Sample records for system network architecture

  1. Airport Surface Network Architecture Definition

    NASA Technical Reports Server (NTRS)

    Nguyen, Thanh C.; Eddy, Wesley M.; Bretmersky, Steven C.; Lawas-Grodek, Fran; Ellis, Brenda L.

    2006-01-01

    Currently, airport surface communications are fragmented across multiple types of systems. These communication systems for airport operations at most airports today are based dedicated and separate architectures that cannot support system-wide interoperability and information sharing. The requirements placed upon the Communications, Navigation, and Surveillance (CNS) systems in airports are rapidly growing and integration is urgently needed if the future vision of the National Airspace System (NAS) and the Next Generation Air Transportation System (NGATS) 2025 concept are to be realized. To address this and other problems such as airport surface congestion, the Space Based Technologies Project s Surface ICNS Network Architecture team at NASA Glenn Research Center has assessed airport surface communications requirements, analyzed existing and future surface applications, and defined a set of architecture functions that will help design a scalable, reliable and flexible surface network architecture to meet the current and future needs of airport operations. This paper describes the systems approach or methodology to networking that was employed to assess airport surface communications requirements, analyze applications, and to define the surface network architecture functions as the building blocks or components of the network. The systems approach used for defining these functions is relatively new to networking. It is viewing the surface network, along with its environment (everything that the surface network interacts with or impacts), as a system. Associated with this system are sets of services that are offered by the network to the rest of the system. Therefore, the surface network is considered as part of the larger system (such as the NAS), with interactions and dependencies between the surface network and its users, applications, and devices. The surface network architecture includes components such as addressing/routing, network management, network performance and security.

  2. 75 FR 76647 - Special Conditions: Boeing Model 747-8 Airplanes, Systems and Data Networks Security-Isolation or...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-09

    ...: Digital systems architecture composed of several connected networks. The proposed network architecture..., communication, and navigation systems (Aircraft Control Domain), 2. Airline business and administrative support... system architectures. Furthermore, 14 CFR regulations and current system safety assessment policy and...

  3. The middleware architecture supports heterogeneous network systems for module-based personal robot system

    NASA Astrophysics Data System (ADS)

    Choo, Seongho; Li, Vitaly; Choi, Dong Hee; Jung, Gi Deck; Park, Hong Seong; Ryuh, Youngsun

    2005-12-01

    On developing the personal robot system presently, the internal architecture is every module those occupy separated functions are connected through heterogeneous network system. This module-based architecture supports specialization and division of labor at not only designing but also implementation, as an effect of this architecture, it can reduce developing times and costs for modules. Furthermore, because every module is connected among other modules through network systems, we can get easy integrations and synergy effect to apply advanced mutual functions by co-working some modules. In this architecture, one of the most important technologies is the network middleware that takes charge communications among each modules connected through heterogeneous networks systems. The network middleware acts as the human nerve system inside of personal robot system; it relays, transmits, and translates information appropriately between modules that are similar to human organizations. The network middleware supports various hardware platform, heterogeneous network systems (Ethernet, Wireless LAN, USB, IEEE 1394, CAN, CDMA-SMS, RS-232C). This paper discussed some mechanisms about our network middleware to intercommunication and routing among modules, methods for real-time data communication and fault-tolerant network service. There have designed and implemented a layered network middleware scheme, distributed routing management, network monitoring/notification technology on heterogeneous networks for these goals. The main theme is how to make routing information in our network middleware. Additionally, with this routing information table, we appended some features. Now we are designing, making a new version network middleware (we call 'OO M/W') that can support object-oriented operation, also are updating program sources itself for object-oriented architecture. It is lighter, faster, and can support more operation systems and heterogeneous network systems, but other general purposed middlewares like CORBA, UPnP, etc. can support only one network protocol or operating system.

  4. Study on networking issues of medium earth orbit satellite communications systems

    NASA Technical Reports Server (NTRS)

    Araki, Noriyuki; Shinonaga, Hideyuki; Ito, Yasuhiko

    1993-01-01

    Two networking issues of communications systems with medium earth orbit (MEO) satellites, namely network architectures and location determination and registration methods for hand-held terminals, are investigated in this paper. For network architecture, five candidate architectures are considered and evaluated in terms of signaling traffic. For location determination and registration, two methods are discussed and evaluated.

  5. A neural network architecture for implementation of expert systems for real time monitoring

    NASA Technical Reports Server (NTRS)

    Ramamoorthy, P. A.

    1991-01-01

    Since neural networks have the advantages of massive parallelism and simple architecture, they are good tools for implementing real time expert systems. In a rule based expert system, the antecedents of rules are in the conjunctive or disjunctive form. We constructed a multilayer feedforward type network in which neurons represent AND or OR operations of rules. Further, we developed a translator which can automatically map a given rule base into the network. Also, we proposed a new and powerful yet flexible architecture that combines the advantages of both fuzzy expert systems and neural networks. This architecture uses the fuzzy logic concepts to separate input data domains into several smaller and overlapped regions. Rule-based expert systems for time critical applications using neural networks, the automated implementation of rule-based expert systems with neural nets, and fuzzy expert systems vs. neural nets are covered.

  6. 75 FR 2433 - Special Conditions: Boeing Model 747-8/-8F Airplanes, Systems and Data Networks Security...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-15

    ... design features associated with the architecture and connectivity capabilities of the airplane's computer... novel or unusual design features: digital systems architecture composed of several connected networks. The architecture and network configuration may be used for, or interfaced with, a diverse set of...

  7. Design mobile satellite system architecture as an integral part of the cellular access digital network

    NASA Technical Reports Server (NTRS)

    Chien, E. S. K.; Marinho, J. A.; Russell, J. E., Sr.

    1988-01-01

    The Cellular Access Digital Network (CADN) is the access vehicle through which cellular technology is brought into the mainstream of the evolving integrated telecommunications network. Beyond the integrated end-to-end digital access and per call network services provisioning of the Integrated Services Digital Network (ISDN), the CADN engenders the added capability of mobility freedom via wireless access. One key element of the CADN network architecture is the standard user to network interface that is independent of RF transmission technology. Since the Mobile Satellite System (MSS) is envisioned to not only complement but also enhance the capabilities of the terrestrial cellular telecommunications network, compatibility and interoperability between terrestrial cellular and mobile satellite systems are vitally important to provide an integrated moving telecommunications network of the future. From a network standpoint, there exist very strong commonalities between the terrestrial cellular system and the mobile satellite system. Therefore, the MSS architecture should be designed as an integral part of the CADN. This paper describes the concept of the CADN, the functional architecture of the MSS, and the user-network interface signaling protocols.

  8. Architecture and System Engineering Development Study of Space-Based Satellite Networks for NASA Missions

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.

    2003-01-01

    Traditional NASA missions, both near Earth and deep space, have been stovepipe in nature and point-to-point in architecture. Recently, NASA and others have conceptualized missions that required space-based networking. The notion of networks in space is a drastic shift in thinking and requires entirely new architectures, radio systems (antennas, modems, and media access), and possibly even new protocols. A full system engineering approach for some key mission architectures will occur that considers issues such as the science being performed, stationkeeping, antenna size, contact time, data rates, radio-link power requirements, media access techniques, and appropriate networking and transport protocols. This report highlights preliminary architecture concepts and key technologies that will be investigated.

  9. Advanced information processing system: Input/output network management software

    NASA Technical Reports Server (NTRS)

    Nagle, Gail; Alger, Linda; Kemp, Alexander

    1988-01-01

    The purpose of this document is to provide the software requirements and specifications for the Input/Output Network Management Services for the Advanced Information Processing System. This introduction and overview section is provided to briefly outline the overall architecture and software requirements of the AIPS system before discussing the details of the design requirements and specifications of the AIPS I/O Network Management software. A brief overview of the AIPS architecture followed by a more detailed description of the network architecture.

  10. OXC management and control system architecture with scalability, maintenance, and distributed managing environment

    NASA Astrophysics Data System (ADS)

    Park, Soomyung; Joo, Seong-Soon; Yae, Byung-Ho; Lee, Jong-Hyun

    2002-07-01

    In this paper, we present the Optical Cross-Connect (OXC) Management Control System Architecture, which has the scalability and robust maintenance and provides the distributed managing environment in the optical transport network. The OXC system we are developing, which is divided into the hardware and the internal and external software for the OXC system, is made up the OXC subsystem with the Optical Transport Network (OTN) sub layers-hardware and the optical switch control system, the signaling control protocol subsystem performing the User-to-Network Interface (UNI) and Network-to-Network Interface (NNI) signaling control, the Operation Administration Maintenance & Provisioning (OAM&P) subsystem, and the network management subsystem. And the OXC management control system has the features that can support the flexible expansion of the optical transport network, provide the connectivity to heterogeneous external network elements, be added or deleted without interrupting OAM&P services, be remotely operated, provide the global view and detail information for network planner and operator, and have Common Object Request Broker Architecture (CORBA) based the open system architecture adding and deleting the intelligent service networking functions easily in future. To meet these considerations, we adopt the object oriented development method in the whole developing steps of the system analysis, design, and implementation to build the OXC management control system with the scalability, the maintenance, and the distributed managing environment. As a consequently, the componentification for the OXC operation management functions of each subsystem makes the robust maintenance, and increases code reusability. Also, the component based OXC management control system architecture will have the flexibility and scalability in nature.

  11. Architectures and protocols for an integrated satellite-terrestrial mobile system

    NASA Technical Reports Server (NTRS)

    Delre, E.; Dellipriscoli, F.; Iannucci, P.; Menolascino, R.; Settimo, F.

    1993-01-01

    This paper aims to depict some basic concepts related to the definition of an integrated system for mobile communications, consisting of a satellite network and a terrestrial cellular network. In particular three aspects are discussed: (1) architecture definition for the satellite network; (2) assignment strategy of the satellite channels; and (3) definition of 'internetworking procedures' between cellular and satellite network, according to the selected architecture and the satellite channel assignment strategy.

  12. On Event-Triggered Adaptive Architectures for Decentralized and Distributed Control of Large-Scale Modular Systems

    PubMed Central

    Albattat, Ali; Gruenwald, Benjamin C.; Yucelen, Tansel

    2016-01-01

    The last decade has witnessed an increased interest in physical systems controlled over wireless networks (networked control systems). These systems allow the computation of control signals via processors that are not attached to the physical systems, and the feedback loops are closed over wireless networks. The contribution of this paper is to design and analyze event-triggered decentralized and distributed adaptive control architectures for uncertain networked large-scale modular systems; that is, systems consist of physically-interconnected modules controlled over wireless networks. Specifically, the proposed adaptive architectures guarantee overall system stability while reducing wireless network utilization and achieving a given system performance in the presence of system uncertainties that can result from modeling and degraded modes of operation of the modules and their interconnections between each other. In addition to the theoretical findings including rigorous system stability and the boundedness analysis of the closed-loop dynamical system, as well as the characterization of the effect of user-defined event-triggering thresholds and the design parameters of the proposed adaptive architectures on the overall system performance, an illustrative numerical example is further provided to demonstrate the efficacy of the proposed decentralized and distributed control approaches. PMID:27537894

  13. On Event-Triggered Adaptive Architectures for Decentralized and Distributed Control of Large-Scale Modular Systems.

    PubMed

    Albattat, Ali; Gruenwald, Benjamin C; Yucelen, Tansel

    2016-08-16

    The last decade has witnessed an increased interest in physical systems controlled over wireless networks (networked control systems). These systems allow the computation of control signals via processors that are not attached to the physical systems, and the feedback loops are closed over wireless networks. The contribution of this paper is to design and analyze event-triggered decentralized and distributed adaptive control architectures for uncertain networked large-scale modular systems; that is, systems consist of physically-interconnected modules controlled over wireless networks. Specifically, the proposed adaptive architectures guarantee overall system stability while reducing wireless network utilization and achieving a given system performance in the presence of system uncertainties that can result from modeling and degraded modes of operation of the modules and their interconnections between each other. In addition to the theoretical findings including rigorous system stability and the boundedness analysis of the closed-loop dynamical system, as well as the characterization of the effect of user-defined event-triggering thresholds and the design parameters of the proposed adaptive architectures on the overall system performance, an illustrative numerical example is further provided to demonstrate the efficacy of the proposed decentralized and distributed control approaches.

  14. 76 FR 36863 - Special Conditions: Gulfstream Model GVI Airplane; Electronic Systems Security Protection From...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-23

    ... airplane. This airplane will have novel or unusual design features associated with the architecture and... incorporate the following novel or unusual design features: Digital systems architecture composed of several connected networks. The proposed architecture and network configuration may be used for, or interfaced with...

  15. 78 FR 70848 - Special Conditions: Boeing Model 777-200, -300, and -300ER Series Airplanes; Aircraft Electronic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-27

    ... the EFB architecture and existing airplane network systems. The applicable airworthiness regulations..., software-configurable avionics, and fiber-optic avionics networks. The proposed Class 3 EFB architecture is... existing regulations and guidance material did not anticipate this type of system architecture or...

  16. 78 FR 70849 - Special Conditions: Boeing Model 777-200, -300, and -300ER Series Airplanes; Aircraft Electronic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-27

    ... the EFB architecture and existing airplane network systems. The applicable airworthiness regulations..., software-configurable avionics, and fiber-optic avionics networks. The proposed Class 3 EFB architecture is... existing regulations and guidance material did not anticipate this type of system architecture or...

  17. Fault tolerant architectures for integrated aircraft electronics systems

    NASA Technical Reports Server (NTRS)

    Levitt, K. N.; Melliar-Smith, P. M.; Schwartz, R. L.

    1983-01-01

    Work into possible architectures for future flight control computer systems is described. Ada for Fault-Tolerant Systems, the NETS Network Error-Tolerant System architecture, and voting in asynchronous systems are covered.

  18. Architecting the Communication and Navigation Networks for NASA's Space Exploration Systems

    NASA Technical Reports Server (NTRS)

    Bhassin, Kul B.; Putt, Chuck; Hayden, Jeffrey; Tseng, Shirley; Biswas, Abi; Kennedy, Brian; Jennings, Esther H.; Miller, Ron A.; Hudiburg, John; Miller, Dave; hide

    2007-01-01

    NASA is planning a series of short and long duration human and robotic missions to explore the Moon and then Mars. A key objective of the missions is to grow, through a series of launches, a system of systems communication, navigation, and timing infrastructure at minimum cost while providing a network-centric infrastructure that maximizes the exploration capabilities and science return. There is a strong need to use architecting processes in the mission pre-formulation stage to describe the systems, interfaces, and interoperability needed to implement multiple space communication systems that are deployed over time, yet support interoperability with each deployment phase and with 20 years of legacy systems. In this paper we present a process for defining the architecture of the communications, navigation, and networks needed to support future space explorers with the best adaptable and evolable network-centric space exploration infrastructure. The process steps presented are: 1) Architecture decomposition, 2) Defining mission systems and their interfaces, 3) Developing the communication, navigation, networking architecture, and 4) Integrating systems, operational and technical views and viewpoints. We demonstrate the process through the architecture development of the communication network for upcoming NASA space exploration missions.

  19. Architecture for Cognitive Networking within NASAs Future Space Communications Infrastructure

    NASA Technical Reports Server (NTRS)

    Clark, Gilbert J., III; Eddy, Wesley M.; Johnson, Sandra K.; Barnes, James; Brooks, David

    2016-01-01

    Future space mission concepts and designs pose many networking challenges for command, telemetry, and science data applications with diverse end-to-end data delivery needs. For future end-to-end architecture designs, a key challenge is meeting expected application quality of service requirements for multiple simultaneous mission data flows with options to use diverse onboard local data buses, commercial ground networks, and multiple satellite relay constellations in LEO, MEO, GEO, or even deep space relay links. Effectively utilizing a complex network topology requires orchestration and direction that spans the many discrete, individually addressable computer systems, which cause them to act in concert to achieve the overall network goals. The system must be intelligent enough to not only function under nominal conditions, but also adapt to unexpected situations, and reorganize or adapt to perform roles not originally intended for the system or explicitly programmed. This paper describes architecture features of cognitive networking within the future NASA space communications infrastructure, and interacting with the legacy systems and infrastructure in the meantime. The paper begins by discussing the need for increased automation, including inter-system collaboration. This discussion motivates the features of an architecture including cognitive networking for future missions and relays, interoperating with both existing endpoint-based networking models and emerging information-centric models. From this basis, we discuss progress on a proof-of-concept implementation of this architecture as a cognitive networking on-orbit application on the SCaN Testbed attached to the International Space Station.

  20. SynchroPhasor Measurements: System Architecture and Performance Evaluation in Supporting Wide-Area Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Zhenyu; Dagle, Jeffery E.

    2008-07-31

    The infrastructure of phasor measurements have evolved over the last two decades from isolated measurement units to networked measurement systems with footprints beyond individual utility companies. This is, to a great extent, a bottom-up self-evolving process except some local systems built by design. Given the number of phasor measurement units (PMUs) in the system is small (currently 70 each in western and eastern interconnections), current phasor network architecture works just fine. However, the architecture will become a bottleneck when large number of PMUs are installed (e.g. >1000~10000). The need for phasor architecture design has yet to be addressed. This papermore » reviews the current phasor networks and investigates future architectures, as related to the efforts undertaken by the North America SynchroPhasor Initiative (NASPI). Then it continues to present staged system tests to evaluate the performance of phasor networks, which is a common practice in the Western Electricity Coordinating Council (WECC) system. This is followed by field measurement evaluation and the implication of phasor quality issues on phasor applications.« less

  1. Providing the full DDF link protection for bus-connected SIEPON based system architecture

    NASA Astrophysics Data System (ADS)

    Hwang, I.-Shyan; Pakpahan, Andrew Fernando; Liem, Andrew Tanny; Nikoukar, AliAkbar

    2016-09-01

    Currently a massive amount of traffic per second is delivered through EPON systems, one of the prominent access network technologies for delivering the next generation network. Therefore, it is vital to keep the EPON optical distribution network (ODN) working by providing the necessity protection mechanism in the deployed devices; otherwise, when failures occur it will cause a great loss for both network operators and business customers. In this paper, we propose a bus-connected architecture to protect and recover distribution drop fiber (DDF) link faults or transceiver failures at ONU(s) in SIEPON system. The proposed architecture provides a cost-effective architecture, which delivers the high fault-tolerance in handling multiple DDF faults, while also providing flexibility in choosing the backup ONU assignments. Simulation results show that the proposed architecture provides the reliability and maintains quality of service (QoS) performance in terms of mean packet delay, system throughput, packet loss and EF jitter when DDF link failures occur.

  2. Heterogeneous Spacecraft Networks

    NASA Technical Reports Server (NTRS)

    Nakamura, Yosuke (Inventor); Faber, Nicolas T. (Inventor); Frost, Chad R. (Inventor); Alena, Richard L. (Inventor)

    2018-01-01

    The present invention provides a heterogeneous spacecraft network including a network management architecture to facilitate communication between a plurality of operations centers and a plurality of data user communities. The network management architecture includes a plurality of network nodes in communication with the plurality of operations centers. The present invention also provides a method of communication for a heterogeneous spacecraft network. The method includes: transmitting data from a first space segment to a first ground segment; transmitting the data from the first ground segment to a network management architecture; transmitting data from a second space segment to a second ground segment, the second space and ground segments having incompatible communication systems with the first space and ground segments; transmitting the data from the second ground station to the network management architecture; and, transmitting data from the network management architecture to a plurality of data user communities.

  3. Architecture for Cognitive Networking within NASA's Future Space Communications Infrastructure

    NASA Technical Reports Server (NTRS)

    Clark, Gilbert; Eddy, Wesley M.; Johnson, Sandra K.; Barnes, James; Brooks, David

    2016-01-01

    Future space mission concepts and designs pose many networking challenges for command, telemetry, and science data applications with diverse end-to-end data delivery needs. For future end-to-end architecture designs, a key challenge is meeting expected application quality of service requirements for multiple simultaneous mission data flows with options to use diverse onboard local data buses, commercial ground networks, and multiple satellite relay constellations in LEO, GEO, MEO, or even deep space relay links. Effectively utilizing a complex network topology requires orchestration and direction that spans the many discrete, individually addressable computer systems, which cause them to act in concert to achieve the overall network goals. The system must be intelligent enough to not only function under nominal conditions, but also adapt to unexpected situations, and reorganize or adapt to perform roles not originally intended for the system or explicitly programmed. This paper describes an architecture enabling the development and deployment of cognitive networking capabilities into the envisioned future NASA space communications infrastructure. We begin by discussing the need for increased automation, including inter-system discovery and collaboration. This discussion frames the requirements for an architecture supporting cognitive networking for future missions and relays, including both existing endpoint-based networking models and emerging information-centric models. From this basis, we discuss progress on a proof-of-concept implementation of this architecture, and results of implementation and initial testing of a cognitive networking on-orbit application on the SCaN Testbed attached to the International Space Station.

  4. CVISN system design description

    DOT National Transportation Integrated Search

    1999-05-01

    This document focuses on the Commercial Vehicle Information Systems and Networks (CVISN) System Design and Architecture. It begins with a discussion on the relationships between the National ITS Architecture the CVISN Architecture, and the Internatio...

  5. Proton beam therapy control system

    DOEpatents

    Baumann, Michael A [Riverside, CA; Beloussov, Alexandre V [Bernardino, CA; Bakir, Julide [Alta Loma, CA; Armon, Deganit [Redlands, CA; Olsen, Howard B [Colton, CA; Salem, Dana [Riverside, CA

    2008-07-08

    A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.

  6. Proton beam therapy control system

    DOEpatents

    Baumann, Michael A.; Beloussov, Alexandre V.; Bakir, Julide; Armon, Deganit; Olsen, Howard B.; Salem, Dana

    2010-09-21

    A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.

  7. Proton beam therapy control system

    DOEpatents

    Baumann, Michael A; Beloussov, Alexandre V; Bakir, Julide; Armon, Deganit; Olsen, Howard B; Salem, Dana

    2013-06-25

    A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.

  8. Proton beam therapy control system

    DOEpatents

    Baumann, Michael A; Beloussov, Alexandre V; Bakir, Julide; Armon, Deganit; Olsen, Howard B; Salem, Dana

    2013-12-03

    A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.

  9. Hybrid network defense model based on fuzzy evaluation.

    PubMed

    Cho, Ying-Chiang; Pan, Jen-Yi

    2014-01-01

    With sustained and rapid developments in the field of information technology, the issue of network security has become increasingly prominent. The theme of this study is network data security, with the test subject being a classified and sensitive network laboratory that belongs to the academic network. The analysis is based on the deficiencies and potential risks of the network's existing defense technology, characteristics of cyber attacks, and network security technologies. Subsequently, a distributed network security architecture using the technology of an intrusion prevention system is designed and implemented. In this paper, first, the overall design approach is presented. This design is used as the basis to establish a network defense model, an improvement over the traditional single-technology model that addresses the latter's inadequacies. Next, a distributed network security architecture is implemented, comprising a hybrid firewall, intrusion detection, virtual honeynet projects, and connectivity and interactivity between these three components. Finally, the proposed security system is tested. A statistical analysis of the test results verifies the feasibility and reliability of the proposed architecture. The findings of this study will potentially provide new ideas and stimuli for future designs of network security architecture.

  10. 76 FR 36861 - Special Conditions: Gulfstream Model GVI Airplane; Electronic Systems Security Isolation or...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-23

    ... incorporate the following novel or unusual design features: Digital systems architecture composed of several connected networks. The proposed architecture and network configuration may be used for, or interfaced with... navigation systems (aircraft control domain), 2. Airline business and administrative support (airline...

  11. Space Mobile Network: A Near Earth Communication and Navigation Architecture

    NASA Technical Reports Server (NTRS)

    Israel, Dave J.; Heckler, Greg; Menrad, Robert J.

    2016-01-01

    This paper describes a Space Mobile Network architecture, the result of a recently completed NASA study exploring architectural concepts to produce a vision for the future Near Earth communications and navigation systems. The Space Mobile Network (SMN) incorporates technologies, such as Disruption Tolerant Networking (DTN) and optical communications, and new operations concepts, such as User Initiated Services, to provide user services analogous to a terrestrial smartphone user. The paper will describe the SMN Architecture, envisioned future operations concepts, opportunities for industry and international collaboration and interoperability, and technology development areas and goals.

  12. A Comparison Between Publish-and-Subscribe and Client-Server Models in Distributed Control System Networks

    NASA Technical Reports Server (NTRS)

    Boulanger, Richard P., Jr.; Kwauk, Xian-Min; Stagnaro, Mike; Kliss, Mark (Technical Monitor)

    1998-01-01

    The BIO-Plex control system requires real-time, flexible, and reliable data delivery. There is no simple "off-the-shelf 'solution. However, several commercial packages will be evaluated using a testbed at ARC for publish- and-subscribe and client-server communication architectures. Point-to-point communication architecture is not suitable for real-time BIO-Plex control system. Client-server architecture provides more flexible data delivery. However, it does not provide direct communication among nodes on the network. Publish-and-subscribe implementation allows direct information exchange among nodes on the net, providing the best time-critical communication. In this work Network Data Delivery Service (NDDS) from Real-Time Innovations, Inc. ARTIE will be used to implement publish-and subscribe architecture. It offers update guarantees and deadlines for real-time data delivery. Bridgestone, a data acquisition and control software package from National Instruments, will be tested for client-server arrangement. A microwave incinerator located at ARC will be instrumented with a fieldbus network of control devices. BridgeVIEW will be used to implement an enterprise server. An enterprise network consisting of several nodes at ARC and a WAN connecting ARC and RISC will then be setup to evaluate proposed control system architectures. Several network configurations will be evaluated for fault tolerance, quality of service, reliability and efficiency. Data acquired from these network evaluation tests will then be used to determine preliminary design criteria for the BIO-Plex distributed control system.

  13. On-board processing satellite network architecture and control study

    NASA Technical Reports Server (NTRS)

    Campanella, S. Joseph; Pontano, Benjamin A.; Chalmers, Harvey

    1987-01-01

    The market for telecommunications services needs to be segmented into user classes having similar transmission requirements and hence similar network architectures. Use of the following transmission architecture was considered: satellite switched TDMA; TDMA up, TDM down; scanning (hopping) beam TDMA; FDMA up, TDM down; satellite switched MF/TDMA; and switching Hub earth stations with double hop transmission. A candidate network architecture will be selected that: comprises multiple access subnetworks optimized for each user; interconnects the subnetworks by means of a baseband processor; and optimizes the marriage of interconnection and access techniques. An overall network control architecture will be provided that will serve the needs of the baseband and satellite switched RF interconnected subnetworks. The results of the studies shall be used to identify elements of network architecture and control that require the greatest degree of technology development to realize an operational system. This will be specified in terms of: requirements of the enabling technology; difference from the current available technology; and estimate of the development requirements needed to achieve an operational system. The results obtained for each of these tasks are presented.

  14. Introduction to a system for implementing neural net connections on SIMD architectures

    NASA Technical Reports Server (NTRS)

    Tomboulian, Sherryl

    1988-01-01

    Neural networks have attracted much interest recently, and using parallel architectures to simulate neural networks is a natural and necessary application. The SIMD model of parallel computation is chosen, because systems of this type can be built with large numbers of processing elements. However, such systems are not naturally suited to generalized communication. A method is proposed that allows an implementation of neural network connections on massively parallel SIMD architectures. The key to this system is an algorithm permitting the formation of arbitrary connections between the neurons. A feature is the ability to add new connections quickly. It also has error recovery ability and is robust over a variety of network topologies. Simulations of the general connection system, and its implementation on the Connection Machine, indicate that the time and space requirements are proportional to the product of the average number of connections per neuron and the diameter of the interconnection network.

  15. Introduction to a system for implementing neural net connections on SIMD architectures

    NASA Technical Reports Server (NTRS)

    Tomboulian, Sherryl

    1988-01-01

    Neural networks have attracted much interest recently, and using parallel architectures to simulate neural networks is a natural and necessary application. The SIMD model of parallel computation is chosen, because systems of this type can be built with large numbers of processing elements. However, such systems are not naturally suited to generalized elements. A method is proposed that allows an implementation of neural network connections on massively parallel SIMD architectures. The key to this system is an algorithm permitting the formation of arbitrary connections between the neurons. A feature is the ability to add new connections quickly. It also has error recovery ability and is robust over a variety of network topologies. Simulations of the general connection system, and its implementation on the Connection Machine, indicate that the time and space requirements are proportional to the product of the average number of connections per neuron and the diameter of the interconnection network.

  16. Integrated Network Architecture for NASA's Orion Missions

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Hayden, Jeffrey L.; Sartwell, Thomas; Miller, Ronald A.; Hudiburg, John J.

    2008-01-01

    NASA is planning a series of short and long duration human and robotic missions to explore the Moon and then Mars. The series of missions will begin with a new crew exploration vehicle (called Orion) that will initially provide crew exchange and cargo supply support to the International Space Station (ISS) and then become a human conveyance for travel to the Moon. The Orion vehicle will be mounted atop the Ares I launch vehicle for a series of pre-launch tests and then launched and inserted into low Earth orbit (LEO) for crew exchange missions to the ISS. The Orion and Ares I comprise the initial vehicles in the Constellation system of systems that later includes Ares V, Earth departure stage, lunar lander, and other lunar surface systems for the lunar exploration missions. These key systems will enable the lunar surface exploration missions to be initiated in 2018. The complexity of the Constellation system of systems and missions will require a communication and navigation infrastructure to provide low and high rate forward and return communication services, tracking services, and ground network services. The infrastructure must provide robust, reliable, safe, sustainable, and autonomous operations at minimum cost while maximizing the exploration capabilities and science return. The infrastructure will be based on a network of networks architecture that will integrate NASA legacy communication, modified elements, and navigation systems. New networks will be added to extend communication, navigation, and timing services for the Moon missions. Internet protocol (IP) and network management systems within the networks will enable interoperability throughout the Constellation system of systems. An integrated network architecture has developed based on the emerging Constellation requirements for Orion missions. The architecture, as presented in this paper, addresses the early Orion missions to the ISS with communication, navigation, and network services over five phases of a mission: pre-launch, launch from T0 to T+6.5 min, launch from T+6.5 min to 12 min, in LEO for rendezvous and docking with ISS, and return to Earth. The network of networks that supports the mission during each of these phases and the concepts of operations during those phases are developed as a high level operational concepts graphic called OV-1, an architecture diagram type described in the Department of Defense Architecture Framework (DoDAF). Additional operational views on organizational relationships (OV-4), operational activities (OV-5), and operational node connectivity (OV-2) are also discussed. The system interfaces view (SV-1) that provides the communication and navigation services to Orion is also included and described. The challenges of architecting integrated network architecture for the NASA Orion missions are highlighted.

  17. Efficient self-organizing multilayer neural network for nonlinear system modeling.

    PubMed

    Han, Hong-Gui; Wang, Li-Dan; Qiao, Jun-Fei

    2013-07-01

    It has been shown extensively that the dynamic behaviors of a neural system are strongly influenced by the network architecture and learning process. To establish an artificial neural network (ANN) with self-organizing architecture and suitable learning algorithm for nonlinear system modeling, an automatic axon-neural network (AANN) is investigated in the following respects. First, the network architecture is constructed automatically to change both the number of hidden neurons and topologies of the neural network during the training process. The approach introduced in adaptive connecting-and-pruning algorithm (ACP) is a type of mixed mode operation, which is equivalent to pruning or adding the connecting of the neurons, as well as inserting some required neurons directly. Secondly, the weights are adjusted, using a feedforward computation (FC) to obtain the information for the gradient during learning computation. Unlike most of the previous studies, AANN is able to self-organize the architecture and weights, and to improve the network performances. Also, the proposed AANN has been tested on a number of benchmark problems, ranging from nonlinear function approximating to nonlinear systems modeling. The experimental results show that AANN can have better performances than that of some existing neural networks. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  18. Assessment of the integration capability of system architectures from a complex and distributed software systems perspective

    NASA Astrophysics Data System (ADS)

    Leuchter, S.; Reinert, F.; Müller, W.

    2014-06-01

    Procurement and design of system architectures capable of network centric operations demand for an assessment scheme in order to compare different alternative realizations. In this contribution an assessment method for system architectures targeted at the C4ISR domain is presented. The method addresses the integration capability of software systems from a complex and distributed software system perspective focusing communication, interfaces and software. The aim is to evaluate the capability to integrate a system or its functions within a system-of-systems network. This method uses approaches from software architecture quality assessment and applies them on the system architecture level. It features a specific goal tree of several dimensions that are relevant for enterprise integration. These dimensions have to be weighed against each other and totalized using methods from the normative decision theory in order to reflect the intention of the particular enterprise integration effort. The indicators and measurements for many of the considered quality features rely on a model based view on systems, networks, and the enterprise. That means it is applicable to System-of-System specifications based on enterprise architectural frameworks relying on defined meta-models or domain ontologies for defining views and viewpoints. In the defense context we use the NATO Architecture Framework (NAF) to ground respective system models. The proposed assessment method allows evaluating and comparing competing system designs regarding their future integration potential. It is a contribution to the system-of-systems engineering methodology.

  19. Design of Power System Architectures for Small Spacecraft Systems

    NASA Technical Reports Server (NTRS)

    Momoh, James A.; Subramonian, Rama; Dias, Lakshman G.

    1996-01-01

    The objective of this research is to perform a trade study on several candidate power system architectures for small spacecrafts to be used in NASA's new millennium program. Three initial candidate architectures have been proposed by NASA and two other candidate architectures have been proposed by Howard University. Howard University is currently conducting the necessary analysis, synthesis, and simulation needed to perform the trade studies and arrive at the optimal power system architecture. Statistical, sensitivity and tolerant studies has been performed on the systems. It is concluded from present studies that certain components such as the series regulators, buck-boost converters and power converters can be minimized while retaining the desired functionality of the overall architecture. This in conjunction with battery scalability studies and system efficiency studies have enabled us to develop more economic architectures. Future studies will include artificial neural networks and fuzzy logic to analyze the performance of the systems. Fault simulation studies and fault diagnosis studies using EMTP and artificial neural networks will also be conducted.

  20. The architecture of a network level intrusion detection system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heady, R.; Luger, G.; Maccabe, A.

    1990-08-15

    This paper presents the preliminary architecture of a network level intrusion detection system. The proposed system will monitor base level information in network packets (source, destination, packet size, and time), learning the normal patterns and announcing anomalies as they occur. The goal of this research is to determine the applicability of current intrusion detection technology to the detection of network level intrusions. In particular, the authors are investigating the possibility of using this technology to detect and react to worm programs.

  1. Stable architectures for deep neural networks

    NASA Astrophysics Data System (ADS)

    Haber, Eldad; Ruthotto, Lars

    2018-01-01

    Deep neural networks have become invaluable tools for supervised machine learning, e.g. classification of text or images. While often offering superior results over traditional techniques and successfully expressing complicated patterns in data, deep architectures are known to be challenging to design and train such that they generalize well to new data. Critical issues with deep architectures are numerical instabilities in derivative-based learning algorithms commonly called exploding or vanishing gradients. In this paper, we propose new forward propagation techniques inspired by systems of ordinary differential equations (ODE) that overcome this challenge and lead to well-posed learning problems for arbitrarily deep networks. The backbone of our approach is our interpretation of deep learning as a parameter estimation problem of nonlinear dynamical systems. Given this formulation, we analyze stability and well-posedness of deep learning and use this new understanding to develop new network architectures. We relate the exploding and vanishing gradient phenomenon to the stability of the discrete ODE and present several strategies for stabilizing deep learning for very deep networks. While our new architectures restrict the solution space, several numerical experiments show their competitiveness with state-of-the-art networks.

  2. Security Policy for a Generic Space Exploration Communication Network Architecture

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Sheehe, Charles J.; Vaden, Karl R.

    2016-01-01

    This document is one of three. It describes various security mechanisms and a security policy profile for a generic space-based communication architecture. Two other documents accompany this document- an Operations Concept (OpsCon) and a communication architecture document. The OpsCon should be read first followed by the security policy profile described by this document and then the architecture document. The overall goal is to design a generic space exploration communication network architecture that is affordable, deployable, maintainable, securable, evolvable, reliable, and adaptable. The architecture should also require limited reconfiguration throughout system development and deployment. System deployment includes subsystem development in a factory setting, system integration in a laboratory setting, launch preparation, launch, and deployment and operation in space.

  3. Security Shift in Future Network Architectures

    DTIC Science & Technology

    2010-11-01

    RTO-MP-IST-091 2 - 1 Security Shift in Future Network Architectures Tim Hartog, M.Sc Information Security Dept. TNO Information and...current practice military communication infrastructures are deployed as stand-alone networked information systems. Network -Enabled Capabilities (NEC) and...information architects and security specialists about the separation of network and information security, the consequences of this shift and our view

  4. The Department of Homeland Security Intelligence Enterprise: Operational Overview and Oversight Challenges for Congress

    DTIC Science & Technology

    2009-05-27

    technology network architecture to connect various DHS elements and promote information sharing.17 • Establish a DHS State, Local, and Regional...A Strategic Plan; training, and the implementation of a comprehensive information systems architecture .65 As part of its integration...information technology network architecture was submitted to Congress last year. See DHS I&A, Homeland Security Information Technology Network

  5. Brain architecture: a design for natural computation.

    PubMed

    Kaiser, Marcus

    2007-12-15

    Fifty years ago, John von Neumann compared the architecture of the brain with that of the computers he invented and which are still in use today. In those days, the organization of computers was based on concepts of brain organization. Here, we give an update on current results on the global organization of neural systems. For neural systems, we outline how the spatial and topological architecture of neuronal and cortical networks facilitates robustness against failures, fast processing and balanced network activation. Finally, we discuss mechanisms of self-organization for such architectures. After all, the organization of the brain might again inspire computer architecture.

  6. Planning assistance for the NASA 30/20 GHz program. Network control architecture study.

    NASA Technical Reports Server (NTRS)

    Inukai, T.; Bonnelycke, B.; Strickland, S.

    1982-01-01

    Network Control Architecture for a 30/20 GHz flight experiment system operating in the Time Division Multiple Access (TDMA) was studied. Architecture development, identification of processing functions, and performance requirements for the Master Control Station (MCS), diversity trunking stations, and Customer Premises Service (CPS) stations are covered. Preliminary hardware and software processing requirements as well as budgetary cost estimates for the network control system are given. For the trunking system control, areas covered include on board SS-TDMA switch organization, frame structure, acquisition and synchronization, channel assignment, fade detection and adaptive power control, on board oscillator control, and terrestrial network timing. For the CPS control, they include on board processing and adaptive forward error correction control.

  7. Open architecture of smart sensor suites

    NASA Astrophysics Data System (ADS)

    Müller, Wilmuth; Kuwertz, Achim; Grönwall, Christina; Petersson, Henrik; Dekker, Rob; Reinert, Frank; Ditzel, Maarten

    2017-10-01

    Experiences from recent conflicts show the strong need for smart sensor suites comprising different multi-spectral imaging sensors as core elements as well as additional non-imaging sensors. Smart sensor suites should be part of a smart sensor network - a network of sensors, databases, evaluation stations and user terminals. Its goal is to optimize the use of various information sources for military operations such as situation assessment, intelligence, surveillance, reconnaissance, target recognition and tracking. Such a smart sensor network will enable commanders to achieve higher levels of situational awareness. Within the study at hand, an open system architecture was developed in order to increase the efficiency of sensor suites. The open system architecture for smart sensor suites, based on a system-of-systems approach, enables combining different sensors in multiple physical configurations, such as distributed sensors, co-located sensors combined in a single package, tower-mounted sensors, sensors integrated in a mobile platform, and trigger sensors. The architecture was derived from a set of system requirements and relevant scenarios. Its mode of operation is adaptable to a series of scenarios with respect to relevant objects of interest, activities to be observed, available transmission bandwidth, etc. The presented open architecture is designed in accordance with the NATO Architecture Framework (NAF). The architecture allows smart sensor suites to be part of a surveillance network, linked e.g. to a sensor planning system and a C4ISR center, and to be used in combination with future RPAS (Remotely Piloted Aircraft Systems) for supporting a more flexible dynamic configuration of RPAS payloads.

  8. An end-to-end communications architecture for condition-based maintenance applications

    NASA Astrophysics Data System (ADS)

    Kroculick, Joseph

    2014-06-01

    This paper explores challenges in implementing an end-to-end communications architecture for Condition-Based Maintenance Plus (CBM+) data transmission which aligns with the Army's Network Modernization Strategy. The Army's Network Modernization strategy is based on rolling out network capabilities which connect the smallest unit and Soldier level to enterprise systems. CBM+ is a continuous improvement initiative over the life cycle of a weapon system or equipment to improve the reliability and maintenance effectiveness of Department of Defense (DoD) systems. CBM+ depends on the collection, processing and transport of large volumes of data. An important capability that enables CBM+ is an end-to-end network architecture that enables data to be uploaded from the platform at the tactical level to enterprise data analysis tools. To connect end-to-end maintenance processes in the Army's supply chain, a CBM+ network capability can be developed from available network capabilities.

  9. Hybrid Network Defense Model Based on Fuzzy Evaluation

    PubMed Central

    2014-01-01

    With sustained and rapid developments in the field of information technology, the issue of network security has become increasingly prominent. The theme of this study is network data security, with the test subject being a classified and sensitive network laboratory that belongs to the academic network. The analysis is based on the deficiencies and potential risks of the network's existing defense technology, characteristics of cyber attacks, and network security technologies. Subsequently, a distributed network security architecture using the technology of an intrusion prevention system is designed and implemented. In this paper, first, the overall design approach is presented. This design is used as the basis to establish a network defense model, an improvement over the traditional single-technology model that addresses the latter's inadequacies. Next, a distributed network security architecture is implemented, comprising a hybrid firewall, intrusion detection, virtual honeynet projects, and connectivity and interactivity between these three components. Finally, the proposed security system is tested. A statistical analysis of the test results verifies the feasibility and reliability of the proposed architecture. The findings of this study will potentially provide new ideas and stimuli for future designs of network security architecture. PMID:24574870

  10. Avionics System Architecture for NASA Orion Vehicle

    NASA Technical Reports Server (NTRS)

    Baggerman, Clint

    2010-01-01

    This viewgraph presentation reviews the Orion Crew Exploration Vehicle avionics architecture. The contents include: 1) What is Orion?; 2) Orion Concept of Operations; 3) Orion Subsystems; 4) Orion Avionics Architecture; 5) Orion Avionics-Network; 6) Orion Network Unification; 7) Orion Avionics-Integrity; 8) Orion Avionics-Partitioning; and 9) Orion Avionics-Redundancy.

  11. SANDS: a service-oriented architecture for clinical decision support in a National Health Information Network.

    PubMed

    Wright, Adam; Sittig, Dean F

    2008-12-01

    In this paper, we describe and evaluate a new distributed architecture for clinical decision support called SANDS (Service-oriented Architecture for NHIN Decision Support), which leverages current health information exchange efforts and is based on the principles of a service-oriented architecture. The architecture allows disparate clinical information systems and clinical decision support systems to be seamlessly integrated over a network according to a set of interfaces and protocols described in this paper. The architecture described is fully defined and developed, and six use cases have been developed and tested using a prototype electronic health record which links to one of the existing prototype National Health Information Networks (NHIN): drug interaction checking, syndromic surveillance, diagnostic decision support, inappropriate prescribing in older adults, information at the point of care and a simple personal health record. Some of these use cases utilize existing decision support systems, which are either commercially or freely available at present, and developed outside of the SANDS project, while other use cases are based on decision support systems developed specifically for the project. Open source code for many of these components is available, and an open source reference parser is also available for comparison and testing of other clinical information systems and clinical decision support systems that wish to implement the SANDS architecture. The SANDS architecture for decision support has several significant advantages over other architectures for clinical decision support. The most salient of these are:

  12. An Architecture for SCADA Network Forensics

    NASA Astrophysics Data System (ADS)

    Kilpatrick, Tim; Gonzalez, Jesus; Chandia, Rodrigo; Papa, Mauricio; Shenoi, Sujeet

    Supervisory control and data acquisition (SCADA) systems are widely used in industrial control and automation. Modern SCADA protocols often employ TCP/IP to transport sensor data and control signals. Meanwhile, corporate IT infrastructures are interconnecting with previously isolated SCADA networks. The use of TCP/IP as a carrier protocol and the interconnection of IT and SCADA networks raise serious security issues. This paper describes an architecture for SCADA network forensics. In addition to supporting forensic investigations of SCADA network incidents, the architecture incorporates mechanisms for monitoring process behavior, analyzing trends and optimizing plant performance.

  13. On-board processing satellite network architectures for broadband ISDN

    NASA Technical Reports Server (NTRS)

    Inukai, Thomas; Faris, Faris; Shyy, Dong-Jye

    1992-01-01

    Onboard baseband processing architectures for future satellite broadband integrated services digital networks (B-ISDN's) are addressed. To assess the feasibility of implementing satellite B-ISDN services, critical design issues, such as B-ISDN traffic characteristics, transmission link design, and a trade-off between onboard circuit and fast packet switching, are analyzed. Examples of the two types of switching mechanisms and potential onboard network control functions are presented. A sample network architecture is also included to illustrate a potential onboard processing system.

  14. Operational Concepts for a Generic Space Exploration Communication Network Architecture

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Vaden, Karl R.; Jones, Robert E.; Roberts, Anthony M.

    2015-01-01

    This document is one of three. It describes the Operational Concept (OpsCon) for a generic space exploration communication architecture. The purpose of this particular document is to identify communication flows and data types. Two other documents accompany this document, a security policy profile and a communication architecture document. The operational concepts should be read first followed by the security policy profile and then the architecture document. The overall goal is to design a generic space exploration communication network architecture that is affordable, deployable, maintainable, securable, evolvable, reliable, and adaptable. The architecture should also require limited reconfiguration throughout system development and deployment. System deployment includes: subsystem development in a factory setting, system integration in a laboratory setting, launch preparation, launch, and deployment and operation in space.

  15. The Department of Homeland Security Intelligence Enterprise: Operational Overview and Oversight Challenges for Congress

    DTIC Science & Technology

    2010-03-19

    network architecture to connect various DHS elements and promote information sharing.17 • Establish a DHS State, Local, and Regional Fusion Center...of reports; the I&A Strategic Plan; training, and the implementation of a comprehensive information systems architecture .73 As part of its...comprehensive information technology network architecture was submitted to Congress last year. See DHS I&A, Homeland Security Information Technology Network

  16. The Study on the Communication Network of Wide Area Measurement System in Electricity Grid

    NASA Astrophysics Data System (ADS)

    Xiaorong, Cheng; Ying, Wang; Yangdan, Ni

    Wide area measurement system(WAMS) is a fundamental part of security defense in Smart Grid, and the communication system of WAMS is an important part of Electric power communication network. For a large regional network is concerned, the real-time data which is transferred in the communication network of WAMS will affect the safe operation of the power grid directly. Therefore, WAMS raised higher requirements for real-time, reliability and security to its communication network. In this paper, the architecture of WASM communication network was studied according to the seven layers model of the open systems interconnection(OSI), and the network architecture was researched from all levels. We explored the media of WAMS communication network, the network communication protocol and network technology. Finally, the delay of the network were analyzed.

  17. MWAHCA: a multimedia wireless ad hoc cluster architecture.

    PubMed

    Diaz, Juan R; Lloret, Jaime; Jimenez, Jose M; Sendra, Sandra

    2014-01-01

    Wireless Ad hoc networks provide a flexible and adaptable infrastructure to transport data over a great variety of environments. Recently, real-time audio and video data transmission has been increased due to the appearance of many multimedia applications. One of the major challenges is to ensure the quality of multimedia streams when they have passed through a wireless ad hoc network. It requires adapting the network architecture to the multimedia QoS requirements. In this paper we propose a new architecture to organize and manage cluster-based ad hoc networks in order to provide multimedia streams. Proposed architecture adapts the network wireless topology in order to improve the quality of audio and video transmissions. In order to achieve this goal, the architecture uses some information such as each node's capacity and the QoS parameters (bandwidth, delay, jitter, and packet loss). The architecture splits the network into clusters which are specialized in specific multimedia traffic. The real system performance study provided at the end of the paper will demonstrate the feasibility of the proposal.

  18. A New Wavelength Optimization and Energy-Saving Scheme Based on Network Coding in Software-Defined WDM-PON Networks

    NASA Astrophysics Data System (ADS)

    Ren, Danping; Wu, Shanshan; Zhang, Lijing

    2016-09-01

    In view of the characteristics of the global control and flexible monitor of software-defined networks (SDN), we proposes a new optical access network architecture dedicated to Wavelength Division Multiplexing-Passive Optical Network (WDM-PON) systems based on SDN. The network coding (NC) technology is also applied into this architecture to enhance the utilization of wavelength resource and reduce the costs of light source. Simulation results show that this scheme can optimize the throughput of the WDM-PON network, greatly reduce the system time delay and energy consumption.

  19. 77 FR 36123 - Special Conditions: Gulfstream Aerospace LP (GALP), Model Gulfstream G280 Airplane; Aircraft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-18

    ... architecture and connectivity capabilities of the airplane's computer systems and networks, which may allow... an association, business, labor union, etc.). DOT's complete Privacy Act Statement can be found in... or unusual design features: Digital systems architecture composed of several connected networks. The...

  20. Inter-computer communication architecture for a mixed redundancy distributed system

    NASA Technical Reports Server (NTRS)

    Lala, Jaynarayan H.; Adams, Stuart J.

    1987-01-01

    The triply redundant intercomputer network for the Advanced Information Processing System (AIPS), an architecture developed to serve as the core avionics system for a broad range of aerospace vehicles, is discussed. The AIPS intercomputer network provides a high-speed, Byzantine-fault-resilient communication service between processing sites, even in the presence of arbitrary failures of simplex and duplex processing sites on the IC network. The IC network contention poll has evolved from the Laning Poll. An analysis of the failure modes and effects and a simulation of the AIPS contention poll, demonstrate the robustness of the system.

  1. Learning, memory, and the role of neural network architecture.

    PubMed

    Hermundstad, Ann M; Brown, Kevin S; Bassett, Danielle S; Carlson, Jean M

    2011-06-01

    The performance of information processing systems, from artificial neural networks to natural neuronal ensembles, depends heavily on the underlying system architecture. In this study, we compare the performance of parallel and layered network architectures during sequential tasks that require both acquisition and retention of information, thereby identifying tradeoffs between learning and memory processes. During the task of supervised, sequential function approximation, networks produce and adapt representations of external information. Performance is evaluated by statistically analyzing the error in these representations while varying the initial network state, the structure of the external information, and the time given to learn the information. We link performance to complexity in network architecture by characterizing local error landscape curvature. We find that variations in error landscape structure give rise to tradeoffs in performance; these include the ability of the network to maximize accuracy versus minimize inaccuracy and produce specific versus generalizable representations of information. Parallel networks generate smooth error landscapes with deep, narrow minima, enabling them to find highly specific representations given sufficient time. While accurate, however, these representations are difficult to generalize. In contrast, layered networks generate rough error landscapes with a variety of local minima, allowing them to quickly find coarse representations. Although less accurate, these representations are easily adaptable. The presence of measurable performance tradeoffs in both layered and parallel networks has implications for understanding the behavior of a wide variety of natural and artificial learning systems.

  2. Proceedings of the Mobile Satellite System Architectures and Multiple Access Techniques Workshop

    NASA Technical Reports Server (NTRS)

    Dessouky, Khaled

    1989-01-01

    The Mobile Satellite System Architectures and Multiple Access Techniques Workshop served as a forum for the debate of system and network architecture issues. Particular emphasis was on those issues relating to the choice of multiple access technique(s) for the Mobile Satellite Service (MSS). These proceedings contain articles that expand upon the 12 presentations given in the workshop. Contrasting views on Frequency Division Multiple Access (FDMA), Code Division Multiple Access (CDMA), and Time Division Multiple Access (TDMA)-based architectures are presented, and system issues relating to signaling, spacecraft design, and network management constraints are addressed. An overview article that summarizes the issues raised in the numerous discussion periods of the workshop is also included.

  3. SANDS: A Service-Oriented Architecture for Clinical Decision Support in a National Health Information Network

    PubMed Central

    Wright, Adam; Sittig, Dean F.

    2008-01-01

    In this paper we describe and evaluate a new distributed architecture for clinical decision support called SANDS (Service-oriented Architecture for NHIN Decision Support), which leverages current health information exchange efforts and is based on the principles of a service-oriented architecture. The architecture allows disparate clinical information systems and clinical decision support systems to be seamlessly integrated over a network according to a set of interfaces and protocols described in this paper. The architecture described is fully defined and developed, and six use cases have been developed and tested using a prototype electronic health record which links to one of the existing prototype National Health Information Networks (NHIN): drug interaction checking, syndromic surveillance, diagnostic decision support, inappropriate prescribing in older adults, information at the point of care and a simple personal health record. Some of these use cases utilize existing decision support systems, which are either commercially or freely available at present, and developed outside of the SANDS project, while other use cases are based on decision support systems developed specifically for the project. Open source code for many of these components is available, and an open source reference parser is also available for comparison and testing of other clinical information systems and clinical decision support systems that wish to implement the SANDS architecture. PMID:18434256

  4. Architectural design for a low cost FPGA-based traffic signal detection system in vehicles

    NASA Astrophysics Data System (ADS)

    López, Ignacio; Salvador, Rubén; Alarcón, Jaime; Moreno, Félix

    2007-05-01

    In this paper we propose an architecture for an embedded traffic signal detection system. Development of Advanced Driver Assistance Systems (ADAS) is one of the major trends of research in automotion nowadays. Examples of past and ongoing projects in the field are CHAMELEON ("Pre-Crash Application all around the vehicle" IST 1999-10108), PREVENT (Preventive and Active Safety Applications, FP6-507075, http://www.prevent-ip.org/) and AVRT in the US (Advanced Vision-Radar Threat Detection (AVRT): A Pre-Crash Detection and Active Safety System). It can be observed a major interest in systems for real-time analysis of complex driving scenarios, evaluating risk and anticipating collisions. The system will use a low cost CCD camera on the dashboard facing the road. The images will be processed by an Altera Cyclone family FPGA. The board does median and Sobel filtering of the incoming frames at PAL rate, and analyzes them for several categories of signals. The result is conveyed to the driver. The scarce resources provided by the hardware require an architecture developed for optimal use. The system will use a combination of neural networks and an adapted blackboard architecture. Several neural networks will be used in sequence for image analysis, by reconfiguring a single, generic hardware neural network in the FPGA. This generic network is optimized for speed, in order to admit several executions within the frame rate. The sequence will follow the execution cycle of the blackboard architecture. The global, blackboard architecture being developed and the hardware architecture for the generic, reconfigurable FPGA perceptron will be explained in this paper. The project is still at an early stage. However, some hardware implementation results are already available and will be offered in the paper.

  5. Development of a space-systems network testbed

    NASA Technical Reports Server (NTRS)

    Lala, Jaynarayan; Alger, Linda; Adams, Stuart; Burkhardt, Laura; Nagle, Gail; Murray, Nicholas

    1988-01-01

    This paper describes a communications network testbed which has been designed to allow the development of architectures and algorithms that meet the functional requirements of future NASA communication systems. The central hardware components of the Network Testbed are programmable circuit switching communication nodes which can be adapted by software or firmware changes to customize the testbed to particular architectures and algorithms. Fault detection, isolation, and reconfiguration has been implemented in the Network with a hybrid approach which utilizes features of both centralized and distributed techniques to provide efficient handling of faults within the Network.

  6. A neuro-fuzzy architecture for real-time applications

    NASA Technical Reports Server (NTRS)

    Ramamoorthy, P. A.; Huang, Song

    1992-01-01

    Neural networks and fuzzy expert systems perform the same task of functional mapping using entirely different approaches. Each approach has certain unique features. The ability to learn specific input-output mappings from large input/output data possibly corrupted by noise and the ability to adapt or continue learning are some important features of neural networks. Fuzzy expert systems are known for their ability to deal with fuzzy information and incomplete/imprecise data in a structured, logical way. Since both of these techniques implement the same task (that of functional mapping--we regard 'inferencing' as one specific category under this class), a fusion of the two concepts that retains their unique features while overcoming their individual drawbacks will have excellent applications in the real world. In this paper, we arrive at a new architecture by fusing the two concepts. The architecture has the trainability/adaptibility (based on input/output observations) property of the neural networks and the architectural features that are unique to fuzzy expert systems. It also does not require specific information such as fuzzy rules, defuzzification procedure used, etc., though any such information can be integrated into the architecture. We show that this architecture can provide better performance than is possible from a single two or three layer feedforward neural network. Further, we show that this new architecture can be used as an efficient vehicle for hardware implementation of complex fuzzy expert systems for real-time applications. A numerical example is provided to show the potential of this approach.

  7. Architectures of fiber optic network in telecommunications

    NASA Astrophysics Data System (ADS)

    Vasile, Irina B.; Vasile, Alexandru; Filip, Luminita E.

    2005-08-01

    The operators of telecommunications have targeted their efforts towards realizing applications using broad band fiber optics systems in the access network. Thus, a new concept related to the implementation of fiber optic transmission systems, named FITL (Fiber In The Loop) has appeared. The fiber optic transmission systems have been extensively used for realizing the transport and intercommunication of the public telecommunication network, as well as for assuring the access to the telecommunication systems of the great corporations. Still, the segment of the residential users and small corporations did not benefit on large scale of this technology implementation. For the purpose of defining fiber optic applications, more types of architectures were conceived, like: bus, ring, star, tree. In the case of tree-like networks passive splitters (that"s where the name of PON comes from - Passive Optical Network-), which reduce significantly the costs of the fiber optic access, by separating the costs of the optical electronic components. That's why the passive fiber optics architectures (PON represent a viable solution for realizing the access at the user's loop. The main types of fiber optics architectures included in this work are: FTTC (Fiber To The Curb); FTTB (Fiber To The Building); FTTH (Fiber To The Home).

  8. Research on the framework and key technologies of panoramic visualization for smart distribution network

    NASA Astrophysics Data System (ADS)

    Du, Jian; Sheng, Wanxing; Lin, Tao; Lv, Guangxian

    2018-05-01

    Nowadays, the smart distribution network has made tremendous progress, and the business visualization becomes even more significant and indispensable. Based on the summarization of traditional visualization technologies and demands of smart distribution network, a panoramic visualization application is proposed in this paper. The overall architecture, integrated architecture and service architecture of panoramic visualization application is firstly presented. Then, the architecture design and main functions of panoramic visualization system are elaborated in depth. In addition, the key technologies related to the application is discussed briefly. At last, two typical visualization scenarios in smart distribution network, which are risk warning and fault self-healing, proves that the panoramic visualization application is valuable for the operation and maintenance of the distribution network.

