.
2010-01-01
This paper outlines a new Desktop Experiment Module (DEMo) engineered for a chemical engineering junior-level Heat Transfer course. This new DEMo learning tool is versatile, fairly inexpensive, and portable such that it can be positioned on student desks throughout a classroom. The DEMo system can illustrate conduction of various materials,…
[Design and Implementation of a Novel Networked Sleep Monitoring System].
Tian, Yu; Yan, Zhuangzhi; Tao, Jia'an
2015-03-01
To meet the need of cost-effective multi-biosignal monitoring devices nowadays, we designed a system based on super low power MCU. It can collect, record and transfer several signals including ECG, Oxygen saturation, thoracic and abdominal wall expansion, oronasal airflow signal. The data files can be stored on a flash chip and transferred to a computer by a USB module. In addition, the sensing data can be sent wirelessly in real time. Considering that long term work of wireless module consumes much energy, we present a low-power optimization method based on delay constraint. Lower energy consumption comes at the cost of little delay. Experimental results show that it can effectively decrease the energy consumption without changing wireless module and transfer protocol. Besides, our system is powered by two dry batteries and can work at least 8 hours throughout a whole night.
Magnet measurement interfacing to the G-64 Euro standard bus and testing G-64 modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogrefe, R.L.
1995-07-01
The Magnet Measurement system utilizes various modules with a G-64 Euro (Gespac) Standard Interface. All modules are designed to be software controlled, normally under the constraints of the OS-9 operating system with all data transfers to a host computer accomplished by a serial link.
A SiC MOSFET Based Inverter for Wireless Power Transfer Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onar, Omer C; Chinthavali, Madhu Sudhan; Campbell, Steven L
2014-01-01
In a wireless power transfer (WPT) system, efficiency of the power conversion stages is crucial so that the WPT technology can compete with the conventional conductive charging systems. Since there are 5 or 6 power conversion stages, each stage needs to be as efficient as possible. SiC inverters are crucial in this case; they can handle high frequency operation and they can operate at relatively higher temperatures resulting in reduces cost and size for the cooling components. This study presents the detailed power module design, development, and fabrication of a SiC inverter. The proposed inverter has been tested at threemore » center frequencies that are considered for the WPT standardization. Performance of the inverter at the same target power transfer level is analyzed along with the other system components. In addition, another SiC inverter has been built in authors laboratory by using the ORNL designed and developed SiC modules. It is shown that the inverter with ORNL packaged SiC modules performs simular to that of the inverter having commercially available SiC modules.« less
High Fidelity Tape Transfer Printing Based On Chemically Induced Adhesive Strength Modulation
NASA Astrophysics Data System (ADS)
Sim, Kyoseung; Chen, Song; Li, Yuhang; Kammoun, Mejdi; Peng, Yun; Xu, Minwei; Gao, Yang; Song, Jizhou; Zhang, Yingchun; Ardebili, Haleh; Yu, Cunjiang
2015-11-01
Transfer printing, a two-step process (i.e. picking up and printing) for heterogeneous integration, has been widely exploited for the fabrication of functional electronics system. To ensure a reliable process, strong adhesion for picking up and weak or no adhesion for printing are required. However, it is challenging to meet the requirements of switchable stamp adhesion. Here we introduce a simple, high fidelity process, namely tape transfer printing(TTP), enabled by chemically induced dramatic modulation in tape adhesive strength. We describe the working mechanism of the adhesion modulation that governs this process and demonstrate the method by high fidelity tape transfer printing several types of materials and devices, including Si pellets arrays, photodetector arrays, and electromyography (EMG) sensors, from their preparation substrates to various alien substrates. High fidelity tape transfer printing of components onto curvilinear surfaces is also illustrated.
Dynamic Modulation of Radiative Heat Transfer beyond the Blackbody Limit.
Ito, Kota; Nishikawa, Kazutaka; Miura, Atsushi; Toshiyoshi, Hiroshi; Iizuka, Hideo
2017-07-12
Dynamic control of electromagnetic heat transfer without changing mechanical configuration opens possibilities in intelligent thermal management in nanoscale systems. We confirmed by experiment that the radiative heat transfer is dynamically modulated beyond the blackbody limit. The near-field electromagnetic heat exchange mediated by phonon-polariton is controlled by the metal-insulator transition of tungsten-doped vanadium dioxide. The functionalized heat flux is transferred over an area of 1.6 cm 2 across a 370 nm gap, which is maintained by the microfabricated spacers and applied pressure. The uniformity of the gap is validated by optical interferometry, and the measured heat transfer is well modeled as the sum of the radiative and the parasitic conductive components. The presented methodology to form a nanometric gap with functional heat flux paves the way to the smart thermal management in various scenes ranging from highly integrated systems to macroscopic apparatus.
Computer-Aided Modeling and Analysis of Power Processing Systems (CAMAPPS), phase 1
NASA Technical Reports Server (NTRS)
Kim, S.; Lee, J.; Cho, B. H.; Lee, F. C.
1986-01-01
The large-signal behaviors of a regulator depend largely on the type of power circuit topology and control. Thus, for maximum flexibility, it is best to develop models for each functional block a independent modules. A regulator can then be configured by collecting appropriate pre-defined modules for each functional block. In order to complete the component model generation for a comprehensive spacecraft power system, the following modules were developed: solar array switching unit and control; shunt regulators; and battery discharger. The capability of each module is demonstrated using a simplified Direct Energy Transfer (DET) system. Large-signal behaviors of solar array power systems were analyzed. Stability of the solar array system operating points with a nonlinear load is analyzed. The state-plane analysis illustrates trajectories of the system operating point under various conditions. Stability and transient responses of the system operating near the solar array's maximum power point are also analyzed. The solar array system mode of operation is described using the DET spacecraft power system. The DET system is simulated for various operating conditions. Transfer of the software program CAMAPPS (Computer Aided Modeling and Analysis of Power Processing Systems) to NASA/GSFC (Goddard Space Flight Center) was accomplished.
1969-02-20
S69-19794 (February 1969) --- Composite of two artist's concepts illustrating key events, tasks and activities on the third day of the Apollo 9 mission, including crew transfer and Lunar Module system evaluation. The Apollo 9 mission will evaluate spacecraft lunar module systems performance during manned Earth-orbital flight.
Modulation Transfer Function (MTF) measurement techniques for lenses and linear detector arrays
NASA Technical Reports Server (NTRS)
Schnabel, J. J., Jr.; Kaishoven, J. E., Jr.; Tom, D.
1984-01-01
Application is the determination of the Modulation Transfer Function (MTF) for linear detector arrays. A system set up requires knowledge of the MTF of the imaging lens. Procedure for this measurement is described for standard optical lab equipment. Given this information, various possible approaches to MTF measurement for linear arrays is described. The knife edge method is then described in detail.
Helium Evolution from the Transfer of Helium Saturated Propellant in Space
NASA Technical Reports Server (NTRS)
Nguyen, Bich N.
2000-01-01
Helium evolution from the transfer of helium saturated propellant in space is quantified to determine its impact from creating a two-phase mixture in the transfer line. The transfer line is approximately 1/2 inch in diameter and 2400 inches in length comprised of the Fluid Interconnect System (FICS), the Orbiter Propellant Transfer System (OPTS) and the International Space Station (ISS) Propulsion Module (ISSPM). The propellant transfer rate is approximately two to three gallons per minute, and the supply tank pressure is maintained at approximately 250 psig.
NASA Technical Reports Server (NTRS)
1991-01-01
The debris problem has reached a stage at which the risk to satellites and spacecraft has become substantial in low Earth orbit (LEO). This research discovered that small particles posed little threat to spacecraft because shielding can effectively prevent these particles from damaging the spacecraft. The research also showed that, even though collision with a large piece of debris could destroy the spacecraft, the large pieces of debris pose little danger because they can be tracked and the spacecraft can be maneuvered away from these pieces. Additionally, there are many current designs to capture and remove large debris particles from the space environment. From this analysis, it was decided to concentrate on the removal of medium-sized orbital debris, that is, those pieces ranging from 1 cm to 50 cm in size. The current design incorporates a transfer vehicle and a netting vehicle to capture the medium-sized debris. The system is based near an operational space station located at 28.5 deg inclination and 400 km altitude. The system uses ground-based tracking to determine the location of a satellite breakup or debris cloud. These data are uploaded to the transfer vehicle, which proceeds to rendezvous with the debris at a lower altitude parking orbit. Next, the netting vehicle is deployed, tracks the targeted debris, and captures it. After expending the available nets, the netting vehicle returns to the transfer vehicle for a new netting module and continues to capture more debris in the target area. Once all the netting modules are expended, the transfer vehicle returns to the space station's orbit where it is resupplied with new netting modules from a space shuttle load. The new modules are launched by the shuttle from the ground and the expended modules are taken back to Earth for removal of the captured debris, refueling, and repacking of the nets. Once the netting modules are refurbished, they are taken back into orbit for reuse. In a typical mission, the system has the ability to capture 50 pieces of orbital debris. One mission will take approximately six months and the system is designed to allow for a 30 deg inclination change on the outgoing and incoming trips of the transfer vehicle.
Systems and methods for enhancing optical information
DeVore, Peter Thomas Setsuda; Chou, Jason T.
2018-01-02
An Optical Information Transfer Enhancer System includes a first system for producing an information bearing first optical wave that is impressed with a first information having a first information strength wherein the first optical wave has a first shape. A second system produces a second optical wave. An information strength enhancer module receives the first and said second optical waves and impresses the first optical wave upon the second optical wave via cross-phase modulation (XPM) to produce an information-strength-enhanced second optical wave having a second information strength that is greater than the first information strength of the first optical wave. Following a center-wavelength changer by an Optical Information Transfer Enhancer System improves its performance.
Spatial Data Transfer Standard (SDTS)
,
1995-01-01
The Spatial Data Transfer Standard (SOTS) is a mechanism for the transfer of spatial data between dissimilar computer systems. The SOTS specifies exchange constructs, addressing formats, structure, and content for spatially referenced vector and raster (including gridded) data. SOTS components are a conceptual model, specifications for a quality report, transfer module specifications, data dictionary specifications, and definitions of spatial features and attributes.
Apollo Soyuz, mission evaluation report
NASA Technical Reports Server (NTRS)
1975-01-01
The Apollo Soyuz mission was the first manned space flight to be conducted jointly by two nations - the United States and the Union of Soviet Socialist Republics. The primary purpose of the mission was to test systems for rendezvous and docking of manned spacecraft that would be suitable for use as a standard international system, and to demonstrate crew transfer between spacecraft. The secondary purpose was to conduct a program of scientific and applications experimentation. With minor modifications, the Apollo and Soyuz spacecraft were like those flown on previous missions. However, a new module was built specifically for this mission - the docking module. It served as an airlock for crew transfer and as a structural base for the docking mechanism that interfaced with a similar mechanism on the Soyuz orbital module. The postflight evaluation of the performance of the docking system and docking module, as well as the overall performance of the Apollo spacecraft and experiments is presented. In addition, the mission is evaluated from the viewpoints of the flight crew, ground support operations, and biomedical operations. Descriptions of the docking mechanism, docking module, crew equipment and experiment hardware are given.
Phase-Change Heat-Storage Module
NASA Technical Reports Server (NTRS)
Mulligan, James C.
1989-01-01
Heat-storage module accommodates momentary heating or cooling overload in pumped-liquid heat-transfer system. Large heat-storage capacity of module provided by heat of fusion of material that freezes at or near temperature desired to maintain object to be heated or cooled. Module involves relatively small penalties in weight, cost, and size and more than compensates by enabling design of rest of system to handle only average load. Latent heat of fusion of phase-change material provides large heat-storage capacity in small volume.
Advanced space system analysis software. Technical, user, and programmer guide
NASA Technical Reports Server (NTRS)
Farrell, C. E.; Zimbelman, H. F.
1981-01-01
The LASS computer program provides a tool for interactive preliminary and conceptual design of LSS. Eight program modules were developed, including four automated model geometry generators, an associated mass properties module, an appendage synthesizer module, an rf analysis module, and an orbital transfer analysis module. The existing rigid body controls analysis module was modified to permit analysis of effects of solar pressure on orbital performance. A description of each module, user instructions, and programmer information are included.
Theory of lidar method for measurement of the modulation transfer function of water layers.
Dolin, Lev S
2013-01-10
We develop a method to evaluate the modulation transfer function (MTF) of a water layer from the characteristics of lidar signal backscattered by water volume. We propose several designs of a lidar system for remote measurement of the MTF and the procedure to determine optical properties of water using the measured MTF. We discuss a laser system for sea-bottom imaging that accounts for the influence of water slab on the image structure and allows for correction of image distortions caused by light scattering in water. © 2013 Optical Society of America
Development of 24GHz Rectenna for Receiving and Rectifying Modulated Waves
NASA Astrophysics Data System (ADS)
Shinohara, Naoki; Hatano, Ken
2014-11-01
In this paper, we show experimental results of RF-DC conversion with modulated 24GHz waves. We have already developed class-F MMIC rectenna with resonators for higher harmonics at no modulated 24GHz microwave for RF energy transfer. Dimensions of the MMIC rectifying circuit is 1 mm × 3 mm on GaAs. Maximum RF-DC conversion efficiency is measured 47.9% for a 210 mW microwave input of 24 GHz with a 120 Ω load. The class-F rectenna is based on a single shunt full-wave rectifier. For future application of a simultaneous energy and information transfer system or an energy harvesting from broadcasting waves, input microwave will be modulated. In this paper, we show an experimental result of RF-DC conversion of the class-F rectenna with 24GHz waves modulated by 16QAM as 1st modulation and OFDM as 2nd modulation.
Development of a thermal storage module using modified anhydrous sodium hydroxide
NASA Technical Reports Server (NTRS)
Rice, R. E.; Rowny, P. E.
1980-01-01
The laboratory scale testing of a modified anhydrous NaOH latent heat storage concept for small solar thermal power systems such as total energy systems utilizing organic Rankine systems is discussed. A diagnostic test on the thermal energy storage module and an investigation of alternative heat transfer fluids and heat exchange concepts are specifically addressed. A previously developed computer simulation model is modified to predict the performance of the module in a solar total energy system environment. In addition, the computer model is expanded to investigate parametrically the incorporation of a second heat exchange inside the module which will vaporize and superheat the Rankine cycle power fluid.
A wireless magnetic resonance energy transfer system for micro implantable medical sensors.
Li, Xiuhan; Zhang, Hanru; Peng, Fei; Li, Yang; Yang, Tianyang; Wang, Bo; Fang, Dongming
2012-01-01
Based on the magnetic resonance coupling principle, in this paper a wireless energy transfer system is designed and implemented for the power supply of micro-implantable medical sensors. The entire system is composed of the in vitro part, including the energy transmitting circuit and resonant transmitter coils, and in vivo part, including the micro resonant receiver coils and signal shaping chip which includes the rectifier module and LDO voltage regulator module. Transmitter and receiver coils are wound by Litz wire, and the diameter of the receiver coils is just 1.9 cm. The energy transfer efficiency of the four-coil system is greatly improved compared to the conventional two-coil system. When the distance between the transmitter coils and the receiver coils is 1.5 cm, the transfer efficiency is 85% at the frequency of 742 kHz. The power transfer efficiency can be optimized by adding magnetic enhanced resonators. The receiving voltage signal is converted to a stable output voltage of 3.3 V and a current of 10 mA at the distance of 2 cm. In addition, the output current varies with changes in the distance. The whole implanted part is packaged with PDMS of excellent biocompatibility and the volume of it is about 1 cm(3).
Mechanism to support generic collective communication across a variety of programming models
Almasi, Gheorghe [Ardsley, NY; Dozsa, Gabor [Ardsley, NY; Kumar, Sameer [White Plains, NY
2011-07-19
A system and method for supporting collective communications on a plurality of processors that use different parallel programming paradigms, in one aspect, may comprise a schedule defining one or more tasks in a collective operation, an executor that executes the task, a multisend module to perform one or more data transfer functions associated with the tasks, and a connection manager that controls one or more connections and identifies an available connection. The multisend module uses the available connection in performing the one or more data transfer functions. A plurality of processors that use different parallel programming paradigms can use a common implementation of the schedule module, the executor module, the connection manager and the multisend module via a language adaptor specific to a parallel programming paradigm implemented on a processor.
NASA Astrophysics Data System (ADS)
Yang, Xusan; Tang, Yuanhe; Liu, Kai; Liu, Hanchen; Gao, Haiyang; Li, Qing; Zhang, Ruixia; Ye, Na; Liang, Yuan; Zhao, Gaoxiang
2008-12-01
Based on the electro-optical properties of liquid crystal, we have designed a novel partial gating detector. Liquid crystal can be taken to change its own transmission according to the light intensity outside. Every single pixel of the image is real-time modulated by liquid crystal, thus the strong light is weakened and low light goes through the detector normally .The purpose of partial-gating strong light (>105lx) can be achieved by this detector. The modulation transfer function (MTF) equations of the main optical sub-systems are calculated in this paper, they are liquid crystal panels, linear fiber panel and CCD array detector. According to the relevant size, the MTF value of this system is fitted out. The result is MTF= 0.518 at Nyquist frequency.
Geostationary platform systems concepts definition study. Volume 2: Technical, book 2
NASA Technical Reports Server (NTRS)
1980-01-01
A selected concept for a geostationary platform is defined in sufficient detail to identify requirements for supporting research and technology, space demonstrations, GFE interfaces, costs, and schedules. This system consists of six platforms in geostationary orbit (GEO) over the Western Hemisphere and six over the Atlantic, to satisfy the total payload set associated with the nominal traffic model. Each platform is delivered to low Earth orbit (LEO) in a single shuttle flight, already mated to its LEO to GEO transfer vehicle and ready for deployment and transfer to GEO. An alternative concept is looked at briefly for comparison of configuration and technology requirements. This alternative consists of two large platforms, one over the Western Hemisphere consisting of three docked modules, and one over the Atlantic (two docked modules), to satisfy a high traffic model. The modules are full length orbiter cargo bay payloads, mated at LEO to orbital transfer vehicles (OTVs) delivered in other shuttle flights, for transfer to GEO, rendezvous, and docking. A preliminary feasibility study of an experimental platform is also performed to demonstrate communications and platform technologies required for the operational platforms of the 1990s.
Amplitude modulation detection by human listeners in sound fields.
Zahorik, Pavel; Kim, Duck O; Kuwada, Shigeyuki; Anderson, Paul W; Brandewie, Eugene; Srinivasan, Nirmal
2011-10-01
The temporal modulation transfer function (TMTF) approach allows techniques from linear systems analysis to be used to predict how the auditory system will respond to arbitrary patterns of amplitude modulation (AM). Although this approach forms the basis for a standard method of predicting speech intelligibility based on estimates of the acoustical modulation transfer function (MTF) between source and receiver, human sensitivity to AM as characterized by the TMTF has not been extensively studied under realistic listening conditions, such as in reverberant sound fields. Here, TMTFs (octave bands from 2 - 512 Hz) were obtained in 3 listening conditions simulated using virtual auditory space techniques: diotic, anechoic sound field, reverberant room sound field. TMTFs were then related to acoustical MTFs estimated using two different methods in each of the listening conditions. Both diotic and anechoic data were found to be in good agreement with classic results, but AM thresholds in the reverberant room were lower than predictions based on acoustical MTFs. This result suggests that simple linear systems techniques may not be appropriate for predicting TMTFs from acoustical MTFs in reverberant sound fields, and may be suggestive of mechanisms that functionally enhance modulation during reverberant listening.
2003-10-22
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-115 Mission Specialist Joseph Tanner (second from left, foreground) works with technicians to learn more about the Japanese Experiment Module (JEM), known as Kibo. The JEM consists of six components: two research facilities - the Pressurized Module and the Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. Equipment familiarization is a routine part of astronaut training and launch preparations.
2003-10-22
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-115 Mission Specialist Joseph Tanner (center, foreground) works with technicians to learn more about the Japanese Experiment Module (JEM), known as Kibo. The JEM consists of six components: two research facilities - the Pressurized Module and the Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. Equipment familiarization is a routine part of astronaut training and launch preparations.
2003-07-18
KENNEDY SPACE CENTER, FLA. - STS-120 Mission Specialists Piers Sellers and Michael Foreman look at the Japanese Experiment Module (JEM) Pressurized Module located in the Space Station Processing Facility. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-120 mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the JEM, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.
2003-07-18
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-120 Mission Specialist Piers Sellers looks over the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-120 mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.
2003-07-18
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-120 Mission Specialist Michael Foreman looks over the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-120 mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.
Coherent optical modulation for antenna remoting
NASA Technical Reports Server (NTRS)
Fitzmartin, D. J.; Gels, R. G.; Balboni, E. J.
1991-01-01
A coherent fiber optic link employing wideband frequency modulation (FM) of the optical carrier is used to transfer radio frequency (RF) or microwave signals. This system is used to link a remotely located antenna to a conveniently located electronics processing site. The advantages of coherent analog fiber optic systems over non-coherent intensity modulated fiber optic analog transmission systems are described. An optical FM link employing an indirect transmitter to frequency modulate the optical carrier and a microwave delay line discriminator receiver is described. Measured performance data for a video signal centered at 60 MHz is presented showing the use of wideband FM in the link.
NASA Technical Reports Server (NTRS)
1972-01-01
An analysis of the nuclear safety aspects (design and operational considerations) in the transport of nuclear payloads to and from earth orbit by the space shuttle is presented. Three representative nuclear payloads used in the study were: (1) the zirconium hydride reactor Brayton power module, (2) the large isotope Brayton power system and (3) small isotopic heat sources which can be a part of an upper stage or part of a logistics module. Reference data on the space shuttle and nuclear payloads are presented in an appendix. Safety oriented design and operational requirements were identified to integrate the nuclear payloads in the shuttle mission. Contingency situations were discussed and operations and design features were recommended to minimize the nuclear hazards. The study indicates the safety, design and operational advantages in the use of a nuclear payload transfer module. The transfer module can provide many of the safety related support functions (blast and fragmentation protection, environmental control, payload ejection) minimizing the direct impact on the shuttle.
Spatial Data Transfer Standard (SDTS)
,
1999-01-01
The American National Standards Institute?s (ANSI) Spatial Data Transfer Standard (SDTS) is a mechanism for archiving and transferring of spatial data (including metadata) between dissimilar computer systems. The SDTS specifies exchange constructs, such as format, structure, and content, for spatially referenced vector and raster (including gridded) data. The SDTS includes a flexible conceptual model, specifications for a quality report, transfer module specifications, data dictionary specifications, and definitions of spatial features and attributes.
APT Blanket Thermal Analyses of Top Horizontal Row 1 Modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shadday, M.A.
1999-09-20
The Accelerator Production of Tritium (APT) cavity flood system (CFS) is designed to be the primary safeguard for the integrity of the blanket modules during loss of coolant accidents (LOCAs). For certain large break LOCAs the CFS also provides backup for the residual heat removal systems (RHRs) in cooling the target assemblies. In the unlikely event that the internal flow passages in a blanket module or target assembly dryout, decay heat in the metal structures will be dissipated to the CFS through the module or assembly walls (i.e., rung outer walls). The target assemblies consist of tungsten targets encased inmore » steel conduits, and they can safely sustain high metal temperatures. Under internally dry conditions, the cavity flood fluid will cool the target assemblies with vigorous nucleate boiling on the external surfaces. However, the metal structures in the blanket modules consist of lead cladded in aluminum, and they have a long-term exposure temperature limit currently set to 150 degrees C. Simultaneous LOCAs in both the target and blanket heat removal systems (HRS) could result in dryout of the target ladders, as well as the horizontal blanket modules above the target. The cavity flood coolant would boil on the outside surfaces of the target ladder rungs, and the resultant steam could reduce the effectiveness of convection heat transfer from the blanket modules to the cavity flood coolant. A two-part analysis was conducted to ascertain if the cavity flood system can adequately cool the blanket modules above the targets, even when boiling is occurring on the outer surfaces of the target ladder rungs. The first part of the analysis was to model transient thermal conduction in the front top horizontal row 1 module (i.e. top horizontal modules nearest the incoming beam), while varying parametrically the convection heat transfer coefficient (htc) for the external surfaces exposed to the cavity flood flow. This part of the analysis demonstrated that the module could adequately conduct heat to the outer module surfaces, given reasonable values for the convection heat transfer coefficients. The second part of the analysis consisted of two-phase flow modeling of the natural circulation of the cavity flood fluid past the top modules. Slots in the top shield allow the cavity flood fluid to circulate. The required width for these slots, to prevent steam from backing up and blanketing the outer surfaces of the top modules, was determined.« less
Apollo experience report: Descent propulsion system
NASA Technical Reports Server (NTRS)
Hammock, W. R., Jr.; Currie, E. C.; Fisher, A. E.
1973-01-01
The propulsion system for the descent stage of the lunar module was designed to provide thrust to transfer the fully loaded lunar module with two crewmen from the lunar parking orbit to the lunar surface. A history of the development of this system is presented. Development was accomplished primarily by ground testing of individual components and by testing the integrated system. Unique features of the descent propulsion system were the deep throttling capability and the use of a lightweight cryogenic helium pressurization system.
NASA Astrophysics Data System (ADS)
Rishi, Rahul; Choudhary, Amit; Singh, Ravinder; Dhaka, Vijaypal Singh; Ahlawat, Savita; Rao, Mukta
2010-02-01
In this paper we propose a system for classification problem of handwritten text. The system is composed of preprocessing module, supervised learning module and recognition module on a very broad level. The preprocessing module digitizes the documents and extracts features (tangent values) for each character. The radial basis function network is used in the learning and recognition modules. The objective is to analyze and improve the performance of Multi Layer Perceptron (MLP) using RBF transfer functions over Logarithmic Sigmoid Function. The results of 35 experiments indicate that the Feed Forward MLP performs accurately and exhaustively with RBF. With the change in weight update mechanism and feature-drawn preprocessing module, the proposed system is competent with good recognition show.
Analyzing Small Signal Stability of Power System based on Online Data by Use of SMES
NASA Astrophysics Data System (ADS)
Ishikawa, Hiroyuki; Shirai, Yasuyuki; Nitta, Tanzo; Shibata, Katsuhiko
The purpose of this study is to estimate eigen-values and eigen-vectors of a power system from on-line data to evaluate the power system stability. Power system responses due to the small power modulation of known pattern from SMES (Superconducting Magnetic Energy Storage) were analyzed, and the transfer functions between the power modulation and power oscillations of generators were obtained. Eigen-values and eigen-vectors were estimated from the transfer functions. Experiments were carried out by use of a model SMES and Advanced Power System Analyzer (APSA), which is an analogue type power system simulator of Kansai Electric Power Company Inc., Japan. Changes in system condition were observed by the estimated eigen-values and eigen-vectors. Result agreed well with the resent report and digital simulation. This method gives a new application for SMES, which will be installed for improving electric power quality.
Dual side control for inductive power transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Hunter; Sealy, Kylee; Gilchrist, Aaron
An apparatus for dual side control includes a measurement module that measures a voltage and a current of an IPT system. The voltage includes an output voltage and/or an input voltage and the current includes an output current and/or an input current. The output voltage and the output current are measured at an output of the IPT system and the input voltage and the input current measured at an input of the IPT system. The apparatus includes a max efficiency module that determines a maximum efficiency for the IPT system. The max efficiency module uses parameters of the IPT systemmore » to iterate to a maximum efficiency. The apparatus includes an adjustment module that adjusts one or more parameters in the IPT system consistent with the maximum efficiency calculated by the max efficiency module.« less
Berg, A; Pernkopf, M; Waldhäusl, C; Schmidt, W; Moser, E
2004-09-07
Precise methods of modem radiation therapy such as intensity modulated radiotherapy (IMRT), brachytherapy (BT) and high LET irradiation allow for high dose localization in volumes of a few mm3. However, most dosimetry methods-ionization chambers, TLD arrangements or silicon detectors, for example-are not capable of detecting sub-mm dose variations or do not allow for simple dose imaging. Magnetic resonance based polymer dosimetry (MRPD) appears to be well suited to three-dimensional high resolution relative dosimetry but the spatial resolution based on a systematic modulation transfer function (MTF) approach has not yet been investigated. We offer a theoretical construct for addressing the spatial resolution in different dose imaging systems, i.e. the dose modulation transfer function (DMTF) approach, an experimental realization of this concept with a phantom and quantitative comparisons between two dosimetric systems: polymer gel and film dosimetry. Polymer gel samples were irradiated by Co-60 photons through an absorber grid which is characterized by periodic structures of different spatial period (a), the smallest one at width of a/2 = 280 microm. The modulation in dose under the grid is visualized via calibrated, high resolution, parameter-selective (T2) and dose images based on multi-echo MR imaging. The DMTF is obtained from the modulation depth of the spin-spin relaxation time (T2) after calibration. Voxel sizes below 0.04 mm3 could be achieved, which are significantly smaller than those reported in MR based dose imaging on polymer gels elsewhere, using a powerful gradient system and a highly sensitive small birdcage resonator on a whole-body 3T MR scanner. Dose modulations at 22% of maximum dose amplitude could be observed at about 2 line pairs per mm. The polymer DMTF results are compared to those of a typical clinical film-scanner system. This study demonstrates that MR based gel dosimetry at 200 microm pixel resolution might even be superior, with reference to relative spatial resolution, to the results of a standard film-scanner system offering a nominal scan resolution of 200 microm.
Research on accuracy analysis of laser transmission system based on Zemax and Matlab
NASA Astrophysics Data System (ADS)
Chen, Haiping; Liu, Changchun; Ye, Haixian; Xiong, Zhao; Cao, Tingfen
2017-05-01
Laser transmission system is important in high power solid-state laser facilities and its function is to transfer and focus the light beam in accordance with the physical function of the facility. This system is mainly composed of transmission mirror modules and wedge lens module. In order to realize the precision alignment of the system, the precision alignment of the system is required to be decomposed into the allowable range of the calibration error of each module. The traditional method is to analyze the error factors of the modules separately, and then the linear synthesis is carried out, and the influence of the multi-module and multi-factor is obtained. In order to analyze the effect of the alignment error of each module on the beam center and focus more accurately, this paper aims to combine with the Monte Carlo random test and ray tracing, analyze influence of multi-module and multi-factor on the center of the beam, and evaluate and optimize the results of accuracy decomposition.
Design of a fast crew transfer vehicle to Mars
NASA Technical Reports Server (NTRS)
1988-01-01
A final report is made on the trajectory and vehicle requirements for a fast crew transfer vehicle to Mars which will complete an Earth to Mars (and Mars to Earth) transfer in 150 days and will have a stay time at Mars of 40 days. This vehicle will maximize the crew's effectiveness on Mars by minimizing detrimental physiological effects such as bone demineralization and loss of muscle tone caused by long period exposure to zero gravity and radiation from cosmic rays and solar flares. The crew transfer vehicle discussed will complete the second half of a Split Mission to Mars. In the Split Mission, a slow, unmanned cargo vehicle, nicknamed the Barge, is sent to Mars ahead of the crew vehicle. Once the Barge is in orbit around Mars, the fast crew vehicle will be launched to rendezvous with the Barge in Mars orbit. The vehicle presented is designed to carry six astronauts for a mission duration of one year. The vehicle uses a chemical propulsion system and a nuclear power system. Four crew modules, similar to the proposed Space Station Common Modules, are used to house the crew and support equipment during the mission. The final design also includes a command module that is shielded to protect the crew during radiation events.
Berwanger, Anja; Eyrisch, Susanne; Schuster, Inge; Helms, Volkhard; Bernhardt, Rita
2010-02-01
Modulations of protein-protein interactions are a key step in regulating protein function, especially in networks. Modulators of these interactions are supposed to be candidates for the development of novel drugs. Here, we describe the role of the small, polycationic and highly abundant natural polyamines that could efficiently bind to charged spots at protein interfaces as modulators of such protein-protein interactions. Using the mitochondrial cytochrome P45011A1 (CYP11A1) electron transfer system as a model, we have analyzed the capability of putrescine, spermidine, and spermine at physiologically relevant concentrations to affect the protein-protein interactions between adrenodoxin reductase (AdR), adrenodoxin (Adx), and CYP11A1. The actions of polyamines on the individual components, on their association/dissociation, on electron transfer, and on substrate conversion were examined. These studies revealed modulating effects of polyamines on distinct interactions and on the entire system in a complex way. Modulation via changed protein-protein interactions appeared plausible from docking experiments that suggested favourable high-affinity binding sites of polyamines (spermine>spermidine>putrescine) at the AdR-Adx interface. Our findings imply for the first time that small endogenous compounds are capable of interfering with distinct components of transient protein complexes and might control protein functions by modulating electrostatic protein-protein interactions.
Stable radio frequency dissemination by simple hybrid frequency modulation scheme.
Yu, Longqiang; Wang, Rong; Lu, Lin; Zhu, Yong; Wu, Chuanxin; Zhang, Baofu; Wang, Peizhang
2014-09-15
In this Letter, we propose a fiber-based stable radio frequency transfer system by a hybrid frequency modulation scheme. Creatively, two radio frequency signals are combined and simultaneously transferred by only one laser diode. One frequency component is used to detect the phase fluctuation, and the other one is the derivative compensated signal providing a stable frequency for the remote end. A proper ratio of the frequencies of the components is well maintained by parameter m to avoid interference between them. Experimentally, a stable 200 MHz signal is transferred over 100 km optical fiber with the help of a 1 GHz detecting signal, and fractional instability of 2×10(-17) at 10(5) s is achieved.
Modulation Transfer Function of Infrared Focal Plane Arrays
NASA Technical Reports Server (NTRS)
Gunapala, S. D.; Rafol, S. B.; Ting, D. Z.; Soibel, A.; Hill, C. J.; Khoshakhlagh, A.; Liu, J. K.; Mumolo, J. M.; Hoglund, L.; Luong, E. M.
2015-01-01
Modulation transfer function (MTF) is the ability of an imaging system to faithfully image a given object. The MTF of an imaging system quantifies the ability of the system to resolve or transfer spatial frequencies. In this presentation we will discuss the detail MTF measurements of 1024x1024 pixels mid -wavelength and long- wavelength quantum well infrared photodetector, and 320x256 pixels long- wavelength InAs/GaSb superlattice infrared focal plane arrays (FPAs). Long wavelength Complementary Barrier Infrared Detector (CBIRD) based on InAs/GaSb superlattice material is hybridized to recently designed and fabricated 320x256 pixel format ROIC. The n-type CBIRD was characterized in terms of performance and thermal stability. The experimentally measured NE delta T of the 8.8 micron cutoff n-CBIRD FPA was 18.6 mK with 300 K background and f/2 cold stop at 78K FPA operating temperature. The horizontal and vertical MTFs of this pixel fully delineated CBIRD FPA at Nyquist frequency are 49% and 52%, respectively.
Status of FEP encapsulated solar cell modules used in terrestrial applications
NASA Technical Reports Server (NTRS)
Ratajczak, A. F.; Forestieri, A. F.
1974-01-01
The Lewis Research Center has been engaged in transferring the FEP encapsulated solar cell technology developed for the space program to terrestrial applications. FEP encapsulated solar cell modules and arrays were designed and built expressly for terrestrial applications. Solar cell power systems were installed at three different land sites, while individual modules are undergoing marine environment tests. Four additional power systems are being completed for installation during the summer of 1974. These tests have revealed some minor problems which have been corrected. The results confirm the inherent utility of FEP encapsulated terrestrial solar cell systems.
Laser frequency stabilization and shifting by using modulation transfer spectroscopy
NASA Astrophysics Data System (ADS)
Cheng, Bing; Wang, Zhao-Ying; Wu, Bin; Xu, Ao-Peng; Wang, Qi-Yu; Xu, Yun-Fei; Lin, Qiang
2014-10-01
The stabilizing and shifting of laser frequency are very important for the interaction between the laser and atoms. The modulation transfer spectroscopy for the 87Rb atom with D2 line transition F = 2 → F' = 3 is used for stabilizing and shifting the frequency of the external cavity grating feedback diode laser. The resonant phase modulator with electro—optical effect is used to generate frequency sideband to lock the laser frequency. In the locking scheme, circularly polarized pump- and probe-beams are used. By optimizing the temperature of the vapor, the pump- and probe-beam intensity, the laser linewidth of 280 kHz is obtained. Furthermore, the magnetic field generated by a solenoid is added into the system. Therefore the system can achieve the frequency locking at any point in a range of hundreds of megahertz frequency shifting with very low power loss.
Bertoluzzi, Luca; Bisquert, Juan
2017-01-05
The optimization of solar energy conversion devices relies on their accurate and nondestructive characterization. The small voltage perturbation techniques of impedance spectroscopy (IS) have proven to be very powerful to identify the main charge storage modes and charge transfer processes that control device operation. Here we establish the general connection between IS and light modulated techniques such as intensity modulated photocurrent (IMPS) and photovoltage spectroscopies (IMVS) for a general system that converts light to energy. We subsequently show how these techniques are related to the steady-state photocurrent and photovoltage and the external quantum efficiency. Finally, we express the IMPS and IMVS transfer functions in terms of the capacitive and resistive features of a general equivalent circuit of IS for the case of a photoanode used for solar fuel production. We critically discuss how much knowledge can be extracted from the combined use of those three techniques.
Separation of presampling and postsampling modulation transfer functions in infrared sensor systems
NASA Astrophysics Data System (ADS)
Espinola, Richard L.; Olson, Jeffrey T.; O'Shea, Patrick D.; Hodgkin, Van A.; Jacobs, Eddie L.
2006-05-01
New methods of measuring the modulation transfer function (MTF) of electro-optical sensor systems are investigated. These methods are designed to allow the separation and extraction of presampling and postsampling components from the total system MTF. The presampling MTF includes all the effects prior to the sampling stage of the imaging process, such as optical blur and detector shape. The postsampling MTF includes all the effects after sampling, such as interpolation filters and display characteristics. Simulation and laboratory measurements are used to assess the utility of these techniques. Knowledge of these components and inclusion into sensor models, such as the U.S. Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate's NVThermIP, will allow more accurate modeling and complete characterization of sensor performance.
Database interfaces on NASA's heterogeneous distributed database system
NASA Technical Reports Server (NTRS)
Huang, Shou-Hsuan Stephen
1987-01-01
The purpose of Distributed Access View Integrated Database (DAVID) interface module (Module 9: Resident Primitive Processing Package) is to provide data transfer between local DAVID systems and resident Data Base Management Systems (DBMSs). The result of current research is summarized. A detailed description of the interface module is provided. Several Pascal templates were constructed. The Resident Processor program was also developed. Even though it is designed for the Pascal templates, it can be modified for templates in other languages, such as C, without much difficulty. The Resident Processor itself can be written in any programming language. Since Module 5 routines are not ready yet, there is no way to test the interface module. However, simulation shows that the data base access programs produced by the Resident Processor do work according to the specifications.
NASA Technical Reports Server (NTRS)
Redhed, D. D.; Tripp, L. L.; Kawaguchi, A. S.; Miller, R. E., Jr.
1973-01-01
The strategy of the IPAD implementation plan presented, proposes a three phase development of the IPAD system and technical modules, and the transfer of this capability from the development environment to the aerospace vehicle design environment. The system and technical module capabilities for each phase of development are described. The system and technical module programming languages are recommended as well as the initial host computer system hardware and operating system. The cost of developing the IPAD technology is estimated. A schedule displaying the flowtime required for each development task is given. A PERT chart gives the developmental relationships of each of the tasks and an estimate of the operational cost of the IPAD system is offered.
Modulation transfer function estimation of optical lens system by adaptive neuro-fuzzy methodology
NASA Astrophysics Data System (ADS)
Petković, Dalibor; Shamshirband, Shahaboddin; Pavlović, Nenad T.; Anuar, Nor Badrul; Kiah, Miss Laiha Mat
2014-07-01
The quantitative assessment of image quality is an important consideration in any type of imaging system. The modulation transfer function (MTF) is a graphical description of the sharpness and contrast of an imaging system or of its individual components. The MTF is also known and spatial frequency response. The MTF curve has different meanings according to the corresponding frequency. The MTF of an optical system specifies the contrast transmitted by the system as a function of image size, and is determined by the inherent optical properties of the system. In this study, the adaptive neuro-fuzzy (ANFIS) estimator is designed and adapted to estimate MTF value of the actual optical system. Neural network in ANFIS adjusts parameters of membership function in the fuzzy logic of the fuzzy inference system. The back propagation learning algorithm is used for training this network. This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method.
Diwadkar, Vaibhav A; Bellani, Marcella; Chowdury, Asadur; Savazzi, Silvia; Perlini, Cinzia; Marinelli, Veronica; Zoccatelli, Giada; Alessandrini, Franco; Ciceri, Elisa; Rambaldelli, Gianluca; Ruggieri, Mirella; Carlo Altamura, A; Marzi, Carlo A; Brambilla, Paolo
2017-08-14
Because the visual cortices are contra-laterally organized, inter-hemispheric transfer tasks have been used to behaviorally probe how information briefly presented to one hemisphere of the visual cortex is integrated with responses resulting from the ipsi- or contra-lateral motor cortex. By forcing rapid information exchange across diverse regions, these tasks robustly activate not only gray matter regions, but also white matter tracts. It is likely that the response hand itself (dominant or non-dominant) modulates gray and white matter activations during within and inter-hemispheric transfer. Yet the role of uni-manual responses and/or right hand dominance in modulating brain activations during such basic tasks is unclear. Here we investigated how uni-manual responses with either hand modulated activations during a basic visuo-motor task (the established Poffenberger paradigm) alternating between inter- and within-hemispheric transfer conditions. In a large sample of strongly right-handed adults (n = 49), we used a factorial combination of transfer condition [Inter vs. Within] and response hand [Dominant(Right) vs. Non-Dominant (Left)] to discover fMRI-based activations in gray matter, and in narrowly defined white matter tracts. These tracts were identified using a priori probabilistic white matter atlases. Uni-manual responses with the right hand strongly modulated activations in gray matter, and notably in white matter. Furthermore, when responding with the left hand, activations during inter-hemispheric transfer were strongly predicted by the degree of right-hand dominance, with increased right-handedness predicting decreased fMRI activation. Finally, increasing age within the middle-aged sample was associated with a decrease in activations. These results provide novel evidence of complex relationships between uni-manual responses in right-handed subjects, and activations during within- and inter-hemispheric transfer suggest that the organization of the motor system exerts sophisticated functional effects. Moreover, our evidence of activation in white matter tracts is consistent with prior studies, confirming fMRI-detectable white matter activations which are systematically modulated by experimental condition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birch, Gabriel Carisle; Griffin, John Clark
2015-01-01
The horizontal television lines (HTVL) metric has been the primary quantity used by division 6000 related to camera resolution for high consequence security systems. This document shows HTVL measurements are fundamen- tally insufficient as a metric to determine camera resolution, and propose a quantitative, standards based methodology by measuring the camera system modulation transfer function (MTF), the most common and accepted metric of res- olution in the optical science community. Because HTVL calculations are easily misinterpreted or poorly defined, we present several scenarios in which HTVL is frequently reported, and discuss their problems. The MTF metric is discussed, and scenariosmore » are presented with calculations showing the application of such a metric.« less
Parameter identification for nonlinear aerodynamic systems
NASA Technical Reports Server (NTRS)
Pearson, Allan E.
1990-01-01
Parameter identification for nonlinear aerodynamic systems is examined. It is presumed that the underlying model can be arranged into an input/output (I/O) differential operator equation of a generic form. The algorithm estimation is especially efficient since the equation error can be integrated exactly given any I/O pair to obtain an algebraic function of the parameters. The algorithm for parameter identification was extended to the order determination problem for linear differential system. The degeneracy in a least squares estimate caused by feedback was addressed. A method of frequency analysis for determining the transfer function G(j omega) from transient I/O data was formulated using complex valued Fourier based modulating functions in contrast with the trigonometric modulating functions for the parameter estimation problem. A simulation result of applying the algorithm is given under noise-free conditions for a system with a low pass transfer function.
A home away from home. [life support system design for Space Station
NASA Technical Reports Server (NTRS)
Powell, L. E.; Hager, R. W.; Mccown, J. W.
1985-01-01
The role of the NASA-Marshall center in the development of the Space Station is discussed. The tasks of the center include the development of the life-support system; the design of the common module, which will form the basis for all pressurized Space Station modules; the design and outfit of a common module for the Material and Technology Laboratory (MTL) and logistics use; accommodations for operations of the Orbit Maneuvering Vehicle (OMV) and the Orbit Transfer Vehicle (OTV); and the Space Station propulsion system. A description of functions and design is given for each system, with particular emphasis on the goals of safety, efficiency, automation, and cost effectiveness.
Orion Service Module Umbilical (OSMU) Installation
2017-03-16
A crane lifts the Orion Service Module Umbilical (OSMU) high up for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
Design of a nuclear isotope heat source assembly for a spaceborne mini-Brayton power module.
NASA Technical Reports Server (NTRS)
Wein, D.; Gorland, S. H.
1973-01-01
Results of a study to develop a feasible design definition of a heat source assembly (HSA) for use in nominal 500-, 1200-, or 2000-W(e) mini-Brayton spacecraft power systems. The HSA is a modular design which is used either as a single unit to provide thermal energy to the 500-W(e) mini-Brayton power module or in parallel with one or two additional HSAs for the 1200- or 2000-W(e) power module systems. Principal components consist of a multihundred watt RTG isotope heat source, a heat source heat exchanger which transfers the thermal energy from the heat source to the mini-Brayton power conversion system, an auxiliary cooling system which provides requisite cooling during nonoperation of the power conversion module and an emergency cooling system which precludes accidental release of isotope fuel in the event of system failure.
NASA Astrophysics Data System (ADS)
Beasley, Howard H.; Martin, John S.; Klymenko, Victor; Harding, Thomas H.; Verona, Robert W.; Rash, Clarence E.
1995-07-01
A counterphase modulation technique is used to measure the static and dynamic modulation transfer functions for three phosphorus of current interest to U.S. Army aviation helmet-mounted displays (P-1, P-43, and P-53). A family of modulation transfer curves, one for each temporal frequency, is presented for each phosphorus. The measured MFT curves generally support the supposition that phosphorus persistence is a critical parameter in the ability of a CRT display to accurately reproduce contrast modulation transfer in dynamic environments.
Radiative heat transfer in low-dimensional systems -- microscopic mode
NASA Astrophysics Data System (ADS)
Woods, Lilia; Phan, Anh; Drosdoff, David
2013-03-01
Radiative heat transfer between objects can increase dramatically at sub-wavelength scales. Exploring ways to modulate such transport between nano-systems is a key issue from fundamental and applied points of view. We advance the theoretical understanding of radiative heat transfer between nano-objects by introducing a microscopic model, which takes into account the individual atoms and their atomic polarizabilities. This approach is especially useful to investigate nano-objects with various geometries and give a detailed description of the heat transfer distribution. We employ this model to study the heat exchange in graphene nanoribbon/substrate systems. Our results for the distance separations, substrates, and presence of extended or localized defects enable making predictions for tailoring the radiative heat transfer at the nanoscale. Financial support from the Department of Energy under Contract No. DE-FG02-06ER46297 is acknowledged.
Application of a water quality model in the White Cart water catchment, Glasgow, UK.
Liu, S; Tucker, P; Mansell, M; Hursthouse, A
2003-03-01
Water quality models of urban systems have previously focused on point source (sewerage system) inputs. Little attention has been given to diffuse inputs and research into diffuse pollution has been largely confined to agriculture sources. This paper reports on new research that is aimed at integrating diffuse inputs into an urban water quality model. An integrated model is introduced that is made up of four modules: hydrology, contaminant point sources, nutrient cycling and leaching. The hydrology module, T&T consists of a TOPMODEL (a TOPography-based hydrological MODEL), which simulates runoff from pervious areas and a two-tank model, which simulates runoff from impervious urban areas. Linked into the two-tank model, the contaminant point source module simulates the overflow from the sewerage system in heavy rain. The widely known SOILN (SOIL Nitrate model) is the basis of nitrogen cycle module. Finally, the leaching module consists of two functions: the production function and the transfer function. The production function is based on SLIM (Solute Leaching Intermediate Model) while the transfer function is based on the 'flushing hypothesis' which postulates a relationship between contaminant concentrations in the receiving water course and the extent to which the catchment is saturated. This paper outlines the modelling methodology and the model structures that have been developed. An application of this model in the White Cart catchment (Glasgow) is also included.
Chirped-pulse coherent-OTDR with predistortion
NASA Astrophysics Data System (ADS)
Xiong, Ji; Jiang, Jialin; Wu, Yue; Chen, Yongxiang; Xie, Lianlian; Fu, Yun; Wang, Zinan
2018-03-01
In this paper, a novel method for generating high-quality chirped pulses with IQ modulator is studied theoretically and experimentally, which is a crucial building block for high-performance coherent optical time-domain reflectometry (COTDR). In order to compensate the nonlinearity of the modulator transfer function, we present a predistortion technique for chirped-pulse coherent optical time-domain reflectometry (CP-COTDR), the arcsin predistortion method and the single sideband with a suppressed carrier analog modulation used to generate the high quality chirped optical pulse. The high order sidebands, due to the large amplitude of the modulation signal and the nonlinear transfer function of the IQ modulator, can be relieved by the predistortion process, which means the power and the quality of the generated chirped pulse has been improved. In the experiment, this method increases the peak power of the chirped pulse by 4.2 dB compared to the case without predistortion process, as for the CP-COTDR system, this method increases the signal-to-noise ratio of the demodulated phase variation by 6.3 dB.
Decomposition of the optical transfer function: wavefront coding imaging systems
NASA Astrophysics Data System (ADS)
Muyo, Gonzalo; Harvey, Andy R.
2005-10-01
We describe the mapping of the optical transfer function (OTF) of an incoherent imaging system into a geometrical representation. We show that for defocused traditional and wavefront-coded systems the OTF can be represented as a generalized Cornu spiral. This representation provides a physical insight into the way in which wavefront coding can increase the depth of field of an imaging system and permits analytical quantification of salient OTF parameters, such as the depth of focus, the location of nulls, and amplitude and phase modulation of the wavefront-coding OTF.
Optical analysis of electro-optical systems by MTF calculus
NASA Astrophysics Data System (ADS)
Barbarini, Elisa Signoreto; Dos Santos, Daniel, Jr.; Stefani, Mário Antonio; Yasuoka, Fátima Maria Mitsue; Castro Neto, Jarbas C.; Rodrigues, Evandro Luís Linhari
2011-08-01
One of the widely used methods for performance analysis of an optical system is the determination of the Modulation Transfer Function (MTF). The MTF represents a quantitative and direct measure of image quality, and, besides being an objective test, it can be used on concatenated optical system. This paper presents the application of software called SMTF (software modulation transfer function), built in C++ and Open CV platforms for MTF calculation on electro-optical system. Through this technique, it is possible to develop specific method to measure the real time performance of a digital fundus camera, an infrared sensor and an ophthalmological surgery microscope. Each optical instrument mentioned has a particular device to measure the MTF response, which is being developed. Then the MTF information assists the analysis of the optical system alignment, and also defines its resolution limit by the MTF graphic. The result obtained from the implemented software is compared with the theoretical MTF curve from the analyzed systems.
