Sample records for system power system

  1. Systems and methods for an integrated electrical sub-system powered by wind energy

    DOEpatents

    Liu, Yan [Ballston Lake, NY; Garces, Luis Jose [Niskayuna, NY

    2008-06-24

    Various embodiments relate to systems and methods related to an integrated electrically-powered sub-system and wind power system including a wind power source, an electrically-powered sub-system coupled to and at least partially powered by the wind power source, the electrically-powered sub-system being coupled to the wind power source through power converters, and a supervisory controller coupled to the wind power source and the electrically-powered sub-system to monitor and manage the integrated electrically-powered sub-system and wind power system.

  2. Power System Information Delivering System Based on Distributed Object

    NASA Astrophysics Data System (ADS)

    Tanaka, Tatsuji; Tsuchiya, Takehiko; Tamura, Setsuo; Seki, Tomomichi; Kubota, Kenji

    In recent years, improvement in computer performance and development of computer network technology or the distributed information processing technology has a remarkable thing. Moreover, the deregulation is starting and will be spreading in the electric power industry in Japan. Consequently, power suppliers are required to supply low cost power with high quality services to customers. Corresponding to these movements the authors have been proposed SCOPE (System Configuration Of PowEr control system) architecture for distributed EMS/SCADA (Energy Management Systems / Supervisory Control and Data Acquisition) system based on distributed object technology, which offers the flexibility and expandability adapting those movements. In this paper, the authors introduce a prototype of the power system information delivering system, which was developed based on SCOPE architecture. This paper describes the architecture and the evaluation results of this prototype system. The power system information delivering system supplies useful power systems information such as electric power failures to the customers using Internet and distributed object technology. This system is new type of SCADA system which monitors failure of power transmission system and power distribution system with geographic information integrated way.

  3. Powering the Network: The Forgotten Infrastructure.

    ERIC Educational Resources Information Center

    Learn, Larry L., Ed.

    1995-01-01

    Discusses systems that power the telecommunications infrastructure. Highlights include power for central telephone company offices; private branch exchange systems; power interruptions and power irregularities; uninterruptible power systems; problems in the systems; and photovoltaic systems. (LRW)

  4. Experience in connecting the power generating units of thermal power plants to automatic secondary frequency regulation within the united power system of Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhukov, A. V.; Komarov, A. N.; Safronov, A. N.

    The principles of central control of the power generating units of thermal power plants by automatic secondary frequency and active power overcurrent regulation systems, and the algorithms for interactions between automatic power control systems for the power production units in thermal power plants and centralized systems for automatic frequency and power regulation, are discussed. The order of switching the power generating units of thermal power plants over to control by a centralized system for automatic frequency and power regulation and by the Central Coordinating System for automatic frequency and power regulation is presented. The results of full-scale system tests ofmore » the control of power generating units of the Kirishskaya, Stavropol, and Perm GRES (State Regional Electric Power Plants) by the Central Coordinating System for automatic frequency and power regulation at the United Power System of Russia on September 23-25, 2008, are reported.« less

  5. Power System Mass Analysis for Hydrogen Reduction Oxygen Production on the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.

    2009-01-01

    The production of oxygen from the lunar regolith requires both thermal and electrical power in roughly similar proportions. This unique power requirement is unlike most applications on the lunar surface. To efficiently meet these requirements, both solar PV array and solar concentrator systems were evaluated. The mass of various types of photovoltaic and concentrator based systems were calculated to determine the type of power system that provided the highest specific power. These were compared over a range of oxygen production rates. Also a hybrid type power system was also considered. This system utilized a photovoltaic array to produce the electrical power and a concentrator to provide the thermal power. For a single source system the three systems with the highest specific power were a flexible concentrator/Stirling engine system, a rigid concentrator/Stirling engine system and a tracking triple junction solar array system. These systems had specific power values of 43, 34, and 33 W/kg, respectively. The hybrid power system provided much higher specific power values then the single source systems. The best hybrid combinations were the triple junction solar array with the flexible concentrator and the rigid concentrator. These systems had a specific power of 81 and 68 W/kg, respectively.

  6. Design of an Input-Parallel Output-Parallel LLC Resonant DC-DC Converter System for DC Microgrids

    NASA Astrophysics Data System (ADS)

    Juan, Y. L.; Chen, T. R.; Chang, H. M.; Wei, S. E.

    2017-11-01

    Compared with the centralized power system, the distributed modularized power system is composed of several power modules with lower power capacity to provide a totally enough power capacity for the load demand. Therefore, the current stress of the power components in each module can then be reduced, and the flexibility of system setup is also enhanced. However, the parallel-connected power modules in the conventional system are usually controlled to equally share the power flow which would result in lower efficiency in low loading condition. In this study, a modular power conversion system for DC micro grid is developed with 48 V dc low voltage input and 380 V dc high voltage output. However, in the developed system control strategy, the numbers of power modules enabled to share the power flow is decided according to the output power at lower load demand. Finally, three 350 W power modules are constructed and parallel-connected to setup a modular power conversion system. From the experimental results, compared with the conventional system, the efficiency of the developed power system in the light loading condition is greatly improved. The modularized design of the power system can also decrease the power loss ratio to the system capacity.

  7. Development and Testing of a Prototype Grid-Tied Photovoltaic Power System

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2009-01-01

    The NASA Glenn Research Center (GRC) has developed and tested a prototype 2 kW DC grid-tied photovoltaic (PV) power system at the Center. The PV system has generated in excess of 6700 kWh since operation commenced in July 2006. The PV system is providing power to the GRC grid for use by all. Operation of the prototype PV system has been completely trouble free. A grid-tied PV power system is connected directly to the utility distribution grid. Facility power can be obtained from the utility system as normal. The PV system is synchronized with the utility system to provide power for the facility, and excess power is provided to the utility. The project transfers space technology to terrestrial use via nontraditional partners. GRC personnel glean valuable experience with PV power systems that are directly applicable to various space power systems, and provide valuable space program test data. PV power systems help to reduce harmful emissions and reduce the Nation s dependence on fossil fuels. Power generated by the PV system reduces the GRC utility demand, and the surplus power aids the community. Present global energy concerns reinforce the need for the development of alternative energy systems. Modern PV panels are readily available, reliable, efficient, and economical with a life expectancy of at least 25 years. Modern electronics has been the enabling technology behind grid-tied power systems, making them safe, reliable, efficient, and economical with a life expectancy of at least 25 years. Based upon the success of the prototype PV system, additional PV power system expansion at GRC is under consideration. The prototype grid-tied PV power system was successfully designed and developed which served to validate the basic principles described, and the theoretical work that was performed. The report concludes that grid-tied photovoltaic power systems are reliable, maintenance free, long life power systems, and are of significant value to NASA and the community.

  8. Design and Implementation of Effective Electrical Power System for Surya Satellite-1

    NASA Astrophysics Data System (ADS)

    Sulistya, A. H.; Hasbi, W.; Muhida, R.

    2018-05-01

    Surya Satellite-1 is a nanosatellite developed by students of Surya University. The subject of this paper is the design and implementation of effective electrical power system for Surya Satellite 1. The electrical power system role is to supply other systems of the satellite with appropriate electrical power. First, the requirements of the electrical power system are defined. The architecture of the electrical power system is then designed to build the prototype. The orbit simulation is calculated to predict the power production. When prototype test and simulation data is gained, we make an operation scenario to keep the produced power and the consumed power in balance. The design of the modules of the electrical power system is carried out with triple junction solar cells, lithium ion batteries, maximum power point trackers, charging controllers, power distributions, and protection systems. Finally, the prototypes of the electrical power system are presented.

  9. A Combined Energy Management Algorithm for Wind Turbine/Battery Hybrid System

    NASA Astrophysics Data System (ADS)

    Altin, Necmi; Eyimaya, Süleyman Emre

    2018-03-01

    From an energy management standpoint, natural phenomena such as solar irradiation and wind speed are uncontrolled variables, so the correlation between the energy generated by renewable energy sources and energy demand cannot always be predicted. For this reason, energy storage systems are used to provide more efficient renewable energy systems. In these systems, energy management systems are used to control the energy storage system and establish a balance between the generated power and the power demand. In addition, especially in wind turbines, rapidly varying wind speeds cause wind power fluctuations, which threaten the power system stability, especially at high power levels. Energy storage systems are also used to mitigate the power fluctuations and sustain the power system's stability. In these systems, another controller which controls the energy storage system power to mitigate power fluctuations is required. These two controllers are different from each other. In this study, a combined energy management algorithm is proposed which can perform both as an energy control system and a power fluctuation mitigation system. The proposed controller is tested with wind energy conversion system modeled in MATLAB/Simulink. Simulation results show that the proposed controller acts as an energy management system while, at the same time, mitigating power fluctuations.

  10. Power control and management of the grid containing largescale wind power systems

    NASA Astrophysics Data System (ADS)

    Aula, Fadhil Toufick

    The ever increasing demand for electricity has driven many countries toward the installation of new generation facilities. However, concerns such as environmental pollution and global warming issues, clean energy sources, high costs associated with installation of new conventional power plants, and fossil fuels depletion have created many interests in finding alternatives to conventional fossil fuels for generating electricity. Wind energy is one of the most rapidly growing renewable power sources and wind power generations have been increasingly demanded as an alternative to the conventional fossil fuels. However, wind power fluctuates due to variation of wind speed. Therefore, large-scale integration of wind energy conversion systems is a threat to the stability and reliability of utility grids containing these systems. They disturb the balance between power generation and consumption, affect the quality of the electricity, and complicate load sharing and load distribution managing and planning. Overall, wind power systems do not help in providing any services such as operating and regulating reserves to the power grid. In order to resolve these issues, research has been conducted in utilizing weather forecasting data to improve the performance of the wind power system, reduce the influence of the fluctuations, and plan power management of the grid containing large-scale wind power systems which consist of doubly-fed induction generator based energy conversion system. The aims of this research, my dissertation, are to provide new methods for: smoothing the output power of the wind power systems and reducing the influence of their fluctuations, power managing and planning of a grid containing these systems and other conventional power plants, and providing a new structure of implementing of latest microprocessor technology for controlling and managing the operation of the wind power system. In this research, in order to reduce and smooth the fluctuations, two methods are presented. The first method is based on a de-loaded technique while the other method is based on utilizing multiple storage facilities. The de-loaded technique is based on characteristics of the power of a wind turbine and estimation of the generated power according to weather forecasting data. The technique provides a reference power by which the wind power system will operate and generate a smooth power. In contrast, utilizing storage facilities will allow the wind power system to operate at its maximum tracking power points' strategy. Two types of energy storages are considered in this research, battery energy storage system (BESS) and pumped-hydropower storage system (PHSS), to suppress the output fluctuations and to support the wind power system to follow the system load demands. Furthermore, this method provides the ability to store energy when there is a surplus of the generated power and to reuse it when there is a shortage of power generation from wind power systems. Both methods are new in terms of utilizing of the techniques and wind speed data. A microprocessor embedded system using an IntelRTM Atom(TM) processor is presented for controlling the wind power system and for providing the remote communication for enhancing the operation of the individual wind power system in a wind farm. The embedded system helps the wind power system to respond and to follow the commands of the central control of the power system. Moreover, it enhances the performance of the wind power system through self-managing, self-functioning, and self-correcting. Finally, a method of system power management and planning is modeled and studied for a grid containing large-scale wind power systems. The method is based on a new technique through constructing a new load demand curve (NLDC) from merging the estimation of generated power from wind power systems and forecasting of the load. To summarize, the methods and their results presented in this dissertation, enhance the operation of the large-scale wind power systems and reduce their drawbacks on the operation of the power grid.

  11. Estimation Method of Center of Inertia Frequency based on Multiple Synchronized Phasor Measurement Data

    NASA Astrophysics Data System (ADS)

    Hashiguchi, Takuhei; Watanabe, Masayuki; Goda, Tadahiro; Mitani, Yasunori; Saeki, Osamu; Hojo, Masahide; Ukai, Hiroyuki

    Open access and deregulation have been introduced into Japan and some independent power producers (IPP) and power producer and suppliers (PPS) are participating in the power generation business, which is possible to makes power system dynamics more complex. To maintain power system condition under various situations, it is essential that a real time measurement system over wide area is available. Therefore we started a project to construct an original measurement system by the use of phasor measurement units (PMU) in Japan. This paper describes the estimation method of a center of inertia frequency by applying actual measurement data. The application of this method enables us to extract power system oscillations from measurement data appropriately. Moreover, the analysis of power system dynamics for power system oscillations occurring in western Japan 60Hz system is shown. These results will lead to the clarification of power system dynamics and may make it possible to realize the monitoring of power system oscillations associated with power system stability.

  12. Electrical power systems for Space Station

    NASA Technical Reports Server (NTRS)

    Simon, W. E.

    1984-01-01

    Major challenges in power system development are described. Evolutionary growth, operational lifetime, and other design requirements are discussed. A pictorial view of weight-optimized power system applications shows which systems are best for missions of various lengths and required power level. Following definition of the major elements of the electrical power system, an overview of element options and a brief technology assessment are presented. Selected trade-study results show end-to-end system efficiencies, required photovoltaic power capability as a function of energy storage system efficiency, and comparisons with other systems such as a solar dynamic power system.

  13. Thermal power systems small power systems applications project. Volume 2: Detailed report

    NASA Technical Reports Server (NTRS)

    Marriott, A. T.

    1979-01-01

    Small power system technology as applied to power plants up to 10 MW in size was considered. Markets for small power systems were characterized and cost goals were established for the project. Candidate power plant system design concepts were selected for evaluation and preliminary performance and cost assessments were made. Breakeven capital costs were determined for leading contenders among the candidate systems. The potential use of small power systems in providing part of the demand for pumping power by the extensive aqueduct system of California, was studied. Criteria and methodologies were developed for the ranking of candidate power plant system design concepts. Experimental power plant concepts of 1 MW rating were studied to define a power plant configuration for subsequent detail design construction, testing and evaluation. Site selection criteria and ground rules were developed.

  14. Advanced Aircraft Electrical System Control Technology Demonstrator. Phase I. Requirements Analysis and Conceptual Design.

    DTIC Science & Technology

    1981-07-01

    System 13 (7) Flight Critical Power 15 (8) Power Bus Configuration 16 b. System Control and Protection 20...includes the main buses, external power receptacles and distribution feeders. The function of the distribution protection system * is mainly to provide...TechnicaI rea Manager Power Systems Branch Power Systems B nch Aerospace Power Division Aerospace Power Division FOR .AKE D . REAMS Chief,

  15. 46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-1 Power ventilation systems except machinery space ventilation systems. Each power ventilation system must... 46 Shipping 4 2010-10-01 2010-10-01 false Power ventilation systems except machinery space...

  16. 46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-1 Power ventilation systems except machinery space ventilation systems. Each power ventilation system must... 46 Shipping 4 2011-10-01 2011-10-01 false Power ventilation systems except machinery space...

  17. 46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-1 Power ventilation systems except machinery space ventilation systems. Each power ventilation system must... 46 Shipping 4 2014-10-01 2014-10-01 false Power ventilation systems except machinery space...

  18. 46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-1 Power ventilation systems except machinery space ventilation systems. Each power ventilation system must... 46 Shipping 4 2012-10-01 2012-10-01 false Power ventilation systems except machinery space...

  19. 46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Remote Stopping Systems § 111.103-1 Power ventilation systems except machinery space ventilation systems. Each power ventilation system must... 46 Shipping 4 2013-10-01 2013-10-01 false Power ventilation systems except machinery space...

  20. Automated power distribution system hardware. [for space station power supplies

    NASA Technical Reports Server (NTRS)

    Anderson, Paul M.; Martin, James A.; Thomason, Cindy

    1989-01-01

    An automated power distribution system testbed for the space station common modules has been developed. It incorporates automated control and monitoring of a utility-type power system. Automated power system switchgear, control and sensor hardware requirements, hardware design, test results, and potential applications are discussed. The system is designed so that the automated control and monitoring of the power system is compatible with both a 208-V, 20-kHz single-phase AC system and a high-voltage (120 to 150 V) DC system.

  1. Autonomously managed electrical power systems

    NASA Technical Reports Server (NTRS)

    Callis, Charles P.

    1986-01-01

    The electric power systems for future spacecraft such as the Space Station will necessarily be more sophisticated and will exhibit more nearly autonomous operation than earlier spacecraft. These new power systems will be more reliable and flexible than their predecessors offering greater utility to the users. Automation approaches implemented on various power system breadboards are investigated. These breadboards include the Hubble Space Telescope power system test bed, the Common Module Power Management and Distribution system breadboard, the Autonomusly Managed Power System (AMPS) breadboard, and the 20 kilohertz power system breadboard. Particular attention is given to the AMPS breadboard. Future plans for these breadboards including the employment of artificial intelligence techniques are addressed.

  2. Power quality load management for large spacecraft electrical power systems

    NASA Technical Reports Server (NTRS)

    Lollar, Louis F.

    1988-01-01

    In December, 1986, a Center Director's Discretionary Fund (CDDF) proposal was granted to study power system control techniques in large space electrical power systems. Presented are the accomplishments in the area of power system control by power quality load management. In addition, information concerning the distortion problems in a 20 kHz ac power system is presented.

  3. Modeling and Verification of Dependable Electronic Power System Architecture

    NASA Astrophysics Data System (ADS)

    Yuan, Ling; Fan, Ping; Zhang, Xiao-fang

    The electronic power system can be viewed as a system composed of a set of concurrently interacting subsystems to generate, transmit, and distribute electric power. The complex interaction among sub-systems makes the design of electronic power system complicated. Furthermore, in order to guarantee the safe generation and distribution of electronic power, the fault tolerant mechanisms are incorporated in the system design to satisfy high reliability requirements. As a result, the incorporation makes the design of such system more complicated. We propose a dependable electronic power system architecture, which can provide a generic framework to guide the development of electronic power system to ease the development complexity. In order to provide common idioms and patterns to the system *designers, we formally model the electronic power system architecture by using the PVS formal language. Based on the PVS model of this system architecture, we formally verify the fault tolerant properties of the system architecture by using the PVS theorem prover, which can guarantee that the system architecture can satisfy high reliability requirements.

  4. Graphical analysis of power systems for mobile robotics

    NASA Astrophysics Data System (ADS)

    Raade, Justin William

    The field of mobile robotics places stringent demands on the power system. Energetic autonomy, or the ability to function for a useful operation time independent of any tether, refueling, or recharging, is a driving force in a robot designed for a field application. The focus of this dissertation is the development of two graphical analysis tools, namely Ragone plots and optimal hybridization plots, for the design of human scale mobile robotic power systems. These tools contribute to the intuitive understanding of the performance of a power system and expand the toolbox of the design engineer. Ragone plots are useful for graphically comparing the merits of different power systems for a wide range of operation times. They plot the specific power versus the specific energy of a system on logarithmic scales. The driving equations in the creation of a Ragone plot are derived in terms of several important system parameters. Trends at extreme operation times (both very short and very long) are examined. Ragone plot analysis is applied to the design of several power systems for high-power human exoskeletons. Power systems examined include a monopropellant-powered free piston hydraulic pump, a gasoline-powered internal combustion engine with hydraulic actuators, and a fuel cell with electric actuators. Hybrid power systems consist of two or more distinct energy sources that are used together to meet a single load. They can often outperform non-hybrid power systems in low duty-cycle applications or those with widely varying load profiles and long operation times. Two types of energy sources are defined: engine-like and capacitive. The hybridization rules for different combinations of energy sources are derived using graphical plots of hybrid power system mass versus the primary system power. Optimal hybridization analysis is applied to several power systems for low-power human exoskeletons. Hybrid power systems examined include a fuel cell and a solar panel coupled with lithium polymer batteries. In summary, this dissertation describes the development and application of two graphical analysis tools for the intuitive design of mobile robotic power systems. Several design examples are discussed involving human exoskeleton power systems.

