Sample records for system performance characteristics

  1. Liquid Rocket Booster (LRB) for the Space Transportation System (STS) systems study. Appendix G: LRB for the STS system study level 2 requirements, revision 1

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Requirements are presented for shuttle system definition; performance and design characteristics; shuttle vehicle end item performance and design characteristics; ground operations complex performance and design characteristics; operability and system design and construction standards; and quality control.

  2. Establishment of key grid-connected performance index system for integrated PV-ES system

    NASA Astrophysics Data System (ADS)

    Li, Q.; Yuan, X. D.; Qi, Q.; Liu, H. M.

    2016-08-01

    In order to further promote integrated optimization operation of distributed new energy/ energy storage/ active load, this paper studies the integrated photovoltaic-energy storage (PV-ES) system which is connected with the distribution network, and analyzes typical structure and configuration selection for integrated PV-ES generation system. By combining practical grid- connected characteristics requirements and technology standard specification of photovoltaic generation system, this paper takes full account of energy storage system, and then proposes several new grid-connected performance indexes such as paralleled current sharing characteristic, parallel response consistency, adjusting characteristic, virtual moment of inertia characteristic, on- grid/off-grid switch characteristic, and so on. A comprehensive and feasible grid-connected performance index system is then established to support grid-connected performance testing on integrated PV-ES system.

  3. Structural Model for the Effects of Environmental Elements on the Psychological Characteristics and Performance of the Employees of Manufacturing Systems.

    PubMed

    Realyvásquez, Arturo; Maldonado-Macías, Aidé Aracely; García-Alcaraz, Jorge; Cortés-Robles, Guillermo; Blanco-Fernández, Julio

    2016-01-05

    This paper analyzes the effects of environmental elements on the psychological characteristics and performance of employees in manufacturing systems using structural equation modeling. Increasing the comprehension of these effects may help optimize manufacturing systems regarding their employees' psychological characteristics and performance from a macroergonomic perspective. As the method, a new macroergonomic compatibility questionnaire (MCQ) was developed and statistically validated, and 158 respondents at four manufacture companies were considered. Noise, lighting and temperature, humidity and air quality (THAQ) were used as independent variables and psychological characteristics and employees' performance as dependent variables. To propose and test the hypothetical causal model of significant relationships among the variables, a data analysis was deployed. Results found that the macroergonomic compatibility of environmental elements presents significant direct effects on employees' psychological characteristics and either direct or indirect effects on the employees' performance. THAQ had the highest direct and total effects on psychological characteristics. Regarding the direct and total effects on employees' performance, the psychological characteristics presented the highest effects, followed by THAQ conditions. These results may help measure and optimize manufacturing systems' performance by enhancing their macroergonomic compatibility and quality of life at work of the employees.

  4. Institutional and Economic Determinants of Public Health System Performance

    PubMed Central

    Mays, Glen P.; McHugh, Megan C.; Shim, Kyumin; Perry, Natalie; Lenaway, Dennis; Halverson, Paul K.; Moonesinghe, Ramal

    2006-01-01

    Objectives. Although a growing body of evidence demonstrates that availability and quality of essential public health services vary widely across communities, relatively little is known about the factors that give rise to these variations. We examined the association of institutional, financial, and community characteristics of local public health delivery systems and the performance of essential services. Methods. Performance measures were collected from local public health systems in 7 states and combined with secondary data sources. Multivariate, linear, and nonlinear regression models were used to estimate associations between system characteristics and the performance of essential services. Results. Performance varied significantly with the size, financial resources, and organizational structure of local public health systems, with some public health services appearing more sensitive to these characteristics than others. Staffing levels and community characteristics also appeared to be related to the performance of selected services. Conclusions. Reconfiguring the organization and financing of public health systems in some communities—such as through consolidation and enhanced intergovernmental coordination—may hold promise for improving the performance of essential services. PMID:16449584

  5. Systems, methods and computer-readable media for modeling cell performance fade of rechargeable electrochemical devices

    DOEpatents

    Gering, Kevin L

    2013-08-27

    A system includes an electrochemical cell, monitoring hardware, and a computing system. The monitoring hardware periodically samples performance characteristics of the electrochemical cell. The computing system determines cell information from the performance characteristics of the electrochemical cell. The computing system also develops a mechanistic level model of the electrochemical cell to determine performance fade characteristics of the electrochemical cell and analyzing the mechanistic level model to estimate performance fade characteristics over aging of a similar electrochemical cell. The mechanistic level model uses first constant-current pulses applied to the electrochemical cell at a first aging period and at three or more current values bracketing a first exchange current density. The mechanistic level model also is based on second constant-current pulses applied to the electrochemical cell at a second aging period and at three or more current values bracketing the second exchange current density.

  6. Structural Model for the Effects of Environmental Elements on the Psychological Characteristics and Performance of the Employees of Manufacturing Systems

    PubMed Central

    Realyvásquez, Arturo; Maldonado-Macías, Aidé Aracely; García-Alcaraz, Jorge; Cortés-Robles, Guillermo; Blanco-Fernández, Julio

    2016-01-01

    This paper analyzes the effects of environmental elements on the psychological characteristics and performance of employees in manufacturing systems using structural equation modeling. Increasing the comprehension of these effects may help optimize manufacturing systems regarding their employees’ psychological characteristics and performance from a macroergonomic perspective. As the method, a new macroergonomic compatibility questionnaire (MCQ) was developed and statistically validated, and 158 respondents at four manufacture companies were considered. Noise, lighting and temperature, humidity and air quality (THAQ) were used as independent variables and psychological characteristics and employees’ performance as dependent variables. To propose and test the hypothetical causal model of significant relationships among the variables, a data analysis was deployed. Results found that the macroergonomic compatibility of environmental elements presents significant direct effects on employees’ psychological characteristics and either direct or indirect effects on the employees’ performance. THAQ had the highest direct and total effects on psychological characteristics. Regarding the direct and total effects on employees’ performance, the psychological characteristics presented the highest effects, followed by THAQ conditions. These results may help measure and optimize manufacturing systems’ performance by enhancing their macroergonomic compatibility and quality of life at work of the employees. PMID:26742054

  7. Solar dynamic heat receiver thermal characteristics in low earth orbit

    NASA Technical Reports Server (NTRS)

    Wu, Y. C.; Roschke, E. J.; Birur, G. C.

    1988-01-01

    A simplified system model is under development for evaluating the thermal characteristics and thermal performance of a solar dynamic spacecraft energy system's heat receiver. Results based on baseline orbit, power system configuration, and operational conditions, are generated for three basic receiver concepts and three concentrator surface slope errors. Receiver thermal characteristics and thermal behavior in LEO conditions are presented. The configuration in which heat is directly transferred to the working fluid is noted to generate the best system and thermal characteristics. as well as the lowest performance degradation with increasing slope error.

  8. Method, system, and computer-readable medium for determining performance characteristics of an object undergoing one or more arbitrary aging conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gering, Kevin L.

    A method, system, and computer-readable medium are described for characterizing performance loss of an object undergoing an arbitrary aging condition. Baseline aging data may be collected from the object for at least one known baseline aging condition over time, determining baseline multiple sigmoid model parameters from the baseline data, and performance loss of the object may be determined over time through multiple sigmoid model parameters associated with the object undergoing the arbitrary aging condition using a differential deviation-from-baseline approach from the baseline multiple sigmoid model parameters. The system may include an object, monitoring hardware configured to sample performance characteristics ofmore » the object, and a processor coupled to the monitoring hardware. The processor is configured to determine performance loss for the arbitrary aging condition from a comparison of the performance characteristics of the object deviating from baseline performance characteristics associated with a baseline aging condition.« less

  9. Dynamic load-sharing characteristic analysis of face gear power-split gear system based on tooth contact characteristics

    NASA Astrophysics Data System (ADS)

    Dong, Hao; Hu, Yahui

    2018-04-01

    The bend-torsion coupling dynamics load-sharing model of the helicopter face gear split torque transmission system is established by using concentrated quality standard, to analyzing the dynamic load-sharing characteristic. The mathematical models include nonlinear support stiffness, time-varying meshing stiffness, damping, gear backlash. The results showed that the errors collectively influenced the load sharing characteristics, only reduce a certain error, it is never fully reached the perfect loading sharing characteristics. The system load-sharing performance can be improved through floating shaft support. The above-method will provide a theoretical basis and data support for its dynamic performance optimization design.

  10. Design study of RL10 derivatives. Volume 2: Engine design characteristics, appendices. [development of rocket engine for application to space tug propulsion system

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Calculations, curves, and substantiating data which support the engine design characteristics of the RL-10 engines are presented. A description of the RL-10 ignition system is provided. The performance calculations of the RL-10 derivative engines and the performance results obtained are reported. The computer simulations used to establish the control system requirements and to define the engine transient characteristics are included.

  11. Systems, methods and computer-readable media to model kinetic performance of rechargeable electrochemical devices

    DOEpatents

    Gering, Kevin L.

    2013-01-01

    A system includes an electrochemical cell, monitoring hardware, and a computing system. The monitoring hardware samples performance characteristics of the electrochemical cell. The computing system determines cell information from the performance characteristics. The computing system also analyzes the cell information of the electrochemical cell with a Butler-Volmer (BV) expression modified to determine exchange current density of the electrochemical cell by including kinetic performance information related to pulse-time dependence, electrode surface availability, or a combination thereof. A set of sigmoid-based expressions may be included with the modified-BV expression to determine kinetic performance as a function of pulse time. The determined exchange current density may be used with the modified-BV expression, with or without the sigmoid expressions, to analyze other characteristics of the electrochemical cell. Model parameters can be defined in terms of cell aging, making the overall kinetics model amenable to predictive estimates of cell kinetic performance along the aging timeline.

  12. Quantifying usability: an evaluation of a diabetes mHealth system on effectiveness, efficiency, and satisfaction metrics with associated user characteristics.

    PubMed

    Georgsson, Mattias; Staggers, Nancy

    2016-01-01

    Mobile health (mHealth) systems are becoming more common for chronic disease management, but usability studies are still needed on patients' perspectives and mHealth interaction performance. This deficiency is addressed by our quantitative usability study of a mHealth diabetes system evaluating patients' task performance, satisfaction, and the relationship of these measures to user characteristics. We used metrics in the International Organization for Standardization (ISO) 9241-11 standard. After standardized training, 10 patients performed representative tasks and were assessed on individual task success, errors, efficiency (time on task), satisfaction (System Usability Scale [SUS]) and user characteristics. Tasks of exporting and correcting values proved the most difficult, had the most errors, the lowest task success rates, and consumed the longest times on task. The average SUS satisfaction score was 80.5, indicating good but not excellent system usability. Data trends showed males were more successful in task completion, and younger participants had higher performance scores. Educational level did not influence performance, but a more recent diabetes diagnosis did. Patients with more experience in information technology (IT) also had higher performance rates. Difficult task performance indicated areas for redesign. Our methods can assist others in identifying areas in need of improvement. Data about user background and IT skills also showed how user characteristics influence performance and can provide future considerations for targeted mHealth designs. Using the ISO 9241-11 usability standard, the SUS instrument for satisfaction and measuring user characteristics provided objective measures of patients' experienced usability. These could serve as an exemplar for standardized, quantitative methods for usability studies on mHealth systems. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association.

  13. Quantifying usability: an evaluation of a diabetes mHealth system on effectiveness, efficiency, and satisfaction metrics with associated user characteristics

    PubMed Central

    Staggers, Nancy

    2016-01-01

    Objective Mobile health (mHealth) systems are becoming more common for chronic disease management, but usability studies are still needed on patients’ perspectives and mHealth interaction performance. This deficiency is addressed by our quantitative usability study of a mHealth diabetes system evaluating patients’ task performance, satisfaction, and the relationship of these measures to user characteristics. Materials and Methods We used metrics in the International Organization for Standardization (ISO) 9241-11 standard. After standardized training, 10 patients performed representative tasks and were assessed on individual task success, errors, efficiency (time on task), satisfaction (System Usability Scale [SUS]) and user characteristics. Results Tasks of exporting and correcting values proved the most difficult, had the most errors, the lowest task success rates, and consumed the longest times on task. The average SUS satisfaction score was 80.5, indicating good but not excellent system usability. Data trends showed males were more successful in task completion, and younger participants had higher performance scores. Educational level did not influence performance, but a more recent diabetes diagnosis did. Patients with more experience in information technology (IT) also had higher performance rates. Discussion Difficult task performance indicated areas for redesign. Our methods can assist others in identifying areas in need of improvement. Data about user background and IT skills also showed how user characteristics influence performance and can provide future considerations for targeted mHealth designs. Conclusion Using the ISO 9241-11 usability standard, the SUS instrument for satisfaction and measuring user characteristics provided objective measures of patients’ experienced usability. These could serve as an exemplar for standardized, quantitative methods for usability studies on mHealth systems. PMID:26377990

  14. Onboard Navigation Systems Characteristics

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The space shuttle onboard navigation systems characteristics are described. A standard source of equations and numerical data for use in error analyses and mission simulations related to space shuttle development is reported. The sensor characteristics described are used for shuttle onboard navigation performance assessment. The use of complete models in the studies depend on the analyses to be performed, the capabilities of the computer programs, and the availability of computer resources.

  15. Bus Rapid Transit system’s influence on urban development: An inquiry to Boston and Seoul BRT systems’ technical characteristics

    NASA Astrophysics Data System (ADS)

    Prayogi, Lutfi

    2018-03-01

    This article explores the relation between bus rapid transit (BRT) system and urban development. This article was written through a multi-staged comprehensive literature review. It includes a general overview of widely acknowledged BRT technical characteristics. It explains the approach taken in understanding the relation between BRT system provision and urban development around the system. Findings regarding the influence of Boston Silver Line 4 and 5 and Seoul BRT systems on urban development around the systems are quoted and used as case studies. Investigation on the technical characteristics of Boston SL4/5 and Seoul BRT systems are provided. This article shows that the two BRT systems that influence urban development around the systems have technical characteristics that enable the BRT systems to have high performance. However, while the quoted BRT systems can influence urban development, they have significantly different performance.

  16. Control of Industrial Safety Based on Dynamic Characteristics of a Safety Budget-Industrial Accident Rate Model in Republic of Korea.

    PubMed

    Choi, Gi Heung; Loh, Byoung Gook

    2017-06-01

    Despite the recent efforts to prevent industrial accidents in the Republic of Korea, the industrial accident rate has not improved much. Industrial safety policies and safety management are also known to be inefficient. This study focused on dynamic characteristics of industrial safety systems and their effects on safety performance in the Republic of Korea. Such dynamic characteristics are particularly important for restructuring of the industrial safety system. The effects of damping and elastic characteristics of the industrial safety system model on safety performance were examined and feedback control performance was explained in view of cost and benefit. The implications on safety policies of restructuring the industrial safety system were also explored. A strong correlation between the safety budget and the industrial accident rate enabled modeling of an industrial safety system with these variables as the input and the output, respectively. A more effective and efficient industrial safety system could be realized by having weaker elastic characteristics and stronger damping characteristics in it. A substantial decrease in total social cost is expected as the industrial safety system is restructured accordingly. A simple feedback control with proportional-integral action is effective in prevention of industrial accidents. Securing a lower level of elastic industrial accident-driving energy appears to have dominant effects on the control performance compared with the damping effort to dissipate such energy. More attention needs to be directed towards physical and social feedbacks that have prolonged cumulative effects. Suggestions for further improvement of the safety system including physical and social feedbacks are also made.

  17. Development of a test rig for a helium twin-screw compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, B. M.; Hu, Z. J.; Zhang, P.

    2014-01-29

    A large helium cryogenic system is being developed for use in great science projects, such as the International Thermonuclear Experimental Reactor (ITER), Large Helical Device (LHD), and the Experimental Advanced Superconducting Tokamak (EAST). In this cryogenic system, a twin-screw compressor is a key component. Therefore, it is necessary to obtain the compressor performance. To obtain the performance characteristics, a test rig for the compressor has been built. All the important performance parameters, including adiabatic efficiency, volumetric efficiency, oil injection characteristic, and noise characteristic can be acquired with the rig when sensors are installed in the test system. With the testmore » performance, the helium twin-screw compressor can be evaluated. Using these results, the design of the compressor can be improved.« less

  18. On the performance of infrared sensors in earth observations

    NASA Technical Reports Server (NTRS)

    Johnson, L. F.

    1972-01-01

    The performance of infrared sensing systems is dependent upon the radiative properties of targets in addition to constraints imposed by system components. The unclassified state-of-the-art of infrared system performance figures is reviewed to indicate the relevance to system performance of target radiative properties. A theory of rough surface scattering is developed which allows the formulation of the reflective characteristics of extended targets. The thermal radiation emission from extended targets is formulated on the basis of internal radiation characteristics of natural materials and the transmissive scattering effects at the surface. Finally, the total radiative characteristics may be expressed as functions of material properties and incident and received directions, although the expressions are extremely complex functions and do not account for the effects of shadowing or multiple scattering. It is believed that the theory may be extended to include these effects and to incorporate the local radii of curvature of the surface.

  19. Test bed experiments for various telerobotic system characteristics and configurations

    NASA Technical Reports Server (NTRS)

    Duffie, Neil A.; Wiker, Steven F.; Zik, John J.

    1990-01-01

    Dexterous manipulation and grasping in telerobotic systems depends on the integration of high-performance sensors, displays, actuators and controls into systems in which careful consideration has been given to human perception and tolerance. Research underway at the Wisconsin Center for Space Automation and Robotics (WCSAR) has the objective of enhancing the performance of these systems and their components, and quantifying the effects of the many electrical, mechanical, control, and human factors that affect their performance. This will lead to a fundamental understanding of performance issues which will in turn allow designers to evaluate sensor, actuator, display, and control technologies with respect to generic measures of dexterous performance. As part of this effort, an experimental test bed was developed which has telerobotic components with exceptionally high fidelity in master/slave operation. A Telerobotic Performance Analysis System has also been developed which allows performance to be determined for various system configurations and electro-mechanical characteristics. Both this performance analysis system and test bed experiments are described.

  20. The effects of backgrounding system on growing and finishing performance and carcass characteristics of beef steers

    USDA-ARS?s Scientific Manuscript database

    The objective of this 2-yr study was to evaluate growing and finishing performance, as well as carcass characteristics of spring-born steers backgrounded on 3 different systems, using feedstuffs readily available in the Midwest: 1) grazing corn residue and being supplemented with dried distillers pl...

  1. Relating Standardized Visual Perception Measures to Simulator Visual System Performance

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.; Sweet, Barbara T.

    2013-01-01

    Human vision is quantified through the use of standardized clinical vision measurements. These measurements typically include visual acuity (near and far), contrast sensitivity, color vision, stereopsis (a.k.a. stereo acuity), and visual field periphery. Simulator visual system performance is specified in terms such as brightness, contrast, color depth, color gamut, gamma, resolution, and field-of-view. How do these simulator performance characteristics relate to the perceptual experience of the pilot in the simulator? In this paper, visual acuity and contrast sensitivity will be related to simulator visual system resolution, contrast, and dynamic range; similarly, color vision will be related to color depth/color gamut. Finally, we will consider how some characteristics of human vision not typically included in current clinical assessments could be used to better inform simulator requirements (e.g., relating dynamic characteristics of human vision to update rate and other temporal display characteristics).

  2. Performance characteristics of the Mayo/IBM PACS

    NASA Astrophysics Data System (ADS)

    Persons, Kenneth R.; Gehring, Dale G.; Pavicic, Mark J.; Ding, Yingjai

    1991-07-01

    The Mayo Clinic and IBM (at Rochester, Minnesota) have jointly developed a picture archiving system for use with Mayo's MRI and Neuro CT imaging modalities. The communications backbone of the PACS is a portion of the Mayo institutional network: a series of 4-Mbps token rings interconnected by bridges and fiber optic extensions. The performance characteristics of this system are important to understand because they affect the response time a PACS user can expect, and the response time for non-PACS users competing for resources on the institutional network. The performance characteristics of each component and the average load levels of the network were measured for various load distributions. These data were used to quantify the response characteristics of the existing system and to tune a model developed by North Dakota State University Department of Computer Science for predicting response times of more complex topologies.

  3. Performance characteristics of plane-wall venturi-like reverse flow diverters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, G.V.; Counce, R.M.

    1984-02-01

    The results of an analytical and experimental study of plane-wall venturi-like reverse flow diverters (RFD) are presented. In general, the flow characteristics of the RFD are reasonably well predicted by the mathematical model of the RFD, although a divergence between theory and data is observed for the output characteristics in the reverse flow mode as the output impedance is reduced. Overall, the performance of these devices indicates their usefulness in fluid control and fluid power systems, such as displacement pumping systems.

  4. Performance characteristics of plane-wall venturi-like reverse flow diverters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, G.V.; Counce, R.M.

    1982-01-01

    The results of an analytical and experimental study of plane-wall venturi-like reverse flow diverters (RFD) are presented. In general, the flow characteristics of the RFD are reasonably well predicted by the mathematical model of the RFD, although a divergence between theory and data is observed for the output characteristics in the reverse flow mode as the output impedance is reduced. Overall, the performance of these devices indicates their usefulness in fluid control and fluid power systems, such as displacement pumping systems.

  5. Performance Stability of Silicone Oxide-Coated Plastic Parenteral Vials.

    PubMed

    Weikart, Christopher M; Pantano, Carlo G; Shallenberger, Jeff R

    2017-01-01

    A new packaging system was developed for parenteral pharmaceuticals that combines the best attributes of plastic and glass without their respective drawbacks. This technological advancement is based on the synergy between high-precision injection-molded plastics and plasma coating technology. The result is a shatter-resistant, optically clear, low-particulate, and chemically durable packaging system. The demand for this product is driven by the expanding market, regulatory constraints, and product recalls for injectable drugs and biologics packaged in traditional glass materials. It is shown that this new packaging system meets or exceeds the important performance characteristics of glass, especially in eliminating the glass delamination and breakage that has been observed in many products. The new packaging system is an engineered, multilayer, glass-coated plastic composite that provides a chemically stable contact surface and oxygen barrier performance that exceeds a 2 year shelf life requirement. Evaluation of the coating system characteristics and performance stability to chemical, temperature, and mechanical extremes are reported herein. LAY ABSTRACT: A new packaging system for parenteral pharmaceuticals was developed that combines the best attributes of plastic and glass without their respective drawbacks. This technological advancement is based on the synergy between high-precision injection-molded plastics and plasma coating technology. The result is a shatter-resistant, optically clear, low-particulate, and chemically durable packaging system. It is shown that this new packaging system meets or exceeds the important performance characteristics of glass, especially in eliminating the glass delamination and breakage that has been observed in many products. The new packaging system is an engineered, multilayer, glass-coated plastic composite that provides a chemically stable contact surface and oxygen barrier performance that exceeds a 2 year shelf life requirement. Evaluation of the coating system characteristics and performance stability to chemical, temperature, and mechanical extremes are reported herein. © PDA, Inc. 2017.

  6. Dynamic Characteristics of Human Motor Performance in Control Systems.

    DTIC Science & Technology

    1979-01-01

    h drynontrol system . Several lines of inves ___ igaion avebee use inaddiionto nputoutut sudis wth hmansubets LI.- 7 Th (nulreycmriigifrainfosusl...TAB Untjc. ao un c ’ n TTci St rLi b DYNAMIC CHARACTERISTICS OF HUMAN MOTOR PERFORMANCE IN CONTROL SYSTEMS %iOSRTR. 8-0 76 0 Ar3) -O75 -8’O’f FINAL...whereby motor patterns are represented in the nervous system . Findings include a detailing of linear and non-linear features of motor activity in

  7. Adaptive pseudolinear compensators of dynamic characteristics of automatic control systems

    NASA Astrophysics Data System (ADS)

    Skorospeshkin, M. V.; Sukhodoev, M. S.; Timoshenko, E. A.; Lenskiy, F. V.

    2016-04-01

    Adaptive pseudolinear gain and phase compensators of dynamic characteristics of automatic control systems are suggested. The automatic control system performance with adaptive compensators has been explored. The efficiency of pseudolinear adaptive compensators in the automatic control systems with time-varying parameters has been demonstrated.

  8. Scalability Analysis of Gleipnir: A Memory Tracing and Profiling Tool, on Titan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janjusic, Tommy; Kartsaklis, Christos; Wang, Dali

    2013-01-01

    Application performance is hindered by a variety of factors but most notably driven by the well know CPU-memory speed gap (also known as the memory wall). Understanding application s memory behavior is key if we are trying to optimize performance. Understanding application performance properties is facilitated with various performance profiling tools. The scope of profiling tools varies in complexity, ease of deployment, profiling performance, and the detail of profiled information. Specifically, using profiling tools for performance analysis is a common task when optimizing and understanding scientific applications on complex and large scale systems such as Cray s XK7. This papermore » describes the performance characteristics of using Gleipnir, a memory tracing tool, on the Titan Cray XK7 system when instrumenting large applications such as the Community Earth System Model. Gleipnir is a memory tracing tool built as a plug-in tool for the Valgrind instrumentation framework. The goal of Gleipnir is to provide fine-grained trace information. The generated traces are a stream of executed memory transactions mapped to internal structures per process, thread, function, and finally the data structure or variable. Our focus was to expose tool performance characteristics when using Gleipnir with a combination of an external tools such as a cache simulator, Gl CSim, to characterize the tool s overall performance. In this paper we describe our experience with deploying Gleipnir on the Titan Cray XK7 system, report on the tool s ease-of-use, and analyze run-time performance characteristics under various workloads. While all performance aspects are important we mainly focus on I/O characteristics analysis due to the emphasis on the tools output which are trace-files. Moreover, the tool is dependent on the run-time system to provide the necessary infrastructure to expose low level system detail; therefore, we also discuss any theoretical benefits that can be achieved if such modules were present.« less

  9. Characterization of System Status Signals for Multivariate Time Series Discretization Based on Frequency and Amplitude Variation

    PubMed Central

    2018-01-01

    Many fault detection methods have been proposed for monitoring the health of various industrial systems. Characterizing the monitored signals is a prerequisite for selecting an appropriate detection method. However, fault detection methods tend to be decided with user’s subjective knowledge or their familiarity with the method, rather than following a predefined selection rule. This study investigates the performance sensitivity of two detection methods, with respect to status signal characteristics of given systems: abrupt variance, characteristic indicator, discernable frequency, and discernable index. Relation between key characteristics indicators from four different real-world systems and the performance of two fault detection methods using pattern recognition are evaluated. PMID:29316731

  10. Centaur engine gimbal friction characteristics under simulated thrust load

    NASA Technical Reports Server (NTRS)

    Askew, J. W.

    1986-01-01

    An investigation was performed to determine the friction characteristics of the engine gimbal system of the Centaur upper stage rocket. Because the Centaur requires low-gain autopilots in order to meet all stability requirements for some configurations, control performance (response to transients and limit-cycle amplitudes) depends highly on these friction characteristics. Forces required to rotate the Centaur engine gimbal system were measured under a simulated thrust load of 66,723 N (15,000 lb) and in an altitude/thermal environment. A series of tests was performed at three test conditions; ambient temperature and pressure, ambient temperature and vacuum, and cryogenic temperature and vacuum. Gimbal rotation was controlled, and tests were performed in which rotation amplitude and frequency were varied by using triangular and sinusoidal waveforms. Test data revealed an elastic characteristic of the gimbal, independent of the input signal, which was evident prior to true gimbal sliding. The torque required to initiate gimbal sliding was found to decrease when both pressure and temperature decreased. Results from the low amplitude and low frequency data are currently being used in mathematically modeling the gimbal friction characteristics for Centaur autopilot performance studies.

  11. Centaur engine gimbal friction characteristics under simulated thrust load

    NASA Astrophysics Data System (ADS)

    Askew, J. W.

    1986-09-01

    An investigation was performed to determine the friction characteristics of the engine gimbal system of the Centaur upper stage rocket. Because the Centaur requires low-gain autopilots in order to meet all stability requirements for some configurations, control performance (response to transients and limit-cycle amplitudes) depends highly on these friction characteristics. Forces required to rotate the Centaur engine gimbal system were measured under a simulated thrust load of 66,723 N (15,000 lb) and in an altitude/thermal environment. A series of tests was performed at three test conditions; ambient temperature and pressure, ambient temperature and vacuum, and cryogenic temperature and vacuum. Gimbal rotation was controlled, and tests were performed in which rotation amplitude and frequency were varied by using triangular and sinusoidal waveforms. Test data revealed an elastic characteristic of the gimbal, independent of the input signal, which was evident prior to true gimbal sliding. The torque required to initiate gimbal sliding was found to decrease when both pressure and temperature decreased. Results from the low amplitude and low frequency data are currently being used in mathematically modeling the gimbal friction characteristics for Centaur autopilot performance studies.

  12. Consensus statement on essential patient characteristics in systemic treatment trials for metastatic colorectal cancer: Supported by the ARCAD Group.

    PubMed

    Goey, Kaitlyn K H; Sørbye, Halfdan; Glimelius, Bengt; Adams, Richard A; André, Thierry; Arnold, Dirk; Berlin, Jordan D; Bodoky, György; de Gramont, Aimery; Díaz-Rubio, Eduardo; Eng, Cathy; Falcone, Alfredo; Grothey, Axel; Heinemann, Volker; Hochster, Howard S; Kaplan, Richard S; Kopetz, Scott; Labianca, Roberto; Lieu, Christopher H; Meropol, Neal J; Price, Timothy J; Schilsky, Richard L; Schmoll, Hans-Joachim; Shacham-Shmueli, Einat; Shi, Qian; Sobrero, Alberto F; Souglakos, John; Van Cutsem, Eric; Zalcberg, John; van Oijen, Martijn G H; Punt, Cornelis J A; Koopman, Miriam

    2018-06-21

    Patient characteristics and stratification factors are key features influencing trial outcomes. However, there is substantial heterogeneity in reporting of patient characteristics and use of stratification factors in phase 3 trials investigating systemic treatment of metastatic colorectal cancer (mCRC). We aimed to develop a minimum set of essential baseline characteristics and stratification factors to include in such trials. We performed a modified, two-round Delphi survey among international experts with wide experience in the conduct and methodology of phase 3 trials of systemic treatment of mCRC. Thirty mCRC experts from 15 different countries completed both consensus rounds. A total of 14 patient characteristics were included in the recommended set: age, performance status, primary tumour location, primary tumour resection, prior chemotherapy, number of metastatic sites, liver-only disease, liver involvement, surgical resection of metastases, synchronous versus metachronous metastases, (K)RAS and BRAF mutation status, microsatellite instability/mismatch repair status and number of prior treatment lines. A total of five patient characteristics were considered the most relevant stratification factors: RAS/BRAF mutation status, performance status, primary tumour sidedness and liver-only disease. This survey provides a minimum set of essential baseline patient characteristics and stratification factors to include in phase 3 trials of systemic treatment of mCRC. Inclusion of these patient characteristics and strata in study protocols and final study reports will improve interpretation of trial results and facilitate cross-study comparisons. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Performance analysis of a coherent free space optical communication system based on experiment.

    PubMed

    Cao, Jingtai; Zhao, Xiaohui; Liu, Wei; Gu, Haijun

    2017-06-26

    Based on our previous study and designed experimental AO system with a 97-element continuous surface deformable mirror, we conduct the performance analysis of a coherent free space optical communication (FSOC) system for mixing efficiency (ME), bit error rate (BER) and outage probability under different Greenwood frequency and atmospheric coherent length. The results show that the influence of the atmospheric temporal characteristics on the performance is slightly stronger than that of the spatial characteristics when the receiving aperture and the number of sub-apertures are given. This analysis result provides a reference for the design of the coherent FSOC system.

  14. Extravehicular activities guidelines and design criteria

    NASA Technical Reports Server (NTRS)

    Brown, N. E.; Dashner, T. R.; Hayes, B. C.

    1973-01-01

    A listing of astronaut EVA support systems and equipment, and the physical, operational, and performance characteristics of each major system are presented. An overview of the major ground based support operations necessary in the development and verification of orbital EVA systems is included. The performance and biomedical characteristics of man in the orbital EV environment are discussed. Major factors affecting astronaut EV work performance are identified and delineated as they relate to EV support systems design. Data concerning the medical and physiological aspects of spaceflight on man are included. The document concludes with an extensive bibliography, and a series of appendices which expand on some of the information presented in the main body.

  15. The effect of helicopter main rotor blade phasing and spacing on performance, blade loads, and acoustics

    NASA Technical Reports Server (NTRS)

    Gangwani, S. T.

    1976-01-01

    The performance, blade loads, and acoustic characteristics of a variable geometry rotor (VGR) system in forward flight and in a pullup maneuver were determined by the use of existing analytical programs. The investigation considered the independent effects of vertical separation of two three-bladed rotor systems as well as the effects of azimuthal spacing between the blades of the two rotors. The computations were done to determine the effects of these parameters on the performance, blade loads, and acoustic characteristics at two advance ratios in steady-state level flight and for two different g pullups at one advance ratio. To evaluate the potential benefits of the VGR concept in forward flight and pullup maneuvers, the results were compared as to performance, oscillatory blade loadings, vibratory forces transmitted to the fixed fuselage, and the rotor noise characteristics of the various VGR configurations with those of the conventional six-bladed rotor system.

  16. Wireless control system for two-axis linear oscillating motion applying CBR technology

    NASA Astrophysics Data System (ADS)

    Kuzyakov, O. N.; Andreeva, M. A.

    2018-03-01

    The paper presents the aspects of elaborating a movement control system. The system is to implement determination of movement characteristics of the object controlled, which performs an oscillating linear motion in a two-axis direction. The system has an electronic-optical principle of action: light receivers are attached to a controlled object, and a laser light emitter is attached to a static construction. While the object performs movement along the construction, the light emitter signal is registered by light receivers, based on which determination of the object position and characteristic of its movement are performed. An algorithm of system implementation is elaborated. Signal processing is performed on the basis of the case-based reasoning method. The system is to be used in machine-building industry in controlling relative displacement of the dynamic object or its assembly.

  17. Development of a non-tissue adherent neurosurgical patty and an ex vivo testing system to evaluate adherent characteristics.

    PubMed

    Kinoshita, Manabu; Taniguchi, Mai; Takagaki, Masatoshi; Seike, Nobuhisa; Hashimoto, Naoya; Yoshimine, Toshiki

    2015-05-01

    Neurosurgical patties are the most frequently used instruments during neurosurgical procedures, and their high performance is required to ensure safe operations. They must offer cushioning, water-absorbing, water-retaining, and non-tissue adherent characteristics. Here, the authors describe a revised neurosurgical patty that is superior in all respects to the conventional patty available in Japan. Patty characteristics were critically and scientifically evaluated using various in vitro assays. Moreover, a novel ex vivo evaluation system focusing on the adherent characteristics of the neurosurgical patty was developed. The proposed assay could provide benchmark data for comparing different neurosurgical patties, offering neurosurgeons objective data on the performance of patties. The newly developed patty was also evaluated in real neurosurgical settings and showed superb performance during various neurosurgical procedures.

  18. Analysis of the performance of the drive system and diffuser of the Langley unitary plan wind tunnel

    NASA Technical Reports Server (NTRS)

    Hasel, L. E.; Stallings, R. L.

    1981-01-01

    A broad program was initiated at the Langley Research Center in 1973 to reduce the energy consumption of the laboratory. As a part of this program, the performance characteristics of the Unitary Plan Wind Tunnel were reexamined to determine if potential methods for incresing the operating efficiencies of the tunnel could be formulated. The results of that study are summarized. The performance characteristics of the drive system components and the variable-geometry diffuser system of the tunnel are documented and analyzed. Several potential methods for reducing the energy requirements of the facility are discussed.

  19. System verification and validation: a fundamental systems engineering task

    NASA Astrophysics Data System (ADS)

    Ansorge, Wolfgang R.

    2004-09-01

    Systems Engineering (SE) is the discipline in a project management team, which transfers the user's operational needs and justifications for an Extremely Large Telescope (ELT) -or any other telescope-- into a set of validated required system performance characteristics. Subsequently transferring these validated required system performance characteris-tics into a validated system configuration, and eventually into the assembled, integrated telescope system with verified performance characteristics and provided it with "objective evidence that the particular requirements for the specified intended use are fulfilled". The latter is the ISO Standard 8402 definition for "Validation". This presentation describes the verification and validation processes of an ELT Project and outlines the key role System Engineering plays in these processes throughout all project phases. If these processes are implemented correctly into the project execution and are started at the proper time, namely at the very beginning of the project, and if all capabilities of experienced system engineers are used, the project costs and the life-cycle costs of the telescope system can be reduced between 25 and 50 %. The intention of this article is, to motivate and encourage project managers of astronomical telescopes and scientific instruments to involve the entire spectrum of Systems Engineering capabilities performed by trained and experienced SYSTEM engineers for the benefit of the project by explaining them the importance of Systems Engineering in the AIV and validation processes.

  20. Performance of photomultiplier tubes and sodium iodide scintillation detector systems

    NASA Technical Reports Server (NTRS)

    Meegan, C. A.

    1981-01-01

    The performance of photomultiplier tubes (PMT's) and scintillation detector systems incorporating 50.8 by 1.27 cm NaI (T l) crystals was investigated to determine the characteristics of the photomultiplier tubes and optimize the detector geometry for the Burst and Transient Source Experiment on the Gamma Ray Observatory. Background information on performance characteristics of PMT's and NaI (T l) detectors is provided, procedures for measurement of relevant parameters are specified, and results of these measurements are presented.

  1. Characteristics of urban transportation systems

    DOT National Transportation Integrated Search

    1992-09-01

    The objective of this document is to provide a single source of sketch planning data on the most important performance characteristics of contemporary urban transportation systems in a format that lends itself to easy reference. This handbook does no...

  2. Design and Construction for Community Health Service Precision Fund Appropriation System Based on Performance Management.

    PubMed

    Gao, Xing; He, Yao; Hu, Hongpu

    2017-01-01

    Allowing for the differences in economy development, informatization degree and characteristic of population served and so on among different community health service organizations, community health service precision fund appropriation system based on performance management is designed, which can provide support for the government to appropriate financial funds scientifically and rationally for primary care. The system has the characteristic of flexibility and practicability, in which there are five subsystems including data acquisition, parameter setting, fund appropriation, statistical analysis system and user management.

  3. Characterization of advanced electric propulsion systems

    NASA Technical Reports Server (NTRS)

    Ray, P. K.

    1982-01-01

    Characteristics of several advanced electric propulsion systems are evaluated and compared. The propulsion systems studied are mass driver, rail gun, MPD thruster, hydrogen free radical thruster and mercury electron bombardment ion engine. These are characterized by specific impulse, overall efficiency, input power, average thrust, power to average thrust ratio and average thrust to dry weight ratio. Several important physical characteristics such as dry system mass, accelerator length, bore size and current pulse requirement are also evaluated in appropriate cases. Only the ion engine can operate at a specific impulse beyond 2000 sec. Rail gun, MPD thruster and free radical thruster are currently characterized by low efficiencies. Mass drivers have the best performance characteristics in terms of overall efficiency, power to average thrust ratio and average thrust to dry weight ratio. But, they can only operate at low specific impulses due to large power requirements and are extremely long due to limitations of driving current. Mercury ion engines have the next best performance characteristics while operating at higher specific impulses. It is concluded that, overall, ion engines have somewhat better characteristics as compared to the other electric propulsion systems.

  4. PISA and High-Performing Education Systems: Explaining Singapore's Education Success

    ERIC Educational Resources Information Center

    Deng, Zongyi; Gopinathan, S.

    2016-01-01

    Singapore's remarkable performance in Programme for International Student Assessment (PISA) has placed it among the world's high-performing education systems (HPES). In the literature on HPES, its "secret formula" for education success is explained in terms of teacher quality, school leadership, system characteristics and educational…

  5. PM-1 NUCLEAR POWER PROGRAM. VOLUME II. PLANT PERFORMANCE STUDIES. Final Periodic Report, September 1, 1962 to December 31, 1962

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1963-04-01

    Data obtained during the performance testing of the PM-1 plant were compiled and evaluated. The plant powers an Air Defense Command radar station located at Sundance, Wyoming, and is required to supply extremely high-quality electrical power (minimum of frequency and voltage fluctuations) even during severe load transients. The data obtained were compiled into the following format: (1) operating requirements; (2) startup requirements; (3) plant as an energy source; (4) plant radiation levels and health physics; (5) plant instrumentation and control; (6) reactor characteristics; (7) primary system characteristics; (8) secondary system characteristics; and (9) malfunction reports. It was concluded from themore » data that the plant performance in general meets or exceeds specification. Transient and steady-state electrical fluctuations are well within specified limitations. Heat balance data for both the primary and secondary system agree reasonably well with design predictions. Radiation levels are below those anticipated. Coolant activity in the primary system is approximately at anticipated levels; secondary system coolant activity is negligible. The core life was re-estimated based on asbuilt core characteristics. A lifetime of 16.6 Mw-yr is predicted. (auth)« less

  6. Applying a social network analysis (SNA) approach to understanding radiologists' performance in reading mammograms

    NASA Astrophysics Data System (ADS)

    Tavakoli Taba, Seyedamir; Hossain, Liaquat; Heard, Robert; Brennan, Patrick; Lee, Warwick; Lewis, Sarah

    2017-03-01

    Rationale and objectives: Observer performance has been widely studied through examining the characteristics of individuals. Applying a systems perspective, while understanding of the system's output, requires a study of the interactions between observers. This research explains a mixed methods approach to applying a social network analysis (SNA), together with a more traditional approach of examining personal/ individual characteristics in understanding observer performance in mammography. Materials and Methods: Using social networks theories and measures in order to understand observer performance, we designed a social networks survey instrument for collecting personal and network data about observers involved in mammography performance studies. We present the results of a study by our group where 31 Australian breast radiologists originally reviewed 60 mammographic cases (comprising of 20 abnormal and 40 normal cases) and then completed an online questionnaire about their social networks and personal characteristics. A jackknife free response operating characteristic (JAFROC) method was used to measure performance of radiologists. JAFROC was tested against various personal and network measures to verify the theoretical model. Results: The results from this study suggest a strong association between social networks and observer performance for Australian radiologists. Network factors accounted for 48% of variance in observer performance, in comparison to 15.5% for the personal characteristics for this study group. Conclusion: This study suggest a strong new direction for research into improving observer performance. Future studies in observer performance should consider social networks' influence as part of their research paradigm, with equal or greater vigour than traditional constructs of personal characteristics.

  7. Towards a characterization of information automation systems on the flight deck

    NASA Astrophysics Data System (ADS)

    Dudley, Rachel Feddersen

    This thesis summarizes research to investigate the characteristics that define information automation systems used on aircraft flight decks and the significant impacts that these characteristics have on pilot performance. Major accomplishments of the work include the development of a set of characteristics that describe information automation systems on the flight deck and an experiment designed to study a subset of these characteristics. Information automation systems on the flight deck are responsible for the collection, processing, analysis, and presentation of data to the flightcrew. These systems pose human factors issues and challenges that must be considered by designers of these systems. Based on a previously developed formal definition of information automation for aircraft flight deck systems, an analysis process was developed and conducted to reach a refined set of information automation characteristics. In this work, characteristics are defined as a set of properties or attributes that describe an information automation system's operation or behavior, which can be used to identify and assess potential human factors issues. Hypotheses were formed for a subset of the characteristics: Automation Visibility, Information Quality, and Display Complexity. An experimental investigation was developed to measure performance impacts related to these characteristics, which showed mixed results of expected and surprising findings, with many interactions. A set of recommendations were then developed based on the experimental observations. Ensuring that the right information is presented to pilots at the right time and in the appropriate manner is the job of flight deck system designers. This work provides a foundation for developing recommendations and guidelines specific to information automation on the flight deck with the goal of improving the design and evaluation of information automation systems before they are implemented.

  8. Characteristic Evaluation on Cooling Performance of Thermoelectric Modules.

    PubMed

    Seo, Sae Rom; Han, Seungwoo

    2015-10-01

    The aim of this work is to develop a performance evaluation system for thermoelectric cooling modules. We describe the design of such a system, composed of a vacuum chamber with a heat sink along with a metal block to measure the absorbed heat Qc. The system has a simpler structure than existing water-cooled or air-cooled systems. The temperature difference between the cold and hot sides of the thermoelectric module ΔT can be accurately measured without any effects due to convection, and the temperature equilibrium time is minimized compared to a water-cooled system. The evaluation system described here can be used to measure characteristic curves of Qc as a function of ΔT, as well as the current-voltage relations. High-performance thermoelectric systems can therefore be developed using optimal modules evaluated with this system.

  9. Perform - A performance optimizing computer program for dynamic systems subject to transient loadings

    NASA Technical Reports Server (NTRS)

    Pilkey, W. D.; Wang, B. P.; Yoo, Y.; Clark, B.

    1973-01-01

    A description and applications of a computer capability for determining the ultimate optimal behavior of a dynamically loaded structural-mechanical system are presented. This capability provides characteristics of the theoretically best, or limiting, design concept according to response criteria dictated by design requirements. Equations of motion of the system in first or second order form include incompletely specified elements whose characteristics are determined in the optimization of one or more performance indices subject to the response criteria in the form of constraints. The system is subject to deterministic transient inputs, and the computer capability is designed to operate with a large linear programming on-the-shelf software package which performs the desired optimization. The report contains user-oriented program documentation in engineering, problem-oriented form. Applications cover a wide variety of dynamics problems including those associated with such diverse configurations as a missile-silo system, impacting freight cars, and an aircraft ride control system.

  10. Pumped storage system model and experimental investigations on S-induced issues during transients

    NASA Astrophysics Data System (ADS)

    Zeng, Wei; Yang, Jiandong; Hu, Jinhong

    2017-06-01

    Because of the important role of pumped storage stations in the peak regulation and frequency control of a power grid, pump turbines must rapidly switch between different operating modes, such as fast startup and load rejection. However, pump turbines go through the unstable S region in these transition processes, threatening the security and stability of the pumped storage station. This issue has mainly been investigated through numerical simulations, while field experiments generally involve high risks and are difficult to perform. Therefore, in this work, the model test method was employed to study S-induced security and stability issues for a pumped storage station in transition processes. First, a pumped storage system model was set up, including the piping system, model units, electrical control systems and measurement system. In this model, two pump turbines with different S-shaped characteristics were installed to determine the influence of S-shaped characteristics on transition processes. The model platform can be applied to simulate any hydraulic transition process that occurs in real power stations, such as load rejection, startup, and grid connection. On the experimental platform, the S-shaped characteristic curves were measured to be the basis of other experiments. Runaway experiments were performed to verify the impact of the S-shaped characteristics on the pump turbine runaway stability. Full load rejection tests were performed to validate the effect of the S-shaped characteristics on the water-hammer pressure. The condition of one pump turbine rejecting its load after another defined as one-after-another (OAA) load rejection was performed to validate the possibility of S-induced extreme draft tube pressure. Load rejection experiments with different guide vane closing schemes were performed to determine a suitable scheme to adapt the S-shaped characteristics. Through these experiments, the threats existing in the station were verified, the appropriate measures were summarized, and an important experimental basis for the safe and stable operation of a pumped storage station was provided.

  11. Critical Characteristics of Radiation Detection System Components to be Dedicated for use in Safety Class and Safety Significant System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DAVIS, S.J.

    2000-05-25

    This document identifies critical characteristics of components to be dedicated for use in Safety Class (SC) or Safety Significant (SS) Systems, Structures, or Components (SSCs). This document identifies the requirements for the components of the common radiation area monitor alarm in the WESF pool cell. These are procured as Commercial Grade Items (CGI), with the qualification testing and formal dedication to be performed at the Waste Encapsulation Storage Facility (WESF), in safety class, safety significant systems. System modifications are to be performed in accordance with the instructions provided on ECN 658230. Components for this change are commercially available and interchangeablemore » with the existing alarm configuration This document focuses on the operational requirements for alarm, declaration of the safety classification, identification of critical characteristics, and interpretation of requirements for procurement. Critical characteristics are identified herein and must be verified, followed by formal dedication, prior to the components being used in safety related applications.« less

  12. Critical Characteristics of Radiation Detection System Components to be Dedicated for use in Safety Class and Safety Significant System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DAVIS, S.J.

    2000-12-28

    This document identifies critical characteristics of components to be dedicated for use in Safety Significant (SS) Systems, Structures, or Components (SSCs). This document identifies the requirements for the components of the common, radiation area, monitor alarm in the WESF pool cell. These are procured as Commercial Grade Items (CGI), with the qualification testing and formal dedication to be performed at the Waste Encapsulation Storage Facility (WESF) for use in safety significant systems. System modifications are to be performed in accordance with the approved design. Components for this change are commercially available and interchangeable with the existing alarm configuration This documentmore » focuses on the operational requirements for alarm, declaration of the safety classification, identification of critical characteristics, and interpretation of requirements for procurement. Critical characteristics are identified herein and must be verified, followed by formal dedication, prior to the components being used in safety related applications.« less

  13. Breakdown Characteristics and Streaming Electrification Characteristics of Flame Retardant Silicone Oil

    NASA Astrophysics Data System (ADS)

    Arazoe, Satoshi; Yasuda, Koji; Okabe, Shigemitsu; Ueta, Genyo; Yanabu, Satoru

    We have investigated the performance of the silicone oil as alternative oil to the mineral oil that is used as an insulation medium of the oil immersed transformer. There are various methods of evaluating the performance, we especially investigated the breakdown characteristics and the streaming electrification characteristics. In the breakdown characteristics, the insulation performance under the influence of changing the temperature, and the electrode shape was investigated. Moreover, the insulation performance in the composite insulation system that was composed of the insulation oil and the oil immersed insulator was investigated. From these results, we found that in the oil gap model, the breakdown voltage of silicone oil was lower than that of mineral oil by 15%. In contrast, in the composite insulation system, breakdown voltage of combination with silicone oil is higher than that of combination with mineral oil. In the streaming electrification characteristics, the difference of the amount of electrification under the influence of changing the kinds of solid insulators and the temperature was investigated. As a result, we found that silicone oil has the maximum of the amount of electrification at a high temperature compared with mineral oil.

  14. Laser diode technology for coherent communications

    NASA Technical Reports Server (NTRS)

    Channin, D. J.; Palfrey, S. L.; Toda, M.

    1989-01-01

    The effect of diode laser characteristics on the overall performance capabilities of coherent communication systems is discussed. In particular, attention is given to optical performance issues for diode lasers in coherent systems, measurements of key performance parameters, and optical requirements for coherent single-channel and multichannel communication systems. The discussion also covers limitations imposed by diode laser optical performance on multichannel system capabilities and implications for future developments.

  15. Evaluation of the functional performance and technical quality of an Electronic Documentation System of the Nursing Process.

    PubMed

    de Oliveira, Neurilene Batista; Peres, Heloisa Helena Ciqueto

    2015-01-01

    To evaluate the functional performance and the technical quality of the Electronic Documentation System of the Nursing Process of the Teaching Hospital of the University of São Paulo. exploratory-descriptive study. The Quality Model of regulatory standard 25010 and the Evaluation Process defined under regulatory standard 25040, both of the International Organization for Standardization/International Electrotechnical Commission. The quality characteristics evaluated were: functional suitability, reliability, usability, performance efficiency, compatibility, security, maintainability and portability. The sample was made up of 37 evaluators. in the evaluation of the specialists in information technology, only the characteristic of usability obtained a rate of positive responses of less than 70%. For the nurse lecturers, all the quality characteristics obtained a rate of positive responses of over 70%. The staff nurses of the medical and surgical clinics with experience in using the system) and staff nurses from other units of the hospital and from other health institutions (without experience in using the system) obtained rates of positive responses of more than 70% referent to the functional suitability, usability, and security. However, performance efficiency, reliability and compatibility all obtained rates below the parameter established. the software achieved rates of positive responses of over 70% for the majority of the quality characteristics evaluated.

  16. Measuring the performance of telephone-based disease surveillance systems in local health departments.

    PubMed

    Dausey, David J; Chandra, Anita; Schaefer, Agnes G; Bahney, Ben; Haviland, Amelia; Zakowski, Sarah; Lurie, Nicole

    2008-09-01

    We tested telephone-based disease surveillance systems in local health departments to identify system characteristics associated with consistent and timely responses to urgent case reports. We identified a stratified random sample of 74 health departments and conducted a series of unannounced tests of their telephone-based surveillance systems. We used regression analyses to identify system characteristics that predicted fast connection with an action officer (an appropriate public health professional). Optimal performance in consistently connecting callers with an action officer in 30 minutes or less was achieved by 31% of participating health departments. Reaching a live person upon dialing, regardless of who that person was, was the strongest predictor of optimal performance both in being connected with an action officer and in consistency of connection times. Health departments can achieve optimal performance in consistently connecting a caller with an action officer in 30 minutes or less and may improve performance by using a telephone-based disease surveillance system in which the phone is answered by a live person at all times.

  17. Light Truck Characteristics, Historical Data Base

    DOT National Transportation Integrated Search

    1980-11-01

    The report is a description of the data about the physical, operating performance, and market characteristics of light trucks for the model years 1955 through 1977, which is stored on tape in DOT/TSC DEC System 10 computer system. Vehicles are report...

  18. Light Duty Truck Characteristics, Historical Data Base

    DOT National Transportation Integrated Search

    1979-12-01

    The report is a collection of data concerning physical, operating, performance, and market characteristics of light duty trucks for the model years 1972 and 1975 thru 1977. The data is stored on tape in DOT/TSC DEC System 10 computer system. Informat...

  19. Performance analysis of the ascent propulsion system of the Apollo spacecraft

    NASA Technical Reports Server (NTRS)

    Hooper, J. C., III

    1973-01-01

    Activities involved in the performance analysis of the Apollo lunar module ascent propulsion system are discussed. A description of the ascent propulsion system, including hardware, instrumentation, and system characteristics, is included. The methods used to predict the inflight performance and to establish performance uncertainties of the ascent propulsion system are discussed. The techniques of processing the telemetered flight data and performing postflight performance reconstruction to determine actual inflight performance are discussed. Problems that have been encountered and results from the analysis of the ascent propulsion system performance during the Apollo 9, 10, and 11 missions are presented.