Carpenter, Megan R; Kalburge, Sai S; Borowski, Joseph D; Peters, Molly C; Colwell, Rita R; Boyd, E Fidelma
2017-05-15
Pathogenicity islands (PAIs) are mobile integrated genetic elements that contain a diverse range of virulence factors. PAIs integrate into the host chromosome at a tRNA locus that contains their specific bacterial attachment site, attB , via integrase-mediated site-specific recombination generating attL and attR sites. We identified conserved recombination modules (integrases and att sites) previously described in choleragenic Vibrio cholerae PAIs but with novel cargo genes. Clustered regularly interspaced short palindromic repeat (CRISPR)-associated proteins (Cas proteins) and a type VI secretion system (T6SS) gene cluster were identified at the Vibrio pathogenicity island 1 (VPI-1) insertion site in 19 V. cholerae strains and contained the same recombination module. Two divergent type I-F CRISPR-Cas systems were identified, which differed in Cas protein homology and content. The CRISPR repeat sequence was identical among all V. cholerae strains, but the CRISPR spacer sequences and the number of spacers varied. In silico analysis suggests that the CRISPR-Cas systems were active against phages and plasmids. A type III secretion system (T3SS) was present in 12 V. cholerae strains on a 68-kb island inserted at the same tRNA-serine insertion site as VPI-2 and contained the same recombination module. Bioinformatics analysis showed that two divergent T3SSs exist among the strains examined. Both the CRISPR and T3SS islands excised site specifically from the bacterial chromosome as complete units, and the cognate integrases were essential for this excision. These data demonstrated that identical recombination modules that catalyze integration and excision from the chromosome can acquire diverse cargo genes, signifying a novel method of acquisition for both CRISPR-Cas systems and T3SSs. IMPORTANCE This work demonstrated the presence of CRISPR-Cas systems and T3SSs on PAIs. Our work showed that similar recombination modules can associate with different cargo genes and catalyze their incorporation into bacterial chromosomes, which could convert a strain into a pathogen with very different disease pathologies. Each island had the ability to excise from the chromosome as distinct, complete units for possible transfer. Evolutionary analysis of these regions indicates that they were acquired by horizontal transfer and that PAIs are the units of transfer. Similar to the case for phage evolution, PAIs have a modular structure where different functional regions are acquired by identical recombination modules. Copyright © 2017 American Society for Microbiology.
Extended development of a sodium hydroxide thermal energy storage module
NASA Technical Reports Server (NTRS)
Rice, R. E.; Rowny, P. E.; Cohen, B. M.
1980-01-01
The post-test evaluation of a single heat exchanger sodium hydroxide thermal energy storage module for use in solar electric generation is reported. Chemical analyses of the storage medium used in the experimental model are presented. The experimental verification of the module performance using an alternate heat transfer fluid, Caloria HT-43, is described. Based on these results, a design analysis of a dual heat exchanger concept within the storage module is presented. A computer model and a reference design for the dual system (storage working fluid/power cycle working fluid) were completed. The dual system is estimated to have a capital cost of approximately one half that of the single heat exchanger concept.
A new approach to telemetry data processing. Ph.D. Thesis - Maryland Univ.
NASA Technical Reports Server (NTRS)
Broglio, C. J.
1973-01-01
An approach for a preprocessing system for telemetry data processing was developed. The philosophy of the approach is the development of a preprocessing system to interface with the main processor and relieve it of the burden of stripping information from a telemetry data stream. To accomplish this task, a telemetry preprocessing language was developed. Also, a hardware device for implementing the operation of this language was designed using a cellular logic module concept. In the development of the hardware device and the cellular logic module, a distributed form of control was implemented. This is accomplished by a technique of one-to-one intermodule communications and a set of privileged communication operations. By transferring this control state from module to module, the control function is dispersed through the system. A compiler for translating the preprocessing language statements into an operations table for the hardware device was also developed. Finally, to complete the system design and verify it, a simulator for the collular logic module was written using the APL/360 system.
Compact, Low-Power, and High-Speed Graphene-Based Integrated Photonic Modulator Technology
2017-11-02
which we want to transfer graphene, we cut the graphene-on- Copper foil into appropriate pieces using sharp razor blades or scissors. We then follow a...rinsed under running DI water for 5 minutes. Patterns on HSQ are then transferred to alumina in a Plasma-Therm ICP system using the recipe which was
NASA Astrophysics Data System (ADS)
Baba, S.; Sakai, T.; Sawada, K.; Kubota, C.; Wada, Y.; Shinmoto, Y.; Ohta, H.; Asano, H.; Kawanami, O.; Suzuki, K.; Imai, R.; Kawasaki, H.; Fujii, K.; Takayanagi, M.; Yoda, S.
2011-12-01
Boiling is one of the efficient modes of heat transfer due to phase change, and is regarded as promising means to be applied for the thermal management systems handling a large amount of waste heat under high heat flux. However, gravity effects on the two-phase flow phenomena and corresponding heat transfer characteristics have not been clarified in detail. The experiments onboard Japanese Experiment Module "KIBO" in International Space Station on boiling two-phase flow under microgravity conditions are proposed to clarify both of heat transfer and flow characteristics under microgravity conditions. To verify the feasibility of ISS experiments on boiling two-phase flow, the Bread Board Model is assembled and its performance and the function of components installed in a test loop are examined.
Large Advanced Space Systems (LASS) computer-aided design program additions
NASA Technical Reports Server (NTRS)
Farrell, C. E.
1982-01-01
The LSS preliminary and conceptual design requires extensive iteractive analysis because of the effects of structural, thermal, and control intercoupling. A computer aided design program that will permit integrating and interfacing of required large space system (LSS) analyses is discussed. The primary objective of this program is the implementation of modeling techniques and analysis algorithms that permit interactive design and tradeoff studies of LSS concepts. Eight software modules were added to the program. The existing rigid body controls module was modified to include solar pressure effects. The new model generator modules and appendage synthesizer module are integrated (interfaced) to permit interactive definition and generation of LSS concepts. The mass properties module permits interactive specification of discrete masses and their locations. The other modules permit interactive analysis of orbital transfer requirements, antenna primary beam n, and attitude control requirements.
International Space Station (ISS)
1997-10-01
The Zvezda Service Module, the first Russian contribution and third element to the International Space Station (ISS), is shown under construction in the Krunichev State Research and Production Facility (KhSC) in Moscow. Russian technicians work on the module shortly after it completed a pressurization test. In the foreground is the forward portion of the module, including the spherical transfer compartment and its three docking ports. The forward port docked with the cornected Functional Cargo Block, followed by Node 1. Launched via a three-stage Proton rocket on July 12, 2000, the Zvezda Service Module serves as the cornerstone for early human habitation of the Station, providing living quarters, life support system, electrical power distribution, data processing system, flight control system, and propulsion system. It also provides a communications system that includes remote command capabilities from ground flight controllers. The 42,000-pound module measures 43 feet in length and has a wing span of 98 feet. Similar in layout to the core module of Russia's Mir space station, it contains 3 pressurized compartments and 13 windows that allow ultimate viewing of Earth and space.
42 CFR 37.42 - Chest radiograph specifications-digital radiography systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... resolution, modulation transfer function (MTF), image signal-to-noise and detective quantum efficiency must... Information Object Definitions, sections: Computed Radiography Image Information Object Definition; Digital X...
Development and manufacture of reactive-transfer-printed CIGS photovoltaic modules
NASA Astrophysics Data System (ADS)
Eldada, Louay; Sang, Baosheng; Lu, Dingyuan; Stanbery, Billy J.
2010-09-01
In recent years, thin-film photovoltaic (PV) companies started realizing their low manufacturing cost potential, and grabbing an increasingly larger market share from multicrystalline silicon companies. Copper Indium Gallium Selenide (CIGS) is the most promising thin-film PV material, having demonstrated the highest energy conversion efficiency in both cells and modules. However, most CIGS manufacturers still face the challenge of delivering a reliable and rapid manufacturing process that can scale effectively and deliver on the promise of this material system. HelioVolt has developed a reactive transfer process for CIGS absorber formation that has the benefits of good compositional control, high-quality CIGS grains, and a fast reaction. The reactive transfer process is a two stage CIGS fabrication method. Precursor films are deposited onto substrates and reusable print plates in the first stage, while in the second stage, the CIGS layer is formed by rapid heating with Se confinement. High quality CIGS films with large grains were produced on a full-scale manufacturing line, and resulted in high-efficiency large-form-factor modules. With 14% cell efficiency and 12% module efficiency, HelioVolt started to commercialize the process on its first production line with 20 MW nameplate capacity.
The partial coherence modulation transfer function in testing lithography lens
NASA Astrophysics Data System (ADS)
Huang, Jiun-Woei
2018-03-01
Due to the lithography demanding high performance in projection of semiconductor mask to wafer, the lens has to be almost free in spherical and coma aberration, thus, in situ optical testing for diagnosis of lens performance has to be established to verify the performance and to provide the suggesting for further improvement of the lens, before the lens has been build and integrated with light source. The measurement of modulation transfer function of critical dimension (CD) is main performance parameter to evaluate the line width of semiconductor platform fabricating ability for the smallest line width of producing tiny integrated circuits. Although the modulation transfer function (MTF) has been popularly used to evaluation the optical system, but in lithography, the contrast of each line-pair is in one dimension or two dimensions, analytically, while the lens stand along in the test bench integrated with the light source coherent or near coherent for the small dimension near the optical diffraction limit, the MTF is not only contributed by the lens, also by illumination of platform. In the study, the partial coherence modulation transfer function (PCMTF) for testing a lithography lens is suggested by measuring MTF in the high spatial frequency of in situ lithography lens, blended with the illumination of partial and in coherent light source. PCMTF can be one of measurement to evaluate the imperfect lens of lithography lens for further improvement in lens performance.
Orion Service Module Umbilical (OSMU) Installation on Mobile Launcher (ML)
2017-03-13
Cranes and rigging are being used to lift the bracket for the Orion Service Module Umbilical (OSMU) up for installation on the mobile launcher tower. The tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
Orion Service Module Umbilical (OSMU) Lift & Preparation for Ins
2017-03-13
Preparations are underway to lift the bracket for the Orion Service Module Umbilical (OSMU) up for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
Orion Service Module Umbilical (OSMU) Installation
2017-03-16
A crane and rigging are used to lift the Orion Service Module Umbilical (OSMU) up for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
Orion Service Module Umbilical (OSMU) Installation
2017-03-16
Preparations are underway to lift the Orion Service Module Umbilical (OSMU) up for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
Orion Service Module Umbilical (OSMU) Installation
2017-03-16
Seeming to hang in midair, the Orion Service Module Umbilical (OSMU) is lifted high up by crane for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
Orion Service Module Umbilical (OSMU) Installation
2017-03-16
A crane and rigging are used to position the Orion Service Module Umbilical (OSMU) for installation high up on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
Orion Service Module Umbilical (OSMU) Lift & Preparation for Ins
2017-03-13
A crane positions the bracket for the Orion Service Module Umbilical (OSMU) for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
Orion Service Module Umbilical (OSMU) Installation
2017-03-16
A crane and rigging are used to lift the Orion Service Module Umbilical (OSMU) high up for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
Orion Service Module Umbilical (OSMU) Lift & Preparation for Ins
2017-03-13
A crane lifts the bracket for the Orion Service Module Umbilical (OSMU) high up for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
NASA Astrophysics Data System (ADS)
Haber, I. E.; Farkas, I.
2011-01-01
The exterior factors which influencing the working circumstances of photovoltaic modules are the irradiation, the optical air layer (Air Mass - AM), the irradiation angle, the environmental temperature and the cooling effect of the wind. The efficiency of photovoltaic (PV) devices is inversely proportional to the cell temperature and therefore the mounting of the PV modules can have a big affect on the cooling, due to wind flow-around and naturally convection. The construction of the modules could be described by a heatflow-network model, and that can define the equation which determines the cells temperature. An equation like this can be solved as a block oriented model with hybrid-analogue simulator such as Matlab-Simulink. In view of the flow field and the heat transfer, witch was calculated numerically, the heat transfer coefficients can be determined. Five inflow rates were set up for both pitched and flat roof cases, to let the trend of the heat transfer coefficient know, while these functions can be used for the Matlab/Simulink model. To model the free convection flows, the Boussinesq-approximation were used, integrated into the Navier-Stokes equations and the energy equation. It has been found that under a constant solar heat gain, the air velocity around the modules and behind the pitched-roof mounted module is increasing, proportionately to the wind velocities, and as result the heat transfer coefficient increases linearly, and can be described by a function in both cases. To the block based model the meteorological parameters and the results of the CFD simulations as single functions were attached. The final aim was to make a model that could be used for planning photovoltaic systems, and define their accurate performance for better sizing of an array of modules.
A system for the automated data-acquisition of fast transient signals in excitable membranes.
Bustamante, J O
1988-01-01
This paper provides a description of a system for the acquisition of fast transient currents flowing across excitable membranes. The front end of the system consists of a CAMAC crate with plug-in modules. The modules provide control of CAMAC operations, analog to digital conversion, electronic memory storage and timing of events. The signals are transferred under direct memory access to an IBM PC microcomputer through a special-purpose interface. Voltage levels from a digital to analog board in the microcomputer are passed through multiplexers to produce the desired voltage pulse patterns to elicit the transmembrane currents. The dead time between consecutive excitatory voltage pulses is limited only by the computer data bus and the software characteristics. The dead time between data transfers can be reduced to the order of milliseconds, which is sufficient for most experiments with transmembrane ionic currents.
Patient-specific port placement for laparoscopic surgery using atlas-based registration
NASA Astrophysics Data System (ADS)
Enquobahrie, Andinet; Shivaprabhu, Vikas; Aylward, Stephen; Finet, Julien; Cleary, Kevin; Alterovitz, Ron
2013-03-01
Laparoscopic surgery is a minimally invasive surgical approach, in which abdominal surgical procedures are performed through trocars via small incisions. Patients benefit by reduced postoperative pain, shortened hospital stays, improved cosmetic results, and faster recovery times. Optimal port placement can improve surgeon dexterity and avoid the need to move the trocars, which would cause unnecessary trauma to the patient. We are building an intuitive open source visualization system to help surgeons identify ports. Our methodology is based on an intuitive port placement visualization module and atlas-based registration algorithm to transfer port locations to individual patients. The methodology follows three steps:1) Use a port placement visualization module to manually place ports in an abdominal organ atlas. This step generates port-augmented abdominal atlas. This is done only once for a given patient population. 2) Register the atlas data with the patient CT data, to transfer the prescribed ports to the individual patient 3) Review and adjust the transferred port locations using the port placement visualization module. Tool maneuverability and target reachability can be tested using the visualization system. Our methodology would decrease the amount of physician input necessary to optimize port placement for each patient case. In a follow up work, we plan to use the transferred ports as starting point for further optimization of the port locations by formulating a cost function that will take into account factors such as tool dexterity and likelihood of collision between instruments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madanipour, Khosro; Tavassoly, Mohammad T
2009-02-01
We show theoretically and verify experimentally that the modulation transfer function (MTF) of a printing system can be determined by measuring the autocorrelation of a printed Ronchi grating. In practice, two similar Ronchi gratings are printed on two transparencies and the transparencies are superimposed with parallel grating lines. Then, the gratings are uniformly illuminated and the transmitted light from a large section is measured versus the displacement of one grating with respect to the other in a grating pitch interval. This measurement provides the required autocorrelation function for determination of the MTF.
Modulation transfer function measurement technique for small-pixel detectors
NASA Technical Reports Server (NTRS)
Marchywka, Mike; Socker, Dennis G.
1992-01-01
A modulation transfer function (MTF) measurement technique suitable for large-format, small-pixel detector characterization has been investigated. A volume interference grating is used as a test image instead of the bar or sine wave target images normally used. This technique permits a high-contrast, large-area, sinusoidal intensity distribution to illuminate the device being tested, avoiding the need to deconvolve raw data with imaging system characteristics. A high-confidence MTF result at spatial frequencies near 200 cycles/mm is obtained. We present results at several visible light wavelengths with a 6.8-micron-pixel CCD. Pixel response functions are derived from the MTF results.
Lower bound for LCD image quality
NASA Astrophysics Data System (ADS)
Olson, William P.; Balram, Nikhil
1996-03-01
The paper presents an objective lower bound for the discrimination of patterns and fine detail in images on a monochrome LCD. In applications such as medical imaging and military avionics the information of interest is often at the highest frequencies in the image. Since LCDs are sampled data systems, their output modulation is dependent on the phase between the input signal and the sampling points. This phase dependence becomes particularly significant at high spatial frequencies. In order to use an LCD for applications such as those mentioned above it is essential to have a lower (worst case) bound on the performance of the display. We address this problem by providing a mathematical model for the worst case output modulation of an LCD in response to a sine wave input. This function can be interpreted as a worst case modulation transfer function (MTF). The intersection of the worst case MTF with the contrast threshold function (CTF) of the human visual system defines the highest spatial frequency that will always be detectable. In addition to providing the worst case limiting resolution, this MTF is combined with the CTF to produce objective worst case image quality values using the modulation transfer function area (MTFA) metric.
Wireless Power Transfer for Autonomous Wearable Neurotransmitter Sensors.
Nguyen, Cuong M; Kota, Pavan Kumar; Nguyen, Minh Q; Dubey, Souvik; Rao, Smitha; Mays, Jeffrey; Chiao, J-C
2015-09-23
In this paper, we report a power management system for autonomous and real-time monitoring of the neurotransmitter L-glutamate (L-Glu). A low-power, low-noise, and high-gain recording module was designed to acquire signal from an implantable flexible L-Glu sensor fabricated by micro-electro-mechanical system (MEMS)-based processes. The wearable recording module was wirelessly powered through inductive coupling transmitter antennas. Lateral and angular misalignments of the receiver antennas were resolved by using a multi-transmitter antenna configuration. The effective coverage, over which the recording module functioned properly, was improved with the use of in-phase transmitter antennas. Experimental results showed that the recording system was capable of operating continuously at distances of 4 cm, 7 cm and 10 cm. The wireless power management system reduced the weight of the recording module, eliminated human intervention and enabled animal experimentation for extended durations.
Wireless Power Transfer for Autonomous Wearable Neurotransmitter Sensors
Nguyen, Cuong M.; Kota, Pavan Kumar; Nguyen, Minh Q.; Dubey, Souvik; Rao, Smitha; Mays, Jeffrey; Chiao, J.-C.
2015-01-01
In this paper, we report a power management system for autonomous and real-time monitoring of the neurotransmitter L-glutamate (L-Glu). A low-power, low-noise, and high-gain recording module was designed to acquire signal from an implantable flexible L-Glu sensor fabricated by micro-electro-mechanical system (MEMS)-based processes. The wearable recording module was wirelessly powered through inductive coupling transmitter antennas. Lateral and angular misalignments of the receiver antennas were resolved by using a multi-transmitter antenna configuration. The effective coverage, over which the recording module functioned properly, was improved with the use of in-phase transmitter antennas. Experimental results showed that the recording system was capable of operating continuously at distances of 4 cm, 7 cm and 10 cm. The wireless power management system reduced the weight of the recording module, eliminated human intervention and enabled animal experimentation for extended durations. PMID:26404311
MS Ivins floats through U.S. Laboratory / Destiny module
2001-02-11
STS98-E-5161 (11 February 2001) --- Astronaut Marsha S. Ivins, STS-98 mission specialist, floats into the newly attached Destiny laboratory onboard the International Space Station (ISS). After the Destiny hatch was opened early in the day, members of both crews went to work quickly inside the new module, activating air systems, fire extinguishers, alarm systems, computers and internal communications. The crews also took some photos and continued equipment transfers from the shuttle to the station. The scene was taken with a digital still camera.
NASA Astrophysics Data System (ADS)
Petković, Dalibor; Shamshirband, Shahaboddin; Saboohi, Hadi; Ang, Tan Fong; Anuar, Nor Badrul; Rahman, Zulkanain Abdul; Pavlović, Nenad T.
2014-07-01
The quantitative assessment of image quality is an important consideration in any type of imaging system. The modulation transfer function (MTF) is a graphical description of the sharpness and contrast of an imaging system or of its individual components. The MTF is also known and spatial frequency response. The MTF curve has different meanings according to the corresponding frequency. The MTF of an optical system specifies the contrast transmitted by the system as a function of image size, and is determined by the inherent optical properties of the system. In this study, the polynomial and radial basis function (RBF) are applied as the kernel function of Support Vector Regression (SVR) to estimate and predict estimate MTF value of the actual optical system according to experimental tests. Instead of minimizing the observed training error, SVR_poly and SVR_rbf attempt to minimize the generalization error bound so as to achieve generalized performance. The experimental results show that an improvement in predictive accuracy and capability of generalization can be achieved by the SVR_rbf approach in compare to SVR_poly soft computing methodology.
Japanese Experiment Module arrival
2007-03-29
The Experiment Logistics Module Pressurized Section for the Japanese Experiment Module arrives at the Space Station Processing Facility. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.
Japanese Experiment Module arrival
2007-03-29
The Experiment Logistics Module Pressurized Section for the Japanese Experiment Module arrives at the Space Station Processing Facility for uncrating. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.
Power Generator with Thermo-Differential Modules
NASA Technical Reports Server (NTRS)
Saiz, John R.; Nguyen, James
2010-01-01
A thermoelectric power generator consists of an oven box and a solar cooker/solar reflector unit. The solar reflector concentrates sunlight into heat and transfers the heat into the oven box via a heat pipe. The oven box unit is surrounded by five thermoelectric modules and is located at the bottom end of the solar reflector. When the heat is pumped into one side of the thermoelectric module and ejected from the opposite side at ambient temperatures, an electrical current is produced. Typical temperature accumulation in the solar reflector is approximately 200 C (392 F). The heat pipe then transfers heat into the oven box with a loss of about 40 percent. At the ambient temperature of about 20 C (68 F), the temperature differential is about 100 C (180 F) apart. Each thermoelectric module, generates about 6 watts of power. One oven box with five thermoelectric modules produces about 30 watts. The system provides power for unattended instruments in remote areas, such as space colonies and space vehicles, and in polar and other remote regions on Earth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bessho, Yasunori; Yokomizo, Osamu; Yoshimoto, Yuichiro
1997-03-01
Development and qualification results are described for a three-dimensional, time-domain core dynamics analysis program for commercial boiling water reactors (BWRs). The program allows analysis of the reactor core with a detailed mesh division, which eliminates calculational ambiguity in the nuclear-thermal-hydraulic stability analysis caused by reactor core regional division. During development, emphasis was placed on high calculational speed and large memory size as attained by the latest supercomputer technology. The program consists of six major modules, namely a core neutronics module, a fuel heat conduction/transfer module, a fuel channel thermal-hydraulic module, an upper plenum/separator module, a feedwater/recirculation flow module, and amore » control system module. Its core neutronics module is based on the modified one-group neutron kinetics equation with the prompt jump approximation and with six delayed neutron precursor groups. The module is used to analyze one fuel bundle of the reactor core with one mesh (region). The fuel heat conduction/transfer module solves the one-dimensional heat conduction equation in the radial direction with ten nodes in the fuel pin. The fuel channel thermal-hydraulic module is based on separated three-equation, two-phase flow equations with the drift flux correlation, and it analyzes one fuel bundle of the reactor core with one channel to evaluate flow redistribution between channels precisely. Thermal margin is evaluated by using the GEXL correlation, for example, in the module.« less
Compact thermoelectric converter systems technology
NASA Technical Reports Server (NTRS)
1973-01-01
A schematic of the developed tubular thermoelectric module is shown. It consists of alternate washers of n- and p-type lead telluride, separated by thin natural mica washers. Electrical continuity within the circuit is accomplished by cylindrical conductor rings located at the I.D. and O.D. of the lead telluride washers. The conductor rings are also separated by the same mica which separate the lead telluride washers. The result is a radially serpentine current path along the length of the module. The circuit is isolated from the structural claddings by thin sleeves of boron nitride. Circuit containment and heat transfer surfaces are provided by the inner and outer cladding, heat being transferred from a heat source at the inner clad, conducted radially outward through the lead telluride to the outer clad where the waste heat is removed by a heat rejection system.
Orion Service Module Umbilical (OSMU) Lift & Preparation for Ins
2017-03-13
Crane specialists monitor the progress as the bracket for the Orion Service Module Umbilical (OSMU) is lifted up for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
Orion Service Module Umbilical (OSMU) Installation
2017-03-16
Construction workers assist as a crane and rigging are used to position the Orion Service Module Umbilical (OSMU) for installation high up on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
Orion Service Module Umbilical (OSMU) Lift & Preparation for Ins
2017-03-13
A view from below the mobile launcher shows a crane positioning the bracket for the Orion Service Module Umbilical (OSMU) high up for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
Orion Service Module Umbilical (OSMU) Lift & Preparation for Ins
2017-03-13
Crane specialists monitor the progress as the bracket for the Orion Service Module Umbilical (OSMU) is lifted high up for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
Orion Service Module Umbilical (OSMU) Lift & Preparation for Ins
2017-03-13
In this view looking down from high up on the mobile launcher, a crane positions the bracket for the Orion Service Module Umbilical (OSMU) for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The mobile launcher tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
Textbooks on the Move: Transforming a Textbook Collection
ERIC Educational Resources Information Center
Ferguson, Yoko Inagi; Riley-Reid, Trevar
2017-01-01
Recently, The City College of New York (CCNY) libraries engaged in a collaborative project to transfer the bibliographic holdings for textbook course reserves to a new module when their integrated library systems, the Ex Libris Aleph Integrated Library System, underwent a system upgrade. In this article, the Chief of Circulation and the Chief of…
Concepts for the evolution of the Space Station Program
NASA Technical Reports Server (NTRS)
Michaud, Roger B.; Miller, Ladonna J.; Primeaux, Gary R.
1986-01-01
An evaluation is made of innovative but pragmatic waste management, interior and exterior orbital module construction, Space Shuttle docking, orbital repair operation, and EVA techniques applicable to the NASA Space Station program over the course of its evolution. Accounts are given of the Space Shuttle's middeck extender module, an on-orbit module assembly technique employing 'Pringles' stack-transportable conformal panels, a flexible Shuttle/Space Station docking tunnel, an 'expandable dome' for transfer of objects into the Space Station, and a Space Station dual-hatch system. For EVA operations, pressurized bubbles with articulating manipulator arms and EVA hard suits incorporating maneuvering, life support and propulsion capabilities, as well as an EVA gas propulsion system, are proposed. A Space Station ultrasound cleaning system is also discussed.
Optimal design and operation of a photovoltaic-electrolyser system using particle swarm optimisation
NASA Astrophysics Data System (ADS)
Sayedin, Farid; Maroufmashat, Azadeh; Roshandel, Ramin; Khavas, Sourena Sattari
2016-07-01
In this study, hydrogen generation is maximised by optimising the size and the operating conditions of an electrolyser (EL) directly connected to a photovoltaic (PV) module at different irradiance. Due to the variations of maximum power points of the PV module during a year and the complexity of the system, a nonlinear approach is considered. A mathematical model has been developed to determine the performance of the PV/EL system. The optimisation methodology presented here is based on the particle swarm optimisation algorithm. By this method, for the given number of PV modules, the optimal sizeand operating condition of a PV/EL system areachieved. The approach can be applied for different sizes of PV systems, various ambient temperatures and different locations with various climaticconditions. The results show that for the given location and the PV system, the energy transfer efficiency of PV/EL system can reach up to 97.83%.
Reconfigurable vision system for real-time applications
NASA Astrophysics Data System (ADS)
Torres-Huitzil, Cesar; Arias-Estrada, Miguel
2002-03-01
Recently, a growing community of researchers has used reconfigurable systems to solve computationally intensive problems. Reconfigurability provides optimized processors for systems on chip designs, and makes easy to import technology to a new system through reusable modules. The main objective of this work is the investigation of a reconfigurable computer system targeted for computer vision and real-time applications. The system is intended to circumvent the inherent computational load of most window-based computer vision algorithms. It aims to build a system for such tasks by providing an FPGA-based hardware architecture for task specific vision applications with enough processing power, using the minimum amount of hardware resources as possible, and a mechanism for building systems using this architecture. Regarding the software part of the system, a library of pre-designed and general-purpose modules that implement common window-based computer vision operations is being investigated. A common generic interface is established for these modules in order to define hardware/software components. These components can be interconnected to develop more complex applications, providing an efficient mechanism for transferring image and result data among modules. Some preliminary results are presented and discussed.
NCC: A Multidisciplinary Design/Analysis Tool for Combustion Systems
NASA Technical Reports Server (NTRS)
Liu, Nan-Suey; Quealy, Angela
1999-01-01
A multi-disciplinary design/analysis tool for combustion systems is critical for optimizing the low-emission, high-performance combustor design process. Based on discussions between NASA Lewis Research Center and the jet engine companies, an industry-government team was formed in early 1995 to develop the National Combustion Code (NCC), which is an integrated system of computer codes for the design and analysis of combustion systems. NCC has advanced features that address the need to meet designer's requirements such as "assured accuracy", "fast turnaround", and "acceptable cost". The NCC development team is comprised of Allison Engine Company (Allison), CFD Research Corporation (CFDRC), GE Aircraft Engines (GEAE), NASA Lewis Research Center (LeRC), and Pratt & Whitney (P&W). This development team operates under the guidance of the NCC steering committee. The "unstructured mesh" capability and "parallel computing" are fundamental features of NCC from its inception. The NCC system is composed of a set of "elements" which includes grid generator, main flow solver, turbulence module, turbulence and chemistry interaction module, chemistry module, spray module, radiation heat transfer module, data visualization module, and a post-processor for evaluating engine performance parameters. Each element may have contributions from several team members. Such a multi-source multi-element system needs to be integrated in a way that facilitates inter-module data communication, flexibility in module selection, and ease of integration.
NASA Astrophysics Data System (ADS)
Ansari, M. H.; Attarzadeh, M. A.; Nouh, M.; Karami, M. Amin
2018-01-01
In this paper, a physical platform is proposed to change the properties of phononic crystals in space and time in order to achieve nonreciprocal wave transmission. The utilization of magnetoelastic materials in elastic phononic systems is studied. Material properties of magnetoelastic materials change significantly with an external magnetic field. This property is used to design systems with a desired wave propagation pattern. The properties of the magnetoelastic medium are changed in a traveling wave pattern, which changes in both space and time. A phononic crystal with such a modulation exhibits one-way wave propagation behavior. An extended transfer matrix method (TMM) is developed to model a system with time varying properties. The stop band and the pass band of a reciprocal and a nonreciprocal bar are found using this method. The TMM is used to find the transfer function of a magnetoelastic bar. The obtained results match those obtained via the theoretical Floquet-Bloch approach and numerical simulations. It is shown that the stop band in the transfer function of a system with temporal varying property for the forward wave propagation is different from the same in the backward wave propagation. The proposed configuration enables the physical realization of a class of smart structures that incorporates nonreciprocal wave propagation.
Mechanical System Analysis/Design Tool (MSAT) Quick Guide
NASA Technical Reports Server (NTRS)
Lee, HauHua; Kolb, Mark; Madelone, Jack
1998-01-01
MSAT is a unique multi-component multi-disciplinary tool that organizes design analysis tasks around object-oriented representations of configuration components, analysis programs and modules, and data transfer links between them. This creative modular architecture enables rapid generation of input stream for trade-off studies of various engine configurations. The data transfer links automatically transport output from one application as relevant input to the next application once the sequence is set up by the user. The computations are managed via constraint propagation - the constraints supplied by the user as part of any optimization module. The software can be used in the preliminary design stage as well as during the detail design of product development process.
Comparison of immersed liquid and air cooling of NASA's Airborne Information Management System
NASA Technical Reports Server (NTRS)
Hoadley, A. W.; Porter, A. J.
1992-01-01
The Airborne Information Management System (AIMS) is currently under development at NASA Dryden Flight Research Facility. The AIMS is designed as a modular system utilizing surface mounted integrated circuits in a high-density configuration. To maintain the temperature of the integrated circuits within manufacturer's specifications, the modules are to be filled with Fluorinert FC-72. Unlike ground based liquid cooled computers, the extreme range of the ambient pressures experienced by the AIMS requires the FC-72 be contained in a closed system. This forces the latent heat absorbed during the boiling to be released during the condensation that must take within the closed module system. Natural convection and/or pumping carries the heat to the outer surface of the AIMS module where the heat transfers to the ambient air. This paper will present an evaluation of the relative effectiveness of immersed liquid cooling and air cooling of the Airborne Information Management System.
Comparison of immersed liquid and air cooling of NASA's Airborne Information Management System
NASA Astrophysics Data System (ADS)
Hoadley, A. W.; Porter, A. J.
1992-07-01
The Airborne Information Management System (AIMS) is currently under development at NASA Dryden Flight Research Facility. The AIMS is designed as a modular system utilizing surface mounted integrated circuits in a high-density configuration. To maintain the temperature of the integrated circuits within manufacturer's specifications, the modules are to be filled with Fluorinert FC-72. Unlike ground based liquid cooled computers, the extreme range of the ambient pressures experienced by the AIMS requires the FC-72 be contained in a closed system. This forces the latent heat absorbed during the boiling to be released during the condensation that must take within the closed module system. Natural convection and/or pumping carries the heat to the outer surface of the AIMS module where the heat transfers to the ambient air. This paper will present an evaluation of the relative effectiveness of immersed liquid cooling and air cooling of the Airborne Information Management System.
The DinJ/RelE toxin-antitoxin system suppresses virulence in Xylella fastidiosa
USDA-ARS?s Scientific Manuscript database
Xylella fastidiosa, the causal agent of a number agriculturally important plant diseases, encodes multiple toxin-antitoxin (TA) systems. TA modules consist of a toxin protein co-expressed with a specific antitoxin, and are often acquired through horizontal gene transfer. Antitoxin molecules (RNA or ...
An Earth Orbiting Satellite Service and Repair Facility
NASA Technical Reports Server (NTRS)
Berndt, Andrew; Cardoza, Mike; Chen, John; Daley, Gunter; Frizzell, Andy; Linton, Richard; Rast, Wayne
1989-01-01
A conceptual design was produced for the Geosynchronous Satellite Servicing Platform (GSSP), an orbital facility capable of repairing and servicing satellites in geosynchronous orbit. The GSSP is a man-tended platform, which consists of a habitation module, operations module, service bay and truss assembly. This design review includes an analysis of life support systems, thermal and power requirements, robotic and automated systems, control methods and navigation, and communications systems. The GSSP will utilize existing technology available at the time of construction, focusing mainly on modifying and integrating existing systems. The entire facility, along with two satellite retrieval vehicles (SRV), will be placed in geosynchronous orbit by the Advanced Launch System. The SRV will be used to ferry satellites to and from the GSSP. Technicians will be transferred from Earth to the GSSP and back in an Apollo-derived Crew Transfer Capsule (CTC). These missions will use advanced telerobotic equipment to inspect and service satellites. Four of these missions are tentatively scheduled per year. At this rate, the GSSP will service over 650 satelites during the projected 25 year lifespan.
MLP based LOGSIG transfer function for solar generation monitoring
NASA Astrophysics Data System (ADS)
Hashim, Fakroul Ridzuan; Din, Muhammad Faiz Md; Ahmad, Shahril; Arif, Farah Khairunnisa; Rizman, Zairi Ismael
2018-02-01
Solar panel is one of the renewable energy that can reduce the environmental pollution and have a wide potential of application. The exact solar prediction model will give a big impact on the management of solar power plants and the design of solar energy systems. This paper attempts to use Multilayer Perceptron (MLP) neural network based transfer function. The MLP network can be used to calculate the temperature module (TM) in Malaysia. This can be done by simulating the collected data of four weather variables which are the ambient temperature (TA), local wind speed (VW), solar radiation flux (GT) and the relative humidity (RH) as the input into the neural network. The transfer function will be applied to the 14 types of training. Finally, an equation from the best training algorithm will be deduced to calculate the temperature module based on the input of weather variables in Malaysia.
A high-speed BCI based on code modulation VEP
NASA Astrophysics Data System (ADS)
Bin, Guangyu; Gao, Xiaorong; Wang, Yijun; Li, Yun; Hong, Bo; Gao, Shangkai
2011-04-01
Recently, electroencephalogram-based brain-computer interfaces (BCIs) have attracted much attention in the fields of neural engineering and rehabilitation due to their noninvasiveness. However, the low communication speed of current BCI systems greatly limits their practical application. In this paper, we present a high-speed BCI based on code modulation of visual evoked potentials (c-VEP). Thirty-two target stimuli were modulated by a time-shifted binary pseudorandom sequence. A multichannel identification method based on canonical correlation analysis (CCA) was used for target identification. The online system achieved an average information transfer rate (ITR) of 108 ± 12 bits min-1 on five subjects with a maximum ITR of 123 bits min-1 for a single subject.
NASA Technical Reports Server (NTRS)
1987-01-01
Skylab derived Heating System offers computerized control with an innovative voice synthesizer that literally allows the control unit to talk to the system user. It reports time of day, outside temperature and system temperature, and asks questions as to how the user wants the system programmed. Master Module collects energy from the Sun and either transfers it directly to the home water heater or stores it until needed.
NASA Astrophysics Data System (ADS)
Riggs, William R.
1994-05-01
SHARP is a Navy wide logistics technology development effort aimed at reducing the acquisition costs, support costs, and risks of military electronic weapon systems while increasing the performance capability, reliability, maintainability, and readiness of these systems. Lower life cycle costs for electronic hardware are achieved through technology transition, standardization, and reliability enhancement to improve system affordability and availability as well as enhancing fleet modernization. Advanced technology is transferred into the fleet through hardware specifications for weapon system building blocks of standard electronic modules, standard power systems, and standard electronic systems. The product lines are all defined with respect to their size, weight, I/O, environmental performance, and operational performance. This method of defining the standard is very conducive to inserting new technologies into systems using the standard hardware. This is the approach taken thus far in inserting photonic technologies into SHARP hardware. All of the efforts have been related to module packaging; i.e. interconnects, component packaging, and module developments. Fiber optic interconnects are discussed in this paper.
Zhu, Ling; Chen, Jia-Qing; Zhang, Bao-Sheng; Wang, Jian-Hong
2011-12-01
Two kinds of membranes modules, vapor retained glassy membrane based on PEEK hollow fiber membrane modules and vapor permeated rubbery membrane system based on GMT plate-and-frame membrane modules, were used to control the oil vapor pollution during the course of receiving and transferring gasoline in oil station. The efficiencies of the membrane module and the membrane system of them were evaluated and compared respectively in the facilities which were developed by ourselves. It was found that both the two kinds of membranes modules had high efficiency for the separation of VOCs-air mixed gases, and the outlet vapor after treatment all can meet the national standard. When the vapor-enriched gas was returned to the oil tank to simulate the continuously cycle test, the concentration of VOCs in the outlet was also below 25 g x m(-3).
Development of the Orion Crew-Service Module Umbilical Retention and Release Mechanism
NASA Technical Reports Server (NTRS)
Delap, Damon; Glidden, Joel; Lamoreaux, Christopher
2013-01-01
The Orion Crew-Service Module umbilical retention and release mechanism supports, protects and disconnects all of the cross-module commodities between the spacecraft's crew and service modules. These commodities include explosive transfer lines, wiring for power and data, and flexible hoses for ground purge and life support systems. Initial development testing of the mechanism's separation interface resulted in binding failures due to connector misalignments. The separation interface was redesigned with a robust linear guide system, and the connector separation and boom deployment were separated into two discretely sequenced events. Subsequent analysis and testing verified that the design changes corrected the binding. This umbilical separation design will be used on Exploration Flight Test 1 (EFT-1) as well as all future Orion flights. The design is highly modular and can easily be adapted to other vehicles/modules and alternate commodity sets.
Optical transmission modules for multi-channel superconducting quantum interference device readouts.
Kim, Jin-Mok; Kwon, Hyukchan; Yu, Kwon-kyu; Lee, Yong-Ho; Kim, Kiwoong
2013-12-01
We developed an optical transmission module consisting of 16-channel analog-to-digital converter (ADC), digital-noise filter, and one-line serial transmitter, which transferred Superconducting Quantum Interference Device (SQUID) readout data to a computer by a single optical cable. A 16-channel ADC sent out SQUID readouts data with 32-bit serial data of 8-bit channel and 24-bit voltage data at a sample rate of 1.5 kSample/s. A digital-noise filter suppressed digital noises generated by digital clocks to obtain SQUID modulation as large as possible. One-line serial transmitter reformed 32-bit serial data to the modulated data that contained data and clock, and sent them through a single optical cable. When the optical transmission modules were applied to 152-channel SQUID magnetoencephalography system, this system maintained a field noise level of 3 fT/√Hz @ 100 Hz.
Expedition One CDR Shepherd in U.S. Laboratory / Destiny module
2001-02-11
STS98-E-5160 (11 February 2001) --- Astronaut William M. (Bill) Shepherd, Expedition One commander, surveys the interior of the newly attached Destiny laboratory onboard the International Space Station (ISS). After the Destiny hatch was opened early in the day, members of both crews went to work quickly inside the new module, activating air systems, fire extinguishers, alarm systems, computers and internal communications. The crews also took some photos and continued equipment transfers from the shuttle to the station. The scene was taken with a digital still camera.
MS Curbeam with rack in U.S. Laboratory /Destiny module
2001-02-11
STS98-E-5157 (11 February 2001) --- Astronaut Robert L. Curbeam, STS-98 mission specialist, installs some of the fixtures in the newly attached Destiny laboratory onboard the International Space Station (ISS). After the Destiny hatch was opened early in the day, members of both crews went to work quickly inside the new module, activating air systems, fire extinguishers, alarm systems, computers and internal communications. The crews also took some photos and continued equipment transfers from the shuttle to the station. The scene was taken with a digital still camera.
STS-98 and Expedition One crew with rack in U.S. Laboratory / Destiny module
2001-02-11
STS98-E-5159 (11 February 2001) --- Astronaut Mark L. Polansky, STS-98 pilot, works inside the newly attached Destiny laboratory onboard the International Space Station (ISS). After the Destiny hatch was opened early in the day, members of both the shuttle and station crews went to work quickly inside the new module, activating air systems, fire extinguishers, alarm systems, computers and internal communications. The crews also took some photos and continued equipment transfers from the shuttle to the station. The scene was taken with a digital still camera.
Concentrating photovoltaic solar panel
Cashion, Steven A; Bowser, Michael R; Farrelly, Mark B; Hines, Braden E; Holmes, Howard C; Johnson, Jr., Richard L; Russell, Richard J; Turk, Michael F
2014-04-15
The present invention relates to photovoltaic power systems, photovoltaic concentrator modules, and related methods. In particular, the present invention features concentrator modules having interior points of attachment for an articulating mechanism and/or an articulating mechanism that has a unique arrangement of chassis members so as to isolate bending, etc. from being transferred among the chassis members. The present invention also features adjustable solar panel mounting features and/or mounting features with two or more degrees of freedom. The present invention also features a mechanical fastener for secondary optics in a concentrator module.
The modulation rate transfer function of a harbour porpoise (Phocoena phocoena).
Linnenschmidt, Meike; Wahlberg, Magnus; Damsgaard Hansen, Janni
2013-02-01
During echolocation, toothed whales produce ultrasonic clicks at extremely rapid rates and listen for the returning echoes. The auditory brainstem response (ABR) duration was evaluated in terms of latency between single peaks: 5.5 ms (from peak I to VII), 3.4 ms (I-VI), and 1.4 ms (II-IV). In comparison to the killer whale and the bottlenose dolphin, the ABR of the harbour porpoise has shorter intervals between the peaks and consequently a shorter ABR duration. This indicates that the ABR duration and peak latencies are possibly related to the relative size of the auditory structures of the central nervous system and thus to the animal's size. The ABR to a sinusoidal amplitude modulated stimulus at 125 kHz (sensitivity threshold 63 dB re 1 μPa rms) was evaluated to determine the modulation rate transfer function of a harbour porpoise. The ABR showed distinct envelope following responses up to a modulation rate of 1,900 Hz. The corresponding calculated equivalent rectangular duration of 263 μs indicates a good temporal resolution in the harbour porpoise auditory system similar to the one for the bottlenose dolphin. The results explain how the harbour porpoise can follow clicks and echoes during echolocation with very short inter click intervals.
Advanced thermionic energy conversion
NASA Technical Reports Server (NTRS)
1979-01-01
Developments towards space and terrestrial applications of thermionic energy conversion are presented. Significant accomplishments for the three month period include: (1) devised a blade-type distributed lead design with many advantages compared to the stud-type distributed lead; (2) completed design of Marchuk tube test apparatus; (3) concluded, based on current understanding, that residual hydrogen should not contribute to a negative space charge barrier at the collector; (4) modified THX design program to include series-coupled designs as well as inductively-coupled designs; (5) initiated work on the heat transfer technology, THX test module, output power transfer system, heat transfer system, and conceptual plant design tasks; and (6) reached 2200 hours of operation in JPL-5 cylindrical converter envelope test.
Lunar-edge based on-orbit modulation transfer function (MTF) measurement
NASA Astrophysics Data System (ADS)
Cheng, Ying; Yi, Hongwei; Liu, Xinlong
2017-10-01
Modulation transfer function (MTF) is an important parameter for image quality evaluation of on-orbit optical image systems. Various methods have been proposed to determine the MTF of an imaging system which are based on images containing point, pulse and edge features. In this paper, the edge of the moon can be used as a high contrast target to measure on-orbit MTF of image systems based on knife-edge methods. The proposed method is an extension of the ISO 12233 Slanted-edge Spatial Frequency Response test, except that the shape of the edge is a circular arc instead of a straight line. In order to get more accurate edge locations and then obtain a more authentic edge spread function (ESF), we choose circular fitting method based on least square to fit lunar edge in sub-pixel edge detection process. At last, simulation results show that the MTF value at Nyquist frequency calculated using our lunar edge method is reliable and accurate with error less than 2% comparing with theoretical MTF value.
Development of a gravity-independent wastewater bioprocessor for advanced life support in space
NASA Technical Reports Server (NTRS)
Nashashibi-Rabah, Majda; Christodoulatos, Christos; Korfiatis, George P.; Janes, H. W. (Principal Investigator)
2005-01-01
Operation of aerobic biological reactors in space is controlled by a number of challenging constraints, mainly stemming from mass transfer limitations and phase separation. Immobilized-cell packed-bed bioreactors, specially designed to function in the absence of gravity, offer a viable solution for the treatment of gray water generated in space stations and spacecrafts. A novel gravity-independent wastewater biological processor, capable of carbon oxidation and nitrification of high-strength aqueous waste streams, is presented. The system, consisting of a fully saturated pressurized packed bed and a membrane oxygenation module attached to an external recirculation loop, operated continuously for over one year. The system attained high carbon oxidation efficiencies often exceeding 90% and ammonia oxidation reaching approximately 60%. The oxygen supply module relies on hydrophobic, nonporous, oxygen selective membranes, in a shell and tube configuration, for transferring oxygen to the packed bed, while keeping the gaseous and liquid phases separated. This reactor configuration and operating mode render the system gravity-independent and suitable for space applications.
Orion Service Module Umbilical (OSMU) Lift & Preparation for Ins
2017-03-13
Construction workers and crane specialists high up on the mobile launcher tower monitor the progress as a crane positions the bracket for the Orion Service Module Umbilical (OSMU) for installation on the mobile launcher tower at NASA's Kennedy Space Center in Florida. The tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
NASA Technical Reports Server (NTRS)
1982-01-01
Functional and design data from various thematic mapper subsystems are presented. Coarse focus, modulation transfer function, and shim requirements are addressed along with spectral matching and spatial coverage tests.
Error of the slanted edge method for measuring the modulation transfer function of imaging systems.
Xie, Xufen; Fan, Hongda; Wang, Hongyuan; Wang, Zebin; Zou, Nianyu
2018-03-01
The slanted edge method is a basic approach for measuring the modulation transfer function (MTF) of imaging systems; however, its measurement accuracy is limited in practice. Theoretical analysis of the slanted edge MTF measurement method performed in this paper reveals that inappropriate edge angles and random noise reduce this accuracy. The error caused by edge angles is analyzed using sampling and reconstruction theory. Furthermore, an error model combining noise and edge angles is proposed. We verify the analyses and model with respect to (i) the edge angle, (ii) a statistical analysis of the measurement error, (iii) the full width at half-maximum of a point spread function, and (iv) the error model. The experimental results verify the theoretical findings. This research can be referential for applications of the slanted edge MTF measurement method.
Self-contained heat rejection module for future spacecraft
NASA Technical Reports Server (NTRS)
Fleming, M. L.; Williams, J. L.; Baskett, J. D.; Leach, J. W.
1975-01-01
This paper discusses development of a Self-Contained Heat Rejection Module (SHRM) which can be used on a wide variety of future spacecraft launched by the space shuttle orbiter. The SHRM contains radiators which are deployed by a scissor-mechanism and the flow equipment including pumps, accumulator, by-pass valves, and controllers necessary to reject heat from those radiators. Heat transfer between SHRM and the parent vehicle is effected by a contact heat exchanger. This device provides heat transfer between two separate flow loops through a mechanical connection. This approach reduces the time required to attach the SHRM to the payload, and increases the reliability of the SHRM flow loop since breaking into the fluid system in the field is not required. The SHRM concept also includes a refrigeration system to increase heat rejection capacity in adverse environments, or to provide for a lower return temperature, down to -23 C.
Communication interface and graphic module for audiometry equipment.
Gutiérrez Martinez, Josefina; Barraza López, Fernando; Guadarrama Lara, Alberto; Núñez Gaona, Marco Antonio; Delgado Esquerra, Ruth; Gutiérrez Farfán, Ileana
2009-01-01
The National Rehabilitation Institute (INR) in Mexico City purchased 12 Madsen Orbiter 922 audiometers in 2006. While this audiometer is excellent for diagnosing the degree and type of hearing loss, it has presented problems in transfering, saving and printing the results of special tests and logoaudiometry from audiometer to workstation with the NOAH-3 system. The data are lost when the audiometer is turned off or a new patient is captured. There is no database storing and, shortly after the results have been printed on the thermal paper, the audiograms are erased. This problem was addressed by designing and implementing the InterAudio (AAMS) communication and graphical interface. The limitations and scope of the Automatic Audiometric Measurement System were analyzed, then a search of technical information was performed that included the resources for designing, developing and implementing the transfer interface, the user's graphical module requirements, and the tools for printing and saving the study.
Pumped two-phase heat transfer loop
NASA Technical Reports Server (NTRS)
Edelstein, Fred
1988-01-01
A pumped loop two-phase heat transfer system, operating at a nearly constant temperature throughout, includes several independently operating grooved capillary heat exchanger plates supplied with working fluid through independent flow modulation valves connected to a liquid supply line, a vapor line for collecting vapor from the heat exchangers, a condenser between the vapor and the liquid lines, and a fluid circulating pump between the condenser and the heat exchangers.
Pumped two-phase heat transfer loop
NASA Technical Reports Server (NTRS)
Edelstein, Fred (Inventor)
1987-01-01
A pumped loop two-phase heat transfer system, operating at a nearly constant temperature throughout, includes a plurality of independently operating grooved capillary heat exchanger plates supplied with working fluid through independent flow modulation valves connected to a liquid supply line, a vapor line for collecting vapor from the heat exchangers, a condenser between the vapor and the liquid lines, and a fluid circulating pump between the condenser and the heat exchangers.
Exciplex formation and energy transfer in a self-assembled metal-organic hybrid system.
Haldar, Ritesh; Rao, K Venkata; George, Subi J; Maji, Tapas Kumar
2012-05-07
Exciting assemblies: A metal-organic self-assembly of pyrenebutyric acid (PBA), 1,10-phenanthroline (o-phen), and Mg(II) shows solid-state fluorescence originating from a 1:1 PBA-o-phen exciplex. This exciplex fluorescence is sensitized by another residual PBA chromophore through an excited-state energy-transfer process. The solvent polarity modulates the self-assembly and the corresponding exciplex as well as the energy transfer, resulting in tunable emission of the hybrid (see figure). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Open Platform for Limit Protection with Carefree Maneuver Applications
NASA Technical Reports Server (NTRS)
Jeram, Geoffrey J.