  5. WASTE HANDLING BUILDING ELECTRICAL SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.C. Khamamkar

    2000-06-23

    The Waste Handling Building Electrical System performs the function of receiving, distributing, transforming, monitoring, and controlling AC and DC power to all waste handling building electrical loads. The system distributes normal electrical power to support all loads that are within the Waste Handling Building (WHB). The system also generates and distributes emergency power to support designated emergency loads within the WHB within specified time limits. The system provides the capability to transfer between normal and emergency power. The system provides emergency power via independent and physically separated distribution feeds from the normal supply. The designated emergency electrical equipment will bemore » designed to operate during and after design basis events (DBEs). The system also provides lighting, grounding, and lightning protection for the Waste Handling Building. The system is located in the Waste Handling Building System. The system consists of a diesel generator, power distribution cables, transformers, switch gear, motor controllers, power panel boards, lighting panel boards, lighting equipment, lightning protection equipment, control cabling, and grounding system. Emergency power is generated with a diesel generator located in a QL-2 structure and connected to the QL-2 bus. The Waste Handling Building Electrical System distributes and controls primary power to acceptable industry standards, and with a dependability compatible with waste handling building reliability objectives for non-safety electrical loads. It also generates and distributes emergency power to the designated emergency loads. The Waste Handling Building Electrical System receives power from the Site Electrical Power System. The primary material handling power interfaces include the Carrier/Cask Handling System, Canister Transfer System, Assembly Transfer System, Waste Package Remediation System, and Disposal Container Handling Systems. The system interfaces with the MGR Operations Monitoring and Control System for supervisory monitoring and control signals. The system interfaces with all facility support loads such as heating, ventilation, and air conditioning, office, fire protection, monitoring and control, safeguards and security, and communications subsystems.« less

  6. Power system requirements and definition for lunar and Mars outposts

    NASA Technical Reports Server (NTRS)

    Petri, D. A.; Cataldo, R. L.; Bozek, J. M.

    1990-01-01

    Candidate power systems being considered for outpost facilities (stationary power systems) and vehicles (mobile systems) are discussed, including solar, chemical, isotopic, and reactor. The current power strategy was an initial outpost power system composed of photovoltaic arrays for daytime energy needs and regenerative fuel cells for power during the long lunar night. As day and night power demands grow, the outpost transitions to nuclear-based power generation, using thermoelectric conversion initially and evolving to a dynamic conversion system. With this concept as a guideline, a set of requirements has been established, and a reference definition of candidate power systems meeting these requirements has been identified.

  7. Development of an automated electrical power subsystem testbed for large spacecraft

    NASA Technical Reports Server (NTRS)

    Hall, David K.; Lollar, Louis F.

    1990-01-01

    The NASA Marshall Space Flight Center (MSFC) has developed two autonomous electrical power system breadboards. The first breadboard, the autonomously managed power system (AMPS), is a two power channel system featuring energy generation and storage and 24-kW of switchable loads, all under computer control. The second breadboard, the space station module/power management and distribution (SSM/PMAD) testbed, is a two-bus 120-Vdc model of the Space Station power subsystem featuring smart switchgear and multiple knowledge-based control systems. NASA/MSFC is combining these two breadboards to form a complete autonomous source-to-load power system called the large autonomous spacecraft electrical power system (LASEPS). LASEPS is a high-power, intelligent, physical electrical power system testbed which can be used to derive and test new power system control techniques, new power switching components, and new energy storage elements in a more accurate and realistic fashion. LASEPS has the potential to be interfaced with other spacecraft subsystem breadboards in order to simulate an entire space vehicle. The two individual systems, the combined systems (hardware and software), and the current and future uses of LASEPS are described.

  8. Satellite power system concept development and evaluation program. Volume 2: System definition

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The system level results of the system definition studies performed by NASA as a part of the Department of Energy/NASA satellite power system concept development and evaluation program are summarized. System requirements and guidelines are discussed as well as the major elements that comprise the reference system and its design options. Alternative system approaches including different system sizes, solid state amplifier (microwave) concepts, and laser power transmission system cost summaries are reviewed. An overview of the system analysis and planning efforts is included. The overall study led to the conclusion that the reference satellite power system concept is a feasible baseload source of electrical power and, within the assumed guidelines, the minimum cost per kilowatt is achieved at the maximum output of 5 gigawatts to the utility grid. Major unresolved technical issues include maximum allowable microwave power density in the ionosphere and performance/mass characteristics of laser power transmission systems.

  9. Comparing Different Fault Identification Algorithms in Distributed Power System

    NASA Astrophysics Data System (ADS)

    Alkaabi, Salim

    A power system is a huge complex system that delivers the electrical power from the generation units to the consumers. As the demand for electrical power increases, distributed power generation was introduced to the power system. Faults may occur in the power system at any time in different locations. These faults cause a huge damage to the system as they might lead to full failure of the power system. Using distributed generation in the power system made it even harder to identify the location of the faults in the system. The main objective of this work is to test the different fault location identification algorithms while tested on a power system with the different amount of power injected using distributed generators. As faults may lead the system to full failure, this is an important area for research. In this thesis different fault location identification algorithms have been tested and compared while the different amount of power is injected from distributed generators. The algorithms were tested on IEEE 34 node test feeder using MATLAB and the results were compared to find when these algorithms might fail and the reliability of these methods.

  10. Estimating the impacts of wind power on power systems—summary of IEA Wind collaboration

    NASA Astrophysics Data System (ADS)

    Holttinen, Hannele

    2008-04-01

    Adding wind power to power systems will have beneficial impacts by reducing the emissions of electricity production and reducing the operational costs of the power system as less fuel is consumed in conventional power plants. Wind power will also have a capacity value to a power system. However, possible negative impacts will have to be assessed to make sure that they will only offset a small part of the benefits and also to ensure the security of the power system operation. An international forum for the exchange of knowledge of power system impacts of wind power has been formed under the IEA Implementing Agreement on Wind Energy. The Task 'Design and Operation of Power Systems with Large Amounts of Wind Power' is analyzing existing case studies from different power systems. There are a multitude of studies completed and ongoing related to the cost of wind integration. However, the results are not easy to compare. This paper describes the general issues of wind power impacts on power systems and presents a comparison of results from ten case studies on increased balancing needs due to wind power.

  11. Development and Testing of the Glenn Research Center Visitor's Center Grid-Tied Photovoltaic Power System

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2009-01-01

    The NASA Glenn Research Center (GRC) has developed, installed, and tested a 12 kW DC grid-tied photovoltaic (PV) power system at the GRC Visitor s Center. This system utilizes a unique ballast type roof mount for installing the photovoltaic panels on the roof of the Visitor s Center with no alterations or penetrations to the roof. The PV system has generated in excess of 15000 kWh since operation commenced in August 2008. The PV system is providing power to the GRC grid for use by all. Operation of the GRC Visitor s Center PV system has been completely trouble free. A grid-tied PV power system is connected directly to the utility distribution grid. Facility power can be obtained from the utility system as normal. The PV system is synchronized with the utility system to provide power for the facility, and excess power is provided to the utility. The project transfers space technology to terrestrial use via nontraditional partners. GRC personnel glean valuable experience with PV power systems that are directly applicable to various space power systems, and provides valuable space program test data. PV power systems help to reduce harmful emissions and reduce the Nation s dependence on fossil fuels. Power generated by the PV system reduces the GRC utility demand, and the surplus power aids the community. Present global energy concerns reinforce the need for the development of alternative energy systems. Modern PV panels are readily available, reliable, efficient, and economical with a life expectancy of at least 25 years. Modern electronics has been the enabling technology behind grid-tied power systems, making them safe, reliable, efficient, and economical with a life expectancy of at least 25 years. Based upon the success of the GRC Visitor s Center PV system, additional PV power system expansion at GRC is under consideration. The GRC Visitor s Center grid-tied PV power system was successfully designed and developed which served to validate the basic principles described, and the theoretical work that was performed. The report concludes that grid-tied photovoltaic power systems are reliable, maintenance free, long life power systems, and are of significant value to NASA and the community.

  12. Midterm Stability Evaluation of Wide-area Power System by using Synchronized Phasor Measurements

    NASA Astrophysics Data System (ADS)

    Ota, Yutaka; Ukai, Hiroyuki; Nakamura, Koichi; Fujita, Hideki

    In recent years, the PMU (Phasor Measurement Unit) receives a great deal of attention as a synchronized measurement system of power systems. Synchronized phasor angles obtained by the PMU provide the effective information for evaluating the stability of a bulk power system. The aspect of instability phenomena during midterm tends to be more complicated, and the stability analysis using the synchronized phasor measurements is significant in order to keep a complicated power system stable. This paper proposes a midterm stability evaluation method of the wide-area power system by using the synchronized phasor measurements. By clustering and aggregating the power system to some coherent groups, the step-out is effectively predicted on the basis of the two-machine equivalent power system model. The midterm stability of a longitudinal power system model of Japanese 60Hz systems constructed by the PSA, which is a hybrid-type power system simulator, is practically evaluated using the proposed method.

  13. Mars power system concept definition study. Volume 1: Study results

    NASA Technical Reports Server (NTRS)

    Littman, Franklin D.

    1994-01-01

    A preliminary top level study was completed to define power system concepts applicable to Mars surface applications. This effort included definition of power system requirements and selection of power systems with the potential for high commonality. These power systems included dynamic isotope, Proton Exchange Membrane (PEM) regenerative fuel cell, sodium sulfur battery, photovoltaic, and reactor concepts. Design influencing factors were identified. Characterization studies were then done for each concept to determine system performance, size/volume, and mass. Operations studies were done to determine emplacement/deployment maintenance/servicing, and startup/shutdown requirements. Technology development roadmaps were written for each candidate power system (included in Volume 2). Example power system architectures were defined and compared on a mass basis. The dynamic isotope power system and nuclear reactor power system architectures had significantly lower total masses than the photovoltaic system architectures. Integrated development and deployment time phasing plans were completed for an example DIPS and reactor architecture option to determine the development strategies required to meet the mission scenario requirements.

  14. Grid-Tied Photovoltaic Power System

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2011-01-01

    A grid-tied photovoltaic (PV) power system is connected directly to the utility distribution grid. Facility power can be obtained from the utility system as normal. The PV system is synchronized with the utility system to provide power for the facility, and excess power is provided to the utility. Operating costs of a PV power system are low compared to conventional power technologies. This method can displace the highest-cost electricity during times of peak demand in most climatic regions, and thus reduce grid loading. Net metering is often used, in which independent power producers such as PV power systems are connected to the utility grid via the customers main service panels and meters. When the PV power system is generating more power than required at that location, the excess power is provided to the utility grid. The customer pays the net of the power purchased when the on-site power demand is greater than the onsite power production, and the excess power is returned to the utility grid. Power generated by the PV system reduces utility demand, and the surplus power aids the community. Modern PV panels are readily available, reliable, efficient, and economical, with a life expectancy of at least 25 years. Modern electronics have been the enabling technology behind grid-tied power systems, making them safe, reliable, efficient, and economical with a life expectancy equal to the modern PV panels. The grid-tied PV power system was successfully designed and developed, and this served to validate the basic principles developed, and the theoretical work that was performed. Grid-tied PV power systems are reliable, maintenance- free, long-life power systems, and are of significant value to NASA and the community. Of particular value are the analytical tools and capabilities that have been successfully developed. Performance predictions can be made confidently for grid-tied PV systems of various scales. The work was done under the NASA Hybrid Power Management (HPM) Program, which is the integration of diverse power devices in an optimal configuration for space and terrestrial applications.

  15. Laser power conversion system analysis, volume 1

    NASA Technical Reports Server (NTRS)

    Jones, W. S.; Morgan, L. L.; Forsyth, J. B.; Skratt, J. P.

    1979-01-01

    The orbit-to-orbit laser energy conversion system analysis established a mission model of satellites with various orbital parameters and average electrical power requirements ranging from 1 to 300 kW. The system analysis evaluated various conversion techniques, power system deployment parameters, power system electrical supplies and other critical supplies and other critical subsystems relative to various combinations of the mission model. The analysis show that the laser power system would not be competitive with current satellite power systems from weight, cost and development risk standpoints.

  16. 14 CFR 27.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Systems § 27.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Power boost and power-operated control...

  17. 14 CFR 29.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Systems § 29.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Power boost and power-operated control...

  18. 14 CFR 29.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Systems § 29.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Power boost and power-operated control...

  19. 14 CFR 27.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Systems § 27.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Power boost and power-operated control...

  20. 14 CFR 29.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Systems § 29.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Power boost and power-operated control...

  1. 14 CFR 29.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Systems § 29.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Power boost and power-operated control...

  2. 14 CFR 27.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Systems § 27.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Power boost and power-operated control...

  3. 14 CFR 27.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Systems § 27.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Power boost and power-operated control...

  4. Evaluation of power control concepts using the PMAD systems test bed. [Power Management and Distribution

    NASA Technical Reports Server (NTRS)

    Beach, R. F.; Kimnach, G. L.; Jett, T. A.; Trash, L. M.

    1989-01-01

    The Lewis Research Center's Power Management and Distribution (PMAD) System testbed and its use in the evaluation of control concepts applicable to the NASA Space Station Freedom electric power system (EPS) are described. The facility was constructed to allow testing of control hardware and software in an environment functionally similar to the space station electric power system. Control hardware and software have been developed to allow operation of the testbed power system in a manner similar to a supervisory control and data acquisition (SCADA) system employed by utility power systems for control. The system hardware and software are described.

  5. Autonomous Power System intelligent diagnosis and control

    NASA Technical Reports Server (NTRS)

    Ringer, Mark J.; Quinn, Todd M.; Merolla, Anthony

    1991-01-01

    The Autonomous Power System (APS) project at NASA Lewis Research Center is designed to demonstrate the abilities of integrated intelligent diagnosis, control, and scheduling techniques to space power distribution hardware. Knowledge-based software provides a robust method of control for highly complex space-based power systems that conventional methods do not allow. The project consists of three elements: the Autonomous Power Expert System (APEX) for fault diagnosis and control, the Autonomous Intelligent Power Scheduler (AIPS) to determine system configuration, and power hardware (Brassboard) to simulate a space based power system. The operation of the Autonomous Power System as a whole is described and the responsibilities of the three elements - APEX, AIPS, and Brassboard - are characterized. A discussion of the methodologies used in each element is provided. Future plans are discussed for the growth of the Autonomous Power System.

  6. Autonomous power system intelligent diagnosis and control

    NASA Technical Reports Server (NTRS)

    Ringer, Mark J.; Quinn, Todd M.; Merolla, Anthony

    1991-01-01

    The Autonomous Power System (APS) project at NASA Lewis Research Center is designed to demonstrate the abilities of integrated intelligent diagnosis, control, and scheduling techniques to space power distribution hardware. Knowledge-based software provides a robust method of control for highly complex space-based power systems that conventional methods do not allow. The project consists of three elements: the Autonomous Power Expert System (APEX) for fault diagnosis and control, the Autonomous Intelligent Power Scheduler (AIPS) to determine system configuration, and power hardware (Brassboard) to simulate a space based power system. The operation of the Autonomous Power System as a whole is described and the responsibilities of the three elements - APEX, AIPS, and Brassboard - are characterized. A discussion of the methodologies used in each element is provided. Future plans are discussed for the growth of the Autonomous Power System.

  7. An adaptive load-following control system for a space nuclear power system

    NASA Astrophysics Data System (ADS)

    Metzger, John D.; El-Genk, Mohamed S.

    An adaptive load-following control system is proposed for a space nuclear power system. The conceptual design of the SP-100 space nuclear power system proposes operating the nuclear reactor at a base thermal power and accommodating changes in the electrical power demand with a shunt regulator. It is necessary to increase the reactor thermal power if the payload electrical demand exceeds the peak system electrical output for the associated reactor power. When it is necessary to change the nuclear reactor power to meet a change in the power demand, the power ascension or descension must be accomplished in a predetermined manner to avoid thermal stresses in the system and to achieve the desired reactor period. The load-following control system described has the ability to adapt to changes in the system and to changes in the satellite environment. The application is proposed of the model reference adaptive control (MRAC). The adaptive control system has the ability to control the dynamic response of nonlinear systems. Three basic subsets of adaptive control are: (1) gain scheduling, (2) self-tuning regulators, and (3) model reference adaptive control.

  8. Design and characterization of a novel power over fiber system integrating a high power diode laser

    NASA Astrophysics Data System (ADS)

    Perales, Mico; Yang, Mei-huan; Wu, Cheng-liang; Hsu, Chin-wei; Chao, Wei-sheng; Chen, Kun-hsein; Zahuranec, Terry

    2017-02-01

    High power 9xx nm diode lasers along with MH GoPower's (MHGP's) flexible line of Photovoltaic Power Converters (PPCs) are spurring high power applications for power over fiber (PoF), including applications for powering remote sensors and sensors monitoring high voltage equipment, powering high voltage IGBT gate drivers, converters used in RF over Fiber (RFoF) systems, and system power applications, including powering UAVs. In PoF, laser power is transmitted over fiber, and is converted to electricity by photovoltaic cells (packaged into Photovoltaic Power Converters, or PPCs) which efficiently convert the laser light. In this research, we design a high power multi-channel PoF system, incorporating a high power 976 nm diode laser, a cabling system with fiber break detection, and a multichannel PPC-module. We then characterizes system features such as its response time to system commands, the PPC module's electrical output stability, the PPC-module's thermal response, the fiber break detection system response, and the diode laser optical output stability. The high power PoF system and this research will serve as a scalable model for those interested in researching, developing, or deploying a high power, voltage isolated, and optically driven power source for high reliability utility, communications, defense, and scientific applications.

  9. Modeling of power electronic systems with EMTP

    NASA Technical Reports Server (NTRS)

    Tam, Kwa-Sur; Dravid, Narayan V.

    1989-01-01

    In view of the potential impact of power electronics on power systems, there is need for a computer modeling/analysis tool to perform simulation studies on power systems with power electronic components as well as to educate engineering students about such systems. The modeling of the major power electronic components of the NASA Space Station Freedom Electric Power System is described along with ElectroMagnetic Transients Program (EMTP) and it is demonstrated that EMTP can serve as a very useful tool for teaching, design, analysis, and research in the area of power systems with power electronic components. EMTP modeling of power electronic circuits is described and simulation results are presented.

  10. Intelligent power management in a vehicular system with multiple power sources

    NASA Astrophysics Data System (ADS)

    Murphey, Yi L.; Chen, ZhiHang; Kiliaris, Leonidas; Masrur, M. Abul

    This paper presents an optimal online power management strategy applied to a vehicular power system that contains multiple power sources and deals with largely fluctuated load requests. The optimal online power management strategy is developed using machine learning and fuzzy logic. A machine learning algorithm has been developed to learn the knowledge about minimizing power loss in a Multiple Power Sources and Loads (M_PS&LD) system. The algorithm exploits the fact that different power sources used to deliver a load request have different power losses under different vehicle states. The machine learning algorithm is developed to train an intelligent power controller, an online fuzzy power controller, FPC_MPS, that has the capability of finding combinations of power sources that minimize power losses while satisfying a given set of system and component constraints during a drive cycle. The FPC_MPS was implemented in two simulated systems, a power system of four power sources, and a vehicle system of three power sources. Experimental results show that the proposed machine learning approach combined with fuzzy control is a promising technology for intelligent vehicle power management in a M_PS&LD power system.

  11. Power System Transient Stability Improvement by the Interline Power Flow Controller (IPFC)

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Yokoyama, Akihiko

    This paper presents a study on the power system transient stability improvement by means of interline power flow controller (IPFC). The power injection model of IPFC in transient analysis is proposed and can be easily incorporated into existing power systems. Based on the energy function analysis, the operation of IPFC should guarantee that the time derivative of the global energy of the system is not greater than zero in order to damp the electromechanical oscillations. Accordingly, control laws of IPFC are proposed for its application to the single-machine infinite-bus (SMIB) system and the multimachine systems, respectively. Numerical simulations on the corresponding model power systems are presented to demonstrate their effectiveness in improving power system transient stability.

  12. Power Systems for Future Missions: Appendices A-L

    NASA Technical Reports Server (NTRS)

    Gill, S. P.; Frye, P. E.; Littman, Franklin D.; Meisl, C. J.

