Sample records for system nuclear projects

  1. Nuclear rocket propulsion technology - A joint NASA/DOE project

    NASA Technical Reports Server (NTRS)

    Clark, John S.

    1991-01-01

    NASA and the DOE have initiated critical technology development for nuclear rocket propulsion systems for SEI human and robotic missions to the moon and to Mars. The activities and project plan of the interagency project planning team in FY 1990 and 1991 are summarized. The project plan includes evolutionary technology development for both nuclear thermal and nuclear electric propulsion systems.

  2. Nuclear rocket propulsion. NASA plans and progress, FY 1991

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Miller, Thomas J.

    1991-01-01

    NASA has initiated planning for a technology development project for nuclear rocket propulsion systems for space explorer initiative (SEI) human and robotic missions to the moon and Mars. An interagency project is underway that includes the Department of Energy National Laboratories for nuclear technology development. The activities of the project planning team in FY 1990 and 1991 are summarized. The progress to date is discussed, and the project plan is reviewed. Critical technology issues were identified and include: (1) nuclear fuel temperature, life, and reliability; (2) nuclear system ground test; (3) safety; (4) autonomous system operation and health monitoring; and (5) minimum mass and high specific impulse.

  3. Nuclear rocket propulsion: NASA plans and progress - FY 1991

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Miller, Thomas J.

    1991-01-01

    NASA has initiated planning for a technology development project for nuclear rocket propulsion systems for space exploration initiative (SEI) human and robotic missions to the Moon and to Mars. An interagency project is underway that includes the Department of Energy National Laboratories for nuclear technology development. The activities of the project planning team in FY 1990 and 1991 are summarized. The progress to date is discussed, and the project plan is reviewed. Critical technology issues were identified and include: (1) nuclear fuel temperature, life, and reliability; (2) nuclear system ground test; (3) safety; (4) autonomous system operation and health monitoring; and (5) minimum mass and high specific impulse.

  4. International energy outlook 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-05-01

    This International Energy Outlook presents historical data from 1970 to 1993 and EIA`s projections of energy consumption and carbon emissions through 2015 for 6 country groups. Prospects for individual fuels are discussed. Summary tables of the IEO96 world energy consumption, oil production, and carbon emissions projections are provided in Appendix A. The reference case projections of total foreign energy consumption and of natural gas, coal, and renewable energy were prepared using EIA`s World Energy Projection System (WEPS) model. Reference case projections of foreign oil production and consumption were prepared using the International Energy Module of the National Energy Modeling Systemmore » (NEMS). Nuclear consumption projections were derived from the International Nuclear Model, PC Version (PC-INM). Alternatively, nuclear capacity projections were developed using two methods: the lower reference case projections were based on analysts` knowledge of the nuclear programs in different countries; the upper reference case was generated by the World Integrated Nuclear Evaluation System (WINES)--a demand-driven model. In addition, the NEMS Coal Export Submodule (CES) was used to derive flows in international coal trade. As noted above, foreign projections of electricity demand are now projected as part of the WEPS. 64 figs., 62 tabs.« less

  5. Radiation Hardened Telerobotic Dismantling System Development Final Report CRADA No. TC-1340-96

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, C.; Lightman, A.

    This project was a collaborative effort between the University of California, LLNL and RedZone Robotics, Inc. for the development of radiation-hardened telerobotic dismantling systems for use in applications such as nuclear facility remediation, nuclear accident response, and Chemobyltype remediation. The project supported the design, development, fabrication and testing of a Ukrainian robotic systems. The project was completed on time and within budget. All deliverables were completed. The final project deliverables were consistent with the plans developed in the original project with the exception that the fabricated systems remained in Ukraine.

  6. NASA's Nuclear Thermal Propulsion Project

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Mitchell, Doyce P.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Clement, Steven; Borowski, Stanley K.; hide

    2015-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation NTP system could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of a first generation NTP in the development of advanced nuclear propulsion systems could be analogous to the role of the DC- 3 in the development of advanced aviation. Progress made under the NTP project could also help enable high performance fission power systems and Nuclear Electric Propulsion (NEP).

  7. Nuclear propulsion technology development - A joint NASA/Department of Energy project

    NASA Technical Reports Server (NTRS)

    Clark, John S.

    1992-01-01

    NASA-Lewis has undertaken the conceptual development of spacecraft nuclear propulsion systems with DOE support, in order to establish the bases for Space Exploration Initiative lunar and Mars missions. This conceptual evolution project encompasses nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP) systems. A technology base exists for NTP in the NERVA program files; more fundamental development efforts are entailed in the case of NEP, but this option is noted to offer greater advantages in the long term.

  8. Implementation of the MPC and A Operations Monitoring (MOM) System at IRT-T FSRE Nuclear Power Institute (NPI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitdikov,I.; Zenkov, A.; Tsibulnikov, Y.

    The Material Protection, Control and Accounting (MPC&A) Program has been working since 1994 with nuclear sites in Russia to upgrade the physical protection (PP) and material control and accounting (MC&A) functions at facilities containing weapons usable nuclear material. In early 2001, the MPC&A program initiated the MPC&A Operations Monitoring (MOM) Project to monitor facilities where MPC&A upgrades have been installed to provide increased confidence that personnel are present and vigilant, provide confidence that security procedures are being properly performed and provide additional assurance that nuclear materials have not been stolen. The MOM project began as a pilot project at themore » Moscow State Engineering Physics Institute (MEPhI) and a MOM system was successfully installed in October 2001. Following the success of the MEPhI pilot project, the MPC&A Program expanded the installation of MOM systems to several other Russian facilities, including the Nuclear Physics Institute (NPI) in Tomsk. The MOM system was made operational at NPI in October 2004. This paper is focused on the experience gained from operation of this system and the objectives of the MOM system. The paper also describes how the MOM system is used at NPI and, in particular, how the data is analyzed. Finally, potential expansion of the MOM system at NPI is described.« less

  9. Nuclear thermal propulsion technology: Results of an interagency panel in FY 1991

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Mcdaniel, Patrick; Howe, Steven; Helms, Ira; Stanley, Marland

    1993-01-01

    NASA LeRC was selected to lead nuclear propulsion technology development for NASA. Also participating in the project are NASA MSFC and JPL. The U.S. Department of Energy will develop nuclear technology and will conduct nuclear component, subsystem, and system testing at appropriate DOE test facilities. NASA program management is the responsibility of NASA/RP. The project includes both nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) technology development. This report summarizes the efforts of an interagency panel that evaluated NTP technology in 1991. Other panels were also at work in 1991 on other aspects of nuclear propulsion, and the six panels worked closely together. The charters for the other panels and some of their results are also discussed. Important collaborative efforts with other panels are highlighted. The interagency (NASA/DOE/DOD) NTP Technology Panel worked in 1991 to evaluate nuclear thermal propulsion concepts on a consistent basis. Additionally, the panel worked to continue technology development project planning for a joint project in nuclear propulsion for the Space Exploration Initiative (SEI). Five meetings of the panel were held in 1991 to continue the planning for technology development of nuclear thermal propulsion systems. The state-of-the-art of the NTP technologies was reviewed in some detail. The major technologies identified were as follows: fuels, coatings, and other reactor technologies; materials; instrumentation, controls, health monitoring and management, and associated technologies; nozzles; and feed system technology, including turbopump assemblies.

  10. Non-Proliferation, the IAEA Safeguards System, and the importance of nuclear material measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, Rebecca S.

    2017-09-18

    The objective of this project is to explain the contribution of nuclear material measurements to the system of international verification of State declarations and the non-proliferation of nuclear weapons.

  11. The NASA/DOE/DOD nuclear rocket propulsion project - FY 1991 status

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Miller, Thomas J.

    1991-01-01

    NASA has initiated planning and critical technology development for nuclear rocket propulsion systems for Space Exploration Initiative missions to the moon and to Mars. Interagency agreements are being negotiated between NASA, the Department of Energy, and the Department of Defense for joint technology development activities. This paper summarizes the activities of the NASA project planning team in FY 1990 that led to the draft Nuclear Propulsion Project Plan, outlines the FY 1991 Interagency activities, and describes the current status of the project plan.

  12. Patenting the bomb: nuclear weapons, intellectual property, and technological control.

    PubMed

    Wellerstein, Alex

    2008-03-01

    During the course of the Manhattan Project, the U.S. government secretly attempted to acquire a monopoly on the patent rights for inventions used in the production of nuclear weapons and nuclear energy. The use of patents as a system of control, while common for more mundane technologies, would seem at first glance to conflict with the regimes of secrecy that have traditionally been associated with nuclear weapons. In explaining the origins and operations of the Manhattan Project patent system, though, this essay argues that the utilization of patents was an ad hoc attempt at legal control of the atomic bomb by Manhattan Project administrators, focused on the monopolistic aspects of the patent system and preexisting patent secrecy legislation. From the present perspective, using patents as a method of control for such weapons seems inadequate, if not unnecessary; but at the time, when the bomb was a new and essentially unregulated technology, patents played an important role in the thinking of project administrators concerned with meaningful postwar control of the bomb.

  13. Accuracy Improvement of Neutron Nuclear Data on Minor Actinides

    NASA Astrophysics Data System (ADS)

    Harada, Hideo; Iwamoto, Osamu; Iwamoto, Nobuyuki; Kimura, Atsushi; Terada, Kazushi; Nakao, Taro; Nakamura, Shoji; Mizuyama, Kazuhito; Igashira, Masayuki; Katabuchi, Tatsuya; Sano, Tadafumi; Takahashi, Yoshiyuki; Takamiya, Koichi; Pyeon, Cheol Ho; Fukutani, Satoshi; Fujii, Toshiyuki; Hori, Jun-ichi; Yagi, Takahiro; Yashima, Hiroshi

    2015-05-01

    Improvement of accuracy of neutron nuclear data for minor actinides (MAs) and long-lived fission products (LLFPs) is required for developing innovative nuclear system transmuting these nuclei. In order to meet the requirement, the project entitled as "Research and development for Accuracy Improvement of neutron nuclear data on Minor ACtinides (AIMAC)" has been started as one of the "Innovative Nuclear Research and Development Program" in Japan at October 2013. The AIMAC project team is composed of researchers in four different fields: differential nuclear data measurement, integral nuclear data measurement, nuclear chemistry, and nuclear data evaluation. By integrating all of the forefront knowledge and techniques in these fields, the team aims at improving the accuracy of the data. The background and research plan of the AIMAC project are presented.

  14. Integrated nuclear data utilisation system for innovative reactors.

    PubMed

    Yamano, N; Hasegawa, A; Kato, K; Igashira, M

    2005-01-01

    A five-year research and development project on an integrated nuclear data utilisation system was initiated in 2002, for developing innovative nuclear energy systems such as accelerator-driven systems. The integrated nuclear data utilisation system will be constructed as a modular code system, which consists of two sub-systems: the nuclear data search and plotting sub-system, and the nuclear data processing and utilisation sub-system. The system will be operated with a graphical user interface in order to enable easy utilisation through the Internet by both nuclear design engineers and nuclear data evaluators. This paper presents an overview of the integrated nuclear data utilisation system, describes the development of a prototype system to examine the operability of the user interface and discusses specifications of the two sub-systems.

  15. Nuclear Systems Kilopower Overview

    NASA Technical Reports Server (NTRS)

    Palac, Don; Gibson, Marc; Mason, Lee; Houts, Michael; McClure, Patrick; Robinson, Ross

    2016-01-01

    The Nuclear Systems Kilopower Project was initiated by NASAs Space Technology Mission Directorate Game Changing Development Program in fiscal year 2015 to demonstrate subsystem-level technology readiness of small space fission power in a relevant environment (Technology Readiness Level 5) for space science and human exploration power needs. The Nuclear Systems Kilopower Project consists of two elements. The primary element is the Kilopower Prototype Test, also called the Kilopower Reactor Using Stirling Technology(KRUSTY) Test. This element consists of the development and testing of a fission ground technology demonstrator of a 1 kWe fission power system. A 1 kWe system matches requirements for some robotic precursor exploration systems and future potential deep space science missions, and also allows a nuclear ground technology demonstration in existing nuclear test facilities at low cost. The second element, the Mars Kilopower Scalability Study, consists of the analysis and design of a scaled-up version of the 1 kWe reference concept to 10 kWe for Mars surface power projected requirements, and validation of the applicability of the KRUSTY experiment to key technology challenges for a 10 kWe system. If successful, these two elements will lead to initiation of planning for a technology demonstration of a 10 kWe fission power capability for Mars surface outpost power.

  16. NASA's Nuclear Thermal Propulsion Project

    NASA Technical Reports Server (NTRS)

    Houts, Mike; Mitchell, Sonny; Kim, Tony; Borowski, Stan; Power, Kevin; Scott, John; Belvin, Anthony; Clement, Steve

    2015-01-01

    HEOMD's (Human Exploration and Operations Mission Directorate) AES (Advanced Exploration Systems) Nuclear Thermal Propulsion (NTP) project is making significant progress. First of four FY 2015 milestones achieved this month. Safety is the highest priority for NTP (as with other space systems). After safety comes affordability. No centralized capability for developing, qualifying, and utilizing an NTP system. Will require a strong, closely integrated team. Tremendous potential benefits from NTP and other space fission systems. No fundamental reason these systems cannot be developed and utilized in a safe, affordable fashion.

  17. The virtual digital nuclear power plant: A modern tool for supporting the lifecycle of VVER-based nuclear power units

    NASA Astrophysics Data System (ADS)

    Arkadov, G. V.; Zhukavin, A. P.; Kroshilin, A. E.; Parshikov, I. A.; Solov'ev, S. L.; Shishov, A. V.

    2014-10-01

    The article describes the "Virtual Digital VVER-Based Nuclear Power Plant" computerized system comprising a totality of verified initial data (sets of input data for a model intended for describing the behavior of nuclear power plant (NPP) systems in design and emergency modes of their operation) and a unified system of new-generation computation codes intended for carrying out coordinated computation of the variety of physical processes in the reactor core and NPP equipment. Experiments with the demonstration version of the "Virtual Digital VVER-Based NPP" computerized system has shown that it is in principle possible to set up a unified system of computation codes in a common software environment for carrying out interconnected calculations of various physical phenomena at NPPs constructed according to the standard AES-2006 project. With the full-scale version of the "Virtual Digital VVER-Based NPP" computerized system put in operation, the concerned engineering, design, construction, and operating organizations will have access to all necessary information relating to the NPP power unit project throughout its entire lifecycle. The domestically developed commercial-grade software product set to operate as an independently operating application to the project will bring about additional competitive advantages in the modern market of nuclear power technologies.

  18. Fuel Cycle Analysis Framework Base Cases for the IAEA/INPRO GAINS Collaborative Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brent Dixon

    Thirteen countries participated in the Collaborative Project GAINS “Global Architecture of Innovative Nuclear Energy Systems Based on Thermal and Fast Reactors Including a Closed Fuel Cycle”, which was the primary activity within the IAEA/INPRO Program Area B: “Global Vision on Sustainable Nuclear Energy” for the last three years. The overall objective of GAINS was to develop a standard framework for assessing future nuclear energy systems taking into account sustainable development, and to validate results through sample analyses. This paper details the eight scenarios that constitute the GAINS framework base cases for analysis of the transition to future innovative nuclear energymore » systems. The framework base cases provide a reference for users of the framework to start from in developing and assessing their own alternate systems. Each base case is described along with performance results against the GAINS sustainability evaluation metrics. The eight cases include four using a moderate growth projection and four using a high growth projection for global nuclear electricity generation through 2100. The cases are divided into two sets, addressing homogeneous and heterogeneous scenarios developed by GAINS to model global fuel cycle strategies. The heterogeneous world scenario considers three separate nuclear groups based on their fuel cycle strategies, with non-synergistic and synergistic cases. The framework base case analyses results show the impact of these different fuel cycle strategies while providing references for future users of the GAINS framework. A large number of scenario alterations are possible and can be used to assess different strategies, different technologies, and different assumptions about possible futures of nuclear power. Results can be compared to the framework base cases to assess where these alternate cases perform differently versus the sustainability indicators.« less

  19. Evolution of Safeguards over Time: Past, Present, and Projected Facilities, Material, and Budget

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kollar, Lenka; Mathews, Caroline E.

    This study examines the past trends and evolution of safeguards over time and projects growth through 2030. The report documents the amount of nuclear material and facilities under safeguards from 1970 until present, along with the corresponding budget. Estimates for the future amount of facilities and material under safeguards are made according to non-nuclear-weapons states’ (NNWS) plans to build more nuclear capacity and sustain current nuclear infrastructure. Since nuclear energy is seen as a clean and economic option for base load electric power, many countries are seeking to either expand their current nuclear infrastructure, or introduce nuclear power. In ordermore » to feed new nuclear power plants and sustain existing ones, more nuclear facilities will need to be built, and thus more nuclear material will be introduced into the safeguards system. The projections in this study conclude that a zero real growth scenario for the IAEA safeguards budget will result in large resource gaps in the near future.« less

  20. The US Nuclear Data Network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-10-19

    This report discusses the following topics: US Nuclear Data Network Meeting; TUNL A=3--20 Data Project Activity Report 1993; INEL Mass-chain Evaluation Project Activity Report for 1993; 1993 Isotopes; Nuclear Data Project Activity Report; The NNDC Activity Report Parts A and B; Minutes of the Formats and Procedures Subcommittee; Evaluation of High-spin Nuclear Data for ENSDF and Table of Superdeformed Nuclear Bands; Proposal for Support of a Experimental High-spin; Data File/Data-Network Coordinator; Radioactive Decay and Applications; A Plan for a Horizontal Evaluation of Decay Data; ENSDF On-line System; The MacNuclide Project Expanding the Scope of the Nuclear Structure Reference File; ENSDAT:more » Evaluated Nuclear Structure Drawings and Tables; Cross Section Evaluation Working Group (CSEWG) and CSEWG Strategy Session; A Draft Proposal for a USNDN Program Advisory Council; Recommendations of Focus Group 1; Recommendations of Focus Group 2; Recommendations of Focus Group 3; Recommendations of Focus Group 4; The Table of Isotopes; The Isotopes CD-ROM; Electronic Table of Isotopes (ETOI); and Electronic Access to Nuclear Data.« less

  1. Safety system augmentation at Russian nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scerbo, J.A.; Satpute, S.N.; Donkin, J.Y.

    1996-12-31

    This paper describes the design and procurement of a Class IE DC power supply system to upgrade plant safety at the Kola Nuclear Power Plant (NPP). Kola NPP is located above the Arctic circle at Polyarnie Zorie, Murmansk, Russia. Kola NPP consists of four units. Units 1 and 2 have VVER-440/230 type reactors: Units 3 and 4 have VVER-440/213 type reactors. The VVER-440 reactor design is similar to the pressurized water reactor design used in the US. This project provided redundant, Class 1E DC station batteries and DC switchboards for Kola NPP, Units 1 and 2. The new DC powermore » supply system was designed and procured in compliance with current nuclear design practices and requirements. Technical issues that needed to be addressed included reconciling the requirements in both US and Russian codes and satisfying the requirements of the Russian nuclear regulatory authority. Close interface with ATOMENERGOPROEKT (AEP), the Russian design organization, KOLA NPP plant personnel, and GOSATOMNADZOR (GAN), the Russian version of US Nuclear Regulatory Commission, was necessary to develop a design that would assure compliance with current Russian design requirements. Hence, this project was expected to serve as an example for plant upgrades at other similar VVER-440 nuclear plants. In addition to technical issues, the project needed to address language barriers and the logistics of shipping equipment to a remote section of the Former Soviet Union (FSU). This project was executed by Burns and Roe under the sponsorship of the US DOE as part of the International Safety Program (INSP). The INSP is a comprehensive effort, in cooperation with partners in other countries, to improve nuclear safety worldwide. A major element within the INSP is the improvement of the safety of Soviet-designed nuclear reactors.« less

  2. Contributions to the NUCLEI SciDAC-3 Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogner, Scott; Nazarewicz, Witek

    This is the Final Report for Michigan State University for the NUCLEI SciDAC-3 project. The NUCLEI project, as defined by the scope of work, has developed, implemented and run codes for large-scale computations of many topics in low-energy nuclear physics. Physics studied included the properties of nuclei and nuclear decays, nuclear structure and reactions, and the properties of nuclear matter. The computational techniques used included Configuration Interaction, Coupled Cluster, and Density Functional methods. The research program emphasized areas of high interest to current and possible future DOE nuclear physics facilities, including ATLAS at ANL and FRIB at MSU (nuclear structuremore » and reactions, and nuclear astrophysics), TJNAF (neutron distributions in nuclei, few body systems, and electroweak processes), NIF (thermonuclear reactions), MAJORANA and FNPB (neutrinoless double-beta decay and physics beyond the Standard Model), and LANSCE (fission studies).« less

  3. Legal Implications of Nuclear Propulsion for Space Objects

    NASA Astrophysics Data System (ADS)

    Pop, V.

    2002-01-01

    This paper is intended to examine nuclear propulsion concepts such as "Project Orion", "Project Daedalus", NERVA, VASIMIR, from the legal point of view. The UN Principles Relevant to the Use of Nuclear Power Sources in Outer Space apply to nuclear power sources in outer space devoted to the generation of electric power on board space objects for non-propulsive purposes, and do not regulate the use of nuclear energy as a means of propulsion. However, nuclear propulsion by means of detonating atomic bombs (ORION) is, in principle, banned under the 1963 Treaty Banning Nuclear Weapon Tests in the Atmosphere, in Outer Space, and Under Water. The legality of use of nuclear propulsion will be analysed from different approaches - historical (i.e. the lawfulness of these projects at the time of their proposal, at the present time, and in the future - in the light of the mutability and evolution of international law), spatial (i.e. the legal regime governing peaceful nuclear explosions in different spatial zones - Earth atmosphere, Earth orbit, Solar System, and interstellar space), and technical (i.e, the legal regime applicable to different nuclear propulsion techniques, and to the various negative effects - e.g. damage to other space systems as an effect of the electromagnetic pulse, etc). The paper will analyse the positive law, and will also come with suggestions "de lege ferenda".

  4. The NASA CSTI high capacity power project

    NASA Technical Reports Server (NTRS)

    Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Titran, R.; Schmitz, P.; Vandersande, J.

    1992-01-01

    The SP-100 Space Nuclear Power Program was established in 1983 by DOD, DOE, and NASA as a joint program to develop technology for military and civil applications. Starting in 1986, NASA has funded a technology program to maintain the momentum of promising aerospace technology advancement started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for a wide range of future space applications. The elements of the Civilian Space Technology Initiative (CSTI) High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project will develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timelines recently developed.

  5. The NASA CSTI high capacity power project

    NASA Astrophysics Data System (ADS)

    Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Titran, R.; Schmitz, P.; Vandersande, J.

    1992-08-01

    The SP-100 Space Nuclear Power Program was established in 1983 by DOD, DOE, and NASA as a joint program to develop technology for military and civil applications. Starting in 1986, NASA has funded a technology program to maintain the momentum of promising aerospace technology advancement started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for a wide range of future space applications. The elements of the Civilian Space Technology Initiative (CSTI) High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project will develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timelines recently developed.

  6. The bungling giant: Atomic Energy Canada Limited and next-generation nuclear technology, 1980--1994

    NASA Astrophysics Data System (ADS)

    Slater, Ian James

    From 1980--1994 Atomic Energy Canada Limited (AECL), the Crown Corporation responsible for the development of nuclear technology in Canada, ventured into the market for small-scale, decentralized power systems with the Slowpoke Energy System (SES), a 10MW nuclear reactor for space heating in urban and remote areas. The SES was designed to be "passively" or "inherently" safe, such that even the most catastrophic failure of the system would not result in a serious accident (e.g. a meltdown or an explosion). This Canadian initiative, a beneficiary of the National Energy Program, was the first and by far the most successful attempt at a passively safe, decentralized nuclear power system anywhere in the world. Part one uses archival documentation and interviews with project leaders to reconstruct the history of the SES. The standard explanations for the failure of the project, cheap oil, public resistance to the technology, and lack of commercial expertise, are rejected. Part two presents an alternative explanation for the failure of AECL to commercialize the SES. In short, technological momentum towards large-scale nuclear designs led to structural restrictions for the SES project. These restrictions manifested themselves internally to the company (e.g., marginalization of the SES) and externally to the company (e.g., licensing). In part three, the historical lessons of the SES are used to refine one of the central tenets of Popper's political philosophy, "piecemeal social engineering." Popper's presentation of the idea is lacking in detail; the analysis of the SES provides some empirical grounding for the concept. I argue that the institutions surrounding traditional nuclear power represent a form utopian social engineering, leading to consequences such as the suspension of civil liberties to guarantee security of the technology. The SES project was an example of a move from the utopian social engineering of large-scale centralized nuclear technology to the piecemeal social engineering of small-scale, safer and simpler decentralized nuclear heating.

  7. Nuclear Hybrid Energy Systems Initial Integrated Case Study Development and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, Thomas J.; Greenwood, Michael Scott

    The US Department of Energy Office of Nuclear Energy established the Nuclear Hybrid Energy System (NHES) project to develop a systematic, rigorous, technically accurate set of methods to model, analyze, and optimize the integration of dispatchable nuclear, fossil, and electric storage with an industrial customer. Ideally, the optimized integration of these systems will provide economic and operational benefits to the overall system compared to independent operation, and it will enhance the stability and responsiveness of the grid as intermittent, nondispatchable, renewable resources provide a greater share of grid power.

  8. A Task Analysis of Selected Nuclear Technician Occupations.

    ERIC Educational Resources Information Center

    Braden, Paul V.; Paul, Krishan K.

    A task analysis of nuclear technician occupations in selected organizations in the Southern Interstate Nuclear Board Region was conducted as part of a research and development project leading to a nuclear technician manpower information system for these 17 states. In order to answer 11 questions focusing on task performance frequency and…

  9. Nuclear Methods for Transmutation of Nuclear Waste: Problems, Perspextives, Cooperative Research - Proceedings of the International Workshop

    NASA Astrophysics Data System (ADS)

    Khankhasayev, Zhanat B.; Kurmanov, Hans; Plendl, Mikhail Kh.

    1996-12-01

    The Table of Contents for the full book PDF is as follows: * Preface * I. Review of Current Status of Nuclear Transmutation Projects * Accelerator-Driven Systems — Survey of the Research Programs in the World * The Los Alamos Accelerator-Driven Transmutation of Nuclear Waste Concept * Nuclear Waste Transmutation Program in the Czech Republic * Tentative Results of the ISTC Supported Study of the ADTT Plutonium Disposition * Recent Neutron Physics Investigations for the Back End of the Nuclear Fuel Cycle * Optimisation of Accelerator Systems for Transmutation of Nuclear Waste * Proton Linac of the Moscow Meson Factory for the ADTT Experiments * II. Computer Modeling of Nuclear Waste Transmutation Methods and Systems * Transmutation of Minor Actinides in Different Nuclear Facilities * Monte Carlo Modeling of Electro-nuclear Processes with Nonlinear Effects * Simulation of Hybrid Systems with a GEANT Based Program * Computer Study of 90Sr and 137Cs Transmutation by Proton Beam * Methods and Computer Codes for Burn-Up and Fast Transients Calculations in Subcritical Systems with External Sources * New Model of Calculation of Fission Product Yields for the ADTT Problem * Monte Carlo Simulation of Accelerator-Reactor Systems * III. Data Basis for Transmutation of Actinides and Fission Products * Nuclear Data in the Accelerator Driven Transmutation Problem * Nuclear Data to Study Radiation Damage, Activation, and Transmutation of Materials Irradiated by Particles of Intermediate and High Energies * Radium Institute Investigations on the Intermediate Energy Nuclear Data on Hybrid Nuclear Technologies * Nuclear Data Requirements in Intermediate Energy Range for Improvement of Calculations of ADTT Target Processes * IV. Experimental Studies and Projects * ADTT Experiments at the Los Alamos Neutron Science Center * Neutron Multiplicity Distributions for GeV Proton Induced Spallation Reactions on Thin and Thick Targets of Pb and U * Solid State Nuclear Track Detector and Radiochemical Studies on the Transmutation of Nuclei Using Relativistic Heavy Ions * Experimental and Theoretical Study of Radionuclide Production on the Electronuclear Plant Target and Construction Materials Irradiated by 1.5 GeV and 130 MeV Protons * Neutronics and Power Deposition Parameters of the Targets Proposed in the ISTC Project 17 * Multicycle Irradiation of Plutonium in Solid Fuel Heavy-Water Blanket of ADS * Compound Neutron Valve of Accelerator-Driven System Sectioned Blanket * Subcritical Channel-Type Reactor for Weapon Plutonium Utilization * Accelerator Driven Molten-Fluoride Reactor with Modular Heat Exchangers on PB-BI Eutectic * A New Conception of High Power Ion Linac for ADTT * Pions and Accelerator-Driven Transmutation of Nuclear Waste? * V. Problems and Perspectives * Accelerator-Driven Transmutation Technologies for Resolution of Long-Term Nuclear Waste Concerns * Closing the Nuclear Fuel-Cycle and Moving Toward a Sustainable Energy Development * Workshop Summary * List of Participants

  10. Providing Nuclear Criticality Safety Analysis Education through Benchmark Experiment Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John D. Bess; J. Blair Briggs; David W. Nigg

    2009-11-01

    One of the challenges that today's new workforce of nuclear criticality safety engineers face is the opportunity to provide assessment of nuclear systems and establish safety guidelines without having received significant experience or hands-on training prior to graduation. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and/or the International Reactor Physics Experiment Evaluation Project (IRPhEP) provides students and young professionals the opportunity to gain experience and enhance critical engineering skills.

  11. Commissioning and field tests of a van-mounted system for the detection of radioactive sources and Special Nuclear Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cester, D.; Lunardon, M.; Stevanato, L.

    2015-07-01

    MODES SNM project aimed to carry out technical research in order to develop a prototype for a mobile, modular detection system for radioactive sources and Special Nuclear Materials (SNM). Its main goal was to deliver a tested prototype of a modular mobile system capable of passively detecting weak or shielded radioactive sources with accuracy higher than that of currently available systems. By the end of the project all the objectives have been successfully achieved. Results from the laboratory commissioning and the field tests will be presented. (authors)

  12. Space station systems analysis study. Part 3: Documentation. Volume 7: SCB alternate EPS evaluation, task 10

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Power levels up to 100 kWe average were baselined for the electrical power system of the space construction base, a long-duration manned facility capable of supporting manufacturing and large scale construction projects in space. Alternatives to the solar array battery systems discussed include: (1) solar concentrator/brayton; (2) solar concentrator/thermionic; (3) isotope/brayton; (4) nuclear/brayton; (5) nuclear thermoelectric; and (6) nuclear thermionic.

  13. W-320 Department of Health documentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, J.W.

    1998-08-07

    The purpose of this document is to gather information required to show that Project W-320 is in compliance with Washington State Department of Health requirements as specified in Radioactive Air Emissions Notice of Construction Project W-320, Tank 241-C-106 Sluicing, DOE/RL-95-45. Specifically, that W-320 is in compliance with ASME N509-1989 (Nuclear Power Plant Air-Cleaning Units and Components) and ASME N5 10-1989 (Testing of Nuclear Air Treatment Systems) for the 296-C-006 exhaust system.

  14. Measurement instruments for automatically monitoring the water chemistry of reactor coolant at nuclear power stations equipped with VVER reactors. Selection of measurement instruments and experience gained from their operation at Russian and foreign NPSs

    NASA Astrophysics Data System (ADS)

    Ivanov, Yu. A.

    2007-12-01

    An analytical review is given of Russian and foreign measurement instruments employed in a system for automatically monitoring the water chemistry of the reactor coolant circuit and used in the development of projects of nuclear power stations equipped with VVER-1000 reactors and the nuclear station project AES 2006. The results of experience gained from the use of such measurement instruments at nuclear power stations operating in Russia and abroad are presented.

  15. Liquid radwaste in-leakage reduction at TVA's Browns Ferry nuclear plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, A.C.; Roccasano, J.J.

    1987-01-01

    Early in 1985, Tennessee Valley Authority's (TVA's) Browns Ferry Nuclear Plant (BFNP) decided to initiate a liquid radwaste in-leakage reduction project as part of their chemistry improvement program. The purpose of this project was to reduce the overall volume of water processed by the radwaste system at BFNP by restricting uncontrolled in-leakage through the floor drain system. Impell Corporation was contracted to perform the project, which consisted of several tasks, each design to provide data for the reduction of in-leakage or to reduce the in-leakage directly. The program was begun in March 1985. Buy July of that same year, liquidmore » input to radwaste through the floor drain system had been reduced by --30%.« less

  16. Safe, Affordable, Nuclear Thermal Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Houts, M. G.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Doughty, G. E.

    2014-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).

  17. A CMMI-based approach for medical software project life cycle study.

    PubMed

    Chen, Jui-Jen; Su, Wu-Chen; Wang, Pei-Wen; Yen, Hung-Chi

    2013-01-01

    In terms of medical techniques, Taiwan has gained international recognition in recent years. However, the medical information system industry in Taiwan is still at a developing stage compared with the software industries in other nations. In addition, systematic development processes are indispensable elements of software development. They can help developers increase their productivity and efficiency and also avoid unnecessary risks arising during the development process. Thus, this paper presents an application of Light-Weight Capability Maturity Model Integration (LW-CMMI) to Chang Gung Medical Research Project (CMRP) in the Nuclear medicine field. This application was intended to integrate user requirements, system design and testing of software development processes into three layers (Domain, Concept and Instance) model. Then, expressing in structural System Modeling Language (SysML) diagrams and converts part of the manual effort necessary for project management maintenance into computational effort, for example: (semi-) automatic delivery of traceability management. In this application, it supports establishing artifacts of "requirement specification document", "project execution plan document", "system design document" and "system test document", and can deliver a prototype of lightweight project management tool on the Nuclear Medicine software project. The results of this application can be a reference for other medical institutions in developing medical information systems and support of project management to achieve the aim of patient safety.

  18. Final Technical Report for "Nuclear Technologies for Near Term Fusion Devices"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Paul P.H.; Sawan, Mohamed E.; Davis, Andrew

    Over approximately 18 years, this project evolved to focus on a number of related topics, all tied to the nuclear analysis of fusion energy systems. For the earliest years, the University of Wisconsin (UW)’s effort was in support of the Advanced Power Extraction (APEX) study to investigate high power density first wall and blanket systems. A variety of design concepts were studied before this study gave way to a design effort for a US Test Blanket Module (TBM) to be installed in ITER. Simultaneous to this TBM project, nuclear analysis supported the conceptual design of a number of fusion nuclearmore » science facilities that might fill a role in the path to fusion energy. Beginning in approximately 2005, this project added a component focused on the development of novel radiation transport software capability in support of the above nuclear analysis needs. Specifically, a clear need was identified to support neutron and photon transport on the complex geometries associated with Computer-Aided Design (CAD). Following the initial development of the Direct Accelerated Geoemtry Monte Carlo (DAGMC) capability, additional features were added, including unstructured mesh tallies and multi-physics analysis such as the Rigorous 2-Step (R2S) methodology for Shutdown Dose Rate (SDR) prediction. Throughout the project, there were also smaller tasks in support of the fusion materials community and for the testing of changes to the nuclear data that is fundamental to this kind of nuclear analysis.« less

  19. Incineration of nuclear waste by accelerator

    NASA Astrophysics Data System (ADS)

    Martino, J.; Fioni, G.; Leray, S.

    1998-10-01

    An important international effort is devoted to find a suitable solution to incinerate radioactive nuclear waste issued from conventional power plants and from nuclear disarmament. Practically all innovative projects consist of a sub critical system driven by an external neutron source obtained by spallation induced by a high intensity proton accelerator irradiating a heavy target. New nuclear data measurements are necessary for the realization of these systems, in particular a good knowledge of the spallation process and of the neutron cross sections for transuranic elements are essential.

  20. HISTORICAL AMERICAN ENGINEERING RECORD - IDAHO NATIONAL ENGINEERING AND ENVIRONMENTAL LABORATORY, TEST AREA NORTH, HAER NO. ID-33-E

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susan Stacy; Hollie K. Gilbert

    2005-02-01

    Test Area North (TAN) was a site of the Aircraft Nuclear Propulsion (ANP) Project of the U.S. Air Force and the Atomic Energy Commission. Its Cold War mission was to develop a turbojet bomber propelled by nuclear power. The project was part of an arms race. Test activities took place in five areas at TAN. The Assembly & Maintenance area was a shop and hot cell complex. Nuclear tests ran at the Initial Engine Test area. Low-power test reactors operated at a third cluster. The fourth area was for Administration. A Flight Engine Test facility (hangar) was built to housemore » the anticipated nuclear-powered aircraft. Experiments between 1955-1961 proved that a nuclear reactor could power a jet engine, but President John F. Kennedy canceled the project in March 1961. ANP facilities were adapted for new reactor projects, the most important of which were Loss of Fluid Tests (LOFT), part of an international safety program for commercial power reactors. Other projects included NASA's Systems for Nuclear Auxiliary Power and storage of Three Mile Island meltdown debris. National missions for TAN in reactor research and safety research have expired; demolition of historic TAN buildings is underway.« less

  1. Research Technology

    NASA Image and Video Library

    1999-01-01

    In the 1960's U.S. Government laboratories, under Project Orion, investigated a pulsed nuclear fission propulsion system. Small nuclear pulse units would be sequentially discharged from the aft end of the vehicle. A blast shield and shock absorber system would protect the crew and convert the shock loads into a continuous propulsive force.

  2. Development of advanced technological systems for accelerator transmutation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batskikh, G.I.; Bondarev, B.I.; Durkin, A.P.

    1995-10-01

    A development concept of the accelerator nuclear energy reactors is considered for energy generation and nuclear power plant waste conversion into short-lived nuclides along with the requirements imposed on the technological systems necessary for implementation of such projects. The state of art in the field is discussed.

  3. Submittal for 2003 Project of the Year K Basins Fuel Transfer System Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GERBER, M.S.

    2003-01-29

    Fluor Hanford, Inc. is pleased to submit the K Basins Fuel Transfer System (FTS) for consideration by the Project Management Institute as Project of the Year for 2003. The FTS involved installing a unique, unproven system in an inhospitable and deteriorating radiological and hazardous environment, under very stringent requirements and within an extremely condensed schedule, just 19 months, from authorization to full operations. The FTS, therefore, is an excellent example of effective project management, and the dynamic involvement of an integrated team representing a broad spectrum of personnel, disciplines, and services. The FTS is an integral and critical part ofmore » a larger project at Hanford -the Spent Nuclear Fuel Project (SNF). The mission of the SNF Project is to relocate used, or spent, nuclear fuel to safe interim storage, permanently dispose of radioactive debris in the K-Basins, and deactivate all related facilities and prepare them for demolition. Today, the FTS is being used to remove highly radioactive nuclear fuel from an aging, and potentially unstable storage in underground pools of water--the K-Basins--and safely transport it to a processing area to be cleaned, dried and sent to safe storage. The role the FTS plays in successfully completing the mission of the SNF Project is concrete evidence of the intrinsic value of project management and a testimonial to the innovation, ingenuity, and teamwork of many--from workers to management and subcontractors, and regulators to stakeholders. It's a true success story and one that will have a happy ending, safely eliminating the risk of potentially contaminating one of Washington state's most valuable natural resources, the Columbia River. This nomination is dedicated to that Project Team.« less

  4. Overview of the Project Prometheus Program

    NASA Technical Reports Server (NTRS)

    Burdick, G. M.

    2003-01-01

    This presentation will give an overview of the Project Prometheus Program (PPP, formerly the Nuclear Systems Initiative, NSI) and the Jupiter Icy Moons Orbiter (JIMO) Project (a component of PPP), a mission to the three icy Galilean moons of Jupiter.

  5. Decommissioning of Active Ventilation Systems in a Nuclear R and D Facility to Prepare for Building Demolition (Whiteshell Laboratories Decommissioning Project, Canada) - 13073

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilcox, Brian; May, Doug; Howlett, Don

    2013-07-01

    Whiteshell Laboratories (WL) is a nuclear research establishment owned by the Canadian government and operated by Atomic Energy of Canada Limited (AECL) since the early 1960's. WL is currently under a decommissioning license and the mandate is to remediate the nuclear legacy liabilities in a safe and cost effective manner. The WL Project is the first major nuclear decommissioning project in Canada. A major initiative underway is to decommission and demolish the main R and D Laboratory complex. The Building 300 R and D complex was constructed to accommodate laboratories and offices which were mainly used for research and developmentmore » associated with organic-cooled reactors, nuclear fuel waste management, reactor safety, advanced fuel cycles and other applications of nuclear energy. Building 300 is a three storey structure of approximately 16,000 m{sup 2}. In order to proceed with building demolition, the contaminated systems inside the building have to be characterized, removed, and the waste managed. There is a significant focus on volume reduction of radioactive waste for the WL project. The active ventilation system is one of the significant contaminated systems in Building 300 that requires decommissioning and removal. The active ventilation system was designed to manage hazardous fumes and radioactivity from ventilation devices (e.g., fume hoods, snorkels and glove boxes) and to prevent the escape of airborne hazardous material outside of the laboratory boundary in the event of an upset condition. The system includes over 200 ventilation devices and 32 active exhaust fan units and high efficiency particulate air (HEPA) filters. The strategy to remove the ventilation system was to work from the laboratory end back to the fan/filter system. Each ventilation duct was radiologically characterized. Fogging was used to minimize loose contamination. Sections of the duct were removed by various cutting methods and bagged for temporary storage prior to disposition. Maintenance of building heating, ventilation and air conditioning (HVAC) balancing was critical to ensure proper airflow and worker safety. Approximately 103 m{sup 3} of equipment and materials were recovered or generated by the project. Low level waste accounted for approximately 37.4 m{sup 3}. Where possible, ducting was free released for metal recycling. Contaminated ducts were compacted into B-1000 containers and stored in a Shielded Modular Above-Ground Storage Facility (SMAGS) on the WL site awaiting final disposition. The project is divided into three significant phases, with Phases 1 and 2 completed. Lessons learned during the execution of Phases 1 and 2 have been incorporated into the current ventilation removal. (authors)« less

  6. Nuclear thermal rocket workshop reference system Rover/NERVA

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.

    1991-01-01

    The Rover/NERVA engine system is to be used as a reference, against which each of the other concepts presented in the workshop will be compared. The following topics are reviewed: the operational characteristics of the nuclear thermal rocket (NTR); the accomplishments of the Rover/NERVA programs; and performance characteristics of the NERVA-type systems for both Mars and lunar mission applications. Also, the issues of ground testing, NTR safety, NASA's nuclear propulsion project plans, and NTR development cost estimates are briefly discussed.

  7. The NASA Advanced Exploration Systems Nuclear Thermal Propulsion Project

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Mitchell, Doyce P.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Clement, Steven; Borowski, Stanley K.; hide

    2015-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation NTP system could provide high thrust at a specific impulse (Isp) above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of a first generation NTP in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation systems.

  8. The Nuclear Cryogenic Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Borowski, Stanley K.; Scott, John

    2014-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progres made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).

  9. Nuclear Cryogenic Propulsion Stage for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Houts, M. G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2012-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).

  10. Nuclear Thermal Propulsion for Advanced Space Exploration

    NASA Technical Reports Server (NTRS)

    Houts, M. G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2012-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).

  11. Igniting the Light Elements: The Los Alamos Thermonuclear Weapon Project, 1942-1952

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzpatrick, Anne C.

    1999-07-01

    The American system of nuclear weapons research and development was conceived and developed not as a result of technological determinism, but by a number of individual architects who promoted the growth of this large technologically-based complex. While some of the technological artifacts of this system, such as the fission weapons used in World War II, have been the subject of many historical studies, their technical successors--fusion (or hydrogen) devices--are representative of the largely unstudied highly secret realms of nuclear weapons science and engineering. In the postwar period a small number of Los Alamos Scientific Laboratory's staff and affiliates were responsiblemore » for theoretical work on fusion weapons, yet the program was subject to both the provisions and constraints of the US Atomic Energy Commission, of which Los Alamos was a part. The Commission leadership's struggle to establish a mission for its network of laboratories, least of all to keep them operating, affected Los Alamos's leaders' decisions as to the course of weapons design and development projects. Adapting Thomas P. Hughes's ''large technological systems'' thesis, I focus on the technical, social, political, and human problems that nuclear weapons scientists faced while pursuing the thermonuclear project, demonstrating why the early American thermonuclear bomb project was an immensely complicated scientific and technological undertaking. I concentrate mainly on Los Alamos Scientific Laboratory's Theoretical, or T, Division, and its members' attempts to complete an accurate mathematical treatment of the ''Super''--the most difficult problem in physics in the postwar period--and other fusion weapon theories. Although tackling a theoretical problem, theoreticians had to address technical and engineering issues as well. I demonstrate the relative value and importance of H-bomb research over time in the postwar era to scientific, politician, and military participants in this project. I analyze how and when participants in the H-bomb project recognized both blatant and subtle problems facing the project, how scientists solved them, and the relationship this process had to official nuclear weapons policies. Consequently, I show how the practice of nuclear weapons science in the postwar period became an extremely complex, technologically-based endeavor.« less

  12. Reducing Risk for the Next Generation Nuclear Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John M. Beck II; Harold J. Heydt; Emmanuel O. Opare

    2010-07-01

    The Next Generation Nuclear Plant (NGNP) Project, managed by the Idaho National Laboratory (INL), is directed by the Energy Policy Act of 2005, to research, develop, design, construct, and operate a prototype forth generation nuclear reactor to meet the needs of the 21st Century. As with all large projects developing and deploying new technologies, the NGNP has numerous risks that need to be identified, tracked, mitigated, and reduced in order for successful project completion. A Risk Management Plan (RMP) was created to outline the process the INL is using to manage the risks and reduction strategies for the NGNP Project.more » Integral to the RMP is the development and use of a Risk Management System (RMS). The RMS is a tool that supports management and monitoring of the project risks. The RMS does not only contain a risk register, but other functionality that allows decision makers, engineering staff, and technology researchers to review and monitor the risks as the project matures.« less

  13. Thermal hydraulic feasibility assessment of the hot conditioning system and process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heard, F.J.

    1996-10-10

    The Spent Nuclear Fuel Project was established to develop engineered solutions for the expedited removal, stabilization, and storage of spent nuclear fuel from the K Basins at the U.S. Department of Energy`s Hanford Site in Richland, Washington. A series of analyses have been completed investigating the thermal-hydraulic performance and feasibility of the proposed Hot Conditioning System and process for the Spent Nuclear Fuel Project. The analyses were performed using a series of thermal-hydraulic models that could respond to all process and safety-related issues that may arise pertaining to the Hot Conditioning System. The subject efforts focus on independently investigating, quantifying,more » and establishing the governing heat production and removal mechanisms, flow distributions within the multi-canister overpack, and performing process simulations for various purge gases under consideration for the Hot Conditioning System, as well as obtaining preliminary results for comparison with and verification of other analyses, and providing technology- based recommendations for consideration and incorporation into the Hot Conditioning System design bases.« less

  14. NICA project management information system

    NASA Astrophysics Data System (ADS)

    Bashashin, M. V.; Kekelidze, D. V.; Kostromin, S. A.; Korenkov, V. V.; Kuniaev, S. V.; Morozov, V. V.; Potrebenikov, Yu. K.; Trubnikov, G. V.; Philippov, A. V.

    2016-09-01

    The science projects growth, changing of the efficiency criteria during the project implementation require not only increasing of the management specialization level but also pose the problem of selecting the effective planning methods, monitoring of deadlines and interaction of participants involved in research projects. This paper is devoted to choosing the project management information system for the new heavy-ion collider NICA (Nuclotron based Ion Collider fAcility). We formulate the requirements for the project management information system with taking into account the specifics of the Joint Institute for Nuclear Research (JINR, Dubna, Russia) as an international intergovernmental research organization, which is developed on the basis of a flexible and effective information system for the NICA project management.

  15. Nuclear Science Symposium, 25th, and Symposium on Nuclear Power Systems, 10th, Washington, D.C., October 18-20, 1978, Proceedings

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Detectors of various types are discussed, taking into account drift chambers, calorimetry, multiwire proportional chambers, signal processing, the use of semiconductors, and photo/optical applications. Circuits are considered along with instrumentation for space, nuclear medicine instrumentation, data acquisition and systems, environmental instrumentation, reactor instrumentation, and nuclear power systems. Attention is given to a new approach to high accuracy gaseous detectors, the current status of electron mobility and free-ion yield in high mobility liquids, a digital drift chamber digitizer system, the stability of oxides in high purity germanium, the quadrant photomultiplier, and the theory of imaging with a very limited number of projections.

  16. TA 55 Reinvestment Project II Phase C Update Project Status May 23, 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giordano, Anthony P.

    The TA-55 Reinvestment Project (TRP) II Phase C is a critical infrastructure project focused on improving safety and reliability of the Los Alamos National Laboratory (LANL) TA-55 Complex. The Project recapitalizes and revitalizes aging and obsolete facility and safety systems providing a sustainable nuclear facility for National Security Missions.

  17. Nuclear Cryogenic Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2012-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced NEP.

  18. Kilopower: Small and Affordable Fission Power Systems for Space

    NASA Technical Reports Server (NTRS)

    Mason, Lee; Palac, Don; Gibson, Marc

    2017-01-01

    The Nuclear Systems Kilopower Project was initiated by NASA's Space Technology Mission Directorate Game Changing Development Program in fiscal year 2015 to demonstrate subsystem-level technology readiness of small space fission power in a relevant environment (Technology Readiness Level 5) for space science and human exploration power needs. The Nuclear Systems Kilopower Project centerpiece is the Kilopower Reactor Using Stirling Technology (KRUSTY) test, which consists of the development and testing of a fission ground technology demonstrator of a 1 kWe-class fission power system. The technologies to be developed and validated by KRUSTY are extensible to space fission power systems from 1 to 10 kWe, which can enable higher power future potential deep space science missions, as well as modular surface fission power systems for exploration. The Kilopower Project is cofounded by NASA and the Department of Energy National Nuclear Security Administration (NNSA).KRUSTY include the reactor core, heat pipes to transfer the heat from the core to the power conversion system, and the power conversion system. Los Alamos National Laboratory leads the design of the reactor, and the Y-12 National Security Complex is fabricating it. NASA Glenn Research Center (GRC) has designed, built, and demonstrated the balance of plant heat transfer and power conversion portions of the KRUSTY experiment. NASA MSFC developed an electrical reactor simulator for non-nuclear testing, and the design of the reflector and shielding for nuclear testing. In 2016, an electrically heated non-fissionable Depleted Uranium (DU) core was tested at GRC in a configuration identical to the planned nuclear test. Once the reactor core has been fabricated and shipped to the Device Assembly Facility at the NNSAs Nevada National Security Site, the KRUSTY nuclear experiment will be assembled and tested. Completion of the KRUSTY experiment will validate the readiness of 1 to 10 kWe space fission technology for NASAs future requirements for sunlight-independent space power. An early opportunity for demonstration of In-Situ Resource Utilization (ISRU) capability on the surface of Mars is currently being considered for 2026 launch. Since a space fission system is the leading option for power generation for the first Mars human outpost, a smaller version of a planetary surface fission power system could be built to power the ISRU demonstration and ensure its end-to-end validity. Planning is underway to start the hardware development of this subscale flight demonstrator in 2018.

  19. Guidance, Navigation, and Control Considerations for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Mitchell, Doyce P.; Kim, Tony

    2015-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation NTP system could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of a first generation NTP in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NTP project could also help enable high performance fission power systems and Nuclear Electric Propulsion (NEP). Guidance, navigation, and control of NTP may have some unique but manageable characteristics.

  20. First Annual Progress Report on Transmission of Information by Acoustic Communication along Metal Pathways in Nuclear Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heifetz, A.; Bakhtiari, S.; Huang, X.

    The objective of this project is to develop and demonstrate methods for transmission of information in nuclear facilities by acoustic means along existing in-place metal piping infrastructure. Pipes are omnipresent in a nuclear facility, and penetrate enclosures and partitions, such as the containment building wall. In the envisioned acoustic communication (AC) system, packets of information will be transmitted as guided acoustic waves along pipes. Performance of AC hardware and network protocols for efficient and secure communications under development in this project will be eventually evaluated in a representative nuclear power plant environment. Research efforts in the first year of thismore » project have been focused on identification of appropriate transducers, and evaluation of their performance for information transmission along nuclear-grade metallic pipes. COMSOL computer simulations were performed to study acoustic wave generation, propagation, and attenuation on pipes. An experimental benchtop system was used to evaluate signal attenuation and spectral dispersion using piezo-electric transducers (PZTs) and electromagnetic acoustic transducers (EMATs). Communication protocols under evaluation consisted on-off keying (OOK) signal modulation, in particular amplitude shift keying (ASK) and phase shift keying (PSK). Tradeoffs between signal power and communication data rate were considered for ASK and PSK coding schemes.« less

  1. Exploratory study of several advanced nuclear-MHD power plant systems.

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Clement, J. D.; Rosa, R. J.; Yang, Y. Y.

    1973-01-01

    In order for efficient multimegawatt closed cycle nuclear-MHD systems to become practical, long-life gas cooled reactors with exit temperatures of about 2500 K or higher must be developed. Four types of nuclear reactors which have the potential of achieving this goal are the NERVA-type solid core reactor, the colloid core (rotating fluidized bed) reactor, the 'light bulb' gas core reactor, and the 'coaxial flow' gas core reactor. Research programs aimed at developing these reactors have progressed rapidly in recent years so that prototype power reactors could be operating by 1980. Three types of power plant systems which use these reactors have been analyzed to determine the operating characteristics, critical parameters and performance of these power plants. Overall thermal efficiencies as high as 80% are projected, using an MHD turbine-compressor cycle with steam bottoming, and slightly lower efficiencies are projected for an MHD motor-compressor cycle.

  2. Affordable Development of a Nuclear Cryogenic Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Houts, M. G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2012-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. The foundation provided by development and utilization of a NCPS could enable development of extremely high performance systems. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).

  3. Multiscale Modeling and Uncertainty Quantification for Nuclear Fuel Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estep, Donald; El-Azab, Anter; Pernice, Michael

    2017-03-23

    In this project, we will address the challenges associated with constructing high fidelity multiscale models of nuclear fuel performance. We (*) propose a novel approach for coupling mesoscale and macroscale models, (*) devise efficient numerical methods for simulating the coupled system, and (*) devise and analyze effective numerical approaches for error and uncertainty quantification for the coupled multiscale system. As an integral part of the project, we will carry out analysis of the effects of upscaling and downscaling, investigate efficient methods for stochastic sensitivity analysis of the individual macroscale and mesoscale models, and carry out a posteriori error analysis formore » computed results. We will pursue development and implementation of solutions in software used at Idaho National Laboratories on models of interest to the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program.« less

  4. The Nuclear Cryogenic Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Borowski, Stanley K.; Scott, John

    2014-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP). Nuclear propulsion can be affordable and viable compared to other propulsion systems and must overcome a biased public fear due to hyper-environmentalism and a false perception of radiation and explosion risk.

  5. Research Technology

    NASA Image and Video Library

    1999-01-01

    In the 1960's U.S. Government laboratories, under Project Orion, investigated a pulsed nuclear fission propulsion system. Based on Project Orion, an interplanetary vehicle using pulsed fission propulsion would incorporate modern technologies for momentum transfer, thermal management, and habitation design.

  6. A novel mobile system for radiation detection and monitoring

    NASA Astrophysics Data System (ADS)

    Biafore, Mauro

    2014-05-01

    A novel mobile system for real time, wide area radiation surveillance has been developed within the REWARD project, financed within the FP7 programme, theme SEC-2011.1.5-1 (Development of detection capabilities of difficult to detect radioactive sources and nuclear materials - Capability Project). The REWARD sensing units are small, mobile portable units with low energy consumption, which consist of new miniaturized solid-state radiation sensors: a CdZnTe detector for gamma radiation and a high efficiency neutron detector based on novel silicon technologies. The sensing unit is integrated by a wireless communication interface to send the data remotely to a monitoring base station as well as a GPS system to calculate the position of the tag. The system also incorporates middleware and high-level software to provide web-service interfaces for the exchange of information. A central monitoring and decision support system has been designed to process the data from the sensing units and to compare them with historical record in order to generate an alarm when an abnormal situation is detected. A security framework ensures protection against unauthorized access to the network and data, ensuring the privacy of the communications and contributing to the overall robustness and reliability of the REWARD system. The REWARD system has been designed for many different scenarios such as nuclear terrorism threats, lost radioactive sources, radioactive contamination or nuclear accidents. It can be deployed in emergency units and in general in any type of mobile or static equipment, but also inside public/private buildings or infrastructures. The complete system is scalable in terms of complexity and cost and offers very high precision on both the measurement and the location of the radiation. The modularity and flexibility of the system allows for a realistic introduction to the market. Authorities may start with a basic, low cost system and increase the complexity based on their evolving needs and budget constraints. On 24th September 2013, REWARD project received a prize as the best Innovative project related to the Not Conventional Threat (NCT) Chemical Biological Radiological Nuclear explosives (CBRNe) products. A highly distinguished jury stated that "the developed detection and surveillance system offers a perfect solution for end-users to enhance crucial capabilities in RN analysis, risk communication and surveillance in case of a radiation incident". A demonstration of the REWARD system is planned in Naples on September 2014. More information about the REWARD project can be found at www.reward-project.eu.

  7. Fuel Aging in Storage and Transportation (FAST): Accelerated Characterization and Performance Assessment of the Used Nuclear Fuel Storage System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDeavitt, Sean

    2016-08-02

    This Integrated Research Project (IRP) was established to characterize key limiting phenomena related to the performance of used nuclear fuel (UNF) storage systems. This was an applied engineering project with a specific application in view (i.e., UNF dry storage). The completed tasks made use of a mixture of basic science and engineering methods. The overall objective was to create, or enable the creation of, predictive tools in the form of observation methods, phenomenological models, and databases that will enable the design, installation, and licensing of dry UNF storage systems that will be capable of containing UNF for extended period ofmore » time.« less

  8. Space Nuclear Thermal Propulsion (SNTP) Air Force facility

    NASA Technical Reports Server (NTRS)

    Beck, David F.

    1993-01-01

    The Space Nuclear Thermal Propulsion (SNTP) Program is an initiative within the US Air Force to acquire and validate advanced technologies that could be used to sustain superior capabilities in the area or space nuclear propulsion. The SNTP Program has a specific objective of demonstrating the feasibility of the particle bed reactor (PBR) concept. The term PIPET refers to a project within the SNTP Program responsible for the design, development, construction, and operation of a test reactor facility, including all support systems, that is intended to resolve program technology issues and test goals. A nuclear test facility has been designed that meets SNTP Facility requirements. The design approach taken to meet SNTP requirements has resulted in a nuclear test facility that should encompass a wide range of nuclear thermal propulsion (NTP) test requirements that may be generated within other programs. The SNTP PIPET project is actively working with DOE and NASA to assess this possibility.

  9. Human factors evaluation of remote afterloading brachytherapy. Volume 2, Function and task analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callan, J.R.; Gwynne, J.W. III; Kelly, T.T.

    1995-05-01

    A human factors project on the use of nuclear by-product material to treat cancer using remotely operated afterloaders was undertaken by the Nuclear Regulatory Commission. The purpose of the project was to identify factors that contribute to human error in the system for remote afterloading brachytherapy (RAB). This report documents the findings from the first phase of the project, which involved an extensive function and task analysis of RAB. This analysis identified the functions and tasks in RAB, made preliminary estimates of the likelihood of human error in each task, and determined the skills needed to perform each RAB task.more » The findings of the function and task analysis served as the foundation for the remainder of the project, which evaluated four major aspects of the RAB system linked to human error: human-system interfaces; procedures and practices; training and qualifications of RAB staff; and organizational practices and policies. At its completion, the project identified and prioritized areas for recommended NRC and industry attention based on all of the evaluations and analyses.« less

  10. Nuclear power supplies: Their potential and the practical problems to their achievement for space missions

    NASA Technical Reports Server (NTRS)

    Colston, B. W.

    1986-01-01

    Various issues associated with getting technology development of nuclear power systems moving at a pace which will support the anticipated need for such systems in later years is discussed. The projected power needs of such advanced space elements as growth space stations and lunar and planetary vehicles and bases are addressed briefly, and the relevance of nuclear power systems is discussed. A brief history and status of the U.S. nuclear reactor systems is provided, and some of the problems (real and/or perceived) are dealt with briefly. Key areas on which development attention should be focused in the near future are identified, and a suggested approach is recommended to help accelerate the process.

  11. Implementation of the MPC and A Operations Monitorying (MOM) System at JSC PO Sevmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monogarov, A.; Taranenko, V.; Serov,A

    The Material Protection, Control and Accounting (MPC&A) Program has been working since 1994 with nuclear sites in Russia to upgrade the physical protection (PP) and material control and accounting (MC&A) functions at facilities containing weapons usable nuclear material. In early 2001, the MPC&A program initiated the MPC&A Operations Monitoring (MOM) Project to monitor facilities where MPC&A upgrades have been installed to provide increased confidence that personnel are present and vigilant, provide confidence that security procedures are being properly performed and provide additional assurance that nuclear materials have not been stolen. The MOM project began as a pilot project at themore » Moscow State Engineering Physics Institute (MEPhI) and a MOM system was successfully installed in October 2001. Following the success of the MEPhI pilot project, the MPC&A Program expanded the installation of MOM systems to several other Russian facilities, including the JSC 'PO' Sevmash', Severodvinsk, Russia. The MOM system was made operational at Sevmash in September, 2008. This paper will discuss the objectives of the MOM system installed at Sevmash and indicate how the objectives influenced the development of the conceptual design. The paper will also describe activities related to installation of the infrastructure and the MOM system at Sevmash. Experience gained from operation of the system and how the objectives are being met will also be discussed. The paper will describe how the MOM system is used at Sevmash and, in particular, how the data is analyzed. Finally, future activities including potential expansion of the MOM system, operator training, data sharing and analysis, procedure development, repair and maintenance will be included in the paper.« less

  12. "Data Acquisition Systems"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unterweger, Michael; Costrell, Louis deceased

    2009-07-07

    This project involved support for Lou Costrell and myself in the development of IEEE and IEC standards for nuclear counting and data acquisition systems. Over the years, as a result of this support, Lou and I were able to attend standards meetings of IEEE and IEC, which led directly to the publication of many standards for NIM systems, FastBus and CAMAC. We also chaired several writing committees as well as ANSI N42 (Nuclear instrumentation), IEEE NIM (NIM standard), IEEE NID (NPSS nuclear instruments and detector) and IEC TC45 WG9 (Nuclear instrumentation). Through this support we were able to assure thatmore » the interests of the US and DOE were expressed and implemented in the various standards.« less

  13. International data collection and analysis. Task 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-04-01

    Commercial nuclear power has grown to the point where 13 nations now operate commercial nuclear power plants. Another four countries should join this list before the end of 1980. In the Nonproliferation Alternative Systems Assessment Program (NASAP), the US DOE is evaluating a series of alternate possible power systems. The objective is to determine practical nuclear systems which could reduce proliferation risk while still maintaining the benefits of nuclear power. Part of that effort is the development of a data base denoting the energy needs, resources, technical capabilities, commitment to nuclear power, and projected future trends for various non-US countries.more » The data are presented by country for each of 28 non-US countries. This volume contains compiled data on Mexico, Netherlands, Pakistan, Philippines, South Africa, South Korea, and Spain.« less

  14. Review of the Tri-Agency Space Nuclear Reactor Power System Technology Program

    NASA Technical Reports Server (NTRS)

    Ambrus, J. H.; Wright, W. E.; Bunch, D. F.

