Sample records for system parameters finally

  1. Parameter Requirements for Description of Alternative LINC Systems. Final Report.

    ERIC Educational Resources Information Center

    Center for Applied Linguistics, Washington, DC. Language Information Network and Clearinghouse System.

    This study was undertaken for the Center for Applied Linguistics to survey and analyze its information system program for the language sciences. The study identifies and defines the generalized sets of parameters required for subsequent quantitative analysis of proposed alternative Language Information Network and Clearinghouse Systems by means of…

  2. Analytical approach to chromatic correction in the final focus system of circular colliders

    DOE PAGES

    Cai, Yunhai

    2016-11-28

    Here, a conventional final focus system in particle accelerators is systematically analyzed. We find simple relations between the parameters of two focus modules in the final telescope. Using the relations, we derive the chromatic Courant-Snyder parameters for the telescope. The parameters are scaled approximately according to (L*/βmore » $$*\\atop{y}$$)δ, where L* is the distance from the interaction point to the first quadrupole, β$$*\\atop{y}$$ the vertical beta function at the interaction point, and δ the relative momentum deviation. Most importantly, we show how to compensate its chromaticity order by order in δ by a traditional correction module flanked by an asymmetric pair of harmonic multipoles. The method enables a circular Higgs collider with 2% momentum aperture and illuminates a path forward to 4% in the future.« less

  3. El Toro Library Solar Heating and Cooling Demonstration Project. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report is divided into a number of essentially independent sections, each of which covers a specific topic. The sections, and the topics covered, are as follows. Section 1 provides a brief summary description of the solar energy heating and cooling system including the key final design parameters. Section 2 contains a copy of the final Acceptance Test Report. Section 3 consists of a reduced set of final updated as-built mechanical, electrical, control and instrumentations drawings of the solar energy heating and cooling system. Section 4 provides a summary of system maintenance requirements, in the form of a maintenance schedulemore » which lists necessary maintenance tasks to be performed at monthly, quarterly, semi-annual, and annual intervals. Section 5 contains a series of photographs of the final solar energy system installation, including the collector field and the mechanical equipment room. Section 6 provides a concise summary of system operation and performance for the period of December 1981 through June 1982, as measured, computed and reported by Vitro Laboratories Division of Automation Industries, Inc., for the DOE National Solar Data Network. Section 7 provides a summary of key as-built design parameters, compared with the corresponding original design concept parameters. Section 8 provides a description of a series of significant problems encountered during construction, start-up and check-out of the solar energy heating and cooling system, together with the method employed to solve the problem at the time and/or recommendations for avoiding the problem in the future design of similar systems. Appendices A through H contain the installation, operation and maintenance submittals of the various manufacturers on the major items of equipment in the system. Reference CAPE-2823.« less

  4. Micro Autonomous Systems Research: Systems Engineering Processes for Micro Autonomous Systems

    DTIC Science & Technology

    2016-11-01

    product family design and reconfigurable system design with recent developments in the fields of automated manufacturing and micro-autonomous...mapped to design parameters. These mappings are the mechanism by which physical product designs are formulated. Finally, manufacture of the product ... design tools and manufacturing and testing the resulting design . The final products were inspected and flight tested so that their

  5. Multi-objective optimization in quantum parameter estimation

    NASA Astrophysics Data System (ADS)

    Gong, BeiLi; Cui, Wei

    2018-04-01

    We investigate quantum parameter estimation based on linear and Kerr-type nonlinear controls in an open quantum system, and consider the dissipation rate as an unknown parameter. We show that while the precision of parameter estimation is improved, it usually introduces a significant deformation to the system state. Moreover, we propose a multi-objective model to optimize the two conflicting objectives: (1) maximizing the Fisher information, improving the parameter estimation precision, and (2) minimizing the deformation of the system state, which maintains its fidelity. Finally, simulations of a simplified ɛ-constrained model demonstrate the feasibility of the Hamiltonian control in improving the precision of the quantum parameter estimation.

  6. Machine learning of parameter control doctrine for sensor and communication systems. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamen, R.B.; Dillard, R.A.

    Artificial-intelligence approaches to learning were reviewed for their potential contributions to the construction of a system to learn parameter-control doctrine. Separate learning tasks were isolated and several levels of related problems were distinguished. Formulas for providing the learning system with measures of its performance were derived for four kinds of targets.

  7. Effects of System Timing Parameters on Operator Performance in a Personnel Records Task

    DTIC Science & Technology

    1981-03-01

    work sampling, embedded performance measures, and operator satisfaction ratings) are needed to provide a complete analysis of the effects of the four...HFL-8 l-l/NPRDC-8 1-1 March 1981 EFFECTS OF SYSTEM TIMING PARAMETERS ON OPERATOR PERFORMANCE IN A PERSONNEL RECORDS TASK Robert C. Williges Beverly H...and Subtitle) S. TYPE OF REPORT & PERIOD COVERED EFFECTS OF SYSTEM TIMING PARAMETERS ON OPERATOR PERFORMANCE IN A PERSONNEL RECORDS TASK Final

  8. Accuracy Assessment of Professional Grade Unmanned Systems for High Precision Airborne Mapping

    NASA Astrophysics Data System (ADS)

    Mostafa, M. M. R.

    2017-08-01

    Recently, sophisticated multi-sensor systems have been implemented on-board modern Unmanned Aerial Systems. This allows for producing a variety of mapping products for different mapping applications. The resulting accuracies match the traditional well engineered manned systems. This paper presents the results of a geometric accuracy assessment project for unmanned systems equipped with multi-sensor systems for direct georeferencing purposes. There are a number of parameters that either individually or collectively affect the quality and accuracy of a final airborne mapping product. This paper focuses on identifying and explaining these parameters and their mutual interaction and correlation. Accuracy Assessment of the final ground object positioning accuracy is presented through real-world 8 flight missions that were flown in Quebec, Canada. The achievable precision of map production is addressed in some detail.

  9. Parametric Robust Control and System Identification: Unified Approach

    NASA Technical Reports Server (NTRS)

    Keel, L. H.

    1996-01-01

    During the period of this support, a new control system design and analysis method has been studied. This approach deals with control systems containing uncertainties that are represented in terms of its transfer function parameters. Such a representation of the control system is common and many physical parameter variations fall into this type of uncertainty. Techniques developed here are capable of providing nonconservative analysis of such control systems with parameter variations. We have also developed techniques to deal with control systems when their state space representations are given rather than transfer functions. In this case, the plant parameters will appear as entries of state space matrices. Finally, a system modeling technique to construct such systems from the raw input - output frequency domain data has been developed.

  10. Electronic propensity rules in Li-H+ collisions involving initial and/or final oriented states

    NASA Astrophysics Data System (ADS)

    Salas, P. J.

    2000-12-01

    Electronic excitation and capture processes are studied in collisions involving systems with only one active electron such as the alkaline (Li)-proton in the medium-energy region (0.1-15 keV). Using the semiclassical impact parameter method, the probabilities and the orientation parameter are calculated for transitions between initial and/or final oriented states. The results show a strong asymmetry in the probabilities depending on the orientation of the initial and/or final states. An intuitive view of the processes, by means of the concepts of propensity and velocity matching rules, is provided.

  11. Error tolerance analysis of wave diagnostic based on coherent modulation imaging in high power laser system

    NASA Astrophysics Data System (ADS)

    Pan, Xingchen; Liu, Cheng; Zhu, Jianqiang

    2018-02-01

    Coherent modulation imaging providing fast convergence speed and high resolution with single diffraction pattern is a promising technique to satisfy the urgent demands for on-line multiple parameter diagnostics with single setup in high power laser facilities (HPLF). However, the influence of noise on the final calculated parameters concerned has not been investigated yet. According to a series of simulations with twenty different sampling beams generated based on the practical parameters and performance of HPLF, the quantitative analysis based on statistical results was first investigated after considering five different error sources. We found the background noise of detector and high quantization error will seriously affect the final accuracy and different parameters have different sensitivity to different noise sources. The simulation results and the corresponding analysis provide the potential directions to further improve the final accuracy of parameter diagnostics which is critically important to its formal applications in the daily routines of HPLF.

  12. Reliability and performance evaluation of systems containing embedded rule-based expert systems

    NASA Technical Reports Server (NTRS)

    Beaton, Robert M.; Adams, Milton B.; Harrison, James V. A.

    1989-01-01

    A method for evaluating the reliability of real-time systems containing embedded rule-based expert systems is proposed and investigated. It is a three stage technique that addresses the impact of knowledge-base uncertainties on the performance of expert systems. In the first stage, a Markov reliability model of the system is developed which identifies the key performance parameters of the expert system. In the second stage, the evaluation method is used to determine the values of the expert system's key performance parameters. The performance parameters can be evaluated directly by using a probabilistic model of uncertainties in the knowledge-base or by using sensitivity analyses. In the third and final state, the performance parameters of the expert system are combined with performance parameters for other system components and subsystems to evaluate the reliability and performance of the complete system. The evaluation method is demonstrated in the context of a simple expert system used to supervise the performances of an FDI algorithm associated with an aircraft longitudinal flight-control system.

  13. An Improved Cuckoo Search Optimization Algorithm for the Problem of Chaotic Systems Parameter Estimation

    PubMed Central

    Wang, Jun; Zhou, Bihua; Zhou, Shudao

    2016-01-01

    This paper proposes an improved cuckoo search (ICS) algorithm to establish the parameters of chaotic systems. In order to improve the optimization capability of the basic cuckoo search (CS) algorithm, the orthogonal design and simulated annealing operation are incorporated in the CS algorithm to enhance the exploitation search ability. Then the proposed algorithm is used to establish parameters of the Lorenz chaotic system and Chen chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the algorithm can estimate parameters with high accuracy and reliability. Finally, the results are compared with the CS algorithm, genetic algorithm, and particle swarm optimization algorithm, and the compared results demonstrate the method is energy-efficient and superior. PMID:26880874

  14. Finite-time master-slave synchronization and parameter identification for uncertain Lurie systems.

    PubMed

    Wang, Tianbo; Zhao, Shouwei; Zhou, Wuneng; Yu, Weiqin

    2014-07-01

    This paper investigates the finite-time master-slave synchronization and parameter identification problem for uncertain Lurie systems based on the finite-time stability theory and the adaptive control method. The finite-time master-slave synchronization means that the state of a slave system follows with that of a master system in finite time, which is more reasonable than the asymptotical synchronization in applications. The uncertainties include the unknown parameters and noise disturbances. An adaptive controller and update laws which ensures the synchronization and parameter identification to be realized in finite time are constructed. Finally, two numerical examples are given to show the effectiveness of the proposed method. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Predesign study for a modern 4-bladed rotor for the NASA rotor systems research aircraft

    NASA Technical Reports Server (NTRS)

    Bishop, H. E.; Burkam, J. E.; Heminway, R. C.; Keys, C. N.; Smith, K. E.; Smith, J. H.; Staley, J. A.

    1981-01-01

    Trade-off study results and the rationale for the final selection of an existing modern four-bladed rotor system that can be adapted for installation on the Rotor Systems Research Aircraft (RSRA) are reported. The results of the detailed integration studies, parameter change studies, and instrumentation studies and the recommended plan for development and qualification of the rotor system is also given. Its parameter variants, integration on the RSRA, and support of ground and flight test programs are also discussed.

  16. GDP and efficiency of Russian economy

    NASA Astrophysics Data System (ADS)

    Borodachev, Sergey M.

    2018-01-01

    The goal is to study GDP (gross domestic product) as an unobservable characteristic of the Russian national economy state on the basis of more reliable observed data on gross output (systems output) and final consumption (systems control). To do this, the dynamic Leontief model is presented in a system-like form and its parameters and GDP dynamics are estimated by the Kalman filter (KF). We consider that all previous year's investments affect the growth of the gross output by the next year. The weights of these investments in the sum are equal to unity and decrease in geometric progression. The estimation of the model parameters was carried out by the maximum likelihood method. The original data on the gross output and final consumption in the period from 1995 to 2015 years where taken from the Rosstat website, where maximally aggregated economy of Russia is reflected in the system of national accounts. The growth of direct costs and capital expenditures at gross output increase has been discovered, which indicates the extensive character of the development of the economy. Investments are being absorbed 2 - 4 years; any change of them causes a surge of commissioned fixed assets fluctuation with a period of 2 years. Then these parameter values were used in the KF to estimate the states of the system. The emerging tendency of the transition of GDP growth to its fall means that the rate of growth of final consumption is higher than the rate of GDP growth. In general, the behavior of the curve of Rosstat GDP obviously follows the declared investments, whereas in the present calculation it is closer to the behavior of final consumption. Estimated GDP and investments that really increased it were significantly less after the crisis of 2008-2009 years than officially published data.

  17. PVWatts Version 1 Technical Reference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobos, A. P.

    2013-10-01

    The NREL PVWatts(TM) calculator is a web application developed by the National Renewable Energy Laboratory (NREL) that estimates the electricity production of a grid-connected photovoltaic system based on a few simple inputs. PVWatts combines a number of sub-models to predict overall system performance, and makes several hidden assumptions about performance parameters. This technical reference details the individual sub-models, documents assumptions and hidden parameters, and explains the sequence of calculations that yield the final system performance estimation.

  18. On Complete Control and Synchronization of Zhang Chaotic System with Uncertain Parameters using Adaptive Control Method

    NASA Astrophysics Data System (ADS)

    Tirandaz, Hamed

    2018-03-01

    Chaos control and synchronization of chaotic systems is seemingly a challenging problem and has got a lot of attention in recent years due to its numerous applications in science and industry. This paper concentrates on the control and synchronization problem of the three-dimensional (3D) Zhang chaotic system. At first, an adaptive control law and a parameter estimation law are achieved for controlling the behavior of the Zhang chaotic system. Then, non-identical synchronization of Zhang chaotic system is provided with considering the Lü chaotic system as the follower system. The synchronization problem and parameters identification are achieved by introducing an adaptive control law and a parameters estimation law. Stability analysis of the proposed method is proved by the Lyapanov stability theorem. In addition, the convergence of the estimated parameters to their truly unknown values are evaluated. Finally, some numerical simulations are carried out to illustrate and to validate the effectiveness of the suggested method.

  19. On adaptive modified projective synchronization of a supply chain management system

    NASA Astrophysics Data System (ADS)

    Tirandaz, Hamed

    2017-12-01

    In this paper, the synchronization problem of a chaotic supply chain management system is studied. A novel adaptive modified projective synchronization method is introduced to control the behaviour of the leader supply chain system by a follower chaotic system and to adjust the leader system parameters until the measurable errors of the system parameters converge to zero. The stability evaluation and convergence analysis are carried out by the Lyapanov stability theorem. The proposed synchronization and antisynchronization techniques are studied for identical supply chain chaotic systems. Finally, some numerical simulations are presented to verify the effectiveness of the theoretical discussions.

  20. Computational Methods for Nonlinear Dynamic Problems in Solid and Structural Mechanics: Progress in the Theory and Modeling of Friction and in the Control of Dynamical Systems with Frictional Forces

    DTIC Science & Technology

    1989-03-31

    present several numerical studies designed to reveal the effect that some of the governing parameters have on the behavior of the system and, whenever...Friction and in the Control of Dynamical Systems with Frictional Forces FINAL TECHNICAL REPORT March 31, 1989 _ -- I -.7: .-.- - : AFOSR Contract F49620...SOLID AND STRUCTURAL MECHANICS: Progress in the Theory and Modeling of Friction and in the Control of Dynamical Systems with Frictional Forces I I * FINAL

  1. Mean-square state and parameter estimation for stochastic linear systems with Gaussian and Poisson noises

    NASA Astrophysics Data System (ADS)

    Basin, M.; Maldonado, J. J.; Zendejo, O.

    2016-07-01

    This paper proposes new mean-square filter and parameter estimator design for linear stochastic systems with unknown parameters over linear observations, where unknown parameters are considered as combinations of Gaussian and Poisson white noises. The problem is treated by reducing the original problem to a filtering problem for an extended state vector that includes parameters as additional states, modelled as combinations of independent Gaussian and Poisson processes. The solution to this filtering problem is based on the mean-square filtering equations for incompletely polynomial states confused with Gaussian and Poisson noises over linear observations. The resulting mean-square filter serves as an identifier for the unknown parameters. Finally, a simulation example shows effectiveness of the proposed mean-square filter and parameter estimator.

  2. METRRA Signature - Radar Cross Section Measurements. Final Report/ Instruction Manual

    DTIC Science & Technology

    1978-12-01

    Configuration 1 1. 5 Condensed System Parameters 1 1.5.1 Transmitter 1 1.5.2 Receiver 4 2.0 Description 5 V 2.1 Transmitter 5 2.3 Receiver 10 2.4 Antennas 14...System Configuration. 1.4.1 See Figure 1.4.2. 1.5 Condensed System Parameters . 1.5.1 Transmitter. "Mainframe: Applied Microwave Laboratory, Model...for Cubic Defense by Addington Laboratories. Techebychev designs are used for both filters to provide the steepest skirts for given numbers of reactive

  3. Parameter estimation using meta-heuristics in systems biology: a comprehensive review.

    PubMed

    Sun, Jianyong; Garibaldi, Jonathan M; Hodgman, Charlie

    2012-01-01

    This paper gives a comprehensive review of the application of meta-heuristics to optimization problems in systems biology, mainly focussing on the parameter estimation problem (also called the inverse problem or model calibration). It is intended for either the system biologist who wishes to learn more about the various optimization techniques available and/or the meta-heuristic optimizer who is interested in applying such techniques to problems in systems biology. First, the parameter estimation problems emerging from different areas of systems biology are described from the point of view of machine learning. Brief descriptions of various meta-heuristics developed for these problems follow, along with outlines of their advantages and disadvantages. Several important issues in applying meta-heuristics to the systems biology modelling problem are addressed, including the reliability and identifiability of model parameters, optimal design of experiments, and so on. Finally, we highlight some possible future research directions in this field.

  4. Safety evaluation of the SCATS control system, final report.

    DOT National Transportation Integrated Search

    2010-09-01

    Since 1992, traffic signals in Oakland County and a portion of Macomb and Wayne Counties of Michigan have been : converted to the Sydney Coordinated Adaptive Traffic System (SCATS). County traffic engineers have been : adjusting various SCATS paramet...

  5. Optimum Design of Forging Process Parameters and Preform Shape under Uncertainties

    NASA Astrophysics Data System (ADS)

    Repalle, Jalaja; Grandhi, Ramana V.

    2004-06-01

    Forging is a highly complex non-linear process that is vulnerable to various uncertainties, such as variations in billet geometry, die temperature, material properties, workpiece and forging equipment positional errors and process parameters. A combination of these uncertainties could induce heavy manufacturing losses through premature die failure, final part geometric distortion and production risk. Identifying the sources of uncertainties, quantifying and controlling them will reduce risk in the manufacturing environment, which will minimize the overall cost of production. In this paper, various uncertainties that affect forging tool life and preform design are identified, and their cumulative effect on the forging process is evaluated. Since the forging process simulation is computationally intensive, the response surface approach is used to reduce time by establishing a relationship between the system performance and the critical process design parameters. Variability in system performance due to randomness in the parameters is computed by applying Monte Carlo Simulations (MCS) on generated Response Surface Models (RSM). Finally, a Robust Methodology is developed to optimize forging process parameters and preform shape. The developed method is demonstrated by applying it to an axisymmetric H-cross section disk forging to improve the product quality and robustness.

  6. On the Interplay between Order Parameter Dynamics and System Parameter Dynamics in Human Perceptual-Cognitive-Behavioral Systems.

    PubMed

    Frank, T D

    2015-04-01

    Previous research has demonstrated that perceiving, thinking, and acting are human activities that correspond to self-organized patterns. The emergence of such patterns can be completely described in terms of the dynamics of the pattern amplitudes, which are referred to as order parameters. The patterns emerge at bifurcations points when certain system parameters internal and external to a human agent exceed critical values. At issue is how one might study the order parameter dynamics for sequences of consecutive, emergent perceptual, cognitive, or behavioral activities. In particular, these activities may in turn impact the system parameters that have led to the emergence of the activities in the first place. This interplay between order parameter dynamics and system parameter dynamics is discussed in general and formulated in mathematical terms. Previous work that has made use of this two-tiered framework of order parameter and system parameter dynamics are briefly addressed. As an application, a model for perception under functional fixedness is presented. Finally, it is argued that the phenomena that emerge in this framework and can be observed when human agents perceive, think, and act are just as likely to occur in pattern formation systems of the inanimate world. Consequently, these phenomena do not necessarily have a neurophysiological basis but should instead be understood from the perspective of the theory of self-organization.

  7. Fault detection for discrete-time LPV systems using interval observers

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Hui; Yang, Guang-Hong

    2017-10-01

    This paper is concerned with the fault detection (FD) problem for discrete-time linear parameter-varying systems subject to bounded disturbances. A parameter-dependent FD interval observer is designed based on parameter-dependent Lyapunov and slack matrices. The design method is presented by translating the parameter-dependent linear matrix inequalities (LMIs) into finite ones. In contrast to the existing results based on parameter-independent and diagonal Lyapunov matrices, the derived disturbance attenuation, fault sensitivity and nonnegative conditions lead to less conservative LMI characterisations. Furthermore, without the need to design the residual evaluation functions and thresholds, the residual intervals generated by the interval observers are used directly for FD decision. Finally, simulation results are presented for showing the effectiveness and superiority of the proposed method.

  8. Sustainability and optimal control of an exploited prey predator system through provision of alternative food to predator.

    PubMed

    Kar, T K; Ghosh, Bapan

    2012-08-01

    In the present paper, we develop a simple two species prey-predator model in which the predator is partially coupled with alternative prey. The aim is to study the consequences of providing additional food to the predator as well as the effects of harvesting efforts applied to both the species. It is observed that the provision of alternative food to predator is not always beneficial to the system. A complete picture of the long run dynamics of the system is discussed based on the effort pair as control parameters. Optimal augmentations of prey and predator biomass at final time have been investigated by optimal control theory. Also the short and large time effects of the application of optimal control have been discussed. Finally, some numerical illustrations are given to verify our analytical results with the help of different sets of parameters. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. Robust adaptive uniform exact tracking control for uncertain Euler-Lagrange system

    NASA Astrophysics Data System (ADS)

    Yang, Yana; Hua, Changchun; Li, Junpeng; Guan, Xinping

    2017-12-01

    This paper offers a solution to the robust adaptive uniform exact tracking control for uncertain nonlinear Euler-Lagrange (EL) system. An adaptive finite-time tracking control algorithm is designed by proposing a novel nonsingular integral terminal sliding-mode surface. Moreover, a new adaptive parameter tuning law is also developed by making good use of the system tracking errors and the adaptive parameter estimation errors. Thus, both the trajectory tracking and the parameter estimation can be achieved in a guaranteed time adjusted arbitrarily based on practical demands, simultaneously. Additionally, the control result for the EL system proposed in this paper can be extended to high-order nonlinear systems easily. Finally, a test-bed 2-DOF robot arm is set-up to demonstrate the performance of the new control algorithm.

  10. PVWatts Version 5 Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobos, A. P.

    2014-09-01

    The NREL PVWatts calculator is a web application developed by the National Renewable Energy Laboratory (NREL) that estimates the electricity production of a grid-connected photovoltaic system based on a few simple inputs. PVWatts combines a number of sub-models to predict overall system performance, and makes includes several built-in parameters that are hidden from the user. This technical reference describes the sub-models, documents assumptions and hidden parameters, and explains the sequence of calculations that yield the final system performance estimate. This reference is applicable to the significantly revised version of PVWatts released by NREL in 2014.

  11. Simple Electrolyzer Model Development for High-Temperature Electrolysis System Analysis Using Solid Oxide Electrolysis Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JaeHwa Koh; DuckJoo Yoon; Chang H. Oh

    2010-07-01

    An electrolyzer model for the analysis of a hydrogen-production system using a solid oxide electrolysis cell (SOEC) has been developed, and the effects for principal parameters have been estimated by sensitivity studies based on the developed model. The main parameters considered are current density, area specific resistance, temperature, pressure, and molar fraction and flow rates in the inlet and outlet. Finally, a simple model for a high-temperature hydrogen-production system using the solid oxide electrolysis cell integrated with very high temperature reactors is estimated.

  12. Software Analytical Instrument for Assessment of the Process of Casting Slabs

    NASA Astrophysics Data System (ADS)

    Franěk, Zdeněk; Kavička, František; Štětina, Josef; Masarik, Miloš

    2010-06-01

    The paper describes the original proposal of ways of solution and function of the program equipment for assessment of the process of casting slabs. The program system LITIOS was developed and implemented in EVRAZ Vitkovice Steel Ostrava on the equipment of continuous casting of steel (further only ECC). This program system works on the data warehouse of technological parameters of casting and quality parameters of slabs. It enables an ECC technologist to analyze the course of casting melt and with using statistics methods to set the influence of single technological parameters on the duality of final slabs. The system also enables long term monitoring and optimization of the production.

  13. Parameter Estimation and Model Selection in Computational Biology

    PubMed Central

    Lillacci, Gabriele; Khammash, Mustafa

    2010-01-01

    A central challenge in computational modeling of biological systems is the determination of the model parameters. Typically, only a fraction of the parameters (such as kinetic rate constants) are experimentally measured, while the rest are often fitted. The fitting process is usually based on experimental time course measurements of observables, which are used to assign parameter values that minimize some measure of the error between these measurements and the corresponding model prediction. The measurements, which can come from immunoblotting assays, fluorescent markers, etc., tend to be very noisy and taken at a limited number of time points. In this work we present a new approach to the problem of parameter selection of biological models. We show how one can use a dynamic recursive estimator, known as extended Kalman filter, to arrive at estimates of the model parameters. The proposed method follows. First, we use a variation of the Kalman filter that is particularly well suited to biological applications to obtain a first guess for the unknown parameters. Secondly, we employ an a posteriori identifiability test to check the reliability of the estimates. Finally, we solve an optimization problem to refine the first guess in case it should not be accurate enough. The final estimates are guaranteed to be statistically consistent with the measurements. Furthermore, we show how the same tools can be used to discriminate among alternate models of the same biological process. We demonstrate these ideas by applying our methods to two examples, namely a model of the heat shock response in E. coli, and a model of a synthetic gene regulation system. The methods presented are quite general and may be applied to a wide class of biological systems where noisy measurements are used for parameter estimation or model selection. PMID:20221262

  14. Biodiversity, extinctions, and evolution of ecosystems with shared resources

    NASA Astrophysics Data System (ADS)

    Kozlov, Vladimir; Vakulenko, Sergey; Wennergren, Uno

    2017-03-01

    We investigate the formation of stable ecological networks where many species share the same resource. We show that such a stable ecosystem naturally occurs as a result of extinctions. We obtain an analytical relation for the number of coexisting species, and we find a relation describing how many species that may become extinct as a result of a sharp environmental change. We introduce a special parameter that is a combination of species traits and resource characteristics used in the model formulation. This parameter describes the pressure on the system to converge, by extinctions. When that stress parameter is large, we obtain that the species traits are concentrated at certain values. This stress parameter is thereby a parameter that determines the level of final biodiversity of the system. Moreover, we show that the dynamics of this limit system can be described by simple differential equations.

  15. Solar heating and cooling system design and development

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The progress of the program during the sixth program quarter is reported. The program calls for the development and delivery of eight prototype solar heating and cooling systems for installation and operational test. The William O'Brien single-family heating system was installed and is operational. The New Castle single-family heating residence is under construction. The Kansas University (KU) system is in the final design stages. The 25 ton cooling subsystem for KU is the debugging stage. Pressure drops that were greater than anticipated were encountered. The 3 ton simulation work is being finalized and the design parameters for the Rankine system were determined from simulation output.

  16. Evaluation of laminar flow control system concepts for subsonic commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A study was conducted to evaluate alternatives in the design of laminar flow control (LFC) subsonic commercial transport aircraft for operation in the 1980's period. Analyses were conducted to select mission parameters and define optimum aircraft configurational parameters for the selected mission, defined by a passenger payload of 400 and a design range of 12,038 km (6500 n mi). The baseline aircraft developed for this mission was used as a vehicle for the evaluation and development of alternative LFC system concepts. Alternatives were evaluated in the areas of aerodynamics structures, materials, LFC systems, leading-edge region cleaning and integration of auxiliary systems. Based on these evaluations, concept in each area were selected for further development and testing and ultimate incorporation in the final study aircraft. Relative to a similarly-optimized advanced technology turbulent transport, the final LFC configuration is approximately equal in direct operating cost but provides decreases of 8.2% in gross weight and 21.7% in fuel consumption.

  17. Data vs. information: A system paradigm

    NASA Technical Reports Server (NTRS)

    Billingsley, F. C.

    1982-01-01

    The data system designer requires data parameters, and is dependent on the user to convert information needs to these data parameters. This conversion will be done with more or less accuracy, beginning a chain of inaccuracies which propagate through the system, and which, in the end, may prevent the user from converting the data received into the information required. The concept to be pursued is that errors occur in various parts of the system, and, having occurred, propagate to the end. Modeling of the system may allow an estimation of the effects at any point and the final accumulated effect, and may prove a method of allocating an error budget among the system components. The selection of the various technical parameters which a data system must meet must be done in relation to the ability of the user to turn the cold, impersonal data into a live, personal decision or piece of information.

  18. A low-cost three-dimensional laser surface scanning approach for defining body segment parameters.

    PubMed

    Pandis, Petros; Bull, Anthony Mj

    2017-11-01

    Body segment parameters are used in many different applications in ergonomics as well as in dynamic modelling of the musculoskeletal system. Body segment parameters can be defined using different methods, including techniques that involve time-consuming manual measurements of the human body, used in conjunction with models or equations. In this study, a scanning technique for measuring subject-specific body segment parameters in an easy, fast, accurate and low-cost way was developed and validated. The scanner can obtain the body segment parameters in a single scanning operation, which takes between 8 and 10 s. The results obtained with the system show a standard deviation of 2.5% in volumetric measurements of the upper limb of a mannequin and 3.1% difference between scanning volume and actual volume. Finally, the maximum mean error for the moment of inertia by scanning a standard-sized homogeneous object was 2.2%. This study shows that a low-cost system can provide quick and accurate subject-specific body segment parameter estimates.

  19. Orbit/attitude estimation with LANDSAT Landmark data

    NASA Technical Reports Server (NTRS)

    Hall, D. L.; Waligora, S.

    1979-01-01

    The use of LANDSAT landmark data for orbit/attitude and camera bias estimation was studied. The preliminary results of these investigations are presented. The Goddard Trajectory Determination System (GTDS) error analysis capability was used to perform error analysis studies. A number of questions were addressed including parameter observability and sensitivity, effects on the solve-for parameter errors of data span, density, and distribution an a priori covariance weighting. The use of the GTDS differential correction capability with acutal landmark data was examined. The rms line and element observation residuals were studied as a function of the solve-for parameter set, a priori covariance weighting, force model, attitude model and data characteristics. Sample results are presented. Finally, verfication and preliminary system evaluation of the LANDSAT NAVPAK system for sequential (extended Kalman Filter) estimation of orbit, and camera bias parameters is given.

  20. [Quant efficiency of the detection as a quality parameter of the visualization equipment].

    PubMed

    Morgun, O N; Nemchenko, K E; Rogov, Iu V

    2003-01-01

    The critical parameter of notion "quant efficiency of detection" is defined in the paper. Different methods of specifying the detection quant efficiency (DQE) are under discussion. Thus, techniques of DQE determination for a whole unit and means of DQE finding at terminal space frequency are addressed. The notion of DQE at zero frequency is in the focus of attention. Finally, difficulties occurring in determining the above parameter as well as its disadvantages (as a parameter characterizing the quality of X-ray irradiation visualizing systems) are also discussed.

  1. Paper for Publication in IOP: Conference Series Leachate Treatment using three Years Aged Lysimetric Bioreactor Models

    NASA Astrophysics Data System (ADS)

    Hartono, Djoko M.; Andari Kristanto, Gabriel; Gusniani Sofian, Irma; Fauzan, Ahmad; Mahdiana, Ghanis

    2018-03-01

    This study was conducted as a response to address the problem of land availability for Cipayung landfill that no longer able to accommodate waste generation Depok City and to protect water pollution in receiving water body. Law No. 8/2008 explained that local governments and cities are required to create a sanitary landfill as a final waste processing system to replace open dumping that had been done by almost all the final processing of waste in cities in Indonesia. Sanitary landfill is the final waste processing system that works best and is environmentally friendly. The sanitary landfill will generate leachate. Leachate is the result of precipitation, evaporation, surface runoff, water infiltration into the waste, and also including the water contained in the waste. The purpose of this study was to determine the utilization of leachate generated by three years aged reactor.This study use a modeling tools as bioreactor landfill tank or so called lysimetric, that made of the polymer material that susceptible to high heat and pressure. This bioreactor landfill tank has a diameter of 0.83 m, with a surface area of 0.54 m2 and a height of 2.02 m, with the examination duration of 115 days. This tank consists of several layer, such as sand layer, solid waste layer, water layer and piping system. These layer has 3 year aged. The In this research, leachate recirculation in bioreactor landfills was conducted with waste layered loading systems with percolation system. This research has been conducted since the beginning of 2016, sampling, field measurement and analysis of leachate and waste quality carried out for approximately 115 days of field measurements.Several parameter were measured such as pH, BOD, COD, nitrate, nitrite and TSS. From the analysis of the leachate quality parameters of pH, BOD, COD, nitrite, TSS, showed a reduction in the concentration of the three reactors. The concentration of parameters measured at the initial stage until the final stage, showed a reduction in the concentration of the parameters, even reaching 90% reduction for BOD (biological oxygen demand), COD, (chemical oxygen demand) nitrite, and TSS (total solid suspended) parameters. So it can be concluded that the recirculation of leachate of the sanitary landfill can reduce the concentration of pollutants in the leachate that will be discharged into water bodies, thereby reducing the pollution of the receiving water body. This research is funding by PUPT Kemristekdikti and DRPM UI

  2. Implementing an Automated Antenna Measurement System

    NASA Technical Reports Server (NTRS)

    Valerio, Matthew D.; Romanofsky, Robert R.; VanKeuls, Fred W.

    2003-01-01

    We developed an automated measurement system using a PC running a LabView application, a Velmex BiSlide X-Y positioner, and a HP85l0C network analyzer. The system provides high positioning accuracy and requires no user supervision. After the user inputs the necessary parameters into the LabView application, LabView controls the motor positioning and performs the data acquisition. Current parameters and measured data are shown on the PC display in two 3-D graphs and updated after every data point is collected. The final output is a formatted data file for later processing.

  3. A variational approach to parameter estimation in ordinary differential equations.

    PubMed

    Kaschek, Daniel; Timmer, Jens

    2012-08-14

    Ordinary differential equations are widely-used in the field of systems biology and chemical engineering to model chemical reaction networks. Numerous techniques have been developed to estimate parameters like rate constants, initial conditions or steady state concentrations from time-resolved data. In contrast to this countable set of parameters, the estimation of entire courses of network components corresponds to an innumerable set of parameters. The approach presented in this work is able to deal with course estimation for extrinsic system inputs or intrinsic reactants, both not being constrained by the reaction network itself. Our method is based on variational calculus which is carried out analytically to derive an augmented system of differential equations including the unconstrained components as ordinary state variables. Finally, conventional parameter estimation is applied to the augmented system resulting in a combined estimation of courses and parameters. The combined estimation approach takes the uncertainty in input courses correctly into account. This leads to precise parameter estimates and correct confidence intervals. In particular this implies that small motifs of large reaction networks can be analysed independently of the rest. By the use of variational methods, elements from control theory and statistics are combined allowing for future transfer of methods between the two fields.

  4. RMB identification based on polarization parameters inversion imaging

    NASA Astrophysics Data System (ADS)

    Liu, Guoyan; Gao, Kun; Liu, Xuefeng; Ni, Guoqiang

    2016-10-01

    Social order is threatened by counterfeit money. Conventional anti-counterfeit technology is much too old to identify its authenticity or not. The intrinsic difference between genuine notes and counterfeit notes is its paper tissue. In this paper a new technology of detecting RMB is introduced, the polarization parameter indirect microscopic imaging technique. A conventional reflection microscopic system is used as the basic optical system, and inserting into it with polarization-modulation mechanics. The near-field structural characteristics can be delivered by optical wave and material coupling. According to coupling and conduction physics, calculate the changes of optical wave parameters, then get the curves of the intensity of the image. By analyzing near-field polarization parameters in nanoscale, finally calculate indirect polarization parameter imaging of the fiber of the paper tissue in order to identify its authenticity.

  5. Long-time predictability in disordered spin systems following a deep quench

    NASA Astrophysics Data System (ADS)

    Ye, J.; Gheissari, R.; Machta, J.; Newman, C. M.; Stein, D. L.

    2017-04-01

    We study the problem of predictability, or "nature vs nurture," in several disordered Ising spin systems evolving at zero temperature from a random initial state: How much does the final state depend on the information contained in the initial state, and how much depends on the detailed history of the system? Our numerical studies of the "dynamical order parameter" in Edwards-Anderson Ising spin glasses and random ferromagnets indicate that the influence of the initial state decays as dimension increases. Similarly, this same order parameter for the Sherrington-Kirkpatrick infinite-range spin glass indicates that this information decays as the number of spins increases. Based on these results, we conjecture that the influence of the initial state on the final state decays to zero in finite-dimensional random-bond spin systems as dimension goes to infinity, regardless of the presence of frustration. We also study the rate at which spins "freeze out" to a final state as a function of dimensionality and number of spins; here the results indicate that the number of "active" spins at long times increases with dimension (for short-range systems) or number of spins (for infinite-range systems). We provide theoretical arguments to support these conjectures, and also study analytically several mean-field models: the random energy model, the uniform Curie-Weiss ferromagnet, and the disordered Curie-Weiss ferromagnet. We find that for these models, the information contained in the initial state does not decay in the thermodynamic limit—in fact, it fully determines the final state. Unlike in short-range models, the presence of frustration in mean-field models dramatically alters the dynamical behavior with respect to the issue of predictability.

  6. Long-time predictability in disordered spin systems following a deep quench.

    PubMed

    Ye, J; Gheissari, R; Machta, J; Newman, C M; Stein, D L

    2017-04-01

    We study the problem of predictability, or "nature vs nurture," in several disordered Ising spin systems evolving at zero temperature from a random initial state: How much does the final state depend on the information contained in the initial state, and how much depends on the detailed history of the system? Our numerical studies of the "dynamical order parameter" in Edwards-Anderson Ising spin glasses and random ferromagnets indicate that the influence of the initial state decays as dimension increases. Similarly, this same order parameter for the Sherrington-Kirkpatrick infinite-range spin glass indicates that this information decays as the number of spins increases. Based on these results, we conjecture that the influence of the initial state on the final state decays to zero in finite-dimensional random-bond spin systems as dimension goes to infinity, regardless of the presence of frustration. We also study the rate at which spins "freeze out" to a final state as a function of dimensionality and number of spins; here the results indicate that the number of "active" spins at long times increases with dimension (for short-range systems) or number of spins (for infinite-range systems). We provide theoretical arguments to support these conjectures, and also study analytically several mean-field models: the random energy model, the uniform Curie-Weiss ferromagnet, and the disordered Curie-Weiss ferromagnet. We find that for these models, the information contained in the initial state does not decay in the thermodynamic limit-in fact, it fully determines the final state. Unlike in short-range models, the presence of frustration in mean-field models dramatically alters the dynamical behavior with respect to the issue of predictability.

  7. Detection technology for IVHS : Volume I: Final Report

    DOT National Transportation Integrated Search

    1996-12-01

    The Detection Technology for the IVHS project identified traffic parameters and their required accuracies for characterizing traffic flow in conventional and newer intelligent transportation systems (ITS); obtained state-of-the-art detectors and inst...

  8. Laser Shot Peening System Final Report CRADA No. TC-1369-96

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuart, B. C.; Harris, F.

    This CRADA project was established with a primary goal to develop a laser shot peening system which could operate at production throughput rates and produce the desired depth and intensity of induced shots. The first objective was to understand all parameters required for acceptable peening, including pulse energy, pulse temporal format, pulse spatial format, sample configuration and tamping mechanism. The next objective was to demonstrate the technique on representative samples and then on representative parts. The final objective was to implement the technology into a meaningful industrial peen.

  9. Absolute and geometric parameters of contact binary BO Arietis

    NASA Astrophysics Data System (ADS)

    Gürol, B.; Gürsoytrak, S. H.; Bradstreet, D. H.

    2015-08-01

    We present the results of our investigation on the geometrical and physical parameters of the W UMa type binary system BO Ari from analyzed CCD (BVRI) light curves and radial velocity data. The photometric data were obtained in 2009 and 2010 at Ankara University Observatory (AUO) and the spectroscopic observations were made in 2007 and 2010 at TUBITAK National Observatory (TUG). These light and radial velocity observations were analyzed simultaneously by using the Wilson-Devinney (2013 revision) code to obtain absolute and geometrical parameters. The system was determined to be an A-type W UMa system. Combining our photometric solution with the spectroscopic data we derived masses and radii of the eclipsing system to be M1 = 0.995M⊙,M2 = 0.189M⊙,R1 = 1.090R⊙ and R2 = 0.515R⊙ . Finally, we discuss the evolutionary status of the system.

  10. Absolute and geometric parameters of contact binary V1918 Cyg

    NASA Astrophysics Data System (ADS)

    Gürol, B.

    2016-08-01

    We present the results of our investigation on the geometrical and physical parameters of the W UMa type binary system V1918 Cyg from analyzed CCD (BVR) light curves and radial velocity data. We used the photometric data published by Yang et al. (2013) and spectroscopic data obtained in 2012 at TUBITAK National Observatory (TUG). The light and radial velocity observations were analyzed simultaneously by using the Wilson-Devinney (2015 revision) code to obtain absolute and geometrical parameters of the system. It is confirmed that the system is an A-type W UMa as indicated by Yang et al. (2013). Combining our spectroscopic data with the photometric solution we derived masses and radii of the eclipsing system as M1 = 1.302M⊙ , M2 = 0.362M⊙ , R1 = 1.362R⊙ and R2 = 0.762R⊙ . Finally, we discuss the evolutionary status of the system.

  11. V2S: Voice to Sign Language Translation System for Malaysian Deaf People

    NASA Astrophysics Data System (ADS)

    Mean Foong, Oi; Low, Tang Jung; La, Wai Wan

    The process of learning and understand the sign language may be cumbersome to some, and therefore, this paper proposes a solution to this problem by providing a voice (English Language) to sign language translation system using Speech and Image processing technique. Speech processing which includes Speech Recognition is the study of recognizing the words being spoken, regardless of whom the speaker is. This project uses template-based recognition as the main approach in which the V2S system first needs to be trained with speech pattern based on some generic spectral parameter set. These spectral parameter set will then be stored as template in a database. The system will perform the recognition process through matching the parameter set of the input speech with the stored templates to finally display the sign language in video format. Empirical results show that the system has 80.3% recognition rate.

  12. Brute force meets Bruno force in parameter optimisation: introduction of novel constraints for parameter accuracy improvement by symbolic computation.

    PubMed

    Nakatsui, M; Horimoto, K; Lemaire, F; Ürgüplü, A; Sedoglavic, A; Boulier, F

    2011-09-01

    Recent remarkable advances in computer performance have enabled us to estimate parameter values by the huge power of numerical computation, the so-called 'Brute force', resulting in the high-speed simultaneous estimation of a large number of parameter values. However, these advancements have not been fully utilised to improve the accuracy of parameter estimation. Here the authors review a novel method for parameter estimation using symbolic computation power, 'Bruno force', named after Bruno Buchberger, who found the Gröbner base. In the method, the objective functions combining the symbolic computation techniques are formulated. First, the authors utilise a symbolic computation technique, differential elimination, which symbolically reduces an equivalent system of differential equations to a system in a given model. Second, since its equivalent system is frequently composed of large equations, the system is further simplified by another symbolic computation. The performance of the authors' method for parameter accuracy improvement is illustrated by two representative models in biology, a simple cascade model and a negative feedback model in comparison with the previous numerical methods. Finally, the limits and extensions of the authors' method are discussed, in terms of the possible power of 'Bruno force' for the development of a new horizon in parameter estimation.

  13. Towards an information geometric characterization/classification of complex systems. I. Use of generalized entropies

    NASA Astrophysics Data System (ADS)

    Ghikas, Demetris P. K.; Oikonomou, Fotios D.

    2018-04-01

    Using the generalized entropies which depend on two parameters we propose a set of quantitative characteristics derived from the Information Geometry based on these entropies. Our aim, at this stage, is to construct first some fundamental geometric objects which will be used in the development of our geometrical framework. We first establish the existence of a two-parameter family of probability distributions. Then using this family we derive the associated metric and we state a generalized Cramer-Rao Inequality. This gives a first two-parameter classification of complex systems. Finally computing the scalar curvature of the information manifold we obtain a further discrimination of the corresponding classes. Our analysis is based on the two-parameter family of generalized entropies of Hanel and Thurner (2011).

  14. Intelligent methods for the process parameter determination of plastic injection molding

    NASA Astrophysics Data System (ADS)

    Gao, Huang; Zhang, Yun; Zhou, Xundao; Li, Dequn

    2018-03-01

    Injection molding is one of the most widely used material processing methods in producing plastic products with complex geometries and high precision. The determination of process parameters is important in obtaining qualified products and maintaining product quality. This article reviews the recent studies and developments of the intelligent methods applied in the process parameter determination of injection molding. These intelligent methods are classified into three categories: Case-based reasoning methods, expert system- based methods, and data fitting and optimization methods. A framework of process parameter determination is proposed after comprehensive discussions. Finally, the conclusions and future research topics are discussed.

  15. Study on degenerate coefficient and degeneration evaluation of lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Li, Bei; Li, Xiaopeng

    2017-07-01

    Some characteristic parameters were epurated in this paper by analyzing internal and external factors of the degradation degree of lithium-ion battery. These characteristic parameters include open circuit voltage (OCV), state of charge (SOC) and ambient temperature. The degradation degree was evaluated by discrete degree of the array, which is composed of the above parameters. The epurated parameters were verified through adaptive neuro-fuzzy inference system (ANFIS) model building. The expression of degradation coefficient was finally determined. The simulation results show that the expression is reasonable and precise to describe the degradation degree.

  16. A portable, low-cost flight-data measurement and recording system

    NASA Technical Reports Server (NTRS)

    Miller, R. J.

    1982-01-01

    The design of and the experience with an inexpensive, hand-portable, onboard data system used to record four parameters in the final portion of the landing approach and touchdown of an airplane are described. The system utilized a high-quality audio tape recorder and amateur photographic equipment with accessory circuitry rather than specialized instrumentation to given satisfactory results.

  17. Technical parameters for specifying imagery requirements

    NASA Technical Reports Server (NTRS)

    Coan, Paul P.; Dunnette, Sheri J.

    1994-01-01

    Providing visual information acquired from remote events to various operators, researchers, and practitioners has become progressively more important as the application of special skills in alien or hazardous situations increases. To provide an understanding of the technical parameters required to specify imagery, we have identified, defined, and discussed seven salient characteristics of images: spatial resolution, linearity, luminance resolution, spectral discrimination, temporal discrimination, edge definition, and signal-to-noise ratio. We then describe a generalizing imaging system and identified how various parts of the system affect the image data. To emphasize the different applications of imagery, we have constrasted the common television system with the significant parameters of a televisual imaging system for technical applications. Finally, we have established a method by which the required visual information can be specified by describing certain technical parameters which are directly related to the information content of the imagery. This method requires the user to complete a form listing all pertinent data requirements for the imagery.

  18. Coexisting multiple attractors and riddled basins of a memristive system.

    PubMed

    Wang, Guangyi; Yuan, Fang; Chen, Guanrong; Zhang, Yu

    2018-01-01

    In this paper, a new memristor-based chaotic system is designed, analyzed, and implemented. Multistability, multiple attractors, and complex riddled basins are observed from the system, which are investigated along with other dynamical behaviors such as equilibrium points and their stabilities, symmetrical bifurcation diagrams, and sustained chaotic states. With different sets of system parameters, the system can also generate various multi-scroll attractors. Finally, the system is realized by experimental circuits.

  19. Parameter optimization and stretch enhancement of AISI 316 sheet using rapid prototyping technique

    NASA Astrophysics Data System (ADS)

    Moayedfar, M.; Rani, A. M.; Hanaei, H.; Ahmad, A.; Tale, A.

    2017-10-01

    Incremental sheet forming is a flexible manufacturing process which uses the indenter point-to-point force to shape the sheet metal workpiece into manufactured parts in batch production series. However, the problem sometimes arising from this process is the low plastic point in the stress-strain diagram of the material which leads the low stretching amount before ultra-tensile strain point. Hence, a set of experiments is designed to find the optimum forming parameters in this process for optimum sheet thickness distribution while both sides of the sheet are considered for the surface quality improvement. A five-axis high-speed CNC milling machine is employed to deliver the proper motion based on the programming system while the clamping system for holding the sheet metal was a blank mould. Finally, an electron microscope and roughness machine are utilized to evaluate the surface structure of final parts, illustrate any defect may cause during the forming process and examine the roughness of the final part surface accordingly. The best interaction between parameters is obtained with the optimum values which lead the maximum sheet thickness distribution of 4.211e-01 logarithmic elongation when the depth was 24mm with respect to the design. This study demonstrates that this rapid forming method offers an alternative solution for surface quality improvement of 65% avoiding the low probability of cracks and low probability of crystal structure changes.

  20. p-barp interactions at 2. 32 GeV/c

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, C.K.; Fields, T.; Rhines, D.S.

    1978-01-01

    A bubble-chamber experiment based on 304 000 events of p-barp interactions at 2.32 GeV/c is described. The film was automatically scanned and measured by the POLLY II system. Details of the data-analysis methods are given. We report results on cross sections for constrained final states, tests of C invariance, and inclusive pion and rho/sup 0/ multiplicity parameters for annihilation final states.

  1. Evaluation of severe accident risks: Quantification of major input parameters: MAACS (MELCOR Accident Consequence Code System) input

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprung, J.L.; Jow, H-N; Rollstin, J.A.

    1990-12-01

    Estimation of offsite accident consequences is the customary final step in a probabilistic assessment of the risks of severe nuclear reactor accidents. Recently, the Nuclear Regulatory Commission reassessed the risks of severe accidents at five US power reactors (NUREG-1150). Offsite accident consequences for NUREG-1150 source terms were estimated using the MELCOR Accident Consequence Code System (MACCS). Before these calculations were performed, most MACCS input parameters were reviewed, and for each parameter reviewed, a best-estimate value was recommended. This report presents the results of these reviews. Specifically, recommended values and the basis for their selection are presented for MACCS atmospheric andmore » biospheric transport, emergency response, food pathway, and economic input parameters. Dose conversion factors and health effect parameters are not reviewed in this report. 134 refs., 15 figs., 110 tabs.« less

  2. SELECTIVE DISSEMINATION OF INFORMATION--REVIEW OF SELECTED SYSTEMS AND A DESIGN FOR ARMY TECHNICAL LIBRARIES. FINAL REPORT. ARMY TECHNICAL LIBRARY IMPROVEMENT STUDIES (ATLIS), REPORT NO. 8.

    ERIC Educational Resources Information Center

    BIVONA, WILLIAM A.

    THIS REPORT PRESENTS AN ANALYSIS OF OVER EIGHTEEN SMALL, INTERMEDIATE, AND LARGE SCALE SYSTEMS FOR THE SELECTIVE DISSEMINATION OF INFORMATION (SDI). SYSTEMS ARE COMPARED AND ANALYZED WITH RESPECT TO DESIGN CRITERIA AND THE FOLLOWING NINE SYSTEM PARAMETERS--(1) INFORMATION INPUT, (2) METHODS OF INDEXING AND ABSTRACTING, (3) USER INTEREST PROFILE…

  3. Advance traffic control warning systems for maintenance operations : final report.

    DOT National Transportation Integrated Search

    1976-07-01

    The report discusses the effect of certain variables defined by sign size, height of installation and legend on the driver responses as measured by speed, conflict and queuing parameters. Effects of electronically actuated, directional flashing signs...

  4. Observer-based H∞ resilient control for a class of switched LPV systems and its application

    NASA Astrophysics Data System (ADS)

    Yang, Dong; Zhao, Jun

    2016-11-01

    This paper deals with the issue of observer-based H∞ resilient control for a class of switched linear parameter-varying (LPV) systems by utilising a multiple parameter-dependent Lyapunov functions method. First, attention is focused upon the design of a resilient observer, an observer-based resilient controller and a parameter and estimate state-dependent switching signal, which can stabilise and achieve the disturbance attenuation for the given systems. Then, a solvability condition of the H∞ resilient control problem is given in terms of matrix inequality for the switched LPV systems. This condition allows the H∞ resilient control problem for each individual subsystem to be unsolvable. The observer, controller, and switching signal are explicitly computed by solving linear matrix inequalities (LMIs). Finally, the effectiveness of the proposed control scheme is illustrated by its application to a turbofan engine, which can hardly be handled by the existing approaches.

  5. Stabilization and synchronization for a mechanical system via adaptive sliding mode control.

    PubMed

    Song, Zhankui; Sun, Kaibiao; Ling, Shuai

    2017-05-01

    In this paper, we investigate the synchronization problem of chaotic centrifugal flywheel governor with parameters uncertainty and lumped disturbances. A slave centrifugal flywheel governor system is considered as an underactuated following-system which a control input is designed to follow a master centrifugal flywheel governor system. To tackle lumped disturbances and uncertainty parameters, a novel synchronization control law is developed by employing sliding mode control strategy and Nussbaum gain technique. Adaptation updating algorithms are derived in the sense of Lyapunov stability analysis such that the lumped disturbances can be suppressed and the adverse effect caused by uncertainty parameters can be compensated. In addition, the synchronization tracking-errors are proven to converge to a small neighborhood of the origin. Finally, simulation results demonstrate the effectiveness of the proposed control scheme. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Impulsive Effects on Quasi-Synchronization of Neural Networks With Parameter Mismatches and Time-Varying Delay.

    PubMed

    Tang, Ze; Park, Ju H; Feng, Jianwen

    2018-04-01

    This paper is concerned with the exponential synchronization issue of nonidentically coupled neural networks with time-varying delay. Due to the parameter mismatch phenomena existed in neural networks, the problem of quasi-synchronization is thus discussed by applying some impulsive control strategies. Based on the definition of average impulsive interval and the extended comparison principle for impulsive systems, some criteria for achieving the quasi-synchronization of neural networks are derived. More extensive ranges of impulsive effects are discussed so that impulse could either play an effective role or play an adverse role in the final network synchronization. In addition, according to the extended formula for the variation of parameters with time-varying delay, precisely exponential convergence rates and quasi-synchronization errors are obtained, respectively, in view of different types impulsive effects. Finally, some numerical simulations with different types of impulsive effects are presented to illustrate the effectiveness of theoretical analysis.

  7. 76 FR 8637 - Medical Devices; Medical Device Data Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... would alter the parameters on an infusion pump. The MDDS could pass that control signal to the infusion... proposed Sec. 880.6310(a). Commenters also asked whether a system that sends data to an infusion pump to... signal to an infusion pump to control the flow rate would not be an MDDS because, as the revised final...

  8. Fault Detection of Bearing Systems through EEMD and Optimization Algorithm

    PubMed Central

    Lee, Dong-Han; Ahn, Jong-Hyo; Koh, Bong-Hwan

    2017-01-01

    This study proposes a fault detection and diagnosis method for bearing systems using ensemble empirical mode decomposition (EEMD) based feature extraction, in conjunction with particle swarm optimization (PSO), principal component analysis (PCA), and Isomap. First, a mathematical model is assumed to generate vibration signals from damaged bearing components, such as the inner-race, outer-race, and rolling elements. The process of decomposing vibration signals into intrinsic mode functions (IMFs) and extracting statistical features is introduced to develop a damage-sensitive parameter vector. Finally, PCA and Isomap algorithm are used to classify and visualize this parameter vector, to separate damage characteristics from healthy bearing components. Moreover, the PSO-based optimization algorithm improves the classification performance by selecting proper weightings for the parameter vector, to maximize the visualization effect of separating and grouping of parameter vectors in three-dimensional space. PMID:29143772

  9. Precision and Accuracy Parameters in Structured Light 3-D Scanning

    NASA Astrophysics Data System (ADS)

    Eiríksson, E. R.; Wilm, J.; Pedersen, D. B.; Aanæs, H.

    2016-04-01

    Structured light systems are popular in part because they can be constructed from off-the-shelf low cost components. In this paper we quantitatively show how common design parameters affect precision and accuracy in such systems, supplying a much needed guide for practitioners. Our quantitative measure is the established VDI/VDE 2634 (Part 2) guideline using precision made calibration artifacts. Experiments are performed on our own structured light setup, consisting of two cameras and a projector. We place our focus on the influence of calibration design parameters, the calibration procedure and encoding strategy and present our findings. Finally, we compare our setup to a state of the art metrology grade commercial scanner. Our results show that comparable, and in some cases better, results can be obtained using the parameter settings determined in this study.

  10. NWP model forecast skill optimization via closure parameter variations

    NASA Astrophysics Data System (ADS)

    Järvinen, H.; Ollinaho, P.; Laine, M.; Solonen, A.; Haario, H.

    2012-04-01

    We present results of a novel approach to tune predictive skill of numerical weather prediction (NWP) models. These models contain tunable parameters which appear in parameterizations schemes of sub-grid scale physical processes. The current practice is to specify manually the numerical parameter values, based on expert knowledge. We developed recently a concept and method (QJRMS 2011) for on-line estimation of the NWP model parameters via closure parameter variations. The method called EPPES ("Ensemble prediction and parameter estimation system") utilizes ensemble prediction infra-structure for parameter estimation in a very cost-effective way: practically no new computations are introduced. The approach provides an algorithmic decision making tool for model parameter optimization in operational NWP. In EPPES, statistical inference about the NWP model tunable parameters is made by (i) generating an ensemble of predictions so that each member uses different model parameter values, drawn from a proposal distribution, and (ii) feeding-back the relative merits of the parameter values to the proposal distribution, based on evaluation of a suitable likelihood function against verifying observations. In this presentation, the method is first illustrated in low-order numerical tests using a stochastic version of the Lorenz-95 model which effectively emulates the principal features of ensemble prediction systems. The EPPES method correctly detects the unknown and wrongly specified parameters values, and leads to an improved forecast skill. Second, results with an ensemble prediction system emulator, based on the ECHAM5 atmospheric GCM show that the model tuning capability of EPPES scales up to realistic models and ensemble prediction systems. Finally, preliminary results of EPPES in the context of ECMWF forecasting system are presented.

  11. Integrating machine learning to achieve an automatic parameter prediction for practical continuous-variable quantum key distribution

    NASA Astrophysics Data System (ADS)

    Liu, Weiqi; Huang, Peng; Peng, Jinye; Fan, Jianping; Zeng, Guihua

    2018-02-01

    For supporting practical quantum key distribution (QKD), it is critical to stabilize the physical parameters of signals, e.g., the intensity, phase, and polarization of the laser signals, so that such QKD systems can achieve better performance and practical security. In this paper, an approach is developed by integrating a support vector regression (SVR) model to optimize the performance and practical security of the QKD system. First, a SVR model is learned to precisely predict the time-along evolutions of the physical parameters of signals. Second, such predicted time-along evolutions are employed as feedback to control the QKD system for achieving the optimal performance and practical security. Finally, our proposed approach is exemplified by using the intensity evolution of laser light and a local oscillator pulse in the Gaussian modulated coherent state QKD system. Our experimental results have demonstrated three significant benefits of our SVR-based approach: (1) it can allow the QKD system to achieve optimal performance and practical security, (2) it does not require any additional resources and any real-time monitoring module to support automatic prediction of the time-along evolutions of the physical parameters of signals, and (3) it is applicable to any measurable physical parameter of signals in the practical QKD system.

  12. Optical analysis of laser systems using interferometry

    NASA Astrophysics Data System (ADS)

    Viswanathan, V. K.; Liberman, I.; Lawrence, G.; Seery, B. D.

    1980-06-01

    It is noted that previous approaches of predicting focal spot parameters involved the digitization of interference patterns of the optical components and propagation of the complex amplitude and phase of the wave front throughout the system. The present paper describes an approach in which the computational procedure is extended to produce computer plots of the final emerging wave front. It is shown that this enables direct comparison with the experimentally produced wave front of the total system and makes possible the optical analysis, design, and possible optimization of laser systems. A description is given of the computational procedure and the Twyman-Green and Smartt IR interferometers constructed to verify this approach. Finally, consideration is given to the implications of the results.

  13. Parameterized LMI Based Diagonal Dominance Compensator Study for Polynomial Linear Parameter Varying System

    NASA Astrophysics Data System (ADS)

    Han, Xiaobao; Li, Huacong; Jia, Qiusheng

    2017-12-01

    For dynamic decoupling of polynomial linear parameter varying(PLPV) system, a robust dominance pre-compensator design method is given. The parameterized precompensator design problem is converted into an optimal problem constrained with parameterized linear matrix inequalities(PLMI) by using the conception of parameterized Lyapunov function(PLF). To solve the PLMI constrained optimal problem, the precompensator design problem is reduced into a normal convex optimization problem with normal linear matrix inequalities (LMI) constraints on a new constructed convex polyhedron. Moreover, a parameter scheduling pre-compensator is achieved, which satisfies robust performance and decoupling performances. Finally, the feasibility and validity of the robust diagonal dominance pre-compensator design method are verified by the numerical simulation on a turbofan engine PLPV model.

  14. Event-based recursive filtering for a class of nonlinear stochastic parameter systems over fading channels

    NASA Astrophysics Data System (ADS)

    Shen, Yuxuan; Wang, Zidong; Shen, Bo; Alsaadi, Fuad E.

    2018-07-01

    In this paper, the recursive filtering problem is studied for a class of time-varying nonlinear systems with stochastic parameter matrices. The measurement transmission between the sensor and the filter is conducted through a fading channel characterized by the Rice fading model. An event-based transmission mechanism is adopted to decide whether the sensor measurement should be transmitted to the filter. A recursive filter is designed such that, in the simultaneous presence of the stochastic parameter matrices and fading channels, the filtering error covariance is guaranteed to have an upper bound and such an upper bound is then minimized by appropriately choosing filter gain matrix. Finally, a simulation example is presented to demonstrate the effectiveness of the proposed filtering scheme.

  15. Self-calibration of robot-sensor system

    NASA Technical Reports Server (NTRS)

    Yeh, Pen-Shu

    1990-01-01

    The process of finding the coordinate transformation between a robot and an external sensor system has been addressed. This calibration is equivalent to solving a nonlinear optimization problem for the parameters that characterize the transformation. A two-step procedure is herein proposed for solving the problem. The first step involves finding a nominal solution that is a good approximation of the final solution. A varational problem is then generated to replace the original problem in the next step. With the assumption that the variational parameters are small compared to unity, the problem that can be more readily solved with relatively small computation effort.

  16. Adjustable Parameter-Based Distributed Fault Estimation Observer Design for Multiagent Systems With Directed Graphs.

    PubMed

    Zhang, Ke; Jiang, Bin; Shi, Peng

    2017-02-01

    In this paper, a novel adjustable parameter (AP)-based distributed fault estimation observer (DFEO) is proposed for multiagent systems (MASs) with the directed communication topology. First, a relative output estimation error is defined based on the communication topology of MASs. Then a DFEO with AP is constructed with the purpose of improving the accuracy of fault estimation. Based on H ∞ and H 2 with pole placement, multiconstrained design is given to calculate the gain of DFEO. Finally, simulation results are presented to illustrate the feasibility and effectiveness of the proposed DFEO design with AP.

  17. Adaptive control of a quadrotor aerial vehicle with input constraints and uncertain parameters

    NASA Astrophysics Data System (ADS)

    Tran, Trong-Toan; Ge, Shuzhi Sam; He, Wei

    2018-05-01

    In this paper, we address the problem of adaptive bounded control for the trajectory tracking of a Quadrotor Aerial Vehicle (QAV) while the input saturations and uncertain parameters with the known bounds are simultaneously taken into account. First, to deal with the underactuated property of the QAV model, we decouple and construct the QAV model as a cascaded structure which consists of two fully actuated subsystems. Second, to handle the input constraints and uncertain parameters, we use a combination of the smooth saturation function and smooth projection operator in the control design. Third, to ensure the stability of the overall system of the QAV, we develop the technique for the cascaded system in the presence of both the input constraints and uncertain parameters. Finally, the region of stability of the closed-loop system is constructed explicitly, and our design ensures the asymptotic convergence of the tracking errors to the origin. The simulation results are provided to illustrate the effectiveness of the proposed method.

  18. Non-contact plant growth measurement method and system based on ubiquitous sensor network technologies.

    PubMed

    Suk, Jinweon; Kim, Seokhoon; Ryoo, Intae

    2011-01-01

    This paper proposes a non-contact plant growth measurement system using infrared sensors based on the ubiquitous sensor network (USN) technology. The proposed system measures plant growth parameters such as the stem radius of plants using real-time non-contact methods, and generates diameter, cross-sectional area and thickening form of plant stems using this measured data. Non-contact sensors have been used not to cause any damage to plants during measurement of the growth parameters. Once the growth parameters are measured, they are transmitted to a remote server using the sensor network technology and analyzed in the application program server. The analyzed data are then provided for administrators and a group of interested users. The proposed plant growth measurement system has been designed and implemented using fixed-type and rotary-type infrared sensor based measurement methods and devices. Finally, the system performance is compared and verified with the measurement data that have been obtained by practical field experiments.