2004-01-01
This Open Platform for Limit Protection guides the open design of maneuver limit protection systems in general, and manned, rotorcraft, aerospace applications in particular. The platform uses three stages of limit protection modules: limit cue creation, limit cue arbitration, and control system interface. A common set of limit cue modules provides commands that can include constraints, alerts, transfer functions, and friction. An arbitration module selects the "best" limit protection cues and distributes them to the most appropriate control path interface. This platform adopts a holistic approach to limit protection whereby it considers all potential interface points, including the pilot's visual, aural, and tactile displays; and automatic command restraint shaping for autonomous limit protection. For each functional module, this thesis guides the control system designer through the design choices and information interfaces among the modules. Limit cue module design choices include type of prediction, prediction mechanism, method of critical control calculation, and type of limit cue. Special consideration is given to the nature of the limit, particularly the level of knowledge about it, and the ramifications for limit protection design, especially with respect to intelligent control methods such as fuzzy inference systems and neural networks.
NASA Astrophysics Data System (ADS)
Hwang, Sunghwan
1997-08-01
One of the most prominent features of helicopter rotor dynamics in forward flight is the periodic coefficients in the equations of motion introduced by the rotor rotation. The frequency response characteristics of such a linear time periodic system exhibits sideband behavior, which is not the case for linear time invariant systems. Therefore, a frequency domain identification methodology for linear systems with time periodic coefficients was developed, because the linear time invariant theory cannot account for sideband behavior. The modulated complex Fourier series was introduced to eliminate the smearing effect of Fourier series expansions of exponentially modulated periodic signals. A system identification theory was then developed using modulated complex Fourier series expansion. Correlation and spectral density functions were derived using the modulated complex Fourier series expansion for linear time periodic systems. Expressions of the identified harmonic transfer function were then formulated using the spectral density functions both with and without additive noise processes at input and/or output. A procedure was developed to identify parameters of a model to match the frequency response characteristics between measured and estimated harmonic transfer functions by minimizing an objective function defined in terms of the trace of the squared frequency response error matrix. Feasibility was demonstrated by the identification of the harmonic transfer function and parameters for helicopter rigid blade flapping dynamics in forward flight. This technique is envisioned to satisfy the needs of system identification in the rotating frame, especially in the context of individual blade control. The technique was applied to the coupled flap-lag-inflow dynamics of a rigid blade excited by an active pitch link. The linear time periodic technique results were compared with the linear time invariant technique results. Also, the effect of noise processes and initial parameter guess on the identification procedure were investigated. To study the effect of elastic modes, a rigid blade with a trailing edge flap excited by a smart actuator was selected and system parameters were successfully identified, but with some expense of computational storage and time. Conclusively, the linear time periodic technique substantially improved the identified parameter accuracy compared to the linear time invariant technique. Also, the linear time periodic technique was robust to noises and initial guess of parameters. However, an elastic mode of higher frequency relative to the system pumping frequency tends to increase the computer storage requirement and computing time.
Nuclear electric power for multimegawatt orbit transfer vehicles
NASA Astrophysics Data System (ADS)
Casagrande, R. D.
Multimegawatt nuclear propulsion is an attractive option for orbit transfer vehicles. The masses of these platforms are expected to exceed the capability of a single launch from Earth necessitating assembly in space in a parking orbit. The OTV would transfer the platform from the parking orbit to the operational orbit and then return for the next mission. Electric propulsion is advantageous because of the high specific impulse achieved by the technology, 1000 to 5000 s and beyond, to reduce the propellant required. Nuclear power is attractive as the power system because of the weight savings over solar systems in the multimegawatt regime, and multimegawatts of power are required. A conceptual diagram is shown of an OTV with a command control module using electric thrusters powered from an SP-100 class nuclear reactor power system.
Japanese Experiment Module arrival
2007-03-29
Inside the Space Station Processing Facility, workers monitor progress as a huge crane is used to remove the top of the crate carrying the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.
Japanese Experiment Module arrival
2007-03-29
Inside the Space Station Processing Facility, the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module is revealed after the top of the crate is removed. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.
JEM Experiment Logistics Module Pressurized Section
2007-04-02
In the Space Station Processing Facility, the JEM Experiment Logistics Module Pressurized Section is lowered onto a scale for weight and center-of-gravity measurements. The module will then be moved to a work stand. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greene, N.M.; Petrie, L.M.; Westfall, R.M.
SCALE--a modular code system for Standardized Computer Analyses Licensing Evaluation--has been developed by Oak Ridge National Laboratory at the request of the US Nuclear Regulatory Commission. The SCALE system utilizes well-established computer codes and methods within standard analysis sequences that (1) allow an input format designed for the occasional user and/or novice, (2) automate the data processing and coupling between modules, and (3) provide accurate and reliable results. System development has been directed at problem-dependent cross-section processing and analysis of criticality safety, shielding, heat transfer, and depletion/decay problems. Since the initial release of SCALE in 1980, the code system hasmore » been heavily used for evaluation of nuclear fuel facility and package designs. This revision documents Version 4.2 of the system. The manual is divided into three volumes: Volume 1--for the control module documentation; Volume 2--for functional module documentation; and Volume 3--for documentation of the data libraries and subroutine libraries.« less
Application of Distributed DC/DC Electronics in Photovoltaic Systems
NASA Astrophysics Data System (ADS)
Kabala, Michael
In a typical residential, commercial or utility grade photovoltaic (PV) system, PV modules are connected in series and in parallel to form an array that is connected to a standard DC/AC inverter, which is then connected directly to the grid. This type of standard installation; however, does very little to maximize the energy output of the solar array if certain conditions exist. These conditions could include age, temperature, irradiance and other factors that can cause mismatch between PV modules in an array that severely cripple the output power of the system. Since PV modules are typically connected in series to form a string, the output of the entire string is limited by the efficiency of the weakest module. With PV module efficiencies already relatively low, it is critical to extract the maximum power out of each module in order to make solar energy an economically viable competitor to oil and gas. Module level DC/DC electronics with maximum power point (MPP) tracking solves this issue by decoupling each module from the string in order for the module to operate independently of the geometry and complexity of the surrounding system. This allows each PV module to work at its maximum power point by transferring the maximum power the module is able to deliver directly to the load by either boosting (stepping up) the voltage or bucking (stepping down) the voltage. The goal of this thesis is to discuss the development of a per-module DC/DC converter in order to maximize the energy output of a PV module and reduce the overall cost of the system by increasing the energy harvest.
2004-09-01
of DMD ...........................................................................................47 Figure 3.15: Lens used for intensity...51 Figure 3.18: Imaging system for DMD ...temperatures, converts to a ceramic material Digital Micromirror Device ( DMD ) – A MEMS device that consists of tiny mirror used for light modulation
Heat pumping in nanomechanical systems.
Chamon, Claudio; Mucciolo, Eduardo R; Arrachea, Liliana; Capaz, Rodrigo B
2011-04-01
We propose using a phonon pumping mechanism to transfer heat from a cold to a hot body using a propagating modulation of the medium connecting the two bodies. This phonon pump can cool nanomechanical systems without the need for active feedback. We compute the lowest temperature that this refrigerator can achieve. © 2011 American Physical Society
NASA Astrophysics Data System (ADS)
Niwase, Hiroaki; Takada, Naoki; Araki, Hiromitsu; Maeda, Yuki; Fujiwara, Masato; Nakayama, Hirotaka; Kakue, Takashi; Shimobaba, Tomoyoshi; Ito, Tomoyoshi
2016-09-01
Parallel calculations of large-pixel-count computer-generated holograms (CGHs) are suitable for multiple-graphics processing unit (multi-GPU) cluster systems. However, it is not easy for a multi-GPU cluster system to accomplish fast CGH calculations when CGH transfers between PCs are required. In these cases, the CGH transfer between the PCs becomes a bottleneck. Usually, this problem occurs only in multi-GPU cluster systems with a single spatial light modulator. To overcome this problem, we propose a simple method using the InfiniBand network. The computational speed of the proposed method using 13 GPUs (NVIDIA GeForce GTX TITAN X) was more than 3000 times faster than that of a CPU (Intel Core i7 4770) when the number of three-dimensional (3-D) object points exceeded 20,480. In practice, we achieved ˜40 tera floating point operations per second (TFLOPS) when the number of 3-D object points exceeded 40,960. Our proposed method was able to reconstruct a real-time movie of a 3-D object comprising 95,949 points.
Solar Electric Propulsion Vehicle Design Study for Cargo Transfer to Earth-moon L1
NASA Technical Reports Server (NTRS)
Sarver-Verhey, Timothy R.; Kerslake, Thomas W.; Rawlin, Vincent K.; Falck, Robert D.; Dudzinski, Leonard J.; Oleson, Steven R.
2002-01-01
A design study for a cargo transfer vehicle using solar electric propulsion was performed for NASA's Revolutionary Aerospace Systems Concepts program. Targeted for 2016, the solar electric propulsion (SEP) transfer vehicle is required to deliver a propellant supply module with a mass of approximately 36 metric tons from Low Earth Orbit to the first Earth-Moon libration point (LL1) within 270 days. Following an examination of propulsion and power technology options, a SEP transfer vehicle design was selected that incorporated large-area (approx. 2700 sq m) thin film solar arrays and a clustered engine configuration of eight 50 kW gridded ion thrusters mounted on an articulated boom. Refinement of the SEP vehicle design was performed iteratively to properly estimate the required xenon propellant load for the out-bound orbit transfer. The SEP vehicle performance, including the xenon propellant estimation, was verified via the SNAP trajectory code. Further efforts are underway to extend this system model to other orbit transfer missions.
Inflight dynamics testing of the Apollo spacecraft
NASA Technical Reports Server (NTRS)
Peters, W. H.; Marchantel, B.
1972-01-01
Response of the Apollo command module, service and lunar module airframe while in a docked configuration in the flight environment was measured in a frequency band encompassing the first two bending modes. Transfer characteristics from thrust-application point to control-system sensor were examined. The frequency and the stability margins of the first two predominant structural resonances were verified by the test. This report describes the flight test that was performed and the postflight data analysis.
2008-05-05
CAPE CANAVERAL, Fla. -- Inside space shuttle Discovery's payload bay can be seen the red rain gutters, which prevent leaks into the bay from rain while the shuttle is on the pad. The STS-124 mission payload, the Japanese Experiment Module - Pressurized Module and the Japanese Remote Manipulator System (below the gutters), is being transferred from the Payload Changeout Room into the payload bay. Launch of Discovery is targeted for May 31. Photo credit: NASA/Jim Grossmann
Electrochemical kinetics and dimensional considerations, at the nanoscale
NASA Astrophysics Data System (ADS)
Yamada, H.; Bandaru, P. R.
2016-06-01
It is shown that the consideration of the density of states variation in nanoscale electrochemical systems yields modulations in the rate constant and concomitant electrical currents. The proposed models extend the utility of Marcus-Hush-Chidsey (MHC) kinetics to a larger class of materials and could be used as a test of dimensional character. The implications of the study are of much significance to an understanding and modulation of charge transfer nanostructured electrodes.
Mars Equipment Transport System
NASA Technical Reports Server (NTRS)
Sorrells, Cindy; Geiger, Michelle; Ohanlon, Sean; Pieloch, Stuart; Brogan, Nick
1993-01-01
Mechanical Engineering Senior Design Project 1 (ME4182) is a part of the NASA/University Advanced Design Program. Under this program, NASA allocates money and resources to students to be used in design work for a specified topic. The current topic is the exploration and colonization of Mars. The specific area in which we are to work is the transportation of the modules in which astronauts will live while on Mars. NASA is concerned about the weight of the module transferring system, as the shipping cost to Mars is quite expensive. NASA has specified that the weight of the system is to be minimized in order to reduce the shipping costs.
Characterizing 3D sensors using the 3D modulation transfer function
NASA Astrophysics Data System (ADS)
Kellner, Timo; Breitbarth, Andreas; Zhang, Chen; Notni, Gunther
2018-03-01
The fields of optical 3D measurement system applications are continuously expanding and becoming more and more diverse. To evaluate appropriate systems for various measurement tasks, comparable parameters are necessary, whereas the 3D modulation transfer function (3D-MTF) has been established as a further criterion. Its aim is the determination of the system response between the measurement of a straight, sharp-edged cube and its opposite ideal calculated one. Within the scope of this work simulations and practical investigations regarding the 3D-MTF’s influences and its main issues are specifically investigated. Therefore, different determined edge radii representing the high-frequency spectra lead to various decreasing 3D-MTF characteristics. Furthermore, rising sampling frequencies improve its maximum transfer value to a saturation point in dependence of the radius. To approve these results of previous simulations, three fringe projection scanners were selected to determine the diversity. As the best 3D-MTF characteristic, a saturated transfer value of H_3D( f_N, 3D) = 0.79 has been identified at a sufficient sampling frequency, which is reached at four times the Nyquist limit. This high 3D resolution can mainly be achieved due to an improved camera projector interaction. Additionally, too small sampling ratios lead to uncertainties in the edge function determination, while higher ratios do not show major improvements. In conclusion, the 3D-MTF algorithm has thus been practically verified and its repeatability as well as its robustness have been confirmed.
Aerodynamic parameter estimation via Fourier modulating function techniques
NASA Technical Reports Server (NTRS)
Pearson, A. E.
1995-01-01
Parameter estimation algorithms are developed in the frequency domain for systems modeled by input/output ordinary differential equations. The approach is based on Shinbrot's method of moment functionals utilizing Fourier based modulating functions. Assuming white measurement noises for linear multivariable system models, an adaptive weighted least squares algorithm is developed which approximates a maximum likelihood estimate and cannot be biased by unknown initial or boundary conditions in the data owing to a special property attending Shinbrot-type modulating functions. Application is made to perturbation equation modeling of the longitudinal and lateral dynamics of a high performance aircraft using flight-test data. Comparative studies are included which demonstrate potential advantages of the algorithm relative to some well established techniques for parameter identification. Deterministic least squares extensions of the approach are made to the frequency transfer function identification problem for linear systems and to the parameter identification problem for a class of nonlinear-time-varying differential system models.
Artist concept illustrating key events on day by day basis during Apollo 9
NASA Technical Reports Server (NTRS)
1969-01-01
Artist concept illustrating key events on day by day basis during Apollo 9 mission. First photograph illustrates activities on the first day of the mission, including flight crew preparation, orbital insertion, 103 north mile orbit, separations, docking and docked Service Propulsion System Burn (19792); Second day events include landmark tracking, pitch maneuver, yaw-roll maneuver, and high apogee orbits (19793); Third day events include crew transfer and Lunar Module system evaluation (19794); Fourth day events include use of camera, day-night extravehicular activity, use of golden slippers, and television over Texas and Louisiana (19795); Fifth day events include vehicles undocked, Lunar Module burns for rendezvous, maximum separation, ascent propulsion system burn, formation flying and docking, and Lunar Module jettison ascent burn (19796); Sixth thru ninth day events include service propulsion system burns and landmark sightings, photograph special tests (19797); Tenth day events i
Orion Service Module Umbilical (OSMU) Testing Complete
2016-10-19
Testing of the Orion Service Module Umbilical (OSMU) was completed at the Launch Equipment Test Facility at NASA’s Kennedy Space Center in Florida. The OSMU was attached to Vehicle Motion Simulator 1 for a series of simulated launch tests to validate it for installation on the mobile launcher. The mobile launcher tower will be equipped with a number of lines, called umbilicals that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. Kennedy's Engineering Directorate is providing support to the Ground Systems Development and Operations Program for testing of the OSMU. EM-1 is scheduled to launch in 2018.
Chang, Ho; Yu, Zhi-Rong
2012-08-01
This study self-develops a novel type of photothermoelectric power generation modules. Dye-sensitized solar cells (DSSCs) serve as the photoelectric conversion system and a copper (Cu) heat-transfer nanofilm coating on both sides of the thermoelectric generator (TEG) acts as a thermoelectric conversion system. Thus module assembly absorbs light and generates electricity by DSSCs, and also recycles waste heat and generates power by the TEG. In addition, a set of pulsating heat pipes (PHP) filled with Cu nanofluid is placed on the cooling side to increase cooling effects and enhance the power generation efficiency. Results show that when the heat source of thermoelectric modules reaches 90 degrees C, TEG power output is increased by 85.7%. Besides, after thermoelectric modules are heated by additional heat source at 80 degrees C, the electrical energy generated by them can let a NiMH cell (1.25 V) be sufficiently charged in about 30 minutes. When photothermoelectric modules is illumined by simulated light, the temperature difference of two sides of TEG can reach 7 degrees C and the thermoelectric conversion efficiency is 2.17%. Furthermore, the power output of the thermoelectric modules is 11.48 mW/cm2, enhancing 1.4 % compared to merely using DSSCs module.
2007-03-13
KENNEDY SPACE CENTER, FLA. -- A flat bed truck hauls the container with the Experiment Logistics Module Pressurized Section inside away from the Trident wharf. The logistics module is part of the Japanese Experiment Module, known as Kibo. The logistics module is being transported to the Space Station Processing Facility at NASA's Kennedy Space Center. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett
Ariane Transfer Vehicle - Logistic support to Space Station Freedom
NASA Astrophysics Data System (ADS)
Cougnet, C.; Ricaud, C.; Deutscher, N.
The attractiveness of the Ariane 5 and Ariane transfer vehicle (ATV) is described: it avoids the one-sidedness of the National STS, it increases the lift capacity to meet the demands of the Space Station, and it offers a system independent of, but consistent with, the STS in providing backup contingency capability. The Ariane 5/ATV system is able to launch and transfer any cargo module to the Space Station Freedom (SSF) and dispose of it at the end of the mission. Consideration is given to Space Station and SSF logistic support, and ATV operations and design. Diagrams are provided to illustrate the ATV's requirements and capability; an ATV mission toward the SSF; ATV design and components; the ATV's attitude, layout, and the architecture of the main propulsion system and avionic; and the ATV's performance. It is demonstrated that the Ariane 5/ATV system would be an adequate complement to the NSTS for logistic support of the SSF.
Pedò, Massimo; Löhr, Frank; D'Onofrio, Mariapina; Assfalg, Michael; Dötsch, Volker; Molinari, Henriette
2009-12-18
Bile acid molecules are transferred vectorially between basolateral and apical membranes of hepatocytes and enterocytes in the context of the enterohepatic circulation, a process regulating whole body lipid homeostasis. This work addresses the role of the cytosolic lipid binding proteins in the intracellular transfer of bile acids between different membrane compartments. We present nuclear magnetic resonance (NMR) data describing the ternary system composed of the bile acid binding protein, bile acids, and membrane mimetic systems, such as anionic liposomes. This work provides evidence that the investigated liver bile acid binding protein undergoes association with the anionic membrane and binding-induced partial unfolding. The addition of the physiological ligand to the protein-liposome mixture is capable of modulating this interaction, shifting the equilibrium towards the free folded holo protein. An ensemble of NMR titration experiments, based on nitrogen-15 protein and ligand observation, confirm that the membrane and the ligand establish competing binding equilibria, modulating the cytoplasmic permeability of bile acids. These results support a mechanism of ligand binding and release controlled by the onset of a bile salt concentration gradient within the polarized cell. The location of a specific protein region interacting with liposomes is highlighted.
NASA Technical Reports Server (NTRS)
Turner, Mark; Zhou, Wei-Jia; Doty, Laura (Technical Monitor)
2000-01-01
To maximize the use of available resources provided onboard the International Space Station, the development of an efficient lighting 1 system is critical to the overall performance of the CPBF. Not only is it important to efficiently generate photon energy, but thermal loads on the CPBF Temperature and Humidity Control System must be minimized. By utilizing optical coatings designed to produce highly diffuse reflectance in the visible wavelengths while minimizing reflectance in the infrared region, the design of the fluorescent light module for the CPBF is optimized for maximum photon flux, spatial uniformity and energy efficiency. Since the Fluorescent Light Module must be fully enclosed to meet (ISS) requirements for containment of particulates and toxic materials, heat removal from the lights presented some unique design challenges. By using the Express Rack moderate C, temperature-cooling loop, heat is rejected by means of a liquid/air coolant manifold. Heat transfer to the manifold is performed by conduction using copper fins, by forced air convection using miniature fans, and by radiation using optically selective coatings that absorb in the infrared wavelengths. Using this combination of heat transfer mechanisms builds in redundancy to prevent thermal build up and premature bulb failure.
NASA Astrophysics Data System (ADS)
Tiwari, Sumit; Tiwari, G. N.
2018-06-01
In present research paper, semi-transparent photovoltaic module (SPVM) integrated greenhouse solar drying system has been used for grapes ( Vitis vinifera) drying. Based on hourly experimental information namely solar intensity, moisture evaporated, ambient air temperature, grape surface temperatures, relative humidity and greenhouse air temperature etc. heat and mass transfer coefficient for the SPVM drying system have been evaluated. It has been seen that the convective heat transfer coefficients for grapes found between 3.1-0.84 W/m2 K. Also, there is a fair agreement between theoretical and practical mass transfer (moisture evaporated) during drying of grapes with a correlation coefficient (r) and root mean square percentage deviation (e) of 0.88 and 11.56 respectively. Further, nonlinear regression procedure has been used to fit various drying models namely Henderson and Pabis model, Newton's model, and Page's model. From the analysis, it was found that Page's model is best fitted for grapes drying in SPV greenhouse as well as open sun drying. Further, net electrical energy, thermal energy and equivalent thermal energy were found to be 3.61, 17.66 and 27.15 kWh during six days of drying respectively.
NASA Astrophysics Data System (ADS)
Delor, Milan; Archer, Stuart A.; Keane, Theo; Meijer, Anthony J. H. M.; Sazanovich, Igor V.; Greetham, Gregory M.; Towrie, Michael; Weinstein, Julia A.
2017-11-01
Ultrafast electron transfer in condensed-phase molecular systems is often strongly coupled to intramolecular vibrations that can promote, suppress and direct electronic processes. Recent experiments exploring this phenomenon proved that light-induced electron transfer can be strongly modulated by vibrational excitation, suggesting a new avenue for active control over molecular function. Here, we achieve the first example of such explicit vibrational control through judicious design of a Pt(II)-acetylide charge-transfer donor-bridge-acceptor-bridge-donor 'fork' system: asymmetric 13C isotopic labelling of one of the two -C≡C- bridges makes the two parallel and otherwise identical donor→acceptor electron-transfer pathways structurally distinct, enabling independent vibrational perturbation of either. Applying an ultrafast UVpump(excitation)-IRpump(perturbation)-IRprobe(monitoring) pulse sequence, we show that the pathway that is vibrationally perturbed during UV-induced electron transfer is dramatically slowed down compared to its unperturbed counterpart. One can thus choose the dominant electron transfer pathway. The findings deliver a new opportunity for precise perturbative control of electronic energy propagation in molecular devices.
NREL Photovoltaic Program FY 1995 annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-06-01
This report summarizes the in-house and subcontracted R&D activities from Oct. 1994 through Sept. 1995; their objectives are to conduct basic, applied, and engineering research, manage subcontracted R&D projects, perform research complementary to subcontracted work, develop and maintain state-of-the-art measurement and device capabilities, develop PV manufacturing technology and modules, transfer results to industry, and evolve viable partnerships for PV systems and market development. The research activities are grouped into 5 sections: crystalline Si and advanced devices, thin-film PV, PV manufacturing, PV module and system performance and engineering, and PV applications and market development.
NASA Technical Reports Server (NTRS)
Ely, Jay J.; Nguyen, Truong X.; Scearce, Stephen A.
2000-01-01
For electromagnetic immunity testing of an electronic system, it is desirable to demonstrate its functional integrity when exposed to the full range and intensity of environmental electromagnetic threats that may be encountered over its operational life. As part of this, it is necessary to show proper system operation when exposed to representative threat signal modulations. Modulated signal transition time is easily overlooked, but can be highly significant to system susceptibility. Radiated electromagnetic field immunity testing is increasingly being performed in Mode Stirred Chambers. Because the peak field vs. time relationship is affected by the operation of a reverberating room, it is important to understand how the room may influence any input signal modulation characteristics. This paper will provide insight into the field intensity vs. time relationship within the test environment of a mode stirred chamber. An understanding of this relationship is important to EMC engineers in determining what input signal modulation characteristics will be transferred to the equipment under test. References will be given for the development of this topic, and experimental data will be presented
Can direct electron detectors outperform phosphor-CCD systems for TEM?
NASA Astrophysics Data System (ADS)
Moldovan, G.; Li, X.; Kirkland, A.
2008-08-01
A new generation of imaging detectors is being considered for application in TEM, but which device architectures can provide the best images? Monte Carlo simulations of the electron-sensor interaction are used here to calculate the expected modulation transfer of monolithic active pixel sensors (MAPS), hybrid active pixel sensors (HAPS) and double sided Silicon strip detectors (DSSD), showing that ideal and nearly ideal transfer can be obtained using DSSD and MAPS sensors. These results highly recommend the replacement of current phosphor screen and charge coupled device imaging systems with such new directly exposed position sensitive electron detectors.
Koenig, Alexander; Luft, Andreas; Cajigas, Iahn
2013-01-21
Several new approaches for treatment of Central Nervous System (CNS) disorders are currently under investigation, including the use of rehabilitation training strategies, which are often combined with electrical and/or pharmacological modulation of spinal locomotor circuitries. While these approaches show great promise in the laboratory setting, there still exists a large gap in knowledge on how to transfer these treatments to daily clinical use. This thematic series presents a cross section of cutting edge approaches with the goal of transferring basic neuroscience principles from the laboratory to the proverbial "bedside".
Affordable Launch Services using the Sport Orbit Transfer System
NASA Astrophysics Data System (ADS)
Goldstein, D. J.
2002-01-01
Despite many advances in small satellite technology, a low-cost, reliable method is needed to place spacecraft in their de- sired orbits. AeroAstro has developed the Small Payload ORbit Transfer (SPORTTM) system to provide a flexible low-cost orbit transfer capability, enabling small payloads to use low-cost secondary launch opportunities and still reach their desired final orbits. This capability allows small payloads to effectively use a wider variety of launch opportunities, including nu- merous under-utilized GTO slots. Its use, in conjunction with growing opportunities for secondary launches, enable in- creased access to space using proven technologies and highly reliable launch vehicles such as the Ariane family and the Starsem launcher. SPORT uses a suite of innovative technologies that are packaged in a simple, reliable, modular system. The command, control and data handling of SPORT is provided by the AeroAstro BitsyTM core electronics module. The Bitsy module also provides power regulation for the batteries and optional solar arrays. The primary orbital maneuvering capability is provided by a nitrous oxide monopropellant propulsion system. This system exploits the unique features of nitrous oxide, which in- clude self-pressurization, good performance, and safe handling, to provide a light-weight, low-cost and reliable propulsion capability. When transferring from a higher energy orbit to a lower energy orbit (i.e. GTO to LEO), SPORT uses aerobraking technol- ogy. After using the propulsion system to lower the orbit perigee, the aerobrake gradually slows SPORT via atmospheric drag. After the orbit apogee is reduced to the target level, an apogee burn raises the perigee and ends the aerobraking. At the conclusion of the orbit transfer maneuver, either the aerobrake or SPORT can be shed, as desired by the payload. SPORT uses a simple design for high reliability and a modular architecture for maximum mission flexibility. This paper will discuss the launch system and its application to small satellite launch without increasing risk. It will also discuss relevant issues such as aerobraking operations and radiation issues, as well as existing partnerships and patents for the system.
NASA Astrophysics Data System (ADS)
Li, Ke; Zambelli, Joseph; Bevins, Nicholas; Ge, Yongshuai; Chen, Guang-Hong
2013-06-01
By adding a Talbot-Lau interferometer to a conventional x-ray absorption computed tomography (CT) imaging system, both differential phase contrast (DPC) signal and absorption contrast signal can be simultaneously measured from the same set of CT measurements. The imaging performance of such multi-contrast x-ray CT imaging systems can be characterized with standard metrics such as noise variance, noise power spectrum, contrast-to-noise ratio, modulation transfer function (MTF), and task-based detectability index. Among these metrics, the measurement of the MTF can be challenging in DPC-CT systems due to several confounding factors such as phase wrapping and the difficulty of using fine wires as probes. To address these technical challenges, this paper discusses a viable and reliable method to experimentally measure the MTF of DPC-CT. It has been found that the spatial resolution of DPC-CT is degraded, when compared to that of the corresponding absorption CT, due to the presence of a source grating G0 in the Talbot-Lau interferometer. An effective MTF was introduced and experimentally estimated to describe the impact of the Talbot-Lau interferometer on the system MTF.
NASA Technical Reports Server (NTRS)
Liu, Nan-Suey
2001-01-01
A multi-disciplinary design/analysis tool for combustion systems is critical for optimizing the low-emission, high-performance combustor design process. Based on discussions between then NASA Lewis Research Center and the jet engine companies, an industry-government team was formed in early 1995 to develop the National Combustion Code (NCC), which is an integrated system of computer codes for the design and analysis of combustion systems. NCC has advanced features that address the need to meet designer's requirements such as "assured accuracy", "fast turnaround", and "acceptable cost". The NCC development team is comprised of Allison Engine Company (Allison), CFD Research Corporation (CFDRC), GE Aircraft Engines (GEAE), NASA Glenn Research Center (LeRC), and Pratt & Whitney (P&W). The "unstructured mesh" capability and "parallel computing" are fundamental features of NCC from its inception. The NCC system is composed of a set of "elements" which includes grid generator, main flow solver, turbulence module, turbulence and chemistry interaction module, chemistry module, spray module, radiation heat transfer module, data visualization module, and a post-processor for evaluating engine performance parameters. Each element may have contributions from several team members. Such a multi-source multi-element system needs to be integrated in a way that facilitates inter-module data communication, flexibility in module selection, and ease of integration. The development of the NCC beta version was essentially completed in June 1998. Technical details of the NCC elements are given in the Reference List. Elements such as the baseline flow solver, turbulence module, and the chemistry module, have been extensively validated; and their parallel performance on large-scale parallel systems has been evaluated and optimized. However the scalar PDF module and the Spray module, as well as their coupling with the baseline flow solver, were developed in a small-scale distributed computing environment. As a result, the validation of the NCC beta version as a whole was quite limited. Current effort has been focused on the validation of the integrated code and the evaluation/optimization of its overall performance on large-scale parallel systems.
Strain-induced modulation of near-field radiative transfer.
Ghanekar, Alok; Ricci, Matthew; Tian, Yanpei; Gregory, Otto; Zheng, Yi
2018-06-11
In this theoretical study, we present a near-field thermal modulator that exhibits change in radiative heat transfer when subjected to mechanical stress/strain. The device has two terminals at different temperatures separated by vacuum: one fixed and one stretchable. The stretchable side contains one-dimensional grating. When subjected to mechanical strain, the effective optical properties of the stretchable side are affected upon deformation of the grating. This results in modulation of surface waves across the interfaces influencing near-field radiative heat transfer. We show that for a separation of 100 nm, it is possible to achieve 25% change in radiative heat transfer for a strain of 10%.
Development of deployable structures for large space platforms. Volume 2: Design development
NASA Technical Reports Server (NTRS)
Greenberg, H. S.
1983-01-01
Design evolution, test article design, test article mass properties, and structural analysis of deployable platform systems are discussed. Orbit transfer vehicle (OTV) hangar development, OTV hangar concept selection, and manned module development are discussed. Deployable platform systems requirements, material data base, technology development needs, concept selection and deployable volume enclosures are also discussed.
NASA Astrophysics Data System (ADS)
Julich, S.; Kopinč, R.; Hlawatsch, N.; Moche, C.; Lapanje, A.; Gärtner, C.; Tomaso, H.
2014-05-01
Lab-on-a-chip systems are innovative tools for the detection and identification of microbial pathogens in human and veterinary medicine. The major advantages are small sample volume and a compact design. Several fluidic modules have been developed to transform analytical procedures into miniaturized scale including sampling, sample preparation, target enrichment, and detection procedures. We present evaluation data for single modules that will be integrated in a chip system for the detection of pathogens. A microfluidic chip for purification of nucleic acids was established for cell lysis using magnetic beads. This assay was evaluated with spiked environmental aerosol and swab samples. Bacillus thuringiensis was used as simulant for Bacillus anthracis, which is closely related but non-pathogenic for humans. Stationary PCR and a flow-through PCR chip module were investigated for specific detection of six highly pathogenic bacteria. The conventional PCR assays could be transferred into miniaturized scale using the same temperature/time profile. We could demonstrate that the microfluidic chip modules are suitable for the respective purposes and are promising tools for the detection of bacterial pathogens. Future developments will focus on the integration of these separate modules to an entire lab-on-a-chip system.
Effect of particle momentum transfer on an oblique-shock-wave/laminar-boundary-layer interaction
NASA Astrophysics Data System (ADS)
Teh, E.-J.; Johansen, C. T.
2016-11-01
Numerical simulations of solid particles seeded into a supersonic flow containing an oblique shock wave reflection were performed. The momentum transfer mechanism between solid and gas phases in the shock-wave/boundary-layer interaction was studied by varying the particle size and mass loading. It was discovered that solid particles were capable of significant modulation of the flow field, including suppression of flow separation. The particle size controlled the rate of momentum transfer while the particle mass loading controlled the magnitude of momentum transfer. The seeding of micro- and nano-sized particles upstream of a supersonic/hypersonic air-breathing propulsion system is proposed as a flow control concept.
Membrane Transfer Phenomena (MTP)
NASA Technical Reports Server (NTRS)
Mason, Larry
1996-01-01
Progress has been made in several areas of the definition, design, and development of the Membrane Transport Apparatus (MTA) instrument and associated sensors and systems. Progress is also reported in the development of software modules for instrument control, experimental image and data acquisition, and data analysis.
Choi, Sang-Jin; Mao, Wankai; Pan, Jae-Kyung
2013-01-01
We propose and experimentally demonstrate the novel radio-frequency (RF) interrogation of a fiber Bragg grating (FBG) sensor using bidirectional modulation of a Mach-Zehnder electro-optical modulator (MZ-EOM). Based on the microwave photonic technique and active detection, the transfer function of the proposed system was obtained, and the time delay was calculated from the change in the free spectral range (FSR) at different wavelengths over the optimal measuring range. The results show that the time delay and the wavelength variation have a good linear relationship, with a gradient of 9.31 ps/nm. An actual measurement taken with a sensing FBG for temperature variation shows the relationship with a gradient of 0.93 ps/10 °C. The developed system could be used for FBG temperature or strain sensing and other multiplexed sensor applications. PMID:23820744
Advanced optical fiber communication systems
NASA Astrophysics Data System (ADS)
Kazovsky, Leonid G.
1994-03-01
Our research is focused on three major aspects of advanced optical fiber communication systems: dynamic wavelength division multiplexing (WDM) networks, fiber nonlinearities, and high dynamic range coherent analog optical links. In the area of WDM networks, we have designed and implemented two high-speed interface boards and measured their throughput and latency. Furthermore, we designed and constructed an experimental PSK/ASK transceiver that simultaneously transmits packet-switched ASK data and circuit-switched PSK data on the same optical carrier. In the area of fiber nonlinearities, we investigated the theoretical impact of modulation frequency on cross-phase modulation (XPM) in dispersive fibers. In the area of high dynamic range coherent analog optical links, we developed theoretical expressions for the RF power transfer ratio (or RF power gain) and the noise figure (NF) of angle-modulated links. We then compared the RF power gains and noise figures of these links to that of an intensity modulated direct detection (DD) link.
The 1.06 micrometer wideband laser modulator: Fabrication and life testing
NASA Technical Reports Server (NTRS)
Teague, J. R.
1975-01-01
The design, fabrication, testing and delivery of an optical modulator which will operate with a mode-locked Nd:YAG laser at 1.06 micrometers were performed. The system transfers data at a nominal rate of 400 Mbps. This wideband laser modulator can transmit either Pulse Gated Binary Modulation (PGBM) or Pulse Polarization Binary Modulation (PPBM) formats. The laser beam enters the modulator and passes through both crystals; approximately 1% of the transmitted beam is split from the main beam and analyzed for the AEC signal; the remaining part of the beam exits the modulator. The delivered modulator when initially aligned and integrated with laser and electronics performed very well. The optical transmission was 69.5%. The static extinction ratio was 69:1. A 1000 hour life test was conducted with the delivered modulator. A 63 bit pseudorandom code signal was used as a driver input. At the conclusion of the life test the modulator optical transmission was 71.5% and the static extinction ratio 65:1.
Roberts, Jr., Charles E.; Chadwell, Christopher J.
2004-09-21
The flame propagation rate resulting from a combustion event in the combustion chamber of an internal combustion engine is controlled by modulation of the heat transfer from the combustion flame to the combustion chamber walls. In one embodiment, heat transfer from the combustion flame to the combustion chamber walls is mechanically modulated by a movable member that is inserted into, or withdrawn from, the combustion chamber thereby changing the shape of the combustion chamber and the combustion chamber wall surface area. In another embodiment, heat transfer from the combustion flame to the combustion chamber walls is modulated by cooling the surface of a portion of the combustion chamber wall that is in close proximity to the area of the combustion chamber where flame speed control is desired.
All-optical, thermo-optical path length modulation based on the vanadium-doped fibers.
Matjasec, Ziga; Campelj, Stanislav; Donlagic, Denis
2013-05-20
This paper presents an all-fiber, fully-optically controlled, optical-path length modulator based on highly absorbing optical fiber. The modulator utilizes a high-power 980 nm pump diode and a short section of vanadium-co-doped single mode fiber that is heated through absorption and a non-radiative relaxation process. The achievable path length modulation range primarily depends on the pump's power and the convective heat-transfer coefficient of the surrounding gas, while the time response primarily depends on the heated fiber's diameter. An absolute optical length change in excess of 500 µm and a time-constant as short as 11 ms, were demonstrated experimentally. The all-fiber design allows for an electrically-passive and remote operation of the modulator. The presented modulator could find use within various fiber-optics systems that require optical (remote) path length control or modulation.
ImNet: a fiber optic network with multistar topology for high-speed data transmission
NASA Astrophysics Data System (ADS)
Vossebuerger, F.; Keizers, Andreas; Soederman, N.; Meyer-Ebrecht, Dietrich
1993-10-01
ImNet is a fiber-optic local area network, which has been developed for high speed image communication in Picture Archiving and Communication Systems (PACS). A comprehensive analysis of image communication requirements in hospitals led to the conclusion that there is a need for networks which are optimized for the transmission of large datafiles. ImNet is optimized for this application in contrast to current-state LANs. ImNet consists of two elements: a link module and a switch module. The point-to-point link module can be up to 4 km by using fiber optic cable. For short distances up to 100 m a cheaper module using shielded twisted pair cable is available. The link module works bi-directionally and handles all protocols up to OSI-Level 3. The data rate per link is up to 140 MBit/s (clock rate 175 MHz). The switch module consists of the control unit and the cross-point-switch array. The array has up to fourteen interfaces for link modules. Up to fourteen data transfers each with a maximal transfer rate of 400 MBit/s can be handled at the same time. Thereby the maximal throughput of a switch module is 5.6 GBit/s. Out of these modules a multi-star network can be built i.e., an arbitrary tree structure of stars. This topology allows multiple transmissions at the same time as long as they do not require identical links. Therefore the overall throughput of ImNet can be a multiple of the datarate per link.
2007-03-13
KENNEDY SPACE CENTER, FLA. -- A flat bed truck hauls the container with the Experiment Logistics Module Pressurized Section inside away from the Trident wharf. The logistics module is part of the Japanese Experiment Module. The logistics module is being transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett
2007-03-13
KENNEDY SPACE CENTER, FLA. -- At the Trident wharf, workers help guide the container with the Experiment Logistics Module Pressurized Section inside toward the dock. The logistics module is part of the Japanese Experiment Module. The logistics module will be transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett
JEM Experiment Logistics Module Pressurized Section
2007-04-02
An overhead crane moves the JEM Experiment Logistics Module Pressurized Section above the floor of the Space Station Processing Facility to a scale for weight and center-of-gravity measurements. The module will then be moved to a work stand. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.
JEM Experiment Logistics Module Pressurized Section
2007-04-02
In the Space Station Processing Facility, an overhead crane moves the JEM Experiment Logistics Module Pressurized Section toward a scale (at left) for weight and center-of-gravity measurements. The module will then be moved to a work stand. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.
JEM Experiment Logistics Module Pressurized Section
2007-04-02
The JEM Experiment Logistics Module Pressurized Section is lifted from its shipping crate in the Space Station Processing Facility. The module will be moved to a scale for weight and center-of-gravity measurements and then to a work stand. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.
JEM Experiment Logistics Module Pressurized Section
2007-04-02
In the Space Station Processing Facility, an overhead crane lifts the JEM Experiment Logistics Module Pressurized Section from its shipping container and moves it toward a scale for weight and center-of-gravity measurements. The module will then be moved to a work stand. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.
The enhancement of the Transtage for the commercial Titan launch vehicle
NASA Astrophysics Data System (ADS)
Gunter, D.; Gizinski, S.
1987-06-01
The configuration of the Transtage upper stage and its application to the Titan III launch vehicle are examined. The Transtage consists of a control and a propulsion module, and is about 10 feet in diameter and 14.75 feet in length. The elements of the control and propulsion modules and their functions are described. The Transtage/Titan III combination allows for the insertion of a payload into geostationary transfer orbit and eliminates the requirement for a perigee kick motor system. It is observed that the addition of the Transtage upper stage to the Titan III launch vehicle provides a geosynchronous transfer orbit capability of 9500 lbs, flexible mission tailoring, and reliability exceeding 96 percent. Diagrams of the Titan III and the Transtage and its components are provided.
Rath, N; Kato, S; Levesque, J P; Mauel, M E; Navratil, G A; Peng, Q
2014-04-01
Fast, digital signal processing (DSP) has many applications. Typical hardware options for performing DSP are field-programmable gate arrays (FPGAs), application-specific integrated DSP chips, or general purpose personal computer systems. This paper presents a novel DSP platform that has been developed for feedback control on the HBT-EP tokamak device. The system runs all signal processing exclusively on a Graphics Processing Unit (GPU) to achieve real-time performance with latencies below 8 μs. Signals are transferred into and out of the GPU using PCI Express peer-to-peer direct-memory-access transfers without involvement of the central processing unit or host memory. Tests were performed on the feedback control system of the HBT-EP tokamak using forty 16-bit floating point inputs and outputs each and a sampling rate of up to 250 kHz. Signals were digitized by a D-TACQ ACQ196 module, processing done on an NVIDIA GTX 580 GPU programmed in CUDA, and analog output was generated by D-TACQ AO32CPCI modules.
NASA Astrophysics Data System (ADS)
Wei, LIU; Chundong, HU; Sheng, LIU; Shihua, SONG; Jinxin, WANG; Yan, WANG; Yuanzhe, ZHAO; Lizhen, LIANG
2017-12-01
Neutral beam injection is one of the effective auxiliary heating methods in magnetic-confinement-fusion experiments. In order to acquire the suppressor-grid current signal and avoid the grid being damaged by overheating, a data acquisition and over-current protection system based on the PXI (PCI eXtensions for Instrumentation) platform has been developed. The system consists of a current sensor, data acquisition module and over-current protection module. In the data acquisition module, the acquired data of one shot will be transferred in isolation and saved in a data-storage server in a txt file. It can also be recalled using NBWave for future analysis. The over-current protection module contains two modes: remote and local. This gives it the function of setting a threshold voltage remotely and locally, and the forbidden time of over-current protection also can be set by a host PC in remote mode. Experimental results demonstrate that the data acquisition and over-current protection system has the advantages of setting forbidden time and isolation transmission.
Transfer and conversion of images based on EIT in atom vapor.
Cao, Mingtao; Zhang, Liyun; Yu, Ya; Ye, Fengjuan; Wei, Dong; Guo, Wenge; Zhang, Shougang; Gao, Hong; Li, Fuli
2014-05-01
Transfer and conversion of images between different wavelengths or polarization has significant applications in optical communication and quantum information processing. We demonstrated the transfer of images based on electromagnetically induced transparency (EIT) in a rubidium vapor cell. In experiments, a 2D image generated by a spatial light modulator is used as a coupling field, and a plane wave served as a signal field. We found that the image carried by coupling field could be transferred to that carried by signal field, and the spatial patterns of transferred image are much better than that of the initial image. It also could be much smaller than that determined by the diffraction limit of the optical system. We also studied the subdiffraction propagation for the transferred image. Our results may have applications in quantum interference lithography and coherent Raman spectroscopy.
2003-06-04
KENNEDY SPACE CENTER, FLA. - At Port Canaveral, the Pressurized Module of the Japanese Experiment Module (JEM) is lifted out of the ship’s cargo hold. It will be loaded onto the truck bed in the background for transfer to KSC’s Space Station Processing Facility. The container transport ship carrying JEM departed May 2 from Yokohama Harbor in Japan for the voyage to the United States. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.
Floquet protocols of adiabatic state flips and reallocation of exceptional points
NASA Astrophysics Data System (ADS)
Halpern, Dashiell; Li, Huanan; Kottos, Tsampikos
2018-04-01
We introduce the notion of adiabatic state flip of a Floquet Hamiltonian associated with a non-Hermitian system that it is subjected to two driving schemes with clear separation of time scales. The fast (Floquet) modulation scheme is utilized to reallocate the exceptional points in the parameter space of the system and redefine the topological features of an adiabatic cyclic modulation associated with the slow driving scheme. Such topological reorganization can be used in order to control the adiabatic transport between two eigenmodes of the Floquet Hamiltonian. The proposed scheme provides a degree of reconfigurability of adiabatic state transfer which can find applications in system control in photonics and microwave domains.
Capability 9.3 Assembly and Deployment
NASA Technical Reports Server (NTRS)
Dorsey, John
2005-01-01
Large space systems are required for a range of operational, commercial and scientific missions objectives however, current launch vehicle capacities substantially limit the size of space systems (on-orbit or planetary). Assembly and Deployment is the process of constructing a spacecraft or system from modules which may in turn have been constructed from sub-modules in a hierarchical fashion. In-situ assembly of space exploration vehicles and systems will require a broad range of operational capabilities, including: Component transfer and storage, fluid handling, construction and assembly, test and verification. Efficient execution of these functions will require supporting infrastructure, that can: Receive, store and protect (materials, components, etc.); hold and secure; position, align and control; deploy; connect/disconnect; construct; join; assemble/disassemble; dock/undock; and mate/demate.
Logistics Modeling for Lunar Exploration Systems
NASA Technical Reports Server (NTRS)
Andraschko, Mark R.; Merrill, R. Gabe; Earle, Kevin D.
2008-01-01
The extensive logistics required to support extended crewed operations in space make effective modeling of logistics requirements and deployment critical to predicting the behavior of human lunar exploration systems. This paper discusses the software that has been developed as part of the Campaign Manifest Analysis Tool in support of strategic analysis activities under the Constellation Architecture Team - Lunar. The described logistics module enables definition of logistics requirements across multiple surface locations and allows for the transfer of logistics between those locations. A key feature of the module is the loading algorithm that is used to efficiently load logistics by type into carriers and then onto landers. Attention is given to the capabilities and limitations of this loading algorithm, particularly with regard to surface transfers. These capabilities are described within the context of the object-oriented software implementation, with details provided on the applicability of using this approach to model other human exploration scenarios. Some challenges of incorporating probabilistics into this type of logistics analysis model are discussed at a high level.
Spectral tuning of near-field radiative heat transfer by graphene-covered metasurfaces
NASA Astrophysics Data System (ADS)
Zheng, Zhiheng; Wang, Ao; Xuan, Yimin
2018-03-01
When two gratings are respectively covered by a layer of graphene sheet, the near-field radiative heat transfer between two parallel gratings made of silica (SiO2) could be greatly improved. As the material properties of doped silicon (n-type doping concentration is 1020 cm-3, marked as Si-20) and SiO2 differ greatly, we theoretically investigate the near-field radiative heat transfer between two parallel graphene-covered gratings made of Si-20 to explore some different phenomena, especially for modulating the spectral properties. The radiative heat flux between two parallel bulks made of Si-20 can be enhanced by using gratings instead of bulks. When the two gratings are respectively covered by a layer of graphene sheet, the radiative heat flux between two gratings made of Si-20 can be further enhanced. By tuning graphene chemical potential μ and grating filling factor f, due to the interaction between surface plasmon polaritons (SPPs) of graphene sheets and grating structures, the spectral properties of the radiative heat flux between two parallel graphene-covered gratings can be effectively regulated. This work will develop and supplement the effects of materials on the near-field radiative heat transfer for this kind of system configuration, paving a way to modulate the spectral properties of near-field radiative heat transfer.
Characterizing Density and Complexity of Imported Cargos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birrer, Nathaniel; Divin, Charles; Glenn, Steven
X-ray inspection systems are used to detect radiological and nuclear threats in imported cargo. In order to better understand performance of these systems, system imaging capabilities and the characteristics of imported cargo need to be determined. This project involved calculation of the modulation transfer function as a metric of system imaging performance and a study of the density and inhomogeneity of imported cargos, which have been shown to correlate with human analysts, threat detection performance.
Modeling and Simulation of the ITER First Wall/Blanket Primary Heat Transfer System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ying, Alice; Popov, Emilian L
2011-01-01
ITER inductive power operation is modeled and simulated using a thermal-hydraulics system code (RELAP5) integrated with a 3-D CFD (SC-Tetra) code. The Primary Heat Transfer System (PHTS) functions are predicted together with the main parameters operational ranges. The control algorithm strategy and derivation are summarized as well. The First Wall and Blanket modules are the primary components of PHTS, used to remove the major part of the thermal heat from the plasma. The modules represent a set of flow channels in solid metal structure that serve to absorb the radiation heat and nuclear heating from the fusion reactions and tomore » provide shield for the vacuum vessel. The blanket modules are water cooled. The cooling is forced convective with constant blanket inlet temperature and mass flow rate. Three independent water loops supply coolant to the three blanket sectors. The main equipment of each loop consists of a pump, a steam pressurizer and a heat exchanger. A major feature of ITER is the pulsed operation. The plasma does not burn continuously, but on intervals with large periods of no power between them. This specific feature causes design challenges to accommodate the thermal expansion of the coolant during the pulse period and requires active temperature control to maintain a constant blanket inlet temperature.« less
OrbView-3 Technical Performance Evaluation 2005: Modulation Transfer Function
NASA Technical Reports Server (NTRS)
Cole, Aaron
2007-01-01
The Technical performance evaluation of OrbView-3 using the Modulation Transfer Function (MTF) is presented. The contents include: 1) MTF Results and Methodology; 2) Radiometric Calibration Methodology; and 3) Relative Radiometric Assessment Results
An NFC on Two-Coil WPT Link for Implantable Biomedical Sensors under Ultra-Weak Coupling.
Gong, Chen; Liu, Dake; Miao, Zhidong; Wang, Wei; Li, Min
2017-06-11
The inductive link is widely used in implantable biomedical sensor systems to achieve near-field communication (NFC) and wireless power transfer (WPT). However, it is tough to achieve reliable NFC on an inductive WPT link when the coupling coefficient is ultra-low (0.01 typically), since the NFC signal (especially for the uplink from the in-body part to the out-body part) could be too weak to be detected. Traditional load shift keying (LSK) requires strong coupling to pass the load modulation information to the power source. Instead of using LSK, we propose a dual-carrier NFC scheme for the weak-coupled inductive link; using binary phase shift keying (BPSK) modulation, its downlink data are modulated on the power carrier (2 MHz), while its uplink data are modulated on another carrier (125 kHz). The two carriers are transferred through the same coil pair. To overcome the strong interference of the power carrier, dedicated circuits are introduced. In addition, to minimize the power transfer efficiency decrease caused by adding NFC, we optimize the inductive link circuit parameters and approach the receiver sensitivity limit. In the prototype experiments, even though the coupling coefficient is as low as 0.008, the in-body transmitter costs only 0.61 mW power carrying 10 kbps of data, and achieves a 1 × 10 - 7 bit error rate under the strong interference of WPT. This dual-carrier NFC scheme could be useful for small-sized implantable biomedical sensor applications.