    1984-01-01

    The Space Nuclear Reactor Power System Technology Program designated SP-100 was created in 1983 by NASA, the U.S. Department of Defense, and the Defense Advanced Research Projects Agency. Attention is presently given to the development history of SP-100 over the course of its first year, in which it has been engaged in program objectives' definition, the analysis of civil and military missions, nuclear power system functional requirements' definition, concept definition studies, the selection of primary concepts for technology feasibility validation, and the acquisition of initial experimental and analytical results.

  15. Radionuclide metrology research for nuclear site decommissioning

    NASA Astrophysics Data System (ADS)

    Judge, S. M.; Regan, P. H.

    2017-11-01

    The safe and cost-effective decommissioning of legacy nuclear sites relies on accurate measurement of the radioactivity content of the waste materials, so that the waste can be assigned to the most appropriate disposal route. Such measurements are a new challenge for the science of radionuclide metrology which was established largely to support routine measurements on operating nuclear sites and other applications such as nuclear medicine. In this paper, we provide a brief summary of the international measurement system that is established to enable nuclear site operators to demonstrate that measurements are accurate, independent and fit for purpose, and highlight some of the projects that are underway to adapt the measurement system to meet the changing demands from the industry.

  16. SPiRIT-TPC with GET readout electronics for the study of density dependent symmetry energy of high dense matter with Heavy RI collisions

    NASA Astrophysics Data System (ADS)

    Isobe, Tadaaki; SPiRIT Collaboration

    2014-09-01

    The nuclear Equation of State (EoS) is a fundamental property of nuclear matter that describes the relationships between the parameters for a nuclear system, such as energy, density and temperature. An international collaboration, named SPiRIT, to study the nuclear EoS has been formed recently. One of the main devices of experimental setup is a Time Projection Chamber (TPC) which will be installed into the SAMURAI dipole magnet at RIKEN-RIBF. The TPC can measure charged pions, protons and light ions simultaneously in heavy RI collisions, and those will be used as probes to study the asymmetric dense nuclear matter. In addition to the status of the SPiRIT project, testing of SPiRIT-TPC with GET electronics will be presented in this talk. GET, general electronics for TPC, is a project for the development of novel electronics for TPC supported by NSF and ANR. This work is supported in part by the Japan Grant-in-Aide award and the US DOE grant DE-SC0004835 and JUSEIPEN.

  17. System configuration management plan for 101-SY Hydrogen Mitigation Test Project Mini-Data Acquisition and Control System of Tank Waste Remediation System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vargo, G.F. Jr.

    1994-10-11

    The DOE Standard defines the configuration management program by the five basic program elements of ``program management,`` ``design requirements,`` ``document control,`` ``change control,`` and ``assessments,`` and the two adjunct recovery programs of ``design reconstitution,`` and ``material condition and aging management. The C-M model of five elements and two adjunct programs strengthen the necessary technical and administrative control to establish and maintain a consistent technical relationship among the requirements, physical configuration, and documentation. Although the DOE Standard was originally developed for the operational phase of nuclear facilities, this plan has the flexibility to be adapted and applied to all life-cycle phasesmore » of both nuclear and non-nuclear facilities. The configuration management criteria presented in this plan endorses the DOE Standard and has been tailored specifically to address the technical relationship of requirements, physical configuration, and documentation during the full life-cycle of the 101-SY Hydrogen Mitigation Test Project Mini-Data Acquisition and Control System of Tank Waste Remediation System.« less

  18. World energy projection system: Model documentation

    NASA Astrophysics Data System (ADS)

    1992-06-01

    The World Energy Project System (WEPS) is an accounting framework that incorporates projects from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product) and about the rate of incremental energy requirements met by hydropower, geothermal, coal, and natural gas to produce projections of world energy consumption published annually by the Energy Information Administration (EIA) in the International Energy Outlook (IEO). Two independently documented models presented in Figure 1, the Oil Market Simulation (OMS) model and the World Integrated Nuclear Evaluation System (WINES), provide projections of oil and nuclear power consumption published in the IEO. Output from a third independently documented model, and the International Coal Trade Model (ICTM), is not published in the IEO but is used in WEPS as a supply check on projections of world coal consumption produced by WEPS and published in the IEO. A WEPS model of natural gas production documented in this report provides the same type of implicit supply check on the WEPS projections of world natural gas consumption published in the IEO. Two additional models are included in Figure 1, the OPEC Capacity model and the Non-OPEC Oil Production model. These WEPS models provide inputs to the OMS model and are documented in this report.

  19. Test development for the thermionic system evaluation test (TSET) project

    NASA Astrophysics Data System (ADS)

    Morris, D. Brent; Standley, Vaughn H.; Schuller, Michael J.

    1992-01-01

    The arrival of a Soviet TOPAZ-II space nuclear reactor affords the US space nuclear power (SNP) community the opportunity to study an assembled thermionic conversion power system. The TOPAZ-II will be studied via the Thermionic System Evaluation Test (TSET) Project. This paper is devoted to the discussion of TSET test development as related to the objectives contained in the TSET Project Plan (Standley et al. 1991). The objectives contained in the Project Plan are the foundation for scheduled TSET tests on TOPAZ-II and are derived from the needs of the Air Force Thermionic SNP program. Our ability to meet the objectives is bounded by unique constraints, such as procurement requirements, operational limitations, and necessary interaction between US and Soviet Scientists and engineers. The fulfillment of the test objectives involves a thorough methodology of test scheduling and data managment. The overall goals for the TSET program are gaining technical understanding of a thermionic SNP system and demonstrating the capabilities and limitations of such a system while assisting in the training of US scientist and engineers in preparation for US SNP system testing. Tests presently scheduled as part of TSET include setup, demonstration, and verification tests; normal and off-normal operating test, and system and component performance tests.

  20. 75 FR 36710 - The Texas Engineering Experiment Station/Texas A&M University System; Notice of Acceptance for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ... for the Nuclear Science Center Reactor and Order Imposing Procedures for Access To Safeguards Information and Sensitive Unclassified Non- Safeguards Information AGENCY: Nuclear Regulatory Commission. ACTION: Notice of acceptance for docketing. FOR FURTHER INFORMATION CONTACT: Christian Cowdrey, Project...

  1. Overview of the INPRO Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kupitz, J.; Depisch, F.; Zou, Y.

    2004-10-03

    During the last fifty years remarkable results are achieved in the application of nuclear technology for the production of electricity. Looking ahead to the next fifty years it is clear that the demand for energy will grow considerably and also the requirements for the way the energy will be supplied. Within the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO), the future of the energy demand and supply was explored and several scenario's identified. A leading requirement for energy supply is coming up and will play a crucial role: sustainability of the way the energy supply will bemore » realized. Fulfilling the growing need for energy in developing countries is as well an important issue. Based on these scenario's for the next fifty years, an inventory of requirements for the future of nuclear energy systems has been collected as well a methodology developed by INPRO to assess innovative nuclear systems and fuel cycles. On the base of this assessment, the need for innovations and breakthroughs in existing technology can be defined. To facilitate the deployment of innovative nuclear systems also the infrastructure, technical as well as institutional has to be adjusted to the anticipated changes in the world such as the globalization. As a contribution to the conference the main messages of INPRO will be presented.« less

  2. System Theoretic Frameworks for Mitigating Risk Complexity in the Nuclear Fuel Cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Adam David; Mohagheghi, Amir H.; Cohn, Brian

    In response to the expansion of nuclear fuel cycle (NFC) activities -- and the associated suite of risks -- around the world, this project evaluated systems-based solutions for managing such risk complexity in multimodal and multi-jurisdictional international spent nuclear fuel (SNF) transportation. By better understanding systemic risks in SNF transportation, developing SNF transportation risk assessment frameworks, and evaluating these systems-based risk assessment frameworks, this research illustrated interdependency between safety, security, and safeguards risks is inherent in NFC activities and can go unidentified when each "S" is independently evaluated. Two novel system-theoretic analysis techniques -- dynamic probabilistic risk assessment (DPRA) andmore » system-theoretic process analysis (STPA) -- provide integrated "3S" analysis to address these interdependencies and the research results suggest a need -- and provide a way -- to reprioritize United States engagement efforts to reduce global nuclear risks. Lastly, this research identifies areas where Sandia National Laboratories can spearhead technical advances to reduce global nuclear dangers.« less

  3. Analytical study of nozzle performance for nuclear thermal rockets

    NASA Technical Reports Server (NTRS)

    Davidian, Kenneth O.; Kacynski, Kenneth J.

    1991-01-01

    A parametric study has been conducted by the NASA-Lewis Rocket Engine Design Expert System for the convergent-divergent nozzle of the Nuclear Thermal Rocket system, which uses a nuclear reactor to heat hydrogen to high temperature and then expands it through the nozzle. It is established by the study that finite-rate chemical reactions lower performance levels from theoretical levels. Major parametric roles are played by chamber temperature and chamber pressure. A maximum performance of 930 sec is projected at 2700 K, and of 1030 at 3100 K.

  4. Transmutation of Radioactive Nuclear Waste — Present Status and Requirement for the Problem-Oriented Nuclear Database: Approach to Scheduling the Experiments (Reactor, Target, Blanket)

    NASA Astrophysics Data System (ADS)

    Artisyuk, V.; Ignatyuk, A.; Korovin, Yu.; Lopatkin, A.; Matveenko, I.; Stankovskiy, A.; Titarenko, Yu.

    2005-05-01

    Transmutation of nuclear wastes (Minor Actinides and Long-Lived Fission Products) remains an important option to reduce the burden of high-level waste on final waste disposal in deep geological structures. Accelerator-Driven Systems (ADS) are considered as possible candidates to perform transmutation due to their subcritical operation mode that eliminates some of the serious safety penalties unavoidable in critical reactors. Specific requirements to nuclear data necessary for ADS transmutation analysis is the main subject of the ISTC Project ♯2578 which started in 2004 to identify the areas of research priorities in the future. The present paper gives a summary of ongoing project stressing the importance of nuclear data for blanket performance (reactivity behavior with associated safety characteristics) and uncertainties that affect characteristics of neutron producing target.

  5. Working Party on International Nuclear Data Evaluation Cooperation (WPEC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dupont, E., E-mail: wpec@oecd-nea.org; Chadwick, M.B.; Danon, Y.

    The OECD Nuclear Energy Agency (NEA) organizes cooperation between the major nuclear data evaluation projects in the world. The NEA Working Party on International Nuclear Data Evaluation Cooperation (WPEC) was established to promote the exchange of information on nuclear data evaluation, measurement, nuclear model calculation, validation, and related topics, and to provide a framework for cooperative activities between the participating projects. The working party assesses nuclear data improvement needs and addresses these needs by initiating joint activities in the framework of dedicated WPEC subgroups. Studies recently completed comprise a number of works related to nuclear data covariance and associated processingmore » issues, as well as more specific studies related to the resonance parameter representation in the unresolved resonance region, the gamma production from fission product capture reactions, the {sup 235}U capture cross section, the EXFOR database, and the improvement of nuclear data for advanced reactor systems. Ongoing activities focus on the evaluation of {sup 239}Pu in the resonance region, scattering angular distribution in the fast energy range, and reporting/usage of experimental data for evaluation in the resolved resonance region. New activities include two subgroups on improved fission product yield evaluation methodologies and on modern nuclear database structures. Future activities under discussion include a pilot project for a Collaborative International Evaluated Library Organization (CIELO) and methods to provide feedback from nuclear and covariance data adjustment for improvement of nuclear data. In addition to the above mentioned short-term task-oriented subgroups, WPEC also hosts a longer-term subgroup charged with reviewing and compiling the most important nuclear data requirements in a high priority request list (HPRL)« less

  6. Working Party on International Nuclear Data Evaluation Cooperation (WPEC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giuseppe Palmiotti

    The OECD Nuclear Energy Agency (NEA) is organizing the cooperation between the major nuclear data evaluation projects in the world. The NEA Working Party on International Nuclear Data Evaluation Cooperation (WPEC) was established to promote the exchange of information on nuclear data evaluation, measurement, nuclear model calculation, validation, and related topics, and to provide a framework for cooperative activities between the participating projects. The working party assesses nuclear data improvement needs and addresses these needs by initiating joint activities in the framework of dedicated WPEC subgroups. Studies recently completed comprise a number of works related to nuclear data covariance andmore » associated processing issues, as well as more specific studies related to the resonance parameter representation in the unresolved resonance region, the gamma production from fission-product capture reactions, the U-235 capture cross-section, the EXFOR database, and the improvement of nuclear data for advanced reactor systems. Ongoing activities focus on the evaluation of Pu-239 in the resonance region, scattering angular distribution in the fast energy range, and reporting/usage of experimental data for evaluation in the resolved resonance region. New activities include two new subgroups on improved fission product yield evaluation methodologies and on modern nuclear database structures. Future activities under discussion include a pilot project of a Collaborative International Evaluated Library (CIELO) and methods to provide feedback from nuclear and covariance data adjustment for improvement of nuclear data. In addition to the above mentioned short-term, task-oriented subgroups, the WPEC also hosts a longer-term subgroup charged with reviewing and compiling the most important nuclear data requirements in a high priority request list (HPRL).« less

  7. Working Party on International Nuclear Data Evaluation Cooperation (WPEC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dupont, E.; Herman, M.; Dupont, E.

    The OECD Nuclear Energy Agency (NEA) organizes cooperation between the major nuclear data evaluation projects in the world. Moreover, the NEA Working Party on International Nuclear Data Evaluation Cooperation (WPEC) was established to promote the exchange of information on nuclear data evaluation, measurement, nuclear model calculation, validation, and related topics, and to provide a framework for cooperative activities between the participating projects. The working party assesses nuclear data improvement needs and addresses these needs by initiating joint activities in the framework of dedicated WPEC subgroups. Studies recently completed comprise a number of works related to nuclear data covariance and associatedmore » processing issues, as well as more specific studies related to the resonance parameter representation in the unresolved resonance region, the gamma production from fission product capture reactions, the 235U capture cross section, the EXFOR database, and the improvement of nuclear data for advanced reactor systems. Ongoing activities focus on the evaluation of 239Pu in the resonance region, scattering angular distribution in the fast energy range, and reporting/usage of experimental data for evaluation in the resolved resonance region. New activities include two subgroups on improved fission product yield evaluation methodologies and on modern nuclear database structures. Some future activities under discussion include a pilot project for a Collaborative International Evaluated Library Organization (CIELO) and methods to provide feedback from nuclear and covariance data adjustment for improvement of nuclear data. In addition to the above mentioned short-term task-oriented subgroups, WPEC also hosts a longer-term subgroup charged with reviewing and compiling the most important nuclear data requirements in a high priority request list (HPRL).« less

  8. Ion engine propelled Earth-Mars cycler with nuclear thermal propelled transfer vehicle, volume 2

    NASA Technical Reports Server (NTRS)

    Meyer, Rudolf X.; Baker, Myles; Melko, Joseph

    1994-01-01

    The goal of this project was to perform a preliminary design of a long term, reusable transportation system between earth and Mars which would be capable of providing both artificial gravity and shelter from solar flare radiation. The heart of this system was assumed to be a Cycler spacecraft propelled by an ion propulsion system. The crew transfer vehicle was designed to be propelled by a nuclear-thermal propulsion system. Several Mars transportation system architectures and their associated space vehicles were designed.

  9. Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Mitchell, Sonny; Houts, Michael G.; Kim, Tony

    2015-01-01

    Development efforts in the United States for nuclear thermal propulsion (NTP) systems began with Project Rover (1955-1973) which completed 22 high-power rocket reactor tests. Results indicated that an NTP system with a high thrust-to-weight ratio and a specific impulse greater than 900 s would be feasible. John F. Kennedy, in his historic special address to Congress on the importance of Space on May 25, 1961, said, "First, I believe that this nation should commit itself to achieving the goal, before this decade is out, of landing a man on the Moon and returning him safely to the Earth..." This was accomplished. He also said, "Secondly ... accelerate development of the Rover nuclear rocket. This gives promise of someday providing a means for even more exciting and ambitious exploration of space... to the very end of the solar system itself." The current NTP project focuses on demonstrating the affordability and viability of a fully integrated NTP system with emphasis on fuel fabrication and testing and an affordable development and qualification strategy. The goal is to enable NTP to be considered a mainstream option for supporting human Mars and other missions beyond Earth orbit.

  10. Chemical Reactivity Testing for the National Spent Nuclear Fuel Program. Quality Assurance Project Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newsom, H.C.

    This quality assurance project plan (QAPjP) summarizes requirements used by Lockheed Martin Energy Systems, Incorporated (LMES) Development Division at Y-12 for conducting chemical reactivity testing of Department of Energy (DOE) owned spent nuclear fuel, sponsored by the National Spent Nuclear Fuel Program (NSNFP). The requirements are based on the NSNFP Statement of Work PRO-007 (Statement of Work for Laboratory Determination of Uranium Hydride Oxidation Reaction Kinetics.) This QAPjP will utilize the quality assurance program at Y-12, QA-101PD, revision 1, and existing implementing procedures for the most part in meeting the NSNFP Statement of Work PRO-007 requirements, exceptions will be noted.

  11. The EXPERT project: part of the Super-FRS Experiment Collaboration

    NASA Astrophysics Data System (ADS)

    Chudoba, V.; "EXPERT project, CESAR robotics and intelligent systems research for nuclear environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, R.C.

    1992-07-01

    The Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) encompasses expertise and facilities to perform basic and applied research in robotics and intelligent systems in order to address a broad spectrum of problems related to nuclear and other environments. For nuclear environments, research focus is derived from applications in advanced nuclear power stations, and in environmental restoration and waste management. Several programs at CESAR emphasize the cross-cutting technology issues, and are executed in appropriate cooperation with projects that address specific problem areas. Although the main thrust of the CESAR long-term research is on developingmore » highly automated systems that can cooperate and function reliably in complex environments, the development of advanced human-machine interfaces represents a significant part of our research. 11 refs.« less

  12. CESAR robotics and intelligent systems research for nuclear environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, R.C.

    1992-01-01

    The Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) encompasses expertise and facilities to perform basic and applied research in robotics and intelligent systems in order to address a broad spectrum of problems related to nuclear and other environments. For nuclear environments, research focus is derived from applications in advanced nuclear power stations, and in environmental restoration and waste management. Several programs at CESAR emphasize the cross-cutting technology issues, and are executed in appropriate cooperation with projects that address specific problem areas. Although the main thrust of the CESAR long-term research is on developingmore » highly automated systems that can cooperate and function reliably in complex environments, the development of advanced human-machine interfaces represents a significant part of our research. 11 refs.« less

  13. International remote monitoring project Argentina Nuclear Power Station Spent Fuel Transfer Remote Monitoring System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, S.; Lucero, R.; Glidewell, D.

    1997-08-01

    The Autoridad Regulataria Nuclear (ARN) and the United States Department of Energy (DOE) are cooperating on the development of a Remote Monitoring System for nuclear nonproliferation efforts. A Remote Monitoring System for spent fuel transfer will be installed at the Argentina Nuclear Power Station in Embalse, Argentina. The system has been designed by Sandia National Laboratories (SNL), with Los Alamos National Laboratory (LANL) and Oak Ridge National Laboratory (ORNL) providing gamma and neutron sensors. This project will test and evaluate the fundamental design and implementation of the Remote Monitoring System in its application to regional and international safeguards efficiency. Thismore » paper provides a description of the monitoring system and its functions. The Remote Monitoring System consists of gamma and neutron radiation sensors, RF systems, and video systems integrated into a coherent functioning whole. All sensor data communicate over an Echelon LonWorks Network to a single data logger. The Neumann DCM 14 video module is integrated into the Remote Monitoring System. All sensor and image data are stored on a Data Acquisition System (DAS) and archived and reviewed on a Data and Image Review Station (DIRS). Conventional phone lines are used as the telecommunications link to transmit on-site collected data and images to remote locations. The data and images are authenticated before transmission. Data review stations will be installed at ARN in Buenos Aires, Argentina, ABACC in Rio De Janeiro, IAEA Headquarters in Vienna, and Sandia National Laboratories in Albuquerque, New Mexico. 2 refs., 2 figs.« less

  14. Nuclear Cryogenic Propulsion Stage Affordable Development Strategy

    NASA Technical Reports Server (NTRS)

    Doughty, Glen E.; Gerrish, H. P.; Kenny, R. J.

    2014-01-01

    The development of nuclear power for space use in nuclear thermal propulsion (NTP) systems will involve significant expenditures of funds and require major technology development efforts. The development effort must be economically viable yet sufficient to validate the systems designed. Efforts are underway within the National Aeronautics and Space Administration's (NASA) Nuclear Cryogenic Propulsion Stage Project (NCPS) to study what a viable program would entail. The study will produce an integrated schedule, cost estimate and technology development plan. This will include the evaluation of various options for test facilities, types of testing and use of the engine, components, and technology developed. A "Human Rating" approach will also be developed and factored into the schedule, budget and technology development approach.

  15. Application of Recommended Design Practices for Conceptual Nuclear Fusion Space Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Williams, Craig H.

    2004-01-01

    An AIAA Special Project Report was recently produced by AIAA's Nuclear and Future Flight Propulsion Technical Committee and is currently in peer review. The Report provides recommended design practices for conceptual engineering studies of nuclear fusion space propulsion systems. Discussion and recommendations are made on key topics including design reference missions, degree of technological extrapolation and concomitant risk, thoroughness in calculating mass properties (nominal mass properties, weight-growth contingency and propellant margins, and specific impulse), and thoroughness in calculating power generation and usage (power-flow, power contingencies, specific power). The report represents a general consensus of the nuclear fusion space propulsion system conceptual design community and proposes 15 recommendations. This paper expands on the Report by providing specific examples illustrating how to apply each of the recommendations.

  16. Hydrogen by electrolysis of water

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Hydrogen production by electrolytic decomposition of water is explained. Power efficiency, efficient energy utilization, and costs were emphasized. Four systems were considered: two were based on current electrolyzer technology using present efficiency values for electrical generation by fossil fired and nuclear thermal stations, and two using projected electrolyzer technology with advanced fossil and nuclear plants.

  17. 78 FR 47012 - Developing Software Life Cycle Processes Used in Safety Systems of Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-02

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0195] Developing Software Life Cycle Processes Used in... revised regulatory guide (RG), revision 1 of RG 1.173, ``Developing Software Life Cycle Processes for... Developing a Software Project Life Cycle Process,'' issued 2006, with the clarifications and exceptions as...

  18. Key issues in space nuclear power challenges for the future

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.

    1991-01-01

    The future appears rich in missions that will extend the frontiers of knowledge, human presence in space, and opportunities for profitable commerce. Key to the success of these ventures is the availability of plentiful, cost effective electric power and assured, low cost access to space. While forecasts of space power needs are problematic, an assessment of future needs based on terrestrial experience has been made. These needs fall into three broad categories: survival, self sufficiency, and industrialization. The cost of delivering payloads to orbital locations from LEO to Mars has been determined and future launch cost reductions projected. From these factors, then, projections of the performance necessary for future solar and nuclear space power options has been made. These goals are largely dependent upon orbital location and energy storage needs. Finally the cost of present space power systems has been determined and projections made for future systems.

  19. Key issues in space nuclear power

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W.

    1991-01-01

    The future appears rich in missions that will extend the frontiers of knowledge, human presence in space, and opportunities for profitable commerce. Key to the success of these ventures is the availability of plentiful, cost effective electric power and assured, low cost access to space. While forecasts of space power needs are problematic, an assessment of future needs based on terrestrial experience has been made. These needs fall into three broad categories: survival, self sufficiency, and industrialization. The cost of delivering payloads to orbital locations from LEO to Mars has been determined and future launch cost reductions projected. From these factors, then, projections of the performance necessary for future solar and nuclear space power options has been made. These goals are largely dependent upon orbital location and energy storage needs. Finally the cost of present space power systems has been determined and projections made for future systems.

  1. Commercial nuclear power 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-09-28

    This report presents the status at the end of 1989 and the outlook for commercial nuclear capacity and generation for all countries in the world with free market economies (FME). The report provides documentation of the US nuclear capacity and generation projections through 2030. The long-term projections of US nuclear capacity and generation are provided to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) for use in estimating nuclear waste fund revenues and to aid in planning the disposal of nuclear waste. These projections also support the Energy Information Administration's annual report, Domestic Uranium Miningmore » and Milling Industry: Viability Assessment, and are provided to the Organization for Economic Cooperation and Development. The foreign nuclear capacity projections are used by the DOE uranium enrichment program in assessing potential markets for future enrichment contracts. The two major sections of this report discuss US and foreign commercial nuclear power. The US section (Chapters 2 and 3) deals with (1) the status of nuclear power as of the end of 1989; (2) projections of nuclear capacity and generation at 5-year intervals from 1990 through 2030; and (3) a discussion of institutional and technical issues that affect nuclear power. The nuclear capacity projections are discussed in terms of two projection periods: the intermediate term through 2010 and the long term through 2030. A No New Orders case is presented for each of the projection periods, as well as Lower Reference and Upper Reference cases. 5 figs., 30 tabs.« less

  2. Y-12 Integrated Materials Management System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alspaugh, D. H.; Hickerson, T. W.

    2002-06-03

    The Integrated Materials Management System, when fully implemented, will provide the Y-12 National Security Complex with advanced inventory information and analysis capabilities and enable effective assessment, forecasting and management of nuclear materials, critical non-nuclear materials, and certified supplies. These capabilities will facilitate future Y-12 stockpile management work, enhance interfaces to existing National Nuclear Security Administration (NNSA) corporate-level information systems, and enable interfaces to planned NNSA systems. In the current national nuclear defense environment where, for example, weapons testing is not permitted, material managers need better, faster, more complete information about material properties and characteristics. They now must manage non-special nuclearmore » material at the same high-level they have managed SNM, and information capabilities about both must be improved. The full automation and integration of business activities related to nuclear and non-nuclear materials that will be put into effect by the Integrated Materials Management System (IMMS) will significantly improve and streamline the process of providing vital information to Y-12 and NNSA managers. This overview looks at the kinds of information improvements targeted by the IMMS project, related issues, the proposed information architecture, and the progress to date in implementing the system.« less

  3. History and Perspectives of Nuclear Medicine in Myanmar

    PubMed Central

    Mar, Win

    2018-01-01

    Nuclear Medicine was established in Myanmar in 1963 by Dr Soe Myint and International Atomic Energy expert Dr R. Hochel at Yangon General Hospital. Nuclear medicine diagnostic and therapeutic services started with Probe Scintillation Detector Systems and rectilinear scanner. In the early stage, many Nuclear Medicine specialists from the International Atomic Energy Agency (IAEA) spent some time in Myanmar and made significant contributions to the development of Nuclear Medicine in our country. The department participated in various IAEA technical cooperation projects and regional cooperation projects. By the late 1990s, new centers were established in Mandalay, Naypyidaw, and North Okkalapa Teaching Hospital of University of Medicine 11, Yangon. The training program related to Nuclear Medicine includes a postgraduate master’s degree (three years) at the University of Medicine. Currently, all centers are equipped with SPECT, SPECT-CT, PET-CT, and cyclotron in Yangon General Hospital. Up until now, the International Atomic Energy Agency has been playing a crucial role in the growth and development of Nuclear Medicine in Myanmar. Our vision is to provide a wide spectrum of nuclear medicine services at a level compatible with the international standards to become a Center of Excellence. PMID:29333470

  4. A Compact, Portable, Reduced-Cost, Gamma Ray Spectroscopic System for Nuclear Verification Final Report CRADA No. TSB-1551-98

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavietes, A.; Kalkhoran, N.

    The overall goal of this project was to demonstrate a compact gamma-ray spectroscopic system with better energy resolution and lower costs than scintillator-based detector systems for uranium enrichment analysis applications.

  5. Hanford Spent Nuclear Fuel Project recommended path forward

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fulton, J.C.

    The Spent Nuclear Fuel Project (the Project), in conjunction with the U.S. Department of Energy-commissioned Independent Technical Assessment (ITA) team, has developed engineered alternatives for expedited removal of spent nuclear fuel, including sludge, from the K Basins at Hanford. These alternatives, along with a foreign processing alternative offered by British Nuclear Fuels Limited (BNFL), were extensively reviewed and evaluated. Based on these evaluations, a Westinghouse Hanford Company (WHC) Recommended Path Forward for K Basins spent nuclear fuel has been developed and is presented in Volume I of this document. The recommendation constitutes an aggressive series of projects to construct andmore » operate systems and facilities to safely retrieve, package, transport, process, and store K Basins fuel and sludge. The overall processing and storage scheme is based on the ITA team`s proposed passivation and vault storage process. A dual purpose staging and vault storage facility provides an innovative feature which allows accelerated removal of fuel and sludge from the basins and minimizes programmatic risks beyond any of the originally proposed alternatives. The projects fit within a regulatory and National Environmental Policy Act (NEPA) overlay which mandates a two-phased approach to construction and operation of the needed facilities. The two-phase strategy packages and moves K Basins fuel and sludge to a newly constructed Staging and Storage Facility by the year 2000 where it is staged for processing. When an adjoining facility is constructed, the fuel is cycled through a stabilization process and returned to the Staging and Storage Facility for dry interim (40-year) storage. The estimated total expenditure for this Recommended Path Forward, including necessary new construction, operations, and deactivation of Project facilities through 2012, is approximately $1,150 million (unescalated).« less

  6. Study on Communication System of Social Risk Information on Nuclear Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hidekazu Yoshikawa; Toshio Sugiman; Yasunaga Wakabayashi

    2004-07-01

    As a new risk communication method for the construction of effective knowledge bases about 'safety and non-anxiety for nuclear energy', a study on new communication method of social risk information by means of electronic communication has been started, by noticing rapid expansion of internet usage in the society. The purpose of this research is to enhance the public acceptance to nuclear power in Japan by the following two aspects. The first is to develop the mutual communication system among the working persons involved in both the operation and maintenance activities for nuclear power plant, by which they will exchange theirmore » daily experiences to improve the safety conscious activities to foster 'safety culture' attitude. The other is the development of an effective risk communication system between nuclear society and the general publics about the hot issues of 'what are the concerned involved in the final disposal of high-level radioactive waste?' and 'what should we do to have social consensus to deal with this issue in future'. The authors' research plan for the above purpose is summarized as shown in Table 1. As the first step of the authors' three year research project which started from August 2003, social investigation by questionnaires by internet and postal mail, have been just recently conducted on their risk perception for the nuclear power for the people engaged in nuclear business and women in the metropolitan area, respectively, in order to obtain the relevant information on how and what should be considered for constructing effective risk communication methods of social risk information between the people within nuclear industries and the general public in society. Although there need to be discussed, the contrasting risk images as shown in Fig.1, can be depicted between the nuclear people and general public these days in Japan, from the results of the social investigation. As the conclusion of the authors' study thus far conducted, the contrasting risk perceptions by both the nuclear people and the general public which are shown in Fig. 1, will contribute to the authors' development of two risk communication systems as the next step of this research project, the one for 'Community network system to foster safety culture among nuclear workers', while the other for 'Affective risk communication network open to society'. (authors)« less

  7. A review of ventilated storage cask (VSC) system projects and experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McConaghy, W.

    1995-12-31

    First, the author discusses the ventilated storage cask (VSC) design and an operations summary is given. Next VSC project status at Palisades, Point Beach, Arkansas Nuclear One, Fast Flux Test Facility and Zaporozhye is discussed. Lastly, VSC operational experience and VSC transportation interfaces are reviewed.

  8. The nuclear weapons inheritance project: student-to-student dialogues and interactive peer education in disarmament activism.

    PubMed

    Buhmann, Caecilie Böck

    2007-01-01

    The Nuclear Weapons Inheritance Project is a student run and student initiated project founded in 2001 with the purpose of increasing awareness of health effects of nuclear policies and empowering university students to take action in a local and international context. The project uses dialogues to discuss nuclear disarmament with university students and a method of interactive peer education to train new trainers. The project has met more than 1500 students in nuclear weapon states in dialogue and trained about 400 students from all over the world. This article describes the methods and results of the project and discuss how the experience of the project can be used in other projects seeking to increase awareness of a topic and to initiate action on social injustice.

  9. Fission Power System Technology for NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Mason, Lee; Houts, Michael

    2011-01-01

    Under the NASA Exploration Technology Development Program, and in partnership with the Department of Energy (DOE), NASA is conducting a project to mature Fission Power System (FPS) technology. A primary project goal is to develop viable system options to support future NASA mission needs for nuclear power. The main FPS project objectives are as follows: 1) Develop FPS concepts that meet expected NASA mission power requirements at reasonable cost with added benefits over other options. 2) Establish a hardware-based technical foundation for FPS design concepts and reduce overall development risk. 3) Reduce the cost uncertainties for FPS and establish greater credibility for flight system cost estimates. 4) Generate the key products to allow NASA decisionmakers to consider FPS as a preferred option for flight development. In order to achieve these goals, the FPS project has two main thrusts: concept definition and risk reduction. Under concept definition, NASA and DOE are performing trade studies, defining requirements, developing analytical tools, and formulating system concepts. A typical FPS consists of the reactor, shield, power conversion, heat rejection, and power management and distribution (PMAD). Studies are performed to identify the desired design parameters for each subsystem that allow the system to meet the requirements with reasonable cost and development risk. Risk reduction provides the means to evaluate technologies in a laboratory test environment. Non-nuclear hardware prototypes are built and tested to verify performance expectations, gain operating experience, and resolve design uncertainties.

  10. Benchmarking transportation logistics practices for effective system planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thrower, A.W.; Dravo, A.N.; Keister, M.

    2007-07-01

    This paper presents preliminary findings of an Office of Civilian Radioactive Waste Management (OCRWM) benchmarking project to identify best practices for logistics enterprises. The results will help OCRWM's Office of Logistics Management (OLM) design and implement a system to move spent nuclear fuel (SNF) and high-level radioactive waste (HLW) to the Yucca Mountain repository for disposal when that facility is licensed and built. This report suggests topics for additional study. The project team looked at three Federal radioactive material logistics operations that are widely viewed to be successful: (1) the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico; (2)more » the Naval Nuclear Propulsion Program (NNPP); and (3) domestic and foreign research reactor (FRR) SNF acceptance programs. (authors)« less

  11. The Terminological Problems Facing Euratom's Nuclear Documentation Service.

    ERIC Educational Resources Information Center

    Detant, Marcel

    In order to carry out its project for a mechanized documentation service based on a system of keyword coordination, European Atomic Energy Community's Centre for Information and Documentation was led to draw up an inventory of terminology in the nuclear field and maintain a tight control over it. A basic thesaurus of 1230 keywords was drawn up and…

  12. Space nuclear safety program. Progress report, October-December 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, T.G.

    1986-05-01

    This quarterly report covers studies related to the use of /sup 238/PuO/sub 2/ in radioisotope power systems carried out for the Office of Special Nuclear Projects of the US Department of Energy by Los Alamos National Laboratory. Most of the studies discussed are ongoing; the results and conclusions described may change as the work progresses.

  13. Nuclear Data Needs for Generation IV Nuclear Energy Systems

    NASA Astrophysics Data System (ADS)

    Rullhusen, Peter

    2006-04-01

    Nuclear data needs for generation IV systems. Future of nuclear energy and the role of nuclear data / P. Finck. Nuclear data needs for generation IV nuclear energy systems-summary of U.S. workshop / T. A. Taiwo, H. S. Khalil. Nuclear data needs for the assessment of gen. IV systems / G. Rimpault. Nuclear data needs for generation IV-lessons from benchmarks / S. C. van der Marck, A. Hogenbirk, M. C. Duijvestijn. Core design issues of the supercritical water fast reactor / M. Mori ... [et al.]. GFR core neutronics studies at CEA / J. C. Bosq ... [et al]. Comparative study on different phonon frequency spectra of graphite in GCR / Young-Sik Cho ... [et al.]. Innovative fuel types for minor actinides transmutation / D. Haas, A. Fernandez, J. Somers. The importance of nuclear data in modeling and designing generation IV fast reactors / K. D. Weaver. The GIF and Mexico-"everything is possible" / C. Arrenondo Sánchez -- Benmarks, sensitivity calculations, uncertainties. Sensitivity of advanced reactor and fuel cycle performance parameters to nuclear data uncertainties / G. Aliberti ... [et al.]. Sensitivity and uncertainty study for thermal molten salt reactors / A. Biduad ... [et al.]. Integral reactor physics benchmarks- The International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPHEP) / J. B. Briggs, D. W. Nigg, E. Sartori. Computer model of an error propagation through micro-campaign of fast neutron gas cooled nuclear reactor / E. Ivanov. Combining differential and integral experiments on [symbol] for reducing uncertainties in nuclear data applications / T. Kawano ... [et al.]. Sensitivity of activation cross sections of the Hafnium, Tanatalum and Tungsten stable isotopes to nuclear reaction mechanisms / V. Avrigeanu ... [et al.]. Generating covariance data with nuclear models / A. J. Koning. Sensitivity of Candu-SCWR reactors physics calculations to nuclear data files / K. S. Kozier, G. R. Dyck. The lead cooled fast reactor benchmark BREST-300: analysis with sensitivity method / V. Smirnov ... [et al.]. Sensitivity analysis of neutron cross-sections considered for design and safety studies of LFR and SFR generation IV systems / K. Tucek, J. Carlsson, H. Wider -- Experiments. INL capabilities for nuclear data measurements using the Argonne intense pulsed neutron source facility / J. D. Cole ... [et al.]. Cross-section measurements in the fast neutron energy range / A. Plompen. Recent measurements of neutron capture cross sections for minor actinides by a JNC and Kyoto University Group / H. Harada ... [et al.]. Determination of minor actinides fission cross sections by means of transfer reactions / M. Aiche ... [et al.] -- Evaluated data libraries. Nuclear data services from the NEA / H. Henriksson, Y. Rugama. Nuclear databases for energy applications: an IAEA perspective / R. Capote Noy, A. L. Nichols, A. Trkov. Nuclear data evaluation for generation IV / G. Noguère ... [et al.]. Improved evaluations of neutron-induced reactions on americium isotopes / P. Talou ... [et al.]. Using improved ENDF-based nuclear data for candu reactor calculations / J. Prodea. A comparative study on the graphite-moderated reactors using different evaluated nuclear data / Do Heon Kim ... [et al.].

  14. Topics in computational physics

    NASA Astrophysics Data System (ADS)

    Monville, Maura Edelweiss

    Computational Physics spans a broad range of applied fields extending beyond the border of traditional physics tracks. Demonstrated flexibility and capability to switch to a new project, and pick up the basics of the new field quickly, are among the essential requirements for a computational physicist. In line with the above mentioned prerequisites, my thesis described the development and results of two computational projects belonging to two different applied science areas. The first project is a Materials Science application. It is a prescription for an innovative nano-fabrication technique that is built out of two other known techniques. The preliminary results of the simulation of this novel nano-patterning fabrication method show an average improvement, roughly equal to 18%, with respect to the single techniques it draws on. The second project is a Homeland Security application aimed at preventing smuggling of nuclear material at ports of entry. It is concerned with a simulation of an active material interrogation system based on the analysis of induced photo-nuclear reactions. This project consists of a preliminary evaluation of the photo-fission implementation in the more robust radiation transport Monte Carlo codes, followed by the customization and extension of MCNPX, a Monte Carlo code developed in Los Alamos National Laboratory, and MCNP-PoliMi. The final stage of the project consists of testing the interrogation system against some real world scenarios, for the purpose of determining the system's reliability, material discrimination power, and limitations.

  15. Internship at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunham, Ryan Q.

    2012-07-11

    Los Alamos National Laboratory (LANL) is located in Los Alamos, New Mexico. It provides support for our country's nuclear weapon stockpile as well as many other scientific research projects. I am an Undergraduate Student Intern in the Systems Design and Analysis group within the Nuclear Nonproliferation division of the Global Security directorate at LANL. I have been tasked with data analysis and modeling of particles in a fluidized bed system for the capture of carbon dioxide from power plant flue gas.

  16. System Design Description for the SY-101 Hydrogen Mitigation Test Project Data Acquisition and Control System (DACS-1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ERMI, A.M.

    2000-01-24

    This document describes the hardware and software of the computer subsystems for the Data Acquisition and Control System (DACS) used in mitigation tests conducted on waste tank 241-SY-101 at the Hanford Nuclear Reservation.

  17. Advanced Ceramics for Use as Fuel Element Materials in Nuclear Thermal Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Valentine, Peter G.; Allen, Lee R.; Shapiro, Alan P.

    2012-01-01

    With the recent start (October 2011) of the joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) Advanced Exploration Systems (AES) Nuclear Cryogenic Propulsion Stage (NCPS) Program, there is renewed interest in developing advanced ceramics for use as fuel element materials in nuclear thermal propulsion (NTP) systems. Three classes of fuel element materials are being considered under the NCPS Program: (a) graphite composites - consisting of coated graphite elements containing uranium carbide (or mixed carbide), (b) cermets (ceramic/metallic composites) - consisting of refractory metal elements containing uranium oxide, and (c) advanced carbides consisting of ceramic elements fabricated from uranium carbide and one or more refractory metal carbides [1]. The current development effort aims to advance the technology originally developed and demonstrated under Project Rover (1955-1973) for the NERVA (Nuclear Engine for Rocket Vehicle Application) [2].

  18. Subscale Validation of the Subsurface Active Filtration of Exhaust (SAFE) Approach to NTP Ground Testing

    NASA Technical Reports Server (NTRS)

    Marshall, William M.; Borowski, Stanley K.; Bulman, Mel; Joyner, Russell; Martin, Charles R.

    2015-01-01

    Brief History of NTP: Project Rover Began in 1950s by Los Alamos Scientific Labs (now Los Alamos National Labs) and ran until 1970s Tested a series of nuclear reactor engines of varying size at Nevada Test Site (now Nevada National Security Site) Ranged in scale from 111 kN (25 klbf) to 1.1 MN (250 klbf) Included Nuclear Furnace-1 tests Demonstrated the viability and capability of a nuclear rocket engine test program One of Kennedys 4 goals during famous moon speech to Congress Nuclear Engines for Rocket Vehicle Applications (NERVA) Atomic Energy Commission and NASA joint venture started in 1964 Parallel effort to Project Rover was focused on technology demonstration Tested XE engine, a 245-kN (55-klbf) engine to demonstrate startup shutdown sequencing. Hot-hydrogen stream is passed directly through fuel elements potential for radioactive material to be eroded into gaseous fuel flow as identified in previous programs NERVA and Project Rover (1950s-70s) were able to test in open atmosphere similar to conventional rocket engine test stands today Nuclear Furance-1 tests employed a full scrubber system Increased government and environmental regulations prohibit the modern testing in open atmosphere. Since the 1960s, there has been an increasing cessation on open air testing of nuclear material Political and national security concerns further compound the regulatory environment

  19. Review of NASA programs in applying aerospace technology to energy

    NASA Technical Reports Server (NTRS)

    Schwenk, F. C.

    1981-01-01

    NASA's role in energy research and development, with the aid of aerospace technology, is reviewed. A brief history, which began in 1974 with studies of solar energy systems on earth, is presented, and the major energy programs, consisting of over 60 different projects, are described, and include solar terrestrial systems, conservation and fossil energy systems, and space utilization systems. Special attention is given to the Satellite Power System and the isolation of nuclear wastes in space. Emerging prospects for NASA programs in energy technology include bioenergy, and ocean thermal energy conversion, coal extraction and conversion technologies, and support to the nuclear industry in power plant systems safety.

  20. Low Energy Nuclear Reaction Aircraft- 2013 ARMD Seedling Fund Phase I Project

    NASA Technical Reports Server (NTRS)

    Wells, Douglas P.; McDonald, Robert; Campbell, Robbie; Chase, Adam; Daniel, Jason; Darling, Michael; Green, Clayton; MacGregor, Collin; Sudak, Peter; Sykes, Harrison; hide

    2014-01-01

    This report serves as the final written documentation for the Aeronautic Research Mission Directorate (ARMD) Seedling Fund's Low Energy Nuclear Reaction (LENR) Aircraft Phase I project. The findings presented include propulsion system concepts, synergistic missions, and aircraft concepts. LENR is a form of nuclear energy that potentially has over 4,000 times the energy density of chemical energy sources. It is not expected to have any harmful emissions or radiation which makes it extremely appealing. There is a lot of interest in LENR, but there are no proven theories. This report does not explore the feasibility of LENR. Instead, it assumes that a working system is available. A design space exploration shows that LENR can enable long range and high speed missions. Six propulsion concepts, six missions, and four aircraft concepts are presented. This report also includes discussion of several issues and concerns that were uncovered during the study and potential research areas to infuse LENR aircraft into NASA's aeronautics research.

  1. Production and investigation of heavy neutron rich nuclei

    NASA Astrophysics Data System (ADS)

    Zemlyanoy, Sergey; Avvakumov, Konstantin; Kozulin, Eduard; Fedosseev, Valentin; Bark, Robert; Janas, Zenon

    2017-11-01

    A project devoted to the production and study of neutron rich heavy nuclei (GALS - project) is being realized at Flerov Laboratory for Nuclear Reactions (FLNR) - JINR. GALS is planned to exploit available beams from the U-400M cyclotron in low energy multi-nucleon transfer reactions to study exotic neutron rich nuclei located in the "north-east" region of nuclear map. Products from 4.5 to 9 MeV/nucleon heavy-ion collisions, such as 136Xe on 208Pb, are to be captured in a gas cell and selectively laser-ionized in a sextupole (quadrupole) ion guide extraction system.

  2. Development of a requirements management system for technical decision - making processes in the geological disposal project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiroyoshi Ueda; Katsuhiko Ishiguro; Kazumi Kitayama

    2007-07-01

    NUMO (Nuclear Waste Management Organization of Japan) has a responsibility for implementing geological disposal of vitrified HLW (High-Level radioactive Waste) in the Japanese nuclear waste management programme. Its staged siting procedure was initiated in 2002 by an open call for volunteer sites. Careful management strategy and methodology for the technical decision-making at every milestone are required to prepare for the volunteer site application and the site investigation stages after that. The formal Requirement Management System (RMS) is planned to support the computerized implementation of the specific management methodology, termed the NUMO Structured Approach (NSA). This planned RMS will help formore » comprehensive management of the decision-making processes in the geological disposal project, change management towards the anticipated project deviations, efficient project driving such as well programmed R and D etc. and structured record-keeping regarding the past decisions, which leads to soundness of the project in terms of the long-term continuity. The system should have handling/management functions for the database including the decisions/requirements in the project in consideration, their associated information and the structures composed of them in every decision-making process. The information relating to the premises, boundary conditions and time plan of the project should also be prepared in the system. Effective user interface and efficient operation on the in-house network are necessary. As a living system for the long-term formal use, flexibility to updating is indispensable. In advance of the formal system development, two-year activity to develop the preliminary RMS was already started. The purpose of this preliminary system is to template the decision/requirement structure, prototype the decision making management and thus show the feasibility of the innovative RMS. The paper describes the current status of the development, focusing on the initial stage including work analysis/modeling and the system conceptualization. (authors)« less

  3. Educating Next Generation Nuclear Criticality Safety Engineers at the Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. D. Bess; J. B. Briggs; A. S. Garcia

    2011-09-01

    One of the challenges in educating our next generation of nuclear safety engineers is the limitation of opportunities to receive significant experience or hands-on training prior to graduation. Such training is generally restricted to on-the-job-training before this new engineering workforce can adequately provide assessment of nuclear systems and establish safety guidelines. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) can provide students and young professionals the opportunity to gain experience and enhance critical engineering skills. The ICSBEP and IRPhEP publish annual handbooks that contain evaluations of experiments along withmore » summarized experimental data and peer-reviewed benchmark specifications to support the validation of neutronics codes, nuclear cross-section data, and the validation of reactor designs. Participation in the benchmark process not only benefits those who use these Handbooks within the international community, but provides the individual with opportunities for professional development, networking with an international community of experts, and valuable experience to be used in future employment. Traditionally students have participated in benchmarking activities via internships at national laboratories, universities, or companies involved with the ICSBEP and IRPhEP programs. Additional programs have been developed to facilitate the nuclear education of students while participating in the benchmark projects. These programs include coordination with the Center for Space Nuclear Research (CSNR) Next Degree Program, the Collaboration with the Department of Energy Idaho Operations Office to train nuclear and criticality safety engineers, and student evaluations as the basis for their Master's thesis in nuclear engineering.« less

  4. The status of power supplies for primary electric propulsion in the U.S.A.

    NASA Technical Reports Server (NTRS)

    Jones, R. M.; Scott-Monck, J. A.

    1984-01-01

    This paper reviews the status of and requirements on solar electric and nuclear electric power supplies for primary electric propulsion missions. The power supply requirements of power level, specific mass (kg/kWe) and lifetime are defined as a function of the mission and electric propulsion system characteristics for planetary missions. The technology status of planar and concentrator arrays is discussed. Nuclear reactors and thermoelectric, thermionic, Brayton and Rankine conversion technologies are reviewed, as well as recent nuclear power system design concepts and program activity. Technology projections for power supplies applicable to primary electric propulsion missions are included.

  5. Leadership Class Configuration Interaction Code - Status and Opportunities

    NASA Astrophysics Data System (ADS)

    Vary, James

    2011-10-01

    With support from SciDAC-UNEDF (www.unedf.org) nuclear theorists have developed and are continuously improving a Leadership Class Configuration Interaction Code (LCCI) for forefront nuclear structure calculations. The aim of this project is to make state-of-the-art nuclear structure tools available to the entire community of researchers including graduate students. The project includes codes such as NuShellX, MFDn and BIGSTICK that run a range of computers from laptops to leadership class supercomputers. Codes, scripts, test cases and documentation have been assembled, are under continuous development and are scheduled for release to the entire research community in November 2011. A covering script that accesses the appropriate code and supporting files is under development. In addition, a Data Base Management System (DBMS) that records key information from large production runs and archived results of those runs has been developed (http://nuclear.physics.iastate.edu/info/) and will be released. Following an outline of the project, the code structure, capabilities, the DBMS and current efforts, I will suggest a path forward that would benefit greatly from a significant partnership between researchers who use the codes, code developers and the National Nuclear Data efforts. This research is supported in part by DOE under grant DE-FG02-87ER40371 and grant DE-FC02-09ER41582 (SciDAC-UNEDF).

  6. Resource Letter MP-1: The Manhattan Project and related nuclear research

    NASA Astrophysics Data System (ADS)

    Reed, B. Cameron

    2005-09-01

    This Resource Letter provides a guide to literature on the Manhattan Project and related nuclear research. Books and journal articles are cited for the following topics: general works, technical works, biographical and autobiographical works, the German nuclear program, and technical papers of historical interest. A list of videos and websites dealing with the Manhattan Project, nuclear weapons, and nuclear issues is also given.

  7. Scholarship for Nuclear Communications and Methods for Evaluation of Nuclear Project Acceptability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golay, Michael

    This project aims to go beyond effective communication in understanding how to design nuclear enterprise projects that will gain stakeholder acceptability. Much of what we are studying is generally applicable to controversial projects, and we expect our results to be of broad value beyond the nuclear arena. Acceptability is more than effective communication; it also requires varying degrees of engagement with a disparate number of stakeholder groups. In the nuclear enterprise, previous attempts have been well designed physically (i.e., technologically sound), but have floundered by being insensitive concerning acceptance. Though effective communication is a necessary, but insufficient, condition for suchmore » success, there is a lack of scholarship regarding how to gain stakeholder acceptance for new controversial projects, including nuclear ones. Our work is building a model for use in assessing the performance of a project in the area of acceptability. In the nuclear-social nexus, gaining acceptance requires a clear understanding of factors regarded as being important by the many stakeholders that are common to new nuclear project (many of whom hold an effective veto power). Projects tend to become socially controversial when public beliefs, expert opinion and decision-maker understanding are misaligned. As such, stakeholder acceptance is hypothesized as both an ongoing process and an initial project design parameter comprised of complex, social, cognitive and technical components. Controversial projects may be defined as aspects of modern technologies that some people question, or are cautious about. They could range from genetic modifications, biological hazards, effects of chemical agents, nuclear radiation or hydraulic fracturing operations. We intend that our work will result in a model likely to be valuable for refining project design and implementation to increase the knowledge needed for successful management of stakeholder relationships.« less

  8. 2015 Summary Report on Industrial and Regulatory Engagement Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Kenneth David

    2015-09-01

    The Advanced Instrumentation, Information, and Control (II&C) Systems Technologies pathway of the Light Water Reactor Sustainability(LWRS) Program conducts a vigorous engagement strategy with the U.S. nuclear power industry, including the nuclear operating companies, major support organizations, the Nuclear Regulatory Commission (NRC), and suppliers. The goal of this engagement strategy is to develop a shared vision and common understanding across the nuclear industry of the need for II&C modernization, the performance improvement that can be obtained, and the opportunities for collaboration to enact this vision. The primary means of engaging the nuclear operating companies is through a Utility Working Group (UWG),more » composed of utility representatives that participate in formal meetings and bi-monthly phone calls to provide input on nuclear plant needs and priorities for II&C technologies. Two working groups were initiated during FY 2015 to provide a means for UWG members to focus on particular technologies of interest. The Outage Improvement Working Group consists of eight utilities that participate in periodic conference calls and have access to a share-point web page for acccess to project materials developed in the Advanced Outage Control Center pilot project. In the area of computer-based procedures and automated work packages, the II&C Pathway has worked with the Nuclear Information Technology Strategic Leadership (NITSL) to set up a monthly conference call with interested utility members to discuss various aspects of mobile worker technologies. Twenty one technical and project reports were delivered to the UWG during FY 2015, reflecting the work of the II&C Pathway pilot projects during the year. Distribution of these reports is one of the primary means of transferring to the nuclear industry the knowledge and experience gained during the development of advanced II&C technologies in support of LWR sustainability. Site visits to discuss pilot project activities and future plans were made to Arizona Public Service, Exelon, Duke Energy, Pacific Gas & Electric, SCANA, Southern Nuclear, South Texas Project, STARS Alliance, Tennessee Valley Authority, and Xcel. Discussions were also held on the pathway goals and activities with major industry support organizations during FY 2102, including the Institute of Nuclear Power Operations (INPO), the Nuclear Information Technology Strategic Leadership (NITSL), the Nuclear Energy Institute (NEI), and the Electric Power Research Institute. The Advanced II&C Pathway work was presented at five major industry conferences and Informal discussions were held with key NRC managers at industry conferences. In addition, discussions were held with NRC senior managers on digital regulatory issues through participation on the NEI Digital I&C Working Group. Meetings were held with major industry suppliers and consultants, to explore opportunities for collaboration and to provide a means of pilot project technology transfer. In the international area, discussions were held with Electricite’ de France (EdF) concerning possible collaboration in the area NPP configuration control using intelligent wireless devices.« less

  9. Basic Research Needs for Advanced Nuclear Systems. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, July 31-August 3, 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberto, J.; Diaz de la Rubia, T.; Gibala, R.

    2006-10-01

    The global utilization of nuclear energy has come a long way from its humble beginnings in the first sustained nuclear reaction at the University of Chicago in 1942. Today, there are over 440 nuclear reactors in 31 countries producing approximately 16% of the electrical energy used worldwide. In the United States, 104 nuclear reactors currently provide 19% of electrical energy used nationally. The International Atomic Energy Agency projects significant growth in the utilization of nuclear power over the next several decades due to increasing demand for energy and environmental concerns related to emissions from fossil plants. There are 28 newmore » nuclear plants currently under construction including 10 in China, 8 in India, and 4 in Russia. In the United States, there have been notifications to the Nuclear Regulatory Commission of intentions to apply for combined construction and operating licenses for 27 new units over the next decade. The projected growth in nuclear power has focused increasing attention on issues related to the permanent disposal of nuclear waste, the proliferation of nuclear weapons technologies and materials, and the sustainability of a once-through nuclear fuel cycle. In addition, the effective utilization of nuclear power will require continued improvements in nuclear technology, particularly related to safety and efficiency. In all of these areas, the performance of materials and chemical processes under extreme conditions is a limiting factor. The related basic research challenges represent some of the most demanding tests of our fundamental understanding of materials science and chemistry, and they provide significant opportunities for advancing basic science with broad impacts for nuclear reactor materials, fuels, waste forms, and separations techniques. Of particular importance is the role that new nanoscale characterization and computational tools can play in addressing these challenges. These tools, which include DOE synchrotron X-ray sources, neutron sources, nanoscale science research centers, and supercomputers, offer the opportunity to transform and accelerate the fundamental materials and chemical sciences that underpin technology development for advanced nuclear energy systems. The fundamental challenge is to understand and control chemical and physical phenomena in multi-component systems from femto-seconds to millennia, at temperatures to 1000?C, and for radiation doses to hundreds of displacements per atom (dpa). This is a scientific challenge of enormous proportions, with broad implications in the materials science and chemistry of complex systems. New understanding is required for microstructural evolution and phase stability under relevant chemical and physical conditions, chemistry and structural evolution at interfaces, chemical behavior of actinide and fission-product solutions, and nuclear and thermomechanical phenomena in fuels and waste forms. First-principles approaches are needed to describe f-electron systems, design molecules for separations, and explain materials failure mechanisms. Nanoscale synthesis and characterization methods are needed to understand and design materials and interfaces with radiation, temperature, and corrosion resistance. Dynamical measurements are required to understand fundamental physical and chemical phenomena. New multiscale approaches are needed to integrate this knowledge into accurate models of relevant phenomena and complex systems across multiple length and time scales.« less

  10. Preliminary design review report - sludge offload system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mcwethy, L.M. Westinghouse Hanford

    1996-06-05

    This report documents the conceptual design review of the sludge offload system for the Spent Nuclear Fuel Project. The design description, drawings, available analysis, and safety analysis were reviewed by a peer group. The design review comments and resolutions are documented.

  11. Identification of mission sensitivities for high-power electric propulsion systems

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.; Moeller, Robert C.

    2005-01-01

    This paper presents the results of mission analyses that expose various mission performance sensitivities and system advantages of the ALFA technology for a small but representative subset of nuclear electric propulsion (NEP) missions considered under NASA's Project Prometheus.

  12. NUCLEAR SCIENCE CURRICULUM PROJECT, PROJECT I, INSTRUCTIONAL SPECIFICATIONS.

    ERIC Educational Resources Information Center

    CAMAREN, JAMES

    ON THE PREMISE THAT A KNOWLEDGE OF NUCLEAR SCIENCE IS ESSENTIAL FOR INTELLIGENT DECISION-MAKING REGARDING ITS USES, THE NUCLEAR SCIENCE CURRICULUM PROJECT WAS DEVELOPED. ITS OBJECTIVE IS TO PROVIDE A PROGRAM THAT CAN BE EFFECTIVELY USED IN SCIENCE CLASSES TO PROVIDE AN UNDERSTANDING OF NUCLEAR SCIENCE AND ITS IMPACT ON SOCIETY. THOUGH TEACHER…

  13. Nuclear Successor States of the Soviet Union, Nuclear Weapon and Sensitive Export Status Report

    DTIC Science & Technology

    1994-05-01

    EXPORT STATUS REPORT S I VIE T U N il] N A COOPERATIVE PROJECT OF THE CARNEGIE ENDOWMENT FOR INTERNATIONAL PEACE, WASHINGTON, DC, AND MOSCOW NUMBER 1...Launch Periodic Report on Nuclear Successor States Leonard S . Spector of the Carnegie Endowment for N U C L E A R International Peace and William C...range, translated in FBIS-SOV-92-232, December 2, 1992, p. 22. 5 Table I-C. -- N -Weapon Systems and Warheads on Territory, con’t. S

  14. [Experimental nuclear physics]. Annual report 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1988-05-01

    This is the May 1988 annual report of the Nuclear Physics Laboratory of the University of Washington. It contains chapters on astrophysics, giant resonances, heavy ion induced reactions, fundamental symmetries, polarization in nuclear reactions, medium energy reactions, accelerator mass spectrometry (AMS), research by outside users, Van de Graaff and ion sources, the Laboratory`s booster linac project work, instrumentation, and computer systems. An appendix lists Laboratory personnel, Ph.D. degrees granted in the 1987-88 academic year, and publications. Refs., 27 figs., 4 tabs.

  15. Nuclear Policy and World Order: Why Denuclearization. World Order Models Project. Occasional Paper Number Two.

    ERIC Educational Resources Information Center

    Falk, Richard A.

    The monograph examines the relationship of nuclear power to world order. The major purpose of the document is to stimulate research, education, dialogue, and political action for a just and peaceful world order. The document is presented in five chapters. Chapter I stresses the need for a system of global security to counteract dangers brought…

  16. Solving The Longstanding Problem Of Low-Energy Nuclear Reactions At the Highest Microscopic Level - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quaglioni, S.

    2016-09-22

    A 2011 DOE-NP Early Career Award (ECA) under Field Work Proposal (FWP) SCW1158 supported the project “Solving the Long-Standing Problem of Low-Energy Nuclear Reactions at the Highest Microscopic Level” in the five-year period from June 15, 2011 to June 14, 2016. This project, led by PI S. Quaglioni, aimed at developing a comprehensive and computationally efficient framework to arrive at a unified description of structural properties and reactions of light nuclei in terms of constituent protons and neutrons interacting through nucleon-nucleon (NN) and three-nucleon (3N) forces. Specifically, the project had three main goals: 1) arriving at the accurate predictions formore » fusion reactions that power stars and Earth-based fusion facilities; 2) realizing a comprehensive description of clustering and continuum effects in exotic nuclei, including light Borromean systems; and 3) achieving fundamental understanding of the role of the 3N force in nuclear reactions and nuclei at the drip line.« less

  17. Evaluation of High-Performance Space Nuclear Electric Generators for Electric Propulsion Application

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon; Kross, Dennis A. (Technical Monitor)

    2002-01-01

    Electric propulsion applications are enhanced by high power-to-mass ratios for their electric power sources. At multi-megawatt levels, we can expect thrust production systems to be less than 5 kg/kWe. Application of nuclear electric propulsion to human Mars missions becomes an attractive alternative to nuclear thermal propulsion if the propulsion system is less than about 10 kg/kWe. Recent references have projected megawatt-plus nuclear electric sources at specific mass values from less than 1 kg/kWe to about 5 kg/kWe. Various assumptions are made regarding power generation cycle (turbogenerator; MHD (magnetohydrodynamics)) and reactor heat source design. The present paper compares heat source and power generation options on the basis of a parametric model that emphasizes heat transfer design and realizable hardware concept. Pressure drop (important!) is included in the power cycle analysis, and MHD and turbogenerator cycles are compared. Results indicate that power source specific mass less than 5 kg/kWe is attainable, even if peak temperatures achievable are limited to 1500 K. Projections of specific mass less than 1 kg/kWe are unrealistic, even at the highest peak temperatures considered.