  19. Numerical weather prediction model tuning via ensemble prediction system

    NASA Astrophysics Data System (ADS)

    Jarvinen, H.; Laine, M.; Ollinaho, P.; Solonen, A.; Haario, H.

    2011-12-01

    This paper discusses a novel approach to tune predictive skill of numerical weather prediction (NWP) models. NWP models contain tunable parameters which appear in parameterizations schemes of sub-grid scale physical processes. Currently, numerical values of these parameters are specified manually. In a recent dual manuscript (QJRMS, revised) we developed a new concept and method for on-line estimation of the NWP model parameters. The EPPES ("Ensemble prediction and parameter estimation system") method requires only minimal changes to the existing operational ensemble prediction infra-structure and it seems very cost-effective because practically no new computations are introduced. The approach provides an algorithmic decision making tool for model parameter optimization in operational NWP. In EPPES, statistical inference about the NWP model tunable parameters is made by (i) generating each member of the ensemble of predictions using different model parameter values, drawn from a proposal distribution, and (ii) feeding-back the relative merits of the parameter values to the proposal distribution, based on evaluation of a suitable likelihood function against verifying observations. In the presentation, the method is first illustrated in low-order numerical tests using a stochastic version of the Lorenz-95 model which effectively emulates the principal features of ensemble prediction systems. The EPPES method correctly detects the unknown and wrongly specified parameters values, and leads to an improved forecast skill. Second, results with an atmospheric general circulation model based ensemble prediction system show that the NWP model tuning capacity of EPPES scales up to realistic models and ensemble prediction systems. Finally, a global top-end NWP model tuning exercise with preliminary results is published.

  20. Synchronization error estimation and controller design for delayed Lur'e systems with parameter mismatches.

    PubMed

    He, Wangli; Qian, Feng; Han, Qing-Long; Cao, Jinde

    2012-10-01

    This paper investigates the problem of master-slave synchronization of two delayed Lur'e systems in the presence of parameter mismatches. First, by analyzing the corresponding synchronization error system, synchronization with an error level, which is referred to as quasi-synchronization, is established. Some delay-dependent quasi-synchronization criteria are derived. An estimation of the synchronization error bound is given, and an explicit expression of error levels is obtained. Second, sufficient conditions on the existence of feedback controllers under a predetermined error level are provided. The controller gains are obtained by solving a set of linear matrix inequalities. Finally, a delayed Chua's circuit is chosen to illustrate the effectiveness of the derived results.

  1. Research on control strategy based on fuzzy PR for grid-connected inverter

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Guan, Weiguo; Miao, Wen

    2018-04-01

    In the traditional PI controller, there is static error in tracking ac signals. To solve the problem, the control strategy of a fuzzy PR and the grid voltage feed-forward is proposed. The fuzzy PR controller is to eliminate the static error of the system. It also adjusts parameters of PR controller in real time, which avoids the defect of fixed parameter fixed. The grid voltage feed-forward control can ensure the quality of current and improve the system's anti-interference ability when the grid voltage is distorted. Finally, the simulation results show that the system can output grid current with good quality and also has good dynamic and steady state performance.

  2. Freeze-thaw resistance of concrete with marginal air content : final report

    DOT National Transportation Integrated Search

    2006-12-01

    Freeze-thaw resistance is a key durability factor for concrete pavements. Recommendations for the air : void system parameters are normally: 6 1 percent total air, and spacing factor less than 0.20 : millimeters. However, it was observed that some...

  3. Leader-follower formation control of underactuated surface vehicles based on sliding mode control and parameter estimation.

    PubMed

    Sun, Zhijian; Zhang, Guoqing; Lu, Yu; Zhang, Weidong

    2018-01-01

    This paper studies the leader-follower formation control of underactuated surface vehicles with model uncertainties and environmental disturbances. A parameter estimation and upper bound estimation based sliding mode control scheme is proposed to solve the problem of the unknown plant parameters and environmental disturbances. For each of these leader-follower formation systems, the dynamic equations of position and attitude are analyzed using coordinate transformation with the aid of the backstepping technique. All the variables are guaranteed to be uniformly ultimately bounded stable in the closed-loop system, which is proven by the distribution design Lyapunov function synthesis. The main advantages of this approach are that: first, parameter estimation based sliding mode control can enhance the robustness of the closed-loop system in presence of model uncertainties and environmental disturbances; second, a continuous function is developed to replace the signum function in the design of sliding mode scheme, which devotes to reduce the chattering of the control system. Finally, numerical simulations are given to demonstrate the effectiveness of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Robust fast controller design via nonlinear fractional differential equations.

    PubMed

    Zhou, Xi; Wei, Yiheng; Liang, Shu; Wang, Yong

    2017-07-01

    A new method for linear system controller design is proposed whereby the closed-loop system achieves both robustness and fast response. The robustness performance considered here means the damping ratio of closed-loop system can keep its desired value under system parameter perturbation, while the fast response, represented by rise time of system output, can be improved by tuning the controller parameter. We exploit techniques from both the nonlinear systems control and the fractional order systems control to derive a novel nonlinear fractional order controller. For theoretical analysis of the closed-loop system performance, two comparison theorems are developed for a class of fractional differential equations. Moreover, the rise time of the closed-loop system can be estimated, which facilitates our controller design to satisfy the fast response performance and maintain the robustness. Finally, numerical examples are given to illustrate the effectiveness of our methods. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Spatiotemporal dynamics in excitable homogeneous random networks composed of periodically self-sustained oscillation.

    PubMed

    Qian, Yu; Liu, Fei; Yang, Keli; Zhang, Ge; Yao, Chenggui; Ma, Jun

    2017-09-19

    The collective behaviors of networks are often dependent on the network connections and bifurcation parameters, also the local kinetics plays an important role in contributing the consensus of coupled oscillators. In this paper, we systematically investigate the influence of network structures and system parameters on the spatiotemporal dynamics in excitable homogeneous random networks (EHRNs) composed of periodically self-sustained oscillation (PSO). By using the dominant phase-advanced driving (DPAD) method, the one-dimensional (1D) Winfree loop is exposed as the oscillation source supporting the PSO, and the accurate wave propagation pathways from the oscillation source to the whole network are uncovered. Then, an order parameter is introduced to quantitatively study the influence of network structures and system parameters on the spatiotemporal dynamics of PSO in EHRNs. Distinct results induced by the network structures and the system parameters are observed. Importantly, the corresponding mechanisms are revealed. PSO influenced by the network structures are induced not only by the change of average path length (APL) of network, but also by the invasion of 1D Winfree loop from the outside linking nodes. Moreover, PSO influenced by the system parameters are determined by the excitation threshold and the minimum 1D Winfree loop. Finally, we confirmed that the excitation threshold and the minimum 1D Winfree loop determined PSO will degenerate as the system size is expanded.

  6. Automated Storm Tracking and the Lightning Jump Algorithm Using GOES-R Geostationary Lightning Mapper (GLM) Proxy Data.

    PubMed

    Schultz, Elise V; Schultz, Christopher J; Carey, Lawrence D; Cecil, Daniel J; Bateman, Monte

    2016-01-01

    This study develops a fully automated lightning jump system encompassing objective storm tracking, Geostationary Lightning Mapper proxy data, and the lightning jump algorithm (LJA), which are important elements in the transition of the LJA concept from a research to an operational based algorithm. Storm cluster tracking is based on a product created from the combination of a radar parameter (vertically integrated liquid, VIL), and lightning information (flash rate density). Evaluations showed that the spatial scale of tracked features or storm clusters had a large impact on the lightning jump system performance, where increasing spatial scale size resulted in decreased dynamic range of the system's performance. This framework will also serve as a means to refine the LJA itself to enhance its operational applicability. Parameters within the system are isolated and the system's performance is evaluated with adjustments to parameter sensitivity. The system's performance is evaluated using the probability of detection (POD) and false alarm ratio (FAR) statistics. Of the algorithm parameters tested, sigma-level (metric of lightning jump strength) and flash rate threshold influenced the system's performance the most. Finally, verification methodologies are investigated. It is discovered that minor changes in verification methodology can dramatically impact the evaluation of the lightning jump system.

  7. Automated Storm Tracking and the Lightning Jump Algorithm Using GOES-R Geostationary Lightning Mapper (GLM) Proxy Data

    NASA Technical Reports Server (NTRS)

    Schultz, Elise; Schultz, Christopher Joseph; Carey, Lawrence D.; Cecil, Daniel J.; Bateman, Monte

    2016-01-01

    This study develops a fully automated lightning jump system encompassing objective storm tracking, Geostationary Lightning Mapper proxy data, and the lightning jump algorithm (LJA), which are important elements in the transition of the LJA concept from a research to an operational based algorithm. Storm cluster tracking is based on a product created from the combination of a radar parameter (vertically integrated liquid, VIL), and lightning information (flash rate density). Evaluations showed that the spatial scale of tracked features or storm clusters had a large impact on the lightning jump system performance, where increasing spatial scale size resulted in decreased dynamic range of the system's performance. This framework will also serve as a means to refine the LJA itself to enhance its operational applicability. Parameters within the system are isolated and the system's performance is evaluated with adjustments to parameter sensitivity. The system's performance is evaluated using the probability of detection (POD) and false alarm ratio (FAR) statistics. Of the algorithm parameters tested, sigma-level (metric of lightning jump strength) and flash rate threshold influenced the system's performance the most. Finally, verification methodologies are investigated. It is discovered that minor changes in verification methodology can dramatically impact the evaluation of the lightning jump system.

  8. Stochastic Resonance in an Underdamped System with Pinning Potential for Weak Signal Detection

    PubMed Central

    Zhang, Haibin; He, Qingbo; Kong, Fanrang

    2015-01-01

    Stochastic resonance (SR) has been proved to be an effective approach for weak sensor signal detection. This study presents a new weak signal detection method based on a SR in an underdamped system, which consists of a pinning potential model. The model was firstly discovered from magnetic domain wall (DW) in ferromagnetic strips. We analyze the principle of the proposed underdamped pinning SR (UPSR) system, the detailed numerical simulation and system performance. We also propose the strategy of selecting the proper damping factor and other system parameters to match a weak signal, input noise and to generate the highest output signal-to-noise ratio (SNR). Finally, we have verified its effectiveness with both simulated and experimental input signals. Results indicate that the UPSR performs better in weak signal detection than the conventional SR (CSR) with merits of higher output SNR, better anti-noise and frequency response capability. Besides, the system can be designed accurately and efficiently owing to the sensibility of parameters and potential diversity. The features also weaken the limitation of small parameters on SR system. PMID:26343662

  9. Stochastic Resonance in an Underdamped System with Pinning Potential for Weak Signal Detection.

    PubMed

    Zhang, Haibin; He, Qingbo; Kong, Fanrang

    2015-08-28

    Stochastic resonance (SR) has been proved to be an effective approach for weak sensor signal detection. This study presents a new weak signal detection method based on a SR in an underdamped system, which consists of a pinning potential model. The model was firstly discovered from magnetic domain wall (DW) in ferromagnetic strips. We analyze the principle of the proposed underdamped pinning SR (UPSR) system, the detailed numerical simulation and system performance. We also propose the strategy of selecting the proper damping factor and other system parameters to match a weak signal, input noise and to generate the highest output signal-to-noise ratio (SNR). Finally, we have verified its effectiveness with both simulated and experimental input signals. Results indicate that the UPSR performs better in weak signal detection than the conventional SR (CSR) with merits of higher output SNR, better anti-noise and frequency response capability. Besides, the system can be designed accurately and efficiently owing to the sensibility of parameters and potential diversity. The features also weaken the limitation of small parameters on SR system.

  10. [Development of an analyzing system for soil parameters based on NIR spectroscopy].

    PubMed

    Zheng, Li-Hua; Li, Min-Zan; Sun, Hong

    2009-10-01

    A rapid estimation system for soil parameters based on spectral analysis was developed by using object-oriented (OO) technology. A class of SOIL was designed. The instance of the SOIL class is the object of the soil samples with the particular type, specific physical properties and spectral characteristics. Through extracting the effective information from the modeling spectral data of soil object, a map model was established between the soil parameters and its spectral data, while it was possible to save the mapping model parameters in the database of the model. When forecasting the content of any soil parameter, the corresponding prediction model of this parameter can be selected with the same soil type and the similar soil physical properties of objects. And after the object of target soil samples was carried into the prediction model and processed by the system, the accurate forecasting content of the target soil samples could be obtained. The system includes modules such as file operations, spectra pretreatment, sample analysis, calibrating and validating, and samples content forecasting. The system was designed to run out of equipment. The parameters and spectral data files (*.xls) of the known soil samples can be input into the system. Due to various data pretreatment being selected according to the concrete conditions, the results of predicting content will appear in the terminal and the forecasting model can be stored in the model database. The system reads the predicting models and their parameters are saved in the model database from the module interface, and then the data of the tested samples are transferred into the selected model. Finally the content of soil parameters can be predicted by the developed system. The system was programmed with Visual C++6.0 and Matlab 7.0. And the Access XP was used to create and manage the model database.

  11. Decoupled ARX and RBF Neural Network Modeling Using PCA and GA Optimization for Nonlinear Distributed Parameter Systems.

    PubMed

    Zhang, Ridong; Tao, Jili; Lu, Renquan; Jin, Qibing

    2018-02-01

    Modeling of distributed parameter systems is difficult because of their nonlinearity and infinite-dimensional characteristics. Based on principal component analysis (PCA), a hybrid modeling strategy that consists of a decoupled linear autoregressive exogenous (ARX) model and a nonlinear radial basis function (RBF) neural network model are proposed. The spatial-temporal output is first divided into a few dominant spatial basis functions and finite-dimensional temporal series by PCA. Then, a decoupled ARX model is designed to model the linear dynamics of the dominant modes of the time series. The nonlinear residual part is subsequently parameterized by RBFs, where genetic algorithm is utilized to optimize their hidden layer structure and the parameters. Finally, the nonlinear spatial-temporal dynamic system is obtained after the time/space reconstruction. Simulation results of a catalytic rod and a heat conduction equation demonstrate the effectiveness of the proposed strategy compared to several other methods.

  12. Based on Artificial Neural Network to Realize K-Parameter Analysis of Vehicle Air Spring System

    NASA Astrophysics Data System (ADS)

    Hung, San-Shan; Hsu, Chia-Ning; Hwang, Chang-Chou; Chen, Wen-Jan

    2017-10-01

    In recent years, because of the air-spring control technique is more mature, that air- spring suspension systems already can be used to replace the classical vehicle suspension system. Depend on internal pressure variation of the air-spring, thestiffnessand the damping factor can be adjusted. Because of air-spring has highly nonlinear characteristic, therefore it isn’t easy to construct the classical controller to control the air-spring effectively. The paper based on Artificial Neural Network to propose a feasible control strategy. By using offline way for the neural network design and learning to the air-spring in different initial pressures and different loads, offline method through, predict air-spring stiffness parameter to establish a model. Finally, through adjusting air-spring internal pressure to change the K-parameter of the air-spring, realize the well dynamic control performance of air-spring suspension.

  13. A Real-Time Apple Grading System Using Multicolor Space

    PubMed Central

    2014-01-01

    This study was focused on the multicolor space which provides a better specification of the color and size of the apple in an image. In the study, a real-time machine vision system classifying apples into four categories with respect to color and size was designed. In the analysis, different color spaces were used. As a result, 97% identification success for the red fields of the apple was obtained depending on the values of the parameter “a” of CIE L*a*b*color space. Similarly, 94% identification success for the yellow fields was obtained depending on the values of the parameter y of CIE XYZ color space. With the designed system, three kinds of apples (Golden, Starking, and Jonagold) were investigated by classifying them into four groups with respect to two parameters, color and size. Finally, 99% success rate was achieved in the analyses conducted for 595 apples. PMID:24574880

  14. An implicit iterative algorithm with a tuning parameter for Itô Lyapunov matrix equations

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Wu, Ai-Guo; Sun, Hui-Jie

    2018-01-01

    In this paper, an implicit iterative algorithm is proposed for solving a class of Lyapunov matrix equations arising in Itô stochastic linear systems. A tuning parameter is introduced in this algorithm, and thus the convergence rate of the algorithm can be changed. Some conditions are presented such that the developed algorithm is convergent. In addition, an explicit expression is also derived for the optimal tuning parameter, which guarantees that the obtained algorithm achieves its fastest convergence rate. Finally, numerical examples are employed to illustrate the effectiveness of the given algorithm.

  15. Ensemble-Based Parameter Estimation in a Coupled GCM Using the Adaptive Spatial Average Method

    DOE PAGES

    Liu, Y.; Liu, Z.; Zhang, S.; ...

    2014-05-29

    Ensemble-based parameter estimation for a climate model is emerging as an important topic in climate research. And for a complex system such as a coupled ocean–atmosphere general circulation model, the sensitivity and response of a model variable to a model parameter could vary spatially and temporally. An adaptive spatial average (ASA) algorithm is proposed to increase the efficiency of parameter estimation. Refined from a previous spatial average method, the ASA uses the ensemble spread as the criterion for selecting “good” values from the spatially varying posterior estimated parameter values; these good values are then averaged to give the final globalmore » uniform posterior parameter. In comparison with existing methods, the ASA parameter estimation has a superior performance: faster convergence and enhanced signal-to-noise ratio.« less

  16. Characterization and Uncertainty Analysis of a Reference Pressure Measurement System for Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Amer, Tahani; Tripp, John; Tcheng, Ping; Burkett, Cecil; Sealey, Bradley

    2004-01-01

    This paper presents the calibration results and uncertainty analysis of a high-precision reference pressure measurement system currently used in wind tunnels at the NASA Langley Research Center (LaRC). Sensors, calibration standards, and measurement instruments are subject to errors due to aging, drift with time, environment effects, transportation, the mathematical model, the calibration experimental design, and other factors. Errors occur at every link in the chain of measurements and data reduction from the sensor to the final computed results. At each link of the chain, bias and precision uncertainties must be separately estimated for facility use, and are combined to produce overall calibration and prediction confidence intervals for the instrument, typically at a 95% confidence level. The uncertainty analysis and calibration experimental designs used herein, based on techniques developed at LaRC, employ replicated experimental designs for efficiency, separate estimation of bias and precision uncertainties, and detection of significant parameter drift with time. Final results, including calibration confidence intervals and prediction intervals given as functions of the applied inputs, not as a fixed percentage of the full-scale value are presented. System uncertainties are propagated beginning with the initial reference pressure standard, to the calibrated instrument as a working standard in the facility. Among the several parameters that can affect the overall results are operating temperature, atmospheric pressure, humidity, and facility vibration. Effects of factors such as initial zeroing and temperature are investigated. The effects of the identified parameters on system performance and accuracy are discussed.

  17. Automatic control system generation for robot design validation

    NASA Technical Reports Server (NTRS)

    Bacon, James A. (Inventor); English, James D. (Inventor)

    2012-01-01

    The specification and drawings present a new method, system and software product for and apparatus for generating a robotic validation system for a robot design. The robotic validation system for the robot design of a robotic system is automatically generated by converting a robot design into a generic robotic description using a predetermined format, then generating a control system from the generic robotic description and finally updating robot design parameters of the robotic system with an analysis tool using both the generic robot description and the control system.

  18. Rotor Position Sensorless Control and Its Parameter Sensitivity of Permanent Magnet Motor Based on Model Reference Adaptive System

    NASA Astrophysics Data System (ADS)

    Ohara, Masaki; Noguchi, Toshihiko

    This paper describes a new method for a rotor position sensorless control of a surface permanent magnet synchronous motor based on a model reference adaptive system (MRAS). This method features the MRAS in a current control loop to estimate a rotor speed and position by using only current sensors. This method as well as almost all the conventional methods incorporates a mathematical model of the motor, which consists of parameters such as winding resistances, inductances, and an induced voltage constant. Hence, the important thing is to investigate how the deviation of these parameters affects the estimated rotor position. First, this paper proposes a structure of the sensorless control applied in the current control loop. Next, it proves the stability of the proposed method when motor parameters deviate from the nominal values, and derives the relationship between the estimated position and the deviation of the parameters in a steady state. Finally, some experimental results are presented to show performance and effectiveness of the proposed method.

  19. Linear functional minimization for inverse modeling

    DOE PAGES

    Barajas-Solano, David A.; Wohlberg, Brendt Egon; Vesselinov, Velimir Valentinov; ...

    2015-06-01

    In this paper, we present a novel inverse modeling strategy to estimate spatially distributed parameters of nonlinear models. The maximum a posteriori (MAP) estimators of these parameters are based on a likelihood functional, which contains spatially discrete measurements of the system parameters and spatiotemporally discrete measurements of the transient system states. The piecewise continuity prior for the parameters is expressed via Total Variation (TV) regularization. The MAP estimator is computed by minimizing a nonquadratic objective equipped with the TV operator. We apply this inversion algorithm to estimate hydraulic conductivity of a synthetic confined aquifer from measurements of conductivity and hydraulicmore » head. The synthetic conductivity field is composed of a low-conductivity heterogeneous intrusion into a high-conductivity heterogeneous medium. Our algorithm accurately reconstructs the location, orientation, and extent of the intrusion from the steady-state data only. Finally, addition of transient measurements of hydraulic head improves the parameter estimation, accurately reconstructing the conductivity field in the vicinity of observation locations.« less

  20. Study on Performance of Integration Control by Man and Machine in Stage of Final Approaching for Spaceship Rendezvous and Docking

    NASA Astrophysics Data System (ADS)

    Zhou, Qianxiang; Liu, Zhongqi

    With the development of manned space technology, space rendezvous and docking (RVD) technology will play a more and more important role. The astronauts’ participation in a final close period of man-machine combination control is an important way of RVD technology. Spacecraft RVD control involves control problem of a total of 12 degrees of freedom (location) and attitude which it relative to the inertial space the orbit. Therefore, in order to reduce the astronauts’ operation load and reduce the security requirements to the ground station and achieve an optimal performance of the whole man-machine system, it is need to study how to design the number of control parameters of astronaut or aircraft automatic control system. In this study, with the laboratory conditions on the ground, a method was put forward to develop an experimental system in which the performance evaluation of spaceship RVD integration control by man and machine could be completed. After the RVD precision requirements were determined, 26 male volunteers aged 20-40 took part in the performance evaluation experiments. The RVD integration control success rates and total thruster ignition time were chosen as evaluation indices. Results show that if less than three RVD parameters control tasks were finished by subject and the rest of parameters control task completed by automation, the RVD success rate would be larger than eighty-eight percent and the fuel consumption would be optimized. In addition, there were two subjects who finished the whole six RVD parameters control tasks by enough train. In conclusion, if the astronauts' role should be integrated into the RVD control, it was suitable for them to finish the heading, pitch and roll control in order to assure the man-machine system high performance. If astronauts were needed to finish all parameter control, two points should be taken into consideration, one was enough fuel and another was enough long operation time.

  1. Adaptative synchronization in multi-output fractional-order complex dynamical networks and secure communications

    NASA Astrophysics Data System (ADS)

    Mata-Machuca, Juan L.; Aguilar-López, Ricardo

    2018-01-01

    This work deals with the adaptative synchronization of complex dynamical networks with fractional-order nodes and its application in secure communications employing chaotic parameter modulation. The complex network is composed of multiple fractional-order systems with mismatch parameters and the coupling functions are given to realize the network synchronization. We introduce a fractional algebraic synchronizability condition (FASC) and a fractional algebraic identifiability condition (FAIC) which are used to know if the synchronization and parameters estimation problems can be solved. To overcome these problems, an adaptative synchronization methodology is designed; the strategy consists in proposing multiple receiver systems which tend to follow asymptotically the uncertain transmitters systems. The coupling functions and parameters of the receiver systems are adjusted continually according to a convenient sigmoid-like adaptative controller (SLAC), until the measurable output errors converge to zero, hence, synchronization between transmitter and receivers is achieved and message signals are recovered. Indeed, the stability analysis of the synchronization error is based on the fractional Lyapunov direct method. Finally, numerical results corroborate the satisfactory performance of the proposed scheme by means of the synchronization of a complex network consisting of several fractional-order unified chaotic systems.

  2. Monte Carlo Solution to Find Input Parameters in Systems Design Problems

    NASA Astrophysics Data System (ADS)

    Arsham, Hossein

    2013-06-01

    Most engineering system designs, such as product, process, and service design, involve a framework for arriving at a target value for a set of experiments. This paper considers a stochastic approximation algorithm for estimating the controllable input parameter within a desired accuracy, given a target value for the performance function. Two different problems, what-if and goal-seeking problems, are explained and defined in an auxiliary simulation model, which represents a local response surface model in terms of a polynomial. A method of constructing this polynomial by a single run simulation is explained. An algorithm is given to select the design parameter for the local response surface model. Finally, the mean time to failure (MTTF) of a reliability subsystem is computed and compared with its known analytical MTTF value for validation purposes.

  3. The Positioning Accuracy of BAUV Using Fusion of Data from USBL System and Movement Parameters Measurements

    PubMed Central

    Krzysztof, Naus; Aleksander, Nowak

    2016-01-01

    The article presents a study of the accuracy of estimating the position coordinates of BAUV (Biomimetic Autonomous Underwater Vehicle) by the extended Kalman filter (EKF) method. The fusion of movement parameters measurements and position coordinates fixes was applied. The movement parameters measurements are carried out by on-board navigation devices, while the position coordinates fixes are done by the USBL (Ultra Short Base Line) system. The problem of underwater positioning and the conceptual design of the BAUV navigation system constructed at the Naval Academy (Polish Naval Academy—PNA) are presented in the first part of the paper. The second part consists of description of the evaluation results of positioning accuracy, the genesis of the problem of selecting method for underwater positioning, and the mathematical description of the method of estimating the position coordinates using the EKF method by the fusion of measurements with on-board navigation and measurements obtained with the USBL system. The main part contains a description of experimental research. It consists of a simulation program of navigational parameter measurements carried out during the BAUV passage along the test section. Next, the article covers the determination of position coordinates on the basis of simulated parameters, using EKF and DR methods and the USBL system, which are then subjected to a comparative analysis of accuracy. The final part contains systemic conclusions justifying the desirability of applying the proposed fusion method of navigation parameters for the BAUV positioning. PMID:27537884

  4. The Positioning Accuracy of BAUV Using Fusion of Data from USBL System and Movement Parameters Measurements.

    PubMed

    Krzysztof, Naus; Aleksander, Nowak

    2016-08-15

    The article presents a study of the accuracy of estimating the position coordinates of BAUV (Biomimetic Autonomous Underwater Vehicle) by the extended Kalman filter (EKF) method. The fusion of movement parameters measurements and position coordinates fixes was applied. The movement parameters measurements are carried out by on-board navigation devices, while the position coordinates fixes are done by the USBL (Ultra Short Base Line) system. The problem of underwater positioning and the conceptual design of the BAUV navigation system constructed at the Naval Academy (Polish Naval Academy-PNA) are presented in the first part of the paper. The second part consists of description of the evaluation results of positioning accuracy, the genesis of the problem of selecting method for underwater positioning, and the mathematical description of the method of estimating the position coordinates using the EKF method by the fusion of measurements with on-board navigation and measurements obtained with the USBL system. The main part contains a description of experimental research. It consists of a simulation program of navigational parameter measurements carried out during the BAUV passage along the test section. Next, the article covers the determination of position coordinates on the basis of simulated parameters, using EKF and DR methods and the USBL system, which are then subjected to a comparative analysis of accuracy. The final part contains systemic conclusions justifying the desirability of applying the proposed fusion method of navigation parameters for the BAUV positioning.

  5. STS-73 (USML-2) Final Report

    NASA Technical Reports Server (NTRS)

    Rice, James E.

    1996-01-01

    The report is organized into sections representing the phases of work performed in analyzing the STS-73 (USML-2) results. Section 1 briefly outlines the Orbital Acceleration Research Experiment (OARE), system features, coordinates, and measurement parameters. Section 2 describes the results from STS-73. The mission description, data calibration, and representative data obtained on STS-73 are presented. Also, the anomalous performance of OARE on STS-73 is discussed. Finally, Section 3 presents a discussion of accuracy achieved and achievable with OARE.

  6. OARE STS-75 (USMP-3) Final Report

    NASA Technical Reports Server (NTRS)

    Rice, James E.

    1996-01-01

    The report is organized into sections representing the phases of work performed in analyzing the STS-75 (USMP-3) results. Section 1 briefly outlines the Orbital Acceleration Research Experiment (OARE) system features, coordinates, and measurement parameters. Section 2 describes the results from STS-75. The mission description, data calibration, and representative data obtained on STS-75 are presented. Also, the anomalous performance of OARE on STS-75 is discussed. Finally, Section 3 presents a discussion of accuracy achieved and achievable with OARE.

  7. Geometry of behavioral spaces: A computational approach to analysis and understanding of agent based models and agent behaviors

    NASA Astrophysics Data System (ADS)

    Cenek, Martin; Dahl, Spencer K.

    2016-11-01

    Systems with non-linear dynamics frequently exhibit emergent system behavior, which is important to find and specify rigorously to understand the nature of the modeled phenomena. Through this analysis, it is possible to characterize phenomena such as how systems assemble or dissipate and what behaviors lead to specific final system configurations. Agent Based Modeling (ABM) is one of the modeling techniques used to study the interaction dynamics between a system's agents and its environment. Although the methodology of ABM construction is well understood and practiced, there are no computational, statistically rigorous, comprehensive tools to evaluate an ABM's execution. Often, a human has to observe an ABM's execution in order to analyze how the ABM functions, identify the emergent processes in the agent's behavior, or study a parameter's effect on the system-wide behavior. This paper introduces a new statistically based framework to automatically analyze agents' behavior, identify common system-wide patterns, and record the probability of agents changing their behavior from one pattern of behavior to another. We use network based techniques to analyze the landscape of common behaviors in an ABM's execution. Finally, we test the proposed framework with a series of experiments featuring increasingly emergent behavior. The proposed framework will allow computational comparison of ABM executions, exploration of a model's parameter configuration space, and identification of the behavioral building blocks in a model's dynamics.

  8. Geometry of behavioral spaces: A computational approach to analysis and understanding of agent based models and agent behaviors.

    PubMed

    Cenek, Martin; Dahl, Spencer K

    2016-11-01

    Systems with non-linear dynamics frequently exhibit emergent system behavior, which is important to find and specify rigorously to understand the nature of the modeled phenomena. Through this analysis, it is possible to characterize phenomena such as how systems assemble or dissipate and what behaviors lead to specific final system configurations. Agent Based Modeling (ABM) is one of the modeling techniques used to study the interaction dynamics between a system's agents and its environment. Although the methodology of ABM construction is well understood and practiced, there are no computational, statistically rigorous, comprehensive tools to evaluate an ABM's execution. Often, a human has to observe an ABM's execution in order to analyze how the ABM functions, identify the emergent processes in the agent's behavior, or study a parameter's effect on the system-wide behavior. This paper introduces a new statistically based framework to automatically analyze agents' behavior, identify common system-wide patterns, and record the probability of agents changing their behavior from one pattern of behavior to another. We use network based techniques to analyze the landscape of common behaviors in an ABM's execution. Finally, we test the proposed framework with a series of experiments featuring increasingly emergent behavior. The proposed framework will allow computational comparison of ABM executions, exploration of a model's parameter configuration space, and identification of the behavioral building blocks in a model's dynamics.

  9. Airway and tissue loading in postinterrupter response of the respiratory system - an identification algorithm construction.

    PubMed

    Jablonski, Ireneusz; Mroczka, Janusz

    2010-01-01

    The paper offers an enhancement of the classical interrupter technique algorithm dedicated to respiratory mechanics measurements. Idea consists in exploitation of information contained in postocclusional transient states during indirect measurement of parameter characteristics by model identification. It needs the adequacy of an inverse analogue to general behavior of the real system and a reliable algorithm of parameter estimation. The second one was a subject of reported works, which finally showed the potential of the approach to separation of airway and tissue response in a case of short-term excitation by interrupter valve operation. Investigations were conducted in a regime of forward-inverse computer experiment.

  10. Payload accommodation and development planning tools - A Desktop Resource Leveling Model (DRLM)

    NASA Technical Reports Server (NTRS)

    Hilchey, John D.; Ledbetter, Bobby; Williams, Richard C.

    1989-01-01

    The Desktop Resource Leveling Model (DRLM) has been developed as a tool to rapidly structure and manipulate accommodation, schedule, and funding profiles for any kind of experiments, payloads, facilities, and flight systems or other project hardware. The model creates detailed databases describing 'end item' parameters, such as mass, volume, power requirements or costs and schedules for payload, subsystem, or flight system elements. It automatically spreads costs by calendar quarters and sums costs or accommodation parameters by total project, payload, facility, payload launch, or program phase. Final results can be saved or printed out, automatically documenting all assumptions, inputs, and defaults.

  11. Engineering trade studies for a quantum key distribution system over a 30  km free-space maritime channel.

    PubMed

    Gariano, John; Neifeld, Mark; Djordjevic, Ivan

    2017-01-20

    Here, we present the engineering trade studies of a free-space optical communication system operating over a 30 km maritime channel for the months of January and July. The system under study follows the BB84 protocol with the following assumptions: a weak coherent source is used, Eve is performing the intercept resend attack and photon number splitting attack, prior knowledge of Eve's location is known, and Eve is allowed to know a small percentage of the final key. In this system, we examine the effect of changing several parameters in the following areas: the implementation of the BB84 protocol over the public channel, the technology in the receiver, and our assumptions about Eve. For each parameter, we examine how different values impact the secure key rate for a constant brightness. Additionally, we will optimize the brightness of the source for each parameter to study the improvement in the secure key rate.

  12. PHOTOMETRIC, SPECTROSCOPIC, AND ORBITAL PERIOD STUDY OF THREE EARLY-TYPE SEMI-DETACHED SYSTEMS: XZ AQL, UX HER, AND AT PEG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zola, S.; Baştürk, Ö.; Şenavcı, H. V.

    2016-08-01

    In this paper, we present a combined photometric, spectroscopic, and orbital period study of three early-type eclipsing binary systems: XZ Aql, UX Her, and AT Peg. As a result, we have derived the absolute parameters of their components and, on that basis, we discuss their evolutionary states. Furthermore, we compare their parameters with those of other binary systems and with theoretical models. An analysis of all available up-to-date times of minima indicated that all three systems studied here show cyclic orbital changes; their origin is discussed in detail. Finally, we performed a frequency analysis for possible pulsational behavior, and asmore » a result we suggest that XZ Aql hosts a δ Scuti component.« less

  13. l-DOPA and Freezing of Gait in Parkinson’s Disease: Objective Assessment through a Wearable Wireless System

    PubMed Central

    Suppa, Antonio; Kita, Ardian; Leodori, Giorgio; Zampogna, Alessandro; Nicolini, Ettore; Lorenzi, Paolo; Rao, Rosario; Irrera, Fernanda

    2017-01-01

    Freezing of gait (FOG) is a leading cause of falls and fractures in Parkinson’s disease (PD). The episodic and rather unpredictable occurrence of FOG, coupled with the variable response to l-DOPA of this gait disorder, makes the objective evaluation of FOG severity a major clinical challenge in the therapeutic management of patients with PD. The aim of this study was to examine and compare gait, clinically and objectively, in patients with PD, with and without FOG, by means of a new wearable system. We also assessed the effect of l-DOPA on FOG severity and specific spatiotemporal gait parameters in patients with and without FOG. To this purpose, we recruited 28 patients with FOG, 16 patients without FOG, and 16 healthy subjects. In all participants, gait was evaluated clinically by video recordings and objectively by means of the wearable wireless system, during a modified 3-m Timed Up and Go (TUG) test. All patients performed the modified TUG test under and not under dopaminergic therapy (ON and OFF therapy). By comparing instrumental data with the clinical identification of FOG based on offline video-recordings, we also assessed the performance of the wearable system to detect FOG automatically in terms of sensitivity, specificity, positive and negative predictive values, and finally accuracy. TUG duration was longer in patients than in controls, and the amount of gait abnormalities was prominent in patients with FOG compared with those without FOG. l-DOPA improved gait significantly in patients with PD and particularly in patients with FOG mainly by reducing FOG duration and increasing specific spatiotemporal gait parameters. Finally, the overall wireless system performance in automatic FOG detection was characterized by excellent sensitivity (93.41%), specificity (98.51%), positive predictive value (89.55%), negative predictive value (97.31%), and finally accuracy (98.51%). Our study overall provides new information on the beneficial effect of l-DOPA on FOG severity and specific spatiotemporal gait parameters as objectively measured by a wearable sensory system. The algorithm here reported potentially opens to objective long-time sensing of FOG episodes in patients with PD. PMID:28855889

  14. Influence of Different Container Closure Systems and Capping Process Parameters on Product Quality and Container Closure Integrity (CCI) in GMP Drug Product Manufacturing.

    PubMed

    Mathaes, Roman; Mahler, Hanns-Christian; Roggo, Yves; Huwyler, Joerg; Eder, Juergen; Fritsch, Kamila; Posset, Tobias; Mohl, Silke; Streubel, Alexander

    2016-01-01

    Capping equipment used in good manufacturing practice manufacturing features different designs and a variety of adjustable process parameters. The overall capping result is a complex interplay of the different capping process parameters and is insufficiently described in literature. It remains poorly studied how the different capping equipment designs and capping equipment process parameters (e.g., pre-compression force, capping plate height, turntable rotating speed) contribute to the final residual seal force of a sealed container closure system and its relation to container closure integrity and other drug product quality parameters. Stopper compression measured by computer tomography correlated to residual seal force measurements.In our studies, we used different container closure system configurations from different good manufacturing practice drug product fill & finish facilities to investigate the influence of differences in primary packaging, that is, vial size and rubber stopper design on the capping process and the capped drug product. In addition, we compared two large-scale good manufacturing practice manufacturing capping equipment and different capping equipment settings and their impact on product quality and integrity, as determined by residual seal force.The capping plate to plunger distance had a major influence on the obtained residual seal force values of a sealed vial, whereas the capping pre-compression force and the turntable rotation speed showed only a minor influence on the residual seal force of a sealed vial. Capping process parameters could not easily be transferred from capping equipment of different manufacturers. However, the residual seal force tester did provide a valuable tool to compare capping performance of different capping equipment. No vial showed any leakage greater than 10(-8)mbar L/s as measured by a helium mass spectrometry system, suggesting that container closure integrity was warranted in the residual seal force range tested for the tested container closure systems. Capping equipment used in good manufacturing practice manufacturing features different designs and a variety of adjustable process parameters. The overall capping result is a complex interplay of the different capping process parameters and is insufficiently described in the literature. It remains poorly studied how the different capping equipment designs and capping equipment process parameters contribute to the final capping result.In this study, we used different container closure system configurations from different good manufacturing process drug product fill & finish facilities to investigate the influence of the vial size and the rubber stopper design on the capping process. In addition, we compared two examples of large-scale good manufacturing process capping equipment and different capping equipment settings and their impact on product quality and integrity, as determined by residual seal force. © PDA, Inc. 2016.

  15. Relationship among several measurements of slipperiness obtained in a laboratory environment.

    PubMed

    Chang, Wen-Ruey; Chang, Chien-Chi

    2018-04-01

    Multiple sensing mechanisms could be used in forming responses to avoid slips, but previous studies, correlating only two parameters, revealed a limited picture of this complex system. In this study, the participants walked as fast as possible without a slip under 15 conditions of different degrees of slipperiness. The relationships among various response parameters, including perceived slipperiness rating, utilized coefficient of friction (UCOF), slipmeter measurement and kinematic parameters, were evaluated. The results showed that the UCOF, perceived rating and heel angle had higher adjusted R 2 values as dependent variables in the multiple linear regressions with the remaining variables in the final pool as independent variables. Although each variable in the final data pool could reflect some measurement of slipperiness, these three variables are more inclusive than others in representing the other variables and were bigger predictors of other variables, so they could be better candidates for measurements of slipperiness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Robust decentralised stabilisation of uncertain large-scale interconnected nonlinear descriptor systems via proportional plus derivative feedback

    NASA Astrophysics Data System (ADS)

    Li, Jian; Zhang, Qingling; Ren, Junchao; Zhang, Yanhao

    2017-10-01

    This paper studies the problem of robust stability and stabilisation for uncertain large-scale interconnected nonlinear descriptor systems via proportional plus derivative state feedback or proportional plus derivative output feedback. The basic idea of this work is to use the well-known differential mean value theorem to deal with the nonlinear model such that the considered nonlinear descriptor systems can be transformed into linear parameter varying systems. By using a parameter-dependent Lyapunov function, a decentralised proportional plus derivative state feedback controller and decentralised proportional plus derivative output feedback controller are designed, respectively such that the closed-loop system is quadratically normal and quadratically stable. Finally, a hypersonic vehicle practical simulation example and numerical example are given to illustrate the effectiveness of the results obtained in this paper.

  17. Crew/computer communications study. Volume 1: Final report. [onboard computerized communications system for spacecrews

    NASA Technical Reports Server (NTRS)

    Johannes, J. D.

    1974-01-01

    Techniques, methods, and system requirements are reported for an onboard computerized communications system that provides on-line computing capability during manned space exploration. Communications between man and computer take place by sequential execution of each discrete step of a procedure, by interactive progression through a tree-type structure to initiate tasks or by interactive optimization of a task requiring man to furnish a set of parameters. Effective communication between astronaut and computer utilizes structured vocabulary techniques and a word recognition system.

  18. PID controller tuning using metaheuristic optimization algorithms for benchmark problems

    NASA Astrophysics Data System (ADS)

    Gholap, Vishal; Naik Dessai, Chaitali; Bagyaveereswaran, V.

    2017-11-01

    This paper contributes to find the optimal PID controller parameters using particle swarm optimization (PSO), Genetic Algorithm (GA) and Simulated Annealing (SA) algorithm. The algorithms were developed through simulation of chemical process and electrical system and the PID controller is tuned. Here, two different fitness functions such as Integral Time Absolute Error and Time domain Specifications were chosen and applied on PSO, GA and SA while tuning the controller. The proposed Algorithms are implemented on two benchmark problems of coupled tank system and DC motor. Finally, comparative study has been done with different algorithms based on best cost, number of iterations and different objective functions. The closed loop process response for each set of tuned parameters is plotted for each system with each fitness function.

  19. Three-parameter error analysis method based on rotating coordinates in rotating birefringent polarizer system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Junjie; Jia, Hongzhi, E-mail: hzjia@usst.edu.cn

    2015-11-15

    We propose error analysis using a rotating coordinate system with three parameters of linearly polarized light—incidence angle, azimuth angle on the front surface, and angle between the incidence and vibration planes—and demonstrate the method on a rotating birefringent prism system. The transmittance and angles are calculated plane-by-plane using a birefringence ellipsoid model and the final transmitted intensity equation is deduced. The effects of oblique incidence, light interference, beam convergence, and misalignment of the rotation and prism axes are discussed. We simulate the entire error model using MATLAB and conduct experiments based on a built polarimeter. The simulation and experimental resultsmore » are consistent and demonstrate the rationality and validity of this method.« less

  20. Homogenous polynomially parameter-dependent H∞ filter designs of discrete-time fuzzy systems.

    PubMed

    Zhang, Huaguang; Xie, Xiangpeng; Tong, Shaocheng

    2011-10-01

    This paper proposes a novel H(∞) filtering technique for a class of discrete-time fuzzy systems. First, a novel kind of fuzzy H(∞) filter, which is homogenous polynomially parameter dependent on membership functions with an arbitrary degree, is developed to guarantee the asymptotic stability and a prescribed H(∞) performance of the filtering error system. Second, relaxed conditions for H(∞) performance analysis are proposed by using a new fuzzy Lyapunov function and the Finsler lemma with homogenous polynomial matrix Lagrange multipliers. Then, based on a new kind of slack variable technique, relaxed linear matrix inequality-based H(∞) filtering conditions are proposed. Finally, two numerical examples are provided to illustrate the effectiveness of the proposed approach.

  1. A Review of Commercially Available Point-of-Care Devices to Concentrate Bone Marrow for the Treatment of Osteoarthritis and Focal Cartilage Lesions.

    PubMed

    Gaul, Florian; Bugbee, William D; Hoenecke, Heinz R; D'Lima, Darryl D

    2018-04-01

    Objective Mesenchymal stem cells (MSCs) are a promising cell-based therapy treatment option for several orthopedic indications. Because culture expansion of MSC is time and cost intensive, a bedside concentration of bone marrow (BM) aspirate is used as an alternative. Many commercial systems are available but the available literature and knowledge regarding these systems is limited. We compared different point-of-care devices that concentrate BM (BMC) by focusing on technical features and quality parameters to help surgeons make informed decisions while selecting the appropriate device. Methods We compared published data on the BMC devices of Arteriocyte, Arthrex, Celling Biosciences, EmCyte, Exactech, ISTO Tech, Harvest Tech/Terumo BCT, and Zimmer/BIOMET regarding technical features (centrifugation speed/time, input/output volume, kit components, type of aspiration syringes, filter usage) and quality parameters of their final BMC product (hematocrit, concentration of platelets and total nucleated cells, concentration of MSC and connective tissue progenitor cells). Results The systems differ significantly in their technical features and centrifugation parameters. Only the fully automated systems use universal kits, which allow processing different volumes of BM. Only the Arthrex system allows selection of final hematocrit. There was no standardized reporting method to describe biologic potency. Conclusions Based on the data obtained in this review, recommending a single device is not possible because the reported data could not be compared between devices. A standardized reporting method is needed for valid comparisons. Furthermore, clinical outcomes are required to establish the true efficacy of these systems. We are conducting additional studies for more careful comparison among the devices.

  2. An on-line calibration algorithm for external parameters of visual system based on binocular stereo cameras

    NASA Astrophysics Data System (ADS)

    Wang, Liqiang; Liu, Zhen; Zhang, Zhonghua

    2014-11-01

    Stereo vision is the key in the visual measurement, robot vision, and autonomous navigation. Before performing the system of stereo vision, it needs to calibrate the intrinsic parameters for each camera and the external parameters of the system. In engineering, the intrinsic parameters remain unchanged after calibrating cameras, and the positional relationship between the cameras could be changed because of vibration, knocks and pressures in the vicinity of the railway or motor workshops. Especially for large baselines, even minute changes in translation or rotation can affect the epipolar geometry and scene triangulation to such a degree that visual system becomes disabled. A technology including both real-time examination and on-line recalibration for the external parameters of stereo system becomes particularly important. This paper presents an on-line method for checking and recalibrating the positional relationship between stereo cameras. In epipolar geometry, the external parameters of cameras can be obtained by factorization of the fundamental matrix. Thus, it offers a method to calculate the external camera parameters without any special targets. If the intrinsic camera parameters are known, the external parameters of system can be calculated via a number of random matched points. The process is: (i) estimating the fundamental matrix via the feature point correspondences; (ii) computing the essential matrix from the fundamental matrix; (iii) obtaining the external parameters by decomposition of the essential matrix. In the step of computing the fundamental matrix, the traditional methods are sensitive to noise and cannot ensure the estimation accuracy. We consider the feature distribution situation in the actual scene images and introduce a regional weighted normalization algorithm to improve accuracy of the fundamental matrix estimation. In contrast to traditional algorithms, experiments on simulated data prove that the method improves estimation robustness and accuracy of the fundamental matrix. Finally, we take an experiment for computing the relationship of a pair of stereo cameras to demonstrate accurate performance of the algorithm.

  3. A portable foot-parameter-extracting system

    NASA Astrophysics Data System (ADS)

    Zhang, MingKai; Liang, Jin; Li, Wenpan; Liu, Shifan

    2016-03-01

    In order to solve the problem of automatic foot measurement in garment customization, a new automatic footparameter- extracting system based on stereo vision, photogrammetry and heterodyne multiple frequency phase shift technology is proposed and implemented. The key technologies applied in the system are studied, including calibration of projector, alignment of point clouds, and foot measurement. Firstly, a new projector calibration algorithm based on plane model has been put forward to get the initial calibration parameters and a feature point detection scheme of calibration board image is developed. Then, an almost perfect match of two clouds is achieved by performing a first alignment using the Sampled Consensus - Initial Alignment algorithm (SAC-IA) and refining the alignment using the Iterative Closest Point algorithm (ICP). Finally, the approaches used for foot-parameterextracting and the system scheme are presented in detail. Experimental results show that the RMS error of the calibration result is 0.03 pixel and the foot parameter extracting experiment shows the feasibility of the extracting algorithm. Compared with the traditional measurement method, the system can be more portable, accurate and robust.

  4. Photometric study and absolute parameters of the short-period eclipsing binary HH Bootis

    NASA Astrophysics Data System (ADS)

    Gürol, B.; Bradstreet, D. H.; Demircan, Y.; Gürsoytrak, S. H.

    2015-11-01

    We present the results of our investigation on the geometrical and physical parameters of the W UMa type binary system HH Bootis from new CCD (BVRI) light curves and published radial velocity data. The photometric data were obtained in 2011 and 2012 at Ankara University Observatory (AUO). Light and radial velocity observations were analyzed simultaneously using the Wilson-Devinney (2013 revision) code to obtain absolute and geometrical parameters. The system was determined to be a W-type W UMa system of a type different from that suggested by Dal and Sipahi (2013). An interesting cyclic period variation in the time intervals between primary and secondary eclipses ("half-period variation") was discovered and analyzed and its possible cause is discussed. Combining our photometric solution with the spectroscopic data we derived masses and radii of the eclipsing system to be M1 = 0.627M⊙ , M2 = 1.068M⊙ , R1 = 0.782R⊙ and R2 = 0.997R⊙ . New light elements were derived and finally the evolutionary status of the system is discussed.

  5. Adaptive tracking control for active suspension systems with non-ideal actuators

    NASA Astrophysics Data System (ADS)

    Pan, Huihui; Sun, Weichao; Jing, Xingjian; Gao, Huijun; Yao, Jianyong

    2017-07-01

    As a critical component of transportation vehicles, active suspension systems are instrumental in the improvement of ride comfort and maneuverability. However, practical active suspensions commonly suffer from parameter uncertainties (e.g., the variations of payload mass and suspension component parameters), external disturbances and especially the unknown non-ideal actuators (i.e., dead-zone and hysteresis nonlinearities), which always significantly deteriorate the control performance in practice. To overcome these issues, this paper synthesizes an adaptive tracking control strategy for vehicle suspension systems to achieve suspension performance improvements. The proposed control algorithm is formulated by developing a unified framework of non-ideal actuators rather than a separate way, which is a simple yet effective approach to remove the unexpected nonlinear effects. From the perspective of practical implementation, the advantages of the presented controller for active suspensions include that the assumptions on the measurable actuator outputs, the prior knowledge of nonlinear actuator parameters and the uncertain parameters within a known compact set are not required. Furthermore, the stability of the closed-loop suspension system is theoretically guaranteed by rigorous mathematical analysis. Finally, the effectiveness of the presented adaptive control scheme is confirmed using comparative numerical simulation validations.

  6. Adaptive control for a class of nonlinear complex dynamical systems with uncertain complex parameters and perturbations

    PubMed Central

    Liu, Jian; Liu, Kexin; Liu, Shutang

    2017-01-01

    In this paper, adaptive control is extended from real space to complex space, resulting in a new control scheme for a class of n-dimensional time-dependent strict-feedback complex-variable chaotic (hyperchaotic) systems (CVCSs) in the presence of uncertain complex parameters and perturbations, which has not been previously reported in the literature. In detail, we have developed a unified framework for designing the adaptive complex scalar controller to ensure this type of CVCSs asymptotically stable and for selecting complex update laws to estimate unknown complex parameters. In particular, combining Lyapunov functions dependent on complex-valued vectors and back-stepping technique, sufficient criteria on stabilization of CVCSs are derived in the sense of Wirtinger calculus in complex space. Finally, numerical simulation is presented to validate our theoretical results. PMID:28467431

  7. Adaptive control for a class of nonlinear complex dynamical systems with uncertain complex parameters and perturbations.

    PubMed

    Liu, Jian; Liu, Kexin; Liu, Shutang

    2017-01-01

    In this paper, adaptive control is extended from real space to complex space, resulting in a new control scheme for a class of n-dimensional time-dependent strict-feedback complex-variable chaotic (hyperchaotic) systems (CVCSs) in the presence of uncertain complex parameters and perturbations, which has not been previously reported in the literature. In detail, we have developed a unified framework for designing the adaptive complex scalar controller to ensure this type of CVCSs asymptotically stable and for selecting complex update laws to estimate unknown complex parameters. In particular, combining Lyapunov functions dependent on complex-valued vectors and back-stepping technique, sufficient criteria on stabilization of CVCSs are derived in the sense of Wirtinger calculus in complex space. Finally, numerical simulation is presented to validate our theoretical results.

  8. Formation Mechanisms for Helium White Dwarfs in Binaries

    NASA Astrophysics Data System (ADS)

    Sandquist, E. L.; Taam, R. E.; Burkert, A.

    1999-05-01

    We discuss the constraints that can be placed on formation mechanisms for helium degenerate stars in binary systems, as well as the orbital parameters of the progenitor binaries, by using observed systems and numerical simulations of common envelope evolution. For pre-cataclysmic variable stars having a helium white dwarf, common envelope simulations covering the range of observed companion masses indicate that the initial mass of the red giant (parent of the white dwarf) can be constrained by the final period of the system. The formation mechanisms for double helium degenerate systems are also restricted. Using energy arguments, we find that there are almost no parameter combinations for which such a system can be formed using two successive common envelope phases. Observed short-period systems appear to favor an Algol-like phase of stable mass transfer followed by a common envelope phase. However, theory predicts that the brighter component is also the most massive, which is not observed in at least one system. This may require that nuclear burning must have occurred on the white dwarf that formed first, but after its formation. Systems which instead go through a common envelope episode, followed by a phase of nonconservative mass transfer from secondary to primary, would tend to form double degenerates with low mass ratios, which have not been observed to date. Finally, we discuss a new mechanism for producing subdwarf B stars in binaries. This work was supported by NSF grants AST-9415423 and AST-9727875.

  9. A historical overview of flight flutter testing

    NASA Technical Reports Server (NTRS)

    Kehoe, Michael W.

    1995-01-01

    This paper reviews the test techniques developed over the last several decades for flight flutter testing of aircraft. Structural excitation systems, instrumentation systems, digital data preprocessing, and parameter identification algorithms (for frequency and damping estimates from the response data) are described. Practical experiences and example test programs illustrate the combined, integrated effectiveness of the various approaches used. Finally, comments regarding the direction of future developments and needs are presented.

  10. Quantitative pharmacokinetic-pharmacodynamic modelling of baclofen-mediated cardiovascular effects using BP and heart rate in rats.

    PubMed

    Kamendi, Harriet; Barthlow, Herbert; Lengel, David; Beaudoin, Marie-Eve; Snow, Debra; Mettetal, Jerome T; Bialecki, Russell A

    2016-10-01

    While the molecular pathways of baclofen toxicity are understood, the relationships between baclofen-mediated perturbation of individual target organs and systems involved in cardiovascular regulation are not clear. Our aim was to use an integrative approach to measure multiple cardiovascular-relevant parameters [CV: mean arterial pressure (MAP), systolic BP, diastolic BP, pulse pressure, heart rate (HR); CNS: EEG; renal: chemistries and biomarkers of injury] in tandem with the pharmacokinetic properties of baclofen to better elucidate the site(s) of baclofen activity. Han-Wistar rats were administered vehicle or ascending doses of baclofen (3, 10 and 30 mg·kg(-1) , p.o.) at 4 h intervals and baclofen-mediated changes in parameters recorded. A pharmacokinetic-pharmacodynamic model was then built by implementing an existing mathematical model of BP in rats. Final model fits resulted in reasonable parameter estimates and showed that the drug acts on multiple homeostatic processes. In addition, the models testing a single effect on HR, total peripheral resistance or stroke volume alone did not describe the data. A final population model was constructed describing the magnitude and direction of the changes in MAP and HR. The systems pharmacology model developed fits baclofen-mediated changes in MAP and HR well. The findings correlate with known mechanisms of baclofen pharmacology and suggest that similar models using limited parameter sets may be useful to predict the cardiovascular effects of other pharmacologically active substances. © 2016 The British Pharmacological Society.

  11. Quantitative pharmacokinetic–pharmacodynamic modelling of baclofen‐mediated cardiovascular effects using BP and heart rate in rats

    PubMed Central

    Kamendi, Harriet; Barthlow, Herbert; Lengel, David; Beaudoin, Marie‐Eve; Snow, Debra

    2016-01-01

    Background and Purpose While the molecular pathways of baclofen toxicity are understood, the relationships between baclofen‐mediated perturbation of individual target organs and systems involved in cardiovascular regulation are not clear. Our aim was to use an integrative approach to measure multiple cardiovascular‐relevant parameters [CV: mean arterial pressure (MAP), systolic BP, diastolic BP, pulse pressure, heart rate (HR); CNS: EEG; renal: chemistries and biomarkers of injury] in tandem with the pharmacokinetic properties of baclofen to better elucidate the site(s) of baclofen activity. Experimental Approach Han‐Wistar rats were administered vehicle or ascending doses of baclofen (3, 10 and 30 mg·kg−1, p.o.) at 4 h intervals and baclofen‐mediated changes in parameters recorded. A pharmacokinetic–pharmacodynamic model was then built by implementing an existing mathematical model of BP in rats. Key Results Final model fits resulted in reasonable parameter estimates and showed that the drug acts on multiple homeostatic processes. In addition, the models testing a single effect on HR, total peripheral resistance or stroke volume alone did not describe the data. A final population model was constructed describing the magnitude and direction of the changes in MAP and HR. Conclusions and Implications The systems pharmacology model developed fits baclofen‐mediated changes in MAP and HR well. The findings correlate with known mechanisms of baclofen pharmacology and suggest that similar models using limited parameter sets may be useful to predict the cardiovascular effects of other pharmacologically active substances. PMID:27448216

  12. Optically powered oil tank multichannel detection system with optical fiber link

    NASA Astrophysics Data System (ADS)

    Yu, Zhijing

    1998-08-01

    A novel oil tanks integrative parameters measuring system with optically powered are presented. To realize optical powered and micro-power consumption multiple channels and parameters detection, the system has taken the PWM/PPM modulation, ratio measurement, time division multiplexing and pulse width division multiplexing techniques. Moreover, the system also used special pulse width discriminator and single-chip microcomputer to accomplish signal pulse separation, PPM/PWM signal demodulation, the error correction of overlapping pulse and data processing. This new transducer has provided with high characteristics: experimental transmitting distance is 500m; total consumption of the probes is less than 150 (mu) W; measurement error: +/- 0.5 degrees C and +/- 0.2 percent FS. The measurement accuracy of the liquid level and reserves is mainly determined by the pressure accuracy. Finally, some points of the experiment are given.

  13. On protection against a bright-pulse attack in the two-pass quantum cryptography system

    NASA Astrophysics Data System (ADS)

    Balygin, K. A.; Klimov, A. N.; Korol'kov, A. V.; Kulik, S. P.; Molotkov, S. N.

    2016-06-01

    The security of keys in quantum cryptography systems, in contrast to mathematical cryptographic algorithms, is guaranteed by fundamental quantum-mechanical laws. However, the cryptographic resistance of such systems, which are distributed physical devices, fundamentally depends on the method of their implementation and particularly on the calibration and control of critical parameters. The most important parameter is the number of photons in quasi-single-photon information states in a communication channel. The sensitivity to a bright-pulse attack has been demonstrated in an explicit form for a number of systems. A method guaranteeing the resistance to such attacks has been proposed and implemented. Furthermore, the relation of physical observables used and obtained at the control of quantum states to the length of final secret keys has been obtained for the first time.

  14. Evaluation of Laminar Flow Control System Concepts for Subsonic Commercial Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Sturgeon, R. F.

    1980-01-01

    Alternatives in the design of laminar flow control (LFC) subsonic commerical transport aircraft for opeation in the 1980's period were studied. Analyses were conducted to select mission parameters and define optimum aircraft configurational parameters for the selected mission, defined by a passenger payload of 400 and a design range of 12, 038 km (6500 n mi). The baseline aircraft developed for this mission was used as a vehicle for the evaluation and development of alternative LFC system concepts. Alternatices in the areas of aerodynamics, structures and materials, LFC systems, leading-edge region cleaning, and integration of auxiliary systems were studied. Relative to a similarly-optimized advanced technology turbulent transport, the final LFC configuration is approximately equal in DOC but provides descreases of 8.2% in gross weight and 21.7% in fuel consumption.

  15. LACIE performance predictor final operational capability program description, volume 1

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The program EPHEMS computes the orbital parameters for up to two vehicles orbiting the earth for up to 549 days. The data represents a continuous swath about the earth, producing tables which can be used to determine when and if certain land segments will be covered. The program GRID processes NASA's climatology tape to obtain the weather indices along with associated latitudes and longitudes. The program LUMP takes substrata historical data and sample segment ID, crop window, crop window error and statistical data, checks for valid input parameters and generates the segment ID file, crop window file and the substrata historical file. Finally, the System Error Executive (SEE) Program checks YES error and truth data, CAMS error data, and signature extension data for validity and missing elements. A message is printed for each error found.

  16. Methodology for the systems engineering process. Volume 3: Operational availability

    NASA Technical Reports Server (NTRS)

    Nelson, J. H.

    1972-01-01

    A detailed description and explanation of the operational availability parameter is presented. The fundamental mathematical basis for operational availability is developed, and its relationship to a system's overall performance effectiveness is illustrated within the context of identifying specific availability requirements. Thus, in attempting to provide a general methodology for treating both hypothetical and existing availability requirements, the concept of an availability state, in conjunction with the more conventional probability-time capability, is investigated. In this respect, emphasis is focused upon a balanced analytical and pragmatic treatment of operational availability within the system design process. For example, several applications of operational availability to typical aerospace systems are presented, encompassing the techniques of Monte Carlo simulation, system performance availability trade-off studies, analytical modeling of specific scenarios, as well as the determination of launch-on-time probabilities. Finally, an extensive bibliography is provided to indicate further levels of depth and detail of the operational availability parameter.

  17. Study of the effect of static/dynamic Coulomb friction variation at the tape-head interface of a spacecraft tape recorder by non-linear time response simulation

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, A. K.

    1978-01-01

    A description is presented of six simulation cases investigating the effect of the variation of static-dynamic Coulomb friction on servo system stability/performance. The upper and lower levels of dynamic Coulomb friction which allowed operation within requirements were determined roughly to be three times and 50% respectively of nominal values considered in a table. A useful application for the nonlinear time response simulation is the sensitivity analysis of final hardware design with respect to such system parameters as cannot be varied realistically or easily in the actual hardware. Parameters of the static/dynamic Coulomb friction fall in this category.

  18. Application of the advanced engineering environment for optimization energy consumption in designed vehicles

    NASA Astrophysics Data System (ADS)

    Monica, Z.; Sękala, A.; Gwiazda, A.; Banaś, W.

    2016-08-01

    Nowadays a key issue is to reduce the energy consumption of road vehicles. In particular solution one could find different strategies of energy optimization. The most popular but not sophisticated is so called eco-driving. In this strategy emphasized is particular behavior of drivers. In more sophisticated solution behavior of drivers is supported by control system measuring driving parameters and suggesting proper operation of the driver. The other strategy is concerned with application of different engineering solutions that aid optimization the process of energy consumption. Such systems take into consideration different parameters measured in real time and next take proper action according to procedures loaded to the control computer of a vehicle. The third strategy bases on optimization of the designed vehicle taking into account especially main sub-systems of a technical mean. In this approach the optimal level of energy consumption by a vehicle is obtained by synergetic results of individual optimization of particular constructional sub-systems of a vehicle. It is possible to distinguish three main sub-systems: the structural one the drive one and the control one. In the case of the structural sub-system optimization of the energy consumption level is related with the optimization or the weight parameter and optimization the aerodynamic parameter. The result is optimized body of a vehicle. Regarding the drive sub-system the optimization of the energy consumption level is related with the fuel or power consumption using the previously elaborated physical models. Finally the optimization of the control sub-system consists in determining optimal control parameters.

  19. A hybrid system identification methodology for wireless structural health monitoring systems based on dynamic substructuring

    NASA Astrophysics Data System (ADS)

    Dragos, Kosmas; Smarsly, Kay

    2016-04-01

    System identification has been employed in numerous structural health monitoring (SHM) applications. Traditional system identification methods usually rely on centralized processing of structural response data to extract information on structural parameters. However, in wireless SHM systems the centralized processing of structural response data introduces a significant communication bottleneck. Exploiting the merits of decentralization and on-board processing power of wireless SHM systems, many system identification methods have been successfully implemented in wireless sensor networks. While several system identification approaches for wireless SHM systems have been proposed, little attention has been paid to obtaining information on the physical parameters (e.g. stiffness, damping) of the monitored structure. This paper presents a hybrid system identification methodology suitable for wireless sensor networks based on the principles of component mode synthesis (dynamic substructuring). A numerical model of the monitored structure is embedded into the wireless sensor nodes in a distributed manner, i.e. the entire model is segmented into sub-models, each embedded into one sensor node corresponding to the substructure the sensor node is assigned to. The parameters of each sub-model are estimated by extracting local mode shapes and by applying the equations of the Craig-Bampton method on dynamic substructuring. The proposed methodology is validated in a laboratory test conducted on a four-story frame structure to demonstrate the ability of the methodology to yield accurate estimates of stiffness parameters. Finally, the test results are discussed and an outlook on future research directions is provided.