  20. Thermocouples of tantalum and rhenium alloys for more stable vacuum-high temperature performance

    NASA Technical Reports Server (NTRS)

    Morris, J. F. (Inventor)

    1977-01-01

    Thermocouples of the present invention provide stability and performance reliability in systems involving high temperatures and vacuums by employing a bimetallic thermocouple sensor wherein each metal of the sensor is selected from a group of metals comprising tantalum and rhenium and alloys containing only those two metals. The tantalum, rhenium thermocouple sensor alloys provide bare metal thermocouple sensors having advantageous vapor pressure compatibilities and performance characteristics. The compatibility and physical characteristics of the thermocouple sensor alloys of the present invention result in improved emf, temperature properties and thermocouple hot junction performance. The thermocouples formed of the tantalum, rhenium alloys exhibit reliability and performance stability in systems involving high temperatures and vacuums and are adaptable to space propulsion and power systems and nuclear environments.

  1. A Programming Model Performance Study Using the NAS Parallel Benchmarks

    DOE PAGES

    Shan, Hongzhang; Blagojević, Filip; Min, Seung-Jai; ...

    2010-01-01

    Harnessing the power of multicore platforms is challenging due to the additional levels of parallelism present. In this paper we use the NAS Parallel Benchmarks to study three programming models, MPI, OpenMP and PGAS to understand their performance and memory usage characteristics on current multicore architectures. To understand these characteristics we use the Integrated Performance Monitoring tool and other ways to measure communication versus computation time, as well as the fraction of the run time spent in OpenMP. The benchmarks are run on two different Cray XT5 systems and an Infiniband cluster. Our results show that in general the threemore » programming models exhibit very similar performance characteristics. In a few cases, OpenMP is significantly faster because it explicitly avoids communication. For these particular cases, we were able to re-write the UPC versions and achieve equal performance to OpenMP. Using OpenMP was also the most advantageous in terms of memory usage. Also we compare performance differences between the two Cray systems, which have quad-core and hex-core processors. We show that at scale the performance is almost always slower on the hex-core system because of increased contention for network resources.« less

  2. Monte Carlo simulation of Ray-Scan 64 PET system and performance evaluation using GATE toolkit

    NASA Astrophysics Data System (ADS)

    Li, Suying; Zhang, Qiushi; Vuletic, Ivan; Xie, Zhaoheng; Yang, Kun; Ren, Qiushi

    2017-02-01

    In this study, we aimed to develop a GATE model for the simulation of Ray-Scan 64 PET scanner and model its performance characteristics. A detailed implementation of system geometry and physical process were included in the simulation model. Then we modeled the performance characteristics of Ray-Scan 64 PET system for the first time, based on National Electrical Manufacturers Association (NEMA) NU-2 2007 protocols and validated the model against experimental measurement, including spatial resolution, sensitivity, counting rates and noise equivalent count rate (NECR). Moreover, an accurate dead time module was investigated to simulate the counting rate performance. Overall results showed reasonable agreement between simulation and experimental data. The validation results showed the reliability and feasibility of the GATE model to evaluate major performance of Ray-Scan 64 PET system. It provided a useful tool for a wide range of research applications.

  3. Performance Characteristics For The Orbiter Camera Payload System's Large Format Camera (LFC)

    NASA Astrophysics Data System (ADS)

    MoIIberg, Bernard H.

    1981-11-01

    The Orbiter Camera Payload System, the OCPS, is an integrated photographic system which is carried into Earth orbit as a payload in the Shuttle Orbiter vehicle's cargo bay. The major component of the OCPS is a Large Format Camera (LFC) which is a precision wide-angle cartographic instrument that is capable of produc-ing high resolution stereophotography of great geometric fidelity in multiple base to height ratios. The primary design objective for the LFC was to maximize all system performance characteristics while maintaining a high level of reliability compatible with rocket launch conditions and the on-orbit environment.

  4. The Effect of User Characteristics on the Efficiency of Visual Querying

    ERIC Educational Resources Information Center

    Bak, Peter; Meyer, Joachim

    2011-01-01

    Information systems increasingly provide options for visually inspecting data during the process of information discovery and exploration. Little research has dealt so far with user interactions with these systems, and specifically with the effects of characteristics of the displayed data and the user on performance with such systems. The study…

  5. Atmospheric cloud physics thermal systems analysis

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Engineering analyses performed on the Atmospheric Cloud Physics (ACPL) Science Simulator expansion chamber and associated thermal control/conditioning system are reported. Analyses were made to develop a verified thermal model and to perform parametric thermal investigations to evaluate systems performance characteristics. Thermal network representations of solid components and the complete fluid conditioning system were solved simultaneously using the Systems Improved Numerical Differencing Analyzer (SINDA) computer program.

  6. Reducing Design Risk Using Robust Design Methods: A Dual Response Surface Approach

    NASA Technical Reports Server (NTRS)

    Unal, Resit; Yeniay, Ozgur; Lepsch, Roger A. (Technical Monitor)

    2003-01-01

    Space transportation system conceptual design is a multidisciplinary process containing considerable element of risk. Risk here is defined as the variability in the estimated (output) performance characteristic of interest resulting from the uncertainties in the values of several disciplinary design and/or operational parameters. Uncertainties from one discipline (and/or subsystem) may propagate to another, through linking parameters and the final system output may have a significant accumulation of risk. This variability can result in significant deviations from the expected performance. Therefore, an estimate of variability (which is called design risk in this study) together with the expected performance characteristic value (e.g. mean empty weight) is necessary for multidisciplinary optimization for a robust design. Robust design in this study is defined as a solution that minimizes variability subject to a constraint on mean performance characteristics. Even though multidisciplinary design optimization has gained wide attention and applications, the treatment of uncertainties to quantify and analyze design risk has received little attention. This research effort explores the dual response surface approach to quantify variability (risk) in critical performance characteristics (such as weight) during conceptual design.

  7. Development of Response Surface Models for Rapid Analysis & Multidisciplinary Optimization of Launch Vehicle Design Concepts

    NASA Technical Reports Server (NTRS)

    Unal, Resit

    1999-01-01

    Multdisciplinary design optimization (MDO) is an important step in the design and evaluation of launch vehicles, since it has a significant impact on performance and lifecycle cost. The objective in MDO is to search the design space to determine the values of design parameters that optimize the performance characteristics subject to system constraints. Vehicle Analysis Branch (VAB) at NASA Langley Research Center has computerized analysis tools in many of the disciplines required for the design and analysis of launch vehicles. Vehicle performance characteristics can be determined by the use of these computerized analysis tools. The next step is to optimize the system performance characteristics subject to multidisciplinary constraints. However, most of the complex sizing and performance evaluation codes used for launch vehicle design are stand-alone tools, operated by disciplinary experts. They are, in general, difficult to integrate and use directly for MDO. An alternative has been to utilize response surface methodology (RSM) to obtain polynomial models that approximate the functional relationships between performance characteristics and design variables. These approximation models, called response surface models, are then used to integrate the disciplines using mathematical programming methods for efficient system level design analysis, MDO and fast sensitivity simulations. A second-order response surface model of the form given has been commonly used in RSM since in many cases it can provide an adequate approximation especially if the region of interest is sufficiently limited.

  8. An Examination of Performance-Based Teacher Evaluation Systems in Five States. Summary. Issues & Answers. REL 2012-No. 129

    ERIC Educational Resources Information Center

    Shakman, Karen; Riordan, Julie; Sanchez, Maria Teresa; Cook, Kyle DeMeo; Fournier, Richard; Brett, Jessica

    2012-01-01

    This study reports on performance-based teacher evaluation systems in five states that have implemented such systems. It investigates two primary research questions: (1) What are the key characteristics of state-level performance-based teacher evaluation systems in the study states?; and (2) How do state teacher evaluation measures, the teaching…

  9. An Evaluation Method for PV Systems by using Limited Data Item

    NASA Astrophysics Data System (ADS)

    Oozeki, Takashi; Izawa, Toshiyasu; Otani, Kenji; Tsuzuku, Ken; Koike, Hisafumi; Kurokawa, Kosuke

    Beside photovoltaic (PV) systems are recently expected to introduce around Japan, almost all of them have not been taken care after established since PV systems are called maintenance free. In fact, there are few troubles about PV operations behind owners of PV systems because characteristics of them cannot be identified completely such as the ideal output energy. Therefore, it is very important to evaluate the characteristics of them. For evaluating them, equipments of measuring are required, and they, especially Pyrheliometer, are expensive as much as owners of the PV system cannot equip usually. Consequently, An evaluation method which can reveal the performance of operation such as the performance ratio with a very few kinds of data is necessary. In this paper, proposed method can evaluate performance ratio, shading losses, inverter efficiency losses by using only system output data items. The adequacies of the method are indicated by comparing with actual data and field survey results. As a result, the method is intended to be checking tool of PV system performance.

  10. Study of advanced atmospheric entry systems for Mars

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Entry system designs are described for various advanced Mars missions including sample return, hard lander, and Mars airplane. The Mars exploration systems for sample return and the hard lander require decleration from direct approach entry velocities of about 6 km/s to terminal velocities consistent with surface landing requirements. The Mars airplane entry system is decelerated from orbit at 4.6 km/s to deployment near the surface. Mass performance characteristics of major elements of the Mass performance characteristics are estimated for the major elements of the required entry systems using Viking technology or logical extensions of technology in order to provide a common basis of comparison for the three entry modes mission mode approaches. The entry systems, although not optimized, are based on Viking designs and reflect current hardware performance capability and realistic mass relationships.

  11. Performance Characteristic Mems-Based IMUs for UAVs Navigation

    NASA Astrophysics Data System (ADS)

    Mohamed, H. A.; Hansen, J. M.; Elhabiby, M. M.; El-Sheimy, N.; Sesay, A. B.

    2015-08-01

    Accurate 3D reconstruction has become essential for non-traditional mapping applications such as urban planning, mining industry, environmental monitoring, navigation, surveillance, pipeline inspection, infrastructure monitoring, landslide hazard analysis, indoor localization, and military simulation. The needs of these applications cannot be satisfied by traditional mapping, which is based on dedicated data acquisition systems designed for mapping purposes. Recent advances in hardware and software development have made it possible to conduct accurate 3D mapping without using costly and high-end data acquisition systems. Low-cost digital cameras, laser scanners, and navigation systems can provide accurate mapping if they are properly integrated at the hardware and software levels. Unmanned Aerial Vehicles (UAVs) are emerging as a mobile mapping platform that can provide additional economical and practical advantages. However, such economical and practical requirements need navigation systems that can provide uninterrupted navigation solution. Hence, testing the performance characteristics of Micro-Electro-Mechanical Systems (MEMS) or low cost navigation sensors for various UAV applications is important research. This work focuses on studying the performance characteristics under different manoeuvres using inertial measurements integrated with single point positioning, Real-Time-Kinematic (RTK), and additional navigational aiding sensors. Furthermore, the performance of the inertial sensors is tested during Global Positioning System (GPS) signal outage.

  12. The development and test of ultra-large-format multi-anode microchannel array detector systems

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1984-01-01

    The specific tasks that were accomplished with each of the key elements of the multi-anode microchannel array detector system are described. The modes of operation of position-sensitive electronic readout systems for use with high-gain microchannel plates are described and their performance characteristics compared and contrasted. Multi-anode microchannel array detector systems with formats as large as 256 x 1024 pixels are currently under evaluation. Preliminary performance data for sealed ultraviolet and visible-light detector tubes show that the detector systems have unique characteristics which make them complementary to photoconductive array detectors, such as CCDs, and superior to alternative pulse-counting detector systems employing high-gain MCPs.

  13. A review of hospital characteristics associated with improved performance.

    PubMed

    Brand, Caroline A; Barker, Anna L; Morello, Renata T; Vitale, Michael R; Evans, Sue M; Scott, Ian A; Stoelwinder, Johannes U; Cameron, Peter A

    2012-10-01

    The objective of this review was to critically appraise the literature relating to associations between high-level structural and operational hospital characteristics and improved performance. The Cochrane Library, MEDLINE (Ovid), CINAHL, proQuest and PsychINFO were searched for articles published between January 1996 and May 2010. Reference lists of included articles were reviewed and key journals were hand searched for relevant articles. and data extraction Studies were included if they were systematic reviews or meta-analyses, randomized controlled trials, controlled before and after studies or observational studies (cohort and cross-sectional) that were multicentre, comparative performance studies. Two reviewers independently extracted data, assigned grades of evidence according to the Australian National Health and Medical Research Council guidelines and critically appraised the included articles. Data synthesis Fifty-seven studies were reported within 12 systematic reviews and 47 observational articles. There was heterogeneity in use and definition of performance outcomes. Hospital characteristics investigated were environment (incentives, market characteristics), structure (network membership, ownership, teaching status, geographical setting, service size) and operational design (innovativeness, leadership, organizational culture, public reporting and patient safety practices, information technology systems and decision support, service activity and planning, workforce design, staff training and education). The strongest evidence for an association with overall performance was identified for computerized physician order entry systems. Some evidence supported the associations with workforce design, use of financial incentives, nursing leadership and hospital volume. There is limited, mainly low-quality evidence, supporting the associations between hospital characteristics and healthcare performance. Further characteristic-specific systematic reviews are indicated.

  14. Navigation-aid power systems

    NASA Technical Reports Server (NTRS)

    Goltz, G. L.; Kaiser, L. M.; Weiner, H.

    1979-01-01

    Design synthesis and performance analysis (DSPA) program package is collection of subroutines used for computation of design and performance characteristics of viable solar-array-charged battery powered system for flashing-lamp buoys employed as maritime aids to navigation.

  15. Performance enhancement of existing two-stage sounding rocket vehicles through the use of tandem booster systems

    NASA Technical Reports Server (NTRS)

    Flores, C. C.; Gurkin, L. W.

    1982-01-01

    The three-stage Taurus-Nike-Tomahawk launch vehicle is being considered for performance enhancement of the existing Taurus-Tomahawk flight system. In addition, performance enhancement of other existing two-stage launch vehicles is being considered through the use of tandem booster systems. Aeroballistic characteristics of the proposed Taurus-Nike-Tomahawk vehicle are presented, as are overall performance capabilities of other potential three-stage flight systems.

  16. Performance and Safety Characteristics of Lithium-molybdenum Disulfide Cells

    NASA Technical Reports Server (NTRS)

    Stiles, J. A.

    1984-01-01

    The lithium-molybdenum disulfide system offers attractive characteristics including high rate capability, successful operation up to 75 C, a very low self-discharge rate, a good cycle life and safety characteristics which compare favorably to those of other lithium cells. Moreover, the materials and manufacturing costs for the system is effectively controlled, so the cells should ultimately be competitive with currently marketed rechargeable cells.

  17. Program Manager: the Journal of the Defense Systems Management College, Volume 14, Number 3, May-June 1985.

    DTIC Science & Technology

    1985-06-01

    Z2~1 31DTIC TAR 31 Unaflnonc.-d Successful The S N wDefense Challenge: Distribul Systems Spare Parts Availability Dr. Joniathian D. Kaplan Lieutenant...Developing Human Perform- hardware software has not been ing that the resulting design be capable ance Specifications ( Kaplan & Crooks, developed at this...design to perform at the components: MOS-characteristics specified criteria. Although the map, analysis-characteristics map, and E Dr. Kaplan is a

  18. Attributes and Behaviors of Performance-Centered Systems.

    ERIC Educational Resources Information Center

    Gery, Gloria

    1995-01-01

    Examines attributes, characteristics, and behaviors of performance-centered software packages that are emerging in the consumer software marketplace and compares them with large-scale systems software being designed by internal information systems staffs and vendors of large-scale software designed for financial, manufacturing, processing, and…

  19. Solar power satellite system definition study. Volume 1, phase 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A systems definition study of the solar satellite system (SPS) is presented. The technical feasibility of solar power satellites based on forecasts of technical capability in the various applicable technologies is assessed. The performance, cost, operational characteristics, reliability, and the suitability of SPS's as power generators for typical commercial electricity grids are discussed. The uncertainties inherent in the system characteristics forecasts are assessed.

  20. Characteristics of a 30-cm thruster operated with small hole accelerator grid ion optics

    NASA Technical Reports Server (NTRS)

    Vahrenkamp, R. P.

    1976-01-01

    Small hole accelerator grid ion optical systems have been tested as a possible means of improving 30-cm ion thruster performance. The effects of small hole grids on the critical aspects of thruster operation including discharge chamber performance, doubly-charged ion concentration, effluent beam characteristics, and plasma properties have been evaluated. In general, small hole accelerator grids are beneficial in improving thruster performance while maintaining low double ion ratios. However, extremely small accelerator aperture diameters tend to degrade beam divergence characteristics. A quantitative discussion of these advantages and disadvantages of small hole accelerator grids, as well as resulting variations in thruster operation characteristics, is presented.

  1. Force control compensation method with variable load stiffness and damping of the hydraulic drive unit force control system

    NASA Astrophysics Data System (ADS)

    Kong, Xiangdong; Ba, Kaixian; Yu, Bin; Cao, Yuan; Zhu, Qixin; Zhao, Hualong

    2016-05-01

    Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit (HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this paper has positive compensation effects on the load characteristics variation, i.e., this method decreases the effects of the load characteristics variation on the force control performance and enhances the force control system robustness with the constant PID parameters, thereby, the online PID parameters tuning control method which is complex needs not be adopted. All the above research provides theoretical and experimental foundation for the force control method of the quadruped robot joints with high robustness.

  2. Using a Malcolm Baldrige framework to understand high-performing clinical microsystems.

    PubMed

    Foster, Tina C; Johnson, Julie K; Nelson, Eugene C; Batalden, Paul B

    2007-10-01

    BACKGROUND, OBJECTIVES AND METHOD: The Malcolm Baldrige National Quality Award (MBNQA) provides a set of criteria for organisational quality assessment and improvement that has been used by thousands of business, healthcare and educational organisations for more than a decade. The criteria can be used as a tool for self-evaluation, and are widely recognised as a robust framework for design and evaluation of healthcare systems. The clinical microsystem, as an organisational construct, is a systems approach for providing clinical care based on theories from organisational development, leadership and improvement. This study compared the MBNQA criteria for healthcare and the success factors of high-performing clinical microsystems to (1) determine whether microsystem success characteristics cover the same range of issues addressed by the Baldrige criteria and (2) examine whether this comparison might better inform our understanding of either framework. Both Baldrige criteria and microsystem success characteristics cover a wide range of areas crucial to high performance. Those particularly called out by this analysis are organisational leadership, work systems and service processes from a Baldrige standpoint, and leadership, performance results, process improvement, and information and information technology from the microsystem success characteristics view. Although in many cases the relationship between Baldrige criteria and microsystem success characteristics are obvious, in others the analysis points to ways in which the Baldrige criteria might be better understood and worked with by a microsystem through the design of work systems and a deep understanding of processes. Several tools are available for those who wish to engage in self-assessment based on MBNQA criteria and microsystem characteristics.

  3. Using a Malcolm Baldrige framework to understand high‐performing clinical microsystems

    PubMed Central

    Foster, Tina C; Johnson, Julie K; Nelson, Eugene C; Batalden, Paul B

    2007-01-01

    Background, objectives and method The Malcolm Baldrige National Quality Award (MBNQA) provides a set of criteria for organisational quality assessment and improvement that has been used by thousands of business, healthcare and educational organisations for more than a decade. The criteria can be used as a tool for self‐evaluation, and are widely recognised as a robust framework for design and evaluation of healthcare systems. The clinical microsystem, as an organisational construct, is a systems approach for providing clinical care based on theories from organisational development, leadership and improvement. This study compared the MBNQA criteria for healthcare and the success factors of high‐performing clinical microsystems to (1) determine whether microsystem success characteristics cover the same range of issues addressed by the Baldrige criteria and (2) examine whether this comparison might better inform our understanding of either framework. Results and conclusions Both Baldrige criteria and microsystem success characteristics cover a wide range of areas crucial to high performance. Those particularly called out by this analysis are organisational leadership, work systems and service processes from a Baldrige standpoint, and leadership, performance results, process improvement, and information and information technology from the microsystem success characteristics view. Although in many cases the relationship between Baldrige criteria and microsystem success characteristics are obvious, in others the analysis points to ways in which the Baldrige criteria might be better understood and worked with by a microsystem through the design of work systems and a deep understanding of processes. Several tools are available for those who wish to engage in self‐assessment based on MBNQA criteria and microsystem characteristics. PMID:17913773

  4. Multispectral scanner data applications evaluation. Volume 1: User applications study

    NASA Technical Reports Server (NTRS)

    Thomson, F. J.; Erickson, J. D.; Nalepka, R. F.; Weber, J. D.

    1974-01-01

    A six-month systems study of earth resource surveys from satellites was conducted and is reported. SKYLAB S-192 multispectral scanner (MSS) data were used as a baseline to aid in evaluating the characteristics of future systems using satellite MSS sensors. The study took the viewpoint that overall system (sensor and processing) characteristics and parameter values should be determined largely by user requirements for automatic information extraction performance in quasi-operational earth resources surveys, the other major factor being hardware limitations imposed by state-of-the-art technology and cost. The objective was to use actual aircraft and spacecraft MSS data to outline parametrically the trade-offs between user performance requirements and hardware performance and limitations so as to allow subsequent evaluation of compromises which must be made in deciding what system(s) to build.

  5. Study of performance and propagation characteristics of wire and planar structures around human body.

    PubMed

    Aroul, A L Praveen; Bhatia, Dinesh

    2011-01-01

    Continued miniaturization of electronic devices and technological advancements in wireless communications has made wearable body-centric telemedicine systems viable. Antennas play a crucial role in characterizing the efficiency and reliability of these systems. The performance characteristics such as the radiation pattern, gain, efficiency of the antennas get adversely affected due to the presence of lossy human body tissues. In this paper we investigate the above mentioned performance parameters and radio frequency transmission properties of wire and planar structures operating at ISM frequency band of 2.40-2.50 GHz in the proximity of human body.

  6. PC-403: Pioneer Venus multiprobe spacecraft mission operational characteristics document, volume 1

    NASA Technical Reports Server (NTRS)

    Barker, F. C.

    1978-01-01

    The operational characteristics of the multiprobe system and its subsystem are described. System level, description of the nominal phases, system interfaces, and the capabilities and limitations of system level performance are presented. Bus spacecraft functional and operational descriptions at the subsystem and unit level are presented. The subtleties of nominal operation as well as detailed capabilities and limitations beyond nominal performance are discussed. A command and telemetry logic flow diagram for each subsystem is included. Each diagram identifies in symbolic logic all signal conditioning encountered along each command signal path into, and each telemetry signal path out of the subsystem.

  7. A compact roller-gear pitch-yaw joint module: Design and control issues

    NASA Technical Reports Server (NTRS)

    Dohring, Mark E.; Anderson, William J.; Newman, Wyatt S.; Rohn, Douglas A.

    1993-01-01

    Robotic systems have been proposed as a means of accomplishing assembly and maintenance tasks in space. The desirable characteristics of these systems include compact size, low mass, high load capacity, and programmable compliance to improve assembly performance. In addition, the mechanical system must transmit power in such a way as to allow high performance control of the system. Efficiency, linearity, low backlash, low torque ripple, and low friction are all desirable characteristics. This work presents a pitch-yaw joint module designed and built to address these issues. Its effectiveness as a two degree-of-freedom manipulator using natural admittance control, a method of force control, is demonstrated.

  8. WASTE COMBUSTION SYSTEM ANALYSIS

    EPA Science Inventory

    The report gives results of a study of biomass combustion alternatives. The objective was to evaluate the thermal performance and costs of available and developing biomass systems. The characteristics of available biomass fuels were reviewed, and the performance parameters of alt...

  9. Development of the ConnDOT horizontal curve classification software.

    DOT National Transportation Integrated Search

    2014-06-01

    The Highway Performance Monitoring System (HPMS) is a national, highway information system that requires states : to collect and submit data on the extent, condition, performance, use, and operating characteristics of the nation's : highways. HPMS re...

  10. ORION mobile unit design

    NASA Technical Reports Server (NTRS)

    Brunn, D. L.; Wu, S. C.; Thom, E. H.; Mclaughlin, F. D.; Sweetser, B. M.

    1980-01-01

    An overview of the design of the ORION mobile system is presented. System capability and performance characteristics are outlined. Functional requirements and key performance parameters are stated for each of the nine subsystems. A master design and implementation schedule is given.

  11. Diversity in School Performance Feedback Systems

    ERIC Educational Resources Information Center

    Verhaeghe, Goedele; Schildkamp, Kim; Luyten, Hans; Valcke, Martin

    2015-01-01

    As data-based decision making is receiving increased attention in education, more and more school performance feedback systems (SPFSs) are being developed and used worldwide. These systems provide schools with data on their functioning. However, little research is available on the characteristics of the different SPFSs. Therefore, this study…

  12. Triple redundant computer system/display and keyboard subsystem interface

    NASA Technical Reports Server (NTRS)

    Gulde, F. J.

    1973-01-01

    Interfacing of the redundant display and keyboard subsystem with the triple redundant computer system is defined according to space shuttle design. The study is performed in three phases: (1) TRCS configuration and characteristics identification; (2) display and keyboard subsystem configuration and characteristics identification, and (3) interface approach definition.

  13. 42 CFR 493.1253 - Standard: Establishment and verification of performance specifications.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... establish performance specifications for any test system used by the laboratory before April 24, 2003. (b)(1... approved test system must do the following before reporting patient test results: (i) Demonstrate that it... following performance characteristics: (A) Accuracy. (B) Precision. (C) Reportable range of test results for...

  14. 42 CFR 493.1253 - Standard: Establishment and verification of performance specifications.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... establish performance specifications for any test system used by the laboratory before April 24, 2003. (b)(1... approved test system must do the following before reporting patient test results: (i) Demonstrate that it... following performance characteristics: (A) Accuracy. (B) Precision. (C) Reportable range of test results for...

  15. 42 CFR 493.1253 - Standard: Establishment and verification of performance specifications.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... establish performance specifications for any test system used by the laboratory before April 24, 2003. (b)(1... approved test system must do the following before reporting patient test results: (i) Demonstrate that it... following performance characteristics: (A) Accuracy. (B) Precision. (C) Reportable range of test results for...

  16. 42 CFR 493.1253 - Standard: Establishment and verification of performance specifications.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... establish performance specifications for any test system used by the laboratory before April 24, 2003. (b)(1... approved test system must do the following before reporting patient test results: (i) Demonstrate that it... following performance characteristics: (A) Accuracy. (B) Precision. (C) Reportable range of test results for...

  17. Informatic analysis for hidden pulse attack exploiting spectral characteristics of optics in plug-and-play quantum key distribution system

    NASA Astrophysics Data System (ADS)

    Ko, Heasin; Lim, Kyongchun; Oh, Junsang; Rhee, June-Koo Kevin

    2016-10-01

    Quantum channel loopholes due to imperfect implementations of practical devices expose quantum key distribution (QKD) systems to potential eavesdropping attacks. Even though QKD systems are implemented with optical devices that are highly selective on spectral characteristics, information theory-based analysis about a pertinent attack strategy built with a reasonable framework exploiting it has never been clarified. This paper proposes a new type of trojan horse attack called hidden pulse attack that can be applied in a plug-and-play QKD system, using general and optimal attack strategies that can extract quantum information from phase-disturbed quantum states of eavesdropper's hidden pulses. It exploits spectral characteristics of a photodiode used in a plug-and-play QKD system in order to probe modulation states of photon qubits. We analyze the security performance of the decoy-state BB84 QKD system under the optimal hidden pulse attack model that shows enormous performance degradation in terms of both secret key rate and transmission distance.

  18. Brayton Power Conversion System Parametric Design Modelling for Nuclear Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Ashe, Thomas L.; Otting, William D.

    1993-01-01

    The parametrically based closed Brayton cycle (CBC) computer design model was developed for inclusion into the NASA LeRC overall Nuclear Electric Propulsion (NEP) end-to-end systems model. The code is intended to provide greater depth to the NEP system modeling which is required to more accurately predict the impact of specific technology on system performance. The CBC model is parametrically based to allow for conducting detailed optimization studies and to provide for easy integration into an overall optimizer driver routine. The power conversion model includes the modeling of the turbines, alternators, compressors, ducting, and heat exchangers (hot-side heat exchanger and recuperator). The code predicts performance to significant detail. The system characteristics determined include estimates of mass, efficiency, and the characteristic dimensions of the major power conversion system components. These characteristics are parametrically modeled as a function of input parameters such as the aerodynamic configuration (axial or radial), turbine inlet temperature, cycle temperature ratio, power level, lifetime, materials, and redundancy.

  19. Synoptic scale forecast skill and systematic errors in the MASS 2.0 model. [Mesoscale Atmospheric Simulation System

    NASA Technical Reports Server (NTRS)

    Koch, S. E.; Skillman, W. C.; Kocin, P. J.; Wetzel, P. J.; Brill, K. F.

    1985-01-01

    The synoptic scale performance characteristics of MASS 2.0 are determined by comparing filtered 12-24 hr model forecasts to same-case forecasts made by the National Meteorological Center's synoptic-scale Limited-area Fine Mesh model. Characteristics of the two systems are contrasted, and the analysis methodology used to determine statistical skill scores and systematic errors is described. The overall relative performance of the two models in the sample is documented, and important systematic errors uncovered are presented.

  20. Summary of photovoltaic system performance models

    NASA Technical Reports Server (NTRS)

    Smith, J. H.; Reiter, L. J.

    1984-01-01

    A detailed overview of photovoltaics (PV) performance modeling capabilities developed for analyzing PV system and component design and policy issues is provided. A set of 10 performance models are selected which span a representative range of capabilities from generalized first order calculations to highly specialized electrical network simulations. A set of performance modeling topics and characteristics is defined and used to examine some of the major issues associated with photovoltaic performance modeling. Each of the models is described in the context of these topics and characteristics to assess its purpose, approach, and level of detail. The issues are discussed in terms of the range of model capabilities available and summarized in tabular form for quick reference. The models are grouped into categories to illustrate their purposes and perspectives.

  1. Development of advanced fuel cell system

    NASA Technical Reports Server (NTRS)

    Grevstad, P. E.

    1972-01-01

    Weight, life and performance characteristics optimization of hydrogen-oxygen fuel cell power systems were considered. A promising gold alloy cathode catalyst was identified and tested in a cell for 5,000 hours. The compatibility characteristics of candidate polymer structural materials were measured after exposure to electrolyte and water vapor for 8,000 hours. Lightweight cell designs were prepared and fabrication techniques to produce them were developed. Testing demonstrated that predicted performance was achieved. Lightweight components for passive product water removal and evaporative cooling of cells were demonstrated. Systems studies identified fuel cell powerplant concepts for meeting the requirements of advanced spacecraft.

  2. Comparing the Performance of Blue Gene/Q with Leading Cray XE6 and InfiniBand Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerbyson, Darren J.; Barker, Kevin J.; Vishnu, Abhinav

    2013-01-21

    Abstract—Three types of systems dominate the current High Performance Computing landscape: the Cray XE6, the IBM Blue Gene, and commodity clusters using InfiniBand. These systems have quite different characteristics making the choice for a particular deployment difficult. The XE6 uses Cray’s proprietary Gemini 3-D torus interconnect with two nodes at each network endpoint. The latest IBM Blue Gene/Q uses a single socket integrating processor and communication in a 5-D torus network. InfiniBand provides the flexibility of using nodes from many vendors connected in many possible topologies. The performance characteristics of each vary vastly along with their utilization model. In thismore » work we compare the performance of these three systems using a combination of micro-benchmarks and a set of production applications. In particular we discuss the causes of variability in performance across the systems and also quantify where performance is lost using a combination of measurements and models. Our results show that significant performance can be lost in normal production operation of the Cray XT6 and InfiniBand Clusters in comparison to Blue Gene/Q.« less

  3. Emulation study on system characteristic of high pressure common-rail fuel injection system for marine medium-speed diesel engine

    NASA Astrophysics Data System (ADS)

    Wang, Qinpeng; Yang, Jianguo; Xin, Dong; He, Yuhai; Yu, Yonghua

    2018-05-01

    In this paper, based on the characteristic analyzing of the mechanical fuel injection system for the marine medium-speed diesel engine, a sectional high-pressure common rail fuel injection system is designed, rated condition rail pressure of which is 160MPa. The system simulation model is built and the performance of the high pressure common rail fuel injection system is analyzed, research results provide the technical foundation for the system engineering development.

  4. Primary propulsion/large space system interactions

    NASA Technical Reports Server (NTRS)

    Dergance, R. H.

    1980-01-01

    Three generic types of structural concepts and nonstructural surface densities were selected and combined to represent potential LSS applications. The design characteristics of various classes of large space systems that are impacted by primary propulsion thrust required to effect orbit transfer were identified. The effects of propulsion system thrust-to-mass ratio, thrust transients, and performance on the mass, area, and orbit transfer characteristics of large space systems were determined.

  5. Characteristics of Rosai-Dorfman Disease Primarily Involved in the Central Nervous System: 3 Case Reports and Review of Literature.

    PubMed

    Luo, Zhengxiang; Zhang, Yansong; Zhao, Penglai; Lu, Hucheng; Yang, Kun; Zhang, Yuhai; Zeng, Yanjun

    2017-01-01

    This study aimed to summarize the clinical characteristics of Rosai-Dorfman disease primarily involving the central nervous system and to explore diagnosis and treatment. We analyzed the clinical, imaging, and pathologic characteristics; treatment; and prognosis in 3 cases of Rosai-Dorfman disease primarily involving the central nervous system. We also performed a literature review. The largest of multiple intracranial lesions was totally resected, and steroid administration and radiotherapy were performed in phases for the remaining lesions. During the 1-year follow-up period, the excised lesion did not recur, and no obvious variations were observed in the other lesions. Subtotal resection was performed of the largest of another group of multiple intracranial lesions, and the residual did not show any obvious variations during the 1-year follow-up period. The isolated lesion was totally resected and did not recur during a 2-year follow-up period. Rosai-Dorfman disease with multiple lesions primarily involving the central nervous system is rare. Imaging characteristics are similar to meningiomas, and the pathological features include lymphocytes and plasma cells reaching tissue cells with large volume and abundant cytoplasm. Surgery is the preferred treatment, as the effects of steroid administration and radiotherapy are not apparent. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Analysis of high vacuum systems using SINDA'85

    NASA Technical Reports Server (NTRS)

    Spivey, R. A.; Clanton, S. E.; Moore, J. D.

    1993-01-01

    The theory, algorithms, and test data correlation analysis of a math model developed to predict performance of the Space Station Freedom Vacuum Exhaust System are presented. The theory used to predict the flow characteristics of viscous, transition, and molecular flow is presented in detail. Development of user subroutines which predict the flow characteristics in conjunction with the SINDA'85/FLUINT analysis software are discussed. The resistance-capacitance network approach with application to vacuum system analysis is demonstrated and results from the model are correlated with test data. The model was developed to predict the performance of the Space Station Freedom Vacuum Exhaust System. However, the unique use of the user subroutines developed in this model and written into the SINDA'85/FLUINT thermal analysis model provides a powerful tool that can be used to predict the transient performance of vacuum systems and gas flow in tubes of virtually any geometry. This can be accomplished using a resistance-capacitance (R-C) method very similar to the methods used to perform thermal analyses.

  7. Effect of Sensors on the Reliability and Control Performance of Power Circuits in the Web of Things (WoT)

    PubMed Central

    Bae, Sungwoo; Kim, Myungchin

    2016-01-01

    In order to realize a true WoT environment, a reliable power circuit is required to ensure interconnections among a range of WoT devices. This paper presents research on sensors and their effects on the reliability and response characteristics of power circuits in WoT devices. The presented research can be used in various power circuit applications, such as energy harvesting interfaces, photovoltaic systems, and battery management systems for the WoT devices. As power circuits rely on the feedback from voltage/current sensors, the system performance is likely to be affected by the sensor failure rates, sensor dynamic characteristics, and their interface circuits. This study investigated how the operational availability of the power circuits is affected by the sensor failure rates by performing a quantitative reliability analysis. In the analysis process, this paper also includes the effects of various reconstruction and estimation techniques used in power processing circuits (e.g., energy harvesting circuits and photovoltaic systems). This paper also reports how the transient control performance of power circuits is affected by sensor interface circuits. With the frequency domain stability analysis and circuit simulation, it was verified that the interface circuit dynamics may affect the transient response characteristics of power circuits. The verification results in this paper showed that the reliability and control performance of the power circuits can be affected by the sensor types, fault tolerant approaches against sensor failures, and the response characteristics of the sensor interfaces. The analysis results were also verified by experiments using a power circuit prototype. PMID:27608020

  8. Heat Rejection Systems Utilizing Composites and Heat Pipes: Design and Performance Testing

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Beach, Duane E.; Sanzi, James L.

    2007-01-01

    Polymer matrix composites offer the promise of reducing the mass and increasing the performance of future heat rejection systems. With lifetimes for heat rejection systems reaching a decade or more in a micrometeoroid environment, use of multiple heat pipes for fault tolerant design is compelling. The combination of polymer matrix composites and heat pipes is of particular interest for heat rejection systems operating on the lunar surface. A technology development effort is under way to study the performance of two radiator demonstration units manufactured with different polymer matrix composite face sheet resin and bonding adhesives, along with different titanium-water heat pipe designs. Common to the two radiator demonstration units is the use of high thermal conductivity fibers in the face sheets and high thermal conductivity graphite saddles within a light weight aluminum honeycomb core. Testing of the radiator demonstration units included thermal vacuum exposure and thermal vacuum exposure with a simulated heat pipe failure. Steady state performance data were obtained at different operating temperatures to identify heat transfer and thermal resistance characteristics. Heat pipe failure was simulated by removing the input power from an individual heat pipe in order to identify the diminished performance characteristics of the entire panel after a micrometeoroid strike. Freeze-thaw performance was also of interest. This paper presents a summary of the two radiator demonstration units manufactured to support this technology development effort along with the thermal performance characteristics obtained to date. Future work will also be discussed.

  9. A Three-Dimensional Receiver Operator Characteristic Surface Diagnostic Metric

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.

    2011-01-01

    Receiver Operator Characteristic (ROC) curves are commonly applied as metrics for quantifying the performance of binary fault detection systems. An ROC curve provides a visual representation of a detection system s True Positive Rate versus False Positive Rate sensitivity as the detection threshold is varied. The area under the curve provides a measure of fault detection performance independent of the applied detection threshold. While the standard ROC curve is well suited for quantifying binary fault detection performance, it is not suitable for quantifying the classification performance of multi-fault classification problems. Furthermore, it does not provide a measure of diagnostic latency. To address these shortcomings, a novel three-dimensional receiver operator characteristic (3D ROC) surface metric has been developed. This is done by generating and applying two separate curves: the standard ROC curve reflecting fault detection performance, and a second curve reflecting fault classification performance. A third dimension, diagnostic latency, is added giving rise to 3D ROC surfaces. Applying numerical integration techniques, the volumes under and between the surfaces are calculated to produce metrics of the diagnostic system s detection and classification performance. This paper will describe the 3D ROC surface metric in detail, and present an example of its application for quantifying the performance of aircraft engine gas path diagnostic methods. Metric limitations and potential enhancements are also discussed

  10. Characteristics of urban transportation systems. A handbook for transportation planners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1975-05-01

    The objective of the handbook, specifically for use by transportation planners in the evaluation of alternative systems, is to provide a single simplified reference source which characterizes the most important performance characteristics of the following contemporary urban transportation systems: (1) rail (commuter, rapid, and light); (2) local bus and bus rapid transit; (3) automobile-highway system (automobiles and other vehicles); (4) pedestrian assistance systems; and (5) activity center systems--people mover systems that have been installed at airports, zoos, amusement parks, etc. The handbook assesses the supply or performance aspect of urban transportation dealing with passenger demand implicitly. Seven supply parameters studiedmore » are: speed, capacity (service volume), operating cost (vehicle), energy consumption (vehicle or source), pollution, capital cost, and accident frequency.« less

  11. Microfog lubricant application system for advanced turbine engine components, phase 3. [wetting characteristics and deposit forming tendencies of lubricants

    NASA Technical Reports Server (NTRS)

    Petrucco, R. J.; Leonardi, S. J.

    1973-01-01

    The wetting characteristics and deposit forming tendencies of a series of lubricants were evaluated using a microfog jet delivery system to wet a flat heated rotating disc. The performances of the nine lubricants are discussed in terms of the various testing parameters which include temperature, disc speed and lubricant gas flow rates. Also discussed are the heat transfer characteristics of two of the lubricants on that same plane disc specimen. The wetting characteristics and heat transfer characteristics of one of the lubricants on a complex disc simulating bearing geometry are also discussed.

  12. Computer-aided detection (CAD) of breast cancer on full field digital and screening film mammograms

    NASA Astrophysics Data System (ADS)

    Sun, Xuejun; Qian, Wei; Song, Xiaoshan; Qian, Yuyan; Song, Dansheng; Clark, Robert A.

    2003-05-01

    Full-field digital mammography (FFDM) as a new breast imaging modality has potential to detect more breast cancers or to detect them at smaller sizes and earlier stages compared with screening film mammography (SFM). However, its performance needs verification, and it would pose new problems for the development of CAD methods for breast cancer detection and diagnosis. Performance evaluation of CAD systems on FFDM and SFM has been conducted in this study, respectively. First, an adaptive CAD system employing a series of advanced modules has been developed on FFDM. Second, a standardization approach has been developed to make the CAD system independent of characteristics of digitizer or imaging modalities for mammography. CAD systems developed previously for SFM and developed in this study for FFDM have been evaluated on FFDM and SFM images without and with standardization, respectively, to examine the performance improvement of the CAD system developed in this study. Computerized free-response receiver operating characteristic (FROC) analysis has been adopted as performance evaluation method. Compared with previous one, the CAD system developed in this study demonstrated significantly performance improvements. However, the comparison results have shown that the performances of final CAD system in this study are not significantly different on FFDM and on SFM after standardization. It needs further study on the assessment of CAD system performance on FFDM and SFM modalities.

  13. Characterizing Density and Complexity of Imported Cargos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birrer, Nathaniel; Divin, Charles; Glenn, Steven

    X-ray inspection systems are used to detect radiological and nuclear threats in imported cargo. In order to better understand performance of these systems, system imaging capabilities and the characteristics of imported cargo need to be determined. This project involved calculation of the modulation transfer function as a metric of system imaging performance and a study of the density and inhomogeneity of imported cargos, which have been shown to correlate with human analysts, threat detection performance.

  14. Shuttle cryogenic supply system. Optimization study. Volume 5 B-1: Programmers manual for math models

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A computer program for rapid parametric evaluation of various types of cryogenics spacecraft systems is presented. The mathematical techniques of the program provide the capability for in-depth analysis combined with rapid problem solution for the production of a large quantity of soundly based trade-study data. The program requires a large data bank capable of providing characteristics performance data for a wide variety of component assemblies used in cryogenic systems. The program data requirements are divided into: (1) the semipermanent data tables and source data for performance characteristics and (2) the variable input data which contains input parameters which may be perturbated for parametric system studies.

  15. Task five report: Laser communications for data acquisition networks. [characteristics of lasers and laser systems for optical communication applications

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Laser communication technology and laser communication performance are reviewed. The subjects discussed are: (1) characteristics of laser communication systems, (2) laser technology problems, (3) means of overcoming laser technology problems, and (4) potential schedule for including laser communications into data acquisition networks. Various types of laser communication systems are described and their capabilities are defined.

  16. Guidance, Navigation, and Control Considerations for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Mitchell, Doyce P.; Kim, Tony

    2015-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation NTP system could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of a first generation NTP in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NTP project could also help enable high performance fission power systems and Nuclear Electric Propulsion (NEP). Guidance, navigation, and control of NTP may have some unique but manageable characteristics.

  17. Effect of backgrounding system on feedlot performance and carcass characteristics of beef steers

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to evaluate feedlot performance and carcass characteristics of steers that were backgrounded using 1 of 3 treatments: 1) corn residue grazing supplemented 6 days a week with 2.77 kg DM/hd of distillers (CRD), 2) oat-brassica forage grazing (OBF) or 3) drylotting on a ...

  18. Inlet Performance Characteristics from Wind-Tunnel Tests of a 0.10-Scale Air-Induction System Model of the YF-108A Airplane at Mach Numbers of 2.50, 2.76, and 3.00

    NASA Technical Reports Server (NTRS)

    Blackaby, James R.; Lyman, E. Gene; Altermann, John A., III

    1959-01-01

    Inlet-performance and external-drag-coefficient characteristics are presented without analysis. Effects are shown of variations of fuselage boundary-layer diverter profile, bleed-surface porosity, bleed-exit area, and inlet ramp, and lip angle.

  19. A Computer-Aided Diagnosis System Using Artificial Intelligence for the Diagnosis and Characterization of Thyroid Nodules on Ultrasound: Initial Clinical Assessment.

    PubMed

    Choi, Young Jun; Baek, Jung Hwan; Park, Hye Sun; Shim, Woo Hyun; Kim, Tae Yong; Shong, Young Kee; Lee, Jeong Hyun

    2017-04-01

    An initial clinical assessment is described of a new, commercially available, computer-aided diagnosis (CAD) system using artificial intelligence (AI) for thyroid ultrasound, and its performance is evaluated in the diagnosis of malignant thyroid nodules and categorization of nodule characteristics. Patients with thyroid nodules with decisive diagnosis, whether benign or malignant, were consecutively enrolled from November 2015 to February 2016. An experienced radiologist reviewed the ultrasound image characteristics of the thyroid nodules, while another radiologist assessed the same thyroid nodules using the CAD system, providing ultrasound characteristics and a diagnosis of whether nodules were benign or malignant. The diagnostic performance and agreement of US characteristics between the experienced radiologist and the CAD system were compared. In total, 102 thyroid nodules from 89 patients were included; 59 (57.8%) were benign and 43 (42.2%) were malignant. The CAD system showed a similar sensitivity as the experienced radiologist (90.7% vs. 88.4%, p > 0.99), but a lower specificity and a lower area under the receiver operating characteristic (AUROC) curve (specificity: 74.6% vs. 94.9%, p = 0.002; AUROC: 0.83 vs. 0.92, p = 0.021). Classifications of the ultrasound characteristics (composition, orientation, echogenicity, and spongiform) between radiologist and CAD system were in substantial agreement (κ = 0.659, 0.740, 0.733, and 0.658, respectively), while the margin showed a fair agreement (κ = 0.239). The sensitivity of the CAD system using AI for malignant thyroid nodules was as good as that of the experienced radiologist, while specificity and accuracy were lower than those of the experienced radiologist. The CAD system showed an acceptable agreement with the experienced radiologist for characterization of thyroid nodules.

  20. Working parameters affecting earth-air heat exchanger (EAHE) system performance for passive cooling: A review

    NASA Astrophysics Data System (ADS)

    Darius, D.; Misaran, M. S.; Rahman, Md. M.; Ismail, M. A.; Amaludin, A.

    2017-07-01

    The study on the effect of the working parameters such as pipe material, pipe length, pipe diameter, depth of burial of the pipe, air flow rate and different types of soils on the thermal performance of earth-air heat exchanger (EAHE) systems is very crucial to ensure that thermal comfort can be achieved. In the past decade, researchers have performed studies to develop numerical models for analysis of EAHE systems. Until recently, two-dimensional models replaced the numerical models in the 1990s and in recent times, more advanced analysis using three-dimensional models, specifically the Computational Fluid Dynamics (CFD) simulation in the analysis of EAHE system. This paper reviews previous models used to analyse the EAHE system and working parameters that affects the earth-air heat exchanger (EAHE) thermal performance as of February 2017. Recent findings on the parameters affecting EAHE performance are also presented and discussed. As a conclusion, with the advent of CFD methods, investigational work have geared up to modelling and simulation work as it saves time and cost. Comprehension of the EAHE working parameters and its effect on system performance is largely established. However, the study on type of soil and its characteristics on the performance of EAHEs systems are surprisingly barren. Therefore, future studies should focus on the effect of soil characteristics such as moisture content, density of soil, and type of soil on the thermal performance of EAHEs system.

  1. A thermodynamic analysis of a solar-powered jet refrigeration system

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.; Chai, V. W.

    1980-01-01

    The article describes and analyzes a method of using solar energy to drive a jet refrigeration system. A new technique is presented in the form of a performance nomogram combining the energy and momentum equations to determine the performance characteristics. A numerical example, using water as the working fluid, is given to illustrate the nomogram procedure. The resulting coefficient of performance was found comparable with other refrigeration systems such as the solar-absorption system or the solar-Rankine turbocompressor system.

  2. A randomized comparison of laparoscopic, flexible endoscopic, and wired and wireless magnetic cameras on ex vivo and in vivo NOTES surgical performance.

    PubMed

    Chang, Victoria C; Tang, Shou-Jiang; Swain, C Paul; Bergs, Richard; Paramo, Juan; Hogg, Deborah C; Fernandez, Raul; Cadeddu, Jeffrey A; Scott, Daniel J

    2013-08-01

    The influence of endoscopic video camera (VC) image quality on surgical performance has not been studied. Flexible endoscopes are used as substitutes for laparoscopes in natural orifice translumenal endoscopic surgery (NOTES), but their optics are originally designed for intralumenal use. Manipulable wired or wireless independent VCs might offer advantages for NOTES but are still under development. To measure the optical characteristics of 4 VC systems and to compare their impact on the performance of surgical suturing tasks. VC systems included a laparoscope (Storz 10 mm), a flexible endoscope (Olympus GIF 160), and 2 prototype deployable cameras (magnetic anchoring and guidance system [MAGS] Camera and PillCam). In a randomized fashion, the 4 systems were evaluated regarding standardized optical characteristics and surgical manipulations of previously validated ex vivo (fundamentals of laparoscopic surgery model) and in vivo (live porcine Nissen model) tasks; objective metrics (time and errors/precision) and combined surgeon (n = 2) performance were recorded. Subtle differences were detected for color tests, and field of view was variable (65°-115°). Suitable resolution was detected up to 10 cm for the laparoscope and MAGS camera but only at closer distances for the endoscope and PillCam. Compared with the laparoscope, surgical suturing performances were modestly lower for the MAGS camera and significantly lower for the endoscope (ex vivo) and PillCam (ex vivo and in vivo). This study documented distinct differences in VC systems that may be used for NOTES in terms of both optical characteristics and surgical performance. Additional work is warranted to optimize cameras for NOTES. Deployable systems may be especially well suited for this purpose.

  3. Future applications of associative processor systems to operational KSC systems for optimizing cost and enhancing performance characteristics

    NASA Technical Reports Server (NTRS)

    Perkinson, J. A.

    1974-01-01

    The application of associative memory processor equipment to conventional host processors type systems is discussed. Efforts were made to demonstrate how such application relieves the task burden of conventional systems, and enhance system speed and efficiency. Data cover comparative theoretical performance analysis, demonstration of expanded growth capabilities, and demonstrations of actual hardware in simulated environment.

  4. Development of advanced fuel cell system, phase 2

    NASA Technical Reports Server (NTRS)

    Handley, L. M.; Meyer, A. P.; Bell, W. F.

    1973-01-01

    A multiple task research and development program was performed to improve the weight, life, and performance characteristics of hydrogen-oxygen alkaline fuel cells for advanced power systems. Development and characterization of a very stable gold alloy catalyst was continued from Phase I of the program. A polymer material for fabrication of cell structural components was identified and its long term compatibility with the fuel cell environment was demonstrated in cell tests. Full scale partial cell stacks, with advanced design closed cycle evaporative coolers, were tested. The characteristics demonstrated in these tests verified the feasibility of developing the engineering model system concept into an advanced lightweight long life powerplant.

  5. Study on multiple-hops performance of MOOC sequences-based optical labels for OPS networks

    NASA Astrophysics Data System (ADS)

    Zhang, Chongfu; Qiu, Kun; Ma, Chunli

    2009-11-01

    In this paper, we utilize a new study method that is under independent case of multiple optical orthogonal codes to derive the probability function of MOOCS-OPS networks, discuss the performance characteristics for a variety of parameters, and compare some characteristics of the system employed by single optical orthogonal code or multiple optical orthogonal codes sequences-based optical labels. The performance of the system is also calculated, and our results verify that the method is effective. Additionally it is found that performance of MOOCS-OPS networks would, negatively, be worsened, compared with single optical orthogonal code-based optical label for optical packet switching (SOOC-OPS); however, MOOCS-OPS networks can greatly enlarge the scalability of optical packet switching networks.

  6. Moving Large Data Sets Over High-Performance Long Distance Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodson, Stephen W; Poole, Stephen W; Ruwart, Thomas

    2011-04-01

    In this project we look at the performance characteristics of three tools used to move large data sets over dedicated long distance networking infrastructure. Although performance studies of wide area networks have been a frequent topic of interest, performance analyses have tended to focus on network latency characteristics and peak throughput using network traffic generators. In this study we instead perform an end-to-end long distance networking analysis that includes reading large data sets from a source file system and committing large data sets to a destination file system. An evaluation of end-to-end data movement is also an evaluation of themore » system configurations employed and the tools used to move the data. For this paper, we have built several storage platforms and connected them with a high performance long distance network configuration. We use these systems to analyze the capabilities of three data movement tools: BBcp, GridFTP, and XDD. Our studies demonstrate that existing data movement tools do not provide efficient performance levels or exercise the storage devices in their highest performance modes. We describe the device information required to achieve high levels of I/O performance and discuss how this data is applicable in use cases beyond data movement performance.« less

  7. Research study on IPS digital controller design

    NASA Technical Reports Server (NTRS)

    Kuo, B. C.; Folkerts, C.

    1976-01-01

    The performance is investigated of the simplified continuous-data model of the Instrument Pointing System (IPS). Although the ultimate objective is to study the digital model of the system, knowledge on the performance of the continuous-data model is important in the sense that the characteristics of the digital system should approach those of the continuous-data system as the sampling period approaches zero.