Nelson, Victoria; Nelson, Victoria Ruth; Li, Fiona; Green, Susan; Tamura, Tomoyoshi; Liu, Jun-Min; Class, Margaret
2008-11-06
The Walter Reed National Surgical Quality Improvement Program Data Transfer web module integrates with medical and surgical information systems, and leverages outside standards, such as the National Library of Medicine's RxNorm, to process surgical and risk assessment data. Key components of the project included a needs assessment with nurse reviewers and a data analysis for federated (standards were locally controlled) data sources. The resulting interface streamlines nurse reviewer workflow by integrating related tasks and data.
Automatic Response to Intrusion
2002-10-01
Computing Corporation Sidewinder Firewall [18] SRI EMERALD Basic Security Module (BSM) and EMERALD File Transfer Protocol (FTP) Monitors...the same event TCP Wrappers [24] Internet Security Systems RealSecure [31] SRI EMERALD IDIP monitor NAI Labs Generic Software Wrappers Prototype...included EMERALD , NetRadar, NAI Labs UNIX wrappers, ARGuE, MPOG, NetRadar, CyberCop Server, Gauntlet, RealSecure, and the Cyber Command System
Combined heat and power generation with a HCPV system at 2000 suns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paredes, Filippo; Montagnino, Fabio M.; Milone, Sergio
2015-09-28
This work shows the development of an innovative solar CHP system for the combined production of heat and power based upon HCPV modules working at the high concentration level of 2000 suns. The solar radiation is concentrated on commercial InGaP/InGaAs/Ge triple-junction solar cells designed for intensive work. The primary optics is a rectangular off-axis parabolic mirror while a secondary optic at the focus of the parabolic mirror is glued in optical contact with the cell. Each module consist of 2 axis tracker (Alt-Alt type) with 20 multijunction cells each one integrated with an active heat sink. The cell is connectedmore » to an active heat transfer system that allows to keep the cell at a high level of electrical efficiency (ηel > 30 %), bringing the heat transfer fluid (water and glycol) up to an output temperature of 90°C. Accordingly with the experimental data collected from the first 1 kWe prototype, the total amount of extracted thermal energy is above the 50% of the harvested solar radiation. That, in addition the electrical efficiency of the system contributes to reach an overall CHP efficiency of more than the 80%.« less
Phase retrieval with tunable phase transfer function based on the transport of intensity equation
NASA Astrophysics Data System (ADS)
Martinez-Carranza, J.; Stepien, P.; Kozacki, T.
2017-06-01
Recovering phase information with Deterministic approaches as the Transport of Intensity Equation (TIE) has recently emerged as an alternative tool to the interferometric techniques because it is experimentally easy to implement and provides fast and accurate results. Moreover, the potential of employing partially coherent illumination (PCI) in such techniques allow obtaining high quality phase reconstructions providing that the estimation of the corresponding Phase Transfer Function (PTF) is carried out correctly. Hence, accurate estimation of the PTF requires that the physical properties of the optical system are well known. Typically, these parameters are assumed constant in all the set of measurements, which might not be optimal. In this work, we proposed the use of an amplitude Spatial Light Modulator (aSLM) for tuning the degree of coherence of the optical system. The aSLM will be placed at the Fourier plane of the optical system, and then, band pass filters will be displayed. This methodology will perform amplitude modulation of the propagated field and as a result, the state of coherence of the optical system can be modified. Theoretical and experimental results that validate our proposed technique will be shown.
Combined heat and power generation with a HCPV system at 2000 suns
NASA Astrophysics Data System (ADS)
Paredes, Filippo; Montagnino, Fabio M.; Salinari, Piero; Bonsignore, Gaetano; Milone, Sergio; Agnello, Simonpietro; Barbera, Marco; Gelardi, Franco M.; Sciortino, Luisa; Collura, Alfonso; Lo Cicero, Ugo; Cannas, Marco
2015-09-01
This work shows the development of an innovative solar CHP system for the combined production of heat and power based upon HCPV modules working at the high concentration level of 2000 suns. The solar radiation is concentrated on commercial InGaP/InGaAs/Ge triple-junction solar cells designed for intensive work. The primary optics is a rectangular off-axis parabolic mirror while a secondary optic at the focus of the parabolic mirror is glued in optical contact with the cell. Each module consist of 2 axis tracker (Alt-Alt type) with 20 multijunction cells each one integrated with an active heat sink. The cell is connected to an active heat transfer system that allows to keep the cell at a high level of electrical efficiency (ηel > 30 %), bringing the heat transfer fluid (water and glycol) up to an output temperature of 90°C. Accordingly with the experimental data collected from the first 1 kWe prototype, the total amount of extracted thermal energy is above the 50% of the harvested solar radiation. That, in addition the electrical efficiency of the system contributes to reach an overall CHP efficiency of more than the 80%.
Modulation transfer function of a fish-eye lens based on the sixth-order wave aberration theory.
Jia, Han; Lu, Lijun; Cao, Yiqing
2018-01-10
A calculation program of the modulation transfer function (MTF) of a fish-eye lens is developed with the autocorrelation method, in which the sixth-order wave aberration theory of ultra-wide-angle optical systems is used to simulate the wave aberration distribution at the exit pupil of the optical systems. The autocorrelation integral is processed with the Gauss-Legendre integral, and the magnification chromatic aberration is discussed to calculate polychromatic MTF. The MTF calculation results of a given example are then compared with those previously obtained based on the fourth-order wave aberration theory of plane-symmetrical optical systems and with those from the Zemax program. The study shows that MTF based on the sixth-order wave aberration theory has satisfactory calculation accuracy even for a fish-eye lens with a large acceptance aperture. And the impacts of different types of aberrations on the MTF of a fish-eye lens are analyzed. Finally, we apply the self-adaptive and normalized real-coded genetic algorithm and the MTF developed in the paper to optimize the Nikon F/2.8 fish-eye lens; consequently, the optimized system shows better MTF performances than those of the original design.
Triggerable electro-optic amplitude modulator bias stabilizer for integrated optical devices
Conder, A.D.; Haigh, R.E.; Hugenberg, K.F.
1995-09-26
An improved Mach-Zehnder integrated optical electro-optic modulator is achieved by application and incorporation of a DC bias box containing a laser synchronized trigger circuit, a DC ramp and hold circuit, a modulator transfer function negative peak detector circuit, and an adjustable delay circuit. The DC bias box ramps the DC bias along the transfer function curve to any desired phase or point of operation at which point the RF modulation takes place. 7 figs.
Triggerable electro-optic amplitude modulator bias stabilizer for integrated optical devices
Conder, Alan D.; Haigh, Ronald E.; Hugenberg, Keith F.
1995-01-01
An improved Mach-Zehnder integrated optical electro-optic modulator is achieved by application and incorporation of a DC bias box containing a laser synchronized trigger circuit, a DC ramp and hold circuit, a modulator transfer function negative peak detector circuit, and an adjustable delay circuit. The DC bias box ramps the DC bias along the transfer function curve to any desired phase or point of operation at which point the RF modulation takes place.
2007-10-05
KENNEDY SPACE CENTER, FLA. -- From the payload changeout room on Launch Pad 39A, the payloads for mission STS-120 have been transferred into space shuttle Discovery's payload bay. Seen at the lower end is the Italian-built U.S. Node 2 module, named Harmony. At the top is the orbital docking system. The red ring at top comprises rain gutters to prevent leaks into the bay from rain while the shuttle is on the pad. Mission STS-120 will bring the Harmony module that will provide attachment points for European and Japanese laboratory modules to the International Space Station. Launch of Discovery is targeted for Oct. 23. Photo credit: NASA/George Shelton
Waste heat recovery system for recapturing energy after engine aftertreatment systems
Ernst, Timothy C.; Nelson, Christopher R.
2014-06-17
The disclosure provides a waste heat recovery (WHR) system including a Rankine cycle (RC) subsystem for converting heat of exhaust gas from an internal combustion engine, and an internal combustion engine including the same. The WHR system includes an exhaust gas heat exchanger that is fluidly coupled downstream of an exhaust aftertreatment system and is adapted to transfer heat from the exhaust gas to a working fluid of the RC subsystem. An energy conversion device is fluidly coupled to the exhaust gas heat exchanger and is adapted to receive the vaporized working fluid and convert the energy of the transferred heat. The WHR system includes a control module adapted to control at least one parameter of the RC subsystem based on a detected aftertreatment event of a predetermined thermal management strategy of the aftertreatment system.
Sinusoidal modulation analysis for optical system MTF measurements.
Boone, J M; Yu, T; Seibert, J A
1996-12-01
The modulation transfer function (MTF) is a commonly used metric for defining the spatial resolution characteristics of imaging systems. While the MTF is defined in terms of how an imaging system demodulates the amplitude of a sinusoidal input, this approach has not been in general use to measure MTFs in the medical imaging community because producing sinusoidal x-ray patterns is technically difficult. However, for optical systems such as charge coupled devices (CCD), which are rapidly becoming a part of many medical digital imaging systems, the direct measurement of modulation at discrete spatial frequencies using a sinusoidal test pattern is practical. A commercially available optical test pattern containing spatial frequencies ranging from 0.375 cycles/mm to 80 cycles/mm was sued to determine the MRF of a CCD-based optical system. These results were compared with the angulated slit method of Fujita [H. Fujita, D. Tsia, T. Itoh, K. Doi, J. Morishita, K. Ueda, and A. Ohtsuka, "A simple method for determining the modulation transfer function in digital radiography," IEEE Trans. Medical Imaging 11, 34-39 (1992)]. The use of a semiautomated profiled iterated reconstruction technique (PIRT) is introduced, where the shift factor between successive pixel rows (due to angulation) is optimized iteratively by least-squares error analysis rather than by hand measurement of the slit angle. PIRT was used to find the slit angle for the Fujita technique and to find the sine-pattern angle for the sine-pattern technique. Computer simulation of PIRT for the case of the slit image (a line spread function) demonstrated that it produced a more accurate angle determination than "hand" measurement, and there is a significant difference between the errors in the two techniques (Wilcoxon Signed Rank Test, p < 0.001). The sine-pattern method and the Fujita slit method produced comparable MTF curves for the CCD camera evaluated.
2007-03-12
KENNEDY SPACE CENTER, FLA. -- The ship carrying the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module arrives at the Trident wharf after departing from Yokohama, Japan, Feb. 7. The logistics module will be offloaded and transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett
2007-03-12
KENNEDY SPACE CENTER, FLA. -- The ship carrying the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module arrives at the Trident wharf after departing from Yokohama, Japan, Feb. 7. The logistics module will be offloaded and transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett
2007-03-12
KENNEDY SPACE CENTER, FLA. -- The ship carrying the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module arrives at the Trident wharf after departing from Yokohama, Japan, Feb. 7. The logistics module will be offloaded and transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett
2007-03-12
KENNEDY SPACE CENTER, FLA. -- The ship carrying the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module is tied up at the Trident wharf after departing from Yokohama, Japan, Feb. 7. The logistics module will be offloaded and transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett
Vehicle for Space Transfer and Recovery (VSTAR), volume 1
NASA Technical Reports Server (NTRS)
1988-01-01
The Vehicle Space Transfer and Recovery (VSTAR) system is designed as a manned orbital transfer vehicle (MOTV) with the primary mission of Satellite Launch and Repair (SLR). VSTAR will provide for economic use of high altitude spaceflight for both the public and private sector. VSTAR components will be built and tested using earth based facilities. These components will then be launched using the space shuttle, into low earth orbit (LEO) where it will be constructed on a U.S. built space station. Once in LEO the vehicle components will be assembled in modules which can then be arranged in various configurations to perform the required missions.
Potential-Induced Degradation-Delamination Mode in Crystalline Silicon Modules: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hacke, Peter L; Kempe, Michael D; Wohlgemuth, John
A test sequence producing potential-induced degradation-delamination (PID-d) in crystalline silicon modules has been tested and found comparable under visual inspection to cell/encapsulant delamination seen in some fielded modules. Four commercial modules were put through this sequence, 85 degrees C, 85%, 1000 h damp heat, followed by an intensive PID stress sequence of 72 degrees C, 95% RH, and -1000 V, with the module face grounded using a metal foil. The 60 cell c-Si modules exhibiting the highest current transfer (4.4 center dot 10-4 A) exhibited PID-d at the first inspection after 156 h of PID stress. Effects promoting PID-d aremore » reduced adhesion caused by damp heat, sodium migration further reducing adhesion to the cells, and gaseous products of electrochemical reactions driven by the applied system voltage. A new work item proposal for an IEC test standard to evaluate for PID-d is anticipated.« less
Extending single molecule fluorescence observation time by amplitude-modulated excitation
Kisley, Lydia; Chang, Wei-Shun; Cooper, David; Mansur, Andrea P; Landes, Christy F
2014-01-01
We present a hardware-based method that can improve single molecule fluorophore observation time by up to 1500% and super-localization by 47% for the experimental conditions used. The excitation was modulated using an acousto-optic modulator (AOM) synchronized to the data acquisition and inherent data conversion time of the detector. The observation time and precision in super-localization of four commonly used fluorophores were compared under modulated and traditional continuous excitation, including direct total internal reflectance excitation of Alexa 555 and Cy3, non-radiative Förster resonance energy transfer (FRET) excited Cy5, and direct epi-fluorescence wide field excitation of Rhodamine 6G. The proposed amplitude-modulated excitation does not perturb the chemical makeup of the system or sacrifice signal and is compatible with multiple types of fluorophores. Amplitude-modulated excitation has practical applications for any fluorescent study utilizing an instrumental setup with time-delayed detectors. PMID:24587894
Japanese Experiment Module arrival
2007-03-29
Several components for delivery to the International Space Station sit in test stands inside the Space Station Processing Facility highbay. To the right, from back to front, are the Japanese Experiment Module, the Raffaello multi-purpose logistics module, and the European Space Agency's Columbus scientific research module. To the left in front is the starboard truss segment S5. Behind it is the test stand that will hold the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.
Cordero, Chiara; Rubiolo, Patrizia; Reichenbach, Stephen E; Carretta, Andrea; Cobelli, Luigi; Giardina, Matthew; Bicchi, Carlo
2017-01-13
The possibility to transfer methods from thermal to differential-flow modulated comprehensive two-dimensional gas chromatographic (GC×GC) platforms is of high interest to improve GC×GC flexibility and increase the compatibility of results from different platforms. The principles of method translation are here applied to an original method, developed for a loop-type thermal modulated GC×GC-MS/FID system, suitable for quali-quantitative screening of suspected fragrance allergens. The analysis conditions were translated to a reverse-injection differential flow modulated platform (GC×2GC-MS/FID) with a dual-parallel secondary column and dual detection. The experimental results, for a model mixture of suspected volatile allergens and for raw fragrance mixtures of different composition, confirmed the feasibility of translating methods by preserving 1 D elution order, as well as the relative alignment of resulting 2D peak patterns. A correct translation produced several benefits including an effective transfer of metadata (compound names, MS fragmentation pattern, response factors) by automatic template transformation and matching from the original/reference method to its translated counterpart. The correct translation provided: (a) 2D pattern repeatability, (b) MS fragmentation pattern reliability for identity confirmation, and (c) comparable response factors and quantitation accuracy within a concentration range of three orders of magnitude. The adoption of a narrow bore (i.e. 0.1mm d c ) first-dimension column to operate under close-to-optimal conditions with the differential-flow modulation GC×GC platform was also advantageous in halving the total analysis under the translated conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zubov, Vladimir A.; Mironova, T. V.
1998-05-01
The task of simultaneous determination of the structure and characteristics of a two-dimensional amplitude—phase signal and a two-dimensional complex transfer or instrumental function is considered. The solution is based on determination of four independent intensity distributions of spectral representations of the signal Isr(ωx, ωy) subjected to the action of the transfer function, of the signal Ismr(ωx, ωy which) has experienced additional modulation applied in a certain manner and the action of the transfer function, of the signal Isrn(ωx, ωy) representing the signal Isr(ωx, ωy) with certain additional modulation at the output, and of the signal Ismrn(ωx, ωy) which is the signal Ismr(ωx, ωy) with certain additional modulation at the output. These intensity distributions make it possible to calculate the amplitude and phase components of the image being analysed and of the transfer function. Additional modulations should in some way ensure visualisation of the phase information. A specific type of additional spatial modulation, in the form of linear amplitude, is discussed.
Orion Service Module Umbilical (OSMU) Testing Complete
2016-10-19
Testing of the Orion Service Module Umbilical (OSMU) was completed at the Launch Equipment Test Facility at NASA’s Kennedy Space Center in Florida. The OSMU was attached to Vehicle Motion Simulator 1 for a series of simulated launch tests to validate it for installation on the mobile launcher. The test team gathered for an event to mark the end of testing. The mobile launcher tower will be equipped with a number of lines, called umbilicals that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. Kennedy's Engineering Directorate is providing support to the Ground Systems Development and Operations Program for testing of the OSMU. EM-1 is scheduled to launch in 2018.
Orion Service Module Umbilical (OSMU) Testing Complete
2016-10-19
Testing of the Orion Service Module Umbilical (OSMU) was completed at the Launch Equipment Test Facility at NASA’s Kennedy Space Center in Florida. The OSMU was attached to Vehicle Motion Simulator 1 for a series of simulated launch tests to validate it for installation on the mobile launcher. Patrick Simpkins, director of Engineering, speaks to the test team during an event to mark the end of testing. The mobile launcher tower will be equipped with a number of lines, called umbilicals that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. Kennedy's Engineering Directorate is providing support to the Ground Systems Development and Operations Program for testing of the OSMU. EM-1 is scheduled to launch in 2018.
Orion Service Module Umbilical (OSMU) Testing Complete
2016-10-19
Testing of the Orion Service Module Umbilical (OSMU) was completed at the Launch Equipment Test Facility at NASA’s Kennedy Space Center in Florida. The OSMU was attached to Vehicle Motion Simulator 1 for a series of simulated launch tests to validate it for installation on the mobile launcher. The test team gathered with a special banner during an event to mark the end of testing. The mobile launcher tower will be equipped with a number of lines, called umbilicals that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. Kennedy's Engineering Directorate is providing support to the Ground Systems Development and Operations Program for testing of the OSMU. EM-1 is scheduled to launch in 2018.
Orion Service Module Umbilical (OSMU) Testing Complete
2016-10-19
Testing of the Orion Service Module Umbilical (OSMU) was completed at the Launch Equipment Test Facility at NASA’s Kennedy Space Center in Florida. The OSMU was attached to Vehicle Motion Simulator 1 for a series of simulated launch tests to validate it for installation on the mobile launcher. One of the test team members signs a banner during an event to mark the end of testing. The mobile launcher tower will be equipped with a number of lines, called umbilicals that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. Kennedy's Engineering Directorate is providing support to the Ground Systems Development and Operations Program for testing of the OSMU. EM-1 is scheduled to launch in 2018.
Orion Service Module Umbilical (OSMU) Testing Complete
2016-10-19
Testing of the Orion Service Module Umbilical (OSMU) was completed at the Launch Equipment Test Facility at NASA’s Kennedy Space Center in Florida. The OSMU was attached to Vehicle Motion Simulator 1 for a series of simulated launch tests to validate it for installation on the mobile launcher. The test team signed a special banner during an event to mark the end of testing. The mobile launcher tower will be equipped with a number of lines, called umbilicals that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. Kennedy's Engineering Directorate is providing support to the Ground Systems Development and Operations Program for testing of the OSMU. EM-1 is scheduled to launch in 2018.
Venus climate stability and volcanic resurfacing rates
NASA Technical Reports Server (NTRS)
Bullock, M. A.; Grinspoon, D. H.; Pollack, J. B.
1994-01-01
The climate of Venus is to a large degree controlled by the radiative properties of its massive atmosphere. In addition, outgassing due to volcanic activity, exospheric escape processes, and surface/atmosphere interactions may all be important in moderating the abundances of atmospheric CO2 and other volatiles. We have developed an evolutionary climate model for Venus using a systems approach that emphasizes feedbacks between elements in the climate system. Modules for atmospheric radiative transfer, surface/atmosphere interactions, tropospheric chemistry, and exospheric escape processes have so far been developed. Climate feedback loops result from interconnections between modules, in the form of the environmental parameters pressure, temperature, and atmospheric mixing ratios. The radiative transfer module has been implemented by using Rosseland mean opacities in a one dimensional grey radiative-convective model. The model has been solved for the static (time independent) case to determine climate equilibrium points. The dynamics of the model have also been explored by employing reaction/diffusion kinetics for possible surface atmosphere heterogeneous reactions over geologic timescales. It was found that under current conditions, the model predicts that the climate of Venus is at or near an unstable equilibrium point. The effects of constant rate volcanism and corresponding exsolution of volatiles on the stability of the climate model were also explored.
Kononenko uses laptop computer in the SM Transfer Compartment
2012-03-21
ISS030-E-161167 (21 March 2012) --- Russian cosmonaut Oleg Kononenko, Expedition 30 flight engineer, uses a computer in the transfer compartment of the International Space Station?s Zvezda Service Module. Russia's Zarya module is visible in the background.
Image matrix processor for fast multi-dimensional computations
Roberson, George P.; Skeate, Michael F.
1996-01-01
An apparatus for multi-dimensional computation which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms. The processing modules thus include an image manipulation processor, which includes a source cache, a target cache, a coefficient table, and control software for executing image transformation routines using data in the source cache and the coefficient table and loading resulting data in the target cache. The local host processor operates to load the source cache with a two dimensional data set, loads the coefficient table, and transfers resulting data out of the target cache to the storage system, or to another destination.
ERIC Educational Resources Information Center
Stevenson, R. D.
This module is part of a series designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. This module describes heat transfer processes involved in the exchange of heat…
A universal TagModule collection for parallel genetic analysis of microorganisms
Oh, Julia; Fung, Eula; Price, Morgan N.; Dehal, Paramvir S.; Davis, Ronald W.; Giaever, Guri; Nislow, Corey; Arkin, Adam P.; Deutschbauer, Adam
2010-01-01
Systems-level analyses of non-model microorganisms are limited by the existence of numerous uncharacterized genes and a corresponding over-reliance on automated computational annotations. One solution to this challenge is to disrupt gene function using DNA tag technology, which has been highly successful in parallelizing reverse genetics in Saccharomyces cerevisiae and has led to discoveries in gene function, genetic interactions and drug mechanism of action. To extend the yeast DNA tag methodology to a wide variety of microorganisms and applications, we have created a universal, sequence-verified TagModule collection. A hallmark of the 4280 TagModules is that they are cloned into a Gateway entry vector, thus facilitating rapid transfer to any compatible genetic system. Here, we describe the application of the TagModules to rapidly generate tagged mutants by transposon mutagenesis in the metal-reducing bacterium Shewanella oneidensis MR-1 and the pathogenic yeast Candida albicans. Our results demonstrate the optimal hybridization properties of the TagModule collection, the flexibility in applying the strategy to diverse microorganisms and the biological insights that can be gained from fitness profiling tagged mutant collections. The publicly available TagModule collection is a platform-independent resource for the functional genomics of a wide range of microbial systems in the post-genome era. PMID:20494978
Depth Of Modulation And Spot Size Selection In Bar-Code Laser Scanners
NASA Astrophysics Data System (ADS)
Barkan, Eric; Swartz, Jerome
1982-04-01
Many optical and electronic considerations enter into the selection of optical spot size in flying spot laser scanners of the type used in modern industrial and commerical environments. These include: the scale of the symbols to be read, optical background noise present in the symbol substrate, and factors relating to the characteristics of the signal processor. Many 'front ends' consist of a linear signal conditioner followed by nonlinear conditioning and digitizing circuitry. Although the nonlinear portions of the circuit can be difficult to characterize mathematically, it is frequently possible to at least give a minimum depth of modulation measure to yield a worst-case guarantee of adequate performance with respect to digitization accuracy. Depth of modulation actually delivered to the nonlinear circuitry will depend on scale, contrast, and noise content of the scanned symbol, as well as the characteristics of the linear conditioning circuitry (eg. transfer function and electronic noise). Time and frequency domain techniques are applied in order to estimate the effects of these factors in selecting a spot size for a given system environment. Results obtained include estimates of the effects of the linear front end transfer function on effective spot size and asymmetries which can affect digitization accuracy. Plots of convolution-computed modulation patterns and other important system properties are presented. Considerations are limited primarily to Gaussian spot profiles but also apply to more general cases. Attention is paid to realistic symbol models and to implications with respect to printing tolerances.
Towards a Comprehensive Computational Simulation System for Turbomachinery
NASA Technical Reports Server (NTRS)
Shih, Ming-Hsin
1994-01-01
The objective of this work is to develop algorithms associated with a comprehensive computational simulation system for turbomachinery flow fields. This development is accomplished in a modular fashion. These modules includes grid generation, visualization, network, simulation, toolbox, and flow modules. An interactive grid generation module is customized to facilitate the grid generation process associated with complicated turbomachinery configurations. With its user-friendly graphical user interface, the user may interactively manipulate the default settings to obtain a quality grid within a fraction of time that is usually required for building a grid about the same geometry with a general-purpose grid generation code. Non-Uniform Rational B-Spline formulations are utilized in the algorithm to maintain geometry fidelity while redistributing grid points on the solid surfaces. Bezier curve formulation is used to allow interactive construction of inner boundaries. It is also utilized to allow interactive point distribution. Cascade surfaces are transformed from three-dimensional surfaces of revolution into two-dimensional parametric planes for easy manipulation. Such a transformation allows these manipulated plane grids to be mapped to surfaces of revolution by any generatrix definition. A sophisticated visualization module is developed to al-low visualization for both grid and flow solution, steady or unsteady. A network module is built to allow data transferring in the heterogeneous environment. A flow module is integrated into this system, using an existing turbomachinery flow code. A simulation module is developed to combine the network, flow, and visualization module to achieve near real-time flow simulation about turbomachinery geometries. A toolbox module is developed to support the overall task. A batch version of the grid generation module is developed to allow portability and has been extended to allow dynamic grid generation for pitch changing turbomachinery configurations. Various applications with different characteristics are presented to demonstrate the success of this system.
Parameter identification for nonlinear aerodynamic systems
NASA Technical Reports Server (NTRS)
Pearson, Allan E.
1992-01-01
Continuing work on frequency analysis for transfer function identification is discussed. A new study was initiated into a 'weighted' least squares algorithm within the context of the Fourier modulating function approach. The first phase of applying these techniques to the F-18 flight data is nearing completion, and these results are summarized.
MECHANICAL POWER TRANSFER SYSTEMS. AGRICULTURAL MACHINERY-SERVICE OCCUPATIONS, MODULE NUMBER 8.
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Center for Vocational and Technical Education.
ONE OF A SERIES DESIGNED TO HELP TEACHERS PREPARE POSTSECONDARY-LEVEL STUDENTS FOR THE AGRICULTURAL MACHINERY SERVICE OCCUPATIONS AS PARTS MEN, MECHANICS, MECHANIC'S HELPERS, AND SERVICE SUPERVISORS, THIS GUIDE AIMS TO DEVELOP STUDENT COMPETENCY IN UNDERSTANDING AND APPLYING THE PRINCIPLES OF MECHANICAL POWER TRANSMISSION IN AGRICULTURAL…
Temperature control system for a J-module heat exchanger
Basdekas, Demetrios L.; Macrae, George; Walsh, Joseph M.
1978-01-01
The level of primary fluid is controlled to change the effective heat transfer area of a heat exchanger utilized in a liquid metal nuclear power plant to eliminate the need for liquid metal control valves to regulate the flow of primary fluid and the temperature of the effluent secondary fluid.
Communications/Electronics Receiver Performance Degradation Handbook (Second Edition)
1975-08-01
receiver to another in the Rf and IF filter characteristics modify the transfer of inter- forence power through the receiver to the IF output, and so the...modulation system the transmitted and received messages arce in general different bemaus* of small inte, forence or noise perturbations. The probability of
Rankine cycle system and method
Ernst, Timothy C.; Nelson, Christopher R.
2014-09-09
A Rankine cycle waste heat recovery system uses a receiver with a maximum liquid working fluid level lower than the minimum liquid working fluid level of a sub-cooler of the waste heat recovery system. The receiver may have a position that is physically lower than the sub-cooler's position. A valve controls transfer of fluid between several of the components in the waste heat recovery system, especially from the receiver to the sub-cooler. The system may also have an associated control module.
Failure propagation in multi-cell lithium ion batteries
Lamb, Joshua; Orendorff, Christopher J.; Steele, Leigh Anna M.; ...
2014-10-22
Traditionally, safety and impact of failure concerns of lithium ion batteries have dealt with the field failure of single cells. However, large and complex battery systems require the consideration of how a single cell failure will impact the system as a whole. Initial failure that leads to the thermal runaway of other cells within the system creates a much more serious condition than the failure of a single cell. This work examines the behavior of small modules of cylindrical and stacked pouch cells after thermal runaway is induced in a single cell through nail penetration trigger [1] within the module.more » Cylindrical cells are observed to be less prone to propagate, if failure propagates at all, owing to the limited contact between neighboring cells. However, the electrical connectivity is found to be impactful as the 10S1P cylindrical cell module did not show failure propagation through the module, while the 1S10P module had an energetic thermal runaway consuming the module minutes after the initiation failure trigger. Modules built using pouch cells conversely showed the impact of strong heat transfer between cells. In this case, a large surface area of the cells was in direct contact with its neighbors, allowing failure to propagate through the entire battery within 60-80 seconds for all configurations (parallel or series) tested. This work demonstrates the increased severity possible when a point failure impacts the surrounding battery system.« less
Power Electronics Thermal Management R&D (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waye, S.
2014-11-01
This project will investigate and develop thermal-management strategies for wide bandgap (WBG)-based power electronics systems. Research will be carried out to deal with thermal aspects at the module- and system-level. Module-level research will focus on die- and substrate-integrated cooling strategies and heat-transfer enhancement technologies. System-level research will focus on thermal-management strategies for the entire power electronics system to enable smart packaging solutions. One challenge with WBG device-based power electronics is that although losses in the form of heat may be lower, the footprint of the components is also likely to be reduced to reduce cost, weight, and volume. Combined withmore » higher operational temperatures, this creates higher heat fluxes which much be removed from a smaller footprint, requiring advanced cooling strategies.« less
Long Exposure Photos of Mobile Launcher
2017-03-14
A long-exposure view of the mobile launcher at NASA's Kennedy Space Center in Florida. Cranes and rigging are being used to lift the bracket for the Orion Service Module Umbilical (OSMU) up for installation on the mobile launcher tower. The tower will be equipped with a number of lines, called umbilicals, that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. EM-1 is scheduled to launch in 2018. The Ground Systems Development and Operations Program is overseeing installation of the umbilicals.
Interarea Oscillation Damping Control Using High Voltage DC Transmission: a Survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elizondo, Marcelo Anibal; Fan, Rui; Kirkham, Harold
High-voltage, direct current (HVDC) transmission lines are increasingly being installed in power systems around the world, and this trend is expected to continue with advancements in power electronics technology. These advancements are also bringing multi-terminal direct current (MTDC) systems closer to practical application. In addition, the continued deployment of phasor measurement units (PMUs) makes dynamic information about a large power system readily available for highly controllable components, such as HVDC lines. All these trends have increased the appeal of modulating HVDC lines and MTDC systems to provide grid services in addition to bulk power transfers. This paper provides a literaturemore » survey of HVDC and MTDC damping controllers for interarea oscillations in large interconnected power systems. The literature shows a progression from theoretical research to practical applications. Finally, there are already practical implementations of HVDC modulation for lines in point-to-point configuration, although the modulation of MTDC systems is still in the research stage. As a conclusion, this paper identifies and summarizes open questions that remain to be tackled by researchers and engineers.« less
Interarea Oscillation Damping Control Using High Voltage DC Transmission: a Survey
Elizondo, Marcelo Anibal; Fan, Rui; Kirkham, Harold; ...
2018-05-02
High-voltage, direct current (HVDC) transmission lines are increasingly being installed in power systems around the world, and this trend is expected to continue with advancements in power electronics technology. These advancements are also bringing multi-terminal direct current (MTDC) systems closer to practical application. In addition, the continued deployment of phasor measurement units (PMUs) makes dynamic information about a large power system readily available for highly controllable components, such as HVDC lines. All these trends have increased the appeal of modulating HVDC lines and MTDC systems to provide grid services in addition to bulk power transfers. This paper provides a literaturemore » survey of HVDC and MTDC damping controllers for interarea oscillations in large interconnected power systems. The literature shows a progression from theoretical research to practical applications. Finally, there are already practical implementations of HVDC modulation for lines in point-to-point configuration, although the modulation of MTDC systems is still in the research stage. As a conclusion, this paper identifies and summarizes open questions that remain to be tackled by researchers and engineers.« less
Engine structures modeling software system: Computer code. User's manual
NASA Technical Reports Server (NTRS)
1992-01-01
ESMOSS is a specialized software system for the construction of geometric descriptive and discrete analytical models of engine parts, components and substructures which can be transferred to finite element analysis programs such as NASTRAN. The software architecture of ESMOSS is designed in modular form with a central executive module through which the user controls and directs the development of the analytical model. Modules consist of a geometric shape generator, a library of discretization procedures, interfacing modules to join both geometric and discrete models, a deck generator to produce input for NASTRAN and a 'recipe' processor which generates geometric models from parametric definitions. ESMOSS can be executed both in interactive and batch modes. Interactive mode is considered to be the default mode and that mode will be assumed in the discussion in this document unless stated otherwise.
Space-Wave Routing via Surface Waves Using a Metasurface System.
Achouri, Karim; Caloz, Christophe
2018-05-15
We introduce the concept of a metasurface system able to route space waves via surface waves. This concept may be used to laterally shift or modulate the beam width of scattered waves. The system is synthesized based on a momentum transfer approach using phase-gradient metasurfaces. The concept is experimentally verified in an "electromagnetic periscope". Additionally, we propose two other potential applications namely a beam expander and a multi-wave refractor.
Design and Development of the Terrain Information Extraction System
1990-09-04
system successfully demonstrated relief measurement and orthophoto production, automated feature extraction has remained "the major problem of today’s...the hierarchical relaxation correlation method developed by Helava Associates, Inc. and digital orthophoto production. To achieve this high accuracy...image memory transfer rates will be achieved by using data blocks or "image tiles ." Further, an image fringe loading module will be implemented which
Concurrent Image Processing Executive (CIPE)
NASA Technical Reports Server (NTRS)
Lee, Meemong; Cooper, Gregory T.; Groom, Steven L.; Mazer, Alan S.; Williams, Winifred I.
1988-01-01
The design and implementation of a Concurrent Image Processing Executive (CIPE), which is intended to become the support system software for a prototype high performance science analysis workstation are discussed. The target machine for this software is a JPL/Caltech Mark IIIfp Hypercube hosted by either a MASSCOMP 5600 or a Sun-3, Sun-4 workstation; however, the design will accommodate other concurrent machines of similar architecture, i.e., local memory, multiple-instruction-multiple-data (MIMD) machines. The CIPE system provides both a multimode user interface and an applications programmer interface, and has been designed around four loosely coupled modules; (1) user interface, (2) host-resident executive, (3) hypercube-resident executive, and (4) application functions. The loose coupling between modules allows modification of a particular module without significantly affecting the other modules in the system. In order to enhance hypercube memory utilization and to allow expansion of image processing capabilities, a specialized program management method, incremental loading, was devised. To minimize data transfer between host and hypercube a data management method which distributes, redistributes, and tracks data set information was implemented.
2007-03-13
KENNEDY SPACE CENTER, FLA. -- At the Trident wharf, workers help guide the container with the Experiment Logistics Module Pressurized Section inside toward a flat bed on the dock. The logistics module is part of the Japanese Experiment Module. The logistics module will be transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett
2007-03-13
KENNEDY SPACE CENTER, FLA. -- At the Trident wharf, workers help guide the container with the Experiment Logistics Module Pressurized Section inside onto a flat bed on the dock. The logistics module is part of the Japanese Experiment Module. The logistics module will be transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett
2007-03-13
KENNEDY SPACE CENTER, FLA. -- At the Trident wharf, workers in the hold of a ship attach a crane to the shipping container with the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module. The ship brought the module from Yokohama, Japan. The logistics module will be offloaded and transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett
Wang, Yan; Kim, Chang-Hyun; Yoo, Youngdong; Johns, James E; Frisbie, C Daniel
2017-12-13
The ability to improve and to modulate the heterogeneous charge transfer kinetics of two-dimensional (2D) semiconductors, such as MoS 2 , is a major challenge for electrochemical and photoelectrochemical applications of these materials. Here we report a continuous and reversible physical method for modulating the heterogeneous charge transfer kinetics at a monolayer MoS 2 working electrode supported on a SiO 2 /p-Si substrate. The heavily doped p-Si substrate serves as a back gate electrode; application of a gate voltage (V BG ) to p-Si tunes the electron occupation in the MoS 2 conduction band and shifts the conduction band edge position relative to redox species dissolved in electrolyte in contact with the front side of the MoS 2 . The gate modulation of both charge density and energy band alignment impacts charge transfer kinetics as measured by cyclic voltammetry (CV). Specifically, cyclic voltammograms combined with numerical simulations suggest that the standard heterogeneous charge transfer rate constant (k 0 ) for MoS 2 in contact with the ferrocene/ferrocenium (Fc 0/+ ) redox couple can be modulated by over 2 orders of magnitude from 4 × 10 -6 to 1 × 10 -3 cm/s, by varying V BG . In general, the field effect offers the potential to tune the electrochemical properties of 2D semiconductors, opening up new possibilities for fundamental studies of the relationship between charge transfer kinetics and independently controlled electronic band alignment and band occupation.
NASA Astrophysics Data System (ADS)
Si, Y.; Li, X.; Li, T.; Huang, Y.; Yin, D.
2016-12-01
The cascade reservoirs in Upper Yellow River (UYR), one of the largest hydropower bases in China, play a vital role in peak load and frequency regulation for Northwest China Power Grid. The joint operation of this system has been put forward for years whereas has not come into effect due to management difficulties and inflow uncertainties, and thus there is still considerable improvement room for hydropower production. This study presents a decision support framework incorporating long- and short-term operation of the reservoir system. For long-term operation, we maximize hydropower production of the reservoir system using historical hydrological data of multiple years, and derive operating rule curves for storage reservoirs. For short-term operation, we develop a program consisting of three modules, namely hydrologic forecast module, reservoir operation module and coordination module. The coordination module is responsible for calling the hydrologic forecast module to acquire predicted inflow within a short-term horizon, and transferring the information to the reservoir operation module to generate optimal release decision. With the hydrologic forecast information updated, the rolling short-term optimization is iterated until the end of operation period, where the long-term operating curves serve as the ending storage target. As an application, the Digital Yellow River Integrated Model (referred to as "DYRIM", which is specially designed for runoff-sediment simulation in the Yellow River basin by Tsinghua University) is used in the hydrologic forecast module, and the successive linear programming (SLP) in the reservoir operation module. The application in the reservoir system of UYR demonstrates that the framework can effectively support real-time decision making, and ensure both computational accuracy and speed. Furthermore, it is worth noting that the general framework can be extended to any other reservoir system with any or combination of hydrological model(s) to forecast and any solver to optimize the operation of reservoir system.
AAV-Mediated Gene Transfer to Dorsal Root Ganglion.
Yu, Hongwei; Fischer, Gregory; Hogan, Quinn H
2016-01-01
Transferring genetic molecules into the peripheral sensory nervous system to manipulate nociceptive pathophysiology is a powerful approach for experimental modulation of sensory signaling and potentially for translation into therapy for chronic pain. This can be efficiently achieved by the use of recombinant adeno-associated virus (rAAV) in conjunction with nociceptor-specific regulatory transgene cassettes. Among different routes of delivery, direct injection into the dorsal root ganglia (DRGs) offers the most efficient AAV-mediated gene transfer selectively into the peripheral sensory nervous system. Here, we briefly discuss the advantages and applications of intraganglionic microinjection, and then provide a detailed approach for DRG injection, including a list of the necessary materials and description of a method for performing DRG microinjection experiments. We also discuss our experience with several adeno-associated virus (AAV) options for in vivo transgene expression in DRG neurons.
Wideband laser locking to an atomic reference with modulation transfer spectroscopy.
Negnevitsky, V; Turner, L D
2013-02-11
We demonstrate that conventional modulated spectroscopy apparatus, used for laser frequency stabilization in many atomic physics laboratories, can be enhanced to provide a wideband lock delivering deep suppression of frequency noise across the acoustic range. Using an acousto-optic modulator driven with an agile oscillator, we show that wideband frequency modulation of the pump laser in modulation transfer spectroscopy produces the unique single lock-point spectrum previously demonstrated with electro-optic phase modulation. We achieve a laser lock with 100 kHz feedback bandwidth, limited by our laser control electronics. This bandwidth is sufficient to reduce frequency noise by 30 dB across the acoustic range and narrows the imputed linewidth by a factor of five.
NASA Astrophysics Data System (ADS)
Luís, Ruben S.; Cartaxo, Adolfo V. T.
2005-03-01
This paper proposes the definition of a cross-phase modulation (XPM)-induced power penalty for intensity modulation/direct detection (IM-DD) systems as a function of the normalized variance of the XPM-induced IM. This allows the definition of 1-dB power penalty reference values. New expressions of the equivalent linear model transfer functions for the XPM-induced IM and phase modulation (PM) that include the influence of self-phase modulation (SPM) as well as group-velocity dispersion are derived. The new expressions allow a significant extension for higher powers and dispersion parameters of expressions derived in previous papers for single-segment and multisegment fiber systems with dispersion compensation. Good agreement between analytical results and numerical simulations is obtained. Consistency with work performed numerically and experimentally by other authors is shown, validating the proposed model. Using the proposed model, the influence of residual dispersion and SPM on the limitations imposed by XPM on the performance of dispersion-compensated systems is assessed. It is shown that inline residual dispersion may lead to performance improvement for a properly tuned total residual dispersion. The influence of SPM is shown to degrade the system performance when nonzero-dispersion-shifted fiber is used. However, systems using standard single-mode fiber may benefit from the presence of SPM.
Numerical study on the thermal management system of a liquid metal battery module
NASA Astrophysics Data System (ADS)
Guo, Zhenlin; Xu, Cheng; Li, Wei; Zhu, Fangfang; Li, Haomiao; Wang, Kangli; Cheng, Shijie; Jiang, Kai
2018-07-01
Liquid metal battery (LMB), with three-liquid-layer structure and high operating temperature (300-700 °C), is a newly emerging technology for large scale energy storage applications. A thermal management system is critical to achieve satisfied LMB performance and extend the life of batteries. In this work, an improved coupling model composing of a 3D heat-transfer model and a 1D electrochemical model is developed for the thermal analysis of a Li||Sb-Sn LMBs module (5.5 kWh). Key results including transient values, the contribution ratio of heat sources, temperature homogeneity and distribution, as well as the energy efficiency of the battery module, are presented. Based on the coupling model, the changeable-power-heating mode, sand filling material and vacuum insulation are further proposed to achieve the high energy efficiency and optimal performance of the LMBs module. Moreover, the LMBs module can achieve "self-heating" when operated at 0.2 C charge/discharge, under the vacuum insulation (0.01 W m-1 K-1 thermal conductivity, 100 mm thickness), requiring no external heating to keep the batteries at operating temperature.
Prinz, P; Ronacher, B
2002-08-01
The temporal resolution of auditory receptors of locusts was investigated by applying noise stimuli with sinusoidal amplitude modulations and by computing temporal modulation transfer functions. These transfer functions showed mostly bandpass characteristics, which are rarely found in other species at the level of receptors. From the upper cut-off frequencies of the modulation transfer functions the minimum integration times were calculated. Minimum integration times showed no significant correlation to the receptor spike rates but depended strongly on the body temperature. At 20 degrees C the average minimum integration time was 1.7 ms, dropping to 0.95 ms at 30 degrees C. The values found in this study correspond well to the range of minimum integration times found in birds and mammals. Gap detection is another standard paradigm to investigate temporal resolution. In locusts and other grasshoppers application of this paradigm yielded values of the minimum detectable gap widths that are approximately twice as large than the minimum integration times reported here.
Overvoltage protection system for wireless power transfer systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chambon, Paul H.; Jones, Perry T.; Miller, John M.
A wireless power transfer overvoltage protection system is provided. The system includes a resonant receiving circuit. The resonant receiving circuit includes an inductor, a resonant capacitor and a first switching device. The first switching device is connected the ends of the inductor. The first switching device has a first state in which the ends of the inductor are electrically coupled to each other through the first switching device, and a second state in which the inductor and resonant capacitor are capable of resonating. The system further includes a control module configured to control the first switching device to switching betweenmore » the first state and the second state when the resonant receiving circuit is charging a load and a preset condition is satisfied and otherwise, the first switching device is maintained in the first state.« less
32-channel single photon counting module for ultrasensitive detection of DNA sequences
NASA Astrophysics Data System (ADS)
Gudkov, Georgiy; Dhulla, Vinit; Borodin, Anatoly; Gavrilov, Dmitri; Stepukhovich, Andrey; Tsupryk, Andrey; Gorbovitski, Boris; Gorfinkel, Vera
2006-10-01
We continue our work on the design and implementation of multi-channel single photon detection systems for highly sensitive detection of ultra-weak fluorescence signals, for high-performance, multi-lane DNA sequencing instruments. A fiberized, 32-channel single photon detection (SPD) module based on single photon avalanche diode (SPAD), model C30902S-DTC, from Perkin Elmer Optoelectronics (PKI) has been designed and implemented. Unavailability of high performance, large area SPAD arrays and our desire to design high performance photon counting systems drives us to use individual diodes. Slight modifications in our quenching circuit has doubled the linear range of our system from 1MHz to 2MHz, which is the upper limit for these devices and the maximum saturation count rate has increased to 14 MHz. The detector module comprises of a single board computer PC-104 that enables data visualization, recording, processing, and transfer. Very low dark count (300-1000 counts/s), robust, efficient, simple data collection and processing, ease of connectivity to any other application demanding similar requirements and similar performance results to the best commercially available single photon counting module (SPCM from PKI) are some of the features of this system.
Microgravity modulation effects on free convection problems LBM simulation
NASA Astrophysics Data System (ADS)
Javadi, Khodayar; Kazemi, Koorosh
2018-01-01
In this paper, microgravity modulation effects on free convection in a cavity are investigated using the lattice Boltzmann method. In order to create microgravity modulation, a sinusoidal time-dependent function is considered. Parameters of the flow are chosen such that the maximum Rayleigh number approaches 106. The natural frequency of the system is obtained at first. Afterwards, effects of different frequencies on the flow and heat transfer fields are investigated in detail. Results are presented in four different frequency ratios categorized as (1) ω*=1/200 , 1/100 , 1/20 , and 1/10 ; (2) ω*=1/8 , 1/5 , 1/3 , and 1/2 ; (3) ω* = 0.75, 0.85, and 0.95; and (4) the last one is considered for natural frequency as a special case of ω* = 1. Furthermore, the fast Fourier transformation is used to describe the cavity flow behavior. The results indicated that at low frequency, the system has enough time to adapt itself with the gravity modulation while historical effects do not disappear. Increasing the frequency changes the behavior of the system and different flow patterns appear. Finally, at the natural frequency (ω* = 1), all system modes are stimulated and a strange flow pattern is formed.
Design and analysis of radial imaging capsule endoscope (RICE) system.
Ou-Yang, Mang; Jeng, Wei-De
2011-02-28
In this study, a radial imaging capsule endoscope (RICE) system is designed, which differs from a conventional front imaging capsule endoscope (FICE) system. To observe the wrinkled intima of the intestine, which spreads without folding around the circumference of the capsule when a capsule endoscope with a diameter that slightly exceeds that of the intestine passes through it, the RICE uses a cone mirror, a radial window shell, and a focus optical module that comprise the radial imaging system. This concept was demonstrated in a packaged optical simulator. The RICE optical model also has been established and verified by many simulations and experiments. In minimizing the sagittal and tangential aberrations, the optical module of the RICE has achieved an F-number of 4.2, a viewing angle of 65.08°, and an RMS radius of the 4th to 6th fields of less than 17 um. A comparison of these characteristics with those of the focus optical module that is used in FICE lenses reveals that the spot size is 50% larger for each field, and the modulation transfer function (MTF) is remarkably improved from 7% to 36% at 100 lp/mm on the 5th field of the sagittal plane.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, STS-115 Mission Specialists Joseph Tanner (center) and Heidemarie Stefanyshyn-Piper (right) look at the inside of the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-115 mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array sets 2A and 4A.. The crew is scheduled to activate and check out the Solar Alpha Rotary Joint (SARJ) and deploy the P4 Truss radiator.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, STS-115 Mission Specialists Joseph Tanner (left) and Heidemarie Stefanyshyn-Piper (right) look over the Japanese Experiment Module (JEM) Pressurized Module located in the Space Station Processing Facility. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-115 mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array sets 2A and 4A.. The crew is scheduled to activate and check out the Solar Alpha Rotary Joint (SARJ) and deploy the P4 Truss radiator.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, STS-115 Mission Specialist Heidemarie Stefanyshyn-Piper (left) gets ready to check out the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-115 mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array sets 2A and 4A.. The crew is scheduled to activate and check out the Solar Alpha Rotary Joint (SARJ) and deploy the P4 Truss radiator.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, STS-115 Mission Specialists Heidemarie Stefanyshyn- Piper (left) and Joseph Tanner (center) get ready to check out the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-115 mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array sets 2A and 4A.. The crew is scheduled to activate and check out the Solar Alpha Rotary Joint (SARJ) and deploy the P4 Truss radiator.
An application protocol for CAD to CAD transfer of electronic information
NASA Technical Reports Server (NTRS)
Azu, Charles C., Jr.
1993-01-01
The exchange of Computer Aided Design (CAD) information between dissimilar CAD systems is a problem. This is especially true for transferring electronics CAD information such as multi-chip module (MCM), hybrid microcircuit assembly (HMA), and printed circuit board (PCB) designs. Currently, there exists several neutral data formats for transferring electronics CAD information. These include IGES, EDIF, and DXF formats. All these formats have limitations for use in exchanging electronic data. In an attempt to overcome these limitations, the Navy's MicroCIM program implemented a project to transfer hybrid microcircuit design information between dissimilar CAD systems. The IGES (Initial Graphics Exchange Specification) format is used since it is well established within the CAD industry. The goal of the project is to have a complete transfer of microelectronic CAD information, using IGES, without any data loss. An Application Protocol (AP) is being developed to specify how hybrid microcircuit CAD information will be represented by IGES entity constructs. The AP defines which IGES data items are appropriate for describing HMA geometry, connectivity, and processing as well as HMA material characteristics.