    1994-01-01

    Selection of power system technology for space applications is typically based on mass, readiness of a particular technology to meet specific mission requirements, and life cycle costs (LCC). The LCC is typically used as a discriminator between competing technologies for a single mission application. All other future applications for a given technology are usually ignored. As a result, development cost of a technology becomes a dominant factor in the LCC comparison. Therefore, it is common for technologies such as DIPS and LMR-CBC to be potentially applicable to a wide range of missions and still lose out in the initial LCC comparison due to high development costs. This collection of appendices (A through L) contains the following power systems technology plans: CBC DIPS Technology Roadmap; PEM PFC Technology Roadmap; NAS Battery Technology Roadmap; PV/RFC Power System Technology Roadmap; PV/NAS Battery Technology Roadmap; Thermionic Reactor Power System Technology Roadmap; SP-100 Power System Technology Roadmap; Dynamic SP-100 Power System Technology Roadmap; Near-Term Solar Dynamic Power System Technology Roadmap; Advanced Solar Dynamic Power System Technology Roadmap; Advanced Stirling Cycle Dynamic Isotope Power System Technology Roadmap; and the ESPPRS (Evolutionary Space Power and Propulsion Requirements System) User's Guide.

  13. Study on optimal configuration of the grid-connected wind-solar-battery hybrid power system

    NASA Astrophysics Data System (ADS)

    Ma, Gang; Xu, Guchao; Ju, Rong; Wu, Tiantian

    2017-08-01

    The capacity allocation of each energy unit in the grid-connected wind-solar-battery hybrid power system is a significant segment in system design. In this paper, taking power grid dispatching into account, the research priorities are as follows: (1) We establish the mathematic models of each energy unit in the hybrid power system. (2) Based on dispatching of the power grid, energy surplus rate, system energy volatility and total cost, we establish the evaluation system for the wind-solar-battery power system and use a number of different devices as the constraint condition. (3) Based on an improved Genetic algorithm, we put forward a multi-objective optimisation algorithm to solve the optimal configuration problem in the hybrid power system, so we can achieve the high efficiency and economy of the grid-connected hybrid power system. The simulation result shows that the grid-connected wind-solar-battery hybrid power system has a higher comprehensive performance; the method of optimal configuration in this paper is useful and reasonable.

  14. Radioisotope powered AMTEC systems

    NASA Astrophysics Data System (ADS)

    Ivanenok, Joseph F., III; Sievers, Robert K.

    1994-11-01

    Alkali metal thermal to electric converter (AMTEC) systems are being developed for high performance spacecraft power systems, including small, general purpose heat source (GPHS) powered systems. Several design concepts have been evaluated for the power range from 75 W to 1 kW. The specific power for these concepts has been found to be as high as 18-20 W/kg and 22 kW/m(exp 3). The projected area, including radiators, has been as low as 0.4 m(exp 2)/kW. AMTEC power systems are extremely attractive, relative to other current and projected power systems, because AMTEC offers high power density, low projected area, and low volume. Two AMTEC cell design types have been identified. A single-tube cell is already under development and a multitube cell design, to provide additional power system gains, has undergone proof-of-principle testing. Solar powered AMTEC (SAMTEC) systems are also being developed, and numerous terrestrial applications have been identified for which the same basic AMTEC cells being developed for radioisotope systems are also suitable.

  15. The effects of load on system and lower-body joint kinetics during jump squats.

    PubMed

    Moir, Gavin L; Gollie, Jared M; Davis, Shala E; Guers, John J; Witmer, Chad A

    2012-11-01

    To investigate the effects of different loads on system and lower-body kinetics during jump squats, 12 resistance-trained men performed jumps under different loading conditions: 0%, 12%, 27%, 42%, 56%, 71%, and 85% of 1-repetition maximum (1-RM). System power output was calculated as the product of the vertical component of the ground reaction force and the vertical velocity of the bar during its ascent. Joint power output was calculated during bar ascent for the hip, knee, and ankle joints, and was also summed across the joints. System power output and joint power at knee and ankle joints were maximized at 0% 1-RM (p < 0.001) and followed the linear trends (p < 0.001) caused by power output decreasing as the load increased. Power output at the hip was maximized at 42% 1-RM (p = 0.016) and followed a quadratic trend (p = 0.030). Summed joint power could be predicted from system power (p < 0.05), while system power could predict power at the knee and ankle joints under some of the loading conditions. Power at the hip could not be predicted from system power. System power during loaded jumps reflects the power at the knee and ankle, while power at the hip does not correspond to system power.

  16. Incipient fault detection and power system protection for spaceborne systems

    NASA Technical Reports Server (NTRS)

    Russell, B. Don; Hackler, Irene M.

    1987-01-01

    A program was initiated to study the feasibility of using advanced terrestrial power system protection techniques for spacecraft power systems. It was designed to enhance and automate spacecraft power distribution systems in the areas of safety, reliability and maintenance. The proposed power management/distribution system is described as well as security assessment and control, incipient and low current fault detection, and the proposed spaceborne protection system. It is noted that the intelligent remote power controller permits the implementation of digital relaying algorithms with both adaptive and programmable characteristics.

  17. Cyber Physical System Modelling of Distribution Power Systems for Dynamic Demand Response

    NASA Astrophysics Data System (ADS)

    Chu, Xiaodong; Zhang, Rongxiang; Tang, Maosen; Huang, Haoyi; Zhang, Lei

    2018-01-01

    Dynamic demand response (DDR) is a package of control methods to enhance power system security. A CPS modelling and simulation platform for DDR in distribution power systems is presented in this paper. CPS modelling requirements of distribution power systems are analyzed. A coupled CPS modelling platform is built for assessing DDR in the distribution power system, which combines seamlessly modelling tools of physical power networks and cyber communication networks. Simulations results of IEEE 13-node test system demonstrate the effectiveness of the modelling and simulation platform.

  18. Integrated Micro-Power System (IMPS) Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Wilt, David; Hepp, Aloysius; Moran, Matt; Jenkins, Phillip; Scheiman, David; Raffaelle, Ryne

    2003-01-01

    Glenn Research Center (GRC) has a long history of energy related technology developments for large space related power systems, including photovoltaics, thermo-mechanical energy conversion, electrochemical energy storage. mechanical energy storage, power management and distribution and power system design. Recently, many of these technologies have begun to be adapted for small, distributed power system applications or Integrated Micro-Power Systems (IMPS). This paper will describe the IMPS component and system demonstration efforts to date.

  19. Frequency control of wind turbine in power system

    NASA Astrophysics Data System (ADS)

    Xu, Huawei

    2018-06-01

    In order to improve the stability of the overall frequency of the power system, automatic power generation control and secondary frequency adjustment were applied. Automatic power generation control was introduced into power generation planning. A dual-fed wind generator power regulation model suitable for secondary frequency regulation was established. The results showed that this method satisfied the basic requirements of frequency regulation control of large-scale wind power access power systems and improved the stability and reliability of power system operation. Therefore, this system frequency control method and strategy is relatively simple. The effect is significant. The system frequency can quickly reach a steady state. It is worth applying and promoting.

  20. Nuclear power systems for lunar and Mars exploration

    NASA Technical Reports Server (NTRS)

    Sovie, R. J.; Bozek, J. M.

    1990-01-01

    Initial studies of a variety of mission scenarios for the new Space Exploration Initiative, and the technologies necessary to enable or significantly enhance them, have identified the development of advanced space power systems whether solar, chemical or nuclear to be of prime importance. Lightweight, compact, reliable power systems for planetary rovers and a variety of surface vehicles, utility surface power, and power for advanced propulsion systems have been identified as critical needs for these missions. These mission scenarios, the concomitant power system requirements, and power system options considered are discussed. The significant potential benefits of nuclear power are identified for meeting the power needs of the above applications.

  1. Small space reactor power systems for unmanned solar system exploration missions

    NASA Technical Reports Server (NTRS)

    Bloomfield, Harvey S.

    1987-01-01

    A preliminary feasibility study of the application of small nuclear reactor space power systems to the Mariner Mark II Cassini spacecraft/mission was conducted. The purpose of the study was to identify and assess the technology and performance issues associated with the reactor power system/spacecraft/mission integration. The Cassini mission was selected because study of the Saturn system was identified as a high priority outer planet exploration objective. Reactor power systems applied to this mission were evaluated for two different uses. First, a very small 1 kWe reactor power system was used as an RTG replacement for the nominal spacecraft mission science payload power requirements while still retaining the spacecraft's usual bipropellant chemical propulsion system. The second use of reactor power involved the additional replacement of the chemical propulsion system with a small reactor power system and an electric propulsion system. The study also provides an examination of potential applications for the additional power available for scientific data collection. The reactor power system characteristics utilized in the study were based on a parametric mass model that was developed specifically for these low power applications. The model was generated following a neutronic safety and operational feasibility assessment of six small reactor concepts solicited from U.S. industry. This assessment provided the validation of reactor safety for all mission phases and generatad the reactor mass and dimensional data needed for the system mass model.

  2. Fast Computation and Assessment Methods in Power System Analysis

    NASA Astrophysics Data System (ADS)

    Nagata, Masaki

    Power system analysis is essential for efficient and reliable power system operation and control. Recently, online security assessment system has become of importance, as more efficient use of power networks is eagerly required. In this article, fast power system analysis techniques such as contingency screening, parallel processing and intelligent systems application are briefly surveyed from the view point of their application to online dynamic security assessment.

  3. Design of a Glenn Research Center Solar Field Grid-Tied Photovoltaic Power System

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2009-01-01

    The NASA Glenn Research Center (GRC) designed, developed, and installed, a 37.5 kW DC photovoltaic (PV) Solar Field in the GRC West Area in the 1970s for the purpose of testing PV panels for various space and terrestrial applications. The PV panels are arranged to provide a nominal 120 VDC. The GRC Solar Field has been extremely successful in meeting its mission. The PV panels and the supporting electrical systems are all near their end of life. GRC has designed a 72 kW DC grid-tied PV power system to replace the existing GRC West Area Solar Field. The 72 kW DC grid-tied PV power system will provide DC solar power for GRC PV testing applications, and provide AC facility power for all times that research power is not required. A grid-tied system is connected directly to the utility distribution grid. Facility power can be obtained from the utility system as normal. The PV system is synchronized with the utility system to provide power for the facility, and excess power is provided to the utility for use by all. The project transfers space technology to terrestrial use via nontraditional partners. GRC personnel glean valuable experience with PV power systems that are directly applicable to various space power systems, and provide valuable space program test data. PV power systems help to reduce harmful emissions and reduce the Nation s dependence on fossil fuels. Power generated by the PV system reduces the GRC utility demand, and the surplus power aids the community. Present global energy concerns reinforce the need for the development of alternative energy systems. Modern PV panels are readily available, reliable, efficient, and economical with a life expectancy of at least 25 years. Modern electronics has been the enabling technology behind grid-tied power systems, making them safe, reliable, efficient, and economical with a life expectancy of at least 25 years. The report concludes that the GRC West Area grid-tied PV power system design is viable for a reliable, maintenance free, long life power system that is of significant value to NASA and the community.

  4. Development status of the heatpipe power and bimodal systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poston, David I.; Houts, Michael G.

    1999-01-01

    Space fission power systems can potentially enhance or enable ambitious lunar and Martian surface missions. Research into space fission power systems has been ongoing (at various levels) since the 1950s, but to date the United States (US) has flown only one space fission system, SNAP-10A, in 1965. Cost and development time have been significant reasons why space fission systems have not been used by the US. High cost and long development time are not inherent to the use of space fission power. However, high cost and long development time are inherent to any program that tries to do too muchmore » at once. Nearly all US space fission power programs have attempted to field systems capable of high power, even though more modest systems had not yet been flown. All of these programs have failed to fly a space fission system. Relatively low power (10 to 100 kWe) fission systems may be useful for near-term lunar and Martian surface missions, including missions in which in situ resource utilization is a priority. Such systems may also be useful for deep-space science missions and other missions. These systems can be significantly less expensive to develop than high power systems. Experience gained in the development of low-power space fission systems can then be used to enable cost-effective development of high-power ({gt}1000 kWe) fission systems. The Heatpipe Power System (HPS) is a potential, near-term, low-cost space fission power system. The Heatpipe Bimodal System (HBS) is a potential, near-term, low-cost space fission power and/or propulsion system. Both systems will be composed of independent modules, and all components use existing technology and operate within the existing database. The HPS and HBS have relatively few system integration issues; thus, the successful development of a module is a significant step toward verifying system feasibility and performance estimates. A prototypic HPS module was fabricated, and initial testing was completed in April 1997. All test objectives were accomplished, demonstrating the basic feasibility of the HPS. Fabrication of an HBS module is under way, and testing should begin in 1999. {copyright} {ital 1999 American Institute of Physics.}« less

  5. Development status of the heatpipe power and bimodal systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poston, David I.; Houts, Michael G.; Emrich, William J. Jr.

    1999-01-22

    Space fission power systems can potentially enhance or enable ambitious lunar and Martian surface missions. Research into space fission power systems has been ongoing (at various levels) since the 1950s, but to date the United States (US) has flown only one space fission system, SNAP-10A, in 1965. Cost and development time have been significant reasons why space fission systems have not been used by the US. High cost and long development time are not inherent to the use of space fission power. However, high cost and long development time are inherent to any program that tries to do too muchmore » at once. Nearly all US space fission power programs have attempted to field systems capable of high power, even though more modest systems had not yet been flown. All of these programs have failed to fly a space fission system. Relatively low power (10 to 100 kWe) fission systems may be useful for near-term lunar and Martian surface missions, including missions in which in situ resource utilization is a priority. Such systems may also be useful for deep-space science missions and other missions. These systems can be significantly less expensive to develop than high power systems. Experience gained in the development of low-power space fission systems can then be used to enable cost-effective development of high-power (>1000 kWe) fission systems. The Heatpipe Power System (HPS) is a potential, near-term, low-cost space fission power system. The Heatpipe Bimodal System (HBS) is a potential, near-term, low-cost space fission power and/or propulsion system. Both systems will be composed of independent modules, and all components use existing technology and operate within the existing database. The HPS and HBS have relatively few system integration issues; thus, the successful development of a module is a significant step toward verifying system feasibility and performance estimates. A prototypic HPS module was fabricated, and initial testing was completed in April 1997. All test objectives were accomplished, demonstrating the basic feasibility of the HPS. Fabrication of an HBS module is under way, and testing should begin in 1999.« less

  6. Development status of the heatpipe power and bimodal systems

    NASA Astrophysics Data System (ADS)

    Poston, David I.; Houts, Michael G.; Emrich, William J.

    1999-01-01

    Space fission power systems can potentially enhance or enable ambitious lunar and Martian surface missions. Research into space fission power systems has been ongoing (at various levels) since the 1950s, but to date the United States (US) has flown only one space fission system, SNAP-10A, in 1965. Cost and development time have been significant reasons why space fission systems have not been used by the US. High cost and long development time are not inherent to the use of space fission power. However, high cost and long development time are inherent to any program that tries to do too much at once. Nearly all US space fission power programs have attempted to field systems capable of high power, even though more modest systems had not yet been flown. All of these programs have failed to fly a space fission system. Relatively low power (10 to 100 kWe) fission systems may be useful for near-term lunar and Martian surface missions, including missions in which in situ resource utilization is a priority. Such systems may also be useful for deep-space science missions and other missions. These systems can be significantly less expensive to develop than high power systems. Experience gained in the development of low-power space fission systems can then be used to enable cost-effective development of high-power (>1000 kWe) fission systems. The Heatpipe Power System (HPS) is a potential, near-term, low-cost space fission power system. The Heatpipe Bimodal System (HBS) is a potential, near-term, low-cost space fission power and/or propulsion system. Both systems will be composed of independent modules, and all components use existing technology and operate within the existing database. The HPS and HBS have relatively few system integration issues; thus, the successful development of a module is a significant step toward verifying system feasibility and performance estimates. A prototypic HPS module was fabricated, and initial testing was completed in April 1997. All test objectives were accomplished, demonstrating the basic feasibility of the HPS. Fabrication of an HBS module is under way, and testing should begin in 1999.

  7. Optimization of hybrid power system composed of SMES and flywheel MG for large pulsed load

    NASA Astrophysics Data System (ADS)

    Niiyama, K.; Yagai, T.; Tsuda, M.; Hamajima, T.

    2008-09-01

    A superconducting magnetic storage system (SMES) has some advantages such as rapid large power response and high storage efficiency which are superior to other energy storage systems. A flywheel motor generator (FWMG) has large scaled capacity and high reliability, and hence is broadly utilized for a large pulsed load, while it has comparatively low storage efficiency due to high mechanical loss compared with SMES. A fusion power plant such as International Thermo-Nuclear Experimental Reactor (ITER) requires a large and long pulsed load which causes a frequency deviation in a utility power system. In order to keep the frequency within an allowable deviation, we propose a hybrid power system for the pulsed load, which equips the SMES and the FWMG with the utility power system. We evaluate installation cost and frequency control performance of three power systems combined with energy storage devices; (i) SMES with the utility power, (ii) FWMG with the utility power, (iii) both SMES and FWMG with the utility power. The first power system has excellent frequency power control performance but its installation cost is high. The second system has inferior frequency control performance but its installation cost is the lowest. The third system has good frequency control performance and its installation cost is attained lower than the first power system by adjusting the ratio between SMES and FWMG.

  8. Hold-up power supply for flash memory

    NASA Technical Reports Server (NTRS)

    Ott, William E. (Inventor)

    2004-01-01

    A hold-up power supply for flash memory systems is provided. The hold-up power supply provides the flash memory with the power needed to temporarily operate when a power loss exists. This allows the flash memory system to complete any erasures and writes, and thus allows it to shut down gracefully. The hold-up power supply detects when a power loss on a power supply bus is occurring and supplies the power needed for the flash memory system to temporally operate. The hold-up power supply stores power in at least one capacitor. During normal operation, power from a high voltage supply bus is used to charge the storage capacitors. When a power supply loss is detected, the power supply bus is disconnected from the flash memory system. A hold-up controller controls the power flow from the storage capacitors to the flash memory system. The hold-up controller uses feedback to assure that the proper voltage is provided from the storage capacitors to the flash memory system. This power supplied by the storage capacitors allows the flash memory system to complete any erasures and writes, and thus allows the flash memory system to shut down gracefully.

  9. A Case Study of Wind-PV-Thermal-Bundled AC/DC Power Transmission from a Weak AC Network

    NASA Astrophysics Data System (ADS)

    Xiao, H. W.; Du, W. J.; Wang, H. F.; Song, Y. T.; Wang, Q.; Ding, J.; Chen, D. Z.; Wei, W.

    2017-05-01

    Wind power generation and photovoltaic (PV) power generation bundled with the support by conventional thermal generation enables the generation controllable and more suitable for being sent over to remote load centre which are beneficial for the stability of weak sending end systems. Meanwhile, HVDC for long-distance power transmission is of many significant technique advantages. Hence the effects of wind-PV-thermal-bundled power transmission by AC/DC on power system have become an actively pursued research subject recently. Firstly, this paper introduces the technical merits and difficulties of wind-photovoltaic-thermal bundled power transmission by AC/DC systems in terms of meeting the requirement of large-scale renewable power transmission. Secondly, a system model which contains a weak wind-PV-thermal-bundled sending end system and a receiving end system in together with a parallel AC/DC interconnection transmission system is established. Finally, the significant impacts of several factors which includes the power transmission ratio between the DC and AC line, the distance between the sending end system and receiving end system, the penetration rate of wind power and the sending end system structure on system stability are studied.

  10. Planning and Resource Management in an Intelligent Automated Power Management System

    NASA Technical Reports Server (NTRS)

    Morris, Robert A.

    1991-01-01

    Power system management is a process of guiding a power system towards the objective of continuous supply of electrical power to a set of loads. Spacecraft power system management requires planning and scheduling, since electrical power is a scarce resource in space. The automation of power system management for future spacecraft has been recognized as an important R&D goal. Several automation technologies have emerged including the use of expert systems for automating human problem solving capabilities such as rule based expert system for fault diagnosis and load scheduling. It is questionable whether current generation expert system technology is applicable for power system management in space. The objective of the ADEPTS (ADvanced Electrical Power management Techniques for Space systems) is to study new techniques for power management automation. These techniques involve integrating current expert system technology with that of parallel and distributed computing, as well as a distributed, object-oriented approach to software design. The focus of the current study is the integration of new procedures for automatically planning and scheduling loads with procedures for performing fault diagnosis and control. The objective is the concurrent execution of both sets of tasks on separate transputer processors, thus adding parallelism to the overall management process.

  11. Utilizing Climate Forecasts for Improving Water and Power Systems Coordination

    NASA Astrophysics Data System (ADS)

    Arumugam, S.; Queiroz, A.; Patskoski, J.; Mahinthakumar, K.; DeCarolis, J.