  20. Complex bifurcation patterns in a discrete predator-prey model with periodic environmental modulation

    NASA Astrophysics Data System (ADS)

    Harikrishnan, K. P.

    2018-02-01

    We consider the simplest model in the family of discrete predator-prey system and introduce for the first time an environmental factor in the evolution of the system by periodically modulating the natural death rate of the predator. We show that with the introduction of environmental modulation, the bifurcation structure becomes much more complex with bubble structure and inverse period doubling bifurcation. The model also displays the peculiar phenomenon of coexistence of multiple limit cycles in the domain of attraction for a given parameter value that combine and finally gets transformed into a single strange attractor as the control parameter is increased. To identify the chaotic regime in the parameter plane of the model, we apply the recently proposed scheme based on the correlation dimension analysis. We show that the environmental modulation is more favourable for the stable coexistence of the predator and the prey as the regions of fixed point and limit cycle in the parameter plane increase at the expense of chaotic domain.

  1. Size-density scaling in protists and the links between consumer-resource interaction parameters.

    PubMed

    DeLong, John P; Vasseur, David A

    2012-11-01

    Recent work indicates that the interaction between body-size-dependent demographic processes can generate macroecological patterns such as the scaling of population density with body size. In this study, we evaluate this possibility for grazing protists and also test whether demographic parameters in these models are correlated after controlling for body size. We compiled data on the body-size dependence of consumer-resource interactions and population density for heterotrophic protists grazing algae in laboratory studies. We then used nested dynamic models to predict both the height and slope of the scaling relationship between population density and body size for these protists. We also controlled for consumer size and assessed links between model parameters. Finally, we used the models and the parameter estimates to assess the individual- and population-level dependence of resource use on body-size and prey-size selection. The predicted size-density scaling for all models matched closely to the observed scaling, and the simplest model was sufficient to predict the pattern. Variation around the mean size-density scaling relationship may be generated by variation in prey productivity and area of capture, but residuals are relatively insensitive to variation in prey size selection. After controlling for body size, many consumer-resource interaction parameters were correlated, and a positive correlation between residual prey size selection and conversion efficiency neutralizes the apparent fitness advantage of taking large prey. Our results indicate that widespread community-level patterns can be explained with simple population models that apply consistently across a range of sizes. They also indicate that the parameter space governing the dynamics and the steady states in these systems is structured such that some parts of the parameter space are unlikely to represent real systems. Finally, predator-prey size ratios represent a kind of conundrum, because they are widely observed but apparently have little influence on population size and fitness, at least at this level of organization. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.

  2. An adaptive learning control system for large flexible structures

    NASA Technical Reports Server (NTRS)

    Thau, F. E.

    1985-01-01

    The objective of the research has been to study the design of adaptive/learning control systems for the control of large flexible structures. In the first activity an adaptive/learning control methodology for flexible space structures was investigated. The approach was based on using a modal model of the flexible structure dynamics and an output-error identification scheme to identify modal parameters. In the second activity, a least-squares identification scheme was proposed for estimating both modal parameters and modal-to-actuator and modal-to-sensor shape functions. The technique was applied to experimental data obtained from the NASA Langley beam experiment. In the third activity, a separable nonlinear least-squares approach was developed for estimating the number of excited modes, shape functions, modal parameters, and modal amplitude and velocity time functions for a flexible structure. In the final research activity, a dual-adaptive control strategy was developed for regulating the modal dynamics and identifying modal parameters of a flexible structure. A min-max approach was used for finding an input to provide modal parameter identification while not exceeding reasonable bounds on modal displacement.

  3. Parameter Estimation as a Problem in Statistical Thermodynamics.

    PubMed

    Earle, Keith A; Schneider, David J

    2011-03-14

    In this work, we explore the connections between parameter fitting and statistical thermodynamics using the maxent principle of Jaynes as a starting point. In particular, we show how signal averaging may be described by a suitable one particle partition function, modified for the case of a variable number of particles. These modifications lead to an entropy that is extensive in the number of measurements in the average. Systematic error may be interpreted as a departure from ideal gas behavior. In addition, we show how to combine measurements from different experiments in an unbiased way in order to maximize the entropy of simultaneous parameter fitting. We suggest that fit parameters may be interpreted as generalized coordinates and the forces conjugate to them may be derived from the system partition function. From this perspective, the parameter fitting problem may be interpreted as a process where the system (spectrum) does work against internal stresses (non-optimum model parameters) to achieve a state of minimum free energy/maximum entropy. Finally, we show how the distribution function allows us to define a geometry on parameter space, building on previous work[1, 2]. This geometry has implications for error estimation and we outline a program for incorporating these geometrical insights into an automated parameter fitting algorithm.

  4. Experimental Results of Site Calibration and Sensitivity Measurements in OTR for UWB Systems

    NASA Astrophysics Data System (ADS)

    Viswanadham, Chandana; Rao, P. Mallikrajuna

    2017-06-01

    System calibration and parameter accuracy measurement of electronic support measures (ESM) systems is a major activity, carried out by electronic warfare (EW) engineers. These activities are very critical and needs good understanding in the field of microwaves, antennas, wave propagation, digital and communication domains. EW systems are broad band, built with state-of-the art electronic hardware, installed on different varieties of military platforms to guard country's security from time to time. EW systems operate in wide frequency ranges, typically in the order of thousands of MHz, hence these are ultra wide band (UWB) systems. Few calibration activities are carried within the system and in the test sites, to meet the accuracies of final specifications. After calibration, parameters are measured for their accuracies either in feed mode by injecting the RF signals into the front end or in radiation mode by transmitting the RF signals on to system antenna. To carry out these activities in radiation mode, a calibrated open test range (OTR) is necessary in the frequency band of interest. Thus site calibration of OTR is necessary to be carried out before taking up system calibration and parameter measurements. This paper presents the experimental results of OTR site calibration and sensitivity measurements of UWB systems in radiation mode.

  5. OARE STS-78 (LMS-1) Final Report

    NASA Technical Reports Server (NTRS)

    Rice, James E.

    1996-01-01

    The report is organized into sections representing the phases of work performed in analyzing the STS-78 (LMS-1) results. Section 1 briefly outlines the Orbital Acceleration Research Experiment (OARE) system features, coordinates, and measurement parameters. Section 2 describes the results from STS-78. The mission description, data calibration, and representative data obtained on STS-78 are presented. Also, the anomalous performance of OARE on STS-78 is discussed. Finally, Section 3 presents a discussion of accuracy achieved and achievable with OARE. Appendix A discusses the data processing methodology in detail.

  6. Electroactive Biofilms: Current Status and Future Research Needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borole, Abhijeet P; Reguera, Gemma; Ringeisen, Bradley

    2011-01-01

    Electroactive biofilms generated by electrochemically active microorganisms have many potential applications in bioenergy and chemicals production. This review assesses the effects of microbiological and process parameters on enrichment of such biofilms as well as critically evaluates the current knowledge of the mechanisms of extracellular electron transfer in BES systems. First we discuss the role of biofilm forming microorganisms vs. planktonic microorganisms. Physical, chemical and electrochemical parameters which dictate the enrichment and subsequent performance of the biofilms are discussed. Potential dependent biological parameters including biofilm growth rate, specific electron transfer rate and others and their relationship to BES system performance ismore » assessed. A review of the mechanisms of electron transfer in BES systems is included followed by a discussion of biofilm and its exopolymeric components and their electrical conductivity. A discussion of the electroactive biofilms in biocathodes is also included. Finally, we identify the research needs for further development of the electroactive biofilms to enable commercial applications.« less

  7. Preliminary experiments on pharmacokinetic diffuse fluorescence tomography of CT-scanning mode

    NASA Astrophysics Data System (ADS)

    Zhang, Yanqi; Wang, Xin; Yin, Guoyan; Li, Jiao; Zhou, Zhongxing; Zhao, Huijuan; Gao, Feng; Zhang, Limin

    2016-10-01

    In vivo tomographic imaging of the fluorescence pharmacokinetic parameters in tissues can provide additional specific and quantitative physiological and pathological information to that of fluorescence concentration. This modality normally requires a highly-sensitive diffuse fluorescence tomography (DFT) working in dynamic way to finally extract the pharmacokinetic parameters from the measured pharmacokinetics-associated temporally-varying boundary intensity. This paper is devoted to preliminary experimental validation of our proposed direct reconstruction scheme of instantaneous sampling based pharmacokinetic-DFT: A highly-sensitive DFT system of CT-scanning mode working with parallel four photomultiplier-tube photon-counting channels is developed to generate an instantaneous sampling dataset; A direct reconstruction scheme then extracts images of the pharmacokinetic parameters using the adaptive-EKF strategy. We design a dynamic phantom that can simulate the agent metabolism in living tissue. The results of the dynamic phantom experiments verify the validity of the experiment system and reconstruction algorithms, and demonstrate that system provides good resolution, high sensitivity and quantitativeness at different pump speed.

  8. Generic precise augmented reality guiding system and its calibration method based on 3D virtual model.

    PubMed

    Liu, Miao; Yang, Shourui; Wang, Zhangying; Huang, Shujun; Liu, Yue; Niu, Zhenqi; Zhang, Xiaoxuan; Zhu, Jigui; Zhang, Zonghua

    2016-05-30

    Augmented reality system can be applied to provide precise guidance for various kinds of manual works. The adaptability and guiding accuracy of such systems are decided by the computational model and the corresponding calibration method. In this paper, a novel type of augmented reality guiding system and the corresponding designing scheme are proposed. Guided by external positioning equipment, the proposed system can achieve high relative indication accuracy in a large working space. Meanwhile, the proposed system is realized with a digital projector and the general back projection model is derived with geometry relationship between digitized 3D model and the projector in free space. The corresponding calibration method is also designed for the proposed system to obtain the parameters of projector. To validate the proposed back projection model, the coordinate data collected by a 3D positioning equipment is used to calculate and optimize the extrinsic parameters. The final projecting indication accuracy of the system is verified with subpixel pattern projecting technique.

  9. 40 CFR Appendix A to Subpart K of... - Criteria for evaluating a State's proposed NEPA-Like process

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SERP will adequately consider: (1) Designation of a study area comparable to the final system; (2) A...) Present and future conditions; (5) Land use and other social parameters including recreation and open... (residential, commercial, institutional and industrial) within the project study area; and (8) Other...

  10. 40 CFR Appendix A to Subpart K of... - Criteria for evaluating a State's proposed NEPA-Like process

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SERP will adequately consider: (1) Designation of a study area comparable to the final system; (2) A...) Present and future conditions; (5) Land use and other social parameters including recreation and open... (residential, commercial, institutional and industrial) within the project study area; and (8) Other...

  11. 40 CFR Appendix A to Subpart L - Criteria for Evaluating a State's Proposed NEPA-Like Process

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... consider: (1) Designation of a study area comparable to the final system; (2) A range of feasible... conditions; (5) Land use and other social parameters including relevant recreation and open-space..., institutional, and industrial) within the project study area; and (8) Other anticipated public works projects...

  12. 40 CFR Appendix A to Subpart L - Criteria for Evaluating a State's Proposed NEPA-Like Process

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... consider: (1) Designation of a study area comparable to the final system; (2) A range of feasible... conditions; (5) Land use and other social parameters including relevant recreation and open-space..., institutional, and industrial) within the project study area; and (8) Other anticipated public works projects...

  13. 40 CFR Appendix A to Subpart L of... - Criteria for Evaluating a State's Proposed NEPA-Like Process

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the SERP will adequately consider: (1) Designation of a study area comparable to the final system; (2... impacts; (4) Present and future conditions; (5) Land use and other social parameters including relevant... (residential, commercial, institutional, and industrial) within the project study area; and (8) Other...

  14. 40 CFR Appendix A to Subpart K of... - Criteria for evaluating a State's proposed NEPA-Like process

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SERP will adequately consider: (1) Designation of a study area comparable to the final system; (2) A...) Present and future conditions; (5) Land use and other social parameters including recreation and open... (residential, commercial, institutional and industrial) within the project study area; and (8) Other...

  15. 40 CFR Appendix A to Subpart K of... - Criteria for evaluating a State's proposed NEPA-Like process

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SERP will adequately consider: (1) Designation of a study area comparable to the final system; (2) A...) Present and future conditions; (5) Land use and other social parameters including recreation and open... (residential, commercial, institutional and industrial) within the project study area; and (8) Other...

  16. 40 CFR Appendix A to Subpart K of... - Criteria for evaluating a State's proposed NEPA-Like process

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SERP will adequately consider: (1) Designation of a study area comparable to the final system; (2) A...) Present and future conditions; (5) Land use and other social parameters including recreation and open... (residential, commercial, institutional and industrial) within the project study area; and (8) Other...

  17. 40 CFR Appendix A to Subpart L of... - Criteria for Evaluating a State's Proposed NEPA-Like Process

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the SERP will adequately consider: (1) Designation of a study area comparable to the final system; (2... impacts; (4) Present and future conditions; (5) Land use and other social parameters including relevant... (residential, commercial, institutional, and industrial) within the project study area; and (8) Other...

  18. 40 CFR Appendix A to Subpart L - Criteria for Evaluating a State's Proposed NEPA-Like Process

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... consider: (1) Designation of a study area comparable to the final system; (2) A range of feasible... conditions; (5) Land use and other social parameters including relevant recreation and open-space..., institutional, and industrial) within the project study area; and (8) Other anticipated public works projects...

  19. A Control Algorithm for Chaotic Physical Systems

    DTIC Science & Technology

    1991-10-01

    revision expands the grid to cover the entire area of any attractor that is present. 5 Map Selection The final choices of the state- space mapping process...interval h?; overrange R0 ; control parameter interval AkO and range [kbro, khigh]; iteration depth. "* State- space mapping : 1. Set up grid by expanding

  20. Out-of-Focus Projector Calibration Method with Distortion Correction on the Projection Plane in the Structured Light Three-Dimensional Measurement System.

    PubMed

    Zhang, Jiarui; Zhang, Yingjie; Chen, Bo

    2017-12-20

    The three-dimensional measurement system with a binary defocusing technique is widely applied in diverse fields. The measurement accuracy is mainly determined by out-of-focus projector calibration accuracy. In this paper, a high-precision out-of-focus projector calibration method that is based on distortion correction on the projection plane and nonlinear optimization algorithm is proposed. To this end, the paper experimentally presents the principle that the projector has noticeable distortions outside its focus plane. In terms of this principle, the proposed method uses a high-order radial and tangential lens distortion representation on the projection plane to correct the calibration residuals caused by projection distortion. The final accuracy parameters of out-of-focus projector were obtained using a nonlinear optimization algorithm with good initial values, which were provided by coarsely calibrating the parameters of the out-of-focus projector on the focal and projection planes. Finally, the experimental results demonstrated that the proposed method can accuracy calibrate an out-of-focus projector, regardless of the amount of defocusing.

  1. Design Aspects of the VLBI2010 System - Progress Report of the IVS VLBI2010 Committee

    NASA Technical Reports Server (NTRS)

    Petrachenko, Bill; Niell, Arthur; Behrend, Dirk; Corey, Brian; Boehm, Johannes; Chralot, Patrick; Collioud, Arnaud; Gipson, John; Haas, Ruediger; Hobiger, Thomas; hide

    2009-01-01

    This report summarizes the progress made in developing the next generation VLBI system, dubbed the VLBI2010 system. The VLBI2010 Committee of the International VLBI Service for Geodesy and Astrometry (IVS) worked on the design aspects of the new system. The report covers Monte Carlo simulations showing the impact of the new operating modes on the final products. A section on system considerations describes the implications for the VLBI2010 system parameters by considering the new modes and system-related issues such as sensitivity, antenna slew rate, delay measurement error. RF1, frequency requirements, antenna deformation, and source structure corrections_ This is followed by a description of all major subsystems and recommendations for the network, station. and antenna. Then aspects of the feed, polarization processing. calibration, digital back end, and correlator subsystems are covered. A section is dedicated to the NASA. proof-of-concept demonstration. Finally, sections tm operational considerations, on risks and fallback options, and on the next steps complete the report.

  2. Portable refrigerant charge meter and method for determining the actual refrigerant charge in HVAC systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Zhiming; Abdelaziz, Omar; LaClair, Tim L.

    A refrigerant charge meter and a method for determining the actual refrigerant charge in HVAC systems are described. The meter includes means for determining an optimum refrigerant charge from system subcooling and system component parameters. The meter also includes means for determining the ratio of the actual refrigerant charge to the optimum refrigerant charge. Finally, the meter includes means for determining the actual refrigerant charge from the optimum refrigerant charge and the ratio of the actual refrigerant charge to the optimum refrigerant charge.

  3. The design of nonlinear observers for wind turbine dynamic state and parameter estimation

    NASA Astrophysics Data System (ADS)

    Ritter, B.; Schild, A.; Feldt, M.; Konigorski, U.

    2016-09-01

    This contribution addresses the dynamic state and parameter estimation problem which arises with more advanced wind turbine controllers. These control devices need precise information about the system's current state to outperform conventional industrial controllers effectively. First, the necessity of a profound scientific treatment on nonlinear observers for wind turbine application is highlighted. Secondly, the full estimation problem is introduced and the variety of nonlinear filters is discussed. Finally, a tailored observer architecture is proposed and estimation results of an illustrative application example from a complex simulation set-up are presented.

  4. Effect of q-nonextensive parameter and saturation time on electron density steepening in electron-positron-ion plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashemzadeh, M., E-mail: hashemzade@gmail.com

    2015-11-15

    The effect of q-nonextensive parameter and saturation time on the electron density steepening in electron-positron-ion plasmas is studied by particle in cell method. Phase space diagrams show that the size of the holes, and consequently, the number of trapped particles strongly depends on the q-parameter and saturation time. Furthermore, the mechanism of the instability and exchange of energy between electron-positron and electric field is explained by the profiles of the energy density. Moreover, it is found that the q-parameter, saturation time, and electron and positron velocities affect the nonlinear evolution of the electron density which leads to the steepening ofmore » its structure. The q-nonextensive parameter or degree of nonextensivity is the relation between temperature gradient and potential energy of the system. Therefore, the deviation of q-parameter from unity indicates the degree of inhomogeneity of temperature or deviation from equilibrium. Finally, using the kinetic theory, a generalized q-dispersion relation is presented for electron-positron-ion plasma systems. It is found that the simulation results in the linear regime are in good agreement with the growth rate results obtained by the kinetic theory.« less

  5. A Novel Approach for Constructing One-Way Hash Function Based on a Message Block Controlled 8D Hyperchaotic Map

    NASA Astrophysics Data System (ADS)

    Lin, Zhuosheng; Yu, Simin; Lü, Jinhu

    2017-06-01

    In this paper, a novel approach for constructing one-way hash function based on 8D hyperchaotic map is presented. First, two nominal matrices both with constant and variable parameters are adopted for designing 8D discrete-time hyperchaotic systems, respectively. Then each input plaintext message block is transformed into 8 × 8 matrix following the order of left to right and top to bottom, which is used as a control matrix for the switch of the nominal matrix elements both with the constant parameters and with the variable parameters. Through this switching control, a new nominal matrix mixed with the constant and variable parameters is obtained for the 8D hyperchaotic map. Finally, the hash function is constructed with the multiple low 8-bit hyperchaotic system iterative outputs after being rounded down, and its secure analysis results are also given, validating the feasibility and reliability of the proposed approach. Compared with the existing schemes, the main feature of the proposed method is that it has a large number of key parameters with avalanche effect, resulting in the difficulty for estimating or predicting key parameters via various attacks.

  6. Virtual Planning, Control, and Machining for a Modular-Based Automated Factory Operation in an Augmented Reality Environment

    PubMed Central

    Pai, Yun Suen; Yap, Hwa Jen; Md Dawal, Siti Zawiah; Ramesh, S.; Phoon, Sin Ye

    2016-01-01

    This study presents a modular-based implementation of augmented reality to provide an immersive experience in learning or teaching the planning phase, control system, and machining parameters of a fully automated work cell. The architecture of the system consists of three code modules that can operate independently or combined to create a complete system that is able to guide engineers from the layout planning phase to the prototyping of the final product. The layout planning module determines the best possible arrangement in a layout for the placement of various machines, in this case a conveyor belt for transportation, a robot arm for pick-and-place operations, and a computer numerical control milling machine to generate the final prototype. The robotic arm module simulates the pick-and-place operation offline from the conveyor belt to a computer numerical control (CNC) machine utilising collision detection and inverse kinematics. Finally, the CNC module performs virtual machining based on the Uniform Space Decomposition method and axis aligned bounding box collision detection. The conducted case study revealed that given the situation, a semi-circle shaped arrangement is desirable, whereas the pick-and-place system and the final generated G-code produced the highest deviation of 3.83 mm and 5.8 mm respectively. PMID:27271840

  7. Virtual Planning, Control, and Machining for a Modular-Based Automated Factory Operation in an Augmented Reality Environment.

    PubMed

    Pai, Yun Suen; Yap, Hwa Jen; Md Dawal, Siti Zawiah; Ramesh, S; Phoon, Sin Ye

    2016-06-07

    This study presents a modular-based implementation of augmented reality to provide an immersive experience in learning or teaching the planning phase, control system, and machining parameters of a fully automated work cell. The architecture of the system consists of three code modules that can operate independently or combined to create a complete system that is able to guide engineers from the layout planning phase to the prototyping of the final product. The layout planning module determines the best possible arrangement in a layout for the placement of various machines, in this case a conveyor belt for transportation, a robot arm for pick-and-place operations, and a computer numerical control milling machine to generate the final prototype. The robotic arm module simulates the pick-and-place operation offline from the conveyor belt to a computer numerical control (CNC) machine utilising collision detection and inverse kinematics. Finally, the CNC module performs virtual machining based on the Uniform Space Decomposition method and axis aligned bounding box collision detection. The conducted case study revealed that given the situation, a semi-circle shaped arrangement is desirable, whereas the pick-and-place system and the final generated G-code produced the highest deviation of 3.83 mm and 5.8 mm respectively.

  8. Virtual Planning, Control, and Machining for a Modular-Based Automated Factory Operation in an Augmented Reality Environment

    NASA Astrophysics Data System (ADS)

    Pai, Yun Suen; Yap, Hwa Jen; Md Dawal, Siti Zawiah; Ramesh, S.; Phoon, Sin Ye

    2016-06-01

    This study presents a modular-based implementation of augmented reality to provide an immersive experience in learning or teaching the planning phase, control system, and machining parameters of a fully automated work cell. The architecture of the system consists of three code modules that can operate independently or combined to create a complete system that is able to guide engineers from the layout planning phase to the prototyping of the final product. The layout planning module determines the best possible arrangement in a layout for the placement of various machines, in this case a conveyor belt for transportation, a robot arm for pick-and-place operations, and a computer numerical control milling machine to generate the final prototype. The robotic arm module simulates the pick-and-place operation offline from the conveyor belt to a computer numerical control (CNC) machine utilising collision detection and inverse kinematics. Finally, the CNC module performs virtual machining based on the Uniform Space Decomposition method and axis aligned bounding box collision detection. The conducted case study revealed that given the situation, a semi-circle shaped arrangement is desirable, whereas the pick-and-place system and the final generated G-code produced the highest deviation of 3.83 mm and 5.8 mm respectively.

  9. A Comparative Analysis of Taguchi Methodology and Shainin System DoE in the Optimization of Injection Molding Process Parameters

    NASA Astrophysics Data System (ADS)

    Khavekar, Rajendra; Vasudevan, Hari, Dr.; Modi, Bhavik

    2017-08-01

    Two well-known Design of Experiments (DoE) methodologies, such as Taguchi Methods (TM) and Shainin Systems (SS) are compared and analyzed in this study through their implementation in a plastic injection molding unit. Experiments were performed at a perfume bottle cap manufacturing company (made by acrylic material) using TM and SS to find out the root cause of defects and to optimize the process parameters for minimum rejection. Experiments obtained the rejection rate to be 8.57% from 40% (appx.) during trial runs, which is quiet low, representing successful implementation of these DoE methods. The comparison showed that both methodologies gave same set of variables as critical for defect reduction, but with change in their significance order. Also, Taguchi methods require more number of experiments and consume more time compared to the Shainin System. Shainin system is less complicated and is easy to implement, whereas Taguchi methods is statistically more reliable for optimization of process parameters. Finally, experimentations implied that DoE methods are strong and reliable in implementation, as organizations attempt to improve the quality through optimization.

  10. Evaluation and linking of effective parameters in particle-based models and continuum models for mixing-limited bimolecular reactions

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Papelis, Charalambos; Sun, Pengtao; Yu, Zhongbo

    2013-08-01

    Particle-based models and continuum models have been developed to quantify mixing-limited bimolecular reactions for decades. Effective model parameters control reaction kinetics, but the relationship between the particle-based model parameter (such as the interaction radius R) and the continuum model parameter (i.e., the effective rate coefficient Kf) remains obscure. This study attempts to evaluate and link R and Kf for the second-order bimolecular reaction in both the bulk and the sharp-concentration-gradient (SCG) systems. First, in the bulk system, the agent-based method reveals that R remains constant for irreversible reactions and decreases nonlinearly in time for a reversible reaction, while mathematical analysis shows that Kf transitions from an exponential to a power-law function. Qualitative link between R and Kf can then be built for the irreversible reaction with equal initial reactant concentrations. Second, in the SCG system with a reaction interface, numerical experiments show that when R and Kf decline as t-1/2 (for example, to account for the reactant front expansion), the two models capture the transient power-law growth of product mass, and their effective parameters have the same functional form. Finally, revisiting of laboratory experiments further shows that the best fit factor in R and Kf is on the same order, and both models can efficiently describe chemical kinetics observed in the SCG system. Effective model parameters used to describe reaction kinetics therefore may be linked directly, where the exact linkage may depend on the chemical and physical properties of the system.

  11. A Time of Flight Fast Neutron Imaging System Design Study

    NASA Astrophysics Data System (ADS)

    Canion, Bonnie; Glenn, Andrew; Sheets, Steven; Wurtz, Ron; Nakae, Les; Hausladen, Paul; McConchie, Seth; Blackston, Matthew; Fabris, Lorenzo; Newby, Jason

    2017-09-01

    LLNL and ORNL are designing an active/passive fast neutron imaging system that is flexible to non-ideal detector positioning. It is often not possible to move an inspection object in fieldable imager applications such as safeguards, arms control treaty verification, and emergency response. Particularly, we are interested in scenarios which inspectors do not have access to all sides of an inspection object, due to interfering objects or walls. This paper will present the results of a simulation-based design parameter study, that will determine the optimum system design parameters for a fieldable system to perform time-of-flight based imaging analysis. The imaging analysis is based on the use of an associated particle imaging deuterium-tritium (API DT) neutron generator to get the time-of-flight of radiation induced within an inspection object. This design study will investigate the optimum design parameters for such a system (e.g. detector size, ideal placement, etc.), as well as the upper and lower feasible design parameters that the system can expect to provide results within a reasonable amount of time (e.g. minimum/maximum detector efficiency, detector standoff, etc.). Ideally the final prototype from this project will be capable of using full-access techniques, such as transmission imaging, when the measurement circumstances allow, but with the additional capability of producing results at reduced accessibility.

  12. Comparisons between conventional optical imaging and parametric indirect microscopic imaging on human skin detection

    NASA Astrophysics Data System (ADS)

    Liu, Guoyan; Gao, Kun; Liu, Xuefeng; Ni, Guoqiang

    2016-10-01

    We report a new method, polarization parameters indirect microscopic imaging with a high transmission infrared light source, to detect the morphology and component of human skin. A conventional reflection microscopic system is used as the basic optical system, into which a polarization-modulation mechanics is inserted and a high transmission infrared light source is utilized. The near-field structural characteristics of human skin can be delivered by infrared waves and material coupling. According to coupling and conduction physics, changes of the optical wave parameters can be calculated and curves of the intensity of the image can be obtained. By analyzing the near-field polarization parameters in nanoscale, we can finally get the inversion images of human skin. Compared with the conventional direct optical microscope, this method can break diffraction limit and achieve a super resolution of sub-100nm. Besides, the method is more sensitive to the edges, wrinkles, boundaries and impurity particles.

  13. Biomedical engineering strategies in system design space.

    PubMed

    Savageau, Michael A

    2011-04-01

    Modern systems biology and synthetic bioengineering face two major challenges in relating properties of the genetic components of a natural or engineered system to its integrated behavior. The first is the fundamental unsolved problem of relating the digital representation of the genotype to the analog representation of the parameters for the molecular components. For example, knowing the DNA sequence does not allow one to determine the kinetic parameters of an enzyme. The second is the fundamental unsolved problem of relating the parameters of the components and the environment to the phenotype of the global system. For example, knowing the parameters does not tell one how many qualitatively distinct phenotypes are in the organism's repertoire or the relative fitness of the phenotypes in different environments. These also are challenges for biomedical engineers as they attempt to develop therapeutic strategies to treat pathology or to redirect normal cellular functions for biotechnological purposes. In this article, the second of these fundamental challenges will be addressed, and the notion of a "system design space" for relating the parameter space of components to the phenotype space of bioengineering systems will be focused upon. First, the concept of a system design space will be motivated by introducing one of its key components from an intuitive perspective. Second, a simple linear example will be used to illustrate a generic method for constructing the design space in which qualitatively distinct phenotypes can be identified and counted, their fitness analyzed and compared, and their tolerance to change measured. Third, two examples of nonlinear systems from different areas of biomedical engineering will be presented. Finally, after giving reference to a few other applications that have made use of the system design space approach to reveal important design principles, some concluding remarks concerning challenges and opportunities for further development will be made.

  14. Model-based estimation for dynamic cardiac studies using ECT.

    PubMed

    Chiao, P C; Rogers, W L; Clinthorne, N H; Fessler, J A; Hero, A O

    1994-01-01

    The authors develop a strategy for joint estimation of physiological parameters and myocardial boundaries using ECT (emission computed tomography). They construct an observation model to relate parameters of interest to the projection data and to account for limited ECT system resolution and measurement noise. The authors then use a maximum likelihood (ML) estimator to jointly estimate all the parameters directly from the projection data without reconstruction of intermediate images. They also simulate myocardial perfusion studies based on a simplified heart model to evaluate the performance of the model-based joint ML estimator and compare this performance to the Cramer-Rao lower bound. Finally, the authors discuss model assumptions and potential uses of the joint estimation strategy.

  15. Adaptive exponential synchronization of complex-valued Cohen-Grossberg neural networks with known and unknown parameters.

    PubMed

    Hu, Jin; Zeng, Chunna

    2017-02-01

    The complex-valued Cohen-Grossberg neural network is a special kind of complex-valued neural network. In this paper, the synchronization problem of a class of complex-valued Cohen-Grossberg neural networks with known and unknown parameters is investigated. By using Lyapunov functionals and the adaptive control method based on parameter identification, some adaptive feedback schemes are proposed to achieve synchronization exponentially between the drive and response systems. The results obtained in this paper have extended and improved some previous works on adaptive synchronization of Cohen-Grossberg neural networks. Finally, two numerical examples are given to demonstrate the effectiveness of the theoretical results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. X-31 aerodynamic characteristics determined from flight data

    NASA Technical Reports Server (NTRS)

    Kokolios, Alex

    1993-01-01

    The lateral aerodynamic characteristics of the X-31 were determined at angles of attack ranging from 20 to 45 deg. Estimates of the lateral stability and control parameters were obtained by applying two parameter estimation techniques, linear regression, and the extended Kalman filter to flight test data. An attempt to apply maximum likelihood to extract parameters from the flight data was also made but failed for the reasons presented. An overview of the System Identification process is given. The overview includes a listing of the more important properties of all three estimation techniques that were applied to the data. A comparison is given of results obtained from flight test data and wind tunnel data for four important lateral parameters. Finally, future research to be conducted in this area is discussed.

  17. A novel preterm respiratory mechanics active simulator to test the performances of neonatal pulmonary ventilators

    NASA Astrophysics Data System (ADS)

    Cappa, Paolo; Sciuto, Salvatore Andrea; Silvestri, Sergio

    2002-06-01

    A patient active simulator is proposed which is capable of reproducing values of the parameters of pulmonary mechanics of healthy newborns and preterm pathological infants. The implemented prototype is able to: (a) let the operator choose the respiratory pattern, times of apnea, episodes of cough, sobs, etc., (b) continuously regulate and control the parameters characterizing the pulmonary system; and, finally, (c) reproduce the attempt of breathing of a preterm infant. Taking into account both the limitation due to the chosen application field and the preliminary autocalibration phase automatically carried out by the proposed device, accuracy and reliability on the order of 1% is estimated. The previously indicated value has to be considered satisfactory in light of the field of application and the small values of the simulated parameters. Finally, the achieved metrological characteristics allow the described neonatal simulator to be adopted as a reference device to test performances of neonatal ventilators and, more specifically, to measure the time elapsed between the occurrence of a potentially dangerous condition to the patient and the activation of the corresponding alarm of the tested ventilator.

  18. Stability switches and multistability coexistence in a delay-coupled neural oscillators system.

    PubMed

    Song, Zigen; Xu, Jian

    2012-11-21

    In this paper, we present a neural network system composed of two delay-coupled neural oscillators, where each of these can be regarded as the dynamical system describing the average activity of neural population. Analyzing the corresponding characteristic equation, the local stability of rest state is studied. The system exhibits the switch phenomenon between the rest state and periodic activity. Furthermore, the Hopf bifurcation is analyzed and the bifurcation curve is given in the parameters plane. The stability of the bifurcating periodic solutions and direction of the Hopf bifurcation are exhibited. Regarding time delay and coupled weight as the bifurcation parameters, the Fold-Hopf bifurcation is investigated in detail in terms of the central manifold reduction and normal form method. The neural system demonstrates the coexistence of the rest states and periodic activities in the different parameter regions. Employing the normal form of the original system, the coexistence regions are illustrated approximately near the Fold-Hopf singularity point. Finally, numerical simulations are performed to display more complex dynamics. The results illustrate that system may exhibit the rich coexistence of the different neuro-computational properties, such as the rest states, periodic activities, and quasi-periodic behavior. In particular, some periodic activities can evolve into the bursting-type behaviors with the varying time delay. It implies that the coexistence of the quasi-periodic activity and bursting-type behavior can be obtained if the suitable value of system parameter is chosen. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Parameter estimation for chaotic systems using a hybrid adaptive cuckoo search with simulated annealing algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Zheng, E-mail: 19994035@sina.com; Wang, Jun; Zhou, Bihua

    2014-03-15

    This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented tomore » tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm.« less

  20. Improving the Fit of a Land-Surface Model to Data Using its Adjoint

    NASA Astrophysics Data System (ADS)

    Raoult, Nina; Jupp, Tim; Cox, Peter; Luke, Catherine

    2016-04-01

    Land-surface models (LSMs) are crucial components of the Earth System Models (ESMs) which are used to make coupled climate-carbon cycle projections for the 21st century. The Joint UK Land Environment Simulator (JULES) is the land-surface model used in the climate and weather forecast models of the UK Met Office. In this study, JULES is automatically differentiated using commercial software from FastOpt, resulting in an analytical gradient, or adjoint, of the model. Using this adjoint, the adJULES parameter estimation system has been developed, to search for locally optimum parameter sets by calibrating against observations. We present an introduction to the adJULES system and demonstrate its ability to improve the model-data fit using eddy covariance measurements of gross primary production (GPP) and latent heat (LE) fluxes. adJULES also has the ability to calibrate over multiple sites simultaneously. This feature is used to define new optimised parameter values for the 5 Plant Functional Types (PFTS) in JULES. The optimised PFT-specific parameters improve the performance of JULES over 90% of the FLUXNET sites used in the study. These reductions in error are shown and compared to reductions found due to site-specific optimisations. Finally, we show that calculation of the 2nd derivative of JULES allows us to produce posterior probability density functions of the parameters and how knowledge of parameter values is constrained by observations.

  1. Parametric motion control of robotic arms: A biologically based approach using neural networks

    NASA Technical Reports Server (NTRS)

    Bock, O.; D'Eleuterio, G. M. T.; Lipitkas, J.; Grodski, J. J.

    1993-01-01

    A neural network based system is presented which is able to generate point-to-point movements of robotic manipulators. The foundation of this approach is the use of prototypical control torque signals which are defined by a set of parameters. The parameter set is used for scaling and shaping of these prototypical torque signals to effect a desired outcome of the system. This approach is based on neurophysiological findings that the central nervous system stores generalized cognitive representations of movements called synergies, schemas, or motor programs. It has been proposed that these motor programs may be stored as torque-time functions in central pattern generators which can be scaled with appropriate time and magnitude parameters. The central pattern generators use these parameters to generate stereotypical torque-time profiles, which are then sent to the joint actuators. Hence, only a small number of parameters need to be determined for each point-to-point movement instead of the entire torque-time trajectory. This same principle is implemented for controlling the joint torques of robotic manipulators where a neural network is used to identify the relationship between the task requirements and the torque parameters. Movements are specified by the initial robot position in joint coordinates and the desired final end-effector position in Cartesian coordinates. This information is provided to the neural network which calculates six torque parameters for a two-link system. The prototypical torque profiles (one per joint) are then scaled by those parameters. After appropriate training of the network, our parametric control design allowed the reproduction of a trained set of movements with relatively high accuracy, and the production of previously untrained movements with comparable accuracy. We conclude that our approach was successful in discriminating between trained movements and in generalizing to untrained movements.

  2. Modeling, simulation and control for a cryogenic fluid management facility, preliminary report

    NASA Technical Reports Server (NTRS)

    Turner, Max A.; Vanbuskirk, P. D.

    1986-01-01

    The synthesis of a control system for a cryogenic fluid management facility was studied. The severe demand for reliability as well as instrumentation and control unique to the Space Station environment are prime considerations. Realizing that the effective control system depends heavily on quantitative description of the facility dynamics, a methodology for process identification and parameter estimation is postulated. A block diagram of the associated control system is also produced. Finally, an on-line adaptive control strategy is developed utilizing optimization of the velocity form control parameters (proportional gains, integration and derivative time constants) in appropriate difference equations for direct digital control. Of special concern are the communications, software and hardware supporting interaction between the ground and orbital systems. It is visualized that specialist in the OSI/ISO utilizing the Ada programming language will influence further development, testing and validation of the simplistic models presented here for adaptation to the actual flight environment.

  3. Fuzzy fractional order sliding mode controller for nonlinear systems

    NASA Astrophysics Data System (ADS)

    Delavari, H.; Ghaderi, R.; Ranjbar, A.; Momani, S.

    2010-04-01

    In this paper, an intelligent robust fractional surface sliding mode control for a nonlinear system is studied. At first a sliding PD surface is designed and then, a fractional form of these networks PDα, is proposed. Fast reaching velocity into the switching hyperplane in the hitting phase and little chattering phenomena in the sliding phase is desired. To reduce the chattering phenomenon in sliding mode control (SMC), a fuzzy logic controller is used to replace the discontinuity in the signum function at the reaching phase in the sliding mode control. For the problem of determining and optimizing the parameters of fuzzy sliding mode controller (FSMC), genetic algorithm (GA) is used. Finally, the performance and the significance of the controlled system two case studies (robot manipulator and coupled tanks) are investigated under variation in system parameters and also in presence of an external disturbance. The simulation results signify performance of genetic-based fuzzy fractional sliding mode controller.

  4. Adaptive control and noise suppression by a variable-gain gradient algorithm

    NASA Technical Reports Server (NTRS)

    Merhav, S. J.; Mehta, R. S.

    1987-01-01

    An adaptive control system based on normalized LMS filters is investigated. The finite impulse response of the nonparametric controller is adaptively estimated using a given reference model. Specifically, the following issues are addressed: The stability of the closed loop system is analyzed and heuristically established. Next, the adaptation process is studied for piecewise constant plant parameters. It is shown that by introducing a variable-gain in the gradient algorithm, a substantial reduction in the LMS adaptation rate can be achieved. Finally, process noise at the plant output generally causes a biased estimate of the controller. By introducing a noise suppression scheme, this bias can be substantially reduced and the response of the adapted system becomes very close to that of the reference model. Extensive computer simulations validate these and demonstrate assertions that the system can rapidly adapt to random jumps in plant parameters.

  5. Nonlinear gearshifts control of dual-clutch transmissions during inertia phase.

    PubMed

    Hu, Yunfeng; Tian, Lu; Gao, Bingzhao; Chen, Hong

    2014-07-01

    In this paper, a model-based nonlinear gearshift controller is designed by the backstepping method to improve the shift quality of vehicles with a dual-clutch transmission (DCT). Considering easy-implementation, the controller is rearranged into a concise structure which contains a feedforward control and a feedback control. Then, robustness of the closed-loop error system is discussed in the framework of the input to state stability (ISS) theory, where model uncertainties are considered as the additive disturbance inputs. Furthermore, due to the application of the backstepping method, the closed-loop error system is ordered as a linear system. Using the linear system theory, a guideline for selecting the controller parameters is deduced which could reduce the workload of parameters tuning. Finally, simulation results and Hardware in the Loop (HiL) simulation are presented to validate the effectiveness of the designed controller. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Ensemble-Based Parameter Estimation in a Coupled General Circulation Model

    DOE PAGES

    Liu, Y.; Liu, Z.; Zhang, S.; ...

    2014-09-10

    Parameter estimation provides a potentially powerful approach to reduce model bias for complex climate models. Here, in a twin experiment framework, the authors perform the first parameter estimation in a fully coupled ocean–atmosphere general circulation model using an ensemble coupled data assimilation system facilitated with parameter estimation. The authors first perform single-parameter estimation and then multiple-parameter estimation. In the case of the single-parameter estimation, the error of the parameter [solar penetration depth (SPD)] is reduced by over 90% after ~40 years of assimilation of the conventional observations of monthly sea surface temperature (SST) and salinity (SSS). The results of multiple-parametermore » estimation are less reliable than those of single-parameter estimation when only the monthly SST and SSS are assimilated. Assimilating additional observations of atmospheric data of temperature and wind improves the reliability of multiple-parameter estimation. The errors of the parameters are reduced by 90% in ~8 years of assimilation. Finally, the improved parameters also improve the model climatology. With the optimized parameters, the bias of the climatology of SST is reduced by ~90%. Altogether, this study suggests the feasibility of ensemble-based parameter estimation in a fully coupled general circulation model.« less

  7. Battery Energy Storage State-of-Charge Forecasting: Models, Optimization, and Accuracy

    DOE PAGES

    Rosewater, David; Ferreira, Summer; Schoenwald, David; ...

    2018-01-25

    Battery energy storage systems (BESS) are a critical technology for integrating high penetration renewable power on an intelligent electrical grid. As limited energy restricts the steady-state operational state-of-charge (SoC) of storage systems, SoC forecasting models are used to determine feasible charge and discharge schedules that supply grid services. Smart grid controllers use SoC forecasts to optimize BESS schedules to make grid operation more efficient and resilient. This study presents three advances in BESS state-of-charge forecasting. First, two forecasting models are reformulated to be conducive to parameter optimization. Second, a new method for selecting optimal parameter values based on operational datamore » is presented. Last, a new framework for quantifying model accuracy is developed that enables a comparison between models, systems, and parameter selection methods. The accuracies achieved by both models, on two example battery systems, with each method of parameter selection are then compared in detail. The results of this analysis suggest variation in the suitability of these models for different battery types and applications. Finally, the proposed model formulations, optimization methods, and accuracy assessment framework can be used to improve the accuracy of SoC forecasts enabling better control over BESS charge/discharge schedules.« less

  8. Automated Storm Tracking and the Lightning Jump Algorithm Using GOES-R Geostationary Lightning Mapper (GLM) Proxy Data

    PubMed Central

    SCHULTZ, ELISE V.; SCHULTZ, CHRISTOPHER J.; CAREY, LAWRENCE D.; CECIL, DANIEL J.; BATEMAN, MONTE

    2017-01-01

    This study develops a fully automated lightning jump system encompassing objective storm tracking, Geostationary Lightning Mapper proxy data, and the lightning jump algorithm (LJA), which are important elements in the transition of the LJA concept from a research to an operational based algorithm. Storm cluster tracking is based on a product created from the combination of a radar parameter (vertically integrated liquid, VIL), and lightning information (flash rate density). Evaluations showed that the spatial scale of tracked features or storm clusters had a large impact on the lightning jump system performance, where increasing spatial scale size resulted in decreased dynamic range of the system’s performance. This framework will also serve as a means to refine the LJA itself to enhance its operational applicability. Parameters within the system are isolated and the system’s performance is evaluated with adjustments to parameter sensitivity. The system’s performance is evaluated using the probability of detection (POD) and false alarm ratio (FAR) statistics. Of the algorithm parameters tested, sigma-level (metric of lightning jump strength) and flash rate threshold influenced the system’s performance the most. Finally, verification methodologies are investigated. It is discovered that minor changes in verification methodology can dramatically impact the evaluation of the lightning jump system. PMID:29303164

  9. Battery Energy Storage State-of-Charge Forecasting: Models, Optimization, and Accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosewater, David; Ferreira, Summer; Schoenwald, David

    Battery energy storage systems (BESS) are a critical technology for integrating high penetration renewable power on an intelligent electrical grid. As limited energy restricts the steady-state operational state-of-charge (SoC) of storage systems, SoC forecasting models are used to determine feasible charge and discharge schedules that supply grid services. Smart grid controllers use SoC forecasts to optimize BESS schedules to make grid operation more efficient and resilient. This study presents three advances in BESS state-of-charge forecasting. First, two forecasting models are reformulated to be conducive to parameter optimization. Second, a new method for selecting optimal parameter values based on operational datamore » is presented. Last, a new framework for quantifying model accuracy is developed that enables a comparison between models, systems, and parameter selection methods. The accuracies achieved by both models, on two example battery systems, with each method of parameter selection are then compared in detail. The results of this analysis suggest variation in the suitability of these models for different battery types and applications. Finally, the proposed model formulations, optimization methods, and accuracy assessment framework can be used to improve the accuracy of SoC forecasts enabling better control over BESS charge/discharge schedules.« less

  10. Assessing Sustainability in Environmental Management: A Case Study in Malaysia Industry

    NASA Astrophysics Data System (ADS)

    Turan, Faiz Mohd; Johan, Kartina; Lanang, Wan Nurul Syahirah Wan; Asmanizam, Asmadianatasha

    2017-08-01

    The scarcity in measuring the sustainability accomplishment has been restrained most of the companies in Malaysian industry. Currently, there are variety types of the measurement tools of the sustainability assessment that have been implemented. However, there are still not achieving the inclusive elements required by the worldwide claim. In fact, the contribution to the sustainability performance are only highlighted on the nature, financial along with society components. In addition, some of the companies are conducting their sustainability implementation individually. By means, this process approaching type is needed to be integrated into a systematic system approach. This paper is focussing on investigating the present sustainability tools in the environmental management system for Malaysian industry prior to the quantification of the sustainability parameters. Hence, the parameters of the sustainability have been evaluated then in order to accomplish this project. By reviewing on the methodology of this research it comprises of three phases where it starts with the analyzation of the parameters in environmental management system according to the Malaysian context of industry. Moving on to the next step is the quantification of the criterion and finally the normalisation process will be done to determine the results of this research either it is succeeded or vice versa. As a result, this research has come to the conclusion where the level of the sustainability compliance does not achieve the standard level of the targeted objectives though it has already surpassed the average level of the sustainability performance. In future, the understanding towards the sustainability assessment is acquired to be aligned unitedly in order to integrated the process approach into the systematic approach. Apart, this research will be able to help to provide a measurable framework yet finally bestowing the Malaysian industry with a continuous improvement roadmap in achieving excellence in environmental management system.

  11. Towards the minimization of thermodynamic irreversibility in an electrically actuated microflow of a viscoelastic fluid under electrical double layer phenomenon

    NASA Astrophysics Data System (ADS)

    Sarma, Rajkumar; Jain, Manish; Mondal, Pranab Kumar

    2017-10-01

    We discuss the entropy generation minimization for electro-osmotic flow of a viscoelastic fluid through a parallel plate microchannel under the combined influences of interfacial slip and conjugate transport of heat. We use in this study the simplified Phan-Thien-Tanner model to describe the rheological behavior of the viscoelastic fluid. Using Navier's slip law and thermal boundary conditions of the third kind, we solve the transport equations analytically and evaluate the global entropy generation rate of the system. We examine the influential role of the following parameters on the entropy generation rate of the system, viz., the viscoelastic parameter (ɛDe2), Debye-Hückel parameter ( κ ¯ ) , channel wall thickness (δ), thermal conductivity of the wall (γ), Biot number (Bi), Peclet number (Pe), and axial temperature gradient (B). This investigation finally establishes the optimum values of the abovementioned parameters, leading to the minimum entropy generation of the system. We believe that results of this analysis could be helpful in optimizing the second-law performance of microscale thermal management devices, including the micro-heat exchangers, micro-reactors, and micro-heat pipes.

  12. Digital image processing and analysis for activated sludge wastewater treatment.

    PubMed

    Khan, Muhammad Burhan; Lee, Xue Yong; Nisar, Humaira; Ng, Choon Aun; Yeap, Kim Ho; Malik, Aamir Saeed

    2015-01-01

    Activated sludge system is generally used in wastewater treatment plants for processing domestic influent. Conventionally the activated sludge wastewater treatment is monitored by measuring physico-chemical parameters like total suspended solids (TSSol), sludge volume index (SVI) and chemical oxygen demand (COD) etc. For the measurement, tests are conducted in the laboratory, which take many hours to give the final measurement. Digital image processing and analysis offers a better alternative not only to monitor and characterize the current state of activated sludge but also to predict the future state. The characterization by image processing and analysis is done by correlating the time evolution of parameters extracted by image analysis of floc and filaments with the physico-chemical parameters. This chapter briefly reviews the activated sludge wastewater treatment; and, procedures of image acquisition, preprocessing, segmentation and analysis in the specific context of activated sludge wastewater treatment. In the latter part additional procedures like z-stacking, image stitching are introduced for wastewater image preprocessing, which are not previously used in the context of activated sludge. Different preprocessing and segmentation techniques are proposed, along with the survey of imaging procedures reported in the literature. Finally the image analysis based morphological parameters and correlation of the parameters with regard to monitoring and prediction of activated sludge are discussed. Hence it is observed that image analysis can play a very useful role in the monitoring of activated sludge wastewater treatment plants.

  13. Drop-on-Demand System for Manufacturing of Melt-based Solid Oral Dosage: Effect of Critical Process Parameters on Product Quality.

    PubMed

    Içten, Elçin; Giridhar, Arun; Nagy, Zoltan K; Reklaitis, Gintaras V

    2016-04-01

    The features of a drop-on-demand-based system developed for the manufacture of melt-based pharmaceuticals have been previously reported. In this paper, a supervisory control system, which is designed to ensure reproducible production of high quality of melt-based solid oral dosages, is presented. This control system enables the production of individual dosage forms with the desired critical quality attributes: amount of active ingredient and drug morphology by monitoring and controlling critical process parameters, such as drop size and product and process temperatures. The effects of these process parameters on the final product quality are investigated, and the properties of the produced dosage forms characterized using various techniques, such as Raman spectroscopy, optical microscopy, and dissolution testing. A crystallization temperature control strategy, including controlled temperature cycles, is presented to tailor the crystallization behavior of drug deposits and to achieve consistent drug morphology. This control strategy can be used to achieve the desired bioavailability of the drug by mitigating variations in the dissolution profiles. The supervisor control strategy enables the application of the drop-on-demand system to the production of individualized dosage required for personalized drug regimens.

  14. Neural network based automatic limit prediction and avoidance system and method

    NASA Technical Reports Server (NTRS)

    Calise, Anthony J. (Inventor); Prasad, Jonnalagadda V. R. (Inventor); Horn, Joseph F. (Inventor)

    2001-01-01

    A method for performance envelope boundary cueing for a vehicle control system comprises the steps of formulating a prediction system for a neural network and training the neural network to predict values of limited parameters as a function of current control positions and current vehicle operating conditions. The method further comprises the steps of applying the neural network to the control system of the vehicle, where the vehicle has capability for measuring current control positions and current vehicle operating conditions. The neural network generates a map of current control positions and vehicle operating conditions versus the limited parameters in a pre-determined vehicle operating condition. The method estimates critical control deflections from the current control positions required to drive the vehicle to a performance envelope boundary. Finally, the method comprises the steps of communicating the critical control deflection to the vehicle control system; and driving the vehicle control system to provide a tactile cue to an operator of the vehicle as the control positions approach the critical control deflections.

  15. Chaos as the hub of systems dynamics. The part I-The attitude control of spacecraft by involving in the heteroclinic chaos

    NASA Astrophysics Data System (ADS)

    Doroshin, Anton V.

    2018-06-01

    In this work the chaos in dynamical systems is considered as a positive aspect of dynamical behavior which can be applied to change systems dynamical parameters and, moreover, to change systems qualitative properties. From this point of view, the chaos can be characterized as a hub for the system dynamical regimes, because it allows to interconnect separated zones of the phase space of the system, and to fulfill the jump into the desirable phase space zone. The concretized aim of this part of the research is to focus on developing the attitude control method for magnetized gyrostat-satellites, which uses the passage through the intentionally generated heteroclinic chaos. The attitude dynamics of the satellite/spacecraft in this case represents the series of transitions from the initial dynamical regime into the chaotic heteroclinic regime with the subsequent exit to the final target dynamical regime with desirable parameters of the attitude dynamics.

  16. MONTAGE: A Methodology for Designing Composable End-to-End Secure Distributed Systems

    DTIC Science & Technology

    2012-08-01

    83 7.6 Formal Model of Loc Separation . . . . . . . . . . . . . . . . . . . . . . . . . 84 7.6.1 Static Partitions...Next, we derive five requirements (called Loc Separation, Implicit Parameter Separation, Error Signaling Separation, Conf Separation, and Next Call...hypervisors and hardware) and a real cloud (with shared hypervisors and hardware) that satisfies these requirements. Finally we study Loc Separation

  17. Predictive IP controller for robust position control of linear servo system.

    PubMed

    Lu, Shaowu; Zhou, Fengxing; Ma, Yajie; Tang, Xiaoqi

    2016-07-01

    Position control is a typical application of linear servo system. In this paper, to reduce the system overshoot, an integral plus proportional (IP) controller is used in the position control implementation. To further improve the control performance, a gain-tuning IP controller based on a generalized predictive control (GPC) law is proposed. Firstly, to represent the dynamics of the position loop, a second-order linear model is used and its model parameters are estimated on-line by using a recursive least squares method. Secondly, based on the GPC law, an optimal control sequence is obtained by using receding horizon, then directly supplies the IP controller with the corresponding control parameters in the real operations. Finally, simulation and experimental results are presented to show the efficiency of proposed scheme. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y.; Liu, Z.; Zhang, S.

    Parameter estimation provides a potentially powerful approach to reduce model bias for complex climate models. Here, in a twin experiment framework, the authors perform the first parameter estimation in a fully coupled ocean–atmosphere general circulation model using an ensemble coupled data assimilation system facilitated with parameter estimation. The authors first perform single-parameter estimation and then multiple-parameter estimation. In the case of the single-parameter estimation, the error of the parameter [solar penetration depth (SPD)] is reduced by over 90% after ~40 years of assimilation of the conventional observations of monthly sea surface temperature (SST) and salinity (SSS). The results of multiple-parametermore » estimation are less reliable than those of single-parameter estimation when only the monthly SST and SSS are assimilated. Assimilating additional observations of atmospheric data of temperature and wind improves the reliability of multiple-parameter estimation. The errors of the parameters are reduced by 90% in ~8 years of assimilation. Finally, the improved parameters also improve the model climatology. With the optimized parameters, the bias of the climatology of SST is reduced by ~90%. Altogether, this study suggests the feasibility of ensemble-based parameter estimation in a fully coupled general circulation model.« less

  19. Experiments for practical education in process parameter optimization for selective laser sintering to increase workpiece quality

    NASA Astrophysics Data System (ADS)

    Reutterer, Bernd; Traxler, Lukas; Bayer, Natascha; Drauschke, Andreas

    2016-04-01

    Selective Laser Sintering (SLS) is considered as one of the most important additive manufacturing processes due to component stability and its broad range of usable materials. However the influence of the different process parameters on mechanical workpiece properties is still poorly studied, leading to the fact that further optimization is necessary to increase workpiece quality. In order to investigate the impact of various process parameters, laboratory experiments are implemented to improve the understanding of the SLS limitations and advantages on an educational level. Experiments are based on two different workstations, used to teach students the fundamentals of SLS. First of all a 50 W CO2 laser workstation is used to investigate the interaction of the laser beam with the used material in accordance with varied process parameters to analyze a single-layered test piece. Second of all the FORMIGA P110 laser sintering system from EOS is used to print different 3D test pieces in dependence on various process parameters. Finally quality attributes are tested including warpage, dimension accuracy or tensile strength. For dimension measurements and evaluation of the surface structure a telecentric lens in combination with a camera is used. A tensile test machine allows testing of the tensile strength and the interpreting of stress-strain curves. The developed laboratory experiments are suitable to teach students the influence of processing parameters. In this context they will be able to optimize the input parameters depending on the component which has to be manufactured and to increase the overall quality of the final workpiece.

  20. High-performance radial AMTEC cell design for ultra-high-power solar AMTEC systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendricks, T.J.; Huang, C.

    1999-07-01

    Alkali Metal Thermal to Electric Conversion (AMTEC) technology is rapidly maturing for potential application in ultra-high-power solar AMTEC systems required by potential future US Air Force (USAF) spacecraft missions in medium-earth and geosynchronous orbits (MEO and GEO). Solar thermal AMTEC power systems potentially have several important advantages over current solar photovoltaic power systems in ultra-high-power spacecraft applications for USAF MEO and GEO missions. This work presents key aspects of radial AMTEC cell design to achieve high cell performance in solar AMTEC systems delivering larger than 50 kW(e) to support high power USAF missions. These missions typically require AMTEC cell conversionmore » efficiency larger than 25%. A sophisticated design parameter methodology is described and demonstrated which establishes optimum design parameters in any radial cell design to satisfy high-power mission requirements. Specific relationships, which are distinct functions of cell temperatures and pressures, define critical dependencies between key cell design parameters, particularly the impact of parasitic thermal losses on Beta Alumina Solid Electrolyte (BASE) area requirements, voltage, number of BASE tubes, and system power production for both maximum power-per-BASE-area and optimum efficiency conditions. Finally, some high-level system tradeoffs are demonstrated using the design parameter methodology to establish high-power radial cell design requirements and philosophy. The discussion highlights how to incorporate this methodology with sophisticated SINDA/FLUINT AMTEC cell modeling capabilities to determine optimum radial AMTEC cell designs.« less

  1. Delineating parameter unidentifiabilities in complex models

    NASA Astrophysics Data System (ADS)

    Raman, Dhruva V.; Anderson, James; Papachristodoulou, Antonis

    2017-03-01

    Scientists use mathematical modeling as a tool for understanding and predicting the properties of complex physical systems. In highly parametrized models there often exist relationships between parameters over which model predictions are identical, or nearly identical. These are known as structural or practical unidentifiabilities, respectively. They are hard to diagnose and make reliable parameter estimation from data impossible. They furthermore imply the existence of an underlying model simplification. We describe a scalable method for detecting unidentifiabilities, as well as the functional relations defining them, for generic models. This allows for model simplification, and appreciation of which parameters (or functions thereof) cannot be estimated from data. Our algorithm can identify features such as redundant mechanisms and fast time-scale subsystems, as well as the regimes in parameter space over which such approximations are valid. We base our algorithm on a quantification of regional parametric sensitivity that we call `multiscale sloppiness'. Traditionally, the link between parametric sensitivity and the conditioning of the parameter estimation problem is made locally, through the Fisher information matrix. This is valid in the regime of infinitesimal measurement uncertainty. We demonstrate the duality between multiscale sloppiness and the geometry of confidence regions surrounding parameter estimates made where measurement uncertainty is non-negligible. Further theoretical relationships are provided linking multiscale sloppiness to the likelihood-ratio test. From this, we show that a local sensitivity analysis (as typically done) is insufficient for determining the reliability of parameter estimation, even with simple (non)linear systems. Our algorithm can provide a tractable alternative. We finally apply our methods to a large-scale, benchmark systems biology model of necrosis factor (NF)-κ B , uncovering unidentifiabilities.

  2. Identification of Synchronous Machine Stability - Parameters: AN On-Line Time-Domain Approach.

    NASA Astrophysics Data System (ADS)

    Le, Loc Xuan

    1987-09-01

    A time-domain modeling approach is described which enables the stability-study parameters of the synchronous machine to be determined directly from input-output data measured at the terminals of the machine operating under normal conditions. The transient responses due to system perturbations are used to identify the parameters of the equivalent circuit models. The described models are verified by comparing their responses with the machine responses generated from the transient stability models of a small three-generator multi-bus power system and of a single -machine infinite-bus power network. The least-squares method is used for the solution of the model parameters. As a precaution against ill-conditioned problems, the singular value decomposition (SVD) is employed for its inherent numerical stability. In order to identify the equivalent-circuit parameters uniquely, the solution of a linear optimization problem with non-linear constraints is required. Here, the SVD appears to offer a simple solution to this otherwise difficult problem. Furthermore, the SVD yields solutions with small bias and, therefore, physically meaningful parameters even in the presence of noise in the data. The question concerning the need for a more advanced model of the synchronous machine which describes subtransient and even sub-subtransient behavior is dealt with sensibly by the concept of condition number. The concept provides a quantitative measure for determining whether such an advanced model is indeed necessary. Finally, the recursive SVD algorithm is described for real-time parameter identification and tracking of slowly time-variant parameters. The algorithm is applied to identify the dynamic equivalent power system model.

  3. TRMM Microwave Imager (TMI) Updates for Final Data Version Release

    NASA Technical Reports Server (NTRS)

    Kroodsma, Rachael A; Bilanow, Stephen; Ji, Yimin; McKague, Darren

    2017-01-01

    The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) dataset released by the Precipitation Processing System (PPS) will be updated to a final version within the next year. These updates are based on increased knowledge in recent years of radiometer calibration and sensor performance issues. In particular, the Global Precipitation Measurement (GPM) Microwave Imager (GMI) is used as a model for many of the TMI version updates. This paper discusses four aspects of the TMI data product that will be improved: spacecraft attitude, calibration and quality control, along-scan bias corrections, and sensor pointing accuracy. These updates will be incorporated into the final TMI data version, improving the quality of the data product and ensuring accurate geophysical parameters can be derived from TMI.

  4. An Initial Study of the Sensitivity of Aircraft Vortex Spacing System (AVOSS) Spacing Sensitivity to Weather and Configuration Input Parameters

    NASA Technical Reports Server (NTRS)

    Riddick, Stephen E.; Hinton, David A.

    2000-01-01

    A study has been performed on a computer code modeling an aircraft wake vortex spacing system during final approach. This code represents an initial engineering model of a system to calculate reduced approach separation criteria needed to increase airport productivity. This report evaluates model sensitivity toward various weather conditions (crosswind, crosswind variance, turbulent kinetic energy, and thermal gradient), code configurations (approach corridor option, and wake demise definition), and post-processing techniques (rounding of provided spacing values, and controller time variance).

  5. Focusing Intense Charged Particle Beams with Achromatic Effects for Heavy Ion Fusion

    NASA Astrophysics Data System (ADS)

    Mitrani, James; Kaganovich, Igor

    2012-10-01

    Final focusing systems designed to minimize the effects of chromatic aberrations in the Neutralized Drift Compression Experiment (NDCX-II) are described. NDCX-II is a linear induction accelerator, designed to accelerate short bunches at high current. Previous experiments showed that neutralized drift compression significantly compresses the beam longitudinally (˜60x) in the z-direction, resulting in a narrow distribution in z-space, but a wide distribution in pz-space. Using simple lenses (e.g., solenoids, quadrupoles) to focus beam bunches with wide distributions in pz-space results in chromatic aberrations, leading to lower beam intensities (J/cm^2). Therefore, the final focusing system must be designed to compensate for chromatic aberrations. The paraxial ray equations and beam envelope equations are numerically solved for parameters appropriate to NDCX-II. Based on these results, conceptual designs for final focusing systems using a combination of solenoids and/or quadrupoles are optimized to compensate for chromatic aberrations. Lens aberrations and emittance growth will be investigated, and analytical results will be compared with results from numerical particle-in-cell (PIC) simulation codes.