  9. Study on key technologies of vehicle networking system platform for electric automobiles based on micro-service

    NASA Astrophysics Data System (ADS)

    Ye, Fei

    2018-04-01

    With the rapid increase of electric automobiles and charging piles, the elastic expansion and online rapid upgrade were required for the vehicle networking system platform (system platform for short). At present, it is difficult to meet the operation needs due to the traditional huge rock architecture used by the system platform. This paper studied the system platform technology architecture based on "cloud platform +micro-service" to obtain a new generation of vehicle networking system platform with the combination of elastic expansion and application, thus significantly improving the service operation ability of system.

  10. Security for IP Multimedia Services in the 3GPP Third Generation Mobile System.

    ERIC Educational Resources Information Center

    Horn, G.; Kroselberg, D.; Muller, K.

    2003-01-01

    Presents an overview of the security architecture of the IP multimedia core network subsystem (IMS) of the third generation mobile system, known in Europe as UMTS. Discusses IMS security requirements; IMS security architecture; authentication between IMS user and home network; integrity and confidentiality for IMS signalling; and future aspects of…

  11. 78 FR 76251 - Special Conditions: Airbus, Model A350-900 Series Airplane; Electronic System Security Protection...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-17

    ... the comment (or signing the comment for an association, business, labor union, etc.). DOT's complete... design feature: The digital systems architecture for the Airbus Model A350-900 series airplanes is composed of several connected networks. This proposed network architecture is used for a diverse set of...

  12. A single network adaptive critic (SNAC) architecture for optimal control synthesis for a class of nonlinear systems.

    PubMed

    Padhi, Radhakant; Unnikrishnan, Nishant; Wang, Xiaohua; Balakrishnan, S N

    2006-12-01

    Even though dynamic programming offers an optimal control solution in a state feedback form, the method is overwhelmed by computational and storage requirements. Approximate dynamic programming implemented with an Adaptive Critic (AC) neural network structure has evolved as a powerful alternative technique that obviates the need for excessive computations and storage requirements in solving optimal control problems. In this paper, an improvement to the AC architecture, called the "Single Network Adaptive Critic (SNAC)" is presented. This approach is applicable to a wide class of nonlinear systems where the optimal control (stationary) equation can be explicitly expressed in terms of the state and costate variables. The selection of this terminology is guided by the fact that it eliminates the use of one neural network (namely the action network) that is part of a typical dual network AC setup. As a consequence, the SNAC architecture offers three potential advantages: a simpler architecture, lesser computational load and elimination of the approximation error associated with the eliminated network. In order to demonstrate these benefits and the control synthesis technique using SNAC, two problems have been solved with the AC and SNAC approaches and their computational performances are compared. One of these problems is a real-life Micro-Electro-Mechanical-system (MEMS) problem, which demonstrates that the SNAC technique is applicable to complex engineering systems.

  13. An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network

    PubMed Central

    Brennan, Robert W.

    2017-01-01

    With the emergence of cyber-physical systems, there has been a growing interest in network-connected devices. One of the key requirements of a cyber-physical device is the ability to sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement. In this study, an embedded multi-agent systems-managed wireless sensor network is presented. A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and passive wireless sensor node types are defined, along with their communication protocols, and two application-specific examples are presented. A series of three experiments is conducted to evaluate the performance of the agent-embedded wireless sensor network. PMID:28906452

  14. An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network.

    PubMed

    Taboun, Mohammed S; Brennan, Robert W

    2017-09-14

    With the emergence of cyber-physical systems, there has been a growing interest in network-connected devices. One of the key requirements of a cyber-physical device is the ability to sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement. In this study, an embedded multi-agent systems-managed wireless sensor network is presented. A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and passive wireless sensor node types are defined, along with their communication protocols, and two application-specific examples are presented. A series of three experiments is conducted to evaluate the performance of the agent-embedded wireless sensor network.

  15. Network Theory: A Primer and Questions for Air Transportation Systems Applications

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.

    2004-01-01

    A new understanding (with potential applications to air transportation systems) has emerged in the past five years in the scientific field of networks. This development emerges in large part because we now have a new laboratory for developing theories about complex networks: The Internet. The premise of this new understanding is that most complex networks of interest, both of nature and of human contrivance, exhibit a fundamentally different behavior than thought for over two hundred years under classical graph theory. Classical theory held that networks exhibited random behavior, characterized by normal, (e.g., Gaussian or Poisson) degree distributions of the connectivity between nodes by links. The new understanding turns this idea on its head: networks of interest exhibit scale-free (or small world) degree distributions of connectivity, characterized by power law distributions. The implications of scale-free behavior for air transportation systems include the potential that some behaviors of complex system architectures might be analyzed through relatively simple approximations of local elements of the system. For air transportation applications, this presentation proposes a framework for constructing topologies (architectures) that represent the relationships between mobility, flight operations, aircraft requirements, and airspace capacity, and the related externalities in airspace procedures and architectures. The proposed architectures or topologies may serve as a framework for posing comparative and combinative analyses of performance, cost, security, environmental, and related metrics.

  16. A swarm intelligence framework for reconstructing gene networks: searching for biologically plausible architectures.

    PubMed

    Kentzoglanakis, Kyriakos; Poole, Matthew

    2012-01-01

    In this paper, we investigate the problem of reverse engineering the topology of gene regulatory networks from temporal gene expression data. We adopt a computational intelligence approach comprising swarm intelligence techniques, namely particle swarm optimization (PSO) and ant colony optimization (ACO). In addition, the recurrent neural network (RNN) formalism is employed for modeling the dynamical behavior of gene regulatory systems. More specifically, ACO is used for searching the discrete space of network architectures and PSO for searching the corresponding continuous space of RNN model parameters. We propose a novel solution construction process in the context of ACO for generating biologically plausible candidate architectures. The objective is to concentrate the search effort into areas of the structure space that contain architectures which are feasible in terms of their topological resemblance to real-world networks. The proposed framework is initially applied to the reconstruction of a small artificial network that has previously been studied in the context of gene network reverse engineering. Subsequently, we consider an artificial data set with added noise for reconstructing a subnetwork of the genetic interaction network of S. cerevisiae (yeast). Finally, the framework is applied to a real-world data set for reverse engineering the SOS response system of the bacterium Escherichia coli. Results demonstrate the relative advantage of utilizing problem-specific knowledge regarding biologically plausible structural properties of gene networks over conducting a problem-agnostic search in the vast space of network architectures.

  17. NASA Integrated Network Monitor and Control Software Architecture

    NASA Technical Reports Server (NTRS)

    Shames, Peter; Anderson, Michael; Kowal, Steve; Levesque, Michael; Sindiy, Oleg; Donahue, Kenneth; Barnes, Patrick

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Space Communications and Navigation office (SCaN) has commissioned a series of trade studies to define a new architecture intended to integrate the three existing networks that it operates, the Deep Space Network (DSN), Space Network (SN), and Near Earth Network (NEN), into one integrated network that offers users a set of common, standardized, services and interfaces. The integrated monitor and control architecture utilizes common software and common operator interfaces that can be deployed at all three network elements. This software uses state-of-the-art concepts such as a pool of re-programmable equipment that acts like a configurable software radio, distributed hierarchical control, and centralized management of the whole SCaN integrated network. For this trade space study a model-based approach using SysML was adopted to describe and analyze several possible options for the integrated network monitor and control architecture. This model was used to refine the design and to drive the costing of the four different software options. This trade study modeled the three existing self standing network elements at point of departure, and then described how to integrate them using variations of new and existing monitor and control system components for the different proposed deployments under consideration. This paper will describe the trade space explored, the selected system architecture, the modeling and trade study methods, and some observations on useful approaches to implementing such model based trade space representation and analysis.

  18. Implementation of a Prototype Generalized Network Technology for Hospitals *

    PubMed Central

    Tolchin, S. G.; Stewart, R. L.; Kahn, S. A.; Bergan, E. S.; Gafke, G. P.; Simborg, D. W.; Whiting-O'Keefe, Q. E.; Chadwick, M. G.; McCue, G. E.

    1981-01-01

    A demonstration implementation of a distributed data processing hospital information system using an intelligent local area communications network (LACN) technology is described. This system is operational at the UCSF Medical Center and integrates four heterogeneous, stand-alone minicomputers. The applications systems are PID/Registration, Outpatient Pharmacy, Clinical Laboratory and Radiology/Medical Records. Functional autonomy of these systems has been maintained, and no operating system changes have been required. The LACN uses a fiber-optic communications medium and provides extensive communications protocol support within the network, based on the ISO/OSI Model. The architecture is reconfigurable and expandable. This paper describes system architectural issues, the applications environment and the local area network.

  19. Hybrid architecture for building secure sensor networks

    NASA Astrophysics Data System (ADS)

    Owens, Ken R., Jr.; Watkins, Steve E.

    2012-04-01

    Sensor networks have various communication and security architectural concerns. Three approaches are defined to address these concerns for sensor networks. The first area is the utilization of new computing architectures that leverage embedded virtualization software on the sensor. Deploying a small, embedded virtualization operating system on the sensor nodes that is designed to communicate to low-cost cloud computing infrastructure in the network is the foundation to delivering low-cost, secure sensor networks. The second area focuses on securing the sensor. Sensor security components include developing an identification scheme, and leveraging authentication algorithms and protocols that address security assurance within the physical, communication network, and application layers. This function will primarily be accomplished through encrypting the communication channel and integrating sensor network firewall and intrusion detection/prevention components to the sensor network architecture. Hence, sensor networks will be able to maintain high levels of security. The third area addresses the real-time and high priority nature of the data that sensor networks collect. This function requires that a quality-of-service (QoS) definition and algorithm be developed for delivering the right data at the right time. A hybrid architecture is proposed that combines software and hardware features to handle network traffic with diverse QoS requirements.

  20. Network-driven design principles for neuromorphic systems.

    PubMed

    Partzsch, Johannes; Schüffny, Rene

    2015-01-01

    Synaptic connectivity is typically the most resource-demanding part of neuromorphic systems. Commonly, the architecture of these systems is chosen mainly on technical considerations. As a consequence, the potential for optimization arising from the inherent constraints of connectivity models is left unused. In this article, we develop an alternative, network-driven approach to neuromorphic architecture design. We describe methods to analyse performance of existing neuromorphic architectures in emulating certain connectivity models. Furthermore, we show step-by-step how to derive a neuromorphic architecture from a given connectivity model. For this, we introduce a generalized description for architectures with a synapse matrix, which takes into account shared use of circuit components for reducing total silicon area. Architectures designed with this approach are fitted to a connectivity model, essentially adapting to its connection density. They are guaranteeing faithful reproduction of the model on chip, while requiring less total silicon area. In total, our methods allow designers to implement more area-efficient neuromorphic systems and verify usability of the connectivity resources in these systems.

  1. Network-driven design principles for neuromorphic systems

    PubMed Central

    Partzsch, Johannes; Schüffny, Rene

    2015-01-01

    Synaptic connectivity is typically the most resource-demanding part of neuromorphic systems. Commonly, the architecture of these systems is chosen mainly on technical considerations. As a consequence, the potential for optimization arising from the inherent constraints of connectivity models is left unused. In this article, we develop an alternative, network-driven approach to neuromorphic architecture design. We describe methods to analyse performance of existing neuromorphic architectures in emulating certain connectivity models. Furthermore, we show step-by-step how to derive a neuromorphic architecture from a given connectivity model. For this, we introduce a generalized description for architectures with a synapse matrix, which takes into account shared use of circuit components for reducing total silicon area. Architectures designed with this approach are fitted to a connectivity model, essentially adapting to its connection density. They are guaranteeing faithful reproduction of the model on chip, while requiring less total silicon area. In total, our methods allow designers to implement more area-efficient neuromorphic systems and verify usability of the connectivity resources in these systems. PMID:26539079

  2. Architecture for networked electronic patient record systems.

    PubMed

    Takeda, H; Matsumura, Y; Kuwata, S; Nakano, H; Sakamoto, N; Yamamoto, R

    2000-11-01

    There have been two major approaches to the development of networked electronic patient record (EPR) architecture. One uses object-oriented methodologies for constructing the model, which include the GEHR project, Synapses, HL7 RIM and so on. The second approach uses document-oriented methodologies, as applied in examples of HL7 PRA. It is practically beneficial to take the advantages of both approaches and to add solution technologies for network security such as PKI. In recognition of the similarity with electronic commerce, a certificate authority as a trusted third party will be organised for establishing networked EPR system. This paper describes a Japanese functional model that has been developed, and proposes a document-object-oriented architecture, which is-compared with other existing models.

  3. Space Network IP Services (SNIS): An Architecture for Supporting Low Earth Orbiting IP Satellite Missions

    NASA Technical Reports Server (NTRS)

    Israel, David J.

    2005-01-01

    The NASA Space Network (SN) supports a variety of missions using the Tracking and Data Relay Satellite System (TDRSS), which includes ground stations in White Sands, New Mexico and Guam. A Space Network IP Services (SNIS) architecture is being developed to support future users with requirements for end-to-end Internet Protocol (IP) communications. This architecture will support all IP protocols, including Mobile IP, over TDRSS Single Access, Multiple Access, and Demand Access Radio Frequency (RF) links. This paper will describe this architecture and how it can enable Low Earth Orbiting IP satellite missions.

  4. MWAHCA: A Multimedia Wireless Ad Hoc Cluster Architecture

    PubMed Central

    Diaz, Juan R.; Jimenez, Jose M.; Sendra, Sandra

    2014-01-01

    Wireless Ad hoc networks provide a flexible and adaptable infrastructure to transport data over a great variety of environments. Recently, real-time audio and video data transmission has been increased due to the appearance of many multimedia applications. One of the major challenges is to ensure the quality of multimedia streams when they have passed through a wireless ad hoc network. It requires adapting the network architecture to the multimedia QoS requirements. In this paper we propose a new architecture to organize and manage cluster-based ad hoc networks in order to provide multimedia streams. Proposed architecture adapts the network wireless topology in order to improve the quality of audio and video transmissions. In order to achieve this goal, the architecture uses some information such as each node's capacity and the QoS parameters (bandwidth, delay, jitter, and packet loss). The architecture splits the network into clusters which are specialized in specific multimedia traffic. The real system performance study provided at the end of the paper will demonstrate the feasibility of the proposal. PMID:24737996

  5. Deep Space Network information system architecture study

    NASA Technical Reports Server (NTRS)

    Beswick, C. A.; Markley, R. W. (Editor); Atkinson, D. J.; Cooper, L. P.; Tausworthe, R. C.; Masline, R. C.; Jenkins, J. S.; Crowe, R. A.; Thomas, J. L.; Stoloff, M. J.

    1992-01-01

    The purpose of this article is to describe an architecture for the Deep Space Network (DSN) information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990s. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies, such as the following: computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control.

  6. Data center networks and network architecture

    NASA Astrophysics Data System (ADS)

    Esaki, Hiroshi

    2014-02-01

    This paper discusses and proposes the architectural framework, which is for data center networks. The data center networks require new technical challenges, and it would be good opportunity to change the functions, which are not need in current and future networks. Based on the observation and consideration on data center networks, this paper proposes; (i) Broadcast-free layer 2 network (i.e., emulation of broadcast at the end-node), (ii) Full-mesh point-to-point pipes, and (iii) IRIDES (Invitation Routing aDvertisement for path Engineering System).

  7. Agent-based paradigm for integration of interactive cable television operations and business support systems

    NASA Astrophysics Data System (ADS)

    Wattawa, Scott

    1995-11-01

    Offering interactive services and data in a hybrid fiber/coax cable system requires the coordination of a host of operations and business support systems. New service offerings and network growth and evolution create never-ending changes in the network infrastructure. Agent-based enterprise models provide a flexible mechanism for systems integration of service and support systems. Agent models also provide a mechanism to decouple interactive services from network architecture. By using the Java programming language, agents may be made safe, portable, and intelligent. This paper investigates the application of the Object Management Group's Common Object Request Brokering Architecture to the integration of a multiple services metropolitan area network.

  8. Implementation of Single Source Based Hospital Information System for the Catholic Medical Center Affiliated Hospitals

    PubMed Central

    Choi, Inyoung; Choi, Ran; Lee, Jonghyun

    2010-01-01

    Objectives The objective of this research is to introduce the unique approach of the Catholic Medical Center (CMC) integrate network hospitals with organizational and technical methodologies adopted for seamless implementation. Methods The Catholic Medical Center has developed a new hospital information system to connect network hospitals and adopted new information technology architecture which uses single source for multiple distributed hospital systems. Results The hospital information system of the CMC was developed to integrate network hospitals adopting new system development principles; one source, one route and one management. This information architecture has reduced the cost for system development and operation, and has enhanced the efficiency of the management process. Conclusions Integrating network hospital through information system was not simple; it was much more complicated than single organization implementation. We are still looking for more efficient communication channel and decision making process, and also believe that our new system architecture will be able to improve CMC health care system and provide much better quality of health care service to patients and customers. PMID:21818432

  9. Wireless Sensor Networks for Ambient Assisted Living

    PubMed Central

    Aquino-Santos, Raúl; Martinez-Castro, Diego; Edwards-Block, Arthur; Murillo-Piedrahita, Andrés Felipe

    2013-01-01

    This paper introduces wireless sensor networks for Ambient Assisted Living as a proof of concept. Our workgroup has developed an arrhythmia detection algorithm that we evaluate in a closed space using a wireless sensor network to relay the information collected to where the information can be registered, monitored and analyzed to support medical decisions by healthcare providers. The prototype we developed is then evaluated using the TelosB platform. The proposed architecture considers very specific restrictions regarding the use of wireless sensor networks in clinical situations. The seamless integration of the system architecture enables both mobile node and network configuration, thus providing the versatile and robust characteristics necessary for real-time applications in medical situations. Likewise, this system architecture efficiently permits the different components of our proposed platform to interact efficiently within the parameters of this study. PMID:24351665

  10. A TDMA Broadcast Satellite/Ground Architecture for the Aeronautical Telecommunications Network

    NASA Technical Reports Server (NTRS)

    Shamma, Mohammed A.; Raghavan, Rajesh S.

    2003-01-01

    An initial evaluation of a TDMA satellite broadcast architecture with an integrated ground network is proposed in this study as one option for the Aeronautical Telecommunications Network (ATN). The architecture proposed consists of a ground based network that is dedicated to the reception and transmissions of Automatic Dependent Surveillance Broadcast (ADS-B) messages from Mode-S or UAT type systems, along with tracks from primary and secondary surveillance radars. Additionally, the ground network could contain VHF Digital Link Mode 2, 3 or 4 transceivers for the reception and transmissions of Controller-Pilot Data Link Communications (CPDLC) messages and for voice. The second part of the ATN network consists of a broadcast satellite based system that is mainly dedicated for the transmission of surveillance data as well as En-route Flight Information Service Broadcast (FIS-B) to all aircraft. The system proposed integrates those two network to provide a nation wide comprehensive service utilizing near term or existing technologies and hence keeping the economic factor in prospective. The next few sections include a background introduction, the ground subnetwork, the satellite subnetwork, modeling and simulations, and conclusion and recommendations.

  11. An Energy-Efficient and High-Quality Video Transmission Architecture in Wireless Video-Based Sensor Networks.

    PubMed

    Aghdasi, Hadi S; Abbaspour, Maghsoud; Moghadam, Mohsen Ebrahimi; Samei, Yasaman

    2008-08-04

    Technological progress in the fields of Micro Electro-Mechanical Systems (MEMS) and wireless communications and also the availability of CMOS cameras, microphones and small-scale array sensors, which may ubiquitously capture multimedia content from the field, have fostered the development of low-cost limited resources Wireless Video-based Sensor Networks (WVSN). With regards to the constraints of videobased sensor nodes and wireless sensor networks, a supporting video stream is not easy to implement with the present sensor network protocols. In this paper, a thorough architecture is presented for video transmission over WVSN called Energy-efficient and high-Quality Video transmission Architecture (EQV-Architecture). This architecture influences three layers of communication protocol stack and considers wireless video sensor nodes constraints like limited process and energy resources while video quality is preserved in the receiver side. Application, transport, and network layers are the layers in which the compression protocol, transport protocol, and routing protocol are proposed respectively, also a dropping scheme is presented in network layer. Simulation results over various environments with dissimilar conditions revealed the effectiveness of the architecture in improving the lifetime of the network as well as preserving the video quality.

  12. On-board processing architectures for satellite B-ISDN services

    NASA Technical Reports Server (NTRS)

    Inukai, Thomas; Shyy, Dong-Jye; Faris, Faris

    1991-01-01

    Onboard baseband processing architectures for future satellite broadband integrated services digital networks (B-ISDN's) are addressed. To assess the feasibility of implementing satellite B-ISDN services, critical design issues, such as B-ISDN traffic characteristics, transmission link design, and a trade-off between onboard circuit and fast packet switching, are analyzed. Examples of the two types of switching mechanisms and potential onboard network control functions are presented. A sample network architecture is also included to illustrate a potential onboard processing system.

  13. Systemic risk on different interbank network topologies

    NASA Astrophysics Data System (ADS)

    Lenzu, Simone; Tedeschi, Gabriele

    2012-09-01

    In this paper we develop an interbank market with heterogeneous financial institutions that enter into lending agreements on different network structures. Credit relationships (links) evolve endogenously via a fitness mechanism based on agents' performance. By changing the agent's trust on its neighbor's performance, interbank linkages self-organize themselves into very different network architectures, ranging from random to scale-free topologies. We study which network architecture can make the financial system more resilient to random attacks and how systemic risk spreads over the network. To perturb the system, we generate a random attack via a liquidity shock. The hit bank is not automatically eliminated, but its failure is endogenously driven by its incapacity to raise liquidity in the interbank network. Our analysis shows that a random financial network can be more resilient than a scale free one in case of agents' heterogeneity.

  14. Predicate calculus for an architecture of multiple neural networks

    NASA Astrophysics Data System (ADS)

    Consoli, Robert H.

    1990-08-01

    Future projects with neural networks will require multiple individual network components. Current efforts along these lines are ad hoc. This paper relates the neural network to a classical device and derives a multi-part architecture from that model. Further it provides a Predicate Calculus variant for describing the location and nature of the trainings and suggests Resolution Refutation as a method for determining the performance of the system as well as the location of needed trainings for specific proofs. 2. THE NEURAL NETWORK AND A CLASSICAL DEVICE Recently investigators have been making reports about architectures of multiple neural networksL234. These efforts are appearing at an early stage in neural network investigations they are characterized by architectures suggested directly by the problem space. Touretzky and Hinton suggest an architecture for processing logical statements1 the design of this architecture arises from the syntax of a restricted class of logical expressions and exhibits syntactic limitations. In similar fashion a multiple neural netword arises out of a control problem2 from the sequence learning problem3 and from the domain of machine learning. 4 But a general theory of multiple neural devices is missing. More general attempts to relate single or multiple neural networks to classical computing devices are not common although an attempt is made to relate single neural devices to a Turing machines and Sun et a!. develop a multiple neural architecture that performs pattern classification.

  15. National Airspace System (NAS) open system architecture and protocols

    DOT National Transportation Integrated Search

    2003-08-14

    This standard establishes the open systems data communications architecture and authorized protocol standards for the National Airspace System (NAS). The NAS will consist of various types of processors and communications networks procured from a vari...

  16. Architectural Design Document for the Technology Demonstration of the Joint Network Defence and Management System (JNDMS) Project

    DTIC Science & Technology

    2009-09-21

    specified by contract no. W7714-040875/001/SV. This document contains the design of the JNDMS software to the system architecture level. Other...alternative for the presentation functions. ASP, Java, ActiveX , DLL, HTML, DHTML, SOAP, .NET HTML, DHTML, XML, Jscript, VBScript, SOAP, .NET...retrieved through the network, typically by a network management console. Information is contained in a Management Information Base (MIB), which is a data

  17. PELS: A Noble Architecture and Framework for a Personal E-Learning System (PELS)

    ERIC Educational Resources Information Center

    Dewan, Jahangir; Chowdhury, Morshed; Batten, Lynn

    2014-01-01

    This article presents a personal e-learning system architecture in the context of a social network environment. The main objective of a personal e-learning system is to develop individual skills on a specific subject and share resources with peers. The authors' system architecture defines the organisation and management of a personal learning…

  18. The Global File System

    NASA Technical Reports Server (NTRS)

    Soltis, Steven R.; Ruwart, Thomas M.; OKeefe, Matthew T.

    1996-01-01

    The global file system (GFS) is a prototype design for a distributed file system in which cluster nodes physically share storage devices connected via a network-like fiber channel. Networks and network-attached storage devices have advanced to a level of performance and extensibility so that the previous disadvantages of shared disk architectures are no longer valid. This shared storage architecture attempts to exploit the sophistication of storage device technologies whereas a server architecture diminishes a device's role to that of a simple component. GFS distributes the file system responsibilities across processing nodes, storage across the devices, and file system resources across the entire storage pool. GFS caches data on the storage devices instead of the main memories of the machines. Consistency is established by using a locking mechanism maintained by the storage devices to facilitate atomic read-modify-write operations. The locking mechanism is being prototyped in the Silicon Graphics IRIX operating system and is accessed using standard Unix commands and modules.

  19. The evolutions of medical building network structure for emerging infectious disease protection and control.

    PubMed

    Liu, Nan; Zhang, Hongzhe; Zhang, Shanshan

    2014-12-01

    Emerging infectious disease is one of the most minatory threats in modern society. A perfect medical building network system need to be established to protect and control emerging infectious disease. Although in China a preliminary medical building network is already set up with disease control center, the infectious disease hospital, infectious diseases department in general hospital and basic medical institutions, there are still many defects in this system, such as simple structural model, weak interoperability among subsystems, and poor capability of the medical building to adapt to outbreaks of infectious disease. Based on the characteristics of infectious diseases, the whole process of its prevention and control and the comprehensive influence factors, three-dimensional medical architecture network system is proposed as an inevitable trend. In this conception of medical architecture network structure, the evolutions are mentioned, such as from simple network system to multilayer space network system, from static network to dynamic network, and from mechanical network to sustainable network. Ultimately, a more adaptable and corresponsive medical building network system will be established and argued in this paper.

  20. 76 FR 14794 - Special Conditions: Boeing Model 747-8 Airplanes, Systems and Data Networks Security-Isolation or...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-18

    ... Networks Security--Isolation or Protection From Unauthorized Passenger Domain Systems Access AGENCY... systems and data networks. The applicable airworthiness regulations do not contain adequate or appropriate... connected networks. The network architecture would be used for a diverse set of functions, including: 1...

  1. Quantum key distribution network for multiple applications

    NASA Astrophysics Data System (ADS)

    Tajima, A.; Kondoh, T.; Ochi, T.; Fujiwara, M.; Yoshino, K.; Iizuka, H.; Sakamoto, T.; Tomita, A.; Shimamura, E.; Asami, S.; Sasaki, M.

    2017-09-01

    The fundamental architecture and functions of secure key management in a quantum key distribution (QKD) network with enhanced universal interfaces for smooth key sharing between arbitrary two nodes and enabling multiple secure communication applications are proposed. The proposed architecture consists of three layers: a quantum layer, key management layer and key supply layer. We explain the functions of each layer, the key formats in each layer and the key lifecycle for enabling a practical QKD network. A quantum key distribution-advanced encryption standard (QKD-AES) hybrid system and an encrypted smartphone system were developed as secure communication applications on our QKD network. The validity and usefulness of these systems were demonstrated on the Tokyo QKD Network testbed.

  2. Study of tracking and data acquisition system for the 1990's. Volume 4: TDAS space segment architecture

    NASA Technical Reports Server (NTRS)

    Orr, R. S.

    1984-01-01

    Tracking and data acquisition system (TDAS) requirements, TDAS architectural goals, enhanced TDAS subsystems, constellation and networking options, TDAS spacecraft options, crosslink implementation, baseline TDAS space segment architecture, and treat model development/security analysis are addressed.

  3. Emerging hierarchies in dynamically adapting webs

    NASA Astrophysics Data System (ADS)

    Katifori, Eleni; Graewer, Johannes; Magnasco, Marcelo; Modes, Carl

    Transport networks play a key role across four realms of eukaryotic life: slime molds, fungi, plants, and animals. In addition to the developmental algorithms that build them, many also employ adaptive strategies to respond to stimuli, damage, and other environmental changes. We model these adapting network architectures using a generic dynamical system on weighted graphs and find in simulation that these networks ultimately develop a hierarchical organization of the final weighted architecture accompanied by the formation of a system-spanning backbone. We quantify the hierarchical organization of the networks by developing an algorithm that decomposes the architecture to multiple scales and analyzes how the organization in each scale relates to that of the scale above and below it. The methodologies developed in this work are applicable to a wide range of systems including the slime mold physarum polycephalum, human microvasculature, and force chains in granular media.

  4. End-to-end network models encompassing terrestrial, wireless, and satellite components

    NASA Astrophysics Data System (ADS)

    Boyarko, Chandler L.; Britton, John S.; Flores, Phil E.; Lambert, Charles B.; Pendzick, John M.; Ryan, Christopher M.; Shankman, Gordon L.; Williams, Ramon P.

    2004-08-01

    Development of network models that reflect true end-to-end architectures such as the Transformational Communications Architecture need to encompass terrestrial, wireless and satellite component to truly represent all of the complexities in a world wide communications network. Use of best-in-class tools including OPNET, Satellite Tool Kit (STK), Popkin System Architect and their well known XML-friendly definitions, such as OPNET Modeler's Data Type Description (DTD), or socket-based data transfer modules, such as STK/Connect, enable the sharing of data between applications for more rapid development of end-to-end system architectures and a more complete system design. By sharing the results of and integrating best-in-class tools we are able to (1) promote sharing of data, (2) enhance the fidelity of our results and (3) allow network and application performance to be viewed in the context of the entire enterprise and its processes.

  5. The architecture of adaptive neural network based on a fuzzy inference system for implementing intelligent control in photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Gimazov, R.; Shidlovskiy, S.

    2018-05-01

    In this paper, we consider the architecture of the algorithm for extreme regulation in the photovoltaic system. An algorithm based on an adaptive neural network with fuzzy inference is proposed. The implementation of such an algorithm not only allows solving a number of problems in existing algorithms for extreme power regulation of photovoltaic systems, but also creates a reserve for the creation of a universal control system for a photovoltaic system.

  6. An eConsent-based System Architecture Supporting Cooperation in Integrated Healthcare Networks.

    PubMed

    Bergmann, Joachim; Bott, Oliver J; Hoffmann, Ina; Pretschner, Dietrich P

    2005-01-01

    The economical need for efficient healthcare leads to cooperative shared care networks. A virtual electronic health record is required, which integrates patient related information but reflects the distributed infrastructure and restricts access only to those health professionals involved into the care process. Our work aims on specification and development of a system architecture fulfilling these requirements to be used in concrete regional pilot studies. Methodical analysis and specification have been performed in a healthcare network using the formal method and modelling tool MOSAIK-M. The complexity of the application field was reduced by focusing on the scenario of thyroid disease care, which still includes various interdisciplinary cooperation. Result is an architecture for a secure distributed electronic health record for integrated care networks, specified in terms of a MOSAIK-M-based system model. The architecture proposes business processes, application services, and a sophisticated security concept, providing a platform for distributed document-based, patient-centred, and secure cooperation. A corresponding system prototype has been developed for pilot studies, using advanced application server technologies. The architecture combines a consolidated patient-centred document management with a decentralized system structure without needs for replication management. An eConsent-based approach assures, that access to the distributed health record remains under control of the patient. The proposed architecture replaces message-based communication approaches, because it implements a virtual health record providing complete and current information. Acceptance of the new communication services depends on compatibility with the clinical routine. Unique and cross-institutional identification of a patient is also a challenge, but will loose significance with establishing common patient cards.

  7. Fluid and flexible minds: Intelligence reflects synchrony in the brain’s intrinsic network architecture

    PubMed Central

    Ferguson, Michael A.; Anderson, Jeffrey S.; Spreng, R. Nathan

    2017-01-01

    Human intelligence has been conceptualized as a complex system of dissociable cognitive processes, yet studies investigating the neural basis of intelligence have typically emphasized the contributions of discrete brain regions or, more recently, of specific networks of functionally connected regions. Here we take a broader, systems perspective in order to investigate whether intelligence is an emergent property of synchrony within the brain’s intrinsic network architecture. Using a large sample of resting-state fMRI and cognitive data (n = 830), we report that the synchrony of functional interactions within and across distributed brain networks reliably predicts fluid and flexible intellectual functioning. By adopting a whole-brain, systems-level approach, we were able to reliably predict individual differences in human intelligence by characterizing features of the brain’s intrinsic network architecture. These findings hold promise for the eventual development of neural markers to predict changes in intellectual function that are associated with neurodevelopment, normal aging, and brain disease.

  8. A Network Scheduling Model for Distributed Control Simulation

    NASA Technical Reports Server (NTRS)

    Culley, Dennis; Thomas, George; Aretskin-Hariton, Eliot

    2016-01-01

    Distributed engine control is a hardware technology that radically alters the architecture for aircraft engine control systems. Of its own accord, it does not change the function of control, rather it seeks to address the implementation issues for weight-constrained vehicles that can limit overall system performance and increase life-cycle cost. However, an inherent feature of this technology, digital communication networks, alters the flow of information between critical elements of the closed-loop control. Whereas control information has been available continuously in conventional centralized control architectures through virtue of analog signaling, moving forward, it will be transmitted digitally in serial fashion over the network(s) in distributed control architectures. An underlying effect is that all of the control information arrives asynchronously and may not be available every loop interval of the controller, therefore it must be scheduled. This paper proposes a methodology for modeling the nominal data flow over these networks and examines the resulting impact for an aero turbine engine system simulation.

  9. Development of the network architecture of the Canadian MSAT system

    NASA Technical Reports Server (NTRS)

    Davies, N. George; Shoamanesh, Alireza; Leung, Victor C. M.

    1988-01-01

    A description is given of the present concept for the Canadian Mobile Satellite (MSAT) System and the development of the network architecture which will accommodate the planned family of three categories of service: a mobile radio service (MRS), a mobile telephone service (MTS), and a mobile data service (MDS). The MSAT satellite will have cross-strapped L-band and Ku-band transponders to provide communications services between L-band mobile terminals and fixed base stations supporting dispatcher-type MRS, gateway stations supporting MTS interconnections to the public telephone network, data hub stations supporting the MDS, and the network control center. The currently perceived centralized architecture with demand assignment multiple access for the circuit switched MRS, MTS and permanently assigned channels for the packet switched MDS is discussed.

  10. Development of the network architecture of the Canadian MSAT system

    NASA Astrophysics Data System (ADS)

    Davies, N. George; Shoamanesh, Alireza; Leung, Victor C. M.

    1988-05-01

    A description is given of the present concept for the Canadian Mobile Satellite (MSAT) System and the development of the network architecture which will accommodate the planned family of three categories of service: a mobile radio service (MRS), a mobile telephone service (MTS), and a mobile data service (MDS). The MSAT satellite will have cross-strapped L-band and Ku-band transponders to provide communications services between L-band mobile terminals and fixed base stations supporting dispatcher-type MRS, gateway stations supporting MTS interconnections to the public telephone network, data hub stations supporting the MDS, and the network control center. The currently perceived centralized architecture with demand assignment multiple access for the circuit switched MRS, MTS and permanently assigned channels for the packet switched MDS is discussed.

  11. Cluster based architecture and network maintenance protocol for medical priority aware cognitive radio based hospital.

    PubMed

    Al Mamoon, Ishtiak; Muzahidul Islam, A K M; Baharun, Sabariah; Ahmed, Ashir; Komaki, Shozo

    2016-08-01

    Due to the rapid growth of wireless medical devices in near future, wireless healthcare services may face some inescapable issue such as medical spectrum scarcity, electromagnetic interference (EMI), bandwidth constraint, security and finally medical data communication model. To mitigate these issues, cognitive radio (CR) or opportunistic radio network enabled wireless technology is suitable for the upcoming wireless healthcare system. The up-to-date research on CR based healthcare has exposed some developments on EMI and spectrum problems. However, the investigation recommendation on system design and network model for CR enabled hospital is rare. Thus, this research designs a hierarchy based hybrid network architecture and network maintenance protocols for previously proposed CR hospital system, known as CogMed. In the previous study, the detail architecture of CogMed and its maintenance protocols were not present. The proposed architecture includes clustering concepts for cognitive base stations and non-medical devices. Two cluster head (CH selector equations are formulated based on priority of location, device, mobility rate of devices and number of accessible channels. In order to maintain the integrity of the proposed network model, node joining and node leaving protocols are also proposed. Finally, the simulation results show that the proposed network maintenance time is very low for emergency medical devices (average maintenance period 9.5 ms) and the re-clustering effects for different mobility enabled non-medical devices are also balanced.

  12. Design of Distributed Engine Control Systems with Uncertain Delay.

    PubMed

    Liu, Xiaofeng; Li, Yanxi; Sun, Xu

    Future gas turbine engine control systems will be based on distributed architecture, in which, the sensors and actuators will be connected to the controllers via a communication network. The performance of the distributed engine control (DEC) is dependent on the network performance. This study introduces a distributed control system architecture based on a networked cascade control system (NCCS). Typical turboshaft engine-distributed controllers are designed based on the NCCS framework with a H∞ output feedback under network-induced time delays and uncertain disturbances. The sufficient conditions for robust stability are derived via the Lyapunov stability theory and linear matrix inequality approach. Both numerical and hardware-in-loop simulations illustrate the effectiveness of the presented method.

  13. Design of Distributed Engine Control Systems with Uncertain Delay

    PubMed Central

    Li, Yanxi; Sun, Xu

    2016-01-01

    Future gas turbine engine control systems will be based on distributed architecture, in which, the sensors and actuators will be connected to the controllers via a communication network. The performance of the distributed engine control (DEC) is dependent on the network performance. This study introduces a distributed control system architecture based on a networked cascade control system (NCCS). Typical turboshaft engine-distributed controllers are designed based on the NCCS framework with a H∞ output feedback under network-induced time delays and uncertain disturbances. The sufficient conditions for robust stability are derived via the Lyapunov stability theory and linear matrix inequality approach. Both numerical and hardware-in-loop simulations illustrate the effectiveness of the presented method. PMID:27669005

  14. Networks for Autonomous Formation Flying Satellite Systems

    NASA Technical Reports Server (NTRS)

    Knoblock, Eric J.; Konangi, Vijay K.; Wallett, Thomas M.; Bhasin, Kul B.

    2001-01-01

    The performance of three communications networks to support autonomous multi-spacecraft formation flying systems is presented. All systems are comprised of a ten-satellite formation arranged in a star topology, with one of the satellites designated as the central or "mother ship." All data is routed through the mother ship to the terrestrial network. The first system uses a TCP/lP over ATM protocol architecture within the formation the second system uses the IEEE 802.11 protocol architecture within the formation and the last system uses both of the previous architectures with a constellation of geosynchronous satellites serving as an intermediate point-of-contact between the formation and the terrestrial network. The simulations consist of file transfers using either the File Transfer Protocol (FTP) or the Simple Automatic File Exchange (SAFE) Protocol. The results compare the IF queuing delay, and IP processing delay at the mother ship as well as application-level round-trip time for both systems, In all cases, using IEEE 802.11 within the formation yields less delay. Also, the throughput exhibited by SAFE is better than FTP.

  15. Stability and performance of propulsion control systems with distributed control architectures and failures

    NASA Astrophysics Data System (ADS)

    Belapurkar, Rohit K.

    Future aircraft engine control systems will be based on a distributed architecture, in which, the sensors and actuators will be connected to the Full Authority Digital Engine Control (FADEC) through an engine area network. Distributed engine control architecture will allow the implementation of advanced, active control techniques along with achieving weight reduction, improvement in performance and lower life cycle cost. The performance of a distributed engine control system is predominantly dependent on the performance of the communication network. Due to the serial data transmission policy, network-induced time delays and sampling jitter are introduced between the sensor/actuator nodes and the distributed FADEC. Communication network faults and transient node failures may result in data dropouts, which may not only degrade the control system performance but may even destabilize the engine control system. Three different architectures for a turbine engine control system based on a distributed framework are presented. A partially distributed control system for a turbo-shaft engine is designed based on ARINC 825 communication protocol. Stability conditions and control design methodology are developed for the proposed partially distributed turbo-shaft engine control system to guarantee the desired performance under the presence of network-induced time delay and random data loss due to transient sensor/actuator failures. A fault tolerant control design methodology is proposed to benefit from the availability of an additional system bandwidth and from the broadcast feature of the data network. It is shown that a reconfigurable fault tolerant control design can help to reduce the performance degradation in presence of node failures. A T-700 turbo-shaft engine model is used to validate the proposed control methodology based on both single input and multiple-input multiple-output control design techniques.

  16. GEONETCast Americas - Architecture

    Science.gov Websites

    site map | contact us USGEO logo HOME ABOUT US Who We Are Coverage Architecture About GEOSS and GEONETCast Americas, the coverage from the satellite network, the architecture of the system, and some

  17. A Decentralized VPN Service over Generalized Mobile Ad-Hoc Networks

    NASA Astrophysics Data System (ADS)

    Fujita, Sho; Shima, Keiichi; Uo, Yojiro; Esaki, Hiroshi

    We present a decentralized VPN service that can be built over generalized mobile ad-hoc networks (Generalized MANETs), in which topologies can be represented as a time-varying directed multigraph. We address wireless ad-hoc networks and overlay ad-hoc networks as instances of Generalized MANETs. We first propose an architecture to operate on various kinds of networks through a single set of operations. Then, we design and implement a decentralized VPN service on the proposed architecture. Through the development and operation of a prototype system we implemented, we found that the proposed architecture makes the VPN service applicable to each instance of Generalized MANETs, and that the VPN service makes it possible for unmodified applications to operate on the networks.

  18. Communication Needs Assessment for Distributed Turbine Engine Control

    NASA Technical Reports Server (NTRS)

    Culley, Dennis E.; Behbahani, Alireza R.

    2008-01-01

    Control system architecture is a major contributor to future propulsion engine performance enhancement and life cycle cost reduction. The control system architecture can be a means to effect net weight reduction in future engine systems, provide a streamlined approach to system design and implementation, and enable new opportunities for performance optimization and increased awareness about system health. The transition from a centralized, point-to-point analog control topology to a modular, networked, distributed system is paramount to extracting these system improvements. However, distributed engine control systems are only possible through the successful design and implementation of a suitable communication system. In a networked system, understanding the data flow between control elements is a fundamental requirement for specifying the communication architecture which, itself, is dependent on the functional capability of electronics in the engine environment. This paper presents an assessment of the communication needs for distributed control using strawman designs and relates how system design decisions relate to overall goals as we progress from the baseline centralized architecture, through partially distributed and fully distributed control systems.

  19. Fiber-Optic Network Architectures for Onboard Avionics Applications Investigated

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Ngo, Duc H.

    2003-01-01

    This project is part of a study within the Advanced Air Transportation Technologies program undertaken at the NASA Glenn Research Center. The main focus of the program is the improvement of air transportation, with particular emphasis on air transportation safety. Current and future advances in digital data communications between an aircraft and the outside world will require high-bandwidth onboard communication networks. Radiofrequency (RF) systems, with their interconnection network based on coaxial cables and waveguides, increase the complexity of communication systems onboard modern civil and military aircraft with respect to weight, power consumption, and safety. In addition, safety and reliability concerns from electromagnetic interference between the RF components embedded in these communication systems exist. A simple, reliable, and lightweight network that is free from the effects of electromagnetic interference and capable of supporting the broadband communications needs of future onboard digital avionics systems cannot be easily implemented using existing coaxial cable-based systems. Fiber-optical communication systems can meet all these challenges of modern avionics applications in an efficient, cost-effective manner. The objective of this project is to present a number of optical network architectures for onboard RF signal distribution. Because of the emergence of a number of digital avionics devices requiring high-bandwidth connectivity, fiber-optic RF networks onboard modern aircraft will play a vital role in ensuring a low-noise, highly reliable RF communication system. Two approaches are being used for network architectures for aircraft onboard fiber-optic distribution systems: a hybrid RF-optical network and an all-optical wavelength division multiplexing (WDM) network.

  20. An OSI architecture for the deep space network

    NASA Technical Reports Server (NTRS)

    Heuser, W. Randy; Cooper, Lynne P.

    1993-01-01

    The flexibility and robustness of a monitor and control system are a direct result of the underlying inter-processor communications architecture. A new architecture for monitor & Control at the Deep Space Network Communications Complexes has been developed based on the Open System Interconnection (OSI) standards. The suitability of OSI standards for DSN M&C has been proven in the laboratory. The laboratory success has resulted in choosing an OSI-based architecture for DSS-13 M&C. DSS-13 is the DSN experimental station and is not part of the 'operational' DSN; it's role is to provide an environment to test new communications concepts can be tested and conduct unique science experiments. Therefore, DSS-13 must be robust enough to support operational activities, while also being flexible enough to enable experimentation. This paper describes the M&C architecture developed for DSS-13 and the results from system and operational testing.

  1. An Agent-Based Dynamic Model for Analysis of Distributed Space Exploration Architectures

    NASA Astrophysics Data System (ADS)

    Sindiy, Oleg V.; DeLaurentis, Daniel A.; Stein, William B.

    2009-07-01

    A range of complex challenges, but also potentially unique rewards, underlie the development of exploration architectures that use a distributed, dynamic network of resources across the solar system. From a methodological perspective, the prime challenge is to systematically model the evolution (and quantify comparative performance) of such architectures, under uncertainty, to effectively direct further study of specialized trajectories, spacecraft technologies, concept of operations, and resource allocation. A process model for System-of-Systems Engineering is used to define time-varying performance measures for comparative architecture analysis and identification of distinguishing patterns among interoperating systems. Agent-based modeling serves as the means to create a discrete-time simulation that generates dynamics for the study of architecture evolution. A Solar System Mobility Network proof-of-concept problem is introduced representing a set of longer-term, distributed exploration architectures. Options within this set revolve around deployment of human and robotic exploration and infrastructure assets, their organization, interoperability, and evolution, i.e., a system-of-systems. Agent-based simulations quantify relative payoffs for a fully distributed architecture (which can be significant over the long term), the latency period before they are manifest, and the up-front investment (which can be substantial compared to alternatives). Verification and sensitivity results provide further insight on development paths and indicate that the framework and simulation modeling approach may be useful in architectural design of other space exploration mass, energy, and information exchange settings.

  2. Centralized and distributed control architectures under Foundation Fieldbus network.

    PubMed

    Persechini, Maria Auxiliadora Muanis; Jota, Fábio Gonçalves

    2013-01-01

    This paper aims at discussing possible automation and control system architectures based on fieldbus networks in which the controllers can be implemented either in a centralized or in a distributed form. An experimental setup is used to demonstrate some of the addressed issues. The control and automation architecture is composed of a supervisory system, a programmable logic controller and various other devices connected to a Foundation Fieldbus H1 network. The procedures used in the network configuration, in the process modelling and in the design and implementation of controllers are described. The specificities of each one of the considered logical organizations are also discussed. Finally, experimental results are analysed using an algorithm for the assessment of control loops to compare the performances between the centralized and the distributed implementations. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Aeronautical Situational Awareness - Airport Surface

    NASA Technical Reports Server (NTRS)

    Linetsky, Vladimir M.; Ivancic, William D.; Vaden, Karl R.

    2017-01-01

    This paper advocates for a specific design approach, based on simple principals, yet addresses challenges faced by the system engineers when designing complex data and information infrastructure. The document provides guidance for breaking out various work elements in the overall network architecture design, so that communication systems are conceived and effectively realized regardless of their location, size and local specifics. Although targeted at the Global Airspace System (GAS) and National Airspace System (NAS), this framework can be applied to any network-centric architecture.

  4. Evolution of network architecture in a granular material under compression

    NASA Astrophysics Data System (ADS)

    Bassett, Danielle

    As a granular material is compressed, the particles and forces within the system arrange to form complex and heterogeneous collective structures. However, capturing and characterizing the dynamic nature of the intrinsic inhomogeneity and mesoscale architecture of granular systems can be challenging. Here, we utilize multilayer networks as a framework for directly quantifying the evolution of mesoscale architecture in a compressed granular system. We examine a quasi-two-dimensional aggregate of photoelastic disks, subject to biaxial compressions through a series of small, quasistatic steps. Treating particles as network nodes and inter-particle forces as network edges, we construct a multilayer network for the system by linking together the series of static force networks that exist at each strain step. We then extract the inherent mesoscale structure from the system by using a generalization of community detection methods to multilayer networks, and we define quantitative measures to characterize the reconfiguration and evolution of this structure throughout the compression process. To test the sensitivity of the network model to particle properties, we examine whether the method can distinguish a subsystem of low-friction particles within a bath of higher-friction particles. We find that this can be done by considering the network of tangential forces, and that the community structure is better able to separate the subsystem than consideration of the local inter-particle forces alone. The results discussed throughout this study suggest that these novel network science techniques may provide a direct way to compare and classify data from systems under different external conditions or with different physical makeup. National Science Foundation (BCS-1441502, PHY-1554488, and BCS-1631550).

  5. Networking and AI systems: Requirements and benefits

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The price performance benefits of network systems is well documented. The ability to share expensive resources sold timesharing for mainframes, department clusters of minicomputers, and now local area networks of workstations and servers. In the process, other fundamental system requirements emerged. These have now been generalized with open system requirements for hardware, software, applications and tools. The ability to interconnect a variety of vendor products has led to a specification of interfaces that allow new techniques to extend existing systems for new and exciting applications. As an example of the message passing system, local area networks provide a testbed for many of the issues addressed by future concurrent architectures: synchronization, load balancing, fault tolerance and scalability. Gold Hill has been working with a number of vendors on distributed architectures that range from a network of workstations to a hypercube of microprocessors with distributed memory. Results from early applications are promising both for performance and scalability.

  6. Advanced ground station architecture

    NASA Technical Reports Server (NTRS)

    Zillig, David; Benjamin, Ted

    1994-01-01

    This paper describes a new station architecture for NASA's Ground Network (GN). The architecture makes efficient use of emerging technologies to provide dramatic reductions in size, operational complexity, and operational and maintenance costs. The architecture, which is based on recent receiver work sponsored by the Office of Space Communications Advanced Systems Program, allows integration of both GN and Space Network (SN) modes of operation in the same electronics system. It is highly configurable through software and the use of charged coupled device (CCD) technology to provide a wide range of operating modes. Moreover, it affords modularity of features which are optional depending on the application. The resulting system incorporates advanced RF, digital, and remote control technology capable of introducing significant operational, performance, and cost benefits to a variety of NASA communications and tracking applications.

  7. Re-engineering Nascom's network management architecture

    NASA Technical Reports Server (NTRS)

    Drake, Brian C.; Messent, David

    1994-01-01

    The development of Nascom systems for ground communications began in 1958 with Project Vanguard. The low-speed systems (rates less than 9.6 Kbs) were developed following existing standards; but, there were no comparable standards for high-speed systems. As a result, these systems were developed using custom protocols and custom hardware. Technology has made enormous strides since the ground support systems were implemented. Standards for computer equipment, software, and high-speed communications exist and the performance of current workstations exceeds that of the mainframes used in the development of the ground systems. Nascom is in the process of upgrading its ground support systems and providing additional services. The Message Switching System (MSS), Communications Address Processor (CAP), and Multiplexer/Demultiplexer (MDM) Automated Control System (MACS) are all examples of Nascom systems developed using standards such as, X-windows, Motif, and Simple Network Management Protocol (SNMP). Also, the Earth Observing System (EOS) Communications (Ecom) project is stressing standards as an integral part of its network. The move towards standards has produced a reduction in development, maintenance, and interoperability costs, while providing operational quality improvement. The Facility and Resource Manager (FARM) project has been established to integrate the Nascom networks and systems into a common network management architecture. The maximization of standards and implementation of computer automation in the architecture will lead to continued cost reductions and increased operational efficiency. The first step has been to derive overall Nascom requirements and identify the functionality common to all the current management systems. The identification of these common functions will enable the reuse of processes in the management architecture and promote increased use of automation throughout the Nascom network. The MSS, CAP, MACS, and Ecom projects have indicated the potential value of commercial-off-the-shelf (COTS) and standards through reduced cost and high quality. The FARM will allow the application of the lessons learned from these projects to all future Nascom systems.

  8. Structural self-assembly and avalanchelike dynamics in locally adaptive networks

    NASA Astrophysics Data System (ADS)

    Gräwer, Johannes; Modes, Carl D.; Magnasco, Marcelo O.; Katifori, Eleni

    2015-07-01

    Transport networks play a key role across four realms of eukaryotic life: slime molds, fungi, plants, and animals. In addition to the developmental algorithms that build them, many also employ adaptive strategies to respond to stimuli, damage, and other environmental changes. We model these adapting network architectures using a generic dynamical system on weighted graphs and find in simulation that these networks ultimately develop a hierarchical organization of the final weighted architecture accompanied by the formation of a system-spanning backbone. In addition, we find that the long term equilibration dynamics exhibit behavior reminiscent of glassy systems characterized by long periods of slow changes punctuated by bursts of reorganization events.

  9. Design development of a neural network-based telemetry monitor

    NASA Technical Reports Server (NTRS)

    Lembeck, Michael F.

    1992-01-01

    This paper identifies the requirements and describes an architectural framework for an artificial neural network-based system that is capable of fulfilling monitoring and control requirements of future aerospace missions. Incorporated into this framework are a newly developed training algorithm and the concept of cooperative network architectures. The feasibility of such an approach is demonstrated for its ability to identify faults in low frequency waveforms.

  10. Evolution of the Lunar Network

    NASA Technical Reports Server (NTRS)

    Gal-Edd, Jonathan; Fatig, Curtis C.; Miller, Ron

    2008-01-01

    The National Aeronautics and Space Administration (NASA) is planning to upgrade its network Infrastructure to support missions for the 21st century. The first step is to increase the data rate provided to science missions to at least the 100 megabits per second (Mbps) range. This is under way, using Ka-band 26 Gigahertz (GHz), erecting an 18-meter antenna for the Lunar Reconnaissance Orbiter (LRO), and the planned upgrade of the Deep Space Network (DSN) 34-meter network to support the James Webb Space Telescope (JWST). The next step is the support of manned missions to the Moon and beyond. Establishing an outpost with several activities such as rovers, colonization, and observatories, is better achieved by using a network configuration rather than the current method of point-to-point communication. Another challenge associated with the Moon is communication coverage with the Earth. The Moon's South Pole, targeted for human habitat and exploration, is obscured from Earth view for half of the 28-day lunar cycle and requires the use of lunar relay satellites to provide coverage when there is no direct view of the Earth. The future NASA and Constellation network architecture is described in the Space Communications Architecture Working Group (SCAWG) Report. The Space Communications and Navigation (SCAN) Constellation Integration Project (SCIP) is responsible for coordinating Constellation requirements and has assigned the responsibility for implementing these requirements to the existing NASA communication providers: DSN, Space Network (SN), Ground Network (GN) and the NASA Integrated Services Network (NISN). The SCAWG Report provides a future architecture but does not provide implementation details. The architecture calls for a Netcentric system, using hundreds of 12-meter antennas, a ground antenna array, and a relay network around the Moon. The report did not use cost as a variable in determining the feasibility of this approach. As part of the SCIP Mission Concept Review and the second iteration of the Lunar Architecture Team (LAT), the focus is on cost, as well as communication coverage using operational scenarios. This approach maximizes use of existing assets and adds capability in small increments. This paper addresses architecture decisions such as the Radio Frequency (RF) signal and network (Netcentric) decisions that need to be made and the difficulty of implementing them into the existing Space Network and DSN. It discusses the evolution of the lunar system and describes its components: Tracking and Data Relay Satellite System (TDRSS), Earth-based ground stations, Lunar Relay, and surface systems.

  11. EASY-SIM: A Visual Simulation System Software Architecture with an ADA 9X Application Framework

    DTIC Science & Technology

    1994-12-01

    devop -_ ment of software systems within a domain. Because an architecture promotes reuse at the design level, systems developers do not have to devote...physically separated actors into a battlefield situation, The interaction be- tween the various simulators is accomplished by means of network connec...realized that it would be more productive to make reusable components from scratch (Sny93,31-32]. Of notable exception were the network communications

  12. 78 FR 68985 - Special Conditions: Boeing Model 777-200, -300, and -300ER Series Airplanes; Aircraft Electronic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-18

    ... modified by the Boeing Company, will have novel or unusual design features associated with the architecture..., and fiber-optic avionics networks. The proposed architecture is novel or unusual for commercial... material did not anticipate this type of system architecture or electronic access to aircraft systems...

  13. Multistage WDM access architecture employing cascaded AWGs

    NASA Astrophysics Data System (ADS)

    El-Nahal, F. I.; Mears, R. J.

    2009-03-01

    Here we propose passive/active arrayed waveguide gratings (AWGs) with enhanced performance for system applications mainly in novel access architectures employing cascaded AWG technology. Two technologies were considered to achieve space wavelength switching in these networks. Firstly, a passive AWG with semiconductor optical amplifiers array, and secondly, an active AWG. Active AWG is an AWG with an array of phase modulators on its arrayed-waveguides section, where a programmable linear phase-profile or a phase hologram is applied across the arrayed-waveguide section. This results in a wavelength shift at the output section of the AWG. These architectures can address up to 6912 customers employing only 24 wavelengths, coarsely separated by 1.6 nm. Simulation results obtained here demonstrate that cascaded AWGs access architectures have a great potential in future local area networks. Furthermore, they indicate for the first time that active AWGs architectures are more efficient in routing signals to the destination optical network units than passive AWG architectures.

  14. On-board B-ISDN fast packet switching architectures. Phase 2: Development. Proof-of-concept architecture definition report

    NASA Technical Reports Server (NTRS)

    Shyy, Dong-Jye; Redman, Wayne

    1993-01-01

    For the next-generation packet switched communications satellite system with onboard processing and spot-beam operation, a reliable onboard fast packet switch is essential to route packets from different uplink beams to different downlink beams. The rapid emergence of point-to-point services such as video distribution, and the large demand for video conference, distributed data processing, and network management makes the multicast function essential to a fast packet switch (FPS). The satellite's inherent broadcast features gives the satellite network an advantage over the terrestrial network in providing multicast services. This report evaluates alternate multicast FPS architectures for onboard baseband switching applications and selects a candidate for subsequent breadboard development. Architecture evaluation and selection will be based on the study performed in phase 1, 'Onboard B-ISDN Fast Packet Switching Architectures', and other switch architectures which have become commercially available as large scale integration (LSI) devices.

  15. Evolutionary Space Communications Architectures for Human/Robotic Exploration and Science Missions

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul; Hayden, Jeffrey L.