  8. The high intensity solar cell: Key to low cost photovoltaic power

    NASA Technical Reports Server (NTRS)

    Sater, B. L.; Goradia, C.

    1975-01-01

    The design considerations and performance characteristics of the 'high intensity' (HI) solar cell are presented. A high intensity solar system was analyzed to determine its cost effectiveness and to assess the benefits of further improving HI cell efficiency. It is shown that residential sized systems can be produced at less than $1000/kW peak electric power. Due to their superior high intensity performance characteristics compared to the conventional and VMJ cells, HI cells and light concentrators may be the key to low cost photovoltaic power.

  9. Research on influence factor about the dynamic characteristic of armored vehicle hydraulic-driven fan system

    NASA Astrophysics Data System (ADS)

    Chao, Zhiqiang; Mao, Feiyue; Liu, Xiangbo; Li, Huaying; Han, Shousong

    2017-01-01

    In view of the large power of armored vehicle cooling system, the demand for high fan speed control and energy saving, this paper expounds the basic composition and principle of hydraulic-driven fan system and establishes the mathematical model of the system. Through the simulation analysis of different parameters, such as displacement of motor and working volume of fan system, the influences of performance parameters on the dynamic characteristic of hydraulic-driven fan system are obtained, which can provide theoretical guidance for system optimization design.

  10. Morgantown Personal Rapid Transit Longitudinal Control System Design Summary

    DOT National Transportation Integrated Search

    1975-12-01

    Experience with the longitudinal control system used on each vehicle in the Morgantown Personal Rapid Transit System has shown that nonlinearities and variations in control system parameters can significantly affect performance if such characteristic...

  11. Performance evaluation of Space Shuttle SRB parachutes from air drop and scaled model wind tunnel tests. [Solid Rocket Booster recovery system

    NASA Technical Reports Server (NTRS)

    Moog, R. D.; Bacchus, D. L.; Utreja, L. R.

    1979-01-01

    The aerodynamic performance characteristics have been determined for the Space Shuttle Solid Rocket Booster drogue, main, and pilot parachutes. The performance evaluation on the 20-degree conical ribbon parachutes is based primarily on air drop tests of full scale prototype parachutes. In addition, parametric wind tunnel tests were performed and used in parachute configuration development and preliminary performance assessments. The wind tunnel test data are compared to the drop test results and both sets of data are used to determine the predicted performance of the Solid Rocket Booster flight parachutes. Data from other drop tests of large ribbon parachutes are also compared with the Solid Rocket Booster parachute performance characteristics. Parameters assessed include full open terminal drag coefficients, reefed drag area, opening characteristics, clustering effects, and forebody interference.

  12. Evaluation of full depth asphaltic concrete pavements : interim report.

    DOT National Transportation Integrated Search

    1975-02-01

    This report provides a review of the performance and structural characteristics exhibited on two full depth asphaltic concrete pavement projects constructed on the Louisiana interstate system. : The roughness characteristics of both full depth projec...

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friese, Ryan; Khemka, Bhavesh; Maciejewski, Anthony A

    Rising costs of energy consumption and an ongoing effort for increases in computing performance are leading to a significant need for energy-efficient computing. Before systems such as supercomputers, servers, and datacenters can begin operating in an energy-efficient manner, the energy consumption and performance characteristics of the system must be analyzed. In this paper, we provide an analysis framework that will allow a system administrator to investigate the tradeoffs between system energy consumption and utility earned by a system (as a measure of system performance). We model these trade-offs as a bi-objective resource allocation problem. We use a popular multi-objective geneticmore » algorithm to construct Pareto fronts to illustrate how different resource allocations can cause a system to consume significantly different amounts of energy and earn different amounts of utility. We demonstrate our analysis framework using real data collected from online benchmarks, and further provide a method to create larger data sets that exhibit similar heterogeneity characteristics to real data sets. This analysis framework can provide system administrators with insight to make intelligent scheduling decisions based on the energy and utility needs of their systems.« less

  14. The Influence of Glazing Systems on the Energy Performance of Low-Rise Commercial Buildings.

    DTIC Science & Technology

    1985-05-01

    calculating the solar flux through the glazing system, the overall transmittance and absorptance of each layer as a function of the angle of...SYSTEM CHARACTERISTICS ...... ............... 16 3.1 Solar Optical Properties .... ............. 16 3.2 Heat Transfer_.. ...... ............... 18 3.3...building types, carries through to the occupancy characteristics and internal loading assignments. Solar glazing film has been studied (Treado,et al.,1983b

  15. Aircraft Research and Technology for Future Fuels

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The potential characteristics of future aviation turbine fuels and the property effects of these fuels on propulsion system components are examined. The topics that are discussed include jet fuel supply and demand trends, the effects of refining variables on fuel properties, shekle oil processing, the characteristics of broadened property fuels, the effects of fuel property variations on combustor and fuel system performance, and combuster and fuel system technology for broadened property fuels.

  16. Li Anode Technology for Improved Performance

    NASA Technical Reports Server (NTRS)

    Chen, Tuqiang

    2011-01-01

    A novel, low-cost approach to stabilization of Li metal anodes for high-performance rechargeable batteries was developed. Electrolyte additives are selected and used in Li cell electrolyte systems, promoting formation of a protective coating on Li metal anodes for improved cycle and safety performance. Li batteries developed from the new system will show significantly improved battery performance characteristics, including energy/power density, cycle/ calendar life, cost, and safety.

  17. Neutron and gamma irradiation effects on power semiconductor switches

    NASA Technical Reports Server (NTRS)

    Schwarze, G. E.; Frasca, A. J.

    1990-01-01

    The performance characteristics of high-power semiconductor switches subjected to high levels of neutron fluence and gamma dose must be known by the designer of the power conditioning, control and transmission subsystem of space nuclear power systems. Location and the allowable shielding mass budget will determine the level of radiation tolerance required by the switches to meet performance and reliability requirements. Neutron and gamma ray interactions with semiconductor materials and how these interactions affect the electrical and switching characteristics of solid state power switches is discussed. The experimental measurement system and radiation facilities are described. Experimental data showing the effects of neutron and gamma irradiation on the performance characteristics are given for power-type NPN Bipolar Junction Transistors (BJTs), and Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs). BJTs show a rapid decrease in gain, blocking voltage, and storage time for neutron irradiation, and MOSFETs show a rapid decrease in the gate threshold voltage for gamma irradiation.

  18. Neutron and gamma irradiation effects on power semiconductor switches

    NASA Technical Reports Server (NTRS)

    Schwarze, G. E.; Frasca, A. J.

    1990-01-01

    The performance characteristics of high power semiconductor switches subjected to high levels of neutron fluence and gamma dose must be known by the designer of the power conditioning, control and transmission subsystem of space nuclear power systems. Location and the allowable shielding mass budget will determine the level of radiation tolerance required by the switches to meet performance and reliability requirements. Neutron and gamma ray interactions with semiconductor materials and how these interactions affect the electrical and switching characteristics of solid state power switches is discussed. The experimental measurement system and radiation facilities are described. Experimental data showing the effects of neutron and gamma irradiation on the performance characteristics are given for power-type NPN Bipolar Junction Transistors (BJTs), and Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs). BJTs show a rapid decrease in gain, blocking voltage, and storage time for neutron irradiation, and MOSFETs show a rapid decrease in the gate threshold voltage for gamma irradiation.

  19. Computer controlled performance mapping of thermionic converters: effect of collector, guard-ring potential imbalances on the observed collector current-density, voltage characteristics and limited range performance map of an etched-rhenium, niobium planar converter

    NASA Technical Reports Server (NTRS)

    Manista, E. J.

    1972-01-01

    The effect of collector, guard-ring potential imbalance on the observed collector-current-density J, collector-to-emitter voltage V characteristic was evaluated in a planar, fixed-space, guard-ringed thermionic converter. The J,V characteristic was swept in a period of 15 msec by a variable load. A computerized data acquisition system recorded test parameters. The results indicate minimal distortion of the J,V curve in the power output quadrant for the nominal guard-ring circuit configuration. Considerable distortion, along with a lowering of the ignited-mode striking voltage, was observed for the configuration with the emitter shorted to the guard ring. A limited-range performance map of an etched-rhenium, niobium, planar converter was obtained by using an improved computer program for the data acquisition system.

  20. Two-year study: Effect of backgrounding system on growing and finishing performance and carcass characteristics of beef steers

    USDA-ARS?s Scientific Manuscript database

    A 2-yr study evaluated growing and finishing performance, as well as carcass characteristics of spring-born calves backgrounded using 1 of 3 treatments: 1) corn residue grazing supplemented 6 d/wk with 2.77 kg DM/head of distillers (CRD), 2) oat-brassica forage grazing (OBF), or 3) drylotting on a g...

  1. Towards autonomous fuzzy control

    NASA Technical Reports Server (NTRS)

    Shenoi, Sujeet; Ramer, Arthur

    1993-01-01

    The efficient implementation of on-line adaptation in real time is an important research problem in fuzzy control. The goal is to develop autonomous self-organizing controllers employing system-independent control meta-knowledge which enables them to adjust their control policies depending on the systems they control and the environments in which they operate. An autonomous fuzzy controller would continuously observe system behavior while implementing its control actions and would use the outcomes of these actions to refine its control policy. It could be designed to lie dormant when its control actions give rise to adequate performance characteristics but could rapidly and autonomously initiate real-time adaptation whenever its performance degrades. Such an autonomous fuzzy controller would have immense practical value. It could accommodate individual variations in system characteristics and also compensate for degradations in system characteristics caused by wear and tear. It could also potentially deal with black-box systems and control scenarios. On-going research in autonomous fuzzy control is reported. The ultimate research objective is to develop robust and relatively inexpensive autonomous fuzzy control hardware suitable for use in real time environments.

  2. Dynamic characteristics of a 20 kHz resonant power system - Fault identification and fault recovery

    NASA Technical Reports Server (NTRS)

    Wasynczuk, O.

    1988-01-01

    A detailed simulation of a dc inductor resonant driver and receiver is used to demonstrate the transient characteristics of a 20 kHz resonant power system during fault and overload conditions. The simulated system consists of a dc inductor resonant inverter (driver), a 50-meter transmission cable, and a dc inductor resonant receiver load. Of particular interest are the driver and receiver performance during fault and overload conditions and on the recovery characteristics following removal of the fault. The information gained from these studies sets the stage for further work in fault identification and autonomous power system control.

  3. The role of the hospital and health care system characteristics in readmissions after major surgery in California.

    PubMed

    Chen, Joy C; Shaw, Jeremy D; Ma, Yifei; Rhoads, Kim F

    2016-02-01

    Hospital readmission after major surgery is a costly problem that has been associated with patient characteristics. Because hospitals are incentivized to join accountable care organizations, interventions on a hospital or health care system level may help reduce readmissions. Our objective was to identify hospital- and systems-level characteristics associated with readmissions after major operative procedures. Retrospective analysis of California discharge abstracts with record linkage numbers for adult patients undergoing coronary artery bypass graft (CABG), colectomy or total hip/knee arthroplasty (TJA) in California acute, nonfederal hospitals in 2011. The record linkage number showed where patients were readmitted. Hierarchic logistic regression estimated the odds of readmission by hospital characteristics. There were 91,205 records analyzed: CABG (6.4%), colectomy (12.0%), and TJA (82.3%). There were 120 hospitals that performed CABG surgery; 296 performed colectomy; and 298 performed TJA. Readmission rates after CABG was 9.7%, colectomy 7.7%, and TJA 3.9%. After adjustment for patient factors, rural location was predictive of readmission after colectomy (odds ratio [OR] 2.08, 95% confidence interval [CI] 1.40-3.08). Low-volume (OR 1.54, 95% CI 1.13-2.10) and minority-serving hospitals (OR 1.18, 95% CI 1.05-1.33) were associated with greater odds of readmission after TJA. Select hospital characteristics are associated with readmissions after major operative procedures. Because financial penalties may worsen performance in vulnerable or low-resource settings, policies aimed at reducing readmissions should be attentive to the potential unintended consequences. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Relationship between quality of care and choice of clinical computing system: retrospective analysis of family practice performance under the UK's quality and outcomes framework.

    PubMed

    Kontopantelis, Evangelos; Buchan, Iain; Reeves, David; Checkland, Kath; Doran, Tim

    2013-08-02

    To investigate the relationship between performance on the UK Quality and Outcomes Framework pay-for-performance scheme and choice of clinical computer system. Retrospective longitudinal study. Data for 2007-2008 to 2010-2011, extracted from the clinical computer systems of general practices in England. All English practices participating in the pay-for-performance scheme: average 8257 each year, covering over 99% of the English population registered with a general practice. Levels of achievement on 62 quality-of-care indicators, measured as: reported achievement (levels of care after excluding inappropriate patients); population achievement (levels of care for all patients with the relevant condition) and percentage of available quality points attained. Multilevel mixed effects multiple linear regression models were used to identify population, practice and clinical computing system predictors of achievement. Seven clinical computer systems were consistently active in the study period, collectively holding approximately 99% of the market share. Of all population and practice characteristics assessed, choice of clinical computing system was the strongest predictor of performance across all three outcome measures. Differences between systems were greatest for intermediate outcomes indicators (eg, control of cholesterol levels). Under the UK's pay-for-performance scheme, differences in practice performance were associated with the choice of clinical computing system. This raises the question of whether particular system characteristics facilitate higher quality of care, better data recording or both. Inconsistencies across systems need to be understood and addressed, and researchers need to be cautious when generalising findings from samples of providers using a single computing system.

  5. Development of simulation techniques suitable for the analysis of air traffic control situations and instrumentation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A terminal area simulation is described which permits analysis and synthesis of current and advanced air traffic management system configurations including ground and airborne instrumentation and new and modified aircraft characteristics. Ground elements in the simulation include navigation aids, surveillance radars, communication links, air-route structuring, ATC procedures, airport geometries and runway handling constraints. Airborne elements include traffic samples with individual aircraft performance and operating characteristics and aircraft navigation equipment. The simulation also contains algorithms for conflict detection, conflict resolution, sequencing and pilot-controller data links. The simulation model is used to determine the sensitivities of terminal area traffic flow, safety and congestion to aircraft performance characteristics, avionics systems, and other ATC elements.

  6. Analysis of Professional and Pre-Accession Characteristics and Junior Naval Officer Performance

    DTIC Science & Technology

    2018-03-01

    REVIEW .............................................5 A. NAVY PERFORMANCE EVALUATION SYSTEM ............................5 B. PROFESSIONAL...17 A. DATA DESCRIPTION ...........................................................................17 B. SUMMARY...STATISTICS ......................................................................24 C. DESCRIPTIVE STATISTICS

  7. Performance of the Mayo-IBM PAC system

    NASA Astrophysics Data System (ADS)

    Persons, Kenneth R.; Reardon, Frank J.; Gehring, Dale G.; Hangiandreou, Nicholas J.

    1994-05-01

    The Mayo Clinic and IBM (at Rochester, Minnesota) have jointly developed a picture archived system for use with Mayo's MRI and CT imaging modalities. This PACS is made up of over 50 computers that work cooperatively to provide archival, retrieval and image distribution services for Mayo's Department of Radiology. This paper will examine the performance characteristics of the system.

  8. Analysis of Performance of Jet Engine from Characteristics of Components II : Interaction of Components as Determined from Engine Operation

    NASA Technical Reports Server (NTRS)

    Goldstein, Arthur W; Alpert, Sumner; Beede, William; Kovach, Karl

    1949-01-01

    In order to understand the operation and the interaction of jet-engine components during engine operation and to determine how component characteristics may be used to compute engine performance, a method to analyze and to estimate performance of such engines was devised and applied to the study of the characteristics of a research turbojet engine built for this investigation. An attempt was made to correlate turbine performance obtained from engine experiments with that obtained by the simpler procedure of separately calibrating the turbine with cold air as a driving fluid in order to investigate the applicability of component calibration. The system of analysis was also applied to prediction of the engine and component performance with assumed modifications of the burner and bearing characteristics, to prediction of component and engine operation during engine acceleration, and to estimates of the performance of the engine and the components when the exhaust gas was used to drive a power turbine.

  9. Microwave system performance for a solar power satellite during startup/shutdown operations

    NASA Technical Reports Server (NTRS)

    Arndt, G. D.; Berlin, L. A.

    1979-01-01

    The paper investigates the system performance and antenna characteristics under startup/shutdown conditions for the high power beam from a solar power satellite. Attention is given to the present microwave system reference configuration together with the dc power distribution system in the solar array and in the antenna. The pattern characteristics for the main beam, sidelobes, and grating lobes are examined for eight types of energizing configurations which include: random sequences, two types of concentric circles, and three types of line strips. In conclusion, it is noted that a proper choice of sequences should not cause environmental problems due to increased microwave radiation levels during the short time periods of energizing and de-energizing the antenna.

  10. Theoretical studies of system performance and adaptive optics design parameters

    NASA Astrophysics Data System (ADS)

    Tyson, Robert K.

    1990-08-01

    The ultimate performance of an adaptive optics (AO) system can be sensitive to specific design parameters of individual components. The type and configuration of a wavefront sensor or the shape of individual deformable mirror actuator influence functions can have a profound effect on the correctability of the AO system. This paper will discuss the results of a theoretical study which employed both closed form analytic solutions and computer models. A parametric analysis of wavefront sensor characteristics, noise, and subaperture geometry are independently evaluated against system response to an aberrated wave characteristic of atmospheric turbulence. Similarly, the shape and extent of the deformable mirror influence function and the placement and number of actuators is evaluated to characterize the effects of fitting error and coupling.

  11. F-15/nonaxisymmetric nozzle system integration study support program

    NASA Technical Reports Server (NTRS)

    Stevens, H. L.

    1978-01-01

    Nozzle and cooling methods were defined and analyzed to provide a viable system for demonstration 2-D nozzle technology on the F-15 aircraft. Two candidate cooling systems applied to each nozzle were evaluated. The F-100 engine mount and case modifications requirements were analyzed and the actuation and control system requirements for two dimensional nozzles were defined. Nozzle performance changes relative to the axisymmetric baseline nozzle were evaluated and performance and weight characteristics for axisymmetric reference configurations were estimated. The infrared radiation characteristics of these nozzles installed on the F-100 engine were predicted. A full scale development plan with associated costs to carry the F100 engine/two-dimensional (2-D) nozzle through flight tests was defined.

  12. Liquid Oxygen/Liquid Methane Integrated Propulsion System Test Bed

    NASA Technical Reports Server (NTRS)

    Flynn, Howard; Lusby, Brian; Villemarette, Mark

    2011-01-01

    In support of NASA?s Propulsion and Cryogenic Advanced Development (PCAD) project, a liquid oxygen (LO2)/liquid methane (LCH4) Integrated Propulsion System Test Bed (IPSTB) was designed and advanced to the Critical Design Review (CDR) stage at the Johnson Space Center. The IPSTB?s primary objectives are to study LO2/LCH4 propulsion system steady state and transient performance, operational characteristics and to validate fluid and thermal models of a LO2/LCH4 propulsion system for use in future flight design work. Two phase thermal and dynamic fluid flow models of the IPSTB were built to predict the system performance characteristics under a variety of operating modes and to aid in the overall system design work. While at ambient temperature and simulated altitude conditions at the White Sands Test Facility, the IPSTB and its approximately 600 channels of system instrumentation would be operated to perform a variety of integrated main engine and reaction control engine hot fire tests. The pressure, temperature, and flow rate data collected during this testing would then be used to validate the analytical models of the IPSTB?s thermal and dynamic fluid flow performance. An overview of the IPSTB design and analytical model development will be presented.

  13. Booster Main Engine Selection Criteria for the Liquid Fly-Back Booster

    NASA Technical Reports Server (NTRS)

    Ryan, Richard M.; Rothschild, William J.; Christensen, David L.

    1998-01-01

    The Liquid Fly-Back Booster (LFBB) Program seeks to enhance the Space Shuttle system safety, performance and economy of operations through the use of an advanced, liquid propellant Booster Main Engine (BME). There are several viable BME candidates that could be suitable for this application. The objective of this study was to identify the key Criteria to be applied in selecting among these BME candidates. This study involved an assessment of influences on the overall LFBB utility due to variations in the candidate rocket-engines characteristics. This includes BME impacts on vehicle system weight, performance, design approaches, abort modes, margins of safety, engine-out operations, and maintenance and support concepts. Systems engineering analyses and trade studies were performed to identify the LFBB system level sensitivities to a wide variety of BME related parameters. This presentation summarizes these trade studies and the resulting findings of the LFBB design teams regarding the BME characteristics that most significantly affect the LFBB system. The resulting BME choice should offer the best combination of reliability, performance, reusability, robustness, cost, and risk for the LFBB program.

  14. Characteristics of an Optical Delay Line for Radar Testing

    DTIC Science & Technology

    2016-04-12

    MANUFACTURER PERFORMANCE MEASUREMENT ....................................... 2 3 NRL PERFORMANCE MEASUREMENT ...Third-Order-Intercept (TOI) ................... 7 3.4 Phase Noise Measurement ...MANUFACTURER PERFORMANCE MEASUREMENT Figures 3 to 5 are the Miteq’s FODL performance measured by the manufacturer prior to shipping the system to NRL

  15. The diagnosis and forecast system of hydrometeorological characteristics for the White, Barents, Kara and Pechora Seas

    NASA Astrophysics Data System (ADS)

    Fomin, Vladimir; Diansky, Nikolay; Gusev, Anatoly; Kabatchenko, Ilia; Panasenkova, Irina

    2017-04-01

    The diagnosis and forecast system for simulating hydrometeorological characteristics of the Russian Western Arctic seas is presented. It performs atmospheric forcing computation with the regional non-hydrostatic atmosphere model Weather Research and Forecasting model (WRF) with spatial resolution 15 km, as well as computation of circulation, sea level, temperature, salinity and sea ice with the marine circulation model INMOM (Institute of Numerical Mathematics Ocean Model) with spatial resolution 2.7 km, and the computation of wind wave parameters using the Russian wind-wave model (RWWM) with spatial resolution 5 km. Verification of the meteorological characteristics is done for air temperature, air pressure, wind velocity, water temperature, currents, sea level anomaly, wave characteristics such as wave height and wave period. The results of the hydrometeorological characteristic verification are presented for both retrospective and forecast computations. The retrospective simulation of the hydrometeorological characteristics for the White, Barents, Kara and Pechora Seas was performed with the diagnosis and forecast system for the period 1986-2015. The important features of the Kara Sea circulation are presented. Water exchange between Pechora and Kara Seas is described. The importance is shown of using non-hydrostatic atmospheric circulation model for the atmospheric forcing computation in coastal areas. According to the computation results, extreme values of hydrometeorological characteristics were obtained for the Russian Western Arctic seas.

  16. Life characteristics assessment of the communications technology satellite transmitter experiment package

    NASA Technical Reports Server (NTRS)

    Smetana, J.; Curren, A. N.

    1979-01-01

    The performance characteristics of the transmitter experiment package (TEP) aboard the Communications Technology Satellite (CTS) measured during its first 2 years in orbit are presented. The TEP consists of a nominal 200 watt output stage tube (OST), a supporting power processing system (PPS), and a variable conductance heat pipe system (VCHPS). The OST, a traveling wave tube augmented with a 10 stage depressed collector has an overall saturated average efficiency of 51.5 percent and an average saturated radio frequency (rf) output power at center band frequency of 240 watts. The PPS operated with a measured efficiency of 86.5 to 88.5 percent. The VCHPS, using three pipes to conduct heat from the PPS and the OST to a 52 by 124 centimeter radiator fin, maintained the PPS baseplate temperature below 50 C for all operating conditions. The TEP performance characteristics presented include frequency response, rf output power, thermal performance, and efficiency. Communications characteristics were evaluated by using both video and audio modulated signals. On four occasions, the TEP experienced temporary thermal control system malfunctions. The anomalies were terminated safely, and the problem was investigated because of the potential for TEP damage due to the signficant temperature increases. Safe TEP operating procedures were established.

  17. PC-402 Pioneer Venus orbiter spacecraft mission operational characteristics document

    NASA Technical Reports Server (NTRS)

    Barker, F. C.; Butterworth, L. W.; Daniel, R. E.; Drean, R. J.; Filetti, K. A.; Fisher, J. N.; Nowak, L. A.; Porzucki, J.; Salvatore, J. O.; Tadler, G. A.

    1978-01-01

    The operational characteristics of the Orbiter spacecraft and its subsystems are described. In extensive detail. Description of the nominal phases, system interfaces, and the capabilities and limitations of system level performance are included along with functional and operational descriptions at the subsystem and unit level the subtleties of nominal operation as well as detailed capabilities and limitations beyond nominal performance are discussed. A command and telemetry logic flow diagram for each subsystem is included. Each diagram encountered along each command signal path into, and each telemetry signal path out of the subsystem. Normal operating modes that correspond to the performance of specific functions at the time of specific events in the mission are also discussed. Principal backup means of performing the normal Orbiter operating modes are included.

  18. Heat Shielding Characteristics and Thermostructural Performance of a Superalloy Honeycomb Sandwich Thermal Protection System (TPS)

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    2004-01-01

    Heat-transfer, thermal bending, and mechanical buckling analyses have been performed on a superalloy "honeycomb" thermal protection system (TPS) for future hypersonic flight vehicles. The studies focus on the effect of honeycomb cell geometry on the TPS heat-shielding performance, honeycomb cell wall buckling characteristics, and the effect of boundary conditions on the TPS thermal bending behavior. The results of the study show that the heat-shielding performance of a TPS panel is very sensitive to change in honeycomb core depth, but insensitive to change in honeycomb cell cross-sectional shape. The thermal deformations and thermal stresses in the TPS panel are found to be very sensitive to the edge support conditions. Slight corrugation of the honeycomb cell walls can greatly increase their buckling strength.

  19. Transfer function tests of the Joy longwall shearer

    NASA Technical Reports Server (NTRS)

    Fisher, P. H., Jr.

    1978-01-01

    A series of operational tests was performed on the Joy longwall shearer located at the Bureau of Mines in Bructon, Pennsylvania. The purpose of these tests was to determine the transfer function and operational characteristics of the system. These characteristics will be used to generate a simulation model of the longwall shearer used in the development of the closed-loop vertical control system.

  20. Research on simulation system with the wide range and high-precision laser energy characteristics

    NASA Astrophysics Data System (ADS)

    Dong, Ke-yan; Lou, Yan; He, Jing-yi; Tong, Shou-feng; Jiang, Hui-lin

    2012-10-01

    The Hardware-in-the-loop(HWIL) simulation test is one of the important parts for the development and performance testing of semi-active laser-guided weapons. In order to obtain accurate results, the confidence level of the target environment should be provided for a high-seeker during the HWIL simulation test of semi-active laser-guided weapons, and one of the important simulation parameters is the laser energy characteristic. In this paper, based on the semi-active laser-guided weapon guidance principles, an important parameter of simulation of confidence which affects energy characteristics in performance test of HWIL simulation was analyzed. According to the principle of receiving the same energy by using HWIL simulation and in practical application, HWIL energy characteristics simulation systems with the crystal absorption structure was designed. And on this basis, the problems of optimal design of the optical system were also analyzed. The measured results show that the dynamic attenuation range of the system energy is greater than 50dB, the dynamic attenuation stability is less than 5%, and the maximum energy changing rate driven by the servo motor is greater than 20dB/s.

  1. The influence of system quality characteristics on health care providers' performance: Empirical evidence from Malaysia.

    PubMed

    Mohd Salleh, Mohd Idzwan; Zakaria, Nasriah; Abdullah, Rosni

    The Ministry of Health Malaysia initiated the total hospital information system (THIS) as the first national electronic health record system for use in selected public hospitals across the country. Since its implementation 15 years ago, there has been the critical requirement for a systematic evaluation to assess its effectiveness in coping with the current system, task complexity, and rapid technological changes. The study aims to assess system quality factors to predict the performance of electronic health in a single public hospital in Malaysia. Non-probability sampling was employed for data collection among selected providers in a single hospital for two months. Data cleaning and bias checking were performed before final analysis in partial least squares-structural equation modeling. Convergent and discriminant validity assessments were satisfied the required criterions in the reflective measurement model. The structural model output revealed that the proposed adequate infrastructure, system interoperability, security control, and system compatibility were the significant predictors, where system compatibility became the most critical characteristic to influence an individual health care provider's performance. The previous DeLone and McLean information system success models should be extended to incorporate these technological factors in the medical system research domain to examine the effectiveness of modern electronic health record systems. In this study, care providers' performance was expected when the system usage fits with patients' needs that eventually increased their productivity. Copyright © 2016 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  2. Diagnostic Utility of the Social Skills Improvement System Performance Screening Guide

    ERIC Educational Resources Information Center

    Krach, S. Kathleen; McCreery, Michael P.; Wang, Ye; Mohammadiamin, Houra; Cirks, Christen K.

    2017-01-01

    Researchers investigated the diagnostic utility of the Social Skills Improvement System: Performance Screening Guide (SSIS-PSG). Correlational, regression, receiver operating characteristic (ROC), and conditional probability analyses were run to compare ratings on the SSIS-PSG subscales of Prosocial Behavior, Reading Skills, and Math Skills, to…

  3. How Student and School Characteristics Are Associated with Performance on the Maine High School Assessment. Issues & Answers. REL 2011-No. 102

    ERIC Educational Resources Information Center

    Hoyle, Craig D.; O'Dwyer, Laura M.; Chang, Quincy

    2011-01-01

    The Maine Department of Education wanted to use longitudinal data from its data system to better understand whether and how student and school characteristics are associated with student performance on the state-mandated Maine High School Assessment (MHSA). It was particularly interested in understanding the factors associated with changes in test…

  4. How Student and School Characteristics Are Associated with Performance on the Maine High School Assessment. Summary. Issues & Answers. REL 2011-No. 102

    ERIC Educational Resources Information Center

    Hoyle, Craig D.; O'Dwyer, Laura M.; Chang, Quincy

    2011-01-01

    The Maine Department of Education wanted to use longitudinal data from its data system to better understand whether and how student and school characteristics are associated with student performance on the state-mandated Maine High School Assessment (MHSA). It was particularly interested in understanding the factors associated with changes in test…

  5. Medium frequency propagation characteristics of different transmission lines in an underground coal mine

    PubMed Central

    Li, Jingcheng; Waynert, Joseph A.; Whisner, Bruce G.

    2015-01-01

    A medium frequency (MF) communication system operating in an underground coal mine couples its signals to a long conductor, which acts as an MF transmission line (TL) in a tunnel to permit communications among transceivers along the line. The TL is generally the longest signal path for the system, and its propagation characteristics will have a major impact on the performance of the MF communication system. In this study, the propagation characteristics of three types of MF TLs in two layouts—on the roof and on the floor of a coal mine tunnel—were obtained in an effort to understand the propagation characteristics of different TLs in different locations. The study confirmed a low MF signal loss on all of these TLs. The study also found that the TLs in different layouts had substantially different propagation characteristics. The propagation characteristics of these different TLs in different layouts are presented in the paper. PMID:26203349

  6. Social patterns of pay systems and their associations with psychosocial job characteristics and burnout among paid employees in Taiwan.

    PubMed

    Yeh, Wan-Yu; Cheng, Yawen; Chen, Chiou-Jung

    2009-04-01

    Today, performance-based pay systems, also known as variable pay systems, are commonly implemented in workplaces as a business strategy to improve workers' performance and reduce labor costs. However, their impact on workers' job stress and stress-related health outcomes has rarely been investigated. By utilizing data from a nationally representative sample of paid employees in Taiwan, we examined the distribution of variable pay systems across socio-demographic categories and employment sectors. We also examined the associations of pay systems with psychosocial job characteristics (assessed by Karasek's Demand-Control model) and self-reported burnout status (measured by the Chinese version of the Copenhagen Burnout Inventory). A total of 8906 men and 6382 women aged 25-65 years were studied, and pay systems were classified into three categories, i.e., fixed salary, performance-based pay (with a basic salary), and piece-rated or time-based pay (without a basic salary). Results indicated that in men, 57% of employees were given a fixed salary, 24% were given a performance-based pay, and 19% were remunerated through a piece-rated or time-based pay. In women, the distributions of the 3 pay systems were 64%, 20% and 15%, respectively. Among the three pay systems, employees earning through a performance-based pay were found to have the longest working hours, highest level of job control, and highest percentage of workers who perceived high stress at work. Those remunerated through a piece-rated/time-based pay were found to have the lowest job control, shortest working hours, highest job insecurity, lowest potential for career growth, and lowest job satisfaction. The results of multivariate regression analyses showed that employees earning through performance-based and piece-rated pay systems showed higher scores for personal burnout and work-related burnout, as compared to those who were given fixed salaries, after adjusting for age, education, marital status, employment grade, job characteristics, and family care workloads. As variable pay systems have gained in popularity, findings from this study call for more attention on the tradeoff between the widely discussed management advantages of such pay systems and the health burden they place on employees.

  7. Design and performance characteristics of a mechanically driven vestibular stimulator.

    DOT National Transportation Integrated Search

    1964-01-01

    In order to determine basic response characteristics of mammalian vestibular systems, the sytems so important for spatial orientation, a device to provide programs of controlled angular accelerations about the vertical axis was required. The small ro...

  8. Stochastic modelling of the hydrologic operation of rainwater harvesting systems

    NASA Astrophysics Data System (ADS)

    Guo, Rui; Guo, Yiping

    2018-07-01

    Rainwater harvesting (RWH) systems are an effective low impact development practice that provides both water supply and runoff reduction benefits. A stochastic modelling approach is proposed in this paper to quantify the water supply reliability and stormwater capture efficiency of RWH systems. The input rainfall series is represented as a marked Poisson process and two typical water use patterns are analytically described. The stochastic mass balance equation is solved analytically, and based on this, explicit expressions relating system performance to system characteristics are derived. The performances of a wide variety of RWH systems located in five representative climatic regions of the United States are examined using the newly derived analytical equations. Close agreements between analytical and continuous simulation results are shown for all the compared cases. In addition, an analytical equation is obtained expressing the required storage size as a function of the desired water supply reliability, average water use rate, as well as rainfall and catchment characteristics. The equations developed herein constitute a convenient and effective tool for sizing RWH systems and evaluating their performances.

  9. The Case for Distributed Engine Control in Turbo-Shaft Engine Systems

    NASA Technical Reports Server (NTRS)

    Culley, Dennis E.; Paluszewski, Paul J.; Storey, William; Smith, Bert J.

    2009-01-01

    The turbo-shaft engine is an important propulsion system used to power vehicles on land, sea, and in the air. As the power plant for many high performance helicopters, the characteristics of the engine and control are critical to proper vehicle operation as well as being the main determinant to overall vehicle performance. When applied to vertical flight, important distinctions exist in the turbo-shaft engine control system due to the high degree of dynamic coupling between the engine and airframe and the affect on vehicle handling characteristics. In this study, the impact of engine control system architecture is explored relative to engine performance, weight, reliability, safety, and overall cost. Comparison of the impact of architecture on these metrics is investigated as the control system is modified from a legacy centralized structure to a more distributed configuration. A composite strawman system which is typical of turbo-shaft engines in the 1000 to 2000 hp class is described and used for comparison. The overall benefits of these changes to control system architecture are assessed. The availability of supporting technologies to achieve this evolution is also discussed.

  10. Noncooperative rendezvous radar system

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A fire control radar system was developed, assembled, and modified. The baseline system and modified angle tracking system are described along with the performance characteristics of the baseline and modified systems. Proposed changes to provide additional techniques for radar evaluation are presented along with flight test data.

  11. A Strategic Study about Quality Characteristics in e-Health Systems Based on a Systematic Literature Review.

    PubMed

    Domínguez-Mayo, F J; Escalona, M J; Mejías, M; Aragón, G; García-García, J A; Torres, J; Enríquez, J G

    2015-01-01

    e-Health Systems quality management is an expensive and hard process that entails performing several tasks such as analysis, evaluation, and quality control. Furthermore, the development of an e-Health System involves great responsibility since people's health and quality of life depend on the system and services offered. The focus of the following study is to identify the gap in Quality Characteristics for e-Health Systems, by detecting not only which are the most studied, but also which are the most used Quality Characteristics these Systems include. A strategic study is driven in this paper by a Systematic Literature Review so as to identify Quality Characteristics in e-Health. Such study makes information and communication technology organizations reflect and act strategically to manage quality in e-Health Systems efficiently and effectively. As a result, this paper proposes the bases of a Quality Model and focuses on a set of Quality Characteristics to enable e-Health Systems quality management. Thus, we can conclude that this paper contributes to implementing knowledge with regard to the mission and view of e-Health (Systems) quality management and helps understand how current researches evaluate quality in e-Health Systems.

  12. A Strategic Study about Quality Characteristics in e-Health Systems Based on a Systematic Literature Review

    PubMed Central

    Escalona, M. J.; Mejías, M.; Aragón, G.; García-García, J. A.; Torres, J.; Enríquez, J. G.

    2015-01-01

    e-Health Systems quality management is an expensive and hard process that entails performing several tasks such as analysis, evaluation, and quality control. Furthermore, the development of an e-Health System involves great responsibility since people's health and quality of life depend on the system and services offered. The focus of the following study is to identify the gap in Quality Characteristics for e-Health Systems, by detecting not only which are the most studied, but also which are the most used Quality Characteristics these Systems include. A strategic study is driven in this paper by a Systematic Literature Review so as to identify Quality Characteristics in e-Health. Such study makes information and communication technology organizations reflect and act strategically to manage quality in e-Health Systems efficiently and effectively. As a result, this paper proposes the bases of a Quality Model and focuses on a set of Quality Characteristics to enable e-Health Systems quality management. Thus, we can conclude that this paper contributes to implementing knowledge with regard to the mission and view of e-Health (Systems) quality management and helps understand how current researches evaluate quality in e-Health Systems. PMID:26146656

  13. 48 CFR 16.402-2 - Performance incentives.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Performance incentives. 16... CONTRACTING METHODS AND CONTRACT TYPES TYPES OF CONTRACTS Incentive Contracts 16.402-2 Performance incentives. (a) Performance incentives may be considered in connection with specific product characteristics (e.g...

  14. 48 CFR 16.402-2 - Performance incentives.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Performance incentives. 16... CONTRACTING METHODS AND CONTRACT TYPES TYPES OF CONTRACTS Incentive Contracts 16.402-2 Performance incentives. (a) Performance incentives may be considered in connection with specific product characteristics (e.g...

  15. 48 CFR 16.402-2 - Performance incentives.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Performance incentives. 16... CONTRACTING METHODS AND CONTRACT TYPES TYPES OF CONTRACTS Incentive Contracts 16.402-2 Performance incentives. (a) Performance incentives may be considered in connection with specific product characteristics (e.g...

  16. Investigation of the performance characteristics of Doppler radar technique for aircraft collision hazard warning, phase 3

    NASA Technical Reports Server (NTRS)

    1972-01-01

    System studies, equipment simulation, hardware development and flight tests which were conducted during the development of aircraft collision hazard warning system are discussed. The system uses a cooperative, continuous wave Doppler radar principle with pseudo-random frequency modulation. The report presents a description of the system operation and deals at length with the use of pseudo-random coding techniques. In addition, the use of mathematical modeling and computer simulation to determine the alarm statistics and system saturation characteristics in terminal area traffic of variable density is discussed.

  17. A flight simulator control system using electric torque motors

    NASA Technical Reports Server (NTRS)

    Musick, R. O.; Wagner, C. A.

    1975-01-01

    Control systems are required in flight simulators to provide representative stick and rudder pedal characteristics. A system has been developed that uses electric dc torque motors instead of the more common hydraulic actuators. The torque motor system overcomes certain disadvantages of hydraulic systems, such as high cost, high power consumption, noise, oil leaks, and safety problems. A description of the torque motor system is presented, including both electrical and mechanical design as well as performance characteristics. The system develops forces sufficiently high for most simulations, and is physically small and light enough to be used in most motion-base cockpits.

  18. A solution for exposure tool optimization at the 65-nm node and beyond

    NASA Astrophysics Data System (ADS)

    Itai, Daisuke

    2007-03-01

    As device geometries shrink, tolerances for critical dimension, focus, and overlay control decrease. For the stable manufacture of semiconductor devices at (and beyond) the 65nm node, both performance variability and drift in exposure tools are no longer negligible factors. With EES (Equipment Engineering System) as a guidepost, hopes of improving productivity of semiconductor manufacturing are growing. We are developing a system, EESP (Equipment Engineering Support Program), based on the concept of EES. The EESP system collects and stores large volumes of detailed data generated from Canon lithographic equipment while product is being manufactured. It uses that data to monitor both equipment characteristics and process characteristics, which cannot be examined without this system. The goal of EESP is to maximize equipment capabilities, by feeding the result back to APC/FDC and the equipment maintenance list. This was a collaborative study of the system's effectiveness at the device maker's factories. We analyzed the performance variability of exposure tools by using focus residual data. We also attempted to optimize tool performance using the analyzed results. The EESP system can make the optimum performance of exposure tools available to the device maker.

  19. A digital computer simulation and study of a direct-energy-transfer power-conditioning system

    NASA Technical Reports Server (NTRS)

    Burns, W. W., III; Owen, H. A., Jr.; Wilson, T. G.; Rodriguez, G. E.; Paulkovich, J.

    1974-01-01

    A digital computer simulation technique, which can be used to study such composite power-conditioning systems, was applied to a spacecraft direct-energy-transfer power-processing system. The results obtained duplicate actual system performance with considerable accuracy. The validity of the approach and its usefulness in studying various aspects of system performance such as steady-state characteristics and transient responses to severely varying operating conditions are demonstrated experimentally.

  20. Primary lithium battery technology and its application to NASA missions

    NASA Technical Reports Server (NTRS)

    Frank, H. A.

    1979-01-01

    A description is given of the components, overall cell reactions, and performance characteristics of promising new ambient temperature lithium primary systems based on the Li-V205, Li-SO2, and Li-SOC12 couples. Development status of these systems is described in regard to availability and uncertainties in the areas of safety and selected performance characteristics. Studies show that use of lithium batteries would enhance a variety of missions and applications by decreasing power sytems weight and thereby increasing payload weight. In addition, the lithium batteries could enhance cost effectiveness of the missions.

  1. THEORETICAL Computations of Equilibrium Compositions, Thermodynamic Properties, and Performance Characteristics of Propellant Systems

    DTIC Science & Technology

    1979-04-01

    U5 7 450o NITRATE 5h 3,4 -V -932 457 NITRIC ACID WuAS) lh IN 30 -509 .00lu 45t 43 NWC TP 6037 N,’TRO AM INI.GUA iiI u It, E1 51 h S5N 20 45 .COOO...and performance characteristics of propellant systems, and it will handle a maximum of 12 chemical elements and 200 combustion products . Some of the...used in the program, which will handle a maximum of 12 chemical elements and 200 combustion products . Flame temperature, chemical composition, enthalpy

  2. A study to determine methods of improving the subsonic performance of a proposed Personnel Launch System (PLS) concept

    NASA Technical Reports Server (NTRS)

    Spencer, Bernard, Jr.; Fox, Charles H.; Huffman, Jarrett K.

    1995-01-01

    An investigation has been conducted in the Langley 7- by 10-Foot High Speed Wind Tunnel to determine the longitudinal and lateral directional aerodynamic characteristics of a series of personnel launch system concepts. This series of configurations evolved during an effort to improve the subsonic characteristics of a proposed lifting entry vehicle (designated the HL-20). The primary purpose of the overall investigation was to provide a vehicle concept which was inherently stable and trimable from entry to landing while examining methods of improving subsonic aerodynamic performance.

  3. LWIR detector requirements for low-background space applications

    NASA Technical Reports Server (NTRS)

    Deluccia, Frank J.

    1990-01-01

    Detection of cold bodies (200 to 300 K) against space backgrounds has many important applications, both military and non-military. The detector performance and design characteristics required to support low-background applications are discussed, with particular emphasis on those characteristics required for space surveillance. The status of existing detector technologies under active development for these applications is also discussed. In order to play a role in future systems, new, potentially competing detector technologies such as multiple quantum well detectors must not only meet system-derived requirements, but also offer distinct performance or other advantages over these incumbent technologies.

  4. Relationship between quality of care and choice of clinical computing system: retrospective analysis of family practice performance under the UK's quality and outcomes framework

    PubMed Central

    Kontopantelis, Evangelos; Buchan, Iain; Reeves, David; Checkland, Kath; Doran, Tim

    2013-01-01

    Objectives To investigate the relationship between performance on the UK Quality and Outcomes Framework pay-for-performance scheme and choice of clinical computer system. Design Retrospective longitudinal study. Setting Data for 2007–2008 to 2010–2011, extracted from the clinical computer systems of general practices in England. Participants All English practices participating in the pay-for-performance scheme: average 8257 each year, covering over 99% of the English population registered with a general practice. Main outcome measures Levels of achievement on 62 quality-of-care indicators, measured as: reported achievement (levels of care after excluding inappropriate patients); population achievement (levels of care for all patients with the relevant condition) and percentage of available quality points attained. Multilevel mixed effects multiple linear regression models were used to identify population, practice and clinical computing system predictors of achievement. Results Seven clinical computer systems were consistently active in the study period, collectively holding approximately 99% of the market share. Of all population and practice characteristics assessed, choice of clinical computing system was the strongest predictor of performance across all three outcome measures. Differences between systems were greatest for intermediate outcomes indicators (eg, control of cholesterol levels). Conclusions Under the UK's pay-for-performance scheme, differences in practice performance were associated with the choice of clinical computing system. This raises the question of whether particular system characteristics facilitate higher quality of care, better data recording or both. Inconsistencies across systems need to be understood and addressed, and researchers need to be cautious when generalising findings from samples of providers using a single computing system. PMID:23913774

  5. Can soft biometric traits assist user recognition?

    NASA Astrophysics Data System (ADS)

    Jain, Anil K.; Dass, Sarat C.; Nandakumar, Karthik

    2004-08-01

    Biometrics is rapidly gaining acceptance as the technology that can meet the ever increasing need for security in critical applications. Biometric systems automatically recognize individuals based on their physiological and behavioral characteristics. Hence, the fundamental requirement of any biometric recognition system is a human trait having several desirable properties like universality, distinctiveness, permanence, collectability, acceptability, and resistance to circumvention. However, a human characteristic that possesses all these properties has not yet been identified. As a result, none of the existing biometric systems provide perfect recognition and there is a scope for improving the performance of these systems. Although characteristics like gender, ethnicity, age, height, weight and eye color are not unique and reliable, they provide some information about the user. We refer to these characteristics as "soft" biometric traits and argue that these traits can complement the identity information provided by the primary biometric identifiers like fingerprint and face. This paper presents the motivation for utilizing soft biometric information and analyzes how the soft biometric traits can be automatically extracted and incorporated in the decision making process of the primary biometric system. Preliminary experiments were conducted on a fingerprint database of 160 users by synthetically generating soft biometric traits like gender, ethnicity, and height based on known statistics. The results show that the use of additional soft biometric user information significantly improves (approximately 6%) the recognition performance of the fingerprint biometric system.

  6. Decentralized PID controller for TITO systems using characteristic ratio assignment with an experimental application.

    PubMed

    Hajare, V D; Patre, B M

    2015-11-01

    This paper presents a decentralized PID controller design method for two input two output (TITO) systems with time delay using characteristic ratio assignment (CRA) method. The ability of CRA method to design controller for desired transient response has been explored for TITO systems. The design methodology uses an ideal decoupler to reduce the interaction. Each decoupled subsystem is reduced to first order plus dead time (FOPDT) model to design independent diagonal controllers. Based on specified overshoot and settling time, the controller parameters are computed using CRA method. To verify performance of the proposed controller, two benchmark simulation examples are presented. To demonstrate applicability of the proposed controller, experimentation is performed on real life interacting coupled tank level system. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Quiet short-haul research aircraft familiarization document, revision 1

    NASA Technical Reports Server (NTRS)

    Eppel, J. C.

    1981-01-01

    The design features and general characteristics of the Quiet Short Haul Research Aircraft are described. Aerodynamic characteristics and performance are discussed based on predictions and early flight test data. Principle airplane systems, including the airborne data acquisition system, are also described. The aircraft was designed and built to fulfill the need for a national research facility to explore the use of upper surface blowing, propulsive lift technology in providing short takeoff and landing capability, and perform advanced experiments in various technical disciplines such as aerodynamics, propulsion, stability and control, handling qualities, avionics and flight control systems, trailing vortex phenomena, acoustics, structure and loads, operating systems, human factors, and airworthiness/certification criteria. An unusually austere approach using experimental shop practices resulted in a low cost and high research capability.

  8. Quiet short-haul research aircraft familiarization document. [STOL

    NASA Technical Reports Server (NTRS)

    Mccracken, R. C.

    1979-01-01

    The design features and general characteristics of the NASA Quiet Short-Haul Research Aircraft are described. Aerodynamic characteristics and performance are discussed based on predictions and early flight-test data. Principle airplane systems, including the airborne data-acquisition system, are also described. The aircraft was designed and built to fulfill the need for a national research facility to explore the use of upper surface-blowing propulsive-lift technology in providing short takeoff and landing capability, and perform advanced experiments in various technical disciplines such as aerodynamics, propulsion, stability and control, handling qualities, avionics and flight-control systems, trailing-vortex phenomena, acoustics, structure and loads, operating systems, human factors, and airworthiness/certification criteria. An unusually austere approach using experimental shop practices resulted in a low cost and high research capability.

  9. Human Factors in the Automated Highway System: Transferring Control to the Driver

    DOT National Transportation Integrated Search

    1995-10-01

    Driver capabilities and limitations must be considered to ensure successful implementation of the Automated Highway System (AHS). Human factors investigations of driver performance characteristics provide the basis for determining system design confi...

  10. Partial Discharge Characteristics in Composite Insulation Systems with PPLP for HTS Cable

    NASA Astrophysics Data System (ADS)

    Kikuchi, Y.; Yamashita, K.; Kumada, A.; Hidaka, K.; Tatamidani, K.; Masuda, T.

    2014-05-01

    The electrical insulation system of high-temperature superconducting (HTS) cable consists of liquid nitrogen (N2(l)) and polypropylene laminated paper (PPLP). Partial discharge (PD) may occur in butt gaps of the insulation layers and its characteristics imply the insulation performance of HTS cables. N2(l) cooling system is installed in the power system and N2(l) will flow through the cables during the system operation. Filling the HTS cable with N2(l) in order to perform pre-shipment inspection is time-consuming and costly for cable manufacturers. Therefore, they are trying to find a cost effective method for pre-shipment inspections. One alternative is to use high pressure gaseous nitrogen (N2(g)) instead of N2(l). This article investigates PD characteristics such as PD inception electric field (PDIE) and PD extinction electric field (PDEE) in butt gaps of HTS cables in 0.1 to 0.3 MPa and 0.1 MPa to 1.0 MPa N2(g) environments. For assessing the surface/volume effects, PD characteristics are measured with changing the size of butt gaps. It turns out that PDIE and PDEE in N2(g) are linearly correlated with those in N2(l) at any gas pressure in our testing, and PDIE in 1.0 MPa N2(g) is almost 30% of that in 0.2 MPa It suggests that PD characteristics in N2(l) can be extrapolated from those in N2(g).

  11. A rapid method for optimization of the rocket propulsion system for single-stage-to-orbit vehicles

    NASA Technical Reports Server (NTRS)

    Eldred, C. H.; Gordon, S. V.

    1976-01-01

    A rapid analytical method for the optimization of rocket propulsion systems is presented for a vertical take-off, horizontal landing, single-stage-to-orbit launch vehicle. This method utilizes trade-offs between propulsion characteristics affecting flight performance and engine system mass. The performance results from a point-mass trajectory optimization program are combined with a linearized sizing program to establish vehicle sizing trends caused by propulsion system variations. The linearized sizing technique was developed for the class of vehicle systems studied herein. The specific examples treated are the optimization of nozzle expansion ratio and lift-off thrust-to-weight ratio to achieve either minimum gross mass or minimum dry mass. Assumed propulsion system characteristics are high chamber pressure, liquid oxygen and liquid hydrogen propellants, conventional bell nozzles, and the same fixed nozzle expansion ratio for all engines on a vehicle.

  12. Current food safety management systems in fish-exporting companies require further improvements to adequately cope with contextual pressure: case study.

    PubMed

    Onjong, Hillary Adawo; Wangoh, John; Njage, Patrick Murigu Kamau

    2014-10-01

    Fish-processing plants still face food safety (FS) challenges worldwide despite the existence of several quality assurance standards and food safety management systems/s (FSMSs). This study assessed performance of FSMS in fish exporting sector considering pressure from the context in which they operate. A FSMS diagnostic tool with checklist was used to assess the context, FSMS, and FS output in 9 Kenyan fish exporting companies. Majority (67%) companies operated at moderate- to high-risk context but with an average performance in control and assurance activities. This situation could be insufficient to deal with ambiguity, uncertainty, and vulnerability issues in the context characteristics. Contextual risk posed by product characteristics (nature of raw materials) and chain environment characteristics was high. Risk posed by the chain environment characteristics, low power in supplier relationships, and low degree of authority in customer relationships was high. Lack of authority in relationship with suppliers would lead to high raw material risk situation. Even though cooling facilities, a key control activity, was at an advanced level, there was inadequate packaging intervention equipment which coupled with inadequate physical intervention equipment could lead to further weakened FSMS performance. For the fish companies to improve their FSMS to higher level and enhance predictability, they should base their FSMS on scientific information sources, historical results, and own experimental trials in their preventive, intervention, and monitoring systems. Specific suggestions are derived for improvements toward higher FSMS activity levels or lower risk levels in context characteristics. Weak areas in performance of control and assurance activities in export fish-processing sector already implementing current quality assurance guidelines and standards were studied taking into consideration contextual pressure wherein the companies operate. Important mitigation measures toward improved contextual risk, core assurance, and control activities irrespective of applied food safety management systems in fish industries were suggested. © 2014 Institute of Food Technologists®

  13. Cryogenic Fracture Toughness Evaluation of an Investment Cast Al-Be Alloy for Structural Applications

    NASA Technical Reports Server (NTRS)

    Gamwell, W. R.; McGill, P. B.