    2016-12-01

    Climate forecasts, typically monthly-to-seasonal precipitation forecasts, are commonly used to develop streamflow forecasts for improving reservoir management. Irrespective of their high skill in forecasting, temperature forecasts in developing power demand forecasts are not often considered along with streamflow forecasts for improving water and power systems coordination. In this study, we consider a prototype system to analyze the utility of climate forecasts, both precipitation and temperature, for improving water and power systems coordination. The prototype system, a unit-commitment model that schedules power generation from various sources, is considered and its performance is compared with an energy system model having an equivalent reservoir representation. Different skill sets of streamflow forecasts and power demand forecasts are forced on both water and power systems representations for understanding the level of model complexity required for utilizing monthly-to-seasonal climate forecasts to improve coordination between these two systems. The analyses also identify various decision-making strategies - forward purchasing of fuel stocks, scheduled maintenance of various power systems and tradeoff on water appropriation between hydropower and other uses - in the context of various water and power systems configurations. Potential application of such analyses for integrating large power systems with multiple river basins is also discussed.

  12. History of Power Transmission Technologies and Future Prospects of Power System of Chubu Electric Power Company

    NASA Astrophysics Data System (ADS)

    Takagi, Hirotaka; Sugiyama, Tomonari; Zashibo, Toshihito

    Since its foundation, the power system of Chubu Electric Power Company (hereinafter CEPCO) has developed through power source and transmission facility formation to meet electricity demand increases. This development has been accompanied by progress in transmission technologies including capacity scale-up, compactification and power system stabilization to operate complex power systems. Now, changes in business situation due to electricity market liberalizatin may bring new challenges to future facility formation. This paper reviews CEPCO's history of power system formation and progress in transmission technologies, and describes future challenges.

  13. Thermal power systems, small power systems application project. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Marriott, A. T.

    1979-01-01

    Current small power system technology as applied to power plants up to 10 MWe in size was assessed. Markets for small power systems were characterized and cost goals were established. Candidate power plant system design concepts were selected for evaluation and preliminary performance and cost assessments were made. Economic studies were conducted and breakeven capital costs were determined for leading contenders among the candidate systems. An application study was made of the potential use of small power systems in providing part of the demand for pumping power by the extensive aqueduct system of California, estimated to be 1000 MWe by 1985. Criteria and methodologies were developed for application to the ranking of candidate power plant system design concepts. Experimental power plants concepts of 1 MWe rating were studied leading toward the definition of a power plant configuration for subsequent detail design, construction, testing and evaluation as Engineering Experiment No. 1 (EE No. 1). Site selection criteria and ground rules for the solicitation of EE No. 1 site participation proposals by DOE were developed.

  14. Power oscillation suppression by robust SMES in power system with large wind power penetration

    NASA Astrophysics Data System (ADS)

    Ngamroo, Issarachai; Cuk Supriyadi, A. N.; Dechanupaprittha, Sanchai; Mitani, Yasunori

    2009-01-01

    The large penetration of wind farm into interconnected power systems may cause the severe problem of tie-line power oscillations. To suppress power oscillations, the superconducting magnetic energy storage (SMES) which is able to control active and reactive powers simultaneously, can be applied. On the other hand, several generating and loading conditions, variation of system parameters, etc., cause uncertainties in the system. The SMES controller designed without considering system uncertainties may fail to suppress power oscillations. To enhance the robustness of SMES controller against system uncertainties, this paper proposes a robust control design of SMES by taking system uncertainties into account. The inverse additive perturbation is applied to represent the unstructured system uncertainties and included in power system modeling. The configuration of active and reactive power controllers is the first-order lead-lag compensator with single input feedback. To tune the controller parameters, the optimization problem is formulated based on the enhancement of robust stability margin. The particle swarm optimization is used to solve the problem and achieve the controller parameters. Simulation studies in the six-area interconnected power system with wind farms confirm the robustness of the proposed SMES under various operating conditions.

  15. Future Opportunities for Dynamic Power Systems for NASA Missions

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.

    2007-01-01

    Dynamic power systems have the potential to be used in Radioisotope Power Systems (RPS) and Fission Surface Power Systems (FSPS) to provide high efficiency, reliable and long life power generation for future NASA applications and missions. Dynamic power systems have been developed by NASA over the decades, but none have ever operated in space. Advanced Stirling convertors are currently being developed at the NASA Glenn Research Center. These systems have demonstrated high efficiencies to enable high system specific power (>8 W(sub e)/kg) for 100 W(sub e) class Advanced Stirling Radioisotope Generators (ASRG). The ASRG could enable significant extended and expanded operation on the Mars surface and on long-life deep space missions. In addition, advanced high power Stirling convertors (>150 W(sub e)/kg), for use with surface fission power systems, could provide power ranging from 30 to 50 kWe, and would be enabling for both lunar and Mars exploration. This paper will discuss the status of various energy conversion options currently under development by NASA Glenn for the Radioisotope Power System Program for NASA s Science Mission Directorate (SMD) and the Prometheus Program for the Exploration Systems Mission Directorate (ESMD).

  16. Comparison of solar photovoltaic and nuclear reactor power systems for a human-tended lunar observatory

    NASA Technical Reports Server (NTRS)

    Hickman, J. M.; Bloomfield, H. S.

    1989-01-01

    Photovoltaic and nuclear surface power systems were examined at the 20 to 100 kW power level range for use at a human-tended lunar astronomical observatory, and estimates of the power system masses were made. One system, consisting of an SP-100 thermoelectric nuclear power supply integrated with a lunar lander, is recommended for further study due to its low system mass, potential for modular growth, and applicability to other surface power missions, particularly in the Martian system.

  17. Comparison of solar photovoltaic and nuclear reactor power systems for a human-tended lunar observatory

    NASA Technical Reports Server (NTRS)

    Hickman, J. M.; Bloomfield, H. S.

    1989-01-01

    Photovoltaic and nuclear surface power systems were examined at the 20 to 100 kW power level range for use at a human-tended lunar astronomical observatory, andestimates of the power system masses were made. One system, consisting of an SP-100 thermoelectric nuclear power supply integrated with a lunar lander, is recommended for further study due to its low system mass, potential for modular growth, and applicability to other surface power missions, particularly in the Martian system.

  18. Vehicle electrical system state controller

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bissontz, Jay E.

    A motor vehicle electrical power distribution system includes a plurality of distribution sub-systems, an electrical power storage sub-system and a plurality of switching devices for selective connection of elements of and loads on the power distribution system to the electrical power storage sub-system. A state transition initiator provides inputs to control system operation of switching devices to change the states of the power distribution system. The state transition initiator has a plurality of positions selection of which can initiate a state transition. The state transition initiator can emulate a four position rotary ignition switch. Fail safe power cutoff switches providemore » high voltage switching device protection.« less

  19. Power system characteristics for more electric aircraft

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1993-01-01

    It should not be suprising that more electric aircraft must meet significantly more difficult electrical power system requirements than were considereed when today's power distribution systems were being developed. Electric power, no longer a secondary system, will become a critical element of the primary control system. Functional reliability requiirements will be extremely stringent and can only be met by controlling element redundancy within a distributed power system. Existing electrical systems were not developed to have both the power system and the control/sensing elements distributed and yet meet the requirements of lighting tolerance and high intensity radio frequency (HIRF). In addition, the operation of electric actuators involves high transient loading and reverse energy flows. Such phenomena were also not anticipated when power quality was specified for either 270 vdc or 400 Hertz ac power systems. This paper will expand upon the issues and discuss some of the technologies involved in their resolution.

  20. Assessment on the influence of resistive superconducting fault current limiter in VSC-HVDC system

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Geon; Khan, Umer Amir; Hwang, Jae-Sang; Seong, Jae-Kyu; Shin, Woo-Ju; Park, Byung-Bae; Lee, Bang-Wook

    2014-09-01

    Due to fewer risk of commutation failures, harmonic occurrences and reactive power consumptions, Voltage Source Converter (VSC) based HVDC system is known as the optimum solution of HVDC power system for the future power grid. However, the absence of suitable fault protection devices for HVDC system hinders the efficient VSC-HVDC power grid design. In order to enhance the reliability of the VSC-HVDC power grid against the fault current problems, the application of resistive Superconducting Fault Current Limiters (SFCLs) could be considered. Also, SFCLs could be applied to the VSC-HVDC system with integrated AC Power Systems in order to enhance the transient response and the robustness of the system. In this paper, in order to evaluate the role of SFCLs in VSC-HVDC systems and to determine the suitable position of SFCLs in VSC-HVDC power systems integrated with AC power System, a simulation model based on Korea Jeju-Haenam HVDC power system was designed in Matlab Simulink/SimPowerSystems. This designed model was composed of VSC-HVDC system connected with an AC microgrid. Utilizing the designed VSC-HVDC systems, the feasible locations of resistive SFCLs were evaluated when DC line-to-line, DC line-to-ground and three phase AC faults were occurred. Consequently, it was found that the simulation model was effective to evaluate the positive effects of resistive SFCLs for the effective suppression of fault currents in VSC-HVDC systems as well as in integrated AC Systems. Finally, the optimum locations of SFCLs in VSC-HVDC transmission systems were suggested based on the simulation results.

  1. Automotive Stirling engine system component review

    NASA Technical Reports Server (NTRS)

    Hindes, Chip; Stotts, Robert

    1987-01-01

    The design and testing of the power and combustion control system for the basic Stirling engine, Mod II, are examined. The power control system is concerned with transparent operation, and the Mod II uses engine working gas pressure variation to control the power output of the engine. The main components of the power control system, the power control valve, the pump-down system, and the hydrogen stable system, are described. The combustion control system consists of a combustion air supply system and an air/fuel ratio control system, and the system is to maintain constant heater head temperature, and to maximize combustion efficiency and to minimize exhaust emissions.

  2. Power system monitoring and source control of the Space Station Freedom DC power system testbed

    NASA Technical Reports Server (NTRS)

    Kimnach, Greg L.; Baez, Anastacio N.

    1992-01-01

    Unlike a terrestrial electric utility which can purchase power from a neighboring utility, the Space Station Freedom (SSF) has strictly limited energy resources; as a result, source control, system monitoring, system protection, and load management are essential to the safe and efficient operation of the SSF Electric Power System (EPS). These functions are being evaluated in the DC Power Management and Distribution (PMAD) Testbed which NASA LeRC has developed at the Power System Facility (PSF) located in Cleveland, Ohio. The testbed is an ideal platform to develop, integrate, and verify power system monitoring and control algorithms. State Estimation (SE) is a monitoring tool used extensively in terrestrial electric utilities to ensure safe power system operation. It uses redundant system information to calculate the actual state of the EPS, to isolate faulty sensors, to determine source operating points, to verify faults detected by subsidiary controllers, and to identify high impedance faults. Source control and monitoring safeguard the power generation and storage subsystems and ensure that the power system operates within safe limits while satisfying user demands with minimal interruptions. System monitoring functions, in coordination with hardware implemented schemes, provide for a complete fault protection system. The objective of this paper is to overview the development and integration of the state estimator and the source control algorithms.

  3. Power system monitoring and source control of the Space Station Freedom dc-power system testbed

    NASA Technical Reports Server (NTRS)

    Kimnach, Greg L.; Baez, Anastacio N.

    1992-01-01

    Unlike a terrestrial electric utility which can purchase power from a neighboring utility, the Space Station Freedom (SSF) has strictly limited energy resources; as a result, source control, system monitoring, system protection, and load management are essential to the safe and efficient operation of the SSF Electric Power System (EPS). These functions are being evaluated in the dc Power Management and Distribution (PMAD) Testbed which NASA LeRC has developed at the Power System Facility (PSF) located in Cleveland, Ohio. The testbed is an ideal platform to develop, integrate, and verify power system monitoring and control algorithms. State Estimation (SE) is a monitoring tool used extensively in terrestrial electric utilities to ensure safe power system operation. It uses redundant system information to calculate the actual state of the EPS, to isolate faulty sensors, to determine source operating points, to verify faults detected by subsidiary controllers, and to identify high impedance faults. Source control and monitoring safeguard the power generation and storage subsystems and ensure that the power system operates within safe limits while satisfying user demands with minimal interruptions. System monitoring functions, in coordination with hardware implemented schemes, provide for a complete fault protection system. The objective of this paper is to overview the development and integration of the state estimator and the source control algorithms.

  4. Analyzing Small Signal Stability of Power System based on Online Data by Use of SMES

    NASA Astrophysics Data System (ADS)

    Ishikawa, Hiroyuki; Shirai, Yasuyuki; Nitta, Tanzo; Shibata, Katsuhiko

    The purpose of this study is to estimate eigen-values and eigen-vectors of a power system from on-line data to evaluate the power system stability. Power system responses due to the small power modulation of known pattern from SMES (Superconducting Magnetic Energy Storage) were analyzed, and the transfer functions between the power modulation and power oscillations of generators were obtained. Eigen-values and eigen-vectors were estimated from the transfer functions. Experiments were carried out by use of a model SMES and Advanced Power System Analyzer (APSA), which is an analogue type power system simulator of Kansai Electric Power Company Inc., Japan. Changes in system condition were observed by the estimated eigen-values and eigen-vectors. Result agreed well with the resent report and digital simulation. This method gives a new application for SMES, which will be installed for improving electric power quality.

  5. ISRU Reactant, Fuel Cell Based Power Plant for Robotic and Human Mobile Exploration Applications

    NASA Technical Reports Server (NTRS)

    Baird, Russell S.; Sanders, Gerald; Simon, Thomas; McCurdy, Kerri

    2003-01-01

    Three basic power generation system concepts are generally considered for lander, rover, and Extra-Vehicular Activity (EVA) assistant applications for robotic and human Moon and Mars exploration missions. The most common power system considered is the solar array and battery system. While relatively simple and successful, solar array/battery systems have some serious limitations for mobile applications. For typical rover applications, these limitations include relatively low total energy storage capabilities, daylight only operating times (6 to 8 hours on Mars), relatively short operating lives depending on the operating environment, and rover/lander size and surface use constraints. Radioisotope power systems are being reconsidered for long-range science missions. Unfortunately, the high cost, political controversy, and launch difficulties that are associated with nuclear-based power systems suggests that the use of radioisotope powered landers, rovers, and EVA assistants will be limited. The third power system concept now being considered are fuel cell based systems. Fuel cell power systems overcome many of the performance and surface exploration limitations of solar array/battery power systems and the prohibitive cost and other difficulties associated with nuclear power systems for mobile applications. In an effort to better understand the capabilities and limitations of fuel cell power systems for Moon and Mars exploration applications, NASA is investigating the use of in-Situ Resource Utilization (ISRU) produced reactant, fuel cell based power plants to power robotic outpost rovers, science equipment, and future human spacecraft, surface-excursion rovers, and EVA assistant rovers. This paper will briefly compare the capabilities and limitations of fuel cell power systems relative to solar array/battery and nuclear systems, discuss the unique and enhanced missions that fuel cell power systems enable, and discuss the common technology and system attributes possible for robotic and human exploration to maximize scientific return and minimize cost and risk to both. Progress made to date at the Johnson Space Center on an ISRU producible reactant, Proton Exchange Membrane (PEM) fuel cell based power plant project to demonstrate the concept in conjunction with rover applications will be presented in detail.

  6. ISRU Reactant, Fuel Cell Based Power Plant for Robotic and Human Mobile Exploration Applications

    NASA Astrophysics Data System (ADS)

    Baird, Russell S.; Sanders, Gerald; Simon, Thomas; McCurdy, Kerri

    2003-01-01

    Three basic power generation system concepts are generally considered for lander, rover, and Extra-Vehicular Activity (EVA) assistant applications for robotic and human Moon and Mars exploration missions. The most common power system considered is the solar array and battery system. While relatively simple and successful, solar array/battery systems have some serious limitations for mobile applications. For typical rover applications, these limitations include relatively low total energy storage capabilities, daylight only operating times (6 to 8 hours on Mars), relatively short operating lives depending on the operating environment, and rover/lander size and surface use constraints. Radioisotope power systems are being reconsidered for long-range science missions. Unfortunately, the high cost, political controversy, and launch difficulties that are associated with nuclear-based power systems suggests that the use of radioisotope powered landers, rovers, and EVA assistants will be limited. The third power system concept now being considered are fuel cell based systems. Fuel cell power systems overcome many of the performance and surface exploration limitations of solar array/battery power systems and the prohibitive cost and other difficulties associated with nuclear power systems for mobile applications. In an effort to better understand the capabilities and limitations of fuel cell power systems for Moon and Mars exploration applications. NASA is investigating the use of In-Situ Resource Utilization (ISRU) produced reactant, fuel cell based power plants to power robotic outpost rovers, science equipment, and future human spacecraft, surface-excursion rovers, and EVA assistant rovers. This paper will briefly compare the capabilities and limitations of fuel cell power systems relative to solar array/battery and nuclear systems, discuss the unique and enhanced missions that fuel cell power systems enable, and discuss the common technology and system attributes possible for robotic and human exploration to maximize scientific return and minimize cost and risk to both. Progress made to date at the Johnson Space Center on an ISRU producible reactant. Proton Exchange Membrane (PEM) fuel cell based power plant project for use in the first demonstration of this concept in conjunction with rover applications will be presented in detail.

  7. Systems definition space-based power conversion systems. [for satellite power transmission to earth

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Potential space-located systems for the generation of electrical power for use on Earth are discussed and include: (1) systems producing electrical power from solar energy; (2) systems producing electrical power from nuclear reactors; and (3) systems for augmenting ground-based solar power plants by orbital sunlight reflectors. Systems (1) and (2) would utilize a microwave beam system to transmit their output to Earth. Configurations implementing these concepts were developed through an optimization process intended to yield the lowest cost for each. A complete program was developed for each concept, identifying required production rates, quantities of launches, required facilities, etc. Each program was costed in order to provide the electric power cost appropriate to each concept.

  8. Bionic Vision-Based Intelligent Power Line Inspection System

    PubMed Central

    Ma, Yunpeng; He, Feijia; Xu, Jinxin

    2017-01-01

    Detecting the threats of the external obstacles to the power lines can ensure the stability of the power system. Inspired by the attention mechanism and binocular vision of human visual system, an intelligent power line inspection system is presented in this paper. Human visual attention mechanism in this intelligent inspection system is used to detect and track power lines in image sequences according to the shape information of power lines, and the binocular visual model is used to calculate the 3D coordinate information of obstacles and power lines. In order to improve the real time and accuracy of the system, we propose a new matching strategy based on the traditional SURF algorithm. The experimental results show that the system is able to accurately locate the position of the obstacles around power lines automatically, and the designed power line inspection system is effective in complex backgrounds, and there are no missing detection instances under different conditions. PMID:28203269

  9. Issues concerning centralized versus decentralized power deployment

    NASA Technical Reports Server (NTRS)

    Metcalf, Kenneth J.; Harty, Richard B.; Robin, James F.

    1991-01-01

    The results of a study of proposed lunar base architectures to identify issues concerning centralized and decentralized power system deployment options are presented. The power system consists of the energy producing system (power plant), the power conditioning components used to convert the generated power into the form desired for transmission, the transmission lines that conduct this power from the power sources to the loads, and the primary power conditioning hardware located at the user end. Three power system architectures, centralized, hybrid, and decentralized, were evaluated during the course of this study. Candidate power sources were characterized with respect to mass and radiator area. Two electrical models were created for each architecture to identify the preferred method of power transmission, dc or ac. Each model allowed the transmission voltage level to be varied at assess the impact on power system mass. The ac power system models also permitted the transmission line configurations and placements to determine the best conductor construction and installation location. Key parameters used to evaluate each configuration were power source and power conditioning component efficiencies, masses, and radiator areas; transmission line masses and operating temperatures; and total system mass.

  10. Advanced secondary power system for transport aircraft

    NASA Technical Reports Server (NTRS)

    Hoffman, A. C.; Hansen, I. G.; Beach, R. F.; Plencner, R. M.; Dengler, R. P.; Jefferies, K. S.; Frye, R. J.