  6. Korean Type Distal Radius Anatomical Volar Plate System: A Preliminary Report

    PubMed Central

    Kim, Jeong Hwan; Kim, Jihyeung; Kim, Min Bom; Rhee, Seung Hwan; Gong, Hyun Sik; Lee, Young Ho

    2014-01-01

    Background Distal radius fracture is the most common fracture of the upper extremity, and approximately 60,000 distal radius fractures occur annually in Korea. Internal fixation with an anatomical volar locking plate is widely used in the treatment of unstable distal radius fractures. However, most of the currently used distal radius anatomical plate systems were designed based on the anatomical characteristics of Western populations. Recently, the Korean-type distal radius anatomical volar plate (K-DRAVP) system was designed and developed based on the anatomical characteristics of the distal radius of Koreans. The purpose of this study was to evaluate the preliminary results of the new K-DRAVP system, and to compare its radiologic and functional results with those of the other systems. Methods From March 2012 to October 2012, 46 patients with acute distal radius fractures who were treated with the K-DRAVP system at three hospitals were enrolled in this study. Standard posteroanterior and lateral radiographs were obtained to assess fracture healing, and three radiographic parameters (volar tilt, radial inclination, and radial length) were assessed to evaluate radiographic outcomes. The range of motion and grip strength, the Gartland and Werley scoring system, and the disabilities of the arm, shoulder and hand (DASH) questionnaire were used to assess clinical and functional outcomes. Results All radiologic parameters were restored to normal values, and maintained without any loosening or collapse until the time of final follow-up. Grip strength was restored to 84% of the value for the unaffected side. The mean range of motion of the wrist at final follow-up was restored to 77%-95% of the value for the unaffected side. According to the Gartland and Werley scoring system, there were 16 excellent, 26 good, and 4 fair results. The mean DASH score was 8.4 points. There were no complications after surgery. Conclusions The newly developed K-DRAVP system could be used to restore and maintain good anatomical parameters, and provide good clinical outcomes with low complication rates. This system is a promising surgical option for the treatment of distal radius fractures in the Korean population. PMID:25177449

  7. Anticipatory Monitoring and Control of Complex Systems using a Fuzzy based Fusion of Support Vector Regressors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miltiadis Alamaniotis; Vivek Agarwal

    This paper places itself in the realm of anticipatory systems and envisions monitoring and control methods being capable of making predictions over system critical parameters. Anticipatory systems allow intelligent control of complex systems by predicting their future state. In the current work, an intelligent model aimed at implementing anticipatory monitoring and control in energy industry is presented and tested. More particularly, a set of support vector regressors (SVRs) are trained using both historical and observed data. The trained SVRs are used to predict the future value of the system based on current operational system parameter. The predicted values are thenmore » inputted to a fuzzy logic based module where the values are fused to obtain a single value, i.e., final system output prediction. The methodology is tested on real turbine degradation datasets. The outcome of the approach presented in this paper highlights the superiority over single support vector regressors. In addition, it is shown that appropriate selection of fuzzy sets and fuzzy rules plays an important role in improving system performance.« less

  8. The epidural needle guidance with an intelligent and automatic identification system for epidural anesthesia

    NASA Astrophysics Data System (ADS)

    Kao, Meng-Chun; Ting, Chien-Kun; Kuo, Wen-Chuan

    2018-02-01

    Incorrect placement of the needle causes medical complications in the epidural block, such as dural puncture or spinal cord injury. This study proposes a system which combines an optical coherence tomography (OCT) imaging probe with an automatic identification (AI) system to objectively identify the position of the epidural needle tip. The automatic identification system uses three features as image parameters to distinguish the different tissue by three classifiers. Finally, we found that the support vector machine (SVM) classifier has highest accuracy, specificity, and sensitivity, which reached to 95%, 98%, and 92%, respectively.

  9. Swarm size and iteration number effects to the performance of PSO algorithm in RFID tag coverage optimization

    NASA Astrophysics Data System (ADS)

    Prathabrao, M.; Nawawi, Azli; Sidek, Noor Azizah

    2017-04-01

    Radio Frequency Identification (RFID) system has multiple benefits which can improve the operational efficiency of the organization. The advantages are the ability to record data systematically and quickly, reducing human errors and system errors, update the database automatically and efficiently. It is often more readers (reader) is needed for the installation purposes in RFID system. Thus, it makes the system more complex. As a result, RFID network planning process is needed to ensure the RFID system works perfectly. The planning process is also considered as an optimization process and power adjustment because the coordinates of each RFID reader to be determined. Therefore, algorithms inspired by the environment (Algorithm Inspired by Nature) is often used. In the study, PSO algorithm is used because it has few number of parameters, the simulation time is fast, easy to use and also very practical. However, PSO parameters must be adjusted correctly, for robust and efficient usage of PSO. Failure to do so may result in disruption of performance and results of PSO optimization of the system will be less good. To ensure the efficiency of PSO, this study will examine the effects of two parameters on the performance of PSO Algorithm in RFID tag coverage optimization. The parameters to be studied are the swarm size and iteration number. In addition to that, the study will also recommend the most optimal adjustment for both parameters that is, 200 for the no. iterations and 800 for the no. of swarms. Finally, the results of this study will enable PSO to operate more efficiently in order to optimize RFID network planning system.

  10. NFIRAOS in 2015: engineering for future integration of complex subsystems

    NASA Astrophysics Data System (ADS)

    Atwood, Jenny; Andersen, David; Byrnes, Peter; Densmore, Adam; Fitzsimmons, Joeleff; Herriot, Glen; Hill, Alexis

    2016-07-01

    The Narrow Field InfraRed Adaptive Optics System (NFIRAOS) will be the first-light facility Adaptive Optics (AO) system for the Thirty Meter Telescope (TMT). NFIRAOS will be able to host three science instruments that can take advantage of this high performance system. NRC Herzberg is leading the design effort for this critical TMT subsystem. As part of the final design phase of NFIRAOS, we have identified multiple subsystems to be sub-contracted to Canadian industry. The scope of work for each subcontract is guided by the NFIRAOS Work Breakdown Structure (WBS) and is divided into two phases: the completion of the final design and the fabrication, assembly and delivery of the final product. Integration of the subsystems at NRC will require a detailed understanding of the interfaces between the subsystems, and this work has begun by defining the interface physical characteristics, stability, local coordinate systems, and alignment features. In order to maintain our stringent performance requirements, the interface parameters for each subsystem are captured in multiple performance budgets, which allow a bottom-up error estimate. In this paper we discuss our approach for defining the interfaces in a consistent manner and present an example error budget that is influenced by multiple subsystems.

  11. LPV gain-scheduled control of SCR aftertreatment systems

    NASA Astrophysics Data System (ADS)

    Meisami-Azad, Mona; Mohammadpour, Javad; Grigoriadis, Karolos M.; Harold, Michael P.; Franchek, Matthew A.

    2012-01-01

    Hydrocarbons, carbon monoxide and some of other polluting emissions produced by diesel engines are usually lower than those produced by gasoline engines. While great strides have been made in the exhaust aftertreatment of vehicular pollutants, the elimination of nitrogen oxide (NO x ) from diesel vehicles is still a challenge. The primary reason is that diesel combustion is a fuel-lean process, and hence there is significant unreacted oxygen in the exhaust. Selective catalytic reduction (SCR) is a well-developed technology for power plants and has been recently employed for reducing NO x emissions from automotive sources and in particular, heavy-duty diesel engines. In this article, we develop a linear parameter-varying (LPV) feedforward/feedback control design method for the SCR aftertreatment system to decrease NO x emissions while keeping ammonia slippage to a desired low level downstream the catalyst. The performance of the closed-loop system obtained from the interconnection of the SCR system and the output feedback LPV control strategy is then compared with other control design methods including sliding mode, and observer-based static state-feedback parameter-varying control. To reduce the computational complexity involved in the control design process, the number of LPV parameters in the developed quasi-LPV (qLPV) model is reduced by applying the principal component analysis technique. An LPV feedback/feedforward controller is then designed for the qLPV model with reduced number of scheduling parameters. The designed full-order controller is further simplified to a first-order transfer function with a parameter-varying gain and pole. Finally, simulation results using both a low-order model and a high-fidelity and high-order model of SCR reactions in GT-POWER interfaced with MATLAB/SIMULINK illustrate the high NO x conversion efficiency of the closed-loop SCR system using the proposed parameter-varying control law.

  12. Identification procedure for epistemic uncertainties using inverse fuzzy arithmetic

    NASA Astrophysics Data System (ADS)

    Haag, T.; Herrmann, J.; Hanss, M.

    2010-10-01

    For the mathematical representation of systems with epistemic uncertainties, arising, for example, from simplifications in the modeling procedure, models with fuzzy-valued parameters prove to be a suitable and promising approach. In practice, however, the determination of these parameters turns out to be a non-trivial problem. The identification procedure to appropriately update these parameters on the basis of a reference output (measurement or output of an advanced model) requires the solution of an inverse problem. Against this background, an inverse method for the computation of the fuzzy-valued parameters of a model with epistemic uncertainties is presented. This method stands out due to the fact that it only uses feedforward simulations of the model, based on the transformation method of fuzzy arithmetic, along with the reference output. An inversion of the system equations is not necessary. The advancement of the method presented in this paper consists of the identification of multiple input parameters based on a single reference output or measurement. An optimization is used to solve the resulting underdetermined problems by minimizing the uncertainty of the identified parameters. Regions where the identification procedure is reliable are determined by the computation of a feasibility criterion which is also based on the output data of the transformation method only. For a frequency response function of a mechanical system, this criterion allows a restriction of the identification process to some special range of frequency where its solution can be guaranteed. Finally, the practicability of the method is demonstrated by covering the measured output of a fluid-filled piping system by the corresponding uncertain FE model in a conservative way.

  13. Motor Task Variation Induces Structural Learning

    PubMed Central

    Braun, Daniel A.; Aertsen, Ad; Wolpert, Daniel M.; Mehring, Carsten

    2009-01-01

    Summary When we have learned a motor skill, such as cycling or ice-skating, we can rapidly generalize to novel tasks, such as motorcycling or rollerblading [1–8]. Such facilitation of learning could arise through two distinct mechanisms by which the motor system might adjust its control parameters. First, fast learning could simply be a consequence of the proximity of the original and final settings of the control parameters. Second, by structural learning [9–14], the motor system could constrain the parameter adjustments to conform to the control parameters' covariance structure. Thus, facilitation of learning would rely on the novel task parameters' lying on the structure of a lower-dimensional subspace that can be explored more efficiently. To test between these two hypotheses, we exposed subjects to randomly varying visuomotor tasks of fixed structure. Although such randomly varying tasks are thought to prevent learning, we show that when subsequently presented with novel tasks, subjects exhibit three key features of structural learning: facilitated learning of tasks with the same structure, strong reduction in interference normally observed when switching between tasks that require opposite control strategies, and preferential exploration along the learned structure. These results suggest that skill generalization relies on task variation and structural learning. PMID:19217296

  14. Motor task variation induces structural learning.

    PubMed

    Braun, Daniel A; Aertsen, Ad; Wolpert, Daniel M; Mehring, Carsten

    2009-02-24

    When we have learned a motor skill, such as cycling or ice-skating, we can rapidly generalize to novel tasks, such as motorcycling or rollerblading [1-8]. Such facilitation of learning could arise through two distinct mechanisms by which the motor system might adjust its control parameters. First, fast learning could simply be a consequence of the proximity of the original and final settings of the control parameters. Second, by structural learning [9-14], the motor system could constrain the parameter adjustments to conform to the control parameters' covariance structure. Thus, facilitation of learning would rely on the novel task parameters' lying on the structure of a lower-dimensional subspace that can be explored more efficiently. To test between these two hypotheses, we exposed subjects to randomly varying visuomotor tasks of fixed structure. Although such randomly varying tasks are thought to prevent learning, we show that when subsequently presented with novel tasks, subjects exhibit three key features of structural learning: facilitated learning of tasks with the same structure, strong reduction in interference normally observed when switching between tasks that require opposite control strategies, and preferential exploration along the learned structure. These results suggest that skill generalization relies on task variation and structural learning.

  15. Performance of field-emitting resonating carbon nanotubes as radio-frequency demodulators

    NASA Astrophysics Data System (ADS)

    Vincent, P.; Poncharal, P.; Barois, T.; Perisanu, S.; Gouttenoire, V.; Frachon, H.; Lazarus, A.; de Langre, E.; Minoux, E.; Charles, M.; Ziaei, A.; Guillot, D.; Choueib, M.; Ayari, A.; Purcell, S. T.

    2011-04-01

    We report on a systematic study of the use of resonating nanotubes in a field emission (FE) configuration to demodulate radio frequency signals. We particularly concentrate on how the demodulation depends on the variation of the field amplification factor during resonance. Analytical formulas describing the demodulation are derived as functions of the system parameters. Experiments using AM and FM demodulations in a transmission electron microscope are also presented with a determination of all the pertinent experimental parameters. Finally we discuss the use of CNTs undergoing FE as nanoantennae and the different geometries that could be used for optimization and implementation.

  16. Application of the FADS system on the Re-entry Module

    NASA Astrophysics Data System (ADS)

    Zhen, Huang

    2016-07-01

    The aerodynamic model for Flush Air Data Sensing System (FADS) is built based on the surface pressure distribution obtained through the pressure orifices laid on specific positions of the surface,and the flight parameters,such as angle of attack,angle of side-slip,Mach number,free-stream static pressure and dynamic pressure are inferred from the aerodynamic model.The flush air data sensing system (FADS) has been used on several flight tests of aircraft and re-entry vehicle,such as,X-15,space shuttle,F-14,X-33,X-43A and so on. This paper discusses the application of the FADS on the re-entry module with blunt body to obtain high-precision aerodynamic parameters.First of all,a basic theory and operating principle of the FADS is shown.Then,the applications of the FADS on typical aircrafts and re-entry vehicles are described.Thirdly,the application mode on the re-entry module with blunt body is discussed in detail,including aerodynamic simulation,pressure distribution,trajectory reconstruction and the hardware shoule be used,such as flush air data sensing system(FADS),inertial navigation system (INS),data acquisition system,data storage system.Finally,ablunt module re-entry flight test from low earth orbit (LEO) is planned to obtain aerodynamic parameters and amend the aerodynamic model with this FADS system data.The results show that FADS system can be applied widely in re-entry module with blunt bodies.

  17. Distributed Time-Varying Formation Robust Tracking for General Linear Multiagent Systems With Parameter Uncertainties and External Disturbances.

    PubMed

    Hua, Yongzhao; Dong, Xiwang; Li, Qingdong; Ren, Zhang

    2017-05-18

    This paper investigates the time-varying formation robust tracking problems for high-order linear multiagent systems with a leader of unknown control input in the presence of heterogeneous parameter uncertainties and external disturbances. The followers need to accomplish an expected time-varying formation in the state space and track the state trajectory produced by the leader simultaneously. First, a time-varying formation robust tracking protocol with a totally distributed form is proposed utilizing the neighborhood state information. With the adaptive updating mechanism, neither any global knowledge about the communication topology nor the upper bounds of the parameter uncertainties, external disturbances and leader's unknown input are required in the proposed protocol. Then, in order to determine the control parameters, an algorithm with four steps is presented, where feasible conditions for the followers to accomplish the expected time-varying formation tracking are provided. Furthermore, based on the Lyapunov-like analysis theory, it is proved that the formation tracking error can converge to zero asymptotically. Finally, the effectiveness of the theoretical results is verified by simulation examples.

  18. Control-Relevant Modeling, Analysis, and Design for Scramjet-Powered Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Rodriguez, Armando A.; Dickeson, Jeffrey J.; Sridharan, Srikanth; Benavides, Jose; Soloway, Don; Kelkar, Atul; Vogel, Jerald M.

    2009-01-01

    Within this paper, control-relevant vehicle design concepts are examined using a widely used 3 DOF (plus flexibility) nonlinear model for the longitudinal dynamics of a generic carrot-shaped scramjet powered hypersonic vehicle. Trade studies associated with vehicle/engine parameters are examined. The impact of parameters on control-relevant static properties (e.g. level-flight trimmable region, trim controls, AOA, thrust margin) and dynamic properties (e.g. instability and right half plane zero associated with flight path angle) are examined. Specific parameters considered include: inlet height, diffuser area ratio, lower forebody compression ramp inclination angle, engine location, center of gravity, and mass. Vehicle optimizations is also examined. Both static and dynamic considerations are addressed. The gap-metric optimized vehicle is obtained to illustrate how this control-centric concept can be used to "reduce" scheduling requirements for the final control system. A classic inner-outer loop control architecture and methodology is used to shed light on how specific vehicle/engine design parameter selections impact control system design. In short, the work represents an important first step toward revealing fundamental tradeoffs and systematically treating control-relevant vehicle design.

  19. Definitive screening design enables optimization of LC-ESI-MS/MS parameters in proteomics.

    PubMed

    Aburaya, Shunsuke; Aoki, Wataru; Minakuchi, Hiroyoshi; Ueda, Mitsuyoshi

    2017-12-01

    In proteomics, more than 100,000 peptides are generated from the digestion of human cell lysates. Proteome samples have a broad dynamic range in protein abundance; therefore, it is critical to optimize various parameters of LC-ESI-MS/MS to comprehensively identify these peptides. However, there are many parameters for LC-ESI-MS/MS analysis. In this study, we applied definitive screening design to simultaneously optimize 14 parameters in the operation of monolithic capillary LC-ESI-MS/MS to increase the number of identified proteins and/or the average peak area of MS1. The simultaneous optimization enabled the determination of two-factor interactions between LC and MS. Finally, we found two parameter sets of monolithic capillary LC-ESI-MS/MS that increased the number of identified proteins by 8.1% or the average peak area of MS1 by 67%. The definitive screening design would be highly useful for high-throughput analysis of the best parameter set in LC-ESI-MS/MS systems.

  20. Definition and application of a five-parameter characterization of one-dimensional cellular automata rule space.

    PubMed

    Oliveira, G M; de Oliveira, P P; Omar, N

    2001-01-01

    Cellular automata (CA) are important as prototypical, spatially extended, discrete dynamical systems. Because the problem of forecasting dynamic behavior of CA is undecidable, various parameter-based approximations have been developed to address the problem. Out of the analysis of the most important parameters available to this end we proposed some guidelines that should be followed when defining a parameter of that kind. Based upon the guidelines, new parameters were proposed and a set of five parameters was selected; two of them were drawn from the literature and three are new ones, defined here. This article presents all of them and makes their qualities evident. Then, two results are described, related to the use of the parameter set in the Elementary Rule Space: a phase transition diagram, and some general heuristics for forecasting the dynamics of one-dimensional CA. Finally, as an example of the application of the selected parameters in high cardinality spaces, results are presented from experiments involving the evolution of radius-3 CA in the Density Classification Task, and radius-2 CA in the Synchronization Task.

  1. Incomplete data based parameter identification of nonlinear and time-variant oscillators with fractional derivative elements

    NASA Astrophysics Data System (ADS)

    Kougioumtzoglou, Ioannis A.; dos Santos, Ketson R. M.; Comerford, Liam

    2017-09-01

    Various system identification techniques exist in the literature that can handle non-stationary measured time-histories, or cases of incomplete data, or address systems following a fractional calculus modeling. However, there are not many (if any) techniques that can address all three aforementioned challenges simultaneously in a consistent manner. In this paper, a novel multiple-input/single-output (MISO) system identification technique is developed for parameter identification of nonlinear and time-variant oscillators with fractional derivative terms subject to incomplete non-stationary data. The technique utilizes a representation of the nonlinear restoring forces as a set of parallel linear sub-systems. In this regard, the oscillator is transformed into an equivalent MISO system in the wavelet domain. Next, a recently developed L1-norm minimization procedure based on compressive sensing theory is applied for determining the wavelet coefficients of the available incomplete non-stationary input-output (excitation-response) data. Finally, these wavelet coefficients are utilized to determine appropriately defined time- and frequency-dependent wavelet based frequency response functions and related oscillator parameters. Several linear and nonlinear time-variant systems with fractional derivative elements are used as numerical examples to demonstrate the reliability of the technique even in cases of noise corrupted and incomplete data.

  2. A hybrid phononic crystal for roof application.

    PubMed

    Wan, Qingmian; Shao, Rong

    2017-11-01

    Phononic crystal is a type of acoustic material, and the study of phononic crystals has attracted great attention from national research institutions. Meanwhile, noise reduction in the low-frequency range has always encountered difficulties and troubles in the engineering field. In order to obtain a unique and effective low-frequency noise reduction method, in this paper a low frequency noise attenuation system based on phononic crystal structure is proposed and demonstrated. The finite element simulation of the band gap is consistent with the final test results. The effects of structure parameters on the band gaps were studied by changing the structure parameters and the band gaps can be controlled by suitably tuning structure parameters. The structure and results provide a good support for phononic crystal structures engineering application.

  3. Will there be again a transition from acceleration to deceleration in course of the dark energy evolution of the universe?

    NASA Astrophysics Data System (ADS)

    Pan, Supriya; Chakraborty, Subenoy

    2013-09-01

    In this work we consider the evolution of the interactive dark fluids in the background of homogeneous and isotropic FRW model of the universe. The dark fluids consist of a warm dark matter and a dark energy and both are described as perfect fluid with barotropic equation of state. The dark species interact non-gravitationally through an additional term in the energy conservation equations. An autonomous system is formed in the energy density spaces and fixed points are analyzed. A general expression for the deceleration parameter has been obtained and it is possible to have more than one zero of the deceleration parameter. Finally, vanishing of the deceleration parameter has been examined with some examples.

  4. Front and pulse solutions for the complex Ginzburg-Landau equation with higher-order terms.

    PubMed

    Tian, Huiping; Li, Zhonghao; Tian, Jinping; Zhou, Guosheng

    2002-12-01

    We investigate one-dimensional complex Ginzburg-Landau equation with higher-order terms and discuss their influences on the multiplicity of solutions. An exact analytic front solution is presented. By stability analysis for the original partial differential equation, we derive its necessary stability condition for amplitude perturbations. This condition together with the exact front solution determine the region of parameter space where the uniformly translating front solution can exist. In addition, stable pulses, chaotic pulses, and attenuation pulses appear generally if the parameters are out of the range. Finally, applying these analysis into the optical transmission system numerically we find that the stable transmission of optical pulses can be achieved if the parameters are appropriately chosen.

  5. General airplane performance

    NASA Technical Reports Server (NTRS)

    Rockfeller, W C

    1939-01-01

    Equations have been developed for the analysis of the performance of the ideal airplane, leading to an approximate physical interpretation of the performance problem. The basic sea-level airplane parameters have been generalized to altitude parameters and a new parameter has been introduced and physically interpreted. The performance analysis for actual airplanes has been obtained in terms of the equivalent ideal airplane in order that the charts developed for use in practical calculations will for the most part apply to any type of engine-propeller combination and system of control, the only additional material required consisting of the actual engine and propeller curves for propulsion unit. Finally, a more exact method for the calculation of the climb characteristics for the constant-speed controllable propeller is presented in the appendix.

  6. Model-based estimation for dynamic cardiac studies using ECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiao, P.C.; Rogers, W.L.; Clinthorne, N.H.

    1994-06-01

    In this paper, the authors develop a strategy for joint estimation of physiological parameters and myocardial boundaries using ECT (Emission Computed Tomography). The authors construct an observation model to relate parameters of interest to the projection data and to account for limited ECT system resolution and measurement noise. The authors then use a maximum likelihood (ML) estimator to jointly estimate all the parameters directly from the projection data without reconstruction of intermediate images. The authors also simulate myocardial perfusion studies based on a simplified heart model to evaluate the performance of the model-based joint ML estimator and compare this performancemore » to the Cramer-Rao lower bound. Finally, model assumptions and potential uses of the joint estimation strategy are discussed.« less

  7. A study on stimulation of DC high voltage power of LCC series parallel resonant in projectile velocity measurement system

    NASA Astrophysics Data System (ADS)

    Lu, Dong-dong; Gu, Jin-liang; Luo, Hong-e.; Xia, Yan

    2017-10-01

    According to specific requirements of the X-ray machine system for measuring velocity of outfield projectile, a DC high voltage power supply system is designed for the high voltage or the smaller current. The system comprises: a series resonant circuit is selected as a full-bridge inverter circuit; a high-frequency zero-current soft switching of a high-voltage power supply is realized by PWM output by STM32; a nanocrystalline alloy transformer is chosen as a high-frequency booster transformer; and the related parameters of an LCC series-parallel resonant are determined according to the preset parameters of the transformer. The concrete method includes: a LCC series parallel resonant circuit and a voltage doubling circuit are stimulated by using MULTISM and MATLAB; selecting an optimal solution and an optimal parameter of all parts after stimulation analysis; and finally verifying the correctness of the parameter by stimulation of the whole system. Through stimulation analysis, the output voltage of the series-parallel resonant circuit gets to 10KV in 28s: then passing through the voltage doubling circuit, the output voltage gets to 120KV in one hour. According to the system, the wave range of the output voltage is so small as to provide the stable X-ray supply for the X-ray machine for measuring velocity of outfield projectile. It is fast in charging and high in efficiency.

  8. The core mass-radius relation for giants - A new test of stellar evolution theory

    NASA Technical Reports Server (NTRS)

    Joss, P. C.; Rappaport, S.; Lewis, W.

    1987-01-01

    It is demonstrated here that the measurable properties of systems containing degenerate dwarfs can be used as a direct test of the core mass-radius relation for moderate-mass giants if the final stages of the loss of the envelope of the progenitor giant occurred via stable critical lobe overflow. This relation directly probes the internal structure of stars at a relatively advanced evolutionary state and is only modestly influenced by adjustable parameters. The measured properties of six binary systems, including such diverse systems as Sirius and Procyon and two millisecond pulsars, are utilized to derive constraints on the empirical core mass-radius relation, and the constraints are compared to the theoretical relation. The possibility that the final stages of envelope ejection of the giant progenitor of Sirius B occurred via critical lobe overflow in historical times is considered.

  9. Formation of solar system analogues - I. Looking for initial conditions through a population synthesis analysis

    NASA Astrophysics Data System (ADS)

    Ronco, M. P.; Guilera, O. M.; de Elía, G. C.

    2017-11-01

    Population synthesis models of planetary systems developed during the last ˜15 yr could reproduce several of the observables of the exoplanet population, and also allowed us to constrain planetary formation models. We present our planet formation model, which calculates the evolution of a planetary system during the gaseous phase. The code incorporates relevant physical phenomena for the formation of a planetary system, like photoevaporation, planet migration, gas accretion, water delivery in embryos and planetesimals, a detailed study of the orbital evolution of the planetesimal population, and the treatment of the fusion between embryos, considering their atmospheres. The main goal of this work, unlike other works of planetary population synthesis, is to find suitable scenarios and physical parameters of the disc to form Solar system analogues. We are specially interested in the final planet distributions, and in the final surface density, eccentricity and inclination profiles for the planetesimal population. These final distributions will be used as initial conditions for N-body simulations to study the post-oligarchic formation in a second work. We then consider different formation scenarios, with different planetesimal sizes and different type I migration rates. We find that Solar system analogues are favoured in massive discs, with low type I migration rates, and small planetesimal sizes. Besides, those rocky planets within their habitables zones are dry when discs dissipate. At last, the final configurations of Solar system analogues include information about the mass and semimajor axis of the planets, water contents, and the properties of the planetesimal remnants.

  10. Dynamical recovery of SU(2) symmetry in the mass-quenched Hubbard model

    NASA Astrophysics Data System (ADS)

    Du, Liang; Fiete, Gregory A.

    2018-02-01

    We use nonequilibrium dynamical mean-field theory with iterative perturbation theory as an impurity solver to study the recovery of SU(2) symmetry in real time following a hopping integral parameter quench from a mass-imbalanced to a mass-balanced single-band Hubbard model at half filling. A dynamical order parameter γ (t ) is defined to characterize the evolution of the system towards SU(2) symmetry. By comparing the momentum-dependent occupation from an equilibrium calculation [with the SU(2) symmetric Hamiltonian after the quench at an effective temperature] with the data from our nonequilibrium calculation, we conclude that the SU(2) symmetry recovered state is a thermalized state. Further evidence from the evolution of the density of states supports this conclusion. We find the order parameter in the weak Coulomb interaction regime undergoes an approximate exponential decay. We numerically investigate the interplay of the relevant parameters (initial temperature, Coulomb interaction strength, initial mass-imbalance ratio) and their combined effect on the thermalization behavior. Finally, we study evolution of the order parameter as the hopping parameter is changed with either a linear ramp or a pulse. Our results can be useful in strategies to engineer the relaxation behavior of interacting quantum many-particle systems.

  11. Identification and compensation of friction for a novel two-axis differential micro-feed system

    NASA Astrophysics Data System (ADS)

    Du, Fuxin; Zhang, Mingyang; Wang, Zhaoguo; Yu, Chen; Feng, Xianying; Li, Peigang

    2018-06-01

    Non-linear friction in a conventional drive feed system (CDFS) feeding at low speed is one of the main factors that lead to the complexity of the feed drive. The CDFS will inevitably enter or approach a non-linear creeping work area at extremely low speed. A novel two-axis differential micro-feed system (TDMS) is developed in this paper to overcome the accuracy limitation of CDFS. A dynamic model of TDMS is first established. Then, a novel all-component friction parameter identification method (ACFPIM) using a genetic algorithm (GA) to identify the friction parameters of a TDMS is introduced. The friction parameters of the ball screw and linear motion guides are identified independently using the method, assuring the accurate modelling of friction force at all components. A proportional-derivate feed drive position controller with an observer-based friction compensator is implemented to achieve an accurate trajectory tracking performance. Finally, comparative experiments demonstrate the effectiveness of the TDMS in inhibiting the disadvantageous influence of non-linear friction and the validity of the proposed identification method for TDMS.

  12. Parameter identification for nonlinear aerodynamic systems

    NASA Technical Reports Server (NTRS)

    Pearson, Allan E.

    1993-01-01

    This final technical report covers a three and one-half year period preceding February 28, 1993 during which support was provided under NASA Grant NAG-1-1065. Following a general description of the system identification problem and a brief survey of methods to attack it, the basic ideas behind the approach taken in this research effort are presented. The results obtained are described with reference to the published work, including the five semiannual progress reports previously submitted and two interim technical reports.

  13. Nonlinear tunneling of bright and dark rogue waves in combined nonlinear Schrödinger and Maxwell-Bloch systems

    NASA Astrophysics Data System (ADS)

    Raju, Thokala Soloman; Pal, Ritu

    2018-05-01

    We derive the analytical rogue wave solutions for the generalized inhomogeneous nonlinear Schrödinger-Maxwell-Bloch (GINLS-MB) equation describing the pulse propagation in erbium-doped fibre system. Then by suitably choosing the inhomogeneous parameters, we delineate the tunneling properties of rogue waves through dispersion and nonlinearity barriers or wells. Finally, we demonstrate the propagating characteristics of optical solitons by considering their tunneling through periodic barriers by the proper choice of external potential.

  14. Predictions for neutral K and B meson physics

    NASA Astrophysics Data System (ADS)

    Dimopoulos, Savas; Hall, Lawrence J.; Raby, Stuart

    1992-12-01

    Using supersymmetric grand unified theories, we have recently invented a framework which allows the prediction of three quark masses, two of the parameters of the Kobayashi-Maskawa matrix, and tanβ, the ratio of the two electroweak vacuum expectation values. These predictions are used to calculate ɛ and ɛ' in the kaon system, the mass mixing in the B0d and B0s systems, and the size of CP asymmetries in the decays of neutral B mesons to explicit final states of given CP.

  15. GEOPHYSICS, ASTRONOMY AND ASTROPHYSICS: A two scale nonlinear fractal sea surface model in a one dimensional deep sea

    NASA Astrophysics Data System (ADS)

    Xie, Tao; Zou, Guang-Hui; William, Perrie; Kuang, Hai-Lan; Chen, Wei

    2010-05-01

    Using the theory of nonlinear interactions between long and short waves, a nonlinear fractal sea surface model is presented for a one dimensional deep sea. Numerical simulation results show that spectra intensity changes at different locations (in both the wave number domain and temporal-frequency domain), and the system obeys the energy conservation principle. Finally, a method to limit the fractal parameters is also presented to ensure that the model system does not become ill-posed.

  16. Discrete-time infinity control problem with measurement feedback

    NASA Technical Reports Server (NTRS)

    Stoorvogel, A. A.; Saberi, A.; Chen, B. M.

    1992-01-01

    The paper is concerned with the discrete-time H(sub infinity) control problem with measurement feedback. The authors extend previous results by having weaker assumptions on the system parameters. The authors also show explicitly the structure of H(sub infinity) controllers. Finally, they show that it is in certain cases possible, without loss of performance, to reduce the dynamical order of the controllers.

  17. Estimating Mass Parameters of Doubly Synchronous Binary Asteroids

    NASA Astrophysics Data System (ADS)

    Davis, Alex; Scheeres, Daniel J.

    2017-10-01

    The non-spherical mass distributions of binary asteroid systems lead to coupled mutual gravitational forces and torques. Observations of the coupled attitude and orbital dynamics can be leveraged to provide information about the mass parameters of the binary system. The full 3-dimensional motion has 9 degrees of freedom, and coupled dynamics require the use of numerical investigation only. In the current study we simplify the system to a planar ellipsoid-ellipsoid binary system in a doubly synchronous orbit. Three modes are identified for the system, which has 4 degrees of freedom, with one degree of freedom corresponding to an ignorable coordinate. The three modes correspond to the three major librational modes of the system when it is in a doubly synchronous orbit. The linearized periods of each mode are a function of the mass parameters of the two asteroids, enabling measurement of these parameters based on observations of the librational motion. Here we implement estimation techniques to evaluate the capabilities of this mass measurement method. We apply this methodology to the Trojan binary asteroid system 617 Patroclus and Menoetius (1906 VY), the final flyby target of the recently announced LUCY Discovery mission. This system is of interest because a stellar occultation campaign of the Patroclus and Menoetius system has suggested that the asteroids are similarly sized oblate ellipsoids moving in a doubly-synchronous orbit, making the system an ideal test for this investigation. A number of missed observations during the campaign also suggested the possibility of a crater on the southern limb of Menoetius, the presence of which could be evaluated by our mass estimation method. This presentation will review the methodology and potential accuracy of our approach in addition to evaluating how the dynamical coupling can be used to help understand light curve and stellar occultation observations for librating binary systems.

  18. Development of an Opto-Acoustic Recanalization System Final Report CRADA No. 1314-96

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, L. D.; Adam, H. R.

    The objective of the project was to develop an ischemic stroke treatient system that restores blood flow to the brain by removing occlusions using acoustic energy created by fiber optic delivery of laser light, a process called Opto Acoustic Recanalization (OAR). The key tasks of the project were to select a laser system, quantify temperature, pressure and particle size distribution, and develop a prototype device incorporating a feedback mechanism. System parameters were developed to cause emulsification while attempting to minimize particle size and collateral damage. The prototype system was tested in animal models and resulted in no visible collateral damage.

  19. Study on warning radius of diffuse reflection laser warning based on fish-eye lens

    NASA Astrophysics Data System (ADS)

    Chen, Bolin; Zhang, Weian

    2013-09-01

    The diffuse reflection type of omni-directional laser warning based on fish-eye lens is becoming more and more important. As one of the key parameters of warning system, the warning radius should be put into investigation emphatically. The paper firstly theoretically analyzes the energy detected by single pixel of FPA detector in the system under complicated environment. Then the least energy detectable by each single pixel of the system is computed in terms of detector sensitivity, system noise, and minimum SNR. Subsequently, by comparison between the energy detected by single pixel and the least detectable energy, the warning radius is deduced from Torrance-Sparrow five-parameter semiempirical statistic model. Finally, a field experiment was developed to validate the computational results. It has been found that the warning radius has a close relationship with BRDF parameters of the irradiated target, propagation distance, angle of incidence, and detector sensitivity, etc. Furthermore, an important fact is shown that the experimental values of warning radius are always less than that of theoretical ones, due to such factors as the optical aberration of fish-eye lens, the transmissivity of narrowband filter, and the packing ratio of detector.

  20. Coupling of Bayesian Networks with GIS for wildfire risk assessment on natural and agricultural areas of the Mediterranean

    NASA Astrophysics Data System (ADS)

    Scherb, Anke; Papakosta, Panagiota; Straub, Daniel

    2014-05-01

    Wildfires cause severe damages to ecosystems, socio-economic assets, and human lives in the Mediterranean. To facilitate coping with wildfire risks, an understanding of the factors influencing wildfire occurrence and behavior (e.g. human activity, weather conditions, topography, fuel loads) and their interaction is of importance, as is the implementation of this knowledge in improved wildfire hazard and risk prediction systems. In this project, a probabilistic wildfire risk prediction model is developed, with integrated fire occurrence and fire propagation probability and potential impact prediction on natural and cultivated areas. Bayesian Networks (BNs) are used to facilitate the probabilistic modeling. The final BN model is a spatial-temporal prediction system at the meso scale (1 km2 spatial and 1 day temporal resolution). The modeled consequences account for potential restoration costs and production losses referred to forests, agriculture, and (semi-) natural areas. BNs and a geographic information system (GIS) are coupled within this project to support a semi-automated BN model parameter learning and the spatial-temporal risk prediction. The coupling also enables the visualization of prediction results by means of daily maps. The BN parameters are learnt for Cyprus with data from 2006-2009. Data from 2010 is used as validation data set. A special focus is put on the performance evaluation of the BN for fire occurrence, which is modeled as binary classifier and thus, could be validated by means of Receiver Operator Characteristic (ROC) curves. With the final best models, AUC values of more than 70% for validation could be achieved, which indicates potential for reliable prediction performance via BN. Maps of selected days in 2010 are shown to illustrate final prediction results. The resulting system can be easily expanded to predict additional expected damages in the mesoscale (e.g. building and infrastructure damages). The system can support planning of preventive measures (e.g. state resources allocation for wildfire prevention and preparedness) and assist recuperation plans of damaged areas.

  1. Launching Payloads Into Orbit at Relatively Low Cost

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian

    2007-01-01

    A report proposes the development of a system for launching payloads into orbit at about one-fifth the cost per unit payload weight of current systems. The PILOT system was a solid-fuel, aerodynamically spun and spin-stabilized, five-stage rocket with onboard controls including little more than an optoelectronic horizon sensor and a timer for triggering the second and fifth stages, respectively. The proposal calls for four improvements over the PILOT system to enable control of orbital parameters: (1) the aerodynamic tipover of the rocket at the top of the atmosphere could be modeled as a nonuniform gyroscopic precession and could be controlled by selection of the initial rocket configuration and launch conditions; (2) the attitude of the rocket at the top of the first-stage trajectory could be measured by use of radar tracking or differential Global Positioning System receivers to determine when to trigger the second stage; (3) the final-stage engines could be configured around the payload to enhance spin stabilization during a half-orbit coast up to apoapsis where the final stage would be triggered; and (4) the final payload stage could be equipped with a "beltline" of small thrusters for correcting small errors in the trajectory as measured by an off-board tracking subsystem.

  2. Radial Velocities of 41 Kepler Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Matson, Rachel A.; Gies, Douglas R.; Guo, Zhao; Williams, Stephen J.

    2017-12-01

    Eclipsing binaries are vital for directly determining stellar parameters without reliance on models or scaling relations. Spectroscopically derived parameters of detached and semi-detached binaries allow us to determine component masses that can inform theories of stellar and binary evolution. Here we present moderate resolution ground-based spectra of stars in close binary systems with and without (detected) tertiary companions observed by NASA’s Kepler mission and analyzed for eclipse timing variations. We obtain radial velocities and spectroscopic orbits for five single-lined and 35 double-lined systems, and confirm one false positive eclipsing binary. For the double-lined spectroscopic binaries, we also determine individual component masses and examine the mass ratio {M}2/{M}1 distribution, which is dominated by binaries with like-mass pairs and semi-detached classical Algol systems that have undergone mass transfer. Finally, we constrain the mass of the tertiary component for five double-lined binaries with previously detected companions.

  3. Intelligent Tracking Control for a Class of Uncertain High-Order Nonlinear Systems.

    PubMed

    Zhao, Xudong; Shi, Peng; Zheng, Xiaolong; Zhang, Jianhua

    2016-09-01

    This brief is concerned with the problem of intelligent tracking control for a class of high-order nonlinear systems with completely unknown nonlinearities. An intelligent adaptive control algorithm is presented by combining the adaptive backstepping technique with the neural networks' approximation ability. It is shown that the practical output tracking performance of the system is achieved using the proposed state-feedback controller under two mild assumptions. In particular, by introducing a parameter in the derivations, the tracking error between the time-varying target signal and the output can be reduced via tuning the controller design parameters. Moreover, in order to solve the problem of overparameterization, which is a common issue in adaptive control design, a controller with one adaptive law is also designed. Finally, simulation results are given to show the effectiveness of the theoretical approaches and the potential of the proposed new design techniques.

  4. Detecting malicious chaotic signals in wireless sensor network

    NASA Astrophysics Data System (ADS)

    Upadhyay, Ranjit Kumar; Kumari, Sangeeta

    2018-02-01

    In this paper, an e-epidemic Susceptible-Infected-Vaccinated (SIV) model has been proposed to analyze the effect of node immunization and worms attacking dynamics in wireless sensor network. A modified nonlinear incidence rate with cyrtoid type functional response has been considered using sleep and active mode approach. Detailed stability analysis and the sufficient criteria for the persistence of the model system have been established. We also established different types of bifurcation analysis for different equilibria at different critical points of the control parameters. We performed a detailed Hopf bifurcation analysis and determine the direction and stability of the bifurcating periodic solutions using center manifold theorem. Numerical simulations are carried out to confirm the theoretical results. The impact of the control parameters on the dynamics of the model system has been investigated and malicious chaotic signals are detected. Finally, we have analyzed the effect of time delay on the dynamics of the model system.

  5. Patient Protection and Affordable Care Act; HHS notice of benefit and payment parameters for 2016. Final rule.

    PubMed

    2015-02-27

    This final rule sets forth payment parameters and provisions related to the risk adjustment, reinsurance, and risk corridors programs; cost sharing parameters and cost-sharing reductions; and user fees for Federally-facilitated Exchanges. It also finalizes additional standards for the individual market annual open enrollment period for the 2016 benefit year, essential health benefits, qualified health plans, network adequacy, quality improvement strategies, the Small Business Health Options Program, guaranteed availability, guaranteed renewability, minimum essential coverage, the rate review program, the medical loss ratio program, and other related topics.

  6. Exponential synchronization of chaotic systems with time-varying delays and parameter mismatches via intermittent control.

    PubMed

    Cai, Shuiming; Hao, Junjun; Liu, Zengrong

    2011-06-01

    This paper studies the synchronization of coupled chaotic systems with time-varying delays in the presence of parameter mismatches by means of periodically intermittent control. Some novel and useful quasisynchronization criteria are obtained by using the methods which are different from the techniques employed in the existing works, and the derived results are less conservative. Especially, a strong constraint on the control width that the control width should be larger than the time delay imposed by the current references is released in this paper. Moreover, our results show that the synchronization criteria depend on the ratio of control width to control period, but not the control width or the control period. Finally, some numerical simulations are given to show the effectiveness of the theoretical results.

  7. Disordered λ φ4+ρ φ6 Landau-Ginzburg model

    NASA Astrophysics Data System (ADS)

    Diaz, R. Acosta; Svaiter, N. F.; Krein, G.; Zarro, C. A. D.

    2018-03-01

    We discuss a disordered λ φ4+ρ φ6 Landau-Ginzburg model defined in a d -dimensional space. First we adopt the standard procedure of averaging the disorder-dependent free energy of the model. The dominant contribution to this quantity is represented by a series of the replica partition functions of the system. Next, using the replica-symmetry ansatz in the saddle-point equations, we prove that the average free energy represents a system with multiple ground states with different order parameters. For low temperatures we show the presence of metastable equilibrium states for some replica fields for a range of values of the physical parameters. Finally, going beyond the mean-field approximation, the one-loop renormalization of this model is performed, in the leading-order replica partition function.

  8. Testing model for prediction system of 1-AU arrival times of CME-associated interplanetary shocks

    NASA Astrophysics Data System (ADS)

    Ogawa, Tomoya; den, Mitsue; Tanaka, Takashi; Sugihara, Kohta; Takei, Toshifumi; Amo, Hiroyoshi; Watari, Shinichi

    We test a model to predict arrival times of interplanetary shock waves associated with coronal mass ejections (CMEs) using a three-dimensional adaptive mesh refinement (AMR) code. The model is used for the prediction system we develop, which has a Web-based user interface and aims at people who is not familiar with operation of computers and numerical simulations or is not researcher. We apply the model to interplanetary CME events. We first choose coronal parameters so that property of background solar wind observed by ACE space craft is reproduced. Then we input CME parameters observed by SOHO/LASCO. Finally we compare the predicted arrival times with observed ones. We describe results of the test and discuss tendency of the model.

  9. Development, optimization and validation of gas chromatographic fingerprinting of Brazilian commercial diesel fuel for quality control.

    PubMed

    dos Santos, Bruno César Diniz Brito; Flumignan, Danilo Luiz; de Oliveira, José Eduardo

    2012-10-01

    A three-step development, optimization and validation strategy is described for gas chromatography (GC) fingerprints of Brazilian commercial diesel fuel. A suitable GC-flame ionization detection (FID) system was selected to assay a complex matrix such as diesel. The next step was to improve acceptable chromatographic resolution with reduced analysis time, which is recommended for routine applications. Full three-level factorial designs were performed to improve flow rate, oven ramps, injection volume and split ratio in the GC system. Finally, several validation parameters were performed. The GC fingerprinting can be coupled with pattern recognition and multivariate regressions analyses to determine fuel quality and fuel physicochemical parameters. This strategy can also be applied to develop fingerprints for quality control of other fuel types.

  10. Electromagnetic Performance Calculation of HTS Linear Induction Motor for Rail Systems

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Fang, Jin; Cao, Junci; Chen, Jie; Shu, Hang; Sheng, Long

    2017-07-01

    According to a high temperature superconducting (HTS) linear induction motor (LIM) designed for rail systems, the influence of electromagnetic parameters and mechanical structure parameters on the electromagnetic horizontal thrust, vertical force of HTS LIM and the maximum vertical magnetic field of HTS windings are analyzed. Through the research on the vertical field of HTS windings, the development regularity of the HTS LIM maximum input current with different stator frequency and different thickness value of the secondary conductive plate is obtained. The theoretical results are of great significance to analyze the stability of HTS LIM. Finally, based on theory analysis, HTS LIM test platform was built and the experiment was carried out with load. The experimental results show that the theoretical analysis is correct and reasonable.

  11. Design and validation of the eyesafe ladar testbed (ELT) using the LadarSIM system simulator

    NASA Astrophysics Data System (ADS)

    Neilsen, Kevin D.; Budge, Scott E.; Pack, Robert T.; Fullmer, R. Rees; Cook, T. Dean

    2009-05-01

    The development of an experimental full-waveform LADAR system has been enhanced with the assistance of the LadarSIM system simulation software. The Eyesafe LADAR Test-bed (ELT) was designed as a raster scanning, single-beam, energy-detection LADAR with the capability of digitizing and recording the return pulse waveform at up to 2 GHz for 3D off-line image formation research in the laboratory. To assist in the design phase, the full-waveform LADAR simulation in LadarSIM was used to simulate the expected return waveforms for various system design parameters, target characteristics, and target ranges. Once the design was finalized and the ELT constructed, the measured specifications of the system and experimental data captured from the operational sensor were used to validate the behavior of the system as predicted during the design phase. This paper presents the methodology used, and lessons learned from this "design, build, validate" process. Simulated results from the design phase are presented, and these are compared to simulated results using measured system parameters and operational sensor data. The advantages of this simulation-based process are also presented.

  12. A framework for conducting mechanistic based reliability assessments of components operating in complex systems

    NASA Astrophysics Data System (ADS)

    Wallace, Jon Michael

    2003-10-01

    Reliability prediction of components operating in complex systems has historically been conducted in a statistically isolated manner. Current physics-based, i.e. mechanistic, component reliability approaches focus more on component-specific attributes and mathematical algorithms and not enough on the influence of the system. The result is that significant error can be introduced into the component reliability assessment process. The objective of this study is the development of a framework that infuses the needs and influence of the system into the process of conducting mechanistic-based component reliability assessments. The formulated framework consists of six primary steps. The first three steps, identification, decomposition, and synthesis, are primarily qualitative in nature and employ system reliability and safety engineering principles to construct an appropriate starting point for the component reliability assessment. The following two steps are the most unique. They involve a step to efficiently characterize and quantify the system-driven local parameter space and a subsequent step using this information to guide the reduction of the component parameter space. The local statistical space quantification step is accomplished using two proposed multivariate probability models: Multi-Response First Order Second Moment and Taylor-Based Inverse Transformation. Where existing joint probability models require preliminary distribution and correlation information of the responses, these models combine statistical information of the input parameters with an efficient sampling of the response analyses to produce the multi-response joint probability distribution. Parameter space reduction is accomplished using Approximate Canonical Correlation Analysis (ACCA) employed as a multi-response screening technique. The novelty of this approach is that each individual local parameter and even subsets of parameters representing entire contributing analyses can now be rank ordered with respect to their contribution to not just one response, but the entire vector of component responses simultaneously. The final step of the framework is the actual probabilistic assessment of the component. Although the same multivariate probability tools employed in the characterization step can be used for the component probability assessment, variations of this final step are given to allow for the utilization of existing probabilistic methods such as response surface Monte Carlo and Fast Probability Integration. The overall framework developed in this study is implemented to assess the finite-element based reliability prediction of a gas turbine airfoil involving several failure responses. Results of this implementation are compared to results generated using the conventional 'isolated' approach as well as a validation approach conducted through large sample Monte Carlo simulations. The framework resulted in a considerable improvement to the accuracy of the part reliability assessment and an improved understanding of the component failure behavior. Considerable statistical complexity in the form of joint non-normal behavior was found and accounted for using the framework. Future applications of the framework elements are discussed.

  13. Interspecies interactions are an integral determinant of microbial community dynamics

    PubMed Central

    Aziz, Fatma A. A.; Suzuki, Kenshi; Ohtaki, Akihiro; Sagegami, Keita; Hirai, Hidetaka; Seno, Jun; Mizuno, Naoko; Inuzuka, Yuma; Saito, Yasuhisa; Tashiro, Yosuke; Hiraishi, Akira; Futamata, Hiroyuki

    2015-01-01

    This study investigated the factors that determine the dynamics of bacterial communities in a complex system using multidisciplinary methods. Since natural and engineered microbial ecosystems are too complex to study, six types of synthetic microbial ecosystems (SMEs) were constructed under chemostat conditions with phenol as the sole carbon and energy source. Two to four phenol-degrading, phylogenetically and physiologically different bacterial strains were used in each SME. Phylogeny was based on the nucleotide sequence of 16S rRNA genes, while physiologic traits were based on kinetic and growth parameters on phenol. Two indices, J parameter and “interspecies interaction,” were compared to predict which strain would become dominant in an SME. The J parameter was calculated from kinetic and growth parameters. On the other hand, “interspecies interaction,” a new index proposed in this study, was evaluated by measuring the specific growth activity, which was determined on the basis of relative growth of a strain with or without the supernatant prepared from other bacterial cultures. Population densities of strains used in SMEs were enumerated by real-time quantitative PCR (qPCR) targeting the gene encoding the large subunit of phenol hydroxylase and were compared to predictions made from J parameter and interspecies interaction calculations. In 4 of 6 SEMs tested the final dominant strain shown by real-time qPCR analyses coincided with the strain predicted by both the J parameter and the interspecies interaction. However, in SMEII-2 and SMEII-3 the final dominant Variovorax strains coincided with prediction of the interspecies interaction but not the J parameter. These results demonstrate that the effects of interspecies interactions within microbial communities contribute to determining the dynamics of the microbial ecosystem. PMID:26539177

  14. A GRAPH PARTITIONING APPROACH TO PREDICTING PATTERNS IN LATERAL INHIBITION SYSTEMS

    PubMed Central

    RUFINO FERREIRA, ANA S.; ARCAK, MURAT

    2017-01-01

    We analyze spatial patterns on networks of cells where adjacent cells inhibit each other through contact signaling. We represent the network as a graph where each vertex represents the dynamics of identical individual cells and where graph edges represent cell-to-cell signaling. To predict steady-state patterns we find equitable partitions of the graph vertices and assign them into disjoint classes. We then use results from monotone systems theory to prove the existence of patterns that are structured in such a way that all the cells in the same class have the same final fate. To study the stability properties of these patterns, we rely on the graph partition to perform a block decomposition of the system. Then, to guarantee stability, we provide a small-gain type criterion that depends on the input-output properties of each cell in the reduced system. Finally, we discuss pattern formation in stochastic models. With the help of a modal decomposition we show that noise can enhance the parameter region where patterning occurs. PMID:29225552

  15. Radiation-Hardened Circuitry Using Mask-Programmable Analog Arrays. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britton, Jr., Charles L.; Ericson, Milton Nance; Bobrek, Miljko

    As the recent accident at Fukushima Daiichi so vividly demonstrated, telerobotic technologies capable of withstanding high radiation environments need to be readily available to enable operations, repair, and recovery under severe accident scenarios where human entry is extremely dangerous or not possible. Telerobotic technologies that enable remote operation in high dose rate environments have undergone revolutionary improvement over the past few decades. However, much of this technology cannot be employed in nuclear power environments due the radiation sensitivity of the electronics and the organic insulator materials currently in use. This is the final report of the activities involving the NEETmore » 2 project Radiation Hardened Circuitry Using Mask-Programmable Analog Arrays. We present a detailed functional block diagram of the proposed data acquisition system, the thought process leading to technical decisions, the implemented system, and the tested results from the systems. This system will be capable of monitoring at least three parameters of importance to nuclear reactor monitoring: temperature, radiation level, and pressure.« less

  16. Estimation Model of Spacecraft Parameters and Cost Based on a Statistical Analysis of COMPASS Designs

    NASA Technical Reports Server (NTRS)

    Gerberich, Matthew W.; Oleson, Steven R.

    2013-01-01

    The Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) team at Glenn Research Center has performed integrated system analysis of conceptual spacecraft mission designs since 2006 using a multidisciplinary concurrent engineering process. The set of completed designs was archived in a database, to allow for the study of relationships between design parameters. Although COMPASS uses a parametric spacecraft costing model, this research investigated the possibility of using a top-down approach to rapidly estimate the overall vehicle costs. This paper presents the relationships between significant design variables, including breakdowns of dry mass, wet mass, and cost. It also develops a model for a broad estimate of these parameters through basic mission characteristics, including the target location distance, the payload mass, the duration, the delta-v requirement, and the type of mission, propulsion, and electrical power. Finally, this paper examines the accuracy of this model in regards to past COMPASS designs, with an assessment of outlying spacecraft, and compares the results to historical data of completed NASA missions.

  17. Data quality system using reference dictionaries and edit distance algorithms

    NASA Astrophysics Data System (ADS)

    Karbarz, Radosław; Mulawka, Jan

    2015-09-01

    The real art of management it is important to make smart decisions, what in most of the cases is not a trivial task. Those decisions may lead to determination of production level, funds allocation for investments etc. Most of the parameters in decision-making process such as: interest rate, goods value or exchange rate may change. It is well know that these parameters in the decision-making are based on the data contained in datamarts or data warehouse. However, if the information derived from the processed data sets is the basis for the most important management decisions, it is required that the data is accurate, complete and current. In order to achieve high quality data and to gain from them measurable business benefits, data quality system should be used. The article describes the approach to the problem, shows the algorithms in details and their usage. Finally the test results are provide. Test results show the best algorithms (in terms of quality and quantity) for different parameters and data distribution.

  18. Designing a capacitated multi-configuration logistics network under disturbances and parameter uncertainty: a real-world case of a drug supply chain

    NASA Astrophysics Data System (ADS)

    Shishebori, Davood; Babadi, Abolghasem Yousefi

    2018-03-01

    This study investigates the reliable multi-configuration capacitated logistics network design problem (RMCLNDP) under system disturbances, which relates to locating facilities, establishing transportation links, and also allocating their limited capacities to the customers conducive to provide their demand on the minimum expected total cost (including locating costs, link constructing costs, and also expected costs in normal and disturbance conditions). In addition, two types of risks are considered; (I) uncertain environment, (II) system disturbances. A two-level mathematical model is proposed for formulating of the mentioned problem. Also, because of the uncertain parameters of the model, an efficacious possibilistic robust optimization approach is utilized. To evaluate the model, a drug supply chain design (SCN) is studied. Finally, an extensive sensitivity analysis was done on the critical parameters. The obtained results show that the efficiency of the proposed approach is suitable and is worthwhile for analyzing the real practical problems.

  19. Novel Blind Recognition Algorithm of Frame Synchronization Words Based on Soft-Decision in Digital Communication Systems.

    PubMed

    Qin, Jiangyi; Huang, Zhiping; Liu, Chunwu; Su, Shaojing; Zhou, Jing

    2015-01-01

    A novel blind recognition algorithm of frame synchronization words is proposed to recognize the frame synchronization words parameters in digital communication systems. In this paper, a blind recognition method of frame synchronization words based on the hard-decision is deduced in detail. And the standards of parameter recognition are given. Comparing with the blind recognition based on the hard-decision, utilizing the soft-decision can improve the accuracy of blind recognition. Therefore, combining with the characteristics of Quadrature Phase Shift Keying (QPSK) signal, an improved blind recognition algorithm based on the soft-decision is proposed. Meanwhile, the improved algorithm can be extended to other signal modulation forms. Then, the complete blind recognition steps of the hard-decision algorithm and the soft-decision algorithm are given in detail. Finally, the simulation results show that both the hard-decision algorithm and the soft-decision algorithm can recognize the parameters of frame synchronization words blindly. What's more, the improved algorithm can enhance the accuracy of blind recognition obviously.

  20. An infrared optical pacing system for high-throughput screening of cardiac electrophysiology in human cardiomyocytes (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    McPheeters, Matt T.; Wang, Yves T.; Laurita, Kenneth R.; Jenkins, Michael W.

    2017-02-01

    Cardiomyocytes derived from human induced pluripotent stem cells (hiPS-HCM) have the potential to provide individualized therapies for patients and to test drug candidates for cardiac toxicity. In order for hiPS-CM to be useful for such applications, there is a need for high-throughput technology to rapidly assess cardiac electrophysiology parameters. Here, we designed and tested a fully contactless optical mapping (OM) and optical pacing (OP) system capable of imaging and point stimulation of hiPS-CM in small wells. OM allowed us to characterize cardiac electrophysiological parameters (conduction velocity, action potential duration, etc.) using voltage-sensitive dyes with high temporal and spatial resolution over the entire well. To improve OM signal-to-noise ratio, we tested a new voltage-sensitive dye (Fluovolt) for accuracy and phototoxicity. Stimulation is essential because most electrophysiological parameters are rate dependent; however, traditional methods utilizing electrical stimulation is difficult in small wells. To overcome this limitation, we utilized OP (λ = 1464 nm) to precisely control heart rate with spatial precision without the addition of exogenous agents. We optimized OP parameters (e.g., well size, pulse width, spot size) to achieve robust pacing and minimize the threshold radiant exposure. Finally, we tested system sensitivity using Flecainide, a drug with well described action on multiple electrophysiological properties.

  1. A Low-Signal-to-Noise-Ratio Sensor Framework Incorporating Improved Nighttime Capabilities in DIRSIG

    NASA Astrophysics Data System (ADS)

    Rizzuto, Anthony P.

    When designing new remote sensing systems, it is difficult to make apples-to-apples comparisons between designs because of the number of sensor parameters that can affect the final image. Using synthetic imagery and a computer sensor model allows for comparisons to be made between widely different sensor designs or between competing design parameters. Little work has been done in fully modeling low-SNR systems end-to-end for these types of comparisons. Currently DIRSIG has limited capability to accurately model nighttime scenes under new moon conditions or near large cities. An improved DIRSIG scene modeling capability is presented that incorporates all significant sources of nighttime radiance, including new models for urban glow and airglow, both taken from the astronomy community. A low-SNR sensor modeling tool is also presented that accounts for sensor components and noise sources to generate synthetic imagery from a DIRSIG scene. The various sensor parameters that affect SNR are discussed, and example imagery is shown with the new sensor modeling tool. New low-SNR detectors have recently been designed and marketed for remote sensing applications. A comparison of system parameters for a state-of-the-art low-SNR sensor is discussed, and a sample design trade study is presented for a hypothetical scene and sensor.

  2. Methods to assess the effects of environmental chemicals on the brain-pituitary-gonad axis of the reproductive system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magliulo-Cepriano, L.; Schreibman, M.P.

    1999-07-01

    In all vertebrates, the neuroendocrine system serves as the primary and essential link between the external and internal environments and a multitude of physiological systems, including the reproductive system. In response to changes in the environment and fluctuations in levels of circulating humoral agents, the neuroendocrine system is able to reverse, maintain or advance physiological events. Endocrine disrupting compounds are believed to wreak havoc on reproduction and development by interfering in the normal flow of information along the brain-pituitary-gonad axis. While the final effects of these compounds may be easily determined in a number of species, utilization of non-traditional researchmore » animals, such as some fishes in which the pattern of information flow along the brain-pituitary-gonad axis has been meticulously detailed and documented, will provide excellent and novel means of elucidating not only the final effects but the cytological, histological and systemic mechanisms of action of these endocrine disruptors. This report presents methods of assessing the effects of endocrine disrupting compounds on a variety of physiological and morphological parameters in fishes.« less

  3. Quantitative method to assess caries via fluorescence imaging from the perspective of autofluorescence spectral analysis

    NASA Astrophysics Data System (ADS)

    Chen, Q. G.; Zhu, H. H.; Xu, Y.; Lin, B.; Chen, H.

    2015-08-01

    A quantitative method to discriminate caries lesions for a fluorescence imaging system is proposed in this paper. The autofluorescence spectral investigation of 39 teeth samples classified by the International Caries Detection and Assessment System levels was performed at 405 nm excitation. The major differences in the different caries lesions focused on the relative spectral intensity range of 565-750 nm. The spectral parameter, defined as the ratio of wavebands at 565-750 nm to the whole spectral range, was calculated. The image component ratio R/(G + B) of color components was statistically computed by considering the spectral parameters (e.g. autofluorescence, optical filter, and spectral sensitivity) in our fluorescence color imaging system. Results showed that the spectral parameter and image component ratio presented a linear relation. Therefore, the image component ratio was graded as <0.66, 0.66-1.06, 1.06-1.62, and >1.62 to quantitatively classify sound, early decay, established decay, and severe decay tissues, respectively. Finally, the fluorescence images of caries were experimentally obtained, and the corresponding image component ratio distribution was compared with the classification result. A method to determine the numerical grades of caries using a fluorescence imaging system was proposed. This method can be applied to similar imaging systems.

  4. CORFIG- CORRECTOR SURFACE DESIGN SOFTWARE

    NASA Technical Reports Server (NTRS)

    Dantzler, A.

    1994-01-01

    Corrector Surface Design Software, CORFIG, calculates the optimum figure of a corrector surface for an optical system based on real ray traces. CORFIG generates the corrector figure in the form of a spline data point table and/or a list of polynomial coefficients. The number of spline data points as well as the number of coefficients is user specified. First, the optical system's parameters (thickness, radii of curvature, etc.) are entered. CORFIG will trace the outermost axial real ray through the uncorrected system to determine approximate radial limits for all rays. Then, several real rays are traced backwards through the system from the image to the surface that originally followed the object, within these radial limits. At this first surface, the local curvature is adjusted on a small scale to direct the rays toward the object, thus removing any accumulated aberrations. For each ray traced, this adjustment will be different, so that at the end of this process the resultant surface is made up of many local curvatures. The equations that describe these local surfaces, expressed as high order polynomials, are then solved simultaneously to yield the final surface figure, from which data points are extracted. Finally, a spline table or list of polynomial coefficients is extracted from these data points. CORFIG is intended to be used in the late stages of optical design. The system's design must have at least a good paraxial foundation. Preferably, the design should be at a stage where traditional methods of Seidel aberration correction will not bring about the required image spot size specification. CORFIG will read the system parameters of such a design and calculate the optimum figure for the first surface such that all of the original parameters remain unchanged. Depending upon the system, CORFIG can reduce the RMS image spot radius by a factor of 5 to 25. The original parameters (magnification, back focal length, etc.) are maintained because all rays upon which the corrector figure is based are traced within the bounds of the original system's outermost ray. For this reason the original system must have a certain degree of integrity. CORFIG optimizes the corrector surface figure for on-axis images at a single wavelength only. However, it has been demonstrated many times that CORFIG's method also significantly improves the quality of field images and images formed from wavelengths other than the center wavelength. CORFIG is written completely in VAX FORTRAN. It has been implemented on a DEC VAX series computer under VMS with a central memory requirement of 55 K bytes. This program was developed in 1986.

  5. A tailored 200 parameter VME based data acquisition system for IBA at the Lund Ion Beam Analysis Facility - Hardware and software

    NASA Astrophysics Data System (ADS)

    Elfman, Mikael; Ros, Linus; Kristiansson, Per; Nilsson, E. J. Charlotta; Pallon, Jan

    2016-03-01

    With the recent advances towards modern Ion Beam Analysis (IBA), going from one- or few-parameter detector systems to multi-parameter systems, it has been necessary to expand and replace the more than twenty years old CAMAC based system. A new VME multi-parameter (presently up to 200 channels) data acquisition and control system has been developed and implemented at the Lund Ion Beam Analysis Facility (LIBAF). The system is based on the VX-511 Single Board Computer (SBC), acting as master with arbiter functionality and consists of standard VME modules like Analog to Digital Converters (ADC's), Charge to Digital Converters (QDC's), Time to Digital Converters (TDC's), scaler's, IO-cards, high voltage and waveform units. The modules have been specially selected to support all of the present detector systems in the laboratory, with the option of future expansion. Typically, the detector systems consist of silicon strip detectors, silicon drift detectors and scintillator detectors, for detection of charged particles, X-rays and γ-rays. The data flow of the raw data buffers out from the VME bus to the final storage place on a 16 terabyte network attached storage disc (NAS-disc) is described. The acquisition process, remotely controlled over one of the SBCs ethernet channels, is also discussed. The user interface is written in the Kmax software package, and is used to control the acquisition process as well as for advanced online and offline data analysis through a user-friendly graphical user interface (GUI). In this work the system implementation, layout and performance are presented. The user interface and possibilities for advanced offline analysis are also discussed and illustrated.

  6. Optimum Parameters of a Tuned Liquid Column Damper in a Wind Turbine Subject to Stochastic Load

    NASA Astrophysics Data System (ADS)

    Alkmim, M. H.; de Morais, M. V. G.; Fabro, A. T.