    2006-01-01

    Aluminum-Beryllium metal matrix composite materials are useful due to their desirable performance characteristics for aerospace applications. Desirable characteristics of this material includes light-weight, dimensional stability, stiffness, good vibration damping characteristics, low coefficient of thermal expansion, and workability, This material is 3.5 times stiffer and 22% lighter than conventional aluminum alloys. electro-optical systems, advanced sensor and guidance components for flight and satellite systems, components for light-weight high-performance aircraft engines, and structural components for helicopters. Aluminum-beryllium materials are now available in the form of near net shape investment castings. In this materials properties characterization study, the cryogenic tensile and fracture properties of an investment casting alloy, Beralcast 363, were determined. Tensile testing was performed at 21 C (70 F), -73.3 C (-100 F), -195.5 C (-320 F) and -252.8 C (-423 F), and fracture (K(sub lc) and da/dN) testing was performed at -73.3 C (-100 F), -195.5 C (-320 F) and -252.8 C (-423 F). Their use is attractive for weight critical structural applications such as advanced

  14. Aerodynamics of High-Lift Configuration Civil Aircraft Model in JAXA

    NASA Astrophysics Data System (ADS)

    Yokokawa, Yuzuru; Murayama, Mitsuhiro; Ito, Takeshi; Yamamoto, Kazuomi

    This paper presents basic aerodynamics and stall characteristics of the high-lift configuration aircraft model JSM (JAXA Standard Model). During research process of developing high-lift system design method, wind tunnel testing at JAXA 6.5m by 5.5m low-speed wind tunnel and Navier-Stokes computation on unstructured hybrid mesh were performed for a realistic configuration aircraft model equipped with high-lift devices, fuselage, nacelle-pylon, slat tracks and Flap Track Fairings (FTF), which was assumed 100 passenger class modern commercial transport aircraft. The testing and the computation aimed to understand flow physics and then to obtain some guidelines for designing a high performance high-lift system. As a result of the testing, Reynolds number effects within linear region and stall region were observed. Analysis of static pressure distribution and flow visualization gave the knowledge to understand the aerodynamic performance. CFD could capture the whole characteristics of basic aerodynamics and clarify flow mechanism which governs stall characteristics even for complicated geometry and its flow field. This collaborative work between wind tunnel testing and CFD is advantageous for improving or has improved the aerodynamic performance.

  15. Understanding I/O workload characteristics of a Peta-scale storage system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Youngjae; Gunasekaran, Raghul

    2015-01-01

    Understanding workload characteristics is critical for optimizing and improving the performance of current systems and software, and architecting new storage systems based on observed workload patterns. In this paper, we characterize the I/O workloads of scientific applications of one of the world s fastest high performance computing (HPC) storage cluster, Spider, at the Oak Ridge Leadership Computing Facility (OLCF). OLCF flagship petascale simulation platform, Titan, and other large HPC clusters, in total over 250 thousands compute cores, depend on Spider for their I/O needs. We characterize the system utilization, the demands of reads and writes, idle time, storage space utilization,more » and the distribution of read requests to write requests for the Peta-scale Storage Systems. From this study, we develop synthesized workloads, and we show that the read and write I/O bandwidth usage as well as the inter-arrival time of requests can be modeled as a Pareto distribution. We also study the I/O load imbalance problems using I/O performance data collected from the Spider storage system.« less

  16. The development of an evaluation framework for injury surveillance systems

    PubMed Central

    Mitchell, Rebecca J; Williamson, Ann M; O'Connor, Rod

    2009-01-01

    Background Access to good quality information from injury surveillance is essential to develop and monitor injury prevention activities. To determine if information obtained from surveillance is of high quality, the limitations and strengths of a surveillance system are often examined. Guidelines have been developed to assist in evaluating certain types of surveillance systems. However, to date, no standard guidelines have been developed to specifically evaluate an injury surveillance system. The aim of this research is to develop a framework to guide the evaluation of injury surveillance systems. Methods The development of an Evaluation Framework for Injury Surveillance Systems (EFISS) involved a four stage process. First, a literature review was conducted to identify an initial set of characteristics that were recognised as important and/or had been recommended to be assessed in an evaluation of a surveillance system. Second, this set of characteristics was assessed using SMART criteria. Third, those surviving were presented to an expert panel using a two round modified-Delphi study to gain an alternative perspective on characteristic definitions, practicality of assessment, and characteristic importance. Finally, a rating system was created for the EFISS characteristics. Results The resulting EFISS consisted of 18 characteristics that assess three areas of an injury surveillance system – five characteristics assess data quality, nine characteristics assess the system's operation, and four characteristics assess the practical capability of an injury surveillance system. A rating system assesses the performance of each characteristic. Conclusion The development of the EFISS builds upon existing evaluation guidelines for surveillance systems and provides a framework tailored to evaluate an injury surveillance system. Ultimately, information obtained through an evaluation of an injury data collection using the EFISS would be useful for agencies to recommend how a collection could be improved to increase its usefulness for injury surveillance and in the long-term injury prevention. PMID:19627617

  17. Advanced Actuation Systems Development. Volume 2

    DTIC Science & Technology

    1989-08-01

    and unloaded performance characteristics of a test specimen produced by General Dynamics Corporation as a feasibility model. The actuation system for...changing the camber of the test specimen is unique and was evaluated with a series of input/output measurements. The testing verified the general ...MAWS General ’rest Procedure........................................6 General Performance Measurements .................................... 10 Test

  18. RCA Satcom: In-orbit experience

    NASA Technical Reports Server (NTRS)

    Debaylo, P. W.; Gaston, S. J.

    1980-01-01

    The system characteristics of the Satcom batteries and Satcom power system are briefly discussed. Performance of the nickel cadmium 22 cell batteries onboard in parallel with independent redundant charges providing the charge rates is reported. Performance onboard reconditioning with individual cell bypasses with 1 ohm resistors is discussed for the F-1 and F-2 spacecraft.

  19. Characteristic Evaluation of Synchronous Motors Using an Universal Drive System with a Real-Time Interface

    NASA Astrophysics Data System (ADS)

    Amano, Yoko; Ogasawara, Satoshi

    In this paper, a new universal drive system of synchronous motors used Real-Time Interface (RTI) performs characteristic evaluation of Synchronous Reluctance (SynR) motors and Surface Permanent Magnet (SPM) synchronous motors. The RTI connects directly a simulation model with experimental equipment, and makes it possible to use the simulation model for an experiment. The RTI is very effective in the early detection of an actual problem and examination of solution technique. Moreover, it concentrates on examination of control algorithm, and efficient research and development are enabled. A measuring system of synchronous motors is built by the universal drive system. The examination of various synchronous motors is possible for the measurement system using the same control algorithm. Characteristic evaluation of a SynR motor and a SPM synchronous motor that are the same gap length and stator was performed using the measuring system. The measurement result shows experimentally that motor loss of the SynR motor is smaller rather than the SPM synchronous motor, at the time of high speed and low load operation. For example, the SynR motor is suitable to hybrid cars with the comparatively long time of low load and high-speed operation.

  20. Solar power satellite system definition study. Volume 7, phase 1: SPS and rectenna systems analyses

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A systems definition study of the solar power satellite systems is presented. The design and power distribution of the rectenna system is discussed. The communication subsystem and thermal control characteristics are described and a failure analysis performed on the systems is reported.

  1. [Comparison of noise characteristics of direct and indirect conversion flat panel detectors].

    PubMed

    Murai, Masami; Kishimoto, Kenji; Tanaka, Katsuhisa; Oota, Kenji; Ienaga, Akinori

    2010-11-20

    Flat-panel detector (FPD) digital radiography systems have direct and indirect conversion systems, and the 2 conversion systems provide different imaging performances. We measured some imaging performances [input-output characteristic, presampled modulation transfer function (presampled MTF), noise power spectrum (NPS)] of direct and indirect FPD systems. Moreover, some image samples of the NPSs were visually evaluated by the pair comparison method. As a result, the presampled MTF of the direct FPD system was substantially higher than that of the indirect FPD system. The NPS of the direct FPD system had a high value for all spatial frequencies. In contrast, the NPS of the indirect FPD system had a lower value as the frequency became higher. The results of visual evaluations showed the same tendency as that found for NPSs. We elucidated the cause of the difference in NPSs in a simulation study, and we determined that the cause of the difference in the noise components of the direct and indirect FPD systems was closely related to the presampled MTF.

  2. Preliminary performance of a vertical-attitude takeoff and landing, supersonic cruise aircraft concept having thrust vectoring integrated into the flight control system

    NASA Technical Reports Server (NTRS)

    Robins, A. W.; Beissner, F. L., Jr.; Domack, C. S.; Swanson, E. E.

    1985-01-01

    A performance study was made of a vertical attitude takeoff and landing (VATOL), supersonic cruise aircraft concept having thrust vectoring integrated into the flight control system. Those characteristics considered were aerodynamics, weight, balance, and performance. Preliminary results indicate that high levels of supersonic aerodynamic performance can be achieved. Further, with the assumption of an advanced (1985 technology readiness) low bypass ratio turbofan engine and advanced structures, excellent mission performance capability is indicated.

  3. Waste Form and Indrift Colloids-Associated Radionuclide Concentrations: Abstraction and Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. Aguilar

    This Model Report describes the analysis and abstractions of the colloids process model for the waste form and engineered barrier system components of the total system performance assessment calculations to be performed with the Total System Performance Assessment-License Application model. Included in this report is a description of (1) the types and concentrations of colloids that could be generated in the waste package from degradation of waste forms and the corrosion of the waste package materials, (2) types and concentrations of colloids produced from the steel components of the repository and their potential role in radionuclide transport, and (3) typesmore » and concentrations of colloids present in natural waters in the vicinity of Yucca Mountain. Additionally, attachment/detachment characteristics and mechanisms of colloids anticipated in the repository are addressed and discussed. The abstraction of the process model is intended to capture the most important characteristics of radionuclide-colloid behavior for use in predicting the potential impact of colloid-facilitated radionuclide transport on repository performance.« less

  4. A nonlinear vibration isolator achieving high-static-low-dynamic stiffness and tunable anti-resonance frequency band

    NASA Astrophysics Data System (ADS)

    Sun, Xiuting; Jing, Xingjian

    2016-12-01

    This study investigates theoretically and experimentally a vibration isolator constructed by an n-layer Scissor-Like Structure (SLS), focusing on the analysis and design of nonlinear stiffness and damping characteristics for advantageous isolation performance in both orthogonal directions. With the mathematical modeling, the influence incurred by different structural parameters on system isolation performance is studied. It is shown that, (a) nonlinear high-static-low-dynamic stiffness and damping characteristics can be seen such that the system can achieve good isolation performance in both directions, (b) an anti-resonance frequency band exists due to the coupling effect between the linear and nonlinear stiffness in the two orthogonal directions within the structure, and (c) all these performances are designable with several structural parameters. The advantages of the proposed system are shown through comparisons with an existing quasi-zero-stiffness vibration isolator (QZS-VI) and a traditional mass-spring-damper vibration isolator (MSD-VI), and further validated by experimental results.

  5. An experimental investigation of the effects of alarm processing and display on operator performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O`Hara, J.; Brown, W.; Hallbert, B.

    1998-03-01

    This paper describes a research program sponsored by the US Nuclear Regulatory Commission to address the human factors engineering (HFE) aspects of nuclear power plant alarm systems. The overall objective of the program is to develop HFE review guidance for advanced alarm systems. As part of this program, guidance has been developed based on a broad base of technical and research literature. In the course of guidance development, aspects of alarm system design for which the technical basis was insufficient to support complete guidance development were identified. The primary purpose of the research reported in this paper was to evaluatemore » the effects of three of these alarm system design characteristics on operator performance in order to contribute to the understanding of potential safety issues and to provide data to support the development of design review guidance in these areas. Three alarm system design characteristics studied were (1) alarm processing (degree of alarm reduction), (2) alarm availability (dynamic prioritization and suppression), and (3) alarm display (a dedicated tile format, a mixed tile and message list format, and a format in which alarm information is integrated into the process displays). A secondary purpose was to provide confirmatory evidence of selected alarm system guidance developed in an earlier phase of the project. The alarm characteristics were combined into eight separate experimental conditions. Six, two-person crews of professional nuclear power plant operators participated in the study. Following training, each crew completed 16 test trials which consisted of two trials in each of the eight experimental conditions (one with a low-complexity scenario and one with a high-complexity scenario). Measures of process performance, operator task performance, situation awareness, and workload were obtained. In addition, operator opinions and evaluations of the alarm processing and display conditions were collected. No deficient performance was observed in any of the experimental conditions, providing confirmatory support for many design review guidelines. The operators identified numerous strengths and weaknesses associated with individual alarm design characteristics.« less

  6. Pavement performance testing : research implementation plan.

    DOT National Transportation Integrated Search

    2005-01-01

    STATEMENT OF NEED: Validate effect of materials variables in the Superpave mix design system as : affects rutting and fatigue performance. : RESEARCH OBJECTIVES: 1. Determine the effect of aggregate characteristics and gradation and polymer modifier ...

  7. Final Technical Report: Increasing Prediction Accuracy.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Bruce Hardison; Hansen, Clifford; Stein, Joshua

    2015-12-01

    PV performance models are used to quantify the value of PV plants in a given location. They combine the performance characteristics of the system, the measured or predicted irradiance and weather at a site, and the system configuration and design into a prediction of the amount of energy that will be produced by a PV system. These predictions must be as accurate as possible in order for finance charges to be minimized. Higher accuracy equals lower project risk. The Increasing Prediction Accuracy project at Sandia focuses on quantifying and reducing uncertainties in PV system performance models.

  8. Method and system for simulating heat and mass transfer in cooling towers

    DOEpatents

    Bharathan, Desikan; Hassani, A. Vahab

    1997-01-01

    The present invention is a system and method for simulating the performance of a cooling tower. More precisely, the simulator of the present invention predicts values related to the heat and mass transfer from a liquid (e.g., water) to a gas (e.g., air) when provided with input data related to a cooling tower design. In particular, the simulator accepts input data regarding: (a) cooling tower site environmental characteristics; (b) cooling tower operational characteristics; and (c) geometric characteristics of the packing used to increase the surface area within the cooling tower upon which the heat and mass transfer interactions occur. In providing such performance predictions, the simulator performs computations related to the physics of heat and mass transfer within the packing. Thus, instead of relying solely on trial and error wherein various packing geometries are tested during construction of the cooling tower, the packing geometries for a proposed cooling tower can be simulated for use in selecting a desired packing geometry for the cooling tower.

  9. A simulation study of the effects of communication delay on air traffic control

    DOT National Transportation Integrated Search

    1990-09-01

    This study was conducted to examine the impacts of voice communications delays : characteristic of Voice Switching and Control System (VSCS) and satellite : communications systems on air traffic system performance, controller stress : and workload, a...

  10. Optimal control theory investigation of proprotor/wing response to vertical gust

    NASA Technical Reports Server (NTRS)

    Frick, J. K. D.; Johnson, W.

    1974-01-01

    Optimal control theory is used to design linear state variable feedback to improve the dynamic characteristics of a rotor and cantilever wing representing the tilting proprotor aircraft in cruise flight. The response to a vertical gust and system damping are used as criteria for the open and closed loop performance. The improvement in the dynamic characteristics achievable is examined for a gimballed rotor and for a hingeless rotor design. Several features of the design process are examined, including: (1) using only the wing or only the rotor dynamics in the control system design; (2) the use of a wing flap as well as the rotor controls for inputs; (3) and the performance of the system designed for one velocity at other forward speeds.

  11. Computing Operating Characteristics Of Bearing/Shaft Systems

    NASA Technical Reports Server (NTRS)

    Moore, James D.

    1996-01-01

    SHABERTH computer program predicts operating characteristics of bearings in multibearing load-support system. Lubricated and nonlubricated bearings modeled. Calculates loads, torques, temperatures, and fatigue lives of ball and/or roller bearings on single shaft. Provides for analysis of reaction of system to termination of supply of lubricant to bearings and other lubricated mechanical elements. Valuable in design and analysis of shaft/bearing systems. Two versions of SHABERTH available. Cray version (LEW-14860), "Computing Thermal Performances Of Shafts and Bearings". IBM PC version (MFS-28818), written for IBM PC-series and compatible computers running MS-DOS.

  12. Displacement and force coupling control design for automotive active front steering system

    NASA Astrophysics Data System (ADS)

    Zhao, Wanzhong; Zhang, Han; Li, Yijun

    2018-06-01

    A displacement and force coupling control design for active front steering (AFS) system of vehicle is proposed in this paper. In order to investigate the displacement and force characteristics of the AFS system of the vehicle, the models of AFS system, vehicle, tire as well as the driver model are introduced. Then, considering the nonlinear characteristics of the tire force and external disturbance, a robust yaw rate control method is designed by applying a steering motor to generate an active steering angle to adjust the yaw stability of the vehicle. Based on mixed H2/H∞ control, the system robustness and yaw rate tracking performance are enforced by H∞ norm constraint and the control effort is captured through H2 norm. In addition, based on the AFS system, a planetary gear set and an assist motor are both added to realize the road feeling control in this paper to dismiss the influence of extra steering angle through a compensating method. Evaluation of the overall system is accomplished by simulations and experiments under various driving condition. The simulation and experiment results show the proposed control system has excellent tracking performance and road feeling performance, which can improve the cornering stability and maneuverability of vehicle.

  13. RELATIONSHIP BETWEEN ISOKINETIC KNEE STRENGTH AND JUMP CHARACTERISTICS FOLLOWING ANTERIOR CRUCIATE LIGAMENT RECONSTRUCTION.

    PubMed

    Laudner, Kevin; Evans, Daniel; Wong, Regan; Allen, Aaron; Kirsch, Tom; Long, Brian; Meister, Keith

    2015-06-01

    Clinicians are often challenged when making return-to-play decisions following anterior cruciate ligament reconstruction (ACL-R). Isokinetic strength and jump performance testing are common tools used to make this decision. Unfortunately, vertical jump performance standards have not been clearly established and many clinicians do not have access to isokinetic testing equipment. To establish normative jump and strength characteristics in ACL-R patients cleared by an orthopedic physician to return-to-play and to determine if relationships exist between knee isokinetic strength measurements and jump characteristics described using an electronic jump map system. Descriptive laboratory study. Thirty-three ACL-R patients who had been cleared to return to athletic competition participated in this study. Twenty-six of these ACL-R participants were also matched to 26 asymptomatic athletes based on sex, limb, height, and mass to determine isokinetic strength and jump characteristic differences between groups. Jump tests consisted of single leg vertical, double leg vertical, and a 4-jump single leg vertical jump assessed using an electronic jump mat system. Independent t-tests were used to determine differences between groups and multiple regression analyses were used to identify any relationships between jump performance and knee strength (p<0.05). The ACL-R group had lower vertical jump capabilities and some bilateral knee strength deficiencies compared to the matched control group. The ACL-R group also showed several moderate-to-strong positive relationships for both knee extension and flexion strength with several jump performance characteristics, such as single and double leg vertical jump height. The current results indicate that ACL-R patients present with several knee strength and vertical jump differences compared to a matched control group at the time of return-to-play. Also, ACL-R patient's performance on an electronic jump mat system is strongly related to isokinetic knee strength measures. 2b.

  14. Computerized systems analysis and optimization of aircraft engine performance, weight, and life cycle costs

    NASA Technical Reports Server (NTRS)

    Fishbach, L. H.

    1979-01-01

    The computational techniques utilized to determine the optimum propulsion systems for future aircraft applications and to identify system tradeoffs and technology requirements are described. The characteristics and use of the following computer codes are discussed: (1) NNEP - a very general cycle analysis code that can assemble an arbitrary matrix fans, turbines, ducts, shafts, etc., into a complete gas turbine engine and compute on- and off-design thermodynamic performance; (2) WATE - a preliminary design procedure for calculating engine weight using the component characteristics determined by NNEP; (3) POD DRG - a table look-up program to calculate wave and friction drag of nacelles; (4) LIFCYC - a computer code developed to calculate life cycle costs of engines based on the output from WATE; and (5) INSTAL - a computer code developed to calculate installation effects, inlet performance and inlet weight. Examples are given to illustrate how these computer techniques can be applied to analyze and optimize propulsion system fuel consumption, weight, and cost for representative types of aircraft and missions.

  15. The development of an augmentor wing jet STOL research aircraft (modified C-8A). Volume 2: Analysis of contractor's flight test

    NASA Technical Reports Server (NTRS)

    Skavdahl, H.; Patterson, D. H.

    1972-01-01

    The initial flight test phase of the modified C-8A airplane was conducted. The primary objective of the testing was to establish the basic airworthiness of the research vehicle. This included verification of the structural design and evaluation of the aircraft's systems. Only a minimum amount of performance testing was scheduled; this has been used to provide a preliminary indication of the airplane's performance and flight characteristics for future flight planning. The testing included flutter and loads investigations up to the maximum design speed. The operational characteristics of all systems were assessed including hydraulics, environmental control system, air ducts, the vectoring conical nozzles, and the stability augmentation system (SAS). Approaches to stall were made at three primary flap settings: up, 30 deg and 65 deg, but full stalls were not scheduled. Minimum control speeds and maneuver margins were checked. All takeoffs and landings were conventional, and STOL performance was not scheduled during this phase of the evaluation.

  16. The effects of low impact development on urban flooding under different rainfall characteristics.

    PubMed

    Qin, Hua-peng; Li, Zhuo-xi; Fu, Guangtao

    2013-11-15

    Low impact development (LID) is generally regarded as a more sustainable solution for urban stormwater management than conventional urban drainage systems. However, its effects on urban flooding at a scale of urban drainage systems have not been fully understood particularly when different rainfall characteristics are considered. In this paper, using an urbanizing catchment in China as a case study, the effects of three LID techniques (swale, permeable pavement and green roof) on urban flooding are analyzed and compared with the conventional drainage system design. A range of storm events with different rainfall amounts, durations and locations of peak intensity are considered for holistic assessment of the LID techniques. The effects are measured by the total flood volume reduction during a storm event compared to the conventional drainage system design. The results obtained indicate that all three LID scenarios are more effective in flood reduction during heavier and shorter storm events. Their performance, however, varies significantly according to the location of peak intensity. That is, swales perform best during a storm event with an early peak, permeable pavements perform best with a middle peak, and green roofs perform best with a late peak, respectively. The trends of flood reduction can be explained using a newly proposed water balance method, i.e., by comparing the effective storage depth of the LID designs with the accumulative rainfall amounts at the beginning and end of flooding in the conventional drainage system. This paper provides an insight into the performance of LID designs under different rainfall characteristics, which is essential for effective urban flood management. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Nuclear thermal rocket workshop reference system Rover/NERVA

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.

    1991-01-01

    The Rover/NERVA engine system is to be used as a reference, against which each of the other concepts presented in the workshop will be compared. The following topics are reviewed: the operational characteristics of the nuclear thermal rocket (NTR); the accomplishments of the Rover/NERVA programs; and performance characteristics of the NERVA-type systems for both Mars and lunar mission applications. Also, the issues of ground testing, NTR safety, NASA's nuclear propulsion project plans, and NTR development cost estimates are briefly discussed.

  18. ATS-5 millimeter wave propagation measurements

    NASA Technical Reports Server (NTRS)

    Ippolito, L. J.

    1973-01-01

    Long term experimental measurements to determine the propagation characteristics of 15 and 32 GHz earth-space links and to evaluate performance characteristics of operational millimeter wave systems are reported. The ATS 5 millimeter wave experimental link experienced attenuation and fading characteristics as a function of rainfall rate and other meteorological parameters. A method of site selection for the lowest attenuation rainfall rate improved reception tremendously.

  19. Resource, quality and safety management.

    PubMed

    Hovenga, Evelyn J S

    2010-01-01

    This chapter gives an educational overview of: * Resource management relative to sustainability and the use casemix systems * Types of resources and their information system needs to support their optimal management * Quality, performance measurement options and associated information needs * Casemix systems' characteristics, usage and need for enterprise systems.

  20. System for characterizing semiconductor materials and photovoltaic devices through calibration

    DOEpatents

    Sopori, Bhushan L.; Allen, Larry C.; Marshall, Craig; Murphy, Robert C.; Marshall, Todd

    1998-01-01

    A method and apparatus for measuring characteristics of a piece of material, typically semiconductor materials including photovoltaic devices. The characteristics may include dislocation defect density, grain boundaries, reflectance, external LBIC, internal LBIC, and minority carrier diffusion length. The apparatus includes a light source, an integrating sphere, and a detector communicating with a computer. The measurement or calculation of the characteristics is calibrated to provide accurate, absolute values. The calibration is performed by substituting a standard sample for the piece of material, the sample having a known quantity of one or more of the relevant characteristics. The quantity measured by the system of the relevant characteristic is compared to the known quantity and a calibration constant is created thereby.

  1. System for characterizing semiconductor materials and photovoltaic devices through calibration

    DOEpatents

    Sopori, B.L.; Allen, L.C.; Marshall, C.; Murphy, R.C.; Marshall, T.

    1998-05-26

    A method and apparatus are disclosed for measuring characteristics of a piece of material, typically semiconductor materials including photovoltaic devices. The characteristics may include dislocation defect density, grain boundaries, reflectance, external LBIC, internal LBIC, and minority carrier diffusion length. The apparatus includes a light source, an integrating sphere, and a detector communicating with a computer. The measurement or calculation of the characteristics is calibrated to provide accurate, absolute values. The calibration is performed by substituting a standard sample for the piece of material, the sample having a known quantity of one or more of the relevant characteristics. The quantity measured by the system of the relevant characteristic is compared to the known quantity and a calibration constant is created thereby. 44 figs.

  2. The 30/20 GHz communications system functional requirements

    NASA Technical Reports Server (NTRS)

    Siperko, C. M.; Frankfort, M.; Markham, R.; Wall, M.

    1981-01-01

    The characteristics of 30/20 GHz usage in satellite systems to be used in support of projected communication requirements of the 1990's are defined. A requirements analysis which develops projected market demand for satellite services by general and specialized carriers and an analysis of the impact of propagation and system constraints on 30/20 GHz operation are included. A set of technical performance characteristics for the 30/20 GHz systems which can serve the resulting market demand and the experimental program necessary to verify technical and operational aspects of the proposed systems is also discussed.

  3. An economic assessment of STOL aircraft potential including terminal area environmental considerations, volume 1

    NASA Technical Reports Server (NTRS)

    Solomon, H. L.; Sokolsky, S.

    1974-01-01

    The results of an economic and environmental study of short haul airline systems using short takeoff and landing (STOL) aircraft are presented. The STOL system characteristics were optimized for maximum patronage at a specified return on investment, while maintaining noise impact compatibility with the terminal area. Supporting studies of aircraft air pollution and hub airport congestion relief were also performed. The STOL concept specified for this study was an Augmentor Wing turbofan aircraft having a field length capability of 2,000 ft. and an effective perceived noise level of 95 EPNdB at 500 ft. sideline distance. An economic and environmental assessment of the defined STOL system and a summary of the methodology, STOL system characteristics and arena characteristics are provided.

  4. Utah DOT weather responsive traveler information system.

    DOT National Transportation Integrated Search

    1996-06-01

    The Final Performance and Benefits Summary describes our understanding of the connection between the National ITS Architecture, its technical performance characteristics, and its likely benefits for ITS users and suppliers. Ultimately, the goal of th...

  5. Health Monitoring System for Composite Structures

    NASA Technical Reports Server (NTRS)

    Tang, S. S.; Riccardella, P. C.; Andrews, R. J.; Grady, J. E.; Mucciaradi, A. N.

    1996-01-01

    An automated system was developed to monitor the health status of composites. It uses the vibration characteristics of composites to identify a component's damage condition. The vibration responses are characterized by a set of signal features defined in the time, frequency and spatial domains. The identification of these changes in the vibration characteristics corresponding to different health conditions was performed using pattern recognition principles. This allows efficient data reduction and interpretation of vast amounts of information. Test components were manufactured from isogrid panels to evaluate performance of the monitoring system. The components were damaged by impact to simulate different health conditions. Free vibration response was induced by a tap test on the test components. The monitoring system was trained using these free vibration responses to identify three different health conditions. They are undamaged vs. damaged, damage location and damage zone size. High reliability in identifying the correct component health condition was achieved by the monitoring system.

  6. Development of IR imaging system simulator

    NASA Astrophysics Data System (ADS)

    Xiang, Xinglang; He, Guojing; Dong, Weike; Dong, Lu

    2017-02-01

    To overcome the disadvantages of the tradition semi-physical simulation and injection simulation equipment in the performance evaluation of the infrared imaging system (IRIS), a low-cost and reconfigurable IRIS simulator, which can simulate the realistic physical process of infrared imaging, is proposed to test and evaluate the performance of the IRIS. According to the theoretical simulation framework and the theoretical models of the IRIS, the architecture of the IRIS simulator is constructed. The 3D scenes are generated and the infrared atmospheric transmission effects are simulated using OGRE technology in real-time on the computer. The physical effects of the IRIS are classified as the signal response characteristic, modulation transfer characteristic and noise characteristic, and they are simulated on the single-board signal processing platform based on the core processor FPGA in real-time using high-speed parallel computation method.

  7. A Flight Investigation of the STOL Characteristics of an Augmented Jet Flap STOL Research Aircraft

    NASA Technical Reports Server (NTRS)

    Quigley, H. C.; Innis, R. C.; Grossmith, S.

    1974-01-01

    The flight test program objectives are: (1) To determine the in-flight aerodynamic, performance, and handling qualities of a jet STOL aircraft incorporating the augmented jet flap concept; (2) to compare the results obtained in flight with characteristics predicted from wind tunnel and simulator test results; (3) to contribute to the development of criteria for design and operation of jet STOL transport aircraft; and (4) to provide a jet STOL transport aircraft for STOL systems research and development. Results obtained during the first 8 months of proof-of-concept flight testing of the aircraft in STOL configurations are reported. Included are a brief description of the aircraft, fan-jet engines, and systems; a discussion of the aerodynamic, stability and control, and STOL performance; and pilot opinion of the handling qualities and operational characteristics.

  8. Queuing Models of Tertiary Storage

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore

    1996-01-01

    Large scale scientific projects generate and use large amounts of data. For example, the NASA Earth Observation System Data and Information System (EOSDIS) project is expected to archive one petabyte per year of raw satellite data. This data is made automatically available for processing into higher level data products and for dissemination to the scientific community. Such large volumes of data can only be stored in robotic storage libraries (RSL's) for near-line access. A characteristic of RSL's is the use of a robot arm that transfers media between a storage rack and the read/write drives, thus multiplying the capacity of the system. The performance of the RSL's can be a critical limiting factor for the performance of the archive system. However, the many interacting components of an RSL make a performance analysis difficult. In addition, different RSL components can have widely varying performance characteristics. This paper describes our work to develop performance models of an RSL in isolation. Next we show how the RSL model can be incorporated into a queuing network model. We use the models to make some example performance studies of archive systems. The models described in this paper, developed for the NASA EODIS project, are implemented in C with a well defined interface. The source code, accompanying documentation, and also sample JAVA applets are available at: http://www.cis.ufl.edu/ted/

  9. Receiver design and performance characteristics

    NASA Technical Reports Server (NTRS)

    Simon, M. K.; Yuen, J. H.

    1982-01-01

    The basic design, principles of operation, and characteristics of deep space communications receivers are examined. In particular, the basic fundamentals of phase-locked loop and Costas loop receivers used for synchronization, tracking, and demodulation of phase-coherent signals in residual carrier and suppressed carrier systems are addressed.

  10. Some characteristics of the international space channel

    NASA Technical Reports Server (NTRS)

    Noack, T. L.; Poland, W. B., Jr.

    1975-01-01

    Some physical characteristics of radio transmission links and the technology of PCM modulation combine with the Radio Regulations of the International Telecommunications Union to define a communications channel having a determinable channel capacity, error rate, and sensitivity to interference. These characteristics and the corresponding limitations on EIRP, power flux density, and power spectral density for space service applications are described. The ITU regulations create a critical height of 1027 km where some parameters of the limitation rules change. The nature of restraints on power spectral density are discussed and an approach to a standardized representation of Necessary Bandwidth for the Space Services is described. It is shown that, given the PFD (power flux density) and PSD (power spectral density) limitations of radio regulations, the channel performance is determined by the ratio of effective receiving antenna aperture to system noise temperature. Based on this approach, the method for a quantitative trade-off between spectrum spreading and system performance is presented. Finally, the effects of radio frequency interference between standard systems is analyzed.

  11. The effect of information technology on hospital performance.

    PubMed

    Williams, Cynthia; Asi, Yara; Raffenaud, Amanda; Bagwell, Matt; Zeini, Ibrahim

    2016-12-01

    While healthcare entities have integrated various forms of health information technology (HIT) into their systems due to claims of increased quality and decreased costs, as well as various incentives, there is little available information about which applications of HIT are actually the most beneficial and efficient. In this study, we aim to assist administrators in understanding the characteristics of top performing hospitals. We utilized data from the Health Information and Management Systems Society and the Center for Medicare and Medicaid to assess 1039 hospitals. Inputs considered were full time equivalents, hospital size, and technology inputs. Technology inputs included personal health records (PHR), electronic medical records (EMRs), computerized physician order entry systems (CPOEs), and electronic access to diagnostic results. Output variables were measures of quality, hospital readmission and mortality rate. The analysis was conducted in a two-stage methodology: Data Envelopment Analysis (DEA) and Automatic Interaction Detector Analysis (AID), decision tree regression (DTreg). Overall, we found that electronic access to diagnostic results systems was the most influential technological characteristics; however organizational characteristics were more important than technological inputs. Hospitals that had the highest levels of quality indicated no excess in the use of technology input, averaging one use of a technology component. This study indicates that prudent consideration of organizational characteristics and technology is needed before investing in innovative programs.

  12. SIRU utilization. Volume 1: Theory, development and test evaluation

    NASA Technical Reports Server (NTRS)

    Musoff, H.

    1974-01-01

    The theory, development, and test evaluations of the Strapdown Inertial Reference Unit (SIRU) are discussed. The statistical failure detection and isolation, single position calibration, and self alignment techniques are emphasized. Circuit diagrams of the system components are provided. Mathematical models are developed to show the performance characteristics of the subsystems. Specific areas of the utilization program are identified as: (1) error source propagation characteristics and (2) local level navigation performance demonstrations.

  13. [Research and Design of a System for Detecting Automated External Defbrillator Performance Parameters].

    PubMed

    Wang, Kewu; Xiao, Shengxiang; Jiang, Lina; Hu, Jingkai

    2017-09-30

    In order to regularly detect the performance parameters of automated external defibrillator (AED), to make sure it is safe before using the instrument, research and design of a system for detecting automated external defibrillator performance parameters. According to the research of the characteristics of its performance parameters, combing the STM32's stability and high speed with PWM modulation control, the system produces a variety of ECG normal and abnormal signals through the digital sampling methods. Completed the design of the hardware and software, formed a prototype. This system can accurate detect automated external defibrillator discharge energy, synchronous defibrillation time, charging time and other key performance parameters.

  14. Heat transfer characteristics of current primary packaging systems for pharmaceutical freeze-drying.

    PubMed

    Hibler, Susanne; Gieseler, Henning

    2012-11-01

    In the field of freeze-drying, the primary packaging material plays an essential role. Here, the packaging system not only contains and protects the drug product during storage and shipping, but it is also directly involved in the freeze-drying process itself. The heat transfer characteristics of the actual container system influence product temperature and therefore product homogeneity and quality as well as process performance. Consequently, knowledge of the container heat transfer characteristics is of vital importance for process optimization. It is the objective of this review article to provide a summary of research focused on heat transfer characteristics of different container systems for pharmaceutical freeze-drying. Besides the common tubing and molded glass vials and metal trays, more recent packaging solutions like polymer vials, LYOGUARD® trays, syringes, and blister packs are discussed. Recent developments in vial manufacturing are also taken into account. Copyright © 2012 Wiley Periodicals, Inc.

  15. A Trusted Platform for Transportation Data Sharing & Stakeholder Engagement

    DOT National Transportation Integrated Search

    2018-03-01

    Information sharing to support critical transportation systems presents numerous challenges given the diversity of information sources and visual representations typically used to portray system performance and characteristics12. This research projec...

  16. Human Factors Engineering and Ergonomics in Systems Engineering

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban

    2017-01-01

    The study, discovery, and application of information about human abilities, human limitations, and other human characteristics to the design of tools, devices, machines, systems, job tasks and environments for effective human performance.

  17. Iris segmentation using an edge detector based on fuzzy sets theory and cellular learning automata.

    PubMed

    Ghanizadeh, Afshin; Abarghouei, Amir Atapour; Sinaie, Saman; Saad, Puteh; Shamsuddin, Siti Mariyam

    2011-07-01

    Iris-based biometric systems identify individuals based on the characteristics of their iris, since they are proven to remain unique for a long time. An iris recognition system includes four phases, the most important of which is preprocessing in which the iris segmentation is performed. The accuracy of an iris biometric system critically depends on the segmentation system. In this paper, an iris segmentation system using edge detection techniques and Hough transforms is presented. The newly proposed edge detection system enhances the performance of the segmentation in a way that it performs much more efficiently than the other conventional iris segmentation methods.

  18. Design of a video system providing optimal visual information for controlling payload and experiment operations with television

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A program was conducted which included the design of a set of simplified simulation tasks, design of apparatus and breadboard TV equipment for task performance, and the implementation of a number of simulation tests. Performance measurements were made under controlled conditions and the results analyzed to permit evaluation of the relative merits (effectivity) of various TV systems. Burden factors were subsequently generated for each TV system to permit tradeoff evaluation of system characteristics against performance. For the general remote operation mission, the 2-view system is recommended. This system is characterized and the corresponding equipment specifications were generated.

  19. Distributed Cognition in Sports Teams: Explaining Successful and Expert Performance

    ERIC Educational Resources Information Center

    Williamson, Kellie; Cox, Rochelle

    2014-01-01

    In this article we use a hybrid methodology to better understand the skilful performance of sports teams as an exemplar of distributed cognition. We highlight key differences between a team of individual experts (an aggregate system) and an expert team (an emergent system), and outline the kinds of shared characteristics likely to be found in an…

  20. An Analytical Design Method for a Regenerative Braking Control System for DC-electrified Railway Systems under Light Load Conditions

    NASA Astrophysics Data System (ADS)

    Saito, Tatsuhito; Kondo, Keiichiro; Koseki, Takafumi

    A DC-electrified railway system that is fed by diode rectifiers at a substation is unable to return the electric power to an AC grid. Accordingly, the braking cars have to restrict regenerative braking power when the power consumption of the powering cars is not sufficient. However, the characteristics of a DC-electrified railway system, including the powering cars, is not known, and a mathematical model for designing a controller has not been established yet. Hence, the object of this study is to obtain the mathematical model for an analytical design method of the regenerative braking control system. In the first part of this paper, the static characteristics of this system are presented to show the position of the equilibrium point. The linearization of this system at the equilibrium point is then performed to describe the dynamic characteristics of the system. An analytical design method is then proposed on the basis of these characteristics. The proposed design method is verified by experimental tests with a 1kW class miniature model, and numerical simulations.

  1. Booster Main Engine Selection Criteria for the Liquid Fly-Back Booster

    NASA Technical Reports Server (NTRS)

    Ryan, Richard M.; Rothschild, William J.; Christensen, David L.

    1998-01-01

    The Liquid Fly-Back Booster (LFBB) Program seeks to enhance the Space Shuttle system safety performance and economy of operations through the use of an advanced, liquid propellant Booster Main Engine (BME). There are several viable BME candidates that could be suitable for this application. The objective of this study was to identify the key criteria to be applied in selecting among these BME candidates. This study involved an assessment of influences on the overall LFBB utility due to variations in the candidate rocket engines' characteristics. This includes BME impacts on vehicle system weight, perfortnance,design approaches, abort modes, margins of safety, engine-out operations, and maintenance and support concepts. Systems engineering analyses and trade studies were performed to identify the LFBB system level sensitivities to a wide variety of BME related parameters. This presentation summarizes these trade studies and the resulting findings of the LFBB design teams regarding the BME characteristics that most significantly affect the LFBB system. The resulting BME choice should offer the best combination of reliability, performance, reusability, robustness, cost, and risk for the LFBB program.

  2. Mirror fusion propulsion system: A performance comparison with alternate propulsion systems for the manned Mars Mission

    NASA Technical Reports Server (NTRS)

    Schulze, Norman R.; Carpenter, Scott A.; Deveny, Marc E.; Oconnell, T.

    1993-01-01

    The performance characteristics of several propulsion technologies applied to piloted Mars missions are compared. The characteristics that are compared are Initial Mass in Low Earth Orbit (IMLEO), mission flexibility, and flight times. The propulsion systems being compared are both demonstrated and envisioned: Chemical (or Cryogenic), Nuclear Thermal Rocket (NTR) solid core, NTR gas core, Nuclear Electric Propulsion (NEP), and a mirror fusion space propulsion system. The proposed magnetic mirror fusion reactor, known as the Mirror Fusion Propulsion System (MFPS), is described. The description is an overview of a design study that was conducted to convert a mirror reactor experiment at Lawrence Livermore National Lab (LLNL) into a viable space propulsion system. Design principles geared towards minimizing mass and maximizing power available for thrust are identified and applied to the LLNL reactor design, resulting in the MFPS. The MFPS' design evolution, reactor and fuel choices, and system configuration are described. Results of the performance comparison shows that the MFPS minimizes flight time to 60 to 90 days for flights to Mars while allowing continuous return-home capability while at Mars. Total MFPS IMLEO including propellant and payloads is kept to about 1,000 metric tons.

  3. Mirror fusion propulsion system - A performance comparison with alternate propulsion systems for the manned Mars mission

    NASA Technical Reports Server (NTRS)

    Deveny, M.; Carpenter, S.; O'Connell, T.; Schulze, N.

    1993-01-01

    The performance characteristics of several propulsion technologies applied to piloted Mars missions are compared. The characteristics that are compared are Initial Mass in Low Earth Orbit (IMLEO), mission flexibility, and flight times. The propulsion systems being compared are both demonstrated and envisioned: Chemical (or Cryogenic), Nuclear Thermal Rocket (NTR) solid core, NTR gas core, Nuclear Electric Propulsion (NEP), and a mirror fusion space propulsion system. The proposed magnetic mirror fusion reactor, known as the Mirror Fusion Propulsion System (MFPS), is described. The description is an overview of a design study that was conducted to convert a mirror reactor experiment at Lawrence Livermore National Lab (LLNL) into a viable space propulsion system. Design principles geared towards minimizing mass and maximizing power available for thrust are identified and applied to the LLNL reactor design, resulting in the MFPS. The MFPS' design evolution, reactor and fuel choices, and system configuration are described. Results of the performance comparison shows that the MFPS minimizes flight time to 60 to 90 days for flights to Mars while allowing continuous return-home capability while at Mars. Total MFPS IMLEO including propellant and payloads is kept to about 1,000 metric tons.

  4. Event Classification and Identification Based on the Characteristic Ellipsoid of Phasor Measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Jian; Diao, Ruisheng; Makarov, Yuri V.

    2011-09-23

    In this paper, a method to classify and identify power system events based on the characteristic ellipsoid of phasor measurement is presented. The decision tree technique is used to perform the event classification and identification. Event types, event locations and clearance times are identified by decision trees based on the indices of the characteristic ellipsoid. A sufficiently large number of transient events were simulated on the New England 10-machine 39-bus system based on different system configurations. Transient simulations taking into account different event types, clearance times and various locations are conducted to simulate phasor measurement. Bus voltage magnitudes and recordedmore » reactive and active power flows are used to build the characteristic ellipsoid. The volume, eccentricity, center and projection of the longest axis in the parameter space coordinates of the characteristic ellipsoids are used to classify and identify events. Results demonstrate that the characteristic ellipsoid and the decision tree are capable to detect the event type, location, and clearance time with very high accuracy.« less

  5. Dielectric Elastomer Actuators for Soft Wave-Handling Systems.

    PubMed

    Wang, Tao; Zhang, Jinhua; Hong, Jun; Wang, Michael Yu

    2017-03-01

    This article presents a soft handling system inspired by the principle of the natural wave (named Wave-Handling system) aiming to offer a soft solution to delicately transport and sort fragile items such as fruits, vegetables, biological tissues in food, and biological industries. The system consists of an array of hydrostatically coupled dielectric elastomer actuators (HCDEAs). Due to the electrostriction property of dielectric elastomers, the handling system can be controlled by electric voltage rather than the cumbersome pneumatic system. To study the working performance of the Wave-Handling system and how the performance can be improved, the basic properties of HCDEA are investigated through experiments. We find that the HCDEA exhibits some delay and hysteretic characteristics when activated by periodic voltage and the characteristics are influenced by the frequency and external force also. All this will affect the performance of the Wave-Handling system. However, the electric control, simple structure, light weight, and low cost of the soft handling system show great potential to move from laboratory to practical application. As a proof of design concept, a simply made prototype of the handling system is controlled to generate a parallel moving wave to manipulate a ball. Based on the experimental results, the improvements and future work are discussed and we believe this work will provide inspiration for soft robotic engineering.

  6. Introduction and Highlights of the Workshop

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Venneri, Samuel L.

    1997-01-01

    Four generations of CAD/CAM systems can be identified, corresponding to changes in both modeling functionality and software architecture. The systems evolved from 2D and wireframes to solid modeling, to parametric/variational modelers to the current simulation-embedded systems. Recent developments have enabled design engineers to perform many of the complex analysis tasks, typically performed by analysis experts. Some of the characteristics of the current and emerging CAD/CAM/CAE systems are described in subsequent presentations. The focus of the workshop is on the potential of CAD/CAM/CAE systems for use in simulating the entire mission and life-cycle of future aerospace systems, and the needed development to realize this potential. First, the major features of the emerging computing, communication and networking environment are outlined; second, the characteristics and design drivers of future aerospace systems are identified; third, the concept of intelligent synthesis environment being planned by NASA, the UVA ACT Center and JPL is presented; and fourth, the objectives and format of the workshop are outlined.

  7. OAO-3 end of mission power subsystem evaluation

    NASA Technical Reports Server (NTRS)

    Tasevoli, M.

    1982-01-01

    End of mission tests were performed on the OAO-3 power subsystem in three component areas: solar array, nickel-cadmium batteries and the On-Board Processor (OBP) power boost operation. Solar array evaluation consisted of analyzing array performance characteristics and comparing them to earlier flight data. Measured solar array degradation of 14.1 to 17.7% after 8 1/3 years is in good agreement with theortical radiation damage losses. Battery discharge characteristics were compared to results of laboratory life cycle tests performed on similar cells. Comparison of cell voltage profils reveals close correlation and confirms the validity of real time life cycle simulation. The successful operation of the system in the OBP/power boost regulation mode demonstrates the excellent life, reliability and greater system utilization of power subsystems using maximum power trackers.

  8. Numerical Simulations Of High-Altitude Aerothermodynamics Of A Prospective Spacecraft Model

    NASA Astrophysics Data System (ADS)

    Vashchenkov, P. V.; Kaskovsky, A. V.; Krylov, A. N.; Ivanov, M. S.

    2011-05-01

    The paper describes the computations of aerothermodynamic characteristics of a promising spacecraft (Prospective Piloted Transport System) along its de- scent trajectory at altitudes from 120 to 60 km. The computations are performed by the DSMC method with the use of the SMILE software system and by the engineering technique (local bridging method) with the use of the RuSat software system. The influence of real gas effects (excitation of rotational and vibrational energy modes and chemical reactions) on aerothermodynamic characteristics of the vehicle is studied. A comparison of results obtained by the approximate engineering method and the DSMC method allow the accuracy of prediction of aerodynamic characteristics by the local bridging method to be estimated.

  9. GATEWAY Demonstrations: Long-Term Evaluation of SSL Field Performance in Select Interior Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Tess E.; Davis, Robert G.; Wilkerson, Andrea M.

    The GATEWAY program evaluated the long-term performance characteristics (chromaticity change, maintained illuminance, and operations and maintenance) of LED lighting systems in four field installations previously documented in separate DOE GATEWAY reports.

  10. Capacity Loss Studies on High Capacity Li-ion Cells for the Orbiter Advanced Hydraulic Power System

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith A.; Irlbeck, Bradley W.

    2004-01-01

    Contents include the following: Introduction. Physical and electrochemical characteristics. Performance evaluation. Rate performance. Internal resistance. Performance at different temperatures. Safety evaluation. Overcharge. Overdischarge. External short. Simulated internal short. Heat-to-vent. Vibration. Drop rest. Vent and burst pressure.

  11. Potential of Spark Ignition Engine, Effect of Vehicle Design Variables on Top Speed, Performance, and Fuel Economy

    DOT National Transportation Integrated Search

    1980-03-01

    The purpose of this report is to evaluate the effect of vehicle characteristics on vehicle performance and fuel economy. The studies were performed using the VEHSIM (vehicle simulation) program at the Transportation Systems Center. The computer simul...

  12. Engine health monitoring systems: Tools for improved maintenance management in the 1980's

    NASA Technical Reports Server (NTRS)

    Kimball, J. C.

    1981-01-01

    The performance monitoring aspect of maintenance, characteristic of the engine health monitoring system are discussed. An overview of the system activities is presented and a summary of programs for improved monitoring in the 1980's are discussed.

  13. Time Counts! Some Comments on System Latency in Head-Referenced Displays

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.; Adelstein, Bernard D.

    2013-01-01

    System response latency is a prominent characteristic of human-computer interaction. Laggy systems are; however, not simply annoying but substantially reduce user productivity. The impact of latency on head referenced display systems, particularly head-mounted systems, is especially disturbing since not only can it interfere with dynamic registration in augmented reality displays but it also can in some cases indirectly contribute to motion sickness. We will summarize several experiments using standard psychophysical discrimination techniques that suggest what system latencies will be required to achieve perceptual stability for spatially referenced computer-generated imagery. In conclusion I will speculate about other system performance characteristics that I would hope to have for a dream augmented reality system.

  14. A New Room-Temperature Liquid, High-Performance Tricyanate Ester

    DTIC Science & Technology

    2010-01-01

    addition of thermoplastic modifiers. Taken together, these results indicate that mono- mer 7 exhibits very favorable processing characteristics for a...significantly exceed those of epoxy resins with corresponding temperature-dependent monomer viscos- ity characteristics .4(a) In addition, cyanate ester...temperature, favorable solubility and viscos- ity characteristics for the addition of comonomers4(b) or toughening agents.4(c) Cyanate ester monomer systems

  15. Multi-Purpose Logistics Module (MPLM) Cargo Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Zampiceni, John J.; Harper, Lon T.

    2002-01-01

    This paper describes the New Shuttle Orbiter's Multi- Purpose Logistics Modulo (MPLM) Cargo Heat Exchanger (HX) and associated MPLM cooling system. This paper presents Heat Exchanger (HX) design and performance characteristics of the system.

  16. Prolong Your Roof's Performance: Roof Asset Management.

    ERIC Educational Resources Information Center

    Teitsma, Jerry

    2001-01-01

    Discusses the roof asset management process for maintaining a roof system's integrity and value in a cost-effective manner. Included is a breakdown of roofing surface characteristics for multiply and single ply roofing systems. (GR)

  17. Associations between shift schedule characteristics with sleep, need for recovery, health and performance measures for regular (semi-)continuous 3-shift systems.

    PubMed

    van de Ven, Hardy A; Brouwer, Sandra; Koolhaas, Wendy; Goudswaard, Anneke; de Looze, Michiel P; Kecklund, Göran; Almansa, Josue; Bültmann, Ute; van der Klink, Jac J L

    2016-09-01

    In this cross-sectional study associations were examined between eight shift schedule characteristics with shift-specific sleep complaints and need for recovery and generic health and performance measures. It was hypothesized that shift schedule characteristics meeting ergonomic recommendations are associated with better sleep, need for recovery, health and performance. Questionnaire data were collected from 491 shift workers of 18 companies with 9 regular (semi)-continuous shift schedules. The shift schedule characteristics were analyzed separately and combined using multilevel linear regression models. The hypothesis was largely not confirmed. Relatively few associations were found, of which the majority was in the direction as expected. In particular early starts of morning shifts and many consecutive shifts seem to be avoided. The healthy worker effect, limited variation between included schedules and the cross-sectional design might explain the paucity of significant results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Scintillating plastic fibers as light pipes for a cosmic ray hodoscope: Feasibility calculations and measured attenuation characteristics

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A candidate hodoscope uses arrays of scintillator fibers, followed by an image intensifier and imaging system such as that proposed for the X-ray shadowgraph. A literature search was performed to ascertain the experience of other workers with hodoscopes using this or similar principles. Calculations were performed to determine the feasibility of candidate systems and some laboratory experiments were performed to attempt to check these numbers.

  19. Improved methods for the measurement and modeling of PV module and system performance for all operating conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, D.L.

    1995-11-01

    The objective of this work was to develop improved performance model for modules and systems for for all operating conditions for use in module specifications, system and BOS component design, and system rating or monitoring. The approach taken was to identify and quantify the influence of dominant factors of solar irradiance, cell temperature, angle-of-incidence; and solar spectrum; use outdoor test procedures to separate the effects of electrical, thermal, and optical performance; use fundamental cell characteristics to improve analysis; and combine factors in simple model using the common variables.

  20. Unstable behaviour of RPT when testing turbine characteristics in the laboratory

    NASA Astrophysics Data System (ADS)

    Nielsen, T. K.; Fjørtoft Svarstad, M.