    1985-01-01

    A concept for an advanced aircraft power system was identified that uses 20-kHz, 440-V, sin-wave power distribution. This system was integrated with an electrically powered flight control system and with other aircraft systems requiring secondary power. The resulting all-electric secondary power configuration reduced the empty weight of a modern 200-passenger, twin-engine transport by 10 percent and the mission fuel by 9 percent.

  11. Description of the PMAD DC test bed architecture and integration sequence

    NASA Technical Reports Server (NTRS)

    Beach, R. F.; Trash, L.; Fong, D.; Bolerjack, B.

    1991-01-01

    NASA-Lewis is responsible for the development, fabrication, and assembly of the electric power system (EPS) for the Space Station Freedom (SSF). The SSF power system is radically different from previous spacecraft power systems in both the size and complexity of the system. Unlike past spacecraft power system the SSF EPS will grow and be maintained on orbit and must be flexible to meet changing user power needs. The SSF power system is also unique in comparison with terrestrial power systems because it is dominated by power electronic converters which regulate and control the power. Although spacecraft historically have used power converters for regulation they typically involved only a single series regulating element. The SSF EPS involves multiple regulating elements, two or more in series, prior to the load. These unique system features required the construction of a testbed which would allow the development of spacecraft power system technology. A description is provided of the Power Management and Distribution (PMAD) DC Testbed which was assembled to support the design and early evaluation of the SSF EPS. A description of the integration process used in the assembly sequence is also given along with a description of the support facility.

  12. Artificial intelligence and space power systems automation

    NASA Technical Reports Server (NTRS)

    Weeks, David J.

    1987-01-01

    Various applications of artificial intelligence to space electrical power systems are discussed. An overview is given of completed, on-going, and planned knowledge-based system activities. These applications include the Nickel-Cadmium Battery Expert System (NICBES) (the expert system interfaced with the Hubble Space Telescope electrical power system test bed); the early work with the Space Station Experiment Scheduler (SSES); the three expert systems under development in the space station advanced development effort in the core module power management and distribution system test bed; planned cooperation of expert systems in the Core Module Power Management and Distribution (CM/PMAD) system breadboard with expert systems for the space station at other research centers; and the intelligent data reduction expert system under development.

  13. Hybrid power management system and method

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J. (Inventor)

    2007-01-01

    A system and method for hybrid power management. The system includes photovoltaic cells, ultracapacitors, and pulse generators. In one embodiment, the hybrid power management system is used to provide power for a highway safety flasher.

  14. Hybrid Power Management System and Method

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J. (Inventor)

    2008-01-01

    A system and method for hybrid power management. The system includes photovoltaic cells, ultracapacitors, and pulse generators. In one embodiment, the hybrid power management system is used to provide power for a highway safety flasher.

  15. A Comprehensive Comparison of Current Operating Reserve Methodologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krad, Ibrahim; Ibanez, Eduardo; Gao, Wenzhong

    Electric power systems are currently experiencing a paradigm shift from a traditionally static system to a system that is becoming increasingly more dynamic and variable. Emerging technologies are forcing power system operators to adapt to their performance characteristics. These technologies, such as distributed generation and energy storage systems, have changed the traditional idea of a distribution system with power flowing in one direction into a distribution system with bidirectional flows. Variable generation, in the form of wind and solar generation, also increases the variability and uncertainty in the system. As such, power system operators are revisiting the ways in whichmore » they treat this evolving power system, namely by modifying their operating reserve methodologies. This paper intends to show an in-depth analysis on different operating reserve methodologies and investigate their impacts on power system reliability and economic efficiency.« less

  16. A comprehensive approach to reactive power scheduling in restructured power systems

    NASA Astrophysics Data System (ADS)

    Shukla, Meera

    Financial constraints, regulatory pressure, and need for more economical power transfers have increased the loading of interconnected transmission systems. As a consequence, power systems have been operated close to their maximum power transfer capability limits, making the system more vulnerable to voltage instability events. The problem of voltage collapse characterized by a severe local voltage depression is generally believed to be associated with inadequate VAr support at key buses. The goal of reactive power planning is to maintain a high level of voltage security, through installation of properly sized and located reactive sources and their optimal scheduling. In case of vertically-operated power systems, the reactive requirement of the system is normally satisfied by using all of its reactive sources. But in case of different scenarios of restructured power systems, one may consider a fixed amount of exchange of reactive power through tie lines. Reviewed literature suggests a need for optimal scheduling of reactive power generation for fixed inter area reactive power exchange. The present work proposed a novel approach for reactive power source placement and a novel approach for its scheduling. The VAr source placement technique was based on the property of system connectivity. This is followed by development of optimal reactive power dispatch formulation which facilitated fixed inter area tie line reactive power exchange. This formulation used a Line Flow-Based (LFB) model of power flow analysis. The formulation determined the generation schedule for fixed inter area tie line reactive power exchange. Different operating scenarios were studied to analyze the impact of VAr management approach for vertically operated and restructured power systems. The system loadability, losses, generation and the cost of generation were the performance measures to study the impact of VAr management strategy. The novel approach was demonstrated on IEEE 30 bus system.

  17. Complex systems analysis of series of blackouts: cascading failure, critical points, and self-organization.

    PubMed

    Dobson, Ian; Carreras, Benjamin A; Lynch, Vickie E; Newman, David E

    2007-06-01

    We give an overview of a complex systems approach to large blackouts of electric power transmission systems caused by cascading failure. Instead of looking at the details of particular blackouts, we study the statistics and dynamics of series of blackouts with approximate global models. Blackout data from several countries suggest that the frequency of large blackouts is governed by a power law. The power law makes the risk of large blackouts consequential and is consistent with the power system being a complex system designed and operated near a critical point. Power system overall loading or stress relative to operating limits is a key factor affecting the risk of cascading failure. Power system blackout models and abstract models of cascading failure show critical points with power law behavior as load is increased. To explain why the power system is operated near these critical points and inspired by concepts from self-organized criticality, we suggest that power system operating margins evolve slowly to near a critical point and confirm this idea using a power system model. The slow evolution of the power system is driven by a steady increase in electric loading, economic pressures to maximize the use of the grid, and the engineering responses to blackouts that upgrade the system. Mitigation of blackout risk should account for dynamical effects in complex self-organized critical systems. For example, some methods of suppressing small blackouts could ultimately increase the risk of large blackouts.

  18. Photovoltaic power systems workshop

    NASA Technical Reports Server (NTRS)

    Killian, H. J.; Given, R. W.

    1978-01-01

    Discussions are presented on apparent deficiencies in NASA planning and technology development relating to a standard power module (25-35 kW) and to future photovoltaic power systems in general. Topics of discussion consider the following: (1) adequate studies on power systems; (2) whether a standard power system module should be developed from a standard spacecraft; (3) identification of proper approaches to cost reduction; (4) energy storage avoidance; (5) attitude control; (6) thermal effects of heat rejection on solar array configuration stability; (7) assembly of large power systems in space; and (8) factoring terrestrial photovoltaic work into space power systems for possible payoff.

  19. Multi-kilowatt modularized spacecraft power processing system development

    NASA Technical Reports Server (NTRS)

    Andrews, R. E.; Hayden, J. H.; Hedges, R. T.; Rehmann, D. W.

    1975-01-01

    A review of existing information pertaining to spacecraft power processing systems and equipment was accomplished with a view towards applicability to the modularization of multi-kilowatt power processors. Power requirements for future spacecraft were determined from the NASA mission model-shuttle systems payload data study which provided the limits for modular power equipment capabilities. Three power processing systems were compared to evaluation criteria to select the system best suited for modularity. The shunt regulated direct energy transfer system was selected by this analysis for a conceptual design effort which produced equipment specifications, schematics, envelope drawings, and power module configurations.

  20. Results of an electrical power system fault study

    NASA Technical Reports Server (NTRS)

    Dugal-Whitehead, Norma R.; Johnson, Yvette B.

    1992-01-01

    NASA-Marshall conducted a study of electrical power system faults with a view to the development of AI control systems for a spacecraft power system breadboard. The results of this study have been applied to a multichannel high voltage dc spacecraft power system, the Large Autonomous Spacecraft Electrical Power System (LASEPS) breadboard. Some of the faults encountered in testing LASEPS included the shorting of a bus an a falloff in battery cell capacity.

  1. Hybrid Power Management (HPM)

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2007-01-01

    The NASA Glenn Research Center s Avionics, Power and Communications Branch of the Engineering and Systems Division initiated the Hybrid Power Management (HPM) Program for the GRC Technology Transfer and Partnership Office. HPM is the innovative integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications. The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The advanced power devices include ultracapacitors and fuel cells. HPM has extremely wide potential. Applications include power generation, transportation systems, biotechnology systems, and space power systems. HPM has the potential to significantly alleviate global energy concerns, improve the environment, and stimulate the economy. One of the unique power devices being utilized by HPM for energy storage is the ultracapacitor. An ultracapacitor is an electrochemical energy storage device, which has extremely high volumetric capacitance energy due to high surface area electrodes, and very small electrode separation. Ultracapacitors are a reliable, long life, maintenance free, energy storage system. This flexible operating system can be applied to all power systems to significantly improve system efficiency, reliability, and performance. There are many existing and conceptual applications of HPM.

  2. Radioisotope powered AMTEC systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanenok, J.F. III; Sievers, R.K.

    1994-11-01

    Alkali metal thermal to electric converter (AMTEC) systems are being developed for high performance spacecraft power systems, including small, general purpose heat source (GPHS) powered systems. Several design concepts have been evaluated for the power range from 75 W to 1 kW. The specific power for these concepts has been found to be as high as 18-20 W/kg and 22 kW/m(exp 3). The projected area, including radiators, has been as low as 0.4 m(exp 2)/kW. AMTEC power systems are extremely attractive, relative to other current and projected power systems, because AMTEC offers high power density, low projected area, and lowmore » volume. Two AMTEC cell design types have been identified. A single-tube cell is already under development and a multitube cell design, to provide additional power system gains, has undergone proof-of-principle testing. Solar powered AMTEC (SAMTEC) systems are also being developed, and numerous terrestrial applications have been identified for which the same basic AMTEC cells being developed for radioisotope systems are also suitable. 35 refs.« less

  3. Figure of merit studies of beam power concepts for advanced space exploration

    NASA Technical Reports Server (NTRS)

    Miller, Gabriel; Kadiramangalam, Murali N.

    1990-01-01

    Surface to surface, millimeter wavelength beam power systems for power transmission on the lunar base were investigated. Qualitative/quantitative analyses and technology assessment of 35, 110 and 140 GHz beam power systems were conducted. System characteristics including mass, stowage volume, cost and efficiency as a function of range and power level were calculated. A simple figure of merit analysis indicates that the 35 GHz system would be the preferred choice for lunar base applications, followed closely by the 110 GHz system. System parameters of a 35 GHz beam power system appropriate for power transmission on a recent lunar base concept studied by NASA-Johnson and the necessary deployment sequence are suggested.

  4. 14 CFR 29.672 - Stability augmentation, automatic, and power-operated systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... power-operated systems. 29.672 Section 29.672 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Construction Control Systems § 29.672 Stability augmentation, automatic, and power-operated systems. If the functioning of stability augmentation or other automatic or power-operated system is necessary to show...

  5. 14 CFR 29.672 - Stability augmentation, automatic, and power-operated systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... power-operated systems. 29.672 Section 29.672 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Construction Control Systems § 29.672 Stability augmentation, automatic, and power-operated systems. If the functioning of stability augmentation or other automatic or power-operated system is necessary to show...

  6. 14 CFR 27.672 - Stability augmentation, automatic, and power-operated systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... power-operated systems. 27.672 Section 27.672 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Construction Control Systems § 27.672 Stability augmentation, automatic, and power-operated systems. If the functioning of stability augmentation or other automatic or power-operated systems is necessary to show...

  7. 14 CFR 29.672 - Stability augmentation, automatic, and power-operated systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... power-operated systems. 29.672 Section 29.672 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Construction Control Systems § 29.672 Stability augmentation, automatic, and power-operated systems. If the functioning of stability augmentation or other automatic or power-operated system is necessary to show...

  8. 14 CFR 27.672 - Stability augmentation, automatic, and power-operated systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... power-operated systems. 27.672 Section 27.672 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Construction Control Systems § 27.672 Stability augmentation, automatic, and power-operated systems. If the functioning of stability augmentation or other automatic or power-operated systems is necessary to show...

  9. 14 CFR 29.672 - Stability augmentation, automatic, and power-operated systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... power-operated systems. 29.672 Section 29.672 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Construction Control Systems § 29.672 Stability augmentation, automatic, and power-operated systems. If the functioning of stability augmentation or other automatic or power-operated system is necessary to show...

  10. 14 CFR 27.672 - Stability augmentation, automatic, and power-operated systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... power-operated systems. 27.672 Section 27.672 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Construction Control Systems § 27.672 Stability augmentation, automatic, and power-operated systems. If the functioning of stability augmentation or other automatic or power-operated systems is necessary to show...

  11. 14 CFR 27.672 - Stability augmentation, automatic, and power-operated systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... power-operated systems. 27.672 Section 27.672 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Construction Control Systems § 27.672 Stability augmentation, automatic, and power-operated systems. If the functioning of stability augmentation or other automatic or power-operated systems is necessary to show...

  12. Solar power satellite system definition study. Volume 2, part 3: Final briefing, 16 May 1980, phase 3

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Alternatives to the microwave transmission system previously defined Solar Power Satellite Systems were investigated. These were the laser power transmission, transportation systems, and an analysis or solid state power transmission. The advantages of each system are presented.

  13. Verification of Space Station Secondary Power System Stability Using Design of Experiment

    NASA Technical Reports Server (NTRS)

    Karimi, Kamiar J.; Booker, Andrew J.; Mong, Alvin C.; Manners, Bruce

    1998-01-01

    This paper describes analytical methods used in verification of large DC power systems with applications to the International Space Station (ISS). Large DC power systems contain many switching power converters with negative resistor characteristics. The ISS power system presents numerous challenges with respect to system stability such as complex sources and undefined loads. The Space Station program has developed impedance specifications for sources and loads. The overall approach to system stability consists of specific hardware requirements coupled with extensive system analysis and testing. Testing of large complex distributed power systems is not practical due to size and complexity of the system. Computer modeling has been extensively used to develop hardware specifications as well as to identify system configurations for lab testing. The statistical method of Design of Experiments (DoE) is used as an analysis tool for verification of these large systems. DOE reduces the number of computer runs which are necessary to analyze the performance of a complex power system consisting of hundreds of DC/DC converters. DoE also provides valuable information about the effect of changes in system parameters on the performance of the system. DoE provides information about various operating scenarios and identification of the ones with potential for instability. In this paper we will describe how we have used computer modeling to analyze a large DC power system. A brief description of DoE is given. Examples using applications of DoE to analysis and verification of the ISS power system are provided.

  14. Design considerations for lunar base photovoltaic power systems

    NASA Technical Reports Server (NTRS)

    Hickman, J. Mark; Curtis, Henry B.; Landis, Geoffrey A.

    1990-01-01

    A survey was made of factors that may affect the design of photovoltaic arrays for a lunar base. These factors, which include the lunar environment and system design criteria, are examined. A photovoltaic power system design with a triangular array geometry is discussed and compared to a nuclear reactor power systems and a power system utilizing both nuclear and solar power sources.

  15. Long distance high power optical laser fiber break detection and continuity monitoring systems and methods

    DOEpatents

    Rinzler, Charles C.; Gray, William C.; Faircloth, Brian O.; Zediker, Mark S.

    2016-02-23

    A monitoring and detection system for use on high power laser systems, long distance high power laser systems and tools for performing high power laser operations. In particular, the monitoring and detection systems provide break detection and continuity protection for performing high power laser operations on, and in, remote and difficult to access locations.

  16. Complex of technologies and prototype systems for eco-friendly shutdown of the power-generating, process, capacitive, and transport equipment

    NASA Astrophysics Data System (ADS)

    Smorodin, A. I.; Red'kin, V. V.; Frolov, Y. D.; Korobkov, A. A.; Kemaev, O. V.; Kulik, M. V.; Shabalin, O. V.

    2015-07-01

    A set of technologies and prototype systems for eco-friendly shutdown of the power-generating, process, capacitive, and transport equipment is offered. The following technologies are regarded as core technologies for the complex: cryogenic technology nitrogen for displacement of hydrogen from the cooling circuit of turbine generators, cryo blasting of the power units by dioxide granules, preservation of the shutdown power units by dehydrated air, and dismantling and severing of equipment and structural materials of power units. Four prototype systems for eco-friendly shutdown of the power units may be built on the basis of selected technologies: Multimode nitrogen cryogenic system with four subsystems, cryo blasting system with CO2 granules for thermal-mechanical and electrical equipment of power units, and compressionless air-drainage systems for drying and storage of the shutdown power units and cryo-gas system for general severing of the steam-turbine power units. Results of the research and pilot and demonstration tests of the operational units of the considered technological systems allow applying the proposed technologies and systems in the prototype systems for shutdown of the power-generating, process, capacitive, and transport equipment.

  17. Description of the PMAD DC test bed architecture and integration sequence

    NASA Technical Reports Server (NTRS)

    Beach, R. F.; Trash, L.; Fong, D.; Bolerjack, B.

    1991-01-01

    NASA-LEWIS is responsible for the development, fabrication, and assembly of the electric power system (EPS) for the Space Station Freedom (SSF). The SSF power system is radically different from previous spacecraft power systems in both the size and complexity of the system. Unlike past spacecraft power systems, the SSF EPS will grow and be maintained on orbit and must be flexible to meet challenging user power needs. The SSF power system is also unique in comparison with terrestrial power systems because it is dominated by power electronic converters which regulate and control the power. A description is provided of the Power Management and Distribution DC Testbed which was assembled to support the design and early evaluation of the SSF EPS. A description of the integration process used in the assembly sequence is also given along with a description of the support facility.

  18. Feasibility study of self-powered magnetorheological damper systems

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Liao, Wei-Hsin

    2012-04-01

    This paper is aimed to provide a feasibility study of self-powered magnetorheological (MR) damper systems, which could convert vibration and shock energy into electrical energy to power itself under control. The self-powered feature could bring merits such as higher reliability, energy saving, and less maintenance for the MR damper systems. A self-powered MR damper system is proposed and modeled. The criterion whether the MR damper system is self-powered or not is proposed. A prototype of MR damper with power generation is designed, fabricated, and tested. The modeling of this damper is experimentally validated. Then the damper is applied to a 2 DOF suspension system under on-off skyhook controller, to obtain the self-powered working range and vibration control performance. Effects of key factors on the self-powered MR damper systems are studied. Design considerations are given in order to increase the self-powered working range.

  19. Study on photovoltaic power system on ships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katagi, Takeshi; Fujii, Yoshimi; Nishikawa, Eiichi

    1995-11-01

    This paper presents the application of photovoltaic power systems to ships. Two types of leisure or fishing boats powered by photovoltaics are designed. The boats described are single hull and catamaran type with twin hulls. The design of a new electric power system using a photovoltaic power system in a harbor ship having 20 tons is also proposed. The results of this study show that the photovoltaic power system can apply to small ships.

  20. Study of Thermal Control Systems for orbiting power systems

    NASA Technical Reports Server (NTRS)

    Howell, H. R.

    1981-01-01

    Thermal control system designs were evaluated for the 25 kW power system. Factors considered include long operating life, high reliability, and meteoroid hazards to the space radiator. Based on a cost advantage, the bumpered pumped fluid radiator is recommended for the initial 25 kW power system and intermediate versions up to 50 kW. For advanced power systems with heat rejection rates above 50 kW the lower weight of the advanced heat pipe radiator offsets the higher cost and this design is recommended. The power system payloads heat rejection allocations studies show that a centralized heat rejection system is the most weight and cost effective approach. The thermal interface between the power system and the payloads was addressed and a concept for a contact heat exchanger that eliminates fluid transfer between the power system and the payloads was developed. Finally, a preliminary design of the thermal control system, with emphasis on the radiator and radiator deployment mechanism, is presented.