  18. ANNETTE Project: Contributing to The Nuclearization of Fusion

    NASA Astrophysics Data System (ADS)

    Ambrosini, W.; Cizelj, L.; Dieguez Porras, P.; Jaspers, R.; Noterdaeme, J.; Scheffer, M.; Schoenfelder, C.

    2018-01-01

    The ANNETTE Project (Advanced Networking for Nuclear Education and Training and Transfer of Expertise) is well underway, and one of its work packages addresses the design, development and implementation of nuclear fusion training. A systematic approach is used that leads to the development of new training courses, based on identified nuclear competences needs of the work force of (future) fusion reactors and on the current availability of suitable training courses. From interaction with stakeholders involved in the ITER design and construction or the JET D-T campaign, it became clear that the lack of nuclear safety culture awareness already has an impact on current projects. Through the collaboration between the European education networks in fission (ENEN) and fusion (FuseNet) in the ANNETTE project, this project is well positioned to support the development of nuclear competences for ongoing and future fusion projects. Thereby it will make a clear contribution to the realization of fusion energy.

  19. Forbidden coherent transfer observed between two realizations of quasiharmonic spin systems

    NASA Astrophysics Data System (ADS)

    Bertaina, S.; Yue, G.; Dutoit, C.-E.; Chiorescu, I.

    2017-07-01

    The multilevel system Mn 2 + 55 is used to generate two pseudoharmonic level systems, as representations of the same electronic sextuplet at different nuclear spin projections. The systems are coupled using a forbidden nuclear transition induced by the crystalline anisotropy. We demonstrate Rabi oscillations between the two representations in conditions similar to two coupled pseudoharmonic quantum oscillators. Rabi oscillations are performed at a detuned pumping frequency which matches the energy difference between electronuclear states of different oscillators. We measure a coupling stronger than the decoherence rate to indicate the possibility of fast information exchange between the systems.

  20. Hyper-track selector nuclear emulsion readout system aimed at scanning an area of one thousand square meters

    NASA Astrophysics Data System (ADS)

    Yoshimoto, Masahiro; Nakano, Toshiyuki; Komatani, Ryosuke; Kawahara, Hiroaki

    2017-10-01

    Automatic nuclear emulsion readout systems have seen remarkable progress since the original idea was developed almost 40 years ago. After the success of its full application to a large-scale neutrino experiment, OPERA, a much faster readout system, the hyper-track selector (HTS), has been developed. HTS, which has an extremely wide-field objective lens, reached a scanning speed of 4700 cm^2/h, which is nearly 100 times faster than the previous system and therefore strongly promotes many new experimental projects. We will describe the concept, specifications, system structure, and achieved performance in this paper.

  1. Response of the REWARD detection system to the presence of a Radiological Dispersal Device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luis, R.; Baptista, M.; Barros, S.

    2015-07-01

    In recent years an increased international concern has emerged about the radiological and nuclear (RN) threats associated with the illicit trafficking of nuclear and radioactive materials that could be potentially used for terrorist attacks. The objective of the REWARD (Real Time Wide Area Radiation Surveillance System) project, co-funded by the European Union 7. Framework Programme Security, consisted in building a mobile system for real time, wide area radiation surveillance, using a CdZnTe detector for gamma radiation and a neutron detector based on novel silicon technologies. The sensing unit includes a GPS system and a wireless communication interface to send themore » data remotely to a monitoring base station, where it will be analyzed in real time and correlated with historical data from the tag location, in order to generate an alarm when an abnormal situation is detected. Due to its portability and accuracy, the system will be extremely useful in many different scenarios such as nuclear terrorism, lost radioactive sources, radioactive contamination or nuclear accidents. This paper shortly introduces the REWARD detection system, depicts some terrorist threat scenarios involving radioactive sources and special nuclear materials and summarizes the simulation work undertaken during the past three years in the framework of the REWARD project. The main objective consisted in making predictions regarding the behavior of the REWARD system in the presence of a Radiological Dispersion Device (RDD), one of the reference scenarios foreseen for REWARD, using the Monte Carlo simulation program MCNP6. The reference scenario is characterized in detail, from the i) radiological protection, ii) radiation detection requirements and iii) communications points of view. Experimental tests were performed at the Fire Brigades Facilities in Rome and at the Naples Fire Brigades, and the results, which validate the simulation work, are presented and analyzed. The response of the REWARD detection system to the presence of an RDD is predicted and discussed. (authors)« less

  2. Compton Dry-Cask Imaging System

    ScienceCinema

    None

    2017-12-09

    The Compton-Dry Cask Imaging Scanner is a system that verifies and documents the presence of spent nuclear fuel rods in dry-cask storage and determines their isotopic composition without moving or opening the cask. For more information about this project, visit http://www.inl.gov/rd100/2011/compton-dry-cask-imaging-system/

  3. Preliminary Concept of Operations for the Spent Fuel Management System--WM2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cumberland, Riley M; Adeniyi, Abiodun Idowu; Howard, Rob L

    The Nuclear Fuels Storage and Transportation Planning Project (NFST) within the U.S. Department of Energy s Office of Nuclear Energy is tasked with identifying, planning, and conducting activities to lay the groundwork for developing interim storage and transportation capabilities in support of an integrated waste management system. The system will provide interim storage for commercial spent nuclear fuel (SNF) from reactor sites and deliver it to a repository. The system will also include multiple subsystems, potentially including; one or more interim storage facilities (ISF); one or more repositories; facilities to package and/or repackage SNF; and transportation systems. The project teammore » is analyzing options for an integrated waste management system. To support analysis, the project team has developed a Concept of Operations document that describes both the potential integrated system and inter-dependencies between system components. The goal of this work is to aid systems analysts in the development of consistent models across the project, which involves multiple investigators. The Concept of Operations document will be updated periodically as new developments emerge. At a high level, SNF is expected to travel from reactors to a repository. SNF is first unloaded from reactors and placed in spent fuel pools for wet storage at utility sites. After the SNF has cooled enough to satisfy loading limits, it is placed in a container at reactor sites for storage and/or transportation. After transportation requirements are met, the SNF is transported to an ISF to store the SNF until a repository is developed or directly to a repository if available. While the high level operation of the system is straightforward, analysts must evaluate numerous alternative options. Alternative options include the number of ISFs (if any), ISF design, the stage at which SNF repackaging occurs (if any), repackaging technology, the types of containers used, repository design, component sizing, and timing of events. These alternative options arise due to technological, economic, or policy considerations. As new developments regularly emerge, the operational concepts will be periodically updated. This paper gives an overview of the different potential alternatives identified in the Concept of Operations document at a conceptual level.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rashdan, Ahmad Al; Oxstrand, Johanna; Agarwal, Vivek

    As part of the ongoing efforts at the U.S. Department of Energy’s Light Water Reactor Sustainability Program, Idaho National Laboratory is conducting several pilot projects in collaboration with the nuclear industry to improve the reliability, safety, and economics of the nuclear power industry, especially as the nuclear power plants extend their operating licenses to 80 years. One of these pilot projects is the automated work package (AWP) pilot project. An AWP is an electronic intelligent and interactive work package. It uses plant condition, resources status, and user progress to adaptively drive the work process in a manner that increases efficiencymore » while reducing human error. To achieve this mission, the AWP acquires information from various systems of a nuclear power plant’s and incorporates several advanced instrumentation and control technologies along with modern human factors techniques. With the current rapid technological advancement, it is possible to envision several available or soon-to-be-available capabilities that can play a significant role in improving the work package process. As a pilot project, the AWP project develops a prototype of an expanding set of capabilities and evaluates them in an industrial environment. While some of the proposed capabilities are based on using technological advances in other applications, others are conceptual; thus, require significant research and development to be applicable in an AWP. The scope of this paper is to introduce a set of envisioned capabilities, their need for the industry, and the industry difficulties they resolve.« less

  5. Applying and adapting the Swedish regulatory system for decommissioning to nuclear power reactors - The regulator's perspective.

    PubMed

    Amft, Martin; Leisvik, Mathias; Carroll, Simon

    2017-03-16

    Half of the original 13 Swedish nuclear power reactors will be shut down by 2020. The decommissioning of these reactors is a challenge for all parties involved, including the licensees, the waste management system, the financing system, and the Swedish Radiation Safety Authority (SSM). This paper presents an overview of the Swedish regulations for decommissioning of nuclear facilities. It describes some of the experiences that SSM has gained from the application of these regulations. The focus of the present paper is on administrative aspects of decommissioning, such as SSM's guidelines, the definition of fundamental concepts in the regulatory framework, and a proposed revision of the licensing process according to the Environmental Act. These improvements will help to streamline the administration of the commercial nuclear power plant decommissioning projects that are anticipated to commence in Sweden in the near future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The CCONE Code System and its Application to Nuclear Data Evaluation for Fission and Other Reactions

    NASA Astrophysics Data System (ADS)

    Iwamoto, O.; Iwamoto, N.; Kunieda, S.; Minato, F.; Shibata, K.

    2016-01-01

    A computer code system, CCONE, was developed for nuclear data evaluation within the JENDL project. The CCONE code system integrates various nuclear reaction models needed to describe nucleon, light charged nuclei up to alpha-particle and photon induced reactions. The code is written in the C++ programming language using an object-oriented technology. At first, it was applied to neutron-induced reaction data on actinides, which were compiled into JENDL Actinide File 2008 and JENDL-4.0. It has been extensively used in various nuclear data evaluations for both actinide and non-actinide nuclei. The CCONE code has been upgraded to nuclear data evaluation at higher incident energies for neutron-, proton-, and photon-induced reactions. It was also used for estimating β-delayed neutron emission. This paper describes the CCONE code system indicating the concept and design of coding and inputs. Details of the formulation for modelings of the direct, pre-equilibrium and compound reactions are presented. Applications to the nuclear data evaluations such as neutron-induced reactions on actinides and medium-heavy nuclei, high-energy nucleon-induced reactions, photonuclear reaction and β-delayed neutron emission are mentioned.

  7. Fission Surface Power Technology Development Update

    NASA Technical Reports Server (NTRS)

    Palac, Donald T.; Mason, Lee S.; Houts, Michael G.; Harlow, Scott

    2011-01-01

    Power is a critical consideration in planning exploration of the surfaces of the Moon, Mars, and places beyond. Nuclear power is an important option, especially for locations in the solar system where sunlight is limited or environmental conditions are challenging (e.g., extreme cold, dust storms). NASA and the Department of Energy are maintaining the option for fission surface power for the Moon and Mars by developing and demonstrating technology for a fission surface power system. The Fission Surface Power Systems project has focused on subscale component and subsystem demonstrations to address the feasibility of a low-risk, low-cost approach to space nuclear power for surface missions. Laboratory demonstrations of the liquid metal pump, reactor control drum drive, power conversion, heat rejection, and power management and distribution technologies have validated that the fundamental characteristics and performance of these components and subsystems are consistent with a Fission Surface Power preliminary reference concept. In addition, subscale versions of a non-nuclear reactor simulator, using electric resistance heating in place of the reactor fuel, have been built and operated with liquid metal sodium-potassium and helium/xenon gas heat transfer loops, demonstrating the viability of establishing system-level performance and characteristics of fission surface power technologies without requiring a nuclear reactor. While some component and subsystem testing will continue through 2011 and beyond, the results to date provide sufficient confidence to proceed with system level technology readiness demonstration. To demonstrate the system level readiness of fission surface power in an operationally relevant environment (the primary goal of the Fission Surface Power Systems project), a full scale, 1/4 power Technology Demonstration Unit (TDU) is under development. The TDU will consist of a non-nuclear reactor simulator, a sodium-potassium heat transfer loop, a power conversion unit with electrical controls, and a heat rejection system with a multi-panel radiator assembly. Testing is planned at the Glenn Research Center Vacuum Facility 6 starting in 2012, with vacuum and liquid-nitrogen cold walls to provide simulation of operationally relevant environments. A nominal two-year test campaign is planned including a Phase 1 reactor simulator and power conversion test followed by a Phase 2 integrated system test with radiator panel heat rejection. The testing is expected to demonstrate the readiness and availability of fission surface power as a viable power system option for NASA's exploration needs. In addition to surface power, technology development work within this project is also directly applicable to in-space fission power and propulsion systems.

  8. Nuclear electric propulsion: A better, safer, cheaper transportation system for human exploration of Mars

    NASA Technical Reports Server (NTRS)

    Clark, John S.; George, Jeffrey A.; Gefert, Leon P.; Doherty, Michael P.; Sefcik, Robert J.

    1994-01-01

    NASA has completed a preliminary mission and systems study of nuclear electric propulsion (NEP) systems for 'split-sprint' human exploration and related robotic cargo missions to Mars. This paper describes the study, the mission architecture selected, the NEP system and technology development needs, proposed development schedules, and estimated development costs. Since current administration policy makers have delayed funding for key technology development activities that could make Mars exploration missions a reality in the near future, NASA will have time to evaluate various alternate mission options, and it appears prudent to ensure that Mars mission plans focus on astronaut and mission safety, while reducing costs to acceptable levels. The split-sprint nuclear electric propulsion system offers trip times comparable to nuclear thermal propulsion (NTP) systems, while providing mission abort opportunities that are not possible with 'reference' mission architectures. Thus, NEP systems offer short transit times for the astronauts, reducing the exposure of the crew to intergalactic cosmic radiation. The high specific impulse of the NEP system, which leads to very low propellant requirements, results in significantly lower 'initial mass in low earth orbit' (IMLEO). Launch vehicle packaging studies show that the NEP system can be launched, assembled, and deployed, with about one less 240-metric-ton heavy lift launch vehicle (HLLV) per mission opportunity - a very Technology development cost of the nuclear reactor for an NEP system would be shared with the proposed nuclear surface power systems, since nuclear systems will be required to provide substantial electrical power on the surface of Mars. The NEP development project plan proposed includes evolutionary technology development for nuclear electric propulsion systems that expands upon SP-100 (Space Power - 100 kw(e)) technology that has been developed for lunar and Mars surface nuclear power, and small NEP systems for interplanetary probes. System upgrades are expected to evolve that will result in even shorter trip times, improved payload capabilities, and enhanced safety and reliability.

  9. Summary of the Forty-Fifth NCRP annual meeting on "the future of nuclear power worldwide: safety, health and the environment".

    PubMed

    Corradini, Michael

    2011-01-01

    The role of nuclear power as a major resource in meeting the projected growth of electric power requirements in the United States and worldwide during the 21st century is a subject of great contemporary interest. The goal of the 2009 NCRP Annual Meeting was to provide a forum for an in-depth discussion of issues related to the safety, health and environmental protection aspects of new nuclear power reactor systems and related fuel-cycle facilities such as fuel production and reprocessing strategies. The meeting was an international conference with participation of almost 400 representatives from many nations, scientific organizations, nuclear industries, and governmental agencies engaged in the development and regulatory control of advanced nuclear reactor systems and fuel-cycle operations. Highlights of the meeting are summarized in this report. Copyright © 2010 Health Physics Society

  10. SLIGHTLY IRRADIATED FUEL (SIF) INTERIM DISPOSITION PROJECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NORTON SH

    2010-02-23

    CH2M HILL Plateau Remediation Company (CH2M HILL PRC) is proud to submit the Slightly Irradiated Fuel (SIF) Interim Disposition Project for consideration by the Project Management Institute as Project of the Year for 2010. The SIF Project was a set of six interrelated sub-projects that delivered unique stand-alone outcomes, which, when integrated, provided a comprehensive and compliant system for storing high risk special nuclear materials. The scope of the six sub-projects included the design, construction, testing, and turnover of the facilities and equipment, which would provide safe, secure, and compliant Special Nuclear Material (SNM) storage capabilities for the SIF material.more » The project encompassed a broad range of activities, including the following: Five buildings/structures removed, relocated, or built; Two buildings renovated; Structural barriers, fencing, and heavy gates installed; New roadways and parking lots built; Multiple detection and assessment systems installed; New and expanded communication systems developed; Multimedia recording devices added; and A new control room to monitor all materials and systems built. Project challenges were numerous and included the following: An aggressive 17-month schedule to support the high-profile Plutonium Finishing Plant (PFP) decommissioning; Company/contractor changeovers that affected each and every project team member; Project requirements that continually evolved during design and construction due to the performance- and outcome-based nature ofthe security objectives; and Restrictions imposed on all communications due to the sensitive nature of the projects In spite of the significant challenges, the project was delivered on schedule and $2 million under budget, which became a special source of pride that bonded the team. For years, the SIF had been stored at the central Hanford PFP. Because of the weapons-grade piutonium produced and stored there, the PFP had some of the tightest security on the Hanford nuclear reservation. Workers had to pass through metal detectors when they arrived at the plant and materials leaving the plant had to be scanned for security reasons. Whereas other high-security nuclear materials were shipped from the PFP to Savannah River, S.C. as part ofa Department of Energy (DOE) program to consolidate weapons-grade plutonium, it was determined that the SIF should remain onsite pending disposition to a national repository. Nevertheless, the SIF still requires a high level of security that the PFP complex has always provided. With the 60-year PFP mission of producing and storing plutonium concluded, the environmental cleanup plans for Hanford call for the demolition of the 63-building PFP complex. Consequently, if the SIF remained at PFP it not only would have interfered with the environmental cleanup plans, but would have required $100 million in facility upgrades to meet increased national security requirements imposed after the 9/11 terrorist attacks. A new smaller and more cost-effective area was needed to store this material, which led to the SIF Project. Once the SIF project was successfully completed and the SIF was safely removed from PFP, the existing Protected Area at PFP could be removed, and demolition could proceed more quickly without being encumbered by restrictive security requirements that an active Protected Area requires. The lightened PFP security level brought by safely removing and storing the SIF would also yield lowered costs for deactivation and demolition, as well as reduce overall life-cycle costs.« less

  11. Energy situations in Japan before and after the Fukushima nuclear accident

    NASA Astrophysics Data System (ADS)

    Muraoka, K.

    2015-08-01

    This article describes the various effects on the public conception on nuclear energy and more generally on energy policies in Japan due to the nuclear accident that occurred on 11th March 2011 at the Fukushima Dai-ichi nuclear power station, which is owned and operated by Tokyo Electric Power Company (TEPCO). Before the accident, nuclear energy had been conceived as the main energy source of electricity in Japan for reducing CO2 emission beyond 2020. However, public opinion has turned almost completely against nuclear energy after observing how vulnerable the nuclear system had been. The present Japanese government is now trying to buy time before taking a decision. After explaining these circumstances, the author tries to chart his personal projection of energy sources for Japan to 2050.

  12. Nuclear reactor power for a space-based radar. SP-100 project

    NASA Technical Reports Server (NTRS)

    Bloomfield, Harvey; Heller, Jack; Jaffe, Leonard; Beatty, Richard; Bhandari, Pradeep; Chow, Edwin; Deininger, William; Ewell, Richard; Fujita, Toshio; Grossman, Merlin

    1986-01-01

    A space-based radar mission and spacecraft, using a 300 kWe nuclear reactor power system, has been examined, with emphasis on aspects affecting the power system. The radar antenna is a horizontal planar array, 32 X 64 m. The orbit is at 61 deg, 1088 km. The mass of the antenna with support structure is 42,000 kg; of the nuclear reactor power system, 8,300 kg; of the whole spacecraft about 51,000 kg, necessitating multiple launches and orbital assembly. The assembly orbit is at 57 deg, 400 km, high enough to provide the orbital lifetime needed for orbital assembly. The selected scenario uses six Shuttle launches to bring the spacecraft and a Centaur G upper-stage vehicle to assembly orbit. After assembly, the Centaur places the spacecraft in operational orbit, where it is deployed on radio command, the power system started, and the spacecraft becomes operational. Electric propulsion is an alternative and allows deployment in assembly orbit, but introduces a question of nuclear safety.

  13. 77 FR 74882 - STP Nuclear Operating Company, South Texas Project; Notice of Availability of Draft Supplement 48...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-18

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos.: 50-498 and 50-499; NRC-2010-0375] STP Nuclear Operating Company, South Texas Project; Notice of Availability of Draft Supplement 48 to the Generic Environmental Impact Statement for License Renewal of Nuclear Plants and Public Meetings for the License Renewal of South Texas Project Notice is hereby...

  14. 76 FR 29279 - Calvert Cliffs 3 Nuclear Project, LLC and Unistar Nuclear Operating Services, LLC; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-20

    ... NUCLEAR REGULATORY COMMISSION [DOCKET NO. 52-016; NRC-2008-0250] Calvert Cliffs 3 Nuclear Project, LLC and Unistar Nuclear Operating Services, LLC; Notice of Availability of the Final Environmental Impact Statement for the Combined License Application for Calvert Cliffs Nuclear Power Plant Unit 3 Notice is hereby given that the U.S. Nuclear...

  15. Comprehensive Digital Imaging Network Project At Georgetown University Hospital

    NASA Astrophysics Data System (ADS)

    Mun, Seong K.; Stauffer, Douglas; Zeman, Robert; Benson, Harold; Wang, Paul; Allman, Robert

    1987-10-01

    The radiology practice is going through rapid changes due to the introduction of state-of-the-art computed based technologies. For the last twenty years we have witnessed the introduction of many new medical diagnostic imaging systems such as x-ray computed tomo-graphy, digital subtraction angiography (DSA), computerized nuclear medicine, single pho-ton emission computed tomography (SPECT), positron emission tomography (PET) and more re-cently, computerized digital radiography and nuclear magnetic resonance imaging (MRI). Other than the imaging systems, there has been a steady introduction of computed based information systems for radiology departments and hospitals.

  16. Development of automated optical verification technologies for control systems

    NASA Astrophysics Data System (ADS)

    Volegov, Peter L.; Podgornov, Vladimir A.

    1999-08-01

    The report considers optical techniques for automated verification of object's identity designed for control system of nuclear objects. There are presented results of experimental researches and results of development of pattern recognition techniques carried out under the ISTC project number 772 with the purpose of identification of unique feature of surface structure of a controlled object and effects of its random treatment. Possibilities of industrial introduction of the developed technologies in frames of USA and Russia laboratories' lab-to-lab cooperation, including development of up-to-date systems for nuclear material control and accounting are examined.

  17. Application of NEPA to nuclear weapons production, storage, and testing Weinberger v. Catholic Action of Hawaii/Peace Education Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sauber, A.J.

    The National Environmental Policy Act (NEPA) requirement of environmental impact statements for the testing of military equipment, specifically nuclear weapons, conflicts with national security objectives. The author examines NEPA and the Freedom of Information Act (FOIA) in terms of the environmental effects of weapons testing and the relevant case law. The Supreme Court's decision in Catholic Action of Hawaii/Peace Education Project sought to resolve the conflict by distinguishing between a project which is contemplated and one which is proposed. The classification scheme embodied in the FOIA exemption for national security may cause unwarranted frustration of NEPA's goals. The author outlinesmore » a new classification system and review mechanism that could curb military abuse in this area.« less

  18. Tacit Knowledge Involvement in the Production of Nuclear Weapons: A Critical Component of a Credible US Nuclear Deterrent in the 21st Century

    DTIC Science & Technology

    2013-02-14

    important in sustaining a credible nuclear deterrent without testing. Thinking in the early days of the Manhattan Project was that designing a nuclear...weapon would occur quickly. Renowned physicist Edward Teller recalled being discouraged from joining the Manhattan Project at Los Alamos National...difficulties with their nuclear program in the early years despite involvement with portions of the Manhattan Project . With permission, the British

  19. Remote coupling of air lines

    NASA Technical Reports Server (NTRS)

    Fuchs, C. E.

    1971-01-01

    Bullseye coupler is projected pneumatically from one railroad car at the second car's point of connection. System depends on assumption that inaccuracies in relative position of cars do not exceed certain limits. System is usefull to oil drilling, marine rescue and salvage, nuclear work and chemical plant operations.

  20. Thermionic system evaluated test (TSET) facility description

    NASA Astrophysics Data System (ADS)

    Fairchild, Jerry F.; Koonmen, James P.; Thome, Frank V.

    1992-01-01

    A consortium of US agencies are involved in the Thermionic System Evaluation Test (TSET) which is being supported by the Strategic Defense Initiative Organization (SDIO). The project is a ground test of an unfueled Soviet TOPAZ-II in-core thermionic space reactor powered by electrical heat. It is part of the United States' national thermionic space nuclear power program. It will be tested in Albuquerque, New Mexico at the New Mexico Engineering Research Institute complex by the Phillips Laboratoty, Sandia National Laboratories, Los Alamos National Laboratory, and the University of New Mexico. One of TSET's many objectives is to demonstrate that the US can operate and test a complete space nuclear power system, in the electrical heater configuration, at a low cost. Great efforts have been made to help reduce facility costs during the first phase of this project. These costs include structural, mechanical, and electrical modifications to the existing facility as well as the installation of additional emergency systems to mitigate the effects of utility power losses and alkali metal fires.

  1. INSTALLATION OF A POST-ACCIDENT CONFINEMENT HIGH-LEVEL RADIATION MONITORING SYSTEM IN THE KOLA NUCLEAR POWER STATION (UNIT 2) IN RUSSIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GREENE,G.A.; GUPPY,J.G.

    1998-09-01

    This is the final report on the INSP project entitled, ``Post-Accident Confinement High-Level Radiation Monitoring System'' conducted by BNL under the authorization of Project Work Plan WBS 1.2.2.6 (Attachment 1). This project was initiated in February 1993 to assist the Russians in reducing risks associated with the continued operation of older Soviet-designed nuclear power plants, specifically the Kola VVER-440/230 Unit 2, through improved accident detection capability, specifically by the installation of a dual train high-level radiation detection system in the confinement of Unit 2 of the Kola NPP. The major technical objective of this project was to provide, install andmore » make operational the necessary hardware inside the confinement of the Kola NPP Unit 2 to provide early and reliable warning of the release of radionuclides from the reactor into the confinement air space as an indication of the occurrence of a severe accident at the plant. In addition, it was intended to provide hands-on experience and training to the Russian plant workers in the installation, operation, calibration and maintenance of the equipment in order that they may use the equipment without continued US assistance as an effective measure to improve reactor safety at the plant.« less

  2. Graphical Environment Tools for Application to Gamma-Ray Energy Tracking Arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd, Richard A.; Radford, David C.

    2013-12-30

    Highly segmented, position-sensitive germanium detector systems are being developed for nuclear physics research where traditional electronic signal processing with mixed analog and digital function blocks would be enormously complex and costly. Future systems will be constructed using pipelined processing of high-speed digitized signals as is done in the telecommunications industry. Techniques which provide rapid algorithm and system development for future systems are desirable. This project has used digital signal processing concepts and existing graphical system design tools to develop a set of re-usable modular functions and libraries targeted for the nuclear physics community. Researchers working with complex nuclear detector arraysmore » such as the Gamma-Ray Energy Tracking Array (GRETA) have been able to construct advanced data processing algorithms for implementation in field programmable gate arrays (FPGAs) through application of these library functions using intuitive graphical interfaces.« less

  3. Overview of criminal justice projects at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, D.D.

    1995-07-01

    The criminal justice projects at SNL include three projects for the National Institute of Justice (smart gun, restraining foam, aqueous foam, corrections perimeter), a Southwest Border study, and one involving corrections agencies. It is concluded that the national technologies developed to protect nuclear and other high value assets have enormous potential for application to crime and personal safety; the difficulty lies in simplifying the technology transfer and making the new systems affordable.

  4. Nuclear Pulse Propulsion: Orion and Beyond

    NASA Technical Reports Server (NTRS)

    Schmidt, George R.; Bonometti, J. A.; Morton, P. J.

    2000-01-01

    The race to the Moon dominated manned space Fight during the 1960's. and culminated in Project Apollo. which placed 12 humans on the Moon Unbeknownst to the public at that time, several U.S. Government agencies sponsored a project that could have conceivably, placed 150 people on the Moon and eventually sent crewed expeditions to Mars and the outer Planets. These feats could have possibly been accomplished during, the same period of time as Apollo. and for approximately the same cost. The project. code-named Orion. featured an extraordinary propulsion method known n as Nuclear Pulse The concept is probably as radical today as t was at the down of the space age. However its development appeared to he so promising that it was only by Political and non-technical considerations that it was not used to extend humanity reach throughout the solar system and quite possible to the stars. This paper discusses the rationale for nuclear pulse propulsion and presents a general history of the concept. focusing particularly on Project Orion. It describes some of the reexaminations being done in this area and discusses some of the new ideas that could mitigate many of the political and environmental issues associated with the concept.

  5. Conceptual design report: Nuclear materials storage facility renovation. Part 6, Alternatives study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-07-14

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based onmore » current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for material and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This report is organized according to the sections and subsections outlined by Attachment 111-2 of DOE Document AL 4700.1, Project Management System. It is organized into seven parts. This document, Part VI - Alternatives Study, presents a study of the different storage/containment options considered for NMSF.« less

  6. 340 Facility secondary containment and leak detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bendixsen, R.B.

    1995-01-31

    This document presents a preliminary safety evaluation for the 340 Facility Secondary Containment and Leak Containment system, Project W-302. Project W-302 will construct Building 340-C which has been designed to replace the current 340 Building and vault tank system for collection of liquid wastes from the Pacific Northwest Laboratory buildings in the 300 Area. This new nuclear facility is Hazard Category 3. The vault tank and related monitoring and control equipment are Safety Class 2 with the remainder of the structure, systems and components as Safety Class 3 or 4.

  7. Fission Surface Power Systems (FSPS) Project Final Report for the Exploration Technology Development Program (ETDP): Fission Surface Power, Transition Face to Face

    NASA Technical Reports Server (NTRS)

    Palac, Donald T.

    2011-01-01

    The Fission Surface Power Systems Project became part of the ETDP on October 1, 2008. Its goal was to demonstrate fission power system technology readiness in an operationally relevant environment, while providing data on fission system characteristics pertinent to the use of a fission power system on planetary surfaces. During fiscal years 08 to 10, the FSPS project activities were dominated by hardware demonstrations of component technologies, to verify their readiness for inclusion in the fission surface power system. These Pathfinders demonstrated multi-kWe Stirling power conversion operating with heat delivered via liquid metal NaK, composite Ti/H2O heat pipe radiator panel operations at 400 K input water temperature, no-moving-part electromagnetic liquid metal pump operation with NaK at flight-like temperatures, and subscale performance of an electric resistance reactor simulator capable of reproducing characteristics of a nuclear reactor for the purpose of system-level testing, and a longer list of component technologies included in the attached report. Based on the successful conclusion of Pathfinder testing, work began in 2010 on design and development of the Technology Demonstration Unit (TDU), a full-scale 1/4 power system-level non-nuclear assembly of a reactor simulator, power conversion, heat rejection, instrumentation and controls, and power management and distribution. The TDU will be developed and fabricated during fiscal years 11 and 12, culminating in initial testing with water cooling replacing the heat rejection system in 2012, and complete testing of the full TDU by the end of 2014. Due to its importance for Mars exploration, potential applicability to missions preceding Mars missions, and readiness for an early system-level demonstration, the Enabling Technology Development and Demonstration program is currently planning to continue the project as the Fission Power Systems project, including emphasis on the TDU completion and testing.

  8. IDC Re-Engineering Phase 2 System Specification Document Version 1.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satpathi, Meara Allena; Burns, John F.; Harris, James M.

    This document contains the system specifications derived to satisfy the system requirements found in the IDC System Requirements Document for the IDC Re-Engineering Phase 2 project. This System Specification Document (SSD) defines waveform data processing requirements for the International Data Centre (IDC) of the Comprehensive Nuclear Test Ban Treaty Organization (CTBTO). The routine processing includes characterization of events with the objective of screening out events considered to be consistent with natural phenomena or non-nuclear, man-made phenomena. This document does not address requirements concerning acquisition, processing and analysis of radionuclide data but does include requirements for the dissemination of radionuclide datamore » and products.« less

  9. Radiation and temperature effects on electronic components investigated under the CSTI high capacity power project

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.; Niedra, Janis M.; Frasca, Albert J.; Wieserman, William R.

    1993-01-01

    The effects of nuclear radiation and high temperature environments must be fully known and understood for the electronic components and materials used in both the Power Conditioning and Control subsystem and the reactor Instrumentation and Control subsystem of future high capacity nuclear space power systems. This knowledge is required by the designer of these subsystems in order to develop highly reliable, long-life power systems for future NASA missions. A review and summary of the experimental results obtained for the electronic components and materials investigated under the power management element of the Civilian Space Technology Initiative (CSTI) high capacity power project are presented: (1) neutron, gamma ray, and temperature effects on power semiconductor switches, (2) temperature and frequency effects on soft magnetic materials; and (3) temperature effects on rare earth permanent magnets.

  10. Space exploration and colonization - Towards a space faring society

    NASA Technical Reports Server (NTRS)

    Hammond, Walter E.

    1990-01-01

    Development trends of space exploration and colonization since 1957 are reviewed, and a five-phase evolutionary program planned for the long-term future is described. The International Geosphere-Biosphere program which is intended to provide the database on enviromental changes of the earth as a global system is considered. Evolution encompasses the anticipated advantages of such NASA observation projects as the Hubble Space Telescope, the Gamma Ray Observatory, the Advanced X-Ray Astrophysics Facility, and the Cosmic Background Explorer. Attention is given to requirements for space colonization, including development of artificial gravity and countermeasures to mitigate zero gravity problems; robotics and systems aimed to minimize human exposure to the space environment; the use of nuclear propulsion; and international collaboration on lunar-Mars projects. It is recommended that nuclear energy sources be developed for both propulsion and as extraterrestrial power plants.

  11. A Potential NASA Research Reactor to Support NTR Development

    NASA Technical Reports Server (NTRS)

    Eades, Michael; Gerrish, Harold; Hardin, Leroy

    2013-01-01

    In support of efforts for research into the design and development of a man rated Nuclear Thermal Rocket (NTR) engine, the National Aeronautics and Space Administration (NASA), Marshall Space Flight Center (MSFC), is evaluating the potential for building a Nuclear Regulatory Commission (NRC) licensed research reactor. The proposed reactor would be licensed by NASA and operated jointly by NASA and university partners. The purpose of this reactor would be to perform further research into the technologies and systems needed for a successful NTR project and promote nuclear training and education.

  12. A Research Reactor Concept to Support NTP Development

    NASA Technical Reports Server (NTRS)

    Eades, Michael J.; Blue, T. E.; Gerrish, Harold P.; Hardin, Leroy A.

    2014-01-01

    In support of efforts for research into the design and development of man rated Nuclear Thermal Propulsion (NTP), the National Aeronautics and Space Administration (NASA), Marshall Space Flight Center (MSFC), is evaluating the potential for building a Nuclear Regulatory Commission (NRC) licensed NTP based research reactor (NTPRR). The proposed NTPRR would be licensed by NASA and operated jointly by NASA and university partners. The purpose of the NTPRR would be used to perform further research into the technologies and systems needed for a successful NTP project and promote nuclear training and education.

  13. Carbon-Carbon Recuperators in Closed-Brayton-Cycle Nuclear Space Power Systems: A Feasibility Assessment

    NASA Technical Reports Server (NTRS)

    Barrett, Michael J.; Johnson, Paul K.

    2004-01-01

    The feasibility of using carbon-carbon recuperators in closed-Brayton-cycle (CBC) nuclear space power conversion systems (PCS) was assessed. Recuperator performance expectations were forecast based on projected thermodynamic cycle state values for a planetary mission. Resulting thermal performance, mass and volume for a plate-fin carbon-carbon recuperator were estimated and quantitatively compared with values for a conventional offset-strip-fin metallic design. Material compatibility issues regarding carbon-carbon surfaces exposed to the working fluid in the CBC PCS were also discussed.

  14. Weld monitor and failure detector for nuclear reactor system

    DOEpatents

    Sutton, Jr., Harry G.

    1987-01-01

    Critical but inaccessible welds in a nuclear reactor system are monitored throughout the life of the reactor by providing small aperture means projecting completely through the reactor vessel wall and also through the weld or welds to be monitored. The aperture means is normally sealed from the atmosphere within the reactor. Any incipient failure or cracking of the weld will cause the environment contained within the reactor to pass into the aperture means and thence to the outer surface of the reactor vessel where its presence is readily detected.

  15. Nuclear thermal source transfer unit, post-blast soil sample drying system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiser, Ralph S.; Valencia, Matthew J

    Los Alamos National Laboratory states that its mission is “To solve national security challenges through scientific excellence.” The Science Undergraduate Laboratory Internship (SULI) programs exists to engage undergraduate students in STEM work by providing opportunity to work at DOE facilities. As an undergraduate mechanical engineering intern under the SULI program at Los Alamos during the fall semester of 2016, I had the opportunity to contribute to the mission of the Laboratory while developing skills in a STEM discipline. I worked with Technology Applications, an engineering group that supports non-proliferation, counter terrorism, and emergency response missions. This group specializes in toolmore » design, weapons engineering, rapid prototyping, and mission training. I assisted with two major projects during my appointment Los Alamos. The first was a thermal source transportation unit, intended to safely contain a nuclear thermal source during transit. The second was a soil drying unit for use in nuclear postblast field sample collection. These projects have given me invaluable experience working alongside a team of professional engineers. Skills developed include modeling, simulation, group design, product and system design, and product testing.« less

  16. The Dynamics of Large-Amplitude Motion in Energized Molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perry, David S.

    2016-05-27

    Chemical reactions involve large-amplitude nuclear motion along the reaction coordinate that serves to distinguish reactants from products. Some reactions, such as roaming reactions and reactions proceeding through a loose transition state, involve more than one large-amplitude degree of freedom. Because of the limitation of exact quantum nuclear dynamics to small systems, one must, in general, define the active degrees of freedom and separate them in some way from the other degrees of freedom. In this project, we use large-amplitude motion in bound model systems to investigate the coupling of large-amplitude degrees of freedom to other nuclear degrees of freedom. Thismore » approach allows us to use the precision and power of high-resolution molecular spectroscopy to probe the specific coupling mechanisms involved, and to apply the associated theoretical tools. In addition to slit-jet spectra at the University of Akron, the current project period has involved collaboration with Michel Herman and Nathalie Vaeck of the Université Libre de Bruxelles, and with Brant Billinghurst at the Canadian Light Source (CLS).« less

  17. Survey of Software Assurance Techniques for Highly Reliable Systems

    NASA Technical Reports Server (NTRS)

    Nelson, Stacy

    2004-01-01

    This document provides a survey of software assurance techniques for highly reliable systems including a discussion of relevant safety standards for various industries in the United States and Europe, as well as examples of methods used during software development projects. It contains one section for each industry surveyed: Aerospace, Defense, Nuclear Power, Medical Devices and Transportation. Each section provides an overview of applicable standards and examples of a mission or software development project, software assurance techniques used and reliability achieved.

  18. LANL robotics site overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beugelsdijk, T.J.

    1990-11-01

    This paper reports on robotics applications at the Los Alamos National Laboratory. The topics of the paper include the ROBOCAL project to assay all nuclear materials entering and leaving the process floor at the Los Alamos Plutonium Facility, the isotope detector fabrication project, a plutonium dissolution robotic system, a safeguards waste automated measurement instrument, and DNA filter array construction. This report consists of overheads only.

  19. Final Technical Report: Imaging a Dry Storage Cask with Cosmic Ray Muons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Haori; Hayward, Jason; Chichester, David

    The goal of this project is to build a scaled prototype system for monitoring used nuclear fuel (UNF) dry storage casks (DSCs) through cosmic ray muon imaging. Such a system will have the capability of verifying the content inside a DSC without opening it. Because of the growth of the nuclear power industry in the U.S. and the policy decision to ban reprocessing of commercial UNF, the used fuel inventory at commercial reactor sites has been increasing. Currently, UNF needs to be moved to independent spent fuel storage installations (ISFSIs), as its inventory approaches the limit on capacity of on-sitemore » wet storage. Thereafter, the fuel will be placed in shipping containers to be transferred to a final disposal site. The ISFSIs were initially licensed as temporary facilities for ~20-yr periods. Given the cancellation of the Yucca mountain project and no clear path forward, extended dry-cask storage (~100 yr.) at ISFSIs is very likely. From the point of view of nuclear material protection, accountability and control technologies (MPACT) campaign, it is important to ensure that special nuclear material (SNM) in UNF is not stolen or diverted from civilian facilities for other use during the extended storage.« less

  20. Fabrication and Testing of CERMET Fuel Materials for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Hickman, Robert; Broadway, Jeramie; Mireles, Omar

    2012-01-01

    A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on Nuclear Thermal Propulsion (NTP) is currently being developed for Advanced Space Exploration Systems. The overall goal of the project is to address critical NTP technology challenges and programmatic issues to establish confidence in the affordability and viability of NTP systems. The current technology roadmap for NTP identifies the development of a robust fuel form as a critical near term need. The lack of a qualified nuclear fuel is a significant technical risk that will require a considerable fraction of program resources to mitigate. Due to these risks and the cost for qualification, the development and selection of a primary fuel must begin prior to Authority to Proceed (ATP) for a specific mission. The fuel development is a progressive approach to incrementally reduce risk, converge the fuel materials, and mature the design and fabrication process of the fuel element. A key objective of the current project is to advance the maturity of CERMET fuels. The work includes fuel processing development and characterization, fuel specimen hot hydrogen screening, and prototypic fuel element testing. Early fuel materials development is critical to help validate requirements and fuel performance. The purpose of this paper is to provide an overview and status of the work at Marshall Space Flight Center (MSFC).

  1. Current Development of Nuclear Thermal Propulsion technologies at the Center for Space Nuclear Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert C. O'Brien; Steven K. Cook; Nathan D. Jerred

    Nuclear power and propulsion has been considered for space applications since the 1950s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors / rocket engines in the Rover/NERVA programs1. The Aerojet Corporation was the prime contractor for the NERVA program. Modern changes in environmental laws present challenges for the redevelopment of the nuclear rocket. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel composition that is significantly different from those of the NERVA project can be engineered; this may be needed to ensure public support and compliance with safetymore » requirements. The Center for Space Nuclear Research (CSNR) is pursuing a number of technologies, modeling and testing processes to further the development of safe, practical and affordable nuclear thermal propulsion systems.« less

  2. Nuclear Computational Low Energy Initiative (NUCLEI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, Sanjay K.

    This is the final report for University of Washington for the NUCLEI SciDAC-3. The NUCLEI -project, as defined by the scope of work, will develop, implement and run codes for large-scale computations of many topics in low-energy nuclear physics. Physics to be studied include the properties of nuclei and nuclear decays, nuclear structure and reactions, and the properties of nuclear matter. The computational techniques to be used include Quantum Monte Carlo, Configuration Interaction, Coupled Cluster, and Density Functional methods. The research program will emphasize areas of high interest to current and possible future DOE nuclear physics facilities, including ATLAS andmore » FRIB (nuclear structure and reactions, and nuclear astrophysics), TJNAF (neutron distributions in nuclei, few body systems, and electroweak processes), NIF (thermonuclear reactions), MAJORANA and FNPB (neutrino-less double-beta decay and physics beyond the Standard Model), and LANSCE (fission studies).« less

  3. Nuclear reactor power as applied to a space-based radar mission

    NASA Technical Reports Server (NTRS)

    Jaffe, L.; Fujita, T.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Grossman, M.; Kia, T.; Nesmith, B.

    1988-01-01

    The SP-100 Project was established to develop and demonstrate feasibility of a space reactor power system (SRPS) at power levels of 10's of kilowatts to a megawatt. To help determine systems requirements for the SRPS, a mission and spacecraft were examined which utilize this power system for a space-based radar to observe moving objects. Aspects of the mission and spacecraft bearing on the power system were the primary objectives of this study; performance of the radar itself was not within the scope. The study was carried out by the Systems Design Audit Team of the SP-100 Project.

  4. NBC detection in air and water

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.; Smith, Steven J.; McMurtry, Gary M.

    2003-01-01

    Participating in a Navy STTR project to develop a system capable of the 'real-time' detection and quanitification of nuclear, biological and chemical (NBC) warfare agents, and of related industrial chemicals including NBC agent synthesis by-products in water and in air immediately above the water's surface. This project uses JPL's Soft Ionization Membrane (SIM) technology which totally ionizes molecules without fragmentation (a process that can markedly improve the sensitivity and specificity of molecule compostition identification), and JPL's Rotating Field Mass Spectrometer (RFMS) technology which has large enough dynamic mass range to enable detection of nuclear materials as well as biological and chemical agents. This Navy project integrates these JPL Environmental Monitoring UnitS (REMUS) an autonomous underwater vehicle (AUV). It is anticipated that the REMUS AUV will be capable of 'real-time' detection and quantification of NBC warefare agents.

  5. Nuclear Fabrication Consortium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levesque, Stephen

    2013-04-05

    This report summarizes the activities undertaken by EWI while under contract from the Department of Energy (DOE) Office of Nuclear Energy (NE) for the management and operation of the Nuclear Fabrication Consortium (NFC). The NFC was established by EWI to independently develop, evaluate, and deploy fabrication approaches and data that support the re-establishment of the U.S. nuclear industry: ensuring that the supply chain will be competitive on a global stage, enabling more cost-effective and reliable nuclear power in a carbon constrained environment. The NFC provided a forum for member original equipment manufactures (OEM), fabricators, manufacturers, and materials suppliers to effectivelymore » engage with each other and rebuild the capacity of this supply chain by : Identifying and removing impediments to the implementation of new construction and fabrication techniques and approaches for nuclear equipment, including system components and nuclear plants. Providing and facilitating detailed scientific-based studies on new approaches and technologies that will have positive impacts on the cost of building of nuclear plants. Analyzing and disseminating information about future nuclear fabrication technologies and how they could impact the North American and the International Nuclear Marketplace. Facilitating dialog and initiate alignment among fabricators, owners, trade associations, and government agencies. Supporting industry in helping to create a larger qualified nuclear supplier network. Acting as an unbiased technology resource to evaluate, develop, and demonstrate new manufacturing technologies. Creating welder and inspector training programs to help enable the necessary workforce for the upcoming construction work. Serving as a focal point for technology, policy, and politically interested parties to share ideas and concepts associated with fabrication across the nuclear industry. The report the objectives and summaries of the Nuclear Fabrication Consortium projects. Full technical reports for each of the projects have been submitted as well.« less

  6. Joint Integration Office Independent Review Committee annual report, 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Comprised of seven persons with extensive experience in the issues of nuclear waste, the Independent Review Committee (IRC) provides independent and objective review of Defense Transuranic Waste Program (DTWP) activities managed by the Joint Integration Office (JIO), formerly the Defense Transuranic Waste Lead Organization (TLO). The Committee is ensured a broad, interdisciplinary perspective since its membership includes representatives from the fields of nuclear engineering, nuclear waste transportation, industrial quality control, systems and environmental engineering and state and local government. The scope of IRC activities includes overall review of specific TLO plans, projects and activities, and technical review of particular researchmore » and development projects. The Committee makes specific suggestions and recommendations based upon expertise in the field of TRU Waste Management. The IRC operates as a consulting group, under an independent charter providing objective review of program activities. This report summarizes the 12 major topics reviewed by the committee during 1985.« less

  7. Chemical reactivity testing for the National Spent Nuclear Fuel Program. Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koester, L.W.

    This quality assurance project plan (QAPjP) summarizes requirements used by Lockheed Martin Energy Systems, Incorporated (LMES) Development Division at Y-12 for conducting chemical reactivity testing of Department of Energy (DOE) owned spent nuclear fuel, sponsored by the National Spent Nuclear Fuel Program (NSNFP). The requirements are based on the NSNFP Statement of work PRO-007 (Statement of Work for Laboratory Determination of Uranium Hydride Oxidation Reaction Kinetics.) This QAPjP will utilize the quality assurance program at Y-12, Y60-101PD, Quality Program Description, and existing implementing procedures for the most part in meeting the NSNFP Statement of Work PRO-007 requirements, exceptions will bemore » noted. The project consists of conducting three separate series of related experiments, ''Passivation of Uranium Hydride Powder With Oxygen and Water'', '''Passivation of Uranium Hydride Powder with Surface Characterization'', and ''Electrochemical Measure of Uranium Hydride Corrosion Rate''.« less

  8. The 2011 nuclear medicine technology job analysis project of the American Registry of Radiologic Technologists.

    PubMed

    Anderson, Dan; Hubble, William; Press, Bret A; Hall, Scott K; Michels, Ann D; Koenen, Roxanne; Vespie, Alan W

    2010-12-01

    The American Registry of Radiologic Technologists (ARRT) conducts periodic job analysis projects to update the content and eligibility requirements for all certification examinations. In 2009, the ARRT conducted a comprehensive job analysis project to update the content specifications and clinical competency requirements for the nuclear medicine technology examination. ARRT staff and a committee of volunteer nuclear medicine technologists designed a job analysis survey that was sent to a random sample of 1,000 entry-level staff nuclear medicine technologists. Through analysis of the survey data and judgments of the committee, the project resulted in changes to the nuclear medicine technology examination task list, content specifications, and clinical competency requirements. The primary changes inspired by the project were the introduction of CT content to the examination and the expansion of the content covering cardiac procedures.

  9. Summary and recommendations on nuclear electric propulsion technology for the space exploration initiative

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Holcomb, Robert S.

    1993-01-01

    A project in Nuclear Electric Propulsion (NEP) technology is being established to develop the NEP technologies needed for advanced propulsion systems. A paced approach has been suggested which calls for progressive development of NEP component and subsystem level technologies. This approach will lead to major facility testing to achieve TRL-5 for megawatt NEP for SEI mission applications. This approach is designed to validate NEP power and propulsion technologies from kilowatt class to megawatt class ratings. Such a paced approach would have the benefit of achieving the development, testing, and flight of NEP systems in an evolutionary manner. This approach may also have the additional benefit of synergistic application with SEI extraterrestrial surface nuclear power applications.

  10. Magnetic Analyzer Mavr for Study of Exotic Weakly Bound Nuclei

    NASA Astrophysics Data System (ADS)

    Maslov, V. A.; Kazacha, V. I.; Kolesov, I. V.; Lukyanov, S. M.; Melnikov, V. N.; Osipov, N. F.; Penionzhkevich, Yu. E.; Skobelev, N. K.; Sobolev, Yu. G.; Voskoboinik, E. I.

    2015-06-01

    A project of the high-resolution magnetic analyzer MAVR is proposed. The analyzer will comprise new magnetic optical and detecting systems for separation and identification of reaction products in a wide range of masses (5-150) and charges (1-60). The magnetic optical system consists of the MSP-144 magnet and a doublet of quadrupole lenses. This will allow the solid angle of the spectrometer to be increased by an order of magnitude up to 30 msr. The magnetic analyzer will have a high momentum resolution (10-4) and high focal-plane dispersion (1.9 m). It will allow products of nuclear reactions at energies up to 30 MeV/nucleon to be detected with the charge resolution ~1/60. Implementation of the project is divided into two stages: conversion of the magnetic analyzer proper and construction of the nuclear reaction products identification system. The MULTI detecting system is being developed for the MAVR magnetic analyzer to allow detection of nuclear reaction products and their identification by charge Q, atomic number Z, and mass A with a high absolute accuracy. The identification will be performed by measuring the energy loss (ΔE), time of flight (TOF), and total kinetic energy (TKE) of reaction products. The particle trajectories in the analyzer will also be determined using the drift chamber developed jointly with GANIL. The MAVR analyzer will operate in both primary beams of heavy ions and beams of radioactive nuclei produced by the U400 - U400M acceleration complex. It will also be used for measuring energy spectra of nuclear reaction products and as an energy monochromator.

  11. Study of Exotic Weakly Bound Nuclei Using Magnetic Analyzer Mavr

    NASA Astrophysics Data System (ADS)

    Maslov, V. A.; Kazacha, V. I.; Kolesov, I. V.; Lukyanov, S. M.; Melnikov, V. N.; Osipov, N. F.; Penionzhkevich, Yu. E.; Skobelev, N. K.; Sobolev, Yu. G.; Voskoboinik, E. I.

    2016-06-01

    A project of the high-resolution magnetic analyzer MAVR is proposed. The analyzer will comprise new magnetic optical and detecting systems for separation and identification of reaction products in a wide range of masses (5-150) and charges (1-60). The magnetic optical system consists of the MSP-144 magnet and a doublet of quadrupole lenses. This will allow the solid angle of the spectrometer to be increased by an order of magnitude up to 30 msr. The magnetic analyzer will have a high momentum resolution (10-4) and high focal-plane dispersion (1.9 m). It will allow products of nuclear reactions at energies up to 30 MeV/nucleon to be detected with the charge resolution ∼1/60. Implementation of the project is divided into two stages: conversion of the magnetic analyzer proper and construction of the nuclear reaction products identification system. The MULTI detecting system is being developed for the MAVR magnetic analyzer to allow detection of nuclear reaction products and their identification by charge Q, atomic number Z, and mass A with a high absolute accuracy. The identification will be performed by measuring the energy loss (ΔE), time of flight (TOF), and total kinetic energy (TKE) of reaction products. The particle trajectories in the analyzer will also be determined using the drift chamber developed jointly with GANIL. The MAVR analyzer will operate in both primary beams of heavy ions and beams of radioactive nuclei produced by the U400 - U400M acceleration complex. It will also be used for measuring energy spectra of nuclear reaction products and as an energy monochromator.

  12. Science based integrated approach to advanced nuclear fuel development - integrated multi-scale multi-physics hierarchical modeling and simulation framework Part III: cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tome, Carlos N; Caro, J A; Lebensohn, R A

    2010-01-01

    Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Reactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems to develop predictive tools is critical. Not only are fabrication and performance models needed to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating themore » phase and microstructural behavior of the nuclear fuel system materials and matrices. In this paper we review the current status of the advanced modeling and simulation of nuclear reactor cladding, with emphasis on what is available and what is to be developed in each scale of the project, how we propose to pass information from one scale to the next, and what experimental information is required for benchmarking and advancing the modeling at each scale level.« less

  13. Low-Enriched Uranium Nuclear Thermal Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Mitchell, Doyce P.; Aschenbrenner, Ken

    2017-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. For example, using NTP for human Mars missions can provide faster transit and/or round trip times for crew; larger mission payloads; off nominal mission opportunities (including wider injection windows); and crew mission abort options not available from other architectures. The use of NTP can also reduce required earth-to-orbit launches, reducing cost and improving ground logistics. In addition to enabling robust human Mars mission architectures, NTP can be used on exploration missions throughout the solar system. A first generation NTP system could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. Progress made under the NTP project could also help enable high performance fission power systems and Nuclear Electric Propulsion (NEP). Guidance, navigation, and control of NTP may have some unique but manageable characteristics.

  14. Light Water Reactor Sustainability Program: Digital Technology Business Case Methodology Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Ken; Lawrie, Sean; Hart, Adam

    The Department of Energy’s (DOE’s) Light Water Reactor Sustainability Program aims to develop and deploy technologies that will make the existing U.S. nuclear fleet more efficient and competitive. The program has developed a standard methodology for determining the impact of new technologies in order to assist nuclear power plant (NPP) operators in building sound business cases. The Advanced Instrumentation, Information, and Control (II&C) Systems Technologies Pathway is part of the DOE’s Light Water Reactor Sustainability (LWRS) Program. It conducts targeted research and development (R&D) to address aging and reliability concerns with the legacy instrumentation and control and related information systemsmore » of the U.S. operating light water reactor (LWR) fleet. This work involves two major goals: (1) to ensure that legacy analog II&C systems are not life-limiting issues for the LWR fleet and (2) to implement digital II&C technology in a manner that enables broad innovation and business improvement in the NPP operating model. Resolving long-term operational concerns with the II&C systems contributes to the long-term sustainability of the LWR fleet, which is vital to the nation’s energy and environmental security. The II&C Pathway is conducting a series of pilot projects that enable the development and deployment of new II&C technologies in existing nuclear plants. Through the LWRS program, individual utilities and plants are able to participate in these projects or otherwise leverage the results of projects conducted at demonstration plants. Performance advantages of the new pilot project technologies are widely acknowledged, but it has proven difficult for utilities to derive business cases for justifying investment in these new capabilities. Lack of a business case is often cited by utilities as a barrier to pursuing wide-scale application of digital technologies to nuclear plant work activities. The decision to move forward with funding usually hinges on demonstrating actual cost reductions that can be credited to budgets and thereby truly reduce O&M or capital costs. Technology enhancements, while enhancing work methods and making work more efficient, often fail to eliminate workload such that it changes overall staffing and material cost requirements. It is critical to demonstrate cost reductions or impacts on non-cost performance objectives in order for the business case to justify investment by nuclear operators. The Business Case Methodology (BCM) addresses the “benefit” side of the analysis—as opposed to the cost side—and how the organization evaluates discretionary projects (net present value (NPV), accounting effects of taxes, discount rates, etc.). The cost and analysis side is not particularly difficult for the organization and can usually be determined with a fair amount of precision (not withstanding implementation project cost overruns). It is in determining the "benefits" side of the analysis that utilities have more difficulty in technology projects and that is the focus of this methodology.« less

  15. Affordable Development and Optimization of CERMET Fuels for NTP Ground Testing

    NASA Technical Reports Server (NTRS)

    Hickman, Robert R.; Broadway, Jeramie W.; Mireles, Omar R.

    2014-01-01

    CERMET fuel materials for Nuclear Thermal Propulsion (NTP) are currently being developed at NASA's Marshall Space Flight Center. The work is part of NASA's Advanced Space Exploration Systems Nuclear Cryogenic Propulsion Stage (NCPS) Project. The goal of the FY12-14 project is to address critical NTP technology challenges and programmatic issues to establish confidence in the affordability and viability of an NTP system. A key enabling technology for an NCPS system is the fabrication of a stable high temperature nuclear fuel form. Although much of the technology was demonstrated during previous programs, there are currently no qualified fuel materials or processes. The work at MSFC is focused on developing critical materials and process technologies for manufacturing robust, full-scale CERMET fuels. Prototypical samples are being fabricated and tested in flowing hot hydrogen to understand processing and performance relationships. As part of this initial demonstration task, a final full scale element test will be performed to validate robust designs. The next phase of the project will focus on continued development and optimization of the fuel materials to enable future ground testing. The purpose of this paper is to provide a detailed overview of the CERMET fuel materials development plan. The overall CERMET fuel development path is shown in Figure 2. The activities begin prior to ATP for a ground reactor or engine system test and include materials and process optimization, hot hydrogen screening, material property testing, and irradiation testing. The goal of the development is to increase the maturity of the fuel form and reduce risk. One of the main accomplishmens of the current AES FY12-14 project was to develop dedicated laboratories at MSFC for the fabrication and testing of full length fuel elements. This capability will enable affordable, near term development and optimization of the CERMET fuels for future ground testing. Figure 2 provides a timeline of the development and optimization tasks for the AES FY15-17 follow on program.

  16. Detection of incipient defects in cables by partial discharge signal analysis

    NASA Astrophysics Data System (ADS)

    Martzloff, F. D.; Simmon, E.; Steiner, J. P.; Vanbrunt, R. J.

    1992-07-01

    As one of the objectives of a program aimed at assessing test methods for in-situ detection of incipient defects in cables due to aging, a laboratory test system was implemented to demonstrate that the partial discharge analysis method can be successfully applied to low-voltage cables. Previous investigations generally involved cables rated 5 kV or higher, while the objective of the program focused on the lower voltages associated with the safety systems of nuclear power plants. The defect detection system implemented for the project was based on commercially available signal analysis hardware and software packages, customized for the specific purposes of the project. The test specimens included several cables of the type found in nuclear power plants, including artificial defects introduced at various points of the cable. The results indicate that indeed, partial discharge analysis is capable of detecting incipient defects in low-voltage cables. There are, however, some limitations of technical and non-technical nature that need further exploration before this method can be accepted in the industry.

  17. Energy research information system projects report, volume 5, number 1

    NASA Astrophysics Data System (ADS)

    Johnson, J.; Schillinger, L.

    1980-07-01

    The system (ERIS) provides an inventory of the energy related programs and research activities from 1974 to the present in the states of Montana, Nebraska, North Dakota, South Dakota and Wyoming. Areas of research covered include coal, reclamation, water resources, environmental impacts, socioeconomic impacts, energy conversion, mining methodology, petroleum, natural gas, oilshale, renewable energy resources, nuclear energy, energy conservation and land use. Each project description lists title, investigator(s), research institution, sponsor, funding, time frame, location, a descriptive abstract of the research and title reports and/or publications generated by the research. All projects are indexed by location, personal names, organizations and subject keywords.