    2014-03-01

    A reversible pump turbine is a machine that can operate in three modes of operation i.e. in pumping mode. in turbine mode and in phase compensating mode (idle speed). Reversible pump turbines have an increasing importance for regulation purposes for obtaining power balance in electric power systems. Especially in grids dominated by thermal energy. reversible pump turbines improve the overall power regulating ability. Increased use of renewables (wind-. wave- and tidal power plants) will utterly demand better regulation ability of the traditional water power systems. enhancing the use of reversible pump turbines. A reversible pump turbine is known for having incredible steep speed - flow characteristics. As the speed increases the flow decreases more than that of a Francis turbines with the same specific speed. The steep characteristics might cause severe stability problems in turbine mode of operation. Stability in idle speed is a necessity for phasing in the generator to the electric grid. In the design process of a power plant. system dynamic simulations must be performed in order to check the system stability. The turbine characteristics will have to be modelled with certain accuracy even before one knows the exact turbine design and have measured characteristics. A representation of the RPT characteristics for system dynamic simulation purposes is suggested and compared with measured characteristics. The model shows good agreement with RPT characteristics measured in The Waterpower Laboratory. Because of the S-shaped characteristics. there is a stability issue involved when measuring these characteristics. Without special measures. it is impossible to achieve stable conditions in certain operational points. The paper discusses the mechanism when using a throttle to achieve system stability. even if the turbine characteristics imply instability.

  1. Modulation/demodulation techniques for satellite communications. Part 1: Background

    NASA Technical Reports Server (NTRS)

    Omura, J. K.; Simon, M. K.

    1981-01-01

    Basic characteristics of digital data transmission systems described include the physical communication links, the notion of bandwidth, FCC regulations, and performance measurements such as bit rates, bit error probabilities, throughputs, and delays. The error probability performance and spectral characteristics of various modulation/demodulation techniques commonly used or proposed for use in radio and satellite communication links are summarized. Forward error correction with block or convolutional codes is also discussed along with the important coding parameter, channel cutoff rate.

  2. The MOLICEL(R) rechargeable lithium system: Multicell battery aspects

    NASA Technical Reports Server (NTRS)

    Fouchard, D.; Taylor, J. B.

    1987-01-01

    MOLICEL rechargeable lithium cells were cycled in batteries using series, parallel, and series/parallel connections. The individual cell voltages and branch currents were measured to understand the cell interactions. The observations were interpreted in terms of the inherent characteristics of the Li/MoS2 system and in terms of a singular cell failure mode. The results confirm that correctly configured multicell batteries using MOLICELs have performance characteristics comparable to those of single cells.

  3. Space Shuttle Plume and Plume Impingement Study

    NASA Technical Reports Server (NTRS)

    Tevepaugh, J. A.; Penny, M. M.

    1977-01-01

    The extent of the influence of the propulsion system exhaust plumes on the vehicle performance and control characteristics is a complex function of vehicle geometry, propulsion system geometry, engine operating conditions and vehicle flight trajectory were investigated. Analytical support of the plume technology test program was directed at the two latter problem areas: (1) definition of the full-scale exhaust plume characteristics, (2) application of appropriate similarity parameters; and (3) analysis of wind tunnel test data. Verification of the two-phase plume and plume impingement models was directed toward the definition of the full-scale exhaust plume characteristics and the separation motor impingement problem.

  4. Tests of commercial colour CMOS cameras for astronomical applications

    NASA Astrophysics Data System (ADS)

    Pokhvala, S. M.; Reshetnyk, V. M.; Zhilyaev, B. E.

    2013-12-01

    We present some results of testing commercial colour CMOS cameras for astronomical applications. Colour CMOS sensors allow to perform photometry in three filters simultaneously that gives a great advantage compared with monochrome CCD detectors. The Bayer BGR colour system realized in colour CMOS sensors is close to the astronomical Johnson BVR system. The basic camera characteristics: read noise (e^{-}/pix), thermal noise (e^{-}/pix/sec) and electronic gain (e^{-}/ADU) for the commercial digital camera Canon 5D MarkIII are presented. We give the same characteristics for the scientific high performance cooled CCD camera system ALTA E47. Comparing results for tests of Canon 5D MarkIII and CCD ALTA E47 show that present-day commercial colour CMOS cameras can seriously compete with the scientific CCD cameras in deep astronomical imaging.

  5. Pollution reduction technology program small jet aircraft engines, phase 3

    NASA Technical Reports Server (NTRS)

    Bruce, T. W.; Davis, F. G.; Kuhn, T. E.; Mongia, H. C.

    1981-01-01

    A series of Model TFE731-2 engine tests were conducted with the Concept 2 variable geometry airblast fuel injector combustion system installed. The engine was tested to: (1) establish the emission levels over the selected points which comprise the Environmental Protection Agency Landing-Takeoff Cycle; (2) determine engine performance with the combustion system; and (3) evaulate the engine acceleration/deceleration characteristics. The hydrocarbon (HC), carbon monoxide (CO), and smoke goals were met. Oxides of nitrogen (NOx) were above the goal for the same configuration that met the other pollutant goals. The engine and combustor performance, as well as acceleration/deceleration characteristics, were acceptable. The Concept 3 staged combustor system was refined from earlier phase development and subjected to further rig refinement testing. The concept met all of the emissions goals.

  6. Applications using high-Tc superconducting terahertz emitters

    PubMed Central

    Nakade, Kurama; Kashiwagi, Takanari; Saiwai, Yoshihiko; Minami, Hidetoshi; Yamamoto, Takashi; Klemm, Richard A.; Kadowaki, Kazuo

    2016-01-01

    Using recently-developed THz emitters constructed from single crystals of the high-Tc superconductor Bi2Sr2CaCu2O8+δ, we performed three prototype tests of the devices to demonstrate their unique characteristic properties for various practical applications. The first is a compact and simple transmission type of THz imaging system using a Stirling cryocooler. The second is a high-resolution Michelson interferometer used as a phase-sensitive reflection-type imaging system. The third is a system with precise temperature control to measure the liquid absorption coefficient. The detailed characteristics of these systems are discussed. PMID:26983905

  7. Design and Integration of an Actuated Nose Strake Control System

    NASA Technical Reports Server (NTRS)

    Flick, Bradley C.; Thomson, Michael P.; Regenie, Victoria A.; Wichman, Keith D.; Pahle, Joseph W.; Earls, Michael R.

    1996-01-01

    Aircraft flight characteristics at high angles of attack can be improved by controlling vortices shed from the nose. These characteristics have been investigated with the integration of the actuated nose strakes for enhanced rolling (ANSER) control system into the NASA F-18 High Alpha Research Vehicle. Several hardware and software systems were developed to enable performance of the research goals. A strake interface box was developed to perform actuator control and failure detection outside the flight control computer. A three-mode ANSER control law was developed and installed in the Research Flight Control System. The thrust-vectoring mode does not command the strakes. The strakes and thrust-vectoring mode uses a combination of thrust vectoring and strakes for lateral- directional control, and strake mode uses strakes only for lateral-directional control. The system was integrated and tested in the Dryden Flight Research Center (DFRC) simulation for testing before installation in the aircraft. Performance of the ANSER system was monitored in real time during the 89-flight ANSER flight test program in the DFRC Mission Control Center. One discrepancy resulted in a set of research data not being obtained. The experiment was otherwise considered a success with the majority of the research objectives being met.

  8. Capillary Tube and Thermostatic Expansion Valve Comparative Analysis in Water Chiller Air Conditioning

    NASA Astrophysics Data System (ADS)

    Wijaya Sunu, Putu; Made Rasta, I.; Anakottapary, Daud Simon; Made Suarta, I.; Cipta Santosa, I. D. M.

    2018-01-01

    The aims of this study to compares the performance characteristics of a water chiller air conditioning simulation equipped with thermostatic expansion valve (TEV) with those of a capillary tube. Water chiller system filled with the same charge of refrigerant. Comparative analyses were performed based on coefficient of performance (COP) and performance parameter of the refrigeration system, carried out at medium cooling load level with the ambient temperature of 29-31°C, constant compressor speed and fixed chilled water volume flowrate at 15 lpm. It was shown that the TEV system showed better energy consumption compared to that of capillary tube. From the coefficient of performance perspective, the thermostatic expansion valve system showed higher COP (± 21.4%) compared to that of capillary tube system.

  9. DEVELOPMENT OF A NO-VOC/NO-HAP WOOD FURNITURE COATINGS SYSTEM

    EPA Science Inventory

    The report gives results of the development and demonstration of a no-VOC (volatile organic compound)/no-HAP (hazardous air pollutant) wood furniture coating system. The performance characteristics of the new coating system are excellent in terms of adhesion, drying time, gloss, ...

  10. Solar power satellite system definition study. Volume 5, phase 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1979-01-01

    An analysis of the solar power satellite system is presented. Performance, cost, and operational characteristics are assessed. The photovoltaic system is described and investigated. Alternative construction concepts are discussed. The structural bay configuration is presented along with the antenna structure options.

  11. Characterizing complexity in socio-technical systems: a case study of a SAMU Medical Regulation Center.

    PubMed

    Righi, Angela Weber; Wachs, Priscila; Saurin, Tarcísio Abreu

    2012-01-01

    Complexity theory has been adopted by a number of studies as a benchmark to investigate the performance of socio-technical systems, especially those that are characterized by relevant cognitive work. However, there is little guidance on how to assess, systematically, the extent to which a system is complex. The main objective of this study is to carry out a systematic analysis of a SAMU (Mobile Emergency Medical Service) Medical Regulation Center in Brazil, based on the core characteristics of complex systems presented by previous studies. The assessment was based on direct observations and nine interviews: three of them with regulator of emergencies medical doctor, three with radio operators and three with telephone attendants. The results indicated that, to a great extent, the core characteristics of complexity are magnified) due to basic shortcomings in the design of the work system. Thus, some recommendations are put forward with a view to reducing unnecessary complexity that hinders the performance of the socio-technical system.

  12. Low-Enriched Uranium Nuclear Thermal Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Mitchell, Doyce P.; Aschenbrenner, Ken

    2017-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. For example, using NTP for human Mars missions can provide faster transit and/or round trip times for crew; larger mission payloads; off nominal mission opportunities (including wider injection windows); and crew mission abort options not available from other architectures. The use of NTP can also reduce required earth-to-orbit launches, reducing cost and improving ground logistics. In addition to enabling robust human Mars mission architectures, NTP can be used on exploration missions throughout the solar system. A first generation NTP system could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. Progress made under the NTP project could also help enable high performance fission power systems and Nuclear Electric Propulsion (NEP). Guidance, navigation, and control of NTP may have some unique but manageable characteristics.

  13. Effects of Injection Scheme on Rotating Detonation Engine Operation

    NASA Astrophysics Data System (ADS)

    Chacon, Fabian; Duvall, James; Gamba, Mirko

    2017-11-01

    In this work, we experimentally investigate the operation and performance characteristics of a rotating detonation engine (RDE) operated with different fuel injection schemes and operating conditions. In particular, we investigate the detonation and operation characteristics produced with an axial flow injector configuration and semi-impinging injector configurations. These are compared to the characteristics produced with a canonical radial injection system (AFRL injector). Each type produces a different flowfield and mixture distribution, leading to a different detonation initiation, injector dynamic response, and combustor pressure rise. By using a combination of diagnostics, we quantify the pressure loses and gains in the system, the ability to maintain detonation over a range of operating points, and the coupling between the detonation and the air/fuel feed lines. We particularly focus on how this coupling affects both the stability and the performance of the detonation wave. This work is supported by the DOE/UTSR program under project DE-FE0025315.

  14. Conceptual design of a piloted Mars sprint life support system

    NASA Technical Reports Server (NTRS)

    Cullingford, H. S.; Novara, M.

    1988-01-01

    This paper presents the conceptual design of a life support system sustaining a crew of six in a piloted Mars sprint. The requirements and constraints of the system are discussed along with its baseline performance parameters. An integrated operation is achieved with air, water, and waste processing and supplemental food production. The design philosophy includes maximized reliability considerations, regenerative operations, reduced expendables, and fresh harvest capability. The life support system performance will be described with characteristics of the associated physical-chemical subsystems and a greenhouse.

  15. Covariance of engineering management characteristics with engineering employee performance

    NASA Astrophysics Data System (ADS)

    Hesketh, Andrew Arthur

    1998-12-01

    As business in the 1990's grapples with the impact of continuous improvement and quality to meet market demands, there is an increased need to improve the leadership capabilities of our managers. Engineers have indicated desire for certain managerial characteristics in their leadership but there have been no studies completed that approached the problem of determining what managerial characteristics were best at improving employee performance. This study addressed the idea of identifying certain managerial characteristics that enhance employee performance. In the early 1990's, McDonnell Douglas Aerospace in St. Louis used a forced distribution system and allocated 35% of its employees into a "exceeds expectations" category and 60% into a "meets expectations" category. A twenty-question 5 point Likert scale survey on managerial capabilities was administered to a sample engineering population that also obtained their "expectations" category. A single factor ANOVA on the survey results determined a statistical difference between the "exceeds" and "meets" employees with four of the managerial capability questions. The "exceeds expectations" employee indicated that supervision did a better job of supporting subordinate development, clearly communicating performance expectations, and providing timely performance feedback when compared to the "meets expectations" employee. The "meets expectations" employee felt that their opinions, when different from their supervisor's, were more often ignored when compared to the "exceeds expectations" employee. These four questions relate to two specific managerial characteristics, "gaining (informal) authority and support" or "control" characteristic and "providing assistance and guidance" or "command" characteristic, that can be emphasized in managerial training programs.

  16. Polarization characteristics of an altazimuth sky scanner

    NASA Technical Reports Server (NTRS)

    Garrison, L. M.; Blaszczak, Z.; Green, A. E. S.

    1980-01-01

    A theoretical description of the polarization characteristics of an altazimuth sky scanner optical system based on Mueller-Stokes calculus is presented. This computer-driven optical system was designed to perform laboratory studies of skylight and of celestial objects during day or night, and has no space limitations; however, the two parallel 45 deg tilt mirrors introduce some intrinsic polarization. Therefore, proper data interpretation requires a theoretical understanding of the polarization features of the instrument and accurate experimental determination of the Mueller-Stokes matrix elements describing the polarizing and depolarizing action of the system.

  17. A Study on Aircraft Engine Control Systems for Integrated Flight and Propulsion Control

    NASA Astrophysics Data System (ADS)

    Yamane, Hideaki; Matsunaga, Yasushi; Kusakawa, Takeshi

    A flyable FADEC system engineering model incorporating Integrated Flight and Propulsion Control (IFPC) concept is developed for a highly maneuverable aircraft and a fighter-class engine. An overview of the FADEC system and functional assignments for its components such as the Engine Control Unit (ECU) and the Integrated Control Unit (ICU) are described. Overall system reliability analysis, convex analysis and multivariable controller design for the engine, fault detection/redundancy management, and response characteristics of a fuel system are addressed. The engine control performance of the FADEC is demonstrated by hardware-in-the-loop simulation for fast acceleration and thrust transient characteristics.

  18. CPW fed UWB antenna with enhanced bandwidth & dual band notch characteristics

    NASA Astrophysics Data System (ADS)

    Jangid, K. G.; Jain, P. K.; Sharma, B. R.; Saxena, V. K.; Kulhar, V. S.; Bhatnagar, D.

    2018-05-01

    This paper reports the design and performance of CPW fed UWB antenna having two U-shaped slots etched in the radiating structure. UWB performance of proposed structure is obtained through the truncated shape of the patch and L-slits etched in ground plane. By applying two U- shaped slots in a radiating patch, we achieved dual notch band characteristics. The proposed antenna is simulated by applying CST Microwave Studio simulator. This antenna provides wide impedance bandwidth of 12.585 GHz (2.74GHz - 15.325 GHz) with dual notched band characteristics. This antenna may be proved as a useful structure for modern wireless communication systems including UWB band.

  19. Space station trace contaminant control

    NASA Technical Reports Server (NTRS)

    Olcutt, T.

    1985-01-01

    Different systems for the control of space station trace contaminants are outlined. The issues discussed include: spacecabin contaminant sources, technology base, contaminant control system elements and configuration, approach to contaminant control, contaminant load model definition, spacecraft maximum allowable concentrations, charcoal bed sizing and performance characteristics, catalytic oxidizer sizing and performance characteristics, special sorbent bed sizing, animal and plant research payload problems, and emergency upset contaminant removal. It is concluded that the trace contaminant control technology base is firm, the necessary hardware tools are available, and the previous design philosophy is still applicable. Some concerns are the need as opposed to danger of the catalytic oxidizer, contaminants with very low allowable concentrations, and the impact of relaxing materials requirements.

  20. Analysis of the electrical harmonic characteristics of a slip recovery variable speed generating system for wind turbine applications

    NASA Astrophysics Data System (ADS)

    Herrera, J. I.; Reddoch, T. W.

    1988-02-01

    Variable speed electric generating technology can enhance the general use of wind energy in electric utility applications. This enhancement results from two characteristic properties of variable speed wind turbine generators: an improvement in drive train damping characteristics, which results in reduced structural loading on the entire wind turbine system, and an improvement in the overall efficiency by using a more sophisticated electrical generator. Electronic converter systems are the focus of this investigation -- in particular, the properties of a wound-rotor induction generator with the slip recovery system and direct-current link converter. Experience with solid-state converter systems in large wind turbines is extremely limited. This report presents measurements of electrical performances of the slip recovery system and is limited to the terminal characteristics of the system. Variable speed generating systems working effectively in utility applications will require a satisfactory interface between the turbine/generator pair and the utility network. The electrical testing described herein focuses largely on the interface characteristics of the generating system. A MOD-O wind turbine was connected to a very strong system; thus, the voltage distortion was low and the total harmonic distortion in the utility voltage was less than 3 percent (within the 5 percent limit required by most utilities). The largest voltage component of a frequency below 60 Hz was 40 dB down from the 60-Hz less than component.

  1. PFP Public Automatic Exchange (PAX) Commercial Grade Item (CGI) Critical Characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WHITE, W.F.

    2000-04-04

    This document specifies the critical characteristics for Commercial Grade Items (CGI) procured for use within the safety envelope of PFP's PAX system as required by HNF-PRO-268 and HNF-PRO-1819. These are the minimum specifications that the equipment must meet in order to properly perform its safety function. There may be several manufacturers or models that meet the critical characteristics for any one item.

  2. Impact of a function-based payment model on the financial performance of acute inpatient medical rehabilitation providers: a simulation analysis.

    PubMed

    Sutton, J P; DeJong, G; Song, H; Wilkerson, D

    1997-12-01

    To operationalize research findings about a medical rehabilitation classification and payment model by building a prototype of a prospective payment system, and to determine whether this prototype model promotes payment equity. This latter objective is accomplished by identifying whether any facility or payment model characteristics are systematically associated with financial performance. This study was conducted in two phases. In Phase 1 the components of a diagnosis-related group (DRG)-like payment system, including a base rate, function-related group (FRG) weights, and adjusters, were identified and estimated using hospital cost functions. Phase 2 consisted of a simulation analysis in which each facility's financial performance was modeled, based on its 1990-1991 case mix. A multivariate regression equation was conducted to assess the extent to which characteristics of 42 rehabilitation facilities contribute toward determining financial performance under the present Medicare payment system as well as under the hypothetical model developed. Phase 1 (model development) included 61 rehabilitation hospitals. Approximately 59% were rehabilitation units within a general hospital and 48% were teaching facilities. The number of rehabilitation beds averaged 52. Phase 2 of the stimulation analysis included 42 rehabilitation facilities, subscribers to UDS in 1990-1991. Of these, 69% were rehabilitation units and 52% were teaching facilities. The number of rehabilitation beds averaged 48. Financial performance, as measured by the ratio of reimbursement to average costs. Case-mix index is the primary determinant of financial performance under the present Medicare payment system. None of the facility characteristics included in this analysis were associated with financial performance under the hypothetical FRG payment model. The most notable impact of an FRG-based payment model would be to create a stronger link between resource intensity and level of reimbursement, resulting in greater equity in the reimbursement of inpatient medical rehabilitation hospitals.

  3. Performance Test of Laser Velocimeter System for the Langley 16-foot Transonic Tunnel

    NASA Technical Reports Server (NTRS)

    Meyers, J. F.; Hunter, W. W., Jr.; Reubush, D. E.; Nichols, C. E., Jr.; Hepner, T. E.; Lee, J. W.

    1985-01-01

    An investigation in the Langley 16-Foot Transonic Tunnel has been conducted in which a laser velocimeter was used to measure free-stream velocities from Mach 0.1 to 1.0 and the flow velocities along the stagnating streamline of a hemisphere-cylinder model at Mach 0.8 and 1.0. The flow velocity was also measured at Mach 1.0 along the line 0.533 model diameters below the model. These tests determined the performance characteristics of the dedicated two-component laser velocimeter at flow velocities up to Mach 1.0 and the effects of the wind tunnel environment on the particle-generating system and on the resulting size of the generated particles. To determine these characteristics, the measured particle velocities along the stagnating streamline at the two Mach numbers were compared with the theoretically predicted gas and particle velocities calculated using a transonic potential flow method. Through this comparison the mean detectable particle size (2.1 micron) along with the standard deviation of the detectable particles (0.76 micron) was determined; thus the performance characteristics of the laser velocimeter were established.

  4. Early performance of the 12-GHz, 200-watt transmitter experiment package in the communications technology satellite

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Measured performance characteristics of the transmitter experiment package (TEP) aboard the Communications Technology Satellite for the first 90 operating days in orbit are presented. The TEP consists of a nominal 200-watt output stage tube (OST), a supporting power processing system (PPS), and a variable-conductance heat pipe system (VCHPS). The OST, a traveling-wave tube augmented with a 10-stage depressed collector, has an overall saturated average efficiency of 51.5 percent and an average saturated radiofrequency (RF) output power at center-band frequency of 240 watts. The PPS operated with a measured efficiency of 86.5 percent to 88.5 percent. The VCHPS, using three pipes to conduct heat from the PPS and the body of the OST to a 52-centimeter by 124-centimeter (20.5-in. by 48.75-in.) radiator fin, maintained by the PPS baseplate temperature below 50 C for all operating conditions. The TEP performance characteristics presented include frequency response, RF output power, efficiency, and distortions. Communications characteristics were evaluated by using both video and audio modulated signals.

  5. GATEWAY Report Brief: SSL Demonstration: Long-Term Evaluation of Indoor Field Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Report brief summarizing a GATEWAY program evaluation of the long-term performance characteristics (chromaticity change, maintained illuminance, and operations and maintenance) of LED lighting systems in four field installations previously documented in separate DOE GATEWAY reports.

  6. Study of performance characteristics of noble metal thermocouple materials to 2000 C

    NASA Technical Reports Server (NTRS)

    Freeze, P. D.; Thomas, D.; Edelman, S.; Stern, J.

    1972-01-01

    Three performance characteristics of noble metal thermocouples in various environments are discussed. Catalytic effects cause significant errors when noble metal thermocouple materials are exposed to air containing unburned gases in temperature ranges from 25 C to 1500 C. The thermoelectric stability of the iridium 40 rhodium to iridium thermocouple system at 2000 C in an oxidizing medium is described. The effects of large and small temperature gradients on the accuracy and stability of temperature measurements are analyzed.

  7. Determination of tube-to-tube support interaction characteristics. [PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haslinger, K.H.

    Tube-to-tube support interaction characteristics were determined on a multi-span tube geometry representative of the hot-leg side of the C-E, System 80 steam generator design. Results will become input for an autoclave type wear test program on steam generator tubes, performed by Kraftwerk Union (KWU). Correlation of test data reported here with similar data obtained from the wear tests will be performed in an attempt to make predictions about the long-term fretting behavior of steam generator tubes.

  8. Performance characteristics of solar-photovoltaic flywheel-storage systems

    NASA Astrophysics Data System (ADS)

    Jarvinen, P. O.; Brench, B. L.; Rasmussen, N. E.

    A solar photovoltaic energy flywheel storage and conversion system for residential applications was tested. Performance and efficiency measurements were conducted on the system, which utilizes low loss magnetic bearings, maximum power point tracking of the photovoltaic array, integrated permanent magnet motor generator, and output power conditioning sections of either the stand alone cycloconverter or utility interactive inverter type. The overall in/out electrical storage efficiency of the flywheel system was measured along with the power transfer efficiencies of the individual components and the system spin down tare losses. The system compares favorably with systems which use batteries and inverters.

  9. SU-F-I-55: Performance Evaluation of Digital PET/CT: Medical Physics Basis for the Clinical Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, J; Knopp, MV; Miller, M

    2016-06-15

    Purpose: Replacement of conventional PMT-based detector with next generation digital photon counting (DPC) detector is a technology leap for PET imaging. This study evaluated the performance and characteristics of the DPC system and its stability within a 1 year time window following its installation focusing on the medical physics basis for clinical applications. Methods: A digital PET/CT scanner using 1:1 coupling of 23,040 crystal: detector elements was introduced and became operational at OSU. We tested and evaluated system performance and characteristics using NEMA NU2-2012. System stabilities in timing resolution, energy resolution, detector temperature and humidity (T&H) were monitored over 1-yr.more » Timing, energy and spatial resolution were characterized across clinically relevant count rate range. CQIE uniformity PET and NEMA IEC-Body PET with hot spheres varying with sizes and contrasts were performed. PET reconstructed in standard(4mm), High(2mm) and Ultra-High(1mm) definitions were evaluated. Results: NEMA results showed PET spatial resolution (mm-FWHM) from 4.01&4.14 at 1cm to 5.82&6.17 at 20cm in transverse & axial. 322±3ps timing and 11.0% energy resolution were measured. 5.7kcps/MBq system sensitivity with 24kcps/MBq effective sensitivity was obtained. The peak-NECR was ∼171kcps with the effective peak-NECR >650kcps@50kBq/mL. Scatter fraction was ∼30%, and the maximum trues was >900kcps. NEMA IQ demonstrated hot sphere contrast ranging from ∼62%±2%(10mm) to ∼88%±2%(22mm), cold sphere contrast of ∼86%±2%(28mm) and ∼89%±3%(37mm) and excellent uniformity. Monitoring 1-yr stability, it revealed ∼1% change in timing, ±0.4% change in energy resolution, and <10% variations in T&H. CQIE PET gave <3% SUV variances in axial. 60%–100% recovery coefficients across sphere sizes and contrast levels were achieved. Conclusion: Characteristics and stability of the next generation DPC PET detector system over an 1-yr time window was excellent and better than prior experiences. It demonstrated improved and robust system characteristics and performance in spatial resolution, sensitivity, timing and energy resolution, count rate and image quality. Michael Miller is an employee of Philips Healthcare.« less

  10. Optimal Quasi-steady Plasma Thruster system characteristics.

    NASA Technical Reports Server (NTRS)

    Ludwig, D. E.; Kelly, A. J.

    1972-01-01

    The overall characteristics of a generalized Quasi-steady Plasma Thruster (QPT) system consisting of thruster head, power conditioning network, propellant supply subsystem are studied. Energy balance equations for the system are coupled with component mass relationships in order to determine overall system mass and performance. Power supply power levels varying from 100 to 10,000 watts with thruster power levels ranging from 300 kw to 30 Mw employing argon as the propellant are considered. The manner in which overall system mass, average thrust, and burn time vary as a function power supply power level, quasi-steady power level, and pulse time are studied. Results indicate the existence of optimum pulse times when system mass is employed as an optimization criterion.

  11. Cost analysis of oxygen recovery systems

    NASA Technical Reports Server (NTRS)

    Yakut, M. M.

    1973-01-01

    Report is made of the cost analysis of four leading oxygen recovery subsystems which include two carbon dioxide reduction subsystems and two water electrolysis subsystems, namely, the solid polymer electrolyte and the circulating KOH electrolyte. The four oxygen recovery systems were quantitatively evaluated. System characteristics, including process flows, performance, and physical characteristics were also analyzed. Additionally, the status of development of each of the systems considered and the required advance technology efforts required to bring conceptual and/or pre-prototype hardware to an operational prototype status were defined. Intimate knowledge of the operations, development status, and capabilities of the systems to meet space mission requirements were found to be essential in establishing the cost estimating relationships for advanced life support systems.

  12. Investigation of the Impedance Characteristic of Human Arm for Development of Robots to Cooperate with Humans

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Mozasser; Ikeura, Ryojun; Mizutani, Kazuki

    In the near future many aspects of our lives will be encompassed by tasks performed in cooperation with robots. The application of robots in home automation, agricultural production and medical operations etc. will be indispensable. As a result robots need to be made human-friendly and to execute tasks in cooperation with humans. Control systems for such robots should be designed to work imitating human characteristics. In this study, we have tried to achieve these goals by means of controlling a simple one degree-of-freedom cooperative robot. Firstly, the impedance characteristic of the human arm in a cooperative task is investigated. Then, this characteristic is implemented to control a robot in order to perform cooperative task with humans. A human followed the motion of an object, which is moved through desired trajectories. The motion is actuated by the linear motor of the one degree-of-freedom robot system. Trajectories used in the experiments of this method were minimum jerk (the rate of change of acceleration) trajectory, which was found during human and human cooperative task and optimum for muscle movement. As the muscle is mechanically analogous to a spring-damper system, a simple second-order equation is used as models for the arm dynamics. In the model, we considered mass, stiffness and damping factor. Impedance parameter is calculated from the position and force data obtained from the experiments and based on the “Estimation of Parametric Model”. Investigated impedance characteristic of human arm is then implemented to control a robot, which performed cooperative task with human. It is observed that the proposed control methodology has given human like movements to the robot for cooperating with human.

  13. Single Health System Adherence to 2012 Cervical Cancer Screening Guidelines at Extremes of Age and Posthysterectomy.

    PubMed

    Teoh, Deanna; Isaksson Vogel, Rachel; Hultman, Gretchen; Monu, Minnu; Downs, Levi; Geller, Melissa A; Le, Chap; Melton-Meaux, Genevieve; Kulasingam, Shalini

    2017-03-01

    To estimate the proportion of guideline nonadherent Pap tests in women aged younger than 21 years and older than 65 years and posthysterectomy in a single large health system. Secondary objectives were to describe temporal trends and patient and health care provider characteristics associated with screening in these groups. A retrospective cross-sectional chart review was performed at Fairview Health Services and University of Minnesota Physicians. Reasons for testing and patient and health care provider information were collected. Tests were designated as indicated or nonindicated per the 2012 cervical cancer screening guidelines. Point estimates and descriptive statistics were calculated. Patient and health care provider characteristics were compared between indicated and nonindicated groups using χ and Wilcoxon rank-sum tests. A total of 3,920 Pap tests were performed between September 9, 2012, and August 31, 2014. A total of 257 (51%; 95% confidence interval [CI] 46.1-54.9%) of tests in the younger than 21 years group, 536 (40%; 95% CI 37.7-43.1%) in the older than 65 years group, and 605 (29%; 95% CI 27.1-31.0%) in the posthysterectomy group were not indicated. White race in the older than 65 years group was the only patient characteristic associated with receipt of a nonindicated Pap test (P=.007). Health care provider characteristics associated with nonindicated Pap tests varied by screening group. Temporal trends showed a decrease in the proportion of nonindicated tests in the younger than 21 years group but an increase in the posthysterectomy group. For women aged younger than 21 years and older than 65 years and posthysterectomy, 35% of Pap tests performed in our health system were not guideline-adherent. There were no patient or health care provider characteristics associated with guideline nonadherent screening across all groups.

  14. MODEL BASED BIOMASS SYSTEM DESIGN OF FEEDSTOCK SUPPLY SYSTEMS FOR BIOENERGY PRODUCTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David J. Muth, Jr.; Jacob J. Jacobson; Kenneth M. Bryden

    Engineering feedstock supply systems that deliver affordable, high-quality biomass remains a challenge for the emerging bioenergy industry. Cellulosic biomass is geographically distributed and has diverse physical and chemical properties. Because of this feedstock supply systems that deliver cellulosic biomass resources to biorefineries require integration of a broad set of engineered unit operations. These unit operations include harvest and collection, storage, preprocessing, and transportation processes. Design decisions for each feedstock supply system unit operation impact the engineering design and performance of the other system elements. These interdependencies are further complicated by spatial and temporal variances such as climate conditions and biomassmore » characteristics. This paper develops an integrated model that couples a SQL-based data management engine and systems dynamics models to design and evaluate biomass feedstock supply systems. The integrated model, called the Biomass Logistics Model (BLM), includes a suite of databases that provide 1) engineering performance data for hundreds of equipment systems, 2) spatially explicit labor cost datasets, and 3) local tax and regulation data. The BLM analytic engine is built in the systems dynamics software package PowersimTM. The BLM is designed to work with thermochemical and biochemical based biofuel conversion platforms and accommodates a range of cellulosic biomass types (i.e., herbaceous residues, short- rotation woody and herbaceous energy crops, woody residues, algae, etc.). The BLM simulates the flow of biomass through the entire supply chain, tracking changes in feedstock characteristics (i.e., moisture content, dry matter, ash content, and dry bulk density) as influenced by the various operations in the supply chain. By accounting for all of the equipment that comes into contact with biomass from the point of harvest to the throat of the conversion facility and the change in characteristics, the BLM evaluates economic performance of the engineered system, as well as determining energy consumption and green house gas performance of the design. This paper presents a BLM case study delivering corn stover to produce cellulosic ethanol. The case study utilizes the BLM to model the performance of several feedstock supply system designs. The case study also explores the impact of temporal variations in climate conditions to test the sensitivity of the engineering designs. Results from the case study show that under certain conditions corn stover can be delivered to the cellulosic ethanol biorefinery for $35/dry ton.« less

  15. Performance characteristics of NuVal and the Overall Nutritional Quality Index (ONQI).

    PubMed

    Katz, David L; Njike, Valentine Y; Rhee, Lauren Q; Reingold, Arthur; Ayoob, Keith T

    2010-04-01

    Improving diets has considerable potential to improve health, but progress in this area has been limited, and advice to increase fruit and vegetable intake has largely gone unheeded. Our objective was to test the performance characteristics of the Overall Nutritional Quality Index (ONQI), a tool designed to help improve dietary patterns one well-informed choice at a time. The ONQI was developed by a multidisciplinary group of nutrition and public health scientists independent of food industry interests and is the basis for the NuVal Nutritional Guidance System. Dietary guidelines, existing nutritional scoring systems, and other pertinent scientific literature were reviewed. An algorithm incorporating >30 entries that represent both micro- and macronutrient properties of foods, as well as weighting coefficients representing epidemiologic associations between nutrients and health outcomes, was developed and subjected to consumer research and testing of performance characteristics. ONQI and expert panel rankings correlated highly (R = 0.92, P < 0.001). In consumer testing, approximately 80% of >800 study participants indicated that the ONQI would influence their purchase intent. ONQI scoring distinguished the more-healthful DASH (Dietary Approaches to Stop Hypertension) diet (mean score: 46) from the typical American diet according to the National Health and Nutrition Examination Survey (NHANES) 2003-2006 (mean score: 26.5; P < 0.01). In linear regression analysis of the NHANES 2003-2006 populations (n = 15,900), the NuVal system was significantly associated with the Healthy Eating Index 2005 (P < 0.0001). Recently generated data from ongoing studies indicate favorable effects on purchase patterns and significant correlation with health outcomes in large cohorts of men and women followed for decades. NuVal offers universally applicable nutrition guidance that is independent of food industry interests and is supported by consumer research and scientific evaluation of its performance characteristics.

  16. System architecture for the Canadian interim mobile satellite system

    NASA Technical Reports Server (NTRS)

    Shariatmadar, M.; Gordon, K.; Skerry, B.; Eldamhougy, H.; Bossler, D.

    1988-01-01

    The system architecture for the Canadian Interim Mobile Satellite Service (IMSS) which is planned for commencement of commercial service in late 1989 is reviewed. The results of an associated field trial program which was carried out to determine the limits of coverage and the preliminary performance characteristics of the system are discussed.

  17. Expert Systems: Implications for the Diagnosis and Treatment of Learning Disabilities.

    ERIC Educational Resources Information Center

    Hofmeister, Alan M.; Lubke, Margaret M.

    1988-01-01

    The article examines characteristics and present or potential applications of expert systems technology for diagnosis and treatment of learning disabilities. Preliminary findings indicate that expert systems can perform as well as humans in specific areas, and that the process of organizing knowledge bases for expert systems helps clarify existing…

  18. Upset susceptibility study employing circuit analysis and digital simulation. [digital systems and electromagnetic interference

    NASA Technical Reports Server (NTRS)

    Carreno, V. A.

    1984-01-01

    An approach to predict the susceptibility of digital systems to signal disturbances is described. Electrical disturbances on a digital system's input and output lines can be induced by activities and conditions including static electricity, lightning discharge, electromagnetic interference (EMI), and electromagnetic pulsation (EMP). The electrical signal disturbances employed for the susceptibility study were limited to nondestructive levels, i.e., the system does not sustain partial or total physical damage and reset and/or reload brings the system to an operational status. The front-end transition from the electrical disturbances to the equivalent digital signals was accomplished by computer-aided circuit analysis. The super-sceptre (system for circuit evaluation of transient radiation effects) programs was used. Gate models were developed according to manufacturers' performance specifications and parameters resulting from construction processes characteristic of the technology. Digital simulation at the gate and functional level was employed to determine the impact of the abnormal signals on system performance and to study the propagation characteristics of these signals through the system architecture. Example results are included for an Intel 8080 processor configuration.

  19. Evolving Requirements for Magnetic Tape Data Storage Systems

    NASA Technical Reports Server (NTRS)

    Gniewek, John J.

    1996-01-01

    Magnetic tape data storage systems have evolved in an environment where the major applications have been back-up/restore, disaster recovery, and long term archive. Coincident with the rapidly improving price-performance of disk storage systems, the prime requirements for tape storage systems have remained: (1) low cost per MB, (2) a data rate balanced to the remaining system components. Little emphasis was given to configuring the technology components to optimize retrieval of the stored data. Emerging new applications such as network attached high speed memory (HSM), and digital libraries, place additional emphasis and requirements on the retrieval of the stored data. It is therefore desirable to consider the system to be defined both by STorage And Retrieval System (STARS) requirements. It is possible to provide comparative performance analysis of different STARS by incorporating parameters related to (1) device characteristics, and (2) application characteristics in combination with queuing theory analysis. Results of these analyses are presented here in the form of response time as a function of system configuration for two different types of devices and for a variety of applications.

  20. Brake control system modification, augmentor Wing Jet STOL Research Airplane (AWJSRA)

    NASA Technical Reports Server (NTRS)

    Amberg, R. L.; Arline, J. A.; Jenny, R. W.

    1974-01-01

    The braking system for a short takeoff aircraft is discussed and the deficiencies are described. The installation of a Boeing 727 aircraft brake system was made to correct the deficiencies. Tests of the modified system were conducted using an analog computer/hardware simulator. Actual performance tests were conducted and the characteristics of the system were satisfactory.

  1. Multileaf collimator characteristics and reliability requirements for IMRT Elekta system.

    PubMed

    Liu, Chihray; Simon, Thomas A; Fox, Christopher; Li, Jonathan; Palta, Jatinder R

    2008-01-01

    Understanding the characteristics of a multileaf collimator (MLC) system, modeling MLC in a treatment planning system, and maintaining the mechanical accuracy of the linear accelerator gantry head system are important factors in the safe implementation of an intensity-modulated radiotherapy program. We review the characteristics of an Elekta MLC system, discuss the necessary MLC modeling parameters for a treatment planning system, and provide a novel method to establish an MLC leaf position quality assurance program. To perform quality assurance on 40 pairs of individual MLC leaves is a time-consuming and difficult task. In this report, an effective routine MLC quality assurance method based on the field edge of a backup jaw as referenced in conjunction with a diode array as a radiation detector system is discussed. The sensitivity of this test for determining the relative leaf positions was observed to be better than 0.1 mm. The Elekta MLC leaf position accuracy measured with this system has been better than 0.3 mm.

  2. Experimental investigation of the catalytic decomposition and combustion characteristics of a non-toxic ammonium dinitramide (ADN)-based monopropellant thruster

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Li, Guoxiu; Zhang, Tao; Wang, Meng; Yu, Yusong

    2016-12-01

    Low toxicity ammonium dinitramide (ADN)-based aerospace propulsion systems currently show promise with regard to applications such as controlling satellite attitude. In the present work, the decomposition and combustion processes of an ADN-based monopropellant thruster were systematically studied, using a thermally stable catalyst to promote the decomposition reaction. The performance of the ADN propulsion system was investigated using a ground test system under vacuum, and the physical properties of the ADN-based propellant were also examined. Using this system, the effects of the preheating temperature and feed pressure on the combustion characteristics and thruster performance during steady state operation were observed. The results indicate that the propellant and catalyst employed during this work, as well as the design and manufacture of the thruster, met performance requirements. Moreover, the 1 N ADN thruster generated a specific impulse of 223 s, demonstrating the efficacy of the new catalyst. The thruster operational parameters (specifically, the preheating temperature and feed pressure) were found to have a significant effect on the decomposition and combustion processes within the thruster, and the performance of the thruster was demonstrated to improve at higher feed pressures and elevated preheating temperatures. A lower temperature of 140 °C was determined to activate the catalytic decomposition and combustion processes more effectively compared with the results obtained using other conditions. The data obtained in this study should be beneficial to future systematic and in-depth investigations of the combustion mechanism and characteristics within an ADN thruster.

  3. Results of a 24-inch Hybrid Motor Performance Uncertainty Analysis

    NASA Technical Reports Server (NTRS)

    Sims, Joseph D.; Coleman, Hugh W.

    1998-01-01

    The subscale (11 and 24-inch) hybrid motors at the Marshall Space Flight Center (MSFC) have been used as versatile and cost effective testbeds for developing new technology. Comparisons between motor configuration, ignition systems, feed systems, fuel formulations, and nozzle materials have been carried out without detailed consideration as to haw "good" the motor performance data were. For the 250,000 lb/thrust motor developed by the Hybrid Propulsion Demonstration Program consortium, this shortcoming is particularly risky because motor performance will likely be used as put of a set of downselect criteria to choose between competing ignition and feed systems under development. This analysis directly addresses that shortcoming by applying uncertainty analysis techniques to the experimental determination of the characteristic velocity, theoretical characteristic velocity, and characteristic velocity efficiency for a 24-inch motor firing. With the adoption of fuel-lined headends, flow restriction, and aft mixing chambers, state of the an 24-inch hybrid motors have become very efficient However, impossibly high combustion efficiencies (some computed as high as 108%) have been measured in some tests with 11-inch motors. This analysis has given new insight into explaining how these efficiencies were measured to be so high, and into which experimental measurements contribute the most to the overall uncertainty.

  4. Comparative performance evaluation of advanced AC and DC EV propulsion systems

    NASA Astrophysics Data System (ADS)

    MacDowall, R. D.; Crumley, R. L.

    Idaho National Engineering Laboratory (INEL) evaluates EV propulsion systems and components for the U.S. Department of Energy (DOE) Electric and Hybrid Vehicle (EHV) Program. In this study, experimental data were used to evaluate the relative performances of the benchmark Chrysler/GE ETV-1 DC and the Ford/GE First Generation Single-Shaft AC (ETX-I) propulsion systems. Tests were conducted on the INEL's chassis dynamometer using identical aerodynamic and rolling resistance road-load coefficients and vehicle test weights. The results allowed a direct comparison of selected efficiency and performance characteristics for the two propulsion system technologies. The ETX-I AC system exhibited slightly lower system efficiency during constant speed testing than the ETV-1 DC propulsion system.

  5. Precision Attitude Determination System (PADS) design and analysis. Two-axis gimbal star tracker

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Development of the Precision Attitude Determination System (PADS) focused chiefly on the two-axis gimballed star tracker and electronics design improved from that of Precision Pointing Control System (PPCS), and application of the improved tracker for PADS at geosynchronous altitude. System design, system analysis, software design, and hardware design activities are reported. The system design encompasses the PADS configuration, system performance characteristics, component design summaries, and interface considerations. The PADS design and performance analysis includes error analysis, performance analysis via attitude determination simulation, and star tracker servo design analysis. The design of the star tracker and electronics are discussed. Sensor electronics schematics are included. A detailed characterization of the application software algorithms and computer requirements is provided.

  6. Multistage Planetary Power Transmissions

    NASA Technical Reports Server (NTRS)

    Hadden, G. B.; Dyba, G. J.; Ragen, M. A.; Kleckner, R. J.; Sheynin, L.

    1986-01-01

    PLANETSYS simulates thermomechanical performance of multistage planetary performance of multistage planetary power transmission. Two versions of code developed, SKF version and NASA version. Major function of program: compute performance characteristics of planet bearing for any of six kinematic inversions. PLANETSYS solves heat-balance equations for either steadystate or transient thermal conditions, and produces temperature maps for mechanical system.

  7. Performance Rating Accuracy Improvement through Changes in Individual and System Characteristics.

    ERIC Educational Resources Information Center

    Kavanagh, Michael J.

    Although the quest for better measurement of individual job performance has generated considerable empirical research in industrial and organizational psychology, the feeling persists that a good job is not really being done in measuring job performance. This research project investigated the effects of differences in both individual and systems…

  8. The 30-centimeter ion thrust subsystem design manual

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The principal characteristics of the 30-centimeter ion propulsion thrust subsystem technology that was developed to satisfy the propulsion needs of future planetary and early orbital missions are described. Functional requirements and descriptions, interface and performance requirements, and physical characteristics of the hardware are described at the thrust subsystem, BIMOD engine system, and component level.

  9. Societal Characteristics within the School: Inferences from the International Study of Educational Achievement.

    ERIC Educational Resources Information Center

    Anderson, C. Arnold

    1979-01-01

    This paper relates the scholastic performance findings of the International Educational Achievement (IEA) Studies to social characteristics. It explores the relationship of national school achievement to economic development, national communication systems, and national social and cultural indices. This is the final article in a symposium on the…

  10. 76 FR 31946 - Energy Conservation Program for Certain Industrial Equipment: Publication of the Petition for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-02

    ... has been adopted by AHRI--``ANSI/AHRI 1230--2010: Performance Rating of Variable Refrigerant Flow (VRF... Refrigerant Flow (VRF) Multi-Split Systems, because the basic model contains design characteristics which... line of commercial (3- phase) VRF multi-split ``AIRSTAGE V-II''. 2. The Design Characteristics FUJITSU...

  11. Propulsion System Airframe Integration Issues and Aerodynamic Database Development for the Hyper-X Flight Research Vehicle

    NASA Technical Reports Server (NTRS)

    Engelund, Walter C.; Holland, Scott D.; Cockrell, Charles E., Jr.; Bittner, Robert D.

    1999-01-01

    NASA's Hyper-X Research Vehicle will provide a unique opportunity to obtain data on an operational airframe integrated scramjet propulsion system at true flight conditions. The airframe integrated nature of the scramjet engine with the Hyper-X vehicle results in a strong coupling effect between the propulsion system operation and the airframe s basic aerodynamic characteristics. Comments on general airframe integrated scramjet propulsion system effects on vehicle aerodynamic performance, stability, and control are provided, followed by examples specific to the Hyper-X research vehicle. An overview is provided of the current activities associated with the development of the Hyper-X aerodynamic database, including wind tunnel test activities and parallel CFD analysis efforts. A brief summary of the Hyper-X aerodynamic characteristics is provided, including the direct and indirect effects of the airframe integrated scramjet propulsion system operation on the basic airframe stability and control characteristics.

  12. Volume accumulator design analysis computer codes

    NASA Technical Reports Server (NTRS)

    Whitaker, W. D.; Shimazaki, T. T.

    1973-01-01

    The computer codes, VANEP and VANES, were written and used to aid in the design and performance calculation of the volume accumulator units (VAU) for the 5-kwe reactor thermoelectric system. VANEP computes the VAU design which meets the primary coolant loop VAU volume and pressure performance requirements. VANES computes the performance of the VAU design, determined from the VANEP code, at the conditions of the secondary coolant loop. The codes can also compute the performance characteristics of the VAU's under conditions of possible modes of failure which still permit continued system operation.

  13. Building an Evaluation Scale using Item Response Theory.

    PubMed

    Lalor, John P; Wu, Hao; Yu, Hong

    2016-11-01

    Evaluation of NLP methods requires testing against a previously vetted gold-standard test set and reporting standard metrics (accuracy/precision/recall/F1). The current assumption is that all items in a given test set are equal with regards to difficulty and discriminating power. We propose Item Response Theory (IRT) from psychometrics as an alternative means for gold-standard test-set generation and NLP system evaluation. IRT is able to describe characteristics of individual items - their difficulty and discriminating power - and can account for these characteristics in its estimation of human intelligence or ability for an NLP task. In this paper, we demonstrate IRT by generating a gold-standard test set for Recognizing Textual Entailment. By collecting a large number of human responses and fitting our IRT model, we show that our IRT model compares NLP systems with the performance in a human population and is able to provide more insight into system performance than standard evaluation metrics. We show that a high accuracy score does not always imply a high IRT score, which depends on the item characteristics and the response pattern.

  14. Building an Evaluation Scale using Item Response Theory

    PubMed Central

    Lalor, John P.; Wu, Hao; Yu, Hong

    2016-01-01

    Evaluation of NLP methods requires testing against a previously vetted gold-standard test set and reporting standard metrics (accuracy/precision/recall/F1). The current assumption is that all items in a given test set are equal with regards to difficulty and discriminating power. We propose Item Response Theory (IRT) from psychometrics as an alternative means for gold-standard test-set generation and NLP system evaluation. IRT is able to describe characteristics of individual items - their difficulty and discriminating power - and can account for these characteristics in its estimation of human intelligence or ability for an NLP task. In this paper, we demonstrate IRT by generating a gold-standard test set for Recognizing Textual Entailment. By collecting a large number of human responses and fitting our IRT model, we show that our IRT model compares NLP systems with the performance in a human population and is able to provide more insight into system performance than standard evaluation metrics. We show that a high accuracy score does not always imply a high IRT score, which depends on the item characteristics and the response pattern.1 PMID:28004039

  15. Electromagnetic Methods of Lightning Detection

    NASA Astrophysics Data System (ADS)

    Rakov, V. A.

    2013-11-01

    Both cloud-to-ground and cloud lightning discharges involve a number of processes that produce electromagnetic field signatures in different regions of the spectrum. Salient characteristics of measured wideband electric and magnetic fields generated by various lightning processes at distances ranging from tens to a few hundreds of kilometers (when at least the initial part of the signal is essentially radiation while being not influenced by ionospheric reflections) are reviewed. An overview of the various lightning locating techniques, including magnetic direction finding, time-of-arrival technique, and interferometry, is given. Lightning location on global scale, when radio-frequency electromagnetic signals are dominated by ionospheric reflections, is also considered. Lightning locating system performance characteristics, including flash and stroke detection efficiencies, percentage of misclassified events, location accuracy, and peak current estimation errors, are discussed. Both cloud and cloud-to-ground flashes are considered. Representative examples of modern lightning locating systems are reviewed. Besides general characterization of each system, the available information on its performance characteristics is given with emphasis on those based on formal ground-truth studies published in the peer-reviewed literature.

  16. Cultural characteristics of "high" and "low" performing hospitals.

    PubMed

    Mannion, R; Davies, H T O; Marshall, M N

    2005-01-01

    To compare and contrast the cultural characteristics of "high" and "low" performing hospitals in the UK National Health Service (NHS). A multiple case study design incorporating a purposeful sample of "low" and "high" performing acute hospital Trusts, as assessed by the star performance rating system. These case studies suggest that "high" and "low" performing acute hospital organisations may be very different environments in which to work. Although each case possessed its own unique character, significant patternings were observed within cases grouped by performance to suggest considerable cultural divergence. The key points of divergence can be grouped under four main headings: leadership and management orientation; accountability and information systems; human resources policies; and relationships within the local health economy. As with any study, interpretation of findings should be tempered with a degree of caution because of methodological considerations. First, there are the limitations of case study which proceeds on the basis of theoretical rather than quantitative generalisation. Second, organisational culture was assessed by exploring the views of middle and senior managers. While one should in no way suggest that such an approach can capture all important cultural characteristics of organisations, it is believed that it may be at least partially justified, given the agenda-setting powers and influence of the senior management team. Finally "star" performance measures are far from a perfect measure of organisational performance. Despite such reservations, the findings indicate that organisational culture is associated in a variety of non-trivial ways with the measured performance of hospital organisations. Highlights considerable cultural divergence within UK NHS hospitals.

  17. Novel atmospheric extinction measurement techniques for aerospace laser system applications

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark

    2013-01-01

    Novel techniques for laser beam atmospheric extinction measurements, suitable for manned and unmanned aerospace vehicle applications, are presented in this paper. Extinction measurements are essential to support the engineering development and the operational employment of a variety of aerospace electro-optical sensor systems, allowing calculation of the range performance attainable with such systems in current and likely future applications. Such applications include ranging, weaponry, Earth remote sensing and possible planetary exploration missions performed by satellites and unmanned flight vehicles. Unlike traditional LIDAR methods, the proposed techniques are based on measurements of the laser energy (intensity and spatial distribution) incident on target surfaces of known geometric and reflective characteristics, by means of infrared detectors and/or infrared cameras calibrated for radiance. Various laser sources can be employed with wavelengths from the visible to the far infrared portions of the spectrum, allowing for data correlation and extended sensitivity. Errors affecting measurements performed using the proposed methods are discussed in the paper and algorithms are proposed that allow a direct determination of the atmospheric transmittance and spatial characteristics of the laser spot. These algorithms take into account a variety of linear and non-linear propagation effects. Finally, results are presented relative to some experimental activities performed to validate the proposed techniques. Particularly, data are presented relative to both ground and flight trials performed with laser systems operating in the near infrared (NIR) at λ = 1064 nm and λ = 1550 nm. This includes ground tests performed with 10 Hz and 20 kHz PRF NIR laser systems in a large variety of atmospheric conditions, and flight trials performed with a 10 Hz airborne NIR laser system installed on a TORNADO aircraft, flying up to altitudes of 22,000 ft.