    2004-01-01

    NASA enterprises have growing needs for an advanced, integrated, communications infrastructure that will satisfy the capabilities needed for multiple human, robotic and scientific missions beyond 2015. Furthermore, the reliable, multipoint infrastructure is required to provide continuous, maximum coverage of areas of concentrated activities, such as around Earth and in the vicinity of the Moon or Mars, with access made available on demand of the human or robotic user. As a first step, the definitions of NASA's future space communications and networking architectures are underway. Architectures that describe the communications and networking needed between the nodal regions consisting of Earth, Moon, Lagrange points, Mars, and the places of interest within the inner and outer solar system have been laid out. These architectures will need the modular flexibility that must be included in the communication and networking technologies to enable the infrastructure to grow in capability with time and to transform from supporting robotic missions in the solar system to supporting human ventures to Mars, Jupiter, Jupiter's moons, and beyond. The protocol-based networking capability seamlessly connects the backbone, access, inter-spacecraft and proximity network elements of the architectures employed in the infrastructure. In this paper, we present the summary of NASA's near and long term needs and capability requirements that were gathered by participative methods. We describe an integrated architecture concept and model that will enable communications for evolutionary robotic and human science missions. We then define the communication nodes, their requirements, and various options to connect them.

  16. Evolutionary Space Communications Architectures for Human/Robotic Exploration and Science Missions

    NASA Astrophysics Data System (ADS)

    Bhasin, Kul; Hayden, Jeffrey L.

    2004-02-01

    NASA enterprises have growing needs for an advanced, integrated, communications infrastructure that will satisfy the capabilities needed for multiple human, robotic and scientific missions beyond 2015. Furthermore, the reliable, multipoint infrastructure is required to provide continuous, maximum coverage of areas of concentrated activities, such as around Earth and in the vicinity of the Moon or Mars, with access made available on demand of the human or robotic user. As a first step, the definitions of NASA's future space communications and networking architectures are underway. Architectures that describe the communications and networking needed between the nodal regions consisting of Earth, Moon, Lagrange points, Mars, and the places of interest within the inner and outer solar system have been laid out. These architectures will need the modular flexibility that must be included in the communication and networking technologies to enable the infrastructure to grow in capability with time and to transform from supporting robotic missions in the solar system to supporting human ventures to Mars, Jupiter, Jupiter's moons, and beyond. The protocol-based networking capability seamlessly connects the backbone, access, inter-spacecraft and proximity network elements of the architectures employed in the infrastructure. In this paper, we present the summary of NASA's near and long term needs and capability requirements that were gathered by participative methods. We describe an integrated architecture concept and model that will enable communications for evolutionary robotic and human science missions. We then define the communication nodes, their requirements, and various options to connect them.

  17. A reliability analysis tool for SpaceWire network

    NASA Astrophysics Data System (ADS)

    Zhou, Qiang; Zhu, Longjiang; Fei, Haidong; Wang, Xingyou

    2017-04-01

    A SpaceWire is a standard for on-board satellite networks as the basis for future data-handling architectures. It is becoming more and more popular in space applications due to its technical advantages, including reliability, low power and fault protection, etc. High reliability is the vital issue for spacecraft. Therefore, it is very important to analyze and improve the reliability performance of the SpaceWire network. This paper deals with the problem of reliability modeling and analysis with SpaceWire network. According to the function division of distributed network, a reliability analysis method based on a task is proposed, the reliability analysis of every task can lead to the system reliability matrix, the reliability result of the network system can be deduced by integrating these entire reliability indexes in the matrix. With the method, we develop a reliability analysis tool for SpaceWire Network based on VC, where the computation schemes for reliability matrix and the multi-path-task reliability are also implemented. By using this tool, we analyze several cases on typical architectures. And the analytic results indicate that redundancy architecture has better reliability performance than basic one. In practical, the dual redundancy scheme has been adopted for some key unit, to improve the reliability index of the system or task. Finally, this reliability analysis tool will has a directive influence on both task division and topology selection in the phase of SpaceWire network system design.

  18. A Multi-Agent System Architecture for Sensor Networks

    PubMed Central

    Fuentes-Fernández, Rubén; Guijarro, María; Pajares, Gonzalo

    2009-01-01

    The design of the control systems for sensor networks presents important challenges. Besides the traditional problems about how to process the sensor data to obtain the target information, engineers need to consider additional aspects such as the heterogeneity and high number of sensors, and the flexibility of these networks regarding topologies and the sensors in them. Although there are partial approaches for resolving these issues, their integration relies on ad hoc solutions requiring important development efforts. In order to provide an effective approach for this integration, this paper proposes an architecture based on the multi-agent system paradigm with a clear separation of concerns. The architecture considers sensors as devices used by an upper layer of manager agents. These agents are able to communicate and negotiate services to achieve the required functionality. Activities are organized according to roles related with the different aspects to integrate, mainly sensor management, data processing, communication and adaptation to changes in the available devices and their capabilities. This organization largely isolates and decouples the data management from the changing network, while encouraging reuse of solutions. The use of the architecture is facilitated by a specific modelling language developed through metamodelling. A case study concerning a generic distributed system for fire fighting illustrates the approach and the comparison with related work. PMID:22303172

  19. A multi-agent system architecture for sensor networks.

    PubMed

    Fuentes-Fernández, Rubén; Guijarro, María; Pajares, Gonzalo

    2009-01-01

    The design of the control systems for sensor networks presents important challenges. Besides the traditional problems about how to process the sensor data to obtain the target information, engineers need to consider additional aspects such as the heterogeneity and high number of sensors, and the flexibility of these networks regarding topologies and the sensors in them. Although there are partial approaches for resolving these issues, their integration relies on ad hoc solutions requiring important development efforts. In order to provide an effective approach for this integration, this paper proposes an architecture based on the multi-agent system paradigm with a clear separation of concerns. The architecture considers sensors as devices used by an upper layer of manager agents. These agents are able to communicate and negotiate services to achieve the required functionality. Activities are organized according to roles related with the different aspects to integrate, mainly sensor management, data processing, communication and adaptation to changes in the available devices and their capabilities. This organization largely isolates and decouples the data management from the changing network, while encouraging reuse of solutions. The use of the architecture is facilitated by a specific modelling language developed through metamodelling. A case study concerning a generic distributed system for fire fighting illustrates the approach and the comparison with related work.

  20. Neural network submodel as an abstraction tool: relating network performance to combat outcome

    NASA Astrophysics Data System (ADS)

    Jablunovsky, Greg; Dorman, Clark; Yaworsky, Paul S.

    2000-06-01

    Simulation of Command and Control (C2) networks has historically emphasized individual system performance with little architectural context or credible linkage to `bottom- line' measures of combat outcomes. Renewed interest in modeling C2 effects and relationships stems from emerging network intensive operational concepts. This demands improved methods to span the analytical hierarchy between C2 system performance models and theater-level models. Neural network technology offers a modeling approach that can abstract the essential behavior of higher resolution C2 models within a campaign simulation. The proposed methodology uses off-line learning of the relationships between network state and campaign-impacting performance of a complex C2 architecture and then approximation of that performance as a time-varying parameter in an aggregated simulation. Ultimately, this abstraction tool offers an increased fidelity of C2 system simulation that captures dynamic network dependencies within a campaign context.

  1. Architectural and Functional Design of an Environmental Information Network.

    DTIC Science & Technology

    1984-04-30

    study was accomplished under contract F08635-83-C-013(,, Task 83- 2 for Headquarters Air Force Engineering and Services Center, Engineering and Services...election Procedure ............................... 11 2 General Architecture of Distributed Data Management System...o.......60 A-1 Schema Architecture .......... o-.................. .... 74 A- 2 MULTIBASE Component Architecture

  2. Deep Space Network information system architecture study

    NASA Technical Reports Server (NTRS)

    Beswick, C. A.; Markley, R. W. (Editor); Atkinson, D. J.; Cooper, L. P.; Tausworthe, R. C.; Masline, R. C.; Jenkins, J. S.; Crowe, R. A.; Thomas, J. L.; Stoloff, M. J.

    1992-01-01

    The purpose of this article is to describe an architecture for the DSN information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990's. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies--i.e., computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control.

  3. Emergent latent symbol systems in recurrent neural networks

    NASA Astrophysics Data System (ADS)

    Monner, Derek; Reggia, James A.

    2012-12-01

    Fodor and Pylyshyn [(1988). Connectionism and cognitive architecture: A critical analysis. Cognition, 28(1-2), 3-71] famously argued that neural networks cannot behave systematically short of implementing a combinatorial symbol system. A recent response from Frank et al. [(2009). Connectionist semantic systematicity. Cognition, 110(3), 358-379] claimed to have trained a neural network to behave systematically without implementing a symbol system and without any in-built predisposition towards combinatorial representations. We believe systems like theirs may in fact implement a symbol system on a deeper and more interesting level: one where the symbols are latent - not visible at the level of network structure. In order to illustrate this possibility, we demonstrate our own recurrent neural network that learns to understand sentence-level language in terms of a scene. We demonstrate our model's learned understanding by testing it on novel sentences and scenes. By paring down our model into an architecturally minimal version, we demonstrate how it supports combinatorial computation over distributed representations by using the associative memory operations of Vector Symbolic Architectures. Knowledge of the model's memory scheme gives us tools to explain its errors and construct superior future models. We show how the model designs and manipulates a latent symbol system in which the combinatorial symbols are patterns of activation distributed across the layers of a neural network, instantiating a hybrid of classical symbolic and connectionist representations that combines advantages of both.

  4. 78 FR 73993 - Special Conditions: Cessna Model 680 Series Airplanes; Aircraft Electronic System Security...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-10

    ... design feature associated with the architecture and connectivity capabilities of the airplanes' computer... vulnerabilities to the airplanes' systems. The proposed network architecture includes the following connectivity.... Operator business and administrative support systems, and 3. Passenger entertainment systems, and access by...

  5. Commercial vehicle information systems and networks (CVISN) glossary : baseline version

    DOT National Transportation Integrated Search

    1999-01-01

    This document defines terms and acronyms used in current Commercial Vehicle Information Systems and Networks (CVISN) documents and used in activities relevant to development of a national Intelligent Transportation System (ITS) system architecture fo...

  6. Commercial vehicle information systems and networks (CVISN) glossary : preliminary issue

    DOT National Transportation Integrated Search

    1996-10-01

    This document defines terms and acronyms used in current Commercial Vehicle Information Systems and Networks (CVISN) documents and used in activities relevant to development of a national Intelligent Transportation System (ITS) system architecture fo...

  7. Role of Graph Architecture in Controlling Dynamical Networks with Applications to Neural Systems.

    PubMed

    Kim, Jason Z; Soffer, Jonathan M; Kahn, Ari E; Vettel, Jean M; Pasqualetti, Fabio; Bassett, Danielle S

    2018-01-01

    Networked systems display complex patterns of interactions between components. In physical networks, these interactions often occur along structural connections that link components in a hard-wired connection topology, supporting a variety of system-wide dynamical behaviors such as synchronization. While descriptions of these behaviors are important, they are only a first step towards understanding and harnessing the relationship between network topology and system behavior. Here, we use linear network control theory to derive accurate closed-form expressions that relate the connectivity of a subset of structural connections (those linking driver nodes to non-driver nodes) to the minimum energy required to control networked systems. To illustrate the utility of the mathematics, we apply this approach to high-resolution connectomes recently reconstructed from Drosophila, mouse, and human brains. We use these principles to suggest an advantage of the human brain in supporting diverse network dynamics with small energetic costs while remaining robust to perturbations, and to perform clinically accessible targeted manipulation of the brain's control performance by removing single edges in the network. Generally, our results ground the expectation of a control system's behavior in its network architecture, and directly inspire new directions in network analysis and design via distributed control.

  8. Role of graph architecture in controlling dynamical networks with applications to neural systems

    NASA Astrophysics Data System (ADS)

    Kim, Jason Z.; Soffer, Jonathan M.; Kahn, Ari E.; Vettel, Jean M.; Pasqualetti, Fabio; Bassett, Danielle S.

    2018-01-01

    Networked systems display complex patterns of interactions between components. In physical networks, these interactions often occur along structural connections that link components in a hard-wired connection topology, supporting a variety of system-wide dynamical behaviours such as synchronization. Although descriptions of these behaviours are important, they are only a first step towards understanding and harnessing the relationship between network topology and system behaviour. Here, we use linear network control theory to derive accurate closed-form expressions that relate the connectivity of a subset of structural connections (those linking driver nodes to non-driver nodes) to the minimum energy required to control networked systems. To illustrate the utility of the mathematics, we apply this approach to high-resolution connectomes recently reconstructed from Drosophila, mouse, and human brains. We use these principles to suggest an advantage of the human brain in supporting diverse network dynamics with small energetic costs while remaining robust to perturbations, and to perform clinically accessible targeted manipulation of the brain's control performance by removing single edges in the network. Generally, our results ground the expectation of a control system's behaviour in its network architecture, and directly inspire new directions in network analysis and design via distributed control.

  9. On-board B-ISDN fast packet switching architectures. Phase 1: Study

    NASA Technical Reports Server (NTRS)

    Faris, Faris; Inukai, Thomas; Lee, Fred; Paul, Dilip; Shyy, Dong-Jye

    1993-01-01

    The broadband integrate services digital network (B-ISDN) is an emerging telecommunications technology that will meet most of the telecommunications networking needs in the mid-1990's to early next century. The satellite-based system is well positioned for providing B-ISDN service with its inherent capabilities of point-to-multipoint and broadcast transmission, virtually unlimited connectivity between any two points within a beam coverage, short deployment time of communications facility, flexible and dynamic reallocation of space segment capacity, and distance insensitive cost. On-board processing satellites, particularly in a multiple spot beam environment, will provide enhanced connectivity, better performance, optimized access and transmission link design, and lower user service cost. The following are described: the user and network aspects of broadband services; the current development status in broadband services; various satellite network architectures including system design issues; and various fast packet switch architectures and their detail designs.

  10. Modification Propagation in Complex Networks

    NASA Astrophysics Data System (ADS)

    Mouronte, Mary Luz; Vargas, María Luisa; Moyano, Luis Gregorio; Algarra, Francisco Javier García; Del Pozo, Luis Salvador

    To keep up with rapidly changing conditions, business systems and their associated networks are growing increasingly intricate as never before. By doing this, network management and operation costs not only rise, but are difficult even to measure. This fact must be regarded as a major constraint to system optimization initiatives, as well as a setback to derived economic benefits. In this work we introduce a simple model in order to estimate the relative cost associated to modification propagation in complex architectures. Our model can be used to anticipate costs caused by network evolution, as well as for planning and evaluating future architecture development while providing benefit optimization.

  11. Integrated information in discrete dynamical systems: motivation and theoretical framework.

    PubMed

    Balduzzi, David; Tononi, Giulio

    2008-06-13

    This paper introduces a time- and state-dependent measure of integrated information, phi, which captures the repertoire of causal states available to a system as a whole. Specifically, phi quantifies how much information is generated (uncertainty is reduced) when a system enters a particular state through causal interactions among its elements, above and beyond the information generated independently by its parts. Such mathematical characterization is motivated by the observation that integrated information captures two key phenomenological properties of consciousness: (i) there is a large repertoire of conscious experiences so that, when one particular experience occurs, it generates a large amount of information by ruling out all the others; and (ii) this information is integrated, in that each experience appears as a whole that cannot be decomposed into independent parts. This paper extends previous work on stationary systems and applies integrated information to discrete networks as a function of their dynamics and causal architecture. An analysis of basic examples indicates the following: (i) phi varies depending on the state entered by a network, being higher if active and inactive elements are balanced and lower if the network is inactive or hyperactive. (ii) phi varies for systems with identical or similar surface dynamics depending on the underlying causal architecture, being low for systems that merely copy or replay activity states. (iii) phi varies as a function of network architecture. High phi values can be obtained by architectures that conjoin functional specialization with functional integration. Strictly modular and homogeneous systems cannot generate high phi because the former lack integration, whereas the latter lack information. Feedforward and lattice architectures are capable of generating high phi but are inefficient. (iv) In Hopfield networks, phi is low for attractor states and neutral states, but increases if the networks are optimized to achieve tension between local and global interactions. These basic examples appear to match well against neurobiological evidence concerning the neural substrates of consciousness. More generally, phi appears to be a useful metric to characterize the capacity of any physical system to integrate information.

  12. Multimedia And Internetworking Architecture Infrastructure On Interactive E-Learning System

    NASA Astrophysics Data System (ADS)

    Indah, K. A. T.; Sukarata, G.

    2018-01-01

    Interactive e-learning is a distance learning method that involves information technology, electronic system or computer as one means of learning system used for teaching and learning process that is implemented without having face to face directly between teacher and student. A strong dependence on emerging technologies greatly influences the way in which the architecture is designed to produce a powerful interactive e-learning network. In this paper analyzed an architecture model where learning can be done interactively, involving many participants (N-way synchronized distance learning) using video conferencing technology. Also used broadband internet network as well as multicast techniques as a troubleshooting method for bandwidth usage can be efficient.

  13. A CDMA Spotbeam Architecture for the Next Generation Satellite System (NGSS) for the Aeronautical Telecommunications Network (ATN)

    NASA Technical Reports Server (NTRS)

    Raghavan, Rajesh S.; Shamma, Mohammed A.

    2003-01-01

    This paper will present work being done to model and simulate a CDMA based Mobile Satellite System architecture for providing all or part of the future Air Traffic Management (ATM) services. Such a system, will help in relieving the dependence on ground based networks, if not eliminate it. Additionally such an architecture can be used in parallel or as a supplementary service along with ground based links to help alleviate any capacity bottlenecks, or in areas where such services are difficult to make available such as in oceanic, remote areas outside the jet highways, or in developing countries where ground services are less available.

  14. Design, Implementation and Case Study of WISEMAN: WIreless Sensors Employing Mobile AgeNts

    NASA Astrophysics Data System (ADS)

    González-Valenzuela, Sergio; Chen, Min; Leung, Victor C. M.

    We describe the practical implementation of Wiseman: our proposed scheme for running mobile agents in Wireless Sensor Networks. Wiseman’s architecture derives from a much earlier agent system originally conceived for distributed process coordination in wired networks. Given the memory constraints associated with small sensor devices, we revised the architecture of the original agent system to make it applicable to this type of networks. Agents are programmed as compact text scripts that are interpreted at the sensor nodes. Wiseman is currently implemented in TinyOS ver. 1, its binary image occupies 19Kbytes of ROM memory, and it occupies 3Kbytes of RAM to operate. We describe the rationale behind Wiseman’s interpreter architecture and unique programming features that can help reduce packet overhead in sensor networks. In addition, we gauge the proposed system’s efficiency in terms of task duration with different network topologies through a case study that involves an early-fire-detection application in a fictitious forest setting.

  15. Stochastic Spiking Neural Networks Enabled by Magnetic Tunnel Junctions: From Nontelegraphic to Telegraphic Switching Regimes

    NASA Astrophysics Data System (ADS)

    Liyanagedera, Chamika M.; Sengupta, Abhronil; Jaiswal, Akhilesh; Roy, Kaushik

    2017-12-01

    Stochastic spiking neural networks based on nanoelectronic spin devices can be a possible pathway to achieving "brainlike" compact and energy-efficient cognitive intelligence. The computational model attempt to exploit the intrinsic device stochasticity of nanoelectronic synaptic or neural components to perform learning or inference. However, there has been limited analysis on the scaling effect of stochastic spin devices and its impact on the operation of such stochastic networks at the system level. This work attempts to explore the design space and analyze the performance of nanomagnet-based stochastic neuromorphic computing architectures for magnets with different barrier heights. We illustrate how the underlying network architecture must be modified to account for the random telegraphic switching behavior displayed by magnets with low barrier heights as they are scaled into the superparamagnetic regime. We perform a device-to-system-level analysis on a deep neural-network architecture for a digit-recognition problem on the MNIST data set.

  16. The Space Mobile Network

    NASA Technical Reports Server (NTRS)

    Israel, David

    2017-01-01

    The definition and development of the next generation space communications and navigation architecture is underway. The primary goals are to remove communications and navigations constraints from missions and to enable increased autonomy. The Space Mobile Network (SMN) is an architectural concept that includes new technology and operations that will provide flight systems with an similar user experience to terrestrial wireless mobile networks. This talk will describe the SMN and its proposed new features, such as Disruption Tolerant Networking (DTN), optical communications, and User Initiated Services (UIS).

  17. A Flexible Hardware Test and Demonstration Platform for the Fractionated System Architecture YETE

    NASA Astrophysics Data System (ADS)

    Kempf, Florian; Haber, Roland; Tzschichholz, Tristan; Mikschl, Tobias; Hilgarth, Alexander; Montenegro, Sergio; Schilling, Klaus

    2016-08-01

    This paper introduces a hardware-in-the loop test and demonstration platform for the YETE system architecture for fractionated spacecraft. It is designed for rapid prototyping and testing of distributed control approaches for the YETE architecture subject to varying network topologies and transmission channel properties between the individual YETE hardware nodes.

  18. An Architecture for Performance Optimization in a Collaborative Knowledge-Based Approach for Wireless Sensor Networks

    PubMed Central

    Gadeo-Martos, Manuel Angel; Fernandez-Prieto, Jose Angel; Canada-Bago, Joaquin; Velasco, Juan Ramon

    2011-01-01

    Over the past few years, Intelligent Spaces (ISs) have received the attention of many Wireless Sensor Network researchers. Recently, several studies have been devoted to identify their common capacities and to set up ISs over these networks. However, little attention has been paid to integrating Fuzzy Rule-Based Systems into collaborative Wireless Sensor Networks for the purpose of implementing ISs. This work presents a distributed architecture proposal for collaborative Fuzzy Rule-Based Systems embedded in Wireless Sensor Networks, which has been designed to optimize the implementation of ISs. This architecture includes the following: (a) an optimized design for the inference engine; (b) a visual interface; (c) a module to reduce the redundancy and complexity of the knowledge bases; (d) a module to evaluate the accuracy of the new knowledge base; (e) a module to adapt the format of the rules to the structure used by the inference engine; and (f) a communications protocol. As a real-world application of this architecture and the proposed methodologies, we show an application to the problem of modeling two plagues of the olive tree: prays (olive moth, Prays oleae Bern.) and repilo (caused by the fungus Spilocaea oleagina). The results show that the architecture presented in this paper significantly decreases the consumption of resources (memory, CPU and battery) without a substantial decrease in the accuracy of the inferred values. PMID:22163687

  19. An architecture for performance optimization in a collaborative knowledge-based approach for wireless sensor networks.

    PubMed

    Gadeo-Martos, Manuel Angel; Fernandez-Prieto, Jose Angel; Canada-Bago, Joaquin; Velasco, Juan Ramon

    2011-01-01

    Over the past few years, Intelligent Spaces (ISs) have received the attention of many Wireless Sensor Network researchers. Recently, several studies have been devoted to identify their common capacities and to set up ISs over these networks. However, little attention has been paid to integrating Fuzzy Rule-Based Systems into collaborative Wireless Sensor Networks for the purpose of implementing ISs. This work presents a distributed architecture proposal for collaborative Fuzzy Rule-Based Systems embedded in Wireless Sensor Networks, which has been designed to optimize the implementation of ISs. This architecture includes the following: (a) an optimized design for the inference engine; (b) a visual interface; (c) a module to reduce the redundancy and complexity of the knowledge bases; (d) a module to evaluate the accuracy of the new knowledge base; (e) a module to adapt the format of the rules to the structure used by the inference engine; and (f) a communications protocol. As a real-world application of this architecture and the proposed methodologies, we show an application to the problem of modeling two plagues of the olive tree: prays (olive moth, Prays oleae Bern.) and repilo (caused by the fungus Spilocaea oleagina). The results show that the architecture presented in this paper significantly decreases the consumption of resources (memory, CPU and battery) without a substantial decrease in the accuracy of the inferred values.

  20. Introductions to Mission Operations and Ground Data Systems

    NASA Technical Reports Server (NTRS)

    Stewart, Helen J.

    2009-01-01

    This slide presentation discusses how in the early concept studies the communications architecture plays an important part: The communications architecture is the arrangement, or configuration of satellites and ground systems in a space system, and the network of communications links that transfers information between them.

  1. The Deep Space Network information system in the year 2000

    NASA Technical Reports Server (NTRS)

    Markley, R. W.; Beswick, C. A.

    1992-01-01

    The Deep Space Network (DSN), the largest, most sensitive scientific communications and radio navigation network in the world, is considered. Focus is made on the telemetry processing, monitor and control, and ground data transport architectures of the DSN ground information system envisioned for the year 2000. The telemetry architecture will be unified from the front-end area to the end user. It will provide highly automated monitor and control of the DSN, automated configuration of support activities, and a vastly improved human interface. Automated decision support systems will be in place for DSN resource management, performance analysis, fault diagnosis, and contingency management.

  2. CVISN operational and architectural compatibility handbook (COACH). Part 1, Operational concept and top-level design checklists

    DOT National Transportation Integrated Search

    1999-04-22

    The CVISN Operational and Architectural Compatibility Handbook (COACH) provides a comprehensive checklist of what is required to conform with the Commercial Vehicle Information Systems and Networks (CVISN) operational concepts and architecture. It is...

  3. T-SDN architecture for space and ground integrated optical transport network

    NASA Astrophysics Data System (ADS)

    Nie, Kunkun; Hu, Wenjing; Gao, Shenghua; Chang, Chengwu

    2015-11-01

    Integrated optical transport network is the development trend of the future space information backbone network. The space and ground integrated optical transport network(SGIOTN) may contain a variety of equipment and systems. Changing the network or meeting some innovation missions in the network will be an expensive implement. Software Defined Network(SDN) provides a good solution to flexibly adding process logic, timely control states and resources of the whole network, as well as shielding the differences of heterogeneous equipment and so on. According to the characteristics of SGIOTN, we propose an transport SDN architecture for it, with hierarchical control plane and data plane composed of packet networks and optical transport networks.

  4. Architectural Design for European SST System

    NASA Astrophysics Data System (ADS)

    Utzmann, Jens; Wagner, Axel; Blanchet, Guillaume; Assemat, Francois; Vial, Sophie; Dehecq, Bernard; Fernandez Sanchez, Jaime; Garcia Espinosa, Jose Ramon; Agueda Mate, Alberto; Bartsch, Guido; Schildknecht, Thomas; Lindman, Niklas; Fletcher, Emmet; Martin, Luis; Moulin, Serge

    2013-08-01

    The paper presents the results of a detailed design, evaluation and trade-off of a potential European Space Surveillance and Tracking (SST) system architecture. The results have been produced in study phase 1 of the on-going "CO-II SSA Architectural Design" project performed by the Astrium consortium as part of ESA's Space Situational Awareness Programme and are the baseline for further detailing and consolidation in study phase 2. The sensor network is comprised of both ground- and space-based assets and aims at being fully compliant with the ESA SST System Requirements. The proposed ground sensors include a surveillance radar, an optical surveillance system and a tracking network (radar and optical). A space-based telescope system provides significant performance and robustness for the surveillance and tracking of beyond-LEO target objects.

  5. Feasibility of Using Distributed Wireless Mesh Networks for Medical Emergency Response

    PubMed Central

    Braunstein, Brian; Trimble, Troy; Mishra, Rajesh; Manoj, B. S.; Rao, Ramesh; Lenert, Leslie

    2006-01-01

    Achieving reliable, efficient data communications networks at a disaster site is a difficult task. Network paradigms, such as Wireless Mesh Network (WMN) architectures, form one exemplar for providing high-bandwidth, scalable data communication for medical emergency response activity. WMNs are created by self-organized wireless nodes that use multi-hop wireless relaying for data transfer. In this paper, we describe our experience using a mesh network architecture we developed for homeland security and medical emergency applications. We briefly discuss the architecture and present the traffic behavioral observations made by a client-server medical emergency application tested during a large-scale homeland security drill. We present our traffic measurements, describe lessons learned, and offer functional requirements (based on field testing) for practical 802.11 mesh medical emergency response networks. With certain caveats, the results suggest that 802.11 mesh networks are feasible and scalable systems for field communications in disaster settings. PMID:17238308

  6. Designing of network planning system for small-scale manufacturing

    NASA Astrophysics Data System (ADS)

    Kapulin, D. V.; Russkikh, P. A.; Vinnichenko, M. V.

    2018-05-01

    The paper presents features of network planning in small-scale discrete production. The procedure of explosion of the production order, considering multilevel representation, is developed. The software architecture is offered. Approbation of the network planning system is carried out. This system allows carrying out dynamic updating of the production plan.

  7. 78 FR 73995 - Special Conditions: Cessna Model 680 Series Airplanes; Aircraft Electronic System Security...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-10

    ... critical systems and data networks. The network architecture is composed of several connected networks including the following: 1. Flight-Safety related control and navigation systems, 2. Operator business and... the individual sending the comment (or signing the comment for an association, business, labor union...

  8. NATO Human View Architecture and Human Networks

    NASA Technical Reports Server (NTRS)

    Handley, Holly A. H.; Houston, Nancy P.

    2010-01-01

    The NATO Human View is a system architectural viewpoint that focuses on the human as part of a system. Its purpose is to capture the human requirements and to inform on how the human impacts the system design. The viewpoint contains seven static models that include different aspects of the human element, such as roles, tasks, constraints, training and metrics. It also includes a Human Dynamics component to perform simulations of the human system under design. One of the static models, termed Human Networks, focuses on the human-to-human communication patterns that occur as a result of ad hoc or deliberate team formation, especially teams distributed across space and time. Parameters of human teams that effect system performance can be captured in this model. Human centered aspects of networks, such as differences in operational tempo (sense of urgency), priorities (common goal), and team history (knowledge of the other team members), can be incorporated. The information captured in the Human Network static model can then be included in the Human Dynamics component so that the impact of distributed teams is represented in the simulation. As the NATO militaries transform to a more networked force, the Human View architecture is an important tool that can be used to make recommendations on the proper mix of technological innovations and human interactions.

  9. A Mobile Sensor Network System for Monitoring of Unfriendly Environments.

    PubMed

    Song, Guangming; Zhou, Yaoxin; Ding, Fei; Song, Aiguo

    2008-11-14

    Observing microclimate changes is one of the most popular applications of wireless sensor networks. However, some target environments are often too dangerous or inaccessible to humans or large robots and there are many challenges for deploying and maintaining wireless sensor networks in those unfriendly environments. This paper presents a mobile sensor network system for solving this problem. The system architecture, the mobile node design, the basic behaviors and advanced network capabilities have been investigated respectively. A wheel-based robotic node architecture is proposed here that can add controlled mobility to wireless sensor networks. A testbed including some prototype nodes has also been created for validating the basic functions of the proposed mobile sensor network system. Motion performance tests have been done to get the positioning errors and power consumption model of the mobile nodes. Results of the autonomous deployment experiment show that the mobile nodes can be distributed evenly into the previously unknown environments. It provides powerful support for network deployment and maintenance and can ensure that the sensor network will work properly in unfriendly environments.

  10. Exploring the architectural trade space of NASAs Space Communication and Navigation Program

    NASA Astrophysics Data System (ADS)

    Sanchez, M.; Selva, D.; Cameron, B.; Crawley, E.; Seas, A.; Seery, B.

    NASAs Space Communication and Navigation (SCaN) Program is responsible for providing communication and navigation services to space missions and other users in and beyond low Earth orbit. The current SCaN architecture consists of three independent networks: the Space Network (SN), which contains the TDRS relay satellites in GEO; the Near Earth Network (NEN), which consists of several NASA owned and commercially operated ground stations; and the Deep Space Network (DSN), with three ground stations in Goldstone, Madrid, and Canberra. The first task of this study is the stakeholder analysis. The goal of the stakeholder analysis is to identify the main stakeholders of the SCaN system and their needs. Twenty-one main groups of stakeholders have been identified and put on a stakeholder map. Their needs are currently being elicited by means of interviews and an extensive literature review. The data will then be analyzed by applying Cameron and Crawley's stakeholder analysis theory, with a view to highlighting dominant needs and conflicting needs. The second task of this study is the architectural tradespace exploration of the next generation TDRSS. The space of possible architectures for SCaN is represented by a set of architectural decisions, each of which has a discrete set of options. A computational tool is used to automatically synthesize a very large number of possible architectures by enumerating different combinations of decisions and options. The same tool contains models to evaluate the architectures in terms of performance and cost. The performance model uses the stakeholder needs and requirements identified in the previous steps as inputs, and it is based in the VASSAR methodology presented in a companion paper. This paper summarizes the current status of the MIT SCaN architecture study. It starts by motivating the need to perform tradespace exploration studies in the context of relay data systems through a description of the history NASA's space communicati- n networks. It then presents the generalities of possible architectures for future space communication and navigation networks. Finally, it describes the tools and methods being developed, clearly indicating the architectural decisions that have been taken into account as well as the systematic approach followed to model them. The purpose of this study is to explore the SCaN architectural tradespace by means of a computational tool. This paper describes the tool, while the tradespace exploration is underway.

  11. Software/hardware distributed processing network supporting the Ada environment

    NASA Astrophysics Data System (ADS)

    Wood, Richard J.; Pryk, Zen

    1993-09-01

    A high-performance, fault-tolerant, distributed network has been developed, tested, and demonstrated. The network is based on the MIPS Computer Systems, Inc. R3000 Risc for processing, VHSIC ASICs for high speed, reliable, inter-node communications and compatible commercial memory and I/O boards. The network is an evolution of the Advanced Onboard Signal Processor (AOSP) architecture. It supports Ada application software with an Ada- implemented operating system. A six-node implementation (capable of expansion up to 256 nodes) of the RISC multiprocessor architecture provides 120 MIPS of scalar throughput, 96 Mbytes of RAM and 24 Mbytes of non-volatile memory. The network provides for all ground processing applications, has merit for space-qualified RISC-based network, and interfaces to advanced Computer Aided Software Engineering (CASE) tools for application software development.

  12. A proposal for an SDN-based SIEPON architecture

    NASA Astrophysics Data System (ADS)

    Khalili, Hamzeh; Sallent, Sebastià; Piney, José Ramón; Rincón, David

    2017-11-01

    Passive Optical Network (PON) elements such as Optical Line Terminal (OLT) and Optical Network Units (ONUs) are currently managed by inflexible legacy network management systems. Software-Defined Networking (SDN) is a new networking paradigm that improves the operation and management of networks. In this paper, we propose a novel architecture, based on the SDN concept, for Ethernet Passive Optical Networks (EPON) that includes the Service Interoperability standard (SIEPON). In our proposal, the OLT is partially virtualized and some of its functionalities are allocated to the core network management system, while the OLT itself is replaced by an OpenFlow (OF) switch. A new MultiPoint MAC Control (MPMC) sublayer extension based on the OpenFlow protocol is presented. This would allow the SDN controller to manage and enhance the resource utilization, flow monitoring, bandwidth assignment, quality-of-service (QoS) guarantees, and energy management of the optical network access, to name a few possibilities. The OpenFlow switch is extended with synchronous ports to retain the time-critical nature of the EPON network. OpenFlow messages are also extended with new functionalities to implement the concept of EPON Service Paths (ESPs). Our simulation-based results demonstrate the effectiveness of the new architecture, while retaining a similar (or improved) performance in terms of delay and throughput when compared to legacy PONs.

  13. Public Safety Networks--Examining Mimetic, Complexity, and Legacy Effects on Interorganizational Collaborations

    ERIC Educational Resources Information Center

    Dias, Martin A.

    2012-01-01

    The purpose of this dissertation is to examine information systems-enabled interorganizational collaborations called public safety networks--their proliferation, information systems architecture, and technology evolution. These networks face immense pressures from member organizations, external stakeholders, and environmental contingencies. This…

  14. A context management system for a cost-efficient smart home platform

    NASA Astrophysics Data System (ADS)

    Schneider, J.; Klein, A.; Mannweiler, C.; Schotten, H. D.

    2012-09-01

    This paper presents an overview of state-of-the-art architectures for integrating wireless sensor and actuators networks into the Future Internet. Furthermore, we will address advantages and disadvantages of the different architectures. With respect to these criteria, we develop a new architecture overcoming these weaknesses. Our system, called Smart Home Context Management System, will be used for intelligent home utilities, appliances, and electronics and includes physical, logical as well as network context sources within one concept. It considers important aspects and requirements of modern context management systems for smart X applications: plug and play as well as plug and trust capabilities, scalability, extensibility, security, and adaptability. As such, it is able to control roller blinds, heating systems as well as learn, for example, the user's taste w.r.t. to home entertainment (music, videos, etc.). Moreover, Smart Grid applications and Ambient Assisted Living (AAL) functions are applicable. With respect to AAL, we included an Emergency Handling function. It assures that emergency calls (police, ambulance or fire department) are processed appropriately. Our concept is based on a centralized Context Broker architecture, enhanced by a distributed Context Broker system. The goal of this concept is to develop a simple, low-priced, multi-functional, and save architecture affordable for everybody. Individual components of the architecture are well tested. Implementation and testing of the architecture as a whole is in progress.

  15. Communication Architecture in Mixed-Reality Simulations of Unmanned Systems.

    PubMed

    Selecký, Martin; Faigl, Jan; Rollo, Milan

    2018-03-14

    Verification of the correct functionality of multi-vehicle systems in high-fidelity scenarios is required before any deployment of such a complex system, e.g., in missions of remote sensing or in mobile sensor networks. Mixed-reality simulations where both virtual and physical entities can coexist and interact have been shown to be beneficial for development, testing, and verification of such systems. This paper deals with the problems of designing a certain communication subsystem for such highly desirable realistic simulations. Requirements of this communication subsystem, including proper addressing, transparent routing, visibility modeling, or message management, are specified prior to designing an appropriate solution. Then, a suitable architecture of this communication subsystem is proposed together with solutions to the challenges that arise when simultaneous virtual and physical message transmissions occur. The proposed architecture can be utilized as a high-fidelity network simulator for vehicular systems with implicit mobility models that are given by real trajectories of the vehicles. The architecture has been utilized within multiple projects dealing with the development and practical deployment of multi-UAV systems, which support the architecture's viability and advantages. The provided experimental results show the achieved similarity of the communication characteristics of the fully deployed hardware setup to the setup utilizing the proposed mixed-reality architecture.

  16. Optical multicast system for data center networks.

    PubMed

    Samadi, Payman; Gupta, Varun; Xu, Junjie; Wang, Howard; Zussman, Gil; Bergman, Keren

    2015-08-24

    We present the design and experimental evaluation of an Optical Multicast System for Data Center Networks, a hardware-software system architecture that uniquely integrates passive optical splitters in a hybrid network architecture for faster and simpler delivery of multicast traffic flows. An application-driven control plane manages the integrated optical and electronic switched traffic routing in the data plane layer. The control plane includes a resource allocation algorithm to optimally assign optical splitters to the flows. The hardware architecture is built on a hybrid network with both Electronic Packet Switching (EPS) and Optical Circuit Switching (OCS) networks to aggregate Top-of-Rack switches. The OCS is also the connectivity substrate of splitters to the optical network. The optical multicast system implementation requires only commodity optical components. We built a prototype and developed a simulation environment to evaluate the performance of the system for bulk multicasting. Experimental and numerical results show simultaneous delivery of multicast flows to all receivers with steady throughput. Compared to IP multicast that is the electronic counterpart, optical multicast performs with less protocol complexity and reduced energy consumption. Compared to peer-to-peer multicast methods, it achieves at minimum an order of magnitude higher throughput for flows under 250 MB with significantly less connection overheads. Furthermore, for delivering 20 TB of data containing only 15% multicast flows, it reduces the total delivery energy consumption by 50% and improves latency by 55% compared to a data center with a sole non-blocking EPS network.

  17. A flexible data fusion architecture for persistent surveillance using ultra-low-power wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Hanson, Jeffrey A.; McLaughlin, Keith L.; Sereno, Thomas J.

    2011-06-01

    We have developed a flexible, target-driven, multi-modal, physics-based fusion architecture that efficiently searches sensor detections for targets and rejects clutter while controlling the combinatoric problems that commonly arise in datadriven fusion systems. The informational constraints imposed by long lifetime requirements make systems vulnerable to false alarms. We demonstrate that our data fusion system significantly reduces false alarms while maintaining high sensitivity to threats. In addition, mission goals can vary substantially in terms of targets-of-interest, required characterization, acceptable latency, and false alarm rates. Our fusion architecture provides the flexibility to match these trade-offs with mission requirements unlike many conventional systems that require significant modifications for each new mission. We illustrate our data fusion performance with case studies that span many of the potential mission scenarios including border surveillance, base security, and infrastructure protection. In these studies, we deployed multi-modal sensor nodes - including geophones, magnetometers, accelerometers and PIR sensors - with low-power processing algorithms and low-bandwidth wireless mesh networking to create networks capable of multi-year operation. The results show our data fusion architecture maintains high sensitivities while suppressing most false alarms for a variety of environments and targets.

  18. Integrated network architecture for sustained human and robotic exploration

    NASA Technical Reports Server (NTRS)

    Noreen, Gary K.; Cesarone, Robert; Deutsch, Leslie; Edwards, Charlie; Soloff, Jason; Ely, Todd; Cook, Brian; Morabito, David; Hemmati, Hamid; Piazzolla, Sabino; hide

    2005-01-01

    The National Aeronautics and Space Administration (NASA) Exploration Systems Mission Directorate is planning a series of human and robotic missions to the Earth's moon and to Mars. These missions will require telecommunication and navigation services. This paper sets forth presumed requirements for such services and presents strawman lunar and Mars telecommunications network architectures to satisfy the presumed requirements.

  19. An advanced OBP-based payload operating in an asynchronous network for future data relay satellites utilising CCSDS-standard data structures

    NASA Technical Reports Server (NTRS)

    Grant, M.; Vernucci, A.

    1991-01-01

    A possible Data Relay Satellite System (DRSS) topology and network architecture is introduced. An asynchronous network concept, whereby each link (Inter-orbit, Inter-satellite, Feeder) is allowed to operate on its own clock, without causing loss of information, in conjunction with packet data structures, such as those specified by the CCSDS for advanced orbiting systems is discussed. A matching OBP payload architecture is described, highlighting the advantages provided by the OBP-based concept and then giving some indications on the OBP mass/power requirements.

  20. Systems and technologies for high-speed inter-office/datacenter interface

    NASA Astrophysics Data System (ADS)

    Sone, Y.; Nishizawa, H.; Yamamoto, S.; Fukutoku, M.; Yoshimatsu, T.

    2017-01-01

    Emerging requirements for inter-office/inter-datacenter short reach links for data center interconnects (DCI) and metro transport networks have led to various inter-office and inter-datacenter optical interface technologies. These technologies are bringing significant changes to systems and network architectures. In this paper, we present a system and ZR optical interface technologies for DCI and metro transport networks, then introduce the latest challenges facing the system framework. There are two trends in reach extension; one is to use Ethernet and the other is to use digital coherent technologies. The first approach achieves reach extension while using as many existing Ethernet components as possible. It offers low costs as reuses the cost-effective components created for the large Ethernet market. The second approach adopts low-cost and low power coherent DSPs that implement the minimal set long haul transmission functions. This paper introduces an architecture that integrates both trends. The architecture satisfies both datacom and telecom needs with a common control and management interface and automated configuration.

  1. Coupling root architecture and pore network modeling - an attempt towards better understanding root-soil interactions

    NASA Astrophysics Data System (ADS)

    Leitner, Daniel; Bodner, Gernot; Raoof, Amir

    2013-04-01

    Understanding root-soil interactions is of high importance for environmental and agricultural management. Root uptake is an essential component in water and solute transport modeling. The amount of groundwater recharge and solute leaching significantly depends on the demand based plant extraction via its root system. Plant uptake however not only responds to the potential demand, but in most situations is limited by supply form the soil. The ability of the plant to access water and solutes in the soil is governed mainly by root distribution. Particularly under conditions of heterogeneous distribution of water and solutes in the soil, it is essential to capture the interaction between soil and roots. Root architecture models allow studying plant uptake from soil by describing growth and branching of root axes in the soil. Currently root architecture models are able to respond dynamically to water and nutrient distribution in the soil by directed growth (tropism), modified branching and enhanced exudation. The porous soil medium as rooting environment in these models is generally described by classical macroscopic water retention and sorption models, average over the pore scale. In our opinion this simplified description of the root growth medium implies several shortcomings for better understanding root-soil interactions: (i) It is well known that roots grow preferentially in preexisting pores, particularly in more rigid/dry soil. Thus the pore network contributes to the architectural form of the root system; (ii) roots themselves can influence the pore network by creating preferential flow paths (biopores) which are an essential element of structural porosity with strong impact on transport processes; (iii) plant uptake depend on both the spatial location of water/solutes in the pore network as well as the spatial distribution of roots. We therefore consider that for advancing our understanding in root-soil interactions, we need not only to extend our root models, but also improve the description of the rooting environment. Until now there have been no attempts to couple root architecture and pore network models. In our work we present a first attempt to join both types of models using the root architecture model of Leitner et al., (2010) and a pore network model presented by Raoof et al. (2010). The two main objectives of coupling both models are: (i) Representing the effect of root induced biopores on flow and transport processes: For this purpose a fixed root architecture created by the root model is superimposed as a secondary root induced pore network to the primary soil network, thus influencing the final pore topology in the network generation. (ii) Representing the influence of pre-existing pores on root branching: Using a given network of (rigid) pores, the root architecture model allocates its root axes into these preexisting pores as preferential growth paths with thereby shape the final root architecture. The main objective of our study is to reveal the potential of using a pore scale description of the plant growth medium for an improved representation of interaction processes at the interface of root and soil. References Raoof, A., Hassanizadeh, S.M. 2010. A New Method for Generating Pore-Network Models. Transp. Porous Med. 81, 391-407. Leitner, D, Klepsch, S., Bodner, G., Schnepf, S. 2010. A dynamic root system growth model based on L-Systems. Tropisms and coupling to nutrient uptake from soil. Plant Soil 332, 177-192.

  2. Network architecture test-beds as platforms for ubiquitous computing.

    PubMed

    Roscoe, Timothy

    2008-10-28

    Distributed systems research, and in particular ubiquitous computing, has traditionally assumed the Internet as a basic underlying communications substrate. Recently, however, the networking research community has come to question the fundamental design or 'architecture' of the Internet. This has been led by two observations: first, that the Internet as it stands is now almost impossible to evolve to support new functionality; and second, that modern applications of all kinds now use the Internet rather differently, and frequently implement their own 'overlay' networks above it to work around its perceived deficiencies. In this paper, I discuss recent academic projects to allow disruptive change to the Internet architecture, and also outline a radically different view of networking for ubiquitous computing that such proposals might facilitate.

  3. Design of a neural network simulator on a transputer array

    NASA Technical Reports Server (NTRS)

    Mcintire, Gary; Villarreal, James; Baffes, Paul; Rua, Monica

    1987-01-01

    A brief summary of neural networks is presented which concentrates on the design constraints imposed. Major design issues are discussed together with analysis methods and the chosen solutions. Although the system will be capable of running on most transputer architectures, it currently is being implemented on a 40-transputer system connected to a toroidal architecture. Predictions show a performance level equivalent to that of a highly optimized simulator running on the SX-2 supercomputer.

  4. A Novel Approach to Noise-Filtering Based on a Gain-Scheduling Neural Network Architecture

    NASA Technical Reports Server (NTRS)

    Troudet, T.; Merrill, W.

    1994-01-01

    A gain-scheduling neural network architecture is proposed to enhance the noise-filtering efficiency of feedforward neural networks, in terms of both nominal performance and robustness. The synergistic benefits of the proposed architecture are demonstrated and discussed in the context of the noise-filtering of signals that are typically encountered in aerospace control systems. The synthesis of such a gain-scheduled neurofiltering provides the robustness of linear filtering, while preserving the nominal performance advantage of conventional nonlinear neurofiltering. Quantitative performance and robustness evaluations are provided for the signal processing of pitch rate responses to typical pilot command inputs for a modern fighter aircraft model.

  5. Trust information-based privacy architecture for ubiquitous health.

    PubMed

    Ruotsalainen, Pekka Sakari; Blobel, Bernd; Seppälä, Antto; Nykänen, Pirkko

    2013-10-08

    Ubiquitous health is defined as a dynamic network of interconnected systems that offers health services independent of time and location to a data subject (DS). The network takes place in open and unsecure information space. It is created and managed by the DS who sets rules that regulate the way personal health information is collected and used. Compared to health care, it is impossible in ubiquitous health to assume the existence of a priori trust between the DS and service providers and to produce privacy using static security services. In ubiquitous health features, business goals and regulations systems followed often remain unknown. Furthermore, health care-specific regulations do not rule the ways health data is processed and shared. To be successful, ubiquitous health requires novel privacy architecture. The goal of this study was to develop a privacy management architecture that helps the DS to create and dynamically manage the network and to maintain information privacy. The architecture should enable the DS to dynamically define service and system-specific rules that regulate the way subject data is processed. The architecture should provide to the DS reliable trust information about systems and assist in the formulation of privacy policies. Furthermore, the architecture should give feedback upon how systems follow the policies of DS and offer protection against privacy and trust threats existing in ubiquitous environments. A sequential method that combines methodologies used in system theory, systems engineering, requirement analysis, and system design was used in the study. In the first phase, principles, trust and privacy models, and viewpoints were selected. Thereafter, functional requirements and services were developed on the basis of a careful analysis of existing research published in journals and conference proceedings. Based on principles, models, and requirements, architectural components and their interconnections were developed using system analysis. The architecture mimics the way humans use trust information in decision making, and enables the DS to design system-specific privacy policies using computational trust information that is based on systems' measured features. The trust attributes that were developed describe the level systems for support awareness and transparency, and how they follow general and domain-specific regulations and laws. The monitoring component of the architecture offers dynamic feedback concerning how the system enforces the polices of DS. The privacy management architecture developed in this study enables the DS to dynamically manage information privacy in ubiquitous health and to define individual policies for all systems considering their trust value and corresponding attributes. The DS can also set policies for secondary use and reuse of health information. The architecture offers protection against privacy threats existing in ubiquitous environments. Although the architecture is targeted to ubiquitous health, it can easily be modified to other ubiquitous applications.

  6. Prognostics and health management system for hydropower plant based on fog computing and docker container

    NASA Astrophysics Data System (ADS)

    Xiao, Jian; Zhang, Mingqiang; Tian, Haiping; Huang, Bo; Fu, Wenlong

    2018-02-01

    In this paper, a novel prognostics and health management system architecture for hydropower plant equipment was proposed based on fog computing and Docker container. We employed the fog node to improve the real-time processing ability of improving the cloud architecture-based prognostics and health management system and overcome the problems of long delay time, network congestion and so on. Then Storm-based stream processing of fog node was present and could calculate the health index in the edge of network. Moreover, the distributed micros-service and Docker container architecture of hydropower plants equipment prognostics and health management was also proposed. Using the micro service architecture proposed in this paper, the hydropower unit can achieve the goal of the business intercommunication and seamless integration of different equipment and different manufacturers. Finally a real application case is given in this paper.

  7. High-port low-latency optical switch architecture with optical feed-forward buffering for 256-node disaggregated data centers.

    PubMed

    Terzenidis, Nikos; Moralis-Pegios, Miltiadis; Mourgias-Alexandris, George; Vyrsokinos, Konstantinos; Pleros, Nikos

    2018-04-02

    Departing from traditional server-centric data center architectures towards disaggregated systems that can offer increased resource utilization at reduced cost and energy envelopes, the use of high-port switching with highly stringent latency and bandwidth requirements becomes a necessity. We present an optical switch architecture exploiting a hybrid broadcast-and-select/wavelength routing scheme with small-scale optical feedforward buffering. The architecture is experimentally demonstrated at 10Gb/s, reporting error-free performance with a power penalty of <2.5dB. Moreover, network simulations for a 256-node system, revealed low-latency values of only 605nsec, at throughput values reaching 80% when employing 2-packet-size optical buffers, while multi-rack network performance was also investigated.

  8. A Connection Model between the Positioning Mechanism and Ultrasonic Measurement System via a Web Browser to Assess Acoustic Target Strength

    NASA Astrophysics Data System (ADS)

    Ishii, Ken; Imaizumi, Tomohito; Abe, Koki; Takao, Yoshimi; Tamura, Shuko

    This paper details a network-controlled measurement system for use in fisheries engineering. The target strength (TS) of fish is important in order to convert acoustic integration values obtained during acoustic surveys into estimates of fish abundance. The target strength pattern is measured with the combination of the rotation system for the aspect of the sample and the echo data acquisition system using the underwater supersonic wave. The user interface of the network architecture is designed for collaborative use with researchers in other organizations. The flexible network architecture is based on the web direct-access model for the rotation mechanism. The user interface is available for monitoring and controlling via a web browser that is installed in any terminal PC (personal computer). Previously the combination of two applications was performed not by a web browser but by the exclusive interface program. So a connection model is proposed between two applications by indirect communication via the DCOM (Distributed Component Object Model) server and added in the web direct-access model. A prompt report system in the TS measurement system and a positioning and measurement system using an electric flatcar via a web browser are developed. By a secure network architecture, DCOM communications via both Intranet and LAN are successfully certificated.

  9. Trust Information-Based Privacy Architecture for Ubiquitous Health

    PubMed Central

    2013-01-01

    Background Ubiquitous health is defined as a dynamic network of interconnected systems that offers health services independent of time and location to a data subject (DS). The network takes place in open and unsecure information space. It is created and managed by the DS who sets rules that regulate the way personal health information is collected and used. Compared to health care, it is impossible in ubiquitous health to assume the existence of a priori trust between the DS and service providers and to produce privacy using static security services. In ubiquitous health features, business goals and regulations systems followed often remain unknown. Furthermore, health care-specific regulations do not rule the ways health data is processed and shared. To be successful, ubiquitous health requires novel privacy architecture. Objective The goal of this study was to develop a privacy management architecture that helps the DS to create and dynamically manage the network and to maintain information privacy. The architecture should enable the DS to dynamically define service and system-specific rules that regulate the way subject data is processed. The architecture should provide to the DS reliable trust information about systems and assist in the formulation of privacy policies. Furthermore, the architecture should give feedback upon how systems follow the policies of DS and offer protection against privacy and trust threats existing in ubiquitous environments. Methods A sequential method that combines methodologies used in system theory, systems engineering, requirement analysis, and system design was used in the study. In the first phase, principles, trust and privacy models, and viewpoints were selected. Thereafter, functional requirements and services were developed on the basis of a careful analysis of existing research published in journals and conference proceedings. Based on principles, models, and requirements, architectural components and their interconnections were developed using system analysis. Results The architecture mimics the way humans use trust information in decision making, and enables the DS to design system-specific privacy policies using computational trust information that is based on systems’ measured features. The trust attributes that were developed describe the level systems for support awareness and transparency, and how they follow general and domain-specific regulations and laws. The monitoring component of the architecture offers dynamic feedback concerning how the system enforces the polices of DS. Conclusions The privacy management architecture developed in this study enables the DS to dynamically manage information privacy in ubiquitous health and to define individual policies for all systems considering their trust value and corresponding attributes. The DS can also set policies for secondary use and reuse of health information. The architecture offers protection against privacy threats existing in ubiquitous environments. Although the architecture is targeted to ubiquitous health, it can easily be modified to other ubiquitous applications. PMID:25099213

  10. Extensions to the Parallel Real-Time Artificial Intelligence System (PRAIS) for fault-tolerant heterogeneous cycle-stealing reasoning

    NASA Technical Reports Server (NTRS)

    Goldstein, David

    1991-01-01

    Extensions to an architecture for real-time, distributed (parallel) knowledge-based systems called the Parallel Real-time Artificial Intelligence System (PRAIS) are discussed. PRAIS strives for transparently parallelizing production (rule-based) systems, even under real-time constraints. PRAIS accomplished these goals (presented at the first annual C Language Integrated Production System (CLIPS) conference) by incorporating a dynamic task scheduler, operating system extensions for fact handling, and message-passing among multiple copies of CLIPS executing on a virtual blackboard. This distributed knowledge-based system tool uses the portability of CLIPS and common message-passing protocols to operate over a heterogeneous network of processors. Results using the original PRAIS architecture over a network of Sun 3's, Sun 4's and VAX's are presented. Mechanisms using the producer-consumer model to extend the architecture for fault-tolerance and distributed truth maintenance initiation are also discussed.

  11. Cellular automata simulation of topological effects on the dynamics of feed-forward motifs

    PubMed Central

    Apte, Advait A; Cain, John W; Bonchev, Danail G; Fong, Stephen S

    2008-01-01

    Background Feed-forward motifs are important functional modules in biological and other complex networks. The functionality of feed-forward motifs and other network motifs is largely dictated by the connectivity of the individual network components. While studies on the dynamics of motifs and networks are usually devoted to the temporal or spatial description of processes, this study focuses on the relationship between the specific architecture and the overall rate of the processes of the feed-forward family of motifs, including double and triple feed-forward loops. The search for the most efficient network architecture could be of particular interest for regulatory or signaling pathways in biology, as well as in computational and communication systems. Results Feed-forward motif dynamics were studied using cellular automata and compared with differential equation modeling. The number of cellular automata iterations needed for a 100% conversion of a substrate into a target product was used as an inverse measure of the transformation rate. Several basic topological patterns were identified that order the specific feed-forward constructions according to the rate of dynamics they enable. At the same number of network nodes and constant other parameters, the bi-parallel and tri-parallel motifs provide higher network efficacy than single feed-forward motifs. Additionally, a topological property of isodynamicity was identified for feed-forward motifs where different network architectures resulted in the same overall rate of the target production. Conclusion It was shown for classes of structural motifs with feed-forward architecture that network topology affects the overall rate of a process in a quantitatively predictable manner. These fundamental results can be used as a basis for simulating larger networks as combinations of smaller network modules with implications on studying synthetic gene circuits, small regulatory systems, and eventually dynamic whole-cell models. PMID:18304325

  12. Fuzzy-Neural Controller in Service Requests Distribution Broker for SOA-Based Systems

    NASA Astrophysics Data System (ADS)

    Fras, Mariusz; Zatwarnicka, Anna; Zatwarnicki, Krzysztof

    The evolution of software architectures led to the rising importance of the Service Oriented Architecture (SOA) concept. This architecture paradigm support building flexible distributed service systems. In the paper the architecture of service request distribution broker designed for use in SOA-based systems is proposed. The broker is built with idea of fuzzy control. The functional and non-functional request requirements in conjunction with monitoring of execution and communication links are used to distribute requests. Decisions are made with use of fuzzy-neural network.

  13. Systematic Development of Intelligent Systems for Public Road Transport.

    PubMed

    García, Carmelo R; Quesada-Arencibia, Alexis; Cristóbal, Teresa; Padrón, Gabino; Alayón, Francisco

    2016-07-16

    This paper presents an architecture model for the development of intelligent systems for public passenger transport by road. The main objective of our proposal is to provide a framework for the systematic development and deployment of telematics systems to improve various aspects of this type of transport, such as efficiency, accessibility and safety. The architecture model presented herein is based on international standards on intelligent transport system architectures, ubiquitous computing and service-oriented architecture for distributed systems. To illustrate the utility of the model, we also present a use case of a monitoring system for stops on a public passenger road transport network.