An NFC on Two-Coil WPT Link for Implantable Biomedical Sensors under Ultra-Weak Coupling
Gong, Chen; Liu, Dake; Miao, Zhidong; Wang, Wei; Li, Min
2017-01-01
The inductive link is widely used in implantable biomedical sensor systems to achieve near-field communication (NFC) and wireless power transfer (WPT). However, it is tough to achieve reliable NFC on an inductive WPT link when the coupling coefficient is ultra-low (0.01 typically), since the NFC signal (especially for the uplink from the in-body part to the out-body part) could be too weak to be detected. Traditional load shift keying (LSK) requires strong coupling to pass the load modulation information to the power source. Instead of using LSK, we propose a dual-carrier NFC scheme for the weak-coupled inductive link; using binary phase shift keying (BPSK) modulation, its downlink data are modulated on the power carrier (2 MHz), while its uplink data are modulated on another carrier (125 kHz). The two carriers are transferred through the same coil pair. To overcome the strong interference of the power carrier, dedicated circuits are introduced. In addition, to minimize the power transfer efficiency decrease caused by adding NFC, we optimize the inductive link circuit parameters and approach the receiver sensitivity limit. In the prototype experiments, even though the coupling coefficient is as low as 0.008, the in-body transmitter costs only 0.61 mW power carrying 10 kbps of data, and achieves a 1 × 10−7 bit error rate under the strong interference of WPT. This dual-carrier NFC scheme could be useful for small-sized implantable biomedical sensor applications. PMID:28604610
Magnetic field enhancement of organic photovoltaic cells performance.
Oviedo-Casado, S; Urbina, A; Prior, J
2017-06-27
Charge separation is a critical process for achieving high efficiencies in organic photovoltaic cells. The initial tightly bound excitonic electron-hole pair has to dissociate fast enough in order to avoid photocurrent generation and thus power conversion efficiency loss via geminate recombination. Such process takes place assisted by transitional states that lie between the initial exciton and the free charge state. Due to spin conservation rules these intermediate charge transfer states typically have singlet character. Here we propose a donor-acceptor model for a generic organic photovoltaic cell in which the process of charge separation is modulated by a magnetic field which tunes the energy levels. The impact of a magnetic field is to intensify the generation of charge transfer states with triplet character via inter-system crossing. As the ground state of the system has singlet character, triplet states are recombination-protected, thus leading to a higher probability of successful charge separation. Using the open quantum systems formalism we demonstrate that the population of triplet charge transfer states grows in the presence of a magnetic field, and discuss the impact on carrier population and hence photocurrent, highlighting its potential as a tool for research on charge transfer kinetics in this complex systems.
NASA Astrophysics Data System (ADS)
Bernardi, Michael P.; Milovich, Daniel; Francoeur, Mathieu
2016-09-01
Using Rytov's fluctuational electrodynamics framework, Polder and Van Hove predicted that radiative heat transfer between planar surfaces separated by a vacuum gap smaller than the thermal wavelength exceeds the blackbody limit due to tunnelling of evanescent modes. This finding has led to the conceptualization of systems capitalizing on evanescent modes such as thermophotovoltaic converters and thermal rectifiers. Their development is, however, limited by the lack of devices enabling radiative transfer between macroscale planar surfaces separated by a nanosize vacuum gap. Here we measure radiative heat transfer for large temperature differences (~120 K) using a custom-fabricated device in which the gap separating two 5 × 5 mm2 intrinsic silicon planar surfaces is modulated from 3,500 to 150 nm. A substantial enhancement over the blackbody limit by a factor of 8.4 is reported for a 150-nm-thick gap. Our device paves the way for the establishment of novel evanescent wave-based systems.
USAFA/8086 - A State of the Art Microprocessor System. Volume II. Software Documentation.
1980-06-01
34 /* THE THREE FOLLOWING STRUCTU2RES APE NECESSARY TO MLLLO ThE OPERATING SYTEM TO HAVE INDIRECT ACCESS TL 41EMOP *. 13- ** _3_ -- - , -- K k"" , PijPL...FILLJ$ ERROR$ ONE IOPB CHECKER LINK$IN$ DIR$IN$ ABM $IN$ DATA$IN$ OUT OUT OUT OUT DisK86 MODUlE FiGuRE 8. DATA TRANSFER UTILITIE.S 62 In addition to...SUPPORT ROUTINES. Table 3 shows the functions of these routines. TABLE 3. SUPPORT PROCEDURES ROUTINE FUNCTION ABM $ZERO Makes a given sector on a
Integrated Aerodynamic/Structural/Dynamic Analyses of Aircraft with Large Shape Changes
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.; Chwalowski, Pawel; Horta, Lucas G.; Piatak, David J.; McGowan, Anna-Maria R.
2007-01-01
The conceptual and preliminary design processes for aircraft with large shape changes are generally difficult and time-consuming, and the processes are often customized for a specific shape change concept to streamline the vehicle design effort. Accordingly, several existing reports show excellent results of assessing a particular shape change concept or perturbations of a concept. The goal of the current effort was to develop a multidisciplinary analysis tool and process that would enable an aircraft designer to assess several very different morphing concepts early in the design phase and yet obtain second-order performance results so that design decisions can be made with better confidence. The approach uses an efficient parametric model formulation that allows automatic model generation for systems undergoing radical shape changes as a function of aerodynamic parameters, geometry parameters, and shape change parameters. In contrast to other more self-contained approaches, the approach utilizes off-the-shelf analysis modules to reduce development time and to make it accessible to many users. Because the analysis is loosely coupled, discipline modules like a multibody code can be easily swapped for other modules with similar capabilities. One of the advantages of this loosely coupled system is the ability to use the medium-to high-fidelity tools early in the design stages when the information can significantly influence and improve overall vehicle design. Data transfer among the analysis modules are based on an accurate and automated general purpose data transfer tool. In general, setup time for the integrated system presented in this paper is 2-4 days for simple shape change concepts and 1-2 weeks for more mechanically complicated concepts. Some of the key elements briefly described in the paper include parametric model development, aerodynamic database generation, multibody analysis, and the required software modules as well as examples for a telescoping wing, a folding wing, and a bat-like wing.
NASA Astrophysics Data System (ADS)
Lisson, Jerold B.; Mounts, Darryl I.; Fehniger, Michael J.
1992-08-01
Localized wavefront performance analysis (LWPA) is a system that allows the full utilization of the system optical transfer function (OTF) for the specification and acceptance of hybrid imaging systems. We show that LWPA dictates the correction of wavefront errors with the greatest impact on critical imaging spatial frequencies. This is accomplished by the generation of an imaging performance map-analogous to a map of the optic pupil error-using a local OTF. The resulting performance map a function of transfer function spatial frequency is directly relatable to the primary viewing condition of the end-user. In addition to optimizing quality for the viewer it will be seen that the system has the potential for an improved matching of the optical and electronic bandpass of the imager and for the development of more realistic acceptance specifications. 1. LOCAL WAVEFRONT PERFORMANCE ANALYSIS The LWPA system generates a local optical quality factor (LOQF) in the form of a map analogous to that used for the presentation and evaluation of wavefront errors. In conjunction with the local phase transfer function (LPTF) it can be used for maximally efficient specification and correction of imaging system pupil errors. The LOQF and LPTF are respectively equivalent to the global modulation transfer function (MTF) and phase transfer function (PTF) parts of the OTF. The LPTF is related to difference of the average of the errors in separated regions of the pupil. Figure
STS-40 Spacelab Life Science 1 (SLS-1) module in OV-102's payload bay (PLB)
NASA Technical Reports Server (NTRS)
1991-01-01
STS-40 Spacelab Life Science 1 (SLS-1) module is documented in the payload bay (PLB) of Columbia, Orbiter Vehicle (OV) 102. Included in the view are: the spacelab (SL) transfer tunnel joggle section and support struts; SLS-1 module forward end cone with the European Space Agency (ESA) SL insignia, SLS-1 payload insignia, and the upper feed through plate (center); the orbiter maneuvering system (OMS) pods; and the vertical stabilizer with the Detailed Test Objective (DTO) 901 Shuttle Infrared Leeside Temperature Sensing (SILTS) at the top 24 inches. The vertical stabilizer is parallel to the Earth's limb which is highlighted by the sunlight at sunrise/sunset.
STS-40 Spacelab Life Science 1 (SLS-1) module in OV-102's payload bay (PLB)
NASA Technical Reports Server (NTRS)
1991-01-01
STS-40 Spacelab Life Science 1 (SLS-1) module is documented in the payload bay (PLB) of Columbia, Orbiter Vehicle (OV) 102. Included in the view are: the spacelab (SL) transfer tunnel joggle section and support struts; SLS-1 module forward end cone with the European Space Agency (ESA) SL insignia, SLS-1 payload insignia, and the upper feed through plate (center); the orbiter maneuvering system (OMS) pods; and the vertical stabilizer with the Detailed Test Objective (DTO) 901 Shuttle Infrared Leeside Temperature Sensing (SILTS) at the top 24 inches. The vertical stabilizer points to the Earth's limb and the cloud-covered surface of the Earth below.
2008-10-21
CAPE CANAVERAL, Fla. - The Multi-Purpose Logistics Module Leonardo is moved across the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. Leonardo is part of space shuttle Endeavour's payload on the STS-126 mission to the International Space Station. The module will be installed in the waiting payload canister for transfer to Launch Pad 39A. At the pad, the payload canister will release its cargo into the Payload Changeout Room. Later, the payload will be installed in space shuttle Endeavour's payload bay. The module contains supplies and equipment, including additional crew quarters, equipment for the regenerative life support system and spare hardware. Endeavour is targeted for launch on Nov. 14. Photo credit: NASA/Troy Cryder
2008-10-21
CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the Multi-Purpose Logistics Module Leonardo is moved toward the payload canister at right. Leonardo is part of space shuttle Endeavour's payload on the STS-126 mission to the International Space Station. The payload canister will transfer the module to Launch Pad 39A. At the pad, the payload canister will release its cargo into the Payload Changeout Room. Later, the payload will be installed in space shuttle Endeavour's payload bay. The module contains supplies and equipment, including additional crew quarters, equipment for the regenerative life support system and spare hardware. Endeavour is targeted for launch on Nov. 14. Photo credit: NASA/Troy Cryder
Ozeri, Shaul; Shmilovitz, Doron
2014-09-01
The advancement and miniaturization of body implanted medical devices pose several challenges to Ultrasonic Transcutaneous Energy Transfer (UTET), such as the need to reduce the size of the piezoelectric resonator, and the need to maximize the UTET link power-transfer efficiency. Accordingly, the same piezoelectric resonator that is used for energy harvesting at the body implant, may also be used for ultrasonic backward data transfer, for instance, through impedance modulation. This paper presents physical considerations and design guidelines of the body implanted transducer of a UTET link with impedance modulation for a backward data transfer. The acoustic matching design procedure was based on the 2×2 transfer matrix chain analysis, in addition to the Krimholtz Leedom and Matthaei KLM transmission line model. The UTET power transfer was carried out at a frequency of 765 kHz, continuous wave (CW) mode. The backward data transfer was attained by inserting a 9% load resistance variation around its matched value (550 Ohm), resulting in a 12% increase in the acoustic reflection coefficient. A backward data transmission rate of 1200 bits/s was experimentally demonstrated using amplitude shift keying, simultaneously with an acoustic power transfer of 20 mW to the implant. Copyright © 2014 Elsevier B.V. All rights reserved.
Thom, Joseph; Wilpers, Guido; Riis, Erling; Sinclair, Alastair G
2013-08-12
We demonstrate a system for fast and agile digital control of laser phase, amplitude and frequency for applications in coherent atomic systems. The full versatility of a direct digital synthesis radiofrequency source is faithfully transferred to laser radiation via acousto-optic modulation. Optical beatnotes are used to measure phase steps up to 2π, which are accurately implemented with a resolution of ≤ 10 mrad. By linearizing the optical modulation process, amplitude-shaped pulses of durations ranging from 500 ns to 500 ms, in excellent agreement with the programmed functional form, are demonstrated. Pulse durations are limited only by the 30 ns rise time of the modulation process, and a measured extinction ratio of > 5 × 10(11) is achieved. The system presented here was developed specifically for controlling the quantum state of trapped ions with sequences of multiple laser pulses, including composite and bichromatic pulses. The demonstrated techniques are widely applicable to other atomic systems ranging across quantum information processing, frequency metrology, atom interferometry, and single-photon generation.
ERIC Educational Resources Information Center
Knapp, Henry H., III
This module on heat transfer is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies. The…
ABSTRACT
We evaluated the safety of agents that enhance gene transfer by modulating paracellular permeability. Lactate dehydrogenase (LDH) and cytokine release were measured in polarized primary human airway epithelial (HAE) cells after luminal application of vehicle, ...
Cosmonaut Krikalev takes photos in U.S. Laboratory /Destiny module
2001-02-11
STS98-E-5138 (11 February 2001) --- Cosmonaut Sergei K. Krikalev, Expedition One flight engineer, takes still photographs onboard the newly opened Destiny laboratory on the International Space Station (ISS). After astronaut William M. (Bill) Shepherd, Expedition One commander, opened the Destiny hatch, he and astronaut Kenneth D. Cockrell (out of frame) ventured inside at 8:38 a.m. (CST), February 11, 2001. As depicted in subsequent digital images in this series, members of both crews went to work quickly inside the new module, activating air systems, fire extinguishers, alarm systems, computers and internal communications. The crew also took some photos and continued equipment transfers from the shuttle to the station.
MS Jones in U.S. Laboratory / Destiny module
2001-02-11
STS98-E-5137 (11 February 2001) --- Astronauts Thomas D. Jones (foreground), STS-98 mission specialist, and William M. Shepherd, Expedition One mission commander, participate in an impromptu photo shoot onboard the newly opened Destiny laboratory on the International Space Station (ISS). After Shepherd opened the Destiny hatch, he and astronaut Kenneth D. Cockrell (out of frame) ventured inside at 8:38 a.m. (CST), February 11, 2001. As depicted in subsequent digital images in this series, members of both crews went to work quickly inside the new module, activating air systems, fire extinguishers, alarm systems, computers and internal communications. The crew also took some photos and continued equipment transfers from the shuttle to the station.
Bayesian Atmospheric Radiative Transfer (BART) Code and Application to WASP-43b
NASA Astrophysics Data System (ADS)
Blecic, Jasmina; Harrington, Joseph; Cubillos, Patricio; Bowman, Oliver; Rojo, Patricio; Stemm, Madison; Lust, Nathaniel B.; Challener, Ryan; Foster, Austin James; Foster, Andrew S.; Blumenthal, Sarah D.; Bruce, Dylan
2016-01-01
We present a new open-source Bayesian radiative-transfer framework, Bayesian Atmospheric Radiative Transfer (BART, https://github.com/exosports/BART), and its application to WASP-43b. BART initializes a model for the atmospheric retrieval calculation, generates thousands of theoretical model spectra using parametrized pressure and temperature profiles and line-by-line radiative-transfer calculation, and employs a statistical package to compare the models with the observations. It consists of three self-sufficient modules available to the community under the reproducible-research license, the Thermochemical Equilibrium Abundances module (TEA, https://github.com/dzesmin/TEA, Blecic et al. 2015}, the radiative-transfer module (Transit, https://github.com/exosports/transit), and the Multi-core Markov-chain Monte Carlo statistical module (MCcubed, https://github.com/pcubillos/MCcubed, Cubillos et al. 2015). We applied BART on all available WASP-43b secondary eclipse data from the space- and ground-based observations constraining the temperature-pressure profile and molecular abundances of the dayside atmosphere of WASP-43b. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G. JB holds a NASA Earth and Space Science Fellowship.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
SCALE--a modular code system for Standardized Computer Analyses Licensing Evaluation--has been developed by Oak Ridge National Laboratory at the request of the US Nuclear Regulatory Commission. The SCALE system utilizes well-established computer codes and methods within standard analysis sequences that (1) allow an input format designed for the occasional user and/or novice, (2) automated the data processing and coupling between modules, and (3) provide accurate and reliable results. System development has been directed at problem-dependent cross-section processing and analysis of criticality safety, shielding, heat transfer, and depletion/decay problems. Since the initial release of SCALE in 1980, the code system hasmore » been heavily used for evaluation of nuclear fuel facility and package designs. This revision documents Version 4.3 of the system.« less
An Embedded Reconfigurable Logic Module
NASA Technical Reports Server (NTRS)
Tucker, Jerry H.; Klenke, Robert H.; Shams, Qamar A. (Technical Monitor)
2002-01-01
A Miniature Embedded Reconfigurable Computer and Logic (MERCAL) module has been developed and verified. MERCAL was designed to be a general-purpose, universal module that that can provide significant hardware and software resources to meet the requirements of many of today's complex embedded applications. This is accomplished in the MERCAL module by combining a sub credit card size PC in a DIMM form factor with a XILINX Spartan I1 FPGA. The PC has the ability to download program files to the FPGA to configure it for different hardware functions and to transfer data to and from the FPGA via the PC's ISA bus during run time. The MERCAL module combines, in a compact package, the computational power of a 133 MHz PC with up to 150,000 gate equivalents of digital logic that can be reconfigured by software. The general architecture and functionality of the MERCAL hardware and system software are described.
Terrapin technologies manned Mars mission proposal
NASA Technical Reports Server (NTRS)
Amato, Michael; Bryant, Heather; Coleman, Rodney; Compy, Chris; Crouse, Patrick; Crunkleton, Joe; Hurtado, Edgar; Iverson, Eirik; Kamosa, Mike; Kraft, Lauri (Editor)
1990-01-01
A Manned Mars Mission (M3) design study is proposed. The purpose of M3 is to transport 10 personnel and a habitat with all required support systems and supplies from low Earth orbit (LEO) to the surface of Mars and, after an eight-man surface expedition of 3 months, to return the personnel safely to LEO. The proposed hardware design is based on systems and components of demonstrated high capability and reliability. The mission design builds on past mission experience, but incorporates innovative design approaches to achieve mission priorities. Those priorities, in decreasing order of importance, are safety, reliability, minimum personnel transfer time, minimum weight, and minimum cost. The design demonstrates the feasibility and flexibility of a Waverider transfer module.
HYDRAULIC POWER TRANSFER SYSTEMS. AGRICULTURAL MACHINERY--SERVICE OCCUPATIONS, MODULE NUMBER 9.
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Center for Vocational and Technical Education.
ONE OF A SERIES DESIGNED TO HELP TEACHERS PREPARE POSTSECONDARY-LEVEL STUDENTS FOR THE AGRICULTURAL MACHINERY SERVICE OCCUPATIONS AS PARTS MEN, MECHANICS, MECHANIC'S HELPERS, AND SERVICE SUPERVISORS, THIS GUIDE AIMS TO DEVELOP STUDENT COMPETENCY IN UNDERSTANDING BASIC HYDRAULICS AND ITS APPLICATION TO AGRICULTURAL MACHINERY. IT WAS DEVELOPED BY A…
Analytical model and figures of merit for filtered Microwave Photonic Links.
Gasulla, Ivana; Capmany, José
2011-09-26
The concept of filtered Microwave Photonic Links is proposed in order to provide the most general and versatile description of complex analog photonic systems. We develop a field propagation model where a global optical filter, characterized by its optical transfer function, embraces all the intermediate optical components in a linear link. We assume a non-monochromatic light source characterized by an arbitrary spectral distribution which has a finite linewidth spectrum and consider both intensity modulation and phase modulation with balanced and single detection. Expressions leading to the computation of the main figures of merit concerning the link gain, noise and intermodulation distortion are provided which, to our knowledge, are not available in the literature. The usefulness of this derivation resides in the capability to directly provide performance criteria results for complex links just by substituting in the overall closed-form formulas the numerical or measured optical transfer function characterizing the link. This theory is presented thus as a potential tool for a wide range of relevant microwave photonic application cases which is extendable to multiport radio over fiber systems. © 2011 Optical Society of America
Wireless power and data transmission strategies for next-generation capsule endoscopes
NASA Astrophysics Data System (ADS)
Puers, R.; Carta, R.; Thoné, J.
2011-05-01
Capsular endoscopy is becoming increasingly popular as an alternative to traditional gastro-intestinal (GI) examination techniques. However, the breakthrough of these devices is hindered by the limited amount of power that can be stored in a tiny pill. Most commercial devices use two watch batteries that can only provide an average power of 25 mW for about 6 h, certainly not sufficient for advanced robotic features. A dedicated inductive powering system, operating at 1 MHz to limit the human body absorption, has been developed which was proven to support the transfer of over 300 mW. The system relies on a condensed set of orthogonal ferrite coils, embedded in the capsule, and an external unit based on a Helmholtz coil driven by a class E amplifier. Control data can be sent through the inductive link by modulating the power carrier, whereas a dedicated high data rate RF link is used to transfer the images from the capsule to the base station. Besides evaluating the compatibility with radio transmission, several demonstrators were assembled combining the wireless powering system with various locomotion strategies and LED illumination. This paper describes the design and implementation of the inductive powering system, its combination with data transmission techniques and the testing activity with other capsule-dedicated modules.
NASA Technical Reports Server (NTRS)
Bergeron, R. P.
1980-01-01
Orbital transfer vehicle propulsion options for SPS include both chemical (COTV) and electrical (EOTV) options. The proposed EOTV construction method is similar to that of the SPS and, by the addition of a transmitting antenna, may serve as a demonstration or precursor satellite option. The results of the studies led to the selection of a single stage COTV for crew and priority cargo transfer. An EOTV concept is favored for cargo transfer because of the more favorable orbital burden factor over chemical systems. The gallium arsenide solar array is favored over the silicon array because of its self annealing characteristics of radiation damage encountered during multiple transitions through the Van Allen radiation belt. Transportation system operations are depicted. A heavy lift launch vehicle (HLLV) delivers cargo and propellants to LEO, which are transferred to a dedicated EOTV by means of an intraorbit transfer vehicle (IOTV) for subsequent transfer to GEO. The space shuttle is used for crew transfer from Earth to LEO. At the LEO base, the crew module is removed from the shuttle cargo bay and mated to a COTV for transfer to GEO. Upon arrival at GEO, the SPS construction cargo is transferred from the EOTV to the SPS construction base by IOTV. Crew consumables and resupply propellants are transported to GEO by the EOTV. Transportation requirements are dominated by the vast quantity of materials to be transported to LEO and GEO.
2007-03-13
KENNEDY SPACE CENTER, FLA. -- At the Trident wharf, the shipping container with the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module is ready for lifting out of the hold of the ship that brought it from Yokohama, Japan. The logistics module will be offloaded and transported to the Space Station Processing Facility at NASA's Kennedy Space Center. The Japanese Experiment Module is composed of three segments and is known as Kibo, which means "hope" in Japanese. Kibo consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, STS-120 Mission Specialists Michael Foreman (third from right) and STS-115 Mission Specialists Joseph Tanner (second from right) and Heidemarie Stefanyshyn-Piper (right) look over the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. STS-115 will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array sets 2A and 4A.. STS-120 will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.
McAleavey, Stephen A
2014-05-01
Shear wave induced phase encoding (SWIPE) imaging generates ultrasound backscatter images of tissue-like elastic materials by using traveling shear waves to encode the lateral position of the scatters in the phase of the received echo. In contrast to conventional ultrasound B-scan imaging, SWIPE offers the potential advantages of image formation without beam focusing or steering from a single transducer element, lateral resolution independent of aperture size, and the potential to achieve relatively high lateral resolution with low frequency ultrasound. Here a Fourier series description of the phase modulated echo signal is developed, demonstrating that echo harmonics at multiples of the shear wave frequency reveal target k-space data at identical multiples of the shear wavenumber. Modulation transfer functions of SWIPE imaging systems are calculated for maximum shear wave acceleration and maximum shear constraints, and compared with a conventionally focused aperture. The relative signal-to-noise ratio of the SWIPE method versus a conventionally focused aperture is found through these calculations. Reconstructions of wire targets in a gelatin phantom using 1 and 3.5 MHz ultrasound and a cylindrical shear wave source are presented, generated from the fundamental and second harmonic of the shear wave modulation frequency, demonstrating weak dependence of lateral resolution with ultrasound frequency.
Orbital Transfer Vehicle (space taxi) with aerobraking at Earth and Mars
NASA Technical Reports Server (NTRS)
1987-01-01
This report shall cover all major aspects of the design of an Aeroassisted Manned Transfer Vehicle (or TAXI) for use as part of advanced manned Mars missions based on a cycling ship concept. Along with the heliocentric orbiting Cycling Spacecraft, such a TAXI would be a primary component of a long-term transportation system for Mars exploration. The Aeroassisted Manned Transfer Vehicle (AMTV) design developed shall operate along transfer trajectories between Earth and a Cycling Spacecraft (designed by the University of Michigan) and Mars. All operations of the AMTV shall be done primarily within the sphere of influence of the two planets. Maximum delta-V's for the vehicle have been established near 9 km/sec, with transfer durations of about 3 days. Acceleration deltaV's will be accomplished using 3 SSME-based hydrogen-oxygen chemical rockets (l(sub sp) = 485 sec & Thrust greater than = 300,00 Ib(sub f)/engine) with a thrust vector directly opposite the aerobraking deceleration vector. The aerobraking deceleration portion of an AMTV mission would be accomplished in this design by a moderate L/D aeroshield of an ellipsoidally-blunt, raked-off, elliptic cone (EBROEC) shape. The reusable thermal protection material comprising the shield will consist of a flexible, multi-layer, ceramic fabric stretched over a lightweight, rigid, shape - defining truss structure. Behind this truss, other components, including the engine supports, would be attached and protected from heating during aerobraking passes. Among these other components would be 2 LOX tanks and 4 LH2 tanks (and their support frames) holding over 670,000 lbm of propellant necessary to impart the required delta-V to the 98,000 lbm burnout mass vehicle. A 20,000 lbm crew module with docking port (oriented parallel to the accel./decel. axis) will provide accommodations for 9 crew members (11 under extreme conditions) for durations up to seven days, thus allowing extra time for emergency situations. This AMTV will be equipped with complete guidance, navigation, control and communications systems modules attached near the crew module. Control of vehicle attitude will be provided by a set of small reaction control thrusters quite similar to those on the current Space Shuttle. All crew module and vehicle electrical functions will be powered via a set of H2/O2 fuel cells with radio-isotopic generators as backup supplies. Also included in the burnout mass of 98,000 lb is allowance for 10,000 lbm of miscellaneous payload (scientific equipment or other supplies).
Modular hardware synthesis using an HDL. [Hardware Description Language
NASA Technical Reports Server (NTRS)
Covington, J. A.; Shiva, S. G.
1981-01-01
Although hardware description languages (HDL) are becoming more and more necessary to automated design systems, their application is complicated due to the difficulty in translating the HDL description into an implementable format, nonfamiliarity of hardware designers with high-level language programming, nonuniform design methodologies and the time and costs involved in transfering HDL design software. Digital design language (DDL) suffers from all of the above problems and in addition can only by synthesized on a complete system and not on its subparts, making it unsuitable for synthesis using standard modules or prefabricated chips such as those required in LSI or VLSI circuits. The present paper presents a method by which the DDL translator can be made to generate modular equations that will allow the system to be synthesized as an interconnection of lower-level modules. The method involves the introduction of a new language construct called a Module which provides for the separate translation of all equations bounded by it.
STS-79 SPACEHAB Double module in Payload Bay
NASA Technical Reports Server (NTRS)
1996-01-01
Workers in the Payload Changeout Room (PCR) at Launch Pad 39A are preparing to close the payload doors for flight on the Space Shuttle Atlantis, targeted for liftoff on Mission STS-79 around September 12. The payloads in Atlantis' cargo bay will play key roles during the upcoming spaceflight, which will be highlighted by the fourth docking between the U.S. Shuttle and Russian Space Station Mir. Located in the aft (lowermost) area of the payload bay is the SPACEHAB Double Module, filled with supplies and other items slated for transfer to the Russian Space Station Mir as well as research equipment. The SPACEHAB is connected by tunnel to the Orbiter Docking System (ODS). This view looks directly at the top of the ODS and shows clearly the Androgynous Peripheral Docking System (APDS) that interfaces with the Docking Module on Mir to achieve a linkup.
Spatial light modulator array with heat minimization and image enhancement features
Jain, Kanti [Briarcliff Manor, NY; Sweatt, William C [Albuquerque, NM; Zemel, Marc [New Rochelle, NY
2007-01-30
An enhanced spatial light modulator (ESLM) array, a microelectronics patterning system and a projection display system using such an ESLM for heat-minimization and resolution enhancement during imaging, and the method for fabricating such an ESLM array. The ESLM array includes, in each individual pixel element, a small pixel mirror (reflective region) and a much larger pixel surround. Each pixel surround includes diffraction-grating regions and resolution-enhancement regions. During imaging, a selected pixel mirror reflects a selected-pixel beamlet into the capture angle of a projection lens, while the diffraction grating of the pixel surround redirects heat-producing unused radiation away from the projection lens. The resolution-enhancement regions of selected pixels provide phase shifts that increase effective modulation-transfer function in imaging. All of the non-selected pixel surrounds redirect all radiation energy away from the projection lens. All elements of the ESLM are fabricated by deposition, patterning, etching and other microelectronic process technologies.
NASA Technical Reports Server (NTRS)
Nahra, Henry K.; Hall, Nancy R.; Hasan, Mohammad M.; Wagner, James D.; May, Rochelle L.; Mackey, Jeffrey R.; Kolacz, John S.; Butcher, Robert L.; Frankenfield, Bruce J.; Mudawar, Issam;
2013-01-01
Flow boiling and condensation have been identified as two key mechanisms for heat transport that are vital for achieving weight and volume reduction as well as performance enhancement in future space systems. Since inertia driven flows are demanding on power usage, lower flows are desirable. However, in microgravity, lower flows are dominated by forces other than inertia (like the capillary force). It is of paramount interest to investigate limits of low flows beyond which the flow is inertial enough to be gravity independent. One of the objectives of the Flow Boiling and Condensation Flight Experiment sets to investigate these limits for flow boiling and condensation. A two-phase flow loop consisting of a Flow Boiling Module and two Condensation Modules has been developed to experimentally study flow boiling condensation heat transfer in the reduced gravity environment provided by the reduced gravity platform. This effort supports the development of a flow boiling and condensation facility for the International Space Station (ISS). The closed loop test facility is designed to deliver the test fluid, FC-72 to the inlet of any one of the test modules at specified thermodynamic and flow conditions. The zero-g-aircraft tests will provide subcooled and saturated flow boiling critical heat flux and flow condensation heat transfer data over wide range of flow velocities. Additionally, these tests will verify the performance of all gravity sensitive components, such as evaporator, condenser and accumulator associated with the two-phase flow loop. We will present in this paper the breadboard development and testing results which consist of detailed performance evaluation of the heater and condenser combination in reduced and normal gravity. We will also present the design of the reduced gravity aircraft rack and the results of the ground flow boiling heat transfer testing performed with the Flow Boiling Module that is designed to investigate flow boiling heat transfer and Critical Heat Flux (CHF) phenomena.
Readout Electronics for the Central Drift Chamber of the Belle-II Detector
NASA Astrophysics Data System (ADS)
Uchida, Tomohisa; Taniguchi, Takashi; Ikeno, Masahiro; Iwasaki, Yoshihito; Saito, Masatoshi; Shimazaki, Shoichi; Tanaka, Manobu M.; Taniguchi, Nanae; Uno, Shoji
2015-08-01
We have developed readout electronics for the central drift chamber (CDC) of the Belle-II detector. The space near the endplate of the CDC for installation of the electronics was limited by the detector structure. Due to the large amounts of data generated by the CDC, a high-speed data link, with a greater than one gigabit transfer rate, was required to transfer the data to a back-end computer. A new readout module was required to satisfy these requirements. This module processes 48 signals from the CDC, converts them to digital data and transfers it directly to the computer. All functions that transfer digital data via the high speed link were implemented on the single module. We have measured its electrical characteristics and confirmed that the results satisfy the requirements of the Belle-II experiment.
Alkali Metal Handling Practices at NASA MSFC
NASA Technical Reports Server (NTRS)
Salvail, Patrick G.; Carter, Robert R.
2002-01-01
NASA Marshall Space Flight Center (MSFC) is NASA s principle propulsion development center. Research and development is coordinated and carried out on not only the existing transportation systems, but also those that may be flown in the near future. Heat pipe cooled fast fission cores are among several concepts being considered for the Nuclear Systems Initiative. Marshall Space Flight Center has developed a capability to handle high-purity alkali metals for use in heat pipes or liquid metal heat transfer loops. This capability is a low budget prototype of an alkali metal handling system that would allow the production of flight qualified heat pipe modules or alkali metal loops. The processing approach used to introduce pure alkali metal into heat pipe modules and other test articles are described in this paper.
Asynchronous transfer mode distribution network by use of an optoelectronic VLSI switching chip.
Lentine, A L; Reiley, D J; Novotny, R A; Morrison, R L; Sasian, J M; Beckman, M G; Buchholz, D B; Hinterlong, S J; Cloonan, T J; Richards, G W; McCormick, F B
1997-03-10
We describe a new optoelectronic switching system demonstration that implements part of the distribution fabric for a large asynchronous transfer mode (ATM) switch. The system uses a single optoelectronic VLSI modulator-based switching chip with more than 4000 optical input-outputs. The optical system images the input fibers from a two-dimensional fiber bundle onto this chip. A new optomechanical design allows the system to be mounted in a standard electronic equipment frame. A large section of the switch was operated as a 208-Mbits/s time-multiplexed space switch, which can serve as part of an ATM switch by use of an appropriate out-of-band controller. A larger section with 896 input light beams and 256 output beams was operated at 160 Mbits/s as a slowly reconfigurable space switch.
Neutron transport analysis for nuclear reactor design
Vujic, Jasmina L.
1993-01-01
Replacing regular mesh-dependent ray tracing modules in a collision/transfer probability (CTP) code with a ray tracing module based upon combinatorial geometry of a modified geometrical module (GMC) provides a general geometry transfer theory code in two dimensions (2D) for analyzing nuclear reactor design and control. The primary modification of the GMC module involves generation of a fixed inner frame and a rotating outer frame, where the inner frame contains all reactor regions of interest, e.g., part of a reactor assembly, an assembly, or several assemblies, and the outer frame, with a set of parallel equidistant rays (lines) attached to it, rotates around the inner frame. The modified GMC module allows for determining for each parallel ray (line), the intersections with zone boundaries, the path length between the intersections, the total number of zones on a track, the zone and medium numbers, and the intersections with the outer surface, which parameters may be used in the CTP code to calculate collision/transfer probability and cross-section values.
Neutron transport analysis for nuclear reactor design
Vujic, J.L.
1993-11-30
Replacing regular mesh-dependent ray tracing modules in a collision/transfer probability (CTP) code with a ray tracing module based upon combinatorial geometry of a modified geometrical module (GMC) provides a general geometry transfer theory code in two dimensions (2D) for analyzing nuclear reactor design and control. The primary modification of the GMC module involves generation of a fixed inner frame and a rotating outer frame, where the inner frame contains all reactor regions of interest, e.g., part of a reactor assembly, an assembly, or several assemblies, and the outer frame, with a set of parallel equidistant rays (lines) attached to it, rotates around the inner frame. The modified GMC module allows for determining for each parallel ray (line), the intersections with zone boundaries, the path length between the intersections, the total number of zones on a track, the zone and medium numbers, and the intersections with the outer surface, which parameters may be used in the CTP code to calculate collision/transfer probability and cross-section values. 28 figures.
Nonadiabatic effect on the quantum heat flux control.
Uchiyama, Chikako
2014-05-01
We provide a general formula of quantum transfer that includes the nonadiabatic effect under periodic environmental modulation by using full counting statistics in Hilbert-Schmidt space. Applying the formula to an anharmonic junction model that interacts with two bosonic environments within the Markovian approximation, we find that the quantum transfer is divided into the adiabatic (dynamical and geometrical phases) and nonadiabatic contributions. This extension shows the dependence of quantum transfer on the initial condition of the anharmonic junction just before the modulation, as well as the characteristic environmental parameters such as interaction strength and cut-off frequency of spectral density. We show that the nonadiabatic contribution represents the reminiscent effect of past modulation including the transition from the initial condition of the anharmonic junction to a steady state determined by the very beginning of the modulation. This enables us to tune the frequency range of modulation, whereby we can obtain the quantum flux corresponding to the geometrical phase by setting the initial condition of the anharmonic junction.
Position-insensitive long range inductive power transfer
NASA Astrophysics Data System (ADS)
Kwan, Christopher H.; Lawson, James; Yates, David C.; Mitcheson, Paul D.
2014-11-01
This paper presents results of an improved inductive wireless power transfer system for reliable long range powering of sensors with milliwatt-level consumption. An ultra-low power flyback impedance emulator operating in open loop is used to present the optimal load to the receiver's resonant tank. Transmitter power modulation is implemented in order to maintain constant receiver power and to prevent damage to the receiver electronics caused by excessive received voltage. Received power is steady up to 3 m at around 30 mW. The receiver electronics and feedback system consumes 3.1 mW and so with a transmitter input power of 163.3 W the receiver becomes power neutral at 4.75 m. Such an IPT system can provide a reliable alternative to energy harvesters for supplying power concurrently to multiple remote sensors.
NASA Technical Reports Server (NTRS)
Houpt, Tracy; Ridgely, Margaret
1991-01-01
The Air Force Manufacturing Technology program is involved with the improvement of radar transmit/receive modules for use in active phased array radars for advanced fighter aircraft. Improvements in all areas of manufacture and test of these modules resulting in order of magnitude improvements in the cost of and the rate of production are addressed, as well as the ongoing transfer of this technology to the Navy.
Image matrix processor for fast multi-dimensional computations
Roberson, G.P.; Skeate, M.F.
1996-10-15
An apparatus for multi-dimensional computation is disclosed which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms. The processing modules thus include an image manipulation processor, which includes a source cache, a target cache, a coefficient table, and control software for executing image transformation routines using data in the source cache and the coefficient table and loading resulting data in the target cache. The local host processor operates to load the source cache with a two dimensional data set, loads the coefficient table, and transfers resulting data out of the target cache to the storage system, or to another destination. 10 figs.
NASA Astrophysics Data System (ADS)
Li, Hanshan
2016-04-01
To enhance the stability and reliability of multi-screens testing system, this paper studies multi-screens target optical information transmission link properties and performance in long-distance, sets up the discrete multi-tone modulation transmission model based on geometric model of laser multi-screens testing system and visible light information communication principle; analyzes the electro-optic and photoelectric conversion function of sender and receiver in target optical information communication system; researches target information transmission performance and transfer function of the generalized visible-light communication channel; found optical information communication transmission link light intensity space distribution model and distribution function; derives the SNR model of information transmission communication system. Through the calculation and experiment analysis, the results show that the transmission error rate increases with the increment of transmission rate in a certain channel modulation depth; when selecting the appropriate transmission rate, the bit error rate reach 0.01.
Reusable Hybrid Propellant Modules for Outer-Space Transport
NASA Technical Reports Server (NTRS)
Mazanek, Daniel D.; Mankins, John C.
2005-01-01
A report summarizes the concept of reusable hybrid propellant modules (HPMs), which would be used in outer space for long-term cryogenic storage of liquefied spacecraft-propellant gases, including for example, oxygen and hydrogen for combustion-based chemical rocket engines and xenon for electric thrusters. The HPM concept would provide the fundamental building block for an efficient, reusable in-space transportation system for both crewed and uncrewed missions. Each HPM would be equipped to implement an advanced zero-boil-off method of managing cryogenic fluids, and would include a fluid-transfer interface comprising standardized fittings that would be compatible with fittings on all supply facilities and on spacecraft to be supplied. The HPM, combined with a chemical or electric orbital transfer spacecraft, would provide an integrated propulsion system. HPMs would supply chemical propellant for time-critical transfers such as crewed missions, and utilize the more efficient electric-propulsion transfer vehicles to transport filled HPMs to the destinations and to return empty HPMs back to near-Earth orbits or other intermediate locations for replenishment and reuse. The HPM prepositioned using electric propulsion would provide the chemical propellant for the crew s return trip in a much more efficient manner than a chemical-only approach. The propellants to fill the HPMs would be delivered from the Earth or other initial supply locations to the intermediate locations by use of automated, compatible spacecraft designed specifically for that purpose. Additionally, multiple HPMs could be aggregated and positioned in orbits and on planets, moons, and asteroids to supply fluids to orbiting and interplanetary spacecraft.
CAD-centric Computation Management System for a Virtual TBM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramakanth Munipalli; K.Y. Szema; P.Y. Huang
HyPerComp Inc. in research collaboration with TEXCEL has set out to build a Virtual Test Blanket Module (VTBM) computational system to address the need in contemporary fusion research for simulating the integrated behavior of the blanket, divertor and plasma facing components in a fusion environment. Physical phenomena to be considered in a VTBM will include fluid flow, heat transfer, mass transfer, neutronics, structural mechanics and electromagnetics. We seek to integrate well established (third-party) simulation software in various disciplines mentioned above. The integrated modeling process will enable user groups to interoperate using a common modeling platform at various stages of themore » analysis. Since CAD is at the core of the simulation (as opposed to computational meshes which are different for each problem,) VTBM will have a well developed CAD interface, governing CAD model editing, cleanup, parameter extraction, model deformation (based on simulation,) CAD-based data interpolation. In Phase-I, we built the CAD-hub of the proposed VTBM and demonstrated its use in modeling a liquid breeder blanket module with coupled MHD and structural mechanics using HIMAG and ANSYS. A complete graphical user interface of the VTBM was created, which will form the foundation of any future development. Conservative data interpolation via CAD (as opposed to mesh-based transfer), the regeneration of CAD models based upon computed deflections, are among the other highlights of phase-I activity.« less
NASA Technical Reports Server (NTRS)
1991-01-01
NASA's two Office of Space Flight (Code M) Space Transfer Vehicle (STV) contractors supported development of Space Exploration Initiative (SEI) lunar transportation concepts. This work treated lunar SEI missions as the far end of a more near-term STV program, most of whose missions were satellite delivery and servicing requirements derived from Civil Needs Data Base (CNDB) projections. Space Transfer Concepts and Analysis for Exploration Missions (STCAEM) began to address the complete design of a lunar transportation system. The following challenges were addressed: (1) the geometry of aerobraking; (2) accommodation of mixed payloads; (3) cryogenic propellant transfer in Low Lunar Orbit (LLO); (4) fully re-usable design; and (5) growth capability. The leveled requirements, derived requirements, and assumptions applied to the lunar transportation system design are discussed. The mission operations section includes data on mission analysis studies and performance parametrics as well as the operating modes and performance evaluations which include the STCAEM recommendations. Element descriptions for the lunar transportation family included are a listing of the lunar transfer vehicle/lunar excursion vehicle (LTV/LEV) components; trade studies and mass analyses of the transfer and excursion modules; advanced crew recovery vehicle (ACRV) (modified crew recovery vehicle (MCRV)) modifications required to fulfill lunar operations; the aerobrake shape and L/D to be used; and some costing methods and results. Commonality and evolution issues are also discussed.
2008-04-24
CAPE CANAVERAL, Fla. -- In the Vertical Integration Facility at NASA's Kennedy Space Center, the payload canister containing the Japanese Experiment Module -Pressurized Module is being raised to a vertical position. The canister contains the Japanese Experiment Module -Pressurized Module, which will be transported to Launch Pad 39A for space shuttle Discovery’s STS-124 mission. At the pad, the payload will be transferred from the canister into the payload changeout room on the rotating service structure. The changeout room is the enclosed, environmentally controlled portion of the service structure that supports cargo delivery to the pad and subsequent vertical installation into an orbiter's payload bay. On the mission, the STS-124 crew will transport the JEM as well as the Japanese Remote Manipulator System to the International Space Station. The launch of Discovery is targeted for May 31. Photo credit: NASA/Jim Grossmann
2008-04-24
CAPE CANAVERAL, Fla. -- In the Vertical Integration Facility at NASA's Kennedy Space Center, the payload canister containing the Japanese Experiment Module -Pressurized Module is suspended vertically after rotation from the horizontal. The canister contains the Japanese Experiment Module -Pressurized Module, which will be transported to Launch Pad 39A for space shuttle Discovery’s STS-124 mission. At the pad, the payload will be transferred from the canister into the payload changeout room on the rotating service structure. The changeout room is the enclosed, environmentally controlled portion of the service structure that supports cargo delivery to the pad and subsequent vertical installation into an orbiter's payload bay. On the mission, the STS-124 crew will transport the JEM as well as the Japanese Remote Manipulator System to the International Space Station. The launch of Discovery is targeted for May 31. Photo credit: NASA/Jim Grossmann
RETRACTED: Adaptive neuro-fuzzy prediction of modulation transfer function of optical lens system
NASA Astrophysics Data System (ADS)
Petković, Dalibor; Shamshirband, Shahaboddin; Anuar, Nor Badrul; Md Nasir, Mohd Hairul Nizam; Pavlović, Nenad T.; Akib, Shatirah
2014-07-01
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor. Sections ;1. Introduction; and ;2. Modulation transfer function;, as well as Figures 1-3, plagiarize the article published by N. Gül and M. Efe in Turk J Elec Eng & Comp Sci 18 (2010) 71 (http://journals.tubitak.gov.tr/elektrik/issues/elk-10-18-1/elk-18-1-6-0811-9.pdf). Sections ;4. Adaptive neuro-fuzzy inference system; and ;6. Conclusion; duplicate parts of the articles previously published by the corresponding author et al in ;Expert Systems with Applications; 39 (2012) 13295-13304, http://dx.doi.org/10.1016/j.eswa.2012.05.072 and ;Expert Systems with Applications; 40 (2013) 281-286, http://dx.doi.org/10.1016/j.eswa.2012.07.076. One of the conditions of submission of a paper for publication is that authors declare explicitly that the paper is not under consideration for publication elsewhere. Re-use of any data should be appropriately cited. As such this article represents an abuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.
Linearized electrooptic polymeric directional coupler modulator
NASA Astrophysics Data System (ADS)
Hung, Yu-Chueh
External linearized modulators are required in high-performance analog optical communication systems since the performance of conventional modulators, such as Mach-Zehnder modulators, are degraded by distortions by the nonlinearity of their transfer functions. Various linearization schemes have been proposed to increase the dynamic range of an analog optical link. Most of the optical schemes involve multiple Mach-Zehnder modulators, either in parallel or series configuration, incorporated with strict balance of RF and bias control. This is a significant challenge when it comes to practical implementation. In this dissertation, a linearized two-section directional coupler modulator made from electrooptic polymer is presented. The coupling coefficient of each section is tailored by properly tuning the refractive index contrast, which can be easily employed using the photobleaching technique in polymer technology. A two-tone test was performed to evaluate the linearity of the modulator and the spur-free dynamic range shows a 7.5 dB improvement compared to a conventional Mach-Zehnder modulator. This scheme avoids multiple modulators or complicated modulation synchronization and demonstrates a compact design in real implementation. Most of the linearization schemes up to date consider only the direct detection mode of operation. However, the RF output characteristics at the detection side are determined differently by various system parameters if a coherent link is implemented instead. Therefore, different considerations of linearization have to be examined for this kind of application. In the second part of this dissertation, the impact of various modulation scenarios on the system performance of an analog coherent optical link will be addressed. It will be shown that a directional coupler modulator is better suited at increasing the dynamic range in coherent optical links. Specific designs of a directional coupler modulator shows an SFDR improvement of 20 dB compared to a Mach-Zehnder modulator. This new type of device can be easily fabricated using photobleaching technique in eletrooptic polymer and can be utilized in various applications.
Lee, Joong Ho; Tanaka, Eiji; Woo, Yanghee; Ali, Güner; Son, Taeil; Kim, Hyoung-Il; Hyung, Woo Jin
2017-12-01
The recent scientific and technologic advances have profoundly affected the training of surgeons worldwide. We describe a novel intraoperative real-time training module, the Advanced Robotic Multi-display Educational System (ARMES). We created a real-time training module, which can provide a standardized step by step guidance to robotic distal subtotal gastrectomy with D2 lymphadenectomy procedures, ARMES. The short video clips of 20 key steps in the standardized procedure for robotic gastrectomy were created and integrated with TilePro™ software to delivery on da Vinci Surgical Systems (Intuitive Surgical, Sunnyvale, CA). We successfully performed the robotic distal subtotal gastrectomy with D2 lymphadenectomy for patient with gastric cancer employing this new teaching method without any transfer errors or system failures. Using this technique, the total operative time was 197 min and blood loss was 50 mL and there were no intra- or post-operative complications. Our innovative real-time mentoring module, ARMES, enables standardized, systematic guidance during surgical procedures. © 2017 Wiley Periodicals, Inc.
Development of Radar Control system for Multi-mode Active Phased Array Radar for atmospheric probing
NASA Astrophysics Data System (ADS)
Yasodha, Polisetti; Jayaraman, Achuthan; Thriveni, A.
2016-07-01
Modern multi-mode active phased array radars require highly efficient radar control system for hassle free real time radar operation. The requirement comes due to the distributed architecture of the active phased array radar, where each antenna element in the array is connected to a dedicated Transmit-Receive (TR) module. Controlling the TR modules, which are generally few hundreds in number, and functioning them in synchronisation, is a huge task during real time radar operation and should be handled with utmost care. Indian MST Radar, located at NARL, Gadanki, which is established during early 90's, as an outcome of the middle atmospheric program, is a remote sensing instrument for probing the atmosphere. This radar has a semi-active array, consisting of 1024 antenna elements, with limited beam steering, possible only along the principle planes. To overcome the limitations and difficulties, the radar is being augmented into fully active phased array, to accomplish beam agility and multi-mode operations. Each antenna element is excited with a dedicated 1 kW TR module, located in the field and enables to position the radar beam within 20° conical volume. A multi-channel receiver makes the radar to operate in various modes like Doppler Beam Swinging (DBS), Spaced Antenna (SA), Frequency Domain Interferometry (FDI) etc. Present work describes the real-time radar control (RC) system for the above described active phased array radar. The radar control system consists of a Spartan 6 FPGA based Timing and Control Signal Generator (TCSG), and a computer containing the software for controlling all the subsystems of the radar during real-time radar operation and also for calibrating the radar. The main function of the TCSG is to generate the control and timing waveforms required for various subsystems of the radar. Important components of the RC system software are (i) TR module configuring software which does programming, controlling and health parameter monitoring of the TR modules, (ii) radar operation software which facilitates experimental parameter setting and operating the radar in different modes, (iii) beam steering software which computes the amplitude co-efficients and phases required for each TR module, for forming the beams selected for radar operation with the desired shape and (iv) Calibration software for calibrating the radar by measuring the differential insertion phase and amplitudes in all 1024 Transmit and Receive paths and correcting them. The TR module configuring software is a major task as it needs to control 1024 TR modules, which are located in the field about 150 m away from the RC system in the control room. Each TR module has a processor identified with a dedicated IP address, along with memory to store the instructions and parameters required for radar operation. A communication link is designed using Gigabit Ethernet (GbE) switches to realise 1 to 1024 way switching network. RC system computer communicates with the each processor using its IP address and establishes connection, via 1 to 1024 port GbE switching network. The experimental parameters data are pre-loaded parallely into all the TR modules along with the phase shifter data required for beam steering using this network. A reference timing pulse is sent to all the TR modules simultaneously, which indicates the start of radar operation. RC system also monitors the status parameters from the TR modules indicating their health during radar operation at regular intervals, via GbE switching network. Beam steering software generates the phase shift required for each TR module for the beams selected for operation. Radar operational software calls the phase shift data required for beam steering and adds it to the calibration phase obtained through calibration software and loads the resultant phase data into TR modules. Timed command/data transfer to/from subsystems and synchronisation of subsystems is essential for proper real-time operation of the active phased array radar and the RC system ensures that the commands/experimental parameter data are properly transferred to all subsystems especially to TR modules. In case of failure of any TR module, it is indicated to the user for further rectification. Realisation of the RC system is at an advanced stage. More details will be presented in the conference.