  18. Long-Term Instrumentation, Information, and Control Systems (II&C) Modernization Future Vision and Strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenneth Thomas

    2012-02-01

    Life extension beyond 60 years for the U.S operating nuclear fleet requires that instrumentation and control (I&C) systems be upgraded to address aging and reliability concerns. It is impractical for the legacy systems based on 1970's vintage technology operate over this extended time period. Indeed, utilities have successfully engaged in such replacements when dictated by these operational concerns. However, the replacements have been approached in a like-for-like manner, meaning that they do not take advantage of the inherent capabilities of digital technology to improve business functions. And so, the improvement in I&C system performance has not translated to bottom-line performancemore » improvement for the fleet. Therefore, wide-scale modernization of the legacy I&C systems could prove to be cost-prohibitive unless the technology is implemented in a manner to enable significant business innovation as a means of off-setting the cost of upgrades. A Future Vision of a transformed nuclear plant operating model based on an integrated digital environment has been developed as part of the Advanced Instrumentation, Information, and Control (II&C) research pathway, under the Light Water Reactor (LWR) Sustainability Program. This is a research and development program sponsored by the U.S. Department of Energy (DOE), performed in close collaboration with the nuclear utility industry, to provide the technical foundations for licensing and managing the long-term, safe and economical operation of current nuclear power plants. DOE's program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy security and environmental security . The Advanced II&C research pathway is being conducted by the Idaho National Laboratory (INL). The Future Vision is based on a digital architecture that encompasses all aspects of plant operations and support, integrating plant systems, plant work processes, and plant workers in a seamless digital environment to enhance nuclear safety, increase productivity, and improve overall plant performance. The long-term goal is to transform the operating model of the nuclear power plants (NPP)s from one that is highly reliant on a large staff performing mostly manual activities to an operating model based on highly integrated technology with a smaller staff. This digital transformation is critical to addressing an array of issues facing the plants, including aging of legacy analog systems, potential shortage of technical workers, ever-increasing expectations for nuclear safety improvement, and relentless pressure to reduce cost. The Future Vision is based on research is being conducted in the following major areas of plant function: (1) Highly integrated control rooms; (2) Highly automated plant; (3) Integrated operations; (4) Human performance improvement for field workers; and (5) Outage safety and efficiency. Pilot projects will be conducted in each of these areas as the means for industry to collectively integrate these new technologies into nuclear plant work activities. The pilot projects introduce new digital technologies into the nuclear plant operating environment at host operating plants to demonstrate and validate them for production usage. In turn, the pilot project technologies serve as the stepping stones to the eventual seamless digital environment as described in the Future Vision.« less

  19. Long-Term Instrumentation, Information, and Control Systems (II&C) Modernization Future Vision and Strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenneth Thomas; Bruce Hallbert

    2013-02-01

    Life extension beyond 60 years for the U.S operating nuclear fleet requires that instrumentation and control (I&C) systems be upgraded to address aging and reliability concerns. It is impractical for the legacy systems based on 1970’s vintage technology operate over this extended time period. Indeed, utilities have successfully engaged in such replacements when dictated by these operational concerns. However, the replacements have been approached in a like-for-like manner, meaning that they do not take advantage of the inherent capabilities of digital technology to improve business functions. And so, the improvement in I&C system performance has not translated to bottom-line performancemore » improvement for the fleet. Therefore, wide-scale modernization of the legacy I&C systems could prove to be cost-prohibitive unless the technology is implemented in a manner to enable significant business innovation as a means of off-setting the cost of upgrades. A Future Vision of a transformed nuclear plant operating model based on an integrated digital environment has been developed as part of the Advanced Instrumentation, Information, and Control (II&C) research pathway, under the Light Water Reactor (LWR) Sustainability Program. This is a research and development program sponsored by the U.S. Department of Energy (DOE), performed in close collaboration with the nuclear utility industry, to provide the technical foundations for licensing and managing the long-term, safe and economical operation of current nuclear power plants. DOE’s program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy security and environmental security . The Advanced II&C research pathway is being conducted by the Idaho National Laboratory (INL). The Future Vision is based on a digital architecture that encompasses all aspects of plant operations and support, integrating plant systems, plant work processes, and plant workers in a seamless digital environment to enhance nuclear safety, increase productivity, and improve overall plant performance. The long-term goal is to transform the operating model of the nuclear power plants (NPP)s from one that is highly reliant on a large staff performing mostly manual activities to an operating model based on highly integrated technology with a smaller staff. This digital transformation is critical to addressing an array of issues facing the plants, including aging of legacy analog systems, potential shortage of technical workers, ever-increasing expectations for nuclear safety improvement, and relentless pressure to reduce cost. The Future Vision is based on research is being conducted in the following major areas of plant function: 1. Highly integrated control rooms 2. Highly automated plant 3. Integrated operations 4. Human performance improvement for field workers 5. Outage safety and efficiency. Pilot projects will be conducted in each of these areas as the means for industry to collectively integrate these new technologies into nuclear plant work activities. The pilot projects introduce new digital technologies into the nuclear plant operating environment at host operating plants to demonstrate and validate them for production usage. In turn, the pilot project technologies serve as the stepping stones to the eventual seamless digital environment as described in the Future Vision.« less

  20. Counterproliferation of Nuclear Weapons

    DTIC Science & Technology

    2010-04-01

    nuclear weapons program in 1941 and renamed the program the Manhattan Project in 1942.6 The mammoth efforts of the Manhattan Project resulted in the...killing or mortally wounding up to 130,000 Japanese.11 While the scientists of the Manhattan Project were awestruck at the first nuclear blast in New...remove great danger for us.”12 Klaus Fuchs and Theodore Hall, two scientists on the Manhattan Project , had been previously recruited to spy for the

  1. The TACIS Nuclear Programme: Assistance in Upgrading Russian Nuclear Power Stations - An Overview of the Individual Projects in the Internet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bieth, Michel; Schoels, Hubert

    2006-07-01

    The European Union' TACIS1 programme has been established for the New Independent States (NIS), among them in the Russian Federation since 1991. One priority of TACIS funding is Nuclear Safety. The European Commission has made available a total of 944 Million Euros for nuclear safety programmes covering the period 1991-2003. The TACIS nuclear safety programme is devoted to the improvement of the safety of Soviet designed nuclear installations in providing technology and safety culture transfer. JRC is carrying out works in the following areas: On-Site Assistance for TACIS operating Nuclear Power Plants; Design Safety and Dissemination of TACIS results; Reactormore » Pressure Vessel Embrittlement for VVER; Regulatory Assistance; Industrial Waste Management; Nuclear Safeguards; All TACIS projects, dealing with these areas of activity are now available in so called Project Description Sheets (PDS) or Project Results Sheets (PRS) in the Internet for everybody. JRC has created in the Internet an easy to open and to browse database which contains the result of works in relation to the above mentioned nuclear activities. This presentation gives an on-line overview of the app. 430 projects which have been implemented so far since the outset of the TACIS Nuclear Programme in the Russian Federation, which is representative to the other CIS countries, benefiting from the TACIS. The presentation will mainly consist of an on-line-demonstration of the TACIS Nuclear WEB Page, created by JRC. (authors)« less

  2. Applications of nuclear physics to a wider context: from molecules to stars passing through hypernuclei

    NASA Astrophysics Data System (ADS)

    Fortunato, Lorenzo

    2018-03-01

    In this contribution I will review some of the researches that are currently being pursued in Padova (mainly within the In:Theory and Strength projects), focusing on the interdisciplinary applications of nuclear theory to several other branches of physics, with the aim of contributing to show the centrality of nuclear theory in the Italian scientific scenario and the prominence of this fertile field in fostering new physics. In particular, I will talk about: i) the recent solution of the long-standing “electron screening puzzle” that settles a fundamental controversy in nuclear astrophysics between the outcome of lab experiments on earth and nuclear reactions happening in stars; the application of algebraic methods to very diverse systems such as: ii) the supramolecular complex H2@C60, i.e. a diatomic hydrogen molecule caged in a fullerene and iii) to the spectrum of hypernuclei, i.e. systems made of a Lambda particles trapped in (heavy) nuclei.

  3. Gulf States Strategic Vision to Face Iranian Nuclear Project

    DTIC Science & Technology

    2015-09-01

    STRATEGIC VISION TO FACE IRANIAN NUCLEAR PROJECT by Fawzan A. Alfawzan September 2015 Thesis Advisor: James Russell Second Reader: Anne...nuclear weapons at a high degree. Nuclear capabilities provided Iran with uranium enrichments abilities and nuclear weapons to enable the country to...IN SECURITY STUDIES (STRATEGIC STUDIES) from the NAVAL POSTGRADUATE SCHOOL September 2015 Approved by: James Russell Thesis

  4. Russian University Education in Nuclear Safeguards and Security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, Cristen L.; Kryuchkov, Eduard F.; Geraskin, Nikolay I.

    2009-03-15

    As safeguards and security (S&S) systems are installed and upgraded in nuclear facilities throughout Russia, it becomes increasingly important to develop mechanisms for educating future Russian nuclear scientists and engineers in the technologies and methodologies of physical protection (PP) and nuclear material control and accounting (MC&A). As part of the U.S. Department of Energy’s (DOE) program to secure nuclear materials in Russia, the Education Project supports technical S&S degree programs at key Russian universities and nonproliferation education initiatives throughout the Russian Federation that are necessary to achieve the overall objective of fostering qualified and vigilant Russian S&S personnel. The Educationmore » Project supports major educational degree programs at the Moscow Engineering Physics Institute (MEPhI) and Tomsk Polytechnic University (TPU). The S&S Graduate Program is available only at MEPhI and is the world’s first S&S degree program. Ten classes of students have graduated with a total of 79 Masters Degrees as of early 2009. At least 84% of the graduates over the ten years are still working in the S&S field. Most work at government agencies or research organizations, and some are pursuing their PhD. A 5½ year Engineering Degree Program (EDP) in S&S is currently under development at MEPhI and TPU. The EDP is more tailored to the needs of nuclear facilities. The program’s first students (14) graduated from MEPhI in February 2007. Similar-sized classes are graduating from MEPhI each February. All of the EDP graduates are working in the S&S field, many at nuclear facilities. TPU also established an EDP and graduated its first class of approximately 18 students in February 2009. For each of these degree programs, the American project team works with MEPhI and TPU to develop appropriate curriculum, identify and acquire various training aids, develop and publish textbooks, and strengthen instructor skills. The project has also supported the instruction of policy-oriented nonproliferation courses at various Russian universities. These courses are targeted towards future workers in the nuclear field to help build an effective nonproliferation awareness within the nuclear complex. A long-range goal of this project is to assist the educational programs at MEPhI and TPU in becoming self-sustainable and therefore able to maintain the three degree programs without DOE support. This paper describes current development of these education programs and new initiatives. The paper also describes general nonproliferation education activities supported by DOE that complement the more technical S&S degree programs.« less

  5. High-Power Krypton Hall Thruster Technology Being Developed for Nuclear-Powered Applications

    NASA Technical Reports Server (NTRS)

    Jacobson, David T.; Manzella, David H.

    2004-01-01

    The NASA Glenn Research Center has been performing research and development of moderate specific impulse, xenon-fueled, high-power Hall thrusters for potential solar electric propulsion applications. These applications include Mars missions, reusable tugs for low-Earth-orbit to geosynchronous-Earth-orbit transportation, and missions that require transportation to libration points. This research and development effort resulted in the design and fabrication of the NASA-457M Hall thruster that has been tested at input powers up to 95 kW. During project year 2003, NASA established Project Prometheus to develop technology in the areas of nuclear power and propulsion, which are enabling for deep-space science missions. One of the Project-Prometheus-sponsored Nuclear Propulsion Research tasks is to investigate alternate propellants for high-power Hall thruster electric propulsion. The motivation for alternate propellants includes the disadvantageous cost and availability of xenon propellant for extremely large scale, xenon-fueled propulsion systems and the potential system performance benefits of using alternate propellants. The alternate propellant krypton was investigated because of its low cost relative to xenon. Krypton propellant also has potential performance benefits for deep-space missions because the theoretical specific impulse for a given voltage is 20 percent higher than for xenon because of krypton's lower molecular weight. During project year 2003, the performance of the high-power NASA-457M Hall thruster was measured using krypton as the propellant at power levels ranging from 6.4 to 72.5 kW. The thrust produced ranged from 0.3 to 2.5 N at a discharge specific impulse up to 4500 sec.

  6. Nuclear fuel requirements for the American economy - A model

    NASA Astrophysics Data System (ADS)

    Curtis, Thomas Dexter

    A model is provided to determine the amounts of various fuel streams required to supply energy from planned and projected nuclear plant operations, including new builds. Flexible, user-defined scenarios can be constructed with respect to energy requirements, choices of reactors and choices of fuels. The model includes interactive effects and extends through 2099. Outputs include energy provided by reactors, the number of reactors, and masses of natural Uranium and other fuels used. Energy demand, including electricity and hydrogen, is obtained from US DOE historical data and projections, along with other studies of potential hydrogen demand. An option to include other energy demand to nuclear power is included. Reactor types modeled include (thermal reactors) PWRs, BWRs and MHRs and (fast reactors) GFRs and SFRs. The MHRs (VHTRs), GFRs and SFRs are similar to those described in the 2002 DOE "Roadmap for Generation IV Nuclear Energy Systems." Fuel source choices include natural Uranium, self-recycled spent fuel, Plutonium from breeder reactors and existing stockpiles of surplus HEU, military Plutonium, LWR spent fuel and depleted Uranium. Other reactors and fuel sources can be added to the model. Fidelity checks of the model's results indicate good agreement with historical Uranium use and number of reactors, and with DOE projections. The model supports conclusions that substantial use of natural Uranium will likely continue to the end of the 21st century, though legacy spent fuel and depleted uranium could easily supply all nuclear energy demand by shifting to predominant use of fast reactors.

  7. Computational nuclear quantum many-body problem: The UNEDF project

    NASA Astrophysics Data System (ADS)

    Bogner, S.; Bulgac, A.; Carlson, J.; Engel, J.; Fann, G.; Furnstahl, R. J.; Gandolfi, S.; Hagen, G.; Horoi, M.; Johnson, C.; Kortelainen, M.; Lusk, E.; Maris, P.; Nam, H.; Navratil, P.; Nazarewicz, W.; Ng, E.; Nobre, G. P. A.; Ormand, E.; Papenbrock, T.; Pei, J.; Pieper, S. C.; Quaglioni, S.; Roche, K. J.; Sarich, J.; Schunck, N.; Sosonkina, M.; Terasaki, J.; Thompson, I.; Vary, J. P.; Wild, S. M.

    2013-10-01

    The UNEDF project was a large-scale collaborative effort that applied high-performance computing to the nuclear quantum many-body problem. The primary focus of the project was on constructing, validating, and applying an optimized nuclear energy density functional, which entailed a wide range of pioneering developments in microscopic nuclear structure and reactions, algorithms, high-performance computing, and uncertainty quantification. UNEDF demonstrated that close associations among nuclear physicists, mathematicians, and computer scientists can lead to novel physics outcomes built on algorithmic innovations and computational developments. This review showcases a wide range of UNEDF science results to illustrate this interplay.

  8. Studies of breakeven prices and electricity supply potentials of nuclear fusion by a long-term world energy and environment model

    NASA Astrophysics Data System (ADS)

    Tokimatsu, K.; Asaoka, Y.; Konishi, S.; Fujino, J.; Ogawa, Y.; Okano, K.; Nishio, S.; Yoshida, T.; Hiwatari, R.; Yamaji, K.

    2002-11-01

    In response to social demand, this paper investigates the breakeven price (BP) and potential electricity supply of nuclear fusion energy in the 21st century by means of a world energy and environment model. We set the following objectives in this paper: (i) to reveal the economics of the introduction conditions of nuclear fusion; (ii) to know when tokamak-type nuclear fusion reactors are expected to be introduced cost-effectively into future energy systems; (iii) to estimate the share in 2100 of electricity produced by the presently designed reactors that could be economically selected in the year. The model can give in detail the energy and environment technologies and price-induced energy saving, and can illustrate optimal energy supply structures by minimizing the costs of total discounted energy systems at a discount rate of 5%. The following parameters of nuclear fusion were considered: cost of electricity (COE) in the nuclear fusion introduction year, annual COE reduction rates, regional introduction year, and regional nuclear fusion capacity projection. The investigations are carried out for three nuclear fusion projections one of which includes tritium breeding constraints, four future CO2 concentration constraints, and technological assumptions on fossil fuels, nuclear fission, CO2 sequestration, and anonymous innovative technologies. It is concluded that: (1) the BPs are from 65 to 125 mill kW-1 h-1 depending on the introduction year of nuclear fusion under the 550 ppmv CO2 concentration constraints; those of a business-as-usual (BAU) case are from 51 to 68 mill kW-1h-1. Uncertainties resulting from the CO2 concentration constraints and the technological options influenced the BPs by plus/minus some 10 30 mill kW-1h-1, (2) tokamak-type nuclear fusion reactors (as presently designed, with a COE range around 70 130 mill kW-1h-1) would be favourably introduced into energy systems after 2060 based on the economic criteria under the 450 and 550 ppmv CO2 concentration constraint, but not selected under the BAU case and 650 ppmv CO2 concentration constraint, and (3) the share of electricity in 2100 produced by the presently designed tokamak-type nuclear fusion reactors (introduced after 2060) is well below 30%. It should be noted that these conclusions are based upon varieties of uncertainties in scenarios and data assumptions on nuclear fusion as well as technological options.

  9. Nuclear power generation and fuel cycle report 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-10-01

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

  10. A survey of nuclear-related agreements and possibilities for nuclear cooperation in South Asia: Cooperative Monitoring Center Occasional Paper/15

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RAJEN,GAURAV

    2000-04-01

    Several existing nuclear-related agreements already require India and Pakistan, as members, to share information. The agreements are bilateral, regional, and international. Greater nuclear transparency between India and Pakistan could be promoted by first understanding the information flows required by existing agreements. This understanding is an essential step for developing projects that can incrementally advance the sensitivity of the information being shared. This paper provides a survey of existing nuclear-related agreements involving India and Pakistan, and suggests future confidence-building projects using the frameworks provided by these agreements. The Bilateral Agreement on the Prohibition of Attack against Nuclear Reactors and Nuclear Facilitiesmore » is discussed as a basis for creating further agreements on restricting the use and deployment of nuclear weapons. The author suggests options for enhancing the value of the list of nuclear facilities exchanged annually as a part of this agreement. The International Atomic Energy Agency's regional cooperation agreement among countries in the Asia-Pacific region is an opportunity for greater subregional nuclear cooperation in South Asia. Linking the regional agreement with South Asian environmental cooperation and marine pollution protection efforts could provide a framework for projects involving Indian and Pakistani coastal nuclear facilities. Programs of the Food and Agriculture Organization of the United Nations that use nuclear techniques to increase food and crop production and optimize water management in arid areas also provide similar opportunities for nuclear cooperation. Other frameworks for nuclear cooperation originate from international conventions related to nuclear safety, transportation of nuclear wastes, worker protection against ionizing radiation, and the nondeployment of nuclear weapons in certain areas. The information shared by existing frameworks includes: laws and regulations (including internal inspection procedures that enforce compliance); lists of nuclear facilities; emergency response procedures and available resources; information related to the transportation of nuclear wastes (particularly via shipping); understanding and notification of accidental releases; and radionuclide release data from select coastal facilities. Incremental increases in the sensitivity of the information being shared could strengthen norms for Indian and Pakistani nuclear transparency. This paper suggests seven technology-based Indian and Pakistani nuclear transparency projects for consideration. Existing nuclear-related agreements provide an information-sharing framework within which the projects could occur. Eventually, as confidence increases and new agreements are negotiated, future projects could begin to deal with the accounting of fissile materials and nuclear weapons disposition and control.« less

  11. Sandia National Laboratories, Tonopah Test Range Fire Control Bunker (Building 09-51): Photographs and Written Historical and Descriptive Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullrich, Rebecca A.

    The Fire Control Bunker (Building 09-51) is a contributing element to the Sandia National Laboratories (SNL) Tonopah Test Range (TTR) Historic District. The SNL TTR Historic District played a significant role in U.S. Cold War history in the areas of stockpile surveillance and non-nuclear field testing of nuclear weapons design. The district covers approximately 179,200 acres and illustrates Cold War development testing of nuclear weapons components and systems. This report includes historical information, architectural information, sources of information, project information, maps, blueprints, and photographs.

  12. Sandia National Laboratories, Tonopah Test Range Assembly Building 9B (Building 09-54): Photographs and Written Historical and Descriptive Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullrich, Rebecca A.

    Assembly Building 9B (Building 09-54) is a contributing element to the Sandia National Laboratories (SNL) Tonopah Test Range (TTR) Historic District. The SNL TTR Historic District played a significant role in U.S. Cold War history in the areas of stockpile surveillance and non-nuclear field testing of nuclear weapons designs. The district covers approximately 179,200 acres and illustrates Cold War development testing of nuclear weapons components and systems. This report includes historical information, architectural information, sources of information, project information, maps, blueprints, and photographs.

  13. Advanced Engineering Environment FY09/10 pilot project.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamph, Jane Ann; Kiba, Grant W.; Pomplun, Alan R.

    2010-06-01

    The Advanced Engineering Environment (AEE) project identifies emerging engineering environment tools and assesses their value to Sandia National Laboratories and our partners in the Nuclear Security Enterprise (NSE) by testing them in our design environment. This project accomplished several pilot activities, including: the preliminary definition of an engineering bill of materials (BOM) based product structure in the Windchill PDMLink 9.0 application; an evaluation of Mentor Graphics Data Management System (DMS) application for electrical computer-aided design (ECAD) library administration; and implementation and documentation of a Windchill 9.1 application upgrade. The project also supported the migration of legacy data from existing corporatemore » product lifecycle management systems into new classified and unclassified Windchill PDMLink 9.0 systems. The project included two infrastructure modernization efforts: the replacement of two aging AEE development servers for reliable platforms for ongoing AEE project work; and the replacement of four critical application and license servers that support design and engineering work at the Sandia National Laboratories/California site.« less

  14. Resource Letter MP-2: The Manhattan project and related nuclear research

    NASA Astrophysics Data System (ADS)

    Reed, B. Cameron

    2011-02-01

    This Resource Letter is a supplement to my earlier Resource Letter MP-1 and provides further sources on the Manhattan Project and related nuclear research. Books and journal articles are cited for the following topics: General works, technical works, biographical and autobiographical works, foreign wartime programs and allied intelligence, technical papers of historical interest, and postwar policy and technical developments. I also give a list of videos and websites dealing with the Manhattan Project, nuclear weapons, and nuclear issues.

  15. An Optical Disk-Based Information Retrieval System.

    ERIC Educational Resources Information Center

    Bender, Avi

    1988-01-01

    Discusses a pilot project by the Nuclear Regulatory Commission to apply optical disk technology to the storage and retrieval of documents related to its high level waste management program. Components and features of the microcomputer-based system which provides full-text and image access to documents are described. A sample search is included.…

  16. Radioactive fallout projections and arms control agreements: INF (Intermediate-range Nuclear Forces) and START (Strategic Arms Reduction Treaty)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapiro, C.S.

    1988-02-01

    Projections of levels of radioactive fallout from a nuclear war are sensitive to assumptions about the structure of the nuclear stockpiles as well as the assumed scenarios for a nuclear war. Recent arms control proposals would change these parameters. This paper examines the implications of the proposed (Intermediate-range Nuclear Forces) INF treaty and (Strategic Arms Reduction Treaty) START on fallout projections from a major nuclear war. We conclude that the INF reductions are likely to have negligible effects on estimates of global and local fallout, whereas the START reductions could result in reductions in estimates of local fallout that rangemore » from significant to dramatic, depending upon the nature of the reduced strategic forces. Should a major war occur, projections of total fatalities from direct effects of blast, thermal radiation, a nd fallout, and the phenomenon known as nuclear winter, would not be significantly affected by INF and START initiatives as now drafted. 14 refs.« less

  17. Contributions to nuclear safety and radiation technologies in Ukraine by the Science and Technology Center in Ukraine (STCU)

    NASA Astrophysics Data System (ADS)

    Taranenko, L.; Janouch, F.; Owsiacki, L.

    2001-06-01

    This paper presents Science and Technology Center in Ukraine (STCU) activities devoted to furthering nuclear and radiation safety, which is a prioritized STCU area. The STCU, an intergovernmental organization with the principle objective of non-proliferation, administers financial support from the USA, Canada, and the EU to Ukrainian projects in various scientific and technological areas; coordinates projects; and promotes the integration of Ukrainian scientists into the international scientific community, including involving western collaborators. The paper focuses on STCU's largest project to date "Program Supporting Y2K Readiness at Ukrainian NPPs" initiated in April 1999 and designed to address possible Y2K readiness problems at 14 Ukrainian nuclear reactors. Other presented projects demonstrate a wide diversity of supported directions in the fields of nuclear and radiation safety, including reactor material improvement ("Improved Zirconium-Based Elements for Nuclear Reactors"), information technologies for nuclear industries ("Ukrainian Nuclear Data Bank in Slavutich"), and radiation health science ("Diagnostics and Treatment of Radiation-Induced Injuries of Human Biopolymers").

  18. The European ASAMPSA_E project : towards guidance to model the impact of high amplitude natural hazards in the probabilistic safety assessment of nuclear power plants. Information on the project progress and needs from the geosciences.

    NASA Astrophysics Data System (ADS)

    Raimond, Emmanuel; Decker, Kurt; Guigueno, Yves; Klug, Joakim; Loeffler, Horst

    2015-04-01

    The Fukushima nuclear accident in Japan resulted from the combination of two correlated extreme external events (earthquake and tsunami). The consequences, in particular flooding, went beyond what was considered in the initial engineering design design of nuclear power plants (NPPs). Such situations can in theory be identified using probabilistic safety assessment (PSA) methodology. PSA results may then lead industry (system suppliers and utilities) or Safety Authorities to take appropriate decisions to reinforce the defence-in-depth of the NPP for low probability event but high amplitude consequences. In reality, the development of such PSA remains a challenging task. Definitions of the design basis of NPPs, for example, require data on events with occurrence probabilities not higher than 10-4 per year. Today, even lower probabilities, down to 10-8, are expected and typically used for probabilistic safety analyses (PSA) of NPPs and the examination of so-called design extension conditions. Modelling the combinations of natural or man-made hazards that can affect a NPP and affecting some meaningful probability of occurrence seems to be difficult. The European project ASAMPSAE (www.asampsa.eu) gathers more than 30 organizations (industry, research, safety control) from Europe, US and Japan and aims at identifying some meaningful practices to extend the scope and the quality of the existing probabilistic safety analysis developed for nuclear power plants. It offers a framework to discuss, at a technical level, how "extended PSA" can be developed efficiently and be used to verify if the robustness of Nuclear Power Plants (NPPs) in their environment is sufficient. The paper will present the objectives of this project, some first lessons and introduce which type of guidance is being developed. It will explain the need of expertise from geosciences to support the nuclear safety assessment in the different area (seismotectonic, hydrological, meteorological and biological hazards, …).

  19. Radiation and Thermal Effects on Used Nuclear Fuel and Nuclear Waste Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, William J.; Zhang, Yanwen

    This is the final report of the NEUP project “Radiation and Thermal Effects on Used Nuclear Fuel and Nuclear Waste Forms.” This project started on July 1, 2012 and was successfully completed on June 30, 2016. This report provides an overview of the main achievements, results and findings through the duration of the project. Additional details can be found in the main body of this report and in the individual Quarterly Reports and associated Deliverables of this project, which have been uploaded in PICS-NE. The objective of this research was to advance understanding and develop validated models on the effectsmore » of self-radiation from beta and alpha decay on the response of used nuclear fuel and nuclear waste forms during high-temperature interim storage and long-term permanent disposition. To achieve this objective, model used-fuel materials and model waste form materials were identified, fabricated, and studied.« less

  20. U.S. Department of Energy physical protection upgrades at the Latvian Academy of Sciences Nuclear Research Center, Latvia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haase, M.; Hine, C.; Robertson, C.

    1996-12-31

    Approximately five years ago, the Safe, Secure Dismantlement program was started between the US and countries of the Former Soviet Union (FSU). The purpose of the program is to accelerate progress toward reducing the risk of nuclear weapons proliferation, including such threats as theft, diversion, and unauthorized possession of nuclear materials. This would be accomplished by strengthening the material protection, control, and accounting systems within the FSU countries. Under the US Department of Energy`s program of providing cooperative assistance to the FSU countries in the areas of Material Protection, Control, and Accounting (MPC and A), the Latvian Academy of Sciencesmore » Nuclear Research Center (LNRC) near Riga, Latvia, was identified as a candidate site for a cooperative MPC and A project. The LNRC is the site of a 5-megawatt IRT-C pool-type research reactor. This paper describes: the process involved, from initial contracting to project completion, for the physical protection upgrades now in place at the LNRC; the intervening activities; and a brief overview of the technical aspects of the upgrades.« less

  1. Brayton Power Conversion System Study to Advance Technology Readiness for Nuclear Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Allen, Bog; Delventhal, Rex; Frye, Patrick

    2004-01-01

    Recently, there has been significant interest within the aerospace community to develop space based nuclear power conversion technologies especially for exploring the outer planets of our solar system where the solar energy density is very low. To investigate these technologies NASA awarded several contracts under Project Prometheus, the Nuclear Systems Program. The studies described in this paper were performed under one of those contracts, which was to investigate the use of a nuclear power conversion system based on the closed Brayton cycle (CBC).The investigation performed included BPCS (Brayton Power Conversion System) trade studies to minimize system weight and radiator area and advance the state of the art of BPCS technology. The primary requirements for studies were a power level of 100 kWe (to the PPU), a low overall power system mass and a lifetime of 15 years (10 years full power). For the radiation environment, the system was to be capable of operation in the generic space environment and withstand the extreme environments surrounding Jupiter. The studies defined a BPCS design traceable to NEP (Nuclear Electric Propulsion) requirements and suitable for future missions with a sound technology plan for technology readiness level (TRL) advancement identified. The studies assumed a turbine inlet temperature approx. 100 C above the current the state of the art capabilities with materials issues and related development tasks identified. Analyses and evaluations of six different HRS (heat rejection system) designs and three primary power management and distribution (PMAD) configurations will be discussed in the paper.

  2. Progress in Decommissioning the Humboldt Bay Power Plant - 13604

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rod, Kerry; Shelanskey, Steven K.; Kristofzski, John

    Decommissioning of the Pacific Gas and Electric (PG and E) Company Humboldt Bay Power Plant (HBPP) Unit 3 nuclear facility has now, after more than three decades of SAFSTOR and initial decommissioning work, transitioned to full-scale decommissioning. Decommissioning activities to date have been well orchestrated and executed in spite of an extremely small work site with space constricted even more by other concurrent on-site major construction projects including the demolition of four fossil units, construction of a new generating station and 60 KV switchyard upgrade. Full-scale decommissioning activities - now transitioning from Plant Systems Removal (PG and E self-perform) tomore » Civil Works Projects (contractor performed) - are proceeding in a safe, timely, and cost effective manner. As a result of the successful decommissioning work to date (approximately fifty percent completed) and the intense planning and preparations for the remaining work, there is a high level of confidence for completion of all HBPP Unit 3 decommissions activities in 2018. Strategic planning and preparations to transition into full-scale decommissioning was carried out in 2008 by a small, highly focused project team. This planning was conducted concurrent with other critical planning requirements such as the loading of spent nuclear fuel into dry storage at the Independent Spent Fuel Storage Installation (ISFSI) finishing December 2008. Over the past four years, 2009 through 2012, the majority of decommissioning work has been installation of site infrastructure and removal of systems and components, known as the Plant System Removal Phase, where work scope was dynamic with significant uncertainty, and it was self-performed by PG and E. As HBPP Decommissioning transitions from the Plant System Removal Phase to the Civil Works Projects Phase, where work scope is well defined, a contracting plan similar to that used for Fossil Decommissioning will be implemented. Award of five major work scopes in various stages of development are planned as they include: Turbine Building Demolition, Nuclear Facilities Demolition and Excavation, Intake and Discharge Canal Remediation, Office Facility Demobilization, and Final Site Restoration. Benefits realized by transitioning to the Civil Works Projects Phase with predominant firm fixed-price/fixed unit price contracting include single civil works contractor who can coordinate concrete shaving, liner removal, structural removal, and other demolition activities; streamline financial control; reduce PG and E overhead staffing; and provide a specialized Bidder Team with experience from other similar projects. (authors)« less

  3. Construction Cost Growth for New Department of Energy Nuclear Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubic, Jr., William L.

    Cost growth and construction delays are problems that plague many large construction projects including the construction of new Department of Energy (DOE) nuclear facilities. A study was conducted to evaluate cost growth of large DOE construction projects. The purpose of the study was to compile relevant data, consider the possible causes of cost growth, and recommend measures that could be used to avoid extreme cost growth in the future. Both large DOE and non-DOE construction projects were considered in this study. With the exception of Chemical and Metallurgical Research Building Replacement Project (CMRR) and the Mixed Oxide Fuel Fabrication Facilitymore » (MFFF), cost growth for DOE Nuclear facilities is comparable to the growth experienced in other mega construction projects. The largest increase in estimated cost was found to occur between early cost estimates and establishing the project baseline during detailed design. Once the project baseline was established, cost growth for DOE nuclear facilities was modest compared to non-DOE mega projects.« less

  4. Adaptive Neural Network Algorithm for Power Control in Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Masri Husam Fayiz, Al

    2017-01-01

    The aim of this paper is to design, test and evaluate a prototype of an adaptive neural network algorithm for the power controlling system of a nuclear power plant. The task of power control in nuclear reactors is one of the fundamental tasks in this field. Therefore, researches are constantly conducted to ameliorate the power reactor control process. Currently, in the Department of Automation in the National Research Nuclear University (NRNU) MEPhI, numerous studies are utilizing various methodologies of artificial intelligence (expert systems, neural networks, fuzzy systems and genetic algorithms) to enhance the performance, safety, efficiency and reliability of nuclear power plants. In particular, a study of an adaptive artificial intelligent power regulator in the control systems of nuclear power reactors is being undertaken to enhance performance and to minimize the output error of the Automatic Power Controller (APC) on the grounds of a multifunctional computer analyzer (simulator) of the Water-Water Energetic Reactor known as Vodo-Vodyanoi Energetichesky Reaktor (VVER) in Russian. In this paper, a block diagram of an adaptive reactor power controller was built on the basis of an intelligent control algorithm. When implementing intelligent neural network principles, it is possible to improve the quality and dynamic of any control system in accordance with the principles of adaptive control. It is common knowledge that an adaptive control system permits adjusting the controller’s parameters according to the transitions in the characteristics of the control object or external disturbances. In this project, it is demonstrated that the propitious options for an automatic power controller in nuclear power plants is a control system constructed on intelligent neural network algorithms.

  5. Projected Costs of U.S. Nuclear Forces, 2017 to 2026

    DTIC Science & Technology

    2017-02-01

    CBO FEBRUARY 2017 Projected Costs of U.S. Nuclear Forces, 2017 to 2026 Nuclear weapons have been a cornerstone of U.S. national security since they...were developed during World War II. In the Cold War, nuclear forces were central to U.S. defense policy, resulting in the buildup of a large...arsenal. Since that time, nuclear forces have figured less prominently than conventional forces, and the United States has not built any new nuclear

  6. Advanced Small Modular Reactor Economics Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, Thomas J.

    2014-10-01

    This report describes the data collection work performed for an advanced small modular reactor (AdvSMR) economics analysis activity at the Oak Ridge National Laboratory. The methodology development and analytical results are described in separate, stand-alone documents as listed in the references. The economics analysis effort for the AdvSMR program combines the technical and fuel cycle aspects of advanced (non-light water reactor [LWR]) reactors with the market and production aspects of SMRs. This requires the collection, analysis, and synthesis of multiple unrelated and potentially high-uncertainty data sets from a wide range of data sources. Further, the nature of both economic andmore » nuclear technology analysis requires at least a minor attempt at prediction and prognostication, and the far-term horizon for deployment of advanced nuclear systems introduces more uncertainty. Energy market uncertainty, especially the electricity market, is the result of the integration of commodity prices, demand fluctuation, and generation competition, as easily seen in deregulated markets. Depending on current or projected values for any of these factors, the economic attractiveness of any power plant construction project can change yearly or quarterly. For long-lead construction projects such as nuclear power plants, this uncertainty generates an implied and inherent risk for potential nuclear power plant owners and operators. The uncertainty in nuclear reactor and fuel cycle costs is in some respects better understood and quantified than the energy market uncertainty. The LWR-based fuel cycle has a long commercial history to use as its basis for cost estimation, and the current activities in LWR construction provide a reliable baseline for estimates for similar efforts. However, for advanced systems, the estimates and their associated uncertainties are based on forward-looking assumptions for performance after the system has been built and has achieved commercial operation. Advanced fuel materials and fabrication costs have large uncertainties based on complexities of operation, such as contact-handled fuel fabrication versus remote handling, or commodity availability. Thus, this analytical work makes a good faith effort to quantify uncertainties and provide qualifiers, caveats, and explanations for the sources of these uncertainties. The overall result is that this work assembles the necessary information and establishes the foundation for future analyses using more precise data as nuclear technology advances.« less

  7. Summary of Prometheus Radiation Shielding Nuclear Design Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Stephens

    2006-01-13

    This report transmits a summary of radiation shielding nuclear design studies performed to support the Prometheus project. Together, the enclosures and references associated with this document describe NRPCT (KAPL & Bettis) shielding nuclear design analyses done for the project.

  8. Impact of Nuclear Data Uncertainties on Calculated Spent Fuel Nuclide Inventories and Advanced NDA Instrument Response

    DOE PAGES

    Hu, Jianwei; Gauld, Ian C.

    2014-12-01

    The U.S. Department of Energy’s Next Generation Safeguards Initiative Spent Fuel (NGSI-SF) project is nearing the final phase of developing several advanced nondestructive assay (NDA) instruments designed to measure spent nuclear fuel assemblies for the purpose of improving nuclear safeguards. Current efforts are focusing on calibrating several of these instruments with spent fuel assemblies at two international spent fuel facilities. Modelling and simulation is expected to play an important role in predicting nuclide compositions, neutron and gamma source terms, and instrument responses in order to inform the instrument calibration procedures. As part of NGSI-SF project, this work was carried outmore » to assess the impacts of uncertainties in the nuclear data used in the calculations of spent fuel content, radiation emissions and instrument responses. Nuclear data is an essential part of nuclear fuel burnup and decay codes and nuclear transport codes. Such codes are routinely used for analysis of spent fuel and NDA safeguards instruments. Hence, the uncertainties existing in the nuclear data used in these codes affect the accuracies of such analysis. In addition, nuclear data uncertainties represent the limiting (smallest) uncertainties that can be expected from nuclear code predictions, and therefore define the highest attainable accuracy of the NDA instrument. This work studies the impacts of nuclear data uncertainties on calculated spent fuel nuclide inventories and the associated NDA instrument response. Recently developed methods within the SCALE code system are applied in this study. The Californium Interrogation with Prompt Neutron instrument was selected to illustrate the impact of these uncertainties on NDA instrument response.« less

  9. Impact of Nuclear Data Uncertainties on Calculated Spent Fuel Nuclide Inventories and Advanced NDA Instrument Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Jianwei; Gauld, Ian C.

    The U.S. Department of Energy’s Next Generation Safeguards Initiative Spent Fuel (NGSI-SF) project is nearing the final phase of developing several advanced nondestructive assay (NDA) instruments designed to measure spent nuclear fuel assemblies for the purpose of improving nuclear safeguards. Current efforts are focusing on calibrating several of these instruments with spent fuel assemblies at two international spent fuel facilities. Modelling and simulation is expected to play an important role in predicting nuclide compositions, neutron and gamma source terms, and instrument responses in order to inform the instrument calibration procedures. As part of NGSI-SF project, this work was carried outmore » to assess the impacts of uncertainties in the nuclear data used in the calculations of spent fuel content, radiation emissions and instrument responses. Nuclear data is an essential part of nuclear fuel burnup and decay codes and nuclear transport codes. Such codes are routinely used for analysis of spent fuel and NDA safeguards instruments. Hence, the uncertainties existing in the nuclear data used in these codes affect the accuracies of such analysis. In addition, nuclear data uncertainties represent the limiting (smallest) uncertainties that can be expected from nuclear code predictions, and therefore define the highest attainable accuracy of the NDA instrument. This work studies the impacts of nuclear data uncertainties on calculated spent fuel nuclide inventories and the associated NDA instrument response. Recently developed methods within the SCALE code system are applied in this study. The Californium Interrogation with Prompt Neutron instrument was selected to illustrate the impact of these uncertainties on NDA instrument response.« less

  10. The Analysis of the System of special water purification of Beloyarskaya Nuclear Power Plant unit BN-800

    NASA Astrophysics Data System (ADS)

    Valtseva, A. I.; Bibik, I. S.

    2017-11-01

    This article discusses how the latest system of special water purification KPF-30, designed specifically for the fourth power unit of Beloyarskaya nuclear power plant, which has a number of advantages over other water purification systems as chemical-physical and technical-economic, environmental, and other industrial indicators. The scheme covered in this article systems of special water purification involves the use of a hydrocyclone at the preliminary stage of water treatment, as a worthy alternative to ion-exchange filters, which can significantly reduce the volume of toxic waste. The world community implements the project of closing the nuclear fuel cycle, there is a need to improve the reliability of the equipment for safe processes and development of critical and supercritical parameters in the nuclear industry. Essentially, on operated NPP units, the only factor that can cost-effectively optimize to improve the reliability of equipment is the water chemistry. System KPF30 meets the principles and criteria of ecological safety, demonstrating the justification for reagent less method of water treatment on the main stages, in which no formation of toxic wastes, leading to irreversible consequences of environmental pollution and helps to conserve water.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Church, J; Slaughter, D; Norman, E

    Error rates in a cargo screening system such as the Nuclear Car Wash [1-7] depend on the standard deviation of the background radiation count rate. Because the Nuclear Car Wash is an active interrogation technique, the radiation signal for fissile material must be detected above a background count rate consisting of cosmic, ambient, and neutron-activated radiations. It was suggested previously [1,6] that the Corresponding negative repercussions for the sensitivity of the system were shown. Therefore, to assure the most accurate estimation of the variation, experiments have been performed to quantify components of the actual variance in the background count rate,more » including variations in generator power, irradiation time, and container contents. The background variance is determined by these experiments to be a factor of 2 smaller than values assumed in previous analyses, resulting in substantially improved projections of system performance for the Nuclear Car Wash.« less

  12. The Off-Site Plowshare and Vela Uniform Programs: Assessing Potential Environmental Liabilities through an Examination of Proposed Nuclear Projects,High Explosive Experiments, and High Explosive Construction Activities Volume 1 of 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck Colleen M,Edwards Susan R.,King Maureen L.

    2011-09-01

    This document presents the results of nearly six years (2002-2008) of historical research and field studies concerned with evaluating potential environmental liabilities associated with U.S. Atomic Energy Commission projects from the Plowshare and Vela Uniform Programs. The Plowshare Program's primary purpose was to develop peaceful uses for nuclear explosives. The Vela Uniform Program focused on improving the capability of detecting, monitoring and identifying underground nuclear detonations. As a result of the Project Chariot site restoration efforts in the early 1990s, there were concerns that there might be other project locations with potential environmental liabilities. The Desert Research Institute conducted archivalmore » research to identify projects, an analysis of project field activities, and completed field studies at locations where substantial fieldwork had been undertaken for the projects. Although the Plowshare and Vela Uniform nuclear projects are well known, the projects that are included in this research are relatively unknown. They are proposed nuclear projects that were not executed, proposed and executed high explosive experiments, and proposed and executed high explosive construction activities off the Nevada Test Site. The research identified 170 Plowshare and Vela Uniform off-site projects and many of these had little or no field activity associated with them. However, there were 27 projects that merited further investigation and field studies were conducted at 15 locations.« less

  13. The Off-Site Plowshare and Vela Uniform Programs: Assessing Potential Environmental Liabilities through an Examination of Proposed Nuclear Projects,High Explosive Experiments, and High Explosive Construction Activities Volume 3 of 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck Colleen M.,Edwards Susan R.,King Maureen L.

    2011-09-01

    This document presents the results of nearly six years (2002-2008) of historical research and field studies concerned with evaluating potential environmental liabilities associated with U.S. Atomic Energy Commission projects from the Plowshare and Vela Uniform Programs. The Plowshare Program's primary purpose was to develop peaceful uses for nuclear explosives. The Vela Uniform Program focused on improving the capability of detecting, monitoring and identifying underground nuclear detonations. As a result of the Project Chariot site restoration efforts in the early 1990s, there were concerns that there might be other project locations with potential environmental liabilities. The Desert Research Institute conducted archivalmore » research to identify projects, an analysis of project field activities, and completed field studies at locations where substantial fieldwork had been undertaken for the projects. Although the Plowshare and Vela Uniform nuclear projects are well known, the projects that are included in this research are relatively unknown. They are proposed nuclear projects that were not executed, proposed and executed high explosive experiments, and proposed and executed high explosive construction activities off the Nevada Test Site. The research identified 170 Plowshare and Vela Uniform off-site projects and many of these had little or no field activity associated with them. However, there were 27 projects that merited further investigation and field studies were conducted at 15 locations.« less

  14. The Off-Site Plowshare and Vela Uniform Programs: Assessing Potential Environmental Liabilities through an Examination of Proposed Nuclear Projects,High Explosive Experiments, and High Explosive Construction Activities Volume 2 of 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck Colleen M.,Edwards Susan R.,King Maureen L.

    2011-09-01

    This document presents the results of nearly six years (2002-2008) of historical research and field studies concerned with evaluating potential environmental liabilities associated with U.S. Atomic Energy Commission projects from the Plowshare and Vela Uniform Programs. The Plowshare Program's primary purpose was to develop peaceful uses for nuclear explosives. The Vela Uniform Program focused on improving the capability of detecting, monitoring and identifying underground nuclear detonations. As a result of the Project Chariot site restoration efforts in the early 1990s, there were concerns that there might be other project locations with potential environmental liabilities. The Desert Research Institute conducted archivalmore » research to identify projects, an analysis of project field activities, and completed field studies at locations where substantial fieldwork had been undertaken for the projects. Although the Plowshare and Vela Uniform nuclear projects are well known, the projects that are included in this research are relatively unknown. They are proposed nuclear projects that were not executed, proposed and executed high explosive experiments, and proposed and executed high explosive construction activities off the Nevada Test Site. The research identified 170 Plowshare and Vela Uniform off-site projects and many of these had little or no field activity associated with them. However, there were 27 projects that merited further investigation and field studies were conducted at 15 locations.« less

  15. Study of a conceptual nuclear energy center at Green River, Utah. Power demand, load center assessment and transmission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, D.R.; Thaik, A.; Pingel, P.

    This document constitutes a segment of a feasibility study investigating the ramification of constructing a nuclear energy center in an arid western region. In this phase of the study. The projected power demands and load center locations were reviewed and assessed. Alternative transmission systems were analysed and a conceptual transmission for bulk power transportation is proposed with potential line routes. Environmental impacts of the proposed transmission were also identified.

  16. Power-Conversion Concept Designed for the Jupiter Icy Moons Orbiter

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    2004-01-01

    The Jupiter Icy Moons Orbiter (JIMO) is a bold new mission being developed by NASA's Office of Space Science under Project Prometheus. JIMO is examining the potential of nuclear electric propulsion (NEP) technology to efficiently deliver scientific payloads to three of Jupiter's moons: Callisto, Ganymede, and Europa. A critical element of the NEP spacecraft is the space reactor power system (SRPS), consisting of the nuclear reactor, power conversion, heat rejection, and power management and distribution (PMAD).

  17. Comparative analysis of structural concrete quality assurance practices on nine nuclear power plant construction projects. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willenbrock, J.H.; Thomas, H.R. Jr.; Burati, J.L. Jr.

    1978-06-01

    The basic objective of this research effort was to perform a comparative analysis of the Quality Assurance practices related to the structural concrete phase on nine nuclear power plant projects which are (or have been) under construction in the United States in the past ten years. This analysis identified the response of each Quality Assurance program to the applicable criteria of 10 CFR Part 50, Appendix B as well as to the pertinent regulatory requirements and industry standards. The major emphasis was placed on the construction aspects of the structural concrete phase of each project. The engineering and design aspectsmore » were examined whenever they interfaced with the construction aspects. For those aspects of the Quality Assurance system which can be considered managerial in nature (i.e., organizational relationships, types of Quality Assurance programs, corrective action procedures, etc.) an attempt has been made to present the alternative approaches that were identified. For those aspects of the Quality Assurance system which are technical in nature (i.e., the frequency of testing for slump, compressive strength, etc.) an attempt has been made to present a comparative analysis between projects and in relation to the recommended or mandated practices presented in the appropriate industry codes and standards.« less

  18. Marshall Space Flight Center and the Reactor-in-Flight Stage: A Look Back at Using Nuclear Propulsion to Power Space Vehicles in the 1960's

    NASA Technical Reports Server (NTRS)

    Wright, Mike

    2003-01-01

    This paper examines the Marshall Space Flight Center s role in the Reactor-In-Flight (RIlT) project that NASA was involved with in the early 1960 s. The paper outlines the project s relation to the joint NASA-Atomic Energy Commission nuclear initiative known as Project Rover. It describes the justification for the RIFT project, its scope, and the difficulties that were encountered during the project. It also provides as assessment of NASA s overall capabilities related to nuclear propulsion in the early 1960 s.

  19. Development of a drone equipped with optimized sensors for nuclear and radiological risk characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boudergui, K.; Carrel, F.; Domenech, T.

    2011-07-01

    The MOBISIC project, funded by the Systematic Paris-Region cluster, is being developed in the context of local crisis (attack bombing in urban environment, in confined space such as an underground train tunnel etc.) or specific event securing (soccer world cup, political meeting etc.). It consists in conceiving, developing and experimenting a mobile, modular ('plug and play') and multi-sensors securing system. In this project, CEA LIST has suggested different solutions for nuclear risks detection and identification. It results in embedding a CZT sensor and a gamma camera in an indoor drone. This article first presents the different modifications carried out onmore » the UAV and different sensors, and focuses then on the experimental performances. (authors)« less

  20. Academia's role in Test Ban Treaty monitoring remains unresolved

    NASA Astrophysics Data System (ADS)

    Wakefield, J.

    However, some progress has been made in negotiating how this university consortium will be coordinated with the federal government's efforts to develop comprehensive nuclear test ban monitoring systems. Before Congress closed shop, changes were made in the conference wording of a Defense authorization bill for fiscal year 1995 that covers seismic research. Instead of requiring the secretaries of Defense and State to sign off on all seismic projects for monitoring nuclear explosions before the funds may be obligated, as the Senate version of the bill originally proposed, the seismic projects must now be approved by an existing annual review group, which was established by a classified presidential directive. In addition, some of the controversial language in a complementing Senate report will be changed.

  1. 77 FR 55232 - Japan Lessons-Learned Project Directorate Interim Staff Guidance JLD-ISG-2012-03; Compliance With...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-07

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0067] Japan Lessons-Learned Project Directorate Interim...-Learned Project Directorate Interim Staff Guidance; issuance. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC or the Commission) is issuing the Final Japan Lessons-Learned Project Directorate (JLD...

  2. 77 FR 55231 - Japan Lessons-Learned Project Directorate Interim Staff Guidance JLD-ISG-2012-02; Compliance With...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-07

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0069] Japan Lessons-Learned Project Directorate Interim...-Learned Project Directorate interim staff guidance; issuance. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC or the Commission) is issuing the Final Japan Lessons-Learned Project Directorate Interim...

  3. International Exchange of Emergency Phase Information and Assessment: An Aid to Inter/National Decision Makers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, T J; Chino, M; Ehrhardt, J

    2003-09-01

    This paper discusses a collaborative project whose purpose is (1) to demonstrate the technical feasibility and mutual benefit of a system seeking early review or preview, in a ''quasi peer review'' mode, of nuclear accident plume and dose assessment predictions by four major international nuclear accident emergency response systems before release of their calculations to their respective national authorities followed by (2) sharing these results with responsible international authorities. The extreme sensitivity of the general public to any nuclear accident information has been a strong motivation to seek peer review prior to public release. Another intended objective of this workmore » is (3) the development of an affordable/accessible system for distribution of prediction results to countries having no prediction capabilities and (4) utilization of the link for exercises and collaboration studies. The project exploits the Internet as a ubiquitous communications medium, browser technology as a simple, user friendly interface, and low-cost PC level hardware. The participants are developing a web based dedicated node with ID and password access control, where the four systems can deposit a minimal set of XML-based data and graphics files, which are then displayed in a common identical map format. Side-by-side viewing and televideo conferencing will permit rapid evaluation, correction or elaboration of data, recalculation (if necessary) and should produce a strong level of consensus to assist international decision makers. Successful completion of this work could lead to easy utilization by national and international organizations, such as the IAEA and WHO, as well as by non-nuclear states at risk of a trans-boundary incursion on their territory.« less

  4. High-Resolution Magnetic Analyzer MAVR for the Study of Exotic Weakly-Bound Nuclei

    NASA Astrophysics Data System (ADS)

    Maslov, V. A.; Kazacha, V. I.; Kolesov, I. V.; Lukyanov, S. M.; Melnikov, V. N.; Osipov, N. F.; Penionzhkevich, Yu. E.; Skobelev, N. K.; Sobolev, Yu. G.; Voskoboinik, E. I.

    2015-11-01

    A project of the high-resolution magnetic analyzer MAVR is proposed. The analyzer will comprise new magnetic optical and detecting systems for separation and identification of reaction products in a wide range of masses (5-150) and charges (1-60). The magnetic optical system consists of the MSP-144 magnet and a doublet of quadrupole lenses. This will allow the solid angle of the spectrometer to be increased by an order of magnitude up to 30 msr. The magnetic analyzer will have a high momentum resolution (10-4) and high focal-plane dispersion (1.9 m). It will allow products of nuclear reactions at energies up to 30 MeV/nucleon to be detected with the charge resolution ~1/60. Implementation of the project is divided into two stages: conversion of the magnetic analyzer proper and construction of the nuclear reaction products identification system. The MULTI detecting system is being developed for the MAVR magnetic analyzer to allow detection of nuclear reaction products and their identification by charge Q, atomic number Z, and mass A with a high absolute accuracy. The identification will be performed by measuring the energy loss (ΔE), time of flight (TOF), and total kinetic energy (TKE) of reaction products. The particle trajectories in the analyzer will also be determined using the drift chamber developed jointly with GANIL. The MAVR analyzer will operate in both primary beams of heavy ions and beams of radioactive nuclei produced by the U400-U400M acceleration complex. It will also be used for measuring energy spectra of nuclear reaction products and as an energy monochromator.

  5. Molecular Dynamics-based Simulations of Bulk/Interfacial Structures and Diffusion Behaviors in Nuclear Waste Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Jincheng; Rimsza, Jessica; Deng, Lu

    This NEUP Project aimed to generate accurate atomic structural models of nuclear waste glasses by using large-scale molecular dynamics-based computer simulations and to use these models to investigate self-diffusion behaviors, interfacial structures, and hydrated gel structures formed during dissolution of these glasses. The goal was to obtain realistic and accurate short and medium range structures of these complex oxide glasses, to provide a mechanistic understanding of the dissolution behaviors, and to generate reliable information with predictive power in designing nuclear waste glasses for long-term geological storage. Looking back of the research accomplishments of this project, most of the scientific goalsmore » initially proposed have been achieved through intensive research in the three and a half year period of the project. This project has also generated a wealth of scientific data and vibrant discussions with various groups through collaborations within and outside of this project. Throughout the project one book chapter and 14 peer reviewed journal publications have been generated (including one under review) and 16 presentations (including 8 invited talks) have been made to disseminate the results of this project in national and international conference. Furthermore, this project has trained several outstanding graduate students and young researchers for future workforce in nuclear related field, especially on nuclear waste immobilization. One postdoc and four PhD students have been fully or partially supported through the project with intensive training in the field material science and engineering with expertise on glass science and nuclear waste disposal« less

  6. Human capital needs - teaching, training and coordination for nuclear fuel cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Retegan, T.; Ekberg, C.; John, J.

    Human capital is the accumulation of competencies, knowledge, social and creativity skills and personality attributes, which are necessary to perform work so as to produce economic value. In the frame of the nuclear fuel cycle, this is of paramount importance that the right human capital exists and in Europe this is fostered by a series of integrated or directed projects. The teaching, training and coordination will be discussed in the frame of University curricula with examples from several programs, like e.g. the Master of Nuclear Engineering at Chalmers University, Sweden and two FP7 EURATOM Projects: CINCH - a project formore » cooperation in nuclear chemistry - and ASGARD - a research project on advanced or novel nuclear fuels and their reprocessing issues for generation IV reactors. The integration of the university curricula in the market needs but also the anchoring in the research and future fuel cycles will be also discussed, with examples from the ASGARD project. (authors)« less

  7. The new Wallula CO2 project may revive the old Columbia River Basalt (western USA) nuclear-waste repository project

    NASA Astrophysics Data System (ADS)

    Schwartz, Michael O.

    2018-02-01

    A novel CO2 sequestration project at Wallula, Washington, USA, makes ample use of the geoscientific data collection of the old nuclear waste repository project at the Hanford Site nearby. Both projects target the Columbia River Basalt (CRB). The new publicity for the old project comes at a time when the approach to high-level nuclear waste disposal has undergone fundamental changes. The emphasis now is on a technical barrier that is chemically compatible with the host rock. In the ideal case, the waste container is in thermodynamic equilibrium with the host-rock groundwater regime. The CRB groundwater has what it takes to represent the ideal case.

  8. 75 FR 59158 - Earth Day Commitment/Friends of the Coast, Beyond Nuclear, Seacoast Anti-Pollution League, C-10...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-27

    ... state that active proposals for more than 3,000 megawatts of wind power are currently on the books in... projected over 20 years what wind power will then be available, in part because wind power projects are... public about the connections between nuclear power and nuclear weapons. Beyond Nuclear has members who...

  9. Summary of aerospace and nuclear engineering activities

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The Texas A&M Nuclear and Aerospace engineering departments have worked on five different projects for the NASA/USRA Advanced Design Program during the 1987/88 year. The aerospace department worked on two types of lunar tunnelers that would create habitable space. The first design used a heated cone to melt the lunar regolith, and the second used a conventional drill to bore its way through the crust. Both used a dump truck to get rid of waste heat from the reactor as well as excess regolith from the tunneling operation. The nuclear engineering department worked on three separate projects. The NEPTUNE system is a manned, outer-planetary explorer designed with Jupiter exploration as the baseline mission. The lifetime requirement for both reactor and power-conversion systems was twenty years. The second project undertaken for the power supply was a Mars Sample Return Mission power supply. This was designed to produce 2 kW of electrical power for seven years. The design consisted of a General Purpose Heat Source (GPHS) utilizing a Stirling engine as the power conversion unit. A mass optimization was performed to aid in overall design. The last design was a reactor to provide power for propulsion to Mars and power on the surface. The requirements of 300 kW of electrical power output and a mass of less than 10,000 Rg were set. This allowed the reactor and power conversion unit to fit within the Space Shuttle cargo bay.

  10. Lightweight Damage Tolerant, High-Temperature Radiators for Nuclear Power and Propulsion

    NASA Technical Reports Server (NTRS)

    Craven, Paul D.; SanSoucie, Michael P.

    2015-01-01

    NASA is increasingly emphasizing exploration to bodies beyond near-Earth orbit. New propulsion systems and new spacecraft are being built for these missions. As the target bodies get further out from Earth, high energy density systems, e.g., nuclear fusion, for propulsion and power will be advantageous. The mass and size of these systems, including supporting systems such as the heat exchange system, including thermal radiators, will need to be as small as possible. Conventional heat exchange systems are a significant portion of the total thermal management mass and size. Nuclear electric propulsion (NEP) is a promising option for high-speed, in-space travel due to the high energy density of nuclear fission power sources and efficient electric thrusters. Heat from the reactor is converted to power for use in propulsion or for system power. The heat not used in the power conversion is then radiated to space as shown in figure 1. Advanced power conversion technologies will require high operating temperatures and would benefit from lightweight radiator materials. Radiator performance dictates power output for nuclear electric propulsion systems. Pitch-based carbon fiber materials have the potential to offer significant improvements in operating temperature, thermal conductivity, and mass. These properties combine to allow significant decreases in the total mass of the radiators and significant increases in the operating temperature of the fins. A Center-funded project at NASA Marshall Space Flight Center has shown that high thermal conductivity, woven carbon fiber fins with no matrix material, can be used to dissipate waste heat from NEP systems and because of high specific power (kW/kg), will require less mass and possibly less total area than standard metal and composite radiator fins for radiating the same amount of heat. This project uses an innovative approach to reduce the mass and size required for the thermal radiators to the point that in-space NEP and power is enabled. High thermal conductivity carbon fibers are lightweight, damage tolerant, and can be heated to high temperature. Areal densities in the NASA set target range of 2 to 4 kg/m2 (for enabling NEP) are achieved and with specific powers (kW/kg) a factor of about 7 greater than conventional metal fins and about 1.5 greater than carbon composite fins. Figure 2 shows one fin under test. All tests were done under vacuum conditions.

  11. Contributions to Integral Nuclear Data in ICSBEP and IRPhEP since ND 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bess, John D.; Briggs, J. Blair; Gulliford, Jim

    2016-09-01

    The status of the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) was last discussed directly with the international nuclear data community at ND2013. Since ND2013, integral benchmark data that are available for nuclear data testing has continued to increase. The status of the international benchmark efforts and the latest contributions to integral nuclear data for testing is discussed. Select benchmark configurations that have been added to the ICSBEP and IRPhEP Handbooks since ND2013 are highlighted. The 2015 edition of the ICSBEP Handbook now contains 567 evaluations with benchmark specifications for 4,874more » critical, near-critical, or subcritical configurations, 31 criticality alarm placement/shielding configuration with multiple dose points apiece, and 207 configurations that have been categorized as fundamental physics measurements that are relevant to criticality safety applications. The 2015 edition of the IRPhEP Handbook contains data from 143 different experimental series that were performed at 50 different nuclear facilities. Currently 139 of the 143 evaluations are published as approved benchmarks with the remaining four evaluations published in draft format only. Measurements found in the IRPhEP Handbook include criticality, buckling and extrapolation length, spectral characteristics, reactivity effects, reactivity coefficients, kinetics, reaction-rate distributions, power distributions, isotopic compositions, and/or other miscellaneous types of measurements for various types of reactor systems. Annual technical review meetings for both projects were held in April 2016; additional approved benchmark evaluations will be included in the 2016 editions of these handbooks.« less

  12. Spent Nuclear Fuel (SNF) Project Execution Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LEROY, P.G.

    2000-11-03

    The Spent Nuclear Fuel (SNF) Project supports the Hanford Site Mission to cleanup the Site by providing safe, economic, environmentally sound management of Site spent nuclear fuel in a manner that reduces hazards by staging it to interim onsite storage and deactivates the 100 K Area facilities.

  13. FENDL: International reference nuclear data library for fusion applications

    NASA Astrophysics Data System (ADS)

    Pashchenko, A. B.; Wienke, H.; Ganesan, S.

    1996-10-01

    The IAEA Nuclear Data Section, in co-operation with several national nuclear data centres and research groups, has created the first version of an internationally available Fusion Evaluated Nuclear Data Library (FENDL-1). The FENDL library has been selected to serve as a comprehensive source of processed and tested nuclear data tailored to the requirements of the engineering design activity (EDA) of the ITER project and other fusion-related development projects. The present version of FENDL consists of the following sublibraries covering the necessary nuclear input for all physics and engineering aspects of the material development, design, operation and safety of the ITER project in its current EDA phase: FENDL/A-1.1: neutron activation cross-sections, selected from different available sources, for 636 nuclides, FENDL/D-1.0: nuclear decay data for 2900 nuclides in ENDF-6 format, FENDL/DS-1.0: neutron activation data for dosimetry by foil activation, FENDL/C-1.0: data for the fusion reactions D(d,n), D(d,p), T(d,n), T(t,2n), He-3(d,p) extracted from ENDF/B-6 and processed, FENDL/E-1.0:data for coupled neutron—photon transport calculations, including a data library for neutron interaction and photon production for 63 elements or isotopes, selected from ENDF/B-6, JENDL-3, or BROND-2, and a photon—atom interaction data library for 34 elements. The benchmark validation of FENDL-1 as required by the customer, i.e. the ITER team, is considered to be a task of high priority in the coming months. The well tested and validated nuclear data libraries in processed form of the FENDL-2 are expected to be ready by mid 1996 for use by the ITER team in the final phase of ITER EDA after extensive benchmarking and integral validation studies in the 1995-1996 period. The FENDL data files can be electronically transferred to users from the IAEA nuclear data section online system through INTERNET. A grand total of 54 (sub)directories with 845 files with total size of about 2 million blocks or about 1 Gigabyte (1 block = 512 bytes) of numerical data is currently available on-line.

  14. Automatic scheduling of outages of nuclear power plants with time windows. Final report, January-December 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomes, C.