  1. Analysis of chaos in high-dimensional wind power system.

    PubMed

    Wang, Cong; Zhang, Hongli; Fan, Wenhui; Ma, Ping

    2018-01-01

    A comprehensive analysis on the chaos of a high-dimensional wind power system is performed in this study. A high-dimensional wind power system is more complex than most power systems. An 11-dimensional wind power system proposed by Huang, which has not been analyzed in previous studies, is investigated. When the systems are affected by external disturbances including single parameter and periodic disturbance, or its parameters changed, chaotic dynamics of the wind power system is analyzed and chaotic parameters ranges are obtained. Chaos existence is confirmed by calculation and analysis of all state variables' Lyapunov exponents and the state variable sequence diagram. Theoretical analysis and numerical simulations show that the wind power system chaos will occur when parameter variations and external disturbances change to a certain degree.

  2. Description of the SSF PMAD DC testbed control system data acquisition function

    NASA Technical Reports Server (NTRS)

    Baez, Anastacio N.; Mackin, Michael; Wright, Theodore

    1992-01-01

    The NASA LeRC in Cleveland, Ohio has completed the development and integration of a Power Management and Distribution (PMAD) DC Testbed. This testbed is a reduced scale representation of the end to end, sources to loads, Space Station Freedom Electrical Power System (SSF EPS). This unique facility is being used to demonstrate DC power generation and distribution, power management and control, and system operation techniques considered to be prime candidates for the Space Station Freedom. A key capability of the testbed is its ability to be configured to address system level issues in support of critical SSF program design milestones. Electrical power system control and operation issues like source control, source regulation, system fault protection, end-to-end system stability, health monitoring, resource allocation, and resource management are being evaluated in the testbed. The SSF EPS control functional allocation between on-board computers and ground based systems is evolving. Initially, ground based systems will perform the bulk of power system control and operation. The EPS control system is required to continuously monitor and determine the current state of the power system. The DC Testbed Control System consists of standard controllers arranged in a hierarchical and distributed architecture. These controllers provide all the monitoring and control functions for the DC Testbed Electrical Power System. Higher level controllers include the Power Management Controller, Load Management Controller, Operator Interface System, and a network of computer systems that perform some of the SSF Ground based Control Center Operation. The lower level controllers include Main Bus Switch Controllers and Photovoltaic Controllers. Power system status information is periodically provided to the higher level controllers to perform system control and operation. The data acquisition function of the control system is distributed among the various levels of the hierarchy. Data requirements are dictated by the control system algorithms being implemented at each level. A functional description of the various levels of the testbed control system architecture, the data acquisition function, and the status of its implementationis presented.

  3. 14 CFR 25.672 - Stability augmentation and automatic and power-operated systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... power-operated systems. 25.672 Section 25.672 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Construction Control Systems § 25.672 Stability augmentation and automatic and power-operated systems. If the functioning of stability augmentation or other automatic or power-operated systems is necessary to show...

  4. Application of Nearly Linear Solvers to Electric Power System Computation

    NASA Astrophysics Data System (ADS)

    Grant, Lisa L.

    To meet the future needs of the electric power system, improvements need to be made in the areas of power system algorithms, simulation, and modeling, specifically to achieve a time frame that is useful to industry. If power system time-domain simulations could run in real-time, then system operators would have situational awareness to implement online control and avoid cascading failures, significantly improving power system reliability. Several power system applications rely on the solution of a very large linear system. As the demands on power systems continue to grow, there is a greater computational complexity involved in solving these large linear systems within reasonable time. This project expands on the current work in fast linear solvers, developed for solving symmetric and diagonally dominant linear systems, in order to produce power system specific methods that can be solved in nearly-linear run times. The work explores a new theoretical method that is based on ideas in graph theory and combinatorics. The technique builds a chain of progressively smaller approximate systems with preconditioners based on the system's low stretch spanning tree. The method is compared to traditional linear solvers and shown to reduce the time and iterations required for an accurate solution, especially as the system size increases. A simulation validation is performed, comparing the solution capabilities of the chain method to LU factorization, which is the standard linear solver for power flow. The chain method was successfully demonstrated to produce accurate solutions for power flow simulation on a number of IEEE test cases, and a discussion on how to further improve the method's speed and accuracy is included.

  5. Secondary electric power generation with minimum engine bleed

    NASA Technical Reports Server (NTRS)

    Tagge, G. E.

    1983-01-01

    Secondary electric power generation with minimum engine bleed is discussed. Present and future jet engine systems are compared. The role of auxiliary power units is evaluated. Details of secondary electric power generation systems with and without auxiliary power units are given. Advanced bleed systems are compared with minimum bleed systems. A cost model of ownership is given. The difference in the cost of ownership between a minimum bleed system and an advanced bleed system is given.

  6. Modeling and analysis of power processing systems: Feasibility investigation and formulation of a methodology

    NASA Technical Reports Server (NTRS)

    Biess, J. J.; Yu, Y.; Middlebrook, R. D.; Schoenfeld, A. D.

    1974-01-01

    A review is given of future power processing systems planned for the next 20 years, and the state-of-the-art of power processing design modeling and analysis techniques used to optimize power processing systems. A methodology of modeling and analysis of power processing equipment and systems has been formulated to fulfill future tradeoff studies and optimization requirements. Computer techniques were applied to simulate power processor performance and to optimize the design of power processing equipment. A program plan to systematically develop and apply the tools for power processing systems modeling and analysis is presented so that meaningful results can be obtained each year to aid the power processing system engineer and power processing equipment circuit designers in their conceptual and detail design and analysis tasks.

  7. NASA Missions Enabled by Space Nuclear Systems

    NASA Technical Reports Server (NTRS)

    Scott, John H.; Schmidt, George R.

    2009-01-01

    This viewgraph presentation reviews NASA Space Missions that are enabled by Space Nuclear Systems. The topics include: 1) Space Nuclear System Applications; 2) Trade Space for Electric Power Systems; 3) Power Generation Specific Energy Trade Space; 4) Radioisotope Power Generation; 5) Radioisotope Missions; 6) Fission Power Generation; 7) Solar Powered Lunar Outpost; 8) Fission Powered Lunar Outpost; 9) Fission Electric Power Generation; and 10) Fission Nuclear Thermal Propulsion.

  8. Solar dynamic power system definition study

    NASA Technical Reports Server (NTRS)

    Wallin, Wayne E.; Friefeld, Jerry M.

    1988-01-01

    The solar dynamic power system design and analysis study compared Brayton, alkali-metal Rankine, and free-piston Stirling cycles with silicon planar and GaAs concentrator photovoltaic power systems for application to missions beyond the Phase 2 Space Station level of technology for all power systems. Conceptual designs for Brayton and Stirling power systems were developed for 35 kWe and 7 kWe power levels. All power systems were designed for 7-year end-of-life conditions in low Earth orbit. LiF was selected for thermal energy storage for the solar dynamic systems. Results indicate that the Stirling cycle systems have the highest performance (lowest weight and area) followed by the Brayton cycle, with photovoltaic systems considerably lower in performance. For example, based on the performance assumptions used, the planar silicon power system weight was 55 to 75 percent higher than for the Stirling system. A technology program was developed to address areas wherein significant performance improvements could be realized relative to the current state-of-the-art as represented by Space Station. In addition, a preliminary evaluation of hardenability potential found that solar dynamic systems can be hardened beyond the hardness inherent in the conceptual designs of this study.

  9. Phasor Measurement Unit and Its Application in Modern Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Jian; Makarov, Yuri V.; Dong, Zhao Yang

    2010-06-01

    The introduction of phasor measuring units (PMUs) in power systems significantly improves the possibilities for monitoring and analyzing power system dynamics. Synchronized measurements make it possible to directly measure phase angles between corresponding phasors in different locations within the power system. Improved monitoring and remedial action capabilities allow network operators to utilize the existing power system in a more efficient way. Improved information allows fast and reliable emergency actions, which reduces the need for relatively high transmission margins required by potential power system disturbances. In this chapter, the applications of PMU in modern power systems are presented. Specifically, the topicsmore » touched in this chapter include state estimation, voltage and transient stability, oscillation monitoring, event and fault detection, situation awareness, and model validation. A case study using Characteristic Ellipsoid method based on PMU to monitor power system dynamic is presented.« less

  10. Isotope Brayton electric power system for the 500 to 2500 watt range

    NASA Technical Reports Server (NTRS)

    Macosko, R. P.; Barna, G. J.; Block, H. B.; Ingle, B. D.

    1972-01-01

    An extensive study was conducted at the Lewis Research Center to evaluate an isotope Brayton electric power system for use in the 500 to 2500 W power range. Overall system simplicity was emphasized in order to reduce parasitic power losses and improve system reliability. Detailed parametric cycle analysis, conceptual component designs, and evaluation of system packaging were included. A single-loop system (gas) with six major components including one rotating unit was selected. Calculated net system efficiency varies from 23 to 28 percent over the power range.

  11. Systems definition space based power conversion systems: Executive summary

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Potential space-located systems for the generation of electrical power for use on earth were investigated. These systems were of three basic types: (1) systems producing electrical power from solar energy; (2) systems producing electrical power from nuclear reactors; (3) systems for augmenting ground-based solar power plants by orbital sunlight reflectors. Configurations implementing these concepts were developed through an optimization process intended to yield the lowest cost for each. A complete program was developed for each concept, identifying required production rates, quantities of launches, required facilities, etc. Each program was costed in order to provide the electric power cost appropriate to each concept.

  12. Design of investment management optimization system for power grid companies under new electricity reform

    NASA Astrophysics Data System (ADS)

    Yang, Chunhui; Su, Zhixiong; Wang, Xin; Liu, Yang; Qi, Yongwei

    2017-03-01

    The new normalization of the economic situation and the implementation of a new round of electric power system reform put forward higher requirements to the daily operation of power grid companies. As an important day-to-day operation of power grid companies, investment management is directly related to the promotion of the company's operating efficiency and management level. In this context, the establishment of power grid company investment management optimization system will help to improve the level of investment management and control the company, which is of great significance for power gird companies to adapt to market environment changing as soon as possible and meet the policy environment requirements. Therefore, the purpose of this paper is to construct the investment management optimization system of power grid companies, which includes investment management system, investment process control system, investment structure optimization system, and investment project evaluation system and investment management information platform support system.

  13. 14 CFR 23.1309 - Equipment, systems, and installations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... chapter and that requires a power supply is an “essential load” on the power supply. The power sources and the system must be able to supply the following power loads in probable operating combinations and for probable durations: (1) Loads connected to the power distribution system with the system functioning...

  14. Experimental Study on Active Cooling Systems Used for Thermal Management of High-Power Multichip Light-Emitting Diodes

    PubMed Central

    2014-01-01

    The objective of this study was to develop suitable cooling systems for high-power multichip LEDs. To this end, three different active cooling systems were investigated to control the heat generated by the powering of high-power multichip LEDs in two different configurations (30 and 2 × 15 W). The following cooling systems were used in the study: an integrated multi-fin heat sink design with a fan, a cooling system with a thermoelectric cooler (TEC), and a heat pipe cooling device. According to the results, all three systems were observed to be sufficient for cooling high-power LEDs. Furthermore, it was observed that the integrated multifin heat sink design with a fan was the most efficient cooling system for a 30 W high-power multichip LED. The cooling system with a TEC and 46 W input power was the most efficient cooling system for 2 × 15 W high-power multichip LEDs. PMID:25162058

  15. Large autonomous spacecraft electrical power system (LASEPS)

    NASA Technical Reports Server (NTRS)

    Dugal-Whitehead, Norma R.; Johnson, Yvette B.

    1992-01-01

    NASA - Marshall Space Flight Center is creating a large high voltage electrical power system testbed called LASEPS. This testbed is being developed to simulate an end-to-end power system from power generation and source to loads. When the system is completed it will have several power configurations, which will include several battery configurations. These configurations are: two 120 V batteries, one or two 150 V batteries, and one 250 to 270 V battery. This breadboard encompasses varying levels of autonomy from remote power converters to conventional software control to expert system control of the power system elements. In this paper, the construction and provisions of this breadboard are discussed.

  16. Application of VSC-HVDC with Shunt Connected SMES for Compensation of Power Fluctuation

    NASA Astrophysics Data System (ADS)

    Linn, Zarchi; Kakigano, Hiroaki; Miura, Yushi; Ise, Toshifumi

    This paper describes the application of VSC-HVDC (High Voltage DC Transmission using Voltage Source Converter) with shunt connected SMES (Superconducting Magnetic Energy Storage) for compensation of power fluctuation caused by fluctuating power source such as photovoltaics and wind turbines. The objectives of this proposed system is to smooth out fluctuating power in one terminal side of HVDC in order to avoid causing power system instability and frequency deviation by absorbing or providing power according to the system requirement while another terminal side power is fluctuated. The shunt connected SMES charges and discharges the energy to and from the dc side and it compensates required power of fluctuation to obtain constant power flow in one terminal side of VSC-HVDC system. This system configuration has ability for power system stabilization in the case of power fluctuation from natural energy source. PSCAD/EMTDC simulation is used to evaluate the performance of applied system configuration and control method.

  17. A Deep Space Power System Option Based on Synergistic Power Conversion Technologies

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.

    2000-01-01

    Deep space science missions have typically used radioisotope thermoelectric generator (RTG) power systems. The RTG power system has proven itself to be a rugged and highly reliable power system over many missions, however the thermal-to-electric conversion technology used was approximately 5% efficient. While the relatively low efficiency has some benefits in terms of system integration, there are compelling reasons why a more efficient conversion system should be pursued. The cost savings alone that are available as a result of the reduced isotope inventory are significant. The Advanced Radioisotope Power System (ARPS) project was established to fulfill this goal. Although it was not part of the ARPS project, Stirling conversion technology is being demonstrated with a low level of funding by both NASA and DOE. A power system with Stirling convertors. although intended for use with an isotope heat source. can be combined with other advanced technologies to provide a novel power system for deep space missions. An inflatable primary concentrator would be used in combination with a refractive secondary concentrator (RSC) as the heat source to power the system. The inflatable technology as a structure has made great progress for a variety of potential applications such as communications reflectors, radiators and solar arrays. The RSC has been pursued for use in solar thermal propulsion applications, and it's unique properties allow some advantageous system trades to be made. The power system proposed would completely eliminate the isotope heat source and could potentially provide power for science missions to planets as distant as Uranus. This paper will present the background and developmental status of the technologies and will then describe the power system being proposed.

  18. Advanced solar dynamic space power systems perspectives, requirements and technology needs

    NASA Technical Reports Server (NTRS)

    Dustin, M. O.; Savino, J. M.; Lacy, D. E.; Migra, R. P.; Juhasz, A. J.; Coles, C. E.

    1986-01-01

    Projected NASA, Civil, Commercial, and Military missions will require space power systems of increased versatility and power levels. The Advanced Solar Dynamic (ASD) Power systems offer the potential for efficient, lightweight, survivable, relatively compact, long-lived space power systems applicable to a wide range of power levels (3 to 300 kWe), and a wide variety of orbits. The successful development of these systems could satisfy the power needs for a wide variety of these projected missions. Thus, the NASA Lewis Research Center has embarked upon an aggressive ASD reserach project under the direction of NASA's Office of Aeronautics and Space Technology (DAST). The project is being implemented through a combination of in-house and contracted efforts. Key elements of this project are missions analysis to determine the power systems requirements, systems analysis to identify the most attractive ASD power systems to meet these requirements, and to guide the technology development efforts, and technology development of key components.

  19. Algorithm for Screening Phasor Measurement Unit Data for Power System Events and Categories and Common Characteristics for Events Seen in Phasor Measurement Unit Relative Phase-Angle Differences and Frequency Signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, A.; Santoso, S.; Muljadi, E.

    2013-08-01

    A network of multiple phasor measurement units (PMU) was created, set up, and maintained at the University of Texas at Austin to obtain actual power system measurements for power system analysis. Power system analysis in this report covers a variety of time ranges, such as short- term analysis for power system disturbances and their effects on power system behavior and long- term power system behavior using modal analysis. The first objective of this report is to screen the PMU data for events. The second objective of the report is to identify and describe common characteristics extracted from power system eventsmore » as measured by PMUs. The numerical characteristics for each category and how these characteristics are used to create selection rules for the algorithm are also described. Trends in PMU data related to different levels and fluctuations in wind power output are also examined.« less

  20. Adaptation and Re-Use of Spacecraft Power System Models for the Constellation Program

    NASA Technical Reports Server (NTRS)

    Hojnicki, Jeffrey S.; Kerslake, Thomas W.; Ayres, Mark; Han, Augustina H.; Adamson, Adrian M.

    2008-01-01

    NASA's Constellation Program is embarking on a new era of space exploration, returning to the Moon and beyond. The Constellation architecture will consist of a number of new spacecraft elements, including the Orion crew exploration vehicle, the Altair lunar lander, and the Ares family of launch vehicles. Each of these new spacecraft elements will need an electric power system, and those power systems will need to be designed to fulfill unique mission objectives and to survive the unique environments encountered on a lunar exploration mission. As with any new spacecraft power system development, preliminary design work will rely heavily on analysis to select the proper power technologies, size the power system components, and predict the system performance throughout the required mission profile. Constellation projects have the advantage of leveraging power system modeling developments from other recent programs such as the International Space Station (ISS) and the Mars Exploration Program. These programs have developed mature power system modeling tools, which can be quickly modified to meet the unique needs of Constellation, and thus provide a rapid capability for detailed power system modeling that otherwise would not exist.

  1. Probabilistic stability analysis: the way forward for stability analysis of sustainable power systems.

    PubMed

    Milanović, Jovica V

    2017-08-13

    Future power systems will be significantly different compared with their present states. They will be characterized by an unprecedented mix of a wide range of electricity generation and transmission technologies, as well as responsive and highly flexible demand and storage devices with significant temporal and spatial uncertainty. The importance of probabilistic approaches towards power system stability analysis, as a subsection of power system studies routinely carried out by power system operators, has been highlighted in previous research. However, it may not be feasible (or even possible) to accurately model all of the uncertainties that exist within a power system. This paper describes for the first time an integral approach to probabilistic stability analysis of power systems, including small and large angular stability and frequency stability. It provides guidance for handling uncertainties in power system stability studies and some illustrative examples of the most recent results of probabilistic stability analysis of uncertain power systems.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).

  2. Palm Power Free-Piston Stirling Engine Control Electronics

    NASA Astrophysics Data System (ADS)

    Keiter, Douglas E.; Holliday, Ezekiel

    2007-01-01

    A prototype 35We, JP-8 fueled, soldier-wearable power system for the DARPA Palm Power program has been developed and tested by Sunpower. A hermetically-sealed 42We Sunpower Free-Piston Stirling Engine (FPSE) with integral linear alternator is the prime mover for this system. To maximize system efficiency over a broad range of output power, a non-dissipative, highly efficient electronic control system which modulates engine output power by varying piston stroke and converts the AC output voltage of the FPSE into 28Vdc for the Palm Power end user, has been designed and demonstrated as an integral component of the Palm Power system. This paper reviews the current status and progress made in developing the control electronics for the Palm Power system, in addition to describing the operation and demonstrated performance of the engine controller in the context of the current JP-8 fueled Palm Power system.

  3. New Generation Power System for Space Applications

    NASA Technical Reports Server (NTRS)

    Jones, Loren; Carr, Greg; Deligiannis, Frank; Lam, Barbara; Nelson, Ron; Pantaleon, Jose; Ruiz, Ian; Treicler, John; Wester, Gene; Sauers, Jim; hide

    2004-01-01

    The Deep Space Avionics (DSA) Project is developing a new generation of power system building blocks. Using application specific integrated circuits (ASICs) and power switching modules a scalable power system can be constructed for use on multiple deep space missions including future missions to Mars, comets, Jupiter and its moons. The key developments of the DSA power system effort are five power ASICs and a mod ule for power switching. These components enable a modular and scalab le design approach, which can result in a wide variety of power syste m architectures to meet diverse mission requirements and environments . Each component is radiation hardened to one megarad) total dose. The power switching module can be used for power distribution to regular spacecraft loads, to propulsion valves and actuation of pyrotechnic devices. The number of switching elements per load, pyrotechnic firin gs and valve drivers can be scaled depending on mission needs. Teleme try data is available from the switch module via an I2C data bus. The DSA power system components enable power management and distribution for a variety of power buses and power system architectures employing different types of energy storage and power sources. This paper will describe each power ASIC#s key performance characteristics as well a s recent prototype test results. The power switching module test results will be discussed and will demonstrate its versatility as a multip urpose switch. Finally, the combination of these components will illu strate some of the possible power system architectures achievable fro m small single string systems to large fully redundant systems.