  14. Systematic Development of Intelligent Systems for Public Road Transport

    PubMed Central

    García, Carmelo R.; Quesada-Arencibia, Alexis; Cristóbal, Teresa; Padrón, Gabino; Alayón, Francisco

    2016-01-01

    This paper presents an architecture model for the development of intelligent systems for public passenger transport by road. The main objective of our proposal is to provide a framework for the systematic development and deployment of telematics systems to improve various aspects of this type of transport, such as efficiency, accessibility and safety. The architecture model presented herein is based on international standards on intelligent transport system architectures, ubiquitous computing and service-oriented architecture for distributed systems. To illustrate the utility of the model, we also present a use case of a monitoring system for stops on a public passenger road transport network. PMID:27438836

  15. Atlanta congestion reduction demonstration. National evaluation : content analysis test plan.

    DOT National Transportation Integrated Search

    2000-05-30

    Commercial Vehicle Information Systems and Networks (CVISN) is the collection of information systems and communication networks that support commercial vehicle operations (CVO.) The National ITS Architecture provides a technical framework that descri...

  16. The architecture challenge: Future artificial-intelligence systems will require sophisticated architectures, and knowledge of the brain might guide their construction.

    PubMed

    Baldassarre, Gianluca; Santucci, Vieri Giuliano; Cartoni, Emilio; Caligiore, Daniele

    2017-01-01

    In this commentary, we highlight a crucial challenge posed by the proposal of Lake et al. to introduce key elements of human cognition into deep neural networks and future artificial-intelligence systems: the need to design effective sophisticated architectures. We propose that looking at the brain is an important means of facing this great challenge.

  17. Data Architecture in an Open Systems Environment.

    ERIC Educational Resources Information Center

    Bernbom, Gerald; Cromwell, Dennis

    1993-01-01

    The conceptual basis for structured data architecture, and its integration with open systems technology at Indiana University, are described. Key strategic goals guiding these efforts are discussed: commitment to improved data access; migration to relational database technology, and deployment of a high-speed, multiprotocol network; and…

  18. Heterarchies: Reconciling Networks and Hierarchies.

    PubMed

    Cumming, Graeme S

    2016-08-01

    Social-ecological systems research suffers from a disconnect between hierarchical (top-down or bottom-up) and network (peer-to-peer) analyses. The concept of the heterarchy unifies these perspectives in a single framework. Here, I review the history and application of 'heterarchy' in neuroscience, ecology, archaeology, multiagent control systems, business and organisational studies, and politics. Recognising complex system architecture as a continuum along vertical and lateral axes ('flat versus hierarchical' and 'individual versus networked') suggests four basic types of heterarchy: reticulated, polycentric, pyramidal, and individualistic. Each has different implications for system functioning and resilience. Systems can also shift predictably and abruptly between architectures. Heterarchies suggest new ways of contextualising and generalising from case studies and new methods for analysing complex structure-function relations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Functional expansion representations of artificial neural networks

    NASA Technical Reports Server (NTRS)

    Gray, W. Steven

    1992-01-01

    In the past few years, significant interest has developed in using artificial neural networks to model and control nonlinear dynamical systems. While there exists many proposed schemes for accomplishing this and a wealth of supporting empirical results, most approaches to date tend to be ad hoc in nature and rely mainly on heuristic justifications. The purpose of this project was to further develop some analytical tools for representing nonlinear discrete-time input-output systems, which when applied to neural networks would give insight on architecture selection, pruning strategies, and learning algorithms. A long term goal is to determine in what sense, if any, a neural network can be used as a universal approximator for nonliner input-output maps with memory (i.e., realized by a dynamical system). This property is well known for the case of static or memoryless input-output maps. The general architecture under consideration in this project was a single-input, single-output recurrent feedforward network.

  20. Transformational Communications Architecture for the Unit Operations Center (UOC); Common Aviation Command and Control System (CAC2S); and Command and Control On-the-Move Network, Digital Over-the-Horizon Relay (CONDOR)

    DTIC Science & Technology

    2004-06-01

    CAPABILITY SETS..............................................................................11 Figure 6. T3 DESIGN ...Radio System (JTRS) in 2008 and beyond. JTRS is being designed to provide a flexible new approach to meet diverse warfighter communications needs...Command and Control On-the-Move Network, Digital Over the Horizon Relay (CoNDOR) The CoNDOR Capability Set is an Architectural Approach designed to

  1. A Parallel Trade Study Architecture for Design Optimization of Complex Systems

    NASA Technical Reports Server (NTRS)

    Kim, Hongman; Mullins, James; Ragon, Scott; Soremekun, Grant; Sobieszczanski-Sobieski, Jaroslaw

    2005-01-01

    Design of a successful product requires evaluating many design alternatives in a limited design cycle time. This can be achieved through leveraging design space exploration tools and available computing resources on the network. This paper presents a parallel trade study architecture to integrate trade study clients and computing resources on a network using Web services. The parallel trade study solution is demonstrated to accelerate design of experiments, genetic algorithm optimization, and a cost as an independent variable (CAIV) study for a space system application.

  2. Organization of feed-forward loop motifs reveals architectural principles in natural and engineered networks.

    PubMed

    Gorochowski, Thomas E; Grierson, Claire S; di Bernardo, Mario

    2018-03-01

    Network motifs are significantly overrepresented subgraphs that have been proposed as building blocks for natural and engineered networks. Detailed functional analysis has been performed for many types of motif in isolation, but less is known about how motifs work together to perform complex tasks. To address this issue, we measure the aggregation of network motifs via methods that extract precisely how these structures are connected. Applying this approach to a broad spectrum of networked systems and focusing on the widespread feed-forward loop motif, we uncover striking differences in motif organization. The types of connection are often highly constrained, differ between domains, and clearly capture architectural principles. We show how this information can be used to effectively predict functionally important nodes in the metabolic network of Escherichia coli . Our findings have implications for understanding how networked systems are constructed from motif parts and elucidate constraints that guide their evolution.

  3. Organization of feed-forward loop motifs reveals architectural principles in natural and engineered networks

    PubMed Central

    Grierson, Claire S.

    2018-01-01

    Network motifs are significantly overrepresented subgraphs that have been proposed as building blocks for natural and engineered networks. Detailed functional analysis has been performed for many types of motif in isolation, but less is known about how motifs work together to perform complex tasks. To address this issue, we measure the aggregation of network motifs via methods that extract precisely how these structures are connected. Applying this approach to a broad spectrum of networked systems and focusing on the widespread feed-forward loop motif, we uncover striking differences in motif organization. The types of connection are often highly constrained, differ between domains, and clearly capture architectural principles. We show how this information can be used to effectively predict functionally important nodes in the metabolic network of Escherichia coli. Our findings have implications for understanding how networked systems are constructed from motif parts and elucidate constraints that guide their evolution. PMID:29670941

  4. Network architecture for global biomedical monitoring service.

    PubMed

    Lopez-Casado, Carmen; Tejero-Calado, Juan; Bernal-Martin, Antonio; Lopez-Gomez, Miguel; Romero-Romero, Marco; Quesada, Guillermo; Lorca, Julio; Garcia, Eugenia

    2005-01-01

    Most of the patients who are in hospitals and, increasingly, patients controlled remotely from their homes, at-home monitoring, are continuously monitored in order to control their evolution. The medical devices used up to now, force the sanitary staff to go to the patients' room to control the biosignals that are being monitored, although in many cases, patients are in perfect conditions. If patient is at home, it is he or she who has to go to the hospital to take the record of the monitored signal. New wireless technologies, such as BlueTooth and WLAN, make possible the deployment of systems that allow the display and storage of those signals in any place where the hospital intranet is accessible. In that way, unnecessary displacements are avoided. This paper presents a network architecture that allows the identification of the biosignal acquisition device as IP network nodes. The system is based on a TCP/IP architecture which is scalable and avoids the deployment of a specific purpose network.

  5. Mark 4A antenna control system data handling architecture study

    NASA Technical Reports Server (NTRS)

    Briggs, H. C.; Eldred, D. B.

    1991-01-01

    A high-level review was conducted to provide an analysis of the existing architecture used to handle data and implement control algorithms for NASA's Deep Space Network (DSN) antennas and to make system-level recommendations for improving this architecture so that the DSN antennas can support the ever-tightening requirements of the next decade and beyond. It was found that the existing system is seriously overloaded, with processor utilization approaching 100 percent. A number of factors contribute to this overloading, including dated hardware, inefficient software, and a message-passing strategy that depends on serial connections between machines. At the same time, the system has shortcomings and idiosyncrasies that require extensive human intervention. A custom operating system kernel and an obscure programming language exacerbate the problems and should be modernized. A new architecture is presented that addresses these and other issues. Key features of the new architecture include a simplified message passing hierarchy that utilizes a high-speed local area network, redesign of particular processing function algorithms, consolidation of functions, and implementation of the architecture in modern hardware and software using mainstream computer languages and operating systems. The system would also allow incremental hardware improvements as better and faster hardware for such systems becomes available, and costs could potentially be low enough that redundancy would be provided economically. Such a system could support DSN requirements for the foreseeable future, though thorough consideration must be given to hard computational requirements, porting existing software functionality to the new system, and issues of fault tolerance and recovery.

  6. Experience with PACS in an ATM/Ethernet switched network environment.

    PubMed

    Pelikan, E; Ganser, A; Kotter, E; Schrader, U; Timmermann, U

    1998-03-01

    Legacy local area network (LAN) technologies based on shared media concepts are not adequate for the growth of a large-scale picture archiving and communication system (PACS) in a client-server architecture. First, an asymmetric network load, due to the requests of a large number of PACS clients for only a few main servers, should be compensated by communication links to the servers with a higher bandwidth compared to the clients. Secondly, as the number of PACS nodes increases, the network throughout should not measurably cut production. These requirements can easily be fulfilled using switching technologies. Here asynchronous transfer mode (ATM) is clearly one of the hottest topics in networking because the ATM architecture provides integrated support for a variety of communication services, and it supports virtual networking. On the other hand, most of the imaging modalities are not yet ready for integration into a native ATM network. For a lot of nodes already joining an Ethernet, a cost-effective and pragmatic way to benefit from the switching concept would be a combined ATM/Ethernet switching environment. This incorporates an incremental migration strategy with the immediate benefits of high-speed, high-capacity ATM (for servers and high-sophisticated display workstations), while preserving elements of the existing network technologies. In addition, Ethernet switching instead of shared media Ethernet improves the performance considerably. The LAN emulation (LANE) specification by the ATM forum defines mechanisms that allow ATM networks to coexist with legacy systems using any data networking protocol. This paper points out the suitability of this network architecture in accordance with an appropriate system design.

  7. Dynamic modeling and optimization for space logistics using time-expanded networks

    NASA Astrophysics Data System (ADS)

    Ho, Koki; de Weck, Olivier L.; Hoffman, Jeffrey A.; Shishko, Robert

    2014-12-01

    This research develops a dynamic logistics network formulation for lifecycle optimization of mission sequences as a system-level integrated method to find an optimal combination of technologies to be used at each stage of the campaign. This formulation can find the optimal transportation architecture considering its technology trades over time. The proposed methodologies are inspired by the ground logistics analysis techniques based on linear programming network optimization. Particularly, the time-expanded network and its extension are developed for dynamic space logistics network optimization trading the quality of the solution with the computational load. In this paper, the methodologies are applied to a human Mars exploration architecture design problem. The results reveal multiple dynamic system-level trades over time and give recommendation of the optimal strategy for the human Mars exploration architecture. The considered trades include those between In-Situ Resource Utilization (ISRU) and propulsion technologies as well as the orbit and depot location selections over time. This research serves as a precursor for eventual permanent settlement and colonization of other planets by humans and us becoming a multi-planet species.

  8. Autonomous, Decentralized Grid Architecture: Prosumer-Based Distributed Autonomous Cyber-Physical Architecture for Ultra-Reliable Green Electricity Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2012-01-11

    GENI Project: Georgia Tech is developing a decentralized, autonomous, internet-like control architecture and control software system for the electric power grid. Georgia Tech’s new architecture is based on the emerging concept of electricity prosumers—economically motivated actors that can produce, consume, or store electricity. Under Georgia Tech’s architecture, all of the actors in an energy system are empowered to offer associated energy services based on their capabilities. The actors achieve their sustainability, efficiency, reliability, and economic objectives, while contributing to system-wide reliability and efficiency goals. This is in marked contrast to the current one-way, centralized control paradigm.

  9. Evolution of network architecture in a granular material under compression

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Lia; Puckett, James G.; Daniels, Karen E.; Bassett, Danielle S.

    2016-09-01

    As a granular material is compressed, the particles and forces within the system arrange to form complex and heterogeneous collective structures. Force chains are a prime example of such structures, and are thought to constrain bulk properties such as mechanical stability and acoustic transmission. However, capturing and characterizing the evolving nature of the intrinsic inhomogeneity and mesoscale architecture of granular systems can be challenging. A growing body of work has shown that graph theoretic approaches may provide a useful foundation for tackling these problems. Here, we extend the current approaches by utilizing multilayer networks as a framework for directly quantifying the progression of mesoscale architecture in a compressed granular system. We examine a quasi-two-dimensional aggregate of photoelastic disks, subject to biaxial compressions through a series of small, quasistatic steps. Treating particles as network nodes and interparticle forces as network edges, we construct a multilayer network for the system by linking together the series of static force networks that exist at each strain step. We then extract the inherent mesoscale structure from the system by using a generalization of community detection methods to multilayer networks, and we define quantitative measures to characterize the changes in this structure throughout the compression process. We separately consider the network of normal and tangential forces, and find that they display a different progression throughout compression. To test the sensitivity of the network model to particle properties, we examine whether the method can distinguish a subsystem of low-friction particles within a bath of higher-friction particles. We find that this can be achieved by considering the network of tangential forces, and that the community structure is better able to separate the subsystem than a purely local measure of interparticle forces alone. The results discussed throughout this study suggest that these network science techniques may provide a direct way to compare and classify data from systems under different external conditions or with different physical makeup.

  10. On-Board Fiber-Optic Network Architectures for Radar and Avionics Signal Distribution

    NASA Technical Reports Server (NTRS)

    Alam, Mohammad F.; Atiquzzaman, Mohammed; Duncan, Bradley B.; Nguyen, Hung; Kunath, Richard

    2000-01-01

    Continued progress in both civil and military avionics applications is overstressing the capabilities of existing radio-frequency (RF) communication networks based on coaxial cables on board modem aircrafts. Future avionics systems will require high-bandwidth on- board communication links that are lightweight, immune to electromagnetic interference, and highly reliable. Fiber optic communication technology can meet all these challenges in a cost-effective manner. Recently, digital fiber-optic communication systems, where a fiber-optic network acts like a local area network (LAN) for digital data communications, have become a topic of extensive research and development. Although a fiber-optic system can be designed to transport radio-frequency (RF) signals, the digital fiber-optic systems under development today are not capable of transporting microwave and millimeter-wave RF signals used in radar and avionics systems on board an aircraft. Recent advances in fiber optic technology, especially wavelength division multiplexing (WDM), has opened a number of possibilities for designing on-board fiber optic networks, including all-optical networks for radar and avionics RF signal distribution. In this paper, we investigate a number of different novel approaches for fiber-optic transmission of on-board VHF and UHF RF signals using commercial off-the-shelf (COTS) components. The relative merits and demerits of each architecture are discussed, and the suitability of each architecture for particular applications is pointed out. All-optical approaches show better performance than other traditional approaches in terms of signal-to-noise ratio, power consumption, and weight requirements.

  11. Memristor-Based Synapse Design and Training Scheme for Neuromorphic Computing Architecture

    DTIC Science & Technology

    2012-06-01

    system level built upon the conventional Von Neumann computer architecture [2][3]. Developing the neuromorphic architecture at chip level by...SCHEME FOR NEUROMORPHIC COMPUTING ARCHITECTURE 5a. CONTRACT NUMBER FA8750-11-2-0046 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER 62788F 6...creation of memristor-based neuromorphic computing architecture. Rather than the existing crossbar-based neuron network designs, we focus on memristor

  12. TMN: Introduction and interpretation

    NASA Astrophysics Data System (ADS)

    Pras, Aiko

    An overview of Telecommunications Management Network (TMN) status is presented. Its relation with Open System Interconnection (OSI) systems management is given and the commonalities and distinctions are identified. Those aspects that distinguish TMN from OSI management are introduced; TMN's functional and physical architectures and TMN's logical layered architecture are discussed. An analysis of the concepts used by these architectures (reference point, interface, function block, and building block) is given. The use of these concepts to express geographical distribution and functional layering is investigated. This aspect is interesting to understand how OSI management protocols can be used in a TMN environment. A statement regarding applicability of TMN as a model that helps the designers of (management) networks is given.

  13. Improving Cyber-Security of Smart Grid Systems via Anomaly Detection and Linguistic Domain Knowledge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ondrej Linda; Todd Vollmer; Milos Manic

    The planned large scale deployment of smart grid network devices will generate a large amount of information exchanged over various types of communication networks. The implementation of these critical systems will require appropriate cyber-security measures. A network anomaly detection solution is considered in this work. In common network architectures multiple communications streams are simultaneously present, making it difficult to build an anomaly detection solution for the entire system. In addition, common anomaly detection algorithms require specification of a sensitivity threshold, which inevitably leads to a tradeoff between false positives and false negatives rates. In order to alleviate these issues, thismore » paper proposes a novel anomaly detection architecture. The designed system applies the previously developed network security cyber-sensor method to individual selected communication streams allowing for learning accurate normal network behavior models. Furthermore, the developed system dynamically adjusts the sensitivity threshold of each anomaly detection algorithm based on domain knowledge about the specific network system. It is proposed to model this domain knowledge using Interval Type-2 Fuzzy Logic rules, which linguistically describe the relationship between various features of the network communication and the possibility of a cyber attack. The proposed method was tested on experimental smart grid system demonstrating enhanced cyber-security.« less

  14. Technology Review of Multi-Agent Systems and Tools

    DTIC Science & Technology

    2005-06-01

    over a network, including the Internet. A web services architecture is the logical evolution of object-oriented analysis and design coupled with...the logical evolution of components geared towards the architecture, design, implementation, and deployment of e-business solutions. As in object...querying. The Web Services architecture describes the principles behind the next generation of e- business architectures, presenting a logical evolution

  15. Architecting Communication Network of Networks for Space System of Systems

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Hayden, Jeffrey L.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) and the Department of Defense (DoD) are planning Space System of Systems (SoS) to address the new challenges of space exploration, defense, communications, navigation, Earth observation, and science. In addition, these complex systems must provide interoperability, enhanced reliability, common interfaces, dynamic operations, and autonomy in system management. Both NASA and the DoD have chosen to meet the new demands with high data rate communication systems and space Internet technologies that bring Internet Protocols (IP), routers, servers, software, and interfaces to space networks to enable as much autonomous operation of those networks as possible. These technologies reduce the cost of operations and, with higher bandwidths, support the expected voice, video, and data needed to coordinate activities at each stage of an exploration mission. In this paper, we discuss, in a generic fashion, how the architectural approaches and processes are being developed and used for defining a hypothetical communication and navigation networks infrastructure to support lunar exploration. Examples are given of the products generated by the architecture development process.

  16. Thin Client Architecture for Networking CD-ROMs in a Medium-Sized Public Library System.

    ERIC Educational Resources Information Center

    Turner, Anna

    1997-01-01

    Describes how the Tulsa City-County Library System built a 22-branch CD-ROM-based network with the emerging thin-client/server technology, and succeeded in providing patrons with the most current research tools and information resources available. Discusses costs; networking options; the Citrix WinFrame system used; equipment and connectivity.…

  17. Sawmill: A Logging File System for a High-Performance RAID Disk Array

    DTIC Science & Technology

    1995-01-01

    from limiting disk performance, new controller architectures connect the disks directly to the network so that data movement bypasses the file server...These developments raise two questions for file systems: how to get the best performance from a RAID, and how to use such a controller architecture ...the RAID-II storage system; this architecture provides a fast data path that moves data rapidly among the disks, high-speed controller memory, and the

  18. Space-Based Information Infrastructure Architecture for Broadband Services

    NASA Technical Reports Server (NTRS)

    Price, Kent M.; Inukai, Tom; Razdan, Rajendev; Lazeav, Yvonne M.

    1996-01-01

    This study addressed four tasks: (1) identify satellite-addressable information infrastructure markets; (2) perform network analysis for space-based information infrastructure; (3) develop conceptual architectures; and (4) economic assessment of architectures. The report concludes that satellites will have a major role in the national and global information infrastructure, requiring seamless integration between terrestrial and satellite networks. The proposed LEO, MEO, and GEO satellite systems have satellite characteristics that vary widely. They include delay, delay variations, poorer link quality and beam/satellite handover. The barriers against seamless interoperability between satellite and terrestrial networks are discussed. These barriers are the lack of compatible parameters, standards and protocols, which are presently being evaluated and reduced.

  19. Identifying and tracking attacks on networks: C3I displays and related technologies

    NASA Astrophysics Data System (ADS)

    Manes, Gavin W.; Dawkins, J.; Shenoi, Sujeet; Hale, John C.

    2003-09-01

    Converged network security is extremely challenging for several reasons; expanded system and technology perimeters, unexpected feature interaction, and complex interfaces all conspire to provide hackers with greater opportunities for compromising large networks. Preventive security services and architectures are essential, but in and of themselves do not eliminate all threat of compromise. Attack management systems mitigate this residual risk by facilitating incident detection, analysis and response. There are a wealth of attack detection and response tools for IP networks, but a dearth of such tools for wireless and public telephone networks. Moreover, methodologies and formalisms have yet to be identified that can yield a common model for vulnerabilities and attacks in converged networks. A comprehensive attack management system must coordinate detection tools for converged networks, derive fully-integrated attack and network models, perform vulnerability and multi-stage attack analysis, support large-scale attack visualization, and orchestrate strategic responses to cyber attacks that cross network boundaries. We present an architecture that embodies these principles for attack management. The attack management system described engages a suite of detection tools for various networking domains, feeding real-time attack data to a comprehensive modeling, analysis and visualization subsystem. The resulting early warning system not only provides network administrators with a heads-up cockpit display of their entire network, it also supports guided response and predictive capabilities for multi-stage attacks in converged networks.

  20. Default cascades in complex networks: topology and systemic risk.

    PubMed

    Roukny, Tarik; Bersini, Hugues; Pirotte, Hugues; Caldarelli, Guido; Battiston, Stefano

    2013-09-26

    The recent crisis has brought to the fore a crucial question that remains still open: what would be the optimal architecture of financial systems? We investigate the stability of several benchmark topologies in a simple default cascading dynamics in bank networks. We analyze the interplay of several crucial drivers, i.e., network topology, banks' capital ratios, market illiquidity, and random vs targeted shocks. We find that, in general, topology matters only--but substantially--when the market is illiquid. No single topology is always superior to others. In particular, scale-free networks can be both more robust and more fragile than homogeneous architectures. This finding has important policy implications. We also apply our methodology to a comprehensive dataset of an interbank market from 1999 to 2011.

  1. An architectural approach to create self organizing control systems for practical autonomous robots

    NASA Technical Reports Server (NTRS)

    Greiner, Helen

    1991-01-01

    For practical industrial applications, the development of trainable robots is an important and immediate objective. Therefore, the developing of flexible intelligence directly applicable to training is emphasized. It is generally agreed upon by the AI community that the fusion of expert systems, neural networks, and conventionally programmed modules (e.g., a trajectory generator) is promising in the quest for autonomous robotic intelligence. Autonomous robot development is hindered by integration and architectural problems. Some obstacles towards the construction of more general robot control systems are as follows: (1) Growth problem; (2) Software generation; (3) Interaction with environment; (4) Reliability; and (5) Resource limitation. Neural networks can be successfully applied to some of these problems. However, current implementations of neural networks are hampered by the resource limitation problem and must be trained extensively to produce computationally accurate output. A generalization of conventional neural nets is proposed, and an architecture is offered in an attempt to address the above problems.

  2. An architecture for integrating distributed and cooperating knowledge-based Air Force decision aids

    NASA Technical Reports Server (NTRS)

    Nugent, Richard O.; Tucker, Richard W.

    1988-01-01

    MITRE has been developing a Knowledge-Based Battle Management Testbed for evaluating the viability of integrating independently-developed knowledge-based decision aids in the Air Force tactical domain. The primary goal for the testbed architecture is to permit a new system to be added to a testbed with little change to the system's software. Each system that connects to the testbed network declares that it can provide a number of services to other systems. When a system wants to use another system's service, it does not address the server system by name, but instead transmits a request to the testbed network asking for a particular service to be performed. A key component of the testbed architecture is a common database which uses a relational database management system (RDBMS). The RDBMS provides a database update notification service to requesting systems. Normally, each system is expected to monitor data relations of interest to it. Alternatively, a system may broadcast an announcement message to inform other systems that an event of potential interest has occurred. Current research is aimed at dealing with issues resulting from integration efforts, such as dealing with potential mismatches of each system's assumptions about the common database, decentralizing network control, and coordinating multiple agents.

  3. A global spacecraft control network for spacecraft autonomy research

    NASA Technical Reports Server (NTRS)

    Kitts, Christopher A.

    1996-01-01

    The development and implementation of the Automated Space System Experimental Testbed (ASSET) space operations and control network, is reported on. This network will serve as a command and control architecture for spacecraft operations and will offer a real testbed for the application and validation of advanced autonomous spacecraft operations strategies. The proposed network will initially consist of globally distributed amateur radio ground stations at locations throughout North America and Europe. These stations will be linked via Internet to various control centers. The Stanford (CA) control center will be capable of human and computer based decision making for the coordination of user experiments, resource scheduling and fault management. The project's system architecture is described together with its proposed use as a command and control system, its value as a testbed for spacecraft autonomy research, and its current implementation.

  4. Design of smart home gateway based on Wi-Fi and ZigBee

    NASA Astrophysics Data System (ADS)

    Li, Yang

    2018-04-01

    With the increasing demand for home lifestyle, the traditional smart home products have been unable to meet the needs of users. Aim at the complex wiring, high cost and difficult operation problems of traditional smart home system, this paper designs a home gateway for smart home system based on Wi-Fi and ZigBee. This paper first gives a smart home system architecture base on cloud server, Wi-Fi and ZigBee. This architecture enables users to access the smart home system remotely from Internet through the cloud server or through Wi-Fi at home. It also offers the flexibility and low cost of ZigBee wireless networking for home equipment. This paper analyzes the functional requirements of the home gateway, and designs a modular hardware architecture based on the RT5350 wireless gateway module and the CC2530 ZigBee coordinator module. Also designs the software of the home gateway, including the gateway master program and the ZigBee coordinator program. Finally, the smart home system and home gateway are tested in two kinds of network environments, internal network and external network. The test results show that the designed home gateway can meet the requirements, support remote and local access, support multi-user, support information security technology, and can timely report equipment status information.

  5. From photons to big-data applications: terminating terabits

    PubMed Central

    2016-01-01

    Computer architectures have entered a watershed as the quantity of network data generated by user applications exceeds the data-processing capacity of any individual computer end-system. It will become impossible to scale existing computer systems while a gap grows between the quantity of networked data and the capacity for per system data processing. Despite this, the growth in demand in both task variety and task complexity continues unabated. Networked computer systems provide a fertile environment in which new applications develop. As networked computer systems become akin to infrastructure, any limitation upon the growth in capacity and capabilities becomes an important constraint of concern to all computer users. Considering a networked computer system capable of processing terabits per second, as a benchmark for scalability, we critique the state of the art in commodity computing, and propose a wholesale reconsideration in the design of computer architectures and their attendant ecosystem. Our proposal seeks to reduce costs, save power and increase performance in a multi-scale approach that has potential application from nanoscale to data-centre-scale computers. PMID:26809573

  6. From photons to big-data applications: terminating terabits.

    PubMed

    Zilberman, Noa; Moore, Andrew W; Crowcroft, Jon A

    2016-03-06

    Computer architectures have entered a watershed as the quantity of network data generated by user applications exceeds the data-processing capacity of any individual computer end-system. It will become impossible to scale existing computer systems while a gap grows between the quantity of networked data and the capacity for per system data processing. Despite this, the growth in demand in both task variety and task complexity continues unabated. Networked computer systems provide a fertile environment in which new applications develop. As networked computer systems become akin to infrastructure, any limitation upon the growth in capacity and capabilities becomes an important constraint of concern to all computer users. Considering a networked computer system capable of processing terabits per second, as a benchmark for scalability, we critique the state of the art in commodity computing, and propose a wholesale reconsideration in the design of computer architectures and their attendant ecosystem. Our proposal seeks to reduce costs, save power and increase performance in a multi-scale approach that has potential application from nanoscale to data-centre-scale computers. © 2016 The Authors.

  7. Adaptive architectures for resilient control of networked multiagent systems in the presence of misbehaving agents

    NASA Astrophysics Data System (ADS)

    Torre, Gerardo De La; Yucelen, Tansel

    2018-03-01

    Control algorithms of networked multiagent systems are generally computed distributively without having a centralised entity monitoring the activity of agents; and therefore, unforeseen adverse conditions such as uncertainties or attacks to the communication network and/or failure of agent-wise components can easily result in system instability and prohibit the accomplishment of system-level objectives. In this paper, we study resilient coordination of networked multiagent systems in the presence of misbehaving agents, i.e. agents that are subject to exogenous disturbances that represent a class of adverse conditions. In particular, a distributed adaptive control architecture is presented for directed and time-varying graph topologies to retrieve a desired networked multiagent system behaviour. Apart from the existing relevant literature that make specific assumptions on the graph topology and/or the fraction of misbehaving agents, we show that the considered class of adverse conditions can be mitigated by the proposed adaptive control approach that utilises a local state emulator - even if all agents are misbehaving. Illustrative numerical examples are provided to demonstrate the theoretical findings.

  8. Communication Architecture in Mixed-Reality Simulations of Unmanned Systems

    PubMed Central

    2018-01-01

    Verification of the correct functionality of multi-vehicle systems in high-fidelity scenarios is required before any deployment of such a complex system, e.g., in missions of remote sensing or in mobile sensor networks. Mixed-reality simulations where both virtual and physical entities can coexist and interact have been shown to be beneficial for development, testing, and verification of such systems. This paper deals with the problems of designing a certain communication subsystem for such highly desirable realistic simulations. Requirements of this communication subsystem, including proper addressing, transparent routing, visibility modeling, or message management, are specified prior to designing an appropriate solution. Then, a suitable architecture of this communication subsystem is proposed together with solutions to the challenges that arise when simultaneous virtual and physical message transmissions occur. The proposed architecture can be utilized as a high-fidelity network simulator for vehicular systems with implicit mobility models that are given by real trajectories of the vehicles. The architecture has been utilized within multiple projects dealing with the development and practical deployment of multi-UAV systems, which support the architecture’s viability and advantages. The provided experimental results show the achieved similarity of the communication characteristics of the fully deployed hardware setup to the setup utilizing the proposed mixed-reality architecture. PMID:29538290

  9. Architectural impact of FDDI network on scheduling hard real-time traffic

    NASA Technical Reports Server (NTRS)

    Agrawal, Gopal; Chen, Baio; Zhao, Wei; Davari, Sadegh

    1991-01-01

    The architectural impact on guaranteeing synchronous message deadlines in FDDI (Fiber Distributed Data Interface) token ring networks is examined. The FDDI network does not have facility to support (global) priority arbitration which is a useful facility for scheduling hard real time activities. As a result, it was found that the worst case utilization of synchronous traffic in an FDDI network can be far less than that in a centralized single processor system. Nevertheless, it is proposed and analyzed that a scheduling method can guarantee deadlines of synchronous messages having traffic utilization up to 33 pct., the highest to date.

  10. High-performance, scalable optical network-on-chip architectures

    NASA Astrophysics Data System (ADS)

    Tan, Xianfang

    The rapid advance of technology enables a large number of processing cores to be integrated into a single chip which is called a Chip Multiprocessor (CMP) or a Multiprocessor System-on-Chip (MPSoC) design. The on-chip interconnection network, which is the communication infrastructure for these processing cores, plays a central role in a many-core system. With the continuously increasing complexity of many-core systems, traditional metallic wired electronic networks-on-chip (NoC) became a bottleneck because of the unbearable latency in data transmission and extremely high energy consumption on chip. Optical networks-on-chip (ONoC) has been proposed as a promising alternative paradigm for electronic NoC with the benefits of optical signaling communication such as extremely high bandwidth, negligible latency, and low power consumption. This dissertation focus on the design of high-performance and scalable ONoC architectures and the contributions are highlighted as follow: 1. A micro-ring resonator (MRR)-based Generic Wavelength-routed Optical Router (GWOR) is proposed. A method for developing any sized GWOR is introduced. GWOR is a scalable non-blocking ONoC architecture with simple structure, low cost and high power efficiency compared to existing ONoC designs. 2. To expand the bandwidth and improve the fault tolerance of the GWOR, a redundant GWOR architecture is designed by cascading different type of GWORs into one network. 3. The redundant GWOR built with MRR-based comb switches is proposed. Comb switches can expand the bandwidth while keep the topology of GWOR unchanged by replacing the general MRRs with comb switches. 4. A butterfly fat tree (BFT)-based hybrid optoelectronic NoC (HONoC) architecture is developed in which GWORs are used for global communication and electronic routers are used for local communication. The proposed HONoC uses less numbers of electronic routers and links than its counterpart of electronic BFT-based NoC. It takes the advantages of GWOR in optical communication and BFT in non-uniform traffic communication and three-dimension (3D) implementation. 5. A cycle-accurate NoC simulator is developed to evaluate the performance of proposed HONoC architectures. It is a comprehensive platform that can simulate both electronic and optical NoCs. Different size HONoC architectures are evaluated in terms of throughput, latency and energy dissipation. Simulation results confirm that HONoC achieves good network performance with lower power consumption.

  11. Utilizing Semantic Big Data for realizing a National-scale Infrastructure Vulnerability Analysis System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chinthavali, Supriya; Shankar, Mallikarjun

    Critical Infrastructure systems(CIs) such as energy, water, transportation and communication are highly interconnected and mutually dependent in complex ways. Robust modeling of CIs interconnections is crucial to identify vulnerabilities in the CIs. We present here a national-scale Infrastructure Vulnerability Analysis System (IVAS) vision leveraging Se- mantic Big Data (SBD) tools, Big Data, and Geographical Information Systems (GIS) tools. We survey existing ap- proaches on vulnerability analysis of critical infrastructures and discuss relevant systems and tools aligned with our vi- sion. Next, we present a generic system architecture and discuss challenges including: (1) Constructing and manag- ing a CI network-of-networks graph,more » (2) Performing analytic operations at scale, and (3) Interactive visualization of ana- lytic output to generate meaningful insights. We argue that this architecture acts as a baseline to realize a national-scale network based vulnerability analysis system.« less

  12. Integrated Nationwide Electronic Health Records system: Semi-distributed architecture approach.

    PubMed

    Fragidis, Leonidas L; Chatzoglou, Prodromos D; Aggelidis, Vassilios P

    2016-11-14

    The integration of heterogeneous electronic health records systems by building an interoperable nationwide electronic health record system provides undisputable benefits in health care, like superior health information quality, medical errors prevention and cost saving. This paper proposes a semi-distributed system architecture approach for an integrated national electronic health record system incorporating the advantages of the two dominant approaches, the centralized architecture and the distributed architecture. The high level design of the main elements for the proposed architecture is provided along with diagrams of execution and operation and data synchronization architecture for the proposed solution. The proposed approach effectively handles issues related to redundancy, consistency, security, privacy, availability, load balancing, maintainability, complexity and interoperability of citizen's health data. The proposed semi-distributed architecture offers a robust interoperability framework without healthcare providers to change their local EHR systems. It is a pragmatic approach taking into account the characteristics of the Greek national healthcare system along with the national public administration data communication network infrastructure, for achieving EHR integration with acceptable implementation cost.

  13. Submicron Systems Architecture Project

    DTIC Science & Technology

    1981-11-01

    This project is concerned with the architecture , design , and testing of VLSI Systems. The principal activities in this report period include: The Tree Machine; COPE, The Homogeneous Machine; Computational Arrays; Switch-Level Model for MOS Logic Design; Testing; Local Network and Designer Workstations; Self-timed Systems; Characterization of Deadlock Free Resource Contention; Concurrency Algebra; Language Design and Logic for Program Verification.

  14. Systems architecture: a new model for sustainability and the built environment using nanotechnology, biotechnology, information technology, and cognitive science with living technology.

    PubMed

    Armstrong, Rachel

    2010-01-01

    This report details a workshop held at the Bartlett School of Architecture, University College London, to initiate interdisciplinary collaborations for the practice of systems architecture, which is a new model for the generation of sustainable architecture that combines the discipline of the study of the built environment with the scientific study of complexity, or systems science, and adopts the perspective of systems theory. Systems architecture offers new perspectives on the organization of the built environment that enable architects to consider architecture as a series of interconnected networks with embedded links into natural systems. The public workshop brought together architects and scientists working with the convergence of nanotechnology, biotechnology, information technology, and cognitive science and with living technology to investigate the possibility of a new generation of smart materials that are implied by this approach.

  15. 77 FR 187 - Federal Acquisition Regulation; Transition to the System for Award Management (SAM)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-03

    ... architecture. Deletes reference to ``business partner network'' at 4.1100, Scope, which is no longer necessary...) architecture has begun. This effort will transition the Central Contractor Registration (CCR) database, the...) to the new architecture. This case provides the first step in updating the FAR for these changes, and...

  16. The Aeronautical Data Link: Taxonomy, Architectural Analysis, and Optimization

    NASA Technical Reports Server (NTRS)

    Morris, A. Terry; Goode, Plesent W.

    2002-01-01

    The future Communication, Navigation, and Surveillance/Air Traffic Management (CNS/ATM) System will rely on global satellite navigation, and ground-based and satellite based communications via Multi-Protocol Networks (e.g. combined Aeronautical Telecommunications Network (ATN)/Internet Protocol (IP)) to bring about needed improvements in efficiency and safety of operations to meet increasing levels of air traffic. This paper will discuss the development of an approach that completely describes optimal data link architecture configuration and behavior to meet the multiple conflicting objectives of concurrent and different operations functions. The practical application of the approach enables the design and assessment of configurations relative to airspace operations phases. The approach includes a formal taxonomic classification, an architectural analysis methodology, and optimization techniques. The formal taxonomic classification provides a multidimensional correlation of data link performance with data link service, information protocol, spectrum, and technology mode; and to flight operations phase and environment. The architectural analysis methodology assesses the impact of a specific architecture configuration and behavior on the local ATM system performance. Deterministic and stochastic optimization techniques maximize architectural design effectiveness while addressing operational, technology, and policy constraints.

  17. Distributed Large Data-Object Environments: End-to-End Performance Analysis of High Speed Distributed Storage Systems in Wide Area ATM Networks

    NASA Technical Reports Server (NTRS)

    Johnston, William; Tierney, Brian; Lee, Jason; Hoo, Gary; Thompson, Mary

    1996-01-01

    We have developed and deployed a distributed-parallel storage system (DPSS) in several high speed asynchronous transfer mode (ATM) wide area networks (WAN) testbeds to support several different types of data-intensive applications. Architecturally, the DPSS is a network striped disk array, but is fairly unique in that its implementation allows applications complete freedom to determine optimal data layout, replication and/or coding redundancy strategy, security policy, and dynamic reconfiguration. In conjunction with the DPSS, we have developed a 'top-to-bottom, end-to-end' performance monitoring and analysis methodology that has allowed us to characterize all aspects of the DPSS operating in high speed ATM networks. In particular, we have run a variety of performance monitoring experiments involving the DPSS in the MAGIC testbed, which is a large scale, high speed, ATM network and we describe our experience using the monitoring methodology to identify and correct problems that limit the performance of high speed distributed applications. Finally, the DPSS is part of an overall architecture for using high speed, WAN's for enabling the routine, location independent use of large data-objects. Since this is part of the motivation for a distributed storage system, we describe this architecture.

  18. A Hybrid Satellite-Terrestrial Approach to Aeronautical Communication Networks

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Chomos, Gerald J.; Griner, James H.; Mainger, Steven W.; Martzaklis, Konstantinos S.; Kachmar, Brian A.

    2000-01-01

    Rapid growth in air travel has been projected to continue for the foreseeable future. To maintain a safe and efficient national and global aviation system, significant advances in communications systems supporting aviation are required. Satellites will increasingly play a critical role in the aeronautical communications network. At the same time, current ground-based communications links, primarily very high frequency (VHF), will continue to be employed due to cost advantages and legacy issues. Hence a hybrid satellite-terrestrial network, or group of networks, will emerge. The increased complexity of future aeronautical communications networks dictates that system-level modeling be employed to obtain an optimal system fulfilling a majority of user needs. The NASA Glenn Research Center is investigating the current and potential future state of aeronautical communications, and is developing a simulation and modeling program to research future communications architectures for national and global aeronautical needs. This paper describes the primary requirements, the current infrastructure, and emerging trends of aeronautical communications, including a growing role for satellite communications. The need for a hybrid communications system architecture approach including both satellite and ground-based communications links is explained. Future aeronautical communication network topologies and key issues in simulation and modeling of future aeronautical communications systems are described.

  19. Clinical results of HIS, RIS, PACS integration using data integration CASE tools

    NASA Astrophysics Data System (ADS)

    Taira, Ricky K.; Chan, Hing-Ming; Breant, Claudine M.; Huang, Lu J.; Valentino, Daniel J.

    1995-05-01

    Current infrastructure research in PACS is dominated by the development of communication networks (local area networks, teleradiology, ATM networks, etc.), multimedia display workstations, and hierarchical image storage architectures. However, limited work has been performed on developing flexible, expansible, and intelligent information processing architectures for the vast decentralized image and text data repositories prevalent in healthcare environments. Patient information is often distributed among multiple data management systems. Current large-scale efforts to integrate medical information and knowledge sources have been costly with limited retrieval functionality. Software integration strategies to unify distributed data and knowledge sources is still lacking commercially. Systems heterogeneity (i.e., differences in hardware platforms, communication protocols, database management software, nomenclature, etc.) is at the heart of the problem and is unlikely to be standardized in the near future. In this paper, we demonstrate the use of newly available CASE (computer- aided software engineering) tools to rapidly integrate HIS, RIS, and PACS information systems. The advantages of these tools include fast development time (low-level code is generated from graphical specifications), and easy system maintenance (excellent documentation, easy to perform changes, and centralized code repository in an object-oriented database). The CASE tools are used to develop and manage the `middle-ware' in our client- mediator-serve architecture for systems integration. Our architecture is scalable and can accommodate heterogeneous database and communication protocols.

  20. Sharing from Scratch: How To Network CD-ROM.

    ERIC Educational Resources Information Center

    Doering, David

    1998-01-01

    Examines common CD-ROM networking architectures: via existing operating systems (OS), thin server towers, and dedicated servers. Discusses digital video disc (DVD) and non-CD/DVD optical storage solutions and presents case studies of networks that work. (PEN)

  1. Neural networks and applications tutorial

    NASA Astrophysics Data System (ADS)

    Guyon, I.

    1991-09-01

    The importance of neural networks has grown dramatically during this decade. While only a few years ago they were primarily of academic interest, now dozens of companies and many universities are investigating the potential use of these systems and products are beginning to appear. The idea of building a machine whose architecture is inspired by that of the brain has roots which go far back in history. Nowadays, technological advances of computers and the availability of custom integrated circuits, permit simulations of hundreds or even thousands of neurons. In conjunction, the growing interest in learning machines, non-linear dynamics and parallel computation spurred renewed attention in artificial neural networks. Many tentative applications have been proposed, including decision systems (associative memories, classifiers, data compressors and optimizers), or parametric models for signal processing purposes (system identification, automatic control, noise canceling, etc.). While they do not always outperform standard methods, neural network approaches are already used in some real world applications for pattern recognition and signal processing tasks. The tutorial is divided into six lectures, that where presented at the Third Graduate Summer Course on Computational Physics (September 3-7, 1990) on Parallel Architectures and Applications, organized by the European Physical Society: (1) Introduction: machine learning and biological computation. (2) Adaptive artificial neurons (perceptron, ADALINE, sigmoid units, etc.): learning rules and implementations. (3) Neural network systems: architectures, learning algorithms. (4) Applications: pattern recognition, signal processing, etc. (5) Elements of learning theory: how to build networks which generalize. (6) A case study: a neural network for on-line recognition of handwritten alphanumeric characters.

  2. Information resources assessment of a healthcare integrated delivery system.

    PubMed Central

    Gadd, C. S.; Friedman, C. P.; Douglas, G.; Miller, D. J.

    1999-01-01

    While clinical healthcare systems may have lagged behind computer applications in other fields in the shift from mainframes to client-server architectures, the rapid deployment of newer applications is closing that gap. Organizations considering the transition to client-server must identify and position themselves to provide the resources necessary to implement and support the infrastructure requirements of client-server architectures and to manage the accelerated complexity at the desktop, including hardware and software deployment, training, and maintenance needs. This paper describes an information resources assessment of the recently aligned Pennsylvania regional Veterans Administration Stars and Stripes Health Network (VISN4), in anticipation of the shift from a predominantly mainframe to a client-server information systems architecture in its well-established VistA clinical information system. The multimethod assessment study is described here to demonstrate this approach and its value to regional healthcare networks undergoing organizational integration and/or significant information technology transformations. PMID:10566414

  3. A remote instruction system empowered by tightly shared haptic sensation

    NASA Astrophysics Data System (ADS)

    Nishino, Hiroaki; Yamaguchi, Akira; Kagawa, Tsuneo; Utsumiya, Kouichi

    2007-09-01

    We present a system to realize an on-line instruction environment among physically separated participants based on a multi-modal communication strategy. In addition to visual and acoustic information, commonly used communication modalities in network environments, our system provides a haptic channel to intuitively conveying partners' sense of touch. The human touch sensation, however, is very sensitive for delays and jitters in the networked virtual reality (NVR) systems. Therefore, a method to compensate for such negative factors needs to be provided. We show an NVR architecture to implement a basic framework that can be shared by various applications and effectively deals with the problems. We take a hybrid approach to implement both data consistency by client-server and scalability by peer-to-peer models. As an application system built on the proposed architecture, a remote instruction system targeted at teaching handwritten characters and line patterns on a Korea-Japan high-speed research network also is mentioned.

  4. Peer-to-peer Cooperative Scheduling Architecture for National Grid Infrastructure

    NASA Astrophysics Data System (ADS)

    Matyska, Ludek; Ruda, Miroslav; Toth, Simon

    For some ten years, the Czech National Grid Infrastructure MetaCentrum uses a single central PBSPro installation to schedule jobs across the country. This centralized approach keeps a full track about all the clusters, providing support for jobs spanning several sites, implementation for the fair-share policy and better overall control of the grid environment. Despite a steady progress in the increased stability and resilience to intermittent very short network failures, growing number of sites and processors makes this architecture, with a single point of failure and scalability limits, obsolete. As a result, a new scheduling architecture is proposed, which relies on higher autonomy of clusters. It is based on a peer to peer network of semi-independent schedulers for each site or even cluster. Each scheduler accepts jobs for the whole infrastructure, cooperating with other schedulers on implementation of global policies like central job accounting, fair-share, or submission of jobs across several sites. The scheduling system is integrated with the Magrathea system to support scheduling of virtual clusters, including the setup of their internal network, again eventually spanning several sites. On the other hand, each scheduler is local to one of several clusters and is able to directly control and submit jobs to them even if the connection of other scheduling peers is lost. In parallel to the change of the overall architecture, the scheduling system itself is being replaced. Instead of PBSPro, chosen originally for its declared support of large scale distributed environment, the new scheduling architecture is based on the open-source Torque system. The implementation and support for the most desired properties in PBSPro and Torque are discussed and the necessary modifications to Torque to support the MetaCentrum scheduling architecture are presented, too.

  5. Sensor Network Architectures for Monitoring Underwater Pipelines

    PubMed Central

    Mohamed, Nader; Jawhar, Imad; Al-Jaroodi, Jameela; Zhang, Liren

    2011-01-01

    This paper develops and compares different sensor network architecture designs that can be used for monitoring underwater pipeline infrastructures. These architectures are underwater wired sensor networks, underwater acoustic wireless sensor networks, RF (Radio Frequency) wireless sensor networks, integrated wired/acoustic wireless sensor networks, and integrated wired/RF wireless sensor networks. The paper also discusses the reliability challenges and enhancement approaches for these network architectures. The reliability evaluation, characteristics, advantages, and disadvantages among these architectures are discussed and compared. Three reliability factors are used for the discussion and comparison: the network connectivity, the continuity of power supply for the network, and the physical network security. In addition, the paper also develops and evaluates a hierarchical sensor network framework for underwater pipeline monitoring. PMID:22346669

  6. Sensor network architectures for monitoring underwater pipelines.

    PubMed

    Mohamed, Nader; Jawhar, Imad; Al-Jaroodi, Jameela; Zhang, Liren

    2011-01-01

    This paper develops and compares different sensor network architecture designs that can be used for monitoring underwater pipeline infrastructures. These architectures are underwater wired sensor networks, underwater acoustic wireless sensor networks, RF (radio frequency) wireless sensor networks, integrated wired/acoustic wireless sensor networks, and integrated wired/RF wireless sensor networks. The paper also discusses the reliability challenges and enhancement approaches for these network architectures. The reliability evaluation, characteristics, advantages, and disadvantages among these architectures are discussed and compared. Three reliability factors are used for the discussion and comparison: the network connectivity, the continuity of power supply for the network, and the physical network security. In addition, the paper also develops and evaluates a hierarchical sensor network framework for underwater pipeline monitoring.

  7. Artificial Neural Networks as an Architectural Design Tool-Generating New Detail Forms Based On the Roman Corinthian Order Capital

    NASA Astrophysics Data System (ADS)

    Radziszewski, Kacper

    2017-10-01

    The following paper presents the results of the research in the field of the machine learning, investigating the scope of application of the artificial neural networks algorithms as a tool in architectural design. The computational experiment was held using the backward propagation of errors method of training the artificial neural network, which was trained based on the geometry of the details of the Roman Corinthian order capital. During the experiment, as an input training data set, five local geometry parameters combined has given the best results: Theta, Pi, Rho in spherical coordinate system based on the capital volume centroid, followed by Z value of the Cartesian coordinate system and a distance from vertical planes created based on the capital symmetry. Additionally during the experiment, artificial neural network hidden layers optimal count and structure was found, giving results of the error below 0.2% for the mentioned before input parameters. Once successfully trained artificial network, was able to mimic the details composition on any other geometry type given. Despite of calculating the transformed geometry locally and separately for each of the thousands of surface points, system could create visually attractive and diverse, complex patterns. Designed tool, based on the supervised learning method of machine learning, gives possibility of generating new architectural forms- free of the designer’s imagination bounds. Implementing the infinitely broad computational methods of machine learning, or Artificial Intelligence in general, not only could accelerate and simplify the design process, but give an opportunity to explore never seen before, unpredictable forms or everyday architectural practice solutions.

  8. Re-modulated technology of WDM-PON employing different DQPSK downstream signals

    NASA Astrophysics Data System (ADS)

    Gao, Chao; Xin, Xiang-jun; Yu, Chong-xiu

    2012-11-01

    This paper proposes a kind of modulation architecture for wavelength-division-multiplexing passive optical network (WDMPON) employing optical differential quadrature phase shift keying (DQPSK) downstream signals and two different modulation formats of re-modulated upstream signals. At the optical line terminal (OLT), 10 Gbit/s signal is modulated with DQPSK. At the optical network unit (ONU), part of the downstream signal is re-modulated with on-off keying (OOK) or inverse-return-to-zero (IRZ). Simulation results show the impact on the system employing NRZ, RZ and carrier-suppressed return-to-zero (CSRZ). The analyses also reflect that the architecture can restrain chromatic dispersion and channel crosstalk, which makes it the best architecture of access network in the future.

  9. Default Cascades in Complex Networks: Topology and Systemic Risk

    PubMed Central

    Roukny, Tarik; Bersini, Hugues; Pirotte, Hugues; Caldarelli, Guido; Battiston, Stefano

    2013-01-01

    The recent crisis has brought to the fore a crucial question that remains still open: what would be the optimal architecture of financial systems? We investigate the stability of several benchmark topologies in a simple default cascading dynamics in bank networks. We analyze the interplay of several crucial drivers, i.e., network topology, banks' capital ratios, market illiquidity, and random vs targeted shocks. We find that, in general, topology matters only – but substantially – when the market is illiquid. No single topology is always superior to others. In particular, scale-free networks can be both more robust and more fragile than homogeneous architectures. This finding has important policy implications. We also apply our methodology to a comprehensive dataset of an interbank market from 1999 to 2011. PMID:24067913

  10. Distributed dynamic simulations of networked control and building performance applications.

    PubMed

    Yahiaoui, Azzedine

    2018-02-01

    The use of computer-based automation and control systems for smart sustainable buildings, often so-called Automated Buildings (ABs), has become an effective way to automatically control, optimize, and supervise a wide range of building performance applications over a network while achieving the minimum energy consumption possible, and in doing so generally refers to Building Automation and Control Systems (BACS) architecture. Instead of costly and time-consuming experiments, this paper focuses on using distributed dynamic simulations to analyze the real-time performance of network-based building control systems in ABs and improve the functions of the BACS technology. The paper also presents the development and design of a distributed dynamic simulation environment with the capability of representing the BACS architecture in simulation by run-time coupling two or more different software tools over a network. The application and capability of this new dynamic simulation environment are demonstrated by an experimental design in this paper.

  11. Integrated microelectronics for smart textiles.

    PubMed

    Lauterbach, Christl; Glaser, Rupert; Savio, Domnic; Schnell, Markus; Weber, Werner

    2005-01-01

    The combination of textile fabrics with microelectronics will lead to completely new applications, thus achieving elements of ambient intelligence. The integration of sensor or actuator networks, using fabrics with conductive fibres as a textile motherboard enable the fabrication of large active areas. In this paper we describe an integration technology for the fabrication of a "smart textile" based on a wired peer-to-peer network of microcontrollers with integrated sensors or actuators. A self-organizing and fault-tolerant architecture is accomplished which detects the physical shape of the network. Routing paths are formed for data transmission, automatically circumventing defective or missing areas. The network architecture allows the smart textiles to be produced by reel-to-reel processes, cut into arbitrary shapes subsequently and implemented in systems at low installation costs. The possible applications are manifold, ranging from alarm systems to intelligent guidance systems, passenger recognition in car seats, air conditioning control in interior lining and smart wallpaper with software-defined light switches.

  12. Distributed dynamic simulations of networked control and building performance applications

    PubMed Central

    Yahiaoui, Azzedine

    2017-01-01

    The use of computer-based automation and control systems for smart sustainable buildings, often so-called Automated Buildings (ABs), has become an effective way to automatically control, optimize, and supervise a wide range of building performance applications over a network while achieving the minimum energy consumption possible, and in doing so generally refers to Building Automation and Control Systems (BACS) architecture. Instead of costly and time-consuming experiments, this paper focuses on using distributed dynamic simulations to analyze the real-time performance of network-based building control systems in ABs and improve the functions of the BACS technology. The paper also presents the development and design of a distributed dynamic simulation environment with the capability of representing the BACS architecture in simulation by run-time coupling two or more different software tools over a network. The application and capability of this new dynamic simulation environment are demonstrated by an experimental design in this paper. PMID:29568135

  13. An orthogonal wavelet division multiple-access processor architecture for LTE-advanced wireless/radio-over-fiber systems over heterogeneous networks

    NASA Astrophysics Data System (ADS)

    Mahapatra, Chinmaya; Leung, Victor CM; Stouraitis, Thanos

    2014-12-01

    The increase in internet traffic, number of users, and availability of mobile devices poses a challenge to wireless technologies. In long-term evolution (LTE) advanced system, heterogeneous networks (HetNet) using centralized coordinated multipoint (CoMP) transmitting radio over optical fibers (LTE A-ROF) have provided a feasible way of satisfying user demands. In this paper, an orthogonal wavelet division multiple-access (OWDMA) processor architecture is proposed, which is shown to be better suited to LTE advanced systems as compared to orthogonal frequency division multiple access (OFDMA) as in LTE systems 3GPP rel.8 (3GPP, http://www.3gpp.org/DynaReport/36300.htm). ROF systems are a viable alternative to satisfy large data demands; hence, the performance in ROF systems is also evaluated. To validate the architecture, the circuit is designed and synthesized on a Xilinx vertex-6 field-programmable gate array (FPGA). The synthesis results show that the circuit performs with a clock period as short as 7.036 ns (i.e., a maximum clock frequency of 142.13 MHz) for transform size of 512. A pipelined version of the architecture reduces the power consumption by approximately 89%. We compare our architecture with similar available architectures for resource utilization and timing and provide performance comparison with OFDMA systems for various quality metrics of communication systems. The OWDMA architecture is found to perform better than OFDMA for bit error rate (BER) performance versus signal-to-noise ratio (SNR) in wireless channel as well as ROF media. It also gives higher throughput and mitigates the bad effect of peak-to-average-power ratio (PAPR).

  14. Agent Collaborative Target Localization and Classification in Wireless Sensor Networks

    PubMed Central

    Wang, Xue; Bi, Dao-wei; Ding, Liang; Wang, Sheng

    2007-01-01

    Wireless sensor networks (WSNs) are autonomous networks that have been frequently deployed to collaboratively perform target localization and classification tasks. Their autonomous and collaborative features resemble the characteristics of agents. Such similarities inspire the development of heterogeneous agent architecture for WSN in this paper. The proposed agent architecture views WSN as multi-agent systems and mobile agents are employed to reduce in-network communication. According to the architecture, an energy based acoustic localization algorithm is proposed. In localization, estimate of target location is obtained by steepest descent search. The search algorithm adapts to measurement environments by dynamically adjusting its termination condition. With the agent architecture, target classification is accomplished by distributed support vector machine (SVM). Mobile agents are employed for feature extraction and distributed SVM learning to reduce communication load. Desirable learning performance is guaranteed by combining support vectors and convex hull vectors. Fusion algorithms are designed to merge SVM classification decisions made from various modalities. Real world experiments with MICAz sensor nodes are conducted for vehicle localization and classification. Experimental results show the proposed agent architecture remarkably facilitates WSN designs and algorithm implementation. The localization and classification algorithms also prove to be accurate and energy efficient.

  15. ReTrust: attack-resistant and lightweight trust management for medical sensor networks.

    PubMed

    He, Daojing; Chen, Chun; Chan, Sammy; Bu, Jiajun; Vasilakos, Athanasios V

    2012-07-01

    Wireless medical sensor networks (MSNs) enable ubiquitous health monitoring of users during their everyday lives, at health sites, without restricting their freedom. Establishing trust among distributed network entities has been recognized as a powerful tool to improve the security and performance of distributed networks such as mobile ad hoc networks and sensor networks. However, most existing trust systems are not well suited for MSNs due to the unique operational and security requirements of MSNs. Moreover, similar to most security schemes, trust management methods themselves can be vulnerable to attacks. Unfortunately, this issue is often ignored in existing trust systems. In this paper, we identify the security and performance challenges facing a sensor network for wireless medical monitoring and suggest it should follow a two-tier architecture. Based on such an architecture, we develop an attack-resistant and lightweight trust management scheme named ReTrust. This paper also reports the experimental results of the Collection Tree Protocol using our proposed system in a network of TelosB motes, which show that ReTrust not only can efficiently detect malicious/faulty behaviors, but can also significantly improve the network performance in practice.