  18. Final report on testing of TOPAZ II unit Ya-21u: Output power characteristics and system capabilities

    NASA Astrophysics Data System (ADS)

    Luchau, David W.; Sinkevich, Valery G.; Wernsman, Bernard; Mulder, Daniel M.

    1996-03-01

    A final report on the output power characteristics and capabilities of the TOPAZ II Space Nuclear Power Unit Ya-21u is presented. Results showed that after a total of almost 8,000 hours of system testing in the U.S. and Russia, several emergency cooldowns, and three inadvertent air introductions to the interelectrode gap (IEG) that the TOPAZ II demonstrates the potential for providing reliable power in a space environment. Output power optimizations and system characteristics following a shock and vibration test are shown. These tests were performed using electrical heaters that simulate nuclear fuel heating. This paper will focus primarily on the changes in output power characteristics over the lifetime of Ya-21u. All U.S. testing was conducted at the Thermionic System Evaluation Test (TSET) Facility of the New Mexico Engineering Research Institute (NMERI) as a part of the TOPAZ International Program (TIP). TIP is managed by the Air Force Phillips Laboratory (PL) for the Ballistic Missile Defense Organization (BMDO).

  19. Evaluation of total energy-rate feedback for glidescope tracking in wind shear

    NASA Technical Reports Server (NTRS)

    Belcastro, C. M.; Ostroff, A. J.

    1986-01-01

    Low-altitude wind shear is recognized as an infrequent but significant hazard to all aircraft during take-off and landing. A total energy-rate sensor, which is potentially applicable to this problem, has been developed for measuring specific total energy-rate of an airplane with respect to the air mass. This paper presents control system designs, with and without energy-rate feedback, for the approach to landing of a transport airplane through severe wind shear and gusts to evaluate application of this sensor. A system model is developed which incorporates wind shear dynamics equations with the airplance equations of motion, thus allowing the control systems to be analyzed under various wind shears. The control systems are designed using optimal output feedback and are analyzed using frequency domain control theory techniques. Control system performance is evaluated using a complete nonlinear simulation of the airplane and a severe wind shear and gust data package. The analysis and simulation results indicate very similar stability and performance characteristics for the two designs. An implementation technique for distributing the velocity gains between airspeed and ground speed in the simulation is also presented, and this technique is shown to improve the performance characteristics of both designs.

  20. Applying Monte-Carlo simulations to optimize an inelastic neutron scattering system for soil carbon analysis

    USDA-ARS?s Scientific Manuscript database

    Computer Monte-Carlo (MC) simulations (Geant4) of neutron propagation and acquisition of gamma response from soil samples was applied to evaluate INS system performance characteristic [sensitivity, minimal detectable level (MDL)] for soil carbon measurement. The INS system model with best performanc...

  1. Management Strategies for Complex Adaptive Systems: Sensemaking, Learning, and Improvisation

    ERIC Educational Resources Information Center

    McDaniel, Reuben R., Jr.

    2007-01-01

    Misspecification of the nature of organizations may be a major reason for difficulty in achieving performance improvement. Organizations are often viewed as machine-like, but complexity science suggests that organizations should be viewed as complex adaptive systems. I identify the characteristics of complex adaptive systems and give examples of…

  2. Photovoltaic performance models - A report card

    NASA Technical Reports Server (NTRS)

    Smith, J. H.; Reiter, L. R.

    1985-01-01

    Models for the analysis of photovoltaic (PV) systems' designs, implementation policies, and economic performance, have proliferated while keeping pace with rapid changes in basic PV technology and extensive empirical data compiled for such systems' performance. Attention is presently given to the results of a comparative assessment of ten well documented and widely used models, which range in complexity from first-order approximations of PV system performance to in-depth, circuit-level characterizations. The comparisons were made on the basis of the performance of their subsystem, as well as system, elements. The models fall into three categories in light of their degree of aggregation into subsystems: (1) simplified models for first-order calculation of system performance, with easily met input requirements but limited capability to address more than a small variety of design considerations; (2) models simulating PV systems in greater detail, encompassing types primarily intended for either concentrator-incorporating or flat plate collector PV systems; and (3) models not specifically designed for PV system performance modeling, but applicable to aspects of electrical system design. Models ignoring subsystem failure or degradation are noted to exclude operating and maintenance characteristics as well.

  3. Relationships among Factors in New Officer Effectiveness Report System. Final Report for Period 15 December 1975-30 April 1978.

    ERIC Educational Resources Information Center

    Bottenberg, Robert A.

    To investigate operating characteristics of performance factors and the evaluation of potential ratings for new officers, an analysis of controlled effectiveness for 9,230 lieutenant colonels was performed. The study was done to determine whether performance factor variance was so restricted that the performance factors would not provide useful…

  4. Development of Independent-type Optical CT

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tatsushi; Shiozawa, Daigoro; Rokunohe, Toshiaki; Kida, Junzo; Zhang, Wei

    Optical current transformers (optical CTs) have features that they can be made much smaller and lighter than conventional electromagnetic induction transformers by their simple structure, and contribute to improvement of equipment reliability because of their excellent surge resistance performance. Authors consider optical CTs to be next generation transformers, and are conducting research and development of optical CTs aiming to apply to measuring and protection in electric power systems. Specifically we developed an independent-type optical CT by utilizing basic data of optical CTs accumulated for large current characteristics, temperature characteristics, vibration resistance characteristics, and so on. In performance verification, type tests complying with IEC standards, such as short-time current tests, insulation tests, accuracy tests, and so on, showed good results. This report describes basic principle and configuration of optical CTs. After that, as basic characteristics of optical CTs, conditions and results of verification tests for dielectric breakdown characteristics of sensor fibers, large current characteristics, temperature characteristics, and vibration resistance characteristics are described. Finally, development outline of the independent-type optical CT aiming to apply to all digital substation and its type tests results are described.

  5. Survey of currently available high-resolution raster graphics systems

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.

    1987-01-01

    Presented are data obtained on high-resolution raster graphics engines currently available on the market. The data were obtained through survey responses received from various vendors and also from product literature. The questionnaire developed for this survey was basically a list of characteristics desired in a high performance color raster graphics system which could perform real-time aircraft simulations. Several vendors responded to the survey, with most reporting on their most advanced high-performance, high-resolution raster graphics engine.

  6. Upset susceptibility study employing circuit analysis and digital simulation

    NASA Technical Reports Server (NTRS)

    Carreno, V. A.

    1984-01-01

    This paper describes an approach to predicting the susceptibility of digital systems to signal disturbances. Electrical disturbances on a digital system's input and output lines can be induced by activities and conditions including static electricity, lightning discharge, Electromagnetic Interference (EMI) and Electromagnetic Pulsation (EMP). The electrical signal disturbances employed for the susceptibility study were limited to nondestructive levels, i.e., the system does not sustain partial or total physical damage and reset and/or reload will bring the system to an operational status. The front-end transition from the electrical disturbances to the equivalent digital signals was accomplished by computer-aided circuit analysis. The Super-Sceptre (system for circuit evaluation of transient radiation effects) Program was used. Gate models were developed according to manufacturers' performance specifications and parameters resulting from construction processes characteristic of the technology. Digital simulation at the gate and functional level was employed to determine the impact of the abnormal signals on system performance and to study the propagation characteristics of these signals through the system architecture. Example results are included for an Intel 8080 processor configuration.

  7. Application of imaging techniques to evaluate polishing characteristics of aggregates : final report.

    DOT National Transportation Integrated Search

    2016-12-01

    Previous research conducted at the University of Florida (UF) to investigate the use of the Aggregate Image Measurement System (AIMS) and Micro-Deval (MD) to evaluate frictional performance of aggregates concluded that the current AIMS system cannot ...

  8. Holographic optical elements: Fabrication and testing

    NASA Technical Reports Server (NTRS)

    Zech, R. G.; Shareck, M.; Ralston, L. M.

    1974-01-01

    The basic properties and use of holographic optical elements were investigated to design and construct wide-angle, Fourier-transform holographic optical systems for use in a Bragg-effect optical memory. The performance characteristics are described along with the construction of the holographic system.

  9. Modeling of Electrocardiograph Telediagnosing System Based on Petri Net

    NASA Astrophysics Data System (ADS)

    Hu, Wensong; Li, Ming; Li, Lan

    This paper analyzed the characteristics of the electrocardiograph telediagnosing system. Firstly, we introduce the system and Petri nets. Secondly, we built a topological diagram of this system. Then we use Petri nets to show the physical process of this system. Finally, we verified the model of the electrocardiograph telediagnosing system. With the help of model based on Petri nets, we analyzed the system performance and feasibility.

  10. Rethinking key–value store for parallel I/O optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kougkas, Anthony; Eslami, Hassan; Sun, Xian-He

    2015-01-26

    Key-value stores are being widely used as the storage system for large-scale internet services and cloud storage systems. However, they are rarely used in HPC systems, where parallel file systems are the dominant storage solution. In this study, we examine the architecture differences and performance characteristics of parallel file systems and key-value stores. We propose using key-value stores to optimize overall Input/Output (I/O) performance, especially for workloads that parallel file systems cannot handle well, such as the cases with intense data synchronization or heavy metadata operations. We conducted experiments with several synthetic benchmarks, an I/O benchmark, and a real application.more » We modeled the performance of these two systems using collected data from our experiments, and we provide a predictive method to identify which system offers better I/O performance given a specific workload. The results show that we can optimize the I/O performance in HPC systems by utilizing key-value stores.« less

  11. Evaluation of Low Power Hall Thruster Propulsion

    NASA Technical Reports Server (NTRS)

    Manzella, David; Oleson, Steve; Sankovic, John; Haag, Tom; Semenkin, Alexander; Kim, Vladimir

    1996-01-01

    Hall thruster systems based on the SPT-50 and the TAL D-38 were evaluated and mission studies were performed. The 0.3 kilowatt SPT-50 operated with a specific impulse of 1160 seconds and an efficiency of 0.32. The 0.8 kilowatt D-38 provided a specific impulse above 1700 seconds at an efficiency of 0.5. The D-38 system was shown to offer a 56 kilogram propulsion system mass savings over a 101 kilogram hydrazine monopropellant system designed to perform North-South station keeping maneuvers on board a 430 kilogram geostationary satellite. The SPIT-50 system offered a greater than 50% propulsion system mass reduction in comparison to the chemical system on board a 200 kilogram low Earth orbit spacecraft performing two orbit raises and drag makeup over two years. The performance characteristics of the SPF-50 were experimentally evaluated at a number of operating conditions. The ion current density distribution of this engine was measured. The performance and system mass benefits of advanced systems based on both engines were considered.

  12. Importance of balanced architectures in the design of high-performance imaging systems

    NASA Astrophysics Data System (ADS)

    Sgro, Joseph A.; Stanton, Paul C.

    1999-03-01

    Imaging systems employed in demanding military and industrial applications, such as automatic target recognition and computer vision, typically require real-time high-performance computing resources. While high- performances computing systems have traditionally relied on proprietary architectures and custom components, recent advances in high performance general-purpose microprocessor technology have produced an abundance of low cost components suitable for use in high-performance computing systems. A common pitfall in the design of high performance imaging system, particularly systems employing scalable multiprocessor architectures, is the failure to balance computational and memory bandwidth. The performance of standard cluster designs, for example, in which several processors share a common memory bus, is typically constrained by memory bandwidth. The symptom characteristic of this problem is failure to the performance of the system to scale as more processors are added. The problem becomes exacerbated if I/O and memory functions share the same bus. The recent introduction of microprocessors with large internal caches and high performance external memory interfaces makes it practical to design high performance imaging system with balanced computational and memory bandwidth. Real word examples of such designs will be presented, along with a discussion of adapting algorithm design to best utilize available memory bandwidth.

  13. Dates fruits classification using SVM

    NASA Astrophysics Data System (ADS)

    Alzu'bi, Reem; Anushya, A.; Hamed, Ebtisam; Al Sha'ar, Eng. Abdelnour; Vincy, B. S. Angela

    2018-04-01

    In this paper, we used SVM in classifying various types of dates using their images. Dates have interesting different characteristics that can be valuable to distinguish and determine a particular date type. These characteristics include shape, texture, and color. A system that achieves 100% accuracy was built to classify the dates which can be eatable and cannot be eatable. The built system helps the food industry and customer in classifying dates depending on specific quality measures giving best performance with specific type of dates.

  14. Advanced vehicle systems assessment. Volume 2: Subsystems assessment

    NASA Technical Reports Server (NTRS)

    Hardy, K.

    1985-01-01

    Volume 2 (Subsystems Assessment) is part of a five-volume report entitled Advanced Vehicle Systems Assessment. Volume 2 presents the projected performance capabilities and cost characteristics of applicable subsystems, considering an additional decade of development. Subsystems of interest include energy storage and conversion devices as well as the necessary powertrain components and vehicle subsystems. Volume 2 also includes updated battery information based on the assessment of an independent battery review board (with the aid of subcontractor reports on advanced battery characteristics).

  15. An experimental investigation of ejector performance based upon different refrigerants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, S.L.; Yen, J.Y.; Huang, M.C.

    1998-12-31

    This article experimentally compares the characteristics of different refrigerants as the working fluid in an ejector cooling system. The study covers common refrigerants including R-113, R-114, R-142b, and R-718. The critical choking conditions against the variation of condenser back pressure, the evaporator pressure, and the generator pressure are determined for each refrigerant. The results are compiled into a convenient performance curve and COP chart. These results can serve as an important reference for future design of ejector cooling systems. Finally, this paper presents a comparison of the performances of different refrigerants in an ejector cooling system.

  16. Correction of Pressure Drop in Steam and Water System in Performance Test of Boiler

    NASA Astrophysics Data System (ADS)

    Liu, Jinglong; Zhao, Xianqiao; Hou, Fanjun; Wu, Xiaowu; Wang, Feng; Hu, Zhihong; Yang, Xinsen

    2018-01-01

    Steam and water pressure drop is one of the most important characteristics in the boiler performance test. As the measuring points are not in the guaranteed position and the test condition fluctuation exsits, the pressure drop test of steam and water system has the deviation of measuring point position and the deviation of test running parameter. In order to get accurate pressure drop of steam and water system, the corresponding correction should be carried out. This paper introduces the correction method of steam and water pressure drop in boiler performance test.

  17. An active interference projector for the electro-optical test facility

    NASA Astrophysics Data System (ADS)

    Crowe, D. G.; Nowak, T. M.

    1980-09-01

    A projection system is described which can simulate emissions from flares, muzzle-flashes, shellbursts, and other emissive agents which may degrade the performance of electro-optical systems in the 0.5-15 micron spectral range. The simulation capability obtained will allow the apparent radiance and temporal characteristics of muzzleflashes and shellbursts to be mimicked at simulated ranges as close as 23 m within the Electro-Optical Test Facility. This demonstrates that tests of electro-optical system performance in the presence of interferers can be performed under laboratory conditions with higher repeatability and lower cost than field tests.

  18. Mach 6.5 air induction system design for the Beta 2 two-stage-to-orbit booster vehicle

    NASA Technical Reports Server (NTRS)

    Midea, Anthony C.

    1991-01-01

    A preliminary, two-dimensional, mixed compression air induction system is designed for the Beta II Two Stage to Orbit booster vehicle to minimize installation losses and efficiently deliver the required airflow. Design concepts, such as an external isentropic compression ramp and a bypass system were developed and evaluated for performance benefits. The design was optimized by maximizing installed propulsion/vehicle system performance. The resulting system design operating characteristics and performance are presented. The air induction system design has significantly lower transonic drag than similar designs and only requires about 1/3 of the bleed extraction. In addition, the design efficiently provides the integrated system required airflow, while maintaining adequate levels of total pressure recovery. The excellent performance of this highly integrated air induction system is essential for the successful completion of the Beta II booster vehicle mission.

  19. Performance Analysis of Stirling Engine-Driven Vapor Compression Heat Pump System

    NASA Astrophysics Data System (ADS)

    Kagawa, Noboru

    Stirling engine-driven vapor compression systems have many unique advantages including higher thermal efficiencies, preferable exhaust gas characteristics, multi-fuel usage, and low noise and vibration which can play an important role in alleviating environmental and energy problems. This paper introduces a design method for the systems based on reliable mathematical methods for Stirling and Rankin cycles using reliable thermophysical information for refrigerants. The model deals with a combination of a kinematic Stirling engine and a scroll compressor. Some experimental coefficients are used to formulate the model. The obtained results show the performance behavior in detail. The measured performance of the actual system coincides with the calculated results. Furthermore, the calculated results clarify the performance using alternative refrigerants for R-22.

  20. Visual/motion cue mismatch in a coordinated roll maneuver

    NASA Technical Reports Server (NTRS)

    Shirachi, D. K.; Shirley, R. S.

    1981-01-01

    The effects of bandwidth differences between visual and motion cueing systems on pilot performance for a coordinated roll task were investigated. Visual and motion cue configurations which were acceptable and the effects of reduced motion cue scaling on pilot performance were studied to determine the scale reduction threshold for which pilot performance was significantly different from full scale pilot performance. It is concluded that: (1) the presence or absence of high frequency error information in the visual and/or motion display systems significantly affects pilot performance; and (2) the attenuation of motion scaling while maintaining other display dynamic characteristics constant, affects pilot performance.

  1. Discover CHP

    EPA Pesticide Factsheets

    Access information about how CHP systems work; their efficiency, environmental, economic, and reliability benefits; the cost and performance characteristics of CHP technologies; and how to calculate CHP efficiency emissions savings.

  2. Description and Performance Characteristics of a Captive Airfoil Balloon System Used in the Initial Phase of the Aeropalynologic Survey Project

    NASA Technical Reports Server (NTRS)

    Silbert, Mendel N.

    1967-01-01

    The purpose of this paper is to present results of a system analysis and operational evaluation of a captive airfoil balloon system. The system was used operationally in support of an Aeropalynologic Survey Project at NASA Wallops Island, Virginia, during the summer of 1966.

  3. Test and evaluation of constant-flow devices for use in SSN AFFF proportioning systems. Interim report, January-May 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, F.W.; Back, G.G.; Burns, R.E.

    1986-11-04

    Constant flow devices, which deliver a constant flow of liquid over a range of upstream and downstream pressures, have been suggested as an alternative to orifice plates for proportioning AFFF in SSN 21 fire-suppression systems. Operational and performance characteristics of two lightweight, inexpensive, commercially available constant-flow devices have significant advantages over orifice plates. Both models tested, however, showed performance degradation when subjected to simulated service conditions. A constant flow device with improved resistance to wear and to AFFF exposure is desirable. Since the constant-flow control devices tested improves proportioning efficiency but do not have optimum characteristics, investigation of improved devicesmore » or methods is recommended.« less

  4. Solar cell array design handbook - The principles and technology of photovoltaic energy conversion

    NASA Technical Reports Server (NTRS)

    Rauschenbach, H. S.

    1980-01-01

    Photovoltaic solar cell array design and technology for ground-based and space applications are discussed from the user's point of view. Solar array systems are described, with attention given to array concepts, historical development, applications and performance, and the analysis of array characteristics, circuits, components, performance and reliability is examined. Aspects of solar cell array design considered include the design process, photovoltaic system and detailed array design, and the design of array thermal, radiation shielding and electromagnetic components. Attention is then given to the characteristics and design of the separate components of solar arrays, including the solar cells, optical elements and mechanical elements, and the fabrication, testing, environmental conditions and effects and material properties of arrays and their components are discussed.

  5. Method and graphs for the evaluation of air-induction systems

    NASA Technical Reports Server (NTRS)

    Brajnikoff, George B

    1953-01-01

    Graphs have been developed for rapid evaluation of air-induction systems from considerations of their aerodynamic-performance parameters in combination with power-plant characteristics. The graphs cover the range of supersonic Mach numbers to 3.0. Examples are presented for an air-induction system and engine combination of two Mach numbers and two altitudes in order to illustrate the method and application of the graphs. The examples show that jet-engine characteristics impose restrictions on the use of fixed inlets if the maximum net thrusts are to be realized at all flight conditions. (author)

  6. Propulsion requirements for communications satellites.

    NASA Technical Reports Server (NTRS)

    Isley, W. C.; Duck, K. I.

    1972-01-01

    The concept of characteristics thrust is introduced herein as a means of classifying propulsion system tasks related particularly to geosynchronous communications spacecraft. Approximate analytical models are developed to permit estimation of characteristic thrust for injection error corrections, orbit angle re-location, north-south station keeping, east-west station keeping, spin axis precession control, attitude rate damping, and orbit raising applications. Performance assessment factors are then outlined in terms of characteristic power, characteristic weight, and characteristic volume envelope, which are related to the characteristic thrust. Finally, selected performance curves are shown for power as a function of spacecraft weight, including the influence of duty cycle on north-south station keeping, a 90 degree orbit angle re-location in 14 days, and finally comparison of orbit raising tasks from low and intermediate orbits to a final geosynchronous station. Power requirements range from less than 75 watts for north-south station keeping on small payloads up to greater than 15 KW for a 180 day orbit raising mission including a 28.5 degree plane change.

  7. Study of the GEM detector performance in BM@N experiment

    NASA Astrophysics Data System (ADS)

    Bazylev, Sergei; Kapishin, Mikhail; Kapusniak, Kacper; Karjavine, Vladimir; Khabarov, Sergei; Kolesnikov, Alexander; Kulish, Elena; Lenivenko, Vasilisa; Makankin, Alexander; Maksymchuk, Anna; Mehl, Bertrand; De Oliveira, Rui; Palchik, Vladimir; Pokatashkin, Gleb; Rodriguez, A.; Rufanov, Igor; Shutov, Alexander; Slepnev, Ilya; Slepnev, Vyacheslav; Vasiliev, Sergei; Zinchenko, Alexander

    2018-04-01

    BM@N is the fixed target experiment at the accelerator complex NICA-Nuclotron aimed to study nuclear matter in the relativistic heavy ion collisions. Triple-GEM detectors were identified as appropriate for the BM@N tracking system located inside the analyzing magnet. Seven GEM chambers are integrated into the BM@N experimental setup and data acquisition system. GEM construction, main characteristics and first obtained results of the GEM tracking system performance in the technical run with the deuteron beam are shortly reviewed.

  8. Bilateral Impedance Control For Telemanipulators

    NASA Technical Reports Server (NTRS)

    Moore, Christopher L.

    1993-01-01

    Telemanipulator system includes master robot manipulated by human operator, and slave robot performing tasks at remote location. Two robots electronically coupled so slave robot moves in response to commands from master robot. Teleoperation greatly enhanced if forces acting on slave robot fed back to operator, giving operator feeling he or she manipulates remote environment directly. Main advantage of bilateral impedance control: enables arbitrary specification of desired performance characteristics for telemanipulator system. Relationship between force and position modulated at both ends of system to suit requirements of task.

  9. Accuracy analysis of pointing control system of solar power station

    NASA Technical Reports Server (NTRS)

    Hung, J. C.; Peebles, P. Z., Jr.

    1978-01-01

    The first-phase effort concentrated on defining the minimum basic functions that the retrodirective array must perform, identifying circuits that are capable of satisfying the basic functions, and looking at some of the error sources in the system and how they affect accuracy. The initial effort also examined three methods for generating torques for mechanical antenna control, performed a rough analysis of the flexible body characteristics of the solar collector, and defined a control system configuration for mechanical pointing control of the array.

  10. Real-time simulation of an automotive gas turbine using the hybrid computer

    NASA Technical Reports Server (NTRS)

    Costakis, W.; Merrill, W. C.

    1984-01-01

    A hybrid computer simulation of an Advanced Automotive Gas Turbine Powertrain System is reported. The system consists of a gas turbine engine, an automotive drivetrain with four speed automatic transmission, and a control system. Generally, dynamic performance is simulated on the analog portion of the hybrid computer while most of the steady state performance characteristics are calculated to run faster than real time and makes this simulation a useful tool for a variety of analytical studies.

  11. Development of superconductor magnetic suspension and balance prototype facility for studying the feasibility of applying this technique to large scale aerodynamic testing

    NASA Technical Reports Server (NTRS)

    Zapata, R. N.; Humphris, R. R.; Henderson, K. C.

    1975-01-01

    The unique design and operational characteristics of a prototype magnetic suspension and balance facility which utilizes superconductor technology are described and discussed from the point of view of scalability to large sizes. The successful experimental demonstration of the feasibility of this new magnetic suspension concept of the University of Virginia, together with the success of the cryogenic wind-tunnel concept developed at Langley Research Center, appear to have finally opened the way to clean-tunnel, high-Re aerodynamic testing. Results of calculations corresponding to a two-step design extrapolation from the observed performance of the prototype magnetic suspension system to a system compatible with the projected cryogenic transonic research tunnel are presented to give an order-of-magnitude estimate of expected performance characteristics. Research areas where progress should lead to improved design and performance of large facilities are discussed.

  12. Aerodynamic Characteristics and Glide-Back Performance of Langley Glide-Back Booster

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.; Covell, Peter F.; Tartabini, Paul V.; Murphy, Kelly J.

    2004-01-01

    NASA-Langley Research Center is conducting system level studies on an-house concept of a small launch vehicle to address NASA's needs for rapid deployment of small payloads to Low Earth Orbit. The vehicle concept is a three-stage system with a reusable first stage and expendable upper stages. The reusable first stage booster, which glides back to launch site after staging around Mach 3 is named the Langley Glide-Back Booster (LGBB). This paper discusses the aerodynamic characteristics of the LGBB from subsonic to supersonic speeds, development of the aerodynamic database and application of this database to evaluate the glide back performance of the LGBB. The aerodynamic database was assembled using a combination of wind tunnel test data and engineering level analysis. The glide back performance of the LGBB was evaluated using a trajectory optimization code and subject to constraints on angle of attack, dynamic pressure and normal acceleration.

  13. Dynamic Test Method Based on Strong Electromagnetic Pulse for Electromagnetic Shielding Materials with Field-Induced Insulator-Conductor Phase Transition

    NASA Astrophysics Data System (ADS)

    Wang, Yun; Zhao, Min; Wang, Qingguo

    2018-01-01

    In order to measure the pulse shielding performance of materials with the characteristic of field-induced insulator-conductor phase transition when materials are used for electromagnetic shielding, a dynamic test method was proposed based on a coaxial fixture. Experiment system was built by square pulse source, coaxial cable, coaxial fixture, attenuator, and oscilloscope and insulating components. S11 parameter of the test system was obtained, which suggested that the working frequency ranges from 300 KHz to 7.36 GHz. Insulating performance is good enough to avoid discharge between conductors when material samples is exposed in the strong electromagnetic pulse field up to 831 kV/m. This method is suitable for materials with annular shape, certain thickness and the characteristic of field-induced insulator-conductor phase transition to get their shielding performances of strong electromagnetic pulse.

  14. A review on the engine performance and exhaust emission characteristics of diesel engines fueled with biodiesel blends.

    PubMed

    Damanik, Natalina; Ong, Hwai Chyuan; Tong, Chong Wen; Mahlia, Teuku Meurah Indra; Silitonga, Arridina Susan

    2018-06-01

    Biodiesels have gained much popularity because they are cleaner alternative fuels and they can be used directly in diesel engines without modifications. In this paper, a brief review of the key studies pertaining to the engine performance and exhaust emission characteristics of diesel engines fueled with biodiesel blends, exhaust aftertreatment systems, and low-temperature combustion technology is presented. In general, most biodiesel blends result in a significant decrease in carbon monoxide and total unburned hydrocarbon emissions. There is also a decrease in carbon monoxide, nitrogen oxide, and total unburned hydrocarbon emissions while the engine performance increases for diesel engines fueled with biodiesels blended with nano-additives. The development of automotive technologies, such as exhaust gas recirculation systems and low-temperature combustion technology, also improves the thermal efficiency of diesel engines and reduces nitrogen oxide and particulate matter emissions.

  15. Analysis of the electrical harmonic characteristics of a slip recovery variable speed generating system for wind turbine applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera, J.I.; Reddoch, T.W.

    1988-02-01

    Variable speed electric generating technology can enhance the general use of wind energy in electric utility applications. This enhancement results from two characteristic properties of variable speed wind turbine generators: an improvement in drive train damping characteristics, which results in reduced structural loading on the entire wind turbine system, and an improvement in the overall efficiency by using a more sophisticated electrical generator. Electronic converter systems are the focus of this investigation -- in particular, the properties of a wound-rotor induction generator with the slip recovery system and direct-current link converter. Experience with solid-state converter systems in large wind turbinesmore » is extremely limited. This report presents measurements of electrical performances of the slip recovery system and is limited to the terminal characteristics of the system. Variable speed generating systems working effectively in utility applications will require a satisfactory interface between the turbine/generator pair and the utility network. The electrical testing described herein focuses largely on the interface characteristics of the generating system. A MOD-O wind turbine was connected to a very strong system; thus, the voltage distortion was low and the total harmonic distortion in the utility voltage was less than 3% (within the 5% limit required by most utilities). The largest voltage component of a frequency below 60 Hz was 40 dB down from the 60-Hz< component. 8 refs., 14 figs., 8 tabs.« less

  16. Success Factors of European Syndromic Surveillance Systems: A Worked Example of Applying Qualitative Comparative Analysis

    PubMed Central

    Ziemann, Alexandra; Fouillet, Anne; Brand, Helmut; Krafft, Thomas

    2016-01-01

    Introduction Syndromic surveillance aims at augmenting traditional public health surveillance with timely information. To gain a head start, it mainly analyses existing data such as from web searches or patient records. Despite the setup of many syndromic surveillance systems, there is still much doubt about the benefit of the approach. There are diverse interactions between performance indicators such as timeliness and various system characteristics. This makes the performance assessment of syndromic surveillance systems a complex endeavour. We assessed if the comparison of several syndromic surveillance systems through Qualitative Comparative Analysis helps to evaluate performance and identify key success factors. Materials and Methods We compiled case-based, mixed data on performance and characteristics of 19 syndromic surveillance systems in Europe from scientific and grey literature and from site visits. We identified success factors by applying crisp-set Qualitative Comparative Analysis. We focused on two main areas of syndromic surveillance application: seasonal influenza surveillance and situational awareness during different types of potentially health threatening events. Results We found that syndromic surveillance systems might detect the onset or peak of seasonal influenza earlier if they analyse non-clinical data sources. Timely situational awareness during different types of events is supported by an automated syndromic surveillance system capable of analysing multiple syndromes. To our surprise, the analysis of multiple data sources was no key success factor for situational awareness. Conclusions We suggest to consider these key success factors when designing or further developing syndromic surveillance systems. Qualitative Comparative Analysis helped interpreting complex, mixed data on small-N cases and resulted in concrete and practically relevant findings. PMID:27182731

  17. Success Factors of European Syndromic Surveillance Systems: A Worked Example of Applying Qualitative Comparative Analysis.

    PubMed

    Ziemann, Alexandra; Fouillet, Anne; Brand, Helmut; Krafft, Thomas

    2016-01-01

    Syndromic surveillance aims at augmenting traditional public health surveillance with timely information. To gain a head start, it mainly analyses existing data such as from web searches or patient records. Despite the setup of many syndromic surveillance systems, there is still much doubt about the benefit of the approach. There are diverse interactions between performance indicators such as timeliness and various system characteristics. This makes the performance assessment of syndromic surveillance systems a complex endeavour. We assessed if the comparison of several syndromic surveillance systems through Qualitative Comparative Analysis helps to evaluate performance and identify key success factors. We compiled case-based, mixed data on performance and characteristics of 19 syndromic surveillance systems in Europe from scientific and grey literature and from site visits. We identified success factors by applying crisp-set Qualitative Comparative Analysis. We focused on two main areas of syndromic surveillance application: seasonal influenza surveillance and situational awareness during different types of potentially health threatening events. We found that syndromic surveillance systems might detect the onset or peak of seasonal influenza earlier if they analyse non-clinical data sources. Timely situational awareness during different types of events is supported by an automated syndromic surveillance system capable of analysing multiple syndromes. To our surprise, the analysis of multiple data sources was no key success factor for situational awareness. We suggest to consider these key success factors when designing or further developing syndromic surveillance systems. Qualitative Comparative Analysis helped interpreting complex, mixed data on small-N cases and resulted in concrete and practically relevant findings.

  18. The impact of health plan delivery system organization on clinical quality and patient satisfaction.

    PubMed

    Gillies, Robin R; Chenok, Kate Eresian; Shortell, Stephen M; Pawlson, Gregory; Wimbush, Julian J

    2006-08-01

    The purpose of this study was to examine the extent to which measures of health plan clinical performance and measures of patient perceptions of care are associated with health plan organizational characteristics, including the percentage of care provided based on a group or staff model delivery system, for-profit (tax) status, and affiliation with a national managed care firm. Data describing health plans on region, age of health plan, for-profit status, affiliation with a national managed care firm, percentage of Medicare business, total enrollment, ratio of primary care physicians to specialists, HMO penetration, and form of health care delivery system (e.g., IPA, network, mixed, staff, group) were obtained from InterStudy. Clinical performance measures for women's health screening rates, child and adolescent immunization rates, heart disease screening rates, diabetes screening rates, and smoking cessation were developed from HEDIS data. Measures of patient perceptions of care are obtained from CAHPS survey data submitted as Healthplan Employer Data and Information Set, Consumer Assessment of Health Plans 2.0 H. Multivariate regression cross-sectional analysis of 272 health plans was used to evaluate the relationship of health plan characteristics with measures of clinical performance and patient perceptions of care. The form of delivery system, measured by percent of care delivered by staff and group model systems, is significantly related (p < or = .05) with four of the five clinical performance indices but none of the three satisfaction performance indices. Other variables significantly associated with performance were being geographically located in the Northeast, having nonprofit status, and for patient satisfaction, not being part of a larger insurance company. These comparative results provide evidence suggesting that the type of delivery system used by health plans is related to many clinical performance measures but is not related to patient perceptions of care. These findings underscore the importance of the form of the delivery system and the need for further inquiry that examines the relationship between organizational form and performance.

  19. Performance characteristics of ambient temperature secondary lithium cells

    NASA Technical Reports Server (NTRS)

    Deligiannis, F.; Shen, D.; Subbarao, S.; Whitcanack, L.; Halpert, G.

    1988-01-01

    State of art ambient temperature secondary lithium cells were evaluated to determine their performance capability and limitations and to assess the present status of the technology of these cells. Li-MoS2, Li-NbSe3 and Li-TiS2 cells were evaluated for their charge/discharge characteristics, rate capability, and cycle life performance. The cells evaluated have a cycle life of 100-250 cycles at moderate discharge rates (C/5). The specific energy of these cells is between 50 and 100 Wh/Kg, depending upon the system. This paper describes the details of the cell designs, the test procedures, and the results of the evaluation studies.

  20. Effect of aerodynamic and angle-of-attack uncertainties on the May 1979 entry flight control system of the Space Shuttle from Mach 8 to 1.5

    NASA Technical Reports Server (NTRS)

    Stone, H. W.; Powell, R. W.

    1985-01-01

    A six degree of freedom simulation analysis was performed for the space shuttle orbiter during entry from Mach 8 to Mach 1.5 with realistic off nominal conditions by using the flight control systems defined by the shuttle contractor. The off nominal conditions included aerodynamic uncertainties in extrapolating from wind tunnel derived characteristics to full scale flight characteristics, uncertainties in the estimates of the reaction control system interaction with the orbiter aerodynamics, an error in deriving the angle of attack from onboard instrumentation, the failure of two of the four reaction control system thrusters on each side, and a lateral center of gravity offset coupled with vehicle and flow asymmetries. With combinations of these off nominal conditions, the flight control system performed satisfactorily. At low hypersonic speeds, a few cases exhibited unacceptable performances when errors in deriving the angle of attack from the onboard instrumentation were modeled. The orbiter was unable to maintain lateral trim for some cases between Mach 5 and Mach 2 and exhibited limit cycle tendencies or residual roll oscillations between Mach 3 and Mach 1. Piloting techniques and changes in some gains and switching times in the flight control system are suggested to help alleviate these problems.

  1. Stimulus Characteristics for Vestibular Stochastic Resonance to Improve Balance Function

    NASA Technical Reports Server (NTRS)

    Mulavara, Ajitkumar; Fiedler, Matthew; Kofman, Igor; Peters, Brian; Wood, Scott; Serrado, Jorge; Cohen, Helen; Reschke, Millard; Bloomberg, Jacob

    2010-01-01

    Stochastic resonance (SR) is a mechanism by which noise can enhance the response of neural systems to relevant sensory signals. Studies have shown that imperceptible stochastic vestibular electrical stimulation, when applied to normal young and elderly subjects, significantly improved their ocular stabilization reflexes in response to whole-body tilt as well as balance performance during postural disturbances. The goal of this study was to optimize the amplitude characteristics of the stochastic vestibular signals for balance performance during standing on an unstable surface. Subjects performed a standard balance task of standing on a block of foam with their eyes closed. Bipolar stochastic electrical stimulation was applied to the vestibular system using constant current stimulation through electrodes placed over the mastoid process behind the ears. Amplitude of the signals varied in the range of 0-700 microamperes. Balance performance was measured using a force plate under the foam block, and inertial motion sensors were placed on the torso and head. Balance performance with stimulation was significantly greater (10%-25%) than with no stimulation. The signal amplitude at which performance was maximized was in the range of 100-300 microamperes. Optimization of the amplitude of the stochastic signals for maximizing balance performance will have a significant impact on development of vestibular SR as a unique system to aid recovery of function in astronauts after long-duration space flight or in patients with balance disorders.

  2. Performance enhancement for audio-visual speaker identification using dynamic facial muscle model.

    PubMed

    Asadpour, Vahid; Towhidkhah, Farzad; Homayounpour, Mohammad Mehdi

    2006-10-01

    Science of human identification using physiological characteristics or biometry has been of great concern in security systems. However, robust multimodal identification systems based on audio-visual information has not been thoroughly investigated yet. Therefore, the aim of this work to propose a model-based feature extraction method which employs physiological characteristics of facial muscles producing lip movements. This approach adopts the intrinsic properties of muscles such as viscosity, elasticity, and mass which are extracted from the dynamic lip model. These parameters are exclusively dependent on the neuro-muscular properties of speaker; consequently, imitation of valid speakers could be reduced to a large extent. These parameters are applied to a hidden Markov model (HMM) audio-visual identification system. In this work, a combination of audio and video features has been employed by adopting a multistream pseudo-synchronized HMM training method. Noise robust audio features such as Mel-frequency cepstral coefficients (MFCC), spectral subtraction (SS), and relative spectra perceptual linear prediction (J-RASTA-PLP) have been used to evaluate the performance of the multimodal system once efficient audio feature extraction methods have been utilized. The superior performance of the proposed system is demonstrated on a large multispeaker database of continuously spoken digits, along with a sentence that is phonetically rich. To evaluate the robustness of algorithms, some experiments were performed on genetically identical twins. Furthermore, changes in speaker voice were simulated with drug inhalation tests. In 3 dB signal to noise ratio (SNR), the dynamic muscle model improved the identification rate of the audio-visual system from 91 to 98%. Results on identical twins revealed that there was an apparent improvement on the performance for the dynamic muscle model-based system, in which the identification rate of the audio-visual system was enhanced from 87 to 96%.

  3. User’s Guide for the VTRPE (Variable Terrain Radio Parabolic Equation) Computer Model

    DTIC Science & Technology

    1991-10-01

    propagation effects and antenna characteristics in radar system performance calculations. the radar transmission equation is oiten employed. Fol- lowing Kerr.2...electromagnetic wave equations for the complex electric and magnetic radiation fields. The model accounts for the effects of nonuniform atmospheric refractivity...mission equation, that is used in the performance prediction and analysis of radar and communication systems. Optimized fast Fourier transform (FFT

  4. Experimental evaluation of thermal energy storage

    NASA Technical Reports Server (NTRS)

    Asbury, J. G.; Hersh, H. N.

    1980-01-01

    The technical performance of commercially available thermal energy storage (TES) residential heating units under severe weather conditions is discussed. The benefits and costs of TES to the user and utility companies were assessed. The TES issues, research and development needs, and barriers to commercialization were identified. The field tests which determined the performance characteristics for the TES are described and the TES systems, which included both ceramic and hydronic systems, are compared.

  5. Electromagnetic Compatibility between Marine Automatic Identification and Public Correspondence Systems in the Maritime Mobile VHF Band.

    DOT National Transportation Integrated Search

    2000-04-01

    The Coast Guard funded the National Telecommunications and Information Administration : (NTIA) to perform electromagnetic compatibility (EMC) tests between an ITU-R M. 825-3 : (Characteristics Of a Transponder System Using Digital Selective Calling T...

  6. On the assessment of performance and emissions characteristics of a SI engine provided with a laser ignition system

    NASA Astrophysics Data System (ADS)

    Birtas, A.; Boicea, N.; Draghici, F.; Chiriac, R.; Croitoru, G.; Dinca, M.; Dascalu, T.; Pavel, N.

    2017-10-01

    Performance and exhaust emissions of spark ignition engines are strongly dependent on the development of the combustion process. Controlling this process in order to improve the performance and to reduce emissions by ensuring rapid and robust combustion depends on how ignition stage is achieved. An ignition system that seems to be able for providing such an enhanced combustion process is that based on plasma generation using a Q-switched solid state laser that delivers pulses with high peak power (of MW-order level). The laser-spark devices used in the present investigations were realized using compact diffusion-bonded Nd:YAG/Cr4+:YAG ceramic media. The laser igniter was designed, integrated and built to resemble a classical spark plug and therefore it could be mounted directly on the cylinder head of a passenger car engine. In this study are reported the results obtained using such ignition system provided for a K7M 710 engine currently produced by Renault-Dacia, where the standard calibrations were changed towards the lean mixtures combustion zone. Results regarding the performance, the exhaust emissions and the combustion characteristics in optimized spark timing conditions, which demonstrate the potential of such an innovative ignition system, are presented.

  7. Space tug point design study. Volume 2: Operations, performance and requirements

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A design study to determine the configuration and characteristics of a space tug was conducted. Among the subjects analyzed in the study are: (1) flight and ground operations, (2) vehicle flight performance and performance enhancement techniques, (3) flight requirements, (4) basic design criteria, and (5) functional and procedural interface requirements between the tug and other systems.

  8. Performance Support Tools: Delivering Value when and where It Is Needed

    ERIC Educational Resources Information Center

    McManus, Paul; Rossett, Allison

    2006-01-01

    Some call them Electronic Performance Support Systems (EPSSs). Others prefer Performance Support Tools (PSTs) or decision support tools. One might call EPSSs or PSTs job aids on steroids, technological tools that provide critical information or advice needed to move forward at a particular moment in time. Characteristic advantages of an EPSS or a…

  9. Performance Assessments: A Review of Definitions, Quality Characteristics, and Outcomes Associated with Their Use in K-12 Schools

    ERIC Educational Resources Information Center

    Bland, Lynne M.; Gareis, Christopher R.

    2018-01-01

    After nearly two decades of federal and state accountability requirements relying on conventional standardized assessments, Virginia and several other states are moving to create more balanced approaches to statewide assessment systems that include the use of performance assessments. But Palm (2008) states, "Performance assessment can mean…

  10. Experimental framework to study tip vortex interactions in multirotor wakes

    NASA Astrophysics Data System (ADS)

    Yao, Rongnan; Araya, Daniel

    2017-11-01

    We present an experimental study to compare the dynamic characteristics of tip vortices shed from a propeller in a crossflow to similar characteristics of an isolated vortex column generated in a closed system. Our aim is to evaluate the feasibility of using this simple isolated system to study the more complicated three-dimensional vortex interactions inherent to multirotor wakes, where the local unsteadiness generated by one rotor can strongly impact the performance of nearby rotors. Time-resolved particle image velocimetry is used to measure the velocity field of the propeller wake flow in a wind tunnel and the vortex column in a water tank. Specific attention is placed on analyzing the observed vortex core precession in the isolated system and comparing this to characteristic tip-vortex wandering phenomenon.

  11. Systemic sclerosis: a world wide global analysis.

    PubMed

    Coral-Alvarado, Paola; Pardo, Aryce L; Castaño-Rodriguez, Natalia; Rojas-Villarraga, Adriana; Anaya, Juan-Manuel

    2009-07-01

    The objective of this study was to analyze epidemiological tendencies of systemic sclerosis (SSc) around the world in order to identify possible local variations in the presentation and occurrence of the disease. A systematic review of the literature was performed through electronic databases using the keywords "Systemic Sclerosis" and "Clinical Characteristics." Out of a total of 167 articles, 41 were included in the analysis. Significant differences in the mean age at the time of diagnosis, subsets of SSc, clinical characteristics, and presence of antibodies were found between different regions of the word. Because variations in both additive and nonadditive genetic factors and the environmental variance are specific to the investigated population, ethnicity and geography are important characteristics to be considered in the study of SSc and other autoimmune diseases.

  12. Advanced optical blade tip clearance measurement system

    NASA Technical Reports Server (NTRS)

    Ford, M. J.; Honeycutt, R. E.; Nordlund, R. E.; Robinson, W. W.

    1978-01-01

    An advanced electro-optical system was developed to measure single blade tip clearances and average blade tip clearances between a rotor and its gas path seal in an operating gas turbine engine. This system is applicable to fan, compressor, and turbine blade tip clearance measurement requirements, and the system probe is particularly suitable for operation in the extreme turbine environment. A study of optical properties of blade tips was conducted to establish measurement system application limitations. A series of laboratory tests was conducted to determine the measurement system's operational performance characteristics and to demonstrate system capability under simulated operating gas turbine environmental conditions. Operational and environmental performance test data are presented.

  13. Safety characteristics of the lithium SO2 system

    NASA Technical Reports Server (NTRS)

    Watson, T.

    1978-01-01

    Extensive tests were conducted to quantitatively define the safety characteristics of high-rate SO2 multicell batteries under various discharge and temperature profiles, which closely simulated actual field-use conditions. The resulting behavior patters of the multicell batteries and the corrective action which can be implemented to minimize or prevent hazardous battery performance are briefly summarized.

  14. Early weaning in Northern Great Plains beef cattle production systems: III. Steer weaning, finishing and carcass characteristics

    USDA-ARS?s Scientific Manuscript database

    Studies were conducted to evaluate the effect of weaning of steer calves on BW gain, feedlot performance, and carcass characteristics in two herds located in the Northern Great Plains, USA. Steer calves from predominantly Angus × Hereford dams were stratified within dam age and calving date (Fort K...

  15. Identification of characteristics and frequent scenarios of single-vehicle rollover crashes during pre-ballistic phase; part 1 - A descriptive study.

    PubMed

    Kim, Taewung; Bose, Dipan; Foster, Jon; Bollapragada, Varun; Crandall, Jeff R; Clauser, Mark; Kerrigan, Jason R

    2017-10-01

    This study aimed to identify common patterns of pre-ballistic vehicle kinematics and roadway characteristics of real-world rollover crashes. Rollover crashes that were enrolled in the National Automotive Sampling System-Crashworthiness Data System (NASS-CDS) between the years 2000 and 2010 were analyzed. A descriptive analysis was performed to understand the characteristics of the pre-ballistic phase. Also, a frequency based pattern analysis was performed using a selection of NASS-CDS variables describing the pre-ballistic vehicle kinematics and roadway characteristics to rank common pathways of rollover crashes. Most case vehicles departed the road due to a loss of control/traction (LOC) (61%). The road departure with LOC was found to be 13.4 times more likely to occur with slippery road conditions compared to dry conditions. The vehicle was typically laterally skidding with yawing prior to a rollover (66%). Most case vehicles tripped over (82%) mostly at roadside/median (69%). The tripping force was applied to the wheels/tires (82%) from the ground (79%). The combination of these six most frequent attributes resulted in the most common scenario, which accounted for 26% of the entire cases. Large proportion of road departure with LOC (61%) implies electronic stability control (ESC) systems being an effective countermeasure for preventing single-vehicle rollover crashes. Furthermore, the correlation between the road departure with LOC and the reduced friction limit suggests the necessity of the performance evaluation of ESC under compromised road surface condition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Vestibular Stochastic Resonance as a Method to Improve Balance Function: Optimization of Stimulus Characteristics

    NASA Technical Reports Server (NTRS)

    Mulavara, Ajitkumar; Fiedler, Matthew; Kofman, Igor; Peters, Brian; Wood, Scott; Serrador, Jorge; Cohen, Helen; Reschke, Millard; Bloomberg, Jacob

    2010-01-01

    Stochastic resonance (SR) is a mechanism by which noise can assist and enhance the response of neural systems to relevant sensory signals. Application of imperceptible SR noise coupled with sensory input through the proprioceptive, visual, or vestibular sensory systems has been shown to improve motor function. Specifically, studies have shown that that vestibular electrical stimulation by imperceptible stochastic noise, when applied to normal young and elderly subjects, significantly improved their ocular stabilization reflexes in response to whole-body tilt as well as balance performance during postural disturbances. The goal of this study was to optimize the characteristics of the stochastic vestibular signals for balance performance during standing on an unstable surface. Subjects performed a standardized balance task of standing on a block of 10 cm thick medium density foam with their eyes closed for a total of 40 seconds. Stochastic electrical stimulation was applied to the vestibular system through electrodes placed over the mastoid process behind the ears during the last 20 seconds of the test period. A custom built constant current stimulator with subject isolation delivered the stimulus. Stimulation signals were generated with frequencies in the bandwidth of 1-2 Hz and 0.01-30 Hz. Amplitude of the signals were varied in the range of 0- +/-700 micro amperes with the RMS of the signal increased by 30 micro amperes for each 100 micro amperes increase in the current range. Balance performance was measured using a force plate under the foam block and inertial motion sensors placed on the torso and head segments. Preliminary results indicate that balance performance is improved in the range of 10-25% compared to no stimulation conditions. Subjects improved their performance consistently across the blocks of stimulation. Further the signal amplitude at which the performance was maximized was different in the two frequency ranges. Optimization of the frequency and amplitude of the signal characteristics of the stochastic noise signals on maximizing balance performance will have a significant impact in its development as a unique system to aid recovery of function in astronauts after long duration space flight or for people with balance disorders.

  17. Data-Acquisition System With Remotely Adjustable Amplifiers

    NASA Technical Reports Server (NTRS)

    Nurge, Mark A.; Larson, William E.; Hallberg, Carl G.; Thayer, Steven W.; Ake, Jeffrey C.; Gleman, Stuart M.; Thompson, David L.; Medelius, Pedro J.; Crawford, Wayne A.; Vangilder, Richard M.; hide

    1994-01-01

    Improved data-acquisition system has both centralized and decentralized characteristics developed. Provides infrastructure for automation and standardization of operation, maintenance, calibration, and adjustment of many transducers. Increases efficiency by reducing need for diminishing work force of highly trained technicians to perform routine tasks. Large industrial and academic laboratory facilities benefit from systems like this one.

  18. 77 FR 43506 - DoD Unclassified Controlled Nuclear Information (UCNI)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-25

    ... Systems. (i) Information on the layout or design of security and alarm systems at a specific DoD SNM or... information is not observable from a public area. (iii) Performance characteristics of installed systems. (5... 0790-AI64 DoD Unclassified Controlled Nuclear Information (UCNI) AGENCY: Department of Defense. ACTION...

  19. Non-iterative Voltage Stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarov, Yuri V.; Vyakaranam, Bharat; Hou, Zhangshuan

    2014-09-30

    This report demonstrates promising capabilities and performance characteristics of the proposed method using several power systems models. The new method will help to develop a new generation of highly efficient tools suitable for real-time parallel implementation. The ultimate benefit obtained will be early detection of system instability and prevention of system blackouts in real time.

  20. A suite of phantom-based test methods for assessing image quality of photoacoustic tomography systems

    NASA Astrophysics Data System (ADS)

    Vogt, William C.; Jia, Congxian; Wear, Keith A.; Garra, Brian S.; Pfefer, T. Joshua

    2017-03-01

    As Photoacoustic Tomography (PAT) matures and undergoes clinical translation, objective performance test methods are needed to facilitate device development, regulatory clearance and clinical quality assurance. For mature medical imaging modalities such as CT, MRI, and ultrasound, tissue-mimicking phantoms are frequently incorporated into consensus standards for performance testing. A well-validated set of phantom-based test methods is needed for evaluating performance characteristics of PAT systems. To this end, we have constructed phantoms using a custom tissue-mimicking material based on PVC plastisol with tunable, biologically-relevant optical and acoustic properties. Each phantom is designed to enable quantitative assessment of one or more image quality characteristics including 3D spatial resolution, spatial measurement accuracy, ultrasound/PAT co-registration, uniformity, penetration depth, geometric distortion, sensitivity, and linearity. Phantoms contained targets including high-intensity point source targets and dye-filled tubes. This suite of phantoms was used to measure the dependence of performance of a custom PAT system (equipped with four interchangeable linear array transducers of varying design) on design parameters (e.g., center frequency, bandwidth, element geometry). Phantoms also allowed comparison of image artifacts, including surface-generated clutter and bandlimited sensing artifacts. Results showed that transducer design parameters create strong variations in performance including a trade-off between resolution and penetration depth, which could be quantified with our method. This study demonstrates the utility of phantom-based image quality testing in device performance assessment, which may guide development of consensus standards for PAT systems.

  1. Novel vehicle detection system based on stacked DoG kernel and AdaBoost

    PubMed Central

    Kang, Hyun Ho; Lee, Seo Won; You, Sung Hyun

    2018-01-01

    This paper proposes a novel vehicle detection system that can overcome some limitations of typical vehicle detection systems using AdaBoost-based methods. The performance of the AdaBoost-based vehicle detection system is dependent on its training data. Thus, its performance decreases when the shape of a target differs from its training data, or the pattern of a preceding vehicle is not visible in the image due to the light conditions. A stacked Difference of Gaussian (DoG)–based feature extraction algorithm is proposed to address this issue by recognizing common characteristics, such as the shadow and rear wheels beneath vehicles—of vehicles under various conditions. The common characteristics of vehicles are extracted by applying the stacked DoG shaped kernel obtained from the 3D plot of an image through a convolution method and investigating only certain regions that have a similar patterns. A new vehicle detection system is constructed by combining the novel stacked DoG feature extraction algorithm with the AdaBoost method. Experiments are provided to demonstrate the effectiveness of the proposed vehicle detection system under different conditions. PMID:29513727

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, J.R.; Ahrens, J.S.; Lowe, D.L.