    2017-12-01

    Parameter optimization for tuned liquid column dampers (TLCD), a class of passive structural control, have been previously proposed in the literature for reducing vibration in wind turbines, and several other applications. However, most of the available work consider the wind excitation as either a deterministic harmonic load or random load with white noise spectra. In this paper, a global direct search optimization algorithm to reduce vibration of a tuned liquid column damper (TLCD), a class of passive structural control device, is presented. The objective is to find optimized parameters for the TLCD under stochastic load from different wind power spectral density. A verification is made considering the analytical solution of undamped primary system under white noise excitation by comparing with result from the literature. Finally, it is shown that different wind profiles can significantly affect the optimum TLCD parameters.

  7. Extended Czjzek model applied to NMR parameter distributions in sodium metaphosphate glass

    NASA Astrophysics Data System (ADS)

    Vasconcelos, Filipe; Cristol, Sylvain; Paul, Jean-François; Delevoye, Laurent; Mauri, Francesco; Charpentier, Thibault; Le Caër, Gérard

    2013-06-01

    The extended Czjzek model (ECM) is applied to the distribution of NMR parameters of a simple glass model (sodium metaphosphate, NaPO3) obtained by molecular dynamics (MD) simulations. Accurate NMR tensors, electric field gradient (EFG) and chemical shift anisotropy (CSA) are calculated from density functional theory (DFT) within the well-established PAW/GIPAW framework. The theoretical results are compared to experimental high-resolution solid-state NMR data and are used to validate the considered structural model. The distributions of the calculated coupling constant CQ ∝ |Vzz| and the asymmetry parameter ηQ that characterize the quadrupolar interaction are discussed in terms of structural considerations with the help of a simple point charge model. Finally, the ECM analysis is shown to be relevant for studying the distribution of CSA tensor parameters and gives new insight into the structural characterization of disordered systems by solid-state NMR.

  8. Extended Czjzek model applied to NMR parameter distributions in sodium metaphosphate glass.

    PubMed

    Vasconcelos, Filipe; Cristol, Sylvain; Paul, Jean-François; Delevoye, Laurent; Mauri, Francesco; Charpentier, Thibault; Le Caër, Gérard

    2013-06-26

    The extended Czjzek model (ECM) is applied to the distribution of NMR parameters of a simple glass model (sodium metaphosphate, NaPO3) obtained by molecular dynamics (MD) simulations. Accurate NMR tensors, electric field gradient (EFG) and chemical shift anisotropy (CSA) are calculated from density functional theory (DFT) within the well-established PAW/GIPAW framework. The theoretical results are compared to experimental high-resolution solid-state NMR data and are used to validate the considered structural model. The distributions of the calculated coupling constant C(Q) is proportional to |V(zz)| and the asymmetry parameter η(Q) that characterize the quadrupolar interaction are discussed in terms of structural considerations with the help of a simple point charge model. Finally, the ECM analysis is shown to be relevant for studying the distribution of CSA tensor parameters and gives new insight into the structural characterization of disordered systems by solid-state NMR.

  9. An experimental analysis of process parameters to manufacture micro-channels in AISI H13 tempered steel by laser micro-milling

    NASA Astrophysics Data System (ADS)

    Teixidor, D.; Ferrer, I.; Ciurana, J.

    2012-04-01

    This paper reports the characterization of laser machining (milling) process to manufacture micro-channels in order to understand the incidence of process parameters on the final features. Selection of process operational parameters is highly critical for successful laser micromachining. A set of designed experiments is carried out in a pulsed Nd:YAG laser system using AISI H13 hardened tool steel as work material. Several micro-channels have been manufactured as micro-mold cavities varying parameters such as scanning speed (SS), pulse intensity (PI) and pulse frequency (PF). Results are obtained by evaluating the dimensions and the surface finish of the micro-channel. The dimensions and shape of the micro-channels produced with laser-micro-milling process exhibit variations. In general the use of low scanning speeds increases the quality of the feature in both surface finishing and dimensional.

  10. Robust Online Hamiltonian Learning

    NASA Astrophysics Data System (ADS)

    Granade, Christopher; Ferrie, Christopher; Wiebe, Nathan; Cory, David

    2013-05-01

    In this talk, we introduce a machine-learning algorithm for the problem of inferring the dynamical parameters of a quantum system, and discuss this algorithm in the example of estimating the precession frequency of a single qubit in a static field. Our algorithm is designed with practicality in mind by including parameters that control trade-offs between the requirements on computational and experimental resources. The algorithm can be implemented online, during experimental data collection, or can be used as a tool for post-processing. Most importantly, our algorithm is capable of learning Hamiltonian parameters even when the parameters change from experiment-to-experiment, and also when additional noise processes are present and unknown. Finally, we discuss the performance of the our algorithm by appeal to the Cramer-Rao bound. This work was financially supported by the Canadian government through NSERC and CERC and by the United States government through DARPA. NW would like to acknowledge funding from USARO-DTO.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berrada, K., E-mail: kberrada@ictp.it; The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, Miramare-Trieste; Ooi, C. H. Raymond

    Robustness of the geometric phase (GP) with respect to different noise effects is a basic condition for an effective quantum computation. Here, we propose a useful quantum system with real physical parameters by studying the GP of a pair of Stokes and anti-Stokes photons, involving Raman emission processes with and without photonic band gap (PBG) effect. We show that the properties of GP are very sensitive to the change of the Rabi frequency and time, exhibiting collapse phenomenon as the time becomes significantly large. The system allows us to obtain a state which remains with zero GP for longer times.more » This result plays a significant role to enhance the stabilization and control of the system dynamics. Finally, we investigate the nonlocal correlation (entanglement) between the pair photons by taking into account the effect of different parameters. An interesting correlation between the GP and entanglement is observed showing that the PBG stabilizes the fluctuations in the system and makes the entanglement more robust against the change of time and frequency.« less

  12. Application of Improved Genetic Algorithm to Service Restoration Problem for Distribution Systems

    NASA Astrophysics Data System (ADS)

    Michibata, Ikuo; Aoki, Hidenori

    The problem of recovery from power-system failures is the problem of handling operations that make it possible to supply power from other lines in response to power-system failures or construction by switching between the opened and closed states of sectionalizing switches. Considerable research has already been conducted with regard to this issue. This paper addresses the issue of determining target systems for final recovery in cases when some sections remain subject to power failure (i.e., sound bank capacity < load capacity). For this purpose, intersection is conducted only for parameters within such power-failure sections. In such research, calculations are implemented by setting a value of 2 to the sectionalizing switches of a single parameter. In addition, when the state of a sound section changes due to mutation improvements, the method of simultaneously changing the selected points and neighboring sectionalizing switches is applied. It is clear that the proposed method, consisting of conventional GA only, is superior in terms of average fitness values.

  13. Adaptive Neural Control for a Class of Pure-Feedback Nonlinear Systems via Dynamic Surface Technique.

    PubMed

    Liu, Zongcheng; Dong, Xinmin; Xue, Jianping; Li, Hongbo; Chen, Yong

    2016-09-01

    This brief addresses the adaptive control problem for a class of pure-feedback systems with nonaffine functions possibly being nondifferentiable. Without using the mean value theorem, the difficulty of the control design for pure-feedback systems is overcome by modeling the nonaffine functions appropriately. With the help of neural network approximators, an adaptive neural controller is developed by combining the dynamic surface control (DSC) and minimal learning parameter (MLP) techniques. The key features of our approach are that, first, the restrictive assumptions on the partial derivative of nonaffine functions are removed, second, the DSC technique is used to avoid "the explosion of complexity" in the backstepping design, and the number of adaptive parameters is reduced significantly using the MLP technique, third, smooth robust compensators are employed to circumvent the influences of approximation errors and disturbances. Furthermore, it is proved that all the signals in the closed-loop system are semiglobal uniformly ultimately bounded. Finally, the simulation results are provided to demonstrate the effectiveness of the designed method.

  14. Anticipating the Chaotic Behaviour of Industrial Systems Based on Stochastic, Event-Driven Simulations

    NASA Astrophysics Data System (ADS)

    Bruzzone, Agostino G.; Revetria, Roberto; Simeoni, Simone; Viazzo, Simone; Orsoni, Alessandra

    2004-08-01

    In logistics and industrial production managers must deal with the impact of stochastic events to improve performances and reduce costs. In fact, production and logistics systems are generally designed considering some parameters as deterministically distributed. While this assumption is mostly used for preliminary prototyping, it is sometimes also retained during the final design stage, and especially for estimated parameters (i.e. Market Request). The proposed methodology can determine the impact of stochastic events in the system by evaluating the chaotic threshold level. Such an approach, based on the application of a new and innovative methodology, can be implemented to find the condition under which chaos makes the system become uncontrollable. Starting from problem identification and risk assessment, several classification techniques are used to carry out an effect analysis and contingency plan estimation. In this paper the authors illustrate the methodology with respect to a real industrial case: a production problem related to the logistics of distributed chemical processing.

  15. In-situ quality monitoring during laser brazing

    NASA Astrophysics Data System (ADS)

    Ungers, Michael; Fecker, Daniel; Frank, Sascha; Donst, Dmitri; Märgner, Volker; Abels, Peter; Kaierle, Stefan

    Laser brazing of zinc coated steel is a widely established manufacturing process in the automotive sector, where high quality requirements must be fulfilled. The strength, impermeablitiy and surface appearance of the joint are particularly important for judging its quality. The development of an on-line quality control system is highly desired by the industry. This paper presents recent works on the development of such a system, which consists of two cameras operating in different spectral ranges. For the evaluation of the system, seam imperfections are created artificially during experiments. Finally image processing algorithms for monitoring process parameters based the captured images are presented.

  16. Fronts in extended systems of bistable maps coupled via convolutions

    NASA Astrophysics Data System (ADS)

    Coutinho, Ricardo; Fernandez, Bastien

    2004-01-01

    An analysis of front dynamics in discrete time and spatially extended systems with general bistable nonlinearity is presented. The spatial coupling is given by the convolution with distribution functions. It allows us to treat in a unified way discrete, continuous or partly discrete and partly continuous diffusive interactions. We prove the existence of fronts and the uniqueness of their velocity. We also prove that the front velocity depends continuously on the parameters of the system. Finally, we show that every initial configuration that is an interface between the stable phases propagates asymptotically with the front velocity.

  17. Nash Equilibria in Noncooperative Predator-Prey Games

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramos, Angel Manuel; Roubicek, Tomas

    2007-09-15

    A noncooperative game governed by a distributed-parameter predator-prey system is considered, assuming that two players control initial conditions for predator and prey, respectively. Existence of a Nash equilibrium is shown under the condition that the desired population profiles and the environmental carrying capacity for the prey are sufficiently small. A conceptual approximation algorithm is proposed and analyzed. Finally, numerical simulations are performed, too.

  18. Surface and guided waves on structured surfaces and inhomogeneous media

    NASA Astrophysics Data System (ADS)

    Polanco, Javier

    Surface and guided waves on structured surfaces and inhomogeneous media studies the propagation of waves in systems with spatially varying parameters. In the rainbow case (chapter 1), the dielectric constant changes with coordinates. In the cylinder case: boundary and the metal (chapter 2), it is a curved surface. Finally, in the last case (chapter 3), the dielectric constant changes in z-direction.

  19. First photometric study of two southern eclipsing binaries IS Tel and DW Aps

    NASA Astrophysics Data System (ADS)

    Özer, S.; Sürgit, D.; Erdem, A.; Öztürk, O.

    2017-02-01

    The paper presents the first photometric analysis of two southern eclipsing binary stars, IS Tel and DW Aps. Their V light curves from the All Sky Automated Survey were modelled by using Wilson-Devinney method. The final models give these two Algol-like binary stars as having detached configurations. Absolute parameters of the components of the systems were also estimated.

  20. CO2 Push-Pull Dual (Conjugate) Faults Injection Simulations

    DOE Data Explorer

    Oldenburg, Curtis (ORCID:0000000201326016); Lee, Kyung Jae; Doughty, Christine; Jung, Yoojin; Borgia, Andrea; Pan, Lehua; Zhang, Rui; Daley, Thomas M.; Altundas, Bilgin; Chugunov, Nikita

    2017-07-20

    This submission contains datasets and a final manuscript associated with a project simulating carbon dioxide push-pull into a conjugate fault system modeled after Dixie Valley- sensitivity analysis of significant parameters and uncertainty prediction by data-worth analysis. Datasets include: (1) Forward simulation runs of standard cases (push & pull phases), (2) Local sensitivity analyses (push & pull phases), and (3) Data-worth analysis (push & pull phases).

  1. Designing domestic rainwater harvesting systems under different climatic regimes in Italy.

    PubMed

    Campisano, A; Gnecco, I; Modica, C; Palla, A

    2013-01-01

    Nowadays domestic rainwater harvesting practices are recognized as effective tools to improve the sustainability of drainage systems within the urban environment, by contributing to limiting the demand for potable water and, at the same time, by mitigating the generation of storm water runoff at the source. The final objective of this paper is to define regression curves to size domestic rainwater harvesting (DRWH) systems in the main Italian climatic regions. For this purpose, the Köppen-Geiger climatic classification is used and, furthermore, suitable precipitation sites are selected for each climatic region. A behavioural model is implemented to assess inflow, outflow and change in storage volume of a rainwater harvesting system according to daily mass balance simulations based on historical rainfall observations. The performance of the DRWH system under various climate and operational conditions is examined as a function of two non-dimensional parameters, namely the demand fraction (d) and the modified storage fraction (sm). This last parameter allowed the evaluation of the effects of the rainfall intra-annual variability on the system performance.

  2. On the phase behavior of hard aspherical particles

    NASA Astrophysics Data System (ADS)

    Miller, William L.; Cacciuto, Angelo

    2010-12-01

    We use numerical simulations to understand how random deviations from the ideal spherical shape affect the ability of hard particles to form fcc crystalline structures. Using a system of hard spheres as a reference, we determine the fluid-solid coexistence pressures of both shape-polydisperse and monodisperse systems of aspherical hard particles. We find that when particles are sufficiently isotropic, the coexistence pressure can be predicted from a linear relation involving the product of two simple geometric parameters characterizing the asphericity of the particles. Finally, our results allow us to gain direct insight into the crystallizability limits of these systems by rationalizing empirical data obtained for analogous monodisperse systems.

  3. Working fluid selection for space-based two-phase heat transport systems

    NASA Technical Reports Server (NTRS)

    Mclinden, Mark O.

    1988-01-01

    The working fluid for externally-mounted, space-based two-phase heat transport systems is considered. A sequence of screening criteria involving freezing and critical point temperatures and latent heat of vaporization and vapor density are applied to a data base of 860 fluids. The thermal performance of the 52 fluids which pass this preliminary screening are then ranked according to their impact on the weight of a reference system. Upon considering other nonthermal criteria (flammability, toxicity, and chemical stability) a final set of 10 preferred fluids is obtained. The effects of variations in system parameters is investigated for these 10 fluids by means of a factorial design.

  4. A novel double-convection chaotic attractor, its adaptive control and circuit simulation

    NASA Astrophysics Data System (ADS)

    Mamat, M.; Vaidyanathan, S.; Sambas, A.; Mujiarto; Sanjaya, W. S. M.; Subiyanto

    2018-03-01

    A 3-D novel double-convection chaotic system with three nonlinearities is proposed in this research work. The dynamical properties of the new chaotic system are described in terms of phase portraits, Lyapunov exponents, Kaplan-Yorke dimension, dissipativity, stability analysis of equilibria, etc. Adaptive control and synchronization of the new chaotic system with unknown parameters are achieved via nonlinear controllers and the results are established using Lyapunov stability theory. Furthermore, an electronic circuit realization of the new 3-D novel chaotic system is presented in detail. Finally, the circuit experimental results of the 3-D novel chaotic attractor show agreement with the numerical simulations.

  5. A Final Approach Trajectory Model for Current Operations

    NASA Technical Reports Server (NTRS)

    Gong, Chester; Sadovsky, Alexander

    2010-01-01

    Predicting accurate trajectories with limited intent information is a challenge faced by air traffic management decision support tools in operation today. One such tool is the FAA's Terminal Proximity Alert system which is intended to assist controllers in maintaining safe separation of arrival aircraft during final approach. In an effort to improve the performance of such tools, two final approach trajectory models are proposed; one based on polynomial interpolation, the other on the Fourier transform. These models were tested against actual traffic data and used to study effects of the key final approach trajectory modeling parameters of wind, aircraft type, and weight class, on trajectory prediction accuracy. Using only the limited intent data available to today's ATM system, both the polynomial interpolation and Fourier transform models showed improved trajectory prediction accuracy over a baseline dead reckoning model. Analysis of actual arrival traffic showed that this improved trajectory prediction accuracy leads to improved inter-arrival separation prediction accuracy for longer look ahead times. The difference in mean inter-arrival separation prediction error between the Fourier transform and dead reckoning models was 0.2 nmi for a look ahead time of 120 sec, a 33 percent improvement, with a corresponding 32 percent improvement in standard deviation.

  6. ON THE DEGREE OF CONVERSION AND COEFFICIENT OF THERMAL EXPANSION OF A SINGLE FIBER COMPOSITE USING A FBG SENSOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, M.; Botsis, J.; Coric, D.

    2008-08-28

    The increasing needs of extending the lifetime in high-technology fields, such as space and aerospace, rail transport and naval systems, require quality enhancing of the composite materials either from a processing standing point or in the sense of resistance to service conditions. It is well accepted that the final quality of composite materials and structures is strongly influenced by processing parameters like curing and post-curing temperatures, rate of heating and cooling, applied vacuum, etc. To optimize manufacturing cycles, residual strains evolution due to chemical shrinkage and other physical parameters of the constituent materials must be characterized in situ. Such knowledgemore » can lead to a sensible reduction in defects and to improved physical and mechanical properties of final products. In this context continuous monitoring of strains distribution developed during processing is important in understanding and retrieving components' and materials' characteristics such as local strains gradients, degree of curing, coefficient of thermal expansion, moisture absorption, etc.« less

  7. Methods for parameter identification in oscillatory networks and application to cortical and thalamic 600 Hz activity.

    PubMed

    Leistritz, L; Suesse, T; Haueisen, J; Hilgenfeld, B; Witte, H

    2006-01-01

    Directed information transfer in the human brain occurs presumably by oscillations. As of yet, most approaches for the analysis of these oscillations are based on time-frequency or coherence analysis. The present work concerns the modeling of cortical 600 Hz oscillations, localized within the Brodmann Areas 3b and 1 after stimulation of the nervus medianus, by means of coupled differential equations. This approach leads to the so-called parameter identification problem, where based on a given data set, a set of unknown parameters of a system of ordinary differential equations is determined by special optimization procedures. Some suitable algorithms for this task are presented in this paper. Finally an oscillatory network model is optimally fitted to the data taken from ten volunteers.

  8. Parameter optimization in biased decoy-state quantum key distribution with both source errors and statistical fluctuations

    NASA Astrophysics Data System (ADS)

    Zhu, Jian-Rong; Li, Jian; Zhang, Chun-Mei; Wang, Qin

    2017-10-01

    The decoy-state method has been widely used in commercial quantum key distribution (QKD) systems. In view of the practical decoy-state QKD with both source errors and statistical fluctuations, we propose a universal model of full parameter optimization in biased decoy-state QKD with phase-randomized sources. Besides, we adopt this model to carry out simulations of two widely used sources: weak coherent source (WCS) and heralded single-photon source (HSPS). Results show that full parameter optimization can significantly improve not only the secure transmission distance but also the final key generation rate. And when taking source errors and statistical fluctuations into account, the performance of decoy-state QKD using HSPS suffered less than that of decoy-state QKD using WCS.

  9. Classification of hepatocellular carcinoma stages from free-text clinical and radiology reports

    PubMed Central

    Yim, Wen-wai; Kwan, Sharon W; Johnson, Guy; Yetisgen, Meliha

    2017-01-01

    Cancer stage information is important for clinical research. However, they are not always explicitly noted in electronic medical records. In this paper, we present our work on automatic classification of hepatocellular carcinoma (HCC) stages from free-text clinical and radiology notes. To accomplish this, we defined 11 stage parameters used in the three HCC staging systems, American Joint Committee on Cancer (AJCC), Barcelona Clinic Liver Cancer (BCLC), and Cancer of the Liver Italian Program (CLIP). After aggregating stage parameters to the patient-level, the final stage classifications were achieved using an expert-created decision logic. Each stage parameter relevant for staging was extracted using several classification methods, e.g. sentence classification and automatic information structuring, to identify and normalize text as cancer stage parameter values. Stage parameter extraction for the test set performed at 0.81 F1. Cancer stage prediction for AJCC, BCLC, and CLIP stage classifications were 0.55, 0.50, and 0.43 F1.

  10. Multiscale analysis of the correlation of processing parameters on viscidity of composites fabricated by automated fiber placement

    NASA Astrophysics Data System (ADS)

    Han, Zhenyu; Sun, Shouzheng; Fu, Yunzhong; Fu, Hongya

    2017-10-01

    Viscidity is an important physical indicator for assessing fluidity of resin that is beneficial to contact resin with the fibers effectively and reduce manufacturing defects during automated fiber placement (AFP) process. However, the effect of processing parameters on viscidity evolution is rarely studied during AFP process. In this paper, viscidities under different scales are analyzed based on multi-scale analysis method. Firstly, viscous dissipation energy (VDE) within meso-unit under different processing parameters is assessed by using finite element method (FEM). According to multi-scale energy transfer model, meso-unit energy is used as the boundary condition for microscopic analysis. Furthermore, molecular structure of micro-system is built by molecular dynamics (MD) method. And viscosity curves are then obtained by integrating stress autocorrelation function (SACF) with time. Finally, the correlation characteristics of processing parameters to viscosity are revealed by using gray relational analysis method (GRAM). A group of processing parameters is found out to achieve the stability of viscosity and better fluidity of resin.

  11. Parameters Identification for Photovoltaic Module Based on an Improved Artificial Fish Swarm Algorithm

    PubMed Central

    Wang, Hong-Hua

    2014-01-01

    A precise mathematical model plays a pivotal role in the simulation, evaluation, and optimization of photovoltaic (PV) power systems. Different from the traditional linear model, the model of PV module has the features of nonlinearity and multiparameters. Since conventional methods are incapable of identifying the parameters of PV module, an excellent optimization algorithm is required. Artificial fish swarm algorithm (AFSA), originally inspired by the simulation of collective behavior of real fish swarms, is proposed to fast and accurately extract the parameters of PV module. In addition to the regular operation, a mutation operator (MO) is designed to enhance the searching performance of the algorithm. The feasibility of the proposed method is demonstrated by various parameters of PV module under different environmental conditions, and the testing results are compared with other studied methods in terms of final solutions and computational time. The simulation results show that the proposed method is capable of obtaining higher parameters identification precision. PMID:25243233

  12. Load forecasting via suboptimal seasonal autoregressive models and iteratively reweighted least squares estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mbamalu, G.A.N.; El-Hawary, M.E.

    The authors propose suboptimal least squares or IRWLS procedures for estimating the parameters of a seasonal multiplicative AR model encountered during power system load forecasting. The proposed method involves using an interactive computer environment to estimate the parameters of a seasonal multiplicative AR process. The method comprises five major computational steps. The first determines the order of the seasonal multiplicative AR process, and the second uses the least squares or the IRWLS to estimate the optimal nonseasonal AR model parameters. In the third step one obtains the intermediate series by back forecast, which is followed by using the least squaresmore » or the IRWLS to estimate the optimal season AR parameters. The final step uses the estimated parameters to forecast future load. The method is applied to predict the Nova Scotia Power Corporation's 168 lead time hourly load. The results obtained are documented and compared with results based on the Box and Jenkins method.« less

  13. A new parametric method to smooth time-series data of metabolites in metabolic networks.

    PubMed

    Miyawaki, Atsuko; Sriyudthsak, Kansuporn; Hirai, Masami Yokota; Shiraishi, Fumihide

    2016-12-01

    Mathematical modeling of large-scale metabolic networks usually requires smoothing of metabolite time-series data to account for measurement or biological errors. Accordingly, the accuracy of smoothing curves strongly affects the subsequent estimation of model parameters. Here, an efficient parametric method is proposed for smoothing metabolite time-series data, and its performance is evaluated. To simplify parameter estimation, the method uses S-system-type equations with simple power law-type efflux terms. Iterative calculation using this method was found to readily converge, because parameters are estimated stepwise. Importantly, smoothing curves are determined so that metabolite concentrations satisfy mass balances. Furthermore, the slopes of smoothing curves are useful in estimating parameters, because they are probably close to their true behaviors regardless of errors that may be present in the actual data. Finally, calculations for each differential equation were found to converge in much less than one second if initial parameters are set at appropriate (guessed) values. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Sensor for the working surface cleanliness definition in vacuum

    NASA Astrophysics Data System (ADS)

    Deulin, E. A.; Mashurov, S. S.; Gatsenko, A. A.

    2016-07-01

    Modern development of nanotechnology as one of the modern science priority directions is impossible to imagine without the use of vacuum systems and technologies. And the better the vacuum (lower the pressure), the “cleaner” we get a surface, which is very important for nanotechnology. Determination of the cleanliness of the surface or the amount of molecular layers of adsorbed gases on the working surface of the products especially in industry, where the cleanliness of the working surface is a key parameter of the technological process and has a significant influence on the output parameters of the final product is the main goal of this work.

  15. An adaptive optimal control for smart structures based on the subspace tracking identification technique

    NASA Astrophysics Data System (ADS)

    Ripamonti, Francesco; Resta, Ferruccio; Borroni, Massimo; Cazzulani, Gabriele

    2014-04-01

    A new method for the real-time identification of mechanical system modal parameters is used in order to design different adaptive control logics aiming to reduce the vibrations in a carbon fiber plate smart structure. It is instrumented with three piezoelectric actuators, three accelerometers and three strain gauges. The real-time identification is based on a recursive subspace tracking algorithm whose outputs are elaborated by an ARMA model. A statistical approach is finally applied to choose the modal parameter correct values. These are given in input to model-based control logics such as a gain scheduling and an adaptive LQR control.

  16. Research on the trace detection of carbon dioxide gas and modulation parameter optimization based on the TDLAS technology

    NASA Astrophysics Data System (ADS)

    Zhao, Peng; Tao, Jun; Yu, Chang-rui; Li, Ye

    2014-02-01

    Based on the technology of tunable diode laser absorption spectroscopy, modulation of the center wavelength of 2004 nm distributed feedback laser diode at a room-temperature, the second harmonic amplitude of CO2 at 2004nm can be obtained. The CO2 concentration can be calculated via the Beer-Lambert law. Sinusoidal modulation parameter is an important factor that affects the sensitivity and accuracy of the system, through the research on the relationship between sinusoidal modulation signal frequency, amplitude and Second harmonic linetype, we finally achieve the detection limit of 10ppm under 12 m optical path.

  17. Dynamical investigation and parameter stability region analysis of a flywheel energy storage system in charging mode

    NASA Astrophysics Data System (ADS)

    Zhang, Wei-Ya; Li, Yong-Li; Chang, Xiao-Yong; Wang, Nan

    2013-09-01

    In this paper, the dynamic behavior analysis of the electromechanical coupling characteristics of a flywheel energy storage system (FESS) with a permanent magnet (PM) brushless direct-current (DC) motor (BLDCM) is studied. The Hopf bifurcation theory and nonlinear methods are used to investigate the generation process and mechanism of the coupled dynamic behavior for the average current controlled FESS in the charging mode. First, the universal nonlinear dynamic model of the FESS based on the BLDCM is derived. Then, for a 0.01 kWh/1.6 kW FESS platform in the Key Laboratory of the Smart Grid at Tianjin University, the phase trajectory of the FESS from a stable state towards chaos is presented using numerical and stroboscopic methods, and all dynamic behaviors of the system in this process are captured. The characteristics of the low-frequency oscillation and the mechanism of the Hopf bifurcation are investigated based on the Routh stability criterion and nonlinear dynamic theory. It is shown that the Hopf bifurcation is directly due to the loss of control over the inductor current, which is caused by the system control parameters exceeding certain ranges. This coupling nonlinear process of the FESS affects the stability of the motor running and the efficiency of energy transfer. In this paper, we investigate into the effects of control parameter change on the stability and the stability regions of these parameters based on the averaged-model approach. Furthermore, the effect of the quantization error in the digital control system is considered to modify the stability regions of the control parameters. Finally, these theoretical results are verified through platform experiments.

  18. On-board adaptive model for state of charge estimation of lithium-ion batteries based on Kalman filter with proportional integral-based error adjustment

    NASA Astrophysics Data System (ADS)

    Wei, Jingwen; Dong, Guangzhong; Chen, Zonghai

    2017-10-01

    With the rapid development of battery-powered electric vehicles, the lithium-ion battery plays a critical role in the reliability of vehicle system. In order to provide timely management and protection for battery systems, it is necessary to develop a reliable battery model and accurate battery parameters estimation to describe battery dynamic behaviors. Therefore, this paper focuses on an on-board adaptive model for state-of-charge (SOC) estimation of lithium-ion batteries. Firstly, a first-order equivalent circuit battery model is employed to describe battery dynamic characteristics. Then, the recursive least square algorithm and the off-line identification method are used to provide good initial values of model parameters to ensure filter stability and reduce the convergence time. Thirdly, an extended-Kalman-filter (EKF) is applied to on-line estimate battery SOC and model parameters. Considering that the EKF is essentially a first-order Taylor approximation of battery model, which contains inevitable model errors, thus, a proportional integral-based error adjustment technique is employed to improve the performance of EKF method and correct model parameters. Finally, the experimental results on lithium-ion batteries indicate that the proposed EKF with proportional integral-based error adjustment method can provide robust and accurate battery model and on-line parameter estimation.

  19. Precision ephemerides for gravitational-wave searches - III. Revised system parameters of Sco X-1

    NASA Astrophysics Data System (ADS)

    Wang, L.; Steeghs, D.; Galloway, D. K.; Marsh, T.; Casares, J.

    2018-06-01

    Neutron stars in low-mass X-ray binaries are considered promising candidate sources of continuous gravitational-waves. These neutron stars are typically rotating many hundreds of times a second. The process of accretion can potentially generate and support non-axisymmetric distortions to the compact object, resulting in persistent emission of gravitational-waves. We present a study of existing optical spectroscopic data for Sco X-1, a prime target for continuous gravitational-wave searches, with the aim of providing revised constraints on key orbital parameters required for a directed search with advanced-LIGO data. From a circular orbit fit to an improved radial velocity curve of the Bowen emission components, we derived an updated orbital period and ephemeris. Centre of symmetry measurements from the Bowen Doppler tomogram yield a centre of the disc component of 90 km s-1, which we interpret as a revised upper limit to the projected orbital velocity of the NS K1. By implementing Monte Carlo binary parameter calculations, and imposing new limits on K1 and the rotational broadening, we obtained a complete set of dynamical system parameter constraints including a new range for K1 of 40-90 km s-1. Finally, we discussed the implications of the updated orbital parameters for future continuous-waves searches.

  20. Important operational parameters of membrane bioreactor-sludge disintegration (MBR-SD) system for zero excess sludge production.

    PubMed

    Yoon, Seong-Hoon

    2003-04-01

    In order to prevent excess sludge production during wastewater treatment, a membrane bioreactor-sludge disintegration (MBR-SD) system has been introduced, where the disintegrated sludge is recycled to the bioreactor as a feed solution. In this study, a mathematical model was developed by incorporating a sludge disintegration term into the conventional activated sludge model and the relationships among the operational parameters were investigated. A new definition of F/M ratio for the MBR-SD system was suggested to evaluate the actual organic loading rate. The actual F/M ratio was expected to be much higher than the apparent F/M ratio in MBR-SD. The kinetic parameters concerning the biodegradability of organics hardly affect the system performance. Instead, sludge solubilization ratio (alpha) in the SD process and particulate hydrolysis rate constant (k(h)) in biological reaction determine the sludge disintegration number (SDN), which is related with the overall economics of the MBR-SD system. Under reasonable alpha and k(h) values, SDN would range between 3 and 5 which means the amount of sludge required to be disintegrated would be 3-5 times higher for preventing a particular amount of sludge production. Finally, normalized sludge disintegration rate (q/V) which is needed to maintain a certain level of MLSS in the MBR-SD system was calculated as a function of F/V ratio.

  1. Research on the Diesel Engine with Sliding Mode Variable Structure Theory

    NASA Astrophysics Data System (ADS)

    Ma, Zhexuan; Mao, Xiaobing; Cai, Le

    2018-05-01

    This study constructed the nonlinear mathematical model of the diesel engine high-pressure common rail (HPCR) system through two polynomial fitting which was treated as a kind of affine nonlinear system. Based on sliding-mode variable structure control (SMVSC) theory, a sliding-mode controller for affine nonlinear systems was designed for achieving the control of common rail pressure and the diesel engine’s rotational speed. Finally, on the simulation platform of MATLAB, the designed nonlinear HPCR system was simulated. The simulation results demonstrated that sliding-mode variable structure control algorithm shows favourable control performances which are overcoming the shortcomings of traditional PID control in overshoot, parameter adjustment, system precision, adjustment time and ascending time.

  2. Uniform Persistence and Global Stability for a Brain Tumor and Immune System Interaction

    NASA Astrophysics Data System (ADS)

    Khajanchi, Subhas

    This paper describes the synergistic interaction between the growth of malignant gliomas and the immune system interactions using a system of coupled ordinary differential equations (ODEs). The proposed mathematical model comprises the interaction of glioma cells, macrophages, activated Cytotoxic T-Lymphocytes (CTLs), the immunosuppressive factor TGF-β and the immuno-stimulatory factor IFN-γ. The dynamical behavior of the proposed system both analytically and numerically is investigated from the point of view of stability. By constructing Lyapunov functions, the global behavior of the glioma-free and the interior equilibrium point have been analyzed under some assumptions. Finally, we perform numerical simulations in order to illustrate our analytical findings by varying the system parameters.

  3. In-laboratory development of an automatic track counting system for solid state nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Uzun, Sefa Kemal; Demiröz, Işık; Ulus, İzzet

    2017-01-01

    In this study, an automatic track counting system was developed for solid state nuclear track detectors (SSNTD). Firstly the specifications of required hardware components were determined, and accordingly the CCD camera, microscope and stage motor table was supplied and integrated. The system was completed by developing parametric software with VB.Net language. Finally a set of test intended for radon activity concentration measurement was applied. According to the test results, the system was enabled for routine radon measurement. Whether the parameters of system are adjusted for another SSNTD application, it could be used for other fields of SSNTD like neutron dosimetry or heavy charged particle detection.

  4. A Study on Aircraft Engine Control Systems for Integrated Flight and Propulsion Control

    NASA Astrophysics Data System (ADS)

    Yamane, Hideaki; Matsunaga, Yasushi; Kusakawa, Takeshi; Yasui, Hisako

    The Integrated Flight and Propulsion Control (IFPC) for a highly maneuverable aircraft and a fighter-class engine with pitch/yaw thrust vectoring is described. Of the two IFPC functions the aircraft maneuver control utilizes the thrust vectoring based on aerodynamic control surfaces/thrust vectoring control allocation specified by the Integrated Control Unit (ICU) of a FADEC (Full Authority Digital Electronic Control) system. On the other hand in the Performance Seeking Control (PSC) the ICU identifies engine's various characteristic changes, optimizes manipulated variables and finally adjusts engine control parameters in cooperation with the Engine Control Unit (ECU). It is shown by hardware-in-the-loop simulation that the thrust vectoring can enhance aircraft maneuverability/agility and that the PSC can improve engine performance parameters such as SFC (specific fuel consumption), thrust and gas temperature.

  5. Recent progress in synchrotron-based frequency-domain Fourier-transform THz-EPR.

    PubMed

    Nehrkorn, Joscha; Holldack, Karsten; Bittl, Robert; Schnegg, Alexander

    2017-07-01

    We describe frequency-domain Fourier-transform THz-EPR as a method to assign spin-coupling parameters of high-spin (S>1/2) systems with very large zero-field splittings. The instrumental foundations of synchrotron-based FD-FT THz-EPR are presented, alongside with a discussion of frequency-domain EPR simulation routines. The capabilities of this approach is demonstrated for selected mono- and multinuclear HS systems. Finally, we discuss remaining challenges and give an outlook on the future prospects of the technique. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Tunable χ /PT Symmetry in Noisy Graphene

    NASA Astrophysics Data System (ADS)

    Silva, E. Frade; Barbosa, A. L. R.; Hussein, M. S.; Ramos, J. G. G. S.

    2018-05-01

    We investigate the resonant regime of a mesoscopic cavity made of graphene or a doped beam splitter. Using Non-Hermitian Quantum Mechanics, we consider the Bender-Boettcher assumption that a system must obey parity and time reversal symmetry. Therefore, we describe such system by coupling chirality, parity, and time reversal symmetries through the scattering matrix formalism and apply it in the shot noise functions, also derived here. Finally, we show how to achieve the resonant regime only by setting properly the parameters concerning the chirality and the PT symmetry.

  7. Dynamical Cooper pairing in nonequilibrium electron-phonon systems

    DOE PAGES

    Knap, Michael; Babadi, Mehrtash; Refael, Gil; ...

    2016-12-08

    In this paper, we analyze Cooper pairing instabilities in strongly driven electron-phonon systems. The light-induced nonequilibrium state of phonons results in a simultaneous increase of the superconducting coupling constant and the electron scattering. We demonstrate that the competition between these effects leads to an enhanced superconducting transition temperature in a broad range of parameters. Finally, our results may explain the observed transient enhancement of superconductivity in several classes of materials upon irradiation with high intensity pulses of terahertz light, and may pave new ways for engineering high-temperature light-induced superconducting states.

  8. Dynamical phase transitions in generalized Kuramoto model with distributed Sakaguchi phase

    NASA Astrophysics Data System (ADS)

    Banerjee, Amitava

    2017-11-01

    In this numerical work, we have systematically studied the dynamical phase transitions in the Kuramoto-Sakaguchi model of synchronizing phase oscillators controlled by disorder in the Sakaguchi phases. We derive the numerical steady state phase diagrams for quenched and annealed kinds of disorder in the Sakaguchi parameters, using the conventional order parameter and other such statistical quantities as strength of incoherence and discontinuity measures. We have also considered the correlation profile of the local order parameter fluctuations in the various phases identified. The phase diagrams for quenched disorder are qualitatively much different from those in the global coupling regime. The order of various transitions is confirmed by a study of the distribution of the order parameter and its fourth order Binder’s cumulant across the transition for an ensemble of initial distribution of phases. For the annealed type of disorder, in contrast to the case with quenched disorder, the system is almost insensitive to the amount of disorder. We also elucidate the role of chimeralike states in the synchronizing transition of the system, and study the effect of disorder on these states. Finally, we seek justification of our results from simulations guided by the Ott-Antonsen ansatz.

  9. Solar system expansion and strong equivalence principle as seen by the NASA MESSENGER mission

    NASA Astrophysics Data System (ADS)

    Genova, Antonio; Mazarico, Erwan; Goossens, Sander; Lemoine, Frank G.; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.

    2018-01-01

    The NASA MESSENGER mission explored the innermost planet of the solar system and obtained a rich data set of range measurements for the determination of Mercury's ephemeris. Here we use these precise data collected over 7 years to estimate parameters related to general relativity and the evolution of the Sun. These results confirm the validity of the strong equivalence principle with a significantly refined uncertainty of the Nordtvedt parameter η = (-6.6 ± 7.2) × 10-5. By assuming a metric theory of gravitation, we retrieved the post-Newtonian parameter β = 1 + (-1.6 ± 1.8) × 10-5 and the Sun's gravitational oblateness, J2⊙J2⊙ = (2.246 ± 0.022) × 10-7. Finally, we obtain an estimate of the time variation of the Sun gravitational parameter, GM⊙°/GM⊙GM⊙°/GM⊙ = (-6.13 ± 1.47) × 10-14, which is consistent with the expected solar mass loss due to the solar wind and interior processes. This measurement allows us to constrain ∣∣G°∣∣/GG°/G to be <4 × 10-14 per year.

  10. The simulation study on optical target laser active detection performance

    NASA Astrophysics Data System (ADS)

    Li, Ying-chun; Hou, Zhao-fei; Fan, Youchen

    2014-12-01

    According to the working principle of laser active detection system, the paper establishes the optical target laser active detection simulation system, carry out the simulation study on the detection process and detection performance of the system. For instance, the performance model such as the laser emitting, the laser propagation in the atmosphere, the reflection of optical target, the receiver detection system, the signal processing and recognition. We focus on the analysis and modeling the relationship between the laser emitting angle and defocus amount and "cat eye" effect echo laser in the reflection of optical target. Further, in the paper some performance index such as operating range, SNR and the probability of the system have been simulated. The parameters including laser emitting parameters, the reflection of the optical target and the laser propagation in the atmosphere which make a great influence on the performance of the optical target laser active detection system. Finally, using the object-oriented software design methods, the laser active detection system with the opening type, complete function and operating platform, realizes the process simulation that the detection system detect and recognize the optical target, complete the performance simulation of each subsystem, and generate the data report and the graph. It can make the laser active detection system performance models more intuitive because of the visible simulation process. The simulation data obtained from the system provide a reference to adjust the structure of the system parameters. And it provides theoretical and technical support for the top level design of the optical target laser active detection system and performance index optimization.

  11. The Recommendations for Linear Measurement Techniques on the Measurements of Nonlinear System Parameters of a Joint.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Scott A; Catalfamo, Simone; Brake, Matthew R. W.

    2017-01-01

    In the study of the dynamics of nonlinear systems, experimental measurements often convolute the response of the nonlinearity of interest and the effects of the experimental setup. To reduce the influence of the experimental setup on the deduction of the parameters of the nonlinearity, the response of a mechanical joint is investigated under various experimental setups. These experiments first focus on quantifying how support structures and measurement techniques affect the natural frequency and damping of a linear system. The results indicate that support structures created from bungees have negligible influence on the system in terms of frequency and damping ratiomore » variations. The study then focuses on the effects of the excitation technique on the response for a linear system. The findings suggest that thinner stingers should not be used, because under the high force requirements the stinger bending modes are excited adding unwanted torsional coupling. The optimal configuration for testing the linear system is then applied to a nonlinear system in order to assess the robustness of the test configuration. Finally, recommendations are made for conducting experiments on nonlinear systems using conventional/linear testing techniques.« less

  12. Final Technical Report: Mathematical Foundations for Uncertainty Quantification in Materials Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plechac, Petr; Vlachos, Dionisios G.

    We developed path-wise information theory-based and goal-oriented sensitivity analysis and parameter identification methods for complex high-dimensional dynamics and in particular of non-equilibrium extended molecular systems. The combination of these novel methodologies provided the first methods in the literature which are capable to handle UQ questions for stochastic complex systems with some or all of the following features: (a) multi-scale stochastic models such as (bio)chemical reaction networks, with a very large number of parameters, (b) spatially distributed systems such as Kinetic Monte Carlo or Langevin Dynamics, (c) non-equilibrium processes typically associated with coupled physico-chemical mechanisms, driven boundary conditions, hybrid micro-macro systems,more » etc. A particular computational challenge arises in simulations of multi-scale reaction networks and molecular systems. Mathematical techniques were applied to in silico prediction of novel materials with emphasis on the effect of microstructure on model uncertainty quantification (UQ). We outline acceleration methods to make calculations of real chemistry feasible followed by two complementary tasks on structure optimization and microstructure-induced UQ.« less

  13. Dynamic analysis of clamp band joint system subjected to axial vibration

    NASA Astrophysics Data System (ADS)

    Qin, Z. Y.; Yan, S. Z.; Chu, F. L.

    2010-10-01

    Clamp band joints are commonly used for connecting circular components together in industry. Some of the systems jointed by clamp band are subjected to dynamic load. However, very little research on the dynamic characteristics for this kind of joint can be found in the literature. In this paper, a dynamic model for clamp band joint system is developed. Contact and frictional slip between the components are accommodated in this model. Nonlinear finite element analysis is conducted to identify the model parameters. Then static experiments are carried out on a scaled model of the clamp band joint to validate the joint model. Finally, the model is adopted to study the dynamic characteristics of the clamp band joint system subjected to axial harmonic excitation and the effects of the wedge angle of the clamp band joint and the preload on the response. The model proposed in this paper can represent the nonlinearity of the clamp band joint and be used conveniently to investigate the effects of the structural and loading parameters on the dynamic characteristics of this type of joint system.

  14. The Lateral Tracking Control for the Intelligent Vehicle Based on Adaptive PID Neural Network.

    PubMed

    Han, Gaining; Fu, Weiping; Wang, Wen; Wu, Zongsheng

    2017-05-30

    The intelligent vehicle is a complicated nonlinear system, and the design of a path tracking controller is one of the key technologies in intelligent vehicle research. This paper mainly designs a lateral control dynamic model of the intelligent vehicle, which is used for lateral tracking control. Firstly, the vehicle dynamics model (i.e., transfer function) is established according to the vehicle parameters. Secondly, according to the vehicle steering control system and the CARMA (Controlled Auto-Regression and Moving-Average) model, a second-order control system model is built. Using forgetting factor recursive least square estimation (FFRLS), the system parameters are identified. Finally, a neural network PID (Proportion Integral Derivative) controller is established for lateral path tracking control based on the vehicle model and the steering system model. Experimental simulation results show that the proposed model and algorithm have the high real-time and robustness in path tracing control. This provides a certain theoretical basis for intelligent vehicle autonomous navigation tracking control, and lays the foundation for the vertical and lateral coupling control.

  15. The Lateral Tracking Control for the Intelligent Vehicle Based on Adaptive PID Neural Network

    PubMed Central

    Han, Gaining; Fu, Weiping; Wang, Wen; Wu, Zongsheng

    2017-01-01

    The intelligent vehicle is a complicated nonlinear system, and the design of a path tracking controller is one of the key technologies in intelligent vehicle research. This paper mainly designs a lateral control dynamic model of the intelligent vehicle, which is used for lateral tracking control. Firstly, the vehicle dynamics model (i.e., transfer function) is established according to the vehicle parameters. Secondly, according to the vehicle steering control system and the CARMA (Controlled Auto-Regression and Moving-Average) model, a second-order control system model is built. Using forgetting factor recursive least square estimation (FFRLS), the system parameters are identified. Finally, a neural network PID (Proportion Integral Derivative) controller is established for lateral path tracking control based on the vehicle model and the steering system model. Experimental simulation results show that the proposed model and algorithm have the high real-time and robustness in path tracing control. This provides a certain theoretical basis for intelligent vehicle autonomous navigation tracking control, and lays the foundation for the vertical and lateral coupling control. PMID:28556817

  16. Gait Analysis Methods: An Overview of Wearable and Non-Wearable Systems, Highlighting Clinical Applications

    PubMed Central

    Muro-de-la-Herran, Alvaro; Garcia-Zapirain, Begonya; Mendez-Zorrilla, Amaia

    2014-01-01

    This article presents a review of the methods used in recognition and analysis of the human gait from three different approaches: image processing, floor sensors and sensors placed on the body. Progress in new technologies has led the development of a series of devices and techniques which allow for objective evaluation, making measurements more efficient and effective and providing specialists with reliable information. Firstly, an introduction of the key gait parameters and semi-subjective methods is presented. Secondly, technologies and studies on the different objective methods are reviewed. Finally, based on the latest research, the characteristics of each method are discussed. 40% of the reviewed articles published in late 2012 and 2013 were related to non-wearable systems, 37.5% presented inertial sensor-based systems, and the remaining 22.5% corresponded to other wearable systems. An increasing number of research works demonstrate that various parameters such as precision, conformability, usability or transportability have indicated that the portable systems based on body sensors are promising methods for gait analysis. PMID:24556672

  17. A review of pharmaceutical extrusion: critical process parameters and scaling-up.

    PubMed

    Thiry, J; Krier, F; Evrard, B

    2015-02-01

    Hot melt extrusion has been a widely used process in the pharmaceutical area for three decades. In this field, it is important to optimize the formulation in order to meet specific requirements. However, the process parameters of the extruder should be as much investigated as the formulation since they have a major impact on the final product characteristics. Moreover, a design space should be defined in order to obtain the expected product within the defined limits. This gives some freedom to operate as long as the processing parameters stay within the limits of the design space. Those limits can be investigated by varying randomly the process parameters but it is recommended to use design of experiments. An examination of the literature is reported in this review to summarize the impact of the variation of the process parameters on the final product properties. Indeed, the homogeneity of the mixing, the state of the drug (crystalline or amorphous), the dissolution rate, the residence time, can be influenced by variations in the process parameters. In particular, the impact of the following process parameters: temperature, screw design, screw speed and feeding, on the final product, has been reviewed. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. A Validation Study of Merging and Spacing Techniques in a NAS-Wide Simulation

    NASA Technical Reports Server (NTRS)

    Glaab, Patricia C.

    2011-01-01

    In November 2010, Intelligent Automation, Inc. (IAI) delivered an M&S software tool to that allows system level studies of the complex terminal airspace with the ACES simulation. The software was evaluated against current day arrivals in the Atlanta TRACON using Atlanta's Hartsfield-Jackson International Airport (KATL) arrival schedules. Results of this validation effort are presented describing data sets, traffic flow assumptions and techniques, and arrival rate comparisons between reported landings at Atlanta versus simulated arrivals using the same traffic sets in ACES equipped with M&S. Initial results showed the simulated system capacity to be significantly below arrival capacity seen at KATL. Data was gathered for Atlanta using commercial airport and flight tracking websites (like FlightAware.com), and analyzed to insure compatible techniques were used for result reporting and comparison. TFM operators for Atlanta were consulted for tuning final simulation parameters and for guidance in flow management techniques during high volume operations. Using these modified parameters and incorporating TFM guidance for efficiencies in flowing aircraft, arrival capacity for KATL was matched for the simulation. Following this validation effort, a sensitivity study was conducted to measure the impact of variations in system parameters on the Atlanta airport arrival capacity.

  19. Stochastic resonance in a time-delayed feedback tristable system and its application in fault diagnosis

    NASA Astrophysics Data System (ADS)

    Shi, Peiming; Yuan, Danzhen; Han, Dongying; Zhang, Ying; Fu, Rongrong

    2018-06-01

    Stochastic resonance (SR) phenomena in a time-delayed feedback tristable system driven by Gaussian white noise are investigated by simulating the potential function, mean first-passage time (MFPT), and signal-to-noise ratio (SNR) of the system. Through the use of a short delay time, the generalized potential function and stationary probability density function (PDF) are obtained. The delay feedback term has a significant effect on both equations, and that the parameters b, c, and d have different effects on the three wells of the potential function. The MFPT is calculated, which plays an extremely important role in research on particles escape rates. We find that the delay feedback term can affect the noise enhanced stability (NES). In addition, the SR characteristics are studied by the index of SNR. The simulation demonstrates that SNR is a non-monotonic distributed and that the peak SNR value can be attained by adjusting the appropriate parameters. Finally, the proposed theory is combined with a variable step method and applied to the detection of high frequencies in experiments. The result indicates that the fault frequency can be identified, and that the energy of the fault signal can be enhanced under suitable delay feedback parameters.

  20. Nonlinear observation of internal states of fuel cell cathode utilizing a high-order sliding-mode algorithm

    NASA Astrophysics Data System (ADS)

    Xu, Liangfei; Hu, Junming; Cheng, Siliang; Fang, Chuan; Li, Jianqiu; Ouyang, Minggao; Lehnert, Werner

    2017-07-01

    A scheme for designing a second-order sliding-mode (SOSM) observer that estimates critical internal states on the cathode side of a polymer electrolyte membrane (PEM) fuel cell system is presented. A nonlinear, isothermal dynamic model for the cathode side and a membrane electrolyte assembly are first described. A nonlinear observer topology based on an SOSM algorithm is then introduced, and equations for the SOSM observer deduced. Online calculation of the inverse matrix produces numerical errors, so a modified matrix is introduced to eliminate the negative effects of these on the observer. The simulation results indicate that the SOSM observer performs well for the gas partial pressures and air stoichiometry. The estimation results follow the simulated values in the model with relative errors within ± 2% at stable status. Large errors occur during the fast dynamic processes (<1 s). Moreover, the nonlinear observer shows good robustness against variations in the initial values of the internal states, but less robustness against variations in system parameters. The partial pressures are more sensitive than the air stoichiometry to system parameters. Finally, the order of effects of parameter uncertainties on the estimation results is outlined and analyzed.

  1. Novel Approaches to Improve Iris Recognition System Performance Based on Local Quality Evaluation and Feature Fusion

    PubMed Central

    2014-01-01

    For building a new iris template, this paper proposes a strategy to fuse different portions of iris based on machine learning method to evaluate local quality of iris. There are three novelties compared to previous work. Firstly, the normalized segmented iris is divided into multitracks and then each track is estimated individually to analyze the recognition accuracy rate (RAR). Secondly, six local quality evaluation parameters are adopted to analyze texture information of each track. Besides, particle swarm optimization (PSO) is employed to get the weights of these evaluation parameters and corresponding weighted coefficients of different tracks. Finally, all tracks' information is fused according to the weights of different tracks. The experimental results based on subsets of three public and one private iris image databases demonstrate three contributions of this paper. (1) Our experimental results prove that partial iris image cannot completely replace the entire iris image for iris recognition system in several ways. (2) The proposed quality evaluation algorithm is a self-adaptive algorithm, and it can automatically optimize the parameters according to iris image samples' own characteristics. (3) Our feature information fusion strategy can effectively improve the performance of iris recognition system. PMID:24693243

  2. Novel approaches to improve iris recognition system performance based on local quality evaluation and feature fusion.

    PubMed

    Chen, Ying; Liu, Yuanning; Zhu, Xiaodong; Chen, Huiling; He, Fei; Pang, Yutong

    2014-01-01

    For building a new iris template, this paper proposes a strategy to fuse different portions of iris based on machine learning method to evaluate local quality of iris. There are three novelties compared to previous work. Firstly, the normalized segmented iris is divided into multitracks and then each track is estimated individually to analyze the recognition accuracy rate (RAR). Secondly, six local quality evaluation parameters are adopted to analyze texture information of each track. Besides, particle swarm optimization (PSO) is employed to get the weights of these evaluation parameters and corresponding weighted coefficients of different tracks. Finally, all tracks' information is fused according to the weights of different tracks. The experimental results based on subsets of three public and one private iris image databases demonstrate three contributions of this paper. (1) Our experimental results prove that partial iris image cannot completely replace the entire iris image for iris recognition system in several ways. (2) The proposed quality evaluation algorithm is a self-adaptive algorithm, and it can automatically optimize the parameters according to iris image samples' own characteristics. (3) Our feature information fusion strategy can effectively improve the performance of iris recognition system.

  3. Review of Surface Properties of Thermal Protection Materials for the Design of IXV Thermal Protection System

    NASA Astrophysics Data System (ADS)

    Thoemel, J.; Cosson, E.; Chazot, O.

    2009-01-01

    In the framework of the creation of an aerothermodynamic database for the design the Intermediate Experimental Vehicle, surface properties of heat shield materials that represent the boundary conditions are reviewed. Catalytic and radiative characteristics available in the literature are critically analyzed and summarized. It turns out that large uncertainties on the parameters exist. Finally, simple and conservative values are proposed.

  4. Beam dynamics in MABE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poukey, J.W.; Coleman, P.D.; Sanford, T.W.L.

    1985-10-01

    MABE is a multistage linear electron accelerator which accelerates up to nine beams in parallel. Nominal parameters per beam are 25 kA, final energy 7 MeV, and guide field 20 kG. We report recent progress via theory and simulation in understanding the beam dynamics in such a system. In particular, we emphasize our results on the radial oscillations and emittance growth for a beam passing through a series of accelerating gaps.

  5. Wide-Field Imaging System and Rapid Direction of Optical Zoom (WOZ)

    DTIC Science & Technology

    2011-03-25

    COMSOL Multiphysics, and ZEMAX optical design. The multiphysics design tool is nearing completion. We have demonstrated the ability to create a model in...and mechanical modeling to calculate the deformation resulting from the applied voltages. Finally, the deformed surface can be exported to ZEMAX via...MatLab. From ZEMAX , various analyses can be conducted to determine important parameters such as focal point, aberrations, and wavefront distortion

  6. [Value of sepsis single-disease manage system in predicting mortality in patients with sepsis].

    PubMed

    Chen, J; Wang, L H; Ouyang, B; Chen, M Y; Wu, J F; Liu, Y J; Liu, Z M; Guan, X D

    2018-04-03

    Objective: To observe the effect of sepsis single-disease manage system on the improvement of sepsis treatment and the value in predicting mortality in patients with sepsis. Methods: A retrospective study was conducted. Patients with sepsis admitted to the Department of Surgical Intensive Care Unit of Sun Yat-Sen University First Affiliated Hospital from September 22, 2013 to May 5, 2015 were enrolled in this study. Sepsis single-disease manage system (Rui Xin clinical data manage system, China data, China) was used to monitor 25 clinical quality parameters, consisting of timeliness, normalization and outcome parameters. Based on whether these quality parameters could be completed or not, the clinical practice was evaluated by the system. The unachieved quality parameter was defined as suspicious parameters, and these suspicious parameters were used to predict mortality of patients with receiver operating characteristic curve (ROC). Results: A total of 1 220 patients with sepsis were enrolled, included 805 males and 415 females. The mean age was (59±17) years, and acute physiology and chronic health evaluation (APACHE Ⅱ) scores was 19±8. The area under ROC curve of total suspicious numbers for predicting 28-day mortality was 0.70; when the suspicious parameters number was more than 6, the sensitivity was 68.0% and the specificity was 61.0% for predicting 28-day mortality. In addition, the area under ROC curve of outcome suspicious number for predicting 28-day mortality was 0.89; when the suspicious outcome parameters numbers was more than 1, the sensitivity was 88.0% and the specificity was 78.0% for predicting 28-day mortality. Moreover, the area under ROC curve of total suspicious number for predicting 90-day mortality was 0.73; when the total suspicious parameters number was more than 7, the sensitivity was 60.0% and the specificity was 74.0% for predicting 90-day mortality. Finally, the area under ROC curve of outcome suspicious numbers for predicting 90-day mortality was 0.92; when suspicious outcome parameters numbers was more than 1, the sensitivity was 88.0% and the specificity was 81.0% for predicting 90-day mortality. Conclusion: The single center study suggests that this sepsis single-disease manage system could be used to monitor the completion of clinical practice for intensivist in managing sepsis, and the number of quality parameters failed to complete could be used to predict the mortality of the patients.

  7. Reliability and validity of tongue color analysis in the prediction of symptom patterns in terms of East Asian Medicine.

    PubMed

    Park, Young-Jae; Lee, Jin-Moo; Yoo, Seung-Yeon; Park, Young-Bae

    2016-04-01

    To examine whether color parameters of tongue inspection (TI) using a digital camera was reliable and valid, and to examine which color parameters serve as predictors of symptom patterns in terms of East Asian medicine (EAM). Two hundred female subjects' tongue substances were photographed by a mega-pixel digital camera. Together with the photographs, the subjects were asked to complete Yin deficiency, Phlegm pattern, and Cold-Heat pattern questionnaires. Using three sets of digital imaging software, each digital image was exposure- and white balance-corrected, and finally L* (luminance), a* (red-green balance), and b* (yellow-blue balance) values of the tongues were calculated. To examine intra- and inter-rater reliabilities and criterion validity of the color analysis method, three raters were asked to calculate color parameters for 20 digital image samples. Finally, four hierarchical regression models were formed. Color parameters showed good or excellent reliability (0.627-0.887 for intra-class correlation coefficients) and significant criterion validity (0.523-0.718 for Spearman's correlation). In the hierarchical regression models, age was a significant predictor of Yin deficiency (β = 0.192), and b* value of the tip of the tongue was a determinant predictor of Yin deficiency, Phlegm, and Heat patterns (β = - 0.212, - 0.172, and - 0.163). Luminance (L*) was predictive of Yin deficiency (β = -0.172) and Cold (β = 0.173) pattern. Our results suggest that color analysis of the tongue using the L*a*b* system is reliable and valid, and that color parameters partially serve as symptom pattern predictors in EAM practice.

  8. Correlation between mass transfer coefficient kLa and relevant operating parameters in cylindrical disposable shaken bioreactors on a bench-to-pilot scale

    PubMed Central

    2013-01-01

    Background Among disposable bioreactor systems, cylindrical orbitally shaken bioreactors show important advantages. They provide a well-defined hydrodynamic flow combined with excellent mixing and oxygen transfer for mammalian and plant cell cultivations. Since there is no known universal correlation between the volumetric mass transfer coefficient for oxygen kLa and relevant operating parameters in such bioreactor systems, the aim of this current study is to experimentally determine a universal kLa correlation. Results A Respiration Activity Monitoring System (RAMOS) was used to measure kLa values in cylindrical disposable shaken bioreactors and Buckingham’s π-Theorem was applied to define a dimensionless equation for kLa. In this way, a scale- and volume-independent kLa correlation was developed and validated in bioreactors with volumes from 2 L to 200 L. The final correlation was used to calculate cultivation parameters at different scales to allow a sufficient oxygen supply of tobacco BY-2 cell suspension cultures. Conclusion The resulting equation can be universally applied to calculate the mass transfer coefficient for any of seven relevant cultivation parameters such as the reactor diameter, the shaking frequency, the filling volume, the viscosity, the oxygen diffusion coefficient, the gravitational acceleration or the shaking diameter within an accuracy range of +/− 30%. To our knowledge, this is the first kLa correlation that has been defined and validated for the cited bioreactor system on a bench-to-pilot scale. PMID:24289110

  9. Extended Bose Hubbard model of interacting bosonic atoms in optical lattices: From superfluidity to density waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazzarella, G.; Giampaolo, S. M.; Illuminati, F.

    2006-01-15

    For systems of interacting, ultracold spin-zero neutral bosonic atoms, harmonically trapped and subject to an optical lattice potential, we derive an Extended Bose Hubbard (EBH) model by developing a systematic expansion for the Hamiltonian of the system in powers of the lattice parameters and of a scale parameter, the lattice attenuation factor. We identify the dominant terms that need to be retained in realistic experimental conditions, up to nearest-neighbor interactions and nearest-neighbor hoppings conditioned by the on-site occupation numbers. In the mean field approximation, we determine the free energy of the system and study the phase diagram both at zeromore » and at finite temperature. At variance with the standard on site Bose Hubbard model, the zero-temperature phase diagram of the EBH model possesses a dual structure in the Mott insulating regime. Namely, for specific ranges of the lattice parameters, a density wave phase characterizes the system at integer fillings, with domains of alternating mean occupation numbers that are the atomic counterparts of the domains of staggered magnetizations in an antiferromagnetic phase. We show as well that in the EBH model, a zero-temperature quantum phase transition to pair superfluidity is, in principle, possible, but completely suppressed at the lowest order in the lattice attenuation factor. Finally, we determine the possible occurrence of the different phases as a function of the experimentally controllable lattice parameters.« less

  10. A reliable algorithm for optimal control synthesis

    NASA Technical Reports Server (NTRS)

    Vansteenwyk, Brett; Ly, Uy-Loi

    1992-01-01

    In recent years, powerful design tools for linear time-invariant multivariable control systems have been developed based on direct parameter optimization. In this report, an algorithm for reliable optimal control synthesis using parameter optimization is presented. Specifically, a robust numerical algorithm is developed for the evaluation of the H(sup 2)-like cost functional and its gradients with respect to the controller design parameters. The method is specifically designed to handle defective degenerate systems and is based on the well-known Pade series approximation of the matrix exponential. Numerical test problems in control synthesis for simple mechanical systems and for a flexible structure with densely packed modes illustrate positively the reliability of this method when compared to a method based on diagonalization. Several types of cost functions have been considered: a cost function for robust control consisting of a linear combination of quadratic objectives for deterministic and random disturbances, and one representing an upper bound on the quadratic objective for worst case initial conditions. Finally, a framework for multivariable control synthesis has been developed combining the concept of closed-loop transfer recovery with numerical parameter optimization. The procedure enables designers to synthesize not only observer-based controllers but also controllers of arbitrary order and structure. Numerical design solutions rely heavily on the robust algorithm due to the high order of the synthesis model and the presence of near-overlapping modes. The design approach is successfully applied to the design of a high-bandwidth control system for a rotorcraft.

  11. Correlation between mass transfer coefficient kLa and relevant operating parameters in cylindrical disposable shaken bioreactors on a bench-to-pilot scale.

    PubMed

    Klöckner, Wolf; Gacem, Riad; Anderlei, Tibor; Raven, Nicole; Schillberg, Stefan; Lattermann, Clemens; Büchs, Jochen

    2013-12-02

    Among disposable bioreactor systems, cylindrical orbitally shaken bioreactors show important advantages. They provide a well-defined hydrodynamic flow combined with excellent mixing and oxygen transfer for mammalian and plant cell cultivations. Since there is no known universal correlation between the volumetric mass transfer coefficient for oxygen kLa and relevant operating parameters in such bioreactor systems, the aim of this current study is to experimentally determine a universal kLa correlation. A Respiration Activity Monitoring System (RAMOS) was used to measure kLa values in cylindrical disposable shaken bioreactors and Buckingham's π-Theorem was applied to define a dimensionless equation for kLa. In this way, a scale- and volume-independent kLa correlation was developed and validated in bioreactors with volumes from 2 L to 200 L. The final correlation was used to calculate cultivation parameters at different scales to allow a sufficient oxygen supply of tobacco BY-2 cell suspension cultures. The resulting equation can be universally applied to calculate the mass transfer coefficient for any of seven relevant cultivation parameters such as the reactor diameter, the shaking frequency, the filling volume, the viscosity, the oxygen diffusion coefficient, the gravitational acceleration or the shaking diameter within an accuracy range of +/- 30%. To our knowledge, this is the first kLa correlation that has been defined and validated for the cited bioreactor system on a bench-to-pilot scale.