    This report describes a successful project for transference of advanced AI technology into the domain of planning of outages of nuclear power plants as part of DOD`s dual-use program. ROMAN (Rome Lab Outage Manager) is the prototype system that was developed as a result of this project. ROMAN`s main innovation compared to the current state-of-the-art of outage management tools is its capability to automatically enforce safety constraints during the planning and scheduling phase. Another innovative aspect of ROMAN is the generation of more robust schedules that are feasible over time windows. In other words, ROMAN generates a family of schedulesmore » by assigning time intervals as start times to activities rather than single start times, without affecting the overall duration of the project. ROMAN uses a constraint satisfaction paradigm combining a global search tactic with constraint propagation. The derivation of very specialized representations for the constraints to perform efficient propagation is a key aspect for the generation of very fast schedules - constraints are compiled into the code, which is a novel aspect of our work using an automatic programming system, KIDS.« less

  15. Management of Legacy Spent Nuclear Fuel Wastes at the Chalk River Laboratories: The Challenges and Innovative Solutions Implemented - 13301

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schruder, Kristan; Goodwin, Derek

    2013-07-01

    AECL's Fuel Packaging and Storage (FPS) Project was initiated in 2004 to retrieve, transfer, and stabilize an identified inventory of degraded research reactor fuel that had been emplaced within in-ground 'Tile Hole' structures in Chalk River Laboratories' Waste Management Area in the 1950's and 60's. Ongoing monitoring of the legacy fuel storage conditions had identified that moisture present in the storage structures had contributed to corrosion of both the fuel and the storage containers. This prompted the initiation of the FPS Project which has as its objective to design, construct, and commission equipment and systems that would allow for themore » ongoing safe storage of this fuel until a final long-term management, or disposition, pathway was available. The FPS Project provides systems and technologies to retrieve and transfer the fuel from the Waste Management Area to a new facility that will repackage, dry, safely store and monitor the fuel for a period of 50 years. All equipment and the new storage facility are designed and constructed to meet the requirements for Class 1 Nuclear Facilities in Canada. (authors)« less

  16. Characterizing Density and Complexity of Imported Cargos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birrer, Nathaniel; Divin, Charles; Glenn, Steven

    X-ray inspection systems are used to detect radiological and nuclear threats in imported cargo. In order to better understand performance of these systems, system imaging capabilities and the characteristics of imported cargo need to be determined. This project involved calculation of the modulation transfer function as a metric of system imaging performance and a study of the density and inhomogeneity of imported cargos, which have been shown to correlate with human analysts, threat detection performance.

  17. 10-decade wide-range neutron-monitoring system. Final test report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, W.K.

    The objective of Project Agreement 49 was to design, fabricate, test, and evaluate under actual nuclear reactor operating conditions, one prototype counting-Campbelling wide-range type thermal neutron flux measurement channel. This report describes the basic system designed for PA 49, and describes and presents the results of tests conducted on the system. Individual module descriptions and schematics are contained in the instruction manual which was issued with the system.

  18. Nuclear Science and Society: Social Inclusion through Scientific Education

    ERIC Educational Resources Information Center

    Levy, Denise S.

    2017-01-01

    This article presents a web-based educational project focused on the potential value of Information and Communication Technology to enhance communication and education on nuclear science throughout Brazil. The project is designed to provide trustworthy information about the beneficial uses of nuclear technology, educating children and teenagers,…

  19. The Need for Integrating the Back End of the Nuclear Fuel Cycle in the United States of America

    DOE PAGES

    Bonano, Evaristo J.; Kalinina, Elena A.; Swift, Peter N.

    2018-02-26

    Current practice for commercial spent nuclear fuel management in the United States of America (US) includes storage of spent fuel in both pools and dry storage cask systems at nuclear power plants. Most storage pools are filled to their operational capacity, and management of the approximately 2,200 metric tons of spent fuel newly discharged each year requires transferring older and cooler fuel from pools into dry storage. In the absence of a repository that can accept spent fuel for permanent disposal, projections indicate that the US will have approximately 134,000 metric tons of spent fuel in dry storage by mid-centurymore » when the last plants in the current reactor fleet are decommissioned. Current designs for storage systems rely on large dual-purpose (storage and transportation) canisters that are not optimized for disposal. Various options exist in the US for improving integration of management practices across the entire back end of the nuclear fuel cycle.« less

  20. The Need for Integrating the Back End of the Nuclear Fuel Cycle in the United States of America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonano, Evaristo J.; Kalinina, Elena A.; Swift, Peter N.

    Current practice for commercial spent nuclear fuel management in the United States of America (US) includes storage of spent fuel in both pools and dry storage cask systems at nuclear power plants. Most storage pools are filled to their operational capacity, and management of the approximately 2,200 metric tons of spent fuel newly discharged each year requires transferring older and cooler fuel from pools into dry storage. In the absence of a repository that can accept spent fuel for permanent disposal, projections indicate that the US will have approximately 134,000 metric tons of spent fuel in dry storage by mid-centurymore » when the last plants in the current reactor fleet are decommissioned. Current designs for storage systems rely on large dual-purpose (storage and transportation) canisters that are not optimized for disposal. Various options exist in the US for improving integration of management practices across the entire back end of the nuclear fuel cycle.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kisner, Roger A; Melin, Alexander M; Burress, Timothy A

    The overall project objective is to demonstrate improved reliability and increased performance made possible by deeply embedding instrumentation and controls (I&C) in nuclear power plant components. The project is employing a highly instrumented canned rotor, magnetic bearing, fluoride salt pump as its I&C technology demonstration vehicle. The project s focus is not primarily on pump design, but instead is on methods to deeply embed I&C within a pump system. However, because the I&C is intimately part of the basic millisecond-by-millisecond functioning of the pump, the I&C design cannot proceed in isolation from the other aspects of the pump. The pumpmore » will not function if the characteristics of the I&C are not embedded within the design because the I&C enables performance of the basic function rather than merely monitoring quasi-stable performance. Traditionally, I&C has been incorporated in nuclear power plant (NPP) components after their design is nearly complete; adequate performance was obtained through over-design. This report describes the progress and status of the project and provides a conceptual design overview for the embedded I&C pump.« less

  2. The Feed Materials Program of the Manhattan Project: A Foundational Component of the Nuclear Weapons Complex

    NASA Astrophysics Data System (ADS)

    Reed, B. Cameron

    2014-12-01

    The feed materials program of the Manhattan Project was responsible for procuring uranium-bearing ores and materials and processing them into forms suitable for use as source materials for the Project's uranium-enrichment factories and plutonium-producing reactors. This aspect of the Manhattan Project has tended to be overlooked in comparison with the Project's more dramatic accomplishments, but was absolutely vital to the success of those endeavors: without appropriate raw materials and the means to process them, nuclear weapons and much of the subsequent cold war would never have come to pass. Drawing from information available in Manhattan Engineer District Documents, this paper examines the sources and processing of uranium-bearing materials used in making the first nuclear weapons and how the feed materials program became a central foundational component of the postwar nuclear weapons complex.

  3. Intermediate Energies for Nuclear Astrophysics and the Development of a Position Sensitive Microstrip Detector System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobotka, Lee G.; Blackmon, J.; Bertulani, C.

    2015-12-30

    The chemical elements are made at astrophysical sites through a sequence of nuclear reactions often involving unstable nuclei. The overarching aim of this project is to construct a system that allows for the inverse process of nucleosynthesis (i.e. breakup of heavier nuclei into lighter ones) to be studied in high efficiency. The specific problem to be overcome with this grant is inadequate dynamic range and (triggering) threshold to detect the products of the breakup which include both heavy ions (with large energy and large deposited energy in a detector system) and protons (with little energy and deposited energy.) Early onmore » in the grant we provided both TAMU and RIKEN (the site of the eventual experiments) with working systems based on the existing technology. This technology could be used with either an external preamplifier that was to be designed and fabricated by our RIKEN collaborators or upgraded by replacing the existing chip with one we designed. The RIKEN external preamplifier project never can to completion but our revised chip was designed, fabricated, used in a test experiment and performs as required.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bragg-Sitton, Shannon; Boardman, Richard; Ruth, Mark

    The U.S. Department of Energy (DOE) recognizes the need to transform the energy infrastructure of the U.S. and elsewhere to systems that can drastically reduce environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. Thus, DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options. A concept being advanced by the DOE Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) is tighter coupling of nuclear and renewable energy sources in a manner thatmore » produces new energy currency for the combined electricity grid, industrial manufacturing, and the transportation energy sectors. This integration concept has been referred to as a “hybrid system” that is capable of providing the right type of energy, at the right time, in the right place. At the direction of DOE-NE and DOE-EERE leadership, project leads at Idaho National Laboratory (INL), National Renewable Energy Laboratory (NREL) and Massachusetts Institute of Technology (MIT) have identified and engaged stakeholders in discussing integrated energy systems that would optimize renewable and nuclear energy integration on a region-by-region basis. Subsequent work will entail conduct of technical, economic, environmental and socio-political evaluations of the leading integrated system options based on a set of criteria established with stakeholder input. The Foundational Workshop for Integrated Nuclear – Renewable Energy Systems was organized around the following objectives: 1. Identify and refine priority region-specific opportunities for integrated nuclear-renewable energy systems in the U.S.; 2. Select Figures of Merit (FOM) to rank and prioritize candidate systems; 3. Discuss enabling technology development needs; 4. Identify analysis requirements, capabilities and gaps to estimate FOM for integrated system options; 5. Identify experimental needs to develop and demonstrate nuclear-renewable energy systems.« less

  5. Evaluation of nuclear facility decommissioning projects. Summary report: North Carolina State University Research and Training Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Link, B.W.; Miller, R.L.

    1983-08-01

    This document summarizes information from the decommissioning of the NCSUR-3 (R-3), a 10 KWt university research and training reactor. The decommissioning data were placed in a computerized information retrieval/manipulation system which permits future utilization of this information in pre-decommissioning activities with other university reactors of similar design. The information is presented both in some detail in its computer output form and also as a manually assembled summarization which highlights the more significant aspects of the decommissioning project. Decommissioning data from a generic study, NUREG/CR 1756, Technology, Safety and Costs of Decommissioning Nuclear Research and Test Reactors, and the decommissioning ofmore » the Ames Laboratory Research Reactor (ALRR), a 5 MWt research reactor, is also included for comparison.« less

  6. The Paucity Problem: Where Have All the Space Reactor Experiments Gone?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bess, John D.; Marshall, Margaret A.

    2016-10-01

    The Handbooks of the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPhEP) together contain a plethora of documented and evaluated experiments essential in the validation of nuclear data, neutronics codes, and modeling of various nuclear systems. Unfortunately, only a minute selection of handbook data (twelve evaluations) are of actual experimental facilities and mockups designed specifically for space nuclear research. There is a paucity problem, such that the multitude of space nuclear experimental activities performed in the past several decades have yet to be recovered and made available in such detail that themore » international community could benefit from these valuable historical research efforts. Those experiments represent extensive investments in infrastructure, expertise, and cost, as well as constitute significantly valuable resources of data supporting past, present, and future research activities. The ICSBEP and IRPhEP were established to identify and verify comprehensive sets of benchmark data; evaluate the data, including quantification of biases and uncertainties; compile the data and calculations in a standardized format; and formally document the effort into a single source of verified benchmark data. See full abstract in attached document.« less

  7. Recent Developments and Applications of Radiation/Detection Technology in Tsinghua University

    NASA Astrophysics Data System (ADS)

    Kang, Ke-Jun

    2010-03-01

    Nuclear technology applications have been very important research fields in Tsinghua University (THU) for more than 50 years. This paper describes two major directions and related projects running in THU concerning nuclear technology applications for radiation imaging and nuclear technology applications for astrophysics. Radiation imaging is a significant application of nuclear technology for all kinds of real world needs including security inspections, anti-smuggling operations, and medicine. The current improved imaging systems give much higher quality radiation images. THU has produced accelerating tubes for both industrial and medical accelerators with energy levels ranging from 2.5˜20Mev. Detectors have been produced for medical and industrial imaging as well as for high energy physics experiments such as the MRPC with fast time and position resolutions. DR and CT systems for radiation imaging systems have been continuously improved with new system designs and improved algorithms for image reconstruction and processing. Two important new key initiatives are the dual-energy radiography and dual-energy CT systems. Dual-energy CT imaging improves material discrimination by providing both the electron density and the atomic number distribution of scanned objects. Finally, this paper also introduces recent developments related to the hard X-ray modulation telescope (HXMT) provided by THU.

  8. Radiological Protection and Nuclear Engineering Studies in Multi-MW Target Systems

    NASA Astrophysics Data System (ADS)

    Luis, Raul Fernandes

    Several innovative projects involving nuclear technology have emerged around the world in recent years, for applications such as spallation neutron sources, accelerator-driven systems for the transmutation of nuclear waste and radioactive ion beam (RIB) production. While the available neutron Wuxes from nuclear reactors did not increase substantially in intensity over the past three decades, the intensities of neutron sources produced in spallation targets have increased steadily, and should continue to do so during the 21st century. Innovative projects like ESS, MYRRHA and EURISOL lie at the forefront of the ongoing pursuit for increasingly bright neutron sources; driven by proton beams with energies up to 2 GeV and intensities up to several mA, the construction of their proposed facilities involves complex Nuclear Technology and Radiological Protection design studies executed by multidisciplinary teams of scientists and engineers from diUerent branches of Science. The intense neutron Wuxes foreseen for those facilities can be used in several scientiVc research Velds, such as Nuclear Physics and Astrophysics, Medicine and Materials Science. In this work, the target systems of two facilitites for the production of RIBs using the Isotope Separation On-Line (ISOL) method were studied in detail: ISOLDE, operating at CERN since 1967, and EURISOL, the next-generation ISOL facility to be built in Europe. For the EURISOL multi-MW target station, a detailed study of Radiological Protection was carried out using the Monte Carlo code FLUKA. Simulations were done to assess neutron Wuences, Vssion rates, ambient dose equivalent rates during operation and after shutdown and the production of radioactive nuclei in the targets and surrounding materials. DiUerent materials were discussed for diUerent components of the target system, aiming at improving its neutronics performance while keeping the residual activities resulting from material activation as low as possible. The second goal of this work was to perform an optimisation study for the ISOLDE neutron converter and Vssion target system. The target system was simulated using FLUKA and the cross section codes TALYS and ABRABLA, with the objective of maximising the performance of the system for the production of pure beams of neutron-rich isotopes, suppressing the contaminations by undesired neutron-deficient isobars. Two alternative target systems were proposed in the optimisation studies; the simplest of the two, with some modiVcations, was built as a prototype and tested at ISOLDE. The experimental results clearly show that it is possible, with simple changes in the layouts of the target systems, to produce purer beams of neutron-rich isotopes around the doubly magic nuclei 78Ni and 132Sn. A study of Radiological Protection was also performed, comparing the performances of the prototype target system and the standard ISOLDE target system. None

  9. 76 FR 17460 - South Texas Project Nuclear Operating Company; Establishment of Atomic Safety and Licensing Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-29

    ...] South Texas Project Nuclear Operating Company; Establishment of Atomic Safety and Licensing Board..., 2.318, and 2.321, notice is hereby given that an Atomic Safety and Licensing Board (Board) is being...: Ronald M. Spritzer, Chair, Atomic Safety and Licensing Board Panel, U.S. Nuclear Regulatory Commission...

  10. 78 FR 51753 - AUC, LLC Reno Creek, In Situ Project, New Source Material License Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-21

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 040-09092; [NRC-2013-0164] AUC, LLC Reno Creek, In Situ Project, New Source Material License Application AGENCY: Nuclear Regulatory Commission. ACTION: Notice of..., AUC, LLC (AUC) submitted to the U.S. Nuclear Regulatory Commission (NRC) an application for a new...

  11. HyPEP FY06 Report: Models and Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DOE report

    2006-09-01

    The Department of Energy envisions the next generation very high-temperature gas-cooled reactor (VHTR) as a single-purpose or dual-purpose facility that produces hydrogen and electricity. The Ministry of Science and Technology (MOST) of the Republic of Korea also selected VHTR for the Nuclear Hydrogen Development and Demonstration (NHDD) Project. This research project aims at developing a user-friendly program for evaluating and optimizing cycle efficiencies of producing hydrogen and electricity in a Very-High-Temperature Reactor (VHTR). Systems for producing electricity and hydrogen are complex and the calculations associated with optimizing these systems are intensive, involving a large number of operating parameter variations andmore » many different system configurations. This research project will produce the HyPEP computer model, which is specifically designed to be an easy-to-use and fast running tool for evaluating nuclear hydrogen and electricity production facilities. The model accommodates flexible system layouts and its cost models will enable HyPEP to be well-suited for system optimization. Specific activities of this research are designed to develop the HyPEP model into a working tool, including (a) identifying major systems and components for modeling, (b) establishing system operating parameters and calculation scope, (c) establishing the overall calculation scheme, (d) developing component models, (e) developing cost and optimization models, and (f) verifying and validating the program. Once the HyPEP model is fully developed and validated, it will be used to execute calculations on candidate system configurations. FY-06 report includes a description of reference designs, methods used in this study, models and computational strategies developed for the first year effort. Results from computer codes such as HYSYS and GASS/PASS-H used by Idaho National Laboratory and Argonne National Laboratory, respectively will be benchmarked with HyPEP results in the following years.« less

  12. Q-Thruster Breadboard Campaign Project

    NASA Technical Reports Server (NTRS)

    White, Harold

    2014-01-01

    Dr. Harold "Sonny" White has developed the physics theory basis for utilizing the quantum vacuum to produce thrust. The engineering implementation of the theory is known as Q-thrusters. During FY13, three test campaigns were conducted that conclusively demonstrated tangible evidence of Q-thruster physics with measurable thrust bringing the TRL up from TRL 2 to early TRL 3. This project will continue with the development of the technology to a breadboard level by leveraging the most recent NASA/industry test hardware. This project will replace the manual tuning process used in the 2013 test campaign with an automated Radio Frequency (RF) Phase Lock Loop system (precursor to flight-like implementation), and will redesign the signal ports to minimize RF leakage (improves efficiency). This project will build on the 2013 test campaign using the above improvements on the test implementation to get ready for subsequent Independent Verification and Validation testing at Glenn Research Center (GRC) and Jet Propulsion Laboratory (JPL) in FY 2015. Q-thruster technology has a much higher thrust to power than current forms of electric propulsion (7x Hall thrusters), and can significantly reduce the total power required for either Solar Electric Propulsion (SEP) or Nuclear Electric Propulsion (NEP). Also, due to the high thrust and high specific impulse, Q-thruster technology will greatly relax the specific mass requirements for in-space nuclear reactor systems. Q-thrusters can reduce transit times for a power-constrained architecture.

  13. Nanostructured Bulk Thermoelectric Generator for Efficient Power Harvesting for Self-powered Sensor Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yanliang; Butt, Darryl; Agarwal, Vivek

    2015-07-01

    The objective of this Nuclear Energy Enabling Technology research project is to develop high-efficiency and reliable thermoelectric generators for self-powered wireless sensors nodes utilizing thermal energy from nuclear plant or fuel cycle. The power harvesting technology has crosscutting significance to address critical technology gaps in monitoring nuclear plants and fuel cycle. The outcomes of the project will lead to significant advancement in sensors and instrumentation technology, reducing cost, improving monitoring reliability and therefore enhancing safety. The self-powered wireless sensor networks could support the long-term safe and economical operation of all the reactor designs and fuel cycle concepts, as well asmore » spent fuel storage and many other nuclear science and engineering applications. The research is based on recent breakthroughs in high-performance nanostructured bulk (nanobulk) thermoelectric materials that enable high-efficiency direct heat-to-electricity conversion over a wide temperature range. The nanobulk thermoelectric materials that the research team at Boise State University and University of Houston has developed yield up to a 50% increase in the thermoelectric figure of merit, ZT, compared with state-of-the-art bulk counterparts. This report focuses on the selection of optimal thermoelectric materials for this project. The team has performed extensive study on two thermoelectric materials systems, i.e. the half-Heusler materials, and the Bismuth-Telluride materials. The report contains our recent research results on the fabrication, characterization and thermoelectric property measurements of these two materials.« less

  14. Advanced Nuclear Technology. Using Technology for Small Modular Reactor Staff Optimization, Improved Effectiveness, and Cost Containment, 3002007071

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loflin, Leonard

    Through this grant, the U.S. Department of Energy (DOE) will review several functional areas within a nuclear power plant, including fire protection, operations and operations support, refueling, training, procurement, maintenance, site engineering, and others. Several functional areas need to be examined since there appears to be no single staffing area or approach that alone has the potential for significant staff optimization at new nuclear power plants. Several of the functional areas will require a review of technology options such as automation, remote monitoring, fleet wide monitoring, new and specialized instrumentation, human factors engineering, risk informed analysis and PRAs, component andmore » system condition monitoring and reporting, just in time training, electronic and automated procedures, electronic tools for configuration management and license and design basis information, etc., that may be applied to support optimization. Additionally, the project will require a review key regulatory issues that affect staffing and could be optimized with additional technology input. Opportunities to further optimize staffing levels and staffing functions by selection of design attributes of physical systems and structures need also be identified. A goal of this project is to develop a prioritized assessment of the functional areas, and R&D actions needed for those functional areas, to provide the best optimization« less

  15. CSTI high capacity power. [Civil Space Technology Initiative

    NASA Technical Reports Server (NTRS)

    Winter, Jerry M.

    1989-01-01

    In FY-88, the Advanced Technology Program was incorporated into NASA's Civil Space Technology Initiative (CSTI). The CSTI Program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA SP-100 Advanced Technology project, and provides a bridge to NASA Project Pathfinder. The elements of CSTI High Capacity Power development include Converrsion Systems, Thermal Management, Power Management, System Diagnostics, and Environmental Interactions. Technology advancement in all areas, including materials, is required to assure the high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems.

  16. ERNIE performance with TSA portals Initial Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labov, S.

    This project extends the “Enhanced Radiological Nuclear Inspection and Evaluation” (ERNIE) system developed with CBP and DNDO to improve performance of PVT-based Radiation Portal Monitors (RPMs). ERNIE was designed to be used with any RPM system. The first implementation was with the SAIC (Leidos) RPM-8 systems. In this project, we are demonstrating how effective the ERNIE approach can be when applied to the VM250 TSA portals used in NSDD programs. Part of the challenge in adapting ERNIE to handle VM250 portals is the lack of gamma spectral information. We report here on the first results showing how the ERNIE analysismore » can improve analysis of measurements with the VM250 RPMs.« less

  17. A Nuclear Dilemma--Korean War Deja Vu

    DTIC Science & Technology

    2006-03-08

    USAWC STRATEGY RESEARCH PROJECT A NUCLEAR DILEMMA—KOREAN WAR DEJA VU by Lieutenant Colonel Trent A. Pickering United States Air Force Colonel William...Lieutenant Colonel Trent A. Pickering TITLE: A Nuclear Dilemma—Korean War Deja Vu FORMAT: Strategy Research Project DATE: 8 March 2006 WORD COUNT: 19,270...1. REPORT DATE 15 MAR 2006 2. REPORT TYPE 3. DATES COVERED 00-00-2005 to 00-00-2006 4. TITLE AND SUBTITLE Nuclear Dilemma--Korean War Deja

  18. Zero Nuclear Weapons and Nuclear Security Enterprise Modernization

    DTIC Science & Technology

    2011-01-01

    national security strategy. For the first time since the Manhattan Project , the United States was no longer building nuclear weapons and was in fact...50 to 60 years to the Manhattan Project and are on the verge of catastrophic failure. Caustic chemicals and processes have sped up the corrosion and...day, the United States must fund the long-term modernization effort of the entire enter­ prise. Notes 1. Nuclear Weapon Archive, “The Manhattan

  19. Instrumentation and control upgrade plan for Browns Ferry nuclear plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belew, M.R.; Langley, D.T.; Torok, R.C.

    1992-01-01

    A comprehensive upgrade of the instrumentation and control (I C) systems at a power plant represents a formidable project for any utility. For a nuclear plant, the extra safety and reliability requirements along with regulatory constraints add further complications and cost. The need for the upgrade must, therefore, be very compelling, and the process must be well planned from the start. This paper describes the steps taken to initiate the I C upgrade process for Tennessee Valley Authority's (TVA's) Browns Ferry 2 nuclear plant. It explains the impetus for the upgrade, the expected benefits, and the process by which systemmore » upgrades will be selected and implemented.« less

  20. System Verification Through Reliability, Availability, Maintainability (RAM) Analysis & Technology Readiness Levels (TRLs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emmanuel Ohene Opare, Jr.; Charles V. Park

    The Next Generation Nuclear Plant (NGNP) Project, managed by the Idaho National Laboratory (INL), is authored by the Energy Policy Act of 2005, to research, develop, design, construct, and operate a prototype fourth generation nuclear reactor to meet the needs of the 21st Century. A section in this document proposes that the NGNP will provide heat for process heat applications. As with all large projects developing and deploying new technologies, the NGNP is expected to meet high performance and availability targets relative to current state of the art systems and technology. One requirement for the NGNP is to provide heatmore » for the generation of hydrogen for large scale productions and this process heat application is required to be at least 90% or more available relative to other technologies currently on the market. To reach this goal, a RAM Roadmap was developed highlighting the actions to be taken to ensure that various milestones in system development and maturation concurrently meet required availability requirements. Integral to the RAM Roadmap was the use of a RAM analytical/simulation tool which was used to estimate the availability of the system when deployed based on current design configuration and the maturation level of the system.« less

  1. Accident analysis and control options in support of the sludge water system safety analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HEY, B.E.

    A hazards analysis was initiated for the SWS in July 2001 (SNF-8626, K Basin Sludge and Water System Preliminary Hazard Analysis) and updated in December 2001 (SNF-10020 Rev. 0, Hazard Evaluation for KE Sludge and Water System - Project A16) based on conceptual design information for the Sludge Retrieval System (SRS) and 60% design information for the cask and container. SNF-10020 was again revised in September 2002 to incorporate new hazards identified from final design information and from a What-if/Checklist evaluation of operational steps. The process hazards, controls, and qualitative consequence and frequency estimates taken from these efforts have beenmore » incorporated into Revision 5 of HNF-3960, K Basins Hazards Analysis. The hazards identification process documented in the above referenced reports utilized standard industrial safety techniques (AIChE 1992, Guidelines for Hazard Evaluation Procedures) to systematically guide several interdisciplinary teams through the system using a pre-established set of process parameters (e.g., flow, temperature, pressure) and guide words (e.g., high, low, more, less). The teams generally included representation from the U.S. Department of Energy (DOE), K Basins Nuclear Safety, T Plant Nuclear Safety, K Basin Industrial Safety, fire protection, project engineering, operations, and facility engineering.« less

  2. Project Exodus

    NASA Technical Reports Server (NTRS)

    Bryant, Rodney (Compiler); Dillon, Jennifer (Compiler); Grewe, George (Compiler); Mcmorrow, Jim (Compiler); Melton, Craig (Compiler); Rainey, Gerald (Compiler); Rinko, John (Compiler); Singh, David (Compiler); Yen, Tzu-Liang (Compiler)

    1990-01-01

    A design for a manned Mars mission, PROJECT EXODUS is presented. PROJECT EXODUS incorporates the design of a hypersonic waverider, cargo ship and NIMF (nuclear rocket using indigenous Martian fuel) shuttle lander to safely carry out a three to five month mission on the surface of Mars. The cargo ship transports return fuel, return engine, surface life support, NIMF shuttle, and the Mars base to low Mars orbit (LMO). The cargo ship is powered by a nuclear electric propulsion (NEP) system which allows the cargo ship to execute a spiral trajectory to Mars. The waverider transports ten astronauts to Mars and back. It is launched from the Space Station with propulsion provided by a chemical engine and a delta velocity of 9 km/sec. The waverider performs an aero-gravity assist maneuver through the atmosphere of Venus to obtain a deflection angle and increase in delta velocity. Once the waverider and cargo ship have docked the astronauts will detach the landing cargo capsules and nuclear electric power plant and remotely pilot them to the surface. They will then descend to the surface aboard the NIMF shuttle. A dome base will be quickly constructed on the surface and the astronauts will conduct an exploratory mission for three to five months. They will return to Earth and dock with the Space Station using the waverider.

  3. EuCARD 2010: European coordination of accelerator research and development

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2010-09-01

    Accelerators are basic tools of the experimental physics of elementary particles, nuclear physics, light sources of the fourth generation. They are also used in myriad other applications in research, industry and medicine. For example, there are intensely developed transmutation techniques for nuclear waste from nuclear power and atomic industries. The European Union invests in the development of accelerator infrastructures inside the framework programs to build the European Research Area. The aim is to build new accelerator research infrastructures, develop the existing ones, and generally make the infrastructures more available to competent users. The paper summarizes the first year of activities of the EU FP7 Project Capacities EuCARD -European Coordination of Accelerator R&D. EuCARD is a common venture of 37 European Accelerator Laboratories, Institutes, Universities and Industrial Partners involved in accelerator sciences and technologies. The project, initiated by ESGARD, is an Integrating Activity co-funded by the European Commission under Framework Program 7 - Capacities for a duration of four years, starting April 1st, 2009. Several teams from this country participate actively in this project. The contribution from Polish research teams concerns: photonic and electronic measurement - control systems, RF-gun co-design, thin-film superconducting technology, superconducting transport infrastructures, photon and particle beam measurements and control.

  4. Minimizing human error in radiopharmaceutical preparation and administration via a bar code-enhanced nuclear pharmacy management system.

    PubMed

    Hakala, John L; Hung, Joseph C; Mosman, Elton A

    2012-09-01

    The objective of this project was to ensure correct radiopharmaceutical administration through the use of a bar code system that links patient and drug profiles with on-site information management systems. This new combined system would minimize the amount of manual human manipulation, which has proven to be a primary source of error. The most common reason for dosing errors is improper patient identification when a dose is obtained from the nuclear pharmacy or when a dose is administered. A standardized electronic transfer of information from radiopharmaceutical preparation to injection will further reduce the risk of misadministration. Value stream maps showing the flow of the patient dose information, as well as potential points of human error, were developed. Next, a future-state map was created that included proposed corrections for the most common critical sites of error. Transitioning the current process to the future state will require solutions that address these sites. To optimize the future-state process, a bar code system that links the on-site radiology management system with the nuclear pharmacy management system was proposed. A bar-coded wristband connects the patient directly to the electronic information systems. The bar code-enhanced process linking the patient dose with the electronic information reduces the number of crucial points for human error and provides a framework to ensure that the prepared dose reaches the correct patient. Although the proposed flowchart is designed for a site with an in-house central nuclear pharmacy, much of the framework could be applied by nuclear medicine facilities using unit doses. An electronic connection between information management systems to allow the tracking of a radiopharmaceutical from preparation to administration can be a useful tool in preventing the mistakes that are an unfortunate reality for any facility.

  5. Radiation Resistant Electrical Insulation Materials for Nuclear Reactors: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duckworth, Robert C.; Aytug, Tolga; Paranthaman, M. Parans

    The instrument and control cables in future nuclear reactors will be exposed to temperatures, dose rates, and accumulated doses exceeding those originally anticipated for the 40-year operational life of the nuclear power plant fleet. The use of nanocomposite dielectrics as insulating material for such cables has been considered a route to performance improvement. In this project, nanoparticles were developed and successfully included in three separate material systems [cross-linked polyvinyl alcohol (PVA/XLPVA), cross-linked polyethylene (PE/XLPE), and polyimide (PI)], and the chemical, electrical, and mechanical performance of each was analyzed as a function of environmental exposure and composition. Improvements were found inmore » each material system; however, refinement of each processing pathway is needed, and the consequences of these refinements in the context of thermal, radiation, and moisture exposures should be evaluated before transferring knowledge to industry.« less

  6. High-Speed Automatic Microscopy for Real Time Tracks Reconstruction in Nuclear Emulsion

    NASA Astrophysics Data System (ADS)

    D'Ambrosio, N.

    2006-06-01

    The Oscillation Project with Emulsion-tRacking Apparatus (OPERA) experiment will use a massive nuclear emulsion detector to search for /spl nu//sub /spl mu///spl rarr//spl nu//sub /spl tau// oscillation by identifying /spl tau/ leptons through the direct detection of their decay topology. The feasibility of experiments using a large mass emulsion detector is linked to the impressive progress under way in the development of automatic emulsion analysis. A new generation of scanning systems requires the development of fast automatic microscopes for emulsion scanning and image analysis to reconstruct tracks of elementary particles. The paper presents the European Scanning System (ESS) developed in the framework of OPERA collaboration.

  7. Ground-water modeling of the Death Valley Region, Nevada and California

    USGS Publications Warehouse

    Belcher, W.R.; Faunt, C.C.; Sweetkind, D.S.; Blainey, J.B.; San Juan, C. A.; Laczniak, R.J.; Hill, M.C.

    2006-01-01

    The Death Valley regional ground-water flow system (DVRFS) of southern Nevada and eastern California covers an area of about 100,000 square kilometers and contains very complex geology and hydrology. Using a computer model to represent the complex system, the U.S. Geological Survey simulated ground-water flow in the Death Valley region for use with U.S. Department of Energy projects in southern Nevada. The model was created to help address contaminant cleanup activities associated with the underground nuclear testing conducted from 1951 to 1992 at the Nevada Test Site and to support the licensing process for the proposed geologic repository for high-level nuclear waste at Yucca Mountain, Nevada.

  8. Nuclear Security in the 21^st Century

    NASA Astrophysics Data System (ADS)

    Archer, Daniel E.

    2006-10-01

    Nuclear security has been a priority for the United States, starting in the 1940s with the secret cities of the Manhattan Project. In the 1970s, the United States placed radiation monitoring equipment at nuclear facilities to detect nuclear material diversion. Following the breakup of the Soviet Union, cooperative Russian/U.S. programs were launched in Russia to secure the estimated 600+ metric tons of fissionable materials against diversion (Materials Protection, Control, and Accountability -- MPC&A). Furthermore, separate programs were initiated to detect nuclear materials at the country's borders in the event that these materials had been stolen (Second Line of Defense - SLD). In the 2000s, new programs have been put in place in the United States for radiation detection, and research is being funded for more advanced systems. This talk will briefly touch on the history of nuclear security and then focus on some recent research efforts in radiation detection. Specifically, a new breed of radiation monitors will be examined along with the concept of sensor networks.

  9. The Nuclear Cryogenic Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Belvin, Anthony D.; Borowski, Stanley K.; Scott, John H.

    2014-01-01

    Nuclear Thermal Propulsion (NTP) development efforts in the United States have demonstrated the technical viability and performance potential of NTP systems. For example, Project Rover (1955 - 1973) completed 22 high power rocket reactor tests. Peak performances included operating at an average hydrogen exhaust temperature of 2550 K and a peak fuel power density of 5200 MW/m3 (Pewee test), operating at a thrust of 930 kN (Phoebus-2A test), and operating for 62.7 minutes in a single burn (NRX-A6 test). Results from Project Rover indicated that an NTP system with a high thrust-to-weight ratio and a specific impulse greater than 900 s would be feasible. Excellent results were also obtained by the former Soviet Union. Although historical programs had promising results, many factors would affect the development of a 21st century nuclear thermal rocket (NTR). Test facilities built in the US during Project Rover no longer exist. However, advances in analytical techniques, the ability to utilize or adapt existing facilities and infrastructure, and the ability to develop a limited number of new test facilities may enable affordable development, qualification, and utilization of a Nuclear Cryogenic Propulsion Stage (NCPS). Bead-loaded graphite fuel was utilized throughout the Rover/NERVA program, and coated graphite composite fuel (tested in the Nuclear Furnace) and cermet fuel both show potential for even higher performance than that demonstrated in the Rover/NERVA engine tests.. NASA's NCPS project was initiated in October, 2011, with the goal of assessing the affordability and viability of an NCPS. FY 2014 activities are focused on fabrication and test (non-nuclear) of both coated graphite composite fuel elements and cermet fuel elements. Additional activities include developing a pre-conceptual design of the NCPS stage and evaluating affordable strategies for NCPS development, qualification, and utilization. NCPS stage designs are focused on supporting human Mars missions. The NCPS is being designed to readily integrate with the Space Launch System (SLS). A wide range of strategies for enabling affordable NCPS development, qualification, and utilization should be considered. These include multiple test and demonstration strategies (both ground and in-space), multiple potential test sites, and multiple engine designs. Two potential NCPS fuels are currently under consideration - coated graphite composite fuel and tungsten cermet fuel. During 2014 a representative, partial length (approximately 16") coated graphite composite fuel element with prototypic depleted uranium loading is being fabricated at Oak Ridge National Laboratory (ORNL). In addition, a representative, partial length (approximately 16") cermet fuel element with prototypic depleted uranium loading is being fabricated at Marshall Space Flight Center (MSFC). During the development process small samples (approximately 3" length) will be tested in the Compact Fuel Element Environmental Tester (CFEET) at high temperature (approximately 2800 K) in a hydrogen environment to help ensure that basic fuel design and manufacturing process are adequate and have been performed correctly. Once designs and processes have been developed, longer fuel element segments will be fabricated and tested in the Nuclear Thermal Rocket Element Environmental Simulator (NTREE) at high temperature (approximately 2800 K) and in flowing hydrogen.

  10. 75 FR 39707 - STP Nuclear Operating Company, South Texas Project, Units 1 and 2; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-12

    ... consistent with the expected practice of fatigue management. Maintenance The NRC staff does not consider... September 21, 2009 (Agencywide Documents Access and Management System (ADAMS) Accession No. ML092720178... understanding the effects of fire and fire suppressants on safe shutdown capability; (4) performing maintenance...

  11. Sensor Fusion for Nuclear Proliferation Activity Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adel Ghanem, Ph D

    2007-03-30

    The objective of Phase 1 of this STTR project is to demonstrate a Proof-of-Concept (PoC) of the Geo-Rad system that integrates a location-aware SmartTag (made by ZonTrak) and a radiation detector (developed by LLNL). It also includes the ability to transmit the collected radiation data and location information to the ZonTrak server (ZonService). The collected data is further transmitted to a central server at LLNL (the Fusion Server) to be processed in conjunction with overhead imagery to generate location estimates of nuclear proliferation and radiation sources.

  12. Benchmark Report on Key Outage Attributes: An Analysis of Outage Improvement Opportunities and Priorities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Germain, Shawn St.; Farris, Ronald

    2014-09-01

    Advanced Outage Control Center (AOCC), is a multi-year pilot project targeted at Nuclear Power Plant (NPP) outage improvement. The purpose of this pilot project is to improve management of NPP outages through the development of an AOCC that is specifically designed to maximize the usefulness of communication and collaboration technologies for outage coordination and problem resolution activities. This report documents the results of a benchmarking effort to evaluate the transferability of technologies demonstrated at Idaho National Laboratory and the primary pilot project partner, Palo Verde Nuclear Generating Station. The initial assumption for this pilot project was that NPPs generally domore » not take advantage of advanced technology to support outage management activities. Several researchers involved in this pilot project have commercial NPP experience and believed that very little technology has been applied towards outage communication and collaboration. To verify that the technology options researched and demonstrated through this pilot project would in fact have broad application for the US commercial nuclear fleet, and to look for additional outage management best practices, LWRS program researchers visited several additional nuclear facilities.« less

  13. Design and performance of an arcjet nuclear electric propulsion system for a mid-1990's reference mission

    NASA Technical Reports Server (NTRS)

    Deininger, William D.; Vondra, Robert J.

    1987-01-01

    The design and performance of an arcjet nuclear-electric-propulsion spacecraft, suitable for use in the Space Nuclear Power System (SNPS) reference mission, are outlined. The vehicle design was based on a 30-kW ammonia arcjet system operating at an Isp of 1050 s and an efficiency of 45 percent. The arcjet/gimbal system, power-processing unit, and propellant-feed system are described. A 100-kWe SNPS was assumed, and the spacecraft mass was baselined at 5250 kg (excluding the propellant-feed system). A radiation/arcjet efflux diagnostics package was included in the performance analysis. This spacecraft, assuming a Shuttle launch from KSC, can perform a 50-deg inclination change and reach a final orbit of 35,860 km with a 120-d trip time providing a 4-mo active load for the SNPS. Alternatively, a Titan IV launch would provide a mass margin of 120 kg to a 10,000-km, 58-deg final orbit in 74 d. This spacecraft meets the reference-mission constraint of low developmental risk, and is scalable to power levels projected for future space platforms.

  14. Developing a structural health monitoring system for nuclear dry cask storage canister

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoyi; Lin, Bin; Bao, Jingjing; Giurgiutiu, Victor; Knight, Travis; Lam, Poh-Sang; Yu, Lingyu

    2015-03-01

    Interim storage of spent nuclear fuel from reactor sites has gained additional importance and urgency for resolving waste-management-related technical issues. In total, there are over 1482 dry cask storage system (DCSS) in use at US plants, storing 57,807 fuel assemblies. Nondestructive material condition monitoring is in urgent need and must be integrated into the fuel cycle to quantify the "state of health", and more importantly, to guarantee the safe operation of radioactive waste storage systems (RWSS) during their extended usage period. A state-of-the-art nuclear structural health monitoring (N-SHM) system based on in-situ sensing technologies that monitor material degradation and aging for nuclear spent fuel DCSS and similar structures is being developed. The N-SHM technology uses permanently installed low-profile piezoelectric wafer sensors to perform long-term health monitoring by strategically using a combined impedance (EMIS), acoustic emission (AE), and guided ultrasonic wave (GUW) approach, called "multimode sensing", which is conducted by the same network of installed sensors activated in a variety of ways. The system will detect AE events resulting from crack (case for study in this project) and evaluate the damage evolution; when significant AE is detected, the sensor network will switch to the GUW mode to perform damage localization, and quantification as well as probe "hot spots" that are prone to damage for material degradation evaluation using EMIS approach. The N-SHM is expected to eventually provide a systematic methodology for assessing and monitoring nuclear waste storage systems without incurring human radiation exposure.

  15. Comparative analysis of structural concrete Quality Assurance practices on nine nuclear and three fossil fuel power plant construction projects. Final summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willenbrock, J.H.; Thomas, H.R. Jr.; Burati, J.J. Jr.

    1978-12-01

    A summary of two reports, COO/4120-1 and COO/4120-2, is given. A comparative analysis was made of the Quality Assurance practices related to the structural concrete phase on nine nuclear and three fossil fuel power plant projects which are (or have been) under construction in the United States in the past ten years. For the nuclear projects the analysis identified the response of each Quality Assurance program to the applicable criteria of 10 CFR Part 50, Appendix B as well as to the pertinent regulatory requirements and industry standards. For the fossil projects the analysis identified the response of each Qualitymore » Assurance program to criteria similar to those which were applicable in the nuclear situation. The major emphasis was placed on the construction aspects of the structural concrete phase of each project. The engineering and design aspects were examined whenever they interfaced with the construction aspects.« less

  16. The status of the AMS system at MALT in its 20th year

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Hiroyuki; Nakano, Chuichiro; Tsuchiya, Yoko S.; Ito, Seiji; Morita, Akira; Kusuno, Haruka; Miyake, Yasuto; Honda, Maki; Bautista VII, Angel T.; Kawamoto, Marina; Tokuyama, Hironori

    2015-10-01

    MALT (Micro Analysis Laboratory, Tandem accelerator, The University of Tokyo) was designed for a 'highly sensitive and precise elemental and isotopic microanalysis system' using an ion-beam generated by a Pelletron™ 5UD tandem accelerator. Currently, a multi-nuclide AMS (10Be, 14C, 26Al, 36Cl, 129I) system is available and shows good performance in both precision and sensitivity, and the accelerator serves for PIXE, NRA, ERDA/RBS measurements as well. The total operation time of the accelerator has been over 95,000 hours since the start of MALT, 20 years ago. After the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, many projects related to 129I have been conducted. The retrospective reconstruction of the 131I distribution at the accident from 129I is one of the most important missions for dose evaluation of the residents. The accident-derived 129I is also quite useful as a tracer for the general iodine dynamics in the environment. As a new tool for environmental assessment related to nuclear activity, including the global fallout from past atmospheric nuclear bomb testing, effects from the spent fuel reprocessing plant, and nuclear accidents such as Chernobyl and FDNPP, a 236U-AMS system is now under development.

  17. Evaluation of the automatic optical authentication technologies for control systems of objects

    NASA Astrophysics Data System (ADS)

    Averkin, Vladimir V.; Volegov, Peter L.; Podgornov, Vladimir A.

    2000-03-01

    The report considers the evaluation of the automatic optical authentication technologies for the automated integrated system of physical protection, control and accounting of nuclear materials at RFNC-VNIITF, and for providing of the nuclear materials nonproliferation regime. The report presents the nuclear object authentication objectives and strategies, the methodology of the automatic optical authentication and results of the development of pattern recognition techniques carried out under the ISTC project #772 with the purpose of identification of unique features of surface structure of a controlled object and effects of its random treatment. The current decision of following functional control tasks is described in the report: confirmation of the item authenticity (proof of the absence of its substitution by an item of similar shape), control over unforeseen change of item state, control over unauthorized access to the item. The most important distinctive feature of all techniques is not comprehensive description of some properties of controlled item, but unique identification of item using minimum necessary set of parameters, properly comprising identification attribute of the item. The main emphasis in the technical approach is made on the development of rather simple technological methods for the first time intended for use in the systems of physical protection, control and accounting of nuclear materials. The developed authentication devices and system are described.

  18. Report on Integration of Existing Grid Models for N-R HES Interaction Focused on Balancing Authorities for Sub-hour Penalties and Opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McJunkin, Timothy; Epiney, Aaron; Rabiti, Cristian

    2017-06-01

    This report provides a summary of the effort in the Nuclear-Renewable Hybrid Energy System (N-R HES) project on the level 4 milestone to consider integration of existing grid models into the factors for optimization on shorter time intervals than the existing electric grid models with the Risk Analysis Virtual Environment (RAVEN) and Modelica [1] optimizations and economic analysis that are the focus of the project to date.

  19. Milestones for Selection, Characterization, and Analysis of the Performance of a Repository for Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rechard, Robert P.

    This report presents a concise history in tabular form of events leading up to site identification in 1978, site selection in 1987, subsequent characterization, and ongoing analysis through 2008 of the performance of a repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain in southern Nevada. The tabulated events generally occurred in five periods: (1) commitment to mined geologic disposal and identification of sites; (2) site selection and analysis, based on regional geologic characterization through literature and analogous data; (3) feasibility analysis demonstrating calculation procedures and importance of system components, based on rough measures of performance usingmore » surface exploration, waste process knowledge, and general laboratory experiments; (4) suitability analysis demonstrating viability of disposal system, based on environment-specific laboratory experiments, in-situ experiments, and underground disposal system characterization; and (5) compliance analysis, based on completed site-specific characterization. Because the relationship is important to understanding the evolution of the Yucca Mountain Project, the tabulation also shows the interaction between four broad categories of political bodies and government agencies/institutions: (a) technical milestones of the implementing institutions, (b) development of the regulatory requirements and related federal policy in laws and court decisions, (c) Presidential and agency directives and decisions, and (d) critiques of the Yucca Mountain Project and pertinent national and world events related to nuclear energy and radioactive waste.« less

  20. Technology readiness levels for advanced nuclear fuels and materials development

    DOE PAGES

    Carmack, W. J.; Braase, L. A.; Wigeland, R. A.; ...

    2016-12-23

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. It was pioneered by the National Aeronautics and Space Administration (NASA) in the 1980s to develop and deploy new systems for space applications. The process was subsequently adopted by the Department of Defense (DoD) to develop and deploy new technology and systems for defense applications as well as the Department of Energy (DOE) to evaluate the maturity of new technologies in major construction projects. Advanced nuclear fuels and materials development is a critical technology needed for improving the performance and safety of currentmore » and advanced reactors, and ultimately closing the nuclear fuel cycle. Because deployment of new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management, communication and tracking tool. Furthermore, this article provides examples regarding the methods by which TRLs are currently used to assess the maturity of nuclear fuels and materials under development in the DOE Fuel Cycle Research and Development (FCRD) Program within the Advanced Fuels Campaign (AFC).« less

  1. Technology readiness levels for advanced nuclear fuels and materials development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmack, W. J.; Braase, L. A.; Wigeland, R. A.

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. It was pioneered by the National Aeronautics and Space Administration (NASA) in the 1980s to develop and deploy new systems for space applications. The process was subsequently adopted by the Department of Defense (DoD) to develop and deploy new technology and systems for defense applications as well as the Department of Energy (DOE) to evaluate the maturity of new technologies in major construction projects. Advanced nuclear fuels and materials development is a critical technology needed for improving the performance and safety of currentmore » and advanced reactors, and ultimately closing the nuclear fuel cycle. Because deployment of new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management, communication and tracking tool. Furthermore, this article provides examples regarding the methods by which TRLs are currently used to assess the maturity of nuclear fuels and materials under development in the DOE Fuel Cycle Research and Development (FCRD) Program within the Advanced Fuels Campaign (AFC).« less

  2. Managing nuclear power plant induced disasters.

    PubMed

    Kyne, Dean

    2015-01-01

    To understand the management process of nuclear power plant (NPP) induced disasters. The study shields light on phases and issues associated with the NPP induced disaster management. This study uses Palo Verde Nuclear Generation Station as study subject and Arizona State as study area. This study uses the Radiological Assessment System for Consequence Analysis (RASCAL) Source Term to Dose (STDose) of the Nuclear Regulatory Commission, a computer software to project and assess the source term dose and release pathway. This study also uses ArcGIS, a geographic information system to analyze geospatial data. A detailed case study of Palo Verde Nuclear Power Generation (PVNPG) Plant was conducted. The findings reveal that the NPP induced disaster management process is conducted by various stakeholders. To save lives and to minimize the impacts, it is vital to relate planning and process of the disaster management. Number of people who expose to the radioactive plume pathway and level of radioactivity could vary depending on the speed and direction of wind on the day the event takes place. This study findings show that there is a need to address the burning issue of different racial and ethnic groups' unequal exposure and unequal protection to potential risks associated with the NPPs.

  3. Studies of Heavy-Ion Reactions and Transuranic Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroeder, W. Udo

    2016-07-28

    Studies of heavy-ion reactions and transuranic nuclei performed by the University of Rochester Nuclear Science Research Group have been successful in furthering experimental systematics and theoretical understanding of the behavior of nuclear systems excited to their limits of stability. The theoretical results explain specifically the “boiling” and “vaporization” of atomic nuclei, but are more generally applicable to isolated, quantal many-particle systems which, under thermal or mechanical stresses, all disintegrate by evaporation, via surface cluster emission, or via fission-like processes. Accompanying experimental investigations by the group have demonstrated several new types of dynamical instability of nuclei: In central, “head-on” collisions, targetmore » nuclei exhibit limited ability to stop energetic projectile nuclei and to dissipate the imparted linear momentum. Substantial matter overlap (“neck”) between projectile and target nuclei, which is observed at elevated collision energies, can be stretched considerably and break at several places simultaneously. These results provide new testing grounds for microscopic theory of the cohesion of nuclear matter. This property has remained elusive, even though the elementary nucleon-nucleon forces are well known since some time. Technical R&D has resulted in a detailed characterization of a novel plastic material, which can now be used in the design of sensitive diagnostic systems for various types of radio-activity. Innovative application of powerful laser systems has produced intense, controllable sources of exotic particle radioactivity for nuclear investigations. Several students have received their Ph.D. degree in experimental nuclear science for their work on basic nuclear research or R&D projects.« less

  4. Status of the advanced Stirling conversion system project for 25 kW dish Stirling applications

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.; Schreiber, Jeffrey G.

    1991-01-01

    Technology development for Stirling convertors directed toward a dynamic power source for space applications is discussed. Space power requirements include high reliability with very long life, low vibration, and high system efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although these applications appear to be quite different, their requirements complement each other. The advanced Stirling conversion system (ASCS) project at NASA Lewis Research Center is described. Each system design features a solar receiver/liquid metal heat transport system and a free-piston Stirling convertor with a means to provide nominally 25 kW of electric power to utility grid while meeting the US Department of Energy (DOE) performance and long term cost goals. The design is compared with other ASCS designs.

  5. U.S. program assessing nuclear waste disposal in space - A status report

    NASA Technical Reports Server (NTRS)

    Rice, E. E.; Priest, C. C.; Friedlander, A. L.

    1980-01-01

    Various concepts for the space disposal of nuclear waste are discussed, with attention given to the destinations now being considered (high earth orbit, lunar orbit, lunar surface, solar orbit, solar system escape, sun). Waste mixes are considered in the context of the 'Purex' (Plutonium and Uranium extraction) process and the potential forms for nuclear waste disposal (ORNL cermet, Boro-silicate glass, Metal matrix, Hot-pressed supercalcine) are described. Preliminary estimates of the energy required and the cost surcharge needed to support the space disposal of nuclear waste are presented (8 metric tons/year, requiring three Shuttle launches). When Purex is employed, the generated electrical energy needed to support the Shuttle launches is shown to be less than 1%, and the projected surcharge to electrical users is shown to be slightly more than two mills/kW-hour.

  6. Operation Sun Beam, Shot Small Boy. Project Officer's report - Project 7. 8. Arming and fuzing component test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taslitt, N.

    1985-09-01

    The objectives of this project were to (1) determine whether the radiation from a nuclear weapon can disable various arming and fuzing components by causing permanent damage; (2) determine whether transient nuclear radiation can induce an operating fuze to malfunction; and (3) compare nuclear weapon radiation effects with those produced by various radiation simulators. Data obtained revealed that none of the inertial components were detrimentally affected. The electronic components were severely degraded but would have satisfactorily accomplished their tactical functions. No electromagnetic effects were detected.

  7. NASA's Nuclear Thermal Propulsion Project

    NASA Technical Reports Server (NTRS)

    Houts, Michael; Mitchell, Sonny; Kim, Tony; Borowski, Stanley; Power, Kevin; Scott, John; Belvin, Anthony; Clement, Steven

    2015-01-01

    Space fission power systems can provide a power rich environment anywhere in the solar system, independent of available sunlight. Space fission propulsion offers the potential for enabling rapid, affordable access to any point in the solar system. One type of space fission propulsion is Nuclear Thermal Propulsion (NTP). NTP systems operate by using a fission reactor to heat hydrogen to very high temperature (>2500 K) and expanding the hot hydrogen through a supersonic nozzle. First generation NTP systems are designed to have an Isp of approximately 900 s. The high Isp of NTP enables rapid crew transfer to destinations such as Mars, and can also help reduce mission cost, improve logistics (fewer launches), and provide other benefits. However, for NTP systems to be utilized they must be affordable and viable to develop. NASA's Advanced Exploration Systems (AES) NTP project is a technology development project that will help assess the affordability and viability of NTP. Early work has included fabrication of representative graphite composite fuel element segments, coating of representative graphite composite fuel element segments, fabrication of representative cermet fuel element segments, and testing of fuel element segments in the Compact Fuel Element Environmental Tester (CFEET). Near-term activities will include testing approximately 16" fuel element segments in the Nuclear Thermal Rocket Element Environmental Simulator (NTREES), and ongoing research into improving fuel microstructure and coatings. In addition to recapturing fuels technology, affordable development, qualification, and utilization strategies must be devised. Options such as using low-enriched uranium (LEU) instead of highly-enriched uranium (HEU) are being assessed, although that option requires development of a key technology before it can be applied to NTP in the thrust range of interest. Ground test facilities will be required, especially if NTP is to be used in conjunction with high value or crewed missions. There are potential options for either modifying existing facilities or constructing new ground test facilities. At least three potential options exist for reducing (or eliminating) the release of radioactivity into the environment during ground testing. These include fully containing the NTP exhaust during the ground test, scrubbing the exhaust, or utilizing an existing borehole at the Nevada National Security Site (NNSS) to filter the exhaust. Finally, the project is considering the potential for an early flight demonstration of an engine very similar to one that could be used to support human Mars or other ambitious missions. The flight demonstration could be an important step towards the eventual utilization of NTP.

  8. Demonstrator Detection System for the Active Target and Time Projection Chamber (ACTAR TPC) project

    NASA Astrophysics Data System (ADS)

    Roger, T.; Pancin, J.; Grinyer, G. F.; Mauss, B.; Laffoley, A. T.; Rosier, P.; Alvarez-Pol, H.; Babo, M.; Blank, B.; Caamaño, M.; Ceruti, S.; Daemen, J.; Damoy, S.; Duclos, B.; Fernández-Domínguez, B.; Flavigny, F.; Giovinazzo, J.; Goigoux, T.; Henares, J. L.; Konczykowski, P.; Marchi, T.; Lebertre, G.; Lecesne, N.; Legeard, L.; Maugeais, C.; Minier, G.; Osmond, B.; Pedroza, J. L.; Pibernat, J.; Poleshchuk, O.; Pollacco, E. C.; Raabe, R.; Raine, B.; Renzi, F.; Saillant, F.; Sénécal, P.; Sizun, P.; Suzuki, D.; Swartz, J. A.; Wouters, C.; Wittwer, G.; Yang, J. C.

    2018-07-01

    The design, realization and operation of a prototype or "demonstrator" version of an active target and time projection chamber (ACTAR TPC) for experiments in nuclear physics is presented in detail. The heart of the detection system features a MICROMEGAS gas amplifier coupled to a high-density pixelated pad plane with square pad sizes of 2 × 2 mm2. The detector has been thoroughly tested with several different gas mixtures over a wide range of pressures and using a variety of sources of ionizing radiation including laser light, an α-particle source and heavy-ion beams of 24Mg and 58Ni accelerated to energies of 4.0 MeV/u. Results from these tests and characterization of the detector response over a wide range of operating conditions will be described. These developments have served as the basis for the design of a larger detection system that is presently under construction.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, R A; Mahaffey, J A; Carr, F Jr

    This bibliography has been prepared by Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) Office of Health and Environmental Research to provide bibliographic information in a usable format for research studies relating to the Chernobyl nuclear accident that occurred in the Ukrainian Republic, USSR in 1986. This report is a product of the Chernobyl Database Management project. The purpose of this project is to produce and maintain an information system that is the official United States repository for information related to the accident. Two related products prepared for this project are the Chernobyl Bibliographic Search System (ChernoLit{trademark})more » and the Chernobyl Radiological Measurements Information System (ChernoDat). This report supersedes the original release of Chernobyl Bibliography (Carr and Mahaffey, 1989). The original report included about 2200 references. Over 4500 references and an index of authors and editors are included in this report.« less

  10. Argon Collection And Purification For Proliferation Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achey, R.; Hunter, D.

    2015-10-09

    In order to determine whether a seismic event was a declared/undeclared underground nuclear weapon test, environmental samples must be taken and analyzed for signatures that are unique to a nuclear explosion. These signatures are either particles or gases. Particle samples are routinely taken and analyzed under the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) verification regime as well as by individual countries. Gas samples are analyzed for signature gases, especially radioactive xenon. Underground nuclear tests also produce radioactive argon, but that signature is not well monitored. A radioactive argon signature, along with other signatures, can more conclusively determine whether an event wasmore » a nuclear test. This project has developed capabilities for collecting and purifying argon samples for ultra-low-background proportional counting. SRNL has developed a continuous gas enrichment system that produces an output stream containing 97% argon from whole air using adsorbent separation technology (the flow diagram for the system is shown in the figure). The vacuum swing adsorption (VSA) enrichment system is easily scalable to produce ten liters or more of 97% argon within twelve hours. A gas chromatographic separation using a column of modified hydrogen mordenite molecular sieve has been developed that can further purify the sample to better than 99% purity after separation from the helium carrier gas. The combination of these concentration and purification systems has the capability of being used for a field-deployable system for collecting argon samples suitable for ultra-low-background proportional counting for detecting nuclear detonations under the On-Site Inspection program of the CTBTO verification regime. The technology also has applications for the bulk argon separation from air for industrial purposes such as the semi-conductor industry.« less

  11. Wartime nuclear weapons research in Germany and Japan.

    PubMed

    Grunden, Walter E; Walker, Mark; Yamnazaki, Masakatsu

    2005-01-01

    This article compares military research projects during the Second World War to develop nuclear weapons in Germany and Japan, two countries who lost the war and failed to create nuclear weapons. The performance and motivations of the scientists, as well as the institutional support given the work, is examined, explaining why, in each case, the project went as far as it did-but no further. The story is carried over into the postwar period, when the two cultures and their scientists had to deal with the buildup of nuclear weapons during the cold war and the new nuclear power industry.

  12. The ARAC-RODOS-WSPEEDI Information Exchange Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, T J

    1999-09-01

    Under the auspices of a US DOE-JAPAN Memorandum of Understanding JAERI and LLNL agreed to develop and evaluate a prototype information exchange protocol for nuclear accident emergency situations. This project received some interest from the US DOS and FEMA as it fits nicely under the umbrella of the G-7's GEMINI (Global Emergency Management Information Network Initiative) project. Because of LLNL/ARAC and JAERV WSPEEDI interest in nuclear accident consequence assessment and hazard prediction on all scales, to include global, we were happy to participate. Subsequent to the Spring 1997 RODOS-ARAC Workshop a Memorandum of Agreement was developed to enhance mutual collaborationmore » on matters of emergency systems development. In the summer of 1998 the project leaders of RODOS, WSPEEDI and ARAC met at FZK and agreed to join in a triangular collaboration on the development and demonstration of an emergency information exchange protocol. JAERI and FZK are engaged in developing a formal cooperation agreement. The purpose of this project is to evaluate the prototype information protocol application for technical feasibility and mutual benefit through simulated (real) event; quick exchange of atmospheric modeling products and environmental data during emergencies, distribution of predicted results to other countries having no prediction capabilities, and utilization of the link for collaborative studies.« less

  13. 78 FR 26662 - Entergy Nuclear Operations, Inc., Indian Point Nuclear Generating Unit No. 3 Extension of Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-07

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-286; NRC-2013-0063] Entergy Nuclear Operations, Inc., Indian Point Nuclear Generating Unit No. 3 Extension of Public Comment Period AGENCY: Nuclear Regulatory... FURTHER INFORMATION CONTACT: Douglas V. Pickett, Senior Project Manager, Office of Nuclear Reactor...

  14. Air Force space power and thermal management technology - Requirements for the early 21st century

    NASA Astrophysics Data System (ADS)

    Herrera, Ernest D.; Kuck, Inara

    Typical projections for military space power and thermal management technologies have posited requirements for high powered and highly survivable systems. Recent changes in defense needs, however, will require spacecraft that are smaller, lower powered, less survivable, and highly proliferated. Technologies will be developed to provide low cost, ultra-light, high power density, 'smart' conventional power systems. Compact nuclear power systems will also be developed to meet higher power needs.

  15. RHOBOT: Radiation hardened robotics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, P.C.; Posey, L.D.

    1997-10-01

    A survey of robotic applications in radioactive environments has been conducted, and analysis of robotic system components and their response to the varying types and strengths of radiation has been completed. Two specific robotic systems for accident recovery and nuclear fuel movement have been analyzed in detail for radiation hardness. Finally, a general design approach for radiation-hardened robotics systems has been developed and is presented. This report completes this project which was funded under the Laboratory Directed Research and Development program.

  16. Summary of NR Program Prometheus Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J Ashcroft; C Eshelman

    2006-02-08

    The Naval Reactors Program led work on the development of a reactor plant system for the Prometheus space reactor program. The work centered on a 200 kWe electric reactor plant with a 15-20 year mission applicable to nuclear electric propulsion (NEP). After a review of all reactor and energy conversion alternatives, a direct gas Brayton reactor plant was selected for further development. The work performed subsequent to this selection included preliminary nuclear reactor and reactor plant design, development of instrumentation and control techniques, modeling reactor plant operational features, development and testing of core and plant material options, and development ofmore » an overall project plan. Prior to restructuring of the program, substantial progress had been made on defining reference plant operating conditions, defining reactor mechanical, thermal and nuclear performance, understanding the capabilities and uncertainties provided by material alternatives, and planning non-nuclear and nuclear system testing. The mission requirements for the envisioned NEP missions cannot be accommodated with existing reactor technologies. Therefore concurrent design, development and testing would be needed to deliver a functional reactor system. Fuel and material performance beyond the current state of the art is needed. There is very little national infrastructure available for fast reactor nuclear testing and associated materials development and testing. Surface mission requirements may be different enough to warrant different reactor design approaches and development of a generic multi-purpose reactor requires substantial sacrifice in performance capability for each mission.« less

  17. Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    NASA Astrophysics Data System (ADS)

    Emrich, William J.