    Throughout the years, Sandia National Laboratories (SNL) has performed various laboratory evaluations of entry control devices, including biometric identity verifiers. The reports which resulted from this testing have been very well received by the physical security community. This same community now requires equally informative field study data. To meet this need we have conducted a field study in an effort to develop the tools and methods which our customers can use to translate laboratory data into operational field performance. The field testing described in this report was based on the Recognition Systems Inc.`s (RSI) model ID3D HandKey biometric verifier. Thismore » device was selected because it is referenced in DOE documents such as the Guide for Implementation of the DOE Standard Badge and is the de facto biometric standard for the DOE. The ID3D HandKey is currently being used at several DOE sites such as Hanford, Rocky Flats, Pantex, Savannah River, and Idaho Nuclear Engineering Laboratory. The ID3D HandKey was laboratory tested at SNL. It performed very well during this test, exhibiting an equal error point of 0.2 percent. The goals of the field test were to identify operational characteristics and design guidelines to help system engineers translate laboratory data into field performance. A secondary goal was to develop tools which could be used by others to evaluate system effectiveness or improve the performance of their systems. Operational characteristics were determined by installing a working system and studying its operation over a five month period. Throughout this test we developed tools which could be used by others to similarly gauge system effectiveness.« less

  3. Design and performance of 4 x 5120-element visible and 2 x 2560-element shortwave infrared multispectral focal planes

    NASA Astrophysics Data System (ADS)

    Tower, J. R.; Cope, A. D.; Pellon, L. E.; McCarthy, B. M.; Strong, R. T.

    1986-06-01

    Two solid-state sensors for use in remote sensing instruments operating in the pushbroom mode are examined. The design and characteristics of the visible/near-infrared (VIS/NIR) device and the short-wavelength infrared (SWIR) device are described. The VIS/NIR is a CCD imager with four parallel sensor lines, each 1024 pixel long; the chip design and filter system of the VIS/NIR are studied. The performance of the VIS/NIR sensor with mask and its system performance are measured. The SWIR is a dual-band line imager consisting of palladium silicide Schottky-barrier detectors coupled to CCD multiplexers; the performance of the device is analyzed. The substrate materials and layout designs used to assemble the 4 x 5120-element VIS/NIR array and the 2 x 2560-element SWIR array are discussed, and the planarity of the butted arrays are verified using a profilometer. The optical and electrical characteristics, and the placement and butting accuracy of the arrays are evaluated. It is noted that the arrays met or exceed their expected performance.

  4. Transmission over EHF mobile satellite channels

    NASA Technical Reports Server (NTRS)

    Zhuang, W.; Chouinard, J.-Y.; Yongacoglu, A.

    1993-01-01

    Land mobile satellite communications at Ka-band (30/20 GHz) are attracting an increasing interest among researchers because of the frequency band availability and the possibility of small earth station designs. However, communications at the Ka-band pose significant challenges in the system designs due to severe channel impairments. Because only very limited experimental data for mobile applications at Ka-band is available, this paper studies the channel characteristics based on experimental data at L-band (1.6/1.5 GHz) and the use of frequency scaling. The land mobile satellite communication channel at Ka-band is modelled as log-normal Rayleigh fading channel. The first and second-order statistics of the fading channel are studied. The performance of a coherent BPSK system over the fading channel at L-band and K-band is evaluated theoretically and validated by computer simulations. Conclusions on the communication channel characteristics and system performance at L-band and Ka-band are presented.

  5. The study and design of tension controller

    NASA Astrophysics Data System (ADS)

    Jun, G.; Lamei, X.

    2018-02-01

    Tension control is a wide used technology in areas such as textiles, paper and plastic films. In this article, the tension control system release and winding process is analyzed and the mathematical model of tension control system is established, and a high performance tension controller is designed. In hardware design, STM32F130 single chip microcomputer is used as the control core, which has the characteristics of fast running speed and rich peripheral features. In software design, μC/OS-II operating system is introduced to improve the efficiency of single chip microcomputer, and enhance the independence of each module, and make development and maintenance more convenient. The taper tension control is adopted in the winding part, which can effectively solve the problem of rolling shrinkage. The results show that the tension controller has the characteristics of simple structure, easy operation and stable performance.

  6. Some design considerations for solar-powered aircraft

    NASA Technical Reports Server (NTRS)

    Phillips, W. H.

    1980-01-01

    Performance and operating characteristics are presented for a solar powered aircraft intended to remain aloft for long periods. The critical technologies which limit the performance are identified. By using the techniques presented, the effects of variation in the system parameters are studied. Practical design consideration are discussed.

  7. Analysis of vibration characteristics of opening device for deepwater robot cabin door and study of its structural optimization design

    NASA Astrophysics Data System (ADS)

    Zeng, Baoping; Liu, Jipeng; Zhang, Yu; Gong, Yajun; Hu, Sanbao

    2017-12-01

    Deepwater robots are important devices for human to explore the sea, which is being under development towards intellectualization, multitasking, long-endurance and large depth along with the development of science and technology. As far as a deep-water robot is concerned, its mechanical systems is an important subsystem because not only it influences the instrument measuring precision and shorten the service life of cabin devices but also its overlarge vibration and noise lead to disadvantageous effects to marine life within the operational area. Therefore, vibration characteristics shall be key factor for the deep-water robot system design. The sample collection and recycling system of some certain deepwater robot in a mechanism for opening the underwater cabin door for external operation and recycling test equipment is focused in this study. For improving vibration characteristics of locations of the cabin door during opening processes, a vibration model was established to the opening system; and the structural optimization design was carried out to its important structures by utilizing the multi-objective shape optimization and topology optimization method based on analysis of the system vibration. Analysis of characteristics of exciting forces causing vibration was first carried out, which include characteristics of dynamic loads within the hinge clearances and due to friction effects and the fluid dynamic exciting forces during processes of opening the cabin door. Moreover, vibration acceleration responses for a few important locations of the devices for opening the cabin cover were deduced by utilizing the modal synthesis method so that its rigidity and modal frequency may be one primary factor influencing the system vibration performances based on analysis of weighted acceleration responses. Thus, optimization design was carried out to the cabin cover by utilizing the multi-objective topology optimization method to perform reduction of weighted accelerations of key structure locations.

  8. Person-based differences in pay reactions: A compensation-activation theory and integrative conceptual review.

    PubMed

    Fulmer, Ingrid Smithey; Shaw, Jason D

    2018-06-07

    Compensation research has focused traditionally on how pay design characteristics (e.g., pay level, individual or group incentives) relate to average employee outcomes and, in toto, on how these outcomes affect organizational performance. Recently, scholars have begun to pay more attention to how individuals vary in the strength of their reactions to pay. Empirical research in several disciplines examines how the interplay of pay systems and person-based characteristics (psychological individual differences, demographics, and relative performance or position in a group) relate to important work-related outcomes. We develop a compensation-activation theory that frames compensation design characteristics as workplace "situations" providing cues that activate individuals' corresponding fundamental social motives made salient due to chronic or transient person-based characteristics. Where activation occurs, stronger-than-average responses to the compensation "situation" are expected. Using the theory as a lens, we synthesize and reinterpret existing research on person-based reactions to pay characteristics, including sorting, incentive/motivational effects, and effects on collective pay system reactions and unit/organizational outcomes. We conclude with a research agenda aimed at refining compensation-activation theory and advancing the study of compensation as it affects individual and organizational outcomes. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  9. 14 CFR 65.55 - Knowledge requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... meteorological conditions in the National Airspace System; (8) Air traffic control procedures and pilot... aircraft's flight characteristics and performance in normal and abnormal flight regimes; (11) Human factors...

  10. 14 CFR 61.155 - Aeronautical knowledge.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... meteorological conditions in the National Airspace System; (8) Air traffic control procedures and pilot... aircraft's flight characteristics and performance in normal and abnormal flight regimes; (11) Human factors...

  11. The HCMM system: Development and performance

    NASA Technical Reports Server (NTRS)

    Stuart, L. M., Jr.

    1982-01-01

    The structure and history of the heat capacity mapping mission program is reviewed and the spacecraft is described including engineering specifications, instrument design, data handling, and image characteristics.

  12. New techniques for laser beam atmospheric extinction measurements from manned and unmanned aerospace vehicles

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark

    2013-03-01

    Novel techniques for laser beam atmospheric extinction measurements, suitable for several air and space platform applications, are presented in this paper. Extinction measurements are essential to support the engineering development and the operational employment of a variety of aerospace electro-optical sensor systems, allowing calculation of the range performance attainable with such systems in current and likely future applications. Such applications include ranging, weaponry, Earth remote sensing and possible planetary exploration missions performed by satellites and unmanned flight vehicles. Unlike traditional LIDAR methods, the proposed techniques are based on measurements of the laser energy (intensity and spatial distribution) incident on target surfaces of known geometric and reflective characteristics, by means of infrared detectors and/or infrared cameras calibrated for radiance. Various laser sources can be employed with wavelengths from the visible to the far infrared portions of the spectrum, allowing for data correlation and extended sensitivity. Errors affecting measurements performed using the proposed methods are discussed in the paper and algorithms are proposed that allow a direct determination of the atmospheric transmittance and spatial characteristics of the laser spot. These algorithms take into account a variety of linear and non-linear propagation effects. Finally, results are presented relative to some experimental activities performed to validate the proposed techniques. Particularly, data are presented relative to both ground and flight trials performed with laser systems operating in the near infrared (NIR) at λ= 1064 nm and λ= 1550 nm. This includes ground tests performed with 10 Hz and 20 KHz PRF NIR laser systems in a large variety of atmospheric conditions, and flight trials performed with a 10 Hz airborne NIR laser system installed on a TORNADO aircraft, flying up to altitudes of 22,000 ft.

  13. The structure and organization of local and state public health agencies in the U.S.: a systematic review.

    PubMed

    Hyde, Justeen K; Shortell, Stephen M

    2012-05-01

    This systematic review provides a synthesis of the growing field of public health systems research related to the structure and organization of state and local governmental public health agencies. It includes an overview of research examining the influence of organizational characteristics on public health performance and health status and a summary of the strengths and gaps of the literature to date. Data were retrieved through an iterative process, beginning with key word searches in three publication databases (PubMed, JSTOR, Web of Science). Gray literature was searched through the use of Google Scholar™. Targeted searches on websites and key authors were also performed. Documents underwent an initial and secondary screening; they were retained if they contained information about local or state public health structure, organization, governance, and financing. 77 articles met the study criteria. Public health services are delivered by a mix of local, state, and tribal governmental and nongovernmental agencies and delivered through centralized (28%); decentralized (37%); or combined authority (35%). The majority of studies focused on organizational characteristics that are associated with public health performance based on the 10 Essential Public Health Services framework. Population size of jurisdiction served (>50,000); structure of authority (decentralized and mixed); per capita spending at the local level; some partnerships (academic, health services); and leadership of agency directors have been found to be related to public health performance. Fewer studies examined the relationship between organizational characteristics and health outcomes. Improvements in health outcomes are associated with an increase in local health department expenditures, FTEs per capita, and location of health department within local networks. Public health systems in the U.S. face a number of critical challenges, including limited organizational capacity and financial resources. Evidence on the relationship of public health organization, performance, and health outcomes is limited. Public health systems are difficult to characterize and categorize consistently for cross-jurisdictional studies. Progress has been made toward creating standard terminology. Multi-site studies that include a mix of system types (e.g., centralized, decentralized) and local or state characteristics (e.g., urban, rural) are needed to refine existing categorizations that can be used in examining studies of public health agency performance. Copyright © 2012 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  14. Unmanned planetary spacecraft chemical rocket propulsion.

    NASA Technical Reports Server (NTRS)

    Burlage, H., Jr.; Gin, W.; Riebling, R. W.

    1972-01-01

    Review of some chemical propulsion technology advances suitable for future unmanned spacecraft applications. Discussed system varieties include liquid space-storable propulsion systems, advanced liquid monopropellant systems, liquid systems for rendezvous and landing applications, and low-thrust high-performance solid-propellant systems, as well as hybrid space-storable systems. To optimize the performance and operational characteristics of an unmanned interplanetary spacecraft for a particular mission, and to achieve high cost effectiveness of the entire system, it is shown to be essential that the type of spacecraft propulsion system to be used matches, as closely as possible the various requirements and constraints. The systems discussed are deemed to be the most promising candidates for some of the anticipated interplanetary missions.

  15. Energy performance of a ventilation system for a block of apartments with a ground source heat pump as generation system

    NASA Astrophysics Data System (ADS)

    Lucchi, M.; Lorenzini, M.; Valdiserri, P.

    2017-01-01

    This work presents a numerical simulation of the annual performance of two different systems: a traditional one composed by a gas boiler-chiller pair and one consisting of a ground source heat pump (GSHP) both coupled to two thermal storage tanks. The systems serve a bloc of flats located in northern Italy and are assessed over a typical weather year, covering both the heating and cooling seasons. The air handling unit (AHU) coupled with the GSHP exhibits excellent characteristics in terms of temperature control, and has high performance parameters (EER and COP), which make conduction costs about 30% lower than those estimated for the traditional plant.

  16. A Solar Dynamic Power Option for Space Solar Power

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    1999-01-01

    A study was performed to determine the potential performance and related technology requirements of Solar Dynamic power systems for a Space Solar Power satellite. Space Solar Power is a concept where solar energy is collected in orbit and beamed to Earth receiving stations to supplement terrestrial electric power service. Solar Dynamic systems offer the benefits of high solar-to-electric efficiency, long life with minimal performance degradation, and high power scalability. System analyses indicate that with moderate component development, SD systems can exhibit excellent mass and deployed area characteristics. Using the analyses as a guide, a technology roadmap was -enerated which identifies the component advances necessary to make SD power generation a competitive option for the SSP mission.

  17. Fiber-optic epoxy composite cure sensor. II. Performance characteristics

    NASA Astrophysics Data System (ADS)

    Lam, Kai-Yuen; Afromowitz, Martin A.

    1995-09-01

    The performance of a fiber-optic epoxy composite cure sensor, as previously proposed, depends on the optical properties and the reaction kinetics of the epoxy. The reaction kinetics of a typical epoxy system are presented. It is a third-order autocatalytic reaction with a peak observed in each isothermal reaction-rate curve. A model is derived to describe the performance characteristics of the epoxy cure sensor. If a composite coupon is cured at an isothermal temperature, the sensor signal can be used to predict the time when the gel point occurs and to monitor the cure process. The sensor is also shown to perform well in nonstoichiometric epoxy matrices. In addition the sensor can detect the end of the cure without calibration.

  18. Exploring Advanced Technology Gas Turbine Engine Design and Performance for the Large Civil Tiltrotor (LCTR)

    NASA Technical Reports Server (NTRS)

    Snyder, Christopher A.

    2014-01-01

    A Large Civil Tiltrotor (LCTR) conceptual design was developed as part of the NASA Heavy Lift Rotorcraft Systems Investigation in order to establish a consistent basis for evaluating the benefits of advanced technology for large tiltrotors. The concept has since evolved into the second-generation LCTR2, designed to carry 90 passengers for 1,000 nautical miles at 300 knots, with vertical takeoff and landing capability. This paper explores gas turbine component performance and cycle parameters to quantify performance gains possible for additional improvements in component and material performance beyond those identified in previous LCTR2 propulsion studies and to identify additional research areas. The vehicle-level characteristics from this advanced technology generation 2 propulsion architecture will help set performance levels as additional propulsion and power systems are conceived to meet ever-increasing requirements for mobility and comfort, while reducing energy use, cost, noise and emissions. The Large Civil Tiltrotor vehicle and mission will be discussed as a starting point for this effort. A few, relevant engine and component technology studies, including previous LCTR2 engine study results will be summarized to help orient the reader on gas turbine engine architecture, performance and limitations. Study assumptions and methodology used to explore engine design and performance, as well as assess vehicle sizing and mission performance will then be discussed. Individual performance for present and advanced engines, as well as engine performance effects on overall vehicle size and mission fuel usage, will be given. All results will be summarized to facilitate understanding the importance and interaction of various component and system performance on overall vehicle characteristics.

  19. PARTICULATE EMISSIONS AND CONTROL IN FLUIDIZED-BED COMBUSTION: MODELING AND PARAMETRIC PERFORMANCE

    EPA Science Inventory

    The report discusses a model, developed to describe the physical characteristics of the particulates emitted from fluidized-bed combustion (FBC) systems and to evaluate data on FBC particulate control systems. The model, which describes the particulate emissions profile from FBC,...

  20. DECISION-SUPPORT TOOLS FOR PREDICTING THE PERFORMANCE OF WATER DISTRIBUTION AND WASTEWATER COLLECTION SYSTEMS

    EPA Science Inventory

    Water and wastewater infrastructure systems represent a major capital investment; utilities must ensure they are getting the highest yield possible on their investment, both in terms of dollars and water quality. Accurate information related to equipment, pipe characteristics, l...

  1. DECISION-SUPPORT TOOLS FOR PREDICTING THE PERFORMANCE OF WATER DISTRIBUTION AND WASTEWATER COLLECTION SYSTEMS

    EPA Science Inventory

    Water and wastewater infrastructure systems represent a major capital investment; utilities must ensure they are getting the highest yield possible on their investment, both in terms of dollars and water quality. Accurate information related to equipment, pipe characteristics, lo...

  2. Analysis of On-board Hazard Detection and Avoidance for Safe Lunar Landing

    NASA Technical Reports Server (NTRS)

    Johnson, Andrew E.; Huertas, Andres; Werner, Robert A.; Montgomery, James F.

    2008-01-01

    Landing hazard detection and avoidance technology is being pursued within NASA to improve landing safety and increase access to sites of interest on the lunar surface. The performance of a hazard detection and avoidance system depends on properties of the terrain, sensor performance, algorithm design, vehicle characteristics and the overall all guidance navigation and control architecture. This paper analyzes the size of the region that must be imaged, sensor performance parameters and the impact of trajectory angle on hazard detection performance. The analysis shows that vehicle hazard tolerance is the driving parameter for hazard detection system design.

  3. Towards a framework for analyzing determinants of performance of community health workers in malaria prevention and control: a systematic review.

    PubMed

    Chipukuma, Helen Mwiinga; Zulu, Joseph Mumba; Jacobs, Choolwe; Chongwe, Gershom; Chola, Mumbi; Halwiindi, Hikabasa; Zgambo, Jessy; Michelo, Charles

    2018-05-08

    Community health workers (CHWs) are an important human resource in improving coverage of and success to interventions aimed at reducing malaria incidence. Evidence suggests that the performance of CHWs in malaria programs varies in different contexts. However, comprehensive frameworks, based on systematic reviews, to guide the analysis of determinants of performance of CHWs in malaria prevention and control programs are lacking. We systematically searched Google Scholar, Science Direct, and PubMed including reference lists that had English language publications. We included 16 full text articles that evaluated CHW performance in malaria control. Search terms were used and studies that had performance as an outcome of interest attributed to community-based interventions done by CHWs were included. Sixteen studies were included in the final review and were mostly on malaria Rapid Diagnosis and Treatment, as well as adherence to referral guidelines. Factors determining performance and effective implementation of CHW malaria programs included health system factors such as nature of training of CHWs; type of supervision including feedback process; availability of stocks, supplies, and job aids; nature of work environment and reporting systems; availability of financial resources and transport systems; types of remuneration; health staff confidence in CHWs; and workload. In addition, community dynamics such as nature of community connectedness and support from the community and utilization of services by the community also influenced performance. Furthermore, community health worker characteristics such marital status, sex, and CHW confidence levels also shaped CHW performance. Effectively analyzing and promoting the performance of CHWs in malaria prevention and control programs may require adopting a framework that considers health systems and community factors as well as community health worker characteristics.

  4. 3D scanning characteristics of an amorphous silicon position sensitive detector array system.

    PubMed

    Contreras, Javier; Gomes, Luis; Filonovich, Sergej; Correia, Nuno; Fortunato, Elvira; Martins, Rodrigo; Ferreira, Isabel

    2012-02-13

    The 3D scanning electro-optical characteristics of a data acquisition prototype system integrating a 32 linear array of 1D amorphous silicon position sensitive detectors (PSD) were analyzed. The system was mounted on a platform for imaging 3D objects using the triangulation principle with a sheet-of-light laser. New obtained results reveal a minimum possible gap or simulated defect detection of approximately 350 μm. Furthermore, a first study of the angle for 3D scanning was also performed, allowing for a broad range of angles to be used in the process. The relationship between the scanning angle of the incident light onto the object and the image displacement distance on the sensor was determined for the first time in this system setup. Rendering of 3D object profiles was performed at a significantly higher number of frames than in the past and was possible for an incident light angle range of 15 ° to 85 °.

  5. Development of a thermal-hydraulics experimental system for high Tc superconductors cooled by liquid hydrogen

    NASA Astrophysics Data System (ADS)

    Tatsumoto, H.; Shirai, Y.; Shiotsu, M.; Hata, K.; Kobayashi, H.; Naruo, Y.; Inatani, Y.; Kato, T.; Futakawa, M.; Kinoshita, K.

    2010-06-01

    A thermal-hydraulics experimental system of liquid hydrogen was developed in order to investigate the forced flow heat transfer characteristics in the various cooling channels for wide ranges of subcoolings, flow velocities, and pressures up to supercritical. A main tank is connected to a sub tank through a hydrogen transfer line with a control valve. A channel heater is located at one end of the transfer line in the main tank. Forced flow through the channel is produced by adjusting the pressure difference between the tanks and the valve opening. The mass flow rate is measured from the weight change of the main tank. For the explosion protection, electrical equipments are covered with a nitrogen gas blanket layer and a remote control system was established. The first cryogenic performance tests confirmed that the experimental system had satisfied with the required performances. The forced convection heat transfer characteristics was successfully measured at the pressure of 0.7 MPa for various flow velocities.

  6. Evaluation of the Shuttle GN&C during powered ascent flight phase. [Guidance Navigation and Control equipment system design and flight tests

    NASA Technical Reports Server (NTRS)

    Olson, L.; Sunkel, J. W.

    1982-01-01

    An overview of the ascent trajectory and GN&C (guidance, navigation, and control) system design is followed by a summary of flight test results for the ascent phase of STS-1. The most notable variance from nominal pre-flight predictions was the lofted trajectory observed in first stage due to an unanticipated shift in pitch aerodynamic characteristics from those predicted by wind tunnel tests. The GN&C systems performed as expected on STS-1 throughout powered flight. Following a discussion of the software constants changed for Flight 2 to provide adequate performance margin, a summary of test results from STS-2 and STS-3 is presented. Vehicle trajectory response and GN&C system behavior were very similar to STS-1. Ascent aerodynamic characteristics extracted from the first two test flights were included in the data base used to design the first stage steering and pitch trim profiles for STS-3.

  7. Kinematic analysis of basic rhythmic movements of hip-hop dance: motion characteristics common to expert dancers.

    PubMed

    Sato, Nahoko; Nunome, Hiroyuki; Ikegami, Yasuo

    2015-02-01

    In hip-hop dance contests, a procedure for evaluating performances has not been clearly defined, and objective criteria for evaluation are necessary. It is assumed that most hip-hop dance techniques have common motion characteristics by which judges determine the dancer's skill level. This study aimed to extract motion characteristics that may be linked to higher evaluations by judges. Ten expert and 12 nonexpert dancers performed basic rhythmic movements at a rate of 100 beats per minute. Their movements were captured using a motion capture system, and eight judges evaluated the performances. Four kinematic parameters, including the amplitude of the body motions and the phase delay, which indicates the phase difference between two joint angles, were calculated. The two groups showed no significant differences in terms of the amplitudes of the body motions. In contrast, the phase delay between the head motion and the other body parts' motions of expert dancers who received higher scores from the judges, which was approximately a quarter cycle, produced a loop-shaped motion of the head. It is suggested that this slight phase delay was related to the judges' evaluations and that these findings may help in constructing an objective evaluation system.

  8. Performance measurements and operational characteristics of the Storage Tek ACS 4400 tape library with the Cray Y-MP EL

    NASA Technical Reports Server (NTRS)

    Hull, Gary; Ranade, Sanjay

    1993-01-01

    With over 5000 units sold, the Storage Tek Automated Cartridge System (ACS) 4400 tape library is currently the most popular large automated tape library. Based on 3480/90 tape technology, the library is used as the migration device ('nearline' storage) in high-performance mass storage systems. In its maximum configuration, one ACS 4400 tape library houses sixteen 3480/3490 tape drives and is capable of holding approximately 6000 cartridge tapes. The maximum storage capacity of one library using 3480 tapes is 1.2 TB and the advertised aggregate I/O rate is about 24 MB/s. This paper reports on an extensive set of tests designed to accurately assess the performance capabilities and operational characteristics of one STK ACS 4400 tape library holding approximately 5200 cartridge tapes and configured with eight 3480 tape drives. A Cray Y-MP EL2-256 was configured as its host machine. More than 40,000 tape jobs were run in a variety of conditions to gather data in the areas of channel speed characteristics, robotics motion, time taped mounts, and timed tape reads and writes.

  9. Research on gesture recognition of augmented reality maintenance guiding system based on improved SVM

    NASA Astrophysics Data System (ADS)

    Zhao, Shouwei; Zhang, Yong; Zhou, Bin; Ma, Dongxi

    2014-09-01

    Interaction is one of the key techniques of augmented reality (AR) maintenance guiding system. Because of the complexity of the maintenance guiding system's image background and the high dimensionality of gesture characteristics, the whole process of gesture recognition can be divided into three stages which are gesture segmentation, gesture characteristic feature modeling and trick recognition. In segmentation stage, for solving the misrecognition of skin-like region, a segmentation algorithm combing background mode and skin color to preclude some skin-like regions is adopted. In gesture characteristic feature modeling of image attributes stage, plenty of characteristic features are analyzed and acquired, such as structure characteristics, Hu invariant moments features and Fourier descriptor. In trick recognition stage, a classifier based on Support Vector Machine (SVM) is introduced into the augmented reality maintenance guiding process. SVM is a novel learning method based on statistical learning theory, processing academic foundation and excellent learning ability, having a lot of issues in machine learning area and special advantages in dealing with small samples, non-linear pattern recognition at high dimension. The gesture recognition of augmented reality maintenance guiding system is realized by SVM after the granulation of all the characteristic features. The experimental results of the simulation of number gesture recognition and its application in augmented reality maintenance guiding system show that the real-time performance and robustness of gesture recognition of AR maintenance guiding system can be greatly enhanced by improved SVM.

  10. Multidisciplinary design optimization of the belt drive system considering both structure and vibration characteristics based on improved genetic algorithm

    NASA Astrophysics Data System (ADS)

    Yuan, Yongliang; Song, Xueguan; Sun, Wei; Wang, Xiaobang

    2018-05-01

    The dynamic performance of a belt drive system is composed of many factors, such as the efficiency, the vibration, and the optimal parameters. The conventional design only considers the basic performance of the belt drive system, while ignoring its overall performance. To address all these challenges, the study on vibration characteristics and optimization strategies could be a feasible way. This paper proposes a new optimization strategy and takes a belt drive design optimization as a case study based on the multidisciplinary design optimization (MDO). The MDO of the belt drive system is established and the corresponding sub-systems are analyzed. The multidisciplinary optimization is performed by using an improved genetic algorithm. Based on the optimal results obtained from the MDO, the three-dimension (3D) model of the belt drive system is established for dynamics simulation by virtual prototyping. From the comparison of the results with respect to different velocities and loads, the MDO method can effectively reduce the transverse vibration amplitude. The law of the vibration displacement, the vibration frequency, and the influence of velocities on the transverse vibrations has been obtained. Results show that the MDO method is of great help to obtain the optimal structural parameters. Furthermore, the kinematics principle of the belt drive has been obtained. The belt drive design case indicates that the proposed method in this paper can also be used to solve other engineering optimization problems efficiently.

  11. A procedure obtaining stiffnesses and masses of a structure from vibration modes and substructure static test data

    NASA Technical Reports Server (NTRS)

    Edighoffer, H. H.

    1979-01-01

    A component mode desynthesis procedure is developed for determining the unknown vibration characteristics of a structural component (i.e., a launch vehicle) given the vibration characteristics of a structural system composed of that component combined with a known one (i.e., a payload). At least one component static test has to be performed. These data are used in conjunction with the system measured frequencies and mode shapes to obtain the vibration characteristics of each component. The flight dynamics of an empty launch vehicle can be determined from measurements made on a vehicle/payload combination in conjunction with a static test on the payload.

  12. Characterization of the space shuttle reaction control system engine

    NASA Technical Reports Server (NTRS)

    Wilson, M. S.; Stechman, R. C.; Edelman, R. B.; Fortune, O. F.; Economos, C.

    1972-01-01

    A computer program was developed and written in FORTRAN 5 which predicts the transient and steady state performance and heat transfer characteristics of a pulsing GO2/GH2 rocket engine. This program predicts the dynamic flow and ignition characteristics which, when combined in a quasi-steady state manner with the combustion and mixing analysis program, will provide the thrust and specific impulse of the engine as a function of time. The program also predicts the transient and steady state heat transfer characteristics of the engine using various cooling concepts. The computer program, test case, and documentation are presented. The program is applicable to any system capable of utilizing the FORTRAN 4 or FORTRAN 5 language.

  13. Characteristics and Echogenicity of Clinical Ultrasound Contrast Agents: An In Vitro and In Vivo Comparison Study.

    PubMed

    Hyvelin, Jean-Marc; Gaud, Emmanuel; Costa, Maria; Helbert, Alexandre; Bussat, Philippe; Bettinger, Thierry; Frinking, Peter

    2017-05-01

    To compare physicochemical characteristics and in vitro and in vivo contrast-enhanced ultrasound imaging performance of 3 commercially available ultrasound contrast agents: SonoVue (Bracco Imaging SpA, Colleretto Giacosa, Italy; also marketed as Lumason in the USA), Definity (Lantheus Medical Imaging, North Billerica, MA) and Optison (GE Healthcare AS, Oslo, Norway). Physicochemical characteristics were measured with a Multisizer Coulter Counter (Beckman Coulter, Fullerton, CA). Two ultrasound systems (Aplio 500; Toshiba Medical Systems Corp, Tochigi-ken, Japan; and Logiq E9; GE Healthcare, Little Chalfont, England) were used with different transducers. Contrast enhancement was measured in vitro by dose-ranging measurements using a custom-built beaker setup; in vivo imaging performances were compared in pigs (heart and liver) and rabbits (liver). Quantitative analyses were performed with VueBox quantification software (Bracco Suisse SA, Plan-les-Ouates, Switzerland). Measured physicochemical characteristics were in agreement with those provided by the manufacturers. In vitro data demonstrated that the performance of SonoVue was similar to or better than that of Definity but superior to Optison (normalized scattered power 2- to 10-fold higher with SonoVue). Similar results were obtained in vivo, although the duration of enhancement in the pig heart was longer for SonoVue compared to Definity, and quantitative analysis revealed higher enhancement for SonoVue (1.5-fold increase). For liver imaging, SonoVue and Definity showed similar contrast enhancement and duration of enhancement, but compared to Optison, both peak enhancement and duration of enhancement were superior for SonoVue (up to 2-fold increase). Imaging performance of SonoVue was similar to or slightly better than that of Definity, but it was superior to Optison for the conditions used in this study. © 2017 by the American Institute of Ultrasound in Medicine.

  14. Control of a high beta maneuvering reentry vehicle using dynamic inversion.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watts, Alfred Chapman

    2005-05-01

    The design of flight control systems for high performance maneuvering reentry vehicles presents a significant challenge to the control systems designer. These vehicles typically have a much higher ballistic coefficient than crewed vehicles like as the Space Shuttle or proposed crew return vehicles such as the X-38. Moreover, the missions of high performance vehicles usually require a steeper reentry flight path angle, followed by a pull-out into level flight. These vehicles then must transit the entire atmosphere and robustly perform the maneuvers required for the mission. The vehicles must also be flown with small static margins in order to performmore » the required maneuvers, which can result in highly nonlinear aerodynamic characteristics that frequently transition from being aerodynamically stable to unstable as angle of attack increases. The control system design technique of dynamic inversion has been applied successfully to both high performance aircraft and low beta reentry vehicles. The objective of this study was to explore the application of this technique to high performance maneuvering reentry vehicles, including the basic derivation of the dynamic inversion technique, followed by the extension of that technique to the use of tabular trim aerodynamic models in the controller. The dynamic inversion equations are developed for high performance vehicles and augmented to allow the selection of a desired response for the control system. A six degree of freedom simulation is used to evaluate the performance of the dynamic inversion approach, and results for both nominal and off nominal aerodynamic characteristics are presented.« less

  15. Performance Estimation for Two-Dimensional Brownian Rotary Ratchet Systems

    NASA Astrophysics Data System (ADS)

    Tutu, Hiroki; Horita, Takehiko; Ouchi, Katsuya

    2015-04-01

    Within the context of the Brownian ratchet model, a molecular rotary system that can perform unidirectional rotations induced by linearly polarized ac fields and produce positive work under loads was studied. The model is based on the Langevin equation for a particle in a two-dimensional (2D) three-tooth ratchet potential of threefold symmetry. The performance of the system is characterized by the coercive torque, i.e., the strength of the load competing with the torque induced by the ac driving field, and the energy efficiency in force conversion from the driving field to the torque. We propose a master equation for coarse-grained states, which takes into account the boundary motion between states, and develop a kinetic description to estimate the mean angular momentum (MAM) and powers relevant to the energy balance equation. The framework of analysis incorporates several 2D characteristics and is applicable to a wide class of models of smooth 2D ratchet potential. We confirm that the obtained expressions for MAM, power, and efficiency of the model can enable us to predict qualitative behaviors. We also discuss the usefulness of the torque/power relationship for experimental analyses, and propose a characteristic for 2D ratchet systems.

  16. A Digest of UNC System Reports on Freshman Performance: 2006-07. Research Watch. E&R Report No. 10.05

    ERIC Educational Resources Information Center

    Holdzkom, David

    2010-01-01

    The University of North Carolina System (UNC) annually reports statistics related to characteristics of freshmen classes from each high school and district in the state. Wake County Public School System (WCPSS) graduates were more successful at gaining admission and making academic progress at the member institutions of the UNC system than was…

  17. Thermodynamic analysis of a new dual evaporator CO2 transcritical refrigeration cycle

    NASA Astrophysics Data System (ADS)

    Abdellaoui, Ezzaalouni Yathreb; Kairouani, Lakdar Kairouani

    2017-03-01

    In this work, a new dual-evaporator CO2 transcritical refrigeration cycle with two ejectors is proposed. In this new system, we proposed to recover the lost energy of condensation coming off the gas cooler and operate the refrigeration cycle ejector free and enhance the system performance and obtain dual-temperature refrigeration simultaneously. The effects of some key parameters on the thermodynamic performance of the modified cycle are theoretically investigated based on energetic and exergetic analysis. The simulation results for the modified cycle indicate more effective system performance improvement than the single ejector in the CO2 vapor compression cycle using ejector as an expander ranging up to 46%. The exergetic analysis for this system is made. The performance characteristics of the proposed cycle show its promise in dual-evaporator refrigeration system.

  18. Reactor/Brayton power systems for nuclear electric spacecraft

    NASA Technical Reports Server (NTRS)

    Layton, J. P.

    1980-01-01

    Studies are currently underway to assess the technological feasibility of a nuclear-reactor-powered spacecraft propelled by electric thrusters. This vehicle would be capable of performing detailed exploration of the outer planets of the solar system during the remainder of this century. The purpose of this study was to provide comparative information on a closed cycle gas turbine power conversion system. The results have shown that the performance is very competitive and that a 400 kWe space power system is dimensionally compatible with a single Space Shuttle launch. Performance parameters of system mass and radiator area were determined for systems from 100 to 1000 kWe. A 400 kWe reference system received primary attention. The components of this system were defined and a conceptual layout was developed with encouraging results. The preliminary mass determination for the complete power system was very close to the desired goal of 20 kg/kWe. Use of more advanced technology (higher turbine inlet temperature) will substantially improve system performance characteristics.

  19. An approach to the design of wide-angle optical systems with special illumination and IFOV requirements

    NASA Astrophysics Data System (ADS)

    Pravdivtsev, Andrey V.

    2012-06-01

    The article presents the approach to the design wide-angle optical systems with special illumination and instantaneous field of view (IFOV) requirements. The unevenness of illumination reduces the dynamic range of the system, which negatively influence on the system ability to perform their task. The result illumination on the detector depends among other factors from the IFOV changes. It is also necessary to consider IFOV in the synthesis of data processing algorithms, as it directly affects to the potential "signal/background" ratio for the case of statistically homogeneous backgrounds. A numerical-analytical approach that simplifies the design of wideangle optical systems with special illumination and IFOV requirements is presented. The solution can be used for optical systems which field of view greater than 180 degrees. Illumination calculation in optical CAD is based on computationally expensive tracing of large number of rays. The author proposes to use analytical expression for some characteristics which illumination depends on. The rest characteristic are determined numerically in calculation with less computationally expensive operands, the calculation performs not every optimization step. The results of analytical calculation inserts in the merit function of optical CAD optimizer. As a result we reduce the optimizer load, since using less computationally expensive operands. It allows reducing time and resources required to develop a system with the desired characteristics. The proposed approach simplifies the creation and understanding of the requirements for the quality of the optical system, reduces the time and resources required to develop an optical system, and allows creating more efficient EOS.

  20. Solar-Powered Electric Propulsion Systems: Engineering and Applications

    NASA Technical Reports Server (NTRS)

    Stearns, J. W.; Kerrisk, D. J.

    1966-01-01

    Lightweight, multikilowatt solar power arrays in conjunction with electric propulsion offer potential improvements to space exploration, extending the usefulness of existing launch vehicles to higher-energy missions. Characteristics of solar-powered electric propulsion missions are outlined, and preliminary performance estimates are shown. Spacecraft system engineering is discussed with respect to parametric trade-offs in power and propulsion system design. Relationships between mission performance and propulsion system performance are illustrated. The present state of the art of electric propulsion systems is reviewed and related to the mission requirements identified earlier. The propulsion system design and test requirements for a mission spacecraft are identified and discussed. Although only ion engine systems are currently available, certain plasma propulsion systems offer some advantages in over-all system design. These are identified, and goals are set for plasma-thrustor systems to make them competitive with ion-engine systems for mission applications.

  1. An investigation of the performance of an electronic in-line pump system for diesel engines

    NASA Astrophysics Data System (ADS)

    Fan, Li-Yun; Zhu, Yuan-Xian; Long, Wu-Qiang; Ma, Xiu-Zhen; Xue, Ying-Ying

    2008-12-01

    WIT Electronic Fuel System Co., Ltd. has developed a new fuel injector, the Electronic In-line Pump (EIP) system, designed to meet China’s diesel engine emission and fuel economy regulations. It can be used on marine diesel engines and commercial vehicle engines through different EIP systems. A numerical model of the EIP system was built in the AMESim environment for the purpose of creating a design tool for engine application and system optimization. The model was used to predict key injection characteristics under different operating conditions, such as injection pressure, injection rate, and injection duration. To validate these predictions, experimental tests were conducted under the conditions that were modeled. The results were quite encouraging and in agreement with model predictions. Additional experiments were conducted to study the injection characteristics of the EIP system. These results show that injection pressure and injection quantity are insensitive to injection timing variations, this is due to the design of the constant velocity cam profile. Finally, injection quantity and pressure vs. pulse width at different cam speeds are presented, an important injection characteristic for EIP system calibration.

  2. Integrated flight/propulsion control system design based on a decentralized, hierarchical approach

    NASA Technical Reports Server (NTRS)

    Mattern, Duane; Garg, Sanjay; Bullard, Randy

    1989-01-01

    A sample integrated flight/propulsion control system design is presented for the piloted longitudinal landing task with a modern, statistically unstable fighter aircraft. The design procedure is summarized. The vehicle model used in the sample study is described, and the procedure for partitioning the integrated system is presented along with a description of the subsystems. The high-level airframe performance specifications and control design are presented and the control performance is evaluated. The generation of the low-level (engine) subsystem specifications from the airframe requirements are discussed, and the engine performance specifications are presented along with the subsystem control design. A compensator to accommodate the influence of airframe outputs on the engine subsystem is also considered. Finally, the entire closed loop system performance and stability characteristics are examined.

  3. Integrated flight/propulsion control system design based on a decentralized, hierarchical approach

    NASA Technical Reports Server (NTRS)

    Mattern, Duane; Garg, Sanjay; Bullard, Randy

    1989-01-01

    A sample integrated flight/propulsion control system design is presented for the piloted longitiudinal landing task with a modern, statistically unstable fighter aircraft. The design procedure is summarized, the vehicle model used in the sample study is described, and the procedure for partitioning the integrated system is presented along with a description of the subsystems. The high-level airframe performance specifications and control design are presented and the control performance is evaluated. The generation of the low-level (engine) subsystem specifications from the airframe requirements are discussed, and the engine performance specifications are presented along with the subsystem control design. A compensator to accommodate the influence of airframe outputs on the engine subsystem is also considered. Finally, the entire closed loop system performance and stability characteristics are examined.

  4. TERSSE: Definition of the Total Earth Resources System for the Shuttle Era. Volume 5: Detailed system requirements: Two case studies

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Major resource management missions to be performed by the TERSSE are examined in order to develop an understanding of the form and function of a system designed to perform an operational mission. Factors discussed include: resource manager (user) functions, methods of performing their function, the information flows and information requirements embodied in their function, and the characteristics of the observation system which assists in the management of the resource involved. The missions selected for study are: world crop survey and land resources management. These missions are found to represent opposite ends of the TERSSE spectrum and to support the conclusion that different missions require different systems and must be analyzed in detail to permit proper system development decisions.

  5. A piloted simulation of helicopter air combat to investigate effects of variations in selected performance and control response characteristics

    NASA Technical Reports Server (NTRS)

    Lewis, Michael S.; Mansur, M. Hossein; Chen, Robert T. N.

    1987-01-01

    A piloted simulation study investigating handling qualities and flight characteristics required for helicopter air to air combat is presented. The Helicopter Air Combat system was used to investigate this role for Army rotorcraft. Experimental variables were the maneuver envelope size (load factor and sideslip), directional axis handling qualities, and pitch and roll control-response type. Over 450 simulated, low altitude, one-on-one engagements were conducted. Results from the experiment indicate that a well damped directional response, low sideforce caused by sideslip, and some effective dihedral are all desirable for weapon system performance, good handling qualities, and low pilot workload. An angular rate command system was favored over the attitude type pitch and roll response for most applications, and an enhanced maneuver envelope size over that of current generation aircraft was found to be advantageous. Pilot technique, background, and experience are additional factors which had a significant effect on performance in the air combat tasks investigated. The implication of these results on design requirements for future helicopters is presented.

  6. FinFET and UTBB for RF SOI communication systems

    NASA Astrophysics Data System (ADS)

    Raskin, Jean-Pierre

    2016-11-01

    Performance of RF integrated circuit (IC) is directly linked to the analog and high frequency characteristics of the transistors, the quality of the back-end of line process as well as the electromagnetic properties of the substrate. Thanks to the introduction of the trap-rich high-resistivity Silicon-on-Insulator (SOI) substrate on the market, the ICs requirements in term of linearity are fulfilled. Today partially depleted SOI MOSFET is the mainstream technology for RF SOI systems. Future generations of mobile communication systems will require transistors with better high frequency performance at lower power consumption. The advanced MOS transistors in competition are FinFET and Ultra Thin Body and Buried oxide (UTBB) SOI MOSFETs. Both devices have been intensively studied these last years. Most of the reported data concern their digital performance. In this paper, their analog/RF behavior is described and compared. Both show similar characteristics in terms of transconductance, Early voltage, voltage gain, self-heating issue but UTBB outperforms FinFET in terms of cutoff frequencies thanks to their relatively lower fringing parasitic capacitances.

  7. Laser diode initiated detonators for space applications

    NASA Technical Reports Server (NTRS)

    Ewick, David W.; Graham, J. A.; Hawley, J. D.

    1993-01-01

    Ensign Bickford Aerospace Company (EBAC) has over ten years of experience in the design and development of laser ordnance systems. Recent efforts have focused on the development of laser diode ordnance systems for space applications. Because the laser initiated detonators contain only insensitive secondary explosives, a high degree of system safety is achieved. Typical performance characteristics of a laser diode initiated detonator are described in this paper, including all-fire level, function time, and output. A finite difference model used at EBAC to predict detonator performance, is described and calculated results are compared to experimental data. Finally, the use of statistically designed experiments to evaluate performance of laser initiated detonators is discussed.

  8. Design and demonstrate the performance of cryogenic components representative of space vehicles: Start basket liquid acquisition device performance analysis

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The objective was to design, fabricate and test an integrated cryogenic test article incorporating both fluid and thermal propellant management subsystems. A 2.2 m (87 in) diameter aluminum test tank was outfitted with multilayer insulation, helium purge system, low-conductive tank supports, thermodynamic vent system, liquid acquisition device and immersed outflow pump. Tests and analysis performed on the start basket liquid acquisition device and studies of the liquid retention characteristics of fine mesh screens are discussed.

  9. Effects of straw processing and pen overstocking on the growth performance and sorting characteristics of diets offered to replacement Holstein dairy heifers

    USDA-ARS?s Scientific Manuscript database

    The effects of pen-stocking density and straw processing on the growth performance of Holstein dairy heifers housed in a free-stall system are not well understood. Our objectives were to evaluate these factors on the growth performance, feed-bunk sorting behaviors, daily behavioral traits, and hygie...

  10. Development and Evaluation of a Performance Modeling Flight Test Approach Based on Quasi Steady-State Maneuvers

    NASA Technical Reports Server (NTRS)

    Yechout, T. R.; Braman, K. B.

    1984-01-01

    The development, implementation and flight test evaluation of a performance modeling technique which required a limited amount of quasisteady state flight test data to predict the overall one g performance characteristics of an aircraft. The concept definition phase of the program include development of: (1) the relationship for defining aerodynamic characteristics from quasi steady state maneuvers; (2) a simplified in flight thrust and airflow prediction technique; (3) a flight test maneuvering sequence which efficiently provided definition of baseline aerodynamic and engine characteristics including power effects on lift and drag; and (4) the algorithms necessary for cruise and flight trajectory predictions. Implementation of the concept include design of the overall flight test data flow, definition of instrumentation system and ground test requirements, development and verification of all applicable software and consolidation of the overall requirements in a flight test plan.

  11. On enhancing energy harvesting performance of the photovoltaic modules using an automatic cooling system and assessing its economic benefits of mitigating greenhouse effects on the environment

    NASA Astrophysics Data System (ADS)

    Wang, Jen-Cheng; Liao, Min-Sheng; Lee, Yeun-Chung; Liu, Cheng-Yue; Kuo, Kun-Chang; Chou, Cheng-Ying; Huang, Chen-Kang; Jiang, Joe-Air

    2018-02-01

    The performance of photovoltaic (PV) modules under outdoor operation is greatly affected by their location and environmental conditions. The temperature of a PV module gradually increases as it is exposed to solar irradiation, resulting in degradation of its electrical characteristics and power generation efficiency. This study adopts wireless sensor network (WSN) technology to develop an automatic water-cooling system for PV modules in order to improve their PV power generation efficiency. A temperature estimation method is developed to quickly and accurately estimate the PV module temperatures based on weather data provided from the WSN monitoring system. Further, an estimation method is also proposed for evaluation of the electrical characteristics and output power of the PV modules, which is performed remotely via a control platform. The automatic WSN-based water-cooling mechanism is designed to avoid the PV module temperature from reaching saturation. Equipping each PV module with the WSN-based cooling system, the ambient conditions are monitored automatically so that the temperature of the PV module is controlled by sprinkling water on the panel surface. The field-test experiment results show an increase in the energy harvested by the PV modules of approximately 17.75% when using the proposed WSN-based cooling system.

  12. Ultraviolet radiation-blocking characteristics of contact lenses: relevance to eye protection for psoralen-sensitised patients.

    PubMed

    Anstey, A; Taylor, D; Chalmers, I; Ansari, E

    1999-10-01

    Nine brands of contact lens marketed as "UV protective" were tested for ultraviolet (UV) transmission in order to assess potential suitability for psoralen-sensitised patients. UV-transmission characteristics of hydrated lenses was tested with a Bentham monochromator spectro-radiometer system. All lenses showed minimal transmission loss in the visible band. The performance of the nine lenses was uniform for ultraviolet B radiation with negligible transmission, but showed variation in transmission for ultraviolet A radiation. None of the lenses complied with UV-transmission criteria used previously to assess UV-blocking spectacles. Only two lenses had UV-blocking characteristics which came close to the arbitrary criteria used. The performance of ordinary soft and hard lenses was very similar, with negligible blocking of UV radiation. None of the nine contact lenses marketed as "UV protective" excluded sufficient UVA to comply with criteria in current use to assess UV protection in spectacles for psoralen-sensitised patients. However, the improved UV-blocking characteristics of contact lenses identified in this paper compared to previous studies suggests that such a contact lens will soon become available. Meanwhile, contact lens-wearing systemically sensitised PUVA patients should continue to wear approved spectacles for eye protection whilst photosensitised with psoralen.

  13. Permanent magnet synchronous motor servo system control based on μC/OS

    NASA Astrophysics Data System (ADS)

    Shi, Chongyang; Chen, Kele; Chen, Xinglong

    2015-10-01

    When Opto-Electronic Tracking system operates in complex environments, every subsystem must operate efficiently and stably. As a important part of Opto-Electronic Tracking system, the performance of PMSM(Permanent Magnet Synchronous Motor) servo system affects the Opto-Electronic Tracking system's accuracy and speed greatly[1][2]. This paper applied embedded real-time operating system μC/OS to the control of PMSM servo system, implemented SVPWM(Space Vector Pulse Width Modulation) algorithm in PMSM servo system, optimized the stability of PMSM servo system. Pointing on the characteristics of the Opto-Electronic Tracking system, this paper expanded μC/OS with software redundancy processes, remote debugging and upgrading. As a result, the Opto- Electronic Tracking system performs efficiently and stably.

  14. Characteristics Study of In-Situ Capacitive Sensor for Monitoring Lubrication Oil Debris.

    PubMed

    Han, Zhibin; Wang, Yishou; Qing, Xinlin

    2017-12-08

    As an essential part of engine health monitoring (EHM), online lubrication oil debris monitoring has recently received great attention for the assessment of rotating and reciprocating parts in aero-engines, due to its high integration, low cost and safe characteristics. However, it is be a challenge to find a suitable sensor operating in such a complex environment. We present an unconventional novel approach, in which a cylinder capacitive sensor is designed and integrated with the pipeline of an engine lubrication system, so that the capacitive sensor can effectively detect changes in the lubrication oil condition. In this paper, an attempt to illustrate the performance characteristics of the developed cylinder capacitive sensor is made, through an experiment system that simulates a real scenario of a lubrication oil system. The main aim of the research was to qualitatively describe the relationship between the sensor parameter and the lubrication oil debris. In addition, the effect of the temperature and flow rate of the lubrication oil on capacitance change was performed by several experiments and we figured out a compensation method. The experimental results demonstrated that the cylinder capacitive sensor can potentially be used for lubrication oil debris monitoring of the health condition of an aero-engine.

  15. Uncertainty quantification analysis of the dynamics of an electrostatically actuated microelectromechanical switch model

    NASA Astrophysics Data System (ADS)

    Snow, Michael G.; Bajaj, Anil K.

    2015-08-01

    This work presents an uncertainty quantification (UQ) analysis of a comprehensive model for an electrostatically actuated microelectromechanical system (MEMS) switch. The goal is to elucidate the effects of parameter variations on certain key performance characteristics of the switch. A sufficiently detailed model of the electrostatically actuated switch in the basic configuration of a clamped-clamped beam is developed. This multi-physics model accounts for various physical effects, including the electrostatic fringing field, finite length of electrodes, squeeze film damping, and contact between the beam and the dielectric layer. The performance characteristics of immediate interest are the static and dynamic pull-in voltages for the switch. Numerical approaches for evaluating these characteristics are developed and described. Using Latin Hypercube Sampling and other sampling methods, the model is evaluated to find these performance characteristics when variability in the model's geometric and physical parameters is specified. Response surfaces of these results are constructed via a Multivariate Adaptive Regression Splines (MARS) technique. Using a Direct Simulation Monte Carlo (DSMC) technique on these response surfaces gives smooth probability density functions (PDFs) of the outputs characteristics when input probability characteristics are specified. The relative variation in the two pull-in voltages due to each of the input parameters is used to determine the critical parameters.

  16. Modeling and Dynamic Analysis of Paralleled dc/dc Converters With Master-Slave Current Sharing Control

    NASA Technical Reports Server (NTRS)

    Rajagopalan, J.; Xing, K.; Guo, Y.; Lee, F. C.; Manners, Bruce

    1996-01-01

    A simple, application-oriented, transfer function model of paralleled converters employing Master-Slave Current-sharing (MSC) control is developed. Dynamically, the Master converter retains its original design characteristics; all the Slave converters are forced to depart significantly from their original design characteristics into current-controlled current sources. Five distinct loop gains to assess system stability and performance are identified and their physical significance is described. A design methodology for the current share compensator is presented. The effect of this current sharing scheme on 'system output impedance' is analyzed.