Schrode, Katrina M.; Bee, Mark A.
2015-01-01
ABSTRACT Sensory systems function most efficiently when processing natural stimuli, such as vocalizations, and it is thought that this reflects evolutionary adaptation. Among the best-described examples of evolutionary adaptation in the auditory system are the frequent matches between spectral tuning in both the peripheral and central auditory systems of anurans (frogs and toads) and the frequency spectra of conspecific calls. Tuning to the temporal properties of conspecific calls is less well established, and in anurans has so far been documented only in the central auditory system. Using auditory-evoked potentials, we asked whether there are species-specific or sex-specific adaptations of the auditory systems of gray treefrogs (Hyla chrysoscelis) and green treefrogs (H. cinerea) to the temporal modulations present in conspecific calls. Modulation rate transfer functions (MRTFs) constructed from auditory steady-state responses revealed that each species was more sensitive than the other to the modulation rates typical of conspecific advertisement calls. In addition, auditory brainstem responses (ABRs) to paired clicks indicated relatively better temporal resolution in green treefrogs, which could represent an adaptation to the faster modulation rates present in the calls of this species. MRTFs and recovery of ABRs to paired clicks were generally similar between the sexes, and we found no evidence that males were more sensitive than females to the temporal modulation patterns characteristic of the aggressive calls used in male–male competition. Together, our results suggest that efficient processing of the temporal properties of behaviorally relevant sounds begins at potentially very early stages of the anuran auditory system that include the periphery. PMID:25617467
Du, Zhongzhou; Su, Rijian; Liu, Wenzhong; Huang, Zhixing
2015-01-01
The signal transmission module of a magnetic nanoparticle thermometer (MNPT) was established in this study to analyze the error sources introduced during the signal flow in the hardware system. The underlying error sources that significantly affected the precision of the MNPT were determined through mathematical modeling and simulation. A transfer module path with the minimum error in the hardware system was then proposed through the analysis of the variations of the system error caused by the significant error sources when the signal flew through the signal transmission module. In addition, a system parameter, named the signal-to-AC bias ratio (i.e., the ratio between the signal and AC bias), was identified as a direct determinant of the precision of the measured temperature. The temperature error was below 0.1 K when the signal-to-AC bias ratio was higher than 80 dB, and other system errors were not considered. The temperature error was below 0.1 K in the experiments with a commercial magnetic fluid (Sample SOR-10, Ocean Nanotechnology, Springdale, AR, USA) when the hardware system of the MNPT was designed with the aforementioned method. PMID:25875188
Performance considerations for high-definition head-mounted displays
NASA Technical Reports Server (NTRS)
Edwards, Oliver J.; Larimer, James; Gille, Jennifer
1992-01-01
Design image-optimization for helmet-mounted displays (HMDs) for military systems is presently discussed within the framework of a systems-engineering approach that encompasses (1) a description of natural targets in the field; (2) the characteristics of human visual perception; and (3) device specifications that directly relate to these ecological and human-factors parameters. Attention is given to target size and contrast and the relationship of the modulation transfer function to image resolution.
Chater, Caspar C.; Kamisugi, Yasuko
2016-01-01
The patterning of stomata plays a vital role in plant development and has emerged as a paradigm for the role of peptide signals in the spatial control of cellular differentiation. Research in Arabidopsis has identified a series of epidermal patterning factors (EPFs), which interact with an array of membrane-localised receptors and associated proteins (encoded by ERECTA and TMM genes) to control stomatal density and distribution. However, although it is well-established that stomata arose very early in the evolution of land plants, until now it has been unclear whether the established angiosperm stomatal patterning system represented by the EPF/TMM/ERECTA module reflects a conserved, universal mechanism in the plant kingdom. Here, we use molecular genetics to show that the moss Physcomitrella patens has conserved homologues of angiosperm EPF, TMM and at least one ERECTA gene that function together to permit the correct patterning of stomata and that, moreover, elements of the module retain function when transferred to Arabidopsis. Our data characterise the stomatal patterning system in an evolutionarily distinct branch of plants and support the hypothesis that the EPF/TMM/ERECTA module represents an ancient patterning system. PMID:27407102
Derichs, Nico
2013-03-01
Cystic fibrosis (CF) is caused by genetic mutations that affect the cystic fibrosis transmembrane conductance regulator (CFTR) protein. These mutations can impact the synthesis and transfer of the CFTR protein to the apical membrane of epithelial cells, as well as influencing the gating or conductance of chloride and bicarbonate ions through the channel. CFTR dysfunction results in ionic imbalance of epithelial secretions in several organ systems, such as the pancreas, gastrointestinal tract, liver and the respiratory system. Since discovery of the CFTR gene in 1989, research has focussed on targeting the underlying genetic defect to identify a disease-modifying treatment for CF. Investigated management strategies have included gene therapy and the development of small molecules that target CFTR mutations, known as CFTR modulators. CFTR modulators are typically identified by high-throughput screening assays, followed by preclinical validation using cell culture systems. Recently, one such modulator, the CFTR potentiator ivacaftor, was approved as an oral therapy for CF patients with the G551D-CFTR mutation. The clinical development of ivacaftor not only represents a breakthrough in CF care but also serves as a noteworthy example of personalised medicine.
Secure Control Systems for the Energy Sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Rhett; Campbell, Jack; Hadley, Mark
2012-03-31
Schweitzer Engineering Laboratories (SEL) will conduct the Hallmark Project to address the need to reduce the risk of energy disruptions because of cyber incidents on control systems. The goals is to develop solutions that can be both applied to existing control systems and designed into new control systems to add the security measures needed to mitigate energy network vulnerabilities. The scope of the Hallmark Project contains four primary elements: 1. Technology transfer of the Secure Supervisory Control and Data Acquisition (SCADA) Communications Protocol (SSCP) from Pacific Northwest National Laboratories (PNNL) to Schweitzer Engineering Laboratories (SEL). The project shall use thismore » technology to develop a Federal Information Processing Standard (FIPS) 140-2 compliant original equipment manufacturer (OEM) module to be called a Cryptographic Daughter Card (CDC) with the ability to directly connect to any PC enabling that computer to securely communicate across serial to field devices. Validate the OEM capabilities with another vendor. 2. Development of a Link Authenticator Module (LAM) using the FIPS 140-2 validated Secure SCADA Communications Protocol (SSCP) CDC module with a central management software kit. 3. Validation of the CDC and Link Authenticator modules via laboratory and field tests. 4. Creation of documents that record the impact of the Link Authenticator to the operators of control systems and on the control system itself. The information in the documents can assist others with technology deployment and maintenance.« less
The composite load spectra project
NASA Technical Reports Server (NTRS)
Newell, J. F.; Ho, H.; Kurth, R. E.
1990-01-01
Probabilistic methods and generic load models capable of simulating the load spectra that are induced in space propulsion system components are being developed. Four engine component types (the transfer ducts, the turbine blades, the liquid oxygen posts and the turbopump oxidizer discharge duct) were selected as representative hardware examples. The composite load spectra that simulate the probabilistic loads for these components are typically used as the input loads for a probabilistic structural analysis. The knowledge-based system approach used for the composite load spectra project provides an ideal environment for incremental development. The intelligent database paradigm employed in developing the expert system provides a smooth coupling between the numerical processing and the symbolic (information) processing. Large volumes of engine load information and engineering data are stored in database format and managed by a database management system. Numerical procedures for probabilistic load simulation and database management functions are controlled by rule modules. Rules were hard-wired as decision trees into rule modules to perform process control tasks. There are modules to retrieve load information and models. There are modules to select loads and models to carry out quick load calculations or make an input file for full duty-cycle time dependent load simulation. The composite load spectra load expert system implemented today is capable of performing intelligent rocket engine load spectra simulation. Further development of the expert system will provide tutorial capability for users to learn from it.
2011-03-01
Transfer Engineering, Vol. 30, No. 14, pp. 1136-1150. Chang, Y.W., Chang, C.C., Ke, M.T. and Chen, S.L. (2009) ’ Thermoelectric air-cooling module for...2005) ’An assessment of module cooling enhancement with thermoelectric coolers’, Journal of Heat Transfer-Transactions of the Asme, Vol. 127, No. 1, pp...nanoparticle out outer loop p nanoparticle TEC thermoelectric module w water UNCLASSIFIED UNCLASSIFIED Page 23 of 28 Tables Table 1
Software architecture for a distributed real-time system in Ada, with application to telerobotics
NASA Technical Reports Server (NTRS)
Olsen, Douglas R.; Messiora, Steve; Leake, Stephen
1992-01-01
The architecture structure and software design methodology presented is described in the context of telerobotic application in Ada, specifically the Engineering Test Bed (ETB), which was developed to support the Flight Telerobotic Servicer (FTS) Program at GSFC. However, the nature of the architecture is such that it has applications to any multiprocessor distributed real-time system. The ETB architecture, which is a derivation of the NASA/NBS Standard Reference Model (NASREM), defines a hierarchy for representing a telerobot system. Within this hierarchy, a module is a logical entity consisting of the software associated with a set of related hardware components in the robot system. A module is comprised of submodules, which are cyclically executing processes that each perform a specific set of functions. The submodules in a module can run on separate processors. The submodules in the system communicate via command/status (C/S) interface channels, which are used to send commands down and relay status back up the system hierarchy. Submodules also communicate via setpoint data links, which are used to transfer control data from one submodule to another. A submodule invokes submodule algorithms (SMA's) to perform algorithmic operations. Data that describe or models a physical component of the system are stored as objects in the World Model (WM). The WM is a system-wide distributed database that is accessible to submodules in all modules of the system for creating, reading, and writing objects.
Colzato, Lorenza S.; van Muijden, Jesse; Band, Guido P. H.; Hommel, Bernhard
2011-01-01
Western society has an increasing proportion of older adults. Increasing age is associated with a general decrease in the control over task-relevant mental processes. In the present study we investigated the possibility that successful transfer of game-based cognitive improvements to untrained tasks in elderly people is modulated by preexisting neuro-developmental factors as genetic variability related to levels of the brain-derived neurotrophic factor (BDNF), an important neuromodulator underlying cognitive processes. We trained participants, genotyped for the BDNF Val66Met polymorphism, on cognitive tasks developed to improve dynamic attention. Pre-training (baseline) and post-training measures of attentional processes (divided and selective attention) were acquired by means of the useful field of view task. As expected, Val/Val homozygous individuals showed larger beneficial transfer effects than Met/-carriers. Our findings support the idea that genetic predisposition modulates transfer effects. PMID:21909331
2006-05-23
KENNEDY SPACE CENTER, FLA. -- From inside the payload changeout room on the rotating service structure on Launch Pad 39B, the multi-purpose logistics module Leonardo is being moved into Space Shuttle Discovery's payload bay. The payload ground-handling mechanism (PGHM) is used to transfer the module into the payload bay. Leonardo is a reusable logistics carrier. It is the primary delivery system used to resupply and return station cargo requiring a pressurized environment. Leonardo is part of the payload on mission STS-121. Other payloads include the integrated cargo carrier with the mobile transporter reel assembly and a spare pump module, and the lightweight multi-purpose experiment support structure carrier. Discovery is scheduled to launch in a window extending from July 1 through July 19. Photo credit: NASA/Jack Pfaller
2006-05-23
KENNEDY SPACE CENTER, FLA. -- From inside the payload changeout room on the rotating service structure on Launch Pad 39B, the multi-purpose logistics module Leonardo is lowered into Space Shuttle Discovery's payload bay. The payload ground-handling mechanism (PGHM) is used to transfer the module into the payload bay. Leonardo is a reusable logistics carrier. It is the primary delivery system used to resupply and return station cargo requiring a pressurized environment. Leonardo is part of the payload on mission STS-121. Other payloads include the integrated cargo carrier with the mobile transporter reel assembly and a spare pump module, and the lightweight multi-purpose experiment support structure carrier. Discovery is scheduled to launch in a window extending from July 1 through July 19. Photo credit: NASA/Jack Pfaller
2000-03-21
KENNEDY SPACE CENTER, FLA. -- Workers in the Payload Changeout Room (PCR) at Launch Pad 39A check out the SPACEHAB Double Module before moving into the PCR. Part of the Rotating Service Structure, the PCR is an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. The primary payloads on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000
2000-03-21
KENNEDY SPACE CENTER, FLA. -- Workers in the Payload Changeout Room (PCR) at Launch Pad 39A check out the SPACEHAB Double Module before moving into the PCR. Part of the Rotating Service Structure, the PCR is an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. The primary payloads on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000
2000-03-21
KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39A, the payload canister with the SPACEHAB Double Module and Integrated Cargo Carrier (ICC) inside is lifted up the Rotating Service Structure toward the Payload Changeout Room, an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. The primary payloads on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000
2000-03-21
KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39A, the payload canister with the SPACEHAB Double Module and Integrated Cargo Carrier (ICC) inside is lifted up the Rotating Service Structure toward the Payload Changeout Room, an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. The primary payloads on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000
Temporal resolution of the Florida manatee (Trichechus manatus latirostris) auditory system.
Mann, David A; Colbert, Debborah E; Gaspard, Joseph C; Casper, Brandon M; Cook, Mandy L H; Reep, Roger L; Bauer, Gordon B
2005-10-01
Auditory evoked potential (AEP) measurements of two Florida manatees (Trichechus manatus latirostris) were measured in response to amplitude modulated tones. The AEP measurements showed weak responses to test stimuli from 4 kHz to 40 kHz. The manatee modulation rate transfer function (MRTF) is maximally sensitive to 150 and 600 Hz amplitude modulation (AM) rates. The 600 Hz AM rate is midway between the AM sensitivities of terrestrial mammals (chinchillas, gerbils, and humans) (80-150 Hz) and dolphins (1,000-1,200 Hz). Audiograms estimated from the input-output functions of the EPs greatly underestimate behavioral hearing thresholds measured in two other manatees. This underestimation is probably due to the electrodes being located several centimeters from the brain.
Restoration of moving binary images degraded owing to phosphor persistence.
Cherri, A K; Awwal, A A; Karim, M A; Moon, D L
1991-09-10
The degraded images of dynamic objects obtained by using a phosphor-based electro-optical display are analyzed in terms of dynamic modulation transfer function (DMTF) and temporal characteristics of the display system. The direct correspondence between the DMTF and image smear is used in developing real-time techniques for the restoration of degraded images.
Yasin, Muhammad; Park, Shinyoung; Jeong, Yeseul; Lee, Eun Yeol; Lee, Jinwon; Chang, In Seop
2014-10-01
This study proposed a submerged hollow fibre membrane bioreactor (HFMBR) system capable of achieving high carbon monoxide (CO) mass transfer for applications in microbial synthesis gas conversion systems. Hydrophobic polyvinylidene fluoride (PVDF) membrane fibres were used to fabricate a membrane module, which was used for pressurising CO in water phase. Pressure through the hollow fibre lumen (P) and membrane surface area per unit working volume of the liquid (A(S)/V(L)) were used as controllable parameters to determine gas-liquid volumetric mass transfer coefficient (k(L)a) values. We found a k(L)a of 135.72 h(-1) when P was 93.76 kPa and AS/VL was fixed at 27.5m(-1). A higher k(L)a of 155.16 h(-1) was achieved by increasing AS/VL to 62.5m(-1) at a lower P of 37.23 kPa. Practicality of HFMBR to support microbial growth and organic product formation was assessed by CO/CO2 fermentation using Eubacterium limosum KIST612. Copyright © 2014 Elsevier Ltd. All rights reserved.
MS Ivins and Astronaut Shepherd at work in Destiny module
2001-02-11
STS98-E-5143 (11 February 2001) --- Astronauts Marsha S. Ivins (from the left), STS-98 mission specialist, Kenneth D. Cockrell, STS-98 mission commander; and William M. Shepherd, Expedition One mission commander, discuss the organizational "game plan" onboard the newly opened Destiny laboratory on the International Space Station (ISS). After Shepherd opened the Destiny hatch, he and Cockrell ventured inside at 8:38 a.m. (CST), February 11, 2001. As depicted in subsequent digital images in this series, members of both crews went to work quickly inside the new module, activating air systems, fire extinguishers, alarm systems, computers and internal communications. The crew also took some photos and continued equipment transfers from the shuttle to the station.
A wideband analog correlator system for AMiBA
NASA Astrophysics Data System (ADS)
Li, Chao-Te; Kubo, Derek; Han, Chih-Chiang; Chen, Chung-Cheng; Chen, Ming-Tang; Lien, Chun-Hsien; Wang, Huei; Wei, Ray-Ming; Yang, Chia-Hsiang; Chiueh, Tzi-Dar; Peterson, Jeffrey; Kesteven, Michael; Wilson, Warwick
2004-10-01
A wideband correlator system with a bandwidth of 16 GHz or more is required for Array for Microwave Background Anisotropy (AMiBA) to achieve the sensitivity of 10μK in one hour of observation. Double-balanced diode mixers were used as multipliers in 4-lag correlator modules. Several wideband modules were developed for IF signal distribution between receivers and correlators. Correlator outputs were amplified, and digitized by voltage-to-frequency converters. Data acquisition circuits were designed using field programmable gate arrays (FPGA). Subsequent data transfer and control software were based on the configuration for Australia Telescope Compact Array. Transform matrix method will be adopted during calibration to take into account the phase and amplitude variations of analog devices across the passband.
NASA Technical Reports Server (NTRS)
1977-01-01
Topics discussed include: (1) design considerations for a MARS sample return laboratory module for space station investigations; (2) crew productivity as a function of work shift arrangement; (3) preliminary analysis of the local logistics problem on the space construction base; (4) mission hardware construction operational flows and timelines; (5) orbit transfer vehicle concept definition; (6) summary of results and findings of space processing working review; (7) crew and habitability subsystem (option L); (8) habitability subsystem considerations for shuttle tended option L; (9) orbiter utilization in manned sortie missions; (10) considerations in definition of space construction base standard module configuration (option L); (11) guidance, control, and navigation subsystems; and (12) system and design tradeoffs.
A wireless laser displacement sensor node for structural health monitoring.
Park, Hyo Seon; Kim, Jong Moon; Choi, Se Woon; Kim, Yousok
2013-09-30
This study describes a wireless laser displacement sensor node that measures displacement as a representative damage index for structural health monitoring (SHM). The proposed measurement system consists of a laser displacement sensor (LDS) and a customized wireless sensor node. Wireless communication is enabled by a sensor node that consists of a sensor module, a code division multiple access (CDMA) communication module, a processor, and a power module. An LDS with a long measurement distance is chosen to increase field applicability. For a wireless sensor node driven by a battery, we use a power control module with a low-power processor, which facilitates switching between the sleep and active modes, thus maximizing the power consumption efficiency during non-measurement and non-transfer periods. The CDMA mode is also used to overcome the limitation of communication distance, which is a challenge for wireless sensor networks and wireless communication. To evaluate the reliability and field applicability of the proposed wireless displacement measurement system, the system is tested onsite to obtain the required vertical displacement measurements during the construction of mega-trusses and an edge truss, which are the primary structural members in a large-scale irregular building currently under construction. The measurement values confirm the validity of the proposed wireless displacement measurement system and its potential for use in safety evaluations of structural elements.
Real-time machine vision system using FPGA and soft-core processor
NASA Astrophysics Data System (ADS)
Malik, Abdul Waheed; Thörnberg, Benny; Meng, Xiaozhou; Imran, Muhammad
2012-06-01
This paper presents a machine vision system for real-time computation of distance and angle of a camera from reference points in the environment. Image pre-processing, component labeling and feature extraction modules were modeled at Register Transfer (RT) level and synthesized for implementation on field programmable gate arrays (FPGA). The extracted image component features were sent from the hardware modules to a soft-core processor, MicroBlaze, for computation of distance and angle. A CMOS imaging sensor operating at a clock frequency of 27MHz was used in our experiments to produce a video stream at the rate of 75 frames per second. Image component labeling and feature extraction modules were running in parallel having a total latency of 13ms. The MicroBlaze was interfaced with the component labeling and feature extraction modules through Fast Simplex Link (FSL). The latency for computing distance and angle of camera from the reference points was measured to be 2ms on the MicroBlaze, running at 100 MHz clock frequency. In this paper, we present the performance analysis, device utilization and power consumption for the designed system. The FPGA based machine vision system that we propose has high frame speed, low latency and a power consumption that is much lower compared to commercially available smart camera solutions.
The high pressure gas assembly is moved to the payload canister
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- In the Operations and Checkout Building, an overhead crane moves the high pressure gas assembly -- two gaseous oxygen and two gaseous nitrogen storage tanks -- to the payload canister for transfer to orbiter Atlantis'''s payload bay. The tanks are part of the payload on mission STS- 104. They will be attached to the Joint Airlock Module, also part of the payload, during two spacewalks. The storage tanks will support future spacewalk operations from the Station and augment the Service Module gas resupply system. STS-104 is scheduled for launch June 14 from Launch Pad 39B.
Electronic doping of transition metal oxide perovskites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cammarata, Antonio, E-mail: cammaant@fel.cvut.cz; Rondinelli, James M.
2016-05-23
CaFeO{sub 3} is a prototypical negative charge transfer oxide that undergoes electronic metal-insulator transition concomitant with a dilation and contraction of nearly rigid octahedra. Altering the charge neutrality of the bulk system destroys the electronic transition, while the structure is significantly modified at high charge content. Using density functional theory simulations, we predict an alternative avenue to modulate the structure and the electronic transition in CaFeO{sub 3}. Charge distribution can be modulated using strain-rotation coupling and thin film engineering strategies, proposing themselves as a promising avenue for fine tuning electronic features in transition metal-oxide perovskites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, G.-H.; Pesaran, A.; Smith, K.
The objectives of this paper are: (1) continue to explore thermal abuse behaviors of Li-ion cells and modules that are affected by local conditions of heat and materials; (2) use the 3D Li-ion battery thermal abuse 'reaction' model developed for cells to explore the impact of the location of internal short, its heating rate, and thermal properties of the cell; (3) continue to understand the mechanisms and interactions between heat transfer and chemical reactions during thermal runaway for Li-ion cells and modules; and (4) explore the use of the developed methodology to support the design of abuse-tolerant Li-ion battery systems.
Antidamping spin-orbit torques in epitaxial-Py(100)/β-Ta
NASA Astrophysics Data System (ADS)
Tiwari, Dhananjay; Behera, Nilamani; Kumar, Akash; Dürrenfeld, Philipp; Chaudhary, Sujeet; Pandya, D. K.; Åkerman, Johan; Muduli, P. K.
2017-12-01
We perform spin torque ferromagnetic resonance measurements on the Si(100)/TiN(100)/epi-Py(100)/β-Ta system. We demonstrate current induced modulation of the Gilbert damping constant, which is about 30% for a current density of 6.25 × 109 A/m2. We show that the observed modulation of the Gilbert damping constant cannot be explained by spin transfer torques arising from the spin Hall effect of the β-Ta layer. An additional mechanism such as antidamping spin-orbit torque resulting from the interface or the crystalline structure of Py thin films needs to be considered.
Low-G fluid transfer technology study
NASA Technical Reports Server (NTRS)
Stark, J. A.
1976-01-01
Technology gaps and system characteristics critical to cryogenic and noncryogenic in-orbit fluid transfer were identified. Four different supply systems were conceptually designed as space shuttle payloads. These were; (1) space tug supply - LH2, LO2, N2H4, He - linear acceleration for liquid acquisition with supply module and tug separated from shuttle, (2) tug supply using orbiter drag, (3) orbiter supply - N2O4,MMH,He, H2,O2 - surface tension screens, (4) multiple receivers supply 0 solar electric propulsion stage, Hg, diaphragm - HEAO B, HEe, paddle fluid rotation-satellite control section, N2H4, screens. It was found that screens had the best overall potential for low weight and simplicity, however, thermal problems with cryogenics still need final resolution.
NASA Astrophysics Data System (ADS)
Ma, Zhizhen; Hemnani, Rohit; Bartels, Ludwig; Agarwal, Ritesh; Sorger, Volker J.
2018-02-01
Here we discuss the physics of electro-optic modulators deploying 2D materials. We include a scaling laws analysis and show how energy-efficiency and speed change for three underlying cavity systems as a function of critical device length scaling. A key result is that the energy-per-bit of the modulator is proportional to the volume of the device, thus making the case for submicron-scale modulators possible deploying a plasmonic optical mode. We then show how Graphene's Pauli-blocking modulation mechanism is sensitive to the device operation temperature, whereby a reduction of the temperature enables a 10× reduction in modulator energy efficiency. Furthermore, we show how the high-index tunability of graphene is able to compensate for the small optical overlap factor of 2D-based material modulators, which is unlike classical silicon-based dispersion devices. Lastly, we demonstrate a novel method towards a 2D material printer suitable for cross-contamination free and on-demand printing. The latter paves the way to integrate 2D materials seamlessly into taped-out photonic chips.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elyasi, Mehrdad; Bhatia, Charanjit S.; Yang, Hyunsoo, E-mail: eleyang@nus.edu.sg
2015-02-14
We have proposed a method to synchronize multiple spin-transfer torque oscillators based on spin pumping, inverse spin Hall, and spin Hall effects. The proposed oscillator system consists of a series of nano-magnets in junction with a normal metal with high spin-orbit coupling, and an accumulative feedback loop. We conduct simulations to demonstrate the effect of modulated charge currents in the normal metal due to spin pumping from each nano-magnet. We show that the interplay between the spin Hall effect and inverse spin Hall effect results in synchronization of the nano-magnets.
STS-102 MPLM Leonardo is transferred from the PCR into Discovery's payload bay
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. - In the Payload Changeout Room, Launch Pad 39B, the Multi-Purpose Logistics Module Leonardo is ready to be transferred into Space Shuttle Discovery'''s payload bay. Discovery is scheduled to launch March 8 at 6:42 a.m. EST on mission STS-102, the eighth construction flight to the International Space Station. The primary delivery system used to resupply and return Station cargo requiring a pressurized environment, Leonardo will deliver up to 10 tons of laboratory racks filled with equipment, experiments and supplies for outfitting the newly installed U.S. Laboratory Destiny.
Modular Homogeneous Chromophore–Catalyst Assemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulfort, Karen L.; Utschig, Lisa M.
2016-05-17
Photosynthetic reaction center (RC) proteins convert incident solar energy to chemical energy through a network of molecular cofactors which have been evolutionarily tuned to couple efficient light-harvesting, directional electron transfer, and long-lived charge separation with secondary reaction sequences. These molecular cofactors are embedded within a complex protein environment which precisely positions each cofactor in optimal geometries along efficient electron transfer pathways with localized protein environments facilitating sequential and accumulative charge transfer. By contrast, it is difficult to approach a similar level of structural complexity in synthetic architectures for solar energy conversion. However, by using appropriate self-assembly strategies, we anticipate thatmore » molecular modules, which are independently synthesized and optimized for either light-harvesting or redox catalysis, can be organized into spatial arrangements that functionally mimic natural photosynthesis. In this Account, we describe a modular approach to new structural designs for artificial photosynthesis which is largely inspired by photosynthetic RC proteins. We focus on recent work from our lab which uses molecular modules for light-harvesting or proton reduction catalysis in different coordination geometries and different platforms, spanning from discrete supramolecular assemblies to molecule–nanoparticle hybrids to protein-based biohybrids. Molecular modules are particularly amenable to high-resolution characterization of the ground and excited state of each module using a variety of physical techniques; such spectroscopic interrogation helps our understanding of primary artificial photosynthetic mechanisms. In particular, we discuss the use of transient optical spectroscopy, EPR, and X-ray scattering techniques to elucidate dynamic structural behavior and light-induced kinetics and the impact on photocatalytic mechanism. Two different coordination geometries of supramolecular photocatalyst based on the [Ru(bpy)3]2+ (bpy = 2,2'-bipyridine) light-harvesting module with cobaloxime-based catalyst module are compared, with progress in stabilizing photoinduced charge separation identified. These same modules embedded in the small electron transfer protein ferredoxin exhibit much longer charge-separation, enabled by stepwise electron transfer through the native [2Fe-2S] cofactor. We anticipate that the use of interchangeable, molecular modules which can interact in different coordination geometries or within entirely different structural platforms will provide important fundamental insights into the effect of environment on parameters such as electron transfer and charge separation, and ultimately drive more efficient designs for artificial photosynthesis.« less
[High-contrast resolution of film-screen systems in oral and maxillofacial radiology].
Kaeppler, G; Reinert, S
2007-11-01
The aim was to determine differences in high-contrast resolution of film-screen systems used in dental panoramic and cephalometric radiography by calculating the modulation transfer function (MTF). The radiographs used to determine the MTF should be taken by the same x-ray units as those used for patient radiographs. The MTF was determined using a lead grid and according to DIN 6867-2 for 11 film-screen systems (speed 250, speed class 200 and 400) used in dental radiographic diagnostics. The optical density was measured using a microdensitometer developed by PTB. With 10% of the modulation transfer factor, newly developed film-screen systems (speed class 200 and 400) demonstrated a resolution of 4.9 to 6 line pairs per mm (panoramic radiography). In cephalometric radiography a film-screen system (speed class 400 and green-sensitive film) had a resolution of 4.2 line pairs per mm and surpassed two film-screen systems (speed class 400, resolution of 3 line pairs per mm, blue-sensitive films). The relevance of this study is underlined by the diagnostic reference doses defined in the German X-ray Ordinance (RöV) which are also intended for dentistry. Film-screen systems (speed 250, speed class 200) previously used in dental panoramic and cephalometric radiography can be replaced by newly developed film-screen systems (speed class 400). In dental radiography dose reductions are possible with film-screen systems (speed class 400) without impairing diagnostic accuracy. The introduction of newly developed film-screen systems (speed class 400) requires lower milliampere-seconds and therefore an adjustment of the x-ray units to lower milliampere settings.
Solar thermoelectric cooling using closed loop heat exchangers with macro channels
NASA Astrophysics Data System (ADS)
Atta, Raghied M.
2017-07-01
In this paper we describe the design, analysis and experimental study of an advanced coolant air conditioning system which cools or warms airflow using thermoelectric (TE) devices powered by solar cells. Both faces of the TE devices are directly connected to closed-loop highly efficient channels plates with macro scale channels and liquid-to-air heat exchangers. The hot side of the system consists of a pump that moves a coolant through the hot face of the TE modules, a radiator that drives heat away into the air, and a fan that transfer the heat over the radiator by forced convection. The cold side of the system consists also of a pump that moves coolant through the cold face of the TE modules, a radiator that drives cold away into the air, and a fan that blows cold air off the radiator. The system was integrated with solar panels, tested and its thermal performance was assessed. The experimental results verify the possibility of heating or cooling air using TE modules with a relatively high coefficient of performance (COP). The system was able to cool a closed space of 30 m3 by 14 °C below ambient within 90 min. The maximum COP of the whole system was 0.72 when the TE modules were running at 11.2 Å and 12 V. This improvement in the system COP over the air cooled heat sink is due to the improvement of the system heat exchange by means of channels plates.
The Power Transistor: A Module on Heat Transfer. Tech Physics Series.
ERIC Educational Resources Information Center
Technical Education Research Center, Cambridge, MA.
This module is intended to provide an understanding of the principles related to heat transfer. The objectives are designed to enable the learner to select and install a device for measuring the temperature of a power transistor, determine power ratings, measure the transient response for a power level and its final equilibrium temperature. Other…
NASA Astrophysics Data System (ADS)
Staple, Bevan; Earhart, R. P.; Slaymaker, Philip A.; Drouillard, Thomas F., II; Mahony, Thomas
2005-05-01
3D imaging LADARs have emerged as the key technology for producing high-resolution imagery of targets in 3-dimensions (X and Y spatial, and Z in the range/depth dimension). Ball Aerospace & Technologies Corp. continues to make significant investments in this technology to enable critical NASA, Department of Defense, and national security missions. As a consequence of rapid technology developments, two issues have emerged that need resolution. First, the terminology used to rate LADAR performance (e.g., range resolution) is inconsistently defined, is improperly used, and thus has become misleading. Second, the terminology does not include a metric of the system"s ability to resolve the 3D depth features of targets. These two issues create confusion when translating customer requirements into hardware. This paper presents a candidate framework for addressing these issues. To address the consistency issue, the framework utilizes only those terminologies proposed and tested by leading LADAR research and standards institutions. We also provide suggestions for strengthening these definitions by linking them to the well-known Rayleigh criterion extended into the range dimension. To address the inadequate 3D image quality metrics, the framework introduces the concept of a Range/Depth Modulation Transfer Function (RMTF). The RMTF measures the impact of the spatial frequencies of a 3D target on its measured modulation in range/depth. It is determined using a new, Range-Based, Slanted Knife-Edge test. We present simulated results for two LADAR pulse detection techniques and compare them to a baseline centroid technique. Consistency in terminology plus a 3D image quality metric enable improved system standardization.
Orbiter Docking System/Spacelab-Mir Module in Atlantis
NASA Technical Reports Server (NTRS)
1995-01-01
The STS-71 mission payload is in its final flight configuration after integration into the payload bay of the Space Shuttle orbiter Atlantis and prior to payload bay door closing and rollover of the spaceplane from Orbiter Processing Facility Bay 3 to the Vehicle Assembly Building. In the foreground is the Orbiter Docking System (ODS) that is topped with the red Russian- built Androgynous Peripheral Docking System (APDS). During the 11-day mission, the APDS will lock together with a similar system on the Russian Mir Space Station so that the two spacecraft can remain docked together for four days. The ODS features an airlock that will provide access to and from both the Mir and orbiter for the U.S. and Russian flight crews. A Spacelab transfer tunnel runs from the ODS to the Spacelab-Mir module, where joint U.S. medical experiments will be conducted during the 11-day spaceflight.
Rewards modulate saccade latency but not exogenous spatial attention.
Dunne, Stephen; Ellison, Amanda; Smith, Daniel T
2015-01-01
The eye movement system is sensitive to reward. However, whilst the eye movement system is extremely flexible, the extent to which changes to oculomotor behavior induced by reward paradigms persist beyond the training period or transfer to other oculomotor tasks is unclear. To address these issues we examined the effects of presenting feedback that represented small monetary rewards to spatial locations on the latency of saccadic eye movements, the time-course of learning and extinction of the effects of rewarding saccades on exogenous spatial attention and oculomotor inhibition of return. Reward feedback produced a relative facilitation of saccadic latency in a stimulus driven saccade task which persisted for three blocks of extinction trials. However, this hemifield-specific effect failed to transfer to peripheral cueing tasks. We conclude that rewarding specific spatial locations is unlikely to induce long-term, systemic changes to the human oculomotor or attention systems.
Lattice Boltzmann simulations of heat transfer in fully developed periodic incompressible flows
NASA Astrophysics Data System (ADS)
Wang, Zimeng; Shang, Helen; Zhang, Junfeng
2017-06-01
Flow and heat transfer in periodic structures are of great interest for many applications. In this paper, we carefully examine the periodic features of fully developed periodic incompressible thermal flows, and incorporate them in the lattice Boltzmann method (LBM) for flow and heat transfer simulations. Two numerical approaches, the distribution modification (DM) approach and the source term (ST) approach, are proposed; and they can both be used for periodic thermal flows with constant wall temperature (CWT) and surface heat flux boundary conditions. However, the DM approach might be more efficient, especially for CWT systems since the ST approach requires calculations of the streamwise temperature gradient at all lattice nodes. Several example simulations are conducted, including flows through flat and wavy channels and flows through a square array with circular cylinders. Results are compared to analytical solutions, previous studies, and our own LBM calculations using different simulation techniques (i.e., the one-module simulation vs. the two-module simulation, and the DM approach vs. the ST approach) with good agreement. These simple, however, representative simulations demonstrate the accuracy and usefulness of our proposed LBM methods for future thermal periodic flow simulations.
Optimized iterative decoding method for TPC coded CPM
NASA Astrophysics Data System (ADS)
Ma, Yanmin; Lai, Penghui; Wang, Shilian; Xie, Shunqin; Zhang, Wei
2018-05-01
Turbo Product Code (TPC) coded Continuous Phase Modulation (CPM) system (TPC-CPM) has been widely used in aeronautical telemetry and satellite communication. This paper mainly investigates the improvement and optimization on the TPC-CPM system. We first add the interleaver and deinterleaver to the TPC-CPM system, and then establish an iterative system to iteratively decode. However, the improved system has a poor convergence ability. To overcome this issue, we use the Extrinsic Information Transfer (EXIT) analysis to find the optimal factors for the system. The experiments show our method is efficient to improve the convergence performance.
Multi-kilowatt modularized spacecraft power processing system development
NASA Technical Reports Server (NTRS)
Andrews, R. E.; Hayden, J. H.; Hedges, R. T.; Rehmann, D. W.
1975-01-01
A review of existing information pertaining to spacecraft power processing systems and equipment was accomplished with a view towards applicability to the modularization of multi-kilowatt power processors. Power requirements for future spacecraft were determined from the NASA mission model-shuttle systems payload data study which provided the limits for modular power equipment capabilities. Three power processing systems were compared to evaluation criteria to select the system best suited for modularity. The shunt regulated direct energy transfer system was selected by this analysis for a conceptual design effort which produced equipment specifications, schematics, envelope drawings, and power module configurations.
Ultra-low-power wireless transmitter for neural prostheses with modified pulse position modulation.
Goodarzy, Farhad; Skafidas, Stan E
2014-01-01
An ultra-low-power wireless transmitter for embedded bionic systems is proposed, which achieves 40 pJ/b energy efficiency and delivers 500 kb/s data using the medical implant communication service frequency band (402-405 MHz). It consumes a measured peak power of 200 µW from a 1.2 V supply while occupying an active area of 0.0016 mm(2) in a 130 nm technology. A modified pulse position modulation technique called saturated amplified signal is proposed and implemented, which can reduce the overall and per bit transferred power consumption of the transmitter while reducing the complexity of the transmitter architectures, and hence potentially shrinking the size of the implemented circuitry. The design is capable of being fully integrated on single-chip solutions for surgically implanted bionic systems, wearable devices and neural embedded systems.
NASA Astrophysics Data System (ADS)
Bobkov, S. G.; Serdin, O. V.; Arkhangelskiy, A. I.; Arkhangelskaja, I. V.; Suchkov, S. I.; Topchiev, N. P.
The problem of electronic component unification at the different levels (circuits, interfaces, hardware and software) used in space industry is considered. The task of computer systems for space purposes developing is discussed by example of scientific data acquisition system for space project GAMMA-400. The basic characteristics of high reliable and fault tolerant chips developed by SRISA RAS for space applicable computational systems are given. To reduce power consumption and enhance data reliability, embedded system interconnect made hierarchical: upper level is Serial RapidIO 1x or 4x with rate transfer 1.25 Gbaud; next level - SpaceWire with rate transfer up to 400 Mbaud and lower level - MIL-STD-1553B and RS232/RS485. The Ethernet 10/100 is technology interface and provided connection with the previously released modules too. Systems interconnection allows creating different redundancy systems. Designers can develop heterogeneous systems that employ the peer-to-peer networking performance of Serial RapidIO using multiprocessor clusters interconnected by SpaceWire.
Accurate and cost-effective MTF measurement system for lens modules of digital cameras
NASA Astrophysics Data System (ADS)
Chang, Gao-Wei; Liao, Chia-Cheng; Yeh, Zong-Mu
2007-01-01
For many years, the widening use of digital imaging products, e.g., digital cameras, has given rise to much attention in the market of consumer electronics. However, it is important to measure and enhance the imaging performance of the digital ones, compared to that of conventional cameras (with photographic films). For example, the effect of diffraction arising from the miniaturization of the optical modules tends to decrease the image resolution. As a figure of merit, modulation transfer function (MTF) has been broadly employed to estimate the image quality. Therefore, the objective of this paper is to design and implement an accurate and cost-effective MTF measurement system for the digital camera. Once the MTF of the sensor array is provided, that of the optical module can be then obtained. In this approach, a spatial light modulator (SLM) is employed to modulate the spatial frequency of light emitted from the light-source. The modulated light going through the camera under test is consecutively detected by the sensors. The corresponding images formed from the camera are acquired by a computer and then, they are processed by an algorithm for computing the MTF. Finally, through the investigation on the measurement accuracy from various methods, such as from bar-target and spread-function methods, it appears that our approach gives quite satisfactory results.
Integrated tests of a high speed VXS switch card and 250 MSPS flash ADCs
DOE Office of Scientific and Technical Information (OSTI.GOV)
H. Dong, C. Cuevas, D. Curry, E. Jastrzembski, F. Barbosa, J. Wilson, M. Taylor, B. Raydo
2008-01-01
High trigger rate nuclear physics experiments proposed for the 12 GeV upgrade at the Thomas Jefferson National Accelerator Facility create a need for new high speed digital systems for energy summing. Signals from electronic detectors will be captured with the Jefferson Lab FADC module, which collects and processes data from 16 charged particle sensors with 10 or 12 bit resolution at 250 MHz sample rate. Up to sixteen FADC modules transfer energy information to a central energy summing module for each readout crate. The sums from the crates are combined to form a global energy sum that is used tomore » trigger data readout for all modules. The Energy Sum module and FADC modules have been designed using the VITA-41 VME64 switched serial (VXS) standard. The VITA- 41 standard defines payload and switch slot module functions, and offers an elegant engineered solution for Multi-Gigabit serial transmission on a standard VITA-41 backplane. The Jefferson Lab Energy Sum module receives data serially at a rate of up to 6 Giga-bits per second from the FADC modules. Both FADC and Energy Sum modules have been designed and assembled and this paper describes the integrated tests using both high speed modules in unison« less
Fan, Jianzhong; Wang, Xin; Lin, Lili; Wang, Chuankui
2016-08-01
A series of X-shaped thermally activated delayed fluorescence (TADF) emitters are systematically studied by first-principles calculations. Effects of the cyano group adding to the acceptor unit and the hydroxyl group adding to the donor part on the optical and electrical properties are analyzed. It is found that both kinds of groups can efficiently increase the emission wavelength to realize full-color emission. Although they play different roles in modulating the energy level of frontier orbitals, the S-T energy gap, the reorganization energy and transfer integral for different molecules, they can efficiently increase the charge transfer rate and reduce the difference of electron transfer rate and hole transfer rate. These results indicate that these designed strategies are efficient to achieve balanced charge transfer rates and modulate emission colors. By analyzing the energy matching between the TADF emitters and three kinds of hosts, the emission spectra of the 3,5-bis(N-carbazolyl)benzene (mcp) and the absorption spectra of most TADF emitters have a large overlap, which provides helpful information in application of these TADF molecules.
NASA Astrophysics Data System (ADS)
Lin, Yo-Sheng; Hu, Chun-Hao; Chang, Chi-Ho; Tsao, Ping-Chang
2018-06-01
In this work, we demonstrate novel one-dimensional (1D) and two-dimensional (2D) antenna arrays for both microwave wireless power transfer (MWPT) systems and dual-antenna transceivers. The antenna array can be used as the MWPT receiving antenna of an integrated MWPT and Bluetooth (BLE) communication module (MWPT-BLE module) for smart CNC (computer numerical control) spindle incorporated with the cloud computing system SkyMars. The 2D antenna array has n rows of 1 × m 1D array, and each array is composed of multiple (m) differential feeding antenna elements. Each differential feeding antenna element is a differential feeding structure with a microstrip antenna stripe. The stripe length is shorter than one wavelength to minimise the antenna area and to prevent being excited to a high-order mode. That is, the differential feeding antenna element can suppress the even mode. The mutual coupling between the antenna elements can be suppressed, and the isolation between the receiver and the transmitter can be enhanced. An inclination angle of the main beam aligns with the broadside, and the main beam is further concentrated and shrunk at the elevation direction. Moreover, if more differential feeding antenna elements are used, antenna gain and isolation can be further enhanced. The excellent performance of the proposed antenna arrays indicates that they are suitable for both MWPT systems and dual-antenna transceivers.
Spacelab-Mir Module Lift in Operations and Checkout Building,
NASA Technical Reports Server (NTRS)
1995-01-01
The STS-71 Spacelab-Mir module is lifted by overhead crane from a test stand in the Operations and Checkout (O&C) Building after final checkout work is completed by the KSC payload processing team. the module will be integrated into the payload bay of the Space Shuttle orbiter Atlantis. During the 11-day mission, the module will serve as an orbital medical laboratory where joint U.S.-Russian investigations will be conducted on the physiological effects of long-duration spaceflight. Also on board Atlantis will be the Orbiter Docking System (ODS) that will permit the link-up of Atlantis and the Russian Mir Space Station. STS-71 is the first of seven planned docking missions. The Spacelab-Mir also carries supplies for the two Russian Mir 19 crew members who will liftoff as a part of the STS-71 crew and later transfer into the space station.
SPACEHAB module at LC-39B for STS-76
NASA Technical Reports Server (NTRS)
1996-01-01
At Launch Pad 39B, the SPACEHAB module has been installed in the payload bay of the Space Shuttle Atlantis, which was rolled out to the pad a day previously. Already located in the payload bay was the Orbiter Docking System (ODS), to which the SPACEHAB was connected via a tunnel. During the upcoming flight of Atlantis on Mission STS-76, the ODS will be docked to the Docking Module located on the Kristall module docking port on the Russian Space Station Mir. The SPACEHAB will be filled with Russian and U.S. logistics equipment for transfer to Mir. Also located in the mini-research laboratory is the European Space Agency's Biorack, which houses experiments to be conducted by the U.S. astronauts during the nine-day flight. Atlantis is scheduled to lift off on the third Shuttle-Mir docking mission on March 21.
Opto-box: Optical modules and mini-crate for ATLAS pixel and IBL detectors
NASA Astrophysics Data System (ADS)
Bertsche, David
2016-11-01
The opto-box is a custom mini-crate for housing optical modules which process and transfer optoelectronic data. Many novel solutions were developed for the custom design and manufacturing. The system tightly integrates electrical, mechanical, and thermal functionality into a small package of size 35×10x8 cm3. Special attention was given to ensure proper shielding, grounding, cooling, high reliability, and environmental tolerance. The custom modules, which incorporate Application Specific Integrated Circuits, were developed through a cycle of rigorous testing and redesign. In total, fourteen opto-boxes have been installed and loaded with modules on the ATLAS detector. They are currently in operation as part of the LHC run 2 data read-out chain. This conference proceeding is in support of the poster presented at the International Conference on New Frontiers in Physics (ICNFP) 2015 [1].
Blumthaler, Ingrid; Oberst, Ulrich
2012-03-01
Control design belongs to the most important and difficult tasks of control engineering and has therefore been treated by many prominent researchers and in many textbooks, the systems being generally described by their transfer matrices or by Rosenbrock equations and more recently also as behaviors. Our approach to controller design uses, in addition to the ideas of our predecessors on coprime factorizations of transfer matrices and on the parametrization of stabilizing compensators, a new mathematical technique which enables simpler design and also new theorems in spite of the many outstanding results of the literature: (1) We use an injective cogenerator signal module ℱ over the polynomial algebra [Formula: see text] (F an infinite field), a saturated multiplicatively closed set T of stable polynomials and its quotient ring [Formula: see text] of stable rational functions. This enables the simultaneous treatment of continuous and discrete systems and of all notions of stability, called T-stability. We investigate stabilizing control design by output feedback of input/output (IO) behaviors and study the full feedback IO behavior, especially its autonomous part and not only its transfer matrix. (2) The new technique is characterized by the permanent application of the injective cogenerator quotient signal module [Formula: see text] and of quotient behaviors [Formula: see text] of [Formula: see text]-behaviors B. (3) For the control tasks of tracking, disturbance rejection, model matching, and decoupling and not necessarily proper plants we derive necessary and sufficient conditions for the existence of proper stabilizing compensators with proper and stable closed loop behaviors, parametrize all such compensators as IO behaviors and not only their transfer matrices and give new algorithms for their construction. Moreover we solve the problem of pole placement or spectral assignability for the complete feedback behavior. The properness of the full feedback behavior ensures the absence of impulsive solutions in the continuous case, and that of the compensator enables its realization by Kalman state space equations or elementary building blocks. We note that every behavior admits an IO decomposition with proper transfer matrix, but that most of these decompositions do not have this property, and therefore we do not assume the properness of the plant. (4) The new technique can also be applied to more general control interconnections according to Willems, in particular to two-parameter feedback compensators and to the recent tracking framework of Fiaz/Takaba/Trentelman. In contrast to these authors, however, we pay special attention to the properness of all constructed transfer matrices which requires more subtle algorithms.
Heat-Pipe-Associated Localized Thermoelectric Power Generation System
NASA Astrophysics Data System (ADS)
Kim, Pan-Jo; Rhi, Seok-Ho; Lee, Kye-Bock; Hwang, Hyun-Chang; Lee, Ji-Su; Jang, Ju-Chan; Lee, Wook-Hyun; Lee, Ki-Woo
2014-06-01
The present study focused on how to improve the maximum power output of a thermoelectric generator (TEG) system and move heat to any suitable space using a TEG associated with a loop thermosyphon (loop-type heat pipe). An experimental study was carried out to investigate the power output, the temperature difference of the thermoelectric module (TEM), and the heat transfer performance associated with the characteristic of the researched heat pipe. Currently, internal combustion engines lose more than 35% of their fuel energy as recyclable heat in the exhaust gas, but it is not easy to recycle waste heat using TEGs because of the limited space in vehicles. There are various advantages to use of TEGs over other power sources, such as the absence of moving parts, a long lifetime, and a compact system configuration. The present study presents a novel TEG concept to transfer heat from the heat source to the sink. This technology can transfer waste heat to any location. This simple and novel design for a TEG can be applied to future hybrid cars. The present TEG system with a heat pipe can transfer heat and generate power of around 1.8 V with T TEM = 58°C. The heat transfer performance of a loop-type heat pipe with various working fluids was investigated, with water at high heat flux (90 W) and 0.05% TiO2 nanofluid at low heat flux (30 W to 70 W) showing the best performance in terms of power generation. The heat pipe can transfer the heat to any location where the TEM is installed.
A heat flux modulator from carbon nanotubes.
Jiang, Shaohui; Zhang, Guang; Xia, Dan; Liu, Changhong; Fan, Shoushan
2015-08-28
For a heat flux modulator, the most difficult problem is that the main carriers named 'phonons' have little response to external fields. Of the existing studies on heat flux modulators, most were theoretical work and the materials systems for the theoretical calculations were artificial lattices. In this paper, we made a heat modulator with ultrathin buckypaper which was made of multi-layer carbon nanotube sheets overlapped together, and achieved an on/off ratio whose value was 1.41 using an pendent block in experiments without special optimizations. When the temperatures of the two sides were of appropriate values, we could even see a negative heat flux. Intuitively, the heat flux was tuned by the gap between the buckypaper and the pendent gate, and we observed that there was heat transferred to the pendent block. The structure of the modulator is similar to a CNT transistor with a contactless gate, hence this type of micromodulator will be easy to manufacture in the future.
Optimal trajectories for aeroassisted orbital transfer
NASA Technical Reports Server (NTRS)
Miele, A.; Venkataraman, P.
1983-01-01
Consideration is given to classical and minimax problems involved in aeroassisted transfer from high earth orbit (HEO) to low earth orbit (LEO). The transfer is restricted to coplanar operation, with trajectory control effected by means of lift modulation. The performance of the maneuver is indexed to the energy expenditure or, alternatively, the time integral of the heating rate. Firist-order optimality conditions are defined for the classical approach, as are a sequential gradient-restoration algorithm and a combined gradient-restoration algorithm. Minimization techniques are presented for the aeroassisted transfer energy consumption and time-delay integral of the heating rate, as well as minimization of the pressure. It is shown that the eigenvalues of the Jacobian matrix of the differential system is both stiff and unstable, implying that the sequential gradient restoration algorithm in its present version is unsuitable. A new method, involving a multipoint approach to the two-poing boundary value problem, is recommended.