    2008-01-01

    To support a potential future development of a nuclear thermal rocket engine, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The test device simulates the environmental conditions (minus the radiation) to which nuclear rocket fuel components could be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner as to accurately reproduce the temperatures and heat fluxes normally expected to occur as a result of nuclear fission while at the same time being exposed to flowing hydrogen. This project is referred to as the Nuclear Thermal Rocket Element Environment Simulator or NTREES. The NTREES device is located at the Marshall Space flight Center in a laboratory which has been modified to accommodate the high powers required to heat the test articles to the required temperatures and to handle the gaseous hydrogen flow required for the tests. Other modifications to the laboratory include the installation of a nitrogen gas supply system and a cooling water supply system. During the design and construction of the facility, every effort was made to comply with all pertinent regulations to provide assurance that the facility could be operated in a safe and efficient manner. The NTREES system can currently supply up to 50 kW of inductive heating to the fuel test articles, although the facility has been sized to eventually allow test article heating levels of up to several megawatts.

  18. Detection System of the First Rapidly Relocatable Tagged Neutron Inspection System (RRTNIS), Developed in the Framework of the European H2020 C-BORD Project

    NASA Astrophysics Data System (ADS)

    Fontana, Cristiano Lino; Carnera, Alberto; Lunardon, Marcello; Pino, Felix; Sada, Cinzia; Soramel, Francesca; Stevanato, Luca; Nebbia, Giancarlo; Carasco, Cédric; Perot, Bertrand; Sardet, Alix; Sannie, Guillaume; Iovene, Alessandro; Tintori, Carlo; Grodzicki, Krystian; Moszyński, Marek; Sibczyński, Paweł; Swiderski, Lukasz; Moretto, Sandra

    The European project entitled ;effective Container inspection at BORDer control points; (C-BORD) focuses on the development and in-situ tests of a comprehensive cost-effective solution for the generalized Non-Intrusive Inspection (NII) of containers and large-volume freight at the European Union (EU) border. It copes with a large range of targets, including explosives, chemical warfare agents, illicit drugs, tobacco and Special Nuclear Materials. Within the C-BORD project, a new generation of Tagged Neutron Inspection System (TNIS) for cargo containers is foreseen. Unlike its predecessors, this system would be the first Rapidly Relocatable TNIS (RRTNIS). It will be a second-line defense system, to be used on sealed containers in order to detect explosives, illicit drugs and chemical agents in a suspect voxel (elementary volume unit). We report on the status of the RRTNIS system, in particular the overall design, the characterization of the large-volume NaI(Tl) gamma detectors, the digital analysis of the time measurements and the Data Acquisition System (DAQ).

  19. Radiation effects in cubic zirconia: A model system for ceramic oxides

    NASA Astrophysics Data System (ADS)

    Thomé, L.; Moll, S.; Sattonnay, G.; Vincent, L.; Garrido, F.; Jagielski, J.

    2009-06-01

    Ceramics are key engineering materials for electronic, space and nuclear industry. Some of them are promising matrices for the immobilization and/or transmutation of radioactive waste. Cubic zirconia is a model system for the study of radiation effects in ceramic oxides. Ion beams are very efficient tools for the simulation of the radiations produced in nuclear reactors or in storage form. In this article, we summarize the work made by combining advanced techniques (RBS/C, XRD, TEM, AFM) to study the structural modifications produced in ion-irradiated cubic zirconia single crystals. Ions with energies in the MeV-GeV range allow exploring the nuclear collision and electronic excitation regimes. At low energy, where ballistic effects dominate, the damage exhibits a peak around the ion projected range; it accumulates with a double-step process by the formation of a dislocation network. At high energy, where electronic excitations are favored, the damage profiles are rather flat up to several micrometers; the damage accumulation is monotonous (one step) and occurs through the creation and overlap of ion tracks. These results may be generalized to many nuclear ceramics.

  20. Fission cross section uncertainties with the NIFFTE TPC

    NASA Astrophysics Data System (ADS)

    Sangiorgio, Samuele; Niffte Collaboration

    2014-09-01

    Nuclear data such as neutron-induced fission cross sections play a fundamental role in nuclear energy and defense applications. In recent years, understanding of these systems has become increasingly dependent upon advanced simulation and modeling, where uncertainties in nuclear data propagate in the expected performances of existing and future systems. It is important therefore that uncertainties in nuclear data are minimized and fully understood. For this reason, the Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) uses a Time Projection Chamber (TPC) to measure energy-differential (n,f) cross sections with unprecedented precision. The presentation will discuss how the capabilities of the NIFFTE TPC allow to directly measures systematic uncertainties in fission cross sections, in particular for what concerns fission-fragment identification, and target and beam uniformity. Preliminary results from recent analysis of 238U/235U and 239Pu/235U data collected with the TPC will be presented. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  1. Quality assurance program for isotopic power systems

    NASA Astrophysics Data System (ADS)

    Hannigan, R. L.; Harnar, R. R.

    1982-12-01

    The Sandia National Laboratories Quality Assurance Program that applies to non-weapon (reimbursable) Radioisotopic Thermoelectric Generators is summarized. The program was implemented over the past 16 years on power supplies used in various space and terrestrial systems. The quality assurance (QA) activity of the program is in support of the Department of Energy, Office of Space Nuclear Projects. Basic elements of the program are described and examples of program documentation are presented.

  2. Simultaneous fluoroscopic and nuclear imaging: impact of collimator choice on nuclear image quality.

    PubMed

    van der Velden, Sandra; Beijst, Casper; Viergever, Max A; de Jong, Hugo W A M

    2017-01-01

    X-ray-guided oncological interventions could benefit from the availability of simultaneously acquired nuclear images during the procedure. To this end, a real-time, hybrid fluoroscopic and nuclear imaging device, consisting of an X-ray c-arm combined with gamma imaging capability, is currently being developed (Beijst C, Elschot M, Viergever MA, de Jong HW. Radiol. 2015;278:232-238). The setup comprises four gamma cameras placed adjacent to the X-ray tube. The four camera views are used to reconstruct an intermediate three-dimensional image, which is subsequently converted to a virtual nuclear projection image that overlaps with the X-ray image. The purpose of the present simulation study is to evaluate the impact of gamma camera collimator choice (parallel hole versus pinhole) on the quality of the virtual nuclear image. Simulation studies were performed with a digital image quality phantom including realistic noise and resolution effects, with a dynamic frame acquisition time of 1 s and a total activity of 150 MBq. Projections were simulated for 3, 5, and 7 mm pinholes and for three parallel hole collimators (low-energy all-purpose (LEAP), low-energy high-resolution (LEHR) and low-energy ultra-high-resolution (LEUHR)). Intermediate reconstruction was performed with maximum likelihood expectation-maximization (MLEM) with point spread function (PSF) modeling. In the virtual projection derived therefrom, contrast, noise level, and detectability were determined and compared with the ideal projection, that is, as if a gamma camera were located at the position of the X-ray detector. Furthermore, image deformations and spatial resolution were quantified. Additionally, simultaneous fluoroscopic and nuclear images of a sphere phantom were acquired with a physical prototype system and compared with the simulations. For small hot spots, contrast is comparable for all simulated collimators. Noise levels are, however, 3 to 8 times higher in pinhole geometries than in parallel hole geometries. This results in higher contrast-to-noise ratios for parallel hole geometries. Smaller spheres can thus be detected with parallel hole collimators than with pinhole collimators (17 mm vs 28 mm). Pinhole geometries show larger image deformations than parallel hole geometries. Spatial resolution varied between 1.25 cm for the 3 mm pinhole and 4 cm for the LEAP collimator. The simulation method was successfully validated by the experiments with the physical prototype. A real-time hybrid fluoroscopic and nuclear imaging device is currently being developed. Image quality of nuclear images obtained with different collimators was compared in terms of contrast, noise, and detectability. Parallel hole collimators showed lower noise and better detectability than pinhole collimators. © 2016 American Association of Physicists in Medicine.

  3. Nuclear Waste Facing the Test of Time: The Case of the French Deep Geological Repository Project.

    PubMed

    Poirot-Delpech, Sophie; Raineau, Laurence

    2016-12-01

    The purpose of this article is to consider the socio-anthropological issues raised by the deep geological repository project for high-level, long-lived nuclear waste. It is based on fieldwork at a candidate site for a deep storage project in eastern France, where an underground laboratory has been studying the feasibility of the project since 1999. A project of this nature, based on the possibility of very long containment (hundreds of thousands of years, if not longer), involves a singular form of time. By linking project performance to geology's very long timescale, the project attempts "jump" in time, focusing on a far distant future, without understanding it in terms of generations. But these future generations remain measurements of time on the surface, where the issue of remembering or forgetting the repository comes to the fore. The nuclear waste geological storage project raises questions that neither politicians nor scientists, nor civil society, have ever confronted before. This project attempts to address a problem that exists on a very long timescale, which involves our responsibility toward generations in the far future.

  4. Columbus Closure Project Released without Radiological Restrictions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, G.

    2007-07-01

    The Columbus Closure Project (CCP), a historic radiological research complex, was cleaned up for future use without radiological restriction in 2006. The CCP research and development site contributed to national defense, nuclear fuel fabrication, and the development of safe nuclear reactors in the United States until 1988 when research activities were concluded for site decommissioning. In November of 2003, the Ohio Field Office of the U.S. Department of Energy contracted ECC/E2 Closure Services, LLC (Closure Services) to complete the removal of radioactive contamination from of a 1955 era nuclear sciences area consisting of a large hot cell facility, research reactormore » building and underground piping. The project known as the Columbus Closure Project (CCP) was completed in 27 months and brought to a close 16 years of D and D in Columbus, Ohio. This paper examines the project innovations and challenges presented during the Columbus Closure Project. The examination of the CCP includes the project regulatory environment, the CS safety program, accelerated clean up innovation, project execution strategies and management of project waste issues and the regulatory approach to site release 'without radiological restrictions'. (authors)« less

  5. Working Parents Project (WPP). Final Interim Report.

    ERIC Educational Resources Information Center

    Mason, Theresa; Espinoza, Renato

    Results are reported from a 2-year study designed to explore how the nature of women's jobs, as viewed by women and their husbands, influences the system of nuclear family relationships and affects parents' involvement with their children's schools. The research has evolved into a comparative exploratory study of the responses of 30 families to…

  6. Working Parents Project. Final Report. Executive Summary.

    ERIC Educational Resources Information Center

    Mason, Theresa; Espinoza, Renato

    Summarized in this report is a study designed to explore the interrelationships that develop over time between two of the most important aspects of people's lives: their work and their families. Specifically, the study focuses on how the nature of women's jobs influences the system of nuclear family relationships and affects parents' involvement…

  7. 76 FR 50276 - STP Nuclear Operating Company, South Texas Project, Units 1 and 2; Notice of Withdrawal of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-12

    ... revised the application of Risk- Managed Technical Specifications to Technical Specification 3.7.7, ``Control Room Makeup and Cleanup Filtration System.'' The purpose of the change was to correct a misapplication of the Configuration Risk Management Program that is currently allowed by the Technical...

  8. NSR&D Program Fiscal Year (FY) 2015 Call for Proposals Mitigation of Seismic Risk at Nuclear Facilities using Seismic Isolation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Justin

    2015-02-01

    Seismic isolation (SI) has the potential to drastically reduce seismic response of structures, systems, or components (SSCs) and therefore the risk associated with large seismic events (large seismic event could be defined as the design basis earthquake (DBE) and/or the beyond design basis earthquake (BDBE) depending on the site location). This would correspond to a potential increase in nuclear safety by minimizing the structural response and thus minimizing the risk of material release during large seismic events that have uncertainty associated with their magnitude and frequency. The national consensus standard America Society of Civil Engineers (ASCE) Standard 4, Seismic Analysismore » of Safety Related Nuclear Structures recently incorporated language and commentary for seismically isolating a large light water reactor or similar large nuclear structure. Some potential benefits of SI are: 1) substantially decoupling the SSC from the earthquake hazard thus decreasing risk of material release during large earthquakes, 2) cost savings for the facility and/or equipment, and 3) applicability to both nuclear (current and next generation) and high hazard non-nuclear facilities. Issue: To date no one has evaluated how the benefit of seismic risk reduction reduces cost to construct a nuclear facility. Objective: Use seismic probabilistic risk assessment (SPRA) to evaluate the reduction in seismic risk and estimate potential cost savings of seismic isolation of a generic nuclear facility. This project would leverage ongoing Idaho National Laboratory (INL) activities that are developing advanced (SPRA) methods using Nonlinear Soil-Structure Interaction (NLSSI) analysis. Technical Approach: The proposed study is intended to obtain an estimate on the reduction in seismic risk and construction cost that might be achieved by seismically isolating a nuclear facility. The nuclear facility is a representative pressurized water reactor building nuclear power plant (NPP) structure. Figure 1: Project activities The study will consider a representative NPP reinforced concrete reactor building and representative plant safety system. This study will leverage existing research and development (R&D) activities at INL. Figure 1 shows the proposed study steps with the steps in blue representing activities already funded at INL and the steps in purple the activities that would be funded under this proposal. The following results will be documented: 1) Comparison of seismic risk for the non-seismically isolated (non-SI) and seismically isolated (SI) NPP, and 2) an estimate of construction cost savings when implementing SI at the site of the generic NPP.« less

  9. Evaluation of Nuclear Facility Decommissioning Projects program: a reference research reactor. Project summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumann, B.L.; Miller, R.L.

    1983-10-01

    This document presents, in summary form, generic conceptual information relevant to the decommissioning of a reference research reactor (RRR). All of the data presented were extracted from NUREG/CR-1756 and arranged in a form that will provide a basis for future comparison studies for the Evaluation of Nuclear Facility Decommissioning Projects (ENFDP) program.

  10. Operation ARGUS 1958.

    DTIC Science & Technology

    1982-04-30

    Nuclear Test Operations South Atlantic ARGUS Christofilos Theory FLORAL ARGUS Effect JASON Van Allen Belts Nuclear Test Personnel Review (MTPR) MIDAS ...precluded radiological exposure. Project 7.3 -- Surface Measurements (Project MIDAS ) Agencies: This project, code-named MIDAS for security reasons, was...weapon casings, but these personnel were badged and equipped with ten self-reading pocket dosimeters as well as alpha-detection equipment provided by the

  11. Fission Surface Power System Initial Concept Definition

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Under the NASA Exploration Technology Development Program (ETDP) and in partnership with the Department of Energy (DOE), NASA has embarked on a project to develop Fission Surface Power (FSP) technology. The primary goals of the project are to 1) develop FSP concepts that meet expected surface power requirements at reasonable cost with added benefits over other options, 2) establish a hardwarebased technical foundation for FSP design concepts and reduce overall development risk, 3) reduce the cost uncertainties for FSP and establish greater credibility for flight system cost estimates, and 4) generate the key products to allow NASA decision-makers to consider FSP as a preferred option for flight development. The FSP project was initiated in 2006 as the Prometheus Program and the Jupiter Icy Moons Orbiter (JIMO) mission were phased-out. As a first step, NASA Headquarters commissioned the Affordable Fission Surface Power System Study to evaluate the potential for an affordable FSP development approach. With a cost-effective FSP strategy identified, the FSP team evaluated design options and selected a Preliminary Reference Concept to guide technology development. Since then, the FSP Preliminary Reference Concept has served as a point-of-departure for several NASA mission architecture studies examining the use of nuclear power and has provided the foundation for a series of "Pathfinder" hardware tests. The long-term technology goal is a Technology Demonstration Unit (TDU) integrated system test using full-scale components and a non-nuclear reactor simulator. The FSP team consists of Glenn Research Center (GRC), Marshall Space Flight Center (MSFC) and the DOE National Laboratories at Los Alamos (LANL), Idaho (INL), Oak Ridge (ORNL), and Sandia (SNL). The project is organized into two main elements: Concept Definition and Risk Reduction. Under Concept Definition, the team performs trade studies, develops analytical tools, and formulates system concepts. Under Risk Reduction the team develops hardware prototypes and conducts laboratory-based testing.

  12. PLANNING AND COORDINATION OF ACTIVITIES SUPPORTING THE RUSSIAN SYSTEM OF CONTROL AND ACCOUNTING OF NUCLEAR MATERIALS AT ROSATOM FACILITIES IN THE FRAMEWORK OF THE U.S.-RUSSIAN COOPERATION.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SVIRIDOVA, V.V.; ERASTOV, V.V.; ISAEV, N.V.

    2005-05-16

    The MC&A Equipment and Methodological Support Strategic Plan (MEMS SP) for implementing modern MC&A equipment and methodologies at Rosatom facilities has been developed within the framework of the U.S.-Russian MPC&A Program. This plan developed by the Rosatom's Russian MC&A Equipment and Methodologies (MEM) Working Group and is coordinated by that group with support and coordination provided by the MC&A Measurements Project, Office of National Infrastructure and Sustainability, US DOE. Implementation of different tasks of the MEMS Strategic Plan is coordinated by Rosatom and US-DOE in cooperation with different U.S.-Russian MC&A-related working groups and joint site project teams. This cooperation allowsmore » to obtain and analyze information about problems, current needs and successes at Rosatom facilities and facilitates solution of the problems, satisfying the facilities' needs and effective exchange of expertise and lessons learned. The objective of the MEMS Strategic Plan is to enhance effectiveness of activities implementing modern equipment and methodologies in the Russian State MC&A system. These activities are conducted within the joint Russian-US MPC&A program aiming at reduction of possibility for theft or diversion of nuclear materials and enhancement of control of nuclear materials.« less

  13. Anatomy of the auditory thalamocortical system in the Mongolian gerbil: nuclear origins and cortical field-, layer-, and frequency-specificities.

    PubMed

    Saldeitis, Katja; Happel, Max F K; Ohl, Frank W; Scheich, Henning; Budinger, Eike

    2014-07-01

    Knowledge of the anatomical organization of the auditory thalamocortical (TC) system is fundamental for the understanding of auditory information processing in the brain. In the Mongolian gerbil (Meriones unguiculatus), a valuable model species in auditory research, the detailed anatomy of this system has not yet been worked out in detail. Here, we investigated the projections from the three subnuclei of the medial geniculate body (MGB), namely, its ventral (MGv), dorsal (MGd), and medial (MGm) divisions, as well as from several of their subdivisions (MGv: pars lateralis [LV], pars ovoidea [OV], rostral pole [RP]; MGd: deep dorsal nucleus [DD]), to the auditory cortex (AC) by stereotaxic pressure injections and electrophysiologically guided iontophoretic injections of the anterograde tract tracer biocytin. Our data reveal highly specific features of the TC connections regarding their nuclear origin in the subdivisions of the MGB and their termination patterns in the auditory cortical fields and layers. In addition to tonotopically organized projections, primarily of the LV, OV, and DD to the AC, a large number of axons diverge across the tonotopic gradient. These originate mainly from the RP, MGd (proper), and MGm. In particular, neurons of the MGm project in a columnar fashion to several auditory fields, forming small- and medium-sized boutons, and also hitherto unknown giant terminals. The distinctive layer-specific distribution of axonal endings within the AC indicates that each of the TC connectivity systems has a specific function in auditory cortical processing. Copyright © 2014 Wiley Periodicals, Inc.

  14. Nuclear Fuel Reprocessing: U.S. Policy Development

    DTIC Science & Technology

    2006-11-29

    to the chemical separation of fissionable uranium and plutonium from irradiated nuclear fuel. The World War II-era Manhattan Project developed...created the Atomic Energy Commission (AEC) and transferred production and control of fissionable materials from the Manhattan Project . As the exclusive

  15. Abramovo Counterterrorism Training Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, Christopher M; Ross, Larry; Lingenfelter, Forrest E

    2011-01-01

    The U.S. government has been assisting the Russian Federation (RF) Ministry of Defense (MOD) for many years with nuclear weapons transportation security (NWTS) through the provision of specialized guard escort railcars and cargo railcars with integrated physical security and communication systems, armored transport vehicles, and armored escort vehicles. As a natural continuation of the NWTS program, a partnership has been formed to construct a training center that will provide counterterrorism training to personnel in all branches of the RF MOD. The Abramovo Counterterrorism Training Center (ACTC) is a multinational, multiagency project with funding from Canada, RF and the U.S. Departmentsmore » of Defense and Energy. ACTC will be a facility where MOD personnel can conduct basic through advanced training in various security measures to protect Category IA material against the threat of terrorist attack. The training will enhance defense-in-depth principles by integrating MOD guard force personnel into the overall physical protection systems and improving their overall response time and neutralization capabilities. The ACTC project includes infrastructure improvements, renovation of existing buildings, construction of new buildings, construction of new training facilities, and provision of training and other equipment. Classroom training will be conducted in a renovated training building. Basic and intermediate training will be conducted on three different security training areas where various obstacles and static training devices will be constructed. The central element of ACTC, where advanced training will be held, is the 'autodrome,' a 3 km road along which various terrorist events can be staged to challenge MOD personnel in realistic and dynamic nuclear weapons transportation scenarios. This paper will address the ACTC project elements and the vision for training development and integrating this training into actual nuclear weapons transportation operations.« less

  16. [Nuclear energy and environment: review of the IAEA environmental projects].

    PubMed

    Fesenko, S; Fogt, G

    2012-01-01

    The review of the environmental projects of the International Atomic Energy Agency is presented. Basic IAEA documents intended to protect humans and the Environment are considered and their main features are discussed. Some challenging issues in the area of protection of the Environment and man, including the impact of nuclear facilities on the environment, radioactive waste management, and remediation of the areas affected by radiological accidents, nuclear testing and sites of nuclear facilities are also discussed. The need to maintain the existing knowledge in radioecology and protection of the environment is emphasised.

  17. Manned Mars Explorer project: Guidelines for a manned mission to the vicinity of Mars using Phobos as a staging outpost; schematic vehicle designs considering chemical and nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    Nolan, Sean; Neubek, Deb; Baxmann, C. J.

    1988-01-01

    The Manned Mars Explorer (MME) project responds to the fundamental problems of sending human beings to Mars in a mission scenario and schematic vehicle designs. The mission scenario targets an opposition class Venus inbound swingby for its trajectory with concentration on Phobos and/or Deimos as a staging base for initial and future Mars vicinity operations. Optional vehicles are presented as a comparison using nuclear electric power/propulsion technology. A Manned Planetary Vehicle and Crew Command Vehicle are used to accomplish the targeted mission. The Manned Planetary Vehicle utilizes the mature technology of chemical propulsion combined with an advanced aerobrake, tether and pressurized environment system. The Crew Command Vehicle is the workhorse of the mission performing many different functions including a manned Mars landing, and Phobos rendezvous.

  18. Applying Diagnostics to Enhance Cable System Reliability (Cable Diagnostic Focused Initiative, Phase II)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartlein, Rick; Hampton, Nigel; Perkel, Josh

    2016-02-01

    The Cable Diagnostic Focused Initiative (CDFI) played a significant and powerful role in clarifying the concerns and understanding the benefits of performing diagnostic tests on underground power cable systems. This project focused on the medium and high voltage cable systems used in utility transmission and distribution (T&D) systems. While many of the analysis techniques and interpretations are applicable to diagnostics and cable systems outside of T&D, areas such as generating stations (nuclear, coal, wind, etc.) and other industrial environments were not the focus. Many large utilities in North America now deploy diagnostics or have changed their diagnostic testing approach asmore » a result of this project. Previous to the CDFI, different diagnostic technology providers individually promoted their approach as the “the best” or “the only” means of detecting cable system defects.« less

  19. Diffusion Bonding Technology of Tungsten and SiC/SiC Composites for Nuclear Applications

    NASA Astrophysics Data System (ADS)

    Kishimoto, Hirotatsu; Shibayama, Tamaki; Abe, Takahiro; Shimoda, Kazuya; Kawamura, Satoshi; Kohyama, Akira

    2011-10-01

    Silicon carbide (SiC) is a candidate for the structural material in the next generation nuclear plants. Use of SiC/SiC composites is expected to increase the operation temperature of system over 1000 °C. For the high temperature system, refractory metals are planned to be used for several components. Tungsten is a candidate of armor on the divertor component in fusion, and is planned to be used for an upper-end plug of SiC/SiC fuel pin in a Gas cooled Fast Reactor (GFR). Joining technique of the SiC/SiC composites and tungsten is an important issue for nuclear systems in future. Nano-Infiltration and Transient Eutectoid (NITE) method is able to provide dense stable and high strength SiC/SiC composites having high resistance against pressure at elevated temperature, a diffusion bonding technique is usable to join the materials. Present research produces a NITE-SiC/SiC composite and tungsten as the similar dimension as a projected cladding tube of fuel pin for GFR using diffusion bonding, and investigated microstructure and mechanical properties.

  20. Status of Simulations for the Cyclotron Laboratory at the Institute for Nuclear Research and Nuclear Energy

    NASA Astrophysics Data System (ADS)

    Asova, G.; Goutev, N.; Tonev, D.; Artinyan, A.

    2018-05-01

    The Institute for Nuclear Research and Nuclear Energy is preparing to operate a high-power cyclotron for production of radioisotopes for nuclear medicine, research in radiochemistry, radiobiology, nuclear physics, solid state physics. The cyclotron is a TR24 produced by ASCI, Canada, capable to deliver proton beams in the energy range of 15 to 24 MeV with current as high as 400 µA. Multiple extraction lines can be fed. The primary goal of the project is the production of PET and SPECT isotopes as 18F, 67,68Ga, 99mTc, etc. This contribution reports the status of the project. Design considerations for the cyclotron vault will be discussed for some of the target radioisotopes.

  1. NRC Licensing Status Summary Report for NGNP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moe, Wayne Leland; Kinsey, James Carl

    2014-11-01

    The Next Generation Nuclear Plant (NGNP) Project, initiated at Idaho National Laboratory (INL) by the U.S. Department of Energy (DOE) pursuant to provisions of the Energy Policy Act of 2005, is based on research and development activities supported by the Department of Energy Generation IV Nuclear Energy Systems Initiative. The principal objective of the NGNP Project is to support commercialization of high temperature gas-cooled reactor (HTGR) technology. The HTGR is a helium-cooled and graphite moderated reactor that can operate at temperatures much higher than those of conventional light water reactor (LWR) technologies. The NGNP will be licensed for construction andmore » operation by the Nuclear Regulatory Commission (NRC). However, not all elements of current regulations (and their related implementation guidance) can be applied to HTGR technology at this time. Certain policies established during past LWR licensing actions must be realigned to properly accommodate advanced HTGR technology. A strategy for licensing HTGR technology was developed and executed through the cooperative effort of DOE and the NRC through the NGNP Project. The purpose of this report is to provide a snapshot of the current status of the still evolving pre-license application regulatory framework relative to commercial HTGR technology deployment in the U.S. The following discussion focuses on (1) describing what has been accomplished by the NGNP Project up to the time of this report, and (2) providing observations and recommendations concerning actions that remain to be accomplished to enable the safe and timely licensing of a commercial HTGR facility in the U.S.« less

  2. An audit of manufacturers' implementation of reconstruction filters in single-photon emission computed tomography.

    PubMed

    Lawson, Richard S; White, Duncan; Cade, Sarah C; Hall, David O; Kenny, Bob; Knight, Andy; Livieratos, Lefteris; Nijran, Kuldip

    2013-08-01

    The Nuclear Medicine Software Quality Group of the Institute of Physics and Engineering in Medicine has conducted an audit to compare the ways in which different manufacturers implement the filters used in single-photon emission computed tomography. The aim of the audit was to identify differences between manufacturers' implementations of the same filter and to find means for converting parameters between systems. Computer-generated data representing projection images of an ideal test object were processed using seven different commercial nuclear medicine systems. Images were reconstructed using filtered back projection and a Butter worth filter with three different cutoff frequencies and three different orders. The audit found large variations between the frequency-response curves of what were ostensibly the same filters on different systems. The differences were greater than could be explained simply by different Butter worth formulae. Measured cutoff frequencies varied between 40 and 180% of that expected. There was also occasional confusion with respect to frequency units. The audit concluded that the practical implementation of filtering, such as the size of the kernel, has a profound effect on the results, producing large differences between systems. Nevertheless, this work shows how users can quantify the frequency response of their own systems so that it will be possible to compare two systems in order to find filter parameters on each that produce equivalent results. These findings will also make it easier for users to replicate filters similar to other published results, even if they are using a different computer system.

  3. REDUCTIONS WITHOUT REGRET: DEFINING THE NEEDED CAPABILITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swegle, J.; Tincher, D.

    This is the second of three papers (in addition to an introductory summary) aimed at providing a framework for evaluating future reductions or modifications of the U.S. nuclear force, first by considering previous instances in which nuclear-force capabilities were eliminated; second by looking forward into at least the foreseeable future at the features of global and regional deterrence (recognizing that new weapon systems currently projected will have expected lifetimes stretching beyond our ability to predict the future); and third by providing examples of past or possible undesirable outcomes in the shaping of the future nuclear force, as well as somemore » closing thoughts for the future. This paper begins with a discussion of the current nuclear force and the plans and procurement programs for the modernization of that force. Current weapon systems and warheads were conceived and built decades ago, and procurement programs have begun for the modernization or replacement of major elements of the nuclear force: the heavy bomber, the air-launched cruise missile, the ICBMs, and the ballistic-missile submarines. In addition, the Nuclear Weapons Council has approved a new framework for nuclear-warhead life extension not fully fleshed out yet that aims to reduce the current number of nuclear explosives from seven to five, the so-called 3+2 vision. This vision includes three interoperable warheads for both ICBMs and SLBMs (thus eliminating one backup weapon) and two warheads for aircraft delivery (one gravity bomb and one cruise-missile, eliminating a second backup gravity bomb). This paper also includes a discussion of the current and near-term nuclear-deterrence mission, both global and regional, and offers some observations on future of the strategic deterrence mission and the challenges of regional and extended nuclear deterrence.« less

  4. Experience of the nuclear reactors (environmental impact assessment for decommissioning) regulations 1999, as amended, in Great Britain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Sarah; Mattress, Elaine; Nettleton, Jo

    2007-07-01

    Available in abstract form only. Full text of publication follows: In Great Britain, the Nuclear Reactors (Environmental Impact Assessment for Decommissioning) Regulations 1999 as amended 2006 (EIADR) requires assessment of the potential environmental impacts of projects to decommission nuclear power stations and reactors. The Health and Safety Executive (HSE) is the competent authority for EIADR. The EIADR implement European Council Directive 85/337/EEC (the EIA Directive) as amended by Council Directive 97/11/EC and Council Directive 2003/35/EC the (Public Participation Directive). The purpose of the EIADR is to assess environmental effects of nuclear reactor decommissioning projects, involve the public through consultation, andmore » make the decision-making process open and transparent. Under the regulations, any licensee wishing to begin to decommission or dismantle a nuclear power station, or other civil nuclear reactor, must apply to HSE for consent to carry out the decommissioning project, undertake an environmental impact assessment and prepare an environmental statement that summarises the environmental effects of the project. HSE will consult on the environmental statement. So far under the EIADR there have been six consents granted for decommissioning projects for Magnox Power Stations. These stations have been required as a condition of consent to submit an Environmental Management Plan on an annual basis. This allows the project to be continually reviewed and assessed to ensure that the licensee can provide detail as agreed during the review of the environmental statement and that any changes to mitigation measures are detailed. This paper summarises the EIADR process, giving particular emphasis to public participation and the decision making process, and discusses HSE's experience of EIADR with reference to specific environmental issues raised by stakeholders and current developments. (authors)« less

  5. Characterizing X-ray Attenuation of Containerized Cargo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birrer, N.; Divin, C.; Glenn, S.

    X-ray inspection systems can be used to detect radiological and nuclear threats in imported cargo. In order to better understand performance of these systems, the attenuation characteristics of imported cargo need to be determined. This project focused on developing image processing algorithms for segmenting cargo and using x-ray attenuation to quantify equivalent steel thickness to determine cargo density. These algorithms were applied to over 450 cargo radiographs. The results are summarized in this report.

  6. FY 1999 Laboratory Directed Research and Development annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PJ Hughes

    2000-06-13

    A short synopsis of each project is given covering the following main areas of research and development: Atmospheric sciences; Biotechnology; Chemical and instrumentation analysis; Computer and information science; Design and manufacture engineering; Ecological science; Electronics and sensors; Experimental technology; Health protection and dosimetry; Hydrologic and geologic science; Marine sciences; Materials science; Nuclear science and engineering; Process science and engineering; Sociotechnical systems analysis; Statistics and applied mathematics; and Thermal and energy systems.

  7. Off-Gas Treatment: Evaluation of Nano-structured Sorbents for Selective Removal of Contaminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Utgikar, Vivek; Aston, D. Eric; Sabharwall, Piyush

    Nuclear energy has practically unlimited potential to satisfy world’s energy needs for the foreseeable future. However, a comprehensive and reliable solution must be devised to address the key issues related to nuclear waste management in order to develop nuclear energy in a safe and responsible manner. Capture and immobilization of volatile radionuclides from nuclear operations is an essential component of an integrated nuclear waste management system. The majority of emissions occur during the treatment of the used nuclear fuel (UNF) as it is chopped and dissolved in the boiling nitric acid for subsequent extraction steps. The radionuclides contained in themore » off-gas include 129I, 85Kr, tritium (3H) and 14C. Several alternative technologies have been investigated, with effective adsorption based processes holding the most potential for controlling these emissions, which is highly desirable for the development of the advanced fuel cycle. Proposed project is aimed at developing using a nanosorbent-based process for the capture and immobilization of the radionuclides of interest.« less

  8. Development of a moderator system for the High Brilliance Neutron Source project

    NASA Astrophysics Data System (ADS)

    Dabruck, J. P.; Cronert, T.; Rücker, U.; Bessler, Y.; Klaus, M.; Lange, C.; Butzek, M.; Hansen, W.; Nabbi, R.; Brückel, T.

    2016-11-01

    The project for an accelerator based high brilliance neutron source HBS driven by Forschungszentrum Jülich forsees the use of the nuclear Be(p,n) or Be(d,n) reaction with accelerated particles in the lower MeV energy range. The lower neutron production compared to spallation has to be compensated by improving the neutron extraction process and optimizing the brilliance. Design and optimiziation of the moderator system are conducted with MCNP and will be validated with measurements at the AKR-2 training reactor by means of a prototype assembly where, e.g., the effect of different liquid H2 ortho/para ratios will be investigated and controlled in realtime via online heat capacity measurements.

  9. What Are the Legal and Policy Implications of Conducting Preemption and Interdiction Against a Weapons of Mass Destruction?

    DTIC Science & Technology

    2002-01-01

    Manhattan project , gaseous diffusion plant, or even a weapons program. It will be used heavily in chapters 4 and 5. Both The Making of the Atomic Bomb...requirement for secrecy surrounding the Manhattan project and the lingering requirement for secrecy regarding nuclear weapons design. The application to the...another MANHATTAN Project ” to produce a nuclear device (McPhee 1973, 123-4, 136). Scientists who worked on the Manhattan Project maintain that

  10. Defense Small Business Innovation Research Program (SBIR). Volume 4. Defense Agency Projects, Abstracts of Phase 1 Awards from FY 1989 SBIR Solicitation

    DTIC Science & Technology

    1990-04-01

    EXPLOSIVE ACTIVITY . FINDINGS AND MEASUREMENTS FROM EACH IMAGE WILL BE COMBINED IN A GEOGRAPHIC INFORMATION DATA BASE . VARIOUS IMAGE AND MAP PROJECTS WILL BE...PROPOSAL OF LAND MINES DETECTION BY A NUCLEAR ACTIVATION METHOD IS BASED ON A NEW EXTREMELY INTENSE, COMPACT PULSED SOURCE OF 14.1 MeV NEUTRONS (WITH A...CONVENTIONAL KNOWLEDGE- BASED SYSTEMS TOPIC# 38 OFFICE: PM/SBIR IDENT#: 33862 CASE- BASED REASONING (CBR) REPRESENTS A POWERFUL NEW PARADIGM FOR BUILDING EXPERT

  11. New/Future Approaches to Explosive/Chemicals Detection

    NASA Astrophysics Data System (ADS)

    Valkovic, Vlado

    2009-03-01

    Although there has been some reported progress in many systems used for threat material detection and identification a promising one seems to be the use of tagged fast neutrons generated in d+t→α+n nuclear reaction. Among others, EU-FP6 project EURITRACK has been a successful demonstration of the use of tagged neutrons for ship container inspections. It has been shown that the deployment of the same technology under-water is a feasibility to be realized in the near future (i.e. EU-FP7 project UNCOSS).

  12. Investigation of a Novel NDE Method for Monitoring Thermomechanical Damage and Microstructure Evolution in Ferritic-Martensitic Steels for Generation IV Nuclear Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagy, Peter

    2013-09-30

    The main goal of the proposed project is the development of validated nondestructive evaluation (NDE) techniques for in situ monitoring of ferritic-martensitic steels like Grade 91 9Cr-1Mo, which are candidate materials for Generation IV nuclear energy structural components operating at temperatures up to ~650{degree}C and for steam-generator tubing for sodium-cooled fast reactors. Full assessment of thermomechanical damage requires a clear separation between thermally activated microstructural evolution and creep damage caused by simultaneous mechanical stress. Creep damage can be classified as "negligible" creep without significant plastic strain and "ordinary" creep of the primary, secondary, and tertiary kind that is accompanied bymore » significant plastic deformation and/or cavity nucleation and growth. Under negligible creep conditions of interest in this project, minimal or no plastic strain occurs, and the accumulation of creep damage does not significantly reduce the fatigue life of a structural component so that low-temperature design rules, such as the ASME Section III, Subsection NB, can be applied with confidence. The proposed research project will utilize a multifaceted approach in which the feasibility of electrical conductivity and thermo-electric monitoring methods is researched and coupled with detailed post-thermal/creep exposure characterization of microstructural changes and damage processes using state-of-the-art electron microscopy techniques, with the aim of establishing the most effective nondestructive materials evaluation technique for particular degradation modes in high-temperature alloys that are candidates for use in the Next Generation Nuclear Plant (NGNP) as well as providing the necessary mechanism-based underpinnings for relating the two. Only techniques suitable for practical application in situ will be considered. As the project evolves and results accumulate, we will also study the use of this technique for monitoring other GEN IV materials. Through the results obtained from this integrated materials behavior and NDE study, new insight will be gained into the best nondestructive creep and microstructure monitoring methods for the particular mechanisms identified in these materials. The proposed project includes collaboration with a national laboratory partner and the results will also serve as a foundation to guide the efforts of scientists in the DOE laboratory, university, and industrial communities concerned with the technological challenges of monitoring creep and microstructural evolution in materials planned to be used in Generation IV Nuclear Energy Systems.« less

  13. Development of Curricula for Nuclear Radiation Protection, Nuclear Instrumentation, and Nuclear Materials Processing Technologies. Final Report.

    ERIC Educational Resources Information Center

    Hull, Daniel M.

    A study was conducted to assist two-year postsecondary educational institutions in providing technical specialty courses for preparing nuclear technicians. As a result of project activities, curricula have been developed for five categories of nuclear technicians and operators: (1) radiation protection technician, (2) nuclear instrumentation and…

  14. Nuclear targets within the project of solving CHAllenges in Nuclear DAta

    NASA Astrophysics Data System (ADS)

    Sibbens, Goedele; Moens, André; Vanleeuw, David; Lewis, David; Aregbe, Yetunde

    2017-09-01

    In the frame of the European Commission funded integrated project CHANDA (solving CHAllenges in Nuclear DAta) the importance of nuclear target preparation for the accurateness and reliability of experimental nuclear data is set in a dedicated work package (WP3). The global aim of WP3 is the development of a network for nuclear target preparation and characterization, enabling to coordinate the target production corresponding to the experimental requirements. Therefore, a set of tasks within the work package needs to be followed. Primarily, an inventory of target related facilities and radioisotope providers was created. In the next step a priority list of target requests was made in agreement with the target user considering the technical specification, the scheduled experiments and the availability of the target laboratories. A set of target requests has been assigned to the Target Preparation laboratory of the European Commission - Joint Research Centre - Directorate G (EC-JRC.G.2) in Geel, Belgium. This contribution gives an overview of the nuclear targets that are produced within the CHANDA project. The equipment and techniques available for the preparation and characterization of uranium, plutonium and neptunium layers with an areal density ranging from 60 to 205 μg cm-2 will be emphasized.

  15. An Overview of the Nuclear Electric Xenon Ion System (NEXIS) Activity

    NASA Technical Reports Server (NTRS)

    Randolph, Thomas M.; Polk, James E., Jr.

    2004-01-01

    The Nuclear Electric Xenon Ion System (NEXIS) research and development activity within NASA's Project Prometheus, was one of three proposals selected by NASA to develop thruster technologies for long life, high power, high specific impulse nuclear electric propulsion systems that would enable more robust and ambitious science exploration missions to the outer solar system. NEXIS technology represents a dramatic improvement in the state-of-the-art for ion propulsion and is designed to achieve propellant throughput capabilities >= 2000 kg and efficiencies >= 78% while increasing the thruster power to >= 20 kW and specific impulse to >= 6000 s. The NEXIS technology uses erosion resistant carbon-carbon grids, a graphite keeper, a new reservoir hollow cathode, a 65-cm diameter chamber masked to produce a 57-cm diameter ion beam, and a shared neutralizer architecture to achieve these goals. The accomplishments of the NEXIS activity so far include performance testing of a laboratory model thruster, successful completion of a proof of concept reservoir cathode 2000 hour wear test, structural and thermal analysis of a completed development model thruster design, fabrication of most of the development model piece parts, and the nearly complete vacuum facility modifications to allow long duration wear testing of high power ion thrusters.

  16. New Capabilities for Hostile Environments on Z Grand Challenge LDRD - Final Status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuneo, Michael E.; Griffin, P. J.; Balch, D. K.

    2016-10-01

    The purpose of this project was to develop new physical simulation capabilities in order to support the science-based qualification of nonnuclear weapon components in hostile radiation environments. The project contributes directly to the goals of maintaining a safe, secure, and effective US nuclear stockpile, maintaining strategic deterrence at lower nuclear force levels, extending the life of the nuclear deterrent capability, and to be ready for technological surprise.

  17. Long-term storage facility for reactor compartments in Sayda Bay - German support for utilization of nuclear submarines in Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolff, Dietmar; Voelzke, Holger; Weber, Wolfgang

    2007-07-01

    The German-Russian project that is part of the G8 initiative on Global Partnership Against the Spread of Weapons and Materials of Mass Destruction focuses on the speedy construction of a land-based interim storage facility for nuclear submarine reactor compartments at Sayda Bay near Murmansk. This project includes the required infrastructure facilities for long-term storage of about 150 reactor compartments for a period of about 70 years. The interim storage facility is a precondition for effective activities of decommissioning and dismantlement of almost all nuclear-powered submarines of the Russian Northern Fleet. The project also includes the establishment of a computer-assisted wastemore » monitoring system. In addition, the project involves clearing Sayda Bay of other shipwrecks of the Russian navy. On the German side the project is carried out by the Energiewerke Nord GmbH (EWN) on behalf of the Federal Ministry of Economics and Labour (BMWi). On the Russian side the Kurchatov Institute holds the project management of the long-term interim storage facility in Sayda Bay, whilst the Nerpa Shipyard, which is about 25 km away from the storage facility, is dismantling the submarines and preparing the reactor compartments for long-term interim storage. The technical monitoring of the German part of this project, being implemented by BMWi, is the responsibility of the Federal Institute for Materials Research and Testing (BAM). This paper gives an overview of the German-Russian project and a brief description of solutions for nuclear submarine disposal in other countries. At Nerpa shipyard, being refurbished with logistic and technical support from Germany, the reactor compartments are sealed by welding, provided with biological shielding, subjected to surface treatment and conservation measures. Using floating docks, a tugboat tows the reactor compartments from Nerpa shipyard to the interim storage facility at Sayda Bay where they will be left on the on-shore concrete storage space to allow the radioactivity to decay. For transport of reactor compartments at the shipyard, at the dock and at the storage facility, hydraulic keel blocks, developed and supplied by German subcontractors, are used. In July 2006 the first stage of the reactor compartment storage facility was commissioned and the first seven reactor compartments have been delivered from Nerpa shipyard. Following transports of reactor compartments to the storage facility are expected in 2007. (authors)« less

  18. Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emrich, William J. Jr.

    2008-01-21

    To support a potential future development of a nuclear thermal rocket engine, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The test device simulates the environmental conditions (minus the radiation) to which nuclear rocket fuel components could be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner as to accurately reproduce the temperatures and heat fluxes normally expected to occur as a result of nuclear fission while at the same time being exposed to flowingmore » hydrogen. This project is referred to as the Nuclear Thermal Rocket Element Environment Simulator or NTREES. The NTREES device is located at the Marshall Space flight Center in a laboratory which has been modified to accommodate the high powers required to heat the test articles to the required temperatures and to handle the gaseous hydrogen flow required for the tests. Other modifications to the laboratory include the installation of a nitrogen gas supply system and a cooling water supply system. During the design and construction of the facility, every effort was made to comply with all pertinent regulations to provide assurance that the facility could be operated in a safe and efficient manner. The NTREES system can currently supply up to 50 kW of inductive heating to the fuel test articles, although the facility has been sized to eventually allow test article heating levels of up to several megawatts.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, H. C.; Chen, K.; Liu, Y. Y.

    The US Department of Energy (DOE) [Environmental Management (EM), Office of Packaging and Transportation (EM-45)] Packaging Certification Program (PCP) has developed a radiofrequency identification (RFID) tracking and monitoring system for the management of nuclear materials packages during storage and transportation. The system, developed by the PCP team at Argonne National Laboratory, involves hardware modification, application software development, secured database and web server development, and irradiation experiments. In April 2008, Argonne tested key features of the RFID tracking and monitoring system in a weeklong, 1700 mile (2736 km) demonstration employing 14 empty type B fissile material drums of three designs (modelsmore » 9975, 9977 and ES-3100) that have been certified for shipment by the DOE and the US Nuclear Regulatory Commission. The demonstration successfully integrated global positioning system (GPS) technology for vehicle tracking, satellite/cellular (general packet radio service, or GPRS) technologies for wireless communication, and active RFID tags with multiple sensors (seal integrity, shock, temperature, humidity and battery status) on drums. In addition, the demonstration integrated geographic information system (GIS) technology with automatic alarm notifications of incidents and generated buffer zone reports for emergency response and management of staged incidents. The demonstration was sponsored by EM and the US National Nuclear Security Administration, with the participation of Argonne, Savannah River and Oak Ridge National Laboratories. Over 50 authorised stakeholders across the country observed the demonstration via secured Internet access. The DOE PCP and national laboratories are working on several RFID system implementation projects at selected DOE sites, as well as continuing device and systems development and widening applications beyond DOE sites and possibly beyond nuclear materials to include other radioactive materials.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hules, John

    This 1998 annual report from the National Scientific Energy Research Computing Center (NERSC) presents the year in review of the following categories: Computational Science; Computer Science and Applied Mathematics; and Systems and Services. Also presented are science highlights in the following categories: Basic Energy Sciences; Biological and Environmental Research; Fusion Energy Sciences; High Energy and Nuclear Physics; and Advanced Scientific Computing Research and Other Projects.

  1. Predator Force Structure Changes at Indian Springs Air Force Auxiliary Field, Nevada Environmental Assessment

    DTIC Science & Technology

    2003-07-01

    Office Agency for Nuclear Projects Energy Agriculture Business & Industry Minerals Economic Development Tourism Fire Marshal Human Resources...Agriculture Business & Industry Minerals Economic Development Tourism Fire Marshal Human Resources A in Services Indian Commission Colorado...Data EIAP Environmental Impact Analysis Process EMCS Central Energy Management System ERP Environmental Restoration Program ESA Endangered

  2. Future Mission Proposal Opportunities: Discovery, New Frontiers, and Project Prometheus

    NASA Technical Reports Server (NTRS)

    Niebur, S. M.; Morgan, T. H.; Niebur, C. S.

    2003-01-01

    The NASA Office of Space Science is expanding opportunities to propose missions to comets, asteroids, and other solar system targets. The Discovery Program continues to be popular, with two sample return missions, Stardust and Genesis, currently in operation. The New Frontiers Program, a new proposal opportunity modeled on the successful Discovery Program, begins this year with the release of its first Announcement of Opportunity. Project Prometheus, a program to develop nuclear electric power and propulsion technology intended to enable a new class of high-power, high-capability investigations, is a third opportunity to propose solar system exploration. All three classes of mission include a commitment to provide data to the Planetary Data System, any samples to the NASA Curatorial Facility at Johnson Space Center, and programs for education and public outreach.

  3. Atomic approximation to the projection on electronic states in the Douglas-Kroll-Hess approach to the relativistic Kohn-Sham method.

    PubMed

    Matveev, Alexei V; Rösch, Notker

    2008-06-28

    We suggest an approximate relativistic model for economical all-electron calculations on molecular systems that exploits an atomic ansatz for the relativistic projection transformation. With such a choice, the projection transformation matrix is by definition both transferable and independent of the geometry. The formulation is flexible with regard to the level at which the projection transformation is approximated; we employ the free-particle Foldy-Wouthuysen and the second-order Douglas-Kroll-Hess variants. The (atomic) infinite-order decoupling scheme shows little effect on structural parameters in scalar-relativistic calculations; also, the use of a screened nuclear potential in the definition of the projection transformation shows hardly any effect in the context of the present work. Applications to structural and energetic parameters of various systems (diatomics AuH, AuCl, and Au(2), two structural isomers of Ir(4), and uranyl dication UO(2) (2+) solvated by 3-6 water ligands) show that the atomic approximation to the conventional second-order Douglas-Kroll-Hess projection (ADKH) transformation yields highly accurate results at substantial computational savings, in particular, when calculating energy derivatives of larger systems. The size-dependence of the intrinsic error of the ADKH method in extended systems of heavy elements is analyzed for the atomization energies of Pd(n) clusters (n

  4. Structural Health Monitoring of Nuclear Spent Fuel Storage Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Lingyu

    Interim storage of spent nuclear fuel from reactor sites has gained additional importance and urgency for resolving waste-management-related technical issues. To ensure that nuclear power remains clean energy, monitoring has been identified by DOE as a high priority cross-cutting need, necessary to determine and predict the degradation state of the systems, structures, and components (SSCs) important to safety (ITS). Therefore, nondestructive structural condition monitoring becomes a need to be installed on existing or to be integrated into future storage system to quantify the state of health or to guarantee the safe operation of nuclear power plants (NPPs) during their extendedmore » life span. In this project, the lead university and the collaborating national laboratory teamed to develop a nuclear structural health monitoring (n-SHM) system based on in-situ piezoelectric sensing technologies that can monitor structural degradation and aging for nuclear spent fuel DCSS and similar structures. We also aimed to identify and quantify possible influences of nuclear spent fuel environment (temperature and radiation) to the piezoelectric sensor system and come up with adequate solutions and guidelines therefore. We have therefore developed analytical model for piezoelectric based n-SHM methods, with considerations of temperature and irradiation influence on the model of sensing and algorithms in acoustic emission (AE), guided ultrasonic waves (GUW), and electromechanical impedance spectroscopy (EMIS). On the other side, experimentally the temperature and irradiation influence on the piezoelectric sensors and sensing capabilities were investigated. Both short-term and long-term irradiation investigation with our collaborating national laboratory were performed. Moreover, we developed multi-modal sensing, validated in laboratory setup, and conducted the testing on the We performed multi-modal sensing development, verification and validation tests on very complex structures including a medium-scale vacuum drying chamber and a small-scale mockup canister available for the desired testing. Our work developed the potential candidate for long term structural health monitoring of spent fuel canister through piezoelectric wafer sensors and provided the sensing methodologies based on AE and GUW methodologies. It overall provides an innovative system and methodology for enhancing the safe operation of nuclear power plant. All major accomplishments planned in the original proposal were successfully achieved.« less

  5. Hanford analytical sample projections FY 1998--FY 2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joyce, S.M.

    1998-02-12

    Analytical Services projections are compiled for the Hanford site based on inputs from the major programs for the years 1998 through 2002. Projections are categorized by radiation level, protocol, sample matrix and program. Analyses requirements are also presented. This document summarizes the Hanford sample projections for fiscal years 1998 to 2002. Sample projections are based on inputs submitted to Analytical Services covering Environmental Restoration, Tank Waste Remediation Systems (TWRS), Solid Waste, Liquid Effluents, Spent Nuclear Fuels, Transition Projects, Site Monitoring, Industrial Hygiene, Analytical Services and miscellaneous Hanford support activities. In addition, details on laboratory scale technology (development) work, Sample Management,more » and Data Management activities are included. This information will be used by Hanford Analytical Services (HAS) and the Sample Management Working Group (SMWG) to assure that laboratories and resources are available and effectively utilized to meet these documented needs.« less

  6. Application of Microprocessor-Based Equipment in Nuclear Power Plants - Technical Basis for a Qualification Methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korsah, K.

    This document (1) summarizes the most significant findings of the ''Qualification of Advanced Instrumentation and Control (I&C) Systems'' program initiated by the Nuclear Regulatory Commission (NRC); (2) documents a comparative analysis of U.S. and European qualification standards; and (3) provides recommendations for enhancing regulatory guidance for environmental qualification of microprocessor-based safety-related systems. Safety-related I&C system upgrades of present-day nuclear power plants, as well as I&C systems of Advanced Light-Water Reactors (ALWRs), are expected to make increasing use of microprocessor-based technology. The Nuclear Regulatory Commission (NRC) recognized that the use of such technology may pose environmental qualification challenges different from current,more » analog-based I&C systems. Hence, it initiated the ''Qualification of Advanced Instrumentation and Control Systems'' program. The objectives of this confirmatory research project are to (1) identify any unique environmental-stress-related failure modes posed by digital technologies and their potential impact on the safety systems and (2) develop the technical basis for regulatory guidance using these findings. Previous findings from this study have been documented in several technical reports. This final report in the series documents a comparative analysis of two environmental qualification standards--Institute of Electrical and Electronics Engineers (IEEE) Std 323-1983 and International Electrotechnical Commission (IEC) 60780 (1998)--and provides recommendations for environmental qualification of microprocessor-based systems based on this analysis as well as on the findings documented in the previous reports. The two standards were chosen for this analysis because IEEE 323 is the standard used in the U.S. for the qualification of safety-related equipment in nuclear power plants, and IEC 60780 is its European counterpart. In addition, the IEC document was published in 1998, and should reflect any new qualification concerns, from the European perspective, with regard to the use of microprocessor-based safety systems in power plants.« less

  7. A discussion on the methodology for calculating radiological and toxicological consequences for the spent nuclear fuel project at the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RITTMANN, P.D.

    1999-07-14

    This report contains technical information used to determine accident consequences for the Spent Nuclear Fuel Project safety documents. It does not determine accident consequences or describe specific accident scenarios, but instead provides generic information.

  8. 48 CFR 9903.302-4 - Illustrations of changes which do not meet the definition of “Change to a cost accounting practice.”

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... operated for the purpose of doing research for development of products related to nuclear energy (e) The projects and expenses related to nuclear energy projects have been terminated. No transfer of these...

  9. 48 CFR 9903.302-4 - Illustrations of changes which do not meet the definition of “Change to a cost accounting practice.”

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... operated for the purpose of doing research for development of products related to nuclear energy (e) The projects and expenses related to nuclear energy projects have been terminated. No transfer of these...

  10. 48 CFR 9903.302-4 - Illustrations of changes which do not meet the definition of “Change to a cost accounting practice.”

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... operated for the purpose of doing research for development of products related to nuclear energy (e) The projects and expenses related to nuclear energy projects have been terminated. No transfer of these...

  11. 48 CFR 9903.302-4 - Illustrations of changes which do not meet the definition of “Change to a cost accounting practice.”

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... operated for the purpose of doing research for development of products related to nuclear energy (e) The projects and expenses related to nuclear energy projects have been terminated. No transfer of these...

  12. National Security and the U.S. Naval Research Laboratory, Seventy Years of Science for the Navy and the Nation (1923-1993)

    DTIC Science & Technology

    1993-03-29

    21 The Manhattan Project ............................................ 21 Nuclear Submarine Propulsion...SCIENCE AND TECHNOLOGY Nuclear Science and Technology The Manhattan Project NRL was the first research center that General Leslie Groves visited when he...took charge of the Manhattan Project in September 1942. The Laboratory at that time had the distinction of being the first U.S. government agency to

  13. 78 FR 66785 - Korea Hydro and Nuclear Power Co., Ltd., and Korea Electric Power Corporation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-06

    ... NUCLEAR REGULATORY COMMISSION [Project No. 0782; NRC-2013-0244] Korea Hydro and Nuclear Power Co., Ltd., and Korea Electric Power Corporation AGENCY: Nuclear Regulatory Commission. ACTION: Notice of receipt; availability. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) staff acknowledges receipt of...

  14. Lunar orbiting microwave beam power system

    NASA Technical Reports Server (NTRS)

    Fay, Edgar H.; Cull, Ronald C.

    1990-01-01

    A microwave beam power system using lunar orbiting solar powered satellite(s) and surface rectenna(s) was investigated as a possible energy source for the Moon's surface. The concept has the potential of reduced system mass by placing the power source in orbit. This can greatly reduce and/or eliminate the 14 day energy storage requirement of a lunar surface solar system. Also propellants required to de-orbit to the surface are greatly reduced. To determine the practicality of the concept and the most important factors, a zero-th order feasibility analysis was performed. Three different operational scenarios employing state of the art technology and forecasts for two different sets of advanced technologies were investigated. To reduce the complexity of the problem, satellite(s) were assumed in circular equatorial orbits around the Moon, supplying continuous power to a single equatorial base through a fixed horizontal rectenna on the surface. State of the art technology yielded specific masses greater than 2500 kg/kw, well above projections for surface systems. Using advanced technologies the specific masses are on the order of 100 kg/kw which is within the range of projections for surface nuclear (20 kg/kw) and solar systems (500 kg/kw). Further studies examining optimization of the scenarios, other technologies such as lasers transmitters and nuclear sources, and operational issues such as logistics, maintenance and support are being carried out to support the Space Exploration Initiative (SEI) to the Moon and Mars.

  15. A digital seismogram archive of nuclear explosion signals, recorded at the Borovoye Geophysical Observatory, Kazakhstan, from 1966 to 1996

    DOE PAGES

    An, Vadim A.; Ovtchinnikov, Vladimir M.; Kaazik, Pyotr B.; ...

    2015-03-27

    Seismologists from Kazakhstan, Russia, and the United States have rescued the Soviet-era archive of nuclear explosion seismograms recorded at Borovoye in northern Kazakhstan during the period 1966–1996. The signals had been stored on about 8000 magnetic tapes, which were held at the recording observatory. After hundreds of man-years of work, these digital waveforms together with significant metadata are now available via the project URL, namely http://www.ldeo.columbia.edu/res/pi/Monitoring/Data/ as a modern open database, of use to diverse communities. Three different sets of recording systems were operated at Borovoye, each using several different seismometers and different gain levels. For some explosions, more thanmore » twenty different channels of data are available. A first data release, in 2001, contained numerous glitches and lacked many instrument responses, but could still be used for measuring accurate arrival times and for comparison of the strengths of different types of seismic waves. The project URL also links to our second major data release, for nuclear explosions in Eurasia recorded in Borovoye, in which the data have been deglitched, all instrument responses have been included, and recording systems are described in detail. This second dataset consists of more than 3700 waveforms (digital seismograms) from almost 500 nuclear explosions in Eurasia, many of them recorded at regional distances. It is important as a training set for the development and evaluation of seismological methods of discriminating between earthquakes and underground explosions, and can be used for assessment of three-dimensional models of the Earth’s interior structure.« less

  16. Metrology for decommissioning nuclear facilities: Partial outcomes of joint research project within the European Metrology Research Program.

    PubMed

    Suran, Jiri; Kovar, Petr; Smoldasova, Jana; Solc, Jaroslav; Van Ammel, Raf; Garcia Miranda, Maria; Russell, Ben; Arnold, Dirk; Zapata-García, Daniel; Boden, Sven; Rogiers, Bart; Sand, Johan; Peräjärvi, Kari; Holm, Philip; Hay, Bruno; Failleau, Guillaume; Plumeri, Stephane; Laurent Beck, Yves; Grisa, Tomas

    2018-04-01

    Decommissioning of nuclear facilities incurs high costs regarding the accurate characterisation and correct disposal of the decommissioned materials. Therefore, there is a need for the implementation of new and traceable measurement technologies to select the appropriate release or disposal route of radioactive wastes. This paper addresses some of the innovative outcomes of the project "Metrology for Decommissioning Nuclear Facilities" related to mapping of contamination inside nuclear facilities, waste clearance measurement, Raman distributed temperature sensing for long term repository integrity monitoring and validation of radiochemical procedures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Conference on Real-Time Computer Applications in Nuclear, Particle and Plasma Physics, 6th, Williamsburg, VA, May 15-19, 1989, Proceedings

    NASA Technical Reports Server (NTRS)

    Pordes, Ruth (Editor)

    1989-01-01

    Papers on real-time computer applications in nuclear, particle, and plasma physics are presented, covering topics such as expert systems tactics in testing FASTBUS segment interconnect modules, trigger control in a high energy physcis experiment, the FASTBUS read-out system for the Aleph time projection chamber, a multiprocessor data acquisition systems, DAQ software architecture for Aleph, a VME multiprocessor system for plasma control at the JT-60 upgrade, and a multiasking, multisinked, multiprocessor data acquisition front end. Other topics include real-time data reduction using a microVAX processor, a transputer based coprocessor for VEDAS, simulation of a macropipelined multi-CPU event processor for use in FASTBUS, a distributed VME control system for the LISA superconducting Linac, a distributed system for laboratory process automation, and a distributed system for laboratory process automation. Additional topics include a structure macro assembler for the event handler, a data acquisition and control system for Thomson scattering on ATF, remote procedure execution software for distributed systems, and a PC-based graphic display real-time particle beam uniformity.

  18. Online Monitoring of Concrete Structures in Nuclear Power Plants: Interim Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahadevan, Sankaran; Cai, Guowei; Agarwal, Vivek

    The existing fleet of nuclear power plants in the United States have initial operating licenses of 40 years, and many of these plants have applied for and received license extensions. As plant structures, systems, and components age, their useful life—considering both structural integrity and performance—is reduced as a result of deterioration of the materials. Assessment and management of aging concrete structures in nuclear plants require a more systematic approach than simple reliance on existing code-based design margins of safety. Structural health monitoring is required to produce actionable information regarding structural integrity that supports operational and maintenance decisions. The online monitoringmore » of concrete structures project conducted under the Advanced Instrumentation, Information, and Control Technologies Pathway of the Light Water Reactor Sustainability program at Idaho National Laboratory is seeking to develop and demonstrate capabilities for concrete structures health monitoring. Through this research project, several national laboratories and Vanderbilt University propose to develop a framework of research activities for the health monitoring of nuclear power plant concrete structures that includes the integration of four elements—damage modeling, monitoring, data analytics, and uncertainty quantification. This report briefly discusses activities in this project during October-December, 2014. The most significant activity during this period was the organizing of a two-day workshop on research needs in online monitoring of concrete structures, hosted by Vanderbilt University in November 2014. Thirty invitees from academia, industry and government participated in the workshop. The presentations and discussions at the workshop surveyed current activities related to concrete structures deterioration modeling and monitoring, and identified the challenges, knowledge gaps, and opportunities for advancing the state of the art; these discussions are summarized in this report« less

  19. NASA Project Constellation Systems Engineering Approach

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.