  17. Real-time digital signal recovery for a multi-pole low-pass transfer function system.

    PubMed

    Lee, Jhinhwan

    2017-08-01

    In order to solve the problems of waveform distortion and signal delay by many physical and electrical systems with multi-pole linear low-pass transfer characteristics, a simple digital-signal-processing (DSP)-based method of real-time recovery of the original source waveform from the distorted output waveform is proposed. A mathematical analysis on the convolution kernel representation of the single-pole low-pass transfer function shows that the original source waveform can be accurately recovered in real time using a particular moving average algorithm applied on the input stream of the distorted waveform, which can also significantly reduce the overall delay time constant. This method is generalized for multi-pole low-pass systems and has noise characteristics of the inverse of the low-pass filter characteristics. This method can be applied to most sensors and amplifiers operating close to their frequency response limits to improve the overall performance of data acquisition systems and digital feedback control systems.

  18. Thermal control requirements for large space structures

    NASA Technical Reports Server (NTRS)

    Manoff, M.

    1978-01-01

    Performance capabilities and weight requirements of large space structure systems will be significantly influenced by thermal response characteristics. Analyses have been performed to determine temperature levels and gradients for structural configurations and elemental concepts proposed for advanced system applications ranging from relatively small, low-power communication antennas to extremely large, high-power Satellite Power Systems (SPS). Results are presented for selected platform configurations, candidate strut elements, and potential mission environments. The analyses also incorporate material and surface optical property variation. The results illustrate many of the thermal problems which may be encountered in the development of three systems.

  19. Requirements for the conceptual design of advanced underground coal extraction systems

    NASA Technical Reports Server (NTRS)

    Gangal, M. D.; Lavin, M. L.

    1981-01-01

    Conceptual design requirements are presented for underground coal mining systems having substantially improved performance in the areas of production cost and miner safety. Mandatory performance levels are also set for miner health, environmental impact, and coal recovery. In addition to mandatory design goals and constraints, a number of desirable system characteristics are identified which must be assessed in terms of their impact on production cost and their compatibility with other system elements. Although developed for the flat lying, moderately thick seams of Central Appalachia, these requirements are designed to be easily adaptable to other coals.

  20. Thermal and optical performance of encapsulation systems for flat-plate photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Minning, C. P.; Coakley, J. F.; Perrygo, C. M.; Garcia, A., III; Cuddihy, E. F.

    1981-01-01

    The electrical power output from a photovoltaic module is strongly influenced by the thermal and optical characteristics of the module encapsulation system. Described are the methodology and computer model for performing fast and accurate thermal and optical evaluations of different encapsulation systems. The computer model is used to evaluate cell temperature, solar energy transmittance through the encapsulation system, and electric power output for operation in a terrestrial environment. Extensive results are presented for both superstrate-module and substrate-module design schemes which include different types of silicon cell materials, pottants, and antireflection coatings.

  1. An expert system that performs a satellite station keepimg maneuver

    NASA Technical Reports Server (NTRS)

    Linesbrowning, M. Kate; Stone, John L., Jr.

    1987-01-01

    The development and characteristics of a prototype expert system, Expert System for Satellite Orbit Control (ESSOC), capable of providing real-time spacecraft system analysis and command generation for a geostationary satellite are described. The ESSOC recommends appropriate commands that reflect both the changing spacecraft condition and previous procedural action. An internal knowledge base stores satellite status information and is updated with processed spacecraft telemetry. Procedural structure data are encoded in production rules. Structural methods of knowledge acquisition and the design and performance-enhancing techniques that enable ESSOC to operate in real time are also considered.

  2. Apollo experience report: Communications system flight evaluation and verification

    NASA Technical Reports Server (NTRS)

    Travis, D.; Royston, C. L., Jr.

    1972-01-01

    Flight tests of the synergetic operation of the spacecraft and earth based communications equipment were accomplished during Apollo missions AS-202 through Apollo 12. The primary goals of these tests were to verify that the communications system would adequately support lunar landing missions and to establish the inflight communications system performance characteristics. To attain these goals, a communications system flight verification and evaluation team was established. The concept of the team operations, the evolution of the evaluation processes, synopses of the team activities associated with each mission, and major conclusions and recommendations resulting from the performance evaluation are represented.

  3. Suitability of ANSI standards for quantifying communication satellite system performance

    NASA Technical Reports Server (NTRS)

    Cass, Robert D.

    1988-01-01

    A study on the application of American National Standards X3.102 and X3.141 to various classes of communication satellite systems from the simple analog bent-pipe to NASA's Advanced Communications Technology Satellite (ACTS) is discussed. These standards are proposed as means for quantifying the end-to-end communication system performance of communication satellite systems. An introductory overview of the two standards are given followed by a review of the characteristics, applications, and advantages of using X3.102 and X3.141 to quantify with a description of the application of these standards to ACTS.

  4. PVDF flux/mass/velocity/trajectory systems and their applications in space

    NASA Technical Reports Server (NTRS)

    Tuzzolino, Anthony J.

    1994-01-01

    The current status of the University of Chicago Polyvinylidene Fluoride (PVDF) flux/mass/velocity/trajectory instrumentation is summarized. The particle response and thermal stability characteristics of pure PVDF and PVDF copolymer sensors are described, as well as the characteristics of specially constructed two-dimensional position-sensing PVDF sensors. The performance of high-flux systems and of velocity/trajectory systems using these sensors is discussed, and the objectives and designs of a PVDF velocity/trajectory dust instrument for launch on the Advanced Research and Global Observation Satellite (ARGOS) in 1995 and of a high-flux dust instrument for launch on the Cassini spacecraft to Saturn in 1997 are summarized.

  5. Performance characteristics of a Kodak computed radiography system.

    PubMed

    Bradford, C D; Peppler, W W; Dobbins, J T

    1999-01-01

    The performance characteristics of a photostimulable phosphor based computed radiographic (CR) system were studied. The modulation transfer function (MTF), noise power spectra (NPS), and detective quantum efficiency (DQE) of the Kodak Digital Science computed radiography (CR) system (Eastman Kodak Co.-model 400) were measured and compared to previously published results of a Fuji based CR system (Philips Medical Systems-PCR model 7000). To maximize comparability, the same measurement techniques and analysis methods were used. The DQE at four exposure levels (30, 3, 0.3, 0.03 mR) and two plate types (standard and high resolution) were calculated from the NPS and MTF measurements. The NPS was determined from two-dimensional Fourier analysis of uniformly exposed plates. The presampling MTF was determined from the Fourier transform (FT) of the system's finely sampled line spread function (LSF) as produced by a narrow slit. A comparison of the slit type ("beveled edge" versus "straight edge") and its effect on the resulting MTF measurements was also performed. The results show that both systems are comparable in resolution performance. The noise power studies indicated a higher level of noise for the Kodak images (approximately 20% at the low exposure levels and 40%-70% at higher exposure levels). Within the clinically relevant exposure range (0.3-3 mR), the resulting DQE for the Kodak plates ranged between 20%-50% lower than for the corresponding Fuji plates. Measurements of the presampling MTF with the two slit types have shown that a correction factor can be applied to compensate for transmission through the relief edges.

  6. Specialized data analysis for the Space Shuttle Main Engine and diagnostic evaluation of advanced propulsion system components

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Marshall Space Flight Center is responsible for the development and management of advanced launch vehicle propulsion systems, including the Space Shuttle Main Engine (SSME), which is presently operational, and the Space Transportation Main Engine (STME) under development. The SSME's provide high performance within stringent constraints on size, weight, and reliability. Based on operational experience, continuous design improvement is in progress to enhance system durability and reliability. Specialized data analysis and interpretation is required in support of SSME and advanced propulsion system diagnostic evaluations. Comprehensive evaluation of the dynamic measurements obtained from test and flight operations is necessary to provide timely assessment of the vibrational characteristics indicating the operational status of turbomachinery and other critical engine components. Efficient performance of this effort is critical due to the significant impact of dynamic evaluation results on ground test and launch schedules, and requires direct familiarity with SSME and derivative systems, test data acquisition, and diagnostic software. Detailed analysis and evaluation of dynamic measurements obtained during SSME and advanced system ground test and flight operations was performed including analytical/statistical assessment of component dynamic behavior, and the development and implementation of analytical/statistical models to efficiently define nominal component dynamic characteristics, detect anomalous behavior, and assess machinery operational condition. In addition, the SSME and J-2 data will be applied to develop vibroacoustic environments for advanced propulsion system components, as required. This study will provide timely assessment of engine component operational status, identify probable causes of malfunction, and indicate feasible engineering solutions. This contract will be performed through accomplishment of negotiated task orders.

  7. Drive Control Scheme of Electric Power Assisted Wheelchair Based on Neural Network Learning of Human Wheelchair Operation Characteristics

    NASA Astrophysics Data System (ADS)

    Tanohata, Naoki; Seki, Hirokazu

    This paper describes a novel drive control scheme of electric power assisted wheelchairs based on neural network learning of human wheelchair operation characteristics. “Electric power assisted wheelchair” which enhances the drive force of the operator by employing electric motors is expected to be widely used as a mobility support system for elderly and disabled people. However, some handicapped people with paralysis of the muscles of one side of the body cannot maneuver the wheelchair as desired because of the difference in the right and left input force. Therefore, this study proposes a neural network learning system of such human wheelchair operation characteristics and a drive control scheme with variable distribution and assistance ratios. Some driving experiments will be performed to confirm the effectiveness of the proposed control system.

  8. Transportation Systems Evaluation

    NASA Technical Reports Server (NTRS)

    Fanning, M. L.; Michelson, R. A.

    1972-01-01

    A methodology for the analysis of transportation systems consisting of five major interacting elements is reported. The analysis begins with the causes of travel demand: geographic, economic, and demographic characteristics as well as attitudes toward travel. Through the analysis, the interaction of these factors with the physical and economic characteristics of the transportation system is determined. The result is an evaluation of the system from the point of view of both passenger and operator. The methodology is applicable to the intraurban transit systems as well as major airlines. Applications of the technique to analysis of a PRT system and a study of intraurban air travel are given. In the discussion several unique models or techniques are mentioned: i.e., passenger preference modeling, an integrated intraurban transit model, and a series of models to perform airline analysis.

  9. Using Discrete Event Simulation to Model Attacker Interactions with Cyber and Physical Security Systems

    DOE PAGES

    Perkins, Casey; Muller, George

    2015-10-08

    The number of connections between physical and cyber security systems is rapidly increasing due to centralized control from automated and remotely connected means. As the number of interfaces between systems continues to grow, the interactions and interdependencies between them cannot be ignored. Historically, physical and cyber vulnerability assessments have been performed independently. This independent evaluation omits important aspects of the integrated system, where the impacts resulting from malicious or opportunistic attacks are not easily known or understood. Here, we describe a discrete event simulation model that uses information about integrated physical and cyber security systems, attacker characteristics and simple responsemore » rules to identify key safeguards that limit an attacker's likelihood of success. Key features of the proposed model include comprehensive data generation to support a variety of sophisticated analyses, and full parameterization of safeguard performance characteristics and attacker behaviours to evaluate a range of scenarios. Lastly, we also describe the core data requirements and the network of networks that serves as the underlying simulation structure.« less

  10. Wide-field and high-resolution optical imaging for early detection of oral neoplasia

    NASA Astrophysics Data System (ADS)

    Pierce, Mark C.; Schwarz, Richard A.; Rosbach, Kelsey; Roblyer, Darren; Muldoon, Tim; Williams, Michelle D.; El-Naggar, Adel K.; Gillenwater, Ann M.; Richards-Kortum, Rebecca

    2010-02-01

    Current procedures for oral cancer screening typically involve visual inspection of the entire tissue surface at risk under white light illumination. However, pre-cancerous lesions can be difficult to distinguish from many benign conditions when viewed under these conditions. We have developed wide-field (macroscopic) imaging system which additionally images in cross-polarized white light, narrowband reflectance, and fluorescence imaging modes to reduce specular glare, enhance vascular contrast, and detect disease-related alterations in tissue autofluorescence. We have also developed a portable system to enable high-resolution (microscopic) evaluation of cellular features within the oral mucosa in situ. This system is a wide-field epi-fluorescence microscope coupled to a 1 mm diameter, flexible fiber-optic imaging bundle. Proflavine solution was used to specifically label cell nuclei, enabling the characteristic differences in N/C ratio and nuclear distribution between normal, dysplastic, and cancerous oral mucosa to be quantified. This paper discusses the technical design and performance characteristics of these complementary imaging systems. We will also present data from ongoing clinical studies aimed at evaluating diagnostic performance of these systems for detection of oral neoplasia.

  11. Using Discrete Event Simulation to Model Attacker Interactions with Cyber and Physical Security Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkins, Casey; Muller, George

    The number of connections between physical and cyber security systems is rapidly increasing due to centralized control from automated and remotely connected means. As the number of interfaces between systems continues to grow, the interactions and interdependencies between them cannot be ignored. Historically, physical and cyber vulnerability assessments have been performed independently. This independent evaluation omits important aspects of the integrated system, where the impacts resulting from malicious or opportunistic attacks are not easily known or understood. Here, we describe a discrete event simulation model that uses information about integrated physical and cyber security systems, attacker characteristics and simple responsemore » rules to identify key safeguards that limit an attacker's likelihood of success. Key features of the proposed model include comprehensive data generation to support a variety of sophisticated analyses, and full parameterization of safeguard performance characteristics and attacker behaviours to evaluate a range of scenarios. Lastly, we also describe the core data requirements and the network of networks that serves as the underlying simulation structure.« less

  12. Active transmission isolation/rotor loads measurement system

    NASA Technical Reports Server (NTRS)

    Kenigsberg, I. J.; Defelice, J. J.

    1973-01-01

    Modifications were incorporated into a helicopter active transmission isolation system to provide the capability of utilizing the system as a rotor force measuring device. These included; (1) isolator redesign to improve operation and minimize friction, (2) installation of pressure transducers in each isolator, and (3) load cells in series with each torque restraint link. Full scale vibration tests performed during this study on a CH-53A helicopter airframe verified that these modifications do not degrade the systems wide band isolation characteristics. Bench tests performed on each isolator unit indicated that steady and transient loads can be measured to within 1 percent of applied load. Individual isolator vibratory load measurement accuracy was determined to be 4 percent. Load measurement accuracy was found to be independent of variations in all basic isolator operating characteristics. Full scale system load calibration tests on the CH-53A airframe established the feasibility of simultaneously providing wide band vibration isolation and accurate measurement of rotor loads. Principal rotor loads (lift, propulsive force, and torque) were measured to within 2 percent of applied load.

  13. A performance comparison of current HPC systems: Blue Gene/Q, Cray XE6 and InfiniBand systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerbyson, Darren J.; Barker, Kevin J.; Vishnu, Abhinav

    2014-01-01

    We present here a performance analysis of three of current architectures that have become commonplace in the High Performance Computing world. Blue Gene/Q is the third generation of systems from IBM that use modestly performing cores but at large-scale in order to achieve high performance. The XE6 is the latest in a long line of Cray systems that use a 3-D topology but the first to use its Gemini interconnection network. InfiniBand provides the flexibility of using compute nodes from many vendors that can be connected in many possible topologies. The performance characteristics of each vary vastly, and the waymore » in which nodes are allocated in each type of system can significantly impact on achieved performance. In this work we compare these three systems using a combination of micro-benchmarks and a set of production applications. In addition we also examine the differences in performance variability observed on each system and quantify the lost performance using a combination of both empirical measurements and performance models. Our results show that significant performance can be lost in normal production operation of the Cray XE6 and InfiniBand Clusters in comparison to Blue Gene/Q.« less

  14. Systematic monitoring and evaluation of M7 scanner performance and data quality

    NASA Technical Reports Server (NTRS)

    Stewart, S.; Christenson, D.; Larsen, L.

    1974-01-01

    An investigation was conducted to provide the information required to maintain data quality of the Michigan M7 Multispectral scanner by systematic checks on specific system performance characteristics. Data processing techniques which use calibration data gathered routinely every mission have been developed to assess current data quality. Significant changes from past data quality are thus identified and attempts made to discover their causes. Procedures for systematic monitoring of scanner data quality are discussed. In the solar reflective region, calculations of Noise Equivalent Change in Radiance on a permission basis are compared to theoretical tape-recorder limits to provide an estimate of overall scanner performance. M7 signal/noise characteristics are examined.

  15. Solar thermal upper stage technology demonstrator liquid hydrogen storage and feed system test program

    NASA Astrophysics Data System (ADS)

    Cady, E. C.

    1997-01-01

    The Solar Thermal Upper Stage Technology Demonstrator (STUSTD) Liquid Hydrogen Storage and Feed System (LHSFS) Test Program is described. The test program consists of two principal phases. First, an engineering characterization phase includes tests performed to demonstrate and understand the expected tank performance. This includes fill and drain; baseline heat leak; active Thermodynamic Vent System (TVS); and flow tests. After the LHSFS performance is understood and performance characteristics are determined, a 30 day mission simulation test will be conducted. This test will simulate a 30 day transfer mission from low earth orbit (LEO) to geosynchronous equatorial orbit (GEO). Mission performance predictions, based on the results of the engineering characterization tests, will be used to correlate the results of the 30 day mission simulation.

  16. Performance modeling of terahertz (THz) and millimeter waves (mmW) pupil plane imaging

    NASA Astrophysics Data System (ADS)

    Mohammadian, Nafiseh; Furxhi, Orges; Zhang, Lei; Offermans, Peter; Ghazi, Galia; Driggers, Ronald

    2018-05-01

    Terahertz- (THz) and millimeter-wave sensors are becoming more important in industrial, security, medical, and defense applications. A major problem in these sensing areas is the resolution, sensitivity, and visual acuity of the imaging systems. There are different fundamental parameters in designing a system that have significant effects on the imaging performance. The performance of THz systems can be discussed in terms of two characteristics: sensitivity and spatial resolution. New approaches for design and manufacturing of THz imagers are a vital basis for developing future applications. Photonics solutions have been at the technological forefront in THz band applications. A single scan antenna does not provide reasonable resolution, sensitivity, and speed. An effective approach to imaging is placing a high-performance antenna in a two-dimensional antenna array to achieve higher radiation efficiency and higher resolution in the imaging systems. Here, we present the performance modeling of a pupil plane imaging system to find the resolution and sensitivity efficiency of the imaging system.

  17. System controls challenges of hypersonic combined-cycle engine powered vehicles

    NASA Technical Reports Server (NTRS)

    Morrison, Russell H.; Ianculescu, George D.

    1992-01-01

    Hypersonic aircraft with air-breathing engines have been described as the most complex and challenging air/space vehicle designs ever attempted. This is particularly true for aircraft designed to accelerate to orbital velocities. The propulsion system for the National Aerospace Plane will be an active factor in maintaining the aircraft on course. Typically addressed are the difficulties with the aerodynamic vehicle design and development, materials limitations and propulsion performance. The propulsion control system requires equal materials limitations and propulsion performance. The propulsion control system requires equal concern. Far more important than merely a subset of propulsion performance, the propulsion control system resides at the crossroads of trajectory optimization, engine static performance, and vehicle-engine configuration optimization. To date, solutions at these crossroads are multidisciplinary and generally lag behind the broader performance issues. Just how daunting these demands will be is suggested. A somewhat simplified treatment of the behavioral characteristics of hypersonic aircraft and the issues associated with their air-breathing propulsion control system design are presented.

  18. No Magic Bullet: A Theory-Based Meta-Analysis of Markov Transition Probabilities in Studies of Service Systems for Persons With Mental Disabilities.

    PubMed

    Leff, Hugh Stephen; Chow, Clifton M; Graves, Stephen C

    2017-03-01

    A random-effects meta-analysis of studies that used Markov transition probabilities (TPs) to describe outcomes for mental health service systems of differing quality for persons with serious mental illness was implemented to improve the scientific understanding of systems performance, to use in planning simulations to project service system costs and outcomes over time, and to test a theory of how outcomes for systems varying in quality differ. Nineteen systems described in 12 studies were coded as basic (B), maintenance (M), and recovery oriented (R) on the basis of descriptions of services provided. TPs for studies were aligned with a common functional-level framework, converted to a one-month time period, synthesized, and compared with theory-based expectations. Meta-regression was employed to explore associations between TPs and characteristics of service recipients and studies. R systems performed better than M and B systems. However, M systems did not perform better than B systems. All systems showed negative as well as positive TPs. For approximately one-third of synthesized TPs, substantial interstudy heterogeneity was noted. Associations were found between TPs and service recipient and study variables Conclusions: Conceptualizing systems as B, M, and R has potential for improving scientific understanding and systems planning. R systems appear more effective than B and M systems, although there is no "magic bullet" system for all service recipients. Interstudy heterogeneity indicates need for common approaches to reporting service recipient states, time periods for TPs, service recipient attributes, and service system characteristics. TPs found should be used in Markov simulations to project system effectiveness and costs of over time.

  19. The WorkPlace distributed processing environment

    NASA Technical Reports Server (NTRS)

    Ames, Troy; Henderson, Scott

    1993-01-01

    Real time control problems require robust, high performance solutions. Distributed computing can offer high performance through parallelism and robustness through redundancy. Unfortunately, implementing distributed systems with these characteristics places a significant burden on the applications programmers. Goddard Code 522 has developed WorkPlace to alleviate this burden. WorkPlace is a small, portable, embeddable network interface which automates message routing, failure detection, and re-configuration in response to failures in distributed systems. This paper describes the design and use of WorkPlace, and its application in the construction of a distributed blackboard system.

  20. Michigan experimental multispectral mapping system: A description of the M7 airborne sensor and its performance

    NASA Technical Reports Server (NTRS)

    Hasell, P. G., Jr.

    1974-01-01

    The development and characteristics of a multispectral band scanner for an airborne mapping system are discussed. The sensor operates in the ultraviolet, visual, and infrared frequencies. Any twelve of the bands may be selected for simultaneous, optically registered recording on a 14-track analog tape recorder. Multispectral imagery recorded on magnetic tape in the aircraft can be laboratory reproduced on film strips for visual analysis or optionally machine processed in analog and/or digital computers before display. The airborne system performance is analyzed.

  1. Improvements in deep-space tracking by use of third-order loops.

    NASA Technical Reports Server (NTRS)

    Tausworth, R. C.; Crow, R. B.

    1972-01-01

    Third-order phase-locked receivers have not yet found wide application in deep-space communications systems because the second-order systems now used have performed adequately on past spacecraft missions. However, a survey of the doppler profiles for future missions shows that an unaided second-order loop may be unable to perform within reasonable error bounds. This article discusses the characteristics of a simple third-order extension to present second-order systems that not only extends doppler-tracking capability, but widens the pull-in range and decreases pull-in time as well.

  2. Concentrating Solar Power Systems

    NASA Astrophysics Data System (ADS)

    Pitz-Paal, R.

    2017-07-01

    Development of Concentrating Solar Power Systems has started about 40 years ago. A first commercial implementation was performed between 1985 and 1991 in California. However, a drop in gas prices caused a longer period without further deployment. It was overcome in 2007 when new incentive schemes for renewables in Spain and the US enabled a commercial restart. In 2016, almost 100 commercial CSP plants with more than 5GW are installed worldwide. This paper describes the physical background of CSP technology, its technical characteristics and concepts. Furthermore, it discusses system performances, cost structures and the expected advancement.

  3. The 18 and 30 GHz fixed service communications satellite system study. [to determine the cost and performance characteristics

    NASA Technical Reports Server (NTRS)

    Bronstein, L. M.

    1979-01-01

    The use of the 18 and 30 GHz bands for fixed service satellite communications is examined. The cost and performance expected of 18 and 30 GHz hardware is assessed, selected trunking and direct to user concepts are optimized, and the cost of these systems are estimated. The effect of rain attenuation on the technical and economic viability of the system and methods circumventing the problem are discussed. Technology developments are investigated and cost estimates of these developments are presented.

  4. Understanding the Cray X1 System

    NASA Technical Reports Server (NTRS)

    Cheung, Samson

    2004-01-01

    This paper helps the reader understand the characteristics of the Cray X1 vector supercomputer system, and provides hints and information to enable the reader to port codes to the system. It provides a comparison between the basic performance of the X1 platform and other platforms that are available at NASA Ames Research Center. A set of codes, solving the Laplacian equation with different parallel paradigms, is used to understand some features of the X1 compiler. An example code from the NAS Parallel Benchmarks is used to demonstrate performance optimization on the X1 platform.

  5. Effects of Optical Artifacts in a Laser-Based Spacecraft Navigation Sensor

    NASA Technical Reports Server (NTRS)

    LeCroy, Jerry E.; Howard, Richard T.; Hallmark, Dean S.

    2007-01-01

    Testing of the Advanced Video Guidance Sensor (AVGS) used for proximity operations navigation on the Orbital Express ASTRO spacecraft exposed several unanticipated imaging system artifacts and aberrations that required correction to meet critical navigation performance requirements. Mitigation actions are described for a number of system error sources, including lens aberration, optical train misalignment, laser speckle, target image defects, and detector nonlinearity/noise characteristics. Sensor test requirements and protocols are described, along with a summary of test results from sensor confidence tests and system performance testing.

  6. Effects of Optical Artifacts in a Laser-Based Spacecraft Navigation Sensor

    NASA Technical Reports Server (NTRS)

    LeCroy, Jerry E.; Hallmark, Dean S.; Howard, Richard T.

    2007-01-01

    Testing Of the Advanced Video Guidance Sensor (AVGS) used for proximity operations navigation on the Orbital Express ASTRO spacecraft exposed several unanticipated imaging system artifacts and aberrations that required correction, to meet critical navigation performance requirements. Mitigation actions are described for a number of system error sources, including lens aberration, optical train misalignment, laser speckle, target image defects, and detector nonlinearity/noise characteristics. Sensor test requirements and protocols are described, along with a summary ,of test results from sensor confidence tests and system performance testing.

  7. Determination of Functional Capabilities, the Level of Physical Performance and the State of Main Physiological Body Systems in the First Hours after the Accomplishment of Long-term Space Flights ("Field Test")

    NASA Technical Reports Server (NTRS)

    Kozlovskaya, Inesa; Tomilovskaya, Elena; Rukavishnikov, Ilya; Kitov, Vladimir; Reschke, Millard; Kofman, Igor

    2014-01-01

    Long-term stay in weightlessness is accompanied by alterations in the activity of main physiological body systems including sensory-motor, skeletal-muscular disturbances and cardiovascular deconditioning. However, up to now, there are no data on the state and level of functional performance of cosmonauts/astronauts directly after flight, nor are there data to help define the dynamic recovery of functional characteristics and work efficiency which are greatly needed to provide the safety and planning of their activity once they reach space objects. The Russian and American scientists are currently engaged in a joint experiment known as the "Field Test" with the goal of studying the functional performance and the state of main physiological body systems directly after landing and their temporal recovery dynamics. The functional performance is identified during the test by temporal characteristics of the movements of spatial translation, the stability of the vertical stance for 3.5 min, and the kinematic characteristics of walking - non-complicated and complicated. The following characteristics are identified as physiological characteristics of the test: a) orthostatic tolerance during stand test, b) back muscle tone; c) vertical stability - by characteristics of the correction responses to unexpected perturbations of the vertical stance, and d) support reactions during the performance of the full battery of tests. To date, a pilot version of the "Field Test" has been conducted with participation from four Russian cosmonauts. The results of studies have shown that in 1 - 5 hours after landing the functional abilities of the cosmonauts are considerably reduced. All the test movements at this time are considerably slower than preflight and the more complicated the task is, the greater significant reduction in orthostatic tolerance: during the first test that occurs 1 - 5 hours after landing. two of four cosmonauts declined to continue the task after the orthostatic test (one of them did not wear the anti-G suit "Centaurus" during testing). Blood pressure during moving out of prone posture to vertical stance in one of the cosmonauts and of sitting to standing position in the other dropped to the precollapse level. The results of the studies have confirmed the feasibility, the usefulness and the safety of conducting tests as close as possible to the landing. The program of "Field Test" experiment will be continued and extended.

  8. Introduction to solar heating and cooling design and sizing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This manual is designed to introduce the practical aspects of solar heating/cooling systems to HVAC contractors, architects, engineers, and other interested individuals. It is intended to enable readers to assess potential solar heating/cooling applications in specific geographical areas, and includes tools necessary to do a preliminary design of the system and to analyze its economic benefits. The following are included: the case for solar energy; solar radiation and weather; passive solar design; system characteristics and selection; component performance criteria; determining solar system thermal performance and economic feasibility; requirements, availability, and applications of solar heating systems; and sources of additional information.more » (MHR)« less

  9. NASA's Nuclear Thermal Propulsion Project

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Mitchell, Doyce P.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Clement, Steven; Borowski, Stanley K.; hide

    2015-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation NTP system could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of a first generation NTP in the development of advanced nuclear propulsion systems could be analogous to the role of the DC- 3 in the development of advanced aviation. Progress made under the NTP project could also help enable high performance fission power systems and Nuclear Electric Propulsion (NEP).

  10. Sensing systems efficiency evaluation and comparison for homeland security and homeland defense

    NASA Astrophysics Data System (ADS)

    Pakhomov, Alexander A.

    2010-04-01

    Designers and consumers of various security, intelligence, surveillance and reconnaissance (ISR) systems as well as various unattended ground sensors pay most attention to their commonly used performance characteristics such as probability of a target detection and probability of a false alarm. These characteristics are used for systems comparison and evaluation. However, it is not enough for end-users of these systems as well as for their total/final effectiveness assessment. This article presents and discusses a system approach to an efficiency estimation of the security and ISR systems. Presented approach aims at final result of the system's function and use. It allows setting up reasonable technical and structural requirements for the security and ISR systems, to make trustworthy comparison and practical application planning of such systems. It also allows finding forward-looking, perspective ways of systems development. Presented results can be guidance to both designers and consumers.

  11. The Influence of Motion Cues on Driver-Vehicle Performance in a Simulator

    NASA Technical Reports Server (NTRS)

    Repa, B. S.; Leucht, P. M.; Wierwille, W. W.

    1981-01-01

    Four different motion base configurations were studied on driving simulator. Differently responding vehicles were simulated on each motion configurations and the effects of the vehicle characteristics on driver vehicle system performance, driver control activity, and driver opinion ratings of vehicle performance during driving are compared for different motion configurations. Data show that: (1)) the effects of changes in vehicle characteristics on the different objective and subjective measures of driver vehicle performance are not disguised by the lack of physical motion; (2) fixed base simulator can be used to draw inferences despite the lack of motion; (3) the presence of motion tends to reduce path keeping errors and driver control activity; (4) roll and yaw motions are recommended because of their marked influence on driver vehicle performance (5) the importance of motion increases as the driving maneuvers become more extreme.

  12. The ERDA/LeRC photovoltaic systems test facility

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.

    1977-01-01

    A test facility was designed, and built to provide a place where photovoltaic systems may be assembled and electrically configured, to evaluate system performance and characteristics. The facility consists of a solar cell array of an initial 10-kW peak power rating, test hardware for several alternate methods of power conditioning, a variety of loads, an electrical energy storage system, and an instrumentation and data acquisition system.

  13. Absorption heat pump for space applications

    NASA Technical Reports Server (NTRS)

    Nguyen, Tuan; Simon, William E.; Warrier, Gopinath R.; Woramontri, Woranun

    1993-01-01

    In the first part, the performance of the Absorption Heat Pump (AHP) with water-sulfuric acid and water-magnesium chloride as two new refrigerant-absorbent fluid pairs was investigated. A model was proposed for the analysis of the new working pairs in a heat pump system, subject to different temperature lifts. Computer codes were developed to calculate the Coefficient of Performance (COP) of the system with the thermodynamic properties of the working fluids obtained from the literature. The study shows the potential of water-sulfuric acid as a satisfactory replacement for water-lithium bromide in the targeted temperature range. The performance of the AHP using water-magnesium chloride as refrigerant-absorbent pair does not compare well with those obtained using water-lithium bromide. The second part concentrated on the design and testing of a simple ElectroHydrodynamic (EHD) Pump. A theoretical design model based on continuum electromechanics was analyzed to predict the performance characteristics of the EHD pump to circulate the fluid in the absorption heat pump. A numerical method of solving the governing equations was established to predict the velocity profile, pressure - flow rate relationship and efficiency of the pump. The predicted operational characteristics of the EHD pump is comparable to that of turbomachinery hardware; however, the overall efficiency of the electromagnetic pump is much lower. An experimental investigation to verify the numerical results was conducted. The pressure - flow rate performance characteristics and overall efficiency of the pump obtained experimentally agree well with the theoretical model.

  14. Scintillator performance considerations for dedicated breast computed tomography

    NASA Astrophysics Data System (ADS)

    Vedantham, Srinivasan; Shi, Linxi; Karellas, Andrew

    2017-09-01

    Dedicated breast computed tomography (BCT) is an emerging clinical modality that can eliminate tissue superposition and has the potential for improved sensitivity and specificity for breast cancer detection and diagnosis. It is performed without physical compression of the breast. Most of the dedicated BCT systems use large-area detectors operating in cone-beam geometry and are referred to as cone-beam breast CT (CBBCT) systems. The large-area detectors in CBBCT systems are energy-integrating, indirect-type detectors employing a scintillator that converts x-ray photons to light, followed by detection of optical photons. A key consideration that determines the image quality achieved by such CBBCT systems is the choice of scintillator and its performance characteristics. In this work, a framework for analyzing the impact of the scintillator on CBBCT performance and its use for task-specific optimization of CBBCT imaging performance is described.

  15. Improved Steam Turbine Leakage Control with a Brush Seal Design

    NASA Astrophysics Data System (ADS)

    Turnquist, Norman; Chupp, Raymond E.; Pastrana, Ryan; Wolfe, Chris; Burnett, Mark

    2002-10-01

    This paper presents an improved steam turbine leakage control system with a brush seal design. The contents include: 1) Typical Design Characteristics; 2) Typical Brush Seal Locations; 3) Reduced Leakage Rates; 4) Performance Benefits; 5) System Considerations; 6) Rotor Dynamics; 7) Laboratory Tests and 8) Field Experience.

  16. System Models and Aging: A Driving Example.

    ERIC Educational Resources Information Center

    Melichar, Joseph F.

    Chronological age is a marker in time but it fails to measure accurately the performance or behavioral characteristics of individuals. This paper models the complexity of aging by using a system model and a human function paradigm. These models help facilitate representation of older adults, integrate research agendas, and enhance remediative…

  17. Identification and interpretation of patterns in rocket engine data: Artificial intelligence and neural network approaches

    NASA Technical Reports Server (NTRS)

    Ali, Moonis; Whitehead, Bruce; Gupta, Uday K.; Ferber, Harry

    1995-01-01

    This paper describes an expert system which is designed to perform automatic data analysis, identify anomalous events and determine the characteristic features of these events. We have employed both artificial intelligence and neural net approaches in the design of this expert system.

  18. Development of a plasma sprayed ceramic gas path seal for high pressure turbine applications

    NASA Technical Reports Server (NTRS)

    Shiembob, L. T.

    1977-01-01

    The plasma sprayed graded layered yittria stabilized zirconia (ZrO2)/metal(CoCrAlY) seal system for gas turbine blade tip applications up to 1589 K (2400 F) seal temperatures was studied. Abradability, erosion, and thermal fatigue characteristics of the graded layered system were evaluated by rig tests. Satisfactory abradability and erosion resistance was demonstrated. Encouraging thermal fatigue tolerance was shown. Initial properties for the plasma sprayed materials in the graded, layered seal system was obtained, and thermal stress analyses were performed. Sprayed residual stresses were determined. Thermal stability of the sprayed layer materials was evaluated at estimated maximum operating temperatures in each layer. Anisotropic behavior in the layer thickness direction was demonstrated by all layers. Residual stresses and thermal stability effects were not included in the analyses. Analytical results correlated reasonably well with results of the thermal fatigue tests. Analytical application of the seal system to a typical gas turbine engine application predicted performance similar to rig specimen thermal fatigue performance. A model for predicting crack propagation in the sprayed ZrO2/CoCrAlY seal system was proposed, and recommendations for improving thermal fatigue resistance were made. Seal system layer thicknesses were analytically optimized to minimize thermal stresses in the abradability specimen during thermal fatigue testing. Rig tests on the optimized seal configuration demonstrated some improvement in thermal fatigue characteristics.

  19. Applying Task-Technology Fit Model to the Healthcare Sector: a Case Study of Hospitals' Computed Tomography Patient-Referral Mechanism.

    PubMed

    Chen, Ping-Shun; Yu, Chun-Jen; Chen, Gary Yu-Hsin

    2015-08-01

    With the growth in the number of elderly and people with chronic diseases, the number of hospital services will need to increase in the near future. With myriad of information technologies utilized daily and crucial information-sharing tasks performed at hospitals, understanding the relationship between task performance and information system has become a critical topic. This research explored the resource pooling of hospital management and considered a computed tomography (CT) patient-referral mechanism between two hospitals using the information system theory framework of Task-Technology Fit (TTF) model. The TTF model could be used to assess the 'match' between the task and technology characteristics. The patient-referral process involved an integrated information framework consisting of a hospital information system (HIS), radiology information system (RIS), and picture archiving and communication system (PACS). A formal interview was conducted with the director of the case image center on the applicable characteristics of TTF model. Next, the Icam DEFinition (IDEF0) method was utilized to depict the As-Is and To-Be models for CT patient-referral medical operational processes. Further, the study used the 'leagility' concept to remove non-value-added activities and increase the agility of hospitals. The results indicated that hospital information systems could support the CT patient-referral mechanism, increase hospital performance, reduce patient wait time, and enhance the quality of care for patients.

  20. System Life Cycle Evaluation(SM) (SLiCE): harmonizing water treatment systems with implementers' needs.

    PubMed

    Goodman, Joseph; Caravati, Kevin; Foote, Andrew; Nelson, Molly; Woods, Emily

    2013-06-01

    One of the methods proposed to improve access to clean drinking water is the mobile packaged water treatment system (MPWTS). The lack of published system performance comparisons combined with the diversity of technology available and intended operating conditions make it difficult for stakeholders to choose the system best suited for their application. MPWTS are often deployed in emergency situations, making selection of the appropriate system crucial to avoiding wasted resources and loss of life. Measurable critical-to-quality characteristics (CTQs) and a system selection tool for MPWTS were developed by utilizing relevant literature, including field studies, and implementing and comparing seven different MPWTS. The proposed System Life Cycle Evaluation (SLiCE) method uses these CTQs to evaluate the diversity in system performance and harmonize relevant performance with stakeholder preference via a selection tool. Agencies and field workers can use SLiCE results to inform and drive decision-making. The evaluation and selection tool also serves as a catalyst for communicating system performance, common design flaws, and stakeholder needs to system manufacturers. The SLiCE framework can be adopted into other emerging system technologies to communicate system performance over the life cycle of use.

  1. Design and analysis of an MR rotary brake for self-regulating braking torques.

    PubMed

    Yun, Dongwon; Koo, Jeong-Hoi

    2017-05-01

    This paper presents a novel Magneto-rheological (MR) brake system that can self-regulate the output braking torques. The proposed MR brake can generate a braking torque at a critical rotation speed without an external power source, sensors, or controllers, making it a simple and cost-effective device. The brake system consists of a rotary disk, permanent magnets, springs, and MR fluid. The permanent magnets are attached to the rotary disk via the springs, and they move outward through grooves with two different gap distances along the radial direction of the stator due to the centrifugal force. Thus, the position of the magnets is dependent on the spin speed, and it can determine the magnetic fields applied to MR fluids. Proper design of the stator geometry gives the system unique torque characteristics. To show the performance of an MR brake system, the electromagnetic characteristics of the system are analyzed, and the torques generated by the brake are calculated using the result of the electromagnetic analysis. Using a baseline model, a parametric study is conducted to investigate how the design parameters (geometric shapes and material selection) affect the performance of the brake system. After the simulation study, a prototype brake system is constructed and its performance is experimentally evaluated. The experimental results show that the prototype produced the maximum torque of 1.2 N m at the rotational speed of 100 rpm. The results demonstrate the feasibility of the proposed MR brake as a speed regulator in rotating systems.

  2. XV-15 Tilt Rotor fly-by-wire collective control demonstrator development specifications

    NASA Technical Reports Server (NTRS)

    Meuleners, R. J.

    1981-01-01

    A fly by wire system in the collective control system for XV-15 Tilt Rotor Research Aircraft was evaluated. The collective control system was selected because it requires a system tracking accuracy between right and left rotors of approximately 0.1%. The performance characteristics of the collectors axel provide typical axis control response data. The demonstrator is bread boarded as a dual system instead of the triplex system.

  3. Shuttle cryogenic supply system optimization study. Volume 2: Technical report, sections 4 through 9

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The design and development of cryogenic supply systems for space shuttle vehicles are discussed. The weights, component counts, and statements of advantages and disadvantages of the systems considered are presented. Performance characteristics of the systems are analyzed in the form of graphs. Block diagrams and engineering drawings of the candidate systems are provided. Special consideration is given to flow rates and thermodynamic properties of the cryogenic systems.

  4. The 5-kwe reactor thermoelectric system summary

    NASA Technical Reports Server (NTRS)

    Vanosdol, J. H. (Editor)

    1973-01-01

    Design of the 5-kwe reactor thermoelectric system was initiated in February 1972 and extended through the conceptual design phase into the preliminary design phase. Design effort was terminated in January, 1973. This report documents the system and component requirements, design approaches, and performance and design characteristics for the 5-kwe system. Included is summary information on the reactor, radiation shields, power conversion systems, thermoelectric pump, radiator/structure, liquid metal components, and the control system.

  5. Solid state high resolution multi-spectral imager CCD test phase

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The program consisted of measuring the performance characteristics of charge coupled linear imaging devices, and a study defining a multispectral imaging system employing advanced solid state photodetection techniques.

  6. Performance characteristics of a thermal energy storage module - A transient PCM/forced convection conjugate analysis

    NASA Technical Reports Server (NTRS)

    Cao, Y.; Faghri, A.

    1991-01-01

    The performance of a thermal energy storage module is simulated numerically. The change of phase of the phase-change material (PCM) and the transient forced convective heat transfer for the transfer fluid with low Prandtl numbers are solved simultaneously as a conjugate problem. A parametric study and a system optimization are conducted. The numerical results show that module geometry is crucial to the design of a space-based thermal energy storage system.

  7. Compact Deep-Space Optical Communications Transceiver

    NASA Technical Reports Server (NTRS)

    Roberts, W. Thomas; Charles, Jeffrey R.

    2009-01-01

    Deep space optical communication transceivers must be very efficient receivers and transmitters of optical communication signals. For deep space missions, communication systems require high performance well beyond the scope of mere power efficiency, demanding maximum performance in relation to the precious and limited mass, volume, and power allocated. This paper describes the opto-mechanical design of a compact, efficient, functional brassboard deep space transceiver that is capable of achieving megabyte-per-second rates at Mars ranges. The special features embodied to enhance the system operability and functionality, and to reduce the mass and volume of the system are detailed. System tests and performance characteristics are described in detail. Finally, lessons learned in the implementation of the brassboard design and suggestions for improvements appropriate for a flight prototype are covered.

  8. Performance and Operational Characteristics for a Dual Brayton Space Power System With Common Gas Inventory

    NASA Technical Reports Server (NTRS)

    Johnson, Paul K.; Mason, Lee S.

    2006-01-01

    This paper provides an analytical evaluation on the operation and performance of a dual Brayton common gas system. The NASA Glenn Research Center in-house computer program Closed Cycle System Simulation (CCSS) was used to construct a model of two identical 50 kWe-class recuperated closed-Brayton-cycle (CBC) power conversion units that share a common gas inventory and single heat source. As operating conditions for each CBC change, the total gas inventory is redistributed between the two units and overall system performance is affected. Several steady-state off-design operating points were analyzed by varying turbine inlet temperature and turbo-alternator shaft rotational speed to investigate the interaction of the two units.

  9. A semi-analytical refrigeration cycle modelling approach for a heat pump hot water heater

    NASA Astrophysics Data System (ADS)

    Panaras, G.; Mathioulakis, E.; Belessiotis, V.

    2018-04-01

    The use of heat pump systems in applications like the production of hot water or space heating makes important the modelling of the processes for the evaluation of the performance of existing systems, as well as for design purposes. The proposed semi-analytical model offers the opportunity to estimate the performance of a heat pump system producing hot water, without using detailed geometrical or any performance data. This is important, as for many commercial systems the type and characteristics of the involved subcomponents can hardly be detected, thus not allowing the implementation of more analytical approaches or the exploitation of the manufacturers' catalogue performance data. The analysis copes with the issues related with the development of the models of the subcomponents involved in the studied system. Issues not discussed thoroughly in the existing literature, as the refrigerant mass inventory in the case an accumulator is present, are examined effectively.

  10. System design of ELITE power processing unit

    NASA Astrophysics Data System (ADS)

    Caldwell, David J.

    The Electric Propulsion Insertion Transfer Experiment (ELITE) is a space mission planned for the mid 1990s in which technological readiness will be demonstrated for electric orbit transfer vehicles (EOTVs). A system-level design of the power processing unit (PPU), which conditions solar array power for the arcjet thruster, was performed to optimize performance with respect to reliability, power output, efficiency, specific mass, and radiation hardness. The PPU system consists of multiphased parallel switchmode converters, configured as current sources, connected directly from the array to the thruster. The PPU control system includes a solar array peak power tracker (PPT) to maximize the power delivered to the thruster regardless of variations in array characteristics. A stability analysis has been performed to verify that the system is stable despite the nonlinear negative impedance of the PPU input and the arcjet thruster. Performance specifications are given to provide the required spacecraft capability with existing technology.

  11. Extended performance solar electric propulsion thrust system study. Volume 2: Baseline thrust system

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.; Hawthorne, E. I.

    1977-01-01

    Several thrust system design concepts were evaluated and compared using the specifications of the most advanced 30- cm engineering model thruster as the technology base. Emphasis was placed on relatively high-power missions (60 to 100 kW) such as a Halley's comet rendezvous. The extensions in thruster performance required for the Halley's comet mission were defined and alternative thrust system concepts were designed in sufficient detail for comparing mass, efficiency, reliability, structure, and thermal characteristics. Confirmation testing and analysis of thruster and power-processing components were performed, and the feasibility of satisfying extended performance requirements was verified. A baseline design was selected from the alternatives considered, and the design analysis and documentation were refined. The baseline thrust system design features modular construction, conventional power processing, and a concentractor solar array concept and is designed to interface with the space shuttle.

  12. Performance Verification of Production-Scalable Energy-Efficient Solutions: Winchester/Camberley Homes Mixed-Humid Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mallay, D.; Wiehagen, J.

    2014-07-01

    Winchester/Camberley Homes collaborated with the Building America team Partnership for Home Innovation to develop a new set of high performance home designs that could be applicable on a production scale. The new home designs are to be constructed in the mixed humid climate zone and could eventually apply to all of the builder's home designs to meet or exceed future energy codes or performance-based programs. However, the builder recognized that the combination of new wall framing designs and materials, higher levels of insulation in the wall cavity, and more detailed air sealing to achieve lower infiltration rates changes the moisturemore » characteristics of the wall system. In order to ensure long term durability and repeatable successful implementation with few call-backs, the project team demonstrated through measured data that the wall system functions as a dynamic system, responding to changing interior and outdoor environmental conditions within recognized limits of the materials that make up the wall system. A similar investigation was made with respect to the complete redesign of the HVAC systems to significantly improve efficiency while maintaining indoor comfort. Recognizing the need to demonstrate the benefits of these efficiency features, the builder offered a new house model to serve as a test case to develop framing designs, evaluate material selections and installation requirements, changes to work scopes and contractor learning curves, as well as to compare theoretical performance characteristics with measured results.« less

  13. Atmospheric cloud physics laboratory project study

    NASA Technical Reports Server (NTRS)

    Schultz, W. E.; Stephen, L. A.; Usher, L. H.

    1976-01-01

    Engineering studies were performed for the Zero-G Cloud Physics Experiment liquid cooling and air pressure control systems. A total of four concepts for the liquid cooling system was evaluated, two of which were found to closely approach the systems requirements. Thermal insulation requirements, system hardware, and control sensor locations were established. The reservoir sizes and initial temperatures were defined as well as system power requirements. In the study of the pressure control system, fluid analyses by the Atmospheric Cloud Physics Laboratory were performed to determine flow characteristics of various orifice sizes, vacuum pump adequacy, and control systems performance. System parameters predicted in these analyses as a function of time include the following for various orifice sizes: (1) chamber and vacuum pump mass flow rates, (2) the number of valve openings or closures, (3) the maximum cloud chamber pressure deviation from the allowable, and (4) cloud chamber and accumulator pressure.

  14. The development of a reliable amateur boxing performance analysis template.

    PubMed

    Thomson, Edward; Lamb, Kevin; Nicholas, Ceri

    2013-01-01

    The aim of this study was to devise a valid performance analysis system for the assessment of the movement characteristics associated with competitive amateur boxing and assess its reliability using analysts of varying experience of the sport and performance analysis. Key performance indicators to characterise the demands of an amateur contest (offensive, defensive and feinting) were developed and notated using a computerised notational analysis system. Data were subjected to intra- and inter-observer reliability assessment using median sign tests and calculating the proportion of agreement within predetermined limits of error. For all performance indicators, intra-observer reliability revealed non-significant differences between observations (P > 0.05) and high agreement was established (80-100%) regardless of whether exact or the reference value of ±1 was applied. Inter-observer reliability was less impressive for both analysts (amateur boxer and experienced analyst), with the proportion of agreement ranging from 33-100%. Nonetheless, there was no systematic bias between observations for any indicator (P > 0.05), and the proportion of agreement within the reference range (±1) was 100%. A reliable performance analysis template has been developed for the assessment of amateur boxing performance and is available for use by researchers, coaches and athletes to classify and quantify the movement characteristics of amateur boxing.

  15. Propulsion and Power Generation Capabilities of a Dense Plasma Focus (DPF) Fusion System for Future Military Aerospace Vehicles (POSTPRINT)

    DTIC Science & Technology

    2005-10-06

    The objective of this study was to perform a parametric evaluation of the performance and interface characteristics of a dense plasma focus (DPF...dense plasma focus (DPF) fusion power and propulsion technology, with advanced waverider-like airframe configurations utilizing air-breathing MHD

  16. Review of Aircraft Engine Fan Noise Reduction

    NASA Technical Reports Server (NTRS)

    VanZante, Dale

    2008-01-01

    Aircraft turbofan engines incorporate multiple technologies to enhance performance and durability while reducing noise emissions. Both careful aerodynamic design of the fan and proper installation of the fan into the system are requirements for achieving the performance and acoustic objectives. The design and installation characteristics of high performance aircraft engine fans will be discussed along with some lessons learned that may be applicable to spaceflight fan applications.

  17. Characteristics pertaining to a stiffness cross-coupled Jeffcott model

    NASA Technical Reports Server (NTRS)

    Spanyer, K. L.

    1985-01-01

    Rotordynamic studies of complex systems utilizing multiple degree-of-freedom analysis have been performed to understand response, loads, and stability. In order to understand the fundamental nature of rotordynamic response, the Jeffcott rotor model has received wide attention. The purpose of this paper is to provide a generic rotordynamic analysis of a stiffness cross-coupled Jeffcott rotor model to illustrate characteristics of a second order stiffness-coupled linear system. The particular characteristics investigated were forced response, force vector diagrams, response orbits, and stability. Numerical results were achieved through a fourth order Runge-Kutta method for solving differential equations and the Routh Hurwitz stability criterion. The numerical results were verified to an exact mathematical solution for the steady state response.

  18. Reclosing operation characteristics of the flux-coupling type SFCL in a single-line-to ground fault

    NASA Astrophysics Data System (ADS)

    Jung, B. I.; Cho, Y. S.; Choi, H. S.; Ha, K. H.; Choi, S. G.; Chul, D. C.; Sung, T. H.

    2011-11-01

    The recloser that is used in distribution systems is a relay system that behaves sequentially to protect power systems from transient and continuous faults. This reclosing operation of the recloser can improve the reliability and stability of the power supply. For cooperation with this recloser, the superconducting fault current limiter (SFCL) must properly perform the reclosing operation. This paper analyzed the reclosing operation characteristics of the three-phase flux-coupling type SFCL in the event of a ground fault. The fault current limiting characteristics according to the changing number of turns of the primary and secondary coils were examined. As the number of turns of the first coil increased, the first maximum fault current decreased. Furthermore, the voltage of the quenched superconducting element also decreased. This means that the power burden of the superconducting element decreases based on the increasing number of turns of the primary coil. The fault current limiting characteristic of the SFCL according to the reclosing time limited the fault current within a 0.5 cycles (8 ms), which is shorter than the closing time of the recloser. In other words, the superconducting element returned to the superconducting state before the second fault and normally performed the fault current limiting operation. If the SFCL did not recover before the recloser reclosing time, the normal current that was flowing in the transmission line after the recovery of the SFCL from the fault would have been limited and would have caused losses. Therefore, the fast recovery time of a SFCL is critical to its cooperation with the protection system.

  19. A static investigation of several STOVL exhaust system concepts

    NASA Technical Reports Server (NTRS)

    Romine, B. M., Jr.; Meyer, B. E.; Re, R. J.

    1989-01-01

    A static cold flow scale model test was performed in order to determine the internal performance characteristics of various STOVL exhaust systems. All of the concepts considered included a vectorable cruise nozzle and a separate vectorable vertical thrust ventral nozzle mounted on the tailpipe. The two ventral nozzle configurations tested featured vectorable constant thickness cascade vanes for area control and improved performance during transition and vertical lift flight. The best transition performance was achieved using a butterfly door type ventral nozzle and a pitch vectoring 2DCD or axisymmetric cruise nozzle. The clamshell blocker type of ventral nozzle had reduced transition performance due to the choking of the tailpipe flow upstream of the cruise nozzle.

  20. Magnetic suspension actuator concepts and applications

    NASA Technical Reports Server (NTRS)

    Kroeger, John

    1993-01-01

    The fundamental aspect which makes magnetic suspension systems possible is the magnetic phenomena by which significant forces can be generated. Each of these force-producing phenomena has unique characteristics and is implementable in a unique fashion, such that each performs the magnetic suspension task differently than the others. A practical overview of the force-producing concepts, their unique characteristics, and their typical methods of application is provided.

Top