Method and apparatus of highly linear optical modulation
DeRose, Christopher; Watts, Michael R.
2016-05-03
In a new optical intensity modulator, a nonlinear change in refractive index is used to balance the nonlinearities in the optical transfer function in a way that leads to highly linear optical intensity modulation.
ERIC Educational Resources Information Center
DeVore, Paul W.
The background and objectives of the 1985-1986 Transportation Education Project of the Urban Mass Transportation Agency (UMTA) are discussed, along with project activities. The project was undertaken to transfer knowledge gained from federally-sponsored research and demonstrations to transit systems and to include the knowledge in college courses…
Microturbine and Thermoelectric Generator Combined System: A Case Study.
Miozzo, Alvise; Boldrini, Stefano; Ferrario, Alberto; Fabrizio, Monica
2017-03-01
Waste heat recovery is one of the suitable industrial applications of thermoelectrics. Thermoelectric generators (TEG) are used, commonly, only for low-mid size power generation systems. The low efficiency of thermoelectric modules generally does not encourage their combination with high power and temperature sources, such as gas turbines. Nevertheless, the particular features of thermoelectric technology (no moving parts, scalability, reliability, low maintenance costs) are attractive for many applications. In this work, the feasibility of the integration of a TE generator into a cogeneration system is evaluated. The cogeneration system consists of a microturbine and heat exchangers for the production of electrical and thermal energy. The aim is to improve electric power generation by using TE modules and the “free” thermal energy supplied by the cogeneration system, through the exhaust pipe of the microturbine. Three different solutions for waste heat recovery from the exhausts gas are evaluated, from the fluid dynamics and heat transfer point of view, to find out a suitable design strategy for a combined power generation system.
NEXT Ion Propulsion System Configurations and Performance for Saturn System Exploration
NASA Technical Reports Server (NTRS)
Benson, Scott W.; Riehl, John P.; Oleson, Steven R.
2007-01-01
The successes of the Cassini/Huygens mission have heightened interest to return to the Saturn system with focused robotic missions. The desire for a sustained presence at Titan, through a dedicated orbiter and in-situ vehicle, either a lander or aerobot, has resulted in definition of a Titan Explorer flagship mission as a high priority in the Solar System Exploration Roadmap. The discovery of active water vapor plumes erupting from the tiger stripes on the moon Enceladus has drawn the attention of the space science community. The NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system is well suited to future missions to the Saturn system. NEXT is used within the inner solar system, in combination with a Venus or Earth gravity assist, to establish a fast transfer to the Saturn system. The NEXT system elements are accommodated in a separable Solar Electric Propulsion (SEP) module, or are integrated into the main spacecraft bus, depending on the mission architecture and performance requirements. This paper defines a range of NEXT system configurations, from two to four thrusters, and the Saturn system performance capability provided. Delivered mass is assessed parametrically over total trip time to Saturn. Launch vehicle options, gravity assist options, and input power level are addressed to determine performance sensitivities. A simple two-thruster NEXT system, launched on an Atlas 551, can deliver a spacecraft mass of over 2400 kg on a transfer to Saturn. Similarly, a four-thruster system, launched on a Delta 4050 Heavy, delivers more than 4000 kg spacecraft mass. A SEP module conceptual design, for a two thruster string, 17 kW solar array, configuration is characterized.
Status Report on NEAMS System Analysis Module Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, R.; Fanning, T. H.; Sumner, T.
2015-12-01
Under the Reactor Product Line (RPL) of DOE-NE’s Nuclear Energy Advanced Modeling and Simulation (NEAMS) program, an advanced SFR System Analysis Module (SAM) is being developed at Argonne National Laboratory. The goal of the SAM development is to provide fast-running, improved-fidelity, whole-plant transient analyses capabilities. SAM utilizes an object-oriented application framework MOOSE), and its underlying meshing and finite-element library libMesh, as well as linear and non-linear solvers PETSc, to leverage modern advanced software environments and numerical methods. It also incorporates advances in physical and empirical models and seeks closure models based on information from high-fidelity simulations and experiments. This reportmore » provides an update on the SAM development, and summarizes the activities performed in FY15 and the first quarter of FY16. The tasks include: (1) implement the support of 2nd-order finite elements in SAM components for improved accuracy and computational efficiency; (2) improve the conjugate heat transfer modeling and develop pseudo 3-D full-core reactor heat transfer capabilities; (3) perform verification and validation tests as well as demonstration simulations; (4) develop the coupling requirements for SAS4A/SASSYS-1 and SAM integration.« less
Space Launch System Co-Manifested Payload Options for Habitation
NASA Technical Reports Server (NTRS)
Smitherman, David
2015-01-01
The Space Launch System (SLS) has a co-manifested payload capability that will grow over time as the rocket matures and planned upgrades are implemented. The final configuration is planned to be capable of inserting a payload greater than 10 metric tons (mt) into a trans-lunar injection trajectory along with the crew in the Orion capsule and the service module. The co-manifested payload is located below the Orion and its service module in a 10-meter high fairing similar to the way the Saturn launch vehicle carried the lunar lander below the Apollo command and service modules. A variety of approaches have been explored that utilizes this co-manifested payload capability to build up infrastructure in deep space in support of future asteroid, lunar, and Mars mission scenarios. This paper is a report on the findings from the Advanced Concepts Office study team at the NASA Marshall Space Flight Center, working with the Advanced Exploration Systems Program on the Exploration Augmentation Module Project. It includes some of the possible options for habitation in the co-manifested payload volume on SLS. Findings include module designs that can be developed in 10mt increments to support these missions, including overall conceptual layouts, mass properties, and approaches for integration into various scenarios for near-term support of deep space habitat research and technology development, support to asteroid exploration, and long range support for Mars transfer flights.
Amorphous silicon photovoltaic manufacturing technology, phase 2A
NASA Astrophysics Data System (ADS)
Duran, G.; Mackamul, K.; Metcalf, D.
1995-01-01
Utility Power Group (UPG), and its lower-tier subcontractor, Advanced Photovoltaic Systems, Inc. (APS) have conducted efforts in developing their manufacturing lines. UPG has focused on the automation of encapsulation and termination processes developed in Phase 1. APS has focused on completion of the encapsulation and module design tasks, while continuing the process and quality control and automation projects. The goal is to produce 55 watt (stabilized) EP50 modules in a new facility. In the APS Trenton EUREKA manufacturing facility, APS has: (1) Developed high throughput lamination procedures; (2) Optimized existing module designs; (3) Developed new module designs for architectural applications; (4) Developed enhanced deposition parameter control; (5) Designed equipment required to manufacture new EUREKA modules developed during Phase II; (6) Improved uniformity of thin-film materials deposition; and (7) Improved the stabilized power output of the APS EP50 EUREKA module to 55 watts. In the APS Fairfield EUREKA manufacturing facility, APS has: (1) Introduced the new products developed under Phase 1 into the APS Fairfield EUREKA module production line; (2) Increased the extent of automation in the production line; (3) Introduced Statistical Process Control to the module production line; and (4) Transferred-progress made in the APS Trenton facility into the APS Fairfield facility.
Zhao, Qiaole; Schelen, Ben; Schouten, Raymond; van den Oever, Rein; Leenen, René; van Kuijk, Harry; Peters, Inge; Polderdijk, Frank; Bosiers, Jan; Raspe, Marcel; Jalink, Kees; Geert Sander de Jong, Jan; van Geest, Bert; Stoop, Karel; Young, Ian Ted
2012-12-01
We have built an all-solid-state camera that is directly modulated at the pixel level for frequency-domain fluorescence lifetime imaging microscopy (FLIM) measurements. This novel camera eliminates the need for an image intensifier through the use of an application-specific charge coupled device design in a frequency-domain FLIM system. The first stage of evaluation for the camera has been carried out. Camera characteristics such as noise distribution, dark current influence, camera gain, sampling density, sensitivity, linearity of photometric response, and optical transfer function have been studied through experiments. We are able to do lifetime measurement using our modulated, electron-multiplied fluorescence lifetime imaging microscope (MEM-FLIM) camera for various objects, e.g., fluorescein solution, fixed green fluorescent protein (GFP) cells, and GFP-actin stained live cells. A detailed comparison of a conventional microchannel plate (MCP)-based FLIM system and the MEM-FLIM system is presented. The MEM-FLIM camera shows higher resolution and a better image quality. The MEM-FLIM camera provides a new opportunity for performing frequency-domain FLIM.
Thermal buffering of receivers for parabolic dish solar thermal power plants
NASA Technical Reports Server (NTRS)
Manvi, R.; Fujita, T.; Gajanana, B. C.; Marcus, C. J.
1980-01-01
A parabolic dish solar thermal power plant comprises a field of parabolic dish power modules where each module is composed of a two-axis tracking parabolic dish concentrator which reflects sunlight (insolation) into the aperture of a cavity receiver at the focal point of the dish. The heat generated by the solar flux entering the receiver is removed by a heat transfer fluid. In the dish power module, this heat is used to drive a small heat engine/generator assembly which is directly connected to the cavity receiver at the focal point. A computer analysis is performed to assess the thermal buffering characteristics of receivers containing sensible and latent heat thermal energy storage. Parametric variations of the thermal inertia of the integrated receiver-buffer storage systems coupled with different fluid flow rate control strategies are carried out to delineate the effect of buffer storage, the transient response of the receiver-storage systems and corresponding fluid outlet temperature. It is concluded that addition of phase change buffer storage will substantially improve system operational characteristics during periods of rapidly fluctuating insolation due to cloud passage.
Schrode, Katrina M; Bee, Mark A
2015-03-01
Sensory systems function most efficiently when processing natural stimuli, such as vocalizations, and it is thought that this reflects evolutionary adaptation. Among the best-described examples of evolutionary adaptation in the auditory system are the frequent matches between spectral tuning in both the peripheral and central auditory systems of anurans (frogs and toads) and the frequency spectra of conspecific calls. Tuning to the temporal properties of conspecific calls is less well established, and in anurans has so far been documented only in the central auditory system. Using auditory-evoked potentials, we asked whether there are species-specific or sex-specific adaptations of the auditory systems of gray treefrogs (Hyla chrysoscelis) and green treefrogs (H. cinerea) to the temporal modulations present in conspecific calls. Modulation rate transfer functions (MRTFs) constructed from auditory steady-state responses revealed that each species was more sensitive than the other to the modulation rates typical of conspecific advertisement calls. In addition, auditory brainstem responses (ABRs) to paired clicks indicated relatively better temporal resolution in green treefrogs, which could represent an adaptation to the faster modulation rates present in the calls of this species. MRTFs and recovery of ABRs to paired clicks were generally similar between the sexes, and we found no evidence that males were more sensitive than females to the temporal modulation patterns characteristic of the aggressive calls used in male-male competition. Together, our results suggest that efficient processing of the temporal properties of behaviorally relevant sounds begins at potentially very early stages of the anuran auditory system that include the periphery. © 2015. Published by The Company of Biologists Ltd.
High-Density, High-Bandwidth, Multilevel Holographic Memory
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin
2008-01-01
A proposed holographic memory system would be capable of storing data at unprecedentedly high density, and its data transfer performance in both reading and writing would be characterized by exceptionally high bandwidth. The capabilities of the proposed system would greatly exceed even those of a state-of-the art memory system, based on binary holograms (in which each pixel value represents 0 or 1), that can hold .1 terabyte of data and can support a reading or writing rate as high as 1 Gb/s. The storage capacity of the state-of-theart system cannot be increased without also increasing the volume and mass of the system. However, in principle, the storage capacity could be increased greatly, without significantly increasing the volume and mass, if multilevel holograms were used instead of binary holograms. For example, a 3-bit (8-level) hologram could store 8 terabytes, or an 8-bit (256-level) hologram could store 256 terabytes, in a system having little or no more size and mass than does the state-of-the-art 1-terabyte binary holographic memory. The proposed system would utilize multilevel holograms. The system would include lasers, imaging lenses and other beam-forming optics, a block photorefractive crystal wherein the holograms would be formed, and two multilevel spatial light modulators in the form of commercially available deformable-mirror-device spatial light modulators (DMDSLMs) made for use in high speed input conversion of data up to 12 bits. For readout, the system would also include two arrays of complementary metal oxide/semiconductor (CMOS) photodetectors matching the spatial light modulators. The system would further include a reference-beam sterring device (equivalent of a scanning mirror), containing no sliding parts, that could be either a liquid-crystal phased-array device or a microscopic mirror actuated by a high-speed microelectromechanical system. Time-multiplexing and the multilevel nature of the DMDSLM would be exploited to enable writing and reading of multilevel holograms. The DMDSLM would also enable transfer of data at a rate of 7.6 Gb/s or perhaps somewhat higher.
NASA Technical Reports Server (NTRS)
Chwalowski, Pawel; Samareh, Jamshid A.; Horta, Lucas G.; Piatak, David J.; McGowan, Anna-Maria R.
2009-01-01
The conceptual and preliminary design processes for aircraft with large shape changes are generally difficult and time-consuming, and the processes are often customized for a specific shape change concept to streamline the vehicle design effort. Accordingly, several existing reports show excellent results of assessing a particular shape change concept or perturbations of a concept. The goal of the current effort was to develop a multidisciplinary analysis tool and process that would enable an aircraft designer to assess several very different morphing concepts early in the design phase and yet obtain second-order performance results so that design decisions can be made with better confidence. The approach uses an efficient parametric model formulation that allows automatic model generation for systems undergoing radical shape changes as a function of aerodynamic parameters, geometry parameters, and shape change parameters. In contrast to other more self-contained approaches, the approach utilizes off-the-shelf analysis modules to reduce development time and to make it accessible to many users. Because the analysis is loosely coupled, discipline modules like a multibody code can be easily swapped for other modules with similar capabilities. One of the advantages of this loosely coupled system is the ability to use the medium- to high-fidelity tools early in the design stages when the information can significantly influence and improve overall vehicle design. Data transfer among the analysis modules are based on an accurate and automated general purpose data transfer tool. In general, setup time for the integrated system presented in this paper is 2-4 days for simple shape change concepts and 1-2 weeks for more mechanically complicated concepts. Some of the key elements briefly described in the paper include parametric model development, aerodynamic database generation, multibody analysis, and the required software modules as well as examples for a telescoping wing, a folding wing, and a bat-like wing. The paper also includes the verification of a medium-fidelity aerodynamic tool used for the aerodynamic database generation with a steady and unsteady high-fidelity CFD analysis tool for a folding wing example.
2006-05-23
KENNEDY SPACE CENTER, FLA. -- From inside the payload changeout room on the rotating service structure on Launch Pad 39B, workers maneuver the multi-purpose logistics module Leonardo into Space Shuttle Discovery's payload bay (at left). The payload ground-handling mechanism (PGHM) is used to transfer the module into the payload bay. Leonardo is a reusable logistics carrier. It is the primary delivery system used to resupply and return station cargo requiring a pressurized environment. Leonardo is part of the payload on mission STS-121. Other payloads include the integrated cargo carrier with the mobile transporter reel assembly and a spare pump module, and the lightweight multi-purpose experiment support structure carrier. Discovery is scheduled to launch in a window extending from July 1 through July 19. Photo credit: NASA/Jack Pfaller
2006-05-23
KENNEDY SPACE CENTER, FLA. -- From inside the payload changeout room on the rotating service structure on Launch Pad 39B, the multi-purpose logistics module Leonardo is being moved into Space Shuttle Discovery's payload bay (at left). The payload ground-handling mechanism (PGHM) is used to transfer the module into the payload bay. Leonardo is a reusable logistics carrier. It is the primary delivery system used to resupply and return station cargo requiring a pressurized environment. Leonardo is part of the payload on mission STS-121. Other payloads include the integrated cargo carrier with the mobile transporter reel assembly and a spare pump module, and the lightweight multi-purpose experiment support structure carrier. Discovery is scheduled to launch in a window extending from July 1 through July 19. Photo credit: NASA/Jack Pfaller
2000-03-21
KENNEDY SPACE CENTER, FLA. -- The doors of the payload canister open in the Payload Changeout Room (PCR) at Launch Pad 39A to reveal the SPACEHAB Double Module (bottom) and Integrated Cargo Carrier (ICC). Part of the Rotating Service Structure, the PCR is an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. The primary payloads on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000
2000-03-21
KENNEDY SPACE CENTER, FLA. -- The SPACEHAB Double Module (bottom) and Integrated Cargo Carrier (above) are ready to be moved from the payload canister into the Payload Changeout Room (PCR) at Launch Pad 39A. Part of the Rotating Service Structure, the PCR is an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. The primary payloads on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000
2000-03-21
KENNEDY SPACE CENTER, FLA. -- The SPACEHAB Double Module (bottom) and Integrated Cargo Carrier (above) are ready to be moved from the payload canister into the Payload Changeout Room (PCR) at Launch Pad 39A. Part of the Rotating Service Structure, the PCR is an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. The primary payloads on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000
2000-03-21
KENNEDY SPACE CENTER, FLA. -- A closeup shows the Integrated Cargo Carrier (top) and SPACEHAB Double Module (below) ready to be moved into the Payload Changeout Room (PCR) at Launch Pad 39A. Part of the Rotating Service Structure, the PCR is an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. The primary payloads on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000
2000-03-21
KENNEDY SPACE CENTER, FLA. -- The doors of the payload canister open in the Payload Changeout Room (PCR) at Launch Pad 39A to reveal the SPACEHAB Double Module (bottom) and Integrated Cargo Carrier (ICC). Part of the Rotating Service Structure, the PCR is an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. The primary payloads on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000
2000-03-21
KENNEDY SPACE CENTER, FLA. -- A closeup shows the Integrated Cargo Carrier (top) and SPACEHAB Double Module (below) ready to be moved into the Payload Changeout Room (PCR) at Launch Pad 39A. Part of the Rotating Service Structure, the PCR is an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. The primary payloads on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, Seogjoo; Hoyer, Stephan; Fleming, Graham
2014-10-31
A generalized master equation (GME) governing quantum evolution of modular exciton density (MED) is derived for large scale light harvesting systems composed of weakly interacting modules of multiple chromophores. The GME-MED offers a practical framework to incorporate real time coherent quantum dynamics calculations of small length scales into dynamics over large length scales, and also provides a non-Markovian generalization and rigorous derivation of the Pauli master equation employing multichromophoric Förster resonance energy transfer rates. A test of the GME-MED for four sites of the Fenna-Matthews-Olson complex demonstrates how coherent dynamics of excitonic populations over coupled chromophores can be accurately describedmore » by transitions between subgroups (modules) of delocalized excitons. Application of the GME-MED to the exciton dynamics between a pair of light harvesting complexes in purple bacteria demonstrates its promise as a computationally efficient tool to investigate large scale exciton dynamics in complex environments.« less
Application handbook for a Standardized Control Module (SCM) for DC-DC converters, volume 1
NASA Astrophysics Data System (ADS)
Lee, F. C.; Mahmoud, M. F.; Yu, Y.
1980-04-01
The standardized control module (SCM) was developed for application in the buck, boost and buck/boost DC-DC converters. The SCM used multiple feedback loops to provide improved input line and output load regulation, stable feedback control system, good dynamic transient response and adaptive compensation of the control loop for changes in open loop gain and output filter time constraints. The necessary modeling and analysis tools to aid the design engineer in the application of the SCM to DC-DC Converters were developed. The SCM functional block diagram and the different analysis techniques were examined. The average time domain analysis technique was chosen as the basic analytical tool. The power stage transfer functions were developed for the buck, boost and buck/boost converters. The analog signal and digital signal processor transfer functions were developed for the three DC-DC Converter types using the constant on time, constant off time and constant frequency control laws.
Li, Jin; Liu, Zilong; Liu, Si
2017-02-20
In on-board photographing processes of satellite cameras, the platform vibration can generate image motion, distortion, and smear, which seriously affect the image quality and image positioning. In this paper, we create a mathematical model of a vibrating modulate transfer function (VMTF) for a remote-sensing camera. The total MTF of a camera is reduced by the VMTF, which means the image quality is degraded. In order to avoid the degeneration of the total MTF caused by vibrations, we use an Mn-20Cu-5Ni-2Fe (M2052) manganese copper alloy material to fabricate a vibration-isolation mechanism (VIM). The VIM can transform platform vibration energy into irreversible thermal energy with its internal twin crystals structure. Our experiment shows the M2052 manganese copper alloy material is good enough to suppress image motion below 125 Hz, which is the vibration frequency of satellite platforms. The camera optical system has a higher MTF after suppressing the vibration of the M2052 material than before.
Application handbook for a Standardized Control Module (SCM) for DC-DC converters, volume 1
NASA Technical Reports Server (NTRS)
Lee, F. C.; Mahmoud, M. F.; Yu, Y.
1980-01-01
The standardized control module (SCM) was developed for application in the buck, boost and buck/boost DC-DC converters. The SCM used multiple feedback loops to provide improved input line and output load regulation, stable feedback control system, good dynamic transient response and adaptive compensation of the control loop for changes in open loop gain and output filter time constraints. The necessary modeling and analysis tools to aid the design engineer in the application of the SCM to DC-DC Converters were developed. The SCM functional block diagram and the different analysis techniques were examined. The average time domain analysis technique was chosen as the basic analytical tool. The power stage transfer functions were developed for the buck, boost and buck/boost converters. The analog signal and digital signal processor transfer functions were developed for the three DC-DC Converter types using the constant on time, constant off time and constant frequency control laws.
Aerosol scattering and absorption modulation transfer function
NASA Astrophysics Data System (ADS)
Sadot, Dan; Kopeika, Norman S.
1993-08-01
Recent experimental measurements of overall atmospheric modulation transfer function (MTF) indicate significant difference between the turbulence and overall atmospheric MTFs, except often at midday when turbulence is strong. We suggest here a physical explanation for those results which essentially relates to what we call a practical instrumentation-based atmospheric aerosol MTF which is a modification of the classical aerosol MTF theory. It is shown that system field-of-view and dynamic range affect strongly aerosol and overall atmospheric MTFs. It is often necessary to choose between MTF and SNR depending upon dynamic range requirements. Also, a new approach regarding aerosol absorption is presented. It is shown that aerosol-absorbed irradiance is spatial frequency dependent and enhances the degradation in image quality arising from received scattered light. This is most relevant for thermal imaging. An analytically corrected model for the aerosol MTF is presented which is relevant for imaging. An important conclusion is that the aerosol MTF is often the dominant part in the actual overall atmospheric MTF all across the optical spectral region.
Katz, Michael G.; Bridges, Charles R.
2013-01-01
Abstract Heart diseases are major causes of morbidity and mortality in Western society. Gene therapy approaches are becoming promising therapeutic modalities to improve underlying molecular processes affecting failing cardiomyocytes. Numerous cardiac clinical gene therapy trials have yet to demonstrate strong positive results and advantages over current pharmacotherapy. The success of gene therapy depends largely on the creation of a reliable and efficient delivery method. The establishment of such a system is determined by its ability to overcome the existing biological barriers, including cellular uptake and intracellular trafficking as well as modulation of cellular permeability. In this article, we describe a variety of physical and mechanical methods, based on the transient disruption of the cell membrane, which are applied in nonviral gene transfer. In addition, we focus on the use of different physiological techniques and devices and pharmacological agents to enhance endothelial permeability. Development of these methods will undoubtedly help solve major problems facing gene therapy. PMID:23427834
Integrability and conformal data of the dimer model
NASA Astrophysics Data System (ADS)
Morin-Duchesne, Alexi; Rasmussen, Jørgen; Ruelle, Philippe
2016-04-01
The central charge of the dimer model on the square lattice is still being debated in the literature. In this paper, we provide evidence supporting the consistency of a c=-2 description. Using Lieb’s transfer matrix and its description in terms of the Temperley-Lieb algebra {{TL}}n at β =0, we provide a new solution of the dimer model in terms of the model of critical dense polymers on a tilted lattice and offer an understanding of the lattice integrability of the dimer model. The dimer transfer matrix is analyzed in the scaling limit, and the result for {L}0-\\frac{c}{24} is expressed in terms of fermions. Higher Virasoro modes are likewise constructed as limits of elements of {{TL}}n and are found to yield a c=-2 realization of the Virasoro algebra, familiar from fermionic bc ghost systems. In this realization, the dimer Fock spaces are shown to decompose, as Virasoro modules, into direct sums of Feigin-Fuchs modules, themselves exhibiting reducible yet indecomposable structures. In the scaling limit, the eigenvalues of the lattice integrals of motion are found to agree exactly with those of the c=-2 conformal integrals of motion. Consistent with the expression for {L}0-\\frac{c}{24} obtained from the transfer matrix, we also construct higher Virasoro modes with c = 1 and find that the dimer Fock space is completely reducible under their action. However, the transfer matrix is found not to be a generating function for the c = 1 integrals of motion. Although this indicates that Lieb’s transfer matrix description is incompatible with the c = 1 interpretation, it does not rule out the existence of an alternative, c = 1 compatible, transfer matrix description of the dimer model.
Oxidation of the FAD cofactor to the 8-formyl-derivative in human electron-transferring flavoprotein
Augustin, Peter; Toplak, Marina; Fuchs, Katharina; Gerstmann, Eva Christine; Prassl, Ruth; Winkler, Andreas; Macheroux, Peter
2018-01-01
The heterodimeric human (h) electron-transferring flavoprotein (ETF) transfers electrons from at least 13 different flavin dehydrogenases to the mitochondrial respiratory chain through a non-covalently bound FAD cofactor. Here, we describe the discovery of an irreversible and pH-dependent oxidation of the 8α-methyl group to 8-formyl-FAD (8f-FAD), which represents a unique chemical modification of a flavin cofactor in the human flavoproteome. Furthermore, a set of hETF variants revealed that several conserved amino acid residues in the FAD-binding pocket of electron-transferring flavoproteins are required for the conversion to the formyl group. Two of the variants generated in our study, namely αR249C and αT266M, cause glutaric aciduria type II, a severe inherited disease. Both of the variants showed impaired formation of 8f-FAD shedding new light on the potential molecular cause of disease development. Interestingly, the conversion of FAD to 8f-FAD yields a very stable flavin semiquinone that exhibited slightly lower rates of electron transfer in an artificial assay system than hETF containing FAD. In contrast, the formation of 8f-FAD enhanced the affinity to human dimethylglycine dehydrogenase 5-fold, indicating that formation of 8f-FAD modulates the interaction of hETF with client enzymes in the mitochondrial matrix. Thus, we hypothesize that the FAD cofactor bound to hETF is subject to oxidation in the alkaline (pH 8) environment of the mitochondrial matrix, which may modulate electron transport between client dehydrogenases and the respiratory chain. This discovery challenges the current concepts of electron transfer processes in mitochondria. PMID:29301933
Cryogenic On-Orbit Liquid Depot Storage, Acquisition, and Transfer Satellite (COLD-SAT)
NASA Technical Reports Server (NTRS)
Schuster, John R.; Russ, Edwin J.; Wachter, Joseph P.
1990-01-01
The Cryogenic On-Orbit Liquid Depot Storage, Acquisition, and Transfer Satellite (COLD-SAT) will perform subcritical liquid hydrogen handling experiments under low gravity conditions to provide engineering data for future space transportation missions. Comprising the four Class 1 enabling experiments are tank press control, tank chilldown, tank no-vent fill, and liquid acquisition device fill/refill. The nine Class 2 enhancing experiments are tanker thermal performance, pressurization, low-gravity setting and outflow, liquid acquisition device performance, transfer line chilldown, outflow subcooling, low-gravity vented fill, fluid dumping, and advanced instrumentation. Consisting of an experiment module mated to a spacecraft bus, COLD-SAT will be placed in an initial 1300 km circular orbit by an Atlas commercial launch vehicle, and will perform experiments in a semi-autonomous mode for a period of up to six months. The three-axis controlled spacecraft bus provides electric power, control and data management, communications, and attitude control along with propulsive acceleration levels ranging from 10(exp -6) to 10(exp -4) g. It is desired to understand the effects that low acceleration levels might have on the heat and mass transfer processes involved in some of the experiments. The experiment module contains the three liquid hydrogen tanks, valves, pressurization and pumping equipment, and instrumentation. Within the highly insulated tanks are specialized fluid management equipment that might be used in future space transportation systems. At launch all the liquid hydrogen for the experiments is contained in the largest tank, which has helium-purged insulation to prevent cryo-pumping of air on the launch pad. The tank is loaded by the hydrogen tanking system used for the Centaur upper stage of the Atlas. After reaching orbit the two smaller tanks become receivers for fluid transfers, and when tanked, become the vessels for performing many of the experiments.
Application of information theory to the design of line-scan imaging systems
NASA Technical Reports Server (NTRS)
Huck, F. O.; Park, S. K.; Halyo, N.; Stallman, S.
1981-01-01
Information theory is used to formulate a single figure of merit for assessing the performance of line scan imaging systems as a function of their spatial response (point spread function or modulation transfer function), sensitivity, sampling and quantization intervals, and the statistical properties of a random radiance field. Computational results for the information density and efficiency (i.e., the ratio of information density to data density) are intuitively satisfying and compare well with experimental and theoretical results obtained by earlier investigators concerned with the performance of TV systems.
Interchip link system using an optical wiring method.
Cho, In-Kui; Ryu, Jin-Hwa; Jeong, Myung-Yung
2008-08-15
A chip-scale optical link system is presented with a transmitter/receiver and optical wire link. The interchip link system consists of a metal optical bench, a printed circuit board module, a driver/receiver integrated circuit, a vertical cavity surface-emitting laser/photodiode array, and an optical wire link composed of plastic optical fibers (POFs). We have developed a downsized POF and an optical wiring method that allows on-site installation with a simple annealing as optical wiring technologies for achieving high-density optical interchip interconnection within such devices. Successful data transfer measurements are presented.
NASA Technical Reports Server (NTRS)
Roettger, Juergen
1989-01-01
The principle of pulse modulation used in the case of coherent scatter radars (MST radars) is discussed. Coherent detection and the corresponding system configuration is delineated. Antenna requirements and design are outlined and the phase-coherent transmitter/receiver system is described. Transmit/receive duplexers, transmitters, receivers, and quadrature detectors are explained. The radar controller, integrator, decoder and correlator design as well as the data transfer and the control and monitoring by the host computer are delineated. Typical operation parameters of some well-known radars are summarized.
Verification of an IGBT Fusing Switch for Over-current Protection of the SNS HVCM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benwell, Andrew; Kemp, Mark; Burkhart, Craig
2010-06-11
An IGBT based over-current protection system has been developed to detect faults and limit the damage caused by faults in high voltage converter modulators. During normal operation, an IGBT enables energy to be transferred from storage capacitors to a H-bridge. When a fault occurs, the over-current protection system detects the fault, limits the fault current and opens the IGBT to isolate the remaining stored energy from the fault. This paper presents an experimental verification of the over-current protection system under applicable conditions.
Interior of the U.S. Laboratory / Destiny module
2001-02-11
STS98-E-5113 (11 February 2001) --- This wide shot, photographed with a digital still camera, shows the interior of the newly attached Destiny laboratory. The crews of Atlantis and the International Space Station opened the laboratory on Feb. 11 and spent the first full day of what are planned to be years of work ahead inside the orbiting science and command center. Station commander William M. (Bill) Shepherd opened the Destiny hatch, and he and shuttle commander Kenneth D. Cockrell ventured inside at 8:38 a.m. (CST), Feb. 11. As depicted in subsequent digital images in this series, members of both crews went to work quickly inside the new module, activating air systems, fire extinguishers, alarm systems, computers and internal communications. The crew also continued equipment transfers from the shuttle to the station.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pesaran, Ahmad
This presentation describes the thermal design of battery packs at the National Renewable Energy Laboratory. A battery thermal management system essential for xEVs for both normal operation during daily driving (achieving life and performance) and off-normal operation during abuse conditions (achieving safety). The battery thermal management system needs to be optimized with the right tools for the lowest cost. Experimental tools such as NREL's isothermal battery calorimeter, thermal imaging, and heat transfer setups are needed. Thermal models and computer-aided engineering tools are useful for robust designs. During abuse conditions, designs should prevent cell-to-cell propagation in a module/pack (i.e., keep themore » fire small and manageable). NREL's battery ISC device can be used for evaluating the robustness of a module/pack to cell-to-cell propagation.« less
Einstein, Ofira; Fainstein, Nina; Touloumi, Olga; Lagoudaki, Roza; Hanya, Ester; Grigoriadis, Nikolaos; Katz, Abram; Ben-Hur, Tamir
2018-01-01
Conflicting results exist on the effects of exercise training (ET) on Experimental Autoimmune Encephalomyelitis (EAE), nor is it known how exercise impacts on disease progression. We examined whether ET ameliorates the development of EAE by modulating the systemic immune system or exerting direct neuroprotective effects on the CNS. Healthy mice were subjected to 6weeks of motorized treadmill running. The Proteolipid protein (PLP)-induced transfer EAE model in mice was utilized. To assess effects of ET on systemic autoimmunity, lymph-node (LN)-T cells from trained- vs. sedentary donor mice were transferred to naïve recipients. To assess direct neuroprotective effects of ET, PLP-reactive LN-T cells were transferred into recipient mice that were trained prior to EAE transfer or to sedentary mice. EAE severity was assessed in vivo and the characteristics of encephalitogenic LN-T cells derived from PLP-immunized mice were evaluated in vitro. LN-T cells obtained from trained mice induced an attenuated clinical and pathological EAE in recipient mice vs. cells derived from sedentary animals. Training inhibited the activation, proliferation and cytokine gene expression of PLP-reactive T cells in response to CNS-derived autoantigen, but strongly enhanced their proliferation in response to Concanavalin A, a non-specific stimulus. However, there was no difference in EAE severity when autoreactive encephalitogenic T cells were transferred to trained vs. sedentary recipient mice. ET inhibits immune system responses to an auto-antigen to attenuate EAE, rather than generally suppressing the immune system, but does not induce a direct neuro-protective effect against EAE. Copyright © 2017 Elsevier Inc. All rights reserved.
Orion: Design of a system for assured low-cost human access to space
NASA Technical Reports Server (NTRS)
Elvander, Josh; Heifetz, Andy; Hunt, Teresa; Zhu, Martin
1994-01-01
In recent years, Congress and the American people have begun to seriously question the role and importance of future manned spaceflight. This is mainly due to two factors: a decline in technical competition caused by the collapse of communism, and the high costs associated with the Space Shuttle transportation system. With these factors in mind, the ORION system was designed to enable manned spaceflight at a low cost, while maintaining the ability to carry out diverse missions, each with a high degree of flexibility. It is capable of performing satellite servicing missions, supporting a space station via crew rotation and resupply, and delivering satellites into geosynchronous orbit. The components of the system are a primary launch module, an upper stage, and a manned spacecraft capable of dynamic reentry. For satellite servicing and space station resupply missions, the ORION system utilizes three primary modules, an upper stage, and the spacecraft, which is delivered to low earth orbit and used to rendezvous, transfer materials, and make repairs. For launching a geosynchronous satellite, one primary module and an upper stage are used to deliver the satellite, along with an apogee kick motor, into orbit. The system is designed with reusability and modularity in mind in an attempt to lower cost.
Flexible augmented reality architecture applied to environmental management
NASA Astrophysics Data System (ADS)
Correia, Nuno M. R.; Romao, Teresa; Santos, Carlos; Trabuco, Adelaide; Santos, Rossana; Romero, Luis; Danado, Jose; Dias, Eduardo; Camara, Antonio; Nobre, Edmundo
2003-05-01
Environmental management often requires in loco observation of the area under analysis. Augmented Reality (AR) technologies allow real time superimposition of synthetic objects on real images, providing augmented knowledge about the surrounding world. Users of an AR system can visualize the real surrounding world together with additional data generated in real time in a contextual way. The work reported in this paper was done in the scope of ANTS (Augmented Environments) project. ANTS is an AR project that explores the development of an augmented reality technological infrastructure for environmental management. This paper presents the architecture and the most relevant modules of ANTS. The system"s architecture follows the client-server model and is based on several independent, but functionally interdependent modules. It has a flexible design, which allows the transfer of some modules to and from the client side, according to the available processing capacities of the client device and the application"s requirements. It combines several techniques to identify the user"s position and orientation allowing the system to adapt to the particular characteristics of each environment. The determination of the data associated to a certain location involves the use of both a 3D Model of the location and the multimedia geo-referenced database.
NASA Astrophysics Data System (ADS)
Yao, Fen; Zhang, Lifang; Meng, Junling; Liu, Xiaojuan; Zhang, Xiong; Zhang, Wenwen; Meng, Jian; Zhang, Hongjie
2018-03-01
We investigate the internal charge transfer at the isopolar interfaces in LaTiO3/RO/LaNiO3 (R = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, and Lu) superlattices by means of density functional theory calculations. The charge transfer from Ti sites to Ni sites in all superlattices is induced by the electronegativity difference between the elements Ti and Ni, and the lanthanide oxides interfaces can modulate the amount of charge transfer. Comparison of the perovskite heterostructures with the different rare-earth interfaces shows that increasing the deviations of bond angles from 180.0° and the oxygen motions near the interfaces enhance charge transfer. The 4f electrons themselves of rare-earth elements have faint influences on charge transfer. In addition, the reasons why our calculated 4f states of Sm and Tm elements disagree with the experimental systems have been provided. It is hoped that all the calculated results could be used to design new functional nanoelectronic devices in perovskite oxides.
Review on charge transfer and chemical activity of TiO2: Mechanism and applications
NASA Astrophysics Data System (ADS)
Cai, Yongqing; Feng, Yuan Ping
2016-12-01
Charge separation and transfer at the interface between two materials play a significant role in various atomic-scale processes and energy conversion systems. In this review, we present the mechanism and outcome of charge transfer in TiO2, which is extensively explored for photocatalytic applications in the field of environmental science. We list several experimental and computational methods to estimate the amount of charge transfer. The effects of the work function, defects and doping, and employment of external electric field on modulating the charge transfer are presented. The interplay between the band bending and carrier transport across the surface and interface consisting of TiO2 is discussed. We show that the charge transfer can also strongly affect the behavior of deposited nanoparticles on TiO2 through built-in electric field that it creates. This review encompasses several advances of composite materials where TiO2 is combined with two-dimensional materials like graphene, MoS2, phosphorene, etc. The charge transport in the TiO2-organohalide perovskite with respect to the electron-hole separation at the interface is also discussed.
Interlayer‐State‐Coupling Dependent Ultrafast Charge Transfer in MoS2/WS2 Bilayers
Zhang, Jin; Hong, Hao; Lian, Chao; Ma, Wei; Xu, Xiaozhi; Zhou, Xu; Fu, Huixia
2017-01-01
Light‐induced interlayer ultrafast charge transfer in 2D heterostructures provides a new platform for optoelectronic and photovoltaic applications. The charge separation process is generally hypothesized to be dependent on the interlayer stackings and interactions, however, the quantitative characteristic and detailed mechanism remain elusive. Here, a systematical study on the interlayer charge transfer in model MoS2/WS2 bilayer system with variable stacking configurations by time‐dependent density functional theory methods is demonstrated. The results show that the slight change of interlayer geometry can significantly modulate the charge transfer time from 100 fs to 1 ps scale. Detailed analysis further reveals that the transfer rate in MoS2/WS2 bilayers is governed by the electronic coupling between specific interlayer states, rather than the interlayer distances, and follows a universal dependence on the state‐coupling strength. The results establish the interlayer stacking as an effective freedom to control ultrafast charge transfer dynamics in 2D heterostructures and facilitate their future applications in optoelectronics and light harvesting. PMID:28932669
Efficient Energy Transfer from Near-Infrared Emitting Gold Nanoparticles to Pendant Ytterbium(III).
Crawford, Scott E; Andolina, Christopher M; Kaseman, Derrick C; Ryoo, Bo Hyung; Smith, Ashley M; Johnston, Kathryn A; Millstone, Jill E
2017-12-13
Here, we demonstrate efficient energy transfer from near-infrared-emitting ortho-mercaptobenzoic acid-capped gold nanoparticles (AuNPs) to pendant ytterbium(III) cations. These functional materials combine the high molar absorptivity (1.21 × 10 6 M -1 cm -1 ) and broad excitation features (throughout the UV and visible regions) of AuNPs with the narrow emissive properties of lanthanides. Interaction between the AuNP ligand shell and ytterbium is determined using both nuclear magnetic resonance and electron microscopy measurements. In order to identify the mechanism of this energy transfer process, the distance of the ytterbium(III) from the surface of the AuNPs is systematically modulated by changing the size of the ligand appended to the AuNP. By studying the energy transfer efficiency from the various AuNP conjugates to pendant ytterbium(III) cations, a Dexter-type energy transfer mechanism is suggested, which is an important consideration for applications ranging from catalysis to energy harvesting. Taken together, these experiments lay a foundation for the incorporation of emissive AuNPs in energy transfer systems.
The high pressure gas assembly is moved to the payload canister
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- With workers keeping a close watch, the overhead crane lowers the high pressure gas assembly -- two gaseous oxygen and two gaseous nitrogen storage tanks into the payload canister. The joint airlock module is already in the canister. The airlock and tanks are part of the payload on mission STS-104 and are being transferred to orbiter Atlantis'''s payload bay. The storage tanks will be attached to the airlock during two spacewalks. The storage tanks will support future spacewalk operations from the Station and augment the Service Module gas resupply system. STS-104 is scheduled for launch June 14 from Launch Pad 39B.
2008-04-26
CAPE CANAVERAL, Fla. -- In the Vehicle Assembly Building at NASA's Kennedy Space Center, space shuttle Discovery, looking like a giant bat, hangs suspended above the transfer aisle. The crane holding it will lift Discovery to the upper levels and lower it into high bay 3. In the bay, Discovery will be mated to the external tank and solid rocket boosters for launch on the upcoming STS-124 mission to the International Space Station. On the mission, the STS-124 crew will transport the Japanese Experiment Module - Pressurized Module and the Japanese Remote Manipulator System to the space station. Launch of Discovery is targeted for May 31 Photo credit: NASA/Jim Grossmann
2001-05-18
KENNEDY SPACE CENTER, FLA. -- With workers keeping a close watch, the overhead crane lowers the high pressure gas assembly two gaseous oxygen and two gaseous nitrogen storage tanks into the payload canister. The joint airlock module is already in the canister. The airlock and tanks are part of the payload on mission STS-104 and are being transferred to orbiter Atlantis’s payload bay. The storage tanks will be attached to the airlock during two spacewalks. The storage tanks will support future spacewalk operations from the Station and augment the Service Module gas resupply system. STS-104 is scheduled for launch June 14 from Launch Pad 39B
2001-05-18
KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, workers wait in the payload canister as an overhead crane moves the high pressure gas assembly two gaseous oxygen and two gaseous nitrogen storage tanks toward it. The joint airlock module is already in the canister. The airlock and tanks are part of the payload on mission STS-104 and are being transferred to orbiter Atlantis’s payload bay. The storage tanks will be attached to the airlock during two spacewalks. The storage tanks will support future spacewalk operations from the Station and augment the Service Module gas resupply system. STS-104 is scheduled for launch June 14 from Launch Pad 39B
NASA Technical Reports Server (NTRS)
Larson, V. R.; Gunn, S. V.; Lee, J. C.
1975-01-01
The paper describes a helium heater to be used to conduct non-nuclear demonstration tests of the complete power conversion loop for a direct-cycle gas-cooled nuclear reactor power plant. Requirements for the heater include: heating the helium to a 1500 F temperature, operating at a 1000 psia helium pressure, providing a thermal response capability and helium volume similar to that of the nuclear reactor, and a total heater system helium pressure drop of not more than 15 psi. The unique compact heater system design proposed consists of 18 heater modules; air preheaters, compressors, and compressor drive systems; an integral control system; piping; and auxiliary equipment. The heater modules incorporate the dual-concentric-tube 'Variflux' heat exchanger design which provides a controlled heat flux along the entire length of the tube element. The heater design as proposed will meet all system requirements. The heater uses pressurized combustion (50 psia) to provide intensive heat transfer, and to minimize furnace volume and heat storage mass.
Concurrent Image Processing Executive (CIPE). Volume 1: Design overview
NASA Technical Reports Server (NTRS)
Lee, Meemong; Groom, Steven L.; Mazer, Alan S.; Williams, Winifred I.
1990-01-01
The design and implementation of a Concurrent Image Processing Executive (CIPE), which is intended to become the support system software for a prototype high performance science analysis workstation are described. The target machine for this software is a JPL/Caltech Mark 3fp Hypercube hosted by either a MASSCOMP 5600 or a Sun-3, Sun-4 workstation; however, the design will accommodate other concurrent machines of similar architecture, i.e., local memory, multiple-instruction-multiple-data (MIMD) machines. The CIPE system provides both a multimode user interface and an applications programmer interface, and has been designed around four loosely coupled modules: user interface, host-resident executive, hypercube-resident executive, and application functions. The loose coupling between modules allows modification of a particular module without significantly affecting the other modules in the system. In order to enhance hypercube memory utilization and to allow expansion of image processing capabilities, a specialized program management method, incremental loading, was devised. To minimize data transfer between host and hypercube, a data management method which distributes, redistributes, and tracks data set information was implemented. The data management also allows data sharing among application programs. The CIPE software architecture provides a flexible environment for scientific analysis of complex remote sensing image data, such as planetary data and imaging spectrometry, utilizing state-of-the-art concurrent computation capabilities.
Underwater Communications for Video Surveillance Systems at 2.4 GHz
Sendra, Sandra; Lloret, Jaime; Jimenez, Jose Miguel; Rodrigues, Joel J.P.C.
2016-01-01
Video surveillance is needed to control many activities performed in underwater environments. The use of wired media can be a problem since the material specially designed for underwater environments is very expensive. In order to transmit the images and videos wirelessly under water, three main technologies can be used: acoustic waves, which do not provide high bandwidth, optical signals, although the effect of light dispersion in water severely penalizes the transmitted signals and therefore, despite offering high transfer rates, the maximum distance is very small, and electromagnetic (EM) waves, which can provide enough bandwidth for video delivery. In the cases where the distance between transmitter and receiver is short, the use of EM waves would be an interesting option since they provide high enough data transfer rates to transmit videos with high resolution. This paper presents a practical study of the behavior of EM waves at 2.4 GHz in freshwater underwater environments. First, we discuss the minimum requirements of a network to allow video delivery. From these results, we measure the maximum distance between nodes and the round trip time (RTT) value depending on several parameters such as data transfer rate, signal modulations, working frequency, and water temperature. The results are statistically analyzed to determine their relation. Finally, the EM waves’ behavior is modeled by a set of equations. The results show that there are some combinations of working frequency, modulation, transfer rate and temperature that offer better results than others. Our work shows that short communication distances with high data transfer rates is feasible. PMID:27782095
Underwater Communications for Video Surveillance Systems at 2.4 GHz.
Sendra, Sandra; Lloret, Jaime; Jimenez, Jose Miguel; Rodrigues, Joel J P C
2016-10-23
Video surveillance is needed to control many activities performed in underwater environments. The use of wired media can be a problem since the material specially designed for underwater environments is very expensive. In order to transmit the images and videos wirelessly under water, three main technologies can be used: acoustic waves, which do not provide high bandwidth, optical signals, although the effect of light dispersion in water severely penalizes the transmitted signals and therefore, despite offering high transfer rates, the maximum distance is very small, and electromagnetic (EM) waves, which can provide enough bandwidth for video delivery. In the cases where the distance between transmitter and receiver is short, the use of EM waves would be an interesting option since they provide high enough data transfer rates to transmit videos with high resolution. This paper presents a practical study of the behavior of EM waves at 2.4 GHz in freshwater underwater environments. First, we discuss the minimum requirements of a network to allow video delivery. From these results, we measure the maximum distance between nodes and the round trip time (RTT) value depending on several parameters such as data transfer rate, signal modulations, working frequency, and water temperature. The results are statistically analyzed to determine their relation. Finally, the EM waves' behavior is modeled by a set of equations. The results show that there are some combinations of working frequency, modulation, transfer rate and temperature that offer better results than others. Our work shows that short communication distances with high data transfer rates is feasible.
Apollo Spacecraft 012 Command/Service Module being moved to Operations bldg
NASA Technical Reports Server (NTRS)
1967-01-01
Transfer of Apollo Spacecraft 012 Command/Service Module for mating to the Saturn Lunar Module Adapter No. 05 in the Manned Spacecraft Operations bldg. S/C 012 will be flown on the Apollo/Saturn 204 mission.
Fraser, Matthew; McKay, Colette M.
2012-01-01
Temporal modulation transfer functions (TMTFs) were measured for six users of cochlear implants, using different carrier rates and levels. Unlike most previous studies investigating modulation detection, the experimental design limited potential effects of overall loudness cues. Psychometric functions (percent correct discrimination of modulated from unmodulated stimuli versus modulation depth) were obtained. For each modulation depth, each modulated stimulus was loudness balanced to the unmodulated reference stimulus, and level jitter was applied in the discrimination task. The loudness-balance data showed that the modulated stimuli were louder than the unmodulated reference stimuli with the same average current, thus confirming the need to limit loudness cues when measuring modulation detection. TMTFs measured in this way had a low-pass characteristic, with a cut-off frequency (at comfortably loud levels) similar to that for normal-hearing listeners. A reduction in level caused degradation in modulation detection efficiency and a lower-cut-off frequency (i.e. poorer temporal resolution). An increase in carrier rate also led to a degradation in modulation detection efficiency, but only at lower levels or higher modulation frequencies. When detection thresholds were expressed as a proportion of dynamic range, there was no effect of carrier rate for the lowest modulation frequency (50 Hz) at either level. PMID:22146425
Transfer of the MPLM Leonardo from the ISS to the Orbiter Discovery Payload Bay
2006-07-14
ISS013-E-51263 (14 July 2006) --- Canadarm2 or the Space Station Remote Manipulator System (SSRMS) arm grasps the Italian-built Multi-Purpose Logistics Module Leonardo to place it back in Discovery's cargo bay. On the other end of the arm, inside the shirt sleeve environment of the Destiny laboratory on the International Space Station, astronauts Stephanie D. Wilson and Lisa M. Nowak, STS-121 mission specialists, were in control of the transfer. The MPLM was being moved from its temporary parking place on the station's Unity node to the payload bay of Discovery for the return trip to Earth.
Transfer of the MPLM Leonardo from the ISS to the Orbiter Discovery Payload Bay
2006-07-14
ISS013-E-51264 (14 July 2006) --- Canadarm2 or the Space Station Remote Manipulator System (SSRMS) arm grasps the Italian-built Multi-Purpose Logistics Module Leonardo to place it back in Discovery's cargo bay. On the other end of the arm, inside the shirt sleeve environment of the Destiny laboratory on the International Space Station, astronauts Stephanie D. Wilson and Lisa M. Nowak, STS-121 mission specialists, were in control of the transfer. The MPLM was being moved from its temporary parking place on the station's Unity node to the payload bay of Discovery for the return trip to Earth.
Transfer of the MPLM Leonardo from the ISS to the Orbiter Discovery Payload Bay
2006-07-14
ISS013-E-51265 (14 July 2006) --- Canadarm2 or the Space Station Remote Manipulator System (SSRMS) arm (out of frame) grasps the Italian-built Multi-Purpose Logistics Module Leonardo to place it back in Discovery's cargo bay. On the other end of the arm, inside the shirt sleeve environment of the Destiny laboratory on the International Space Station, astronauts Stephanie D. Wilson and Lisa M. Nowak, STS-121 mission specialists, were in control of the transfer. The MPLM was being moved from its temporary parking place on the station's Unity node to the payload bay of Discovery for the return trip to Earth.