  12. Inflation with a smooth constant-roll to constant-roll era transition

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.

    2017-07-01

    In this paper, we study canonical scalar field models, with a varying second slow-roll parameter, that allow transitions between constant-roll eras. In the models with two constant-roll eras, it is possible to avoid fine-tunings in the initial conditions of the scalar field. We mainly focus on the stability of the resulting solutions, and we also investigate if these solutions are attractors of the cosmological system. We shall calculate the resulting scalar potential and, by using a numerical approach, we examine the stability and attractor properties of the solutions. As we show, the first constant-roll era is dynamically unstable towards linear perturbations, and the cosmological system is driven by the attractor solution to the final constant-roll era. As we demonstrate, it is possible to have a nearly scale-invariant power spectrum of primordial curvature perturbations in some cases; however, this is strongly model dependent and depends on the rate of the final constant-roll era. Finally, we present, in brief, the essential features of a model that allows oscillations between constant-roll eras.

  13. Optimization of Fat-Reduced Puff Pastry Using Response Surface Methodology.

    PubMed

    Silow, Christoph; Zannini, Emanuele; Axel, Claudia; Belz, Markus C E; Arendt, Elke K

    2017-02-22

    Puff pastry is a high-fat bakery product with fat playing a key role, both during the production process and in the final pastry. In this study, response surface methodology (RSM) was successfully used to evaluate puff pastry quality for the development of a fat-reduced version. The technological parameters modified included the level of roll-in fat, the number of fat layers (50-200) and the final thickness (1.0-3.5 mm) of the laminated dough. Quality characteristics of puff pastry were measured using the Texture Analyzer with an attached Extended Craft Knife (ECK) and Multiple Puncture Probe (MPP), the VolScan and the C-Cell imaging system. The number of fat layers and final dough thickness, in combination with the amount of roll-in fat, had a significant impact on the internal and external structural quality parameters. With technological changes alone, a fat-reduced (≥30%) puff pastry was developed. The qualities of fat-reduced puff pastries were comparable to conventional full-fat (33 wt %) products. A sensory acceptance test revealed no significant differences in taste of fatness or 'liking of mouthfeel'. Additionally, the fat-reduced puff pastry resulted in a significant ( p < 0.05) positive correlation to 'liking of flavor' and overall acceptance by the assessors.

  14. Optimization of Fat-Reduced Puff Pastry Using Response Surface Methodology

    PubMed Central

    Silow, Christoph; Zannini, Emanuele; Axel, Claudia; Belz, Markus C. E.; Arendt, Elke K.

    2017-01-01

    Puff pastry is a high-fat bakery product with fat playing a key role, both during the production process and in the final pastry. In this study, response surface methodology (RSM) was successfully used to evaluate puff pastry quality for the development of a fat-reduced version. The technological parameters modified included the level of roll-in fat, the number of fat layers (50–200) and the final thickness (1.0–3.5 mm) of the laminated dough. Quality characteristics of puff pastry were measured using the Texture Analyzer with an attached Extended Craft Knife (ECK) and Multiple Puncture Probe (MPP), the VolScan and the C-Cell imaging system. The number of fat layers and final dough thickness, in combination with the amount of roll-in fat, had a significant impact on the internal and external structural quality parameters. With technological changes alone, a fat-reduced (≥30%) puff pastry was developed. The qualities of fat-reduced puff pastries were comparable to conventional full-fat (33 wt %) products. A sensory acceptance test revealed no significant differences in taste of fatness or ‘liking of mouthfeel’. Additionally, the fat-reduced puff pastry resulted in a significant (p < 0.05) positive correlation to ‘liking of flavor’ and overall acceptance by the assessors. PMID:28231095

  15. Generalized Smooth Transition Map Between Tent and Logistic Maps

    NASA Astrophysics Data System (ADS)

    Sayed, Wafaa S.; Fahmy, Hossam A. H.; Rezk, Ahmed A.; Radwan, Ahmed G.

    There is a continuous demand on novel chaotic generators to be employed in various modeling and pseudo-random number generation applications. This paper proposes a new chaotic map which is a general form for one-dimensional discrete-time maps employing the power function with the tent and logistic maps as special cases. The proposed map uses extra parameters to provide responses that fit multiple applications for which conventional maps were not enough. The proposed generalization covers also maps whose iterative relations are not based on polynomials, i.e. with fractional powers. We introduce a framework for analyzing the proposed map mathematically and predicting its behavior for various combinations of its parameters. In addition, we present and explain the transition map which results in intermediate responses as the parameters vary from their values corresponding to tent map to those corresponding to logistic map case. We study the properties of the proposed map including graph of the map equation, general bifurcation diagram and its key-points, output sequences, and maximum Lyapunov exponent. We present further explorations such as effects of scaling, system response with respect to the new parameters, and operating ranges other than transition region. Finally, a stream cipher system based on the generalized transition map validates its utility for image encryption applications. The system allows the construction of more efficient encryption keys which enhances its sensitivity and other cryptographic properties.

  16. Development of a prototype regeneration carbon dioxide absorber. [for use in EVA conditions

    NASA Technical Reports Server (NTRS)

    Patel, P. S.; Baker, B. S.

    1977-01-01

    A prototype regenerable carbon dioxide absorber was developed to maintain the environmental quality of the portable life support system. The absorber works on the alkali metal carbonate-bicarbonate solid-gas reaction to remove carbon dioxide from the atmosphere. The prototype sorber module was designed, fabricated, and tested at simulated extravehicular activity conditions to arrive at optimum design. The unit maintains sorber outlet concentration below 5 mm Hg. An optimization study was made with respect to heat transfer, temperature control, sorbent utilization, sorber life and regenerability, and final size of the module. Important parameters influencing the capacity of the final absorber unit were identified and recommendations for improvement were made.

  17. Parameterization of Highly Charged Metal Ions Using the 12-6-4 LJ-Type Nonbonded Model in Explicit Water

    PubMed Central

    2015-01-01

    Highly charged metal ions act as catalytic centers and structural elements in a broad range of chemical complexes. The nonbonded model for metal ions is extensively used in molecular simulations due to its simple form, computational speed, and transferability. We have proposed and parametrized a 12-6-4 LJ (Lennard-Jones)-type nonbonded model for divalent metal ions in previous work, which showed a marked improvement over the 12-6 LJ nonbonded model. In the present study, by treating the experimental hydration free energies and ion–oxygen distances of the first solvation shell as targets for our parametrization, we evaluated 12-6 LJ parameters for 18 M(III) and 6 M(IV) metal ions for three widely used water models (TIP3P, SPC/E, and TIP4PEW). As expected, the interaction energy underestimation of the 12-6 LJ nonbonded model increases dramatically for the highly charged metal ions. We then parametrized the 12-6-4 LJ-type nonbonded model for these metal ions with the three water models. The final parameters reproduced the target values with good accuracy, which is consistent with our previous experience using this potential. Finally, tests were performed on a protein system, and the obtained results validate the transferability of these nonbonded model parameters. PMID:25145273

  18. Observing binary black hole ringdowns by advanced gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Maselli, Andrea; Kokkotas, Kostas D.; Laguna, Pablo

    2017-05-01

    The direct discovery of gravitational waves from compact binary systems leads for the first time to explore the possibility of black hole spectroscopy. Newly formed black holes produced by coalescing events are copious emitters of gravitational radiation, in the form of damped sinusoids, the quasinormal modes. The latter provides a precious source of information on the nature of gravity in the strong field regime, as they represent a powerful tool to investigate the validity of the no-hair theorem. In this work we perform a systematic study on the accuracy with which current and future interferometers will measure the fundamental parameters of ringdown events, such as frequencies and damping times. We analyze how these errors affect the estimate of the mass and the angular momentum of the final black hole, constraining the parameter space which will lead to the most precise measurements. We explore both single and multimode events, showing how the uncertainties evolve when multiple detectors are available. We also prove that, for the second generation of interferometers, a network of instruments is a crucial and necessary ingredient to perform strong-gravity tests of the no-hair theorem. Finally, we analyze the constraints that a third generation of detectors may be able to set on the mode's parameters, comparing the projected bounds against those obtained for current facilities.

  19. Construction materials as a waste management solution for cellulose sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Modolo, R., E-mail: regina.modolo@ua.pt; Ferreira, V.M.; Machado, L.M.

    2011-02-15

    Sustainable waste management system for effluents treatment sludge has been a pressing issue for pulp and paper sector. Recycling is always recommended in terms of environmental sustainability. Following an approach of waste valorisation, this work aims to demonstrate the technical viability of producing fiber-cement roof sheets incorporating cellulose primary sludge generated on paper and pulp mills. From the results obtained with preliminary studies it was possible to verify the possibility of producing fiber-cement sheets by replacing 25% of the conventional used virgin long fiber by primary effluent treatment cellulose sludge. This amount of incorporation was tested on an industrial scale.more » Environmental parameters related to water and waste, as well as tests for checking the quality of the final product was performed. These control parameters involved total solids in suspension, dissolved salts, chlorides, sulphates, COD, metals content. In the product, parameters like moisture, density and strength were controlled. The results showed that it is possible to replace the virgin long fibers pulp by primary sludge without impacts in final product characteristics and on the environment. This work ensures the elimination of significant waste amounts, which are nowadays sent to landfill, as well as reduces costs associated with the standard raw materials use in the fiber-cement industrial sector.« less

  20. Rheological techniques for determining degradation of polylactic acid in bioresorbable medical polymer systems

    NASA Astrophysics Data System (ADS)

    Choong, Gabriel Y. H.; Parsons, Andrew J.; Grant, David M.; De Focatiis, Davide S. A.

    2015-05-01

    A method developed in the 1980s for the conversion of linear rheological data to molar mass distribution is revisited in the context of degradable polymers. The method is first applied using linear rheology for a linear polystyrene, for which all conversion parameters are known. A proof of principle is then carried out on four polycarbonate grades. Finally, preliminary results are shown on degradable polylactides. The application of this method to degrading polymer systems, and to systems containing nanofillers, is also discussed. This work forms part of a wider study of bioresorbable nanocomposites using polylactides, novel hydroxyapatite nanoparticles and tailored dispersants for medical applications.

  1. Design and implementation of EP-based PID controller for chaos synchronization of Rikitake circuit systems.

    PubMed

    Hou, Yi-You

    2017-09-01

    This article addresses an evolutionary programming (EP) algorithm technique-based and proportional-integral-derivative (PID) control methods are established to guarantee synchronization of the master and slave Rikitake chaotic systems. For PID synchronous control, the evolutionary programming (EP) algorithm is used to find the optimal PID controller parameters k p , k i , k d by integrated absolute error (IAE) method for the convergence conditions. In order to verify the system performance, the basic electronic components containing operational amplifiers (OPAs), resistors, and capacitors are used to implement the proposed chaotic Rikitake systems. Finally, the experimental results validate the proposed Rikitake chaotic synchronization approach. Copyright © 2017. Published by Elsevier Ltd.

  2. Dynamic Measurement of Disease Activity in Acute Pancreatitis: The Pancreatitis Activity Scoring System

    PubMed Central

    Wu, Bechien U.; Batech, Michael; Quezada, Michael; Lew, Daniel; Fujikawa, Kelly; Kung, Jonathan; Jamil, Laith H.; Chen, Wansu; Afghani, Elham; Reicher, Sonya; Buxbaum, James; Pandol, Stephen J.

    2017-01-01

    OBJECTIVES Acute pancreatitis has a highly variable course. Currently there is no widely accepted method to measure disease activity in patients hospitalized for acute pancreatitis. We aimed to develop a clinical activity index that incorporates routine clinical parameters to assist in the measurement, study, and management of acute pancreatitis. METHODS We used the UCLA/RAND appropriateness method to identify items for inclusion in the disease activity instrument. We conducted a systematic literature review followed by two sets of iterative modified Delphi meetings including a panel of international experts between November 2014 and November 2015. The final instrument was then applied to patient data obtained from five separate study cohorts across Southern California to assess profiles of disease activity. RESULTS From a list of 35 items comprising 6 domains, we identified 5 parameters for inclusion in the final weighted clinical activity scoring system: organ failure, systemic inflammatory response syndrome, abdominal pain, requirement for opiates and ability to tolerate oral intake. We applied the weighted scoring system across the 5 study cohorts comprising 3,123 patients. We identified several distinct patterns of disease activity: (i) overall there was an elevated score at baseline relative to discharge across all study cohorts, (ii) there were distinct patterns of disease activity related to duration of illness as well as (iii) early and persistent elevation of disease activity among patients with severe acute pancreatitis defined as persistent organ failure. CONCLUSIONS We present the development and initial validation of a clinical activity score for real-time assessment of disease activity in patients with acute pancreatitis. PMID:28462914

  3. Dynamic Measurement of Disease Activity in Acute Pancreatitis: The Pancreatitis Activity Scoring System.

    PubMed

    Wu, Bechien U; Batech, Michael; Quezada, Michael; Lew, Daniel; Fujikawa, Kelly; Kung, Jonathan; Jamil, Laith H; Chen, Wansu; Afghani, Elham; Reicher, Sonya; Buxbaum, James; Pandol, Stephen J

    2017-07-01

    Acute pancreatitis has a highly variable course. Currently there is no widely accepted method to measure disease activity in patients hospitalized for acute pancreatitis. We aimed to develop a clinical activity index that incorporates routine clinical parameters to assist in the measurement, study, and management of acute pancreatitis. We used the UCLA/RAND appropriateness method to identify items for inclusion in the disease activity instrument. We conducted a systematic literature review followed by two sets of iterative modified Delphi meetings including a panel of international experts between November 2014 and November 2015. The final instrument was then applied to patient data obtained from five separate study cohorts across Southern California to assess profiles of disease activity. From a list of 35 items comprising 6 domains, we identified 5 parameters for inclusion in the final weighted clinical activity scoring system: organ failure, systemic inflammatory response syndrome, abdominal pain, requirement for opiates and ability to tolerate oral intake. We applied the weighted scoring system across the 5 study cohorts comprising 3,123 patients. We identified several distinct patterns of disease activity: (i) overall there was an elevated score at baseline relative to discharge across all study cohorts, (ii) there were distinct patterns of disease activity related to duration of illness as well as (iii) early and persistent elevation of disease activity among patients with severe acute pancreatitis defined as persistent organ failure. We present the development and initial validation of a clinical activity score for real-time assessment of disease activity in patients with acute pancreatitis.

  4. Calculation of rates of exciton dissociation into hot charge-transfer states in model organic photovoltaic interfaces

    NASA Astrophysics Data System (ADS)

    Vázquez, Héctor; Troisi, Alessandro

    2013-11-01

    We investigate the process of exciton dissociation in ordered and disordered model donor/acceptor systems and describe a method to calculate exciton dissociation rates. We consider a one-dimensional system with Frenkel states in the donor material and states where charge transfer has taken place between donor and acceptor. We introduce a Green's function approach to calculate the generation rates of charge-transfer states. For disorder in the Frenkel states we find a clear exponential dependence of charge dissociation rates with exciton-interface distance, with a distance decay constant β that increases linearly with the amount of disorder. Disorder in the parameters that describe (final) charge-transfer states has little effect on the rates. Exciton dissociation invariably leads to partially separated charges. In all cases final states are “hot” charge-transfer states, with electron and hole located far from the interface.

  5. Binary black hole merger dynamics and waveforms

    NASA Technical Reports Server (NTRS)

    Baker, John G.; Centrella, Joan; Choi, Dae-II; Koppitz, Michael; vanMeter, James

    2006-01-01

    We apply recently developed techniques for simulations of moving black holes to study dynamics and radiation generation in the last few orbits and merger of a binary black hole system. Our analysis produces a consistent picture from the gravitational wave forms and dynamical black hole trajectories for a set of simulations with black holes beginning on circular-orbit trajectories at a variety of initial separations. We find profound agreement at the level of 1% among the simulations for the last orbit, merger and ringdown, resulting in a final black hole with spin parameter a/m = 0.69. Consequently, we are confident that this part of our waveform result accurately represents the predictions from Einstein's General Relativity for the final burst of gravitational radiation resulting from the merger of an astrophysical system of equal-mass non-spinning black holes. We also find good agreement at a level of roughly 10% for the radiation generated in the preceding few orbits.

  6. New database for improving virtual system “body-dress”

    NASA Astrophysics Data System (ADS)

    Yan, J. Q.; Zhang, S. C.; Kuzmichev, V. E.; Adolphe, D. C.

    2017-10-01

    The aim of this exploration is to develop a new database of solid algorithms and relations between the dress fit and the fabric mechanical properties, the pattern block construction for improving the reality of virtual system “body-dress”. In virtual simulation, the system “body-clothing” sometimes shown distinct results with reality, especially when important changes in pattern block and fabrics were involved. In this research, to enhance the simulation process, diverse fit parameters were proposed: bottom height of dress, angle of front center contours, air volume and its distribution between dress and dummy. Measurements were done and optimized by ruler, camera, 3D body scanner image processing software and 3D modeling software. In the meantime, pattern block indexes were measured and fabric properties were tested by KES. Finally, the correlation and linear regression equations between indexes of fabric properties, pattern blocks and fit parameters were investigated. In this manner, new database could be extended in programming modules of virtual design for more realistic results.

  7. Fall Risk Assessment and Early-Warning for Toddler Behaviors at Home

    PubMed Central

    Yang, Mau-Tsuen; Chuang, Min-Wen

    2013-01-01

    Accidental falls are the major cause of serious injuries in toddlers, with most of these falls happening at home. Instead of providing immediate fall detection based on short-term observations, this paper proposes an early-warning childcare system to monitor fall-prone behaviors of toddlers at home. Using 3D human skeleton tracking and floor plane detection based on depth images captured by a Kinect system, eight fall-prone behavioral modules of toddlers are developed and organized according to four essential criteria: posture, motion, balance, and altitude. The final fall risk assessment is generated by a multi-modal fusion using either a weighted mean thresholding or a support vector machine (SVM) classification. Optimizations are performed to determine local parameter in each module and global parameters of the multi-modal fusion. Experimental results show that the proposed system can assess fall risks and trigger alarms with an accuracy rate of 92% at a speed of 20 frames per second. PMID:24335727

  8. Fall risk assessment and early-warning for toddler behaviors at home.

    PubMed

    Yang, Mau-Tsuen; Chuang, Min-Wen

    2013-12-10

    Accidental falls are the major cause of serious injuries in toddlers, with most of these falls happening at home. Instead of providing immediate fall detection based on short-term observations, this paper proposes an early-warning childcare system to monitor fall-prone behaviors of toddlers at home. Using 3D human skeleton tracking and floor plane detection based on depth images captured by a Kinect system, eight fall-prone behavioral modules of toddlers are developed and organized according to four essential criteria: posture, motion, balance, and altitude. The final fall risk assessment is generated by a multi-modal fusion using either a weighted mean thresholding or a support vector machine (SVM) classification. Optimizations are performed to determine local parameter in each module and global parameters of the multi-modal fusion. Experimental results show that the proposed system can assess fall risks and trigger alarms with an accuracy rate of 92% at a speed of 20 frames per second.

  9. Analysis and design of gain scheduled control systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Shamma, Jeff S.

    1988-01-01

    Gain scheduling, as an idea, is to construct a global feedback control system for a time varying and/or nonlinear plant from a collection of local time invariant designs. However in the absence of a sound analysis, these designs come with no guarantees on the robustness, performance, or even nominal stability of the overall gain schedule design. Such an analysis is presented for three types of gain scheduling situations: (1) a linear parameter varying plant scheduling on its exogenous parameters, (2) a nonlinear plant scheduling on a prescribed reference trajectory, and (3) a nonlinear plant scheduling on the current plant output. Conditions are given which guarantee that the stability, robustness, and performance properties of the fixed operating point designs carry over to the global gain scheduled designs, such as the scheduling variable should vary slowly and capture the plants nonlinearities. Finally, an alternate design framework is proposed which removes the slowing varying restriction or gain scheduled systems. This framework addresses some fundamental feedback issues previously ignored in standard gain.

  10. Analysis of DGPS/INS and MLS/INS final approach navigation errors and control performance data

    NASA Technical Reports Server (NTRS)

    Hueschen, Richard M.; Spitzer, Cary R.

    1992-01-01

    Flight tests were conducted jointly by NASA Langley Research Center and Honeywell, Inc., on a B-737 research aircraft to record a data base for evaluating the performance of a differential DGPS/inertial navigation system (INS) which used GPS Course/Acquisition code receivers. Estimates from the DGPS/INS and a Microwave Landing System (MLS)/INS, and various aircraft parameter data were recorded in real time aboard the aircraft while flying along the final approach path to landing. This paper presents the mean and standard deviation of the DGPS/INS and MLS/INS navigation position errors computed relative to the laser tracker system and of the difference between the DGPS/INS and MLS/INS velocity estimates. RMS errors are presented for DGPS/INS and MLS/INS guidance errors (localizer and glideslope). The mean navigation position errors and standard deviation of the x position coordinate of the DGPS/INS and MLS/INS systems were found to be of similar magnitude while the standard deviation of the y and z position coordinate errors were significantly larger for DGPS/INS compared to MLS/INS.

  11. Structured chaos in a devil's staircase of the Josephson junction.

    PubMed

    Shukrinov, Yu M; Botha, A E; Medvedeva, S Yu; Kolahchi, M R; Irie, A

    2014-09-01

    The phase dynamics of Josephson junctions (JJs) under external electromagnetic radiation is studied through numerical simulations. Current-voltage characteristics, Lyapunov exponents, and Poincaré sections are analyzed in detail. It is found that the subharmonic Shapiro steps at certain parameters are separated by structured chaotic windows. By performing a linear regression on the linear part of the data, a fractal dimension of D = 0.868 is obtained, with an uncertainty of ±0.012. The chaotic regions exhibit scaling similarity, and it is shown that the devil's staircase of the system can form a backbone that unifies and explains the highly correlated and structured chaotic behavior. These features suggest a system possessing multiple complete devil's staircases. The onset of chaos for subharmonic steps occurs through the Feigenbaum period doubling scenario. Universality in the sequence of periodic windows is also demonstrated. Finally, the influence of the radiation and JJ parameters on the structured chaos is investigated, and it is concluded that the structured chaos is a stable formation over a wide range of parameter values.

  12. Structured chaos in a devil's staircase of the Josephson junction

    NASA Astrophysics Data System (ADS)

    Shukrinov, Yu. M.; Botha, A. E.; Medvedeva, S. Yu.; Kolahchi, M. R.; Irie, A.

    2014-09-01

    The phase dynamics of Josephson junctions (JJs) under external electromagnetic radiation is studied through numerical simulations. Current-voltage characteristics, Lyapunov exponents, and Poincaré sections are analyzed in detail. It is found that the subharmonic Shapiro steps at certain parameters are separated by structured chaotic windows. By performing a linear regression on the linear part of the data, a fractal dimension of D = 0.868 is obtained, with an uncertainty of ±0.012. The chaotic regions exhibit scaling similarity, and it is shown that the devil's staircase of the system can form a backbone that unifies and explains the highly correlated and structured chaotic behavior. These features suggest a system possessing multiple complete devil's staircases. The onset of chaos for subharmonic steps occurs through the Feigenbaum period doubling scenario. Universality in the sequence of periodic windows is also demonstrated. Finally, the influence of the radiation and JJ parameters on the structured chaos is investigated, and it is concluded that the structured chaos is a stable formation over a wide range of parameter values.

  13. VO-KOREL: A Fourier Disentangling Service of the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Škoda, Petr; Hadrava, Petr; Fuchs, Jan

    2012-04-01

    VO-KOREL is a web service exploiting the technology of the Virtual Observatory for providing astronomers with the intuitive graphical front-end and distributed computing back-end running the most recent version of the Fourier disentangling code KOREL. The system integrates the ideas of the e-shop basket, conserving the privacy of every user by transfer encryption and access authentication, with features of laboratory notebook, allowing the easy housekeeping of both input parameters and final results, as well as it explores a newly emerging technology of cloud computing. While the web-based front-end allows the user to submit data and parameter files, edit parameters, manage a job list, resubmit or cancel running jobs and mainly watching the text and graphical results of a disentangling process, the main part of the back-end is a simple job queue submission system executing in parallel multiple instances of the FORTRAN code KOREL. This may be easily extended for GRID-based deployment on massively parallel computing clusters. The short introduction into underlying technologies is given, briefly mentioning advantages as well as bottlenecks of the design used.

  14. Solutions of interval type-2 fuzzy polynomials using a new ranking method

    NASA Astrophysics Data System (ADS)

    Rahman, Nurhakimah Ab.; Abdullah, Lazim; Ghani, Ahmad Termimi Ab.; Ahmad, Noor'Ani

    2015-10-01

    A few years ago, a ranking method have been introduced in the fuzzy polynomial equations. Concept of the ranking method is proposed to find actual roots of fuzzy polynomials (if exists). Fuzzy polynomials are transformed to system of crisp polynomials, performed by using ranking method based on three parameters namely, Value, Ambiguity and Fuzziness. However, it was found that solutions based on these three parameters are quite inefficient to produce answers. Therefore in this study a new ranking method have been developed with the aim to overcome the inherent weakness. The new ranking method which have four parameters are then applied in the interval type-2 fuzzy polynomials, covering the interval type-2 of fuzzy polynomial equation, dual fuzzy polynomial equations and system of fuzzy polynomials. The efficiency of the new ranking method then numerically considered in the triangular fuzzy numbers and the trapezoidal fuzzy numbers. Finally, the approximate solutions produced from the numerical examples indicate that the new ranking method successfully produced actual roots for the interval type-2 fuzzy polynomials.

  15. Structured chaos in a devil's staircase of the Josephson junction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukrinov, Yu. M.; Botha, A. E., E-mail: bothaae@unisa.ac.za; Medvedeva, S. Yu.

    2014-09-01

    The phase dynamics of Josephson junctions (JJs) under external electromagnetic radiation is studied through numerical simulations. Current-voltage characteristics, Lyapunov exponents, and Poincaré sections are analyzed in detail. It is found that the subharmonic Shapiro steps at certain parameters are separated by structured chaotic windows. By performing a linear regression on the linear part of the data, a fractal dimension of D = 0.868 is obtained, with an uncertainty of ±0.012. The chaotic regions exhibit scaling similarity, and it is shown that the devil's staircase of the system can form a backbone that unifies and explains the highly correlated and structured chaotic behavior.more » These features suggest a system possessing multiple complete devil's staircases. The onset of chaos for subharmonic steps occurs through the Feigenbaum period doubling scenario. Universality in the sequence of periodic windows is also demonstrated. Finally, the influence of the radiation and JJ parameters on the structured chaos is investigated, and it is concluded that the structured chaos is a stable formation over a wide range of parameter values.« less

  16. Identification and control of plasma vertical position using neural network in Damavand tokamak.

    PubMed

    Rasouli, H; Rasouli, C; Koohi, A

    2013-02-01

    In this work, a nonlinear model is introduced to determine the vertical position of the plasma column in Damavand tokamak. Using this model as a simulator, a nonlinear neural network controller has been designed. In the first stage, the electronic drive and sensory circuits of Damavand tokamak are modified. These circuits can control the vertical position of the plasma column inside the vacuum vessel. Since the vertical position of plasma is an unstable parameter, a direct closed loop system identification algorithm is performed. In the second stage, a nonlinear model is identified for plasma vertical position, based on the multilayer perceptron (MLP) neural network (NN) structure. Estimation of simulator parameters has been performed by back-propagation error algorithm using Levenberg-Marquardt gradient descent optimization technique. The model is verified through simulation of the whole closed loop system using both simulator and actual plant in similar conditions. As the final stage, a MLP neural network controller is designed for simulator model. In the last step, online training is performed to tune the controller parameters. Simulation results justify using of the NN controller for the actual plant.

  17. Limitation of the Predominant-Period Estimator for Earthquake Early Warning and the Initial Rupture of Earthquakes

    NASA Astrophysics Data System (ADS)

    Yamada, T.; Ide, S.

    2007-12-01

    Earthquake early warning is an important and challenging issue for the reduction of the seismic damage, especially for the mitigation of human suffering. One of the most important problems in earthquake early warning systems is how immediately we can estimate the final size of an earthquake after we observe the ground motion. It is relevant to the problem whether the initial rupture of an earthquake has some information associated with its final size. Nakamura (1988) developed the Urgent Earthquake Detection and Alarm System (UrEDAS). It calculates the predominant period of the P wave (τp) and estimates the magnitude of an earthquake immediately after the P wave arrival from the value of τpmax, or the maximum value of τp. The similar approach has been adapted by other earthquake alarm systems (e.g., Allen and Kanamori (2003)). To investigate the characteristic of the parameter τp and the effect of the length of the time window (TW) in the τpmax calculation, we analyze the high-frequency recordings of earthquakes at very close distances in the Mponeng mine in South Africa. We find that values of τpmax have upper and lower limits. For larger earthquakes whose source durations are longer than TW, the values of τpmax have an upper limit which depends on TW. On the other hand, the values for smaller earthquakes have a lower limit which is proportional to the sampling interval. For intermediate earthquakes, the values of τpmax are close to their typical source durations. These two limits and the slope for intermediate earthquakes yield an artificial final size dependence of τpmax in a wide size range. The parameter τpmax is useful for detecting large earthquakes and broadcasting earthquake early warnings. However, its dependence on the final size of earthquakes does not suggest that the earthquake rupture is deterministic. This is because τpmax does not always have a direct relation to the physical quantities of an earthquake.

  18. Fate of a gray soliton in a quenched Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Gamayun, O.; Bezvershenko, Yu. V.; Cheianov, V.

    2015-03-01

    We investigate the destiny of a gray soliton in a repulsive one-dimensional Bose-Einstein condensate undergoing a sudden quench of the nonlinearity parameter. The outcome of the quench is found to depend dramatically on the ratio η of the final and initial values of the speed of sound. For integer η the soliton splits into exactly 2 η -1 solitons. For noninteger η the soliton decays into multiple solitons and Bogoliubov modes. The case of integer η is analyzed in detail. The parameters of solitons in the out state are found explicitly. Our approach exploits the inverse scattering method and can be easily used for similar quenches in any classical integrable system.

  19. Grey fuzzy optimization model for water quality management of a river system

    NASA Astrophysics Data System (ADS)

    Karmakar, Subhankar; Mujumdar, P. P.

    2006-07-01

    A grey fuzzy optimization model is developed for water quality management of river system to address uncertainty involved in fixing the membership functions for different goals of Pollution Control Agency (PCA) and dischargers. The present model, Grey Fuzzy Waste Load Allocation Model (GFWLAM), has the capability to incorporate the conflicting goals of PCA and dischargers in a deterministic framework. The imprecision associated with specifying the water quality criteria and fractional removal levels are modeled in a fuzzy mathematical framework. To address the imprecision in fixing the lower and upper bounds of membership functions, the membership functions themselves are treated as fuzzy in the model and the membership parameters are expressed as interval grey numbers, a closed and bounded interval with known lower and upper bounds but unknown distribution information. The model provides flexibility for PCA and dischargers to specify their aspirations independently, as the membership parameters for different membership functions, specified for different imprecise goals are interval grey numbers in place of a deterministic real number. In the final solution optimal fractional removal levels of the pollutants are obtained in the form of interval grey numbers. This enhances the flexibility and applicability in decision-making, as the decision-maker gets a range of optimal solutions for fixing the final decision scheme considering technical and economic feasibility of the pollutant treatment levels. Application of the GFWLAM is illustrated with case study of the Tunga-Bhadra river system in India.

  20. Risk assessment and experimental design in the development of a prolonged release drug delivery system with paliperidone.

    PubMed

    Iurian, Sonia; Turdean, Luana; Tomuta, Ioan

    2017-01-01

    This study focuses on the development of a drug product based on a risk assessment-based approach, within the quality by design paradigm. A prolonged release system was proposed for paliperidone (Pal) delivery, containing Kollidon ® SR as an insoluble matrix agent and hydroxypropyl cellulose, hydroxypropyl methylcellulose (HPMC), or sodium carboxymethyl cellulose as a hydrophilic polymer. The experimental part was preceded by the identification of potential sources of variability through Ishikawa diagrams, and failure mode and effects analysis was used to deliver the critical process parameters that were further optimized by design of experiments. A D-optimal design was used to investigate the effects of Kollidon SR ratio ( X 1 ), the type of hydrophilic polymer ( X 2 ), and the percentage of hydrophilic polymer ( X 3 ) on the percentages of dissolved Pal over 24 h ( Y 1 - Y 9 ). Effects expressed as regression coefficients and response surfaces were generated, along with a design space for the preparation of a target formulation in an experimental area with low error risk. The optimal formulation contained 27.62% Kollidon SR and 8.73% HPMC and achieved the prolonged release of Pal, with low burst effect, at ratios that were very close to the ones predicted by the model. Thus, the parameters with the highest impact on the final product quality were studied, and safe ranges were established for their variations. Finally, a risk mitigation and control strategy was proposed to assure the quality of the system, by constant process monitoring.

  1. Backstepping Design of Adaptive Neural Fault-Tolerant Control for MIMO Nonlinear Systems.

    PubMed

    Gao, Hui; Song, Yongduan; Wen, Changyun

    In this paper, an adaptive controller is developed for a class of multi-input and multioutput nonlinear systems with neural networks (NNs) used as a modeling tool. It is shown that all the signals in the closed-loop system with the proposed adaptive neural controller are globally uniformly bounded for any external input in . In our control design, the upper bound of the NN modeling error and the gains of external disturbance are characterized by unknown upper bounds, which is more rational to establish the stability in the adaptive NN control. Filter-based modification terms are used in the update laws of unknown parameters to improve the transient performance. Finally, fault-tolerant control is developed to accommodate actuator failure. An illustrative example applying the adaptive controller to control a rigid robot arm shows the validation of the proposed controller.In this paper, an adaptive controller is developed for a class of multi-input and multioutput nonlinear systems with neural networks (NNs) used as a modeling tool. It is shown that all the signals in the closed-loop system with the proposed adaptive neural controller are globally uniformly bounded for any external input in . In our control design, the upper bound of the NN modeling error and the gains of external disturbance are characterized by unknown upper bounds, which is more rational to establish the stability in the adaptive NN control. Filter-based modification terms are used in the update laws of unknown parameters to improve the transient performance. Finally, fault-tolerant control is developed to accommodate actuator failure. An illustrative example applying the adaptive controller to control a rigid robot arm shows the validation of the proposed controller.

  2. Multi-surface topography targeted plateau honing for the processing of cylinder liner surfaces of automotive engines

    NASA Astrophysics Data System (ADS)

    Lawrence, K. Deepak; Ramamoorthy, B.

    2016-03-01

    Cylinder bores of automotive engines are 'engineered' surfaces that are processed using multi-stage honing process to generate multiple layers of micro geometry for meeting the different functional requirements of the piston assembly system. The final processed surfaces should comply with several surface topographic specifications that are relevant for the good tribological performance of the engine. Selection of the process parameters in three stages of honing to obtain multiple surface topographic characteristics simultaneously within the specification tolerance is an important module of the process planning and is often posed as a challenging task for the process engineers. This paper presents a strategy by combining the robust process design and gray-relational analysis to evolve the operating levels of honing process parameters in rough, finish and plateau honing stages targeting to meet multiple surface topographic specifications on the final running surface of the cylinder bores. Honing experiments were conducted in three stages namely rough, finish and plateau honing on cast iron cylinder liners by varying four honing process parameters such as rotational speed, oscillatory speed, pressure and honing time. Abbott-Firestone curve based functional parameters (Rk, Rpk, Rvk, Mr1 and Mr2) coupled with mean roughness depth (Rz, DIN/ISO) and honing angle were measured and identified as the surface quality performance targets to be achieved. The experimental results have shown that the proposed approach is effective to generate cylinder liner surface that would simultaneously meet the explicit surface topographic specifications currently practiced by the industry.

  3. Design and analysis of tilt integral derivative controller with filter for load frequency control of multi-area interconnected power systems.

    PubMed

    Kumar Sahu, Rabindra; Panda, Sidhartha; Biswal, Ashutosh; Chandra Sekhar, G T

    2016-03-01

    In this paper, a novel Tilt Integral Derivative controller with Filter (TIDF) is proposed for Load Frequency Control (LFC) of multi-area power systems. Initially, a two-area power system is considered and the parameters of the TIDF controller are optimized using Differential Evolution (DE) algorithm employing an Integral of Time multiplied Absolute Error (ITAE) criterion. The superiority of the proposed approach is demonstrated by comparing the results with some recently published heuristic approaches such as Firefly Algorithm (FA), Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) optimized PID controllers for the same interconnected power system. Investigations reveal that proposed TIDF controllers provide better dynamic response compared to PID controller in terms of minimum undershoots and settling times of frequency as well as tie-line power deviations following a disturbance. The proposed approach is also extended to two widely used three area test systems considering nonlinearities such as Generation Rate Constraint (GRC) and Governor Dead Band (GDB). To improve the performance of the system, a Thyristor Controlled Series Compensator (TCSC) is also considered and the performance of TIDF controller in presence of TCSC is investigated. It is observed that system performance improves with the inclusion of TCSC. Finally, sensitivity analysis is carried out to test the robustness of the proposed controller by varying the system parameters, operating condition and load pattern. It is observed that the proposed controllers are robust and perform satisfactorily with variations in operating condition, system parameters and load pattern. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Prescribed-performance fault-tolerant control for feedback linearisable systems with an aircraft application

    NASA Astrophysics Data System (ADS)

    Gao, Gang; Wang, Jinzhi; Wang, Xianghua

    2017-05-01

    This paper investigates fault-tolerant control (FTC) for feedback linearisable systems (FLSs) and its application to an aircraft. To ensure desired transient and steady-state behaviours of the tracking error under actuator faults, the dynamic effect caused by the actuator failures on the error dynamics of a transformed model is analysed, and three control strategies are designed. The first FTC strategy is proposed as a robust controller, which relies on the explicit information about several parameters of the actuator faults. To eliminate the need for these parameters and the input chattering phenomenon, the robust control law is later combined with the adaptive technique to generate the adaptive FTC law. Next, the adaptive control law is further improved to achieve the prescribed performance under more severe input disturbance. Finally, the proposed control laws are applied to an air-breathing hypersonic vehicle (AHV) subject to actuator failures, which confirms the effectiveness of the proposed strategies.

  5. Robust Optimization Design for Turbine Blade-Tip Radial Running Clearance using Hierarchically Response Surface Method

    NASA Astrophysics Data System (ADS)

    Zhiying, Chen; Ping, Zhou

    2017-11-01

    Considering the robust optimization computational precision and efficiency for complex mechanical assembly relationship like turbine blade-tip radial running clearance, a hierarchically response surface robust optimization algorithm is proposed. The distribute collaborative response surface method is used to generate assembly system level approximation model of overall parameters and blade-tip clearance, and then a set samples of design parameters and objective response mean and/or standard deviation is generated by using system approximation model and design of experiment method. Finally, a new response surface approximation model is constructed by using those samples, and this approximation model is used for robust optimization process. The analyses results demonstrate the proposed method can dramatic reduce the computational cost and ensure the computational precision. The presented research offers an effective way for the robust optimization design of turbine blade-tip radial running clearance.

  6. Health Monitoring and Management for Manufacturing Workers in Adverse Working Conditions.

    PubMed

    Xu, Xiaoya; Zhong, Miao; Wan, Jiafu; Yi, Minglun; Gao, Tiancheng

    2016-10-01

    In adverse working conditions, environmental parameters such as metallic dust, noise, and environmental temperature, directly affect the health condition of manufacturing workers. It is therefore important to implement health monitoring and management based on important physiological parameters (e.g., heart rate, blood pressure, and body temperature). In recent years, new technologies, such as body area networks, cloud computing, and smart clothing, have allowed the improvement of the quality of services. In this article, we first give five-layer architecture for health monitoring and management of manufacturing workers. Then, we analyze the system implementation process, including environmental data processing, physical condition monitoring and system services and management, and present the corresponding algorithms. Finally, we carry out an evaluation and analysis from the perspective of insurance and compensation for manufacturing workers in adverse working conditions. The proposed scheme will contribute to the improvement of workplace conditions, realize health monitoring and management, and protect the interests of manufacturing workers.

  7. Diffusion in Coulomb crystals.

    PubMed

    Hughto, J; Schneider, A S; Horowitz, C J; Berry, D K

    2011-07-01

    Diffusion in Coulomb crystals can be important for the structure of neutron star crusts. We determine diffusion constants D from molecular dynamics simulations. We find that D for Coulomb crystals with relatively soft-core 1/r interactions may be larger than D for Lennard-Jones or other solids with harder-core interactions. Diffusion, for simulations of nearly perfect body-centered-cubic lattices, involves the exchange of ions in ringlike configurations. Here ions "hop" in unison without the formation of long lived vacancies. Diffusion, for imperfect crystals, involves the motion of defects. Finally, we find that diffusion, for an amorphous system rapidly quenched from Coulomb parameter Γ=175 to Coulomb parameters up to Γ=1750, is fast enough that the system starts to crystalize during long simulation runs. These results strongly suggest that Coulomb solids in cold white dwarf stars, and the crust of neutron stars, will be crystalline and not amorphous.

  8. Three Dozen Pulsars Over a Dozen+ Years in Terzan 5

    NASA Astrophysics Data System (ADS)

    Ransom, Scott M.; Stairs, Ingrid; Hessels, Jason W. T.; Freire, Paulo; Bilous, Anna; Prager, Brian; Ho, Anna; Cadelano, Mario; Wang, David; Scott Ransom

    2018-01-01

    The massive and rich globular cluster Terzan 5 contains at least 37 millisecond pulsars -- the most of any globular cluster. We have been timing these pulsars in the radio since 2004 using the Green Bank Telescope, and the individual and combined properties have provided a wealth of science. We have measured long-term accelerations and "jerks" of almost all of the pulsars, allowing a unique probe of the physical parameters of the cluster, completely independent from optical/IR measurements. We have directly measured the absolute proper motion of cluster and see evidence for internal velocity dispersion. Numerous post-Keplerian (i.e. relativistic) orbital parameters are significant, allowing measurements or constraints on the neutron star masses for nine systems. Ensemble flux density, dispersion measure, and polarization measurements constrain the pulsar luminosity function and the interstellar medium. Finally, we observe many interesting properties of and long-term variabilty from several eclipsing systems.

  9. Geometric phase for a two-level system in photonic band gab crystal

    NASA Astrophysics Data System (ADS)

    Berrada, K.

    2018-05-01

    In this work, we investigate the geometric phase (GP) for a qubit system coupled to its own anisotropic and isotropic photonic band gap (PBG) crystal environment without Born or Markovian approximation. The qubit frequency affects the GP of the qubit directly through the effect of the PBG environment. The results show the deviation of the GP depends on the detuning parameter and this deviation will be large for relatively large detuning of atom frequency inside the gap with respect to the photonic band edge. Whereas for detunings outside the gap, the GP of the qubit changes abruptly to zero, exhibiting collapse phenomenon of the GP. Moreover, we find that the GP in the isotropic PBG photonic crystal is more robust than that in the anisotropic PBG under the same condition. Finally, we explore the relationship between the variation of the GP and population in terms of the physical parameters.

  10. Time variability of viscosity parameter in differentially rotating discs

    NASA Astrophysics Data System (ADS)

    Rajesh, S. R.; Singh, Nishant K.

    2014-07-01

    We propose a mechanism to produce fluctuations in the viscosity parameter (α) in differentially rotating discs. We carried out a nonlinear analysis of a general accretion flow, where any perturbation on the background α was treated as a passive/slave variable in the sense of dynamical system theory. We demonstrate a complete physical picture of growth, saturation and final degradation of the perturbation as a result of the nonlinear nature of coupled system of equations. The strong dependence of this fluctuation on the radial location in the accretion disc and the base angular momentum distribution is demonstrated. The growth of fluctuations is shown to have a time scale comparable to the radial drift time and hence the physical significance is discussed. The fluctuation is found to be a power law in time in the growing phase and we briefly discuss its statistical significance.

  11. Analysis of aircraft microwave measurements of the ocean surface

    NASA Technical Reports Server (NTRS)

    Willand, J. H.; Fowler, M. G.; Reifenstein, E. C., III; Chang, D. T.

    1973-01-01

    A data system was developed to process, from calibrated brightness temperature to computation of estimated parameters, the microwave measurements obtained by the NASA CV-990 aircraft during the 1972 Meteorological Expedition. A primary objective of the study was the implementation of an integrated software system at the computing facility of NASA/GSFC, and its application to the 1972 data. A single test case involving measurements away from and over a heavy rain cell was chosen to examine the effect of clouds upon the ability to infer ocean surface parameters. The results indicate substantial agreement with those of the theoretical study; namely, that the values obtained for the surface properties are consistent with available ground-truth information, and are reproducible except within the heaviest portions of the rain cell, at which nonlinear (or saturation) effects become apparent. Finally, it is seen that uncorrected instrumental effects introduce systematic errors which may limit the accuracy of the method.

  12. The Design of Power System Stability Controller Based on the PCH Theory and Improved Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Liu, Zhijian; Yin, Donghui; Yan, Jun

    2017-05-01

    Low frequency oscillation is still frequently happened in the power system and it affects the safety and stability of power system directly. With the continuously expending of the interconnection scale of power grid, the risk of low frequency oscillation becomes more and more noticeable. Firstly, the basic theory of port-controlled Hamilton (PCH) and its application is analyzed. Secondly, based on the PCH theory and the dynamic model of system, from the viewpoint of energy, the nonlinear stability controller of power system is designed. By the improved genetic algorithm, the parameters of the PCH model are optimized. Finally, a simulation model with PCH is built to vary the effectiveness of the method proposed in this paper.

  13. Meta-learning framework applied in bioinformatics inference system design.

    PubMed

    Arredondo, Tomás; Ormazábal, Wladimir

    2015-01-01

    This paper describes a meta-learner inference system development framework which is applied and tested in the implementation of bioinformatic inference systems. These inference systems are used for the systematic classification of the best candidates for inclusion in bacterial metabolic pathway maps. This meta-learner-based approach utilises a workflow where the user provides feedback with final classification decisions which are stored in conjunction with analysed genetic sequences for periodic inference system training. The inference systems were trained and tested with three different data sets related to the bacterial degradation of aromatic compounds. The analysis of the meta-learner-based framework involved contrasting several different optimisation methods with various different parameters. The obtained inference systems were also contrasted with other standard classification methods with accurate prediction capabilities observed.

  14. SU-E-T-660: Quantitative Fault Testing for Commissioning of Proton Therapy Machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reilly, M; Rankine, L; Grantham, K

    2015-06-15

    Purpose: To ensure proper fault testing for the first single room proton therapy machine by establishing a common set of acceptance testing and commissioning parameters with the manufacturer. The following work details the parameters tested and associated results. Methods: Dose rates in service mode were varied to ensure that when the threshold for maximum or minimum MU/min was met, the beam promptly shut off. The flatness parameter was tested by purposely assigning an incorrect secondary scatter, to ensure the beam shut off when detecting a heterogeneous profile. The beam symmetry parameter was tested by altering the steering coil up tomore » 3.0A, thereby forcing the beam to be asymmetric and shut off. Lastly, the quench system was tested by ramping down the magnet to 5% capacity, whereby the quench button was engaged to bring down the magnet current to a safe level. Results: A dose rate increase or decrease in excess of 10% shut the beam off within 5 seconds as observed by the current on a Matrixx ionization chamber array (IBA Dosimetry, Bartlett, TN) A 3.0A change in the beam steering coil introduced a 2% change in the flatness and symmetry profiles with respect to baseline measurements resulting in the beam shutting off within 5 seconds. An incorrect 2nd scatterer introduced a flatness of 4.1% and symmetry of 6.4% which immediately triggered a beam shut off. Finally, the quench system worked as expected during the ramp down procedure. Conclusion: A fault testing plan to check dosimetric faults and the quench system was performed for the first single room proton therapy system. All dosimetric parameters and machine conditions were met to our satisfaction. We propose that the same type of fault testing should be applied to any proton system during commissioning, including scanning beam systems.« less

  15. A novel optimized hybrid fuzzy logic intelligent PID controller for an interconnected multi-area power system with physical constraints and boiler dynamics.

    PubMed

    Gomaa Haroun, A H; Li, Yin-Ya

    2017-11-01

    In the fast developing world nowadays, load frequency control (LFC) is considered to be a most significant role for providing the power supply with good quality in the power system. To deliver a reliable power, LFC system requires highly competent and intelligent control technique. Hence, in this article, a novel hybrid fuzzy logic intelligent proportional-integral-derivative (FLiPID) controller has been proposed for LFC of interconnected multi-area power systems. A four-area interconnected thermal power system incorporated with physical constraints and boiler dynamics is considered and the adjustable parameters of the FLiPID controller are optimized using particle swarm optimization (PSO) scheme employing an integral square error (ISE) criterion. The proposed method has been established to enhance the power system performances as well as to reduce the oscillations of uncertainties due to variations in the system parameters and load perturbations. The supremacy of the suggested method is demonstrated by comparing the simulation results with some recently reported heuristic methods such as fuzzy logic proportional-integral (FLPI) and intelligent proportional-integral-derivative (PID) controllers for the same electrical power system. the investigations showed that the FLiPID controller provides a better dynamic performance and outperform compared to the other approaches in terms of the settling time, and minimum undershoots of the frequency as well as tie-line power flow deviations following a perturbation, in addition to perform appropriate settlement of integral absolute error (IAE). Finally, the sensitivity analysis of the plant is inspected by varying the system parameters and operating load conditions from their nominal values. It is observed that the suggested controller based optimization algorithm is robust and perform satisfactorily with the variations in operating load condition, system parameters and load pattern. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Beam dynamics in MABE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poukey, J.W.; Coleman, P.D.; Sanford, T.W.L.

    1985-01-01

    MABE is a multistage linear electron accelerator which accelerates up to nine beams in parallel. Nominal parameters per beam are 25 kA, final energy 7 MeV, and guide field 20 kG. We report recent progress via theory and simulation in understanding the beam dynamics in such a system. In particular, we emphasize our results on the radial oscillations and emittance growth for a beam passing through a series of accelerating gaps. 12 refs., 8 figs.

  17. OARE STS-87 (USMP-4)

    NASA Technical Reports Server (NTRS)

    Rice, James E.

    1998-01-01

    The report is organized into sections representing the phases of work performed in analyzing the STS-87 (USMP-4) results. Section 1 briefly outlines the OARE system features, coordinates, and measurement parameters. Section 2 describes the results from STS-87. The mission description, data calibration, and representative data obtained on STS-87 are presented. Finally, Section 3 presents a discussion of accuracy achieved and achievable with OARE. Appendix A discusses the calibration and data processing methodology in detail.

  18. Investigation of Laser Based Thomson Scattering

    DTIC Science & Technology

    2015-06-04

    laser liquid interaction has the potential to provide sources of energetic ions and fission products such as neutrons . The development of strong...by the production of heavy water d-d fusion and the production of neutrons . Finally, in section VII the tight focusing of light by a 2π mirror is...laser system is estimated to be 10 -15 , using cross- polarization modulation and two plasma mirrors. These parameters allow prepulse expansion to be

  19. Effect of ceramic thickness and cement shade on the final shade after bonding using the 3D master system: a laboratory study.

    PubMed

    Montero, Javier; Gómez-Polo, Cristina

    2016-06-01

    The final color of a ceramic restoration is influenced by both the ceramic thickness and the cement shade. This study aims to evaluate the color stability according to the 3D Master System of e.max ceramic discs after bonding with different shades of luting agents. A total of 120 e.max.Press 2M1 HT ceramic discs (60 discs of 1-mm thick and 60 discs of 0.5 mm thick) and three different values of Variolink Veneer cement were used (-3, 0, +3) for the cementation process. An Easyshade compact device was used to measure color shade tabs, according to the 3D Master System, on the discs both before and after the cementation protocols. Bivariate and multivariate analyses were carried out with the spss v.21. After bonding with the different luting agents, only 30% remained as 2M1: specifically, 22% of the thinner discs and 37.3% of the thicker discs. In general, the effect of bonding increased the value and the chroma of the shade to a significant extent. Regression analyses revealed that the most significant predictor for all color parameters was cement shade, the thinner disc group bonded with -3 cement being the most unstable subgroup. According to the 3D Master System, the shade of the luting agent was the main predictor of the final color. However, the final color seems to be somewhat unpredictable, at least according to the modulating factors evaluated in the present study.

  20. [Three-dimensional morphological modeling and visualization of wheat root system].

    PubMed

    Tan, Feng; Tang, Liang; Hu, Jun-Cheng; Jiang, Hai-Yan; Cao, Wei-Xing; Zhu, Yan

    2011-01-01

    Crop three-dimensional (3D) morphological modeling and visualization is an important part of digital plant study. This paper aimed to develop a 3D morphological model of wheat root system based on the parameters of wheat root morphological features, and to realize the visualization of wheat root growth. According to the framework of visualization technology for wheat root growth, a 3D visualization model of wheat root axis, including root axis growth model, branch geometric model, and root axis curve model, was developed firstly. Then, by integrating root topology, the corresponding pixel was determined, and the whole wheat root system was three-dimensionally re-constructed by using the morphological feature parameters in the root morphological model. Finally, based on the platform of OpenGL, and by integrating the technologies of texture mapping, lighting rendering, and collision detection, the 3D visualization of wheat root growth was realized. The 3D output of wheat root system from the model was vivid, which could realize the 3D root system visualization of different wheat cultivars under different water regimes and nitrogen application rates. This study could lay a technical foundation for further development of an integral visualization system of wheat plant.

  1. Knowledge transmission model with differing initial transmission and retransmission process

    NASA Astrophysics Data System (ADS)

    Wang, Haiying; Wang, Jun; Small, Michael

    2018-10-01

    Knowledge transmission is a cyclic dynamic diffusion process. The rate of acceptance of knowledge differs upon whether or not the recipient has previously held the knowledge. In this paper, the knowledge transmission process is divided into an initial and a retransmission procedure, each with its own transmission and self-learning parameters. Based on epidemic spreading model, we propose a naive-evangelical-agnostic (VEA) knowledge transmission model and derive mean-field equations to describe the dynamics of knowledge transmission in homogeneous networks. Theoretical analysis identifies a criterion for the persistence of knowledge, i.e., the reproduction number R0 depends on the minor effective parameters between the initial and retransmission process. Moreover, the final size of evangelical individuals is only related to retransmission process parameters. Numerical simulations validate the theoretical analysis. Furthermore, the simulations indicate that increasing the initial transmission parameters, including first transmission and self-learning rates of naive individuals, can accelerate the velocity of knowledge transmission efficiently but have no effect on the final size of evangelical individuals. In contrast, the retransmission parameters, including retransmission and self-learning rates of agnostic individuals, have a significant effect on the rate of knowledge transmission, i.e., the larger parameters the greater final density of evangelical individuals.

  2. Passive designs and renewable energy systems optimization of a net zero energy building in Embrun/France

    NASA Astrophysics Data System (ADS)

    Harkouss, F.; Biwole, P. H.; Fardoun, F.

    2018-05-01

    Buildings’ optimization is a smart method to inspect the available design choices starting from passive strategies, to energy efficient systems and finally towards the adequate renewable energy system to be implemented. This paper outlines the methodology and the cost-effectiveness potential for optimizing the design of net-zero energy building in a French city; Embrun. The non-dominated sorting genetic algorithm is chosen in order to minimize thermal, electrical demands and life cycle cost while reaching the net zero energy balance; and thus getting the Pareto-front. Elimination and Choice Expressing the Reality decision making method is applied to the Pareto-front so as to obtain one optimal solution. A wide range of energy efficiency measures are investigated, besides solar energy systems are employed to produce required electricity and hot water for domestic purposes. The results indicate that the appropriate selection of the passive parameters is very important and critical in reducing the building energy consumption. The optimum design parameters yield to a decrease of building’s thermal loads and life cycle cost by 32.96% and 14.47% respectively.

  3. Changes in rat respiratory system produced by exposure to exhaust gases of combustion of glycerol.

    PubMed

    Serra, Daniel Silveira; Evangelista, Janaína Serra Azul Monteiro; Zin, Walter Araujo; Leal-Cardoso, José Henrique; Cavalcante, Francisco Sales Ávila

    2017-08-01

    The combustion of residual glycerol to generate heat in industrial processes has been suggested as a cost-effective solution for disposal of this environmental liability. Thus, we investigated the effects of exposure to the exhaust gases of glycerol combustion in the rat respiratory system. We used 2 rats groups, one exposed to the exhaust gases from glycerol combustion (Glycerol), and the other exposed to ambient air (Control). Exposure occurred 5h a day, 5days a week for 13 weeks. We observed statistically changes in all parameters of respiratory system mechanics in vivo. This results was supported by histological analysis and morphometric data, confirming narrower airways and lung parenchimal changes. Variables related to airway resistance (ΔR N ) and elastic properties of the tissue (ΔH), increased after challenge with methacholine. Finally, analysis of lung tissue micromechanics showed statistically increases in all parameters (R, E and hysteresivity). In conclusion, exhaust gases from glycerol combustion were harmful to the respiratory system. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Toward quantitative estimation of material properties with dynamic mode atomic force microscopy: a comparative study.

    PubMed

    Ghosal, Sayan; Gannepalli, Anil; Salapaka, Murti

    2017-08-11

    In this article, we explore methods that enable estimation of material properties with the dynamic mode atomic force microscopy suitable for soft matter investigation. The article presents the viewpoint of casting the system, comprising of a flexure probe interacting with the sample, as an equivalent cantilever system and compares a steady-state analysis based method with a recursive estimation technique for determining the parameters of the equivalent cantilever system in real time. The steady-state analysis of the equivalent cantilever model, which has been implicitly assumed in studies on material property determination, is validated analytically and experimentally. We show that the steady-state based technique yields results that quantitatively agree with the recursive method in the domain of its validity. The steady-state technique is considerably simpler to implement, however, slower compared to the recursive technique. The parameters of the equivalent system are utilized to interpret storage and dissipative properties of the sample. Finally, the article identifies key pitfalls that need to be avoided toward the quantitative estimation of material properties.

  5. Higher Plants in life support systems: design of a model and plant experimental compartment

    NASA Astrophysics Data System (ADS)

    Hezard, Pauline; Farges, Berangere; Sasidharan L, Swathy; Dussap, Claude-Gilles

    The development of closed ecological life support systems (CELSS) requires full control and efficient engineering for fulfilling the common objectives of water and oxygen regeneration, CO2 elimination and food production. Most of the proposed CELSS contain higher plants, for which a growth chamber and a control system are needed. Inside the compartment the development of higher plants must be understood and modeled in order to be able to design and control the compartment as a function of operating variables. The plant behavior must be analyzed at different sub-process scales : (i) architecture and morphology describe the plant shape and lead to calculate the morphological parameters (leaf area, stem length, number of meristems. . . ) characteristic of life cycle stages; (ii) physiology and metabolism of the different organs permit to assess the plant composition depending on the plant input and output rates (oxygen, carbon dioxide, water and nutrients); (iii) finally, the physical processes are light interception, gas exchange, sap conduction and root uptake: they control the available energy from photosynthesis and the input and output rates. These three different sub-processes are modeled as a system of equations using environmental and plant parameters such as light intensity, temperature, pressure, humidity, CO2 and oxygen partial pressures, nutrient solution composition, total leaf surface and leaf area index, chlorophyll content, stomatal conductance, water potential, organ biomass distribution and composition, etc. The most challenging issue is to develop a comprehensive and operative mathematical model that assembles these different sub-processes in a unique framework. In order to assess the parameters for testing a model, a polyvalent growth chamber is necessary. It should permit a controlled environment in order to test and understand the physiological response and determine the control strategy. The final aim of this model is to have an envi-ronmental control of plant behavior: this requires an extended knowledge of plant response to environment variations. This needs a large number of experiments, which would be easier to perform in a high-throughput system.

  6. On predicting monitoring system effectiveness

    NASA Astrophysics Data System (ADS)

    Cappello, Carlo; Sigurdardottir, Dorotea; Glisic, Branko; Zonta, Daniele; Pozzi, Matteo

    2015-03-01

    While the objective of structural design is to achieve stability with an appropriate level of reliability, the design of systems for structural health monitoring is performed to identify a configuration that enables acquisition of data with an appropriate level of accuracy in order to understand the performance of a structure or its condition state. However, a rational standardized approach for monitoring system design is not fully available. Hence, when engineers design a monitoring system, their approach is often heuristic with performance evaluation based on experience, rather than on quantitative analysis. In this contribution, we propose a probabilistic model for the estimation of monitoring system effectiveness based on information available in prior condition, i.e. before acquiring empirical data. The presented model is developed considering the analogy between structural design and monitoring system design. We assume that the effectiveness can be evaluated based on the prediction of the posterior variance or covariance matrix of the state parameters, which we assume to be defined in a continuous space. Since the empirical measurements are not available in prior condition, the estimation of the posterior variance or covariance matrix is performed considering the measurements as a stochastic variable. Moreover, the model takes into account the effects of nuisance parameters, which are stochastic parameters that affect the observations but cannot be estimated using monitoring data. Finally, we present an application of the proposed model to a real structure. The results show how the model enables engineers to predict whether a sensor configuration satisfies the required performance.

  7. Adaptive on-line calibration for around-view monitoring system using between-camera homography estimation

    NASA Astrophysics Data System (ADS)

    Lim, Sungsoo; Lee, Seohyung; Kim, Jun-geon; Lee, Daeho

    2018-01-01

    The around-view monitoring (AVM) system is one of the major applications of advanced driver assistance systems and intelligent transportation systems. We propose an on-line calibration method, which can compensate misalignments for AVM systems. Most AVM systems use fisheye undistortion, inverse perspective transformation, and geometrical registration methods. To perform these procedures, the parameters for each process must be known; the procedure by which the parameters are estimated is referred to as the initial calibration. However, when only using the initial calibration data, we cannot compensate misalignments, caused by changing equilibria of cars. Moreover, even small changes such as tire pressure levels, passenger weight, or road conditions can affect a car's equilibrium. Therefore, to compensate for this misalignment, additional techniques are necessary, specifically an on-line calibration method. On-line calibration can recalculate homographies, which can correct any degree of misalignment using the unique features of ordinary parking lanes. To extract features from the parking lanes, this method uses corner detection and a pattern matching algorithm. From the extracted features, homographies are estimated using random sample consensus and parameter estimation. Finally, the misaligned epipolar geographies are compensated via the estimated homographies. Thus, the proposed method can render image planes parallel to the ground. This method does not require any designated patterns and can be used whenever cars are placed in a parking lot. The experimental results show the robustness and efficiency of the method.

  8. Nonlinear Inference in Partially Observed Physical Systems and Deep Neural Networks

    NASA Astrophysics Data System (ADS)

    Rozdeba, Paul J.

    The problem of model state and parameter estimation is a significant challenge in nonlinear systems. Due to practical considerations of experimental design, it is often the case that physical systems are partially observed, meaning that data is only available for a subset of the degrees of freedom required to fully model the observed system's behaviors and, ultimately, predict future observations. Estimation in this context is highly complicated by the presence of chaos, stochasticity, and measurement noise in dynamical systems. One of the aims of this dissertation is to simultaneously analyze state and parameter estimation in as a regularized inverse problem, where the introduction of a model makes it possible to reverse the forward problem of partial, noisy observation; and as a statistical inference problem using data assimilation to transfer information from measurements to the model states and parameters. Ultimately these two formulations achieve the same goal. Similar aspects that appear in both are highlighted as a means for better understanding the structure of the nonlinear inference problem. An alternative approach to data assimilation that uses model reduction is then examined as a way to eliminate unresolved nonlinear gating variables from neuron models. In this formulation, only measured variables enter into the model, and the resulting errors are themselves modeled by nonlinear stochastic processes with memory. Finally, variational annealing, a data assimilation method previously applied to dynamical systems, is introduced as a potentially useful tool for understanding deep neural network training in machine learning by exploiting similarities between the two problems.

  9. Accuracy of embedded fragment calculation for evaluating electron interactions in mixed valence magnetic systems: study of 2e-reduced lindqvist polyoxometalates.

    PubMed

    Suaud, Nicolas; López, Xavier; Ben Amor, Nadia; Bandeira, Nuno A G; de Graaf, Coen; Poblet, Josep M

    2015-02-10

    Accurate quantum chemical calculations on real-world magnetic systems are challenging, the inclusion of electron correlation being the bottleneck of such task. One method proposed to overcome this difficulty is the embedded fragment approach. It tackles a chemical problem by dividing it into small fragments, which are treated in a highly accurate way, surrounded by an embedding included at an approximate level. For the vast family of medium-to-large sized polyoxometalates, two-electron-reduced systems are habitual and their magnetic properties are interesting. In this paper, we aim at assessing the quality of embedded fragment calculations by checking their ability to reproduce the electronic spectra of a complete system, here the mixed-metal series [MoxW6-xO19](4-) (x = 0-6). The microscopic parameters extracted from fragment calculations (electron hopping, intersite electrostatic repulsion, local orbital energy, etc.) have been used to reproduce the spectra through model Hamiltonian calculations. These energies are compared to the results of the highly accurate ab initio difference dedicated configuration interaction (DDCI) method on the complete system. In general, the model Hamiltonian calculations using parameters extracted from embedded fragments nearly exactly reproduce the DDCI spectra. This is quite an important result since it can be generalized to any inorganic magnetic system. Finally, the occurrence of singlet or triplet ground states in the series of molecules studied is rationalized upon the interplay of the parameters extracted.