  4. Artificial Intelligence and Spacecraft Power Systems

    NASA Technical Reports Server (NTRS)

    Dugel-Whitehead, Norma R.

    1997-01-01

    This talk will present the work which has been done at NASA Marshall Space Flight Center involving the use of Artificial Intelligence to control the power system in a spacecraft. The presentation will include a brief history of power system automation, and some basic definitions of the types of artificial intelligence which have been investigated at MSFC for power system automation. A video tape of one of our autonomous power systems using co-operating expert systems, and advanced hardware will be presented.

  5. 14 CFR 27.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Control Systems § 27.695 Power boost and power-operated control system. (a) If a power boost or power-operated... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Power boost and power-operated control...

  6. 14 CFR 29.695 - Power boost and power-operated control system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Control Systems § 29.695 Power boost and power-operated control system. (a) If a power boost or power-operated... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Power boost and power-operated control...

  7. Onboard power line conditioning system for an electric or hybrid vehicle

    DOEpatents

    Kajouke, Lateef A.; Perisic, Milun

    2016-06-14

    A power line quality conditioning system for a vehicle includes an onboard rechargeable direct current (DC) energy storage system and an onboard electrical system coupled to the energy storage system. The energy storage system provides DC energy to drive an electric traction motor of the vehicle. The electrical system operates in a charging mode such that alternating current (AC) energy from a power grid external to the vehicle is converted to DC energy to charge the DC energy storage system. The electrical system also operates in a vehicle-to-grid power conditioning mode such that DC energy from the DC energy storage system is converted to AC energy to condition an AC voltage of the power grid.

  8. High-power VCSEL systems and applications

    NASA Astrophysics Data System (ADS)

    Moench, Holger; Conrads, Ralf; Deppe, Carsten; Derra, Guenther; Gronenborn, Stephan; Gu, Xi; Heusler, Gero; Kolb, Johanna; Miller, Michael; Pekarski, Pavel; Pollmann-Retsch, Jens; Pruijmboom, Armand; Weichmann, Ulrich

    2015-03-01

    Easy system design, compactness and a uniform power distribution define the basic advantages of high power VCSEL systems. Full addressability in space and time add new dimensions for optimization and enable "digital photonic production". Many thermal processes benefit from the improved control i.e. heat is applied exactly where and when it is needed. The compact VCSEL systems can be integrated into most manufacturing equipment, replacing batch processes using large furnaces and reducing energy consumption. This paper will present how recent technological development of high power VCSEL systems will extend efficiency and flexibility of thermal processes and replace not only laser systems, lamps and furnaces but enable new ways of production. High power VCSEL systems are made from many VCSEL chips, each comprising thousands of low power VCSELs. Systems scalable in power from watts to multiple ten kilowatts and with various form factors utilize a common modular building block concept. Designs for reliable high power VCSEL arrays and systems can be developed and tested on each building block level and benefit from the low power density and excellent reliability of the VCSELs. Furthermore advanced assembly concepts aim to reduce the number of individual processes and components and make the whole system even more simple and reliable.

  9. Photovoltaic power for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Baraona, Cosmo R.

    1990-01-01

    Space Station Freedom is described with special attention given to its electric power system. The photovoltaic arrays, the battery energy storage system, and the power management, and distribution system are also discussed. The current design of Freedom's power system and the system requirements, trade studies, and competing factors which lead to system selections are referenced. This will be the largest power system ever flown in space. This system represents the culmination of many developments that have improved system performance, reduced cost, and improved reliability. Key developments and their evolution into the current space station solar array design are briefly described. The features of the solar cell and the array including the development, design, test, and flight hardware production status are given.

  10. Photovoltaic power for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Baraona, Cosmo R.

    1990-01-01

    Space Station Freedom is described with special attention to its electric power system. The photovoltaic arrays, the battery energy storage system, and the power management and distribution system are also discussed. The current design of Freedom's power system and the system requirements, trade studies, and competing factors which lead to system selections are referenced. This will be the largest power system ever flown in space. This system represents the culmination of many developments that have improved system performance, reduced cost, and improved reliability. Key developments and their evolution into the current space station solar array design are briefly described. The features of the solar cell and the array including the development, design, test, and flight hardware production status are given.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Touati, Said; Chennai, Salim; Souli, Aissa

    The increased requirements on supervision, control, and performance in modern power systems make power quality monitoring a common practise for utilities. Large databases are created and automatic processing of the data is required for fast and effective use of the available information. Aim of the work presented in this paper is the development of tools for analysis of monitoring power quality data and in particular measurements of voltage and currents in various level of electrical power distribution. The study is extended to evaluate the reliability of the electrical system in nuclear plant. Power Quality is a measure of how wellmore » a system supports reliable operation of its loads. A power disturbance or event can involve voltage, current, or frequency. Power disturbances can originate in consumer power systems, consumer loads, or the utility. The effect of power quality problems is the loss power supply leading to severe damage to equipments. So, we try to track and improve system reliability. The assessment can be focused on the study of impact of short circuits on the system, harmonics distortion, power factor improvement and effects of transient disturbances on the Electrical System during motor starting and power system fault conditions. We focus also on the review of the Electrical System design against the Nuclear Directorate Safety Assessment principles, including those extended during the last Fukushima nuclear accident. The simplified configuration of the required system can be extended from this simple scheme. To achieve these studies, we have used a demo ETAP power station software for several simulations. (authors)« less

  12. Results of an electrical power system fault study (CDDF)

    NASA Technical Reports Server (NTRS)

    Dugal-Whitehead, N. R.; Johnson, Y. B.

    1993-01-01

    This report gives the results of an electrical power system fault study which has been conducted over the last 2 and one-half years. First, the results of the literature search into electrical power system faults in space and terrestrial power system applications are reported. A description of the intended implementations of the power system faults into the Large Autonomous Spacecraft Electrical Power System (LASEPS) breadboard is then presented. Then, the actual implementation of the faults into the breadboard is discussed along with a discussion describing the LASEPS breadboard. Finally, the results of the injected faults and breadboard failures are discussed.

  13. The introduction of space technology power systems into developing countries

    NASA Technical Reports Server (NTRS)

    Roberts, Allen F.; Ratajczak, Anthony F.

    1989-01-01

    Between 1978 and 1984, NASA-Lewis was responsible for the design, fabrication, installation and operational support of 57 photovoltaic power systems in 27 countries. These systems were installed in locations not served by a central power system and ranged in size from 40 W for powering street lights to 29 kW for providing power to a complete village. Several of the system projects had socio/economic studies components that provided for an assessment of how the introduction of both electricity and a novel high technology power system affected the users and their society.

  14. Power processing systems for ion thrusters.

    NASA Technical Reports Server (NTRS)

    Herron, B. G.; Garth, D. R.; Finke, R. C.; Shumaker, H. A.

    1972-01-01

    The proposed use of ion thrusters to fulfill various communication satellite propulsion functions such as east-west and north-south stationkeeping, attitude control, station relocation and orbit raising, naturally leads to the requirement for lightweight, efficient and reliable thruster power processing systems. Collectively, the propulsion requirements dictate a wide range of thruster power levels and operational lifetimes, which must be matched by the power processing. This paper will discuss the status of such power processing systems, present system design alternatives and project expected near future power system performance.

  15. Comparison of electrically driven lasers for space power transmission

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.; Lee, J. H.; Williams, M. D.; Schuster, G.; Conway, E. J.

    1988-01-01

    High-power lasers in space could provide power for a variety of future missions such as spacecraft electric power requirements and laser propulsion. This study investigates four electrically pumped laser systems, all scaled to 1-MW laser output, that could provide power to spacecraft. The four laser systems are krypton fluoride, copper vapor, laser diode array, and carbon dioxide. Each system was powered by a large solar photovoltaic array which, in turn, provided power for the appropriate laser power conditioning subsystem. Each system was block-diagrammed, and the power and efficiency were found for each subsystem block component. The copper vapor system had the lowest system efficiency (6 percent). The CO2 laser was found to be the most readily scalable but has the disadvantage of long laser wavelength.

  16. 46 CFR 58.30-50 - Requirements for miscellaneous fluid power and control systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-50 Requirements for miscellaneous fluid power and control systems. (a) All fluid power and control... 46 Shipping 2 2010-10-01 2010-10-01 false Requirements for miscellaneous fluid power and control...

  17. 46 CFR 58.30-50 - Requirements for miscellaneous fluid power and control systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-50 Requirements for miscellaneous fluid power and control systems. (a) All fluid power and control... 46 Shipping 2 2014-10-01 2014-10-01 false Requirements for miscellaneous fluid power and control...

  18. 46 CFR 58.30-50 - Requirements for miscellaneous fluid power and control systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-50 Requirements for miscellaneous fluid power and control systems. (a) All fluid power and control... 46 Shipping 2 2013-10-01 2013-10-01 false Requirements for miscellaneous fluid power and control...

  19. 46 CFR 58.30-50 - Requirements for miscellaneous fluid power and control systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-50 Requirements for miscellaneous fluid power and control systems. (a) All fluid power and control... 46 Shipping 2 2011-10-01 2011-10-01 false Requirements for miscellaneous fluid power and control...

  20. 46 CFR 58.30-50 - Requirements for miscellaneous fluid power and control systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-50 Requirements for miscellaneous fluid power and control systems. (a) All fluid power and control... 46 Shipping 2 2012-10-01 2012-10-01 false Requirements for miscellaneous fluid power and control...

  1. Proceedings of the 1984 IEEE international conference on systems, man and cybernetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1984-01-01

    This conference contains papers on artificial intelligence, pattern recognition, and man-machine systems. Topics considered include concurrent minimization, a robot programming system, system modeling and simulation, camera calibration, thermal power plants, image processing, fault diagnosis, knowledge-based systems, power systems, hydroelectric power plants, expert systems, and electrical transients.

  2. Optimization of power systems with voltage security constraints

    NASA Astrophysics Data System (ADS)

    Rosehart, William Daniel

    As open access market principles are applied to power systems, significant changes in their operation and control are occurring. In the new marketplace, power systems are operating under higher loading conditions as market influences demand greater attention to operating cost versus stability margins. Since stability continues to be a basic requirement in the operation of any power system, new tools are being considered to analyze the effect of stability on the operating cost of the system, so that system stability can be incorporated into the costs of operating the system. In this thesis, new optimal power flow (OPF) formulations are proposed based on multi-objective methodologies to optimize active and reactive power dispatch while maximizing voltage security in power systems. The effects of minimizing operating costs, minimizing reactive power generation and/or maximizing voltage stability margins are analyzed. Results obtained using the proposed Voltage Stability Constrained OPF formulations are compared and analyzed to suggest possible ways of costing voltage security in power systems. When considering voltage stability margins the importance of system modeling becomes critical, since it has been demonstrated, based on bifurcation analysis, that modeling can have a significant effect of the behavior of power systems, especially at high loading levels. Therefore, this thesis also examines the effects of detailed generator models and several exponential load models. Furthermore, because of its influence on voltage stability, a Static Var Compensator model is also incorporated into the optimization problems.

  3. Study of multi-megawatt technology needs for photovoltaic space power systems, volume 2

    NASA Technical Reports Server (NTRS)

    Peterson, D. M.; Pleasant, R. L.

    1981-01-01

    Possible missions requiring multimegawatt photovoltaic space power systems in the 1990's time frame and power system technology needs associated with these missions are examined. Four specific task areas were considered: (1) missions requiring power in the 1-10 megawatt average power region; (2) alternative power systems and component technologies; (3) technology goals and sensitivity trades and analyses; and (4) technology recommendations. Specific concepts for photovoltaic power approaches considered were: planar arrays, concentrating arrays, hybrid systems using Rankine engines, thermophotovoltaic approaches; all with various photovoltaic cell component technologies. Various AC/DC power management approaches, and battery, fuel cell, and flywheel energy storage concepts are evaluated. Interactions with the electrical ion engine injection and stationkeeping system are also considered.

  4. Automated distribution system management for multichannel space power systems

    NASA Technical Reports Server (NTRS)

    Fleck, G. W.; Decker, D. K.; Graves, J.

    1983-01-01

    A NASA sponsored study of space power distribution system technology is in progress to develop an autonomously managed power system (AMPS) for large space power platforms. The multichannel, multikilowatt, utility-type power subsystem proposed presents new survivability requirements and increased subsystem complexity. The computer controls under development for the power management system must optimize the power subsystem performance and minimize the life cycle cost of the platform. A distribution system management philosophy has been formulated which incorporates these constraints. Its implementation using a TI9900 microprocessor and FORTH as the programming language is presented. The approach offers a novel solution to the perplexing problem of determining the optimal combination of loads which should be connected to each power channel for a versatile electrical distribution concept.

  5. Radiation Specifications for Fission Power Conversion Component Materials

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl L.; Shin, E. Eugene; Mireles, Omar R.; Radel, Ross F.; Qualls, A. Louis

    2011-01-01

    NASA has been supporting design studies and technology development that could provide power to an outpost on the moon, Mars, or an asteroid. One power-generation system that is independent of sunlight or power-storage limitations is a fission-based power plant. There is a wealth of terrestrial system heritage that can be transferred to the design and fabrication of a fission power system for space missions, but there are certain design aspects that require qualification. The radiation tolerance of the power conversion system requires scrutiny because the compact nature of a space power plant restricts the dose reduction methodologies compared to those used in terrestrial systems. An integrated research program has been conducted to establish the radiation tolerance of power conversion system-component materials. The radiation limit specifications proposed for a Fission Power System power convertor is 10 Mrad ionizing dose and 5 x 10(exp 14) neutron per square centimeter fluence for a convertor operating at 150 C. Specific component materials and their radiation tolerances are discussed. This assessment is for the power convertor hardware; electronic components are not covered here.

  6. PC Software graphics tool for conceptual design of space/planetary electrical power systems

    NASA Technical Reports Server (NTRS)

    Truong, Long V.

    1995-01-01

    This paper describes the Decision Support System (DSS), a personal computer software graphics tool for designing conceptual space and/or planetary electrical power systems. By using the DSS, users can obtain desirable system design and operating parameters, such as system weight, electrical distribution efficiency, and bus power. With this tool, a large-scale specific power system was designed in a matter of days. It is an excellent tool to help designers make tradeoffs between system components, hardware architectures, and operation parameters in the early stages of the design cycle. The DSS is a user-friendly, menu-driven tool with online help and a custom graphical user interface. An example design and results are illustrated for a typical space power system with multiple types of power sources, frequencies, energy storage systems, and loads.

  7. The influence of utility-interactive PV system characteristics to ac power networks

    NASA Astrophysics Data System (ADS)

    Takeda, Y.; Takigawa, K.; Kaminosono, H.

    Two basic experimental photovoltaic (PV) systems have been built for the study of variation of power quality, aspects of safety, and technical problems. One system uses a line-commutated inverter, while the other system uses a self-commutated inverter. A description is presented of the operating and generating characteristics of the two systems. The systems were connected to an ac simulated network which simulates an actual power distribution system. Attention is given to power generation characteristics, the control characteristics, the harmonics characteristics, aspects of coordination with the power network, and questions regarding the reliability of photovoltaic modules.

  8. A mechanical, thermal and electrical packaging design for a prototype power management and control system for the 30 cm mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Sharp, G. R.; Gedeon, L.; Oglebay, J. C.; Shaker, F. S.; Siegert, C. E.

    1978-01-01

    A prototype electric power management and thruster control system for a 30 cm ion thruster is described. The system meets all of the requirements necessary to operate a thruster in a fully automatic mode. Power input to the system can vary over a full two to one dynamic range (200 to 400 V) for the solar array or other power source. The power management and control system is designed to protect the thruster, the flight system and itself from arcs and is fully compatible with standard spacecraft electronics. The system is easily integrated into flight systems which can operate over a thermal environment ranging from 0.3 to 5 AU. The complete power management and control system measures 45.7 cm (18 in.) x 15.2 cm (6 in.) x 114.8 cm (45.2 in.) and weighs 36.2 kg (79.7 lb). At full power the overall efficiency of the system is estimated to be 87.4 percent. Three systems are currently being built and a full schedule of environmental and electrical testing is planned.

  9. A Practical Study of the 66kV Fault Current Limiter (FCL) System with Rectifier

    NASA Astrophysics Data System (ADS)

    Tokuda, Noriaki; Matsubara, Yoshio; Yuguchi, Kyosuke; Ohkuma, Takeshi; Hobara, Natsuro; Takahashi, Yoshihisa

    A fault current limiter (FCL) is extensively expected to suppress fault current, particularly required for trunk power systems heavily connected high-voltage transmission lines, such as 500kV class power system which constitutes the nucleus of the electric power system. By installing such FCL in the power system, the system interconnection is possible without the need to raise the capacity of the circuit breakers, and facilities can be configured for efficiency, among other benefits. For these reasons, fault current limiters based on various principles of operation have been developed both in Japan and abroad. In this paper, we have proposed a new type of FCL system, consisting of solid-state diodes, DC coil and bypass AC coil, and described the specification of distribution power system and 66kV model at the island power system and the superconducting cable power system. Also we have made a practical study of 66kV class, which is the testing items and the future subjects of the rectifier type FCL system.

  10. Advanced power system protection and incipient fault detection and protection of spaceborne power systems

    NASA Technical Reports Server (NTRS)

    Russell, B. Don

    1989-01-01

    This research concentrated on the application of advanced signal processing, expert system, and digital technologies for the detection and control of low grade, incipient faults on spaceborne power systems. The researchers have considerable experience in the application of advanced digital technologies and the protection of terrestrial power systems. This experience was used in the current contracts to develop new approaches for protecting the electrical distribution system in spaceborne applications. The project was divided into three distinct areas: (1) investigate the applicability of fault detection algorithms developed for terrestrial power systems to the detection of faults in spaceborne systems; (2) investigate the digital hardware and architectures required to monitor and control spaceborne power systems with full capability to implement new detection and diagnostic algorithms; and (3) develop a real-time expert operating system for implementing diagnostic and protection algorithms. Significant progress has been made in each of the above areas. Several terrestrial fault detection algorithms were modified to better adapt to spaceborne power system environments. Several digital architectures were developed and evaluated in light of the fault detection algorithms.

  11. Status of a Power Processor for the Prometheus-1 Electric Propulsion System

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Hill, Gerald M.; Aulisio, Michael; Gerber, Scott; Griebeler, Elmer; Hewitt, Frank; Scina, Joseph

    2006-01-01

    NASA is developing technologies for nuclear electric propulsion for proposed deep space missions in support of the Exploration initiative under Project Prometheus. Electrical power produced by the combination of a fission-based power source and a Brayton power conversion and distribution system is used by a high specific impulse ion propulsion system to propel the spaceship. The ion propulsion system include the thruster, power processor and propellant feed system. A power processor technology development effort was initiated under Project Prometheus to develop high performance and lightweight power-processing technologies suitable for the application. This effort faces multiple challenges including developing radiation hardened power modules and converters with very high power capability and efficiency to minimize the impact on the power conversion and distribution system as well as the heat rejection system. This paper documents the design and test results of the first version of the beam supply, the design of a second version of the beam supply and the design and test results of the ancillary supplies.

  12. Heat Transfer Phenomena in Concentrating Solar Power Systems.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armijo, Kenneth Miguel; Shinde, Subhash L.

    Concentrating solar power (CSP) utilizes solar thermal energy to drive a thermal power cycle for the generation of electricity. CSP systems are facilitated as large, centralized power plants , such as power towers and trough systems, to take advantage of ec onomies of scale through dispatchable thermal energy storage, which is a principle advantage over other energy generation systems . Additionally, the combination of large solar concentration ratios with high solar conversion efficiencies provides a strong o pportunity of employment of specific power cycles such as the Brayton gas cycle that utilizes super critical fluids such as supercritical carbon dioxidemore » (s CO 2 ) , compared to other sola r - fossil hybrid power plants. A comprehensive thermal - fluids examination is provided by this work of various heat transfer phenomena evident in CSP technologies. These include sub - systems and heat transfer fundamental phenomena evident within CSP systems , which include s receivers, heat transfer fluids (HTFs), thermal storage me dia and system designs , thermodynamic power block systems/components, as well as high - temperature materials. This work provides literature reviews, trade studies, and phenomenological comparisons of heat transfer media (HTM) and components and systems, all for promotion of high performance and efficient CSP systems. In addition, f urther investigations are also conducted that provide advanced heat transfer modeling approaches for gas - particle receiver systems , as well as performance/efficiency enhancement re commendations, particularly for solarized supercritical power systems .« less

  13. Automation of Space Station module power management and distribution system

    NASA Technical Reports Server (NTRS)

    Bechtel, Robert; Weeks, Dave; Walls, Bryan

    1990-01-01

    Viewgraphs on automation of space station module (SSM) power management and distribution (PMAD) system are presented. Topics covered include: reasons for power system automation; SSM/PMAD approach to automation; SSM/PMAD test bed; SSM/PMAD topology; functional partitioning; SSM/PMAD control; rack level autonomy; FRAMES AI system; and future technology needs for power system automation.