Optical interconnection using polyimide waveguide for multichip module
NASA Astrophysics Data System (ADS)
Koyanagi, Mitsumasa
1996-01-01
We have developed a parallel processor system with 152 RISC processor chips specific for Monte-Carlo analysis. This system has the ring-bus architecture. The performance of several Gflops is expected in this system according to the computer simulation. However, it was revealed that the data transfer speed of the bus has to be increased more dramatically in order to further increase the performance. Then, we propose to introduce the optical interconnection into the parallel processor system to increase the data transfer speed of the buses. The double ringbus architecture is employed in this new parallel processor system with optical interconnection. The free-space optical interconnection arid the optical waveguide are used for the optical ring-bus. Thin polyimide film was used to form the optical waveguide. A relatively low propagation loss was achieved in the polyimide optical waveguide. In addition, it was confirmed that the propagation direction of signal light can be easily changed by using a micro-mirror.
Optical interconnection using polyimide waveguide for multichip module
NASA Astrophysics Data System (ADS)
Koyanagi, Mitsumasa
1996-01-01
We have developed a parallel processor system with 152 RISC processor chips specific for Monte-Carlo analysis. This system has the ring-bus architecture. The performance of several Gflops is expected in this system according to the computer simulation. However, it was revealed that the data transfer speed of the bus has to be increased more dramatically in order to further increase the performance. Then, we propose to introduce the optical interconnection into the parallel processor system to increase the data transfer speed of the buses. The double ring-bus architecture is employed in this new parallel processor system with optical interconnection. The free-space optical interconnection and the optical waveguide are used for the optical ring-bus. Thin polyimide film was used to form the optical waveguide. A relatively low propagation loss was achieved in the polyimide optical waveguide. In addition, it was confirmed that the propagation direction of signal light can be easily changed by using a micro-mirror.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newmarker, Marc; Campbell, Mark
2012-03-16
Design, validate at prototype level, and then demonstrate a full size, 800 MWht Thermal Energy Storage (TES) system based on Phase Changing Material (PCM) TES modules with round trip efficiency in excess of 93%. The PCM TES module would be the building block of a TES system which can be deployed at costs inline with the DOE benchmark of 2020. The development of a reliable, unsophisticated, modular, and scalable TES system designed to be massmanufactured utilizing advanced automated fabrication and assembly processes and field installed in the most cost-effective configuration could facilitate the attainment of a Levelized Cost of Energymore » (LCOE) of $.07/kWh by 2015. It was believed that the DOE targets can be attained by finding the best combinationTES module size, its optimal integration in the power cycle, and readily available PCM. Work under this project ultimately focused on the development and performance evaluation of a 100kWht prototype heat exchanger. The design utilizes a commercially available heat exchanger product to create a unique latent heat PCM storage module. The novel ideal associated with this technology is the inclusion of an agitation mechanism that is activated during the discharge process to improve heat transfer. The prototype unit did not meet the performance goals estimated through modeling, nor did the estimated costs of the system fall in line with the goals established by DOE.« less
Recovery of Lunar Surface Access Module Residual and Reserve Propellants
NASA Technical Reports Server (NTRS)
Notardonato, William U.
2007-01-01
The Vision for Space Exploration calls for human exploration of the lunar surface in the 2020 timeframe. Sustained human exploration of the lunar surface will require supply, storage, and distribution of consumables for a variety of mission elements. These elements include propulsion systems for ascent and descent stages, life support for habitats and extra-vehicular activity, and reactants for power systems. NASA KSC has been tasked to develop technologies and strategies for consumables transfer for lunar exploration as part of the Exploration Technology Development Program. This paper will investigate details of operational concepts to scavenge residual propellants from the lunar descent propulsion system. Predictions on the mass of residuals and reserves are made. Estimates of heat transfer and boiloff rates are calculated and transient tank thermodynamic issues post-engine cutoff are modeled. Recovery and storage options including cryogenic liquid, vapor and water are discussed, and possible reuse of LSAM assets is presented.
Harms, Alexander; Liesch, Marius; Körner, Jonas; Québatte, Maxime; Engel, Philipp; Dehio, Christoph
2017-10-01
Host-targeting type IV secretion systems (T4SS) evolved from conjugative T4SS machineries that mediate interbacterial plasmid transfer. However, the origins of effectors secreted by these virulence devices have remained largely elusive. Previous work showed that some effectors exhibit homology to toxins of bacterial toxin-antitoxin modules, but the evolutionary trajectories underlying these ties had not been resolved. We previously reported that FicT toxins of FicTA toxin-antitoxin modules disrupt cellular DNA topology via their enzymatic FIC (filamentation induced by cAMP) domain. Intriguingly, the FIC domain of the FicT toxin VbhT of Bartonella schoenbuchensis is fused to a type IV secretion signal-the BID (Bep intracellular delivery) domain-similar to the Bartonella effector proteins (Beps) that are secreted into eukaryotic host cells via the host-targeting VirB T4SS. In this study, we show that the VbhT toxin is an interbacterial effector protein secreted via the conjugative Vbh T4SS that is closely related to the VirB T4SS and encoded by plasmid pVbh of B. schoenbuchensis. We therefore propose that the Vbh T4SS together with its effector VbhT represent an evolutionary missing link on a path that leads from a regular conjugation system and FicTA toxin-antitoxin modules to the VirB T4SS and the Beps. Intriguingly, phylogenetic analyses revealed that the fusion of FIC and BID domains has probably occurred independently in VbhT and the common ancestor of the Beps, suggesting parallel evolutionary paths. Moreover, several other examples of TA module toxins that are bona fide substrates of conjugative T4SS indicate that their recruitment as interbacterial effectors is prevalent and serves yet unknown biological functions in the context of bacterial conjugation. We propose that the adaptation for interbacterial transfer favors the exaptation of FicT and other TA module toxins as inter-kingdom effectors and may thus constitute an important stepping stone in the evolution of host-targeted effector proteins.
Liesch, Marius
2017-01-01
Host-targeting type IV secretion systems (T4SS) evolved from conjugative T4SS machineries that mediate interbacterial plasmid transfer. However, the origins of effectors secreted by these virulence devices have remained largely elusive. Previous work showed that some effectors exhibit homology to toxins of bacterial toxin-antitoxin modules, but the evolutionary trajectories underlying these ties had not been resolved. We previously reported that FicT toxins of FicTA toxin-antitoxin modules disrupt cellular DNA topology via their enzymatic FIC (filamentation induced by cAMP) domain. Intriguingly, the FIC domain of the FicT toxin VbhT of Bartonella schoenbuchensis is fused to a type IV secretion signal–the BID (Bep intracellular delivery) domain—similar to the Bartonella effector proteins (Beps) that are secreted into eukaryotic host cells via the host-targeting VirB T4SS. In this study, we show that the VbhT toxin is an interbacterial effector protein secreted via the conjugative Vbh T4SS that is closely related to the VirB T4SS and encoded by plasmid pVbh of B. schoenbuchensis. We therefore propose that the Vbh T4SS together with its effector VbhT represent an evolutionary missing link on a path that leads from a regular conjugation system and FicTA toxin-antitoxin modules to the VirB T4SS and the Beps. Intriguingly, phylogenetic analyses revealed that the fusion of FIC and BID domains has probably occurred independently in VbhT and the common ancestor of the Beps, suggesting parallel evolutionary paths. Moreover, several other examples of TA module toxins that are bona fide substrates of conjugative T4SS indicate that their recruitment as interbacterial effectors is prevalent and serves yet unknown biological functions in the context of bacterial conjugation. We propose that the adaptation for interbacterial transfer favors the exaptation of FicT and other TA module toxins as inter-kingdom effectors and may thus constitute an important stepping stone in the evolution of host-targeted effector proteins. PMID:29073136
Development of a medical module for disaster information systems.
Calik, Elif; Atilla, Rıdvan; Kaya, Hilal; Aribaş, Alirıza; Cengiz, Hakan; Dicle, Oğuz
2014-01-01
This study aims to improve a medical module which provides a real-time medical information flow about pre-hospital processes that gives health care in disasters; transferring, storing and processing the records that are in electronic media and over internet as a part of disaster information systems. In this study which is handled within the frame of providing information flow among professionals in a disaster case, to supply the coordination of healthcare team and transferring complete information to specified people at real time, Microsoft Access database and SQL query language were used to inform database applications. System was prepared on Microsoft .Net platform using C# language. Disaster information system-medical module was designed to be used in disaster area, field hospital, nearby hospitals, temporary inhabiting areas like tent city, vehicles that are used for dispatch, and providing information flow between medical officials and data centres. For fast recording of the disaster victim data, accessing to database which was used by health care professionals was provided (or granted) among analysing process steps and creating minimal datasets. Database fields were created in the manner of giving opportunity to enter new data and search old data which is recorded before disaster. Web application which provides access such as data entry to the database and searching towards the designed interfaces according to the login credentials access level. In this study, homepage and users' interfaces which were built on database in consequence of system analyses were provided with www.afmedinfo.com web site to the user access. With this study, a recommendation was made about how to use disaster-based information systems in the field of health. Awareness has been developed about the fact that disaster information system should not be perceived only as an early warning system. Contents and the differences of the health care practices of disaster information systems were revealed. A web application was developed supplying a link between the user and the database to make date entry and data query practices by the help of the developed interfaces.
NASA Astrophysics Data System (ADS)
Jungclaus, J. H.; Moreno-Chamarro, E.; Lohmann, K.; Zanchettin, D.
2016-02-01
While it is clear that the Atlantic Meridional Overturning Circulation (AMOC) is responsible for meridional heat transfer from the South Atlantic and the tropics to the North Atlantic, the majority of the heat transport in the northern North Atlantic and the Nordic seas is carried by the gyre system. However, the detailed mechanisms determining the interaction between and the temporal modulation of the components of the northward heat transport system are not clear. Long-term climate records and model simulations can help to identify important processes and to provide background for the changes that are presently observed. Multi-centennial proxy records from the subpolar North Atlantic and the Nordic Seas indicate, for example, an out-of-phase behavior of sea surface temperature and gyre circulation between the two regions with consequences for regional climate. Paleoceanographic evidence from Fram Strait shows a pronounced modulation of heat transfer to the Arctic by the Atlantic Water layer during the last 2000 years and reconstructions from the Subpolar North Atlantic suggest a role of ocean circulation in the transition between the Medieval Climate Anomaly and the Little Ice Age. Here we explore a small ensemble of last millennium simulations, carried out with the Max Planck Institute Earth System Model, and analyze mechanisms connecting the AMOC and gyre circulation and their relation to external forcing. Our results support the important role of the Subpolar Gyre strength and the related meridional mass and temperature fluxes. We find that the modulation of the northward heat transport into the Nordic Seas and the Arctic has pronounced impact on sea-ice distribution, ocean-atmosphere interaction, and the surface climate in Scandinavia and Western Europe.
NASA Astrophysics Data System (ADS)
Jungclaus, Johann; Moreno-Chamarro, Eduardo; Lohmann, Katja
2016-04-01
While it is clear that the Atlantic Meridional Overturning Circulation (AMOC) is responsible for meridional heat transfer from the South Atlantic and the tropics to the North Atlantic, the majority of the heat transport in the northern North Atlantic and the Nordic seas is carried by the gyre system. However, the detailed mechanisms determining the interaction between and the temporal modulation of the components of the northward heat transport system are not clear. Long-term climate records and model simulations can help to identify important processes and to provide background for the changes that are presently observed. Multi-centennial proxy records from the subpolar North Atlantic and the Nordic Seas indicate, for example, an out-of-phase behavior of sea surface temperature and gyre circulation between the two regions with consequences for regional climate. Paleoceanographic evidence from Fram Strait shows a pronounced modulation of heat transfer to the Arctic by the Atlantic Water layer during the last 2000 years and reconstructions from the Subpolar North Atlantic suggest a role of ocean circulation in the transition between the Medieval Climate Anomaly and the Little Ice Age. Here we explore a small ensemble of last millennium simulations, carried out with the Max Planck Institute Earth System Model, and analyze mechanisms connecting the AMOC and gyre circulation and their relation to external forcing. Our results support the important role of the Subpolar Gyre strength and the related meridional mass and temperature fluxes. We find that the modulation of the northward heat transport into the Nordic Seas and the Arctic has pronounced impact on sea-ice distribution, ocean-atmosphere interaction, and the surface climate in Scandinavia and Western Europe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plautz, Tia E.; Johnson, R. P.; Sadrozinski, H. F.-W.
Purpose: To characterize the modulation transfer function (MTF) of the pre-clinical (phase II) head scanner developed for proton computed tomography (pCT) by the pCT collaboration. To evaluate the spatial resolution achievable by this system. Methods: Our phase II proton CT scanner prototype consists of two silicon telescopes that track individual protons upstream and downstream from a phantom, and a 5-stage scintillation detector that measures a combination of the residual energy and range of the proton. Residual energy is converted to water equivalent path length (WEPL) of the protons in the scanned object. The set of WEPL values and associated pathsmore » of protons passing through the object over a 360° angular scan is processed by an iterative parallelizable reconstruction algorithm that runs on GP-GPU hardware. A custom edge phantom composed of water-equivalent polymer and tissue-equivalent material inserts was constructed. The phantom was first simulated in Geant4 and then built to perform experimental beam tests with 200 MeV protons at the Northwestern Medicine Chicago Proton Center. The oversampling method was used to construct radial and azimuthal edge spread functions and modulation transfer functions. The spatial resolution was defined by the 10% point of the modulation transfer function in units of lp/cm. Results: The spatial resolution of the image was found to be strongly correlated with the radial position of the insert but independent of the relative stopping power of the insert. The spatial resolution varies between roughly 4 and 6 lp/cm in both the the radial and azimuthal directions depending on the radial displacement of the edge. Conclusion: The amount of image degradation due to our detector system is small compared with the effects of multiple Coulomb scattering, pixelation of the image and the reconstruction algorithm. Improvements in reconstruction will be made in order to achieve the theoretical limits of spatial resolution.« less
Correlation transfer and diffusion of ultrasound-modulated multiply scattered light.
Sakadzić, Sava; Wang, Lihong V
2006-04-28
We develop a temporal correlation transfer equation (CTE) and a temporal correlation diffusion equation (CDE) for ultrasound-modulated multiply scattered light. These equations can be applied to an optically scattering medium with embedded optically scattering and absorbing objects to calculate the power spectrum of light modulated by a nonuniform ultrasound field. We present an analytical solution based on the CDE and Monte Carlo simulation results for light modulated by a cylinder of ultrasound in an optically scattering slab. We further validate with experimental measurements the numerical calculations for an actual ultrasound field. The CTE and CDE are valid for moderate ultrasound pressures and on a length scale comparable with the optical transport mean-free path. These equations should be applicable to a wide spectrum of conditions for ultrasound-modulated optical tomography of soft biological tissues.
NASA Technical Reports Server (NTRS)
Weissman, D. E.; Johnson, J. W.
1984-01-01
The directional spectrum and the microwave modulation transfer function of ocean waves can be measured with the airborne two frequency scatterometer technique. Similar to tower based observations, the aircraft measurements of the Modulation Transfer Function (MTF) show that it is strongly affected by both wind speed and sea state. Also detected are small differences in the magnitudes of the MTF between downwind and upwind radar look directions, and variations with ocean wavenumber. The MTF inferred from the two frequency radar is larger than that measured using single frequency, wave orbital velocity techniques such as tower based radars or ROWS measurements from low altitude aircraft. Possible reasons for this are discussed. The ability to measure the ocean directional spectrum with the two frequency scatterometer, with supporting MTF data, is demonstrated.
NASA Technical Reports Server (NTRS)
Weissman, D. E.; Johnson, J. W.
1986-01-01
The directional spectrum and the microwave modulation transfer function of ocean waves can be measured with the airborne two frequency scatterometer technique. Similar to tower based observations, the aircraft measurements of the Modulation Transfer Function (MTF) show that it is strongly affected by both wind speed and sea state. Also detected are small differences in the magnitudes of the MTF between downwind and upwind radar look directions, and variations with ocean wavenumber. The MTF inferred from the two frequency radar is larger than that measured using single frequency, wave orbital velocity techniques such as tower based radars or ROWS measurements from low altitude aircraft. Possible reasons for this are discussed. The ability to measure the ocean directional spectrum with the two frequency scatterometer, with supporting MTF data, is demonstrated.
Installing the new PCE (Proximity Communications Equipment) hardware
2005-06-29
ISS011-E-09799 (27 June 2005) --- Cosmonaut Sergei K. Krikalev, Expedition 11 commander representing Russia's Federal Space Agency, works with the new Proximity Communications Equipment (PCE) hardware of the ASN-M satellite navigation system for the European Automated Transfer Vehicle (ATV) Jules Verne in the Zvezda Service Module of the International Space Station. The ATV is scheduled to arrive at the Station next year.
JPRS report: Science and technology. Central Eurasia
NASA Astrophysics Data System (ADS)
1995-02-01
Translated articles cover the following topics: laser-controlled rotary microwave waveguide junction; optical pulse-phase modulation of semiconductor laser; amplitude-phase distortions of light beam obliquely propagating through ground layer of troposphere; antenna arrays with ultrafast beam scanning; materials for a walk on moon; textile-wood-coal briquette path to capitalism; and development of automated system for scientific research and design of heat and mass transfer processes.
Li, Wenlong; Jiao, Changhong; Li, Xin; Xie, Yongshu; Nakatani, Keitaro; Tian, He; Zhu, Weihong
2014-04-25
Endowing both solvent independency and excellent thermal bistability, the benzobis(thiadiazole)-bridged diarylethene system provides an efficient approach to realize extremely high photocyclization quantum yields (Φo-c , up to 90.6 %) by both separating completely pure anti-parallel conformer and suppressing intramolecular charge transfer (ICT). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multidisciplinary approaches to solar hydrogen
Bren, Kara L.
2015-01-01
This review summarizes three different approaches to engineering systems for the solar-driven evolution of hydrogen fuel from water: molecular, nanomaterials and biomolecular. Molecular systems have the advantage of being highly amenable to modification and detailed study and have provided great insight into photophysics, electron transfer and catalytic mechanism. However, they tend to display poor stability. Systems based on nanomaterials are more robust but also are more difficult to synthesize in a controlled manner and to modify and study in detail. Biomolecular systems share many properties with molecular systems and have the advantage of displaying inherently high efficiencies for light absorption, electron–hole separation and catalysis. However, biological systems must be engineered to couple modules that capture and convert solar photons to modules that produce hydrogen fuel. Furthermore, biological systems are prone to degradation when employed in vitro. Advances that use combinations of these three tactics also are described. Multidisciplinary approaches to this problem allow scientists to take advantage of the best features of biological, molecular and nanomaterials systems provided that the components can be coupled for efficient function. PMID:26052425
Millwright Apprenticeship. Related Training Modules. 10.1-10.5 Combustion.
ERIC Educational Resources Information Center
Lane Community Coll., Eugene, OR.
This packet, part of the instructional materials for the Oregon apprenticeship program for millwright training, contains five modules covering combustion. The modules provide information on the following topics: the combustion process, types of fuel, air and fuel gases, heat transfer, and combustion in wood. Each module consists of a goal,…
Stationary Engineers Apprenticeship. Related Training Modules. 16.1-16.5 Combustion.
ERIC Educational Resources Information Center
Lane Community Coll., Eugene, OR.
This learning module, one in a series of 20 related training modules for apprentice stationary engineers, deals with combustion. Addressed in the individual instructional packages included in the module are the following topics: the combustion process, types of fuel, air and flue gases, heat transfer during combustion, and wood combustion. Each…
CMOS cassette for digital upgrade of film-based mammography systems
NASA Astrophysics Data System (ADS)
Baysal, Mehmet A.; Toker, Emre
2006-03-01
While full-field digital mammography (FFDM) technology is gaining clinical acceptance, the overwhelming majority (96%) of the installed base of mammography systems are conventional film-screen (FSM) systems. A high performance, and economical digital cassette based product to conveniently upgrade FSM systems to FFDM would accelerate the adoption of FFDM, and make the clinical and technical advantages of FFDM available to a larger population of women. The planned FFDM cassette is based on our commercial Digital Radiography (DR) cassette for 10 cm x 10 cm field-of-view spot imaging and specimen radiography, utilizing a 150 micron columnar CsI(Tl) scintillator and 48 micron active-pixel CMOS sensor modules. Unlike a Computer Radiography (CR) cassette, which requires an external digitizer, our DR cassette transfers acquired images to a display workstation within approximately 5 seconds of exposure, greatly enhancing patient flow. We will present the physical performance of our prototype system against other FFDM systems in clinical use today, using established objective criteria such as the Modulation Transfer Function (MTF), Detective Quantum Efficiency (DQE), and subjective criteria, such as a contrast-detail (CD-MAM) observer performance study. Driven by the strong demand from the computer industry, CMOS technology is one of the lowest cost, and the most readily accessible technologies available for FFDM today. Recent popular use of CMOS imagers in high-end consumer cameras have also resulted in significant advances in the imaging performance of CMOS sensors against rivaling CCD sensors. This study promises to take advantage of these unique features to develop the first CMOS based FFDM upgrade cassette.
NASA Technical Reports Server (NTRS)
1993-01-01
The University Space Research Association (USRA) requested the University of Minnesota Spacecraft Design Team to design a lunar transportation infrastructure. This task was a year long design effort culminating in a complete conceptual design and presentation at Johnson Space Center. The mission objective of the design group was to design a system of vehicles to bring a habitation module, cargo, and crew to the lunar surface from LEO and return either or both crew and cargo safely to LEO while emphasizing component commonality, reusability, and cost effectiveness. During the course of the design, the lunar transportation system (LTS) has taken on many forms. The final design of the system is composed of two vehicles, a lunar transfer vehicle (LTV) and a lunar excursion vehicle (LEV). The LTV serves as an efficient orbital transfer vehicle between the earth and the moon while the LEV carries crew and cargo to the lunar surface. Presented in the report are the mission analysis, systems layout, orbital mechanics, propulsion systems, structural and thermal analysis, and crew systems, avionics, and power systems for this lunar transportation concept.
NASA Astrophysics Data System (ADS)
1993-07-01
The University Space Research Association (USRA) requested the University of Minnesota Spacecraft Design Team to design a lunar transportation infrastructure. This task was a year long design effort culminating in a complete conceptual design and presentation at Johnson Space Center. The mission objective of the design group was to design a system of vehicles to bring a habitation module, cargo, and crew to the lunar surface from LEO and return either or both crew and cargo safely to LEO while emphasizing component commonality, reusability, and cost effectiveness. During the course of the design, the lunar transportation system (LTS) has taken on many forms. The final design of the system is composed of two vehicles, a lunar transfer vehicle (LTV) and a lunar excursion vehicle (LEV). The LTV serves as an efficient orbital transfer vehicle between the earth and the moon while the LEV carries crew and cargo to the lunar surface. Presented in the report are the mission analysis, systems layout, orbital mechanics, propulsion systems, structural and thermal analysis, and crew systems, avionics, and power systems for this lunar transportation concept.
Bok, Jan; Schauer, Petr
2014-01-01
In the paper, the SEM detector is evaluated by the modulation transfer function (MTF) which expresses the detector's influence on the SEM image contrast. This is a novel approach, since the MTF was used previously to describe only the area imaging detectors, or whole imaging systems. The measurement technique and calculation of the MTF for the SEM detector are presented. In addition, the measurement and calculation of the detective quantum efficiency (DQE) as a function of the spatial frequency for the SEM detector are described. In this technique, the time modulated e-beam is used in order to create well-defined input signal for the detector. The MTF and DQE measurements are demonstrated on the Everhart-Thornley scintillation detector. This detector was alternated using the YAG:Ce, YAP:Ce, and CRY18 single-crystal scintillators. The presented MTF and DQE characteristics show good imaging properties of the detectors with the YAP:Ce or CRY18 scintillator, especially for a specific type of the e-beam scan. The results demonstrate the great benefit of the description of SEM detectors using the MTF and DQE. In addition, point-by-point and continual-sweep e-beam scans in SEM were discussed and their influence on the image quality was revealed using the MTF. © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Davoodi, M.; Meskin, N.; Khorasani, K.
2018-03-01
The problem of simultaneous fault detection, isolation and tracking (SFDIT) control design for linear systems subject to both bounded energy and bounded peak disturbances is considered in this work. A dynamic observer is proposed and implemented by using the H∞/H-/L1 formulation of the SFDIT problem. A single dynamic observer module is designed that generates the residuals as well as the control signals. The objective of the SFDIT module is to ensure that simultaneously the effects of disturbances and control signals on the residual signals are minimised (in order to accomplish the fault detection goal) subject to the constraint that the transfer matrix from the faults to the residuals is equal to a pre-assigned diagonal transfer matrix (in order to accomplish the fault isolation goal), while the effects of disturbances, reference inputs and faults on the specified control outputs are minimised (in order to accomplish the fault-tolerant and tracking control goals). A set of linear matrix inequality (LMI) feasibility conditions are derived to ensure solvability of the problem. In order to illustrate and demonstrate the effectiveness of our proposed design methodology, the developed and proposed schemes are applied to an autonomous unmanned underwater vehicle (AUV).
Mathes, Tilo; van Stokkum, Ivo H. M.; Stierl, Manuela; Kennis, John T. M.
2012-01-01
Photoinduced electron transfer in biological systems, especially in proteins, is a highly intriguing matter. Its mechanistic details cannot be addressed by structural data obtained by crystallography alone because this provides only static information on a given redox system. In combination with transient spectroscopy and site-directed manipulation of the protein, however, a dynamic molecular picture of the ET process may be obtained. In BLUF (blue light sensors using FAD) photoreceptors, proton-coupled electron transfer between a tyrosine and the flavin cofactor is the key reaction to switch from a dark-adapted to a light-adapted state, which corresponds to the biological signaling state. Particularly puzzling is the fact that, although the various naturally occurring BLUF domains show little difference in the amino acid composition of the flavin binding pocket, the reaction rates of the forward reaction differ quite largely from a few ps up to several hundred ps. In this study, we modified the redox potential of the flavin/tyrosine redox pair by site-directed mutagenesis close to the flavin C2 carbonyl and fluorination of the tyrosine, respectively. We provide information on how changes in the redox potential of either reaction partner significantly influence photoinduced proton-coupled electron transfer. The altered redox potentials allowed us furthermore to experimentally describe an excited state charge transfer intermediately prior to electron transfer in the BLUF photocycle. Additionally, we show that the electron transfer rate directly correlates with the quantum yield of signaling state formation. PMID:22833672
Commissioning of the helium cryogenic system for the HIE- ISOLDE accelerator upgrade at CERN
NASA Astrophysics Data System (ADS)
Delruelle, N.; Inglese, V.; Leclercq, Y.; Pirotte, O.; Williams, L.
2015-12-01
The High Intensity and Energy ISOLDE (HIE-ISOLDE) project is a major upgrade of the existing ISOLDE and REX-ISOLDE facilities at CERN. The most significant improvement will come from replacing the existing REX accelerating structure by a superconducting linear accelerator (SC linac) composed ultimately of six cryo-modules installed in series, each containing superconducting RF cavities and solenoids operated at 4.5 K. In order to provide the cooling capacity at all temperature levels between 300 K and 4.5 K for the six cryo-modules, an existing helium refrigerator, manufactured in 1986 and previously used to cool the ALEPH magnet during LEP operation from 1989 to 2000, has been refurbished, reinstalled and recommissioned in a dedicated building located next to the HIE-ISOLDE experimental hall. This helium refrigerator has been connected to a new cryogenic distribution line, consisting of a 30-meter long vacuum-insulated transfer line, a 2000-liter storage dewar and six interconnecting valve boxes, one for each cryo-module. This paper describes the whole cryogenic system and presents the commissioning results including the preliminary operation at 4.5 K of the first cryo- module in the experimental hall.
Nucleus Accumbens Acetylcholine Receptors Modulate Dopamine and Motivation.
Collins, Anne L; Aitken, Tara J; Greenfield, Venuz Y; Ostlund, Sean B; Wassum, Kate M
2016-11-01
Environmental reward-predictive cues can motivate reward-seeking behaviors. Although this influence is normally adaptive, it can become maladaptive in disordered states, such as addiction. Dopamine release in the nucleus accumbens core (NAc) is known to mediate the motivational impact of reward-predictive cues, but little is known about how other neuromodulatory systems contribute to cue-motivated behavior. Here, we examined the role of the NAc cholinergic receptor system in cue-motivated behavior using a Pavlovian-to-instrumental transfer task designed to assess the motivating influence of a reward-predictive cue over an independently-trained instrumental action. Disruption of NAc muscarinic acetylcholine receptor activity attenuated, whereas blockade of nicotinic receptors augmented cue-induced invigoration of reward seeking. We next examined a potential dopaminergic mechanism for this behavioral effect by combining fast-scan cyclic voltammetry with local pharmacological acetylcholine receptor manipulation. The data show evidence of opposing modulation of cue-evoked dopamine release, with muscarinic and nicotinic receptor antagonists causing suppression and augmentation, respectively, consistent with the behavioral effects of these manipulations. In addition to demonstrating cholinergic modulation of naturally-evoked and behaviorally-relevant dopamine signaling, these data suggest that NAc cholinergic receptors may gate the expression of cue-motivated behavior through modulation of phasic dopamine release.
Verification of quality parameters for portal images in radiotherapy.
Pesznyák, Csilla; Polgár, István; Weisz, Csaba; Király, Réka; Zaránd, Pál
2011-03-01
The purpose of the study was to verify different values of quality parameters of portal images in radiotherapy. We investigated image qualities of different field verification systems. Four EPIDs (Siemens OptiVue500aSi(®), Siemens BeamView Plus(®), Elekta iView(®) and Varian PortalVision™) were investigated with the PTW EPID QC PHANTOM(®) and compared with two portal film systems (Kodak X-OMAT(®) cassette with Kodak X-OMAT V(®) film and Kodak EC-L Lightweight(®) cassette with Kodak Portal Localisation ReadyPack(®) film). A comparison of the f50 and f25 values of the modulation transfer functions (MTFs) belonging to each of the systems revealed that the amorphous silicon EPIDs provided a slightly better high contrast resolution than the Kodak Portal Localisation ReadyPack(®) film with the EC-L Lightweight(®) cassette. The Kodak X-OMAT V(®) film gave a poor low contrast resolution: from the existing 27 holes only 9 were detectable. On the base of physical characteristics, measured in this work, the authors suggest the use of amorphous-silicon EPIDs producing the best image quality. Parameters of the EPIDs with scanning liquid ionisation chamber (SLIC) were very stable. The disadvantage of older versions of EPIDs like SLIC and VEPID is a poor DICOM implementation, and the modulation transfer function (MTF) values (f50 and f25) are less than that of aSi detectors.
NASA Astrophysics Data System (ADS)
Kenjeres, S.
2016-09-01
In the present paper we give a concise review of some recent highlights of our research dealing with electromagnetic control of flow, mixing and heat transfer of electrically conductive or magnetized fluids. We apply a combination of state-of-art numerical (DNS and LES) and experimental (PIV and LIF) techniques to provide fundamental insights into the complex phenomena of interactions between imposed (or induced) electromagnetic fields and underlying fluid flow. Our analysis covers an extensive range of working fluids, i.e. weakly- and highly-electrically-conductive, as well as magnetized fluids. These interactions are defined through the presence of different types of body forces acting per volume of fluid. A fully closed system of governing equations containing an extended set of the Navier-Stokes and a simplified set of the Maxwell equations is presented. The four characteristic examples are selected: the electromagnetic control of self-sustained jet oscillations, the electromagnetic enhancement of heat transfer in thermal convection, the wake interactions behind magnetic obstacles and finally, the thermo-magnetic convection in differentially heated cubical enclosure. The comparative assessment between experimental and numerical results is presented. It is concluded that generally good agreement between simulations and experiments is obtained for all cases considered, proving the concept of electromagnetic modulation, which can be used in numerous technological applications.
Cresswell, Kathrin M; Mozaffar, Hajar; Lee, Lisa; Williams, Robin; Sheikh, Aziz
2017-07-01
Substantial sums of money are being invested worldwide in health information technology. Realising benefits and mitigating safety risks is however highly dependent on effective integration of information within systems and/or interfacing to allow information exchange across systems. As part of an English programme of research, we explored the social and technical challenges relating to integration and interfacing experienced by early adopter hospitals of standalone and hospital-wide multimodular integrated electronic prescribing (ePrescribing) systems. We collected longitudinal qualitative data from six hospitals, which we conceptualised as case studies. We conducted 173 interviews with users, implementers and software suppliers (at up to three different times), 24 observations of system use and strategic meetings, 17 documents relating to implementation plans, and 2 whole-day expert round-table discussions. Data were thematically analysed initially within and then across cases, drawing on perspectives surrounding information infrastructures. We observed that integration and interfacing problems obstructed effective information transfer in both standalone and multimodular systems, resulting in threats to patient safety emerging from the lack of availability of timely information and duplicate data entry. Interfacing problems were immediately evident in some standalone systems where users had to cope with multiple log-ins, and this did not attenuate over time. Multimodular systems appeared at first sight to obviate such problems. However, with these systems, there was a perceived lack of data coherence across modules resulting in challenges in presenting a comprehensive overview of the patient record, this possibly resulting from the piecemeal implementation of modules with different functionalities. Although it was possible to access data from some primary care systems, we found poor two-way transfer of data between hospitals and primary care necessitating workarounds, which in turn led to the opportunity for new errors associated with duplicate and manual information transfer. Extending ePrescribing to include modules with other clinically important information needed to support care was still an aspiration in most sites, although some advanced multimodular systems had begun implementing this functionality. Multimodular systems were, however, seen as being difficult to interface with external systems. The decision to pursue a strategy of purchasing standalone systems and then interfacing these, or one of buying hospital-wide multimodular systems, is a pivotal one for hospitals in realising the vision of achieving a fully integrated digital record, and this should be predicated on a clear appreciation of the relative trade-offs between these choices. While multimodular systems offered somewhat better usability, standalone systems provided greater flexibility and opportunity for innovation, particularly in relation to interoperability with external systems and in relation to customisability to the needs of different user groups. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Kim, Minsoo; Kim, Yejin; Kim, Hyosoo; Piao, Wenhua; Kim, Changwon
2016-06-01
An operator decision support system (ODSS) is proposed to support operators of wastewater treatment plants (WWTPs) in making appropriate decisions. This system accounts for water quality (WQ) variations in WWTP influent and effluent and in the receiving water body (RWB). The proposed system is comprised of two diagnosis modules, three prediction modules, and a scenario-based supporting module (SSM). In the diagnosis modules, the WQs of the influent and effluent WWTP and of the RWB are assessed via multivariate analysis. Three prediction modules based on the k-nearest neighbors (k-NN) method, activated sludge model no. 2d (ASM2d) model, and QUAL2E model are used to forecast WQs for 3 days in advance. To compare various operating alternatives, SSM is applied to test various predetermined operating conditions in terms of overall oxygen transfer coefficient (Kla), waste sludge flow rate (Qw), return sludge flow rate (Qr), and internal recycle flow rate (Qir). In the case of unacceptable total phosphorus (TP), SSM provides appropriate information for the chemical treatment. The constructed ODSS was tested using data collected from Geumho River, which was the RWB, and S WWTP in Daegu City, South Korea. The results demonstrate the capability of the proposed ODSS to provide WWTP operators with more objective qualitative and quantitative assessments of WWTP and RWB WQs. Moreover, the current study shows that ODSS, using data collected from the study area, can be used to identify operational alternatives through SSM at an integrated urban wastewater management level.
NASA Technical Reports Server (NTRS)
1980-01-01
The accomplishments of the Point-Focusing Distributed Receiver Technology Project during fiscal year 1979 are detailed. Present studies involve designs of modular units that collect and concentrate solar energy via highly reflective, parabolic-shaped dishes. The concentrated energy is then converted to heat in a working fluid, such as hot gas. In modules designed to produce heat for industrial applications, a flexible line conveys the heated fluid from the module to a heat transfer network. In modules designed to produce electricity the fluid carries the heat directly to an engine in a power conversion unit located at the focus of the concentrator. The engine is mechanically linked to an electric generator. A Brayton-cycle engine is currently being developed as the most promising electrical energy converter to meet near-future needs.
2000-03-21
KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39A, the payload canister with the SPACEHAB Double Module and the Integrated Cargo Carrier (ICC) inside is lifted off the payload transporter toward the Payload Changeout Room (PCR) on the Rotating Service Structure (RSS). The PCR is an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. At right of the RSS is the Fixed Service Structure. The primary payloads on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000
2000-03-21
KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39A, the payload canister with the SPACEHAB Double Module and Integrated Cargo Carrier (ICC) inside is lifted up the Rotating Service Structure (RSS) toward the Payload Changeout Room, an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. At right of the RSS is the Fixed Service Structure, topped by the 80-foot-tall fiberglass lightning mast. The primary payload on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000
2000-03-21
KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39A, the payload canister with the SPACEHAB Double Module and Integrated Cargo Carrier (ICC) inside is lifted up the Rotating Service Structure (RSS) toward the Payload Changeout Room, an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. At right of the RSS is the Fixed Service Structure, topped by the 80-foot-tall fiberglass lightning mast. The primary payload on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000
2000-03-21
KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39A, the payload canister with the SPACEHAB Double Module and the Integrated Cargo Carrier (ICC) inside is lifted off the payload transporter toward the Payload Changeout Room (PCR) on the Rotating Service Structure (RSS). The PCR is an environmentally controlled facility supporting cargo delivery to the pad and vertical installation in the orbiter cargo bay. At right of the RSS is the Fixed Service Structure. The primary payloads on mission STS-101, the module and ICC contain internal logistics and resupply cargo for restoring full redundancy to the International Space Station power system in preparation for the arrival of the next pressurized module, the Russian-built Zvezda. The payloads will be transferred to Space Shuttle Atlantis after Atlantis rolls out to the pad. Launch of Atlantis on mission STS-101 is scheduled no earlier than April 17, 2000
Zhang, Jing; Chen, Zhao; Yang, Lan; Pan, Fang-Fang; Yu, Guang-Ao; Yin, Jun; Liu, Sheng Hua
2016-01-01
The research efforts on oligoacene systems are still relatively limited mainly due to the synthetic challenge and the extreme instability of longer acenes. Herein, these two issues have been overcome through elaborative modification and the stable pentacene species has been successfully synthesized. Additionally, a series of bis(diarylamino) compounds linked by variable-length oligoacene bridges ranging from one to five fused rings (benzene (1a), naphthalene (1b), anthracene (1c), tetracene (1d) and pentacene (1e)) have been prepared to probe the effect of the extent of π-conjugation on the electron transfer properties. Compound 1c exhibits a high planarity between the anthracyl bridge and the two nitrogen cores and the molecular packing shows a two-dimensional herringbone characteristic. Combined studies based on electrochemistry and spectroelectrochemistry demonstrate that (i) the electronic coupling across the oligoacene linkers between two diarylamine termini exponentially decrease with a moderate attenuation constant (β) of 0.14 Å−1 in these length-modulated systems and (ii) the associated radical cations [1a]+–[1e]+ are classified as the class II Robin–Day mixed-valence systems. Furthermore, density functional theory (DFT) calculations have been conducted to gain insight into the nature of electron transfer processes in these oligoacene systems. PMID:27805023
Enhancement of CLAIM (clinical accounting information) for a localized Chinese version.
Guo, Jinqiu; Takada, Akira; Niu, Tie; He, Miao; Tanaka, Koji; Sato, Junzo; Suzuki, Muneou; Takahashi, Kiwamu; Daimon, Hiroyuki; Suzuki, Toshiaki; Nakashima, Yusei; Araki, Kenji; Yoshihara, Hiroyuki
2005-10-01
CLinical Accounting InforMation (CLAIM) is a standard for the exchange of data between patient accounting systems and electronic medical record (EMR) systems. It uses eXtensible Markup Language (XML) as a meta-language and was developed in Japan. CLAIM is subordinate to the Medical Markup Language (MML) standard, which allows the exchange of medical data between different medical institutions. It has inherited the basic structure of MML 2.x and the current version, version 2.1, contains two modules and nine data definition tables. In China, no data exchange standard yet exists that links EMR systems to accounting systems. Taking advantage of CLAIM's flexibility, we created a localized Chinese version based on CLAIM 2.1. Since Chinese receipt systems differ from those of Japan, some information such as prescription formats, etc. are also different from those in Japan. Two CLAIM modules were re-engineered and six data definition tables were either added or redefined. The Chinese version of CLAIM takes local needs into account, and consequently it is now possible to transfer data between the patient accounting systems and EMR systems of Chinese medical institutions effectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmer, M.E.
1997-12-05
This V and V Report includes analysis of two revisions of the DMS [data management system] System Requirements Specification (SRS) and the Preliminary System Design Document (PSDD); the source code for the DMS Communication Module (DMSCOM) messages; the source code for selected DMS Screens, and the code for the BWAS Simulator. BDM Federal analysts used a series of matrices to: compare the requirements in the System Requirements Specification (SRS) to the specifications found in the System Design Document (SDD), to ensure the design supports the business functions, compare the discreet parts of the SDD with each other, to ensure thatmore » the design is consistent and cohesive, compare the source code of the DMS Communication Module with the specifications, to ensure that the resultant messages will support the design, compare the source code of selected screens to the specifications to ensure that resultant system screens will support the design, compare the source code of the BWAS simulator with the requirements to interface with DMS messages and data transfers relating to the BWAS operations.« less
Sailamul, Pachaya; Jang, Jaeson; Paik, Se-Bum
2017-12-01
Correlated neural activities such as synchronizations can significantly alter the characteristics of spike transfer between neural layers. However, it is not clear how this synchronization-dependent spike transfer can be affected by the structure of convergent feedforward wiring. To address this question, we implemented computer simulations of model neural networks: a source and a target layer connected with different types of convergent wiring rules. In the Gaussian-Gaussian (GG) model, both the connection probability and the strength are given as Gaussian distribution as a function of spatial distance. In the Uniform-Constant (UC) and Uniform-Exponential (UE) models, the connection probability density is a uniform constant within a certain range, but the connection strength is set as a constant value or an exponentially decaying function, respectively. Then we examined how the spike transfer function is modulated under these conditions, while static or synchronized input patterns were introduced to simulate different levels of feedforward spike synchronization. We observed that the synchronization-dependent modulation of the transfer function appeared noticeably different for each convergence condition. The modulation of the spike transfer function was largest in the UC model, and smallest in the UE model. Our analysis showed that this difference was induced by the different spike weight distributions that was generated from convergent synapses in each model. Our results suggest that, the structure of the feedforward convergence is a crucial factor for correlation-dependent spike control, thus must be considered important to understand the mechanism of information transfer in the brain.
Tests with beam setup of the TileCal phase-II upgrade electronics
NASA Astrophysics Data System (ADS)
Reward Hlaluku, Dingane
2017-09-01
The LHC has planned a series of upgrades culminating in the High Luminosity LHC which will have an average luminosity 5-7 times larger than the nominal Run-2 value. The ATLAS Tile calorimeter plans to introduce a new readout architecture by completely replacing the back-end and front-end electronics for the High Luminosity LHC. The photomultiplier signals will be fully digitized and transferred for every bunch crossing to the off-detector Tile PreProcessor. The Tile PreProcessor will further provide preprocessed digital data to the first level of trigger with improved spatial granularity and energy resolution in contrast to the current analog trigger signals. A single super-drawer module commissioned with the phase-II upgrade electronics is to be inserted into the real detector to evaluate and qualify the new readout and trigger concepts in the overall ATLAS data acquisition system. This new super-drawer, so-called hybrid Demonstrator, must provide analog trigger signals for backward compatibility with the current system. This Demonstrator drawer has been inserted into a Tile calorimeter module prototype to evaluate the performance in the lab. In parallel, one more module has been instrumented with two other front-end electronics options based on custom ASICs (QIE and FATALIC) which are under evaluation. These two modules together with three other modules composed of the current system electronics were exposed to different particles and energies in three test-beam campaigns during 2015 and 2016.
Modelling threats to water quality from fire suppression chemicals and post-fire erosion
NASA Astrophysics Data System (ADS)
Hyde, Kevin; Ziemniak, Chris; Elliot, William; Samuels, William
2014-05-01
Misapplication of fire retardant chemicals into streams and rivers may threaten aquatic life. The possible threat depends on the contaminant concentration that, in part, is controlled by dispersion within flowing water. In the event of a misapplication, methods are needed to rapidly estimate the chemical mass entering the waterway and the dispersion and transport within the system. Here we demonstrate a new tool that calculates the chemical mass based on aircraft delivery system, fire chemical type, and stream and intersect geometry. The estimated mass is intended to be transferred into a GIS module that uses real-time stream data to map and simulate the dispersion and transport downstream. This system currently accounts only for aqueous transport. We envision that the GIS module can be modified to incorporate sediment transport, specifically to model movement of sediments from post-fire erosion. This modification could support assessment of threats of post-fire erosion to water quality and water supply systems.
NASA Technical Reports Server (NTRS)
Al-Jaar, Robert Y.; Desrochers, Alan A.
1989-01-01
The main objective of this research is to develop a generic modeling methodology with a flexible and modular framework to aid in the design and performance evaluation of integrated manufacturing systems using a unified model. After a thorough examination of the available modeling methods, the Petri Net approach was adopted. The concurrent and asynchronous nature of manufacturing systems are easily captured by Petri Net models. Three basic modules were developed: machine, buffer, and Decision Making Unit. The machine and buffer modules are used for modeling transfer lines and production networks. The Decision Making Unit models the functions of a computer node in a complex Decision Making Unit Architecture. The underlying model is a Generalized Stochastic Petri Net (GSPN) that can be used for performance evaluation and structural analysis. GSPN's were chosen because they help manage the complexity of modeling large manufacturing systems. There is no need to enumerate all the possible states of the Markov Chain since they are automatically generated from the GSPN model.
Wave Tank Studies of Strong Modulation of Wind Ripples Due To Long Waves
NASA Astrophysics Data System (ADS)
Ermakov, S.; Sergievskaya, I.; Shchegolkov, Yu.
Modulation of wind capillary-gravity ripples due to long waves has been studied in wave tank experiment at low wind speeds using Ka-band radar. The experiments were carried out both for clean water and the water surface covered with surfactant films. It is obtained that the modulation of radar signals is quite strong and can increase with surfactant concentration and fetch. It is shown that the hydrodynamic Modulation Transfer Function (MTF) calculated for free wind ripples and taking into account the kinematic (straining) effect, variations of the wind stress and variations of surfactant concentration strongly underestimates experimental MTF-values. The effect of strong modulation is assumed to be connected with nonlinear harmonics of longer dm-cm- scale waves - bound waves ("parasitic ripples"). The intensity of bound waves depends strongly on the amplitude of decimetre-scale waves, therefore even weak modulation of the dm-scale waves due to long waves results to strong ("cascade") modulation of bound waves. Modulation of the system of "free/bound waves" is estimated using results of wave tank studies of bound waves generation and is shown to be in quali- tative agreement with experiment. This work was supported by MOD, UK via DERA Winfrith (Project ISTC 1774P) and by RFBR (Project 02-05-65102).
Resin Permeation Through Compressed Glass Insulation for Iter Central Solenoid
NASA Astrophysics Data System (ADS)
Reed, R.; Roundy, F.; Martovetsky, N.; Miller, J.; Mann, T.
2010-04-01
Concern has been expressed about the ability of the resin system to penetrate the compressed dry glass of the turn and layer insulation during vacuum-pressure impregnation of ITER Central Solenoid (CS) modules. The stacked pancake layers of each module result in compression loads up to 9×104 kg (100 tons) on the lowest layers of each segment. The objective of this program was to assess the effects of this compressive load on resin permeation under resin-transfer conditions and with materials identical to that expected to be used in actual coil fabrication [45-50 °C, vacuum of 133 Pa (1 torr), DGEBF/anhydride epoxy resin system, E-glass satin weave, applied pressure of 125 kPa]. The experimental conditions and materials are detailed and the permeation results presented in this paper.
Study of information transfer optimization for communication satellites
NASA Technical Reports Server (NTRS)
Odenwalder, J. P.; Viterbi, A. J.; Jacobs, I. M.; Heller, J. A.
1973-01-01
The results are presented of a study of source coding, modulation/channel coding, and systems techniques for application to teleconferencing over high data rate digital communication satellite links. Simultaneous transmission of video, voice, data, and/or graphics is possible in various teleconferencing modes and one-way, two-way, and broadcast modes are considered. A satellite channel model including filters, limiter, a TWT, detectors, and an optimized equalizer is treated in detail. A complete analysis is presented for one set of system assumptions which exclude nonlinear gain and phase distortion in the TWT. Modulation, demodulation, and channel coding are considered, based on an additive white Gaussian noise channel model which is an idealization of an equalized channel. Source coding with emphasis on video data compression is reviewed, and the experimental facility utilized to test promising techniques is fully described.
NASA Astrophysics Data System (ADS)
Alqasemi, Umar; Li, Hai; Aguirre, Andres; Zhu, Quing
2011-03-01
Co-registering ultrasound (US) and photoacoustic (PA) imaging is a logical extension to conventional ultrasound because both modalities provide complementary information of tumor morphology, tumor vasculature and hypoxia for cancer detection and characterization. In addition, both modalities are capable of providing real-time images for clinical applications. In this paper, a Field Programmable Gate Array (FPGA) and Digital Signal Processor (DSP) module-based real-time US/PA imaging system is presented. The system provides real-time US/PA data acquisition and image display for up to 5 fps* using the currently implemented DSP board. It can be upgraded to 15 fps, which is the maximum pulse repetition rate of the used laser, by implementing an advanced DSP module. Additionally, the photoacoustic RF data for each frame is saved for further off-line processing. The system frontend consists of eight 16-channel modules made of commercial and customized circuits. Each 16-channel module consists of two commercial 8-channel receiving circuitry boards and one FPGA board from Analog Devices. Each receiving board contains an IC† that combines. 8-channel low-noise amplifiers, variable-gain amplifiers, anti-aliasing filters, and ADC's‡ in a single chip with sampling frequency of 40MHz. The FPGA board captures the LVDSξ Double Data Rate (DDR) digital output of the receiving board and performs data conditioning and subbeamforming. A customized 16-channel transmission circuitry is connected to the two receiving boards for US pulseecho (PE) mode data acquisition. A DSP module uses External Memory Interface (EMIF) to interface with the eight 16-channel modules through a customized adaptor board. The DSP transfers either sub-beamformed data (US pulse-echo mode or PAI imaging mode) or raw data from FPGA boards to its DDR-2 memory through the EMIF link, then it performs additional processing, after that, it transfer the data to the PC** for further image processing. The PC code performs image processing including demodulation, beam envelope detection and scan conversion. Additionally, the PC code pre-calculates the delay coefficients used for transmission focusing and receiving dynamic focusing for different types of transducers to speed up the imaging process. To further speed up the imaging process, a multi-threads technique is implemented in order to allow formation of previous image frame data and acquisition of the next one simultaneously. The system is also capable of doing semi-real-time automated SO2 imaging at 10 seconds per frame by changing the wavelength knob of the laser automatically using a stepper motor controlled by the system. Initial in vivo experiments were performed on animal tumors to map out its vasculature and hypoxia level, which were superimposed on co-registered US images. The real-time system allows capturing co-registered US/PA images free of motion artifacts and also provides dynamitic information when contrast agents are used.