  16. Random Evolution of Idiotypic Networks: Dynamics and Architecture

    NASA Astrophysics Data System (ADS)

    Brede, Markus; Behn, Ulrich

    The paper deals with modelling a subsystem of the immune system, the so-called idiotypic network (INW). INWs, conceived by N.K. Jerne in 1974, are functional networks of interacting antibodies and B cells. In principle, Jernes' framework provides solutions to many issues in immunology, such as immunological memory, mechanisms for antigen recognition and self/non-self discrimination. Explaining the interconnection between the elementary components, local dynamics, network formation and architecture, and possible modes of global system function appears to be an ideal playground of statistical mechanics. We present a simple cellular automaton model, based on a graph representation of the system. From a simplified description of idiotypic interactions, rules for the random evolution of networks of occupied and empty sites on these graphs are derived. In certain biologically relevant parameter ranges the resultant dynamics leads to stationary states. A stationary state is found to correspond to a specific pattern of network organization. It turns out that even these very simple rules give rise to a multitude of different kinds of patterns. We characterize these networks by classifying `static' and `dynamic' network-patterns. A type of `dynamic' network is found to display many features of real INWs.

  17. Space Telecommunications Radio System (STRS) Architecture. Part 1; Tutorial - Overview

    NASA Technical Reports Server (NTRS)

    Handler, Louis M.; Briones, Janette C.; Mortensen, Dale J.; Reinhart, Richard C.

    2012-01-01

    Space Telecommunications Radio System (STRS) Architecture Standard provides a NASA standard for software-defined radio. STRS is being demonstrated in the Space Communications and Navigation (SCaN) Testbed formerly known as Communications, Navigation and Networking Configurable Testbed (CoNNeCT). Ground station radios communicating the SCaN testbed are also being written to comply with the STRS architecture. The STRS Architecture Tutorial Overview presents a general introduction to the STRS architecture standard developed at the NASA Glenn Research Center (GRC), addresses frequently asked questions, and clarifies methods of implementing the standard. The STRS architecture should be used as a base for many of NASA s future telecommunications technologies. The presentation will provide a basic understanding of STRS.

  18. A Study of Complex Deep Learning Networks on High Performance, Neuromorphic, and Quantum Computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potok, Thomas E; Schuman, Catherine D; Young, Steven R

    Current Deep Learning models use highly optimized convolutional neural networks (CNN) trained on large graphical processing units (GPU)-based computers with a fairly simple layered network topology, i.e., highly connected layers, without intra-layer connections. Complex topologies have been proposed, but are intractable to train on current systems. Building the topologies of the deep learning network requires hand tuning, and implementing the network in hardware is expensive in both cost and power. In this paper, we evaluate deep learning models using three different computing architectures to address these problems: quantum computing to train complex topologies, high performance computing (HPC) to automatically determinemore » network topology, and neuromorphic computing for a low-power hardware implementation. Due to input size limitations of current quantum computers we use the MNIST dataset for our evaluation. The results show the possibility of using the three architectures in tandem to explore complex deep learning networks that are untrainable using a von Neumann architecture. We show that a quantum computer can find high quality values of intra-layer connections and weights, while yielding a tractable time result as the complexity of the network increases; a high performance computer can find optimal layer-based topologies; and a neuromorphic computer can represent the complex topology and weights derived from the other architectures in low power memristive hardware. This represents a new capability that is not feasible with current von Neumann architecture. It potentially enables the ability to solve very complicated problems unsolvable with current computing technologies.« less

  19. Integrated Distributed Directory Service for KSC

    NASA Technical Reports Server (NTRS)

    Ghansah, Isaac

    1997-01-01

    This paper describes an integrated distributed directory services (DDS) architecture as a fundamental component of KSC distributed computing systems. Specifically, an architecture for an integrated directory service based on DNS and X.500/LDAP has been suggested. The architecture supports using DNS in its traditional role as a name service and X.500 for other services. Specific designs were made in the integration of X.500 DDS for Public Key Certificates, Kerberos Security Services, Network-wide Login, Electronic Mail, WWW URLS, Servers, and other diverse network objects. Issues involved in incorporating the emerging Microsoft Active Directory Service MADS in KSC's X.500 were discussed.

  20. Convolutional neural networks for event-related potential detection: impact of the architecture.

    PubMed

    Cecotti, H

    2017-07-01

    The detection of brain responses at the single-trial level in the electroencephalogram (EEG) such as event-related potentials (ERPs) is a difficult problem that requires different processing steps to extract relevant discriminant features. While most of the signal and classification techniques for the detection of brain responses are based on linear algebra, different pattern recognition techniques such as convolutional neural network (CNN), as a type of deep learning technique, have shown some interests as they are able to process the signal after limited pre-processing. In this study, we propose to investigate the performance of CNNs in relation of their architecture and in relation to how they are evaluated: a single system for each subject, or a system for all the subjects. More particularly, we want to address the change of performance that can be observed between specifying a neural network to a subject, or by considering a neural network for a group of subjects, taking advantage of a larger number of trials from different subjects. The results support the conclusion that a convolutional neural network trained on different subjects can lead to an AUC above 0.9 by using an appropriate architecture using spatial filtering and shift invariant layers.

  1. The high speed interconnect system architecture and operation

    NASA Astrophysics Data System (ADS)

    Anderson, Steven C.

    The design and operation of a fiber-optic high-speed interconnect system (HSIS) being developed to meet the requirements of future avionics and flight-control hardware with distributed-system architectures are discussed. The HSIS is intended for 100-Mb/s operation of a local-area network with up to 256 stations. It comprises a bus transmission system (passive star couplers and linear media linked by active elements) and network interface units (NIUs). Each NIU is designed to perform the physical, data link, network, and transport functions defined by the ISO OSI Basic Reference Model (1982 and 1983) and incorporates a fiber-optic transceiver, a high-speed protocol based on the SAE AE-9B linear token-passing data bus (1986), and a specialized application interface unit. The operating modes and capabilities of HSIS are described in detail and illustrated with diagrams.

  2. Standard Spacecraft Interfaces and IP Network Architectures: Prototyping Activities at the GSFC

    NASA Technical Reports Server (NTRS)

    Schnurr, Richard; Marquart, Jane; Lin, Michael

    2003-01-01

    Advancements in fright semiconductor technology have opened the door for IP-based networking in spacecraft architectures. The GSFC believes the same signlJicant cost savings gained using MIL-STD-1553/1773 as a standard low rate interface for spacecraft busses cun be realized for highspeed network interfaces. To that end, GSFC is developing hardware and software to support a seamless, space mission IP network based on Ethernet and MIL-STD-1553. The Ethernet network shall connect all fright computers and communications systems using interface standards defined by the CCSDS Standard Onboard InterFace (SOIF) Panel. This paper shall discuss the prototyping effort underway at GSFC and expected results.

  3. Interfacing a high performance disk array file server to a Gigabit LAN

    NASA Technical Reports Server (NTRS)

    Seshan, Srinivasan; Katz, Randy H.

    1993-01-01

    Our previous prototype, RAID-1, identified several bottlenecks in typical file server architectures. The most important bottleneck was the lack of a high-bandwidth path between disk, memory, and the network. Workstation servers, such as the Sun-4/280, have very slow access to peripherals on busses far from the CPU. For the RAID-2 system, we addressed this problem by designing a crossbar interconnect, Xbus board, that provides a 40MB/s path between disk, memory, and the network interfaces. However, this interconnect does not provide the system CPU with low latency access to control the various interfaces. To provide a high data rate to clients on the network, we were forced to carefully and efficiently design the network software. A block diagram of the system hardware architecture is given. In the following subsections, we describe pieces of the RAID-2 file server hardware that had a significant impact on the design of the network interface.

  4. Performance Evaluation of Peer-to-Peer Progressive Download in Broadband Access Networks

    NASA Astrophysics Data System (ADS)

    Shibuya, Megumi; Ogishi, Tomohiko; Yamamoto, Shu

    P2P (Peer-to-Peer) file sharing architectures have scalable and cost-effective features. Hence, the application of P2P architectures to media streaming is attractive and expected to be an alternative to the current video streaming using IP multicast or content delivery systems because the current systems require expensive network infrastructures and large scale centralized cache storage systems. In this paper, we investigate the P2P progressive download enabling Internet video streaming services. We demonstrated the capability of the P2P progressive download in both laboratory test network as well as in the Internet. Through the experiments, we clarified the contribution of the FTTH links to the P2P progressive download in the heterogeneous access networks consisting of FTTH and ADSL links. We analyzed the cause of some download performance degradation occurred in the experiment and discussed about the effective methods to provide the video streaming service using P2P progressive download in the current heterogeneous networks.

  5. Carnegie Mellon University Space Architecture

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.

    2016-01-01

    A traditional architecture studio focusing on a "post-pioneering" settlement (a first step research station with an emphasis on material, resources, closed-loop systems, as well as programmatic network and spatial considerations) for the surface of Mars or for Earth-Mars transit.

  6. Robust Architectures for Complex Multi-Agent Heterogeneous Systems

    DTIC Science & Technology

    2014-07-23

    establish the tradeoff between the control performance and the QoS of the communications network . We also derived the performance bound on the difference...accomplished within this time period leveraged the prior accomplishments in the area of networked multi-agent systems. The past work (prior to 2011...distributed control of uncertain networked systems [3]. Additionally, a preliminary collision avoidance algorithm has been developed for a team of

  7. Design and Analysis of Architectures for Structural Health Monitoring Systems

    NASA Technical Reports Server (NTRS)

    Mukkamala, Ravi; Sixto, S. L. (Technical Monitor)

    2002-01-01

    During the two-year project period, we have worked on several aspects of Health Usage and Monitoring Systems for structural health monitoring. In particular, we have made contributions in the following areas. 1. Reference HUMS architecture: We developed a high-level architecture for health monitoring and usage systems (HUMS). The proposed reference architecture is shown. It is compatible with the Generic Open Architecture (GOA) proposed as a standard for avionics systems. 2. HUMS kernel: One of the critical layers of HUMS reference architecture is the HUMS kernel. We developed a detailed design of a kernel to implement the high level architecture.3. Prototype implementation of HUMS kernel: We have implemented a preliminary version of the HUMS kernel on a Unix platform.We have implemented both a centralized system version and a distributed version. 4. SCRAMNet and HUMS: SCRAMNet (Shared Common Random Access Memory Network) is a system that is found to be suitable to implement HUMS. For this reason, we have conducted a simulation study to determine its stability in handling the input data rates in HUMS. 5. Architectural specification.

  8. Network Configuration Analysis for Formation Flying Satellites

    NASA Technical Reports Server (NTRS)

    Knoblock, Eric J.; Wallett, Thomas M.; Konangi, Vijay K.; Bhasin, Kul B.

    2001-01-01

    The performance of two networks to support autonomous multi-spacecraft formation flying systems is presented. Both systems are comprised of a ten-satellite formation, with one of the satellites designated as the central or 'mother ship.' All data is routed through the mother ship to the terrestrial network. The first system uses a TCP/EP over ATM protocol architecture within the formation, and the second system uses the IEEE 802.11 protocol architecture within the formation. The simulations consist of file transfers using either the File Transfer Protocol (FTP) or the Simple Automatic File Exchange (SAFE) Protocol. The results compare the IP queuing delay, IP queue size and IP processing delay at the mother ship as well as end-to-end delay for both systems. In all cases, using IEEE 802.11 within the formation yields less delay. Also, the throughput exhibited by SAFE is better than FTP.

  9. An Evolutionary Optimization Framework for Neural Networks and Neuromorphic Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuman, Catherine D; Plank, James; Disney, Adam

    2016-01-01

    As new neural network and neuromorphic architectures are being developed, new training methods that operate within the constraints of the new architectures are required. Evolutionary optimization (EO) is a convenient training method for new architectures. In this work, we review a spiking neural network architecture and a neuromorphic architecture, and we describe an EO training framework for these architectures. We present the results of this training framework on four classification data sets and compare those results to other neural network and neuromorphic implementations. We also discuss how this EO framework may be extended to other architectures.

  10. Open Source Service Agent (OSSA) in the intelligence community's Open Source Architecture

    NASA Technical Reports Server (NTRS)

    Fiene, Bruce F.

    1994-01-01

    The Community Open Source Program Office (COSPO) has developed an architecture for the intelligence community's new Open Source Information System (OSIS). The architecture is a multi-phased program featuring connectivity, interoperability, and functionality. OSIS is based on a distributed architecture concept. The system is designed to function as a virtual entity. OSIS will be a restricted (non-public), user configured network employing Internet communications. Privacy and authentication will be provided through firewall protection. Connection to OSIS can be made through any server on the Internet or through dial-up modems provided the appropriate firewall authentication system is installed on the client.

  11. BGen: A UML Behavior Network Generator Tool

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terry; Reder, Leonard J.; Balian, Harry

    2010-01-01

    BGen software was designed for autogeneration of code based on a graphical representation of a behavior network used for controlling automatic vehicles. A common format used for describing a behavior network, such as that used in the JPL-developed behavior-based control system, CARACaS ["Control Architecture for Robotic Agent Command and Sensing" (NPO-43635), NASA Tech Briefs, Vol. 32, No. 10 (October 2008), page 40] includes a graph with sensory inputs flowing through the behaviors in order to generate the signals for the actuators that drive and steer the vehicle. A computer program to translate Unified Modeling Language (UML) Freeform Implementation Diagrams into a legacy C implementation of Behavior Network has been developed in order to simplify the development of C-code for behavior-based control systems. UML is a popular standard developed by the Object Management Group (OMG) to model software architectures graphically. The C implementation of a Behavior Network is functioning as a decision tree.

  12. Fault tolerant architectures for integrated aircraft electronics systems, task 2

    NASA Technical Reports Server (NTRS)

    Levitt, K. N.; Melliar-Smith, P. M.; Schwartz, R. L.

    1984-01-01

    The architectural basis for an advanced fault tolerant on-board computer to succeed the current generation of fault tolerant computers is examined. The network error tolerant system architecture is studied with particular attention to intercluster configurations and communication protocols, and to refined reliability estimates. The diagnosis of faults, so that appropriate choices for reconfiguration can be made is discussed. The analysis relates particularly to the recognition of transient faults in a system with tasks at many levels of priority. The demand driven data-flow architecture, which appears to have possible application in fault tolerant systems is described and work investigating the feasibility of automatic generation of aircraft flight control programs from abstract specifications is reported.

  13. Development of mini VSAT system

    NASA Astrophysics Data System (ADS)

    Lu, Shyue-Ching; Chiu, Wu-Jhy; Lin, Hen-Dao; Shih, Mu-Piao

    1992-03-01

    This paper presents the mini VSAT (very small aperture terminal) system, which is a low cost networking system providing economical alternatives to the business world's datacom needs. The system is designed to achieve the highest possible performance/price ratio for private VSAT networks that range from a few tens of remote terminals to large networks of several thousands remote terminals. The paper describes the system architecture, major features, hardware and software structure, access protocol and performance of the developed system.

  14. PathCase-SB architecture and database design

    PubMed Central

    2011-01-01

    Background Integration of metabolic pathways resources and regulatory metabolic network models, and deploying new tools on the integrated platform can help perform more effective and more efficient systems biology research on understanding the regulation in metabolic networks. Therefore, the tasks of (a) integrating under a single database environment regulatory metabolic networks and existing models, and (b) building tools to help with modeling and analysis are desirable and intellectually challenging computational tasks. Description PathCase Systems Biology (PathCase-SB) is built and released. The PathCase-SB database provides data and API for multiple user interfaces and software tools. The current PathCase-SB system provides a database-enabled framework and web-based computational tools towards facilitating the development of kinetic models for biological systems. PathCase-SB aims to integrate data of selected biological data sources on the web (currently, BioModels database and KEGG), and to provide more powerful and/or new capabilities via the new web-based integrative framework. This paper describes architecture and database design issues encountered in PathCase-SB's design and implementation, and presents the current design of PathCase-SB's architecture and database. Conclusions PathCase-SB architecture and database provide a highly extensible and scalable environment with easy and fast (real-time) access to the data in the database. PathCase-SB itself is already being used by researchers across the world. PMID:22070889

  15. Dense wavelength division multiplexing devices for metropolitan-area datacom and telecom networks

    NASA Astrophysics Data System (ADS)

    DeCusatis, Casimer M.; Priest, David G.

    2000-12-01

    Large data processing environments in use today can require multi-gigabyte or terabyte capacity in the data communication infrastructure; these requirements are being driven by storage area networks with access to petabyte data bases, new architecture for parallel processing which require high bandwidth optical links, and rapidly growing network applications such as electronic commerce over the Internet or virtual private networks. These datacom applications require high availability, fault tolerance, security, and the capacity to recover from any single point of failure without relying on traditional SONET-based networking. These requirements, coupled with fiber exhaust in metropolitan areas, are driving the introduction of dense optical wavelength division multiplexing (DWDM) in data communication systems, particularly for large enterprise servers or mainframes. In this paper, we examine the technical requirements for emerging nextgeneration DWDM systems. Protocols for storage area networks and computer architectures such as Parallel Sysplex are presented, including their fiber bandwidth requirements. We then describe two commercially available DWDM solutions, a first generation 10 channel system and a recently announced next generation 32 channel system. Technical requirements, network management and security, fault tolerant network designs, new network topologies enabled by DWDM, and the role of time division multiplexing in the network are all discussed. Finally, we present a description of testing conducted on these networks and future directions for this technology.

  16. Event detection in an assisted living environment.

    PubMed

    Stroiescu, Florin; Daly, Kieran; Kuris, Benjamin

    2011-01-01

    This paper presents the design of a wireless event detection and in building location awareness system. The systems architecture is based on using a body worn sensor to detect events such as falls where they occur in an assisted living environment. This process involves developing event detection algorithms and transmitting such events wirelessly to an in house network based on the 802.15.4 protocol. The network would then generate alerts both in the assisted living facility and remotely to an offsite monitoring facility. The focus of this paper is on the design of the system architecture and the compliance challenges in applying this technology.

  17. On implementation of DCTCP on three-tier and fat-tree data center network topologies.

    PubMed

    Zafar, Saima; Bashir, Abeer; Chaudhry, Shafique Ahmad

    2016-01-01

    A data center is a facility for housing computational and storage systems interconnected through a communication network called data center network (DCN). Due to a tremendous growth in the computational power, storage capacity and the number of inter-connected servers, the DCN faces challenges concerning efficiency, reliability and scalability. Although transmission control protocol (TCP) is a time-tested transport protocol in the Internet, DCN challenges such as inadequate buffer space in switches and bandwidth limitations have prompted the researchers to propose techniques to improve TCP performance or design new transport protocols for DCN. Data center TCP (DCTCP) emerge as one of the most promising solutions in this domain which employs the explicit congestion notification feature of TCP to enhance the TCP congestion control algorithm. While DCTCP has been analyzed for two-tier tree-based DCN topology for traffic between servers in the same rack which is common in cloud applications, it remains oblivious to the traffic patterns common in university and private enterprise networks which traverse the complete network interconnect spanning upper tier layers. We also recognize that DCTCP performance cannot remain unaffected by the underlying DCN architecture hence there is a need to test and compare DCTCP performance when implemented over diverse DCN architectures. Some of the most notable DCN architectures are the legacy three-tier, fat-tree, BCube, DCell, VL2, and CamCube. In this research, we simulate the two switch-centric DCN architectures; the widely deployed legacy three-tier architecture and the promising fat-tree architecture using network simulator and analyze the performance of DCTCP in terms of throughput and delay for realistic traffic patterns. We also examine how DCTCP prevents incast and outcast congestion when realistic DCN traffic patterns are employed in above mentioned topologies. Our results show that the underlying DCN architecture significantly impacts DCTCP performance. We find that DCTCP gives optimal performance in fat-tree topology and is most suitable for large networks.

  18. An Architecture for Cooperative Localization in Underwater Acoustic Networks

    DTIC Science & Technology

    2015-10-24

    range. (b) Independent navigation and control system onboard Iver AUVs . The cooperative localization process is highlighted in red. Figure 1: Block...Iver2 AUVs (Fig. 3) and a topside ship. While we make spe- cific notes about this three vehicle network, the architecture is vehicle independent. 3.1...Single vehicle subsystem Each vehicle executes several processes including sensor drivers, a pose estimator (Section 2), and, in the case of the AUVs

  19. Electronic School.

    ERIC Educational Resources Information Center

    Executive Educator, 1994

    1994-01-01

    This issue of "The Electronic School" features a special forum on computer networking. Articles specifically focus on network operating systems, cabling requirements, and network architecture. Tom Wall argues that virtual reality is not yet ready for classroom use. B.J. Novitsky profiles two high schools experimenting with CD-ROM…

  20. Design and architecture of the Mars relay network planning and analysis framework

    NASA Technical Reports Server (NTRS)

    Cheung, K. M.; Lee, C. H.

    2002-01-01

    In this paper we describe the design and architecture of the Mars Network planning and analysis framework that supports generation and validation of efficient planning and scheduling strategy. The goals are to minimize the transmitting time, minimize the delaying time, and/or maximize the network throughputs. The proposed framework would require (1) a client-server architecture to support interactive, batch, WEB, and distributed analysis and planning applications for the relay network analysis scheme, (2) a high-fidelity modeling and simulation environment that expresses link capabilities between spacecraft to spacecraft and spacecraft to Earth stations as time-varying resources, and spacecraft activities, link priority, Solar System dynamic events, the laws of orbital mechanics, and other limiting factors as spacecraft power and thermal constraints, (3) an optimization methodology that casts the resource and constraint models into a standard linear and nonlinear constrained optimization problem that lends itself to commercial off-the-shelf (COTS)planning and scheduling algorithms.

  1. Applications of satellite technology to broadband ISDN networks

    NASA Technical Reports Server (NTRS)

    Price, Kent M.; Kwan, Robert K.; Chitre, D. M.; Henderson, T. R.; White, L. W.; Morgan, W. L.

    1992-01-01

    Two satellite architectures for delivering broadband integrated services digital network (B-ISDN) service are evaluated. The first is assumed integral to an existing terrestrial network, and provides complementary services such as interconnects to remote nodes as well as high-rate multicast and broadcast service. The interconnects are at a 155 Mbs rate and are shown as being met with a nonregenerative multibeam satellite having 10-1.5 degree spots. The second satellite architecture focuses on providing private B-ISDN networks as well as acting as a gateway to the public network. This is conceived as being provided by a regenerative multibeam satellite with on-board ATM (asynchronous transfer mode) processing payload. With up to 800 Mbs offered, higher satellite EIRP is required. This is accomplished with 12-0.4 degree hopping beams, covering a total of 110 dwell positions. It is estimated the space segment capital cost for architecture one would be about $190M whereas the second architecture would be about $250M. The net user cost is given for a variety of scenarios, but the cost for 155 Mbs services is shown to be about $15-22/minute for 25 percent system utilization.

  2. Atomic switch networks-nanoarchitectonic design of a complex system for natural computing.

    PubMed

    Demis, E C; Aguilera, R; Sillin, H O; Scharnhorst, K; Sandouk, E J; Aono, M; Stieg, A Z; Gimzewski, J K

    2015-05-22

    Self-organized complex systems are ubiquitous in nature, and the structural complexity of these natural systems can be used as a model to design new classes of functional nanotechnology based on highly interconnected networks of interacting units. Conventional fabrication methods for electronic computing devices are subject to known scaling limits, confining the diversity of possible architectures. This work explores methods of fabricating a self-organized complex device known as an atomic switch network and discusses its potential utility in computing. Through a merger of top-down and bottom-up techniques guided by mathematical and nanoarchitectonic design principles, we have produced functional devices comprising nanoscale elements whose intrinsic nonlinear dynamics and memorization capabilities produce robust patterns of distributed activity and a capacity for nonlinear transformation of input signals when configured in the appropriate network architecture. Their operational characteristics represent a unique potential for hardware implementation of natural computation, specifically in the area of reservoir computing-a burgeoning field that investigates the computational aptitude of complex biologically inspired systems.

  3. Destination-directed, packet-switched architecture for a geostationary communications satellite network

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Shalkhauser, Mary JO; Bobinsky, Eric A.; Soni, Nitin J.; Quintana, Jorge A.; Kim, Heechul; Wager, Paul; Vanderaar, Mark

    1993-01-01

    A major goal of the Digital Systems Technology Branch at the NASA Lewis Research Center is to identify and develop critical digital components and technologies that either enable new commercial missions or significantly enhance the performance, cost efficiency, and/or reliability of existing and planned space communications systems. NASA envisions a need for low-data-rate, interactive, direct-to-the-user communications services for data, voice, facsimile, and video conferencing. The network would provide enhanced very-small-aperture terminal (VSAT) communications services and be capable of handling data rates of 64 kbps through 2.048 Mbps in 64-kbps increments. Efforts have concentrated heavily on the space segment; however, the ground segment has been considered concurrently to ensure cost efficiency and realistic operational constraints. The focus of current space segment developments is a flexible, high-throughput, fault-tolerant onboard information-switching processor (ISP) for a geostationary satellite communications network. The Digital Systems Technology Branch is investigating both circuit and packet architectures for the ISP. Destination-directed, packet-switched architectures for geostationary communications satellites are addressed.

  4. Teledesic Global Wireless Broadband Network: Space Infrastructure Architecture, Design Features and Technologies

    NASA Technical Reports Server (NTRS)

    Stuart, James R.

    1995-01-01

    The Teledesic satellites are a new class of small satellites which demonstrate the important commercial benefits of using technologies developed for other purposes by U.S. National Laboratories. The Teledesic satellite architecture, subsystem design features, and new technologies are described. The new Teledesic satellite manufacturing, integration, and test approaches which use modern high volume production techniques and result in surprisingly low space segment costs are discussed. The constellation control and management features and attendant software architecture features are addressed. After briefly discussing the economic and technological impact on the USA commercial space industries of the space communications revolution and such large constellation projects, the paper concludes with observations on the trend toward future system architectures using networked groups of much smaller satellites.

  5. Multisource Transfer Learning With Convolutional Neural Networks for Lung Pattern Analysis.

    PubMed

    Christodoulidis, Stergios; Anthimopoulos, Marios; Ebner, Lukas; Christe, Andreas; Mougiakakou, Stavroula

    2017-01-01

    Early diagnosis of interstitial lung diseases is crucial for their treatment, but even experienced physicians find it difficult, as their clinical manifestations are similar. In order to assist with the diagnosis, computer-aided diagnosis systems have been developed. These commonly rely on a fixed scale classifier that scans CT images, recognizes textural lung patterns, and generates a map of pathologies. In a previous study, we proposed a method for classifying lung tissue patterns using a deep convolutional neural network (CNN), with an architecture designed for the specific problem. In this study, we present an improved method for training the proposed network by transferring knowledge from the similar domain of general texture classification. Six publicly available texture databases are used to pretrain networks with the proposed architecture, which are then fine-tuned on the lung tissue data. The resulting CNNs are combined in an ensemble and their fused knowledge is compressed back to a network with the original architecture. The proposed approach resulted in an absolute increase of about 2% in the performance of the proposed CNN. The results demonstrate the potential of transfer learning in the field of medical image analysis, indicate the textural nature of the problem and show that the method used for training a network can be as important as designing its architecture.

  6. A Holistic Management Architecture for Large-Scale Adaptive Networks

    DTIC Science & Technology

    2007-09-01

    transmission and processing overhead required for management. The challenges of building models to describe dynamic systems are well-known to the field of...increases the challenge of finding a simple approach to assessing the state of the network. Moreover, the performance state of one network link may be... challenging . These obstacles indicate the need for a less comprehensive-analytical, more systemic-holistic approach to managing networks. This approach might

  7. Optimizing Nutrient Uptake in Biological Transport Networks

    NASA Astrophysics Data System (ADS)

    Ronellenfitsch, Henrik; Katifori, Eleni

    2013-03-01

    Many biological systems employ complex networks of vascular tubes to facilitate transport of solute nutrients, examples include the vascular system of plants (phloem), some fungi, and the slime-mold Physarum. It is believed that such networks are optimized through evolution for carrying out their designated task. We propose a set of hydrodynamic governing equations for solute transport in a complex network, and obtain the optimal network architecture for various classes of optimizing functionals. We finally discuss the topological properties and statistical mechanics of the resulting complex networks, and examine correspondence of the obtained networks to those found in actual biological systems.

  8. A Comparative Study on the Architecture Internet of Things and its’ Implementation method

    NASA Astrophysics Data System (ADS)

    Xiao, Zhiliang

    2017-08-01

    With the rapid development of science and technology, Internet-based the Internet of things was born and achieved good results. In order to further build a complete Internet of things system, to achieve the design of the Internet of things, we need to constitute the object of the network structure of the indicators of comparative study, and on this basis, the Internet of things connected to the way and do more in-depth to achieve the unity of the object network architecture and implementation methods. This paper mainly analyzes the two types of Internet of Things system, and makes a brief comparative study of the important indicators, and then introduces the connection method and realization method of Internet of Things based on the concept of Internet of Things and architecture.

  9. An intelligent control system for failure detection and controller reconfiguration

    NASA Technical Reports Server (NTRS)

    Biswas, Saroj K.

    1994-01-01

    We present an architecture of an intelligent restructurable control system to automatically detect failure of system components, assess its impact on system performance and safety, and reconfigure the controller for performance recovery. Fault detection is based on neural network associative memories and pattern classifiers, and is implemented using a multilayer feedforward network. Details of the fault detection network along with simulation results on health monitoring of a dc motor have been presented. Conceptual developments for fault assessment using an expert system and controller reconfiguration using a neural network are outlined.

  10. An Efficient Resource Management System for a Streaming Media Distribution Network

    ERIC Educational Resources Information Center

    Cahill, Adrian J.; Sreenan, Cormac J.

    2006-01-01

    This paper examines the design and evaluation of a TV on Demand (TVoD) system, consisting of a globally accessible storage architecture where all TV content broadcast over a period of time is made available for streaming. The proposed architecture consists of idle Internet Service Provider (ISP) servers that can be rented and released dynamically…

  11. An Autonomous Mobile Agent-Based Distributed Learning Architecture: A Proposal and Analytical Analysis

    ERIC Educational Resources Information Center

    Ahmed, Iftikhar; Sadeq, Muhammad Jafar

    2006-01-01

    Current distance learning systems are increasingly packing highly data-intensive contents on servers, resulting in the congestion of network and server resources at peak service times. A distributed learning system based on faded information field (FIF) architecture that employs mobile agents (MAs) has been proposed and simulated in this work. The…

  12. Laboratory for Computer Science Progress Report 19, 1 July 1981-30 June 1982.

    DTIC Science & Technology

    1984-05-01

    Multiprocessor Architectures 202 4. TRIX Operating System 209 5. VLSI Tools 212 ’SYSTEMATIC PROGRAM DEVELOPMENT, 221 1. Introduction 222 2. Specification...exploring distributed operating systems and the architecture of single-user powerful computers that are interconnected by communication networks. The...to now. In particular, we expect to experiment with languages, operating systems , and applications that establish the feasibility of distributed

  13. Advanced Lighting Controls for Reducing Energy use and Cost in DoD Installations

    DTIC Science & Technology

    2013-05-01

    OccuSwitch Wireless is a room-based lighting control system employing dimmable light sources, occupancy and daylight sensors , wireless interconnection...combination of wireless and wired control solution for building-wide networked system that maximizes the use of daylight while improving visual...architecture of Hybrid ILDC. Architecture: The system features wireless connectivity among sensors and actuators within a zone and exploits wired

  14. Connecting the snowpack to the internet of things: an IPv6 architecture for providing real-time measurements of hydrologic systems

    NASA Astrophysics Data System (ADS)

    Kerkez, B.; Zhang, Z.; Oroza, C.; Glaser, S. D.; Bales, R. C.

    2012-12-01

    We describe our improved, robust, and scalable architecture by which to rapidly instrument large-scale watersheds, while providing the resulting data in real-time. Our system consists of more than twenty wireless sensor networks and thousands of sensors, which will be deployed in the American River basin (5000 sq. km) of California. The core component of our system is known as a mote, a tiny, ultra-low-power, embedded wireless computer that can be used for any number of sensing applications. Our new generation of motes is equipped with IPv6 functionality, effectively giving each sensor in the field its own unique IP address, thus permitting users to remotely interact with the devices without going through intermediary services. Thirty to fifty motes will be deployed across 1-2 square kilometer regions to form a mesh-based wireless sensor network. Redundancy of local wireless links will ensure that data will always be able to traverse the network, even if hash wintertime conditions adversely affect some network nodes. These networks will be used to develop spatial estimates of a number of hydrologic parameters, focusing especially on snowpack. Each wireless sensor network has one main network controller, which is responsible with interacting with an embedded Linux computer to relay information across higher-powered, long-range wireless links (cell modems, satellite, WiFi) to neighboring networks and remote, offsite servers. The network manager is also responsible for providing an Internet connection to each mote. Data collected by the sensors can either be read directly by remote hosts, or stored on centralized servers for future access. With 20 such networks deployed in the American River, our system will comprise an unprecedented cyber-physical architecture for measuring hydrologic parameters in large-scale basins. The spatiotemporal density and real-time nature of the data is also expected to significantly improve operational hydrology and water resource management in the basin.

  15. Navigation Architecture for a Space Mobile Network

    NASA Technical Reports Server (NTRS)

    Valdez, Jennifer E.; Ashman, Benjamin; Gramling, Cheryl; Heckler, Gregory W.; Carpenter, Russell

    2016-01-01

    The Tracking and Data Relay Satellite System (TDRSS) Augmentation Service for Satellites (TASS) is a proposed beacon service to provide a global, space based GPS augmentation service based on the NASA Global Differential GPS (GDGPS) System. The TASS signal will be tied to the GPS time system and usable as an additional ranging and Doppler radiometric source. Additionally, it will provide data vital to autonomous navigation in the near Earth regime, including space weather information, TDRS ephemerides, Earth Orientation Parameters (EOP), and forward commanding capability. TASS benefits include enhancing situational awareness, enabling increased autonomy, and providing near real-time command access for user platforms. As NASA Headquarters' Space Communication and Navigation Office (SCaN) begins to move away from a centralized network architecture and towards a Space Mobile Network (SMN) that allows for user initiated services, autonomous navigation will be a key part of such a system. This paper explores how a TASS beacon service enables the Space Mobile Networking paradigm, what a typical user platform would require, and provides an in-depth analysis of several navigation scenarios and operations concepts. This paper provides an overview of the TASS beacon and its role within the SMN and user community. Supporting navigation analysis is presented for two user mission scenarios: an Earth observing spacecraft in low earth orbit (LEO), and a highly elliptical spacecraft in a lunar resonance orbit. These diverse flight scenarios indicate the breadth of applicability of the TASS beacon for upcoming users within the current network architecture and in the SMN.

  16. A proto-architecture for innate directionally selective visual maps.

    PubMed

    Adams, Samantha V; Harris, Chris M

    2014-01-01

    Self-organizing artificial neural networks are a popular tool for studying visual system development, in particular the cortical feature maps present in real systems that represent properties such as ocular dominance (OD), orientation-selectivity (OR) and direction selectivity (DS). They are also potentially useful in artificial systems, for example robotics, where the ability to extract and learn features from the environment in an unsupervised way is important. In this computational study we explore a DS map that is already latent in a simple artificial network. This latent selectivity arises purely from the cortical architecture without any explicit coding for DS and prior to any self-organising process facilitated by spontaneous activity or training. We find DS maps with local patchy regions that exhibit features similar to maps derived experimentally and from previous modeling studies. We explore the consequences of changes to the afferent and lateral connectivity to establish the key features of this proto-architecture that support DS.

  17. Printing Highly Controlled Suspended Carbon Nanotube Network on Micro-patterned Superhydrophobic Flexible Surface

    PubMed Central

    Li, Bo; Wang, Xin; Jung, Hyun Young; Kim, Young Lae; Robinson, Jeremy T.; Zalalutdinov, Maxim; Hong, Sanghyun; Hao, Ji; Ajayan, Pulickel M.; Wan, Kai-Tak; Jung, Yung Joon

    2015-01-01

    Suspended single-walled carbon nanotubes (SWCNTs) offer unique functionalities for electronic and electromechanical systems. Due to their outstanding flexible nature, suspended SWCNT architectures have great potential for integration into flexible electronic systems. However, current techniques for integrating SWCNT architectures with flexible substrates are largely absent, especially in a manner that is both scalable and well controlled. Here, we present a new nanostructured transfer paradigm to print scalable and well-defined suspended nano/microscale SWCNT networks on 3D patterned flexible substrates with micro- to nanoscale precision. The underlying printing/transfer mechanism, as well as the mechanical, electromechanical, and mechanical resonance properties of the suspended SWCNTs are characterized, including identifying metrics relevant for reliable and sensitive device structures. Our approach represents a fast, scalable and general method for building suspended nano/micro SWCNT architectures suitable for flexible sensing and actuation systems. PMID:26511284

  18. Printing Highly Controlled Suspended Carbon Nanotube Network on Micro-patterned Superhydrophobic Flexible Surface.

    PubMed

    Li, Bo; Wang, Xin; Jung, Hyun Young; Kim, Young Lae; Robinson, Jeremy T; Zalalutdinov, Maxim; Hong, Sanghyun; Hao, Ji; Ajayan, Pulickel M; Wan, Kai-Tak; Jung, Yung Joon

    2015-10-29

    Suspended single-walled carbon nanotubes (SWCNTs) offer unique functionalities for electronic and electromechanical systems. Due to their outstanding flexible nature, suspended SWCNT architectures have great potential for integration into flexible electronic systems. However, current techniques for integrating SWCNT architectures with flexible substrates are largely absent, especially in a manner that is both scalable and well controlled. Here, we present a new nanostructured transfer paradigm to print scalable and well-defined suspended nano/microscale SWCNT networks on 3D patterned flexible substrates with micro- to nanoscale precision. The underlying printing/transfer mechanism, as well as the mechanical, electromechanical, and mechanical resonance properties of the suspended SWCNTs are characterized, including identifying metrics relevant for reliable and sensitive device structures. Our approach represents a fast, scalable and general method for building suspended nano/micro SWCNT architectures suitable for flexible sensing and actuation systems.

  19. Hierarchical Address Event Routing for Reconfigurable Large-Scale Neuromorphic Systems.

    PubMed

    Park, Jongkil; Yu, Theodore; Joshi, Siddharth; Maier, Christoph; Cauwenberghs, Gert

    2017-10-01

    We present a hierarchical address-event routing (HiAER) architecture for scalable communication of neural and synaptic spike events between neuromorphic processors, implemented with five Xilinx Spartan-6 field-programmable gate arrays and four custom analog neuromophic integrated circuits serving 262k neurons and 262M synapses. The architecture extends the single-bus address-event representation protocol to a hierarchy of multiple nested buses, routing events across increasing scales of spatial distance. The HiAER protocol provides individually programmable axonal delay in addition to strength for each synapse, lending itself toward biologically plausible neural network architectures, and scales across a range of hierarchies suitable for multichip and multiboard systems in reconfigurable large-scale neuromorphic systems. We show approximately linear scaling of net global synaptic event throughput with number of routing nodes in the network, at 3.6×10 7 synaptic events per second per 16k-neuron node in the hierarchy.

  20. Designing Next Generation Massively Multithreaded Architectures for Irregular Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumeo, Antonino; Secchi, Simone; Villa, Oreste

    Irregular applications, such as data mining or graph-based computations, show unpredictable memory/network access patterns and control structures. Massively multi-threaded architectures with large node count, like the Cray XMT, have been shown to address their requirements better than commodity clusters. In this paper we present the approaches that we are currently pursuing to design future generations of these architectures. First, we introduce the Cray XMT and compare it to other multithreaded architectures. We then propose an evolution of the architecture, integrating multiple cores per node and next generation network interconnect. We advocate the use of hardware support for remote memory referencemore » aggregation to optimize network utilization. For this evaluation we developed a highly parallel, custom simulation infrastructure for multi-threaded systems. Our simulator executes unmodified XMT binaries with very large datasets, capturing effects due to contention and hot-spotting, while predicting execution times with greater than 90% accuracy. We also discuss the FPGA prototyping approach that we are employing to study efficient support for irregular applications in next generation manycore processors.« less

  1. Air Force Global Weather Central System Architecture Study. Final System/Subsystem Summary Report. Volume 2. Requirements Compilation and Analysis. Part 3. Characteristics Summaries and Network Analysis

    DTIC Science & Technology

    1976-03-01

    DB DC DCT DDB DET DF DFS DML DMS DMSP DOD DS DSARC DT EDB EDS EG ESSA ETAC EWO Control and Reporting Post Cathode Ray Tube...National and Aviation Meteorological Facsimile Network NC - Network Control NCA - National Command Authority NCAR - National Center for Atmospheric

  2. Elements of Network-Based Assessment

    ERIC Educational Resources Information Center

    Gibson, David

    2007-01-01

    Elements of network-based assessment systems are envisioned based on recent advances in knowledge and practice in learning theory, assessment design and delivery, and semantic web interoperability. The architecture takes advantage of the meditating role of technology as well as recent models of assessment systems. This overview of the elements…

  3. Wireless Sensors Network (Sensornet)

    NASA Technical Reports Server (NTRS)

    Perotti, J.

    2003-01-01

    The Wireless Sensor Network System presented in this paper provides a flexible reconfigurable architecture that could be used in a broad range of applications. It also provides a sensor network with increased reliability; decreased maintainability costs, and assured data availability by autonomously and automatically reconfiguring to overcome communication interferences.

  4. Intrinsic and task-evoked network architectures of the human brain

    PubMed Central

    Cole, Michael W.; Bassett, Danielle S.; Power, Jonathan D.; Braver, Todd S.; Petersen, Steven E.

    2014-01-01

    Summary Many functional network properties of the human brain have been identified during rest and task states, yet it remains unclear how the two relate. We identified a whole-brain network architecture present across dozens of task states that was highly similar to the resting-state network architecture. The most frequent functional connectivity strengths across tasks closely matched the strengths observed at rest, suggesting this is an “intrinsic”, standard architecture of functional brain organization. Further, a set of small but consistent changes common across tasks suggests the existence of a task-general network architecture distinguishing task states from rest. These results indicate the brain’s functional network architecture during task performance is shaped primarily by an intrinsic network architecture that is also present during rest, and secondarily by evoked task-general and task-specific network changes. This establishes a strong relationship between resting-state functional connectivity and task-evoked functional connectivity – areas of neuroscientific inquiry typically considered separately. PMID:24991964

  5. Scalable Architecture for Federated Translational Inquiries Network (SAFTINet) Technology Infrastructure for a Distributed Data Network

    PubMed Central

    Schilling, Lisa M.; Kwan, Bethany M.; Drolshagen, Charles T.; Hosokawa, Patrick W.; Brandt, Elias; Pace, Wilson D.; Uhrich, Christopher; Kamerick, Michael; Bunting, Aidan; Payne, Philip R.O.; Stephens, William E.; George, Joseph M.; Vance, Mark; Giacomini, Kelli; Braddy, Jason; Green, Mika K.; Kahn, Michael G.

    2013-01-01

    Introduction: Distributed Data Networks (DDNs) offer infrastructure solutions for sharing electronic health data from across disparate data sources to support comparative effectiveness research. Data sharing mechanisms must address technical and governance concerns stemming from network security and data disclosure laws and best practices, such as HIPAA. Methods: The Scalable Architecture for Federated Translational Inquiries Network (SAFTINet) deploys TRIAD grid technology, a common data model, detailed technical documentation, and custom software for data harmonization to facilitate data sharing in collaboration with stakeholders in the care of safety net populations. Data sharing partners host TRIAD grid nodes containing harmonized clinical data within their internal or hosted network environments. Authorized users can use a central web-based query system to request analytic data sets. Discussion: SAFTINet DDN infrastructure achieved a number of data sharing objectives, including scalable and sustainable systems for ensuring harmonized data structures and terminologies and secure distributed queries. Initial implementation challenges were resolved through iterative discussions, development and implementation of technical documentation, governance, and technology solutions. PMID:25848567

  6. Scalable Architecture for Federated Translational Inquiries Network (SAFTINet) Technology Infrastructure for a Distributed Data Network.

    PubMed

    Schilling, Lisa M; Kwan, Bethany M; Drolshagen, Charles T; Hosokawa, Patrick W; Brandt, Elias; Pace, Wilson D; Uhrich, Christopher; Kamerick, Michael; Bunting, Aidan; Payne, Philip R O; Stephens, William E; George, Joseph M; Vance, Mark; Giacomini, Kelli; Braddy, Jason; Green, Mika K; Kahn, Michael G

    2013-01-01

    Distributed Data Networks (DDNs) offer infrastructure solutions for sharing electronic health data from across disparate data sources to support comparative effectiveness research. Data sharing mechanisms must address technical and governance concerns stemming from network security and data disclosure laws and best practices, such as HIPAA. The Scalable Architecture for Federated Translational Inquiries Network (SAFTINet) deploys TRIAD grid technology, a common data model, detailed technical documentation, and custom software for data harmonization to facilitate data sharing in collaboration with stakeholders in the care of safety net populations. Data sharing partners host TRIAD grid nodes containing harmonized clinical data within their internal or hosted network environments. Authorized users can use a central web-based query system to request analytic data sets. SAFTINet DDN infrastructure achieved a number of data sharing objectives, including scalable and sustainable systems for ensuring harmonized data structures and terminologies and secure distributed queries. Initial implementation challenges were resolved through iterative discussions, development and implementation of technical documentation, governance, and technology solutions.

  7. Learning in Artificial Neural Systems

    NASA Technical Reports Server (NTRS)

    Matheus, Christopher J.; Hohensee, William E.

    1987-01-01

    This paper presents an overview and analysis of learning in Artificial Neural Systems (ANS's). It begins with a general introduction to neural networks and connectionist approaches to information processing. The basis for learning in ANS's is then described, and compared with classical Machine learning. While similar in some ways, ANS learning deviates from tradition in its dependence on the modification of individual weights to bring about changes in a knowledge representation distributed across connections in a network. This unique form of learning is analyzed from two aspects: the selection of an appropriate network architecture for representing the problem, and the choice of a suitable learning rule capable of reproducing the desired function within the given network. The various network architectures are classified, and then identified with explicit restrictions on the types of functions they are capable of representing. The learning rules, i.e., algorithms that specify how the network weights are modified, are similarly taxonomized, and where possible, the limitations inherent to specific classes of rules are outlined.

  8. A research on the application of software defined networking in satellite network architecture

    NASA Astrophysics Data System (ADS)

    Song, Huan; Chen, Jinqiang; Cao, Suzhi; Cui, Dandan; Li, Tong; Su, Yuxing

    2017-10-01

    Software defined network is a new type of network architecture, which decouples control plane and data plane of traditional network, has the feature of flexible configurations and is a direction of the next generation terrestrial Internet development. Satellite network is an important part of the space-ground integrated information network, while the traditional satellite network has the disadvantages of difficult network topology maintenance and slow configuration. The application of SDN technology in satellite network can solve these problems that traditional satellite network faces. At present, the research on the application of SDN technology in satellite network is still in the stage of preliminary study. In this paper, we start with introducing the SDN technology and satellite network architecture. Then we mainly introduce software defined satellite network architecture, as well as the comparison of different software defined satellite network architecture and satellite network virtualization. Finally, the present research status and development trend of SDN technology in satellite network are analyzed.

  9. A 181 GOPS AKAZE Accelerator Employing Discrete-Time Cellular Neural Networks for Real-Time Feature Extraction.

    PubMed

    Jiang, Guangli; Liu, Leibo; Zhu, Wenping; Yin, Shouyi; Wei, Shaojun

    2015-09-04

    This paper proposes a real-time feature extraction VLSI architecture for high-resolution images based on the accelerated KAZE algorithm. Firstly, a new system architecture is proposed. It increases the system throughput, provides flexibility in image resolution, and offers trade-offs between speed and scaling robustness. The architecture consists of a two-dimensional pipeline array that fully utilizes computational similarities in octaves. Secondly, a substructure (block-serial discrete-time cellular neural network) that can realize a nonlinear filter is proposed. This structure decreases the memory demand through the removal of data dependency. Thirdly, a hardware-friendly descriptor is introduced in order to overcome the hardware design bottleneck through the polar sample pattern; a simplified method to realize rotation invariance is also presented. Finally, the proposed architecture is designed in TSMC 65 nm CMOS technology. The experimental results show a performance of 127 fps in full HD resolution at 200 MHz frequency. The peak performance reaches 181 GOPS and the throughput is double the speed of other state-of-the-art architectures.

  10. Network architectures and circuit function: testing alternative hypotheses in multifunctional networks.

    PubMed

    Leonard, J L

    2000-05-01

    Understanding how species-typical movement patterns are organized in the nervous system is a central question in neurobiology. The current explanations involve 'alphabet' models in which an individual neuron may participate in the circuit for several behaviors but each behavior is specified by a specific neural circuit. However, not all of the well-studied model systems fit the 'alphabet' model. The 'equation' model provides an alternative possibility, whereby a system of parallel motor neurons, each with a unique (but overlapping) field of innervation, can account for the production of stereotyped behavior patterns by variable circuits. That is, it is possible for such patterns to arise as emergent properties of a generalized neural network in the absence of feedback, a simple version of a 'self-organizing' behavioral system. Comparison of systems of identified neurons suggest that the 'alphabet' model may account for most observations where CPGs act to organize motor patterns. Other well-known model systems, involving architectures corresponding to feed-forward neural networks with a hidden layer, may organize patterned behavior in a manner consistent with the 'equation' model. Such architectures are found in the Mauthner and reticulospinal circuits, 'escape' locomotion in cockroaches, CNS control of Aplysia gill, and may also be important in the coordination of sensory information and motor systems in insect mushroom bodies and the vertebrate hippocampus. The hidden layer of such networks may serve as an 'internal representation' of the behavioral state and/or body position of the animal, allowing the animal to fine-tune oriented, or particularly context-sensitive, movements to the prevalent conditions. Experiments designed to distinguish between the two models in cases where they make mutually exclusive predictions provide an opportunity to elucidate the neural mechanisms by which behavior is organized in vivo and in vitro. Copyright 2000 S. Karger AG, Basel

  11. Clinical Named Entity Recognition Using Deep Learning Models.

    PubMed

    Wu, Yonghui; Jiang, Min; Xu, Jun; Zhi, Degui; Xu, Hua

    2017-01-01

    Clinical Named Entity Recognition (NER) is a critical natural language processing (NLP) task to extract important concepts (named entities) from clinical narratives. Researchers have extensively investigated machine learning models for clinical NER. Recently, there have been increasing efforts to apply deep learning models to improve the performance of current clinical NER systems. This study examined two popular deep learning architectures, the Convolutional Neural Network (CNN) and the Recurrent Neural Network (RNN), to extract concepts from clinical texts. We compared the two deep neural network architectures with three baseline Conditional Random Fields (CRFs) models and two state-of-the-art clinical NER systems using the i2b2 2010 clinical concept extraction corpus. The evaluation results showed that the RNN model trained with the word embeddings achieved a new state-of-the- art performance (a strict F1 score of 85.94%) for the defined clinical NER task, outperforming the best-reported system that used both manually defined and unsupervised learning features. This study demonstrates the advantage of using deep neural network architectures for clinical concept extraction, including distributed feature representation, automatic feature learning, and long-term dependencies capture. This is one of the first studies to compare the two widely used deep learning models and demonstrate the superior performance of the RNN model for clinical NER.

  12. Neural Networks and other Techniques for Fault Identification and Isolation of Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Innocenti, M.; Napolitano, M.

    2003-01-01

    Fault identification, isolation, and accomodation have become critical issues in the overall performance of advanced aircraft systems. Neural Networks have shown to be a very attractive alternative to classic adaptation methods for identification and control of non-linear dynamic systems. The purpose of this paper is to show the improvements in neural network applications achievable through the use of learning algorithms more efficient than the classic Back-Propagation, and through the implementation of the neural schemes in parallel hardware. The results of the analysis of a scheme for Sensor Failure, Detection, Identification and Accommodation (SFDIA) using experimental flight data of a research aircraft model are presented. Conventional approaches to the problem are based on observers and Kalman Filters while more recent methods are based on neural approximators. The work described in this paper is based on the use of neural networks (NNs) as on-line learning non-linear approximators. The performances of two different neural architectures were compared. The first architecture is based on a Multi Layer Perceptron (MLP) NN trained with the Extended Back Propagation algorithm (EBPA). The second architecture is based on a Radial Basis Function (RBF) NN trained with the Extended-MRAN (EMRAN) algorithms. In addition, alternative methods for communications links fault detection and accomodation are presented, relative to multiple unmanned aircraft applications.

  13. Clinical Named Entity Recognition Using Deep Learning Models

    PubMed Central

    Wu, Yonghui; Jiang, Min; Xu, Jun; Zhi, Degui; Xu, Hua

    2017-01-01

    Clinical Named Entity Recognition (NER) is a critical natural language processing (NLP) task to extract important concepts (named entities) from clinical narratives. Researchers have extensively investigated machine learning models for clinical NER. Recently, there have been increasing efforts to apply deep learning models to improve the performance of current clinical NER systems. This study examined two popular deep learning architectures, the Convolutional Neural Network (CNN) and the Recurrent Neural Network (RNN), to extract concepts from clinical texts. We compared the two deep neural network architectures with three baseline Conditional Random Fields (CRFs) models and two state-of-the-art clinical NER systems using the i2b2 2010 clinical concept extraction corpus. The evaluation results showed that the RNN model trained with the word embeddings achieved a new state-of-the- art performance (a strict F1 score of 85.94%) for the defined clinical NER task, outperforming the best-reported system that used both manually defined and unsupervised learning features. This study demonstrates the advantage of using deep neural network architectures for clinical concept extraction, including distributed feature representation, automatic feature learning, and long-term dependencies capture. This is one of the first studies to compare the two widely used deep learning models and demonstrate the superior performance of the RNN model for clinical NER. PMID:29854252

  14. The deployment of routing protocols in distributed control plane of SDN.

    PubMed

    Jingjing, Zhou; Di, Cheng; Weiming, Wang; Rong, Jin; Xiaochun, Wu

    2014-01-01

    Software defined network (SDN) provides a programmable network through decoupling the data plane, control plane, and application plane from the original closed system, thus revolutionizing the existing network architecture to improve the performance and scalability. In this paper, we learned about the distributed characteristics of Kandoo architecture and, meanwhile, improved and optimized Kandoo's two levels of controllers based on ideological inspiration of RCP (routing control platform). Finally, we analyzed the deployment strategies of BGP and OSPF protocol in a distributed control plane of SDN. The simulation results show that our deployment strategies are superior to the traditional routing strategies.

  15. What is the optimal architecture for visual information routing?

    PubMed

    Wolfrum, Philipp; von der Malsburg, Christoph

    2007-12-01

    Analyzing the design of networks for visual information routing is an underconstrained problem due to insufficient anatomical and physiological data. We propose here optimality criteria for the design of routing networks. For a very general architecture, we derive the number of routing layers and the fanout that minimize the required neural circuitry. The optimal fanout l is independent of network size, while the number k of layers scales logarithmically (with a prefactor below 1), with the number n of visual resolution units to be routed independently. The results are found to agree with data of the primate visual system.

  16. Using Fuzzy Logic for Performance Evaluation in Reinforcement Learning

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.; Khedkar, Pratap S.

    1992-01-01

    Current reinforcement learning algorithms require long training periods which generally limit their applicability to small size problems. A new architecture is described which uses fuzzy rules to initialize its two neural networks: a neural network for performance evaluation and another for action selection. This architecture is applied to control of dynamic systems and it is demonstrated that it is possible to start with an approximate prior knowledge and learn to refine it through experiments using reinforcement learning.

  17. Resource-aware system architecture model for implementation of quantum aided Byzantine agreement on quantum repeater networks

    NASA Astrophysics Data System (ADS)

    Taherkhani, Mohammand Amin; Navi, Keivan; Van Meter, Rodney

    2018-01-01

    Quantum aided Byzantine agreement is an important distributed quantum algorithm with unique features in comparison to classical deterministic and randomized algorithms, requiring only a constant expected number of rounds in addition to giving a higher level of security. In this paper, we analyze details of the high level multi-party algorithm, and propose elements of the design for the quantum architecture and circuits required at each node to run the algorithm on a quantum repeater network (QRN). Our optimization techniques have reduced the quantum circuit depth by 44% and the number of qubits in each node by 20% for a minimum five-node setup compared to the design based on the standard arithmetic circuits. These improvements lead to a quantum system architecture with 160 qubits per node, space-time product (an estimate of the required fidelity) {KQ}≈ 1.3× {10}5 per node and error threshold 1.1× {10}-6 for the total nodes in the network. The evaluation of the designed architecture shows that to execute the algorithm once on the minimum setup, we need to successfully distribute a total of 648 Bell pairs across the network, spread evenly between all pairs of nodes. This framework can be considered a starting point for establishing a road-map for light-weight demonstration of a distributed quantum application on QRNs.

  18. Integration of Sensors, Controllers and Instruments Using a Novel OPC Architecture

    PubMed Central

    2017-01-01

    The interconnection between sensors, controllers and instruments through a communication network plays a vital role in the performance and effectiveness of a control system. Since its inception in the 90s, the Object Linking and Embedding for Process Control (OPC) protocol has provided open connectivity for monitoring and automation systems. It has been widely used in several environments such as industrial facilities, building and energy automation, engineering education and many others. This paper presents a novel OPC-based architecture to implement automation systems devoted to R&D and educational activities. The proposal is a novel conceptual framework, structured into four functional layers where the diverse components are categorized aiming to foster the systematic design and implementation of automation systems involving OPC communication. Due to the benefits of OPC, the proposed architecture provides features like open connectivity, reliability, scalability, and flexibility. Furthermore, four successful experimental applications of such an architecture, developed at the University of Extremadura (UEX), are reported. These cases are a proof of concept of the ability of this architecture to support interoperability for different domains. Namely, the automation of energy systems like a smart microgrid and photobioreactor facilities, the implementation of a network-accessible industrial laboratory and the development of an educational hardware-in-the-loop platform are described. All cases include a Programmable Logic Controller (PLC) to automate and control the plant behavior, which exchanges operative data (measurements and signals) with a multiplicity of sensors, instruments and supervisory systems under the structure of the novel OPC architecture. Finally, the main conclusions and open research directions are highlighted. PMID:28654002

  19. Integration of Sensors, Controllers and Instruments Using a Novel OPC Architecture.

    PubMed

    González, Isaías; Calderón, Antonio José; Barragán, Antonio Javier; Andújar, José Manuel

    2017-06-27

    The interconnection between sensors, controllers and instruments through a communication network plays a vital role in the performance and effectiveness of a control system. Since its inception in the 90s, the Object Linking and Embedding for Process Control (OPC) protocol has provided open connectivity for monitoring and automation systems. It has been widely used in several environments such as industrial facilities, building and energy automation, engineering education and many others. This paper presents a novel OPC-based architecture to implement automation systems devoted to R&D and educational activities. The proposal is a novel conceptual framework, structured into four functional layers where the diverse components are categorized aiming to foster the systematic design and implementation of automation systems involving OPC communication. Due to the benefits of OPC, the proposed architecture provides features like open connectivity, reliability, scalability, and flexibility. Furthermore, four successful experimental applications of such an architecture, developed at the University of Extremadura (UEX), are reported. These cases are a proof of concept of the ability of this architecture to support interoperability for different domains. Namely, the automation of energy systems like a smart microgrid and photobioreactor facilities, the implementation of a network-accessible industrial laboratory and the development of an educational hardware-in-the-loop platform are described. All cases include a Programmable Logic Controller (PLC) to automate and control the plant behavior, which exchanges operative data (measurements and signals) with a multiplicity of sensors, instruments and supervisory systems under the structure of the novel OPC architecture. Finally, the main conclusions and open research directions are highlighted.