  10. International Docking Standard (IDSS) Interface Definition Document (IDD) . E; Revision

    NASA Technical Reports Server (NTRS)

    Kelly, Sean M.; Cryan, Scott P.

    2016-01-01

    This International Docking System Standard (IDSS) Interface Definition Document (IDD) is the result of a collaboration by the International Space Station membership to establish a standard docking interface to enable on-orbit crew rescue operations and joint collaborative endeavors utilizing different spacecraft. This IDSS IDD details the physical geometric mating interface and design loads requirements. The physical geometric interface requirements must be strictly followed to ensure physical spacecraft mating compatibility. This includes both defined components and areas that are void of components. The IDD also identifies common design parameters as identified in section 3.0, e.g., docking initial conditions and vehicle mass properties. This information represents a recommended set of design values enveloping a broad set of design reference missions and conditions, which if accommodated in the docking system design, increases the probability of successful docking between different spacecraft. This IDD does not address operational procedures or off-nominal situations, nor does it dictate implementation or design features behind the mating interface. It is the responsibility of the spacecraft developer to perform all hardware verification and validation, and to perform final docking analyses to ensure the needed docking performance and to develop the final certification loads for their application. While there are many other critical requirements needed in the development of a docking system such as fault tolerance, reliability, and environments (e.g. vibration, etc.), it is not the intent of the IDSS IDD to mandate all of these requirements; these requirements must be addressed as part of the specific developer's unique program, spacecraft and mission needs. This approach allows designers the flexibility to design and build docking mechanisms to their unique program needs and requirements. The purpose of the IDSS IDD is to provide basic common design parameters to allow developers to independently design compatible docking systems. The IDSS is intended for uses ranging from crewed to autonomous space vehicles, and from Low Earth Orbit (LEO) to deep-space exploration missions.The purpose of the IDSS IDD is to provide basic common design parameters to allow developers to independently design compatible docking systems. The IDSS is intended for uses ranging from crewed to autonomous space vehicles, and from Low Earth Orbit (LEO) to deep-space exploration missions. The purpose of the IDSS IDD is to provide basic common design parameters to allow developers to independently design compatible docking systems. The IDSS is intended for uses ranging from crewed to autonomous space vehicles, and from Low Earth Orbit (LEO) to deep-space exploration missions.

  11. Fuzzy Neural Networks for Decision Support in Negotiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakas, D. P.; Vlachos, D. S.; Simos, T. E.

    There is a large number of parameters which one can take into account when building a negotiation model. These parameters in general are uncertain, thus leading to models which represents them with fuzzy sets. On the other hand, the nature of these parameters makes them very difficult to model them with precise values. During negotiation, these parameters play an important role by altering the outcomes or changing the state of the negotiators. One reasonable way to model this procedure is to accept fuzzy relations (from theory or experience). The action of these relations to fuzzy sets, produce new fuzzy setsmore » which describe now the new state of the system or the modified parameters. But, in the majority of these situations, the relations are multidimensional, leading to complicated models and exponentially increasing computational time. In this paper a solution to this problem is presented. The use of fuzzy neural networks is shown that it can substitute the use of fuzzy relations with comparable results. Finally a simple simulation is carried in order to test the new method.« less

  12. Exploring Replica-Exchange Wang-Landau sampling in higher-dimensional parameter space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valentim, Alexandra; Rocha, Julio C. S.; Tsai, Shan-Ho

    We considered a higher-dimensional extension for the replica-exchange Wang-Landau algorithm to perform a random walk in the energy and magnetization space of the two-dimensional Ising model. This hybrid scheme combines the advantages of Wang-Landau and Replica-Exchange algorithms, and the one-dimensional version of this approach has been shown to be very efficient and to scale well, up to several thousands of computing cores. This approach allows us to split the parameter space of the system to be simulated into several pieces and still perform a random walk over the entire parameter range, ensuring the ergodicity of the simulation. Previous work, inmore » which a similar scheme of parallel simulation was implemented without using replica exchange and with a different way to combine the result from the pieces, led to discontinuities in the final density of states over the entire range of parameters. From our simulations, it appears that the replica-exchange Wang-Landau algorithm is able to overcome this diculty, allowing exploration of higher parameter phase space by keeping track of the joint density of states.« less

  13. A planar shock isolation system with high-static-low-dynamic-stiffness characteristic based on cables

    NASA Astrophysics Data System (ADS)

    Ma, Yanhui; He, Minghua; Shen, Wenhou; Ren, Gexue

    2015-12-01

    In this paper, a simple and designable shock isolation system with ideal high-static-low-dynamic-stiffness (HSLDS) is proposed, which is intended for the horizontal plane shock isolation application. In this system, the isolated object is suspended by several bearing cables and constrained by a number of uniformly distributed pretensioned cables in the horizontal plane, where the low dynamic stiffness of the system is main controlled by the pretension of the planar cables, whilst the high static stiffness is determined by the axial stiffness of the planar cables and their geometric settings. To obtain the HSLDS characteristic of the system, a brief theoretical description of the relationship between the restoring force and displacement is derived. By obtaining the three-order Taylor expansion with sufficient accuracy of the restoring force, influence of planar cable parameters on the low dynamic and high static stiffness is thus given, therefore, the required HSLDS isolator can be easily designed by adjusting the planar cable length, pretension and tensile stiffness. Finally, the isotropy characteristic of the restoring force of the system with different numbers of planar cables is investigated. To evaluate the performance of the system, a rigid isolated object and flexible cables coupling simulation model considering the contacts of the system is established by using multibody dynamics approach. In this model, flexible cables are simulated by 3-node cable element based on the absolute nodal coordinate formulation; the contact between cable and isolated object is simulated based on Hertz contact theory. Finally, the time-domain shock excitation is converted from the design shock spectrum on the basis of BV043/85 criterion. The design procedure of this isolator and some useful guidelines for choosing cable parameters are presented. In addition, a summary about the performance of the isolators with different numbers of cables shocking in an arbitrary direction is given in the conclusion.

  14. The effective χ parameter in polarizable polymeric systems: One-loop perturbation theory and field-theoretic simulations.

    PubMed

    Grzetic, Douglas J; Delaney, Kris T; Fredrickson, Glenn H

    2018-05-28

    We derive the effective Flory-Huggins parameter in polarizable polymeric systems, within a recently introduced polarizable field theory framework. The incorporation of bead polarizabilities in the model self-consistently embeds dielectric response, as well as van der Waals interactions. The latter generate a χ parameter (denoted χ̃) between any two species with polarizability contrast. Using one-loop perturbation theory, we compute corrections to the structure factor Sk and the dielectric function ϵ^(k) for a polarizable binary homopolymer blend in the one-phase region of the phase diagram. The electrostatic corrections to S(k) can be entirely accounted for by a renormalization of the excluded volume parameter B into three van der Waals-corrected parameters B AA , B AB , and B BB , which then determine χ̃. The one-loop theory not only enables the quantitative prediction of χ̃ but also provides useful insight into the dependence of χ̃ on the electrostatic environment (for example, its sensitivity to electrostatic screening). The unapproximated polarizable field theory is amenable to direct simulation via complex Langevin sampling, which we employ here to test the validity of the one-loop results. From simulations of S(k) and ϵ^(k) for a system of polarizable homopolymers, we find that the one-loop theory is best suited to high concentrations, where it performs very well. Finally, we measure χ̃N in simulations of a polarizable diblock copolymer melt and obtain excellent agreement with the one-loop theory. These constitute the first fully fluctuating simulations conducted within the polarizable field theory framework.

  15. An Analytical Calibration Approach for the Polarimetric Airborne C Band Radiometer

    NASA Technical Reports Server (NTRS)

    Pham, Hanh; Kim, Edward J.

    2004-01-01

    Passive microwave remote sensing is sensitive to the quantity and distribution of water in soil and vegetation. During summer 2000, the Microwave Geophysics Group a t the University of Michigan conducted the seventh Radiobrighness Energy Balance Experiment (REBEX-7) over a corn canopy in Michigan. Long time series of brightness temperatures, soil moisture and micrometeorology on the plot were taken. This paper addresses the calibration of the NASA GSFC polarimetric airborne C band microwave radiometer (ACMR) that participated in REBEX-7. These passive polarimeters are typically calibrated using an end-to-end approach based upon a standard artificial target or a well-known geophysical target. Analyzing the major internal functional subsystems offers a different perspective. The primary goal of this approach is to provide a transfer function that not only describes the system in its entire5 but also accounts for the contributions of each subsystem toward the final modified Stokes parameters. This approach does not assume that the radiometric system is linear as it does not take polarization isolation for granted, and it also serves as a realistic instrument simulator, a useful tool for future designs. The ACMR architecture can be partitioned into functional subsystems. The characteristics of each subsystem was extensively measured and the estimated parameters were imported into the overall dosed form system model. Inversion of the model yields a calibration for the modeled Stokes parameters with uncertainties of 0.2 K for the V and H polarizations and 2.4 K for the 3rd and 4th parameters. Application to the full Stokes parameters over a senescent cornfield is presented.

  16. The effective χ parameter in polarizable polymeric systems: One-loop perturbation theory and field-theoretic simulations

    NASA Astrophysics Data System (ADS)

    Grzetic, Douglas J.; Delaney, Kris T.; Fredrickson, Glenn H.

    2018-05-01

    We derive the effective Flory-Huggins parameter in polarizable polymeric systems, within a recently introduced polarizable field theory framework. The incorporation of bead polarizabilities in the model self-consistently embeds dielectric response, as well as van der Waals interactions. The latter generate a χ parameter (denoted χ ˜ ) between any two species with polarizability contrast. Using one-loop perturbation theory, we compute corrections to the structure factor S (k ) and the dielectric function ɛ ^ (k ) for a polarizable binary homopolymer blend in the one-phase region of the phase diagram. The electrostatic corrections to S(k) can be entirely accounted for by a renormalization of the excluded volume parameter B into three van der Waals-corrected parameters BAA, BAB, and BBB, which then determine χ ˜ . The one-loop theory not only enables the quantitative prediction of χ ˜ but also provides useful insight into the dependence of χ ˜ on the electrostatic environment (for example, its sensitivity to electrostatic screening). The unapproximated polarizable field theory is amenable to direct simulation via complex Langevin sampling, which we employ here to test the validity of the one-loop results. From simulations of S(k) and ɛ ^ (k ) for a system of polarizable homopolymers, we find that the one-loop theory is best suited to high concentrations, where it performs very well. Finally, we measure χ ˜ N in simulations of a polarizable diblock copolymer melt and obtain excellent agreement with the one-loop theory. These constitute the first fully fluctuating simulations conducted within the polarizable field theory framework.

  17. Numerical study of entropy generation in MHD water-based carbon nanotubes along an inclined permeable surface

    NASA Astrophysics Data System (ADS)

    Soomro, Feroz Ahmed; Rizwan-ul-Haq; Khan, Z. H.; Zhang, Qiang

    2017-10-01

    Main theme of the article is to examine the entropy generation analysis for the magneto-hydrodynamic mixed convection flow of water functionalized carbon nanotubes along an inclined stretching surface. Thermophysical properties of both particles and working fluid are incorporated in the system of governing partial differential equations. Rehabilitation of nonlinear system of equations is obtained via similarity transformations. Moreover, solutions of these equations are further utilized to determine the volumetric entropy and characteristic entropy generation. Solutions of governing boundary layer equations are obtained numerically using the finite difference method. Effects of two types of carbon nanotubes, namely, single-wall carbon nanotubes (SWCNTs) and multi-wall carbon nanotubes (MWCNTs) with water as base fluid have been analyzed over the physical quantities of interest, namely, surface skin friction, heat transfer rate and entropy generation coefficients. Influential results of velocities, temperature, entropy generation and isotherms are plotted against the emerging parameter, namely, nanoparticle fraction 0≤φ ≤ 0.2, thermal convective parameter 0≤ λ ≤ 5, Hartmann number 0≤ M≤ 2, suction/injection parameter -1≤ S≤ 1, and Eckert number 0≤ Ec ≤ 2. It is finally concluded that skin friction increases due to the increase in the magnetic parameter, suction/injection and nanoparticle volume fraction, whereas the Nusselt number shows an increasing trend due to the increase in the suction parameter, mixed convection parameter and nanoparticle volume fraction. Similarly, entropy generation shows an opposite behavior for the Hartmann number and mixed convection parameter for both single-wall and multi-wall carbon nanotubes.

  18. Projectile fragmentation of 40,48Ca and isotopic scaling in a transport approach

    NASA Astrophysics Data System (ADS)

    Mikhailova, T. I.; Erdemchimeg, B.; Artukh, A. G.; Di Toro, M.; Wolter, H. H.

    2016-07-01

    We investigate theoretically projectile fragmentation in reactions of 40,48Ca on 9Be and 181Ta targets using a Boltzmann-type transport approach, which is supplemented by a statistical decay code to describe the de-excitation of the hot primary fragments. We determine the thermodynamical properties of the primary fragments and calculate the isotope distributions of the cold final fragments. These describe the data reasonably well. For the pairs of projectiles with different isotopic content we analyze the isotopic scaling (or isoscaling) of the final fragment distributions, which has been used to extract the symmetry energy of the primary source. The calculation exhibits isoscaling behavior for the total yields as do the experiments. We also perform an impact-parameter-dependent isoscaling analysis in view of the fact that the primary systems at different impact parameters have very different properties. Then the isoscaling behavior is less stringent, which we can attribute to specific structure effects of the 40,48Ca pair. The symmetry energy determined in this way depends on these structure effects.

  19. Projectile fragmentation of {sup 40,48}Ca and isotopic scaling in a transport approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikhailova, T. I., E-mail: tmikh@jinr.ru; Erdemchimeg, B.; Artukh, A. G.

    2016-07-15

    We investigate theoretically projectile fragmentation in reactions of {sup 40,48}Ca on {sup 9}Be and {sup 181}Ta targets using a Boltzmann-type transport approach, which is supplemented by a statistical decay code to describe the de-excitation of the hot primary fragments. We determine the thermodynamical properties of the primary fragments and calculate the isotope distributions of the cold final fragments. These describe the data reasonably well. For the pairs of projectiles with different isotopic content we analyze the isotopic scaling (or isoscaling) of the final fragment distributions, which has been used to extract the symmetry energy of the primary source. The calculationmore » exhibits isoscaling behavior for the total yields as do the experiments. We also perform an impact-parameter-dependent isoscaling analysis in view of the fact that the primary systems at different impact parameters have very different properties. Then the isoscaling behavior is less stringent, which we can attribute to specific structure effects of the {sup 40,48}Ca pair. The symmetry energy determined in this way depends on these structure effects.« less

  20. Observations on Rotating Cavitation and Cavitation Surge from the Development of the Fastrac Engine Turbopump

    NASA Technical Reports Server (NTRS)

    Zoladz, Thomas F.

    2000-01-01

    Observations regarding rotating cavitation and cavitation surge experienced during the development of the Fastrac engine turbopump are discussed. Detailed observations acquired from the analysis of both water flow and liquid oxygen test data are offered in this paper. Scaling and general comparison of rotating cavitation between water flow and liquid oxygen testing are discussed. Complex data features linking the localized rotating cavitation mechanism of the inducer to system surge components are described in detail. Finally a description of a lumped-parameter hydraulic system model developed to better understand observed data is given.

  1. Fractal attractors in economic growth models with random pollution externalities

    NASA Astrophysics Data System (ADS)

    La Torre, Davide; Marsiglio, Simone; Privileggi, Fabio

    2018-05-01

    We analyze a discrete time two-sector economic growth model where the production technologies in the final and human capital sectors are affected by random shocks both directly (via productivity and factor shares) and indirectly (via a pollution externality). We determine the optimal dynamics in the decentralized economy and show how these dynamics can be described in terms of a two-dimensional affine iterated function system with probability. This allows us to identify a suitable parameter configuration capable of generating exactly the classical Barnsley's fern as the attractor of the log-linearized optimal dynamical system.

  2. Overview of Rotating Cavitation and Cavitation Surge in the Fastrac Engine LOX Turbopump

    NASA Technical Reports Server (NTRS)

    Zoladz, Thomas; Turner, Jim (Technical Monitor)

    2001-01-01

    Observations regarding rotating cavitation and cavitation surge experienced during the development of the Fastrac 60 Klbf engine turbopump are discussed. Detailed observations from the analysis of both water flow and liquid oxygen test data are offered. Scaling and general comparison of rotating cavitation between water flow and liquid oxygen testing are discussed. Complex data features linking the localized rotating cavitation mechanism of the inducer to system surge components are described in detail. Finally a description of a simple lumped-parameter hydraulic system model developed to better understand observed data is given.

  3. Computer Modeling and Optimization of OBOGS with Contaminants

    DTIC Science & Technology

    1986-10-10

    OBOGS model can be ucd to optimize and design OBOGS systems with respect to system parameters such as cycle time and bed and valve dimensions. 3. C N I...6,172) TP 172 FORMLATC FINAL OBSERVATION TIME (SEC’,T40,F.4,/) READ *, TF1 IF(TFl.LT.EPSI) GOTO 10 TF=TF 1 COTO 10 175 WRITE(6,177) TCYC 177 FORMAT...225,235,207 207 IF(N-10) 336,246,255 209 WRITE(6,210) DBYIN 210 FORMAT(’ BY-PASS VALVE DIAMETER (IN)’,T40,FS.4,/) READ -,DBYIN1 IFCDBYIN1.LT.EPSI

  4. Properties of Energy Spectra of Molecular Crystals Investigated by Nonlinear Theory

    NASA Astrophysics Data System (ADS)

    Pang, Xiao-Feng; Zhang, Huai-Wu

    We calculate the quantum energy spectra of molecular crystals, such as acetanilide, by using discrete nonlinear Schrodinger equation, containing various interactions, appropriate to the systems. The energy spectra consist of many energy bands, in each energy band there are a lot of energy levels including some higher excited states. The result of energy spectrum is basically consistent with experimental values obtained by infrared absorption and Raman scattering in acetanilide and can also explain some experimental results obtained by Careri et al. Finally, we further discuss the influences of variously characteristic parameters on the energy spectra of the systems.

  5. Management of the Space Station Freedom onboard local area network

    NASA Technical Reports Server (NTRS)

    Miller, Frank W.; Mitchell, Randy C.

    1991-01-01

    An operational approach is proposed to managing the Data Management System Local Area Network (LAN) on Space Station Freedom. An overview of the onboard LAN elements is presented first, followed by a proposal of the operational guidelines by which management of the onboard network may be effected. To implement the guidelines, a recommendation is then presented on a set of network management parameters which should be made available in the onboard Network Operating System Computer Software Configuration Item and Fiber Distributed Data Interface firmware. Finally, some implications for the implementation of the various network management elements are discussed.

  6. An adaptive and generalizable closed-loop system for control of medically induced coma and other states of anesthesia

    NASA Astrophysics Data System (ADS)

    Yang, Yuxiao; Shanechi, Maryam M.

    2016-12-01

    Objective. Design of closed-loop anesthetic delivery (CLAD) systems is an important topic, particularly for medically induced coma, which needs to be maintained for long periods. Current CLADs for medically induced coma require a separate offline experiment for model parameter estimation, which causes interruption in treatment and is difficult to perform. Also, CLADs may exhibit bias due to inherent time-variation and non-stationarity, and may have large infusion rate variations at steady state. Finally, current CLADs lack theoretical performance guarantees. We develop the first adaptive CLAD for medically induced coma, which addresses these limitations. Further, we extend our adaptive system to be generalizable to other states of anesthesia. Approach. We designed general parametric pharmacodynamic, pharmacokinetic and neural observation models with associated guidelines, and derived a novel adaptive controller. We further penalized large steady-state drug infusion rate variations in the controller. We derived theoretical guarantees that the adaptive system has zero steady-state bias. Using simulations that resembled real time-varying and noisy environments, we tested the closed-loop system for control of two different anesthetic states, burst suppression in medically induced coma and unconsciousness in general anesthesia. Main results. In 1200 simulations, the adaptive system achieved precise control of both anesthetic states despite non-stationarity, time-variation, noise, and no initial parameter knowledge. In both cases, the adaptive system performed close to a baseline system that knew the parameters exactly. In contrast, a non-adaptive system resulted in large steady-state bias and error. The adaptive system also resulted in significantly smaller steady-state infusion rate variations compared to prior systems. Significance. These results have significant implications for clinically viable CLAD design for a wide range of anesthetic states, with potential cost-saving and therapeutic benefits.

  7. An adaptive and generalizable closed-loop system for control of medically induced coma and other states of anesthesia.

    PubMed

    Yang, Yuxiao; Shanechi, Maryam M

    2016-12-01

    Design of closed-loop anesthetic delivery (CLAD) systems is an important topic, particularly for medically induced coma, which needs to be maintained for long periods. Current CLADs for medically induced coma require a separate offline experiment for model parameter estimation, which causes interruption in treatment and is difficult to perform. Also, CLADs may exhibit bias due to inherent time-variation and non-stationarity, and may have large infusion rate variations at steady state. Finally, current CLADs lack theoretical performance guarantees. We develop the first adaptive CLAD for medically induced coma, which addresses these limitations. Further, we extend our adaptive system to be generalizable to other states of anesthesia. We designed general parametric pharmacodynamic, pharmacokinetic and neural observation models with associated guidelines, and derived a novel adaptive controller. We further penalized large steady-state drug infusion rate variations in the controller. We derived theoretical guarantees that the adaptive system has zero steady-state bias. Using simulations that resembled real time-varying and noisy environments, we tested the closed-loop system for control of two different anesthetic states, burst suppression in medically induced coma and unconsciousness in general anesthesia. In 1200 simulations, the adaptive system achieved precise control of both anesthetic states despite non-stationarity, time-variation, noise, and no initial parameter knowledge. In both cases, the adaptive system performed close to a baseline system that knew the parameters exactly. In contrast, a non-adaptive system resulted in large steady-state bias and error. The adaptive system also resulted in significantly smaller steady-state infusion rate variations compared to prior systems. These results have significant implications for clinically viable CLAD design for a wide range of anesthetic states, with potential cost-saving and therapeutic benefits.

  8. Investigation on the Nonlinear Control System of High-Pressure Common Rail (HPCR) System in a Diesel Engine

    NASA Astrophysics Data System (ADS)

    Cai, Le; Mao, Xiaobing; Ma, Zhexuan

    2018-02-01

    This study first constructed the nonlinear mathematical model of the high-pressure common rail (HPCR) system in the diesel engine. Then, the nonlinear state transformation was performed using the flow’s calculation and the standard state space equation was acquired. Based on sliding-mode variable structure control (SMVSC) theory, a sliding-mode controller for nonlinear systems was designed for achieving the control of common rail pressure and the diesel engine’s rotational speed. Finally, on the simulation platform of MATLAB, the designed nonlinear HPCR system was simulated. The simulation results demonstrate that sliding-mode variable structure control algorithm shows favorable control performances and overcome the shortcomings of traditional PID control in overshoot, parameter adjustment, system precision, adjustment time and ascending time.

  9. Statistical process control based chart for information systems security

    NASA Astrophysics Data System (ADS)

    Khan, Mansoor S.; Cui, Lirong

    2015-07-01

    Intrusion detection systems have a highly significant role in securing computer networks and information systems. To assure the reliability and quality of computer networks and information systems, it is highly desirable to develop techniques that detect intrusions into information systems. We put forward the concept of statistical process control (SPC) in computer networks and information systems intrusions. In this article we propose exponentially weighted moving average (EWMA) type quality monitoring scheme. Our proposed scheme has only one parameter which differentiates it from the past versions. We construct the control limits for the proposed scheme and investigate their effectiveness. We provide an industrial example for the sake of clarity for practitioner. We give comparison of the proposed scheme with EWMA schemes and p chart; finally we provide some recommendations for the future work.

  10. A comparative method for processing immunological parameters: developing an "Immunogram".

    PubMed

    Ortolani, Riccardo; Bellavite, Paolo; Paiola, Fiorenza; Martini, Morena; Marchesini, Martina; Veneri, Dino; Franchini, Massimo; Chirumbolo, Salvatore; Tridente, Giuseppe; Vella, Antonio

    2010-04-01

    The immune system is a network of numerous cells that communicate both directly and indirectly with each other. The system is very sensitive to antigenic stimuli, which are memorised, and is closely connected with the endocrine and nervous systems. Therefore, in order to study the immune system correctly, it must be considered in all its complexity by analysing its components with multiparametric tools that take its dynamic characteristic into account. We analysed lymphocyte subpopulations by using monoclonal antibodies with six different fluorochromes; the monoclonal panel employed included CD45, CD3, CD4, CD8, CD16, CD56, CD57, CD19, CD23, CD27, CD5, and HLA-DR. This panel has enabled us to measure many lymphocyte subsets in different states and with different functions: helper, suppressor, activated, effector, naïve, memory, and regulatory. A database was created to collect the values of immunological parameters of approximately 8,000 subjects who have undergone testing since 2000. When the distributions of the values for these parameters were compared with the medians of reference values published in the literature, we found that most of the values from the subjects included in the database were close to the medians in the literature. To process the data we used a comparative method that calculates the percentile rank of the values of a subject by comparing them with the values for others subjects of the same age. From this data processing we obtained a set of percentile ranks that represent the positions of the various parameters with regard to the data for other age-matched subjects included in the database. These positions, relative to both the absolute values and percentages, are plotted in a graph. We have called the final plot, which can be likened to that subject's immunological fingerprint, an "Immunogram". In order to perform the necessary calculations automatically, we developed dedicated software (Immunogramma) which provides at least two different "pictures" for each subject: the first is based on a comparison of the individual's data with those from all age-related subjects, while the second provides a comparison with only age and disease-related subjects. In addition, we can superimpose two fingerprints from the same subject, calculated at different times, in order to produce a dynamic picture, for instance before and after treatment. Finally, with the aim of interpreting the clinical and diagnostic meaning of a set of positions for the values of the measured parameters, we can also search the database to determine whether it contains other subjects who have a similar pattern for some selected immune parameters. This method helps to study and follow-up immune parameters over time. The software enables automation of the process and data sharing with other departments and laboratories, so the database can grow rapidly, thus expanding its informational capacity.

  11. Solar system expansion and strong equivalence principle as seen by the NASA MESSENGER mission.

    PubMed

    Genova, Antonio; Mazarico, Erwan; Goossens, Sander; Lemoine, Frank G; Neumann, Gregory A; Smith, David E; Zuber, Maria T

    2018-01-18

    The NASA MESSENGER mission explored the innermost planet of the solar system and obtained a rich data set of range measurements for the determination of Mercury's ephemeris. Here we use these precise data collected over 7 years to estimate parameters related to general relativity and the evolution of the Sun. These results confirm the validity of the strong equivalence principle with a significantly refined uncertainty of the Nordtvedt parameter η = (-6.6 ± 7.2) × 10 -5 . By assuming a metric theory of gravitation, we retrieved the post-Newtonian parameter β = 1 + (-1.6 ± 1.8) × 10 -5 and the Sun's gravitational oblateness, [Formula: see text] = (2.246 ± 0.022) × 10 -7 . Finally, we obtain an estimate of the time variation of the Sun gravitational parameter, [Formula: see text] = (-6.13 ± 1.47) × 10 -14 , which is consistent with the expected solar mass loss due to the solar wind and interior processes. This measurement allows us to constrain [Formula: see text] to be <4 × 10 -14 per year.

  12. Conductivity of higher dimensional holographic superconductors with nonlinear electrodynamics

    NASA Astrophysics Data System (ADS)

    Sheykhi, Ahmad; Hashemi Asl, Doa; Dehyadegari, Amin

    2018-06-01

    We investigate analytically as well as numerically the properties of s-wave holographic superconductors in d-dimensional spacetime and in the presence of Logarithmic nonlinear electrodynamics. We study three aspects of this kind of superconductors. First, we obtain, by employing analytical Sturm-Liouville method as well as numerical shooting method, the relation between critical temperature and charge density, ρ, and disclose the effects of both nonlinear parameter b and the dimensions of spacetime, d, on the critical temperature Tc. We find that in each dimension, Tc /ρ 1 / (d - 2) decreases with increasing the nonlinear parameter b while it increases with increasing the dimension of spacetime for a fixed value of b. Then, we calculate the condensation value and critical exponent of the system analytically and numerically and observe that in each dimension, the dimensionless condensation get larger with increasing the nonlinear parameter b. Besides, for a fixed value of b, it increases with increasing the spacetime dimension. We confirm that the results obtained from our analytical method are in agreement with the results obtained from numerical shooting method. This fact further supports the correctness of our analytical method. Finally, we explore the holographic conductivity of this system and find out that the superconducting gap increases with increasing either the nonlinear parameter or the spacetime dimension.

  13. A semi-mechanistic model of CP-690,550-induced reduction in neutrophil counts in patients with rheumatoid arthritis.

    PubMed

    Gupta, Pankaj; Friberg, Lena E; Karlsson, Mats O; Krishnaswami, Sriram; French, Jonathan

    2010-06-01

    CP-690,550, a selective inhibitor of the Janus kinase family, is being developed as an oral disease-modifying antirheumatic drug for the treatment of rheumatoid arthritis (RA). A semi-mechanistic model was developed to characterize the time course of drug-induced absolute neutrophil count (ANC) reduction in a phase 2a study. Data from 264 RA patients receiving 6-week treatment (placebo, 5, 15, 30 mg bid) followed by a 6-week off-treatment period were analyzed. The model included a progenitor cell pool, a maturation chain comprising transit compartments, a circulation pool, and a feedback mechanism. The model was adequately described by system parameters (BASE(h), ktr(h), gamma, and k(circ)), disease effect parameters (DIS), and drug effect parameters (k(off) and k(D)). The disease manifested as an increase in baseline ANC and reduced maturation time due to increased demand from the inflammation site. The drug restored the perturbed system parameters to their normal values via an indirect mechanism. ANC reduction due to a direct myelosuppressive drug effect was not supported. The final model successfully described the dose- and time-dependent changes in ANC and predicted the incidence of neutropenia at different doses reasonably well.

  14. Multi-Scale Low-Entropy Method for Optimizing the Processing Parameters during Automated Fiber Placement

    PubMed Central

    Han, Zhenyu; Sun, Shouzheng; Fu, Hongya; Fu, Yunzhong

    2017-01-01

    Automated fiber placement (AFP) process includes a variety of energy forms and multi-scale effects. This contribution proposes a novel multi-scale low-entropy method aiming at optimizing processing parameters in an AFP process, where multi-scale effect, energy consumption, energy utilization efficiency and mechanical properties of micro-system could be taken into account synthetically. Taking a carbon fiber/epoxy prepreg as an example, mechanical properties of macro–meso–scale are obtained by Finite Element Method (FEM). A multi-scale energy transfer model is then established to input the macroscopic results into the microscopic system as its boundary condition, which can communicate with different scales. Furthermore, microscopic characteristics, mainly micro-scale adsorption energy, diffusion coefficient entropy–enthalpy values, are calculated under different processing parameters based on molecular dynamics method. Low-entropy region is then obtained in terms of the interrelation among entropy–enthalpy values, microscopic mechanical properties (interface adsorbability and matrix fluidity) and processing parameters to guarantee better fluidity, stronger adsorption, lower energy consumption and higher energy quality collaboratively. Finally, nine groups of experiments are carried out to verify the validity of the simulation results. The results show that the low-entropy optimization method can reduce void content effectively, and further improve the mechanical properties of laminates. PMID:28869520

  15. Multi-Scale Low-Entropy Method for Optimizing the Processing Parameters during Automated Fiber Placement.

    PubMed

    Han, Zhenyu; Sun, Shouzheng; Fu, Hongya; Fu, Yunzhong

    2017-09-03

    Automated fiber placement (AFP) process includes a variety of energy forms and multi-scale effects. This contribution proposes a novel multi-scale low-entropy method aiming at optimizing processing parameters in an AFP process, where multi-scale effect, energy consumption, energy utilization efficiency and mechanical properties of micro-system could be taken into account synthetically. Taking a carbon fiber/epoxy prepreg as an example, mechanical properties of macro-meso-scale are obtained by Finite Element Method (FEM). A multi-scale energy transfer model is then established to input the macroscopic results into the microscopic system as its boundary condition, which can communicate with different scales. Furthermore, microscopic characteristics, mainly micro-scale adsorption energy, diffusion coefficient entropy-enthalpy values, are calculated under different processing parameters based on molecular dynamics method. Low-entropy region is then obtained in terms of the interrelation among entropy-enthalpy values, microscopic mechanical properties (interface adsorbability and matrix fluidity) and processing parameters to guarantee better fluidity, stronger adsorption, lower energy consumption and higher energy quality collaboratively. Finally, nine groups of experiments are carried out to verify the validity of the simulation results. The results show that the low-entropy optimization method can reduce void content effectively, and further improve the mechanical properties of laminates.

  16. Dynamical vanishing of the order parameter in a confined Bardeen-Cooper-Schrieffer Fermi gas after an interaction quench

    NASA Astrophysics Data System (ADS)

    Hannibal, S.; Kettmann, P.; Croitoru, M. D.; Axt, V. M.; Kuhn, T.

    2018-01-01

    We present a numerical study of the Higgs mode in an ultracold confined Fermi gas after an interaction quench and find a dynamical vanishing of the superfluid order parameter. Our calculations are done within a microscopic density-matrix approach in the Bogoliubov-de Gennes framework which takes the three-dimensional cigar-shaped confinement explicitly into account. In this framework, we study the amplitude mode of the order parameter after interaction quenches starting on the BCS side of the BEC-BCS crossover close to the transition and ending in the BCS regime. We demonstrate the emergence of a dynamically vanishing superfluid order parameter in the spatiotemporal dynamics in a three-dimensional trap. Further, we show that the signal averaged over the whole trap mirrors the spatiotemporal behavior and allows us to systematically study the effects of the system size and aspect ratio on the observed dynamics. Our analysis enables us to connect the confinement-induced modifications of the dynamics to the pairing properties of the system. Finally, we demonstrate that the signature of the Higgs mode is contained in the dynamical signal of the condensate fraction, which, therefore, might provide a new experimental access to the nonadiabatic regime of the Higgs mode.

  17. Impact of Mergers on USA Parameter Estimation for Nonspinning Black Hole Binaries

    NASA Technical Reports Server (NTRS)

    McWilliams, Sean T.; Thorpe, James Ira; Baker, John G.; Kelly, Bernard J.

    2011-01-01

    We investigate the precision with which the parameters describing the characteristics and location of nonspinning black hole binaries can be measured with the Laser Interferometer Space Antenna (LISA). By using complete waveforms including the inspiral, merger and ringdown portions of the signals, we find that LISA will have far greater precision than previous estimates for nonspinning mergers that ignored the merger and ringdown. Our analysis covers nonspinning waveforms with moderate mass ratios, q > or = 1/10, and total masses 10(exp 5) < M/M_{Sun} < 10(exp 7). We compare the parameter uncertainties using the Fisher matrix formalism, and establish the significance of mass asymmetry and higher-order content to the predicted parameter uncertainties resulting from inclusion of the merger. In real-time observations, the later parts of the signal lead to significant improvements in sky-position precision in the last hours and even the final minutes of observation. For comparable mass systems with total mass M/M_{Sun} = approx. 10(exp 6), we find that the increased precision resulting from including the merger is comparable to the increase in signal-to-noise ratio. For the most precise systems under investigation, half can be localized to within O(10 arcmin), and 18% can be localized to within O(1 arcmin).

  18. Acoustic-radiation stress in solids. I - Theory

    NASA Technical Reports Server (NTRS)

    Cantrell, J. H., Jr.

    1984-01-01

    The general case of acoustic-radiation stress associated with quasi-compressional and quasi-shear waves propagating in infinite and semiinfinite lossless solids of arbitrary crystalline symmetry is studied. The Boussinesq radiation stress is defined and found to depend directly on an acoustic nonlinearity parameter which characterizes the radiation-induced static strain, a stress-generalized nonlinearity parameter which characterizes the stress nonlinearity, and the energy density of the propagating wave. Application of the Boltzmann-Ehrenfest principle of adiabatic invariance to a self-constrained system described by the nonlinear equations of motion allows the acoustic-radiation-induced static strain to be identified with a self-constrained variation in the time-averaged product of the internal energy density and displacement gradient. The time-averaged product is scaled by the acoustic nonlinearity parameter and represents the first-order nonlinearity in the virial theorem. Finally, the relationship between the Boussinesq and the Cauchy radiation stress is obtained in a closed three-dimensional form.

  19. Self-regulation in self-propelled nematic fluids.

    PubMed

    Baskaran, A; Marchetti, M C

    2012-09-01

    We consider the hydrodynamic theory of an active fluid of self-propelled particles with nematic aligning interactions. This class of materials has polar symmetry at the microscopic level, but forms macrostates of nematic symmetry. We highlight three key features of the dynamics. First, as in polar active fluids, the control parameter for the order-disorder transition, namely the density, is dynamically convected by the order parameter via active currents. The resulting dynamical self-regulation of the order parameter is a generic property of active fluids and destabilizes the uniform nematic state near the mean-field transition. Secondly, curvature-driven currents render the system unstable deep in the nematic state, as found previously. Finally, and unique to self-propelled nematics, nematic order induces local polar order that in turn leads to the growth of density fluctuations. We propose this as a possible mechanism for the smectic order of polar clusters seen in numerical simulations.

  20. A Study of Chaos in Cellular Automata

    NASA Astrophysics Data System (ADS)

    Kamilya, Supreeti; Das, Sukanta

    This paper presents a study of chaos in one-dimensional cellular automata (CAs). The communication of information from one part of the system to another has been taken into consideration in this study. This communication is formalized as a binary relation over the set of cells. It is shown that this relation is an equivalence relation and all the cells form a single equivalence class when the cellular automaton (CA) is chaotic. However, the communication between two cells is sometimes blocked in some CAs by a subconfiguration which appears in between the cells during evolution. This blocking of communication by a subconfiguration has been analyzed in this paper with the help of de Bruijn graph. We identify two types of blocking — full and partial. Finally a parameter has been developed for the CAs. We show that the proposed parameter performs better than the existing parameters.

  1. Optimization of a sensor cluster for determination of trajectories and velocities of supersonic objects

    NASA Astrophysics Data System (ADS)

    Cannella, Marco; Sciuto, Salvatore Andrea

    2001-04-01

    An evaluation of errors for a method for determination of trajectories and velocities of supersonic objects is conducted. The analytical study of a cluster, composed of three pressure transducers and generally used as an apparatus for cinematic determination of parameters of supersonic objects, is developed. Furthermore, detailed investigation into the accuracy of this cluster on determination of the slope of an incoming shock wave is carried out for optimization of the device. In particular, a specific non-dimensional parameter is proposed in order to evaluate accuracies for various values of parameters and reference graphs are provided in order to properly design the sensor cluster. Finally, on the basis of the error analysis conducted, a discussion on the best estimation of the relative distance for the sensor as a function of temporal resolution of the measuring system is presented.

  2. Self-calibration method of the inner lever-arm parameters for a tri-axis RINS

    NASA Astrophysics Data System (ADS)

    Song, Tianxiao; Li, Kui; Sui, Jie; Liu, Zengjun; Liu, Juncheng

    2017-11-01

    A rotational inertial navigation system (RINS) could improve navigation performance by modulating the inertial sensor errors with rotatable gimbals. When an inertial measurement unit (IMU) rotates, the deviations between the accelerometer-sensitive points and the IMU center will lead to an inner lever-arm effect. In this paper, a self-calibration method of the inner lever-arm parameters for a tri-axis RINS is proposed. A novel rotation scheme with variable angular rate rotation is designed to motivate the velocity errors caused by the inner lever-arm effect. By extending all inner lever-arm parameters as filter states, a Kalman filter with velocity errors as measurement is established to achieve the calibration. The accuracy and feasibility of the proposed method are illustrated by both simulations and experiments. The final results indicate that the inner lever-arm effect is significantly restrained after compensation by the calibration results.

  3. Development and study of the displaced foam dispersion methodology for the manufacture of multiscale/hybrid composites

    NASA Astrophysics Data System (ADS)

    McCrary-Dennis, Micah C. L.

    Incorporating nanostructured functional constituents within polymers has become extensive in processes and products for manufacturing composites. The conception of carbon nanotubes (CNTs) and their heralded attributes yielding property enhancements to the carrier system is leading many industries and research endeavors. Displaced Foam Dispersion (DFD) methodology is a novel and effective approach to facilitating the incorporation of CNTs within fiber reinforced polymer composites (FRPC). The methodology consists of six separate solubility phases that lead to the manufacture of CNT-FRPCs (also termed hybrid/multiscale composites). This study was primarily initiated to characterize the interaction parameters of nanomaterials (multiwall carbon nanotubes), polymers (polystyrene), and solvents (dimethyl formamide (DMF) and acetone) in the current paradigm of the DFD materials manufacture. Secondly, we sought to illustrate the theoretical potential for the methodology to be used in conjunction with other nanomaterial-polymer-solvent systems. Herein, the theory of Hansen's solubility parameters (HSP) is employed to explain the DFD constituents manufacturing combination parameters and aid in the explanation of the experimental results. The results illustrate quantitative values for the relative energy differences between each polymer-solvent system. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) were used to characterize the multiwalled carbon nanotubes (MWCNTs) in each of the solubility stages and culminates with an indication of good dispersion potential in the final multiscale composite. Additionally, acetone absorption, evaporation mass loss and retention are reported for the sorbed plasticized PS-CNT (CNTaffy) nanocomposites that has successfully achieved up through approximately 60 weight percent loading. The findings indicate that as CNT loading percentage increases the acetone absorbency also increases, but the materials retention of acetone over time decreases. This directly influences the manufacturability of the porous polymer nanocomposite (P-PNC) in the DFD methodology. Localized interlaminar CNT enrichment was achieved through 60 wt. % loading within the P-PNC and verified under two-electrode electrical conductivity testing of the final multiscale composite. The electrical properties of low weight percent (approximately 0.15 - 2.5 wt. %) nanomaterials show a decreasing trend in the materials' resistivity that indicates the ability to become increasingly conductive with increasing CNT loadings. Finally, the mechanical properties will show evidence of toughness, increased strain to failure, and the potential for greater energy absorption.

  4. Nonminimal coupling for the gravitational and electromagnetic fields: Black hole solutions and solitons

    NASA Astrophysics Data System (ADS)

    Balakin, Alexander B.; Bochkarev, Vladimir V.; Lemos, José P. S.

    2008-04-01

    Using a Lagrangian formalism, a three-parameter nonminimal Einstein-Maxwell theory is established. The three parameters q1, q2, and q3 characterize the cross-terms in the Lagrangian, between the Maxwell field and terms linear in the Ricci scalar, Ricci tensor, and Riemann tensor, respectively. Static spherically symmetric equations are set up, and the three parameters are interrelated and chosen so that effectively the system reduces to a one parameter only, q. Specific black hole and other type of one-parameter solutions are studied. First, as a preparation, the Reissner-Nordström solution, with q1=q2=q3=0, is displayed. Then, we search for solutions in which the electric field is regular everywhere as well as asymptotically Coulombian, and the metric potentials are regular at the center as well as asymptotically flat. In this context, the one-parameter model with q1≡-q, q2=2q, q3=-q, called the Gauss-Bonnet model, is analyzed in detail. The study is done through the solution of the Abel equation (the key equation), and the dynamical system associated with the model. There is extra focus on an exact solution of the model and its critical properties. Finally, an exactly integrable one-parameter model, with q1≡-q, q2=q, q3=0, is considered also in detail. A special submodel, in which the Fibonacci number appears naturally, of this one-parameter model is shown, and the corresponding exact solution is presented. Interestingly enough, it is a soliton of the theory, the Fibonacci soliton, without horizons and with a mild conical singularity at the center.

  5. Survey on Animal Welfare in Nine Hundred and Forty Three Italian Dairy Farms

    PubMed Central

    Pietra, Marco; Giacometti, Federica; Mazzi, Antonella; Scacco, Gianluca; Serraino, Andrea; Scagliarini, Lorenzo

    2016-01-01

    The final results of a survey on welfare of dairy cows in 7 Italian Regions are presented. The study has been performed on 943 farms in southern and central Italy to highlight critical and strong points concerning animal welfare in dairy systems, by using direct and indirect criteria. To assess animal welfare, a checklist based on 303 parameters has been used; indirect criteria have been organised in 5 general areas concerning Farm management, Farming and housing systems, Environment, Feeding, Health and hygiene; other resource-based criteria were considered in 5 specific areas for the different productive categories (lactating cows, dry cows, pregnant heifers, cows comeback, calves up to 8 weeks and calves between 8 weeks and 6 months); finally, an Indicators section focused on animal based criteria. Parameters have been valued as conforming or not conforming on the basis of the current lesgislation on animal welfare, and in the other cases by the use of a semi-quantitative scale such as poor, satisfactory, good or very good referring to scientific literature and reports by the Animal Health and Animal Welfare panel of the European Food Safety Authority. Among the 249 examined parameters (54 criteria have been valued as descriptive), 15 showed a failure prevalence inferior to 1%; for the remaining parameters, the overall non-compliance prevalence on the whole sample ranged from a maximum of 67% to a minimum of 2%, showing an inverse proportionality correlation with the herd size. One hundred and ten parameters were judged as poor (96) or not in compliance with the rules in force (14) in more than 10% of the examined herds. The most common non-compliance aspects detected in the different areas concern calves management, staff training and prophylaxis programmes; staff training levels were inversely related to failure prevalences in almost all areas. The combination of direct and indirect criteria has allowed to fully embrace recommendations on the use of animal based measures for the assessment of animal welfare, as accepted into the strategic Plan for the EU animal welfare for 2012-2015. PMID:27800437

  6. Quenching of highly vibrationally excited pyrimidine by collisions with CO2

    NASA Astrophysics Data System (ADS)

    Johnson, Jeremy A.; Duffin, Andrew M.; Hom, Brian J.; Jackson, Karl E.; Sevy, Eric T.

    2008-02-01

    Relaxation of highly vibrationally excited pyrimidine (C4N2H4) by collisions with carbon dioxide has been investigated using diode laser transient absorption spectroscopy. Vibrationally hot pyrimidine (E'=40635cm-1) was prepared by 248-nm excimer laser excitation, followed by rapid radiationless relaxation to the ground electronic state. The nascent rotational population distribution (J=58-80) of the 0000 ground state of CO2 resulting from collisions with hot pyrimidine was probed at short times following the excimer laser pulse. Doppler spectroscopy was used to measure the CO2 recoil velocity distribution for J =58-80 of the 0000 state. Rate constants and probabilities for collisions populating these CO2 rotational states were determined. The measured energy transfer probabilities, indexed by final bath state, were resorted as a function of ΔE to create the energy transfer distribution function, P(E,E'), from E'-E˜1300-7000cm-1. P(E,E') is fitted to a single exponential and a biexponential function to determine the average energy transferred in a single collision between pyrimidine and CO2 and parameters that can be compared to previously studied systems using this technique, pyrazine/CO2, C6F6/CO2, and methylpyrazine/CO2. P(E,E') parameters for these four systems are also compared to various molecular properties of the donor molecules. Finally, P(E,E') is analyzed in the context of two models, one which suggests that the shape of P(E,E') is primarily determined by the low-frequency out-of-plane donor vibrational modes and one which suggests that the shape of P(E,E') can be determined by how the donor molecule final density of states changes with ΔE.

  7. Critical behavior and phase transition of dilaton black holes with nonlinear electrodynamics

    NASA Astrophysics Data System (ADS)

    Dayyani, Z.; Sheykhi, A.; Dehghani, M. H.; Hajkhalili, S.

    2018-02-01

    In this paper, we take into account the dilaton black hole solutions of Einstein gravity in the presence of logarithmic and exponential forms of nonlinear electrodynamics. First of all, we consider the cosmological constant and nonlinear parameter as thermodynamic quantities which can vary. We obtain thermodynamic quantities of the system such as pressure, temperature and Gibbs free energy in an extended phase space. We complete the analogy of the nonlinear dilaton black holes with the Van der Waals liquid-gas system. We work in the canonical ensemble and hence we treat the charge of the black hole as an external fixed parameter. Moreover, we calculate the critical values of temperature, volume and pressure and show that they depend on the dilaton coupling constant as well as on the nonlinear parameter. We also investigate the critical exponents and find that they are universal and independent of the dilaton and nonlinear parameters, which is an expected result. Finally, we explore the phase transition of nonlinear dilaton black holes by studying the Gibbs free energy of the system. We find that in the case of T>T_c, we have no phase transition. When T=T_c, the system admits a second-order phase transition, while for T=T_f

  8. Coupled magneto-electro-mechanical lumped parameter model for a novel vibration-based magneto-electro-elastic energy harvesting systems

    NASA Astrophysics Data System (ADS)

    Shirbani, Meisam Moory; Shishesaz, Mohammad; Hajnayeb, Ali; Sedighi, Hamid Mohammad

    2017-06-01

    The objective of this paper is to present a coupled magneto-electro-mechanical (MEM) lumped parameter model for the response of the proposed magneto-electro-elastic (MEE) energy harvesting systems under base excitation. The proposed model can be used to create self-powering systems, which are not limited to a finite battery energy. As a novel approach, the MEE composites are used instead of the conventional piezoelectric materials in order to enhance the harvested electrical power. The considered structure consists of a MEE layer deposited on a layer of non-MEE material, in the framework of unimorph cantilever bars (longitudinal displacement) and beams (transverse displacement). To use the generated electrical potential, two electrodes are connected to the top and bottom surfaces of the MEE layer. Additionally, a stationary external coil is wrapped around the vibrating structure to induce a voltage in the coil by the magnetic field generated in the MEE layer. In order to simplify the design procedure of the proposed energy harvester and obtain closed form solutions, a lumped parameter model is prepared. As a first step in modeling process, the governing constitutive equations, Gauss's and Faraday's laws, are used to derive the coupled MEM differential equations. The derived equations are then solved analytically to obtain the dynamic behavior and the harvested voltages and powers of the proposed energy harvesting systems. Finally, the influences of the parameters that affect the performance of the MEE energy harvesters such as excitation frequency, external resistive loads and number of coil turns are discussed in detail. The results clearly show the benefit of the coil circuit implementation, whereby significant increases in the total useful harvested power as much as 38% and 36% are obtained for the beam and bar systems, respectively.

  9. An online air pollution forecasting system using neural networks.

    PubMed

    Kurt, Atakan; Gulbagci, Betul; Karaca, Ferhat; Alagha, Omar

    2008-07-01

    In this work, an online air pollution forecasting system for Greater Istanbul Area is developed. The system predicts three air pollution indicator (SO(2), PM(10) and CO) levels for the next three days (+1, +2, and +3 days) using neural networks. AirPolTool, a user-friendly website (http://airpol.fatih.edu.tr), publishes +1, +2, and +3 days predictions of air pollutants updated twice a day. Experiments presented in this paper show that quite accurate predictions of air pollutant indicator levels are possible with a simple neural network. It is shown that further optimizations of the model can be achieved using different input parameters and different experimental setups. Firstly, +1, +2, and +3 days' pollution levels are predicted independently using same training data, then +2 and +3 days are predicted cumulatively using previously days predicted values. Better prediction results are obtained in the cumulative method. Secondly, the size of training data base used in the model is optimized. The best modeling performance with minimum error rate is achieved using 3-15 past days in the training data set. Finally, the effect of the day of week as an input parameter is investigated. Better forecasts with higher accuracy are observed using the day of week as an input parameter.

  10. A general electromagnetic excitation model for electrical machines considering the magnetic saturation and rub impact

    NASA Astrophysics Data System (ADS)

    Xu, Xueping; Han, Qinkai; Chu, Fulei

    2018-03-01

    The electromagnetic vibration of electrical machines with an eccentric rotor has been extensively investigated. However, magnetic saturation was often neglected. Moreover, the rub impact between the rotor and stator is inevitable when the amplitude of the rotor vibration exceeds the air-gap. This paper aims to propose a general electromagnetic excitation model for electrical machines. First, a general model which takes the magnetic saturation and rub impact into consideration is proposed and validated by the finite element method and reference. The dynamic equations of a Jeffcott rotor system with electromagnetic excitation and mass imbalance are presented. Then, the effects of pole-pair number and rubbing parameters on vibration amplitude are studied and approaches restraining the amplitude are put forward. Finally, the influences of mass eccentricity, resultant magnetomotive force (MMF), stiffness coefficient, damping coefficient, contact stiffness and friction coefficient on the stability of the rotor system are investigated through the Floquet theory, respectively. The amplitude jumping phenomenon is observed in a synchronous generator for different pole-pair numbers. The changes of design parameters can alter the stability states of the rotor system and the range of parameter values forms the zone of stability, which lays helpful suggestions for the design and application of the electrical machines.

  11. Optimal supplementary frequency controller design using the wind farm frequency model and controller parameters stability region.

    PubMed

    Toulabi, Mohammadreza; Bahrami, Shahab; Ranjbar, Ali Mohammad

    2018-03-01

    In most of the existing studies, the frequency response in the variable speed wind turbines (VSWTs) is simply realized by changing the torque set-point via appropriate inputs such as frequency deviations signal. However, effective dynamics and systematic process design have not been comprehensively discussed yet. Accordingly, this paper proposes a proportional-derivative frequency controller and investigates its performance in a wind farm consisting of several VSWTs. A band-pass filter is deployed before the proposed controller to avoid responding to either steady state frequency deviations or high rate of change of frequency. To design the controller, the frequency model of the wind farm is first characterized. The proposed controller is then designed based on the obtained open loop system. The stability region associated with the controller parameters is analytically determined by decomposing the closed-loop system's characteristic polynomial into the odd and even parts. The performance of the proposed controller is evaluated through extensive simulations in MATLAB/Simulink environment in a power system comprising a high penetration of VSWTs equipped with the proposed controller. Finally, based on the obtained feasible area and appropriate objective function, the optimal values associated with the controller parameters are determined using the genetic algorithm (GA). Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Automatic page layout using genetic algorithms for electronic albuming

    NASA Astrophysics Data System (ADS)

    Geigel, Joe; Loui, Alexander C. P.

    2000-12-01

    In this paper, we describe a flexible system for automatic page layout that makes use of genetic algorithms for albuming applications. The system is divided into two modules, a page creator module which is responsible for distributing images amongst various album pages, and an image placement module which positions images on individual pages. Final page layouts are specified in a textual form using XML for printing or viewing over the Internet. The system makes use of genetic algorithms, a class of search and optimization algorithms that are based on the concepts of biological evolution, for generating solutions with fitness based on graphic design preferences supplied by the user. The genetic page layout algorithm has been incorporated into a web-based prototype system for interactive page layout over the Internet. The prototype system is built using client-server architecture and is implemented in java. The system described in this paper has demonstrated the feasibility of using genetic algorithms for automated page layout in albuming and web-based imaging applications. We believe that the system adequately proves the validity of the concept, providing creative layouts in a reasonable number of iterations. By optimizing the layout parameters of the fitness function, we hope to further improve the quality of the final layout in terms of user preference and computation speed.

  13. Response of Electrical Activity in an Improved Neuron Model under Electromagnetic Radiation and Noise

    PubMed Central

    Zhan, Feibiao; Liu, Shenquan

    2017-01-01

    Electrical activities are ubiquitous neuronal bioelectric phenomena, which have many different modes to encode the expression of biological information, and constitute the whole process of signal propagation between neurons. Therefore, we focus on the electrical activities of neurons, which is also causing widespread concern among neuroscientists. In this paper, we mainly investigate the electrical activities of the Morris-Lecar (M-L) model with electromagnetic radiation or Gaussian white noise, which can restore the authenticity of neurons in realistic neural network. First, we explore dynamical response of the whole system with electromagnetic induction (EMI) and Gaussian white noise. We find that there are slight differences in the discharge behaviors via comparing the response of original system with that of improved system, and electromagnetic induction can transform bursting or spiking state to quiescent state and vice versa. Furthermore, we research bursting transition mode and the corresponding periodic solution mechanism for the isolated neuron model with electromagnetic induction by using one-parameter and bi-parameters bifurcation analysis. Finally, we analyze the effects of Gaussian white noise on the original system and coupled system, which is conducive to understand the actual discharge properties of realistic neurons. PMID:29209192

  14. Response of Electrical Activity in an Improved Neuron Model under Electromagnetic Radiation and Noise.

    PubMed

    Zhan, Feibiao; Liu, Shenquan

    2017-01-01

    Electrical activities are ubiquitous neuronal bioelectric phenomena, which have many different modes to encode the expression of biological information, and constitute the whole process of signal propagation between neurons. Therefore, we focus on the electrical activities of neurons, which is also causing widespread concern among neuroscientists. In this paper, we mainly investigate the electrical activities of the Morris-Lecar (M-L) model with electromagnetic radiation or Gaussian white noise, which can restore the authenticity of neurons in realistic neural network. First, we explore dynamical response of the whole system with electromagnetic induction (EMI) and Gaussian white noise. We find that there are slight differences in the discharge behaviors via comparing the response of original system with that of improved system, and electromagnetic induction can transform bursting or spiking state to quiescent state and vice versa. Furthermore, we research bursting transition mode and the corresponding periodic solution mechanism for the isolated neuron model with electromagnetic induction by using one-parameter and bi-parameters bifurcation analysis. Finally, we analyze the effects of Gaussian white noise on the original system and coupled system, which is conducive to understand the actual discharge properties of realistic neurons.

  15. Research on fatigue driving pre-warning system based on multi-information fusion

    NASA Astrophysics Data System (ADS)

    Zhao, Xuyang; Ye, Wenwu

    2018-05-01

    With the development of science and technology, transportation network has grown faster. But at the same time, the quantity of traffic accidents due to fatigue driving grows faster as well. In the meantime, fatigue driving has been one of the main causes of traffic accidents. Therefore, it is indispensable for us to study the detection of fatigue driving to help to driving safety. There are numerous approaches in discrimination method. Each type of method has its reasonable theoretical basis, but the disadvantages of traditional fatigue driving detection methods have been more and more obvious since we study the traditional physiology and psychological features of fatigue drivers. So we set up a new system based on multi-information fusion and pattern recognition theory. In the paper, the fatigue driving pre-warning system discriminates fatigue by analyzing the characteristic parameters, the parameters derived from the steering wheel angle, the driver's power of gripping and the heart rate. And the data analysis system is established based on fuzzy C-means clustering theory. Finally, KNN classifier is used to establish the relation between feature indexes and fatigue degree. It is verified that the system has the better accuracy, agility and robustness according to our confirmatory experiment.

  16. Model systems for single molecule polymer dynamics

    PubMed Central

    Latinwo, Folarin

    2012-01-01

    Double stranded DNA (dsDNA) has long served as a model system for single molecule polymer dynamics. However, dsDNA is a semiflexible polymer, and the structural rigidity of the DNA double helix gives rise to local molecular properties and chain dynamics that differ from flexible chains, including synthetic organic polymers. Recently, we developed single stranded DNA (ssDNA) as a new model system for single molecule studies of flexible polymer chains. In this work, we discuss model polymer systems in the context of “ideal” and “real” chain behavior considering thermal blobs, tension blobs, hydrodynamic drag and force–extension relations. In addition, we present monomer aspect ratio as a key parameter describing chain conformation and dynamics, and we derive dynamical scaling relations in terms of this molecular-level parameter. We show that asymmetric Kuhn segments can suppress monomer–monomer interactions, thereby altering global chain dynamics. Finally, we discuss ssDNA in the context of a new model system for single molecule polymer dynamics. Overall, we anticipate that future single polymer studies of flexible chains will reveal new insight into the dynamic behavior of “real” polymers, which will highlight the importance of molecular individualism and the prevalence of non-linear phenomena. PMID:22956980

  17. Robust Design of Biological Circuits: Evolutionary Systems Biology Approach

    PubMed Central

    Chen, Bor-Sen; Hsu, Chih-Yuan; Liou, Jing-Jia

    2011-01-01

    Artificial gene circuits have been proposed to be embedded into microbial cells that function as switches, timers, oscillators, and the Boolean logic gates. Building more complex systems from these basic gene circuit components is one key advance for biologic circuit design and synthetic biology. However, the behavior of bioengineered gene circuits remains unstable and uncertain. In this study, a nonlinear stochastic system is proposed to model the biological systems with intrinsic parameter fluctuations and environmental molecular noise from the cellular context in the host cell. Based on evolutionary systems biology algorithm, the design parameters of target gene circuits can evolve to specific values in order to robustly track a desired biologic function in spite of intrinsic and environmental noise. The fitness function is selected to be inversely proportional to the tracking error so that the evolutionary biological circuit can achieve the optimal tracking mimicking the evolutionary process of a gene circuit. Finally, several design examples are given in silico with the Monte Carlo simulation to illustrate the design procedure and to confirm the robust performance of the proposed design method. The result shows that the designed gene circuits can robustly track desired behaviors with minimal errors even with nontrivial intrinsic and external noise. PMID:22187523

  18. Deriving the Generalized Power and Efficiency Equations for Jet Propulsion Systems

    NASA Astrophysics Data System (ADS)

    Lee, Hsing-Juin; Chang, Chih-Luong

    The kinetic power and efficiency equations for general jet propulsion systems are classically given in a much cursory, incomplete, and ununified format. This situation prohibits the propulsion designer from seeing the panorama of interrelated propulsion parameters and effects. And in some cases, it may lead to an energy-inefficient propulsion system design, or induce significant offset in propulsion performance as demonstrated in this study. Thus, herein we attempt to clarify some related concepts and to rigorously derive the associated generalized equations with a complete spectrum of physical parameters to be manipulated in quest of better performance. By a highly efficient interweaved transport scheme, we have derived the following equations for general jet propulsion systems: i.e., generalized total kinetic power, generalized kinetic power delivered to the jet propulsion system, generalized thrust power, generalized available propulsion power, and relevant generalized propulsive, thermal, and overall efficiency equations. Further, the variants of these equations under special conditions are also considered. For taking advantage of the above propulsion theories, we also illustrate some novel propulsion strategies in the final discussion, such as the dive-before-climb launch of rocket from highland mountain on eastbound rail, with perhaps minisatellites as the payloads.

  19. Research of diagnosis sensors fault based on correlation analysis of the bridge structural health monitoring system

    NASA Astrophysics Data System (ADS)

    Hu, Shunren; Chen, Weimin; Liu, Lin; Gao, Xiaoxia

    2010-03-01

    Bridge structural health monitoring system is a typical multi-sensor measurement system due to the multi-parameters of bridge structure collected from the monitoring sites on the river-spanning bridges. Bridge structure monitored by multi-sensors is an entity, when subjected to external action; there will be different performances to different bridge structure parameters. Therefore, the data acquired by each sensor should exist countless correlation relation. However, complexity of the correlation relation is decided by complexity of bridge structure. Traditionally correlation analysis among monitoring sites is mainly considered from physical locations. unfortunately, this method is so simple that it cannot describe the correlation in detail. The paper analyzes the correlation among the bridge monitoring sites according to the bridge structural data, defines the correlation of bridge monitoring sites and describes its several forms, then integrating the correlative theory of data mining and signal system to establish the correlation model to describe the correlation among the bridge monitoring sites quantificationally. Finally, The Chongqing Mashangxi Yangtze river bridge health measurement system is regards as research object to diagnosis sensors fault, and simulation results verify the effectiveness of the designed method and theoretical discussions.

  20. Tradeoff methods in multiobjective insensitive design of airplane control systems

    NASA Technical Reports Server (NTRS)

    Schy, A. A.; Giesy, D. P.

    1984-01-01

    The latest results of an ongoing study of computer-aided design of airplane control systems are given. Constrained minimization algorithms are used, with the design objectives in the constraint vector. The concept of Pareto optimiality is briefly reviewed. It is shown how an experienced designer can use it to find designs which are well-balanced in all objectives. Then the problem of finding designs which are insensitive to uncertainty in system parameters are discussed, introducing a probabilistic vector definition of sensitivity which is consistent with the deterministic Pareto optimal problem. Insensitivity is important in any practical design, but it is particularly important in the design of feedback control systems, since it is considered to be the most important distinctive property of feedback control. Methods of tradeoff between deterministic and stochastic-insensitive (SI) design are described, and tradeoff design results are presented for the example of the a Shuttle lateral stability augmentation system. This example is used because careful studies have been made of the uncertainty in Shuttle aerodynamics. Finally, since accurate statistics of uncertain parameters are usually not available, the effects of crude statistical models on SI designs are examined.

  1. Calibrating the system dynamics of LISA Pathfinder

    NASA Astrophysics Data System (ADS)

    Armano, M.; Audley, H.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Castelli, E.; Cavalleri, A.; Cesarini, A.; Cruise, A. M.; Danzmann, K.; de Deus Silva, M.; Diepholz, I.; Dixon, G.; Dolesi, R.; Ferraioli, L.; Ferroni, V.; Fitzsimons, E. D.; Freschi, M.; Gesa, L.; Gibert, F.; Giardini, D.; Giusteri, R.; Grimani, C.; Grzymisch, J.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hoyland, D.; Hueller, M.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Karnesis, N.; Kaune, B.; Korsakova, N.; Killow, C. J.; Lobo, J. A.; Lloro, I.; Liu, L.; López-Zaragoza, J. P.; Maarschalkerweerd, R.; Mance, D.; Meshksar, N.; Martín, V.; Martin-Polo, L.; Martino, J.; Martin-Porqueras, F.; Mateos, I.; McNamara, P. W.; Mendes, J.; Mendes, L.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Ramos-Castro, J.; Reiche, J.; Robertson, D. I.; Rivas, F.; Russano, G.; Slutsky, J.; Sopuerta, C. F.; Sumner, T.; Texier, D.; Thorpe, J. I.; Vetrugno, D.; Vitale, S.; Wanner, G.; Ward, H.; Wass, P.; Weber, W. J.; Wissel, L.; Wittchen, A.; Zweifel, P.