    2005-01-01

    NASA's Office of Exploration Systems (OExS) is organized to empower the Vision for Space Exploration with transportation systems that result in achievable, affordable, and sustainable human and robotic journeys to the Moon, Mars, and beyond. In the process of delivering these capabilities, the systems engineering function is key to implementing policies, managing mission requirements, and ensuring technical integration and verification of hardware and support systems in a timely, cost-effective manner. The OExS Development Programs Division includes three main areas: (1) human and robotic technology, (2) Project Prometheus for nuclear propulsion development, and (3) Constellation Systems for space transportation systems development, including a Crew Exploration Vehicle (CEV). Constellation Systems include Earth-to-orbit, in-space, and surface transportation systems; maintenance and science instrumentation; and robotic investigators and assistants. In parallel with development of the CEV, robotic explorers will serve as trailblazers to reduce the risk and costs of future human operations on the Moon, as well as missions to other destinations, including Mars. Additional information is included in the original extended abstract.

  20. 78 FR 4467 - UniStar Nuclear Energy, Combined License Application for Calvert Cliffs Power Plant, Unit 3...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 52-016; NRC-2008-0250] UniStar Nuclear Energy, Combined License Application for Calvert Cliffs Power Plant, Unit 3, Exemption 1.0 Background UniStar Nuclear Energy (UNE), on behalf of Calvert Cliffs Nuclear Project, LLC and UniStar Nuclear Operating Services...

  1. Implementation of Benchmarking Transportation Logistics Practices and Future Benchmarking Organizations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thrower, A.W.; Patric, J.; Keister, M.

    2008-07-01

    The purpose of the Office of Civilian Radioactive Waste Management's (OCRWM) Logistics Benchmarking Project is to identify established government and industry practices for the safe transportation of hazardous materials which can serve as a yardstick for design and operation of OCRWM's national transportation system for shipping spent nuclear fuel and high-level radioactive waste to the proposed repository at Yucca Mountain, Nevada. The project will present logistics and transportation practices and develop implementation recommendations for adaptation by the national transportation system. This paper will describe the process used to perform the initial benchmarking study, highlight interim findings, and explain how thesemore » findings are being implemented. It will also provide an overview of the next phase of benchmarking studies. The benchmarking effort will remain a high-priority activity throughout the planning and operational phases of the transportation system. The initial phase of the project focused on government transportation programs to identify those practices which are most clearly applicable to OCRWM. These Federal programs have decades of safe transportation experience, strive for excellence in operations, and implement effective stakeholder involvement, all of which parallel OCRWM's transportation mission and vision. The initial benchmarking project focused on four business processes that are critical to OCRWM's mission success, and can be incorporated into OCRWM planning and preparation in the near term. The processes examined were: transportation business model, contract management/out-sourcing, stakeholder relations, and contingency planning. More recently, OCRWM examined logistics operations of AREVA NC's Business Unit Logistics in France. The next phase of benchmarking will focus on integrated domestic and international commercial radioactive logistic operations. The prospective companies represent large scale shippers and have vast experience in safely and efficiently shipping spent nuclear fuel and other radioactive materials. Additional business processes may be examined in this phase. The findings of these benchmarking efforts will help determine the organizational structure and requirements of the national transportation system. (authors)« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, A.; Hsiung, S.M.; Chowdhury, A.H.

    Long-term stability of emplacement drifts and potential near-field fluid flow resulting from coupled effects are among the concerns for safe disposal of high-level nuclear waste (HLW). A number of factors can induce drift instability or change the near-field flow patterns. Repetitive seismic loads from earthquakes and thermal loads generated by the decay of emplaced waste are two significant factors. One of two key technical uncertainties (KTU) that can potentially pose a high risk of noncompliance with the performance objectives of 10 CFR Part 60 is the prediction of thermal-mechanical (including repetitive seismic load) effects on stability of emplacement drifts andmore » the engineered barrier system. The second KTU of concern is the prediction of thermal-mechanical-hydrological (including repetitive seismic load) effects on the host rock surrounding the engineered barrier system. The Rock Mechanics research project being conducted at the Center for Nuclear Waste Regulatory Analyses (CNWRA) is intended to address certain specific technical issues associated with these two KTUs. This research project has two major components: (i) seismic response of rock joints and a jointed rock mass and (ii) coupled thermal-mechanical-hydrological (TMH) response of a jointed rock mass surrounding the engineered barrier system (EBS). This final report summarizes the research activities concerned with the repetitive seismic load aspect of both these KTUs.« less

  3. Autonomous Control Capabilities for Space Reactor Power Systems

    NASA Astrophysics Data System (ADS)

    Wood, Richard T.; Neal, John S.; Brittain, C. Ray; Mullens, James A.

    2004-02-01

    The National Aeronautics and Space Administration's (NASA's) Project Prometheus, the Nuclear Systems Program, is investigating a possible Jupiter Icy Moons Orbiter (JIMO) mission, which would conduct in-depth studies of three of the moons of Jupiter by using a space reactor power system (SRPS) to provide energy for propulsion and spacecraft power for more than a decade. Terrestrial nuclear power plants rely upon varying degrees of direct human control and interaction for operations and maintenance over a forty to sixty year lifetime. In contrast, an SRPS is intended to provide continuous, remote, unattended operation for up to fifteen years with no maintenance. Uncertainties, rare events, degradation, and communications delays with Earth are challenges that SRPS control must accommodate. Autonomous control is needed to address these challenges and optimize the reactor control design. In this paper, we describe an autonomous control concept for generic SRPS designs. The formulation of an autonomous control concept, which includes identification of high-level functional requirements and generation of a research and development plan for enabling technologies, is among the technical activities that are being conducted under the U.S. Department of Energy's Space Reactor Technology Program in support of the NASA's Project Prometheus. The findings from this program are intended to contribute to the successful realization of the JIMO mission.

  4. Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.

    2008-01-01

    To support the eventual development of a nuclear thermal rocket engine, a state-of-the-art experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The test device simulates the environmental conditions (minus the radiation) to which nuclear rocket fuel components will be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner as to accurately reproduce the temperatures and heat fluxes normally expected to occur as a result of nuclear fission while at the same time being exposed to flowing hydrogen. This project is referred to as the Nuclear Thermal Rocket Element Environment Simulator or NTREES. The NTREES device is located at the Marshall Space flight Center in a laboratory which has been modified to accommodate the high powers required to heat the test articles to the required temperatures and to handle the gaseous hydrogen flow required for the tests. Other modifications to the laboratory include the installation of a nitrogen gas supply system and a cooling water supply system. During the design and construction of the facility, every effort was made to comply with all pertinent regulations to provide assurance that the facility could be operated in a safe and efficient manner. The NTREES system can currently supply up to 50 kW of inductive heating to the fuel test articles, although the facility has been sized to eventually allow test article heating levels of up to several megawatts.

  5. The trend of digital control system design for nuclear power plants in Korea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, S. H.; Jung, H. Y.; Yang, C. Y.

    2006-07-01

    Currently there are 20 nuclear power plants (NPPs) in operation, and 6 more units are under construction in Korea. The control systems of those NPPs have also been developed together with the technology advancement. Control systems started with On-Off control using the relay logic, had been evolved into Solid-State logic using TTL ICs, and applied with the micro-processors since the Yonggwang NPP Units 3 and 4 which started its construction in 1989. Multiplexers are also installed at the local plant areas to collect field input and to send output signals while communicating with the controllers located in the system cabinetsmore » near the main control room in order to reduce the field wiring cables. The design of the digital control system technology for the NPPs in Korea has been optimized to maximize the operability as well as the safety through the design, construction, start-up and operation experiences. Both Shin-Kori Units 1 and 2 and Shin-Wolsong Units 1 and 2 NPP projects under construction are being progressed at the same time. Digital Plant Control Systems of these projects have adopted multi-loop controllers, redundant loop configuration, and soft control system for the radwaste system. Programmable Logic Controller (PLC) and Distributed Control System (DCS) are applied with soft control system in Shin-Kori Units 3 and 4. This paper describes the evolvement of control system at the NPPs in Korea and the experience and design improvement through the observation of the latest failure of the digital control system. In addition, design concept and its trend of the digital control system being applied to the NPP in Korea are introduced. (authors)« less

  6. Deep Bore Storage of Nuclear Waste Using MMW (Millimeter Wave) Technology. Full Project Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oglesby, Kenneth D.; Woskov, Paul; Einstein, Herbert

    This DOE Nuclear STTR project DE-SC001238 investigated the use of MMW directed energy to form rock melt and steel plugs in deep wellbores to further isolate highly radioactive nuclear waste in ultra-deep basement rocks for long term storage. This current project builds upon a prior DOE project, DE-EE0005504, which developed the basic low power, low 28 GHz frequency waveguide setup, process and instruments. This research adds to our understanding of using MMW power to melt and vaporize rocks and steel/ metals and laid plans for future higher power field prototype testing. This technology also has potential for deep well drillingmore » for nuclear storage, geothermal and oil and gas industries. It also has the potential for simultaneously sealing and securing the wellbore with a thick rock melt liner as the wellbore is drilled, called 'mono-bore drilling'. This allows for higher levels of safety and protection of the environment during deep drilling operations while providing vast cost savings. The larger purpose of this project was to find answers to key questions in developing MMW technology for its many subsurface applications.« less

  7. Initial Investigation of preclinical integrated SPECT and MR imaging.

    PubMed

    Hamamura, Mark J; Ha, Seunghoon; Roeck, Werner W; Wagenaar, Douglas J; Meier, Dirk; Patt, Bradley E; Nalcioglu, Orhan

    2010-02-01

    Single-photon emission computed tomography (SPECT) can provide specific functional information while magnetic resonance imaging (MRI) can provide high-spatial resolution anatomical information as well as complementary functional information. In this study, we utilized a dual modality SPECT/MRI (MRSPECT) system to investigate the integration of SPECT and MRI for improved image accuracy. The MRSPECT system consisted of a cadmium-zinc-telluride (CZT) nuclear radiation detector interfaced with a specialized radiofrequency (RF) coil that was placed within a whole-body 4 T MRI system. The importance of proper corrections for non-uniform detector sensitivity and Lorentz force effects was demonstrated. MRI data were utilized for attenuation correction (AC) of the nuclear projection data and optimized Wiener filtering of the SPECT reconstruction for improved image accuracy. Finally, simultaneous dual-imaging of a nude mouse was performed to demonstrated the utility of co-registration for accurate localization of a radioactive source.

  8. Initial Investigation of Preclinical Integrated SPECT and MR Imaging

    PubMed Central

    Hamamura, Mark J.; Ha, Seunghoon; Roeck, Werner W.; Wagenaar, Douglas J.; Meier, Dirk; Patt, Bradley E.; Nalcioglu, Orhan

    2014-01-01

    Single-photon emission computed tomography (SPECT) can provide specific functional information while magnetic resonance imaging (MRI) can provide high-spatial resolution anatomical information as well as complementary functional information. In this study, we utilized a dual modality SPECT/MRI (MRSPECT) system to investigate the integration of SPECT and MRI for improved image accuracy. The MRSPECT system consisted of a cadmium-zinc-telluride (CZT) nuclear radiation detector interfaced with a specialized radiofrequency (RF) coil that was placed within a whole-body 4 T MRI system. The importance of proper corrections for non-uniform detector sensitivity and Lorentz force effects was demonstrated. MRI data were utilized for attenuation correction (AC) of the nuclear projection data and optimized Wiener filtering of the SPECT reconstruction for improved image accuracy. Finally, simultaneous dual-imaging of a nude mouse was performed to demonstrated the utility of co-registration for accurate localization of a radioactive source. PMID:20082527

  9. Simulation Enabled Safeguards Assessment Methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert Bean; Trond Bjornard; Thomas Larson

    2007-09-01

    It is expected that nuclear energy will be a significant component of future supplies. New facilities, operating under a strengthened international nonproliferation regime will be needed. There is good reason to believe virtual engineering applied to the facility design, as well as to the safeguards system design will reduce total project cost and improve efficiency in the design cycle. Simulation Enabled Safeguards Assessment MEthodology (SESAME) has been developed as a software package to provide this capability for nuclear reprocessing facilities. The software architecture is specifically designed for distributed computing, collaborative design efforts, and modular construction to allow step improvements inmore » functionality. Drag and drop wireframe construction allows the user to select the desired components from a component warehouse, render the system for 3D visualization, and, linked to a set of physics libraries and/or computational codes, conduct process evaluations of the system they have designed.« less

  10. An initial comparative assessment of orbital and terrestrial central power systems

    NASA Technical Reports Server (NTRS)

    Caputo, R.

    1977-01-01

    A silicon photovoltaic orbital power system, which is constructed from an earth source of materials, is compared to likely terrestrial (fossil, nuclear, and solar) approaches to central power generation around the year 2000. A total social framework is used that considers not only the projection of commercial economics (direct or in internal costs), but also considers external impacts such as research and development investment, health impacts, resource requirements, environment effects, and other social costs.

  11. The Nonproliferation Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RAJEN,GAURAV; BIRINGER,KENT L.

    2000-07-28

    The aim of this paper is to understand the numerous nuclear-related agreements that involve India and Pakistan, and in so doing identify starting points for future confidence-creating and confidence-building projects. Existing nuclear-related agreements provide a framework under which various projects can be proposed that foster greater nuclear transparency and cooperation in South Asia. The basic assumptions and arguments underlying this paper can be summarized as follows: (1) Increased nuclear transparency between India and Pakistan is a worthwhile objective, as it will lead to the irreversibility of extant nuclear agreements, the prospects of future agreements; and the balance of opacity andmore » transparency required for stability in times of crises; (2) Given the current state of Indian and Pakistani relations, incremental progress in increased nuclear transparency is the most likely future outcome; and (3) Incremental progress can be achieved by enhancing the information exchange required by existing nuclear-related agreements.« less

  12. Expert judgments about RD&D and the future of nuclear energy.

    PubMed

    Anadón, Laura D; Bosetti, Valentina; Bunn, Matthew; Catenacci, Michela; Lee, Audrey

    2012-11-06

    Probabilistic estimates of the cost and performance of future nuclear energy systems under different scenarios of government research, development, and demonstration (RD&D) spending were obtained from 30 U.S. and 30 European nuclear technology experts. We used a novel elicitation approach which combined individual and group elicitation. With no change from current RD&D funding levels, experts on average expected current (Gen. III/III+) designs to be somewhat more expensive in 2030 than they were in 2010, and they expected the next generation of designs (Gen. IV) to be more expensive still as of 2030. Projected costs of proposed small modular reactors (SMRs) were similar to those of Gen. IV systems. The experts almost unanimously recommended large increases in government support for nuclear RD&D (generally 2-3 times current spending). The majority expected that such RD&D would have only a modest effect on cost, but would improve performance in other areas, such as safety, waste management, and uranium resource utilization. The U.S. and E.U. experts were in relative agreement regarding how government RD&D funds should be allocated, placing particular focus on very high temperature reactors, sodium-cooled fast reactors, fuels and materials, and fuel cycle technologies.

  13. Scoring nuclear pleomorphism using a visual BoF modulated by a graph structure

    NASA Astrophysics Data System (ADS)

    Moncayo-Martínez, Ricardo; Romo-Bucheli, David; Arias, Viviana; Romero, Eduardo

    2017-11-01

    Nuclear pleomorphism has been recognized as a key histological criterium in breast cancer grading systems (such as Bloom Richardson and Nothingham grading systems). However, the nuclear pleomorphism assessment is subjective and presents high inter-reader variability. Automatic algorithms might facilitate quantitative estimation of nuclear variations in shape and size. Nevertheless, the automatic segmentation of the nuclei is difficult and still and open research problem. This paper presents a method using a bag of multi-scale visual features, modulated by a graph structure, to grade nuclei in breast cancer microscopical fields. This strategy constructs hematoxylin-eosin image patches, each containing a nucleus that is represented by a set of visual words in the BoF. The contribution of each visual word is computed by examining the visual words in an associated graph built when projecting the multi-dimensional BoF to a bi-dimensional plane where local relationships are conserved. The methodology was evaluated using 14 breast cancer cases of the Cancer Genome Atlas database. From these cases, a set of 134 microscopical fields was extracted, and under a leave-one-out validation scheme, an average F-score of 0.68 was obtained.

  14. Job Prospects for Nuclear Engineers.

    ERIC Educational Resources Information Center

    Basta, Nicholas

    1987-01-01

    Discusses trends in job opportunities for nuclear engineers. Lists some of the factors influencing increases and decreases in the demand for nuclear engineers. Describes the effects on career opportunities from recent nuclear accidents, military research and development, and projected increases of demand for electricity. (TW)

  15. NPP financial and regulatory risks-Importance of a balanced and comprehensive nuclear law for a newcomer country considering nuclear power programme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manan, J. A. N. Abd, E-mail: jamalan@tnb.com.my; Mostafa, N. A.; Salim, M. F.

    The nature of Nuclear Power Plant (NPP) projects are: long duration (10-15 years for new build), high capital investment, reasonable risks and highly regulated industries to meet national and international requirement on Safety, Security, Safeguards (3S) and Liabilities. It requires long term planning and commitment from siting to final disposal of waste/spent fuel. Potential financial and regulatory risks are common in massive NPP projects and will be magnified in the case of using unproven technology. If the risks are not properly managed, it can lead to high project and operation costs, and, fail to fulfil its objectives to provide compatiblemore » electricity prices and. energy security. To ensure successful, the government and investors need to ensure that the NPP project is bankable with low cost of project and funding, have fair treatment and proper risk mitigation, and able to complete on time with no cost overrun. One of the requirements as prerequisite for the development of NPP as stipulated by the International Atomic Energy Agency (IAEA) is the establishment of a Legal and Regulatory Framework. The main objective of nuclear law is to ensure that the activities and projects carried-out in the country are legal and compliant to national and international requirements. The law should also be able to provide fair treatment of risks on its activities that is acceptable to investors. The challenge for a newcomer country is to develop a balanced and comprehensive national nuclear law that meet these objectives while taking into consideration various stakeholders’ interest without compromising on safety, security, safeguard, liability requirements and other international obligations. This paper highlights the nature of NPP projects, its potential and associated financial and regulatory risks, and its major concerns and challenges. It proposes possible risks treatment and mitigation through the formulation of a balanced and comprehensive legislation by clear understanding of various requirements of public, regulators, investors, financial institutions, international community, operator and other important stakeholders. Ambiguities and uncertainties, especially with regards to certain conditions and requirements should be minimised by emulating good practices of experienced nuclear regulators. The imposition of various financial requirements such as funds for decommissioning, radioactive waste management, financial security, nuclear liabilities and licensing fees are necessary, but at the same time the quantum needs to be clearly defined. Concerns on absolute liability of the operators need to be addressed through a creation of necessary and proper nuclear insurance legislations to mitigate operator S nuclear liability obligations and other financial risks. Another major risk to investors is the possibility of public resistance which will not only can hinder the construction but can also stop operation of the nuclear power plant which will contribute to huge losses to investors and countries. This may require a provision in the legislation that provide proper compensation for these situations and at the same time to allow operators to engage in nuclear promotional activities, such as community benefit and public consultation as voluntary initiatives. Through proper planning, research, consultation and execution, the proposed nuclear law shall be able to promote good regulatory practices for public and investors’ confidence and benefit. Early involvement of various stakeholders is essential as a platform for regular communications between regulators and interested parties. Stakeholders’ participation in the NPP programme and law developments will also promote transparency of the projects while upholding the independency of the regulators.« less

  16. NPP financial and regulatory risks-Importance of a balanced and comprehensive nuclear law for a newcomer country considering nuclear power programme

    NASA Astrophysics Data System (ADS)

    Manan, J. A. N. Abd; Mostafa, N. A.; Salim, M. F.

    2015-04-01

    The nature of Nuclear Power Plant (NPP) projects are: long duration (10-15 years for new build), high capital investment, reasonable risks and highly regulated industries to meet national & international requirement on Safety, Security, Safeguards (3S) and Liabilities. It requires long term planning and commitment from siting to final disposal of waste/spent fuel. Potential financial and regulatory risks are common in massive NPP projects and will be magnified in the case of using unproven technology. If the risks are not properly managed, it can lead to high project and operation costs, and, fail to fulfil its objectives to provide compatible electricity prices and. energy security. To ensure successful, the government and investors need to ensure that the NPP project is bankable with low cost of project and funding, have fair treatment and proper risk mitigation, and able to complete on time with no cost overrun. One of the requirements as prerequisite for the development of NPP as stipulated by the International Atomic Energy Agency (IAEA) is the establishment of a Legal and Regulatory Framework. The main objective of nuclear law is to ensure that the activities and projects carried-out in the country are legal and compliant to national and international requirements. The law should also be able to provide fair treatment of risks on its activities that is acceptable to investors. The challenge for a newcomer country is to develop a balanced and comprehensive national nuclear law that meet these objectives while taking into consideration various stakeholders' interest without compromising on safety, security, safeguard, liability requirements and other international obligations. This paper highlights the nature of NPP projects, its potential and associated financial and regulatory risks, and its major concerns and challenges. It proposes possible risks treatment and mitigation through the formulation of a balanced and comprehensive legislation by clear understanding of various requirements of public, regulators, investors, financial institutions, international community, operator and other important stakeholders. Ambiguities and uncertainties, especially with regards to certain conditions and requirements should be minimised by emulating good practices of experienced nuclear regulators. The imposition of various financial requirements such as funds for decommissioning, radioactive waste management, financial security, nuclear liabilities and licensing fees are necessary, but at the same time the quantum needs to be clearly defined. Concerns on absolute liability of the operators need to be addressed through a creation of necessary and proper nuclear insurance legislations to mitigate operator S nuclear liability obligations and other financial risks. Another major risk to investors is the possibility of public resistance which will not only can hinder the construction but can also stop operation of the nuclear power plant which will contribute to huge losses to investors and countries. This may require a provision in the legislation that provide proper compensation for these situations and at the same time to allow operators to engage in nuclear promotional activities, such as community benefit and public consultation as voluntary initiatives. Through proper planning, research, consultation and execution, the proposed nuclear law shall be able to promote good regulatory practices for public and investors' confidence and benefit. Early involvement of various stakeholders is essential as a platform for regular communications between regulators and interested parties. Stakeholders' participation in the NPP programme and law developments will also promote transparency of the projects while upholding the independency of the regulators.

  17. Environmental monitoring for the DOE coolside and LIMB demonstration extension projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, T.; Contos, L.; Adams, L.

    1992-03-01

    The purpose of this document is to present environmental monitoring data collected during the US Department of Energy Limestone Injection Multistage Burner (DOE LIMB) Demonstration Project Extension at the Ohio Edison Edgewater Generating Station in Lorain, Ohio. The DOE project is an extension of the US Environmental Protection Agency's (EPA's) original LIMB Demonstration. The program is operated nuclear DOE's Clean Coal Technology Program of emerging clean coal technologies'' under the categories of in boiler control of oxides of sulfur and nitrogen'' as well as post-combustion clean-up.'' The objective of the LIMB program is to demonstrate the sulfur dioxide (SO{sub 2})more » and nitrogen oxide (NO{sub x}) emission reduction capabilities of the LIMB system. The LIMB system is a retrofit technology to be used for existing coal-fired boilers equipped with electrostatic precipitators (ESPs).« less

  18. Environmental monitoring for the DOE coolside and LIMB demonstration extension projects. Final report, May--August 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, T.; Contos, L.; Adams, L.

    1992-03-01

    The purpose of this document is to present environmental monitoring data collected during the US Department of Energy Limestone Injection Multistage Burner (DOE LIMB) Demonstration Project Extension at the Ohio Edison Edgewater Generating Station in Lorain, Ohio. The DOE project is an extension of the US Environmental Protection Agency`s (EPA`s) original LIMB Demonstration. The program is operated nuclear DOE`s Clean Coal Technology Program of ``emerging clean coal technologies`` under the categories of ``in boiler control of oxides of sulfur and nitrogen`` as well as ``post-combustion clean-up.`` The objective of the LIMB program is to demonstrate the sulfur dioxide (SO{sub 2})more » and nitrogen oxide (NO{sub x}) emission reduction capabilities of the LIMB system. The LIMB system is a retrofit technology to be used for existing coal-fired boilers equipped with electrostatic precipitators (ESPs).« less

  19. Nuclear science and society: social inclusion through scientific education

    NASA Astrophysics Data System (ADS)

    Levy, Denise S.

    2017-11-01

    This article presents a web-based educational project focused on the potential value of Information and Communication Technology to enhance communication and education on nuclear science throughout Brazil. The project is designed to provide trustworthy information about the beneficial uses of nuclear technology, educating children and teenagers, as well as their parents and teachers, demystifying paradigms and combating misinformation. Making use of a range of interactive activities, the website presents short courses and curiosities, with different themes that comprise the several aspects of the beneficial applications of nuclear science. The intention of the many interactive activities is to encourage research and to enhance learning opportunities through a self-learning universe where the target public is introduced to the basic concepts of nuclear physics, such as nuclides and isotopes, atomic interactions, radioactive decay, biological effects of radiation, nuclear fusion, nuclear fission, nuclear reactors, nuclear medicine, radioactive dating methods and natural occurring radiation, among other ideas and concepts in nuclear physics. Democratization of scientific education can inspire new thoughts, stimulate development and encourage scientific and technological researches.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sleaford, Brad W.; Hurst, Aaron M.

    This report describes the measurement, evaluation and incorporation of new -ray spectroscopic data into the Evaluated Nuclear Data File (ENDF) for nonproliferation applications. Analysis and processing techniques are described along with key deliverables that have been met over the course of this project. A total of nine new ENDF libraries have been submitted to the National Nuclear Data Center at the Brookhaven National Laboratory and are now available in the ENDF/B-VIII.beta2 release. Furthermore, this project has led to more than ten peer-reviewed publications and provided theses for ve graduate students. This project is a component of the NA-22 venture collaborationmore » on \\Correlated Nuclear Data in Fission Events" (LA14-V-CorrData-PD2Jb).« less

  1. Evaluation of nuclear-facility decommissioning projects. Summary report: Ames Laboratory Research Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Link, B.W.; Miller, R.L.

    1983-07-01

    This document summarizes the available information concerning the decommissioning of the Ames Laboratory Research Reactor (ALRR), a five-megawatt heavy water moderated and cooled research reactor. The data were placed in a computerized information retrieval/manipulation system which permits its future utilization for purposes of comparative analysis. This information is presented both in detail in its computer output form and also as a manually assembled summarization which highlights the more important aspects of the decommissioning program. Some comparative information with reference to generic decommissioning data extracted from NUREG/CR 1756, Technology, Safety and Costs of Decommissioning Nuclear Research and Test Reactors, is included.

  2. ASC-AD penetration modeling FY05 status report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kistler, Bruce L.; Ostien, Jakob T.; Chiesa, Michael L.

    2006-04-01

    Sandia currently lacks a high fidelity method for predicting loads on and subsequent structural response of earth penetrating weapons. This project seeks to test, debug, improve and validate methodologies for modeling earth penetration. Results of this project will allow us to optimize and certify designs for the B61-11, Robust Nuclear Earth Penetrator (RNEP), PEN-X and future nuclear and conventional penetrator systems. Since this is an ASC Advanced Deployment project the primary goal of the work is to test, debug, verify and validate new Sierra (and Nevada) tools. Also, since this project is part of the V&V program within ASC, uncertaintymore » quantification (UQ), optimization using DAKOTA [1] and sensitivity analysis are an integral part of the work. This project evaluates, verifies and validates new constitutive models, penetration methodologies and Sierra/Nevada codes. In FY05 the project focused mostly on PRESTO [2] using the Spherical Cavity Expansion (SCE) [3,4] and PRESTO Lagrangian analysis with a preformed hole (Pen-X) methodologies. Modeling penetration tests using PRESTO with a pilot hole was also attempted to evaluate constitutive models. Future years work would include the Alegra/SHISM [5] and AlegrdEP (Earth Penetration) methodologies when they are ready for validation testing. Constitutive models such as Soil-and-Foam, the Sandia Geomodel [6], and the K&C Concrete model [7] were also tested and evaluated. This report is submitted to satisfy annual documentation requirements for the ASC Advanced Deployment program. This report summarizes FY05 work performed in the Penetration Mechanical Response (ASC-APPS) and Penetration Mechanics (ASC-V&V) projects. A single report is written to document the two projects because of the significant amount of technical overlap.« less

  3. Military Applications of Fiber Optics Technology

    DTIC Science & Technology

    1989-05-01

    Research Projects Agency DNA Defense Nuclear Agency EMI Electromagnetic interference EMP Electromagnetic pulse FET Field effect transistor FOFA Follow...Organization SEED Self electro-optic effect device TBM Tactical ballistic missile TOW Tube launched, optically tracked, wire-guided UAV Unmanned aerial vehicle...systems, coupled with novel but effective transducing technology, have set the stage for a powerful class of fiber optic sensors. 8 Optical fibers have

  4. Second Line of Defense, Megaports Initiative, Operational Testing and Evaluation Plan, Port of Lazaro Cardenas, Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Jamie D.

    2012-05-30

    The purpose of the Operational Testing and Evaluation (OT&E) phases of the project is to prepare for turnover of the Megaports System supplied by U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA)—located at the Export Lanes of the Port of Lazaro Cardenas, Mexico—to the Government of Mexico (GOM).

  5. Trends in Nuclear Proliferation, 1975-1995. Projections, Problems, and Policy Options

    DTIC Science & Technology

    1976-05-15

    Communications and Services Section, Washington, DC 20451. AUTHORITY usacda ltr, 18 may 1978 THIS PAGE IS UNCLASSIFIED TOHIS REPORT HAS BEEN DELIMITED AND CLEARED...Bureaucratic Politics .. .. .. ... . .. ... .... 88 Command, Control, and Communication .. .. .. ... . .... 89 Controlling Against Unauthorized or...survivable command, control, and communication system may well exceed the resources of many Nth countries, Preemptive pressures and the risk of

  6. Environmental, genetic, and ecophysiological variation of western and Utah juniper and their hybrids: A model system for vegetation response to climate change. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nowak, R.S.; Tausch, R.J.

    1998-11-01

    This report focuses on the following two research projects relating to the biological effects of climate change: Hybridization and genetic diversity populations of Utah (Juniperus osteosperma) and western (Juniperus occidentalis) juniper: Evidence from nuclear ribosomal and chloroplast DNA; and Ecophysiological patterns of pinyon and juniper.

  7. Status of a Power Processor for the Prometheus-1 Electric Propulsion System

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Hill, Gerald M.; Aulisio, Michael; Gerber, Scott; Griebeler, Elmer; Hewitt, Frank; Scina, Joseph

    2006-01-01

    NASA is developing technologies for nuclear electric propulsion for proposed deep space missions in support of the Exploration initiative under Project Prometheus. Electrical power produced by the combination of a fission-based power source and a Brayton power conversion and distribution system is used by a high specific impulse ion propulsion system to propel the spaceship. The ion propulsion system include the thruster, power processor and propellant feed system. A power processor technology development effort was initiated under Project Prometheus to develop high performance and lightweight power-processing technologies suitable for the application. This effort faces multiple challenges including developing radiation hardened power modules and converters with very high power capability and efficiency to minimize the impact on the power conversion and distribution system as well as the heat rejection system. This paper documents the design and test results of the first version of the beam supply, the design of a second version of the beam supply and the design and test results of the ancillary supplies.

  8. Nuclear Decay Data Evaluations at IFIN-HH, Romania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luca, A., E-mail: aluca@nipne.ro

    2014-06-15

    An IAEA Coordinated Research Project (CRP) on Updated Decay Data Library for Actinides was implemented during the period 2005-2012. The author participated in the CRP, as a representative of the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), the Radionuclide Metrology Laboratory. Decay data for five actinide nuclides were evaluated by the author, according to the procedures and rules of the international cooperation Decay Data Evaluation Project (DDEP): {sup 236}U, {sup 234}Th, {sup 228}Ra, {sup 211}Bi and {sup 211}Po. The most important results, conclusions and some recommendations of the evaluator are presented. The IFIN-HH involvement in several newmore » international and national research projects in the field is briefly mentioned; new evaluations and experimental determination of some nuclear decay data (photon absolute emission probability, half-life) for nuclear medicine applications are foreseen.« less

  9. Implementing an Information Security Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glantz, Clifford S.; Lenaeus, Joseph D.; Landine, Guy P.

    The threats to information security have dramatically increased with the proliferation of information systems and the internet. Chemical, biological, radiological, nuclear, and explosives (CBRNe) facilities need to address these threats in order to protect themselves from the loss of intellectual property, theft of valuable or hazardous materials, and sabotage. Project 19 of the European Union CBRN Risk Mitigation Centres of Excellence Initiative is designed to help CBRN security managers, information technology/cybersecurity managers, and other decision-makers deal with these threats through the application of cost-effective information security programs. Project 19 has developed three guidance documents that are publically available to covermore » information security best practices, planning for an information security management system, and implementing security controls for information security.« less

  10. A Nuclear Cryogenic Propulsion Stage for Near-Term Space Missions

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Doughty, Glen E.; Adams, Robert B.; Bechtel, Ryan D.; Borowski, Stanley K.; hide

    2013-01-01

    Development efforts in the United States have demonstrated the viability and performance potential of NTP systems. For example, Project Rover (1955 - 1973) completed 22 high power rocket reactor tests. Peak performances included operating at an average hydrogen exhaust temperature of 2550 K and a peak fuel power density of 5200 MW/m3 (Pewee test), operating at a thrust of 930 kN (Phoebus-2A test), and operating for 62.7 minutes on a single burn (NRXA6 test).1 Results from Project Rover indicated that an NTP system with a high thrust-toweight ratio and a specific impulse greater than 900 s would be feasible. Binary and ternary carbide fuels may have the potential for providing even higher specific impulses.

  11. Summary of Planned Implementation for the HTGR Lessons Learned Applicable to the NGNP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ian Mckirdy

    2011-09-01

    This document presents a reconciliation of the lessons learned during a 2010 comprehensive evaluation of pertinent lessons learned from past and present high temperature gas-cooled reactors that apply to the Next Generation Nuclear Plant Project along with current and planned activities. The data used are from the latest Idaho National Laboratory research and development plans, the conceptual design report from General Atomics, and the pebble bed reactor technology readiness study from AREVA. Only those lessons related to the structures, systems, and components of the Next Generation Nuclear Plant (NGNP), as documented in the recently updated lessons learned report are addressed.more » These reconciliations are ordered according to plant area, followed by the affected system, subsystem, or component; lesson learned; and finally an NGNP implementation statement. This report (1) provides cross references to the original lessons learned document, (2) describes the lesson learned, (3) provides the current NGNP implementation status with design data needs associated with the lesson learned, (4) identifies the research and development being performed related to the lesson learned, and (5) summarizes with a status of how the lesson learned has been addressed by the NGNP Project.« less

  12. Creation of a Geant4 Muon Tomography Package for Imaging of Nuclear Fuel in Dry Cask Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsoukalas, Lefteri H.

    2016-03-01

    This is the final report of the NEUP project “Creation of a Geant4 Muon Tomography Package for Imaging of Nuclear Fuel in Dry Cask Storage”, DE-NE0000695. The project started on December 1, 2013 and this report covers the period December 1, 2013 through November 30, 2015. The project was successfully completed and this report provides an overview of the main achievements, results and findings throughout the duration of the project. Additional details can be found in the main body of this report and on the individual Quarterly Reports and associated Deliverables of the project, uploaded in PICS-NE.

  13. Teaching the Manhattan Project

    ERIC Educational Resources Information Center

    Schibuk, Elizabeth

    2015-01-01

    This article describes a nuclear chemistry unit on the Manhattan Project, a research effort that led to the development of the world's first nuclear weapons during World War II. The unit is appropriate for an introductory high school chemistry or physics course and takes from four to six weeks. The unit poses this essential question: "Over…

  14. Standardization of administered activities in pediatric nuclear medicine: a report of the first nuclear medicine global initiative project, part 1-statement of the issue and a review of available resources.

    PubMed

    Fahey, Frederic H; Bom, Henry Hee-Seong; Chiti, Arturo; Choi, Yun Young; Huang, Gang; Lassmann, Michael; Laurin, Norman; Mut, Fernando; Nuñez-Miller, Rodolfo; O'Keeffe, Darin; Pradhan, Prasanta; Scott, Andrew M; Song, Shaoli; Soni, Nischal; Uchiyama, Mayuki; Vargas, Luis

    2015-04-01

    The Nuclear Medicine Global Initiative (NMGI) was formed in 2012 and consists of 13 international organizations with direct involvement in nuclear medicine. The underlying objectives of the NMGI were to promote human health by advancing the field of nuclear medicine and molecular imaging, encourage global collaboration in education, and harmonize procedure guidelines and other policies that ultimately lead to improvements in quality and safety in the field throughout the world. For its first project, the NMGI decided to consider the issues involved in the standardization of administered activities in pediatric nuclear medicine. This article presents part 1 of the final report of this initial project of the NMGI. It provides a review of the value of pediatric nuclear medicine, the current understanding of the carcinogenic risk of radiation as it pertains to the administration of radiopharmaceuticals in children, and the application of dosimetric models in children. A listing of pertinent educational and reference resources available in print and online is also provided. The forthcoming part 2 report will discuss current standards for administered activities in children and adolescents that have been developed by various organizations and an evaluation of the current practice of pediatric nuclear medicine specifically with regard to administered activities as determined by an international survey of nuclear medicine clinics and centers. Lastly, the part 2 report will recommend a path forward toward global standardization of the administration of radiopharmaceuticals in children. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  15. The Future Role and Need for Nuclear Weapons in the 21st Century

    DTIC Science & Technology

    2007-01-01

    program, the Manhattan Project : Einstein‘s letter to Roosevelt in 1939 regarding the use of the energy from uranium for bombs, ―the imaginary German...succeed, nuclear weapons were introduced by the US into our world in 1945. The Manhattan Project efforts produced four bombs within its first three...Proceedings‖ (Livermore, CA: Lawrence Livermore National Laboratory, 1991), 14. 6 Ibid. , 12. 7 ― Manhattan Project ,‖ MSN Encarta, 2, http://encarta

  16. 77 FR 64501 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    .... Applicants: Calvert Cliffs Nuclear Power Plant, LLC, Nine Mile Point Nuclear Station, LLC, R.E. Ginna Nuclear Power Plant, LLC. Description: Notice of Non-Material Change in Status of Nine Mile Point Nuclear..., LLC, Shooting Star Wind Project, LLC, Safe Harbor Water Power Corporation, PECO Energy Company...

  17. A Coordinated Research Project on the Implementation of Nuclear Techniques to Improve Food Traceability

    NASA Astrophysics Data System (ADS)

    Frew, Russell; Cannavan, Andrew; Zandric, Zora; Maestroni, Britt; Abrahim, Aiman

    2013-04-01

    Traceability systems play a key role in assuring a safe and reliable food supply. Analytical techniques harnessing the spatial patterns in distribution of stable isotope and trace element ratios can be used for the determination of the provenance of food. Such techniques offer the potential to enhance global trade by providing an independent means of verifying "paper" traceability systems and can also help to prove authenticity, to combat fraudulent practices, and to control adulteration, which are important issues for economic, religious or cultural reasons. To address some of the challenges that developing countries face in attempting to implement effective food traceability systems, the IAEA, through its Joint FAO/IAEA Division on Nuclear Techniques in Food and Agriculture, has initiated a 5-year coordinated research project involving institutes in 15 developing and developed countries (Austria, Botswana, Chile, China, France, India, Lebanon, Morocco, Portugal, Singapore, Sweden, Thailand, Uganda, UK, USA). The objective is to help in member state laboratories to establish robust analytical techniques and databases, validated to international standards, to determine the provenance of food. Nuclear techniques such as stable isotope and multi-element analysis, along with complementary methods, will be applied for the verification of food traceability systems and claims related to food origin, production, and authenticity. This integrated and multidisciplinary approach to strengthening capacity in food traceability will contribute to the effective implementation of holistic systems for food safety and control. The project focuses mainly on the development of techniques to confirm product authenticity, with several research partners also considering food safety issues. Research topics encompass determination of the geographical origin of a variety of commodities, including seed oils, rice, wine, olive oil, wheat, orange juice, fish, groundnuts, tea, pork, honey and coffee, the adulteration of milk with soy protein, chemical contamination of food products, and inhomogeneity in isotopic ratios in poultry and eggs as a means to determine production history. Analytical techniques include stable isotope ratio measurements (2H/1H, 13C/12C, 15N/14N, 18O/16O, 34S/32S, 87Sr/86Sr, 208Pb/207Pb/206Pb), elemental analysis, DNA fingerprinting, fatty acid and other biomolecule profiling, chromatography-mass spectrometry and near infra-red spectroscopy.

  18. Radiation-Hardened Circuitry Using Mask-Programmable Analog Arrays. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britton, Jr., Charles L.; Ericson, Milton Nance; Bobrek, Miljko

    As the recent accident at Fukushima Daiichi so vividly demonstrated, telerobotic technologies capable of withstanding high radiation environments need to be readily available to enable operations, repair, and recovery under severe accident scenarios where human entry is extremely dangerous or not possible. Telerobotic technologies that enable remote operation in high dose rate environments have undergone revolutionary improvement over the past few decades. However, much of this technology cannot be employed in nuclear power environments due the radiation sensitivity of the electronics and the organic insulator materials currently in use. This is the final report of the activities involving the NEETmore » 2 project Radiation Hardened Circuitry Using Mask-Programmable Analog Arrays. We present a detailed functional block diagram of the proposed data acquisition system, the thought process leading to technical decisions, the implemented system, and the tested results from the systems. This system will be capable of monitoring at least three parameters of importance to nuclear reactor monitoring: temperature, radiation level, and pressure.« less

  19. MetroFission: New high-temperature references and sensors for the nuclear industry

    NASA Astrophysics Data System (ADS)

    Sadli, M.; del Campo, D.; de Podesta, M.; Deuzé, T.; Failleau, G.; Elliott, C. J.; Fourrez, S.; García, C.; Pearce, J. V.

    2013-09-01

    The European metrology research programme (EMRP) allows funding for metrology-oriented projects in the frame of targeted calls aimed at improving metrology for important contemporary and future needs in different fields such as energy, environment and industry. A joint research project (JRP), called "MetroFission", was selected for funding in the "Energy" call of 2010. This JRP, led by NPL (UK), aims to anticipate and to start addressing the metrological needs of the next generation of nuclear power plants. The need for improving the accuracy and reliability of temperature measurements at temperatures higher than those currently measured in nuclear power plants is dealt with in the first workpackage of the project. This project started in September 2010 and will last for three years. This paper summarizes the activities of the first half of the project and the expected final achievements, which will be essentially oriented towards new temperature references and new devices, adapted to the high temperature range as well as the particularly harsh working conditions.

  20. Operation Sun Beam, Shots Little Feller I, II and Johnie Boy. Project officers report. Project 6. 6. Electromagnetic measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, W.D.; Livingston, P.M.; Rutter, R.L.

    Of considerable interest from both a physical and practical viewpoint is the coupling of electromagnetic energy from a nuclear explosion into various electrical systems in the vicinity of the burst. A series of electromagnetic measurements were made on Shots Little Feller I, Little Feller II, and Johnie Boy. It is clear from the records that radiation shielding must be given closer consideration in future tests. Due to equipment failure and radiation inactivation, only the Johnie Boy dynamic current measurement and the passive peak current indicators on all three events are interpretable.

  1. Use of Advanced Tsunami Hazard Assessment Techniques and Tsunami Source Characterizations in U.S. and International Nuclear Regulatory Activities

    NASA Astrophysics Data System (ADS)

    Kammerer, A. M.; Godoy, A. R.

    2009-12-01

    In response to the 2004 Indian Ocean Tsunami, as well as the anticipation of the submission of license applications for new nuclear facilities, the United States Nuclear Regulatory Commission (US NRC) initiated a long-term research program to improve understanding of tsunami hazard levels for nuclear power plants and other coastal facilities in the United States. To undertake this effort, the US NRC organized a collaborative research program jointly undertaken with researchers at the United States Geological Survey (USGS) and the National Oceanic and Atmospheric Administration (NOAA) for the purpose of assessing tsunami hazard on the Atlantic and Gulf Coasts of the United States. This study identified and modeled both seismic and landslide tsunamigenic sources in the near- and far-field. The results from this work are now being used directly as the basis for the review of tsunami hazard at potential nuclear plant sites. This application once again shows the importance that the earth sciences can play in addressing issues of importance to society. Because the Indian Ocean Tsunami was a global event, a number of cooperative international activities have also been initiated within the nuclear community. The results of US efforts are being incorporated into updated regulatory guidance for both the U.S. Nuclear Regulatory Commission and the United Nation’s International Atomic Energy Agency (IAEA). Coordinated efforts are underway to integrate state-of-the art tsunami warning tools developed by NOAA into NRC and IAEA activities. The goal of the warning systems project is to develop automated protocols that allow scientists at these agencies to have up-to-the minute user-specific information in hand shortly after a potential tsunami has been identified by the US Tsunami Warning System. Lastly, USGS and NOAA scientists are assisting the NRC and IAEA in a special Extra-Budgetary Program (IAEA EBP) on tsunami being coordinated by the IAEA’s International Seismic Safety Center. This IAEA EBP is focused on sharing lessons learned, tsunami hazard assessment techniques, and numerical tools among UN Member States. The complete body of basic and applied research undertaken in these many projects represents the combined effort of a diverse group of marine geologists, geophysicists, geotechnical engineers, seismologists and hydrodynamic modelers at multiple organizations.

  2. ONR (Office of Naval Research) Far East Scientific Bulletin. Volume 8, Number 4, October-December 1983,

    DTIC Science & Technology

    1983-12-01

    electrical medical equipment manufacturer; Toshiba has recently developed a new whole-body computer tomography (CT) imaging system based on nuclear...flow per unit area at 20,000°K was found to be twice that at 5000°K. Calculated results agree with expriment. " New Developments in Design and Testing...and Osaka. As part of an ]l-year national project started in November 1980 to develop new electric energy storage systems (sponsored by the Japanese

  3. Plant maintenance and advanced reactors issue, 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnihotri, Newal

    The focus of the September-October issue is on plant maintenance and advanced reactors. Major articles/reports in this issue include: Technologies of national importance, by Tsutomu Ohkubo, Japan Atomic Energy Agency, Japan; Modeling and simulation advances brighten future nuclear power, by Hussein Khalil, Argonne National Laboratory, Energy and desalination projects, by Ratan Kumar Sinha, Bhabha Atomic Research Centre, India; A plant with simplified design, by John Higgins, GE Hitachi Nuclear Energy; A forward thinking design, by Ray Ganthner, AREVA; A passively safe design, by Ed Cummins, Westinghouse Electric Company; A market-ready design, by Ken Petrunik, Atomic Energy of Canada Limited, Canada;more » Generation IV Advanced Nuclear Energy Systems, by Jacques Bouchard, French Commissariat a l'Energie Atomique, France, and Ralph Bennett, Idaho National Laboratory; Innovative reactor designs, a report by IAEA, Vienna, Austria; Guidance for new vendors, by John Nakoski, U.S. Nuclear Regulatory Commission; Road map for future energy, by John Cleveland, International Atomic Energy Agency, Vienna, Austria; and, Vermont's largest source of electricity, by Tyler Lamberts, Entergy Nuclear Operations, Inc. The Industry Innovation article is titled Intelligent monitoring technology, by Chris Demars, Exelon Nuclear.« less

  4. From a CEU '98er: 9 years and 5 research projects later

    NASA Astrophysics Data System (ADS)

    Aidala, Christine

    2007-10-01

    Since my first research experience in 1996 working in low-energy nuclear structure, the results of which were presented at the original DNP CEU poster session in Santa Fe in 1998, subsequent projects led me to weave my way through various energies and collision systems in nuclear and particle physics. Through the course of the broad exposure to research that I have been fortunate enough to experience, I have found a niche for myself in the study of nucleon spin structure. I originally got involved in the field in 1998-99 through my undergraduate senior project on studies for polarizing the proton beam at HERA in Hamburg, Germany. After a foray into particle physics followed by an unanticipated diversion from research, teaching music and English abroad, fate--and some kind individuals--would give me the opportunity to return both to physics and specifically to nucleon structure in 2001 as part of the PHENIX experiment at the Relativistic Heavy Ion Collider. Six years into my research on proton spin structure as a member of the PHENIX Collaboration, I will discuss where I am today and the non-linear path that brought me here.

  5. Accelerating the Whiteshell Laboratories Decommissioning Through the Implementation of a Projectized and Delivery-Focused Organization - 13074

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilcox, Brian; Mellor, Russ; Michaluk, Craig

    2013-07-01

    Whiteshell Laboratories (WL) is a nuclear research site in Canada that was commissioned in 1964 by Atomic Energy of Canada Limited. It covers a total area of approximately 4,375 hectares (10,800 acres) and includes the main campus site, the Waste Management Area (WMA) and outer areas of land identified as not used for or impacted by nuclear development or operations. The WL site employed up to 1100 staff. Site activities included the successful operation of a 60 MW organic liquid-cooled research reactor from 1965 to 1985, and various research programs including reactor safety research, small reactor development, fuel development, biophysicsmore » and radiation applications, as well as work under the Canadian Nuclear Fuel Waste Management Program. In 1997, AECL made a business decision to discontinue research programs and operations at WL, and obtained government concurrence in 1998. The Nuclear Legacy Liabilities Program (NLLP) was established in 2006 by the Canadian Government to remediate nuclear legacy liabilities in a safe and cost effective manner, including the WL site. The NLLP is being implemented by AECL under the governance of a Natural Resources Canada (NRCan)/AECL Joint Oversight Committee (JOC). Significant progress has since been made, and the WL site currently holds the only Canadian Nuclear Safety Commission (CNSC) nuclear research site decommissioning license in Canada. The current decommissioning license is in place until the end of 2018. The present schedule planned for main campus decommissioning is 30 years (to 2037), followed by institutional control of the WMA until a National plan is implemented for the long-term management of nuclear waste. There is an impetus to advance work and complete decommissioning sooner. To accomplish this, AECL has added significant resources, reorganized and moved to a projectized environment. This presentation outlines changes made to the organization, the tools implemented to foster projectization, and the benefits and positive impacts on schedule and delivery. A revised organizational structure was implemented in two phases, starting 2011 April 1, to align WL staff with the common goal of decommissioning the site through the direction of the WL Decommissioning Project General Manager. On 2011 September 1, the second phase of the reorganization was implemented and WL Decommissioning staff was organized under five Divisions: Programs and Regulatory Compliance, General Site Services, Decommissioning Strategic Planning, Nuclear Facilities and Project Delivery. A new Mission, Vision and Objectives were developed for the project, and several productivity enhancements are being implemented. These include the use of an integrated and fully re-sourced Site Wide Schedule that is updated and reviewed at Plan-of-the-Week meetings, improved work distribution throughout the year, eliminating scheduling 'push' mentality, project scoreboards, work planning implementation, lean practices and various process improvement initiatives. A revised Strategic Plan is under development that reflects the improved project delivery capabilities. As a result of these initiatives, and a culture change towards a projectized approach, the decommissioning schedule will be advanced by approximately 10 years. (authors)« less

  6. Risk-based Prioritization of Facility Decommissioning and Environmental Restoration Projects in the National Nuclear Legacy Liabilities Program at the Chalk River Laboratory - 13564

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Jerel G.; Kruzic, Michael; Castillo, Carlos

    2013-07-01

    Chalk River Laboratory (CRL), located in Ontario Canada, has a large number of remediation projects currently in the Nuclear Legacy Liabilities Program (NLLP), including hundreds of facility decommissioning projects and over one hundred environmental remediation projects, all to be executed over the next 70 years. Atomic Energy of Canada Limited (AECL) utilized WorleyParsons to prioritize the NLLP projects at the CRL through a risk-based prioritization and ranking process, using the WorleyParsons Sequencing Unit Prioritization and Estimating Risk Model (SUPERmodel). The prioritization project made use of the SUPERmodel which has been previously used for other large-scale site prioritization and sequencing ofmore » facilities at nuclear laboratories in the United States. The process included development and vetting of risk parameter matrices as well as confirmation/validation of project risks. Detailed sensitivity studies were also conducted to understand the impacts that risk parameter weighting and scoring had on prioritization. The repeatable prioritization process yielded an objective, risk-based and technically defendable process for prioritization that gained concurrence from all stakeholders, including Natural Resources Canada (NRCan) who is responsible for the oversight of the NLLP. (authors)« less

  7. Physics with gamma-beams and charged particle detectors: I) Nuclear structure II) Nuclear astrophysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gai, Moshe

    The Charged Particle Working Group (CPWG) is proposing to construct large area Silicon Strip Detector (SSD), a gas Time Projection Chamber detector read by an electronic readout system (eTPC) and a Bubble Chamber (BC) containing superheated high purity water to be used in measurements utilizing intense gamma-ray beams from the newly constructed ELI-NP facility at Magurele, Bucharest in Romania. We intend to use the SSD and eTPC detectors to address essential problems in nuclear structure physics, such as clustering and the many alpha-decay of light nuclei such as {sup 12}C and {sup 16}O. All three detectors (SSD, eTPC and BC)more » will be used to address central problems in nuclear astrophysics such as the astrophysical cross section factor of the {sup 12}C(α,γ) reaction and other processes central to stellar evolution. The CPWG intends to submit to the ELI-NP facility a Technical Design Report (TDR) for the proposed detectors.« less

  8. Review of the technical bases of 40 CFR Part 190.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, John E.; McMahon, Kevin A.; Siegel, Malcolm Dean

    2010-07-01

    The dose limits for emissions from the nuclear fuel cycle were established by the Environmental Protection Agency in 40 CFR Part 190 in 1977. These limits were based on assumptions regarding the growth of nuclear power and the technical capabilities of decontamination systems as well as the then-current knowledge of atmospheric dispersion and the biological effects of ionizing radiation. In the more than thirty years since the adoption of the limits, much has changed with respect to the scale of nuclear energy deployment in the United States and the scientific knowledge associated with modeling health effects from radioactivity release. Sandiamore » National Laboratories conducted a study to examine and understand the methodologies and technical bases of 40 CFR 190 and also to determine if the conclusions of the earlier work would be different today given the current projected growth of nuclear power and the advances in scientific understanding. This report documents the results of that work.« less

  9. 15 CFR 744.5 - Restrictions on certain maritime nuclear propulsion end-uses.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... nuclear propulsion end-uses. 744.5 Section 744.5 Commerce and Foreign Trade Regulations Relating to... nuclear propulsion end-uses. (a) General prohibition. In addition to the license requirements for items... item is for use in connection with a foreign maritime nuclear propulsion project. This prohibition...

  10. 15 CFR 744.5 - Restrictions on certain maritime nuclear propulsion end-uses.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... nuclear propulsion end-uses. 744.5 Section 744.5 Commerce and Foreign Trade Regulations Relating to... nuclear propulsion end-uses. (a) General prohibition. In addition to the license requirements for items... item is for use in connection with a foreign maritime nuclear propulsion project. This prohibition...

  11. 77 FR 37937 - License Renewal Application for Prairie Island Nuclear Generating Plant Independent Spent Fuel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-25

    ... Prairie Island Nuclear Generating Plant Independent Spent Fuel Storage Installation AGENCY: Nuclear... INFORMATION CONTACT: Pamela Longmire, Ph.D., Project Manager, Licensing Branch, Division of Spent Fuel Storage... February 29, 2012 (ADAMS Accession number ML12065A073), by Prairie Island Nuclear Generating Plant (PINGP...

  12. 15 CFR 744.5 - Restrictions on certain maritime nuclear propulsion end-uses.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... nuclear propulsion end-uses. 744.5 Section 744.5 Commerce and Foreign Trade Regulations Relating to... nuclear propulsion end-uses. (a) General prohibition. In addition to the license requirements for items... item is for use in connection with a foreign maritime nuclear propulsion project. This prohibition...

  13. 15 CFR 744.5 - Restrictions on certain maritime nuclear propulsion end-uses.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... nuclear propulsion end-uses. 744.5 Section 744.5 Commerce and Foreign Trade Regulations Relating to... nuclear propulsion end-uses. (a) General prohibition. In addition to the license requirements for items... item is for use in connection with a foreign maritime nuclear propulsion project. This prohibition...

  14. 15 CFR 744.5 - Restrictions on certain maritime nuclear propulsion end-uses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... nuclear propulsion end-uses. 744.5 Section 744.5 Commerce and Foreign Trade Regulations Relating to... nuclear propulsion end-uses. (a) General prohibition. In addition to the license requirements for items... item is for use in connection with a foreign maritime nuclear propulsion project. This prohibition...

  15. The Angra Neutrino Project: precise measurement of {theta}{sub 13} and safeguards applications of neutrino detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casimiro, E.; Anjos, J. C.

    2009-04-20

    We present an introduction to the Angra Neutrino Project. The goal of the project is to explore the use of neutrino detectors to monitor the reactor activity. The Angra Project, willl employ as neutrino sources the reactors of the nuclear power complex in Brazil, located in Angra dos Reis, some 150 Km south from the city of Rio de Janeiro. The Angra collaboration will develop and operate a low-mass neutrino detector to monitor the nuclear reactor activity, in particular to measure the reactor thermal power and the reactor fuel isotopic composition.

  16. The Angra Neutrino Project: precise measurement of θ13 and safeguards applications of neutrino detectors

    NASA Astrophysics Data System (ADS)

    Casimiro, E.; Anjos, J. C.

    2009-04-01

    We present an introduction to the Angra Neutrino Project. The goal of the project is to explore the use of neutrino detectors to monitor the reactor activity. The Angra Project, willl employ as neutrino sources the reactors of the nuclear power complex in Brazil, located in Angra dos Reis, some 150 Km south from the city of Rio de Janeiro. The Angra collaboration will develop and operate a low-mass neutrino detector to monitor the nuclear reactor activity, in particular to measure the reactor thermal power and the reactor fuel isotopic composition.

  17. The Projected Impacts to Clark County and Local Governmental Public Safety Agencies Resulting from the Transportation of High-Level Nuclear Waste to Yucca Mountain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mushkatel, A.H.; Conway, S.; Navis, I.

    2006-07-01

    This paper focuses on the difficulties of projecting fiscal impacts to public safety agencies from the proposed high-level nuclear waste repository at Yucca Mountain, Nevada. The efforts made by Clark County Nevada, to develop a fiscal model of impacts for public safety agencies are described in this paper. Some of the difficulties in constructing a fiscal model of impacts for the entire 24 year high-level nuclear waste transportation shipping campaign are identified, and a refined methodology is provided to accomplish this task. Finally, a comparison of the fiscal impact projections for public safety agencies that Clark County developed in 2001,more » with those done in 2005 is discussed, and the fiscal impact cost projections for the entire 24 year transportation campaign are provided. (authors)« less

  18. Nuclear weapons at 70: reflections on the context and legacy of the Manhattan Project

    NASA Astrophysics Data System (ADS)

    Reed, B. Cameron

    2015-08-01

    August 2015 marks the 70th anniversary of the atomic bombings of Hiroshima and Nagasaki. These bombs, the products of the United States Army’s Manhattan Project, helped to end World War II and had enormous long-term effects on global political strategies by setting the stage for the Cold War and nuclear proliferation. This article explores the context and legacy of the Manhattan Project. The state of the war in the summer of 1945 is described, as are how the target cities came to be chosen, deliberations surrounding whether the bombs should be used directly or demonstrated first, and the long-term effects of the Project on individual scientists, the relationship between scientists and society, the subsequent development of nuclear arsenals around the world, and the current status of these arsenals and how they might evolve in the future.

  19. Human factor engineering based design and modernization of control rooms with new I and C systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larraz, J.; Rejas, L.; Ortega, F.

    2012-07-01

    Instrumentation and Control (I and C) systems of the latest nuclear power plants are based on the use of digital technology, distributed control systems and the integration of information in data networks (Distributed Control and Instrumentation Systems). This has a repercussion on Control Rooms (CRs), where the operations and monitoring interfaces correspond to these systems. These technologies are also used in modernizing I and C systems in currently operative nuclear power plants. The new interfaces provide additional capabilities for operation and supervision, as well as a high degree of flexibility, versatility and reliability. An example of this is the implementationmore » of solutions such as compact stations, high level supervision screens, overview displays, computerized procedures, new operational support systems or intelligent alarms processing systems in the modernized Man-Machine Interface (MMI). These changes in the MMI are accompanied by newly added Software (SW) controls and new solutions in automation. Tecnatom has been leading various projects in this area for several years, both in Asian countries and in the United States, using in all cases international standards from which Tecnatom own methodologies have been developed and optimized. The experience acquired in applying this methodology to the design of new control rooms is to a large extent applicable also to the modernization of current control rooms. An adequate design of the interface between the operator and the systems will facilitate safe operation, contribute to the prompt identification of problems and help in the distribution of tasks and communications between the different members of the operating shift. Based on Tecnatom experience in the field, this article presents the methodological approach used as well as the most relevant aspects of this kind of project. (authors)« less

  20. Using Deep Learning Algorithm to Enhance Image-review Software for Surveillance Cameras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Yonggang; Thomas, Maikael A.

    We propose the development of proven deep learning algorithms to flag objects and events of interest in Next Generation Surveillance System (NGSS) surveillance to make IAEA image review more efficient. Video surveillance is one of the core monitoring technologies used by the IAEA Department of Safeguards when implementing safeguards at nuclear facilities worldwide. The current image review software GARS has limited automated functions, such as scene-change detection, black image detection and missing scene analysis, but struggles with highly cluttered backgrounds. A cutting-edge algorithm to be developed in this project will enable efficient and effective searches in images and video streamsmore » by identifying and tracking safeguards relevant objects and detect anomalies in their vicinity. In this project, we will develop the algorithm, test it with the IAEA surveillance cameras and data sets collected at simulated nuclear facilities at BNL and SNL, and implement it in a software program for potential integration into the IAEA’s IRAP (Integrated Review and Analysis Program).« less

  1. Flow Induced Vibration Program at Argonne National Laboratory

    NASA Astrophysics Data System (ADS)

    1984-01-01

    The Argonne National Laboratory's Flow Induced Vibration Program, currently residing in the Laboratory's Components Technology Division is discussed. Throughout its existence, the overall objective of the program was to develop and apply new and/or improved methods of analysis and testing for the design evaluation of nuclear reactor plant components and heat exchange equipment from the standpoint of flow induced vibration. Historically, the majority of the program activities were funded by the US Atomic Energy Commission, the Energy Research and Development Administration, and the Department of Energy. Current DOE funding is from the Breeder Mechanical Component Development Division, Office of Breeder Technology Projects; Energy Conversion and Utilization Technology Program, Office of Energy Systems Research; and Division of Engineering, Mathematical and Geosciences, office of Basic Energy Sciences. Testing of Clinch River Breeder Reactor upper plenum components was funded by the Clinch River Breeder Reactor Plant Project Office. Work was also performed under contract with Foster Wheeler, General Electric, Duke Power Company, US Nuclear Regulatory Commission, and Westinghouse.