  20. Building and measuring a high performance network architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramer, William T.C.; Toole, Timothy; Fisher, Chuck

    2001-04-20

    Once a year, the SC conferences present a unique opportunity to create and build one of the most complex and highest performance networks in the world. At SC2000, large-scale and complex local and wide area networking connections were demonstrated, including large-scale distributed applications running on different architectures. This project was designed to use the unique opportunity presented at SC2000 to create a testbed network environment and then use that network to demonstrate and evaluate high performance computational and communication applications. This testbed was designed to incorporate many interoperable systems and services and was designed for measurement from the very beginning.more » The end results were key insights into how to use novel, high performance networking technologies and to accumulate measurements that will give insights into the networks of the future.« less

  1. Distributed Network and Multiprocessing Minicomputer State-of-the-Art Capabilities.

    ERIC Educational Resources Information Center

    Theis, Douglas J.

    An examination of the capabilities of minicomputers and midicomputers now on the market reveals two basic items which users should evaluate when selecting computers for their own applications: distributed networking systems and multiprocessing architectures. Variables which should be considered in evaluating a distributed networking system…

  2. Service oriented network architecture for control and management of home appliances

    NASA Astrophysics Data System (ADS)

    Hayakawa, Hiroshi; Koita, Takahiro; Sato, Kenya

    2005-12-01

    Recent advances in multimedia network systems and mechatronics have led to the development of a new generation of applications that associate the use of various multimedia objects with the behavior of multiple robotic actors. The connection of audio and video devices through high speed multimedia networks is expected to make the system more convenient to use. For example, many home appliances, such as a video camera, a display monitor, a video recorder, an audio system and so on, are being equipped with a communication interface in the near future. Recently some platforms (i.e. UPnP1, HAVi2 and so on) are proposed for constructing home networks; however, there are some issues to be solved to realize various services by connecting different equipment via the pervasive peer-to-peer network. UPnP offers network connectivity of PCs of intelligent home appliances, practically, which means to require a PC in the network to control other devices. Meanwhile, HAVi has been developed for intelligent AV equipments with sophisticated functions using high CPU power and large memory. Considering the targets of home alliances are embedded systems, this situation raises issues of software and hardware complexity, cost, power consumption and so on. In this study, we have proposed and developed the service oriented network architecture for control and management of home appliances, named SONICA (Service Oriented Network Interoperability for Component Adaptation), to address these issues described before.

  3. System services and architecture of the TMI satellite mobile data system

    NASA Technical Reports Server (NTRS)

    Gokhale, D.; Agarwal, A.; Guibord, A.

    1993-01-01

    The North American Mobile Satellite Service (MSS) system being developed by AMSC/TMI and scheduled to go into service in early 1995 will include the provision for real time packet switched services (mobile data service - MDS) and circuit switched services (mobile telephony service - MTS). These services will utilize geostationary satellites which provide access to mobile terminals (MT's) through L-band beams. The MDS system utilizes a star topology with a centralized data hub (DH) and will support a large number of mobile terminals. The DH, which accesses the satellite via a single Ku band beam, is responsible for satellite resource management, for providing mobile users with access to public and private data networks, and for comprehensive network management of the system. This paper describes the various MDS services available for the users, the ground segment elements involved in the provisioning of these services, and a summary description of the channel types, protocol architecture, and network management capabilities provided within the system.

  4. Securing the Global Airspace System Via Identity-Based Security

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.

    2015-01-01

    Current telecommunications systems have very good security architectures that include authentication and authorization as well as accounting. These three features enable an edge system to obtain access into a radio communication network, request specific Quality-of-Service (QoS) requirements and ensure proper billing for service. Furthermore, the links are secure. Widely used telecommunication technologies are Long Term Evolution (LTE) and Worldwide Interoperability for Microwave Access (WiMAX) This paper provides a system-level view of network-centric operations for the global airspace system and the problems and issues with deploying new technologies into the system. The paper then focuses on applying the basic security architectures of commercial telecommunication systems and deployment of federated Authentication, Authorization and Accounting systems to provide a scalable, evolvable reliable and maintainable solution to enable a globally deployable identity-based secure airspace system.

  5. Mesh Network Architecture for Enabling Inter-Spacecraft Communication

    NASA Technical Reports Server (NTRS)

    Becker, Christopher; Merrill, Garrick

    2017-01-01

    To enable communication between spacecraft operating in a formation or small constellation, a mesh network architecture was developed and tested using a time division multiple access (TDMA) communication scheme. The network is designed to allow for the exchange of telemetry and other data between spacecraft to enable collaboration between small spacecraft. The system uses a peer-to-peer topology with no central router, so that it does not have a single point of failure. The mesh network is dynamically configurable to allow for addition and subtraction of new spacecraft into the communication network. Flight testing was performed using an unmanned aerial system (UAS) formation acting as a spacecraft analogue and providing a stressing environment to prove mesh network performance. The mesh network was primarily devised to provide low latency, high frequency communication but is flexible and can also be configured to provide higher bandwidth for applications desiring high data throughput. The network includes a relay functionality that extends the maximum range between spacecraft in the network by relaying data from node to node. The mesh network control is implemented completely in software making it hardware agnostic, thereby allowing it to function with a wide variety of existing radios and computing platforms..

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okhravi, Hamed; Sheldon, Frederick T.; Haines, Joshua

    Data diodes provide protection of critical cyber assets by the means of physically enforcing traffic direction on the network. In order to deploy data diodes effectively, it is imperative to understand the protection they provide, the protection they do not provide, their limitations, and their place in the larger security infrastructure. In this work, we study data diodes, their functionalities and limitations. We then propose two critical infrastructure systems that can benefit from the additional protection offered by data diodes: process control networks and net-centric cyber decision support systems. We review the security requirements of these systems, describe the architectures,more » and study the trade-offs. Finally, the architectures are evaluated against different attack patterns.« less

  7. A reinforcement learning-based architecture for fuzzy logic control

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1992-01-01

    This paper introduces a new method for learning to refine a rule-based fuzzy logic controller. A reinforcement learning technique is used in conjunction with a multilayer neural network model of a fuzzy controller. The approximate reasoning based intelligent control (ARIC) architecture proposed here learns by updating its prediction of the physical system's behavior and fine tunes a control knowledge base. Its theory is related to Sutton's temporal difference (TD) method. Because ARIC has the advantage of using the control knowledge of an experienced operator and fine tuning it through the process of learning, it learns faster than systems that train networks from scratch. The approach is applied to a cart-pole balancing system.

  8. Resilient Monitoring Systems: Architecture, Design, and Application to Boiler/Turbine Plant

    DOE PAGES

    Garcia, Humberto E.; Lin, Wen-Chiao; Meerkov, Semyon M.; ...

    2014-11-01

    Resilient monitoring systems, considered in this paper, are sensor networks that degrade gracefully under malicious attacks on their sensors, causing them to project misleading information. The goal of this work is to design, analyze, and evaluate the performance of a resilient monitoring system intended to monitor plant conditions (normal or anomalous). The architecture developed consists of four layers: data quality assessment, process variable assessment, plant condition assessment, and sensor network adaptation. Each of these layers is analyzed by either analytical or numerical tools. The performance of the overall system is evaluated using a simplified boiler/turbine plant. The measure of resiliencymore » is quantified using Kullback-Leibler divergence, and is shown to be sufficiently high in all scenarios considered.« less

  9. Resilient monitoring systems: architecture, design, and application to boiler/turbine plant.

    PubMed

    Garcia, Humberto E; Lin, Wen-Chiao; Meerkov, Semyon M; Ravichandran, Maruthi T

    2014-11-01

    Resilient monitoring systems, considered in this paper, are sensor networks that degrade gracefully under malicious attacks on their sensors, causing them to project misleading information. The goal of this paper is to design, analyze, and evaluate the performance of a resilient monitoring system intended to monitor plant conditions (normal or anomalous). The architecture developed consists of four layers: data quality assessment, process variable assessment, plant condition assessment, and sensor network adaptation. Each of these layers is analyzed by either analytical or numerical tools. The performance of the overall system is evaluated using a simplified boiler/turbine plant. The measure of resiliency is quantified based on the Kullback-Leibler divergence and shown to be sufficiently high in all scenarios considered.

  10. Overview of the LINCS architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fletcher, J.G.; Watson, R.W.

    1982-01-13

    Computing at the Lawrence Livermore National Laboratory (LLNL) has evolved over the past 15 years with a computer network based resource sharing environment. The increasing use of low cost and high performance micro, mini and midi computers and commercially available local networking systems will accelerate this trend. Further, even the large scale computer systems, on which much of the LLNL scientific computing depends, are evolving into multiprocessor systems. It is our belief that the most cost effective use of this environment will depend on the development of application systems structured into cooperating concurrent program modules (processes) distributed appropriately over differentmore » nodes of the environment. A node is defined as one or more processors with a local (shared) high speed memory. Given the latter view, the environment can be characterized as consisting of: multiple nodes communicating over noisy channels with arbitrary delays and throughput, heterogenous base resources and information encodings, no single administration controlling all resources, distributed system state, and no uniform time base. The system design problem is - how to turn the heterogeneous base hardware/firmware/software resources of this environment into a coherent set of resources that facilitate development of cost effective, reliable, and human engineered applications. We believe the answer lies in developing a layered, communication oriented distributed system architecture; layered and modular to support ease of understanding, reconfiguration, extensibility, and hiding of implementation or nonessential local details; communication oriented because that is a central feature of the environment. The Livermore Interactive Network Communication System (LINCS) is a hierarchical architecture designed to meet the above needs. While having characteristics in common with other architectures, it differs in several respects.« less

  11. Grain-size considerations for optoelectronic multistage interconnection networks.

    PubMed

    Krishnamoorthy, A V; Marchand, P J; Kiamilev, F E; Esener, S C

    1992-09-10

    This paper investigates, at the system level, the performance-cost trade-off between optical and electronic interconnects in an optoelectronic interconnection network. The specific system considered is a packet-switched, free-space optoelectronic shuffle-exchange multistage interconnection network (MIN). System bandwidth is used as the performance measure, while system area, system power, and system volume constitute the cost measures. A detailed design and analysis of a two-dimensional (2-D) optoelectronic shuffle-exchange routing network with variable grain size K is presented. The architecture permits the conventional 2 x 2 switches or grains to be generalized to larger K x K grain sizes by replacing optical interconnects with electronic wires without affecting the functionality of the system. Thus the system consists of log(k) N optoelectronic stages interconnected with free-space K-shuffles. When K = N, the MIN consists of a single electronic stage with optical input-output. The system design use an effi ient 2-D VLSI layout and a single diffractive optical element between stages to provide the 2-D K-shuffle interconnection. Results indicate that there is an optimum range of grain sizes that provides the best performance per cost. For the specific VLSI/GaAs multiple quantum well technology and system architecture considered, grain sizes larger than 256 x 256 result in a reduced performance, while grain sizes smaller than 16 x 16 have a high cost. For a network with 4096 channels, the useful range of grain sizes corresponds to approximately 250-400 electronic transistors per optical input-output channel. The effect of varying certain technology parameters such as the number of hologram phase levels, the modulator driving voltage, the minimum detectable power, and VLSI minimum feature size on the optimum grain-size system is studied. For instance, results show that using four phase levels for the interconnection hologram is a good compromise for the cost functions mentioned above. As VLSI minimum feature sizes decrease, the optimum grain size increases, whereas, if optical interconnect performance in terms of the detector power or modulator driving voltage requirements improves, the optimum grain size may be reduced. Finally, several architectural modifications to the system, such as K x K contention-free switches and sorting networks, are investigated and optimized for grain size. Results indicate that system bandwidth can be increased, but at the price of reduced performance/cost. The optoelectronic MIN architectures considered thus provide a broad range of performance/cost alternatives and offer a superior performance over purely electronic MIN's.

  12. 802.11 Wireless Infrastructure To Enhance Medical Response to Disasters

    PubMed Central

    Arisoylu, Mustafa; Mishra, Rajesh; Rao, Ramesh; Lenert, Leslie A.

    2005-01-01

    802.11 (WiFi) is a well established network communications protocol that has wide applicability in civil infrastructure. This paper describes research that explores the design of 802.11 networks enhanced to support data communications in disaster environments. The focus of these efforts is to create network infrastructure to support operations by Metropolitan Medical Response System (MMRS) units and Federally-sponsored regional teams that respond to mass casualty events caused by a terrorist attack with chemical, biological, nuclear or radiological weapons or by a hazardous materials spill. In this paper, we describe an advanced WiFi-based network architecture designed to meet the needs of MMRS operations. This architecture combines a Wireless Distribution Systems for peer-to-peer multihop connectivity between access points with flexible and shared access to multiple cellular backhauls for robust connectivity to the Internet. The architecture offers a high bandwidth data communications infrastructure that can penetrate into buildings and structures while also supporting commercial off-the-shelf end-user equipment such as PDAs. It is self-configuring and is self-healing in the event of a loss of a portion of the infrastructure. Testing of prototype units is ongoing. PMID:16778990

  13. A vision of network-centric military communications

    NASA Astrophysics Data System (ADS)

    Conklin, Ross, Jr.; Burbank, Jack; Nichols, Robert, Jr.

    2005-05-01

    This paper presents a vision for a future capability-based military communications system that considers user requirements. Historically, the military has developed and fielded many specialized communications systems. While these systems solved immediate communications problems, they were not designed to operate with other systems. As information has become more important to the execution of war, the "stove-pipe" nature of the communications systems deployed by the military is no longer acceptable. Realizing this, the military has begun the transformation of communications to a network-centric communications paradigm. However, the specialized communications systems were developed in response to the widely varying environments related to military communications. These environments, and the necessity for effective communications within these environments, do not disappear under the network-centric paradigm. In fact, network-centric communications allows for one message to cross many of these environments by transiting multiple networks. The military would also like one communications approach that is capable of working well in multiple environments. This paper presents preliminary work on the creation of a framework that allows for a reconfigurable device that is capable of adapting to the physical and network environments. The framework returns to the Open Systems Interconnect (OSI) architecture with the addition of a standardized intra-layer control interface for control information exchange, a standardized data interface and a proposed device architecture based on the software radio.

  14. Cross layer optimization for cloud-based radio over optical fiber networks

    NASA Astrophysics Data System (ADS)

    Shao, Sujie; Guo, Shaoyong; Qiu, Xuesong; Yang, Hui; Meng, Luoming

    2016-07-01

    To adapt the 5G communication, the cloud radio access network is a paradigm introduced by operators which aggregates all base stations computational resources into a cloud BBU pool. The interaction between RRH and BBU or resource schedule among BBUs in cloud have become more frequent and complex with the development of system scale and user requirement. It can promote the networking demand among RRHs and BBUs, and force to form elastic optical fiber switching and networking. In such network, multiple stratum resources of radio, optical and BBU processing unit have interweaved with each other. In this paper, we propose a novel multiple stratum optimization (MSO) architecture for cloud-based radio over optical fiber networks (C-RoFN) with software defined networking. Additionally, a global evaluation strategy (GES) is introduced in the proposed architecture. MSO can enhance the responsiveness to end-to-end user demands and globally optimize radio frequency, optical spectrum and BBU processing resources effectively to maximize radio coverage. The feasibility and efficiency of the proposed architecture with GES strategy are experimentally verified on OpenFlow-enabled testbed in terms of resource occupation and path provisioning latency.

  15. Criteria for Evaluating Alternative Network and Link Layer Protocols for the NASA Constellation Program Communication Architecture

    NASA Technical Reports Server (NTRS)

    Benbenek, Daniel; Soloff, Jason; Lieb, Erica

    2010-01-01

    Selecting a communications and network architecture for future manned space flight requires an evaluation of the varying goals and objectives of the program, development of communications and network architecture evaluation criteria, and assessment of critical architecture trades. This paper uses Cx Program proposed exploration activities as a guideline; lunar sortie, outpost, Mars, and flexible path options are described. A set of proposed communications network architecture criteria are proposed and described. They include: interoperability, security, reliability, and ease of automating topology changes. Finally a key set of architecture options are traded including (1) multiplexing data at a common network layer vs. at the data link layer, (2) implementing multiple network layers vs. a single network layer, and (3) the use of a particular network layer protocol, primarily IPv6 vs. Delay Tolerant Networking (DTN). In summary, the protocol options are evaluated against the proposed exploration activities and their relative performance with respect to the criteria are assessed. An architectural approach which includes (a) the capability of multiplexing at both the network layer and the data link layer and (b) a single network layer for operations at each program phase, as these solutions are best suited to respond to the widest array of program needs and meet each of the evaluation criteria.

  16. Neural networks with fuzzy Petri nets for modeling a machining process

    NASA Astrophysics Data System (ADS)

    Hanna, Moheb M.

    1998-03-01

    The paper presents an intelligent architecture based a feedforward neural network with fuzzy Petri nets for modeling product quality in a CNC machining center. It discusses how the proposed architecture can be used for modeling, monitoring and control a product quality specification such as surface roughness. The surface roughness represents the output quality specification manufactured by a CNC machining center as a result of a milling process. The neural network approach employed the selected input parameters which defined by the machine operator via the CNC code. The fuzzy Petri nets approach utilized the exact input milling parameters, such as spindle speed, feed rate, tool diameter and coolant (off/on), which can be obtained via the machine or sensors system. An aim of the proposed architecture is to model the demanded quality of surface roughness as high, medium or low.

  17. Unified Simulation and Analysis Framework for Deep Space Navigation Design

    NASA Technical Reports Server (NTRS)

    Anzalone, Evan; Chuang, Jason; Olsen, Carrie

    2013-01-01

    As the technology that enables advanced deep space autonomous navigation continues to develop and the requirements for such capability continues to grow, there is a clear need for a modular expandable simulation framework. This tool's purpose is to address multiple measurement and information sources in order to capture system capability. This is needed to analyze the capability of competing navigation systems as well as to develop system requirements, in order to determine its effect on the sizing of the integrated vehicle. The development for such a framework is built upon Model-Based Systems Engineering techniques to capture the architecture of the navigation system and possible state measurements and observations to feed into the simulation implementation structure. These models also allow a common environment for the capture of an increasingly complex operational architecture, involving multiple spacecraft, ground stations, and communication networks. In order to address these architectural developments, a framework of agent-based modules is implemented to capture the independent operations of individual spacecraft as well as the network interactions amongst spacecraft. This paper describes the development of this framework, and the modeling processes used to capture a deep space navigation system. Additionally, a sample implementation describing a concept of network-based navigation utilizing digitally transmitted data packets is described in detail. This developed package shows the capability of the modeling framework, including its modularity, analysis capabilities, and its unification back to the overall system requirements and definition.

  18. System architecture for an advanced Canadian communications satellite demonstration mission

    NASA Astrophysics Data System (ADS)

    Takats, P.; Irani, S.

    1992-03-01

    An advanced communications satellite system that provides single hop interconnectivity and interworking for both a personal communications network and an advanced private business network in the Ka and Ku bands respectively, is presented. An overall network perspective is discussed that studies the interface of such an advanced satellite communication system to the terrestrial network in the context of the Open Systems Interconnection model. It is shown that this proposed satellite system can dynamically establish links and efficiently allocate the satellite resource amongst the user terminal population for a mix of data and voice traffic.

  19. Autonomous self-configuration of artificial neural networks for data classification or system control

    NASA Astrophysics Data System (ADS)

    Fink, Wolfgang

    2009-05-01

    Artificial neural networks (ANNs) are powerful methods for the classification of multi-dimensional data as well as for the control of dynamic systems. In general terms, ANNs consist of neurons that are, e.g., arranged in layers and interconnected by real-valued or binary neural couplings or weights. ANNs try mimicking the processing taking place in biological brains. The classification and generalization capabilities of ANNs are given by the interconnection architecture and the coupling strengths. To perform a certain classification or control task with a particular ANN architecture (i.e., number of neurons, number of layers, etc.), the inter-neuron couplings and their accordant coupling strengths must be determined (1) either by a priori design (i.e., manually) or (2) using training algorithms such as error back-propagation. The more complex the classification or control task, the less obvious it is how to determine an a priori design of an ANN, and, as a consequence, the architecture choice becomes somewhat arbitrary. Furthermore, rather than being able to determine for a given architecture directly the corresponding coupling strengths necessary to perform the classification or control task, these have to be obtained/learned through training of the ANN on test data. We report on the use of a Stochastic Optimization Framework (SOF; Fink, SPIE 2008) for the autonomous self-configuration of Artificial Neural Networks (i.e., the determination of number of hidden layers, number of neurons per hidden layer, interconnections between neurons, and respective coupling strengths) for performing classification or control tasks. This may provide an approach towards cognizant and self-adapting computing architectures and systems.

  20. ISHN Ion Source Control System. First Steps Toward an EPICS Based ESS-Bilbao Accelerator Control System

    NASA Astrophysics Data System (ADS)

    Eguiraun, M.; Jugo, J.; Arredondo, I.; del Campo, M.; Feuchtwanger, J.; Etxebarria, V.; Bermejo, F. J.

    2013-04-01

    ISHN (Ion Source Hydrogen Negative) consists of a Penning type ion source in operation at ESS-Bilbao facilities. From the control point of view, this source is representative of the first steps and decisions taken towards the general control architecture of the whole accelerator to be built. The ISHN main control system is based on a PXI architecture, under a real-time controller which is programmed using LabVIEW. This system, with additional elements, is connected to the general control system. The whole system is based on EPICS for the control network, and the modularization of the communication layers of the accelerator plays an important role in the proposed control architecture.

  1. Analysis and Design of a Distributed System for Management and Distribution of Natural Language Assertions

    DTIC Science & Technology

    2010-09-01

    5 2. SCIL Architecture ...............................................................................6 3. Assertions...137 x THIS PAGE INTENTIONALLY LEFT BLANK xi LIST OF FIGURES Figure 1. SCIL architecture...Database Connectivity LAN Local Area Network ODBC Open Database Connectivity SCIL Social-Cultural Content in Language UMD

  2. 78 FR 75451 - Special Conditions: Cessna Model 750 Series Airplanes; Aircraft Electronic System Security...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-12

    ... design feature associated with the architecture and connectivity capabilities of the airplanes' computer... the comment for an association, business, labor union, etc.). DOT's complete Privacy Act Statement can...; facsimile 425-227-1149. SUPPLEMENTARY INFORMATION: The proposed network architecture includes the following...

  3. The architecture of enterprise hospital information system.

    PubMed

    Lu, Xudong; Duan, Huilong; Li, Haomin; Zhao, Chenhui; An, Jiye

    2005-01-01

    Because of the complexity of the hospital environment, there exist a lot of medical information systems from different vendors with incompatible structures. In order to establish an enterprise hospital information system, the integration among these heterogeneous systems must be considered. Complete integration should cover three aspects: data integration, function integration and workflow integration. However most of the previous design of architecture did not accomplish such a complete integration. This article offers an architecture design of the enterprise hospital information system based on the concept of digital neural network system in hospital. It covers all three aspects of integration, and eventually achieves the target of one virtual data center with Enterprise Viewer for users of different roles. The initial implementation of the architecture in the 5-year Digital Hospital Project in Huzhou Central hospital of Zhejiang Province is also described.

  4. A Ground Systems Architecture Transition for a Distributed Operations System

    NASA Technical Reports Server (NTRS)

    Sellers, Donna; Pitts, Lee; Bryant, Barry

    2003-01-01

    The Marshall Space Flight Center (MSFC) Ground Systems Department (GSD) recently undertook an architecture change in the product line that serves the ISS program. As a result, the architecture tradeoffs between data system product lines that serve remote users versus those that serve control center flight control teams were explored extensively. This paper describes the resulting architecture that will be used in the International Space Station (ISS) payloads program, and the resulting functional breakdown of the products that support this architecture. It also describes the lessons learned from the path that was followed, as a migration of products cause the need to reevaluate the allocation of functions across the architecture. The result is a set of innovative ground system solutions that is scalable so it can support facilities of wide-ranging sizes, from a small site up to large control centers. Effective use of system automation, custom components, design optimization for data management, data storage, data transmissions, and advanced local and wide area networking architectures, plus the effective use of Commercial-Off-The-Shelf (COTS) products, provides flexible Remote Ground System options that can be tailored to the needs of each user. This paper offers a description of the efficiency and effectiveness of the Ground Systems architectural options that have been implemented, and includes successful implementation examples and lessons learned.

  5. Implementing partnership-driven clinical federated electronic health record data sharing networks.

    PubMed

    Stephens, Kari A; Anderson, Nicholas; Lin, Ching-Ping; Estiri, Hossein

    2016-09-01

    Building federated data sharing architectures requires supporting a range of data owners, effective and validated semantic alignment between data resources, and consistent focus on end-users. Establishing these resources requires development methodologies that support internal validation of data extraction and translation processes, sustaining meaningful partnerships, and delivering clear and measurable system utility. We describe findings from two federated data sharing case examples that detail critical factors, shared outcomes, and production environment results. Two federated data sharing pilot architectures developed to support network-based research associated with the University of Washington's Institute of Translational Health Sciences provided the basis for the findings. A spiral model for implementation and evaluation was used to structure iterations of development and support knowledge share between the two network development teams, which cross collaborated to support and manage common stages. We found that using a spiral model of software development and multiple cycles of iteration was effective in achieving early network design goals. Both networks required time and resource intensive efforts to establish a trusted environment to create the data sharing architectures. Both networks were challenged by the need for adaptive use cases to define and test utility. An iterative cyclical model of development provided a process for developing trust with data partners and refining the design, and supported measureable success in the development of new federated data sharing architectures. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Organically Grown Architectures: Creating Decentralized, Autonomous Systems by Embryomorphic Engineering

    NASA Astrophysics Data System (ADS)

    Doursat, René

    Exploding growth growth in computational systems forces us to gradually replace rigid design and control with decentralization and autonomy. Information technologies will progress, instead, by"meta-designing" mechanisms of system self-assembly, self-regulation and evolution. Nature offers a great variety of efficient complex systems, in which numerous small elements form large-scale, adaptive patterns. The new engineering challenge is to recreate this self-organization and let it freely generate innovative designs under guidance. This article presents an original model of artificial system growth inspired by embryogenesis. A virtual organism is a lattice of cells that proliferate, migrate and self-pattern into differentiated domains. Each cell's fate is controlled by an internal gene regulatory network network. Embryomorphic engineering emphasizes hyperdistributed architectures, and their development as a prerequisite of evolutionary design.

  7. Capacity on wireless quantum cellular communication system

    NASA Astrophysics Data System (ADS)

    Zhou, Xiang-Zhen; Yu, Xu-Tao; Zhang, Zai-Chen

    2018-03-01

    Quantum technology is making excellent prospects in future communication networks. Entanglement generation and purification are two major components in quantum networks. Combining these two techniques with classical cellular mobile communication, we proposed a novel wireless quantum cellular(WQC) communication system which is possible to realize commercial mobile quantum communication. In this paper, the architecture and network topology of WQC communication system are discussed, the mathematical model of WQC system is extracted and the serving capacity, indicating the ability to serve customers, is defined and calculated under certain circumstances.

  8. Retinal Connectomics: Towards Complete, Accurate Networks

    PubMed Central

    Marc, Robert E.; Jones, Bryan W.; Watt, Carl B.; Anderson, James R.; Sigulinsky, Crystal; Lauritzen, Scott

    2013-01-01

    Connectomics is a strategy for mapping complex neural networks based on high-speed automated electron optical imaging, computational assembly of neural data volumes, web-based navigational tools to explore 1012–1015 byte (terabyte to petabyte) image volumes, and annotation and markup tools to convert images into rich networks with cellular metadata. These collections of network data and associated metadata, analyzed using tools from graph theory and classification theory, can be merged with classical systems theory, giving a more completely parameterized view of how biologic information processing systems are implemented in retina and brain. Networks have two separable features: topology and connection attributes. The first findings from connectomics strongly validate the idea that the topologies complete retinal networks are far more complex than the simple schematics that emerged from classical anatomy. In particular, connectomics has permitted an aggressive refactoring of the retinal inner plexiform layer, demonstrating that network function cannot be simply inferred from stratification; exposing the complex geometric rules for inserting different cells into a shared network; revealing unexpected bidirectional signaling pathways between mammalian rod and cone systems; documenting selective feedforward systems, novel candidate signaling architectures, new coupling motifs, and the highly complex architecture of the mammalian AII amacrine cell. This is but the beginning, as the underlying principles of connectomics are readily transferrable to non-neural cell complexes and provide new contexts for assessing intercellular communication. PMID:24016532

  9. Manned/Unmanned Common Architecture Program (MCAP) net centric flight tests

    NASA Astrophysics Data System (ADS)

    Johnson, Dale

    2009-04-01

    Properly architected avionics systems can reduce the costs of periodic functional improvements, maintenance, and obsolescence. With this in mind, the U.S. Army Aviation Applied Technology Directorate (AATD) initiated the Manned/Unmanned Common Architecture Program (MCAP) in 2003 to develop an affordable, high-performance embedded mission processing architecture for potential application to multiple aviation platforms. MCAP analyzed Army helicopter and unmanned air vehicle (UAV) missions, identified supporting subsystems, surveyed advanced hardware and software technologies, and defined computational infrastructure technical requirements. The project selected a set of modular open systems standards and market-driven commercial-off-theshelf (COTS) electronics and software, and, developed experimental mission processors, network architectures, and software infrastructures supporting the integration of new capabilities, interoperability, and life cycle cost reductions. MCAP integrated the new mission processing architecture into an AH-64D Apache Longbow and participated in Future Combat Systems (FCS) network-centric operations field experiments in 2006 and 2007 at White Sands Missile Range (WSMR), New Mexico and at the Nevada Test and Training Range (NTTR) in 2008. The MCAP Apache also participated in PM C4ISR On-the-Move (OTM) Capstone Experiments 2007 (E07) and 2008 (E08) at Ft. Dix, NJ and conducted Mesa, Arizona local area flight tests in December 2005, February 2006, and June 2008.

  10. Evaluation of architectures for an ASP MPEG-4 decoder using a system-level design methodology

    NASA Astrophysics Data System (ADS)

    Garcia, Luz; Reyes, Victor; Barreto, Dacil; Marrero, Gustavo; Bautista, Tomas; Nunez, Antonio

    2005-06-01

    Trends in multimedia consumer electronics, digital video and audio, aim to reach users through low-cost mobile devices connected to data broadcasting networks with limited bandwidth. An emergent broadcasting network is the digital audio broadcasting network (DAB) which provides CD quality audio transmission together with robustness and efficiency techniques to allow good quality reception in motion conditions. This paper focuses on the system-level evaluation of different architectural options to allow low bandwidth digital video reception over DAB, based on video compression techniques. Profiling and design space exploration techniques are applied over the ASP MPEG-4 decoder in order to find out the best HW/SW partition given the application and platform constraints. An innovative SystemC-based system-level design tool, called CASSE, is being used for modelling, exploration and evaluation of different ASP MPEG-4 decoder HW/SW partitions. System-level trade offs and quantitative data derived from this analysis are also presented in this work.

  11. Software defined multi-OLT passive optical network for flexible traffic allocation

    NASA Astrophysics Data System (ADS)

    Zhang, Shizong; Gu, Rentao; Ji, Yuefeng; Zhang, Jiawei; Li, Hui

    2016-10-01

    With the rapid growth of 4G mobile network and vehicular network services mobile terminal users have increasing demand on data sharing among different radio remote units (RRUs) and roadside units (RSUs). Meanwhile, commercial video-streaming, video/voice conference applications delivered through peer-to-peer (P2P) technology are still keep on stimulating the sharp increment of bandwidth demand in both business and residential subscribers. However, a significant issue is that, although wavelength division multiplexing (WDM) and orthogonal frequency division multiplexing (OFDM) technology have been proposed to fulfil the ever-increasing bandwidth demand in access network, the bandwidth of optical fiber is not unlimited due to the restriction of optical component properties and modulation/demodulation technology, and blindly increase the wavelength cannot meet the cost-sensitive characteristic of the access network. In this paper, we propose a software defined multi-OLT PON architecture to support efficient scheduling of access network traffic. By introducing software defined networking technology and wavelength selective switch into TWDM PON system in central office, multiple OLTs can be considered as a bandwidth resource pool and support flexible traffic allocation for optical network units (ONUs). Moreover, under the configuration of the control plane, ONUs have the capability of changing affiliation between different OLTs under different traffic situations, thus the inter-OLT traffic can be localized and the data exchange pressure of the core network can be released. Considering this architecture is designed to be maximum following the TWDM PON specification, the existing optical distribution network (ODN) investment can be saved and conventional EPON/GPON equipment can be compatible with the proposed architecture. What's more, based on this architecture, we propose a dynamic wavelength scheduling algorithm, which can be deployed as an application on control plane and achieve effective scheduling OLT wavelength resources between different OLTs based on various traffic situation. Simulation results show that, by using the scheduling algorithm, network traffic between different OLTs can be optimized effectively, and the wavelength utilization of the multi-OLT system can be improved due to the flexible wavelength scheduling.

  12. Network morphospace

    PubMed Central

    Avena-Koenigsberger, Andrea; Goñi, Joaquín; Solé, Ricard; Sporns, Olaf

    2015-01-01

    The structure of complex networks has attracted much attention in recent years. It has been noted that many real-world examples of networked systems share a set of common architectural features. This raises important questions about their origin, for example whether such network attributes reflect common design principles or constraints imposed by selectional forces that have shaped the evolution of network topology. Is it possible to place the many patterns and forms of complex networks into a common space that reveals their relations, and what are the main rules and driving forces that determine which positions in such a space are occupied by systems that have actually evolved? We suggest that these questions can be addressed by combining concepts from two currently relatively unconnected fields. One is theoretical morphology, which has conceptualized the relations between morphological traits defined by mathematical models of biological form. The second is network science, which provides numerous quantitative tools to measure and classify different patterns of local and global network architecture across disparate types of systems. Here, we explore a new theoretical concept that lies at the intersection between both fields, the ‘network morphospace’. Defined by axes that represent specific network traits, each point within such a space represents a location occupied by networks that share a set of common ‘morphological’ characteristics related to aspects of their connectivity. Mapping a network morphospace reveals the extent to which the space is filled by existing networks, thus allowing a distinction between actual and impossible designs and highlighting the generative potential of rules and constraints that pervade the evolution of complex systems. PMID:25540237

  13. Firewall systems: the next generation

    NASA Astrophysics Data System (ADS)

    McGhie, Lynda L.

    1996-01-01

    To be competitive in today's globally connected marketplace, a company must ensure that their internal network security methodologies and supporting policies are current and reflect an overall understanding of today's technology and its resultant threats. Further, an integrated approach to information security should ensure that new ways of sharing information and doing business are accommodated; such as electronic commerce, high speed public broadband network services, and the federally sponsored National Information Infrastructure. There are many challenges, and success is determined by the establishment of a solid and firm baseline security architecture that accommodate today's external connectivity requirements, provides transitional solutions that integrate with evolving and dynamic technologies, and ultimately acknowledges both the strategic and tactical goals of an evolving network security architecture and firewall system. This paper explores the evolution of external network connectivity requirements, the associated challenges and the subsequent development and evolution of firewall security systems. It makes the assumption that a firewall is a set of integrated and interoperable components, coming together to form a `SYSTEM' and must be designed, implement and managed as such. A progressive firewall model will be utilized to illustrates the evolution of firewall systems from earlier models utilizing separate physical networks, to today's multi-component firewall systems enabling secure heterogeneous and multi-protocol interfaces.

  14. Analysis of NASA communications (Nascom) II network protocols and performance

    NASA Technical Reports Server (NTRS)

    Omidyar, Guy C.; Butler, Thomas E.

    1991-01-01

    The NASA Communications (Nascom) Division of the Mission Operations and Data Systems Directorate is to undertake a major initiative to develop the Nascom II (NII) network to achieve its long-range service objectives for operational data transport to support the Space Station Freedom Program, the Earth Observing System, and other projects. NII is the Nascom ground communications network being developed to accommodate the operational traffic of the mid-1990s and beyond. The authors describe various baseline protocol architectures based on current and evolving technologies. They address the internetworking issues suggested for reliable transfer of data over heterogeneous segments. They also describe the NII architecture, topology, system components, and services. A comparative evaluation of the current and evolving technologies was made, and suggestions for further study are described. It is shown that the direction of the NII configuration and the subsystem component design will clearly depend on the advances made in the area of broadband integrated services.

  15. Development of Network Interface Cards for TRIDAQ systems with the NaNet framework

    NASA Astrophysics Data System (ADS)

    Ammendola, R.; Biagioni, A.; Cretaro, P.; Di Lorenzo, S.; Fiorini, M.; Frezza, O.; Lamanna, G.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Neri, I.; Paolucci, P. S.; Pastorelli, E.; Piandani, R.; Pontisso, L.; Rossetti, D.; Simula, F.; Sozzi, M.; Valente, P.; Vicini, P.

    2017-03-01

    NaNet is a framework for the development of FPGA-based PCI Express (PCIe) Network Interface Cards (NICs) with real-time data transport architecture that can be effectively employed in TRIDAQ systems. Key features of the architecture are the flexibility in the configuration of the number and kind of the I/O channels, the hardware offloading of the network protocol stack, the stream processing capability, and the zero-copy CPU and GPU Remote Direct Memory Access (RDMA). Three NIC designs have been developed with the NaNet framework: NaNet-1 and NaNet-10 for the CERN NA62 low level trigger and NaNet3 for the KM3NeT-IT underwater neutrino telescope DAQ system. We will focus our description on the NaNet-10 design, as it is the most complete of the three in terms of capabilities and integrated IPs of the framework.

  16. Application of fuzzy neural network technologies in management of transport and logistics processes in Arctic

    NASA Astrophysics Data System (ADS)

    Levchenko, N. G.; Glushkov, S. V.; Sobolevskaya, E. Yu; Orlov, A. P.

    2018-05-01

    The method of modeling the transport and logistics process using fuzzy neural network technologies has been considered. The analysis of the implemented fuzzy neural network model of the information management system of transnational multimodal transportation of the process showed the expediency of applying this method to the management of transport and logistics processes in the Arctic and Subarctic conditions. The modular architecture of this model can be expanded by incorporating additional modules, since the working conditions in the Arctic and the subarctic themselves will present more and more realistic tasks. The architecture allows increasing the information management system, without affecting the system or the method itself. The model has a wide range of application possibilities, including: analysis of the situation and behavior of interacting elements; dynamic monitoring and diagnostics of management processes; simulation of real events and processes; prediction and prevention of critical situations.

  17. The NASA Integrated Information Technology Architecture

    NASA Technical Reports Server (NTRS)

    Baldridge, Tim

    1997-01-01

    This document defines an Information Technology Architecture for the National Aeronautics and Space Administration (NASA), where Information Technology (IT) refers to the hardware, software, standards, protocols and processes that enable the creation, manipulation, storage, organization and sharing of information. An architecture provides an itemization and definition of these IT structures, a view of the relationship of the structures to each other and, most importantly, an accessible view of the whole. It is a fundamental assumption of this document that a useful, interoperable and affordable IT environment is key to the execution of the core NASA scientific and project competencies and business practices. This Architecture represents the highest level system design and guideline for NASA IT related activities and has been created on the authority of the NASA Chief Information Officer (CIO) and will be maintained under the auspices of that office. It addresses all aspects of general purpose, research, administrative and scientific computing and networking throughout the NASA Agency and is applicable to all NASA administrative offices, projects, field centers and remote sites. Through the establishment of five Objectives and six Principles this Architecture provides a blueprint for all NASA IT service providers: civil service, contractor and outsourcer. The most significant of the Objectives and Principles are the commitment to customer-driven IT implementations and the commitment to a simpler, cost-efficient, standards-based, modular IT infrastructure. In order to ensure that the Architecture is presented and defined in the context of the mission, project and business goals of NASA, this Architecture consists of four layers in which each subsequent layer builds on the previous layer. They are: 1) the Business Architecture: the operational functions of the business, or Enterprise, 2) the Systems Architecture: the specific Enterprise activities within the context of IT systems, 3) the Technical Architecture: a common, vendor-independent framework for design, integration and implementation of IT systems and 4) the Product Architecture: vendor=specific IT solutions. The Systems Architecture is effectively a description of the end-user "requirements". Generalized end-user requirements are discussed and subsequently organized into specific mission and project functions. The Technical Architecture depicts the framework, and relationship, of the specific IT components that enable the end-user functionality as described in the Systems Architecture. The primary components as described in the Technical Architecture are: 1) Applications: Basic Client Component, Object Creation Applications, Collaborative Applications, Object Analysis Applications, 2) Services: Messaging, Information Broker, Collaboration, Distributed Processing, and 3) Infrastructure: Network, Security, Directory, Certificate Management, Enterprise Management and File System. This Architecture also provides specific Implementation Recommendations, the most significant of which is the recognition of IT as core to NASA activities and defines a plan, which is aligned with the NASA strategic planning processes, for keeping the Architecture alive and useful.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ennis, G.; Lala, T.K.

    This document presents the results of a study undertaken by First Pacific Networks as part of EPRI Project RP-3567-01 regarding the support of broadcast services within the EPRI Utility Communications Architecture (UCA) protocols and the use of such services by UCA applications. This report has focused on the requirements and architectural implications of broadcast within UCA. A subsequent phase of this project is to develop specific recommendations for extending CUA so as to support broadcast. The conclusions of this report are presented in Section 5. The authors summarize the major conclusions as follows: broadcast and multicast support would be verymore » useful within UCA, not only for utility-specific applications but also simply to support the network engineering of a large-scale communications system, in this regard, UCA is no different from other large network systems which have found broadcast and multicast to be of substantial benefit for a variety of system management purposes; the primary architectural impact of broadcast and multicast falls on the UCA network level (which would need to be enhanced) and the UCA application level (which would be the user of broadcast); there is a useful subset of MMS services which could take advantage of broadcast; the UCA network level would need to be enhanced both in the areas of addressing and routing so as to properly support broadcast. A subsequent analysis will be required to define the specific enhancements to UCA required to support broadcast and multicast.« less

  19. Performance Evaluation of Reliable Multicast Protocol for Checkout and Launch Control Systems

    NASA Technical Reports Server (NTRS)

    Shu, Wei Wennie; Porter, John

    2000-01-01

    The overall objective of this project is to study reliability and performance of Real Time Critical Network (RTCN) for checkout and launch control systems (CLCS). The major tasks include reliability and performance evaluation of Reliable Multicast (RM) package and fault tolerance analysis and design of dual redundant network architecture.

  20. Hybrid Communication Architectures for Distributed Smart Grid Applications

    DOE PAGES

    Zhang, Jianhua; Hasandka, Adarsh; Wei, Jin; ...

    2018-04-09

    Wired and wireless communications both play an important role in the blend of communications technologies necessary to enable future smart grid communications. Hybrid networks exploit independent mediums to extend network coverage and improve performance. However, whereas individual technologies have been applied in simulation networks, as far as we know there is only limited attention that has been paid to the development of a suite of hybrid communication simulation models for the communications system design. Hybrid simulation models are needed to capture the mixed communication technologies and IP address mechanisms in one simulation. To close this gap, we have developed amore » suite of hybrid communication system simulation models to validate the critical system design criteria for a distributed solar Photovoltaic (PV) communications system, including a single trip latency of 300 ms, throughput of 9.6 Kbps, and packet loss rate of 1%. In conclusion, the results show that three low-power wireless personal area network (LoWPAN)-based hybrid architectures can satisfy three performance metrics that are critical for distributed energy resource communications.« less

  1. Hybrid Communication Architectures for Distributed Smart Grid Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jianhua; Hasandka, Adarsh; Wei, Jin

    Wired and wireless communications both play an important role in the blend of communications technologies necessary to enable future smart grid communications. Hybrid networks exploit independent mediums to extend network coverage and improve performance. However, whereas individual technologies have been applied in simulation networks, as far as we know there is only limited attention that has been paid to the development of a suite of hybrid communication simulation models for the communications system design. Hybrid simulation models are needed to capture the mixed communication technologies and IP address mechanisms in one simulation. To close this gap, we have developed amore » suite of hybrid communication system simulation models to validate the critical system design criteria for a distributed solar Photovoltaic (PV) communications system, including a single trip latency of 300 ms, throughput of 9.6 Kbps, and packet loss rate of 1%. In conclusion, the results show that three low-power wireless personal area network (LoWPAN)-based hybrid architectures can satisfy three performance metrics that are critical for distributed energy resource communications.« less

  2. Navigation Architecture For A Space Mobile Network

    NASA Technical Reports Server (NTRS)

    Valdez, Jennifer E.; Ashman, Benjamin; Gramling, Cheryl; Heckler, Gregory W.; Carpenter, Russell

    2016-01-01

    The Tracking and Data Relay Satellite System (TDRSS) Augmentation Service for Satellites (TASS) is a proposed beacon service to provide a global, space-based GPS augmentation service based on the NASA Global Differential GPS (GDGPS) System. The TASS signal will be tied to the GPS time system and usable as an additional ranging and Doppler radiometric source. Additionally, it will provide data vital to autonomous navigation in the near Earth regime, including space weather information, TDRS ephemerides, Earth Orientation Parameters (EOP), and forward commanding capability. TASS benefits include enhancing situational awareness, enabling increased autonomy, and providing near real-time command access for user platforms. As NASA Headquarters Space Communication and Navigation Office (SCaN) begins to move away from a centralized network architecture and towards a Space Mobile Network (SMN) that allows for user initiated services, autonomous navigation will be a key part of such a system. This paper explores how a TASS beacon service enables the Space Mobile Networking paradigm, what a typical user platform would require, and provides an in-depth analysis of several navigation scenarios and operations concepts.

  3. Skeleton-supported stochastic networks of organic memristive devices: Adaptations and learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erokhina, Svetlana; Sorokin, Vladimir; Erokhin, Victor, E-mail: victor.erokhin@fis.unipr.it

    Stochastic networks of memristive devices were fabricated using a sponge as a skeleton material. Cyclic voltage-current characteristics, measured on the network, revealed properties, similar to the organic memristive device with deterministic architecture. Application of the external training resulted in the adaptation of the network electrical properties. The system revealed an improved stability with respect to the networks, composed from polymer fibers.

  4. Integrated Sensor Architecture (ISA) for Live Virtual Constructive (LVC) Environments

    DTIC Science & Technology

    2014-03-01

    connect, publish their needs and capabilities, and interact with other systems even on disadvantaged networks. Within the ISA project, three levels of...constructive, disadvantaged network, sensor 1. INTRODUCTION In 2003 the Networked Sensors for the Future Force (NSFF) Advanced Technology Demonstration...While this combination is less optimal over disadvantaged networks, and we do not recommend it there, TCP and TLS perform adequately over networks with

  5. Report of the Defense Science Board Task Force on Defensive Information Operations. 2000 Summer Study. Volume II

    DTIC Science & Technology

    2001-03-01

    distinguishing between attacks and other events such as accidents, system failures, or hacking by thrill-seekers. This challenge is exacerbated by the...and is referred to as Signaling System # 7 ( SS7 ). Commercial Intelligent Network Architecture Switching Signal Point (SSP) Service - Originates...Wireless access point to fixed infrastructure Ut c Signaling Transfer Point (STP) - Packet switch in CCITT#7 Network SP SW SS7 System Data Bases Network

  6. A neural network approach to burst detection.

    PubMed

    Mounce, S R; Day, A J; Wood, A S; Khan, A; Widdop, P D; Machell, J

    2002-01-01

    This paper describes how hydraulic and water quality data from a distribution network may be used to provide a more efficient leakage management capability for the water industry. The research presented concerns the application of artificial neural networks to the issue of detection and location of leakage in treated water distribution systems. An architecture for an Artificial Neural Network (ANN) based system is outlined. The neural network uses time series data produced by sensors to directly construct an empirical model for predication and classification of leaks. Results are presented using data from an experimental site in Yorkshire Water's Keighley distribution system.

  7. A robust and scalable neuromorphic communication system by combining synaptic time multiplexing and MIMO-OFDM.

    PubMed

    Srinivasa, Narayan; Zhang, Deying; Grigorian, Beayna

    2014-03-01

    This paper describes a novel architecture for enabling robust and efficient neuromorphic communication. The architecture combines two concepts: 1) synaptic time multiplexing (STM) that trades space for speed of processing to create an intragroup communication approach that is firing rate independent and offers more flexibility in connectivity than cross-bar architectures and 2) a wired multiple input multiple output (MIMO) communication with orthogonal frequency division multiplexing (OFDM) techniques to enable a robust and efficient intergroup communication for neuromorphic systems. The MIMO-OFDM concept for the proposed architecture was analyzed by simulating large-scale spiking neural network architecture. Analysis shows that the neuromorphic system with MIMO-OFDM exhibits robust and efficient communication while operating in real time with a high bit rate. Through combining STM with MIMO-OFDM techniques, the resulting system offers a flexible and scalable connectivity as well as a power and area efficient solution for the implementation of very large-scale spiking neural architectures in hardware.

  8. [A telemedicine electrocardiography system based on the component-architecture soft].

    PubMed

    Potapov, I V; Selishchev, S V

    2004-01-01

    The paper deals with a universal component-oriented architecture for creating the telemedicine applications. The worked-out system ensures the ECG reading, pressure measurements and pulsometry. The system design comprises a central database server and a client telemedicine module. Data can be transmitted via different interfaces--from an ordinary local network to digital satellite phones. The data protection is guaranteed by microchip charts that were used to realize the authentication 3DES algorithm.

  9. An architecture for the MSAT mobile data system

    NASA Technical Reports Server (NTRS)

    Kerr, R. W.; Skerry, B.

    1990-01-01

    The Mobile Satellite (MSAT) Mobile Data System (MDS) will offer a wide range of packet switched data services. The characteristics and requirements of the services are briefly examined. A proposed architecture to implement these services is presented along with its connectivity requirements. A description of the inbound and outbound channels is provided which are based upon the signalling for the circuit switched services. Additionally, the duties of the Network Management System are examined.

  10. A comparison of 1D and 2D LSTM architectures for the recognition of handwritten Arabic

    NASA Astrophysics Data System (ADS)

    Yousefi, Mohammad Reza; Soheili, Mohammad Reza; Breuel, Thomas M.; Stricker, Didier

    2015-01-01

    In this paper, we present an Arabic handwriting recognition method based on recurrent neural network. We use the Long Short Term Memory (LSTM) architecture, that have proven successful in different printed and handwritten OCR tasks. Applications of LSTM for handwriting recognition employ the two-dimensional architecture to deal with the variations in both vertical and horizontal axis. However, we show that using a simple pre-processing step that normalizes the position and baseline of letters, we can make use of 1D LSTM, which is faster in learning and convergence, and yet achieve superior performance. In a series of experiments on IFN/ENIT database for Arabic handwriting recognition, we demonstrate that our proposed pipeline can outperform 2D LSTM networks. Furthermore, we provide comparisons with 1D LSTM networks trained with manually crafted features to show that the automatically learned features in a globally trained 1D LSTM network with our normalization step can even outperform such systems.

  11. Power, Avionics and Software Communication Network Architecture

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Sands, Obed S.; Bakula, Casey J.; Oldham, Daniel R.; Wright, Ted; Bradish, Martin A.; Klebau, Joseph M.

    2014-01-01

    This document describes the communication architecture for the Power, Avionics and Software (PAS) 2.0 subsystem for the Advanced Extravehicular Mobile Unit (AEMU). The following systems are described in detail: Caution Warn- ing and Control System, Informatics, Storage, Video, Audio, Communication, and Monitoring Test and Validation. This document also provides some background as well as the purpose and goals of the PAS project at Glenn Research Center (GRC).

  12. Management of space networks

    NASA Technical Reports Server (NTRS)

    Markley, R. W.; Williams, B. F.

    1993-01-01

    NASA has proposed missions to the Moon and Mars that reflect three areas of emphasis: human presence, exploration, and space resource development for the benefit of Earth. A major requirement for such missions is a robust and reliable communications architecture. Network management--the ability to maintain some degree of human and automatic control over the span of the network from the space elements to the end users on Earth--is required to realize such robust and reliable communications. This article addresses several of the architectural issues associated with space network management. Round-trip delays, such as the 5- to 40-min delays in the Mars case, introduce a host of problems that must be solved by delegating significant control authority to remote nodes. Therefore, management hierarchy is one of the important architectural issues. The following article addresses these concerns, and proposes a network management approach based on emerging standards that covers the needs for fault, configuration, and performance management, delegated control authority, and hierarchical reporting of events. A relatively simple approach based on standards was demonstrated in the DSN 2000 Information Systems Laboratory, and the results are described.

  13. Copernicus Architecture, Phase I: Requirements Definition

    DTIC Science & Technology

    1991-08-01

    control primarily over maritime patrol aircraft (MPA) and Integrated Undersea Surveillance System (IUSS) units; however, surface ships and other units...Intermediate System Integrated Services Digital Network Integrated Tactical-Stategic Data Network Integrated Undersea Surveillance System Joint Army Navy... TTE Technical Training Equipment TTY Teletype UFO UHF Follow On UHF Ultra High Frequency USA/USAF U. S. Army/U.S. Air Force USCINC U. S

  14. The Deployment of Routing Protocols in Distributed Control Plane of SDN

    PubMed Central

    Jingjing, Zhou; Di, Cheng; Weiming, Wang; Rong, Jin; Xiaochun, Wu

    2014-01-01

    Software defined network (SDN) provides a programmable network through decoupling the data plane, control plane, and application plane from the original closed system, thus revolutionizing the existing network architecture to improve the performance and scalability. In this paper, we learned about the distributed characteristics of Kandoo architecture and, meanwhile, improved and optimized Kandoo's two levels of controllers based on ideological inspiration of RCP (routing control platform). Finally, we analyzed the deployment strategies of BGP and OSPF protocol in a distributed control plane of SDN. The simulation results show that our deployment strategies are superior to the traditional routing strategies. PMID:25250395

  15. The TENOR Architecture for Advanced Distributed Learning and Intelligent Training

    DTIC Science & Technology

    2002-01-01

    called TENOR, for Training Education Network on Request. There have been a number of recent learning systems developed that leverage off Internet...AG2-14256 AIAA 2002-1054 The TENOR Architecture for Advanced Distributed Learning and Intelligent Training C. Tibaudo, J. Kristl and J. Schroeder...COVERED 4. TITLE AND SUBTITLE The TENOR Architecture for Advanced Distributed Learning and Intelligent Training 5a. CONTRACT NUMBER F33615-00-M

  16. Effectiveness of a Littoral Combat Ship as a Major Node in a Wireless Mesh Network

    DTIC Science & Technology

    2017-03-01

    17 Figure 6. Cloud Relay Groups . Source: Persistent Systems (2014a). .......................18 Figure 7. SolarWinds Network Performance Monitor...CIG Commander’s Initiative Group CLI Command Line Interface CN Core Network CODA Common Optical Digital Architecture CPS Cyber-Physical Systems...CSBA Center for Strategic and Budgetary CSG Carrier Strike Group DAMA Demand Assigned Multiple Access DDG Guided Missile Destroyer DL Distributed

  17. Enabling parallel simulation of large-scale HPC network systems

    DOE PAGES

    Mubarak, Misbah; Carothers, Christopher D.; Ross, Robert B.; ...

    2016-04-07

    Here, with the increasing complexity of today’s high-performance computing (HPC) architectures, simulation has become an indispensable tool for exploring the design space of HPC systems—in particular, networks. In order to make effective design decisions, simulations of these systems must possess the following properties: (1) have high accuracy and fidelity, (2) produce results in a timely manner, and (3) be able to analyze a broad range of network workloads. Most state-of-the-art HPC network simulation frameworks, however, are constrained in one or more of these areas. In this work, we present a simulation framework for modeling two important classes of networks usedmore » in today’s IBM and Cray supercomputers: torus and dragonfly networks. We use the Co-Design of Multi-layer Exascale Storage Architecture (CODES) simulation framework to simulate these network topologies at a flit-level detail using the Rensselaer Optimistic Simulation System (ROSS) for parallel discrete-event simulation. Our simulation framework meets all the requirements of a practical network simulation and can assist network designers in design space exploration. First, it uses validated and detailed flit-level network models to provide an accurate and high-fidelity network simulation. Second, instead of relying on serial time-stepped or traditional conservative discrete-event simulations that limit simulation scalability and efficiency, we use the optimistic event-scheduling capability of ROSS to achieve efficient and scalable HPC network simulations on today’s high-performance cluster systems. Third, our models give network designers a choice in simulating a broad range of network workloads, including HPC application workloads using detailed network traces, an ability that is rarely offered in parallel with high-fidelity network simulations« less

  18. Enabling parallel simulation of large-scale HPC network systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mubarak, Misbah; Carothers, Christopher D.; Ross, Robert B.

    Here, with the increasing complexity of today’s high-performance computing (HPC) architectures, simulation has become an indispensable tool for exploring the design space of HPC systems—in particular, networks. In order to make effective design decisions, simulations of these systems must possess the following properties: (1) have high accuracy and fidelity, (2) produce results in a timely manner, and (3) be able to analyze a broad range of network workloads. Most state-of-the-art HPC network simulation frameworks, however, are constrained in one or more of these areas. In this work, we present a simulation framework for modeling two important classes of networks usedmore » in today’s IBM and Cray supercomputers: torus and dragonfly networks. We use the Co-Design of Multi-layer Exascale Storage Architecture (CODES) simulation framework to simulate these network topologies at a flit-level detail using the Rensselaer Optimistic Simulation System (ROSS) for parallel discrete-event simulation. Our simulation framework meets all the requirements of a practical network simulation and can assist network designers in design space exploration. First, it uses validated and detailed flit-level network models to provide an accurate and high-fidelity network simulation. Second, instead of relying on serial time-stepped or traditional conservative discrete-event simulations that limit simulation scalability and efficiency, we use the optimistic event-scheduling capability of ROSS to achieve efficient and scalable HPC network simulations on today’s high-performance cluster systems. Third, our models give network designers a choice in simulating a broad range of network workloads, including HPC application workloads using detailed network traces, an ability that is rarely offered in parallel with high-fidelity network simulations« less

  19. Optical Disk Technology and Information.

    ERIC Educational Resources Information Center

    Goldstein, Charles M.