    2018-06-01

    LISA Pathfinder (LPF) was a European Space Agency mission with the aim to test key technologies for future space-borne gravitational-wave observatories like LISA. The main scientific goal of LPF was to demonstrate measurements of differential acceleration between free-falling test masses at the sub-femto-g level, and to understand the residual acceleration in terms of a physical model of stray forces, and displacement readout noise. A key step toward reaching the LPF goals was the correct calibration of the dynamics of LPF, which was a three-body system composed by two test-masses enclosed in a single spacecraft, and subject to control laws for system stability. In this work, we report on the calibration procedures adopted to calculate the residual differential stray force per unit mass acting on the two test-masses in their nominal positions. The physical parameters of the adopted dynamical model are presented, together with their role on LPF performance. The analysis and results of these experiments show that the dynamics of the system was accurately modeled and the dynamical parameters were stationary throughout the mission. Finally, the impact and importance of calibrating system dynamics for future space-based gravitational wave observatories is discussed.

  2. Intelligent person identification system using stereo camera-based height and stride estimation

    NASA Astrophysics Data System (ADS)

    Ko, Jung-Hwan; Jang, Jae-Hun; Kim, Eun-Soo

    2005-05-01

    In this paper, a stereo camera-based intelligent person identification system is suggested. In the proposed method, face area of the moving target person is extracted from the left image of the input steros image pair by using a threshold value of YCbCr color model and by carrying out correlation between the face area segmented from this threshold value of YCbCr color model and the right input image, the location coordinates of the target face can be acquired, and then these values are used to control the pan/tilt system through the modified PID-based recursive controller. Also, by using the geometric parameters between the target face and the stereo camera system, the vertical distance between the target and stereo camera system can be calculated through a triangulation method. Using this calculated vertical distance and the angles of the pan and tilt, the target's real position data in the world space can be acquired and from them its height and stride values can be finally extracted. Some experiments with video images for 16 moving persons show that a person could be identified with these extracted height and stride parameters.

  3. Mathematical analysis and coordinated current allocation control in battery power module systems

    NASA Astrophysics Data System (ADS)

    Han, Weiji; Zhang, Liang

    2017-12-01

    As the major energy storage device and power supply source in numerous energy applications, such as solar panels, wind plants, and electric vehicles, battery systems often face the issue of charge imbalance among battery cells/modules, which can accelerate battery degradation, cause more energy loss, and even incur fire hazard. To tackle this issue, various circuit designs have been developed to enable charge equalization among battery cells/modules. Recently, the battery power module (BPM) design has emerged to be one of the promising solutions for its capability of independent control of individual battery cells/modules. In this paper, we propose a new current allocation method based on charging/discharging space (CDS) for performance control in BPM systems. Based on the proposed method, the properties of CDS-based current allocation with constant parameters are analyzed. Then, real-time external total power requirement is taken into account and an algorithm is developed for coordinated system performance control. By choosing appropriate control parameters, the desired system performance can be achieved by coordinating the module charge balance and total power efficiency. Besides, the proposed algorithm has complete analytical solutions, and thus is very computationally efficient. Finally, the efficacy of the proposed algorithm is demonstrated using simulations.

  4. Robust design of biological circuits: evolutionary systems biology approach.

    PubMed

    Chen, Bor-Sen; Hsu, Chih-Yuan; Liou, Jing-Jia

    2011-01-01

    Artificial gene circuits have been proposed to be embedded into microbial cells that function as switches, timers, oscillators, and the Boolean logic gates. Building more complex systems from these basic gene circuit components is one key advance for biologic circuit design and synthetic biology. However, the behavior of bioengineered gene circuits remains unstable and uncertain. In this study, a nonlinear stochastic system is proposed to model the biological systems with intrinsic parameter fluctuations and environmental molecular noise from the cellular context in the host cell. Based on evolutionary systems biology algorithm, the design parameters of target gene circuits can evolve to specific values in order to robustly track a desired biologic function in spite of intrinsic and environmental noise. The fitness function is selected to be inversely proportional to the tracking error so that the evolutionary biological circuit can achieve the optimal tracking mimicking the evolutionary process of a gene circuit. Finally, several design examples are given in silico with the Monte Carlo simulation to illustrate the design procedure and to confirm the robust performance of the proposed design method. The result shows that the designed gene circuits can robustly track desired behaviors with minimal errors even with nontrivial intrinsic and external noise.

  5. The development of and experiments on electromagnetic measurement while a drilling system is used for deep exploration

    NASA Astrophysics Data System (ADS)

    Lu, Chunhua; Jiang, Guosheng; Wang, Ziqi; Wang, Jiahao; Wang, Chenli

    2016-10-01

    An electromagnetic measurement while drilling system (EM-MWD) can transfer well track state parameters to the ground in real time, which makes it an indispensable technology for deep-hole drilling. This paper introduces the development of and experiments on an EM-MWD system used for deep exploration in the People’s Republic of China. The designed EM-MWD system is composed of a downhole instrument and a ground instrument, and we elaborate on the structural design of the downhole instrument, the design of the transmission and control circuits and the signal modulation. This work also covers the software and hardware design of the ground instrument and signal demodulation technologies. Finally, some indoor signal decoding experiments and some in-hole signal transmission experiments are performed. This study indicates that the designed EM-MWD system can measure information for downhole drilling parameters and send it to the ground effectively, while the ground receiver can decode the signal accurately and reliably, and the desired signal can be obtained. Furthermore, the strength of the received signal is not affected by the polar distance within a certain polar distance.

  6. Adaptive fuzzy dynamic surface control for the chaotic permanent magnet synchronous motor using Nussbaum gain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Shaohua

    This paper is concerned with the problem of adaptive fuzzy dynamic surface control (DSC) for the permanent magnet synchronous motor (PMSM) system with chaotic behavior, disturbance and unknown control gain and parameters. Nussbaum gain is adopted to cope with the situation that the control gain is unknown. And the unknown items can be estimated by fuzzy logic system. The proposed controller guarantees that all the signals in the closed-loop system are bounded and the system output eventually converges to a small neighborhood of the desired reference signal. Finally, the numerical simulations indicate that the proposed scheme can suppress the chaosmore » of PMSM and show the effectiveness and robustness of the proposed method.« less

  7. Selective encapsulation by Janus particles

    NASA Astrophysics Data System (ADS)

    Li, Wei; Ruth, Donovan; Gunton, James D.; Rickman, Jeffrey M.

    2015-06-01

    We employ Monte Carlo simulation to examine encapsulation in a system comprising Janus oblate spheroids and isotropic spheres. More specifically, the impact of variations in temperature, particle size, inter-particle interaction range, and strength is examined for a system in which the spheroids act as the encapsulating agents and the spheres as the encapsulated guests. In this picture, particle interactions are described by a quasi-square-well patch model. This study highlights the environmental adaptation and selectivity of the encapsulation system to changes in temperature and guest particle size, respectively. Moreover, we identify an important range in parameter space where encapsulation is favored, as summarized by an encapsulation map. Finally, we discuss the generalization of our results to systems having a wide range of particle geometries.

  8. Pilot interaction with automated airborne decision making systems

    NASA Technical Reports Server (NTRS)

    Rouse, W. B.; Chu, Y. Y.; Greenstein, J. S.; Walden, R. S.

    1976-01-01

    An investigation was made of interaction between a human pilot and automated on-board decision making systems. Research was initiated on the topic of pilot problem solving in automated and semi-automated flight management systems and attempts were made to develop a model of human decision making in a multi-task situation. A study was made of allocation of responsibility between human and computer, and discussed were various pilot performance parameters with varying degrees of automation. Optimal allocation of responsibility between human and computer was considered and some theoretical results found in the literature were presented. The pilot as a problem solver was discussed. Finally the design of displays, controls, procedures, and computer aids for problem solving tasks in automated and semi-automated systems was considered.

  9. Accuracy Analysis of a Wireless Indoor Positioning System Using Geodetic Methods

    NASA Astrophysics Data System (ADS)

    Wagner, Przemysław; Woźniak, Marek; Odziemczyk, Waldemar; Pakuła, Dariusz

    2017-12-01

    Ubisense RTLS is one of the Indoor positioning systems using an Ultra Wide Band. AOA and TDOA methods are used as a principle of positioning. The accuracy of positioning depends primarily on the accuracy of determined angles and distance differences. The paper presents the results of accuracy research which includes a theoretical accuracy prediction and a practical test. Theoretical accuracy was calculated for two variants of system components geometry, assuming the parameters declared by the system manufacturer. Total station measurements were taken as a reference during the practical test. The results of the analysis are presented in a graphical form. A sample implementation (MagMaster) developed by Globema is presented in the final part of the paper.

  10. Adaptive fuzzy dynamic surface control for the chaotic permanent magnet synchronous motor using Nussbaum gain.

    PubMed

    Luo, Shaohua

    2014-09-01

    This paper is concerned with the problem of adaptive fuzzy dynamic surface control (DSC) for the permanent magnet synchronous motor (PMSM) system with chaotic behavior, disturbance and unknown control gain and parameters. Nussbaum gain is adopted to cope with the situation that the control gain is unknown. And the unknown items can be estimated by fuzzy logic system. The proposed controller guarantees that all the signals in the closed-loop system are bounded and the system output eventually converges to a small neighborhood of the desired reference signal. Finally, the numerical simulations indicate that the proposed scheme can suppress the chaos of PMSM and show the effectiveness and robustness of the proposed method.

  11. The Pharmaceutical Capping Process-Correlation between Residual Seal Force, Torque Moment, and Flip-off Removal Force.

    PubMed

    Mathaes, Roman; Mahler, Hanns-Christian; Vorgrimler, Lothar; Steinberg, Henrik; Dreher, Sascha; Roggo, Yves; Nieto, Alejandra; Brown, Helen; Roehl, Holger; Adler, Michael; Luemkemann, Joerg; Huwyler, Joerg; Lam, Philippe; Stauch, Oliver; Mohl, Silke; Streubel, Alexander

    2016-01-01

    The majority of parenteral drug products are manufactured in glass vials with an elastomeric rubber stopper and a crimp cap. The vial sealing process is a critical process step during fill-and-finish operations, as it defines the seal quality of the final product. Different critical capping process parameters can affect rubber stopper defects, rubber stopper compression, container closure integrity, and also crimp cap quality. A sufficiently high force to remove the flip-off button prior to usage is required to ensure quality of the drug product unit by the flip-off button during storage, transportation, and until opening and use. Therefore, the final product is 100% visually inspected for lose or defective crimp caps, which is subjective as well as time- and labor-intensive. In this study, we sealed several container closure system configurations with different capping equipment settings (with corresponding residual seal force values) to investigate the torque moment required to turn the crimp cap. A correlation between torque moment and residual seal force has been established. The torque moment was found to be influenced by several parameters, including diameter of the vial head, type of rubber stopper (serum or lyophilized) and type of crimp cap (West(®) or Datwyler(®)). In addition, we measured the force required to remove the flip-off button of a sealed container closure system. The capping process had no influence on measured forces; however, it was possible to detect partially crimped vials. In conclusion, a controlled capping process with a defined target residual seal force range leads to a tight crimp cap on a sealed container closure system and can ensure product quality. The majority of parenteral drug products are manufactured in a glass vials with an elastomeric rubber stopper and a crimp cap. The vial sealing process is a critical process step during fill-and-finish operations, as it defines the seal quality of the final product. An adequate force to remove the flip-off button prior to usage is required to ensure product quality during storage and transportation until use. In addition, the complete crimp cap needs to be fixed in a tight position on the vial. In this study, we investigated the torque moment required to turn the crimp cap and the force required to remove the flip-off button of container closure system sealed with different capping equipment process parameters (having different residual seal force values). © PDA, Inc. 2016.

  12. Energy consumption and entropy production in a stochastic formulation of BCM learning

    NASA Astrophysics Data System (ADS)

    de Oliveira, L. R.; Castellani, G.; Turchetti, G.

    2013-12-01

    Biochemical processes in living cells are open systems, therefore they exchange materials with their environment and they consume chemical energy. These processes are molecular-based and for that reason the role of fluctuations can not be ignored and the stochastic description is the most appropriate one. The chemical master equation describes in exact way the probabilistic dynamics of a given discrete set of states and helps us to understand and clarify the differences between closed and open systems. A closed system is related to a condition of detailed balance (DB), i.e. an equilibrium state. After a sufficiently long period, an open system will reach a non-equilibrium steady state (NESS) that is sustained by a flux of external energy. We demonstrate that two implementations of the BCM learning rule (BCM82) and (BCM92) are, respectively, always in DB, and never in DB. We define a one parameter parametrization of the BCM learning rule that interpolates between these two extremes. We compute thermodynamical quantities such as internal energy, free energy (both Helmholtz and Gibbs) and entropy. The entropy variation in the case of open systems (i.e. when DB does not hold) can be divided into internal entropy production and entropy exchanged with surroundings. We show how the entropy variation can be used to find the optimal value (corresponding to increased robustness and stability) for the parameter used in the BCM parametrization. Finally, we use the calculation of the work to drive the system from an initial state to the steady state as the parameter of the plasticity of the system.

  13. The Macromolecular Neutron Diffractometer MaNDi at the Spallation Neutron Source

    DOE PAGES

    Coates, Leighton; Cuneo, Matthew J.; Frost, Matthew J.; ...

    2015-07-18

    The Macromolecular Neutron Diffractometer (MaNDi) is located on beamline 11B of the Spallation Neutron Source at Oak Ridge National Laboratory. Moreover, the instrument is a neutron time-of-flight wavelength-resolved Laue diffractometer optimized to collect diffraction data from single crystals. Finally, the instrument has been designed to provide flexibility in several instrumental parameters, such as beam divergence and wavelength bandwidth, to allow data collection from a range of macromolecular systems.

  14. A model of a fishery with fish stock involving delay equations.

    PubMed

    Auger, P; Ducrot, Arnaud

    2009-12-13

    The aim of this paper is to provide a new mathematical model for a fishery by including a stock variable for the resource. This model takes the form of an infinite delay differential equation. It is mathematically studied and a bifurcation analysis of the steady states is fulfilled. Depending on the different parameters of the problem, we show that Hopf bifurcation may occur leading to oscillating behaviours of the system. The mathematical results are finally discussed.

  15. Naval Air Systems Command Needs to Improve Management of Waiver Requests (REDACTED)

    DTIC Science & Technology

    2015-05-15

    Acquisition Category ID5 major defense acquisition program that had its final production decision on January 3, 2014. The Navy designed the P -8A...submarines, was the primary reason the Navy invested in the P -8A aircraft. The anti-surface warfare mission provides maritime superiority 5 Acquisition ...frigates (small, fast military ships) at 110 nautical miles, which was one of the critical technical parameters. Also, the P -8A aircraft that was

  16. Performance of the NASA Airborne Radar with the Windshear Database for Forward-Looking Systems

    NASA Technical Reports Server (NTRS)

    Switzer, George F.; Britt, Charles L.

    1996-01-01

    This document describes the simulation approach used to test the performance of the NASA airborne windshear radar. An explanation of the actual radar hardware and processing algorithms provides an understanding of the parameters used in the simulation program. This report also contains a brief overview of the NASA airborne windshear radar experimental flight test results. A description of the radar simulation program shows the capabilities of the program and the techniques used for certification evaluation. Simulation of the NASA radar is comprised of three steps. First, the choice of the ground clutter data must be made. The ground clutter is the return from objects in or nearby an airport facility. The choice of the ground clutter also dictates the aircraft flight path since ground clutter is gathered while in flight. The second step is the choice of the radar parameters and the running of the simulation program which properly combines the ground clutter data with simulated windshear weather data. The simulated windshear weather data is comprised of a number of Terminal Area Simulation System (TASS) model results. The final step is the comparison of the radar simulation results to the known windshear data base. The final evaluation of the radar simulation is based on the ability to detect hazardous windshear with the aircraft at a safe distance while at the same time not displaying false alerts.

  17. Modeling methodology for MLS range navigation system errors using flight test data

    NASA Technical Reports Server (NTRS)

    Karmali, M. S.; Phatak, A. V.

    1982-01-01

    Flight test data was used to develop a methodology for modeling MLS range navigation system errors. The data used corresponded to the constant velocity and glideslope approach segment of a helicopter landing trajectory. The MLS range measurement was assumed to consist of low frequency and random high frequency components. The random high frequency component was extracted from the MLS range measurements. This was done by appropriate filtering of the range residual generated from a linearization of the range profile for the final approach segment. This range navigation system error was then modeled as an autoregressive moving average (ARMA) process. Maximum likelihood techniques were used to identify the parameters of the ARMA process.

  18. Stability analysis on an economic epidemiological model with vaccination Pages : - , and.

    PubMed

    Avusuglo, Wisdom S; Abdella, Kenzu; Feng, Wenying

    2017-08-01

    In this paper, an economic epidemiological model with vaccination is studied. The stability of the endemic steady-state is analyzed and some bifurcation properties of the system are investigated. It is established that the system exhibits saddle-point and period-doubling bifurcations when adult susceptible individuals are vaccinated. Furthermore, it is shown that susceptible individuals also have the tendency of opting for more number of contacts even if the vaccine is inefficacious and thus causes the disease endemic to increase in the long run. Results from sensitivity analysis with specific disease parameters are also presented. Finally, it is shown that the qualitative behaviour of the system is affected by contact levels.

  19. Permanence and asymptotic behaviors of stochastic predator-prey system with Markovian switching and Lévy noise

    NASA Astrophysics Data System (ADS)

    Wang, Sheng; Wang, Linshan; Wei, Tengda

    2018-04-01

    This paper concerns the dynamics of a stochastic predator-prey system with Markovian switching and Lévy noise. First, the existence and uniqueness of global positive solution to the system is proved. Then, by combining stochastic analytical techniques with M-matrix analysis, sufficient conditions of stochastic permanence and extinction are obtained. Furthermore, for the stochastic permanence case, by means of four constants related to the stationary probability distribution of the Markov chain and the parameters of the subsystems, both the superior limit and the inferior limit of the average in time of the sample path of the solution are estimated. Finally, our conclusions are illustrated through an example.

  20. PD-like controller for delayed bilateral teleoperation of wheeled robots

    NASA Astrophysics Data System (ADS)

    Slawiñski, E.; Mut, V.; Santiago, D.

    2016-08-01

    This paper proposes a proportional derivative (PD)-like controller applied to the delayed bilateral teleoperation of wheeled robots with force feedback in face of asymmetric and varying-time delays. In contrast to bilateral teleoperation of manipulator robots, in these systems, there is a mismatch between the models of the master and slave (mobile robot), problem that is approached in this work, where the system stability is analysed. From this study, it is possible to infer the control parameters, depending on the time delay, necessary to assure stability. Finally, the performance of the delayed teleoperation system is evaluated through tests where a human operator drives a 3D simulator as well as a mobile robot for pushing objects.

  1. Upper stages utilizing electric propulsion

    NASA Technical Reports Server (NTRS)

    Byers, D. C.

    1980-01-01

    The payload characteristics of geocentric missions which utilize electron bombardment ion thruster systems are discussed. A baseline LEO to GEO orbit transfer mission was selected to describe the payload capabilities. The impacts on payloads of both mission parameters and electric propulsion technology options were evaluated. The characteristics of the electric propulsion thrust system and the power requirements were specified in order to predict payload mass. This was completed by utilizing a previously developed methodology which provides a detailed thrust system description after the final mass on orbit, the thrusting time, and the specific impulse are specified. The impact on payloads of total mass in LEO, thrusting time, propellant type, specific impulse, and power source characteristics was evaluated.

  2. Design and construction of miniature artificial ecosystem based on dynamic response optimization

    NASA Astrophysics Data System (ADS)

    Hu, Dawei; Liu, Hong; Tong, Ling; Li, Ming; Hu, Enzhu

    The miniature artificial ecosystem (MAES) is a combination of man, silkworm, salad and mi-croalgae to partially regenerate O2 , sanitary water and food, simultaneously dispose CO2 and wastes, therefore it have a fundamental life support function. In order to enhance the safety and reliability of MAES and eliminate the influences of internal variations and external dis-turbances, it was necessary to configure MAES as a closed-loop control system, and it could be considered as a prototype for future bioregenerative life support system. However, MAES is a complex system possessing large numbers of parameters, intricate nonlinearities, time-varying factors as well as uncertainties, hence it is difficult to perfectly design and construct a prototype through merely conducting experiments by trial and error method. Our research presented an effective way to resolve preceding problem by use of dynamic response optimiza-tion. Firstly the mathematical model of MAES with first-order nonlinear ordinary differential equations including parameters was developed based on relevant mechanisms and experimental data, secondly simulation model of MAES was derived on the platform of MatLab/Simulink to perform model validation and further digital simulations, thirdly reference trajectories of de-sired dynamic response of system outputs were specified according to prescribed requirements, and finally optimization for initial values, tuned parameter and independent parameters was carried out using the genetic algorithm, the advanced direct search method along with parallel computing methods through computer simulations. The result showed that all parameters and configurations of MAES were determined after a series of computer experiments, and its tran-sient response performances and steady characteristics closely matched the reference curves. Since the prototype is a physical system that represents the mathematical model with reason-able accuracy, so the process of designing and constructing a prototype of MAES is the reverse of mathematical modeling, and must have prerequisite assists from these results of computer simulation.

  3. Application of TRIZ approach to machine vibration condition monitoring problems

    NASA Astrophysics Data System (ADS)

    Cempel, Czesław

    2013-12-01

    Up to now machine condition monitoring has not been seriously approached by TRIZ1TRIZ= Russian acronym for Inventive Problem Solving System, created by G. Altshuller ca 50 years ago. users, and the knowledge of TRIZ methodology has not been applied there intensively. However, there are some introductory papers of present author posted on Diagnostic Congress in Cracow (Cempel, in press [11]), and Diagnostyka Journal as well. But it seems to be further need to make such approach from different sides in order to see, if some new knowledge and technology will emerge. In doing this we need at first to define the ideal final result (IFR) of our innovation problem. As a next we need a set of parameters to describe the problems of system condition monitoring (CM) in terms of TRIZ language and set of inventive principles possible to apply, on the way to IFR. This means we should present the machine CM problem by means of contradiction and contradiction matrix. When specifying the problem parameters and inventive principles, one should use analogy and metaphorical thinking, which by definition is not exact but fuzzy, and leads sometimes to unexpected results and outcomes. The paper undertakes this important problem again and brings some new insight into system and machine CM problems. This may mean for example the minimal dimensionality of TRIZ engineering parameter set for the description of machine CM problems, and the set of most useful inventive principles applied to given engineering parameter and contradictions of TRIZ.

  4. Information geometric methods for complexity

    NASA Astrophysics Data System (ADS)

    Felice, Domenico; Cafaro, Carlo; Mancini, Stefano

    2018-03-01

    Research on the use of information geometry (IG) in modern physics has witnessed significant advances recently. In this review article, we report on the utilization of IG methods to define measures of complexity in both classical and, whenever available, quantum physical settings. A paradigmatic example of a dramatic change in complexity is given by phase transitions (PTs). Hence, we review both global and local aspects of PTs described in terms of the scalar curvature of the parameter manifold and the components of the metric tensor, respectively. We also report on the behavior of geodesic paths on the parameter manifold used to gain insight into the dynamics of PTs. Going further, we survey measures of complexity arising in the geometric framework. In particular, we quantify complexity of networks in terms of the Riemannian volume of the parameter space of a statistical manifold associated with a given network. We are also concerned with complexity measures that account for the interactions of a given number of parts of a system that cannot be described in terms of a smaller number of parts of the system. Finally, we investigate complexity measures of entropic motion on curved statistical manifolds that arise from a probabilistic description of physical systems in the presence of limited information. The Kullback-Leibler divergence, the distance to an exponential family and volumes of curved parameter manifolds, are examples of essential IG notions exploited in our discussion of complexity. We conclude by discussing strengths, limits, and possible future applications of IG methods to the physics of complexity.

  5. The hydraulic capacity of deteriorating sewer systems.

    PubMed

    Pollert, J; Ugarelli, R; Saegrov, S; Schilling, W; Di Federico, V

    2005-01-01

    Sewer and wastewater systems suffer from insufficient capacity, construction flaws and pipe deterioration. Consequences are structural failures, local floods, surface erosion and pollution of receiving waters bodies. European cities spend in the order of five billion Euro per year for wastewater network rehabilitation. This amount is estimated to increase due to network ageing. The project CARE-S (Computer Aided RE-habilitation of Sewer Networks) deals with sewer and storm water networks. The final project goal is to develop integrated software, which provides the most cost-efficient system of maintenance, repair and rehabilitation of sewer networks. Decisions on investments in rehabilitation often have to be made with uncertain information about the structural condition and the hydraulic performance of a sewer system. Because of this, decision-making involves considerable risks. This paper presents the results of research focused on the study of hydraulic effects caused by failures due to temporal decline of sewer systems. Hydraulic simulations are usually carried out by running commercial models that apply, as input, default values of parameters that strongly influence results. Using CCTV inspections information as dataset to catalogue principal types of failures affecting pipes, a 3D model was used to evaluate their hydraulic consequences. The translation of failures effects in parameters values producing the same hydraulic conditions caused by failures was carried out through the comparison of laboratory experiences and 3D simulations results. Those parameters could be the input of 1D commercial models instead of the default values commonly inserted.

  6. GPS Satellite Orbit Prediction at User End for Real-Time PPP System.

    PubMed

    Yang, Hongzhou; Gao, Yang

    2017-08-30

    This paper proposed the high-precision satellite orbit prediction process at the user end for the real-time precise point positioning (PPP) system. Firstly, the structure of a new real-time PPP system will be briefly introduced in the paper. Then, the generation of satellite initial parameters (IP) at the sever end will be discussed, which includes the satellite position, velocity, and the solar radiation pressure (SRP) parameters for each satellite. After that, the method for orbit prediction at the user end, with dynamic models including the Earth's gravitational force, lunar gravitational force, solar gravitational force, and the SRP, are presented. For numerical integration, both the single-step Runge-Kutta and multi-step Adams-Bashforth-Moulton integrator methods are implemented. Then, the comparison between the predicted orbit and the international global navigation satellite system (GNSS) service (IGS) final products are carried out. The results show that the prediction accuracy can be maintained for several hours, and the average prediction error of the 31 satellites are 0.031, 0.032, and 0.033 m for the radial, along-track and cross-track directions over 12 h, respectively. Finally, the PPP in both static and kinematic modes are carried out to verify the accuracy of the predicted satellite orbit. The average root mean square error (RMSE) for the static PPP of the 32 globally distributed IGS stations are 0.012, 0.015, and 0.021 m for the north, east, and vertical directions, respectively; while the RMSE of the kinematic PPP with the predicted orbit are 0.031, 0.069, and 0.167 m in the north, east and vertical directions, respectively.

  7. GPS Satellite Orbit Prediction at User End for Real-Time PPP System

    PubMed Central

    Yang, Hongzhou; Gao, Yang

    2017-01-01

    This paper proposed the high-precision satellite orbit prediction process at the user end for the real-time precise point positioning (PPP) system. Firstly, the structure of a new real-time PPP system will be briefly introduced in the paper. Then, the generation of satellite initial parameters (IP) at the sever end will be discussed, which includes the satellite position, velocity, and the solar radiation pressure (SRP) parameters for each satellite. After that, the method for orbit prediction at the user end, with dynamic models including the Earth’s gravitational force, lunar gravitational force, solar gravitational force, and the SRP, are presented. For numerical integration, both the single-step Runge–Kutta and multi-step Adams–Bashforth–Moulton integrator methods are implemented. Then, the comparison between the predicted orbit and the international global navigation satellite system (GNSS) service (IGS) final products are carried out. The results show that the prediction accuracy can be maintained for several hours, and the average prediction error of the 31 satellites are 0.031, 0.032, and 0.033 m for the radial, along-track and cross-track directions over 12 h, respectively. Finally, the PPP in both static and kinematic modes are carried out to verify the accuracy of the predicted satellite orbit. The average root mean square error (RMSE) for the static PPP of the 32 globally distributed IGS stations are 0.012, 0.015, and 0.021 m for the north, east, and vertical directions, respectively; while the RMSE of the kinematic PPP with the predicted orbit are 0.031, 0.069, and 0.167 m in the north, east and vertical directions, respectively. PMID:28867771

  8. Control design and robustness analysis of a ball and plate system by using polynomial chaos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colón, Diego; Balthazar, José M.; Reis, Célia A. dos

    2014-12-10

    In this paper, we present a mathematical model of a ball and plate system, a control law and analyze its robustness properties by using the polynomial chaos method. The ball rolls without slipping. There is an auxiliary robot vision system that determines the bodies' positions and velocities, and is used for control purposes. The actuators are to orthogonal DC motors, that changes the plate's angles with the ground. The model is a extension of the ball and beam system and is highly nonlinear. The system is decoupled in two independent equations for coordinates x and y. Finally, the resulting nonlinearmore » closed loop systems are analyzed by the polynomial chaos methodology, which considers that some system parameters are random variables, and generates statistical data that can be used in the robustness analysis.« less

  9. Control design and robustness analysis of a ball and plate system by using polynomial chaos

    NASA Astrophysics Data System (ADS)

    Colón, Diego; Balthazar, José M.; dos Reis, Célia A.; Bueno, Átila M.; Diniz, Ivando S.; de S. R. F. Rosa, Suelia

    2014-12-01

    In this paper, we present a mathematical model of a ball and plate system, a control law and analyze its robustness properties by using the polynomial chaos method. The ball rolls without slipping. There is an auxiliary robot vision system that determines the bodies' positions and velocities, and is used for control purposes. The actuators are to orthogonal DC motors, that changes the plate's angles with the ground. The model is a extension of the ball and beam system and is highly nonlinear. The system is decoupled in two independent equations for coordinates x and y. Finally, the resulting nonlinear closed loop systems are analyzed by the polynomial chaos methodology, which considers that some system parameters are random variables, and generates statistical data that can be used in the robustness analysis.

  10. The fate of a gray soliton in a quenched Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Gamayun, Oleksandr; Bezvershenko, Yulia; Cheianov, Vadim

    2015-03-01

    We investigate the destiny of a gray soliton in a repulsive one-dimensional Bose-Einstein condensate undergoing a sudden quench of the non-linearity parameter. The outcome of the quench is found to depend dramatically on the ratio η of the final and initial values of the speed of sound. For integer η the soliton splits into exactly 2 η - 1 solitons. For non-integer η the soliton decays into multiple solitons and Bogoliubov modes. The case of integer η is analyzed in detail. The parameters of solitons in the out-state are found explicitly. Our approach exploits the inverse scattering method and can be easily used for the similar quenches in any classical integrable system.

  11. Parameter estimation for terrain modeling from gradient data. [navigation system for Martian rover

    NASA Technical Reports Server (NTRS)

    Dangelo, K. R.

    1974-01-01

    A method is developed for modeling terrain surfaces for use on an unmanned Martian roving vehicle. The modeling procedure employs a two-step process which uses gradient as well as height data in order to improve the accuracy of the model's gradient. Least square approximation is used in order to stochastically determine the parameters which describe the modeled surface. A complete error analysis of the modeling procedure is included which determines the effect of instrumental measurement errors on the model's accuracy. Computer simulation is used as a means of testing the entire modeling process which includes the acquisition of data points, the two-step modeling process and the error analysis. Finally, to illustrate the procedure, a numerical example is included.

  12. Simultaneous tracking and regulation visual servoing of wheeled mobile robots with uncalibrated extrinsic parameters

    NASA Astrophysics Data System (ADS)

    Lu, Qun; Yu, Li; Zhang, Dan; Zhang, Xuebo

    2018-01-01

    This paper presentsa global adaptive controller that simultaneously solves tracking and regulation for wheeled mobile robots with unknown depth and uncalibrated camera-to-robot extrinsic parameters. The rotational angle and the scaled translation between the current camera frame and the reference camera frame, as well as the ones between the desired camera frame and the reference camera frame can be calculated in real time by using the pose estimation techniques. A transformed system is first obtained, for which an adaptive controller is then designed to accomplish both tracking and regulation tasks, and the controller synthesis is based on Lyapunov's direct method. Finally, the effectiveness of the proposed method is illustrated by a simulation study.

  13. Tuning the resistive switching properties of TiO2-x films

    NASA Astrophysics Data System (ADS)

    Ghenzi, N.; Rozenberg, M. J.; Llopis, R.; Levy, P.; Hueso, L. E.; Stoliar, P.

    2015-03-01

    We study the electrical characteristics of TiO2-x-based resistive switching devices fabricated with different oxygen/argon flow ratio during the oxide thin film sputtering deposition. Upon minute changes in this fabrication parameter, three qualitatively different device characteristics were accessed in the same system, namely, standard bipolar resistive switching, electroforming-free devices, and devices with multi-step breakdown. We propose that small variations in the oxygen/ argon flow ratio result in relevant changes of the oxygen vacancy concentration, which is the key parameter determining the resistive switching behavior. The coexistence of percolative or non-percolative conductive filaments is also discussed. Finally, the hypothesis is verified by means of the temperature dependence of the devices in low resistance state.

  14. Real-time target tracking and locating system for UAV

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Tang, Linbo; Fu, Huiquan; Li, Maowen

    2017-07-01

    In order to achieve real-time target tracking and locating for UAV, a reliable processing system is built on the embedded platform. Firstly, the video image is acquired in real time by the photovoltaic system on the UAV. When the target information is known, KCF tracking algorithm is adopted to track the target. Then, the servo is controlled to rotate with the target, when the target is in the center of the image, the laser ranging module is opened to obtain the distance between the UAV and the target. Finally, to combine with UAV flight parameters obtained by BeiDou navigation system, through the target location algorithm to calculate the geodetic coordinates of the target. The results show that the system is stable for real-time tracking of targets and positioning.

  15. WAZA-ARI: computational dosimetry system for X-ray CT examinations II: development of web-based system.

    PubMed

    Ban, Nobuhiko; Takahashi, Fumiaki; Ono, Koji; Hasegawa, Takayuki; Yoshitake, Takayasu; Katsunuma, Yasushi; Sato, Kaoru; Endo, Akira; Kai, Michiaki

    2011-07-01

    A web-based dose computation system, WAZA-ARI, is being developed for patients undergoing X-ray CT examinations. The system is implemented in Java on a Linux server running Apache Tomcat. Users choose scanning options and input parameters via a web browser over the Internet. Dose coefficients, which were calculated in a Japanese adult male phantom (JM phantom) are called upon user request and are summed over the scan range specified by the user to estimate a normalised dose. Tissue doses are finally computed based on the radiographic exposure (mA s) and the pitch factor. While dose coefficients are currently available only for limited CT scanner models, the system has achieved a high degree of flexibility and scalability without the use of commercial software.

  16. Dynamic analysis of the American Maglev system. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seda-Sanabria, Y.; Ray, J.C.

    1996-06-01

    Understanding the dynamic interaction between a magnetic levitated (Maglev) vehicle and its supporting guideway is essential in the evaluation of the performance of such a system. This interacting coupling, known as vehicle/guideway interaction (VGI), has a significant effect on system parameters such as the required magnetic suspension forces and gaps, vehicular ride quality, and guideway deflections and stresses. This report presents the VGI analyses conducted on an actual Maglev system concept definition (SCD), the American Maglev SCD, using a linear-elastic finite-element (FE) model. Particular interest was focused on the comparison of the ride quality of the vehicle, using two differentmore » suspension systems, and their effect on the guideway structure. The procedure and necessary assumptions in the modeling are discussed.« less

  17. Framework for Architecture Trade Study Using MBSE and Performance Simulation

    NASA Technical Reports Server (NTRS)

    Ryan, Jessica; Sarkani, Shahram; Mazzuchim, Thomas

    2012-01-01

    Increasing complexity in modern systems as well as cost and schedule constraints require a new paradigm of system engineering to fulfill stakeholder needs. Challenges facing efficient trade studies include poor tool interoperability, lack of simulation coordination (design parameters) and requirements flowdown. A recent trend toward Model Based System Engineering (MBSE) includes flexible architecture definition, program documentation, requirements traceability and system engineering reuse. As a new domain MBSE still lacks governing standards and commonly accepted frameworks. This paper proposes a framework for efficient architecture definition using MBSE in conjunction with Domain Specific simulation to evaluate trade studies. A general framework is provided followed with a specific example including a method for designing a trade study, defining candidate architectures, planning simulations to fulfill requirements and finally a weighted decision analysis to optimize system objectives.

  18. Chaos, Chaos Control and Synchronization of a Gyrostat System

    NASA Astrophysics Data System (ADS)

    GE, Z.-M.; LIN, T.-N.

    2002-03-01

    The dynamic behavior of a gyrostat system subjected to external disturbance is studied in this paper. By applying numerical results, phase diagrams, power spectrum, period-T maps, and Lyapunov exponents are presented to observe periodic and choatic motions. The effect of the parameters changed in the system can be found in the bifurcation and parametric diagrams. For global analysis, the basins of attraction of each attractor of the system are located by employing the modified interpolated cell mapping (MICM) method. Several methods, the delayed feedback control, the addition of constant torque, the addition of periodic force, the addition of periodic impulse torque, injection of dither signal control, adaptive control algorithm (ACA) control and bang-bang control are used to control chaos effectively. Finally, synchronization of chaos in the gyrostat system is studied.

  19. Dynamical friction for supersonic motion in a homogeneous gaseous medium

    NASA Astrophysics Data System (ADS)

    Thun, Daniel; Kuiper, Rolf; Schmidt, Franziska; Kley, Wilhelm

    2016-05-01

    Context. The supersonic motion of gravitating objects through a gaseous ambient medium constitutes a classical problem in theoretical astrophysics. Its application covers a broad range of objects and scales from planetesimals, planets, and all kind of stars up to galaxies and black holes. In particular, the dynamical friction caused by the wake that forms behind the object plays an important role for the dynamics of the system. To calculate the dynamical friction for a particular system, standard formulae based on linear theory are often used. Aims: It is our goal to check the general validity of these formulae and provide suitable expressions for the dynamical friction acting on the moving object, based on the basic physical parameters of the problem: first, the mass, radius, and velocity of the perturber; second, the gas mass density, soundspeed, and adiabatic index of the gaseous medium; and finally, the size of the forming wake. Methods: We perform dedicated sequences of high-resolution numerical studies of rigid bodies moving supersonically through a homogeneous ambient medium and calculate the total drag acting on the object, which is the sum of gravitational and hydrodynamical drag. We study cases without gravity with purely hydrodynamical drag, as well as gravitating objects. In various numerical experiments, we determine the drag force acting on the moving body and its dependence on the basic physical parameters of the problem, as given above. From the final equilibrium state of the simulations, for gravitating objects we compute the dynamical friction by direct numerical integration of the gravitational pull acting on the embedded object. Results: The numerical experiments confirm the known scaling laws for the dependence of the dynamical friction on the basic physical parameters as derived in earlier semi-analytical studies. As a new important result we find that the shock's stand-off distance is revealed as the minimum spatial interaction scale of dynamical friction. Below this radius, the gas settles into a hydrostatic state, which - owing to its spherical symmetry - causes no net gravitational pull onto the moving body. Finally, we derive an analytic estimate for the stand-off distance that can easily be used when calculating the dynamical friction force.

  20. Spreading of correlations in the XXZ chain at finite temperatures

    NASA Astrophysics Data System (ADS)

    Bonnes, Lars; Läuchli, Andreas

    2014-03-01

    In a quantum quench, for instance by abruptly changing the interaction parameter in a spin chain, correlations can spread across the system but have to obey a speed limit set by the Lieb-Robinson bound. This results into a causal structure where the propagation front resembles a light-cone. One can ask how fast a correlation front actually propagates and how its velocity depends on the nature of the quench. This question is addressed by performing global quenches in the XXZ chain initially prepared in a finite-temperature state using minimally entangled typical thermal states (METTS). We provide numerical evidence that the spreading velocity of the spin correlation functions for the quench into the gapless phase is solely determined by the value of the final interaction and the amount of excess energy of the system. This is quite surprising as the XXZ model is integrable and its dynamics is constrained by a large amount of conserved quantities. In particular, the spreading velocity seems to interpolate linearly from a universal value at T = ∞ to the spin wave velocity of the final Hamiltonian in the limit of zero excess energy for Δfinal > 0 .

  1. Evaluation of an artificial intelligence guided inverse planning system: clinical case study.

    PubMed

    Yan, Hui; Yin, Fang-Fang; Willett, Christopher

    2007-04-01

    An artificial intelligence (AI) guided method for parameter adjustment of inverse planning was implemented on a commercial inverse treatment planning system. For evaluation purpose, four typical clinical cases were tested and the results from both plans achieved by automated and manual methods were compared. The procedure of parameter adjustment mainly consists of three major loops. Each loop is in charge of modifying parameters of one category, which is carried out by a specially customized fuzzy inference system. A physician prescribed multiple constraints for a selected volume were adopted to account for the tradeoff between prescription dose to the PTV and dose-volume constraints for critical organs. The searching process for an optimal parameter combination began with the first constraint, and proceeds to the next until a plan with acceptable dose was achieved. The initial setup of the plan parameters was the same for each case and was adjusted independently by both manual and automated methods. After the parameters of one category were updated, the intensity maps of all fields were re-optimized and the plan dose was subsequently re-calculated. When final plan arrived, the dose statistics were calculated from both plans and compared. For planned target volume (PTV), the dose for 95% volume is up to 10% higher in plans using the automated method than those using the manual method. For critical organs, an average decrease of the plan dose was achieved. However, the automated method cannot improve the plan dose for some critical organs due to limitations of the inference rules currently employed. For normal tissue, there was no significant difference between plan doses achieved by either automated or manual method. With the application of AI-guided method, the basic parameter adjustment task can be accomplished automatically and a comparable plan dose was achieved in comparison with that achieved by the manual method. Future improvements to incorporate case-specific inference rules are essential to fully automate the inverse planning process.

  2. The Laser ablation of a metal foam: The role of electron-phonon coupling and electronic heat diffusivity

    NASA Astrophysics Data System (ADS)

    Rosandi, Yudi; Grossi, Joás; Bringa, Eduardo M.; Urbassek, Herbert M.

    2018-01-01

    The incidence of energetic laser pulses on a metal foam may lead to foam ablation. The processes occurring in the foam may differ strongly from those in a bulk metal: The absorption of laser light, energy transfer to the atomic system, heat conduction, and finally, the atomistic processes—such as melting or evaporation—may be different. In addition, novel phenomena take place, such as a reorganization of the ligament network in the foam. We study all these processes in an Au foam of average porosity 79% and an average ligament diameter of 2.5 nm, using molecular dynamics simulation. The coupling of the electronic system to the atomic system is modeled by using the electron-phonon coupling, g, and the electronic heat diffusivity, κe, as model parameters, since their actual values for foams are unknown. We show that the foam coarsens under laser irradiation. While κe governs the homogeneity of the processes, g mainly determines their time scale. The final porosity reached is independent of the value of g.

  3. Risk assessment and experimental design in the development of a prolonged release drug delivery system with paliperidone

    PubMed Central

    Iurian, Sonia; Turdean, Luana; Tomuta, Ioan

    2017-01-01

    This study focuses on the development of a drug product based on a risk assessment-based approach, within the quality by design paradigm. A prolonged release system was proposed for paliperidone (Pal) delivery, containing Kollidon® SR as an insoluble matrix agent and hydroxypropyl cellulose, hydroxypropyl methylcellulose (HPMC), or sodium carboxymethyl cellulose as a hydrophilic polymer. The experimental part was preceded by the identification of potential sources of variability through Ishikawa diagrams, and failure mode and effects analysis was used to deliver the critical process parameters that were further optimized by design of experiments. A D-optimal design was used to investigate the effects of Kollidon SR ratio (X1), the type of hydrophilic polymer (X2), and the percentage of hydrophilic polymer (X3) on the percentages of dissolved Pal over 24 h (Y1–Y9). Effects expressed as regression coefficients and response surfaces were generated, along with a design space for the preparation of a target formulation in an experimental area with low error risk. The optimal formulation contained 27.62% Kollidon SR and 8.73% HPMC and achieved the prolonged release of Pal, with low burst effect, at ratios that were very close to the ones predicted by the model. Thus, the parameters with the highest impact on the final product quality were studied, and safe ranges were established for their variations. Finally, a risk mitigation and control strategy was proposed to assure the quality of the system, by constant process monitoring. PMID:28331293

  4. Designing and Implementation of Fuzzy Case-based Reasoning System on Android Platform Using Electronic Discharge Summary of Patients with Chronic Kidney Diseases

    PubMed Central

    Tahmasebian, Shahram; Langarizadeh, Mostafa; Ghazisaeidi, Marjan; Mahdavi-Mazdeh, Mitra

    2016-01-01

    Introduction: Case-based reasoning (CBR) systems are one of the effective methods to find the nearest solution to the current problems. These systems are used in various spheres as well as industry, business, and economy. The medical field is not an exception in this regard, and these systems are nowadays used in the various aspects of diagnosis and treatment. Methodology: In this study, the effective parameters were first extracted from the structured discharge summary prepared for patients with chronic kidney diseases based on data mining method. Then, through holding a meeting with experts in nephrology and using data mining methods, the weights of the parameters were extracted. Finally, fuzzy system has been employed in order to compare the similarities of current case and previous cases, and the system was implemented on the Android platform. Discussion: The data on electronic discharge records of patients with chronic kidney diseases were entered into the system. The measure of similarity was assessed using the algorithm provided in the system, and then compared with other known methods in CBR systems. Conclusion: Developing Clinical fuzzy CBR system used in Knowledge management framework for registering specific therapeutic methods, Knowledge sharing environment for experts in a specific domain and Powerful tools at the point of care. PMID:27708490

  5. A comparative study on the environmental impact of supermarket refrigeration systems using low GWP refrigerants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beshr, M.; Aute, V.; Sharma, V.

    Supermarket refrigeration systems have high environmental impact due to their large refrigerant charge and high leak rates. Consequently, the interest in using low GWP refrigerants such as carbon dioxide (CO 2) and new refrigerant blends is increasing. In this study, an open-source Life Cycle Climate Performance (LCCP) framework is presented and used to compare the environmental impact of four supermarket refrigeration systems: a transcritical CO 2 booster system, a cascade CO 2/N-40 system, a combined secondary circuit with central DX N-40/L-40 system, and a baseline multiplex direct expansion system utilizing R-404A and N-40. The study is performed for different climatesmore » within the USA using EnergyPlus to simulate the systems' hourly performance. Finally, further analyses are presented such as parametric, sensitivity, and uncertainty analyses to study the impact of different system parameters on the LCCP.« less

  6. A comparative study on the environmental impact of supermarket refrigeration systems using low GWP refrigerants

    DOE PAGES

    Beshr, M.; Aute, V.; Sharma, V.; ...

    2015-04-09

    Supermarket refrigeration systems have high environmental impact due to their large refrigerant charge and high leak rates. Consequently, the interest in using low GWP refrigerants such as carbon dioxide (CO 2) and new refrigerant blends is increasing. In this study, an open-source Life Cycle Climate Performance (LCCP) framework is presented and used to compare the environmental impact of four supermarket refrigeration systems: a transcritical CO 2 booster system, a cascade CO 2/N-40 system, a combined secondary circuit with central DX N-40/L-40 system, and a baseline multiplex direct expansion system utilizing R-404A and N-40. The study is performed for different climatesmore » within the USA using EnergyPlus to simulate the systems' hourly performance. Finally, further analyses are presented such as parametric, sensitivity, and uncertainty analyses to study the impact of different system parameters on the LCCP.« less

  7. Intelligent processing for thick composites

    NASA Astrophysics Data System (ADS)

    Shin, Daniel Dong-Ok

    2000-10-01

    Manufacturing thick composite parts are associated with adverse curing conditions such as large in-plane temperature gradient and exotherms. The condition is further aggravated because the manufacturer's cycle and the existing cure control systems do not adequately counter such affects. In response, the forecast-based thermal control system is developed to have better cure control for thick composites. Accurate cure kinetic model is crucial for correctly identifying the amount of heat generated for composite process simulation. A new technique for identifying cure parameters for Hercules AS4/3502 prepreg is presented by normalizing the DSC data. The cure kinetics is based on an autocatalytic model for the proposed method, which uses dynamic and isothermal DSC data to determine its parameters. Existing models are also used to determine kinetic parameters but rendered inadequate because of the material's temperature dependent final degree of cure. The model predictions determined from the new technique showed good agreement to both isothermal and dynamic DSC data. The final degree of cure was also in good agreement with experimental data. A realistic cure simulation model including bleeder ply analysis and compaction is validated with Hercules AS4/3501-6 based laminates. The nonsymmetrical temperature distribution resulting from the presence of bleeder plies agreed well to the model prediction. Some of the discrepancies in the predicted compaction behavior were attributed to inaccurate viscosity and permeability models. The temperature prediction was quite good for the 3cm laminate. The validated process simulation model along with cure kinetics model for AS4/3502 prepreg were integrated into the thermal control system. The 3cm Hercules AS4/3501-6 and AS4/3502 laminate were fabricated. The resulting cure cycles satisfied all imposed requirements by minimizing exotherms and temperature gradient. Although the duration of the cure cycles increased, such phenomena was inevitable since longer time was required to maintain acceptable temperature gradient. The derived cure cycles were slightly different than what was anticipated by the offline simulation. Nevertheless, the system adapted to unanticipated events to satisfy the cure requirements.

  8. Fine-tuning key parameters of an integrated reactor system for the simultaneous removal of COD, sulfate and ammonium and elemental sulfur reclamation.

    PubMed

    Yuan, Ye; Chen, Chuan; Liang, Bin; Huang, Cong; Zhao, Youkang; Xu, Xijun; Tan, Wenbo; Zhou, Xu; Gao, Shuang; Sun, Dezhi; Lee, Duujong; Zhou, Jizhong; Wang, Aijie

    2014-03-30

    In this paper, we proposed an integrated reactor system for simultaneous removal of COD, sulfate and ammonium (integrated C-S-N removal system) and investigated the key parameters of the system for a high level of elemental sulfur (S(0)) production. The system consisted of 4 main units: sulfate reduction and organic carbon removal (SR-CR), autotrophic and heterotrophic denitrifying sulfide removal (A&H-DSR), sulfur reclamation (SR), and aerated filter for aerobic nitrification (AN). In the system, the effects of key operational parameters on production of elemental sulfur were investigated, including hydraulic retention time (HRT) of each unit, sulfide/nitrate (S(2-)-S/NO3(-)-N) ratios, reflux ratios between the A&H-DSR and AN units, and loading rates of chemical oxygen demand (COD), sulfate and ammonium. Physico-chemical characteristics of biosulfur were studied for acquiring efficient S(0) recovery. The experiments successfully explored the optimum parameters for each unit and demonstrated 98% COD, 98% sulfate and 78% nitrogen removal efficiency. The optimum HRTs for SR-CR, A&H-DSR and AN were 12h, 3h and 3h, respectively. The reflux ratio of 3 could provide adequate S(2-)-S/NO3(-)-N ratio (approximately 1:1) to the A&H-DSR unit for obtaining maximum sulfur production. In this system, the maximum production of S(0) reached 90%, but only 60% S(0) was reclaimed from effluent. The S(0) that adhered to the outer layer of granules was deposited in the bottom of the A&H-DSR unit. Finally, the microbial community structure of the corresponding unit at different operational stage were analyzed by 16S rRNA gene based high throughput Illumina MiSeq sequencing and the potential function of dominant species were discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Accuracy and coverage of the modernized Polish Maritime differential GPS system

    NASA Astrophysics Data System (ADS)

    Specht, Cezary

    2011-01-01

    The DGPS navigation service augments The NAVSTAR Global Positioning System by providing localized pseudorange correction factors and ancillary information which are broadcast over selected marine reference stations. The DGPS service position and integrity information satisfy requirements in coastal navigation and hydrographic surveys. Polish Maritime DGPS system has been established in 1994 and modernized (in 2009) to meet the requirements set out in IMO resolution for a future GNSS, but also to preserve backward signal compatibility of user equipment. Having finalized installation of the new technology L1, L2 reference equipment performance tests were performed.The paper presents results of the coverage modeling and accuracy measuring campaign based on long-term signal analyses of the DGPS reference station Rozewie, which was performed for 26 days in July 2009. Final results allowed to verify the coverage area of the differential signal from reference station and calculated repeatable and absolute accuracy of the system, after the technical modernization. Obtained field strength level area and position statistics (215,000 fixes) were compared to past measurements performed in 2002 (coverage) and 2005 (accuracy), when previous system infrastructure was in operation.So far, no campaigns were performed on differential Galileo. However, as signals, signal processing and receiver techniques are comparable to those know from DGPS. Because all satellite differential GNSS systems use the same transmission standard (RTCM), maritime DGPS Radiobeacons are standardized in all radio communication aspects (frequency, binary rate, modulation), then the accuracy results of differential Galileo can be expected as a similar to DGPS.Coverage of the reference station was calculated based on unique software, which calculate the signal strength level based on transmitter parameters or field signal strength measurement campaign, done in the representative points. The software works based on Baltic sea vector map, ground electric parameters and models atmospheric noise level in the transmission band.

  10. Specific interface area in a thin layer system of two immiscible liquids with vapour generation at the contact interface

    NASA Astrophysics Data System (ADS)

    Pimenova, Anastasiya V.; Gazdaliev, Ilias M.; Goldobin, Denis S.

    2017-06-01

    For well-stirred multiphase fluid systems the mean interface area per unit volume, or “specific interface area” SV, is a significant characteristic of the system state. In particular, it is important for the dynamics of systems of immiscible liquids experiencing interfacial boiling. We estimate the value of parameter SV as a function of the heat influx {\\dot{Q}}V to the system or the average system overheat <Θ> above the interfacial boiling point. The derived results can be reformulated for the case of an endothermic chemical reaction between two liquid reagents with the gaseous form of one of the reaction products. The final results are restricted to the case of thin layers, where the potential gravitational energy of bubbles leaving the contact interface is small compared to their surface tension energy.

  11. Solar energy system economic evaluation for Seeco Lincoln, Lincoln, Nebraska. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-09-01

    The economic analysis of the solar energy system that was installed at Lincoln, Nebraska is developed for this and four other sites typical of a wide range of environmental and economic conditions in the continental United States. This analysis is accomplished based on the technical and economic models in the f chart design procedure with inputs based on the characteristics of the installed system and local conditions. The results are expressed in terms of the economic parameters of present worth of system cost over projected twenty year life: life cycle savings, year of positive savings and year of payback formore » the optimized solar energy system at each of the analysis sites. The sensitivity of the economic evaluation to uncertainties in constituent system and economic variables is also investigated.« less

  12. Engine System Loads Analysis Compared to Hot-Fire Data

    NASA Technical Reports Server (NTRS)

    Frady, Gregory P.; Jennings, John M.; Mims, Katherine; Brunty, Joseph; Christensen, Eric R.; McConnaughey, Paul R. (Technical Monitor)

    2002-01-01

    Early implementation of structural dynamics finite element analyses for calculation of design loads is considered common design practice for high volume manufacturing industries such as automotive and aeronautical industries. However with the rarity of rocket engine development programs starts, these tools are relatively new to the design of rocket engines. In the NASA MC-1 engine program, the focus was to reduce the cost-to-weight ratio. The techniques for structural dynamics analysis practices, were tailored in this program to meet both production and structural design goals. Perturbation of rocket engine design parameters resulted in a number of MC-1 load cycles necessary to characterize the impact due to mass and stiffness changes. Evolution of loads and load extraction methodologies, parametric considerations and a discussion of load path sensitivities are important during the design and integration of a new engine system. During the final stages of development, it is important to verify the results of an engine system model to determine the validity of the results. During the final stages of the MC-1 program, hot-fire test results were obtained and compared to the structural design loads calculated by the engine system model. These comparisons are presented in this paper.

  13. TESTING OF TMR SAND MANTIS FINAL REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krementz, D; William Daugherty, W

    2007-06-12

    Screening tests of Sand Mantis candidate materials selected for erosion resistance have been completed. The results of this testing identified that over a relatively short period of operation (<1 hour), measurable erosion will occur in each of the candidate zoom tube materials given equal operating exposure. Additionally, this testing has shown that erosion of the rubber discharge hose directly downstream of the vehicle could be expected to limit the service life of the discharge hose. On the basis of these test results, SRNL recommends the following; {lg_bullet} redesign of critical system components (e.g., zoom tube, discharge hose) should be conductedmore » to improve system characteristics relative to erosion and capitalize on the results of this testing, {lg_bullet} continued efforts to deploy the Sand Mantis should include testing to better define and optimize operating parameters, and gain an understanding of system dynamics, {lg_bullet} discontinue wear testing with the selected materials pending redesign of critical system components (1st recommendation) and inclusion of other candidate materials. The final selection of additional candidate materials should be made following design changes, but might include a Stellite alloy or zirconia.« less

  14. Consensus seeking in a network of discrete-time linear agents with communication noises

    NASA Astrophysics Data System (ADS)

    Wang, Yunpeng; Cheng, Long; Hou, Zeng-Guang; Tan, Min; Zhou, Chao; Wang, Ming

    2015-07-01

    This paper studies the mean square consensus of discrete-time linear time-invariant multi-agent systems with communication noises. A distributed consensus protocol, which is composed of the agent's own state feedback and the relative states between the agent and its neighbours, is proposed. A time-varying consensus gain a[k] is applied to attenuate the effect of noises which inherits in the inaccurate measurement of relative states with neighbours. A polynomial, namely 'parameter polynomial', is constructed. And its coefficients are the parameters in the feedback gain vector of the proposed protocol. It turns out that the parameter polynomial plays an important role in guaranteeing the consensus of linear multi-agent systems. By the proposed protocol, necessary and sufficient conditions for mean square consensus are presented under different topology conditions: (1) if the communication topology graph has a spanning tree and every node in the graph has at least one parent node, then the mean square consensus can be achieved if and only if ∑∞k = 0a[k] = ∞, ∑∞k = 0a2[k] < ∞ and all roots of the parameter polynomial are in the unit circle; (2) if the communication topology graph has a spanning tree and there exits one node without any parent node (the leader-follower case), then the mean square consensus can be achieved if and only if ∑∞k = 0a[k] = ∞, limk → ∞a[k] = 0 and all roots of the parameter polynomial are in the unit circle; (3) if the communication topology graph does not have a spanning tree, then the mean square consensus can never be achieved. Finally, one simulation example on the multiple aircrafts system is provided to validate the theoretical analysis.

  15. Adaptive fuzzy controller for thermal comfort inside the air-conditioned automobile chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, L.; Yu, B.; Chen, Z.

    1999-07-01

    In order to meet the passengers' demand for thermal comfort, the adaptive fuzzy logic control design methodology is applied for the automobile airconditioner system. In accordance with the theory of air flow and heat transfer, the air temperature field inside the airconditioned automobile chamber is simulated by a set of simplified half-empirical formula. Then, instead of PMV (Predicted Mean Vote) criterion, RIV (Real Individual Vote) criterion is adopted as the base of the control for passengers' thermal comfort. The proposed controller is applied to the air temperature regulation at the individual passenger position. The control procedure is based on partitioningmore » the state space of the system into cell-groups and fuzzily quantificating the state space into these cells. When the system model has some parameter perturbation, the controller can also adjust its control parameters to compensate for the perturbation and maintain the good performance. The learning procedure shows its ideal effect in both computer simulation and experiments. The final results demonstrate the ideal performance of this adaptive fuzzy controller.« less

  16. A dimension-wise analysis method for the structural-acoustic system with interval parameters

    NASA Astrophysics Data System (ADS)

    Xu, Menghui; Du, Jianke; Wang, Chong; Li, Yunlong

    2017-04-01

    The interval structural-acoustic analysis is mainly accomplished by interval and subinterval perturbation methods. Potential limitations for these intrusive methods include overestimation or interval translation effect for the former and prohibitive computational cost for the latter. In this paper, a dimension-wise analysis method is thus proposed to overcome these potential limitations. In this method, a sectional curve of the system response surface along each input dimensionality is firstly extracted, the minimal and maximal points of which are identified based on its Legendre polynomial approximation. And two input vectors, i.e. the minimal and maximal input vectors, are dimension-wisely assembled by the minimal and maximal points of all sectional curves. Finally, the lower and upper bounds of system response are computed by deterministic finite element analysis at the two input vectors. Two numerical examples are studied to demonstrate the effectiveness of the proposed method and show that, compared to the interval and subinterval perturbation method, a better accuracy is achieved without much compromise on efficiency by the proposed method, especially for nonlinear problems with large interval parameters.

  17. Short-wavelength light beam in situ monitoring growth of InGaN/GaN green LEDs by MOCVD

    PubMed Central

    2012-01-01

    In this paper, five-period InGaN/GaN multiple quantum well green light-emitting diodes (LEDs) were grown by metal organic chemical vapor deposition with 405-nm light beam in situ monitoring system. Based on the signal of 405-nm in situ monitoring system, the related information of growth rate, indium composition and interfacial quality of each InGaN/GaN QW were obtained, and thus, the growth conditions and structural parameters were optimized to grow high-quality InGaN/GaN green LED structure. Finally, a green LED with a wavelength of 509 nm was fabricated under the optimal parameters, which was also proved by ex situ characterization such as high-resolution X-ray diffraction, photoluminescence, and electroluminescence. The results demonstrated that short-wavelength in situ monitoring system was a quick and non-destroyed tool to provide the growth information on InGaN/GaN, which would accelerate the research and development of GaN-based green LEDs. PMID:22650991

  18. Precise Masses in the WASP-47 Multi-Transiting Hot Jupiter System

    NASA Astrophysics Data System (ADS)

    Vanderburg, Andrew; Becker, Juliette; Buchhave, Lars A.; Mortier, Annelies; Latham, David W.; Charbonneau, David; Lopez-Morales, Mercedes; HARPS-N Collaboration

    2017-06-01

    We present precise radial velocity observations of WASP-47, a star known to host a hot Jupiter, a distant Jovian companion, and, uniquely, two additional transiting planets in short-period orbits: a super-Earth in a 19 hour orbit, and a Neptune in a 9 day orbit. We combine our observations, collected with the HARPS-N spectrograph, with previously published data to measure the most precise planet masses yet for this system. When combined with new stellar parameters (from analysis of the HARPS-N spectra) and a reanalysis of the transit photometry, our mass measurements yield strong constraints on the small planets’ compositions. Finally, we probabilistically constrain the orbital inclination of the outer Jovian planet through a dynamical analysis that requires the system reproduce its observed parameters.This work was supported by the National Science Foundation Graduate Research Fellowship Program. HARPS-N was funded by the Swiss Space Office, the Harvard Origin of Life Initiative, the Scottish Universities Physics Alliance, the University of Geneva, the Smithsonian Astrophysical Observatory, the Italian National Astrophysical Institute, the University of St. Andrews, Queens University Belfast, and the University of Edinburgh.

  19. Using Gaussian mixture models to detect and classify dolphin whistles and pulses.

    PubMed

    Peso Parada, Pablo; Cardenal-López, Antonio

    2014-06-01

    In recent years, a number of automatic detection systems for free-ranging cetaceans have been proposed that aim to detect not just surfaced, but also submerged, individuals. These systems are typically based on pattern-recognition techniques applied to underwater acoustic recordings. Using a Gaussian mixture model, a classification system was developed that detects sounds in recordings and classifies them as one of four types: background noise, whistles, pulses, and combined whistles and pulses. The classifier was tested using a database of underwater recordings made off the Spanish coast during 2011. Using cepstral-coefficient-based parameterization, a sound detection rate of 87.5% was achieved for a 23.6% classification error rate. To improve these results, two parameters computed using the multiple signal classification algorithm and an unpredictability measure were included in the classifier. These parameters, which helped to classify the segments containing whistles, increased the detection rate to 90.3% and reduced the classification error rate to 18.1%. Finally, the potential of the multiple signal classification algorithm and unpredictability measure for estimating whistle contours and classifying cetacean species was also explored, with promising results.

  20. Guidelines and standard procedures for continuous water-quality monitors: Station operation, record computation, and data reporting

    USGS Publications Warehouse

    Wagner, Richard J.; Boulger, Robert W.; Oblinger, Carolyn J.; Smith, Brett A.

    2006-01-01

    The U.S. Geological Survey uses continuous water-quality monitors to assess the quality of the Nation's surface water. A common monitoring-system configuration for water-quality data collection is the four-parameter monitoring system, which collects temperature, specific conductance, dissolved oxygen, and pH data. Such systems also can be configured to measure other properties, such as turbidity or fluorescence. Data from sensors can be used in conjunction with chemical analyses of samples to estimate chemical loads. The sensors that are used to measure water-quality field parameters require careful field observation, cleaning, and calibration procedures, as well as thorough procedures for the computation and publication of final records. This report provides guidelines for site- and monitor-selection considerations; sensor inspection and calibration methods; field procedures; data evaluation, correction, and computation; and record-review and data-reporting processes, which supersede the guidelines presented previously in U.S. Geological Survey Water-Resources Investigations Report WRIR 00-4252. These procedures have evolved over the past three decades, and the process continues to evolve with newer technologies.

Top