  2. Nuclear power for the future: Implications of some crisis scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, K.H.

    1996-12-31

    As energy issues have dropped from public awareness, electricity demand growth has remained low, deregulation has destabilized the utility decision process, and least-cost regulation has pointed utilities to gas-fired plants for those additions that are coming on-line, the nuclear power industry has begun to ask the question: What will cause nuclear energy to again compete as an option in new, domestic generating capacity additions? Since virtually all of today`s corporate and societal decisions are driven by short-term factors, the preceding question can be translated into: What crisis might occur that would project nuclear as the solution to an immediately perceivedmore » problem? Thus, an examination of scenarios that would project nuclear power into the country`s immediate consciousness is in order, along with an analysis of the implications for and challenges to the nuclear industry resulting therefrom. This paper undertakes such an analysis.« less

  3. Accelerator driven reactors and nuclear waste management projects in the Czech Republic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janouch, Frantisek; Mach, Rostislav; Institute of Nuclear Physics, Rez near Prague

    1995-09-15

    The Czech Republic is almost the only country in the central Europe which continues with the construction of nuclear power reactors. Its small territory and dense population causes public worries concerning the disposal of the spent nuclear fuel. The Czech nuclear scientists and the power companies and the nuclear industries are therefore looking for alterative solutions. The Los Alamos ATW project had received a positive response in the Czech mass-media and even in the industrial and governmental quarters. The recent scientific symposium ''Accelerator driven reactors and nuclear waste management'' convened at the Liblice castle near Prague, 27-29.6. 1994 and sponsoredmore » by the Czech Energy Company CEZ, reviewed the competencies and experimental basis in the Czech republic and made the first attempt to formulate the national approach and to establish international collaboration in this area.« less

  4. Accelerator driven reactors and nuclear waste management projects in the Czech Republic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janouch, F.; Mach, R.

    1995-10-01

    The Czech Republic is almost the only country in the central Europe which continues with the construction of nuclear power reactors. Its small territory and dense population causes public worries concerning the disposal of the spent nuclear fuel. The Czech nuclear scientists and the power companies and the nuclear industries are therefore looking for alternative solutions. The Los Alamos ATW project had received a positive response in the Czech mass-media and even in the industrial and governmental quarters. The recent scientific symposium {open_quotes}Accelerator driven reactors and nuclear waste management{close_quotes} convened at the Liblice castle near Prague, 27-29. 6. 1994 andmore » sponsored by the Czech Energy Company CEZ, reviewed the competencies and experimental basis in the Czech republic and made the first attempt to formulate the national approach and to establish international collaboration in this area.« less

  5. Radiological Aspects of Heavy Metal Liquid Targets for Accelerator-Driven Systems as Intense Neutron Sources

    NASA Astrophysics Data System (ADS)

    Gai, E. V.; Ignatyuk, A. V.; Lunev, V. P.; Shubin, Yu. N.

    2001-11-01

    General problems arising in development of intense neutron sources as a part of accelerator-driven systems and first experience accumulated in IPPE during last several years are briefly discussed. The calculation and analysis of nuclear-physical properties of the targets, such as the accumulation of spallation reaction products, activity and heat release for various versions of heavy liquid metal targets were performed in IPPE. The sensitivity of the results of calculations to the various sets of nuclear data was considered. The main radiology characteristics of the lead-bismuth target, which is now under construction in the frame of ISTC Project # 559, are briefly described. The production of short-lived nuclides was estimated, the total activity and volatile nuclide accumulation, residual heat release, the energies of various decay modes were analysed.

  6. A Delayed Neutron Counting System for the Analysis of Special Nuclear Materials

    NASA Astrophysics Data System (ADS)

    Sellers, Madison Theresa

    Nuclear forensic analysis is a modem science that uses numerous analytical techniques to identify and attribute nuclear materials in the event of a nuclear explosion, radiological terrorist attack or the interception of illicit nuclear material smuggling. The Canadian Department of National Defence has participated in recent international exercises that have highlighted the Nation's requirement to develop nuclear forensics expertise, protocol and capabilities, specifically pertaining to the analysis of special nuclear materials (SNM). A delayed neutron counting (DNC) system has been designed and established at the Royal Military College of Canada (RMC) to enhance the Government's SNM analysis capabilities. This analytical technique complements those already at RMC by providing a rapid and non-destructive method for the analysis of the fissile isotopes of both uranium (U) and plutonium (Pu). The SLOWPOKE-2 reactor at RMC produces a predominately thermal neutron flux. These neutrons induce fission in the SNM isotopes 233U, 235U and 239Pu releasing prompt fast neutrons, energy and radioactive fission fragments. Some of these fission fragments undergo beta - decay and subsequently emit neutrons, which can be recorded by an array of sensitive 3He detectors. The significant time period between the fission process and the release of these neutrons results in their identification as 'delayed neutrons'. The recorded neutron spectrum varies with time and the count rate curve is unique to each fissile isotope. In-house software, developed by this project, can analyze this delayed neutron curve and provides the fissile mass in the sample. Extensive characterization of the DNC system has been performed with natural U samples with 235 U content ranging from 2--7 microg. The system efficiency and dead time behaviour determined by the natural uranium sample analyses were validated by depleted uranium samples with similar quantities of 235 U resulting in a typical relative error of 3.6%. The system has accurately determined 235U content over three orders of magnitude with 235U amounts as low as 10 ng. The results have also been proven to be independent of small variations in total analyte volume and geometry, indicating that it is an ideal technique for the analysis of samples containing SNM in a variety of different matrices. The Analytical Sciences Group at RMC plans to continue DNC system development to include 233U and 239pu analysis and mixtures of SNM isotopes. Keywords: delayed neutron counting, special nuclear materials, nuclear forensics.

  7. Safeguards and security research and development: Progress report, October 1994--September 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutherford, D.R.; Henriksen, P.W.

    The primary goal of the Los Alamos Safeguards and Security Technology Development Program, International Safeguards, and other Safeguards and Security Programs is to continue to be the center of excellence in the field of Safeguards and Security. This annual report for 1995 describes those scientific and engineering projects that contribute to all of the aforementioned programs. The authors have presented the information in a different format from previous annual reports. Part I is devoted to Nuclear Material Measurement Systems. Part II contains projects that are specific to Integrated Safeguards Systems. Part III highlights Safeguards Systems Effectiveness Evaluations and Part IVmore » is a compilation of highlights from Information Assurance projects. Finally Part V highlights work on the projects at Los Alamos for International Safeguards. The final part of this annual report lists titles and abstracts of Los Alamos Safeguards and Security Technology Development reports, technical journal articles, and conference papers that were presented and published in 1995. This is the last annual report in this format. The authors wish to thank all of the individuals who have contributed to this annual report and made it so successful over the years.« less

  8. SU-E-I-15: Comparison of Radiation Dose for Radiography and EOS in Adolescent Scoliosis Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schueler, B; Walz-Flannigan, A

    Purpose: To estimate patient radiation dose for whole spine imaging using EOS, a new biplanar slot-scanning radiographic system and compare with standard scoliosis radiography. Methods: The EOS imaging system (EOS Imaging, Paris, France) consists of two orthogonal x-ray fan beams which simultaneously acquire frontal and lateral projection images of a standing patient. The patient entrance skin air kerma was measured for each projection image using manufacturer-recommended exposure parameters for spine imaging. Organ and effective doses were estimated using a commercially-available Monte Carlo simulation program (PCXMC, STUK, Radiation and Nuclear Safety Authority, Helsinki, Finland) for a 15 year old mathematical phantommore » model. These results were compared to organ and effective dose estimated for scoliosis radiography using computed radiography (CR) with standard exposure parameters obtained from a survey of pediatric radiographic projections. Results: The entrance skin air kerma for EOS was found to be 0.18 mGy and 0.33 mGy for posterior-anterior (PA) and lateral projections, respectively. This compares to 0.76 mGy and 1.4 mGy for CR, PA and lateral projections. Effective dose for EOS (PA and lateral projections combined) is 0.19 mSv compared to 0.51 mSv for CR. Conclusion: The EOS slot-scanning radiographic system allows for reduced patient radiation dose in scoliosis patients as compared to standard CR radiography.« less

  9. Personnel Requirements, Education, and Training for Civilian Nuclear Activities, 1984-2000. Executive Summary.

    ERIC Educational Resources Information Center

    Stevenson, Wayne

    This report provides projections of the employment of scientists, engineers, technicians, and other occupations for the civilian nuclear industry through the year 2000. Low, medium, and high projections are provided. In all cases, a substantial number of job openings are anticipated to fill needs created by employment growth, retirement, death,…

  10. Development and Testing of a Nuclear Quality Assurance/Quality Control Technician Curriculum. Final Report.

    ERIC Educational Resources Information Center

    Espy, John; And Others

    A project was conducted to field test selected first- and second-year courses in a postsecondary nuclear quality assurance/quality control (QA/QC) technician curriculum and to develop the teaching/learning modules for seven technical specialty courses remaining in the QA/QC technician curriculum. The field testing phase of the project involved the…

  11. Women and Men of the Manhattan Project

    ERIC Educational Resources Information Center

    Marshall, Jill; Herzenber, Caroline; Howes, Ruth; Weaver, Ellen; Gans, Dorothy

    2010-01-01

    In the early 1990s Ruth Howes, a nuclear physicist on the faculty at Ball State University, and Caroline Herzenberg, a nuclear physicist at Argonne National Laboratory, were asked to write a chapter on the Manhattan Project for a volume on women working on weapons development for the military. Realizing that they knew very little about the women…

  12. YUCCA MOUNTAIN PROJECT - A BRIEFING --

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NA

    2003-08-05

    This report has the following articles: Nuclear waste--a long-term national problem; Spent nuclear fuel; High-level radioactive waste; Radioactivity and the environment; Current storage methods; Disposal options; U.S. policy on nuclear waste; The focus on Yucca Mountain; The purpose and scope of the Yucca Mountain Project; The approach for permanently disposing of waste; The scientific studies at Yucca Mountain; The proposed design for a repository at Yucca Mountain; Natural and engineered barriers would work together to isolate waste; Meticulous science and technology to protect people and the environment; Licensing a repository; Transporting waste to a permanent repository; The Environmental Impact Statementmore » for a repository; Current status of the Yucca Mountain Project; and Further information available on the Internet.« less

  13. Agile Machining and Inspection Non-Nuclear Report (NNR) Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazarus, Lloyd

    This report is a high level summary of the eight major projects funded by the Agile Machining and Inspection Non-Nuclear Readiness (NNR) project (FY06.0422.3.04.R1). The largest project of the group is the Rapid Response project in which the six major sub categories are summarized. This project focused on the operations of the machining departments that will comprise Special Applications Machining (SAM) in the Kansas City Responsive Infrastructure Manufacturing & Sourcing (KCRIMS) project. This project was aimed at upgrading older machine tools, developing new inspection tools, eliminating Classified Removable Electronic Media (CREM) in the handling of classified Numerical Control (NC) programsmore » by installing the CRONOS network, and developing methods to automatically load Coordinated-Measuring Machine (CMM) inspection data into bomb books and product score cards. Finally, the project personnel leaned perations of some of the machine tool cells, and now have the model to continue this activity.« less

  14. NNDC Stand: Activities and Services of the National Nuclear Data Center

    NASA Astrophysics Data System (ADS)

    Pritychenko, B.; Arcilla, R.; Burrows, T. W.; Dunford, C. L.; Herman, M. W.; McLane, V.; Obložinský, P.; Sonzogni, A. A.; Tuli, J. K.; Winchell, D. F.

    2005-05-01

    The National Nuclear Data Center (NNDC) collects, evaluates, and disseminates nuclear physics data for basic nuclear research, applied nuclear technologies including energy, shielding, medical and homeland security. In 2004, to answer the needs of nuclear data users community, NNDC completed a project to modernize data storage and management of its databases and began offering new nuclear data Web services. The principles of database and Web application development as well as related nuclear reaction and structure database services are briefly described.

  15. Project Icarus: Analysis of Plasma jet driven Magneto-Inertial Fusion as potential primary propulsion driver for the Icarus probe

    NASA Astrophysics Data System (ADS)

    Stanic, M.; Cassibry, J. T.; Adams, R. B.

    2013-05-01

    Hopes of sending probes to another star other than the Sun are currently limited by the maturity of advanced propulsion technologies. One of the few candidate propulsion systems for providing interstellar flight capabilities is nuclear fusion. In the past many fusion propulsion concepts have been proposed and some of them have even been explored in detail, Project Daedalus for example. However, as scientific progress in this field has advanced, new fusion concepts have emerged that merit evaluation as potential drivers for interstellar missions. Plasma jet driven Magneto-Inertial Fusion (PJMIF) is one of those concepts. PJMIF involves a salvo of converging plasma jets that form a uniform liner, which compresses a magnetized target to fusion conditions. It is an Inertial Confinement Fusion (ICF)-Magnetic Confinement Fusion (MCF) hybrid approach that has the potential for a multitude of benefits over both ICF and MCF, such as lower system mass and significantly lower cost. This paper concentrates on a thermodynamic assessment of basic performance parameters necessary for utilization of PJMIF as a candidate propulsion system for the Project Icarus mission. These parameters include: specific impulse, thrust, exhaust velocity, mass of the engine system, mass of the fuel required etc. This is a submission of the Project Icarus Study Group.

  16. Fusion Advanced Design Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Guebaly, Laila; Henderson, Douglass; Wilson, Paul

    2017-03-24

    During the January 1, 2013 – December 31, 2015 contract period, the UW Fusion Technology Institute personnel have actively participated in the ARIES-ACT and FESS-FNSF projects, led the nuclear and thermostructural tasks, attended several project meetings, and participated in all conference calls. The main areas of effort and technical achievements include updating and documenting the nuclear analysis for ARIES-ACT1, performing nuclear analysis for ARIES-ACT2, performing thermostructural analysis for ARIES divertor, performing disruption analysis for ARIES vacuum vessel, and developing blanket testing strategy and Materials Test Module for FNSF.

  17. Equation of state of asymmetric nuclear matter using re-projected nucleon–nucleon potentials

    NASA Astrophysics Data System (ADS)

    Asadi Aghbolaghi, Z.; Bigdeli, M.

    2018-06-01

    In this paper, we have calculated the equation of state of asymmetric nuclear matter using the lowest order constrained variational approach and Argonne family potentials with and without three-nucleon interaction (TNI) contribution. In particular, we have used the AV18 potential and the re-projected potentials, AV8‧, and AV6‧. We have also calculated the saturation properties of symmetric nuclear matter, and the nuclear symmetry energy using AV18+TNI, AV8‧+TNI and AV6‧+TNI potentials. The inclusion of TNI has modified the agreement with experiment. We have also made a comparison between our results and those of other many-body calculations.

  18. The MAGNEX spectrometer: Results and perspectives

    NASA Astrophysics Data System (ADS)

    Cappuzzello, F.; Agodi, C.; Carbone, D.; Cavallaro, M.

    2016-06-01

    This review discusses the main achievements and future perspectives of the MAGNEX spectrometer at the INFN-LNS laboratory in Catania (Italy). MAGNEX is a large-acceptance magnetic spectrometer for the detection of the ions emitted in nuclear collisions below Fermi energy. In the first part of the paper an overview of the MAGNEX features is presented. The successful application to the precise reconstruction of the momentum vector, to the identification of the ion masses and to the determination of the transport efficiency is demonstrated by in-beam tests. In the second part, an overview of the most relevant scientific achievements is given. Results from nuclear elastic and inelastic scattering as well as from transfer and charge-exchange reactions in a wide range of masses of the colliding systems and incident energies are shown. The role of MAGNEX in solving old and new puzzles in nuclear structure and direct reaction mechanisms is emphasized. One example is the recently observed signature of the long searched Giant Pairing Vibration. Finally, the new challenging opportunities to use MAGNEX for future experiments are briefly reported. In particular, the use of double charge-exchange reactions toward the determination of the nuclear matrix elements entering in the expression of the half-life of neutrinoless double beta decay is discussed. The new NUMEN project of INFN, aiming at these investigations, is introduced. The challenges connected to the major technical upgrade required by the project in order to investigate rare processes under high fluxes of detected heavy ions are outlined.

  19. Antarctic Atmospheric Infrasound.

    DTIC Science & Technology

    1981-11-30

    auroral infra - sonic waves and the atmospheric test of a nuclear weapon in China were all recorded and analyzed in real-time by the new system as...Detection Enhancement by a Pure State Filter, 16 February 1981 The great success of the polarization filter technique with infra - sonic data led to our...Project chronology ) 2. Summary of data collected 3. Antarctic infrasonic signals 4. Noise suppression using data-adaptive polarization filters: appli

  20. Nuclear Weapon Environment Model. Volume II. Computer Code User’s Guide.

    DTIC Science & Technology

    1979-02-01

    J.R./IfW-09obArt AT NAME AND ADDRESS 10 PROGRAM ELEMENT PROJECT. TASK ’A a *0 RK UONGANIZATION TRW Defense and Space Systems GroupA 8WOKUINMES One...SIZE I I& DENSITY / DENSITY ZERO ,-NO OR TIME TOO YES LARGE? I CALL SIZER I r SETUP GRID IDIAGNOSTICI -7 PRINT DESIRED NOY-LOOP .? D I INCREMENT Y I I

  1. Measurement of high energy neutrons via Lu(n,xn) reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, E.A.; Becker, J.A.; Archer, D.E.

    High energy neutrons can be assayed by the use of the nuclear diagnostic material lutetium. We are measuring the (n,xn) cross sections for natural lutetium in order to develop it as a detector material. We are applying lutetium to diagnose the high energy neutrons produced in test target/blanket systems appropriate for the Accelerator Production of Tritium Project. 3 refs., 5 figs., 1 tab.

  2. 2008 Maneuver Support Science and Technology Conference and Exhibition

    DTIC Science & Technology

    2008-07-30

    Web Boeing 707 Civilian Nuclear PowerHyman G. Rickover KC-135 Nautilus SSN 571 ~ 1954 ~ 1955 1960’s DDG 1000 “Electric Navy” AMSC - 50,000 SHP ...Systems Integration? “The Project Manager shall have a comprehensive plan for HSI in place early in the acquisition process to optimize...Applications research for specific military problems • Components, subsystems, models, new concepts • Understanding to solve

  3. NASA's Kilopower Reactor Development and the Path to Higher Power Missions

    NASA Technical Reports Server (NTRS)

    Gibson, Marc A.; Oleson, Steven R.; Poston, David I.; McClure, Patrick

    2017-01-01

    The development of NASAs Kilopower fission reactor is taking large strides toward flight development with several successful tests completed during its technology demonstration trials. The Kilopower reactors are designed to provide 1-10 kW of electrical power to a spacecraft which could be used for additional science instruments as well as the ability to power electric propulsion systems. Power rich nuclear missions have been excluded from NASA proposals because of the lack of radioisotope fuel and the absence of a flight qualified fission system. NASA has partnered with the Department of Energy's National Nuclear Security Administration to develop the Kilopower reactor using existing facilities and infrastructure to determine if the design is ready for flight development. The 3-year Kilopower project started in 2015 with a challenging goal of building and testing a full-scale flight prototypic nuclear reactor by the end of 2017. As the date approaches, the engineering team shares information on the progress of the technology as well as the enabling capabilities it provides for science and human exploration.

  4. NASA's Kilopower Reactor Development and the Path to Higher Power Missions

    NASA Technical Reports Server (NTRS)

    Gibson, Marc A.; Oleson, Steven R.; Poston, Dave I.; McClure, Patrick

    2017-01-01

    The development of NASA's Kilopower fission reactor is taking large strides toward flight development with several successful tests completed during its technology demonstration trials. The Kilopower reactors are designed to provide 1-10 kW of electrical power to a spacecraft which could be used for additional science instruments as well as the ability to power electric propulsion systems. Power rich nuclear missions have been excluded from NASA proposals because of the lack of radioisotope fuel and the absence of a flight qualified fission system. NASA has partnered with the Department of Energy's National Nuclear Security Administration to develop the Kilopower reactor using existing facilities and infrastructure to determine if the design is ready for flight development. The 3-year Kilopower project started in 2015 with a challenging goal of building and testing a full-scale flight prototypic nuclear reactor by the end of 2017. As the date approaches, the engineering team shares information on the progress of the technology as well as the enabling capabilities it provides for science and human exploration.

  5. Manpower Requirements in the Nuclear Power Industry, 1982-1991.

    ERIC Educational Resources Information Center

    Johnson, Ruth C.

    A study projected employment needs created by growth and employee turnover for the nuclear power industry over the next decade. Only employment by electric utilities in the commercial generation of nuclear power was investigated. Employment data for 1981 were collected in a survey of 60 member utilities of the Institute of Nuclear Power…

  6. Soviet strategic nuclear doctrine under Gorbachev. Study project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winkel, R.J.

    This paper examines Soviet offensive strategic nuclear doctrine under General Secretary and President Mikail S. Gorbachev. The development of Soviet nuclear doctrine starting with the Stalin era is reviewed. A close look at those pieces of Gorbachev's new thinking that pertain to nuclear weapons doctrine are presented. Implications for U.S. strategy are offered.

  7. 75 FR 1088 - Notice of Availability of a Memorandum of Understanding Between the Nuclear Regulatory Commission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-08

    ... NUCLEAR REGULATORY COMMISSION [NRC-2009-0578] Notice of Availability of a Memorandum of Understanding Between the Nuclear Regulatory Commission and the Bureau of Land Management AGENCY: Nuclear Regulatory Commission. ACTION: Notice of Availability. FOR FURTHER INFORMATION CONTACT: Mr. Alan Bjornsen, Project Manager, Environmental Review Branch,...

  8. 75 FR 11947 - STP Nuclear Operating Company, South Texas Project, Units 1 and 2; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... request to extend the rule's compliance date for all operating nuclear power plants, but noted that the..., Nuclear Energy Institute). The licensee's request for an exemption is therefore consistent with the.... Nuclear Regulatory Commission (NRC, the Commission) now or hereafter in effect. The facility consists of...

  9. Use of mock-up training to reduce personnel exposure at the North Anna Unit 1 Steam Generator Replacement Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, H.G.; Reilly, B.P.

    1995-03-01

    The North Anna Power Station is located on the southern shore of Lake Anna in Louisa County, approximately forty miles northwest of Richmond, Virginia. The two 910 Mw nuclear units located on this site are owned by Virginia Electric and Power Company (Virginia Power) and Old Dominion Electric Cooperative and operated by Virginia Power. Fuel was loaded into Unit 1 in December 1977, and it began commercial operation in June 1978. Fuel was loaded into Unit 2 in April 1980 and began commercial operation in December 1980. Each nuclear unit includes a three-coolant-loop pressurized light water reactor nuclear steam supplymore » system that was furnished by Westinghouse Electric Corporation. Included within each system were three Westinghouse Model 51 steam generators with alloy 600, mill-annealed tubing material. Over the years of operation of Unit 1, various corrosion-related phenomena had occurred that affected the steam generators tubing and degraded their ability to fulfill their heat transfer function. Advanced inspection and repair techniques helped extend the useful life of the steam generators, but projections based on the results of the inspections indicated that the existing steam generators tubing and degraded their ability to fullfill their heat transfer function. Advanced inspection and repair techniques helped extend the useful life of the steam generators, but projections based on the results of the inspections indicated that the existing steam generators would not last their design life and must be repaired. To this end Virginia Power determined that a steam generator replacement (SGR) program was necessary to remove the old steam generator tube bundles and lower shell sections, including the channel heads (collectively called the lower assemblies), and replace them with new lower assemblies incorporating design features that will prevent the degradation problems that the old steam generators had experienced.« less

  10. Nuclear spin imaging with hyperpolarized nuclei created by brute force method

    NASA Astrophysics Data System (ADS)

    Tanaka, Masayoshi; Kunimatsu, Takayuki; Fujiwara, Mamoru; Kohri, Hideki; Ohta, Takeshi; Utsuro, Masahiko; Yosoi, Masaru; Ono, Satoshi; Fukuda, Kohji; Takamatsu, Kunihiko; Ueda, Kunihiro; Didelez, Jean-P.; Prossati, Giorgio; de Waard, Arlette

    2011-05-01

    We have been developing a polarized HD target for particle physics at the SPring-8 under the leadership of the RCNP, Osaka University for the past 5 years. Nuclear polarizaton is created by means of the brute force method which uses a high magnetic field (~17 T) and a low temperature (~ 10 mK). As one of the promising applications of the brute force method to life sciences we started a new project, "NSI" (Nuclear Spin Imaging), where hyperpolarized nuclei are used for the MRI (Magnetic Resonance Imaging). The candidate nuclei with spin ½hslash are 3He, 13C, 15N, 19F, 29Si, and 31P, which are important elements for the composition of the biomolecules. Since the NMR signals from these isotopes are enhanced by orders of magnitudes, the spacial resolution in the imaging would be much more improved compared to the practical MRI used so far. Another advantage of hyperpolarized MRI is that the MRI is basically free from the radiation, while the problems of radiation exposure caused by the X-ray CT or PET (Positron Emission Tomography) cannot be neglected. In fact, the risk of cancer for Japanese due to the radiation exposure through these diagnoses is exceptionally high among the advanced countries. As the first step of the NSI project, we are developing a system to produce hyperpolarized 3He gas for the diagnosis of serious lung diseases, for example, COPD (Chronic Obstructive Pulmonary Disease). The system employs the same 3He/4He dilution refrigerator and superconducting solenoidal coil as those used for the polarized HD target with some modification allowing the 3He Pomeranchuk cooling and the following rapid melting of the polarized solid 3He to avoid the depolarization. In this report, the present and future steps of our project will be outlined with some latest experimental results.

  11. Concrete Materials with Ultra-High Damage Resistance and Self- Sensing Capacity for Extended Nuclear Fuel Storage Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Mo; Nakshatrala, Kalyana; William, Kasper

    The objective of this project is to develop a new class of multifunctional concrete materials (MSCs) for extended spent nuclear fuel (SNF) storage systems, which combine ultra-high damage resistance through strain-hardening behavior with distributed multi-dimensional damage self-sensing capacity. The beauty of multifunctional concrete materials is two-fold: First, it serves as a major material component for the SNF pool, dry cask shielding and foundation pad with greatly improved resistance to cracking, reinforcement corrosion, and other common deterioration mechanisms under service conditions, and prevention from fracture failure under extreme events (e.g. impact, earthquake). This will be achieved by designing multiple levels ofmore » protection mechanisms into the material (i.e., ultrahigh ductility that provides thousands of times greater fracture energy than concrete and normal fiber reinforced concrete; intrinsic cracking control, electrochemical properties modification, reduced chemical and radionuclide transport properties, and crack-healing properties). Second, it offers capacity for distributed and direct sensing of cracking, strain, and corrosion wherever the material is located. This will be achieved by establishing the changes in electrical properties due to mechanical and electrochemical stimulus. The project will combine nano-, micro- and composite technologies, computational mechanics, durability characterization, and structural health monitoring methods, to realize new MSCs for very long-term (greater than 120 years) SNF storage systems.« less

  12. Radiation Embrittlement Archive Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klasky, Hilda B; Bass, Bennett Richard; Williams, Paul T

    2013-01-01

    The Radiation Embrittlement Archive Project (REAP), which is being conducted by the Probabilistic Integrity Safety Assessment (PISA) Program at Oak Ridge National Laboratory under funding from the U.S. Nuclear Regulatory Commission s (NRC) Office of Nuclear Regulatory Research, aims to provide an archival source of information about the effect of neutron radiation on the properties of reactor pressure vessel (RPV) steels. Specifically, this project is an effort to create an Internet-accessible RPV steel embrittlement database. The project s website, https://reap.ornl.gov, provides information in two forms: (1) a document archive with surveillance capsule(s) reports and related technical reports, in PDF format,more » for the 104 commercial nuclear power plants (NPPs) in the United States, with similar reports from other countries; and (2) a relational database archive with detailed information extracted from the reports. The REAP project focuses on data collected from surveillance capsule programs for light-water moderated, nuclear power reactor vessels operated in the United States, including data on Charpy V-notch energy testing results, tensile properties, composition, exposure temperatures, neutron flux (rate of irradiation damage), and fluence, (Fast Neutron Fluence a cumulative measure of irradiation for E>1 MeV). Additionally, REAP contains data from surveillance programs conducted in other countries. REAP is presently being extended to focus on embrittlement data analysis, as well. This paper summarizes the current status of the REAP database and highlights opportunities to access the data and to participate in the project.« less

  13. On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers, Volumes 1, 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyaya, Belle R.; Hines, J. Wesley; Lu, Baofu

    2005-06-03

    The overall purpose of this Nuclear Engineering Education Research (NEER) project was to integrate new, innovative, and existing technologies to develop a fault diagnostics and characterization system for nuclear plant steam generators (SG) and heat exchangers (HX). Issues related to system level degradation of SG and HX tubing, including tube fouling, performance under reduced heat transfer area, and the damage caused by stress corrosion cracking, are the important factors that influence overall plant operation, maintenance, and economic viability of nuclear power systems. The research at The University of Tennessee focused on the development of techniques for monitoring process and structuralmore » integrity of steam generators and heat exchangers. The objectives of the project were accomplished by the completion of the following tasks. All the objectives were accomplished during the project period. This report summarizes the research and development activities, results, and accomplishments during June 2001 September 2004. Development and testing of a high-fidelity nodal model of a U-tube steam generator (UTSG) to simulate the effects of fouling and to generate a database representing normal and degraded process conditions. Application of the group method of data handling (GMDH) method for process variable prediction. Development of a laboratory test module to simulate particulate fouling of HX tubes and its effect on overall thermal resistance. Application of the GMDH technique to predict HX fluid temperatures, and to compare with the calculated thermal resistance.Development of a hybrid modeling technique for process diagnosis and its evaluation using laboratory heat exchanger test data. Development and testing of a sensor suite using piezo-electric devices for monitoring structural integrity of both flat plates (beams) and tubing. Experiments were performed in air, and in water with and without bubbly flow. Development of advanced signal processing methods using wavelet transforms and image processing techniques for isolating flaw types. Development and implementation of a new nonlinear and non-stationary signal processing method, called the Hilbert-Huang transform (HHT), for flaw detection and location. This is a more robust and adaptive approach compared to the wavelet transform.Implementation of a moving-window technique in the time domain for detecting and quantifying flaw types in tubular structures. A window zooming technique was also developed for flaw location in tubes. Theoretical study of elastic wave propagation (longitudinal and shear waves) in metallic flat plates and tubing with and without flaws. Simulation of the Lamb wave propagation using the finite-element code ABAQUS. This enabled the verification of the experimental results. The research tasks included both analytical research and experimental studies. The experimental results helped to enhance the robustness of fault monitoring methods and to provide a systematic verification of the analytical results. The results of this research were disseminated in scientific meetings. The journal manuscript titled, "Structural Integrity Monitoring of Steam generator Tubing Using Transient Acoustic Signal Analysis," was published in IEEE Trasactions on Nuclear Science, Vol. 52, No. 1, February 2005. The new findings of this research have potential applications in aerospace and civil structures. The report contains a complete bibliography that was developed during the course of the project.« less

  14. WEST VALLEY DEMONSTRATION PROJECT ANNUAL SITE ENVIRONMENTAL REPORT CALENDAR YEAR 2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2003-09-12

    This annual environmental monitoring report for the West Valley Demonstration Project (WVDP or Project) is published to inform those with interest about environmental conditions at the WVDP. In accordance with U.S. Department of Energy (DOE) Order 231.1, Environment, Safety, and Health Reporting, the report summarizes calendar year (CY) 2002 environmental monitoring data so as to describe the performance of the WVDP's environmental management system, confirm compliance with standards and regulations, and highlight important programs. In 2002, the West Valley Demonstration Project, the site of a DOE environmental cleanup activity operated by West Valley Nuclear Services Co. (WVNSCO), was in themore » final stages of stabilizing high-level radioactive waste (HLW) that remained at the site after commercial nuclear fuel reprocessing had been discontinued in the early 1970s. The Project is located in western New York State, about 30 miles south of Buffalo, within the New York State-owned Western New York Nuclear Service Center (WNYNSC). The WVDP is being conducted in cooperation with the New York State Energy Research and Development Authority (NYSERDA). Ongoing work activities at the WVDP during 2002 included: (1) completing HLW solidification and melter shutdown; (2) shipping low-level radioactive waste off-site for disposal; (3) constructing a facility where large high-activity components can be safely packaged for disposal; (4) packaging and removing spent materials from the vitrification facility; (5) preparing environmental impact statements for future activities; (6) removing as much of the waste left behind in waste tanks 8D-1 and 8D-2 as was reasonably possible; (7) removing storage racks, canisters, and debris from the fuel receiving and storage pool, decontaminating pool walls, and beginning shipment of debris for disposal; (8) ongoing decontamination in the general purpose cell and the process mechanical cell (also referred to as the head end cells); (9) planning for cleanup of waste in the plutonium purification cell (south) and extraction cell number 2 in the main plant; (10) ongoing characterization of facilities such as the waste tank farm and process cells; (11) monitoring the environment and managing contaminated areas within the Project facility premises; and (12) flushing and rinsing HLW solidification facilities.« less

  15. Nuclear Society of Russia: Ten years in the world nuclear community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ponomarev-Stepnoi, N.N.; Gagarinski, A.Yu.

    2000-07-01

    A nuclear society, which is a nongovernmental organization of nuclear professionals, appeared in the Soviet Union at the end of the 1980s--when social conditions for such a society had matured. Deep changes in the entire country's social consciousness had promoted the specialists understanding of the need to unite in order to overcome the nuclear community's dissociation, the monopoly of the nuclear ministry, and the secrecy syndrome of all nuclear issues. The new public association announced the guiding principles of its activities to be openness and glasnost and completeness and truthfulness of information supplied to decision makers and to the societymore » as a whole. Important to the information system of the NSR are topical meetings and seminars on quite varied but always actual problems of nuclear energy use, often with foreign participation. The variety of these NSR meeting subjects is illustrated by the titles of several meetings of the last 2 yr: Safety Culture in Nuclear Power, Youth and the Plutonium Challenge, Nuclear Fuel for Mankind, Nuclear Power in Space, Radiation Legacy of the Former-USSR, the Murmansk International Forum Nuclear Fleet and Ecology, and many others. A special place among NSR seminars belongs to the annual meeting, Nuclear Energy and Public Opinion, the Russian analog of the European PIME conference. Starting from distribution of ENS periodicals--the Nuclear Europe Worldscan magazine and Nucleus information sheet--among its members, the NSR soon began publishing its own Informational Bulletin (since 1989). Note that in the first years of the Nuclear Society's existence, it has been possible to publish periodicals, conference proceedings, and even books in English. Unfortunately, financial difficulties of the last years have frozen this most useful activity, which the NSR, however, hopes to resume. In the last period, the materials of the international information agency NucNet, which provides both regular information for the analysis of nuclear energy production trends and--most importantly for relations with the mass media and the public--crisis information (latest examples: Tokaimura, the virtual Y2K crisis, etc.), have become important sources of information for the NSR. It should be emphasized that the financial participation of the Russian Minatom (maintained at the insistent request of the NSR) in the NucNet system provides sufficiently wide dissemination of operative nuclear information not only through the NSR headquarters but also via its regional branches and separate enterprises. From its side, NSR has assumed the responsibility for the adequate flow of information on Russian nuclear events to NucNet. As a living and developing organism, the NSR wants to respond to its time's challenges. Several prospective directions could be among the NSR information exchange plans: (1) Independent international analysis of the problems of the use of nuclear energy, which is presently in a stagnation period but with future large-scale development, is as possible today as it never had been before. (2) In the field of public relations, many achievements of Russian and US specialists (in the form of articles, analyzing nuclear energy on the popular and highly professional level) stay inaccessible to others because of the language barrier. A possible joint ANS/NSR project on selection, translation, and exchange of such materials, with their further wide publication, represents an obvious reserve in their societies' information activities. (3) The International Youth Nuclear Congress project (proposed by the Russian nuclear youth and supported by ANS and ENS), conceived as a bridge between generations and a forum for opinion exchange between young nuclear specialists from various countries, deserves further development and appropriation of permanent status in the activities of the world nuclear societies.« less

  16. Getting Beyond Yucca Mountain - 12305

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halstead, Robert J.; Williams, James M.

    2012-07-01

    The U.S. Department of Energy has terminated the Yucca Mountain repository project. The U.S. Nuclear Regulatory Commission has indefinitely suspended the Yucca Mountain licensing proceeding. The presidentially-appointed Blue Ribbon Commission (BRC) on America's Nuclear Future is preparing a report, due in January 2012, to the Secretary of Energy on recommendations for a new national nuclear waste management and disposal program. The BRC Draft Report published in July 2011 provides a compelling critique of the past three decades failed efforts in the United States to site storage and disposal facilities for spent nuclear fuel (SNF) and high-level radioactive waste (HLW). However,more » the BRC Draft Report fails to provide detailed guidance on how to implement an alternative, successful approach to facility site selection. The comments submitted to the BRC by the State of Nevada Agency for Nuclear Projects provide useful details on how the US national nuclear waste program can get beyond the failed Yucca Mountain repository project. A detailed siting process, consisting of legislative elements, procedural elements, and 'rules' for volunteer sites, could meet the objectives of the BRC and the Western Governors Association (WGA), while promoting and protecting the interests of potential host states. The recent termination of the proposed Yucca Mountain repository provides both an opportunity and a need to re-examine the United States' nuclear waste management program. The BRC Draft Report published in July 2011 provides a compelling critique of the past three decades failed efforts in the United States to site storage and disposal facilities for SNF and HLW. It is anticipated that the BRC Final report in January 2012 will recommend a new general course of action, but there will likely continue to be a need for detailed guidance on how to implement an alternative, successful approach to facility site selection. Getting the nation's nuclear waste program back on track requires, among other things, new principles for siting-principles based on partnership between the federal implementing agency and prospective host states. These principles apply to the task of developing an integrated waste management strategy, to interactions between the federal government and prospective host states for consolidated storage and disposal facilities, and to the logistically and politically complicated task of transportation system design. Lessons from the past 25 years, in combination with fundamental parameters of the nuclear waste management task in the US, suggest new principles for partnership outlined in this paper. These principles will work better if well-grounded and firm guidelines are set out beforehand and if the challenge of maintaining competence, transparency and integrity in the new organization is treated as a problem to be addressed rather than a result to be expected. (authors)« less

  17. The Pen Branch Project: Restoration of a Forested Wetland in South Carolina

    Treesearch

    Randall K. Kolka; Eric A. Nelson; Ronald E. Bonar; Neil C. Dulohery; David Gartner

    1998-01-01

    The Pen Branch Project is a program to restore a forested riparian wetland that has been subject to thermal disturbance caused by nuclear reactor operations at the Department of Energy's (DOE) Savannah River Site (SRS), an 80,200-hectare nuclear facility located in South Carolina. Various levels of thermal discharges to streams located across the US. have occurred...

  18. Present status of the KISS project

    NASA Astrophysics Data System (ADS)

    Miyatake, H.; Wada, M.; Watanabe, X. Y.; Hirayama, Y.; Schury, P.; Ahmed, M.; Ishiyama, H.; Jeong, S. C.; Kakiguchi, Y.; Kimura, S.; Moon, J. Y.; Mukai, M.; Oyaizu, M.; Park, J. H.

    2018-04-01

    KISS project aims at finding an astrophysical condition for synthesizing r-process heavy element isotopes, which are characterized as the third peak in the solar abundance pattern. This is an experimental challenge in nuclear physics to measure ground and isomeric state properties of unknown nuclei around the region of N=126 isotones. So far we have constructed and developed new type of mass separation system, KISS (KEK Isotope Separation System) and performed measurements of lifetimes and hyperfine structures of some platinum and iridium neutron-rich radioactive isotopes by applying multi-nucleon transfer reactions and in-gas laser ionization and spectroscopy (IGLIS) methods. In this report, recent physics results, updated KISS performance, and future's research plan including a challenge of a systematic mass measurement with MRTOF (Multi-Reflection Time-Of-Flight mass spectrograph) are presented.

  19. A Nuclear Cryogenic Propulsion Stage for Near-Term Space Missions

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Adams, Robert B.; Bechtel, Ryan D.; Borowski, Stanley K.; George, Jeffrey A.

    2013-01-01

    Development efforts in the United States have demonstrated the viability and performance potential of NTP systems. For example, Project Rover (1955 - 1973) completed 22 high power rocket reactor tests. Peak performances included operating at an average hydrogen exhaust temperature of 2550 K and a peak fuel power density of 5200 MW/m3 (Pewee test), operating at a thrust of 930 kN (Phoebus-2A test), and operating for 62.7 minutes on a single burn (NRXA6 test). Results from Project Rover indicated that an NTP system with a high thrust-toweight ratio and a specific impulse greater than 900 s would be feasible. Excellent results have also been obtained by Russia. Ternary carbide fuels developed in Russia may have the potential for providing even higher specific impulses.

  20. Use of the Homeland-Defense Operational Planning System (HOPS) for Emergency Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durling, Jr., R L; Price, D E

    2005-12-16

    The Homeland-Defense Operational Planning System (HOPS), is a new operational planning tool leveraging Lawrence Livermore National Laboratory's expertise in weapons systems and in sparse information analysis to support the defense of the U.S. homeland. HOPS provides planners with a basis to make decisions to protect against acts of terrorism, focusing on the defense of facilities critical to U.S. infrastructure. Criticality of facilities, structures, and systems is evaluated on a composite matrix of specific projected casualty, economic, and sociopolitical impact bins. Based on these criteria, significant unidentified vulnerabilities are identified and secured. To provide insight into potential successes by malevolent actors,more » HOPS analysts strive to base their efforts mainly on unclassified open-source data. However, more cooperation is needed between HOPS analysts and facility representatives to provide an advantage to those whose task is to defend these facilities. Evaluated facilities include: refineries, major ports, nuclear power plants and other nuclear licensees, dams, government installations, convention centers, sports stadiums, tourist venues, and public and freight transportation systems. A generalized summary of analyses of U.S. infrastructure facilities will be presented.« less

  1. Risk Assessment Using The Homeland-Defense Operational Planning System (HOPS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, D E; Durling, R L

    2005-10-10

    The Homeland-Defense Operational Planning System (HOPS), is a new operational planning tool leveraging Lawrence Livermore National Laboratory's expertise in weapons systems and in sparse information analysis to support the defense of the U.S. homeland. HOPS provides planners with a basis to make decisions to protect against acts of terrorism, focusing on the defense of facilities critical to U.S. infrastructure. Criticality of facilities, structures, and systems is evaluated on a composite matrix of specific projected casualty, economic, and sociopolitical impact bins. Based on these criteria, significant unidentified vulnerabilities are identified and secured. To provide insight into potential successes by malevolent actors,more » HOPS analysts strive to base their efforts mainly on unclassified open-source data. However, more cooperation is needed between HOPS analysts and facility representatives to provide an advantage to those whose task is to defend these facilities. Evaluated facilities include: refineries, major ports, nuclear power plants and other nuclear licensees, dams, government installations, convention centers, sports stadiums, tourist venues, and public and freight transportation systems. A generalized summary of analyses of U.S. infrastructure facilities will be presented.« less

  2. Nuclear Propulsion in Space (1968)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Project NERVA was an acronym for Nuclear Engine for Rocket Vehicle Application, a joint program of the U.S. Atomic Energy Commission and NASA managed by the Space Nuclear Propulsion Office (SNPO) at the Nuclear Rocket Development Station in Jackass Flats, Nevada U.S.A. Between 1959 and 1972, the Space Nuclear Propulsion Office oversaw 23 reactor tests, both the program and the office ended at the end of 1972.

  3. Nuclear Propulsion in Space (1968)

    ScienceCinema

    None

    2018-01-16

    Project NERVA was an acronym for Nuclear Engine for Rocket Vehicle Application, a joint program of the U.S. Atomic Energy Commission and NASA managed by the Space Nuclear Propulsion Office (SNPO) at the Nuclear Rocket Development Station in Jackass Flats, Nevada U.S.A. Between 1959 and 1972, the Space Nuclear Propulsion Office oversaw 23 reactor tests, both the program and the office ended at the end of 1972.

  4. Implementation of IT-based applications in the safeguards field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekenstam, G.C. af; Sallstrom, M.

    1995-12-31

    For many years the Swedish Nuclear Power Inspectorate, SKI, has used computers as a tool within nuclear material control and accountancy. Over the last five years a lot of effort has been put into projects related to the increasing possibilities of fast and reliable data transfer over large distances. The paper discusses related administrative and technical issues and presents experience gained in tasks of the Swedish Support Program to IAEA Safeguards and during the alternative Safeguards trials carried out by SKI. The following topics will be presented: (1) Main Safeguards purposes and data transfer; (2) Administrative systems and requirements; (3)more » Technical possibilities and experiences; and (4) The cost aspect.« less

  5. Generation and Use of Thermal Energy in the U.S. Industrial Sector and Opportunities to Reduce its Carbon Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMillan, Colin; Boardman, Richard; McKellar, Michael

    This report quantifies greenhouse gas (GHG) emissions from the industrial sector and identifies opportunities for non-GHG-emitting thermal energy sources to replace the most significant GHG-emitting U.S. industries based on targeted, process-level analysis of industrial heat requirements. The intent is to provide a basis for projecting opportunities for clean energy use. This provides a prospectus for small modular nuclear reactors (including nuclear-renewable hybrid energy systems), solar industrial process heat, and geothermal energy. This report provides a complement to analysis of process-efficiency improvement by considering how clean energy delivery and use by industry could reduce GHG emissions.

  6. Physics and nuclear power

    NASA Astrophysics Data System (ADS)

    Buttery, N. E.

    2008-03-01

    Nuclear power owes its origin to physicists. Fission was demonstrated by physicists and chemists and the first nuclear reactor project was led by physicists. However as nuclear power was harnessed to produce electricity the role of the engineer became stronger. Modern nuclear power reactors bring together the skills of physicists, chemists, chemical engineers, electrical engineers, mechanical engineers and civil engineers. The paper illustrates this by considering the Sizewell B project and the role played by physicists in this. This covers not only the roles in design and analysis but in problem solving during the commissioning of first of a kind plant. Looking forward to the challenges to provide sustainable and environmentally acceptable energy sources for the future illustrates the need for a continuing synergy between physics and engineering. This will be discussed in the context of the challenges posed by Generation IV reactors.

  7. QRAP: A numerical code for projected (Q)uasiparticle (RA)ndom (P)hase approximation

    NASA Astrophysics Data System (ADS)

    Samana, A. R.; Krmpotić, F.; Bertulani, C. A.

    2010-06-01

    A computer code for quasiparticle random phase approximation - QRPA and projected quasiparticle random phase approximation - PQRPA models of nuclear structure is explained in details. The residual interaction is approximated by a simple δ-force. An important application of the code consists in evaluating nuclear matrix elements involved in neutrino-nucleus reactions. As an example, cross sections for 56Fe and 12C are calculated and the code output is explained. The application to other nuclei and the description of other nuclear and weak decay processes are also discussed. Program summaryTitle of program: QRAP ( Quasiparticle RAndom Phase approximation) Computers: The code has been created on a PC, but also runs on UNIX or LINUX machines Operating systems: WINDOWS or UNIX Program language used: Fortran-77 Memory required to execute with typical data: 16 Mbytes of RAM memory and 2 MB of hard disk space No. of lines in distributed program, including test data, etc.: ˜ 8000 No. of bytes in distributed program, including test data, etc.: ˜ 256 kB Distribution format: tar.gz Nature of physical problem: The program calculates neutrino- and antineutrino-nucleus cross sections as a function of the incident neutrino energy, and muon capture rates, using the QRPA or PQRPA as nuclear structure models. Method of solution: The QRPA, or PQRPA, equations are solved in a self-consistent way for even-even nuclei. The nuclear matrix elements for the neutrino-nucleus interaction are treated as the beta inverse reaction of odd-odd nuclei as function of the transfer momentum. Typical running time: ≈ 5 min on a 3 GHz processor for Data set 1.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Kenneth; Oxstrand, Johanna

    The Digital Architecture effort is a part of the Department of Energy (DOE) sponsored Light-Water Reactor Sustainability (LWRS) Program conducted at Idaho National Laboratory (INL). The LWRS program is performed in close collaboration with industry research and development (R&D) programs that provides the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants (NPPs). One of the primary missions of the LWRS program is to help the U.S. nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. Therefore,more » a major objective of the LWRS program is the development of a seamless digital environment for plant operations and support by integrating information from plant systems with plant processes for nuclear workers through an array of interconnected technologies. In order to get the most benefits of the advanced technology suggested by the different research activities in the LWRS program, the nuclear utilities need a digital architecture in place to support the technology. A digital architecture can be defined as a collection of information technology (IT) capabilities needed to support and integrate a wide-spectrum of real-time digital capabilities for nuclear power plant performance improvements. It is not hard to imagine that many processes within the plant can be largely improved from both a system and human performance perspective by utilizing a plant wide (or near plant wide) wireless network. For example, a plant wide wireless network allows for real time plant status information to easily be accessed in the control room, field workers’ computer-based procedures can be updated based on the real time plant status, and status on ongoing procedures can be incorporated into smart schedules in the outage command center to allow for more accurate planning of critical tasks. The goal of the digital architecture project is to provide a long-term strategy to integrate plant systems, plant processes, and plant workers. This include technologies to improve nuclear worker efficiency and human performance; to offset a range of plant surveillance and testing activities with new on-line monitoring technologies; improve command, control, and collaboration in settings such as outage control centers and work execution centers; and finally to improve operator performance with new operator aid technologies for the control room. The requirements identified through the activities in the Digital Architecture project will be used to estimate the amount of traffic on the network and hence estimating the minimal bandwidth needed.« less

  9. NASA/DOE/DOD nuclear propulsion technology planning: Summary of FY 1991 interagency panel results

    NASA Technical Reports Server (NTRS)

    Clark, John S.; Wickenheiser, Timothy J.; Doherty, Michael P.; Marshall, Albert; Bhattacharryya, Samit K.; Warren, John

    1992-01-01

    Interagency (NASA/DOE/DOD) technical panels worked in 1991 to evaluate critical nuclear propulsion issues, compare nuclear propulsion concepts for a manned Mars mission on a consistent basis, and to continue planning a technology development project for the Space Exploration Initiative (SEI). Panels were formed to address mission analysis, nuclear facilities, safety policy, nuclear fuels and materials, nuclear electric propulsion technology, and nuclear thermal propulsion technology. A summary of the results and recommendations of the panels is presented.

  10. Secure Video Surveillance System (SVSS) for unannounced safeguards inspections.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galdoz, Erwin G.; Pinkalla, Mark

    2010-09-01

    The Secure Video Surveillance System (SVSS) is a collaborative effort between the U.S. Department of Energy (DOE), Sandia National Laboratories (SNL), and the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC). The joint project addresses specific requirements of redundant surveillance systems installed in two South American nuclear facilities as a tool to support unannounced inspections conducted by ABACC and the International Atomic Energy Agency (IAEA). The surveillance covers the critical time (as much as a few hours) between the notification of an inspection and the access of inspectors to the location in facility where surveillance equipment is installed.more » ABACC and the IAEA currently use the EURATOM Multiple Optical Surveillance System (EMOSS). This outdated system is no longer available or supported by the manufacturer. The current EMOSS system has met the project objective; however, the lack of available replacement parts and system support has made this system unsustainable and has increased the risk of an inoperable system. A new system that utilizes current technology and is maintainable is required to replace the aging EMOSS system. ABACC intends to replace one of the existing ABACC EMOSS systems by the Secure Video Surveillance System. SVSS utilizes commercial off-the shelf (COTS) technologies for all individual components. Sandia National Laboratories supported the system design for SVSS to meet Safeguards requirements, i.e. tamper indication, data authentication, etc. The SVSS consists of two video surveillance cameras linked securely to a data collection unit. The collection unit is capable of retaining historical surveillance data for at least three hours with picture intervals as short as 1sec. Images in .jpg format are available to inspectors using various software review tools. SNL has delivered two SVSS systems for test and evaluation at the ABACC Safeguards Laboratory. An additional 'proto-type' system remains at SNL for software and hardware testing. This paper will describe the capabilities of the new surveillance system, application and requirements, and the design approach.« less

  11. Direct production of 99mTc using a small medical cyclotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapi, Suzanne

    This project describes an investigation towards the production of 99mTc with a small medical cyclotron. This endeavor addresses the current urgent problem of availability of 99mTc due to the ongoing production reactor failures and the upcoming Canadian reactor shut down. Currently, 99mTc is produced via nuclear fission using highly enriched uranium which is a concern due to nuclear proliferation risks. In addition to this, the United States is dependent solely on currently unreliable foreign sources of this important medical isotope. Clearly, a need exists to probe alternative production routes of 99mTc. In the first year, this project measured cross-sections andmore » production yields of potential pathways to 99mTc and associated radionuclidic impurities produced via these pathways using a small 15 MeV medical cyclotron. During the second and third years target systems for the production of 99mTc via the most promising reaction routes were developed and separation techniques for the isolation of 99mTc from the irradiated target material will be investigated. Systems for the recycling of the enriched target isotopes as well as automated target processing systems were examined in years four and five. This project has the potential to alleviate some of the current crisis in the medical community by developing a technique to produce 99mTc on location at a university hospital. This technology will be applicable at many other sites in the United States as many other similar, low energy (<20 MeV) cyclotrons (currently used for a few hours per day for the production of [ 18F]fluorodeoxyglucose) are available for production of 99mTc though this method, thus leading to job creation and preservation.« less

  12. The development of remote wireless radiation dose monitoring system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jin-woo; Chonbuk National University, Jeonjoo-Si; Jeong, Kyu-hwan

    Internet of things (IoT) technology has recently shown a large flow of IT trends in human life. In particular, our lives are now becoming integrated with a lot of items around the 'smart-phone' with IoT, including Bluetooth, Near Field Communication (NFC), Beacons, WiFi, and Global Positioning System (GPS). Our project focuses on the interconnection of radiation dosimetry and IoT technology. The radiation workers at a nuclear facility should hold personal dosimeters such as a Thermo-Luminescence Dosimeter (TLD), an Optically Stimulated Luminescence Dosimeter (OSL), pocket ionization chamber dosimeters, an Electronic Personal Dosimeter (EPD), or an alarm dosimeter on their body. Somemore » of them have functions that generate audible or visible alarms to radiation workers in a real working area. However, such devices used in radiation fields these days have no functions for communicating with other areas or the responsible personnel in real time. In particular, when conducting a particular task in a high dose area, or a number of repair works within a radiation field, radiation dose monitoring is important for the health of the workers and the work efficiency. Our project aims at the development of a remote wireless radiation dose monitoring system (RWRD) that can be used to monitor the radiation dose in a nuclear facility for radiation workers and a radiation protection program In this project, a radiation dosimeter is the detection device for personal radiation dose, a smart phone is the mobile wireless communication tool, and, Beacon is the wireless starter for the detection, communication, and position of the worker using BLE (Bluetooth Low Energy). In this report, we report the design of the RWRD and a demonstration case in a real radiation field. (authors)« less

  13. The Manhattan Project; A very brief introduction to the physics of nuclear weapons

    NASA Astrophysics Data System (ADS)

    Reed, B. Cameron

    2017-05-01

    The development of nuclear weapons by the Manhattan Project during World War II was one of the most dramatic scientific/technological episodes in human history. This book, prepared by a recognized expert on the Manhattan Project, offers a concise survey of the essential physics concepts underlying fission weapons. The text describes the energetics and timescales of fast-neutron chain reactions, why only certain isotopes of uranium and plutonium are suitable for use in fission weapons, how critical mass and bomb yield can be estimated, how the efficiency of nuclear weapons can be enhanced, how the fissile forms of uranium and plutonium were obtained, some of the design details of the 'Little Boy' and 'Fat Man' bombs, and some of the thermal, shock, and radiation effects of nuclear weapons. Calculation exercises are provided, and a Bibliography lists authoritative print and online sources of information for readers who wish to pursue more detailed study of this fascinating topic.

  14. Personnel involved in the development of nuclear standards in the United States, 1976

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, E.B.

    1977-03-01

    The development of voluntary nuclear standards in the United States is an active and necessary endeavor of the technical community concerned with the safe, orderly, and economic development of the nuclear potential. There are almost 8000 people presently involved either in writing voluntary standards and codes or in the management and processing roles necessary for their approval and promulgation. This document records the current participation of these people as member, chairman, or secretary of about 900 identified committees and projects. The standards projects are identified with the organizations that are responsible for the preparation, review, and maintenance of the standardsmore » and that provide support through supervisory committees and headquarters staff. The directory has four major sections: personnel, employers, committees, and a KWIC index of committee titles. The directory can be used to identify those nuclear standards projects currently active, to indicate the participation of employers, and to recognize the contributions of individuals to these often interdisciplinary activities.« less

  15. Personnel involved in the development of nuclear standards in the United States, 1975

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, E.B.

    The development of voluntary nuclear standards in the United States is an active and necessary endeavor of the technical community concerned with the safe, orderly, and economic development of the nuclear potential. There are almost 8000 people presently involved either in writing voluntary standards and codes or in the management and processing roles necessary for their approval and promulgation. This document records the current participation of these people as member, chairman, or secretary of about 900 identified committees and projects. The standards projects are identified with the organizations that are responsible for the preparation, review, and maintenance of the standardsmore » and that provide support through supervisory committees and headquarters staff. The Directory has four major sections: personnel, employers, committees, and a KWIC Index of committee titles. The Directory can be used to identify those nuclear standards projects currently active, to indicate the participation of employers, and to recognize the contributions of individuals to these often interdisciplinary activities.« less

  16. Galaxy interactions and strength of nuclear activity

    NASA Technical Reports Server (NTRS)

    Simkin, S. M.

    1990-01-01

    Analysis of data in the literature for differential velocities and projected separations of nearby Seyfert galaxies with possible companions shows a clear difference in projected separations between type 1's and type 2's. This kinematic difference between the two activity classes reinforces other independent evidence that their different nuclear characteristics are related to a non-nuclear physical distinction between the two classes. The differential velocities and projected separations of the galaxy pairs in this sample yield mean galaxy masses, sizes, and mass to light ratios which are consistent with those found by the statistical methods of Karachentsev. Although the galaxy sample discussed here is too small and too poorly defined to provide robust support for these conclusions, the results strongly suggest that nuclear activity in Seyfert galaxies is associated with gravitational perturbations from companion galaxies, and that there are physical distinctions between the host companions of Seyfert 1 and Seyfert 2 nuclei which may depend both on the environment and the structure of the host galaxy itself.

  17. National Center for Nuclear Security: The Nuclear Forensics Project (F2012)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klingensmith, A. L.

    These presentation visuals introduce the National Center for Nuclear Security. Its chartered mission is to enhance the Nation’s verification and detection capabilities in support of nuclear arms control and nonproliferation through R&D activities at the NNSS. It has three focus areas: Treaty Verification Technologies, Nonproliferation Technologies, and Technical Nuclear Forensics. The objectives of nuclear forensics are to reduce uncertainty in the nuclear forensics process & improve the scientific defensibility of nuclear forensics conclusions when applied to nearsurface nuclear detonations. Research is in four key areas: Nuclear Physics, Debris collection and analysis, Prompt diagnostics, and Radiochemistry.

  18. New radiological material detection technologies for nuclear forensics: Remote optical imaging and graphene-based sensors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, Richard Karl; Martin, Jeffrey B.; Wiemann, Dora K.

    We developed new detector technologies to identify the presence of radioactive materials for nuclear forensics applications. First, we investigated an optical radiation detection technique based on imaging nitrogen fluorescence excited by ionizing radiation. We demonstrated optical detection in air under indoor and outdoor conditions for alpha particles and gamma radiation at distances up to 75 meters. We also contributed to the development of next generation systems and concepts that could enable remote detection at distances greater than 1 km, and originated a concept that could enable daytime operation of the technique. A second area of research was the development ofmore » room-temperature graphene-based sensors for radiation detection and measurement. In this project, we observed tunable optical and charged particle detection, and developed improved devices. With further development, the advancements described in this report could enable new capabilities for nuclear forensics applications.« less

  19. The world's nuclear future - built on material success

    NASA Astrophysics Data System (ADS)

    Ion, Sue

    2010-07-01

    In our energy hungry world of the twenty-first century, the future of electricity generation must meet the twin challenges of security of supply and reduced carbon emissions. The expectations for nuclear power programmes to play a part in delivering success on both counts, grows ever higher. The nuclear industry is poised on a renaissance likely to dwarf the heady days of the 1960s and early 1970s. Global supply chain and project management challenges abound, now just as then. The science and engineering of materials will be key to the successful deployment and operation of a new generation of reactor systems and their associated fuel cycles. Understanding and predicting materials performance will be key to achieving life extension of existing assets and underpinning waste disposal options, as well as giving confidence to the designers, their financial backers and governments across the globe, that the next generation of reactors will deliver their full potential.

  20. Advanced Instrumentation, Information, and Control Systems Technologies Pathway: FY 2016 External Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Kenneth David; Hallbert, Bruce Perry

    2016-11-01

    This report describes an External Review conducted by the LWRS Program Advanced Instrumentation, Information, and Control (II&C) Systems Technologies Pathway to solicit feedback on the topics and results of the ongoing II&C research program. This review was held in conjunction with the Nuclear Energy Institute (NEI) Digital I&C Working Group meeting that was held at Idaho National Laboratory (INL) on August 9-10, 2016. Given the opportunity to visit INL and see the pathway research projects, NEI agreed that the Working Group would serve as the External Review panel for the purpose of obtaining expert input on the value and timingmore » of the research projects. This consisted of demonstrations in the Human Systems Simulation Laboratory followed by presentations on the II&C research program in general as well as the five technology development areas. Following the meeting, the presentations were sent to each of the attendees so they could review them in more detail and refer to them in completing the feedback form. Follow-up activities were conducted with the attendees following the meeting to obtain the completed feedback forms. A total of 13 forms were returned. The feedback forms were reviewed by the pathway to compile the data and comments received, which are documented in the report. In all, the feedback provided by the External Review participants is taken to be a strong endorsement of the types of projects being conducted by the pathway, the value they hold for the nuclear plants, and the general timing of need. The feedback aligns well with the priorities, levels of efforts allocated for the research projects, and project schedules. The feedback also represents realistic observations on the practicality of some aspects of implementing these technologies. In some cases, the participants provided thoughtful challenges to certain assumptions in the formulation of the technologies or in deployment plans. These deserve further review and revision of plans if warranted. The pathway will take all of the feedback and address the open issues that have been identified by the participants. This includes 11 actionable items for follow up by the II&C Pathway.« less

Top