    1982-01-01

    Provides basic information on videodisks and potential applications, including inexpensive online storage, random access graphics to complement online information systems, hybrid network architectures, office automation systems, and archival storage. (JN)

  20. The SysMan monitoring service and its management environment

    NASA Astrophysics Data System (ADS)

    Debski, Andrzej; Janas, Ekkehard

    1996-06-01

    Management of modern information systems is becoming more and more complex. There is a growing need for powerful, flexible and affordable management tools to assist system managers in maintaining such systems. It is at the same time evident that effective management should integrate network management, system management and application management in a uniform way. Object oriented OSI management architecture with its four basic modelling concepts (information, organization, communication and functional models) together with widely accepted distribution platforms such as ANSA/CORBA, constitutes a reliable and modern framework for the implementation of a management toolset. This paper focuses on the presentation of concepts and implementation results of an object oriented management toolset developed and implemented within the framework of the ESPRIT project 7026 SysMan. An overview is given of the implemented SysMan management services including the System Management Service, Monitoring Service, Network Management Service, Knowledge Service, Domain and Policy Service, and the User Interface. Special attention is paid to the Monitoring Service which incorporates the architectural key entity responsible for event management. Its architecture and building components, especially filters, are emphasized and presented in detail.

  1. The Laplacian spectrum of neural networks

    PubMed Central

    de Lange, Siemon C.; de Reus, Marcel A.; van den Heuvel, Martijn P.

    2014-01-01

    The brain is a complex network of neural interactions, both at the microscopic and macroscopic level. Graph theory is well suited to examine the global network architecture of these neural networks. Many popular graph metrics, however, encode average properties of individual network elements. Complementing these “conventional” graph metrics, the eigenvalue spectrum of the normalized Laplacian describes a network's structure directly at a systems level, without referring to individual nodes or connections. In this paper, the Laplacian spectra of the macroscopic anatomical neuronal networks of the macaque and cat, and the microscopic network of the Caenorhabditis elegans were examined. Consistent with conventional graph metrics, analysis of the Laplacian spectra revealed an integrative community structure in neural brain networks. Extending previous findings of overlap of network attributes across species, similarity of the Laplacian spectra across the cat, macaque and C. elegans neural networks suggests a certain level of consistency in the overall architecture of the anatomical neural networks of these species. Our results further suggest a specific network class for neural networks, distinct from conceptual small-world and scale-free models as well as several empirical networks. PMID:24454286

  2. Incorporating client-server database architecture and graphical user interface into outpatient medical records.

    PubMed Central

    Fiacco, P. A.; Rice, W. H.

    1991-01-01

    Computerized medical record systems require structured database architectures for information processing. However, the data must be able to be transferred across heterogeneous platform and software systems. Client-Server architecture allows for distributive processing of information among networked computers and provides the flexibility needed to link diverse systems together effectively. We have incorporated this client-server model with a graphical user interface into an outpatient medical record system, known as SuperChart, for the Department of Family Medicine at SUNY Health Science Center at Syracuse. SuperChart was developed using SuperCard and Oracle SuperCard uses modern object-oriented programming to support a hypermedia environment. Oracle is a powerful relational database management system that incorporates a client-server architecture. This provides both a distributed database and distributed processing which improves performance. PMID:1807732

  3. Research of future network with multi-layer IP address

    NASA Astrophysics Data System (ADS)

    Li, Guoling; Long, Zhaohua; Wei, Ziqiang

    2018-04-01

    The shortage of IP addresses and the scalability of routing systems [1] are challenges for the Internet. The idea of dividing existing IP addresses between identities and locations is one of the important research directions. This paper proposed a new decimal network architecture based on IPv9 [11], and decimal network IP address from E.164 principle of traditional telecommunication network, the IP address level, which helps to achieve separation and identification and location of IP address, IP address form a multilayer network structure, routing scalability problem in remission at the same time, to solve the problem of IPv4 address depletion. On the basis of IPv9, a new decimal network architecture is proposed, and the IP address of the decimal network draws on the E.164 principle of the traditional telecommunication network, and the IP addresses are hierarchically divided, which helps to realize the identification and location separation of IP addresses, the formation of multi-layer IP address network structure, while easing the scalability of the routing system to find a way out of IPv4 address exhausted. In addition to modifying DNS [10] simply and adding the function of digital domain, a DDNS [12] is formed. At the same time, a gateway device is added, that is, IPV9 gateway. The original backbone network and user network are unchanged.

  4. Generalized hypercube structures and hyperswitch communication network

    NASA Technical Reports Server (NTRS)

    Young, Steven D.

    1992-01-01

    This paper discusses an ongoing study that uses a recent development in communication control technology to implement hybrid hypercube structures. These architectures are similar to binary hypercubes, but they also provide added connectivity between the processors. This added connectivity increases communication reliability while decreasing the latency of interprocessor message passing. Because these factors directly determine the speed that can be obtained by multiprocessor systems, these architectures are attractive for applications such as remote exploration and experimentation, where high performance and ultrareliability are required. This paper describes and enumerates these architectures and discusses how they can be implemented with a modified version of the hyperswitch communication network (HCN). The HCN is analyzed because it has three attractive features that enable these architectures to be effective: speed, fault tolerance, and the ability to pass multiple messages simultaneously through the same hyperswitch controller.

  5. NASA Enterprise Architecture and Its Use in Transition of Research Results to Operations

    NASA Astrophysics Data System (ADS)

    Frisbie, T. E.; Hall, C. M.

    2006-12-01

    Enterprise architecture describes the design of the components of an enterprise, their relationships and how they support the objectives of that enterprise. NASA Stennis Space Center leads several projects involving enterprise architecture tools used to gather information on research assets within NASA's Earth Science Division. In the near future, enterprise architecture tools will link and display the relevant requirements, parameters, observatories, models, decision systems, and benefit/impact information relationships and map to the Federal Enterprise Architecture Reference Models. Components configured within the enterprise architecture serving the NASA Applied Sciences Program include the Earth Science Components Knowledge Base, the Systems Components database, and the Earth Science Architecture Tool. The Earth Science Components Knowledge Base systematically catalogues NASA missions, sensors, models, data products, model products, and network partners appropriate for consideration in NASA Earth Science applications projects. The Systems Components database is a centralized information warehouse of NASA's Earth Science research assets and a critical first link in the implementation of enterprise architecture. The Earth Science Architecture Tool is used to analyze potential NASA candidate systems that may be beneficial to decision-making capabilities of other Federal agencies. Use of the current configuration of NASA enterprise architecture (the Earth Science Components Knowledge Base, the Systems Components database, and the Earth Science Architecture Tool) has far exceeded its original intent and has tremendous potential for the transition of research results to operational entities.

  6. Architecture for Survivable System Processing (ASSP)

    NASA Astrophysics Data System (ADS)

    Wood, Richard J.

    1991-11-01

    The Architecture for Survivable System Processing (ASSP) Program is a multi-phase effort to implement Department of Defense (DOD) and commercially developed high-tech hardware, software, and architectures for reliable space avionics and ground based systems. System configuration options provide processing capabilities to address Time Dependent Processing (TDP), Object Dependent Processing (ODP), and Mission Dependent Processing (MDP) requirements through Open System Architecture (OSA) alternatives that allow for the enhancement, incorporation, and capitalization of a broad range of development assets. High technology developments in hardware, software, and networking models, address technology challenges of long processor life times, fault tolerance, reliability, throughput, memories, radiation hardening, size, weight, power (SWAP) and security. Hardware and software design, development, and implementation focus on the interconnectivity/interoperability of an open system architecture and is being developed to apply new technology into practical OSA components. To insure for widely acceptable architecture capable of interfacing with various commercial and military components, this program provides for regular interactions with standardization working groups (e.g.) the International Standards Organization (ISO), American National Standards Institute (ANSI), Society of Automotive Engineers (SAE), and Institute of Electrical and Electronic Engineers (IEEE). Selection of a viable open architecture is based on the widely accepted standards that implement the ISO/OSI Reference Model.

  7. Architecture for Survivable System Processing (ASSP)

    NASA Technical Reports Server (NTRS)

    Wood, Richard J.

    1991-01-01

    The Architecture for Survivable System Processing (ASSP) Program is a multi-phase effort to implement Department of Defense (DOD) and commercially developed high-tech hardware, software, and architectures for reliable space avionics and ground based systems. System configuration options provide processing capabilities to address Time Dependent Processing (TDP), Object Dependent Processing (ODP), and Mission Dependent Processing (MDP) requirements through Open System Architecture (OSA) alternatives that allow for the enhancement, incorporation, and capitalization of a broad range of development assets. High technology developments in hardware, software, and networking models, address technology challenges of long processor life times, fault tolerance, reliability, throughput, memories, radiation hardening, size, weight, power (SWAP) and security. Hardware and software design, development, and implementation focus on the interconnectivity/interoperability of an open system architecture and is being developed to apply new technology into practical OSA components. To insure for widely acceptable architecture capable of interfacing with various commercial and military components, this program provides for regular interactions with standardization working groups (e.g.) the International Standards Organization (ISO), American National Standards Institute (ANSI), Society of Automotive Engineers (SAE), and Institute of Electrical and Electronic Engineers (IEEE). Selection of a viable open architecture is based on the widely accepted standards that implement the ISO/OSI Reference Model.

  8. Designing area optimized application-specific network-on-chip architectures while providing hard QoS guarantees.

    PubMed

    Khawaja, Sajid Gul; Mushtaq, Mian Hamza; Khan, Shoab A; Akram, M Usman; Jamal, Habib Ullah

    2015-01-01

    With the increase of transistors' density, popularity of System on Chip (SoC) has increased exponentially. As a communication module for SoC, Network on Chip (NoC) framework has been adapted as its backbone. In this paper, we propose a methodology for designing area-optimized application specific NoC while providing hard Quality of Service (QoS) guarantees for real time flows. The novelty of the proposed system lies in derivation of a Mixed Integer Linear Programming model which is then used to generate a resource optimal Network on Chip (NoC) topology and architecture while considering traffic and QoS requirements. We also present the micro-architectural design features used for enabling traffic and latency guarantees and discuss how the solution adapts for dynamic variations in the application traffic. The paper highlights the effectiveness of proposed method by generating resource efficient NoC solutions for both industrial and benchmark applications. The area-optimized results are generated in few seconds by proposed technique, without resorting to heuristics, even for an application with 48 traffic flows.

  9. Designing Area Optimized Application-Specific Network-On-Chip Architectures while Providing Hard QoS Guarantees

    PubMed Central

    Khawaja, Sajid Gul; Mushtaq, Mian Hamza; Khan, Shoab A.; Akram, M. Usman; Jamal, Habib ullah

    2015-01-01

    With the increase of transistors' density, popularity of System on Chip (SoC) has increased exponentially. As a communication module for SoC, Network on Chip (NoC) framework has been adapted as its backbone. In this paper, we propose a methodology for designing area-optimized application specific NoC while providing hard Quality of Service (QoS) guarantees for real time flows. The novelty of the proposed system lies in derivation of a Mixed Integer Linear Programming model which is then used to generate a resource optimal Network on Chip (NoC) topology and architecture while considering traffic and QoS requirements. We also present the micro-architectural design features used for enabling traffic and latency guarantees and discuss how the solution adapts for dynamic variations in the application traffic. The paper highlights the effectiveness of proposed method by generating resource efficient NoC solutions for both industrial and benchmark applications. The area-optimized results are generated in few seconds by proposed technique, without resorting to heuristics, even for an application with 48 traffic flows. PMID:25898016

  10. Technology architecture guidelines for a health care system.

    PubMed

    Jones, D T; Duncan, R; Langberg, M L; Shabot, M M

    2000-01-01

    Although the demand for use of information technology within the healthcare industry is intensifying, relatively little has been written about guidelines to optimize IT investments. A technology architecture is a set of guidelines for technology integration within an enterprise. The architecture is a critical tool in the effort to control information technology (IT) operating costs by constraining the number of technologies supported. A well-designed architecture is also an important aid to integrating disparate applications, data stores and networks. The authors led the development of a thorough, carefully designed technology architecture for a large and rapidly growing health care system. The purpose and design criteria are described, as well as the process for gaining consensus and disseminating the architecture. In addition, the processes for using, maintaining, and handling exceptions are described. The technology architecture is extremely valuable to health care organizations both in controlling costs and promoting integration.

  11. Technology architecture guidelines for a health care system.

    PubMed Central

    Jones, D. T.; Duncan, R.; Langberg, M. L.; Shabot, M. M.

    2000-01-01

    Although the demand for use of information technology within the healthcare industry is intensifying, relatively little has been written about guidelines to optimize IT investments. A technology architecture is a set of guidelines for technology integration within an enterprise. The architecture is a critical tool in the effort to control information technology (IT) operating costs by constraining the number of technologies supported. A well-designed architecture is also an important aid to integrating disparate applications, data stores and networks. The authors led the development of a thorough, carefully designed technology architecture for a large and rapidly growing health care system. The purpose and design criteria are described, as well as the process for gaining consensus and disseminating the architecture. In addition, the processes for using, maintaining, and handling exceptions are described. The technology architecture is extremely valuable to health care organizations both in controlling costs and promoting integration. PMID:11079913

  12. Applying Service-Oriented Architecture on The Development of Groundwater Modeling Support System

    NASA Astrophysics Data System (ADS)

    Li, C. Y.; WANG, Y.; Chang, L. C.; Tsai, J. P.; Hsiao, C. T.

    2016-12-01

    Groundwater simulation has become an essential step on the groundwater resources management and assessment. There are many stand-alone pre- and post-processing software packages to alleviate the model simulation loading, but the stand-alone software do not consider centralized management of data and simulation results neither do they provide network sharing functions. Hence, it is difficult to share and reuse the data and knowledge (simulation cases) systematically within or across companies. Therefore, this study develops a centralized and network based groundwater modeling support system to assist model construction. The system is based on service-oriented architecture and allows remote user to develop their modeling cases on internet. The data and cases (knowledge) are thus easy to manage centralized. MODFLOW is the modeling engine of the system, which is the most popular groundwater model in the world. The system provides a data warehouse to restore groundwater observations, MODFLOW Support Service, MODFLOW Input File & Shapefile Convert Service, MODFLOW Service, and Expert System Service to assist researchers to build models. Since the system architecture is service-oriented, it is scalable and flexible. The system can be easily extended to include the scenarios analysis and knowledge management to facilitate the reuse of groundwater modeling knowledge.

  13. Advanced algorithms for distributed fusion

    NASA Astrophysics Data System (ADS)

    Gelfand, A.; Smith, C.; Colony, M.; Bowman, C.; Pei, R.; Huynh, T.; Brown, C.

    2008-03-01

    The US Military has been undergoing a radical transition from a traditional "platform-centric" force to one capable of performing in a "Network-Centric" environment. This transformation will place all of the data needed to efficiently meet tactical and strategic goals at the warfighter's fingertips. With access to this information, the challenge of fusing data from across the batttlespace into an operational picture for real-time Situational Awareness emerges. In such an environment, centralized fusion approaches will have limited application due to the constraints of real-time communications networks and computational resources. To overcome these limitations, we are developing a formalized architecture for fusion and track adjudication that allows the distribution of fusion processes over a dynamically created and managed information network. This network will support the incorporation and utilization of low level tracking information within the Army Distributed Common Ground System (DCGS-A) or Future Combat System (FCS). The framework is based on Bowman's Dual Node Network (DNN) architecture that utilizes a distributed network of interlaced fusion and track adjudication nodes to build and maintain a globally consistent picture across all assets.

  14. Large Scale Environmental Monitoring through Integration of Sensor and Mesh Networks.

    PubMed

    Jurdak, Raja; Nafaa, Abdelhamid; Barbirato, Alessio

    2008-11-24

    Monitoring outdoor environments through networks of wireless sensors has received interest for collecting physical and chemical samples at high spatial and temporal scales. A central challenge to environmental monitoring applications of sensor networks is the short communication range of the sensor nodes, which increases the complexity and cost of monitoring commodities that are located in geographically spread areas. To address this issue, we propose a new communication architecture that integrates sensor networks with medium range wireless mesh networks, and provides users with an advanced web portal for managing sensed information in an integrated manner. Our architecture adopts a holistic approach targeted at improving the user experience by optimizing the system performance for handling data that originates at the sensors, traverses the mesh network, and resides at the server for user consumption. This holistic approach enables users to set high level policies that can adapt the resolution of information collected at the sensors, set the preferred performance targets for their application, and run a wide range of queries and analysis on both real-time and historical data. All system components and processes will be described in this paper.

  15. SDR/STRS Flight Experiment and the Role of SDR-Based Communication and Navigation Systems

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.

    2008-01-01

    This presentation describes an open architecture SDR (software defined radio) infrastructure, suitable for space-based radios and operations, entitled Space Telecommunications Radio System (STRS). SDR technologies will endow space and planetary exploration systems with dramatically increased capability, reduced power consumption, and less mass than conventional systems, at costs reduced by vigorous competition, hardware commonality, dense integration, minimizing the impact of parts obsolescence, improved interoperability, and software re-use. To advance the SDR architecture technology and demonstrate its applicability in space, NASA is developing a space experiment of multiple SDRs each with various waveforms to communicate with NASA s TDRSS satellite and ground networks, and the GPS constellation. An experiments program will investigate S-band and Ka-band communications, navigation, and networking technologies and operations.

  16. Services, architectures, and protocols for space data systems

    NASA Technical Reports Server (NTRS)

    Helgert, Hermann J.

    1991-01-01

    The author presents a comprehensive discussion of three major aspects of the work of the Consultative Committee for Space Data Systems (CCSDS), a worldwide cooperative effort of national space agencies. The author examines the CCSDS space data communications network concept on which the data communications facilities of future advanced orbiting systems will be based. He derives the specifications of an open communications architecture as a reference model for the development of services and protocols that support the transfer of information over space data communications networks. Detailed specifications of the communication services and information transfer protocols that have reached a high degree of maturity and stability are offered. The author also includes a complete list of currently available CCSDS standards and supporting documentation.

  17. Energy efficient sensor network implementations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frigo, Janette R; Raby, Eric Y; Brennan, Sean M

    In this paper, we discuss a low power embedded sensor node architecture we are developing for distributed sensor network systems deployed in a natural environment. In particular, we examine the sensor node for energy efficient processing-at-the-sensor. We analyze the following modes of operation; event detection, sleep(wake-up), data acquisition, data processing modes using low power, high performance embedded technology such as specialized embedded DSP processors and a low power FPGAs at the sensing node. We use compute intensive sensor node applications: an acoustic vehicle classifier (frequency domain analysis) and a video license plate identification application (learning algorithm) as a case study.more » We report performance and total energy usage for our system implementations and discuss the system architecture design trade offs.« less

  18. WiSPH: a wireless sensor network-based home care monitoring system.

    PubMed

    Magaña-Espinoza, Pedro; Aquino-Santos, Raúl; Cárdenas-Benítez, Néstor; Aguilar-Velasco, José; Buenrostro-Segura, César; Edwards-Block, Arthur; Medina-Cass, Aldo

    2014-04-22

    This paper presents a system based on WSN technology capable of monitoring heart rate and the rate of motion of seniors within their homes. The system is capable of remotely alerting specialists, caretakers or family members via a smartphone of rapid physiological changes due to falls, tachycardia or bradycardia. This work was carried out using our workgroup's WiSe platform, which we previously developed for use in WSNs. The proposed WSN architecture is flexible, allowing for greater scalability to better allow event-based monitoring. The architecture also provides security mechanisms to assure that the monitored and/or stored data can only be accessed by authorized individuals or devices. The aforementioned characteristics provide the network versatility and solidity required for use in health applications.

  19. Dragon pulse information management system (DPIMS): A unique model-based approach to implementing domain agnostic system of systems and behaviors

    NASA Astrophysics Data System (ADS)

    Anderson, Thomas S.

    2016-05-01

    The Global Information Network Architecture is an information technology based on Vector Relational Data Modeling, a unique computational paradigm, DoD network certified by USARMY as the Dragon Pulse Informa- tion Management System. This network available modeling environment for modeling models, where models are configured using domain relevant semantics and use network available systems, sensors, databases and services as loosely coupled component objects and are executable applications. Solutions are based on mission tactics, techniques, and procedures and subject matter input. Three recent ARMY use cases are discussed a) ISR SoS. b) Modeling and simulation behavior validation. c) Networked digital library with behaviors.

  20. Space Communications Technology Conference: Onboard Processing and Switching

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Papers and presentations from the conference are presented. The topics covered include the following: satellite network architecture, network control and protocols, fault tolerance and autonomy, multichanned demultiplexing and demodulation, information switching and routing, modulation and coding, and planned satellite communications systems.

  1. A neural-network approach to robotic control

    NASA Technical Reports Server (NTRS)

    Graham, D. P. W.; Deleuterio, G. M. T.

    1993-01-01

    An artificial neural-network paradigm for the control of robotic systems is presented. The approach is based on the Cerebellar Model Articulation Controller created by James Albus and incorporates several extensions. First, recognizing the essential structure of multibody equations of motion, two parallel modules are used that directly reflect the dynamical characteristics of multibody systems. Second, the architecture of the proposed network is imbued with a self-organizational capability which improves efficiency and accuracy. Also, the networks can be arranged in hierarchical fashion with each subsequent network providing finer and finer resolution.

  2. On-Line Tracking Controller for Brushless DC Motor Drives Using Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Rubaai, Ahmed

    1996-01-01

    A real-time control architecture is developed for time-varying nonlinear brushless dc motors operating in a high performance drives environment. The developed control architecture possesses the capabilities of simultaneous on-line identification and control. The dynamics of the motor are modeled on-line and controlled using an artificial neural network, as the system runs. The control architecture combines the experience and dependability of adaptive tracking systems with potential and promise of the neural computing technology. The sensitivity of real-time controller to parametric changes that occur during training is investigated. Such changes are usually manifested by rapid changes in the load of the brushless motor drives. This sudden change in the external load is simulated for the sigmoidal and sinusoidal reference tracks. The ability of the neuro-controller to maintain reasonable tracking accuracy in the presence of external noise is also verified for a number of desired reference trajectories.

  3. Software defined network architecture based research on load balancing strategy

    NASA Astrophysics Data System (ADS)

    You, Xiaoqian; Wu, Yang

    2018-05-01

    As a new type network architecture, software defined network has the key idea of separating the control place of the network from the transmission plane, to manage and control the network in a concentrated way; in addition, the network interface is opened on the control layer and the data layer, so as to achieve programmable control of the network. Considering that only the single shortest route is taken into the calculation of traditional network data flow transmission, and congestion and resource consumption caused by excessive load of link circuits are ignored, a link circuit load based flow media business QoS gurantee system is proposed in this article to divide the flow in the network into ordinary data flow and QoS flow. In this way, it supervises the link circuit load with the controller so as to calculate reasonable route rapidly and issue the flow table to the exchanger, to finish rapid data transmission. In addition, it establishes a simulation platform to acquire optimized result through simulation experiment.

  4. Shifts in the architecture of the Nationwide Health Information Network.

    PubMed

    Lenert, Leslie; Sundwall, David; Lenert, Michael Edward

    2012-01-01

    In the midst of a US $30 billion USD investment in the Nationwide Health Information Network (NwHIN) and electronic health records systems, a significant change in the architecture of the NwHIN is taking place. Prior to 2010, the focus of information exchange in the NwHIN was the Regional Health Information Organization (RHIO). Since 2010, the Office of the National Coordinator (ONC) has been sponsoring policies that promote an internet-like architecture that encourages point to-point information exchange and private health information exchange networks. The net effect of these activities is to undercut the limited business model for RHIOs, decreasing the likelihood of their success, while making the NwHIN dependent on nascent technologies for community level functions such as record locator services. These changes may impact the health of patients and communities. Independent, scientifically focused debate is needed on the wisdom of ONC's proposed changes in its strategy for the NwHIN.

  5. Topological structure and mechanics of glassy polymer networks.

    PubMed

    Elder, Robert M; Sirk, Timothy W

    2017-11-22

    The influence of chain-level network architecture (i.e., topology) on mechanics was explored for unentangled polymer networks using a blend of coarse-grained molecular simulations and graph-theoretic concepts. A simple extension of the Watts-Strogatz model is proposed to control the graph properties of the network such that the corresponding physical properties can be studied with simulations. The architecture of polymer networks assembled with a dynamic curing approach were compared with the extended Watts-Strogatz model, and found to agree surprisingly well. The final cured structures of the dynamically-assembled networks were nearly an intermediate between lattice and random connections due to restrictions imposed by the finite length of the chains. Further, the uni-axial stress response, character of the bond breaking, and non-affine displacements of fully-cured glassy networks were analyzed as a function of the degree of disorder in the network architecture. It is shown that the architecture strongly affects the network stability, flow stress, onset of bond breaking, and ultimate stress while leaving the modulus and yield point nearly unchanged. The results show that internal restrictions imposed by the network architecture alter the chain-level response through changes to the crosslink dynamics in the flow regime and through the degree of coordinated chain failure at the ultimate stress. The properties considered here are shown to be sensitive to even incremental changes to the architecture and, therefore, the overall network architecture, beyond simple defects, is predicted to be a meaningful physical parameter in the mechanics of glassy polymer networks.

  6. MACHETE: Environment for Space Networking Evaluation

    NASA Technical Reports Server (NTRS)

    Jennings, Esther H.; Segui, John S.; Woo, Simon

    2010-01-01

    Space Exploration missions requires the design and implementation of space networking that differs from terrestrial networks. In a space networking architecture, interplanetary communication protocols need to be designed, validated and evaluated carefully to support different mission requirements. As actual systems are expensive to build, it is essential to have a low cost method to validate and verify mission/system designs and operations. This can be accomplished through simulation. Simulation can aid design decisions where alternative solutions are being considered, support trade-studies and enable fast study of what-if scenarios. It can be used to identify risks, verify system performance against requirements, and as an initial test environment as one moves towards emulation and actual hardware implementation of the systems. We describe the development of Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) and its use cases in supporting architecture trade studies, protocol performance and its role in hybrid simulation/emulation. The MACHETE environment contains various tools and interfaces such that users may select the set of tools tailored for the specific simulation end goal. The use cases illustrate tool combinations for simulating space networking in different mission scenarios. This simulation environment is useful in supporting space networking design for planned and future missions as well as evaluating performance of existing networks where non-determinism exist in data traffic and/or link conditions.

  7. A resilient and secure software platform and architecture for distributed spacecraft

    NASA Astrophysics Data System (ADS)

    Otte, William R.; Dubey, Abhishek; Karsai, Gabor

    2014-06-01

    A distributed spacecraft is a cluster of independent satellite modules flying in formation that communicate via ad-hoc wireless networks. This system in space is a cloud platform that facilitates sharing sensors and other computing and communication resources across multiple applications, potentially developed and maintained by different organizations. Effectively, such architecture can realize the functions of monolithic satellites at a reduced cost and with improved adaptivity and robustness. Openness of these architectures pose special challenges because the distributed software platform has to support applications from different security domains and organizations, and where information flows have to be carefully managed and compartmentalized. If the platform is used as a robust shared resource its management, configuration, and resilience becomes a challenge in itself. We have designed and prototyped a distributed software platform for such architectures. The core element of the platform is a new operating system whose services were designed to restrict access to the network and the file system, and to enforce resource management constraints for all non-privileged processes Mixed-criticality applications operating at different security labels are deployed and controlled by a privileged management process that is also pre-configuring all information flows. This paper describes the design and objective of this layer.

  8. Atomic switch networks—nanoarchitectonic design of a complex system for natural computing

    NASA Astrophysics Data System (ADS)

    Demis, E. C.; Aguilera, R.; Sillin, H. O.; Scharnhorst, K.; Sandouk, E. J.; Aono, M.; Stieg, A. Z.; Gimzewski, J. K.

    2015-05-01

    Self-organized complex systems are ubiquitous in nature, and the structural complexity of these natural systems can be used as a model to design new classes of functional nanotechnology based on highly interconnected networks of interacting units. Conventional fabrication methods for electronic computing devices are subject to known scaling limits, confining the diversity of possible architectures. This work explores methods of fabricating a self-organized complex device known as an atomic switch network and discusses its potential utility in computing. Through a merger of top-down and bottom-up techniques guided by mathematical and nanoarchitectonic design principles, we have produced functional devices comprising nanoscale elements whose intrinsic nonlinear dynamics and memorization capabilities produce robust patterns of distributed activity and a capacity for nonlinear transformation of input signals when configured in the appropriate network architecture. Their operational characteristics represent a unique potential for hardware implementation of natural computation, specifically in the area of reservoir computing—a burgeoning field that investigates the computational aptitude of complex biologically inspired systems.

  9. Unified Approach to Modeling and Simulation of Space Communication Networks and Systems

    NASA Technical Reports Server (NTRS)

    Barritt, Brian; Bhasin, Kul; Eddy, Wesley; Matthews, Seth

    2010-01-01

    Network simulator software tools are often used to model the behaviors and interactions of applications, protocols, packets, and data links in terrestrial communication networks. Other software tools that model the physics, orbital dynamics, and RF characteristics of space systems have matured to allow for rapid, detailed analysis of space communication links. However, the absence of a unified toolset that integrates the two modeling approaches has encumbered the systems engineers tasked with the design, architecture, and analysis of complex space communication networks and systems. This paper presents the unified approach and describes the motivation, challenges, and our solution - the customization of the network simulator to integrate with astronautical analysis software tools for high-fidelity end-to-end simulation. Keywords space; communication; systems; networking; simulation; modeling; QualNet; STK; integration; space networks

  10. Orion Flight Test Architecture Benefits of MBSE Approach

    NASA Technical Reports Server (NTRS)

    Reed, Don; Simpson, Kim

    2012-01-01

    Exploration Flight Test 1 (EFT-1) is an unmanned first orbital flight test of the Multi Purpose Crew Vehicle (MPCV) Mission s purpose is to: Test Orion s ascent, on-orbit and entry capabilities Monitor critical activities Provide ground control in support of contingency scenarios Requires development of a large scale end-to-end information system network architecture To effectively communicate the scope of the end-to-end system a model-based system engineering approach was chosen.

  11. A Robust Deep-Learning-Based Detector for Real-Time Tomato Plant Diseases and Pests Recognition.

    PubMed

    Fuentes, Alvaro; Yoon, Sook; Kim, Sang Cheol; Park, Dong Sun

    2017-09-04

    Plant Diseases and Pests are a major challenge in the agriculture sector. An accurate and a faster detection of diseases and pests in plants could help to develop an early treatment technique while substantially reducing economic losses. Recent developments in Deep Neural Networks have allowed researchers to drastically improve the accuracy of object detection and recognition systems. In this paper, we present a deep-learning-based approach to detect diseases and pests in tomato plants using images captured in-place by camera devices with various resolutions. Our goal is to find the more suitable deep-learning architecture for our task. Therefore, we consider three main families of detectors: Faster Region-based Convolutional Neural Network (Faster R-CNN), Region-based Fully Convolutional Network (R-FCN), and Single Shot Multibox Detector (SSD), which for the purpose of this work are called "deep learning meta-architectures". We combine each of these meta-architectures with "deep feature extractors" such as VGG net and Residual Network (ResNet). We demonstrate the performance of deep meta-architectures and feature extractors, and additionally propose a method for local and global class annotation and data augmentation to increase the accuracy and reduce the number of false positives during training. We train and test our systems end-to-end on our large Tomato Diseases and Pests Dataset, which contains challenging images with diseases and pests, including several inter- and extra-class variations, such as infection status and location in the plant. Experimental results show that our proposed system can effectively recognize nine different types of diseases and pests, with the ability to deal with complex scenarios from a plant's surrounding area.

  12. A modular architecture for transparent computation in recurrent neural networks.

    PubMed

    Carmantini, Giovanni S; Beim Graben, Peter; Desroches, Mathieu; Rodrigues, Serafim

    2017-01-01

    Computation is classically studied in terms of automata, formal languages and algorithms; yet, the relation between neural dynamics and symbolic representations and operations is still unclear in traditional eliminative connectionism. Therefore, we suggest a unique perspective on this central issue, to which we would like to refer as transparent connectionism, by proposing accounts of how symbolic computation can be implemented in neural substrates. In this study we first introduce a new model of dynamics on a symbolic space, the versatile shift, showing that it supports the real-time simulation of a range of automata. We then show that the Gödelization of versatile shifts defines nonlinear dynamical automata, dynamical systems evolving on a vectorial space. Finally, we present a mapping between nonlinear dynamical automata and recurrent artificial neural networks. The mapping defines an architecture characterized by its granular modularity, where data, symbolic operations and their control are not only distinguishable in activation space, but also spatially localizable in the network itself, while maintaining a distributed encoding of symbolic representations. The resulting networks simulate automata in real-time and are programmed directly, in the absence of network training. To discuss the unique characteristics of the architecture and their consequences, we present two examples: (i) the design of a Central Pattern Generator from a finite-state locomotive controller, and (ii) the creation of a network simulating a system of interactive automata that supports the parsing of garden-path sentences as investigated in psycholinguistics experiments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Architectural Analysis of a LLNL LWIR Sensor System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bond, Essex J.; Curry, Jim R.; LaFortune, Kai N.

    The architecture of an LLNL airborne imaging and detection system is considered in this report. The purpose of the system is to find the location of substances of interest by detecting their chemical signatures using a long-wave infrared (LWIR) imager with geo-registration capability. The detection system consists of an LWIR imaging spectrometer as well as a network of computer hardware and analysis software for analyzing the images for the features of interest. The system has been in the operations phase now for well over a year, and as such, there is enough use data and feedback from the primary beneficiarymore » to assess the current successes and shortcomings of the LWIR system architecture. LWIR system has been successful in providing reliable data collection and the delivery of a report with results. The weakness of the architecture has been identified in two areas: with the network of computer hardware and software and with the feedback of the state of the system health. Regarding the former, the system computers and software that carry out the data acquisition are too complicated for routine operations and maintenance. With respect to the latter, the primary beneficiary of the instrument’s data does not have enough metrics to use to filter the large quantity of data to determine its utility. In addition to the needs in these two areas, a latent need of one of the stakeholders is identified. This report documents the strengths and weaknesses, as well as proposes a solution for enhancing the architecture that simultaneously addresses the two areas of weakness and leverages them to meet the newly identified latent need.« less

  14. Virtualized Networks and Virtualized Optical Line Terminal (vOLT)

    NASA Astrophysics Data System (ADS)

    Ma, Jonathan; Israel, Stephen

    2017-03-01

    The success of the Internet and the proliferation of the Internet of Things (IoT) devices is forcing telecommunications carriers to re-architecture a central office as a datacenter (CORD) so as to bring the datacenter economics and cloud agility to a central office (CO). The Open Network Operating System (ONOS) is the first open-source software-defined network (SDN) operating system which is capable of managing and controlling network, computing, and storage resources to support CORD infrastructure and network virtualization. The virtualized Optical Line Termination (vOLT) is one of the key components in such virtualized networks.

  15. Modular architecture for robotics and teleoperation

    DOEpatents

    Anderson, Robert J.

    1996-12-03

    Systems and methods for modularization and discretization of real-time robot, telerobot and teleoperation systems using passive, network based control laws. Modules consist of network one-ports and two-ports. Wave variables and position information are passed between modules. The behavior of each module is decomposed into uncoupled linear-time-invariant, and coupled, nonlinear memoryless elements and then are separately discretized.

  16. A network control concept for the 30/20 GHz communication system baseband processor

    NASA Technical Reports Server (NTRS)

    Sabourin, D. J.; Hay, R. E.

    1982-01-01

    The architecture and system design for a satellite-switched TDMA communication system employing on-board processing was developed by Motorola for NASA's Lewis Research Center. The system design is based on distributed processing techniques that provide extreme flexibility in the selection of a network control protocol without impacting the satellite or ground terminal hardware. A network control concept that includes system synchronization and allows burst synchronization to occur within the system operational requirement is described. This concept integrates the tracking and control links with the communication links via the baseband processor, resulting in an autonomous system operational approach.

  17. Using cyber vulnerability testing techniques to expose undocumented security vulnerabilities in DCS and SCADA equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pollet, J.

    2006-07-01

    This session starts by providing an overview of typical DCS (Distributed Control Systems) and SCADA (Supervisory Control and Data Acquisition) architectures, and exposes cyber security vulnerabilities that vendors never admit, but are found through a comprehensive cyber testing process. A complete assessment process involves testing all of the layers and components of a SCADA or DCS environment, from the perimeter firewall all the way down to the end devices controlling the process, including what to look for when conducting a vulnerability assessment of real-time control systems. The following systems are discussed: 1. Perimeter (isolation from corporate IT or other non-criticalmore » networks) 2. Remote Access (third Party access into SCADA or DCS networks) 3. Network Architecture (switch, router, firewalls, access controls, network design) 4. Network Traffic Analysis (what is running on the network) 5. Host Operating Systems Hardening 6. Applications (how they communicate with other applications and end devices) 7. End Device Testing (PLCs, RTUs, DCS Controllers, Smart Transmitters) a. System Discovery b. Functional Discovery c. Attack Methodology i. DoS Tests (at what point does the device fail) ii. Malformed Packet Tests (packets that can cause equipment failure) iii. Session Hijacking (do anything that the operator can do) iv. Packet Injection (code and inject your own SCADA commands) v. Protocol Exploitation (Protocol Reverse Engineering / Fuzzing) This paper will provide information compiled from over five years of conducting cyber security testing on control systems hardware, software, and systems. (authors)« less

  18. A visually guided collision warning system with a neuromorphic architecture.

    PubMed

    Okuno, Hirotsugu; Yagi, Tetsuya

    2008-12-01

    We have designed a visually guided collision warning system with a neuromorphic architecture, employing an algorithm inspired by the visual nervous system of locusts. The system was implemented with mixed analog-digital integrated circuits consisting of an analog resistive network and field-programmable gate array (FPGA) circuits. The resistive network processes the interaction between the laterally spreading excitatory and inhibitory signals instantaneously, which is essential for real-time computation of collision avoidance with a low power consumption and a compact hardware. The system responded selectively to approaching objects of simulated movie images at close range. The system was, however, confronted with serious noise problems due to the vibratory ego-motion, when it was installed in a mobile miniature car. To overcome this problem, we developed the algorithm, which is also installable in FPGA circuits, in order for the system to respond robustly during the ego-motion.

  19. Parallel Signal Processing and System Simulation using aCe

    NASA Technical Reports Server (NTRS)

    Dorband, John E.; Aburdene, Maurice F.

    2003-01-01

    Recently, networked and cluster computation have become very popular for both signal processing and system simulation. A new language is ideally suited for parallel signal processing applications and system simulation since it allows the programmer to explicitly express the computations that can be performed concurrently. In addition, the new C based parallel language (ace C) for architecture-adaptive programming allows programmers to implement algorithms and system simulation applications on parallel architectures by providing them with the assurance that future parallel architectures will be able to run their applications with a minimum of modification. In this paper, we will focus on some fundamental features of ace C and present a signal processing application (FFT).

  20. Analysis of three-dimensionally proliferated sensor architectures for flexible SSA

    NASA Astrophysics Data System (ADS)

    Cunio, Phillip M.; Flewelling, Brien

    2018-05-01

    The evolution of space into a congested, contested, and competitive regime drives a commensurate need for awareness of events there. As the number of systems on orbit grows, so will the need for sensing and tracking these systems. One avenue for advanced sensing capability is a widespread network of small but capable Space Situational Awareness (SSA) sensors, proliferated widely in the three-dimensional volume extending from the Earth's surface to the Geosynchronous Earth Orbit (GEO) belt, incorporating multiple different varieties and types of sensors. Due to the freedom of movement afforded by solid surfaces and atmosphere, some of these sensors may have substantial mobility. Accordingly, designing a network for maximum SSA coverage at reasonable cost may entail heterogeneous architectures with common logistics (including modular sensor packages or mobility platforms, which may be flexibly re-assigned). Smaller mobile sensors leveraging Commercial-Off-The-Shelf (COTS) components and software are appealing for their ability to simplify logistics versus large, monolithic, uniquely-exquisite sensor systems. This paper examines concepts for such sensor systems, and analyzes the costs associated with their use, while assessing the benefits (including reduced gap time, weather resilience, and multiple-sensor coverage) that such an architecture enables. Recommendations for preferred modes and mixes of fielding sensors in a heterogeneous architecture are made, and directions for future related research are suggested.

  1. A performance analysis of advanced I/O architectures for PC-based network file servers

    NASA Astrophysics Data System (ADS)

    Huynh, K. D.; Khoshgoftaar, T. M.

    1994-12-01

    In the personal computing and workstation environments, more and more I/O adapters are becoming complete functional subsystems that are intelligent enough to handle I/O operations on their own without much intervention from the host processor. The IBM Subsystem Control Block (SCB) architecture has been defined to enhance the potential of these intelligent adapters by defining services and conventions that deliver command information and data to and from the adapters. In recent years, a new storage architecture, the Redundant Array of Independent Disks (RAID), has been quickly gaining acceptance in the world of computing. In this paper, we would like to discuss critical system design issues that are important to the performance of a network file server. We then present a performance analysis of the SCB architecture and disk array technology in typical network file server environments based on personal computers (PCs). One of the key issues investigated in this paper is whether a disk array can outperform a group of disks (of same type, same data capacity, and same cost) operating independently, not in parallel as in a disk array.

  2. Multi-agent based control of large-scale complex systems employing distributed dynamic inference engine

    NASA Astrophysics Data System (ADS)

    Zhang, Daili

    Increasing societal demand for automation has led to considerable efforts to control large-scale complex systems, especially in the area of autonomous intelligent control methods. The control system of a large-scale complex system needs to satisfy four system level requirements: robustness, flexibility, reusability, and scalability. Corresponding to the four system level requirements, there arise four major challenges. First, it is difficult to get accurate and complete information. Second, the system may be physically highly distributed. Third, the system evolves very quickly. Fourth, emergent global behaviors of the system can be caused by small disturbances at the component level. The Multi-Agent Based Control (MABC) method as an implementation of distributed intelligent control has been the focus of research since the 1970s, in an effort to solve the above-mentioned problems in controlling large-scale complex systems. However, to the author's best knowledge, all MABC systems for large-scale complex systems with significant uncertainties are problem-specific and thus difficult to extend to other domains or larger systems. This situation is partly due to the control architecture of multiple agents being determined by agent to agent coupling and interaction mechanisms. Therefore, the research objective of this dissertation is to develop a comprehensive, generalized framework for the control system design of general large-scale complex systems with significant uncertainties, with the focus on distributed control architecture design and distributed inference engine design. A Hybrid Multi-Agent Based Control (HyMABC) architecture is proposed by combining hierarchical control architecture and module control architecture with logical replication rings. First, it decomposes a complex system hierarchically; second, it combines the components in the same level as a module, and then designs common interfaces for all of the components in the same module; third, replications are made for critical agents and are organized into logical rings. This architecture maintains clear guidelines for complexity decomposition and also increases the robustness of the whole system. Multiple Sectioned Dynamic Bayesian Networks (MSDBNs) as a distributed dynamic probabilistic inference engine, can be embedded into the control architecture to handle uncertainties of general large-scale complex systems. MSDBNs decomposes a large knowledge-based system into many agents. Each agent holds its partial perspective of a large problem domain by representing its knowledge as a Dynamic Bayesian Network (DBN). Each agent accesses local evidence from its corresponding local sensors and communicates with other agents through finite message passing. If the distributed agents can be organized into a tree structure, satisfying the running intersection property and d-sep set requirements, globally consistent inferences are achievable in a distributed way. By using different frequencies for local DBN agent belief updating and global system belief updating, it balances the communication cost with the global consistency of inferences. In this dissertation, a fully factorized Boyen-Koller (BK) approximation algorithm is used for local DBN agent belief updating, and the static Junction Forest Linkage Tree (JFLT) algorithm is used for global system belief updating. MSDBNs assume a static structure and a stable communication network for the whole system. However, for a real system, sub-Bayesian networks as nodes could be lost, and the communication network could be shut down due to partial damage in the system. Therefore, on-line and automatic MSDBNs structure formation is necessary for making robust state estimations and increasing survivability of the whole system. A Distributed Spanning Tree Optimization (DSTO) algorithm, a Distributed D-Sep Set Satisfaction (DDSSS) algorithm, and a Distributed Running Intersection Satisfaction (DRIS) algorithm are proposed in this dissertation. Combining these three distributed algorithms and a Distributed Belief Propagation (DBP) algorithm in MSDBNs makes state estimations robust to partial damage in the whole system. Combining the distributed control architecture design and the distributed inference engine design leads to a process of control system design for a general large-scale complex system. As applications of the proposed methodology, the control system design of a simplified ship chilled water system and a notional ship chilled water system have been demonstrated step by step. Simulation results not only show that the proposed methodology gives a clear guideline for control system design for general large-scale complex systems with dynamic and uncertain environment, but also indicate that the combination of MSDBNs and HyMABC can provide excellent performance for controlling general large-scale complex systems.

  3. Neural network architectures to analyze OPAD data

    NASA Technical Reports Server (NTRS)

    Whitaker, Kevin W.

    1992-01-01

    A prototype Optical Plume Anomaly Detection (OPAD) system is now installed on the space shuttle main engine (SSME) Technology Test Bed (TTB) at MSFC. The OPAD system requirements dictate the need for fast, efficient data processing techniques. To address this need of the OPAD system, a study was conducted into how artificial neural networks could be used to assist in the analysis of plume spectral data.

  4. MOBS - A modular on-board switching system

    NASA Astrophysics Data System (ADS)

    Berner, W.; Grassmann, W.; Piontek, M.

    The authors describe a multibeam satellite system that is designed for business services and for communications at a high bit rate. The repeater is regenerative with a modular onboard switching system. It acts not only as baseband switch but also as the central node of the network, performing network control and protocol evaluation. The hardware is based on a modular bus/memory architecture with associated processors.

  5. Nonlinear neural control with power systems applications

    NASA Astrophysics Data System (ADS)

    Chen, Dingguo

    1998-12-01

    Extensive studies have been undertaken on the transient stability of large interconnected power systems with flexible ac transmission systems (FACTS) devices installed. Varieties of control methodologies have been proposed to stabilize the postfault system which would otherwise eventually lose stability without a proper control. Generally speaking, regular transient stability is well understood, but the mechanism of load-driven voltage instability or voltage collapse has not been well understood. The interaction of generator dynamics and load dynamics makes synthesis of stabilizing controllers even more challenging. There is currently increasing interest in the research of neural networks as identifiers and controllers for dealing with dynamic time-varying nonlinear systems. This study focuses on the development of novel artificial neural network architectures for identification and control with application to dynamic electric power systems so that the stability of the interconnected power systems, following large disturbances, and/or with the inclusion of uncertain loads, can be largely enhanced, and stable operations are guaranteed. The latitudinal neural network architecture is proposed for the purpose of system identification. It may be used for identification of nonlinear static/dynamic loads, which can be further used for static/dynamic voltage stability analysis. The properties associated with this architecture are investigated. A neural network methodology is proposed for dealing with load modeling and voltage stability analysis. Based on the neural network models of loads, voltage stability analysis evolves, and modal analysis is performed. Simulation results are also provided. The transient stability problem is studied with consideration of load effects. The hierarchical neural control scheme is developed. Trajectory-following policy is used so that the hierarchical neural controller performs as almost well for non-nominal cases as they do for the nominal cases. The adaptive hierarchical neural control scheme is also proposed to deal with the time-varying nature of loads. Further, adaptive neural control, which is based on the on-line updating of the weights and biases of the neural networks, is studied. Simulations provided on the faulted power systems with unknown loads suggest that the proposed adaptive hierarchical neural control schemes should be useful for practical power applications.

  6. Confabulation Based Real-time Anomaly Detection for Wide-area Surveillance Using Heterogeneous High Performance Computing Architecture

    DTIC Science & Technology

    2015-06-01

    system accuracy. The AnRAD system was also generalized for the additional application of network intrusion detection . A self-structuring technique...to Host- based Intrusion Detection Systems using Contiguous and Discontiguous System Call Patterns,” IEEE Transactions on Computer, 63(4), pp. 807...square kilometer areas. The anomaly recognition and detection (AnRAD) system was built as a cogent confabulation network . It represented road

  7. A Simple Simulator for Multicomputer Routing Networks

    DTIC Science & Technology

    1992-03-05

    Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that...SUBTITLE Submicron Systems Architecture Project. A Smple Simulator for Multicomputer Routing Networks 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  8. Control of magnetic bearing systems via the Chebyshev polynomial-based unified model (CPBUM) neural network.

    PubMed

    Jeng, J T; Lee, T T

    2000-01-01

    A Chebyshev polynomial-based unified model (CPBUM) neural network is introduced and applied to control a magnetic bearing systems. First, we show that the CPBUM neural network not only has the same capability of universal approximator, but also has faster learning speed than conventional feedforward/recurrent neural network. It turns out that the CPBUM neural network is more suitable in the design of controller than the conventional feedforward/recurrent neural network. Second, we propose the inverse system method, based on the CPBUM neural networks, to control a magnetic bearing system. The proposed controller has two structures; namely, off-line and on-line learning structures. We derive a new learning algorithm for each proposed structure. The experimental results show that the proposed neural network architecture provides a greater flexibility and better performance in controlling magnetic bearing systems.

  9. Web Service Architecture Framework for Embedded Devices

    ERIC Educational Resources Information Center

    Yanzick, Paul David

    2009-01-01

    The use of Service Oriented Architectures, namely web services, has become a widely adopted method for transfer of data between systems across the Internet as well as the Enterprise. Adopting a similar approach to embedded devices is also starting to emerge as personal devices and sensor networks are becoming more common in the industry. This…

  10. A Survey of Some Approaches to Distributed Data Base & Distributed File System Architecture.

    DTIC Science & Technology

    1980-01-01

    BUS POD A DD A 12 12 A = A Cell D = D Cell Figure 7-1: MUFFIN logical architecture - 45 - MUFI January 1980 ".-.Bus Interface V Conventional Processor...and Applied Mathematics (14), * December, 1966. [Kimbleton 791 Kimbleton, Stephen; Wang, Pearl; and Fong, Elizabeth. XNDM: An Experimental Network

  11. 78 FR 63847 - Special Conditions: Embraer S.A., Model EMB-550 Airplanes; Airplane Electronic System Security...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... design feature associated with the architecture and connectivity capabilities of the airplanes' computer... the comment for an association, business, labor union, etc.). DOT's complete Privacy Act Statement can... architecture for the Embraer Model EMB-550 series of airplanes is composed of several connected networks. This...

  12. 78 FR 76252 - Special Conditions: Airbus, Model A350-900 Series Airplane; Isolation or Protection of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-17

    ..., business, labor union, etc.). DOT's complete Privacy Act Statement can be found in the Federal Register... unusual design feature: an electronics network system architecture which is new and novel for commercial... series architecture is new and novel for commercial transport airplanes because it allows connection to...

  13. An information model for a virtual private optical network (OVPN) using virtual routers (VRs)

    NASA Astrophysics Data System (ADS)

    Vo, Viet Minh Nhat

    2002-05-01

    This paper describes a virtual private optical network architecture (Optical VPN - OVPN) based on virtual router (VR). It improves over architectures suggested for virtual private networks by using virtual routers with optical networks. The new things in this architecture are necessary changes to adapt to devices and protocols used in optical networks. This paper also presents information models for the OVPN: at the architecture level and at the service level. These are extensions to the DEN (directory enable network) and CIM (Common Information Model) for OVPNs using VRs. The goal is to propose a common management model using policies.

  14. Experience in running relational databases on clustered storage

    NASA Astrophysics Data System (ADS)

    Gaspar Aparicio, Ruben; Potocky, Miroslav

    2015-12-01

    For past eight years, CERN IT Database group has based its backend storage on NAS (Network-Attached Storage) architecture, providing database access via NFS (Network File System) protocol. In last two and half years, our storage has evolved from a scale-up architecture to a scale-out one. This paper describes our setup and a set of functionalities providing key features to other services like Database on Demand [1] or CERN Oracle backup and recovery service. It also outlines possible trend of evolution that, storage for databases could follow.

  15. Advanced information processing system: Input/output system services

    NASA Technical Reports Server (NTRS)

    Masotto, Tom; Alger, Linda

    1989-01-01

    The functional requirements and detailed specifications for the Input/Output (I/O) Systems Services of the Advanced Information Processing System (AIPS) are discussed. The introductory section is provided to outline the overall architecture and functional requirements of the AIPS system. Section 1.1 gives a brief overview of the AIPS architecture as well as a detailed description of the AIPS fault tolerant network architecture, while section 1.2 provides an introduction to the AIPS systems software. Sections 2 and 3 describe the functional requirements and design and detailed specifications of the I/O User Interface and Communications Management modules of the I/O System Services, respectively. Section 4 illustrates the use of the I/O System Services, while Section 5 concludes with a summary of results and suggestions for future work in this area.

  16. An Novel Architecture of Large-scale Communication in IOT

    NASA Astrophysics Data System (ADS)

    Ma, Wubin; Deng, Su; Huang, Hongbin

    2018-03-01

    In recent years, many scholars have done a great deal of research on the development of Internet of Things and networked physical systems. However, few people have made the detailed visualization of the large-scale communications architecture in the IOT. In fact, the non-uniform technology between IPv6 and access points has led to a lack of broad principles of large-scale communications architectures. Therefore, this paper presents the Uni-IPv6 Access and Information Exchange Method (UAIEM), a new architecture and algorithm that addresses large-scale communications in the IOT.

  17. Non-Intrusive Gaze Tracking Using Artificial Neural Networks

    DTIC Science & Technology

    1994-01-05

    We have developed an artificial neural network based gaze tracking, system which can be customized to individual users. A three layer feed forward...empirical analysis of the performance of a large number of artificial neural network architectures for this task. Suggestions for further explorations...for neurally based gaze trackers are presented, and are related to other similar artificial neural network applications such as autonomous road following.

  18. High performance network and channel-based storage

    NASA Technical Reports Server (NTRS)

    Katz, Randy H.

    1991-01-01

    In the traditional mainframe-centered view of a computer system, storage devices are coupled to the system through complex hardware subsystems called input/output (I/O) channels. With the dramatic shift towards workstation-based computing, and its associated client/server model of computation, storage facilities are now found attached to file servers and distributed throughout the network. We discuss the underlying technology trends that are leading to high performance network-based storage, namely advances in networks, storage devices, and I/O controller and server architectures. We review several commercial systems and research prototypes that are leading to a new approach to high performance computing based on network-attached storage.

  19. Exploring multiple feature combination strategies with a recurrent neural network architecture for off-line handwriting recognition

    NASA Astrophysics Data System (ADS)

    Mioulet, L.; Bideault, G.; Chatelain, C.; Paquet, T.; Brunessaux, S.

    2015-01-01

    The BLSTM-CTC is a novel recurrent neural network architecture that has outperformed previous state of the art algorithms in tasks such as speech recognition or handwriting recognition. It has the ability to process long term dependencies in temporal signals in order to label unsegmented data. This paper describes different ways of combining features using a BLSTM-CTC architecture. Not only do we explore the low level combination (feature space combination) but we also explore high level combination (decoding combination) and mid-level (internal system representation combination). The results are compared on the RIMES word database. Our results show that the low level combination works best, thanks to the powerful data modeling of the LSTM neurons.

  20. ICC '86; Proceedings of the International Conference on Communications, Toronto, Canada, June 22-25, 1986, Conference Record. Volumes 1, 2, & 3

    NASA Astrophysics Data System (ADS)

    Papers are presented on ISDN, mobile radio systems and techniques for digital connectivity, centralized and distributed algorithms in computer networks, communications networks, quality assurance and impact on cost, adaptive filters in communications, the spread spectrum, signal processing, video communication techniques, and digital satellite services. Topics discussed include performance evaluation issues for integrated protocols, packet network operations, the computer network theory and multiple-access, microwave single sideband systems, switching architectures, fiber optic systems, wireless local communications, modulation, coding, and synchronization, remote switching, software quality, transmission, and expert systems in network operations. Consideration is given to wide area networks, image and speech processing, office communications application protocols, multimedia systems, customer-controlled network operations, digital radio systems, channel modeling and signal processing in digital communications, earth station/on-board modems, computer communications system performance evaluation, source encoding, compression, and quantization, and adaptive communications systems.

  1. Biological engineering applications of feedforward neural networks designed and parameterized by genetic algorithms.

    PubMed

    Ferentinos, Konstantinos P

    2005-09-01

    Two neural network (NN) applications in the field of biological engineering are developed, designed and parameterized by an evolutionary method based on the evolutionary process of genetic algorithms. The developed systems are a fault detection NN model and a predictive modeling NN system. An indirect or 'weak specification' representation was used for the encoding of NN topologies and training parameters into genes of the genetic algorithm (GA). Some a priori knowledge of the demands in network topology for specific application cases is required by this approach, so that the infinite search space of the problem is limited to some reasonable degree. Both one-hidden-layer and two-hidden-layer network architectures were explored by the GA. Except for the network architecture, each gene of the GA also encoded the type of activation functions in both hidden and output nodes of the NN and the type of minimization algorithm that was used by the backpropagation algorithm for the training of the NN. Both models achieved satisfactory performance, while the GA system proved to be a powerful tool that can successfully replace the problematic trial-and-error approach that is usually used for these tasks.

  2. Portable data collection terminal in the automated power consumption measurement system

    NASA Astrophysics Data System (ADS)

    Vologdin, S. V.; Shushkov, I. D.; Bysygin, E. K.

    2018-01-01

    Aim of efficiency increasing, automation process of electric energy data collection and processing is very important at present time. High cost of classic electric energy billing systems prevent from its mass application. Udmurtenergo Branch of IDGC of Center and Volga Region developed electronic automated system called “Mobile Energy Billing” based on data collection terminals. System joins electronic components based on service-oriented architecture, WCF services. At present time all parts of Udmurtenergo Branch electric network are connected to “Mobile Energy Billing” project. System capabilities are expanded due to flexible architecture.

  3. UMA/GAN network architecture analysis

    NASA Astrophysics Data System (ADS)

    Yang, Liang; Li, Wensheng; Deng, Chunjian; Lv, Yi

    2009-07-01

    This paper is to critically analyze the architecture of UMA which is one of Fix Mobile Convergence (FMC) solutions, and also included by the third generation partnership project(3GPP). In UMA/GAN network architecture, UMA Network Controller (UNC) is the key equipment which connects with cellular core network and mobile station (MS). UMA network could be easily integrated into the existing cellular networks without influencing mobile core network, and could provides high-quality mobile services with preferentially priced indoor voice and data usage. This helps to improve subscriber's experience. On the other hand, UMA/GAN architecture helps to integrate other radio technique into cellular network which includes WiFi, Bluetooth, and WiMax and so on. This offers the traditional mobile operators an opportunity to integrate WiMax technique into cellular network. In the end of this article, we also give an analysis of potential influence on the cellular core networks ,which is pulled by UMA network.

  4. Evolution of Bow-Tie Architectures in Biology

    PubMed Central

    Friedlander, Tamar; Mayo, Avraham E.; Tlusty, Tsvi; Alon, Uri

    2015-01-01

    Bow-tie or hourglass structure is a common architectural feature found in many biological systems. A bow-tie in a multi-layered structure occurs when intermediate layers have much fewer components than the input and output layers. Examples include metabolism where a handful of building blocks mediate between multiple input nutrients and multiple output biomass components, and signaling networks where information from numerous receptor types passes through a small set of signaling pathways to regulate multiple output genes. Little is known, however, about how bow-tie architectures evolve. Here, we address the evolution of bow-tie architectures using simulations of multi-layered systems evolving to fulfill a given input-output goal. We find that bow-ties spontaneously evolve when the information in the evolutionary goal can be compressed. Mathematically speaking, bow-ties evolve when the rank of the input-output matrix describing the evolutionary goal is deficient. The maximal compression possible (the rank of the goal) determines the size of the narrowest part of the network—that is the bow-tie. A further requirement is that a process is active to reduce the number of links in the network, such as product-rule mutations, otherwise a non-bow-tie solution is found in the evolutionary simulations. This offers a mechanism to understand a common architectural principle of biological systems, and a way to quantitate the effective rank of the goals under which they evolved. PMID:25798588

  5. SensoTube: A Scalable Hardware Design Architecture for Wireless Sensors and Actuators Networks Nodes in the Agricultural Domain.

    PubMed

    Piromalis, Dimitrios; Arvanitis, Konstantinos

    2016-08-04

    Wireless Sensor and Actuators Networks (WSANs) constitute one of the most challenging technologies with tremendous socio-economic impact for the next decade. Functionally and energy optimized hardware systems and development tools maybe is the most critical facet of this technology for the achievement of such prospects. Especially, in the area of agriculture, where the hostile operating environment comes to add to the general technological and technical issues, reliable and robust WSAN systems are mandatory. This paper focuses on the hardware design architectures of the WSANs for real-world agricultural applications. It presents the available alternatives in hardware design and identifies their difficulties and problems for real-life implementations. The paper introduces SensoTube, a new WSAN hardware architecture, which is proposed as a solution to the various existing design constraints of WSANs. The establishment of the proposed architecture is based, firstly on an abstraction approach in the functional requirements context, and secondly, on the standardization of the subsystems connectivity, in order to allow for an open, expandable, flexible, reconfigurable, energy optimized, reliable and robust hardware system. The SensoTube implementation reference model together with its encapsulation design and installation are analyzed and presented in details. Furthermore, as a proof of concept, certain use cases have been studied in order to demonstrate the benefits of migrating existing designs based on the available open-source hardware platforms to SensoTube architecture.

  6. An open, interoperable, and scalable prehospital information technology network architecture.

    PubMed

    Landman, Adam B; Rokos, Ivan C; Burns, Kevin; Van Gelder, Carin M; Fisher, Roger M; Dunford, James V; Cone, David C; Bogucki, Sandy

    2011-01-01

    Some of the most intractable challenges in prehospital medicine include response time optimization, inefficiencies at the emergency medical services (EMS)-emergency department (ED) interface, and the ability to correlate field interventions with patient outcomes. Information technology (IT) can address these and other concerns by ensuring that system and patient information is received when and where it is needed, is fully integrated with prior and subsequent patient information, and is securely archived. Some EMS agencies have begun adopting information technologies, such as wireless transmission of 12-lead electrocardiograms, but few agencies have developed a comprehensive plan for management of their prehospital information and integration with other electronic medical records. This perspective article highlights the challenges and limitations of integrating IT elements without a strategic plan, and proposes an open, interoperable, and scalable prehospital information technology (PHIT) architecture. The two core components of this PHIT architecture are 1) routers with broadband network connectivity to share data between ambulance devices and EMS system information services and 2) an electronic patient care report to organize and archive all electronic prehospital data. To successfully implement this comprehensive PHIT architecture, data and technology requirements must be based on best available evidence, and the system must adhere to health data standards as well as privacy and security regulations. Recent federal legislation prioritizing health information technology may position federal agencies to help design and fund PHIT architectures.

  7. Modelling and prediction for chaotic fir laser attractor using rational function neural network.

    PubMed

    Cho, S

    2001-02-01

    Many real-world systems such as irregular ECG signal, volatility of currency exchange rate and heated fluid reaction exhibit highly complex nonlinear characteristic known as chaos. These chaotic systems cannot be retreated satisfactorily using linear system theory due to its high dimensionality and irregularity. This research focuses on prediction and modelling of chaotic FIR (Far InfraRed) laser system for which the underlying equations are not given. This paper proposed a method for prediction and modelling a chaotic FIR laser time series using rational function neural network. Three network architectures, TDNN (Time Delayed Neural Network), RBF (radial basis function) network and the RF (rational function) network, are also presented. Comparisons between these networks performance show the improvements introduced by the RF network in terms of a decrement in network complexity and better ability of predictability.

  8. Mathematical defense method of networked servers with controlled remote backups

    NASA Astrophysics Data System (ADS)

    Kim, Song-Kyoo

    2006-05-01

    The networked server defense model is focused on reliability and availability in security respects. The (remote) backup servers are hooked up by VPN (Virtual Private Network) with high-speed optical network and replace broken main severs immediately. The networked server can be represent as "machines" and then the system deals with main unreliable, spare, and auxiliary spare machine. During vacation periods, when the system performs a mandatory routine maintenance, auxiliary machines are being used for back-ups; the information on the system is naturally delayed. Analog of the N-policy to restrict the usage of auxiliary machines to some reasonable quantity. The results are demonstrated in the network architecture by using the stochastic optimization techniques.

  9. Scalable Architecture for Multihop Wireless ad Hoc Networks

    NASA Technical Reports Server (NTRS)

    Arabshahi, Payman; Gray, Andrew; Okino, Clayton; Yan, Tsun-Yee

    2004-01-01

    A scalable architecture for wireless digital data and voice communications via ad hoc networks has been proposed. Although the details of the architecture and of its implementation in hardware and software have yet to be developed, the broad outlines of the architecture are fairly clear: This architecture departs from current commercial wireless communication architectures, which are characterized by low effective bandwidth per user and are not well suited to low-cost, rapid scaling in large metropolitan areas. This architecture is inspired by a vision more akin to that of more than two dozen noncommercial community wireless networking organizations established by volunteers in North America and several European countries.

  10. Rio: a dynamic self-healing services architecture using Jini networking technology

    NASA Astrophysics Data System (ADS)

    Clarke, James B.

    2002-06-01

    Current mainstream distributed Java architectures offer great capabilities embracing conventional enterprise architecture patterns and designs. These traditional systems provide robust transaction oriented environments that are in large part focused on data and host processors. Typically, these implementations require that an entire application be deployed on every machine that will be used as a compute resource. In order for this to happen, the application is usually taken down, installed and started with all systems in-sync and knowing about each other. Static environments such as these present an extremely difficult environment to setup, deploy and administer.

  11. The architecture of the management system of complex steganographic information

    NASA Astrophysics Data System (ADS)

    Evsutin, O. O.; Meshcheryakov, R. V.; Kozlova, A. S.; Solovyev, T. M.

    2017-01-01

    The aim of the study is to create a wide area information system that allows one to control processes of generation, embedding, extraction, and detection of steganographic information. In this paper, the following problems are considered: the definition of the system scope and the development of its architecture. For creation of algorithmic maintenance of the system, classic methods of steganography are used to embed information. Methods of mathematical statistics and computational intelligence are used to identify the embedded information. The main result of the paper is the development of the architecture of the management system of complex steganographic information. The suggested architecture utilizes cloud technology in order to provide service using the web-service via the Internet. It is meant to provide streams of multimedia data processing that are streams with many sources of different types. The information system, built in accordance with the proposed architecture, will be used in the following areas: hidden transfer of documents protected by medical secrecy in telemedicine systems; copyright protection of online content in public networks; prevention of information leakage caused by insiders.

  12. Computing Systemic Risk Using Multiple Behavioral and Keystone Networks: The Emergence of a Crisis in Primate Societies and Banks*

    PubMed Central

    Fushing, Hsieh; Jordà, Òscar; Beisner, Brianne; McCowan, Brenda

    2015-01-01

    What do the behavior of monkeys in captivity and the financial system have in common? The nodes in such social systems relate to each other through multiple and keystone networks, not just one network. Each network in the system has its own topology, and the interactions among the system’s networks change over time. In such systems, the lead into a crisis appears to be characterized by a decoupling of the networks from the keystone network. This decoupling can also be seen in the crumbling of the keystone’s power structure toward a more horizontal hierarchy. This paper develops nonparametric methods for describing the joint model of the latent architecture of interconnected networks in order to describe this process of decoupling, and hence provide an early warning system of an impending crisis. PMID:26056422

  13. Adaptive Neuron Model: An architecture for the rapid learning of nonlinear topological transformations

    NASA Technical Reports Server (NTRS)

    Tawel, Raoul (Inventor)

    1994-01-01

    A method for the rapid learning of nonlinear mappings and topological transformations using a dynamically reconfigurable artificial neural network is presented. This fully-recurrent Adaptive Neuron Model (ANM) network was applied to the highly degenerate inverse kinematics problem in robotics, and its performance evaluation is bench-marked. Once trained, the resulting neuromorphic architecture was implemented in custom analog neural network hardware and the parameters capturing the functional transformation downloaded onto the system. This neuroprocessor, capable of 10(exp 9) ops/sec, was interfaced directly to a three degree of freedom Heathkit robotic manipulator. Calculation of the hardware feed-forward pass for this mapping was benchmarked at approximately 10 microsec.

  14. An architecture for designing fuzzy logic controllers using neural networks

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1991-01-01

    Described here is an architecture for designing fuzzy controllers through a hierarchical process of control rule acquisition and by using special classes of neural network learning techniques. A new method for learning to refine a fuzzy logic controller is introduced. A reinforcement learning technique is used in conjunction with a multi-layer neural network model of a fuzzy controller. The model learns by updating its prediction of the plant's behavior and is related to the Sutton's Temporal Difference (TD) method. The method proposed here has the advantage of using the control knowledge of an experienced operator and fine-tuning it through the process of learning. The approach is applied to a cart-pole balancing system.

  15. Abasy Atlas: a comprehensive inventory of systems, global network properties and systems-level elements across bacteria

    PubMed Central

    Ibarra-Arellano, Miguel A.; Campos-González, Adrián I.; Treviño-Quintanilla, Luis G.; Tauch, Andreas; Freyre-González, Julio A.

    2016-01-01

    The availability of databases electronically encoding curated regulatory networks and of high-throughput technologies and methods to discover regulatory interactions provides an invaluable source of data to understand the principles underpinning the organization and evolution of these networks responsible for cellular regulation. Nevertheless, data on these sources never goes beyond the regulon level despite the fact that regulatory networks are complex hierarchical-modular structures still challenging our understanding. This brings the necessity for an inventory of systems across a large range of organisms, a key step to rendering feasible comparative systems biology approaches. In this work, we take the first step towards a global understanding of the regulatory networks organization by making a cartography of the functional architectures of diverse bacteria. Abasy (Across-bacteria systems) Atlas provides a comprehensive inventory of annotated functional systems, global network properties and systems-level elements (global regulators, modular genes shaping functional systems, basal machinery genes and intermodular genes) predicted by the natural decomposition approach for reconstructed and meta-curated regulatory networks across a large range of bacteria, including pathogenically and biotechnologically relevant organisms. The meta-curation of regulatory datasets provides the most complete and reliable set of regulatory interactions currently available, which can even be projected into subsets by considering the force or weight of evidence supporting them or the systems that they belong to. Besides, Abasy Atlas provides data enabling large-scale comparative systems biology studies aimed at understanding the common principles and particular lifestyle adaptions of systems across bacteria. Abasy Atlas contains systems and system-level elements for 50 regulatory networks comprising 78 649 regulatory interactions covering 42 bacteria in nine taxa, containing 3708 regulons and 1776 systems. All this brings together a large corpus of data that will surely inspire studies to generate hypothesis regarding the principles governing the evolution and organization of systems and the functional architectures controlling them. Database URL: http://abasy.ccg.unam.mx PMID:27242034

  16. Comparison of different artificial neural network architectures in modeling of Chlorella sp. flocculation.

    PubMed

    Zenooz, Alireza Moosavi; Ashtiani, Farzin Zokaee; Ranjbar, Reza; Nikbakht, Fatemeh; Bolouri, Oberon

    2017-07-03

    Biodiesel production from microalgae feedstock should be performed after growth and harvesting of the cells, and the most feasible method for harvesting and dewatering of microalgae is flocculation. Flocculation modeling can be used for evaluation and prediction of its performance under different affective parameters. However, the modeling of flocculation in microalgae is not simple and has not performed yet, under all experimental conditions, mostly due to different behaviors of microalgae cells during the process under different flocculation conditions. In the current study, the modeling of microalgae flocculation is studied with different neural network architectures. Microalgae species, Chlorella sp., was flocculated with ferric chloride under different conditions and then the experimental data modeled using artificial neural network. Neural network architectures of multilayer perceptron (MLP) and radial basis function architectures, failed to predict the targets successfully, though, modeling was effective with ensemble architecture of MLP networks. Comparison between the performances of the ensemble and each individual network explains the ability of the ensemble architecture in microalgae flocculation modeling.

  17. An Overlay Architecture for Throughput Optimal Multipath Routing

    DTIC Science & Technology

    2017-01-14

    1 An Overlay Architecture for Throughput Optimal Multipath Routing Nathaniel M. Jones, Georgios S. Paschos, Brooke Shrader, and Eytan Modiano...decisions. In this work, we study an overlay architecture for dynamic routing such that only a subset of devices (overlay nodes) need to make dynamic routing...a legacy network. Network overlays are frequently used to deploy new communication architectures in legacy networks [13]. To accomplish this, messages

  18. Networks: A Review of Their Technology, Architecture, and Implementation.

    ERIC Educational Resources Information Center

    Learn, Larry L.

    1988-01-01

    This overview of network-related technologies covers network elements, analog and digital signals, transmission media and their characteristics, equipment certification, multiplexing, network types, access technologies, network architectures local-area network technologies and attributes, protocols, internetworking, fiber optics versus satellites,…

  19. System architecture of communication infrastructures for PPDR organisations

    NASA Astrophysics Data System (ADS)

    Müller, Wilmuth

    2017-04-01

    The growing number of events affecting public safety and security (PS and S) on a regional scale with potential to grow up to large scale cross border disasters puts an increased pressure on organizations responsible for PS and S. In order to respond timely and in an adequate manner to such events Public Protection and Disaster Relief (PPDR) organizations need to cooperate, align their procedures and activities, share the needed information and be interoperable. Existing PPDR/PMR technologies do not provide broadband capability, which is a major limitation in supporting new services hence new information flows and currently they have no successor. There is also no known standard that addresses interoperability of these technologies. The paper at hands provides an approach to tackle the above mentioned aspects by defining an Enterprise Architecture (EA) of PPDR organizations and a System Architecture of next generation PPDR communication networks for a variety of applications and services on broadband networks, including the ability of inter-system, inter-agency and cross-border operations. The Open Safety and Security Architecture Framework (OSSAF) provides a framework and approach to coordinate the perspectives of different types of stakeholders within a PS and S organization. It aims at bridging the silos in the chain of commands and on leveraging interoperability between PPDR organizations. The framework incorporates concepts of several mature enterprise architecture frameworks including the NATO Architecture Framework (NAF). However, OSSAF is not providing details on how NAF should be used for describing the OSSAF perspectives and views. In this contribution a mapping of the NAF elements to the OSSAF views is provided. Based on this mapping, an EA of PPDR organizations with a focus on communication infrastructure related capabilities is presented. Following the capability modeling, a system architecture for secure and interoperable communication infrastructures for PPDR organizations is presented. This architecture was implemented within a project sponsored by the European Union and successfully demonstrated in a live validation exercise in June 2016.

  20. Segregated Systems of Human Brain Networks.

    PubMed

    Wig, Gagan S

    2017-12-01

    The organization of the brain network enables its function. Evaluation of this organization has revealed that large-scale brain networks consist of multiple segregated subnetworks of interacting brain areas. Descriptions of resting-state network architecture have provided clues for understanding the functional significance of these segregated subnetworks, many of which correspond to distinct brain systems. The present report synthesizes accumulating evidence to reveal how maintaining segregated brain systems renders the human brain network functionally specialized, adaptable to task demands, and largely resilient following focal brain damage. The organizational properties that support system segregation are harmonious with the properties that promote integration across the network, but confer unique and important features to the brain network that are central to its function and behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Using architecture information and real-time resource state to reduce power consumption and communication costs in parallel applications.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, James M.; Devine, Karen Dragon; Gentile, Ann C.

    2014-09-01

    As computer systems grow in both size and complexity, the need for applications and run-time systems to adjust to their dynamic environment also grows. The goal of the RAAMP LDRD was to combine static architecture information and real-time system state with algorithms to conserve power, reduce communication costs, and avoid network contention. We devel- oped new data collection and aggregation tools to extract static hardware information (e.g., node/core hierarchy, network routing) as well as real-time performance data (e.g., CPU uti- lization, power consumption, memory bandwidth saturation, percentage of used bandwidth, number of network stalls). We created application interfaces that allowedmore » this data to be used easily by algorithms. Finally, we demonstrated the benefit of integrating system and application information for two use cases. The first used real-time power consumption and memory bandwidth saturation data to throttle concurrency to save power without increasing application execution time. The second used static or real-time network traffic information to reduce or avoid network congestion by remapping MPI tasks to allocated processors. Results from our work are summarized in this report; more details are available in our publications [2, 6, 14, 16, 22, 29, 38, 44, 51, 54].« less

  2. Advanced Communication and Networking Technologies for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul; Hayden, Jeff; Agre, Jonathan R.; Clare, Loren P.; Yan, Tsun-Yee

    2001-01-01

    Next-generation Mars communications networks will provide communications and navigation services to a wide variety of Mars science vehicles including: spacecraft that are arriving at Mars, spacecraft that are entering and descending in the Mars atmosphere, scientific orbiter spacecraft, spacecraft that return Mars samples to Earth, landers, rovers, aerobots, airplanes, and sensing pods. In the current architecture plans, the communication services will be provided using capabilities deployed on the science vehicles as well as dedicated communication satellites that will together make up the Mars network. This network will evolve as additional vehicles arrive, depart or end their useful missions. Cost savings and increased reliability will result from the ability to share communication services between missions. This paper discusses the basic architecture that is needed to support the Mars Communications Network part of NASA's Space Science Enterprise (SSE) communications architecture. The network may use various networking technologies such as those employed in the terrestrial Internet, as well as special purpose deep-space protocols to move data and commands autonomously between vehicles, at disparate Mars vicinity sites (on the surface or in near-Mars space) and between Mars vehicles and earthbound users. The architecture of the spacecraft on-board local communications is being reconsidered in light of these new networking requirements. The trend towards increasingly autonomous operation of the spacecraft is aimed at reducing the dependence on resource scheduling provided by Earth-based operators and increasing system fault tolerance. However, these benefits will result in increased communication and software development requirements. As a result, the envisioned Mars communications infrastructure requires both hardware and protocol technology advancements. This paper will describe a number of the critical technology needs and some of the ongoing research activities.

  3. Cyber Security Research Frameworks For Coevolutionary Network Defense

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rush, George D.; Tauritz, Daniel Remy

    Several architectures have been created for developing and testing systems used in network security, but most are meant to provide a platform for running cyber security experiments as opposed to automating experiment processes. In the first paper, we propose a framework termed Distributed Cyber Security Automation Framework for Experiments (DCAFE) that enables experiment automation and control in a distributed environment. Predictive analysis of adversaries is another thorny issue in cyber security. Game theory can be used to mathematically analyze adversary models, but its scalability limitations restrict its use. Computational game theory allows us to scale classical game theory to larger,more » more complex systems. In the second paper, we propose a framework termed Coevolutionary Agent-based Network Defense Lightweight Event System (CANDLES) that can coevolve attacker and defender agent strategies and capabilities and evaluate potential solutions with a custom network defense simulation. The third paper is a continuation of the CANDLES project in which we rewrote key parts of the framework. Attackers and defenders have been redesigned to evolve pure strategy, and a new network security simulation is devised which specifies network architecture and adds a temporal aspect. We also add a hill climber algorithm to evaluate the search space and justify the use of a coevolutionary algorithm.« less

  4. Networks on the Edge of Forever: Examining the Feasibility of using Meteor Burst (MB) Communication Networks on Mars

    NASA Astrophysics Data System (ADS)

    Charania, A.

    2002-01-01

    The envisioned future may include continuous operating outposts and networks on other worlds supporting human and robotic exploration. Given this possibility, a feasibility analysis is performed of a communications architecture based upon reflection of ion trails from meteors in planetary atmospheres. Meteor Burst (MB) communication systems use meteoritic impacts on planetary atmospheres as two-way, short burst communication nodes. MB systems consist of semi-continuous, low bandwidth networks. These systems possess both long distance capability (hundred of kilometers) and have lower susceptibility to atmospheric perturbations. Every day millions of meteors come into Earth's upper atmosphere with enough energy to ionize gas molecules suitably to reflect radio waves and facilitate communications beyond line of site. The ionized trail occurs at altitudes of 100 km with lengths reaching 30 km. The trial sustains itself long enough to support typical network distances of 1800 km. The initial step to use meteors in this fashion includes detection of a usable ionic trail. A probe signal is sent from one station to another in the network. If there is a meteor trail present, the probe signal is reflected to a receiving station. When another station receives the probe signal, it sends an acknowledgement to the originating station to proceed with transfer on that trail in a high-speed digital data burst. This probe-main signal handshaking occurs each time a burst of data is sent and can occur several times over the course of just one useable meteor trail. Given the need for non-data sending probe signals and error correcting bits; typical transmission data rates vary from a few kilobits per second to over 100 kilobits per second. On Earth, MB links open up hundreds of time per hour depending upon daily and seasonal variations. Meteor bursts were first noticed in detail in the 1930s. With the capabilities of modern computer processing, MB systems have become both technically feasible and commercially viable for selected applications on Earth. Terrestrial applications currently include weather monitoring, river monitoring, transport tracking, emergency detection, two-way messaging, and vehicle performance monitoring. Translation of such a system beyond Earth requires an atmosphere; therefore Martian analogues of such a system are presented. Such systems could support planetary mobility (for humans and robots), weather stations, and emergency communications while minimizing the need for massive orbital telecommunication constellations. For this investigation, a conceptual Meteor Burst (MB) communication architecture is developed to assess potential viability in supporting planetary exploration missions on Mars. Current terrestrial systems are extrapolated to generate candidate network architectures for selected science applications. Technology road mapping activities are also performed on these architectures.

  5. Construction of Endo-Time and its Manipulation in Autopoietic Systems

    NASA Astrophysics Data System (ADS)

    Balaž, Igor

    2005-10-01

    Two main factors determine construction of internal temporal architecture in autopoietic systems: external pressure and network of internal interdependences. External influences are given for systems and they are only able to incorporate them into its own functional and temporal blueprint, with very small space for further manipulations. But, internal processes, or more precisely, irreversible reductions toward determined states are enclosed into mobile and alterative network of re-productive cycles. On that basis autopoietic systems are able to construct and manipulate with different temporal strategies as reversibility, delaying, circularity, spiral flows, different distribution of times and so on. Special case is construction of transient time fields, called here intersubjective times, that arise as fusions of two or more specific temporal architectures during their interactions. This paper describes construction of internal proliferation of time patterns and analyze their functional usefulness.

  6. Interpretive Analysis of the Joint Maritime Command Information System (JMCIS) Sensitive Compartmented Information (SCI) Local Area Network (LAN) security Requirements

    DTIC Science & Technology

    1994-09-01

    as Copernicus brought about a revolutionary paradigm shift in astronomy , the Copernicus Architecture was so named because it represents a...34 ........................................ 7 3. The Navy’s Copernicus Architecture .......................................... 8 B . SY ST E M S...evolution of JMCIS are DoD’s Corporate Information Management (CIM), The Joint Staffs "C41 for the Warrior", and the Navy’s Copernicus architecture programs

  7. A distributed parallel storage architecture and its potential application within EOSDIS

    NASA Technical Reports Server (NTRS)

    Johnston, William E.; Tierney, Brian; Feuquay, Jay; Butzer, Tony

    1994-01-01

    We describe the architecture, implementation, use of a scalable, high performance, distributed-parallel data storage system developed in the ARPA funded MAGIC gigabit testbed. A collection of wide area distributed disk servers operate in parallel to provide logical block level access to large data sets. Operated primarily as a network-based cache, the architecture supports cooperation among independently owned resources to provide fast, large-scale, on-demand storage to support data handling, simulation, and computation.

  8. A new HLA-based distributed control architecture for agricultural teams of robots in hybrid applications with real and simulated devices or environments.

    PubMed

    Nebot, Patricio; Torres-Sospedra, Joaquín; Martínez, Rafael J

    2011-01-01

    The control architecture is one of the most important part of agricultural robotics and other robotic systems. Furthermore its importance increases when the system involves a group of heterogeneous robots that should cooperate to achieve a global goal. A new control architecture is introduced in this paper for groups of robots in charge of doing maintenance tasks in agricultural environments. Some important features such as scalability, code reuse, hardware abstraction and data distribution have been considered in the design of the new architecture. Furthermore, coordination and cooperation among the different elements in the system is allowed in the proposed control system. By integrating a network oriented device server Player, Java Agent Development Framework (JADE) and High Level Architecture (HLA), the previous concepts have been considered in the new architecture presented in this paper. HLA can be considered the most important part because it not only allows the data distribution and implicit communication among the parts of the system but also allows to simultaneously operate with simulated and real entities, thus allowing the use of hybrid systems in the development of applications.

  9. Selective randomized load balancing and mesh networks with changing demands

    NASA Astrophysics Data System (ADS)

    Shepherd, F. B.; Winzer, P. J.

    2006-05-01

    We consider the problem of building cost-effective networks that are robust to dynamic changes in demand patterns. We compare several architectures using demand-oblivious routing strategies. Traditional approaches include single-hop architectures based on a (static or dynamic) circuit-switched core infrastructure and multihop (packet-switched) architectures based on point-to-point circuits in the core. To address demand uncertainty, we seek minimum cost networks that can carry the class of hose demand matrices. Apart from shortest-path routing, Valiant's randomized load balancing (RLB), and virtual private network (VPN) tree routing, we propose a third, highly attractive approach: selective randomized load balancing (SRLB). This is a blend of dual-hop hub routing and randomized load balancing that combines the advantages of both architectures in terms of network cost, delay, and delay jitter. In particular, we give empirical analyses for the cost (in terms of transport and switching equipment) for the discussed architectures, based on three representative carrier networks. Of these three networks, SRLB maintains the resilience properties of RLB while achieving significant cost reduction over all other architectures, including RLB and multihop Internet protocol/multiprotocol label switching (IP/MPLS) networks using VPN-tree routing.

  10. Applications of wireless sensor networks in marine environment monitoring: a survey.

    PubMed

    Xu, Guobao; Shen, Weiming; Wang, Xianbin

    2014-09-11

    With the rapid development of society and the economy, an increasing number of human activities have gradually destroyed the marine environment. Marine environment monitoring is a vital problem and has increasingly attracted a great deal of research and development attention. During the past decade, various marine environment monitoring systems have been developed. The traditional marine environment monitoring system using an oceanographic research vessel is expensive and time-consuming and has a low resolution both in time and space. Wireless Sensor Networks (WSNs) have recently been considered as potentially promising alternatives for monitoring marine environments since they have a number of advantages such as unmanned operation, easy deployment, real-time monitoring, and relatively low cost. This paper provides a comprehensive review of the state-of-the-art technologies in the field of marine environment monitoring using wireless sensor networks. It first describes application areas, a common architecture of WSN-based oceanographic monitoring systems, a general architecture of an oceanographic sensor node, sensing parameters and sensors, and wireless communication technologies. Then, it presents a detailed review of some related projects, systems, techniques, approaches and algorithms. It also discusses challenges and opportunities in the research, development, and deployment of wireless sensor networks for marine environment monitoring.

  11. 77 FR 74226 - Excepted Service

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-13

    ..., network and systems engineering, enterprise architecture, intelligence analysis, investigation... Affairs. Bureau of Economic Staff Assistant.... DS120122 10/11/2012 and Business Affairs. Bureau of...

  12. Knowledge Innovation System: The Common Language.

    ERIC Educational Resources Information Center

    Rogers, Debra M. Amidon

    1993-01-01

    The Knowledge Innovation System is a management technique in which a networked enterprise uses knowledge flow as a collaborative advantage. Enterprise Management System-Architecture, which can be applied to collaborative activities, has five domains: economic, sociological, psychological, managerial, and technological. (SK)

  13. System data communication structures for active-control transport aircraft, volume 1

    NASA Technical Reports Server (NTRS)

    Hopkins, A. L.; Martin, J. H.; Brock, L. D.; Jansson, D. G.; Serben, S.; Smith, T. B.; Hanley, L. D.

    1981-01-01

    Candidate data communication techniques are identified, including dedicated links, local buses, broadcast buses, multiplex buses, and mesh networks. The design methodology for mesh networks is then discussed, including network topology and node architecture. Several concepts of power distribution are reviewed, including current limiting and mesh networks for power. The technology issues of packaging, transmission media, and lightning are addressed, and, finally, the analysis tools developed to aid in the communication design process are described. There are special tools to analyze the reliability and connectivity of networks and more general reliability analysis tools for all types of systems.

  14. A hybrid method for protection against threats to a network infrastructure for an electronic warfare management system

    NASA Astrophysics Data System (ADS)

    Byłak, Michał; RóŻański, Grzegorz

    2017-04-01

    The article presents the concept of ensuring the security of network information infrastructure for the management of Electronic Warfare (EW) systems. The concept takes into account the reactive and proactive tools against threats. An overview of the methods used to support the safety of IT networks and information sources about threats is presented. Integration of mechanisms that allow for effective intrusion detection and rapid response to threats in a network has been proposed. The architecture of the research environment is also presented.

  15. Scalable sensor management for automated fusion and tactical reconnaissance

    NASA Astrophysics Data System (ADS)

    Walls, Thomas J.; Wilson, Michael L.; Partridge, Darin C.; Haws, Jonathan R.; Jensen, Mark D.; Johnson, Troy R.; Petersen, Brad D.; Sullivan, Stephanie W.

    2013-05-01

    The capabilities of tactical intelligence, surveillance, and reconnaissance (ISR) payloads are expanding from single sensor imagers to integrated systems-of-systems architectures. Increasingly, these systems-of-systems include multiple sensing modalities that can act as force multipliers for the intelligence analyst. Currently, the separate sensing modalities operate largely independent of one another, providing a selection of operating modes but not an integrated intelligence product. We describe here a Sensor Management System (SMS) designed to provide a small, compact processing unit capable of managing multiple collaborative sensor systems on-board an aircraft. Its purpose is to increase sensor cooperation and collaboration to achieve intelligent data collection and exploitation. The SMS architecture is designed to be largely sensor and data agnostic and provide flexible networked access for both data providers and data consumers. It supports pre-planned and ad-hoc missions, with provisions for on-demand tasking and updates from users connected via data links. Management of sensors and user agents takes place over standard network protocols such that any number and combination of sensors and user agents, either on the local network or connected via data link, can register with the SMS at any time during the mission. The SMS provides control over sensor data collection to handle logging and routing of data products to subscribing user agents. It also supports the addition of algorithmic data processing agents for feature/target extraction and provides for subsequent cueing from one sensor to another. The SMS architecture was designed to scale from a small UAV carrying a limited number of payloads to an aircraft carrying a large number of payloads. The SMS system is STANAG 4575 compliant as a removable memory module (RMM) and can act as a vehicle specific module (VSM) to provide STANAG 4586 compliance (level-3 interoperability) to a non-compliant sensor system. The SMS architecture will be described and results from several flight tests and simulations will be shown.

  16. A Novel Design of an Automatic Lighting Control System for a Wireless Sensor Network with Increased Sensor Lifetime and Reduced Sensor Numbers

    PubMed Central

    Mohamaddoust, Reza; Haghighat, Abolfazl Toroghi; Sharif, Mohamad Javad Motahari; Capanni, Niccolo

    2011-01-01

    Wireless sensor networks (WSN) are currently being applied to energy conservation applications such as light control. We propose a design for such a system called a Lighting Automatic Control System (LACS). The LACS system contains a centralized or distributed architecture determined by application requirements and space usage. The system optimizes the calculations and communications for lighting intensity, incorporates user illumination requirements according to their activities and performs adjustments based on external lighting effects in external sensor and external sensor-less architectures. Methods are proposed for reducing the number of sensors required and increasing the lifetime of those used, for considerably reduced energy consumption. Additionally we suggest methods for improving uniformity of illuminance distribution on a workplane’s surface, which improves user satisfaction. Finally simulation results are presented to verify the effectiveness of our design. PMID:22164114

  17. A novel design of an automatic lighting control system for a wireless sensor network with increased sensor lifetime and reduced sensor numbers.

    PubMed

    Mohamaddoust, Reza; Haghighat, Abolfazl Toroghi; Sharif, Mohamad Javad Motahari; Capanni, Niccolo

    2011-01-01

    Wireless sensor networks (WSN) are currently being applied to energy conservation applications such as light control. We propose a design for such a system called a lighting automatic control system (LACS). The LACS system contains a centralized or distributed architecture determined by application requirements and space usage. The system optimizes the calculations and communications for lighting intensity, incorporates user illumination requirements according to their activities and performs adjustments based on external lighting effects in external sensor and external sensor-less architectures. Methods are proposed for reducing the number of sensors required and increasing the lifetime of those used, for considerably reduced energy consumption. Additionally we suggest methods for improving uniformity of illuminance distribution on a workplane's surface, which improves user satisfaction. Finally simulation results are presented to verify the effectiveness of our design.

  18. Software Defined Networking (SDN) controlled all optical switching networks with multi-dimensional switching architecture

    NASA Astrophysics Data System (ADS)

    Zhao, Yongli; Ji, Yuefeng; Zhang, Jie; Li, Hui; Xiong, Qianjin; Qiu, Shaofeng

    2014-08-01

    Ultrahigh throughout capacity requirement is challenging the current optical switching nodes with the fast development of data center networks. Pbit/s level all optical switching networks need to be deployed soon, which will cause the high complexity of node architecture. How to control the future network and node equipment together will become a new problem. An enhanced Software Defined Networking (eSDN) control architecture is proposed in the paper, which consists of Provider NOX (P-NOX) and Node NOX (N-NOX). With the cooperation of P-NOX and N-NOX, the flexible control of the entire network can be achieved. All optical switching network testbed has been experimentally demonstrated with efficient control of enhanced Software Defined Networking (eSDN). Pbit/s level all optical switching nodes in the testbed are implemented based on multi-dimensional switching architecture, i.e. multi-level and multi-planar. Due to the space and cost limitation, each optical switching node is only equipped with four input line boxes and four output line boxes respectively. Experimental results are given to verify the performance of our proposed control and switching architecture.

  19. Space Communications and Navigation (SCaN) Network Simulation Tool Development and Its Use Cases

    NASA Technical Reports Server (NTRS)

    Jennings, Esther; Borgen, Richard; Nguyen, Sam; Segui, John; Stoenescu, Tudor; Wang, Shin-Ywan; Woo, Simon; Barritt, Brian; Chevalier, Christine; Eddy, Wesley

    2009-01-01

    In this work, we focus on the development of a simulation tool to assist in analysis of current and future (proposed) network architectures for NASA. Specifically, the Space Communications and Navigation (SCaN) Network is being architected as an integrated set of new assets and a federation of upgraded legacy systems. The SCaN architecture for the initial missions for returning humans to the moon and beyond will include the Space Network (SN) and the Near-Earth Network (NEN). In addition to SCaN, the initial mission scenario involves a Crew Exploration Vehicle (CEV), the International Space Station (ISS) and NASA Integrated Services Network (NISN). We call the tool being developed the SCaN Network Integration and Engineering (SCaN NI&E) Simulator. The intended uses of such a simulator are: (1) to characterize performance of particular protocols and configurations in mission planning phases; (2) to optimize system configurations by testing a larger parameter space than may be feasible in either production networks or an emulated environment; (3) to test solutions in order to find issues/risks before committing more significant resources needed to produce real hardware or flight software systems. We describe two use cases of the tool: (1) standalone simulation of CEV to ISS baseline scenario to determine network performance, (2) participation in Distributed Simulation Integration Laboratory (DSIL) tests to perform function testing and verify interface and interoperability of geographically dispersed simulations/emulations.

  20. Proceedings of the Second Joint Technology Workshop on Neural Networks and Fuzzy Logic, volume 2

    NASA Technical Reports Server (NTRS)

    Lea, Robert N. (Editor); Villarreal, James A. (Editor)

    1991-01-01

    Documented here are papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by NASA and the University of Texas, Houston. Topics addressed included adaptive systems, learning algorithms, network architectures, vision, robotics, neurobiological connections, speech recognition and synthesis, fuzzy set theory and application, control and dynamics processing, space applications, fuzzy logic and neural network computers, approximate reasoning, and multiobject decision making.

  1. Playable Serious Games for Studying and Programming Computational STEM and Informatics Applications of Distributed and Parallel Computer Architectures

    ERIC Educational Resources Information Center

    Amenyo, John-Thones

    2012-01-01

    Carefully engineered playable games can serve as vehicles for students and practitioners to learn and explore the programming of advanced computer architectures to execute applications, such as high performance computing (HPC) and complex, inter-networked, distributed systems. The article presents families of playable games that are grounded in…

  2. A resource management architecture based on complex network theory in cloud computing federation

    NASA Astrophysics Data System (ADS)

    Zhang, Zehua; Zhang, Xuejie

    2011-10-01

    Cloud Computing Federation is a main trend of Cloud Computing. Resource Management has significant effect on the design, realization, and efficiency of Cloud Computing Federation. Cloud Computing Federation has the typical characteristic of the Complex System, therefore, we propose a resource management architecture based on complex network theory for Cloud Computing Federation (abbreviated as RMABC) in this paper, with the detailed design of the resource discovery and resource announcement mechanisms. Compare with the existing resource management mechanisms in distributed computing systems, a Task Manager in RMABC can use the historical information and current state data get from other Task Managers for the evolution of the complex network which is composed of Task Managers, thus has the advantages in resource discovery speed, fault tolerance and adaptive ability. The result of the model experiment confirmed the advantage of RMABC in resource discovery performance.

  3. OR.NET RT: how service-oriented medical device architecture meets real-time communication.

    PubMed

    Pfeiffer, Jonas H; Kasparick, Martin; Strathen, Benjamin; Dietz, Christian; Dingler, Max E; Lueth, Tim C; Timmermann, Dirk; Radermacher, Klaus; Golatowski, Frank

    2018-02-23

    Today's landscape of medical devices is dominated by stand-alone systems and proprietary interfaces lacking cross-vendor interoperability. This complicates or even impedes the innovation of novel, intelligent assistance systems relying on the collaboration of medical devices. Emerging approaches use the service-oriented architecture (SOA) paradigm based on Internet protocol (IP) to enable communication between medical devices. While this works well for scenarios with no or only soft timing constraints, the underlying best-effort communication scheme is insufficient for time critical data. Real-time (RT) networks are able to reliably guarantee fixed latency boundaries, for example, by using time division multiple access (TDMA) communication patterns. However, deterministic RT networks come with their own limitations such as tedious, inflexible configuration and a more restricted bandwidth allocation. In this contribution we overcome the drawbacks of both approaches by describing and implementing mechanisms that allow the two networks to interact. We introduce the first implementation of a medical device network that offers hard RT guarantees for control and sensor data and integrates into SOA networks. Based on two application examples we show how the flexibility of SOA networks and the reliability of RT networks can be combined to achieve an open network infrastructure for medical devices in the operating room (OR).

  4. Predicting electrocardiogram and arterial blood pressure waveforms with different Echo State Network architectures.

    PubMed

    Fong, Allan; Mittu, Ranjeev; Ratwani, Raj; Reggia, James

    2014-01-01

    Alarm fatigue caused by false alarms and alerts is an extremely important issue for the medical staff in Intensive Care Units. The ability to predict electrocardiogram and arterial blood pressure waveforms can potentially help the staff and hospital systems better classify a patient's waveforms and subsequent alarms. This paper explores the use of Echo State Networks, a specific type of neural network for mining, understanding, and predicting electrocardiogram and arterial blood pressure waveforms. Several network architectures are designed and evaluated. The results show the utility of these echo state networks, particularly ones with larger integrated reservoirs, for predicting electrocardiogram waveforms and the adaptability of such models across individuals. The work presented here offers a unique approach for understanding and predicting a patient's waveforms in order to potentially improve alarm generation. We conclude with a brief discussion of future extensions of this research.

  5. Integrated Network Architecture for Sustained Human and Robotic Exploration

    NASA Technical Reports Server (NTRS)

    Noreen, Gary; Cesarone, Robert; Deutsch, Leslie; Edwards, Charles; Soloff, Jason; Ely, Todd; Cook, Brian; Morabito, David; Hemmati, Hamid; Piazolla, Sabino; hide

    2005-01-01

    The National Aeronautics and Space Administration (NASA) Exploration Systems Enterprise is planning a series of human and robotic missions to the Earth's moon and to Mars. These missions will require communication and navigation services. This paper1 sets forth presumed requirements for such services and concepts for lunar and Mars telecommunications network architectures to satisfy the presumed requirements. The paper suggests that an inexpensive ground network would suffice for missions to the near-side of the moon. A constellation of three Lunar Telecommunications Orbiters connected to an inexpensive ground network could provide continuous redundant links to a polar lunar base and its vicinity. For human and robotic missions to Mars, a pair of areostationary satellites could provide continuous redundant links between Earth and a mid-latitude Mars base in conjunction with the Deep Space Network augmented by large arrays of 12-m antennas on Earth.

  6. National Positioning, Navigation, and Timing Architecture Study

    NASA Astrophysics Data System (ADS)

    van Dyke, K.; Vicario, J.; Hothem, L.

    2007-12-01

    The purpose of the National Positioning, Navigation and Timing (PNT) Architecture effort is to help guide future PNT system-of-systems investment and implementation decisions. The Assistant Secretary of Defense for Networks and Information Integration and the Under Secretary of Transportation for Policy sponsored a National PNT Architecture study to provide more effective and efficient PNT capabilities focused on the 2025 timeframe and an evolutionary path for government provided systems and services. U.S. Space-Based PNT Policy states that the U.S. must continue to improve and maintain GPS, augmentations to GPS, and back-up capabilities to meet growing national, homeland, and economic security needs. PNT touches almost every aspect of people´s lives today. PNT is essential for Defense and Civilian applications ranging from the Department of Defense´s Joint network centric and precision operations to the transportation and telecommunications sectors, improving efficiency, increasing safety, and being more productive. Absence of an approved PNT architecture results in uncoordinated research efforts, lack of clear developmental paths, potentially wasteful procurements and inefficient deployment of PNT resources. The national PNT architecture effort evaluated alternative future mixes of global (space and non space-based) and regional PNT solutions, PNT augmentations, and autonomous PNT capabilities to address priorities identified in the DoD PNT Joint Capabilities Document (JCD) and civil equivalents. The path to achieving the Should-Be architecture is described by the National PNT Architecture's Guiding Principles, representing an overarching Vision of the US' role in PNT, an architectural Strategy to fulfill that Vision, and four Vectors which support the Strategy. The National PNT Architecture effort has developed nineteen recommendations. Five foundational recommendations are tied directly to the Strategy while the remaining fourteen individually support one of the Vectors, as will be described in this presentation. The results of this effort will support future decisions of bodies such as the DoD PNT and Civil Pos/Nav Executive Committees, as well as the National Space-Based PNT Executive Committee (EXCOM).

  7. Networking CD-ROMs: A Tutorial Introduction.

    ERIC Educational Resources Information Center

    Perone, Karen

    1996-01-01

    Provides an introduction to CD-ROM networking. Highlights include LAN (local area network) architectures for CD-ROM networks, peer-to-peer networks, shared file and dedicated file servers, commercial software/vendor solutions, problems, multiple hardware platforms, and multimedia. Six figures illustrate network architectures and a sidebar contains…

  8. Voice over internet protocol with prepaid calling card solutions

    NASA Astrophysics Data System (ADS)

    Gunadi, Tri

    2001-07-01

    The VoIP technology is growing up rapidly, it has big network impact on PT Telkom Indonesia, the bigger telecommunication operator in Indonesia. Telkom has adopted VoIP and one other technology, Intelligent Network (IN). We develop those technologies together in one service product, called Internet Prepaid Calling Card (IPCC). IPCC is becoming new breakthrough for the Indonesia telecommunication services especially on VoIP and Prepaid Calling Card solutions. Network architecture of Indonesia telecommunication consists of three layer, Local, Tandem and Trunck Exchange layer. Network development researches for IPCC architecture are focus on network overlay hierarchy, Internet and PSTN. With this design hierarchy the goal of Interworking PSTN, VoIP and IN calling card, become reality. Overlay design for IPCC is not on Trunck Exchange, this is the new architecture, these overlay on Tandem and Local Exchange, to make the faster call processing. The nodes added: Gateway (GW) and Card Management Center (CMC) The GW do interfacing between PSTN and Internet Network used ISDN-PRA and Ethernet. The other functions are making bridge on circuit (PSTN) with packet (VoIP) based and real time billing process. The CMC used for data storage, pin validation, report activation, tariff system, directory number and all the administration transaction. With two nodes added the IPCC service offered to the market.

  9. Digital optical computers at the optoelectronic computing systems center

    NASA Technical Reports Server (NTRS)

    Jordan, Harry F.

    1991-01-01

    The Digital Optical Computing Program within the National Science Foundation Engineering Research Center for Opto-electronic Computing Systems has as its specific goal research on optical computing architectures suitable for use at the highest possible speeds. The program can be targeted toward exploiting the time domain because other programs in the Center are pursuing research on parallel optical systems, exploiting optical interconnection and optical devices and materials. Using a general purpose computing architecture as the focus, we are developing design techniques, tools and architecture for operation at the speed of light limit. Experimental work is being done with the somewhat low speed components currently available but with architectures which will scale up in speed as faster devices are developed. The design algorithms and tools developed for a general purpose, stored program computer are being applied to other systems such as optimally controlled optical communication networks.

  10. FIESTA: An operational decision aid for space network fault isolation

    NASA Technical Reports Server (NTRS)

    Lowe, Dawn; Quillin, Bob; Matteson, Nadine; Wilkinson, Bill; Miksell, Steve

    1987-01-01

    The Fault Tolerance Expert System for Tracking and Data Relay Satellite System (TDRSS) Applications (FIESTA) is a fault detection and fault diagnosis expert system being developed as a decision aid to support operations in the Network Control Center (NCC) for NASA's Space Network. The operational objectives which influenced FIESTA development are presented and an overview of the architecture used to achieve these goals are provided. The approach to the knowledge engineering effort and the methodology employed are also presented and illustrated with examples drawn from the FIESTA domain.

  11. Development of efficiency module of organization of Arctic sea cargo transportation with application of neural network technologies

    NASA Astrophysics Data System (ADS)

    Sobolevskaya, E. Yu; Glushkov, S. V.; Levchenko, N. G.; Orlov, A. P.

    2018-05-01

    The analysis of software intended for organizing and managing the processes of sea cargo transportation has been carried out. The shortcomings of information resources are presented, for the organization of work in the Arctic and Subarctic regions of the Far East: the lack of decision support systems, the lack of factor analysis to calculate the time and cost of delivery. The architecture of the module for calculating the effectiveness of the organization of sea cargo transportation has been developed. The simulation process has been considered, which is based on the neural network. The main classification factors with their weighting coefficients have been identified. The architecture of the neural network has been developed to calculate the efficiency of the organization of sea cargo transportation in Arctic conditions. The architecture of the intellectual system of organization of sea cargo transportation has been developed, taking into account the difficult navigation conditions in the Arctic. Its implementation will allow one to provide the management of the shipping company with predictive analytics; to support decision-making; to calculate the most efficient delivery route; to provide on demand online transportation forecast, to minimize the shipping cost, delays in transit, and risks to cargo safety.

  12. Raingauge-Based Rainfall Nowcasting with Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Liong, Shie-Yui; He, Shan

    2010-05-01

    Rainfall forecasting and nowcasting are of great importance, for instance, in real-time flood early warning systems. Long term rainfall forecasting demands global climate, land, and sea data, thus, large computing power and storage capacity are required. Rainfall nowcasting's computing requirement, on the other hand, is much less. Rainfall nowcasting may use data captured by radar and/or weather stations. This paper presents the application of Artificial Neural Network (ANN) on rainfall nowcasting using data observed at weather and/or rainfall stations. The study focuses on the North-East monsoon period (December, January and February) in Singapore. Rainfall and weather data from ten stations, between 2000 and 2006, were selected and divided into three groups for training, over-fitting test and validation of the ANN. Several neural network architectures were tried in the study. Two architectures, Backpropagation ANN and Group Method of Data Handling ANN, yielded better rainfall nowcasting, up to two hours, than the other architectures. The obtained rainfall nowcasts were then used by a catchment model to forecast catchment runoff. The results of runoff forecast are encouraging and promising.With ANN's high computational speed, the proposed approach may be deliverable for creating the real-time flood early warning system.

  13. A mission operations architecture for the 21st century

    NASA Technical Reports Server (NTRS)

    Tai, W.; Sweetnam, D.

    1996-01-01

    An operations architecture is proposed for low cost missions beyond the year 2000. The architecture consists of three elements: a service based architecture; a demand access automata; and distributed science hubs. The service based architecture is based on a set of standard multimission services that are defined, packaged and formalized by the deep space network and the advanced multi-mission operations system. The demand access automata is a suite of technologies which reduces the need to be in contact with the spacecraft, and thus reduces operating costs. The beacon signaling, the virtual emergency room, and the high efficiency tracking automata technologies are described. The distributed science hubs provide information system capabilities to the small science oriented flight teams: individual access to all traditional mission functions and services; multimedia intra-team communications, and automated direct transparent communications between the scientists and the instrument.

  14. Crowd Sensing-Enabling Security Service Recommendation for Social Fog Computing Systems

    PubMed Central

    Wu, Jun; Su, Zhou; Li, Jianhua

    2017-01-01

    Fog computing, shifting intelligence and resources from the remote cloud to edge networks, has the potential of providing low-latency for the communication from sensing data sources to users. For the objects from the Internet of Things (IoT) to the cloud, it is a new trend that the objects establish social-like relationships with each other, which efficiently brings the benefits of developed sociality to a complex environment. As fog service become more sophisticated, it will become more convenient for fog users to share their own services, resources, and data via social networks. Meanwhile, the efficient social organization can enable more flexible, secure, and collaborative networking. Aforementioned advantages make the social network a potential architecture for fog computing systems. In this paper, we design an architecture for social fog computing, in which the services of fog are provisioned based on “friend” relationships. To the best of our knowledge, this is the first attempt at an organized fog computing system-based social model. Meanwhile, social networking enhances the complexity and security risks of fog computing services, creating difficulties of security service recommendations in social fog computing. To address this, we propose a novel crowd sensing-enabling security service provisioning method to recommend security services accurately in social fog computing systems. Simulation results show the feasibilities and efficiency of the crowd sensing-enabling security service recommendation method for social fog computing systems. PMID:28758943

  15. Crowd Sensing-Enabling Security Service Recommendation for Social Fog Computing Systems.

    PubMed

    Wu, Jun; Su, Zhou; Wang, Shen; Li, Jianhua

    2017-07-30

    Fog computing, shifting intelligence and resources from the remote cloud to edge networks, has the potential of providing low-latency for the communication from sensing data sources to users. For the objects from the Internet of Things (IoT) to the cloud, it is a new trend that the objects establish social-like relationships with each other, which efficiently brings the benefits of developed sociality to a complex environment. As fog service become more sophisticated, it will become more convenient for fog users to share their own services, resources, and data via social networks. Meanwhile, the efficient social organization can enable more flexible, secure, and collaborative networking. Aforementioned advantages make the social network a potential architecture for fog computing systems. In this paper, we design an architecture for social fog computing, in which the services of fog are provisioned based on "friend" relationships. To the best of our knowledge, this is the first attempt at an organized fog computing system-based social model. Meanwhile, social networking enhances the complexity and security risks of fog computing services, creating difficulties of security service recommendations in social fog computing. To address this, we propose a novel crowd sensing-enabling security service provisioning method to recommend security services accurately in social fog computing systems. Simulation results show the feasibilities and efficiency of the crowd sensing-enabling security service recommendation method for social fog computing systems.

  16. Large Scale Environmental Monitoring through Integration of Sensor and Mesh Networks

    PubMed Central

    Jurdak, Raja; Nafaa, Abdelhamid; Barbirato, Alessio

    2008-01-01

    Monitoring outdoor environments through networks of wireless sensors has received interest for collecting physical and chemical samples at high spatial and temporal scales. A central challenge to environmental monitoring applications of sensor networks is the short communication range of the sensor nodes, which increases the complexity and cost of monitoring commodities that are located in geographically spread areas. To address this issue, we propose a new communication architecture that integrates sensor networks with medium range wireless mesh networks, and provides users with an advanced web portal for managing sensed information in an integrated manner. Our architecture adopts a holistic approach targeted at improving the user experience by optimizing the system performance for handling data that originates at the sensors, traverses the mesh network, and resides at the server for user consumption. This holistic approach enables users to set high level policies that can adapt the resolution of information collected at the sensors, set the preferred performance targets for their application, and run a wide range of queries and analysis on both real-time and historical data. All system components and processes will be described in this paper. PMID:27873941

  17. Implementation of a system to provide mobile satellite services in North America

    NASA Technical Reports Server (NTRS)

    Johanson, Gary A.; Davies, N. George; Tisdale, William R. H.

    1993-01-01

    This paper describes the implementation of the ground network to support Mobile Satellite Services (MSS). The system is designed to take advantage of a powerful new satellite series and provides significant improvements in capacity and throughput over systems in service today. The system is described in terms of the services provided and the system architecture being implemented to deliver those services. The system operation is described including examples of a circuit switched and packet switched call placement. The physical architecture is presented showing the major hardware components and software functionality placement within the hardware.

  18. Distributed controller clustering in software defined networks.

    PubMed

    Abdelaziz, Ahmed; Fong, Ang Tan; Gani, Abdullah; Garba, Usman; Khan, Suleman; Akhunzada, Adnan; Talebian, Hamid; Choo, Kim-Kwang Raymond

    2017-01-01

    Software Defined Networking (SDN) is an emerging promising paradigm for network management because of its centralized network intelligence. However, the centralized control architecture of the software-defined networks (SDNs) brings novel challenges of reliability, scalability, fault tolerance and interoperability. In this paper, we proposed a novel clustered distributed controller architecture in the real setting of SDNs. The distributed cluster implementation comprises of multiple popular SDN controllers. The proposed mechanism is evaluated using a real world network topology running on top of an emulated SDN environment. The result shows that the proposed distributed controller clustering mechanism is able to significantly reduce the average latency from 8.1% to 1.6%, the packet loss from 5.22% to 4.15%, compared to distributed controller without clustering running on HP Virtual Application Network (VAN) SDN and Open Network Operating System (ONOS) controllers respectively. Moreover, proposed method also shows reasonable CPU utilization results. Furthermore, the proposed mechanism makes possible to handle unexpected load fluctuations while maintaining a continuous network operation, even when there is a controller failure. The paper is a potential contribution stepping towards addressing the issues of reliability, scalability, fault tolerance, and inter-operability.

  19. A Distributed Prognostic Health Management Architecture

    NASA Technical Reports Server (NTRS)

    Bhaskar, Saha; Saha, Sankalita; Goebel, Kai

    2009-01-01

    This paper introduces a generic distributed prognostic health management (PHM) architecture with specific application to the electrical power systems domain. Current state-of-the-art PHM systems are mostly centralized in nature, where all the processing is reliant on a single processor. This can lead to loss of functionality in case of a crash of the central processor or monitor. Furthermore, with increases in the volume of sensor data as well as the complexity of algorithms, traditional centralized systems become unsuitable for successful deployment, and efficient distributed architectures are required. A distributed architecture though, is not effective unless there is an algorithmic framework to take advantage of its unique abilities. The health management paradigm envisaged here incorporates a heterogeneous set of system components monitored by a varied suite of sensors and a particle filtering (PF) framework that has the power and the flexibility to adapt to the different diagnostic and prognostic needs. Both the diagnostic and prognostic tasks are formulated as a particle filtering problem in order to explicitly represent and manage uncertainties; however, typically the complexity of the prognostic routine is higher than the computational power of one computational element ( CE). Individual CEs run diagnostic routines until the system variable being monitored crosses beyond a nominal threshold, upon which it coordinates with other networked CEs to run the prognostic routine in a distributed fashion. Implementation results from a network of distributed embedded devices monitoring a prototypical aircraft electrical power system are presented, where the CEs are Sun Microsystems Small Programmable Object Technology (SPOT) devices.

  20. On-board processing satellite network architecture and control study

    NASA Technical Reports Server (NTRS)

    Campanella, S. Joseph; Pontano, B.; Chalmers, H.

    1987-01-01

    For satellites to remain a vital part of future national and international communications, system concepts that use their inherent advantages to the fullest must be created. Network architectures that take maximum advantage of satellites equipped with onboard processing are explored. Satellite generations must accommodate various services for which satellites constitute the preferred vehicle of delivery. Such services tend to be those that are widely dispersed and present thin to medium loads to the system. Typical systems considered are thin and medium route telephony, maritime, land and aeronautical radio, VSAT data, low bit rate video teleconferencing, and high bit rate broadcast of high definition video. Delivery of services by TDMA and FDMA multiplexing techniques and combinations of the two for individual and mixed service types are studied. The possibilities offered by onboard circuit switched and packet switched architectures are examined and the results strongly support a preference for the latter. A detailed design architecture encompassing the onboard packet switch and its control, the related demand assigned TDMA burst structures, and destination packet protocols for routing traffic are presented. Fundamental onboard hardware requirements comprising speed, memory size, chip count, and power are estimated. The study concludes with identification of key enabling technologies and identifies a plan to develop a POC model.

Top