  14. Photovoltaic Power System and Power Distribution Demonstration for the Desert RATS Program

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony; Jakupca, Ian; Mintz, Toby; Herlacher, Mike; Hussey, Sam

    2012-01-01

    A stand alone, mobile photovoltaic power system along with a cable deployment system was designed and constructed to take part in the Desert Research And Technology Studies (RATS) lunar surface human interaction evaluation program at Cinder Lake, Arizona. The power system consisted of a photovoltaic array/battery system. It is capable of providing 1 kW of electrical power. The system outputs were 48 V DC, 110 V AC, and 220 V AC. A cable reel with 200 m of power cable was used to provide power from the trailer to a remote location. The cable reel was installed on a small trailer. The reel was powered to provide low to no tension deployment of the cable. The cable was connected to the 220 V AC output of the power system trailer. The power was then converted back to 110 V AC on the cable deployment trailer for use at the remote site. The Scout lunar rover demonstration vehicle was used to tow the cable trailer and deploy the power cable. This deployment was performed under a number of operational scenarios, manned operation, remote operation and tele-robotically. Once deployed, the cable was used to provide power, from the power system trailer, to run various operational tasks at the remote location.

  15. Advanced Radioisotope Power Systems Segmented Thermoelectric Research

    NASA Technical Reports Server (NTRS)

    Caillat, Thierry

    2004-01-01

    Flight times are long; - Need power systems with >15 years life. Mass is at an absolute premium; - Need power systems with high specific power and scalability. 3 orders of magnitude reduction in solar irradiance from Earth to Pluto. Nuclear power sources preferable. The Overall objective is to develop low mass, high efficiency, low-cost Advanced Radioisotope Power System with double the Specific Power and Efficiency over state-of-the-art Radioisotope Thermoelectric Generators (RTGs).

  16. Solar Power System Options for the Radiation and Technology Demonstration Spacecraft

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Haraburda, Francis M.; Riehl, John P.

    2000-01-01

    The Radiation and Technology Demonstration (RTD) Mission has the primary objective of demonstrating high-power (10 kilowatts) electric thruster technologies in Earth orbit. This paper discusses the conceptual design of the RTD spacecraft photovoltaic (PV) power system and mission performance analyses. These power system studies assessed multiple options for PV arrays, battery technologies and bus voltage levels. To quantify performance attributes of these power system options, a dedicated Fortran code was developed to predict power system performance and estimate system mass. The low-thrust mission trajectory was analyzed and important Earth orbital environments were modeled. Baseline power system design options are recommended on the basis of performance, mass and risk/complexity. Important findings from parametric studies are discussed and the resulting impacts to the spacecraft design and cost.

  17. Integration of SPS with utility system networks

    NASA Technical Reports Server (NTRS)

    Kaupang, B. M.

    1980-01-01

    The integration of Satellite Power System (SPS) power in electric utility power systems is discussed. Specifically, the nature of the power output variations from the spacecraft to the rectenna, the operational characteristics of the rectenna power, and the impacts on the electric utility system from utilizing SPS power to serve part of the system load are treated. It is concluded that if RF beam control is an acceptable method for power control, and that the site distribution of SPS rectennas do not cause a very high local penetration (40 to 50%), SPS may be integrated into electric utility system with a few negative impacts. Increased regulating duty on the conventional generation, and a potential impact on system reliability for SPS penetration in excess of about 25% appear to be two areas of concern.

  18. Optimal Quasi-steady Plasma Thruster system characteristics.

    NASA Technical Reports Server (NTRS)

    Ludwig, D. E.; Kelly, A. J.

    1972-01-01

    The overall characteristics of a generalized Quasi-steady Plasma Thruster (QPT) system consisting of thruster head, power conditioning network, propellant supply subsystem are studied. Energy balance equations for the system are coupled with component mass relationships in order to determine overall system mass and performance. Power supply power levels varying from 100 to 10,000 watts with thruster power levels ranging from 300 kw to 30 Mw employing argon as the propellant are considered. The manner in which overall system mass, average thrust, and burn time vary as a function power supply power level, quasi-steady power level, and pulse time are studied. Results indicate the existence of optimum pulse times when system mass is employed as an optimization criterion.

  19. Solar power satellite system definition study. Volume 3: Reference system description, phase 1

    NASA Technical Reports Server (NTRS)

    1979-01-01

    An analysis of the solar power satellite system is presented. The satellite solar energy conversion and microwave power transmission systems are discussed including the structure, power distribution, thermal control, and energy storage. Space construction and support systems are described including the work support facilities and construction equipment. An assessment of the space transportation system for the satellite and the ground receiving station is presented.

  20. Intelligent vehicle electrical power supply system with central coordinated protection

    NASA Astrophysics Data System (ADS)

    Yang, Diange; Kong, Weiwei; Li, Bing; Lian, Xiaomin

    2016-07-01

    The current research of vehicle electrical power supply system mainly focuses on electric vehicles (EV) and hybrid electric vehicles (HEV). The vehicle electrical power supply system used in traditional fuel vehicles is rather simple and imperfect; electrical/electronic devices (EEDs) applied in vehicles are usually directly connected with the vehicle's battery. With increasing numbers of EEDs being applied in traditional fuel vehicles, vehicle electrical power supply systems should be optimized and improved so that they can work more safely and more effectively. In this paper, a new vehicle electrical power supply system for traditional fuel vehicles, which accounts for all electrical/electronic devices and complex work conditions, is proposed based on a smart electrical/electronic device (SEED) system. Working as an independent intelligent electrical power supply network, the proposed system is isolated from the electrical control module and communication network, and access to the vehicle system is made through a bus interface. This results in a clean controller power supply with no electromagnetic interference. A new practical battery state of charge (SoC) estimation method is also proposed to achieve more accurate SoC estimation for lead-acid batteries in traditional fuel vehicles so that the intelligent power system can monitor the status of the battery for an over-current state in each power channel. Optimized protection methods are also used to ensure power supply safety. Experiments and tests on a traditional fuel vehicle are performed, and the results reveal that the battery SoC is calculated quickly and sufficiently accurately for battery over-discharge protection. Over-current protection is achieved, and the entire vehicle's power utilization is optimized. For traditional fuel vehicles, the proposed vehicle electrical power supply system is comprehensive and has a unified system architecture, enhancing system reliability and security.

  1. Comparisons of selected laser beam power missions to conventionally powered missions

    NASA Technical Reports Server (NTRS)

    Bozek, John M.; Oleson, Steven R.; Landis, Geoffrey A.; Stavnes, Mark W.

    1993-01-01

    Earth-based laser sites beaming laser power to space assets have shown benefits over competing power system concepts for specific missions. Missions analyzed in this report that show benefits of laser beam power are low Earth orbit (LEO) to geosynchronous Earth orbit (GEO) transfer, LEO to low lunar orbit (LLO) cargo missions, and lunar-base power. Both laser- and solar-powered orbit-transfer vehicles (OTV's) make a 'tug' concept viable, which substantially reduces cumulative initial mass to LEO in comparison to chemical propulsion concepts. Lunar cargo missions utilizing laser electric propulsion from Earth-orbit to LLO show substantial mass saving to LEO over chemical propulsion systems. Lunar-base power system options were compared on a landed-mass basis. Photovoltaics with regenerative fuel cells, reactor-based systems, and laser-based systems were sized to meet a generic lunar-base power profile. A laser-based system begins to show landed mass benefits over reactor-based systems when proposed production facilities on the Moon require power levels greater than approximately 300 kWe. Benefit/cost ratios of laser power systems for an OTV, both to GEO and LLO, and for a lunar base were calculated to be greater than 1.

  2. Identification of Characterization Factor for Power System Oscillation Based on Multiple Synchronized Phasor Measurements

    NASA Astrophysics Data System (ADS)

    Hashiguchi, Takuhei; Watanabe, Masayuki; Matsushita, Akihiro; Mitani, Yasunori; Saeki, Osamu; Tsuji, Kiichiro; Hojo, Masahide; Ukai, Hiroyuki

    Electric power systems in Japan are composed of remote and distributed location of generators and loads mainly concentrated in large demand areas. The structures having long distance transmission tend to produce heavy power flow with increasing electric power demand. In addition, some independent power producers (IPP) and power producer and suppliers (PPS) are participating in the power generation business, which makes power system dynamics more complex. However, there was little observation as a whole power system. In this paper the authors present a global monitoring system of power system dynamics by using the synchronized phasor measurement of demand side outlets. Phasor Measurement Units (PMU) are synchronized based on the global positioning system (GPS). The purpose of this paper is to show oscillation characteristics and methods for processing original data obtained from PMU after certain power system disturbances triggered by some accidents. This analysis resulted in the observation of the lowest and the second lowest frequency mode. The derivation of eigenvalue with two degree of freedom model brings a monitoring of two oscillation modes. Signal processing based on Wavelet analysis and simulation studies to illustrate the obtained phenomena are demonstrated in detail.

  3. Parrallel power for undersea application: The basic considerations

    NASA Technical Reports Server (NTRS)

    Kirkham, H.; Howe, B.

    2001-01-01

    Power systems for undersea observatories are required to deliver high power with good reliability. For the proposed NEPTUNE observatory, the authors have developed a power scheme that combines ideas from terrestial power systems and switching power supplies with experience from undersea cable systems.

  4. Power Systems of the Future: A 21st Century Power Partnership Thought Leadership Report (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Powerful trends in technology, policy environments, financing, and business models are driving change in power sectors globally. In light of these trends, the question is no longer whether power systems will be transformed, but rather how these transformations will occur. Power Systems of the Future, a thought leadership report from the 21st Century Power Partnership, explores these pathways explores actions that policymakers and regulators can take to encourage desired power system outcomes.

  5. Optical Power Transfer System for Powering a Remote Mobility System for Multiple Missions

    NASA Technical Reports Server (NTRS)

    Hogan, Bartholomew P. (Inventor); Stone, William C. (Inventor)

    2016-01-01

    An optical power transfer system for powering a remote mobility system for multiple missions comprising a high power source and a chilling station connected to a laser source. The laser source transmits a high optical energy to a beam switch assembly via an optical fiber. The beam switch assembly is optically connected to actively cooled fiber spoolers. Docking stations are adapted for securing the fiber spoolers until alternatively ready for use by a remote mobility system. The remote mobility system is optically connected to the fiber spoolers and has a receiving port adapted for securing the fiber spoolers thereon. The fiber spooler transmits the optical energy to a power conversion system which converts the optical energy received to another usable form of energy. More than one power source may be used where the remote mobility system transfers from one source to another while maintaining an operational radius to each source.

  6. Space Nuclear Power Systems

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.

    2012-01-01

    Fission power and propulsion systems can enable exciting space exploration missions. These include bases on the moon and Mars; and the exploration, development, and utilization of the solar system. In the near-term, fission surface power systems could provide abundant, constant, cost-effective power anywhere on the surface of the Moon or Mars, independent of available sunlight. Affordable access to Mars, the asteroid belt, or other destinations could be provided by nuclear thermal rockets. In the further term, high performance fission power supplies could enable both extremely high power levels on planetary surfaces and fission electric propulsion vehicles for rapid, efficient cargo and crew transfer. Advanced fission propulsion systems could eventually allow routine access to the entire solar system. Fission systems could also enable the utilization of resources within the solar system.

  7. Parallel dispatch: a new paradigm of electrical power system dispatch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jun Jason; Wang, Fei-Yue; Wang, Qiang

    Modern power systems are evolving into sociotechnical systems with massive complexity, whose real-time operation and dispatch go beyond human capability. Thus, the need for developing and applying new intelligent power system dispatch tools are of great practical significance. In this paper, we introduce the overall business model of power system dispatch, the top level design approach of an intelligent dispatch system, and the parallel intelligent technology with its dispatch applications. We expect that a new dispatch paradigm, namely the parallel dispatch, can be established by incorporating various intelligent technologies, especially the parallel intelligent technology, to enable secure operation of complexmore » power grids, extend system operators U+02BC capabilities, suggest optimal dispatch strategies, and to provide decision-making recommendations according to power system operational goals.« less

  8. Automated Power-Distribution System

    NASA Technical Reports Server (NTRS)

    Ashworth, Barry; Riedesel, Joel; Myers, Chris; Miller, William; Jones, Ellen F.; Freeman, Kenneth; Walsh, Richard; Walls, Bryan K.; Weeks, David J.; Bechtel, Robert T.

    1992-01-01

    Autonomous power-distribution system includes power-control equipment and automation equipment. System automatically schedules connection of power to loads and reconfigures itself when it detects fault. Potential terrestrial applications include optimization of consumption of power in homes, power supplies for autonomous land vehicles and vessels, and power supplies for automated industrial processes.

  9. Thermoelectric power generator for variable thermal power source

    DOEpatents

    Bell, Lon E; Crane, Douglas Todd

    2015-04-14

    Traditional power generation systems using thermoelectric power generators are designed to operate most efficiently for a single operating condition. The present invention provides a power generation system in which the characteristics of the thermoelectrics, the flow of the thermal power, and the operational characteristics of the power generator are monitored and controlled such that higher operation efficiencies and/or higher output powers can be maintained with variably thermal power input. Such a system is particularly beneficial in variable thermal power source systems, such as recovering power from the waste heat generated in the exhaust of combustion engines.

  10. Autonomous self-powered structural health monitoring system

    NASA Astrophysics Data System (ADS)

    Qing, Xinlin P.; Anton, Steven R.; Zhang, David; Kumar, Amrita; Inman, Daniel J.; Ooi, Teng K.

    2010-03-01

    Structural health monitoring technology is perceived as a revolutionary method of determining the integrity of structures involving the use of multidisciplinary fields including sensors, materials, system integration, signal processing and interpretation. The core of the technology is the development of self-sufficient systems for the continuous monitoring, inspection and damage detection of structures with minimal labor involvement. A major drawback of the existing technology for real-time structural health monitoring is the requirement for external electrical power input. For some applications, such as missiles or combat vehicles in the field, this factor can drastically limit the use of the technology. Having an on-board electrical power source that is independent of the vehicle power system can greatly enhance the SHM system and make it a completely self-contained system. In this paper, using the SMART layer technology as a basis, an Autonomous Self-powered (ASP) Structural Health Monitoring (SHM) system has been developed to solve the major challenge facing the transition of SHM systems into field applications. The architecture of the self-powered SHM system was first designed. There are four major components included in the SHM system: SMART Layer with sensor network, low power consumption diagnostic hardware, rechargeable battery with energy harvesting device, and host computer with supporting software. A prototype of the integrated self-powered active SHM system was built for performance and functionality testing. Results from the evaluation tests demonstrated that a fully charged battery system is capable of powering the SHM system for active scanning up to 10 hours.

  11. Power management system

    DOEpatents

    Algrain, Marcelo C.; Johnson, Kris W.; Akasam, Sivaprasad; Hoff, Brian D.

    2007-10-02

    A method of managing power resources for an electrical system of a vehicle may include identifying enabled power sources from among a plurality of power sources in electrical communication with the electrical system and calculating a threshold power value for the enabled power sources. A total power load placed on the electrical system by one or more power consumers may be measured. If the total power load exceeds the threshold power value, then a determination may be made as to whether one or more additional power sources is available from among the plurality of power sources. At least one of the one or more additional power sources may be enabled, if available.

  12. Solar power satellite system definition study. Volume 7, phase 1: SPS and rectenna systems analyses

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A systems definition study of the solar power satellite systems is presented. The design and power distribution of the rectenna system is discussed. The communication subsystem and thermal control characteristics are described and a failure analysis performed on the systems is reported.

  13. Automatic Generation Control Study in Two Area Reheat Thermal Power System

    NASA Astrophysics Data System (ADS)

    Pritam, Anita; Sahu, Sibakanta; Rout, Sushil Dev; Ganthia, Sibani; Prasad Ganthia, Bibhu

    2017-08-01

    Due to industrial pollution our living environment destroyed. An electric grid system has may vital equipment like generator, motor, transformers and loads. There is always be an imbalance between sending end and receiving end system which cause system unstable. So this error and fault causing problem should be solved and corrected as soon as possible else it creates faults and system error and fall of efficiency of the whole power system. The main problem developed from this fault is deviation of frequency cause instability to the power system and may cause permanent damage to the system. Therefore this mechanism studied in this paper make the system stable and balance by regulating frequency at both sending and receiving end power system using automatic generation control using various controllers taking a two area reheat thermal power system into account.

  14. 46 CFR 112.15-10 - Loads on systems without a temporary emergency power source.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Loads § 112.15-10 Loads on systems without a temporary emergency power source. If there is no temporary emergency power source, the loads... 46 Shipping 4 2013-10-01 2013-10-01 false Loads on systems without a temporary emergency power...

  15. 46 CFR 112.15-10 - Loads on systems without a temporary emergency power source.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Loads § 112.15-10 Loads on systems without a temporary emergency power source. If there is no temporary emergency power source, the loads... 46 Shipping 4 2014-10-01 2014-10-01 false Loads on systems without a temporary emergency power...

  16. 46 CFR 112.15-10 - Loads on systems without a temporary emergency power source.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Loads § 112.15-10 Loads on systems without a temporary emergency power source. If there is no temporary emergency power source, the loads... 46 Shipping 4 2012-10-01 2012-10-01 false Loads on systems without a temporary emergency power...

  17. 46 CFR 112.15-10 - Loads on systems without a temporary emergency power source.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Loads § 112.15-10 Loads on systems without a temporary emergency power source. If there is no temporary emergency power source, the loads... 46 Shipping 4 2011-10-01 2011-10-01 false Loads on systems without a temporary emergency power...

  18. 46 CFR 112.15-10 - Loads on systems without a temporary emergency power source.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Loads § 112.15-10 Loads on systems without a temporary emergency power source. If there is no temporary emergency power source, the loads... 46 Shipping 4 2010-10-01 2010-10-01 false Loads on systems without a temporary emergency power...

  19. Applying reliability analysis to design electric power systems for More-electric aircraft

    NASA Astrophysics Data System (ADS)

    Zhang, Baozhu

    The More-Electric Aircraft (MEA) is a type of aircraft that replaces conventional hydraulic and pneumatic systems with electrically powered components. These changes have significantly challenged the aircraft electric power system design. This thesis investigates how reliability analysis can be applied to automatically generate system topologies for the MEA electric power system. We first use a traditional method of reliability block diagrams to analyze the reliability level on different system topologies. We next propose a new methodology in which system topologies, constrained by a set reliability level, are automatically generated. The path-set method is used for analysis. Finally, we interface these sets of system topologies with control synthesis tools to automatically create correct-by-construction control logic for the electric power system.

  20. Microprocessor-based control systems application in nuclear power plant critical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, M.R.; Nowak, J.B.

    Microprocessor-based control systems have been used in fossil power plants and are receiving greater acceptance for application in nuclear plants. This technology is not new but it does require unique considerations when applied to nuclear power plants. Sargent and Lundy (S and L) has used a microprocessor-based component logic control system (interposing Logic System) for safety- and non-safety-related components in nuclear power plants under construction overseas. Currently, S and L is in the design stage to replace an existing analog control system with a microprocessor-based control system in the U.S. The trend in the industry is to replace systems inmore » existing plants or design new power plants with microprocessor-based control systems.« less

  1. Status of DOE and AID stand-alone photovoltaic system field tests

    NASA Astrophysics Data System (ADS)

    Bifano, W. J.; Delombard, R.; Ratajczak, A. F.; Scudder, L. R.

    The NASA Lewis Research Center (LeRC) is managing stand-alone photovoltaic (PV) system projects sponsored by the U.S. Department of Energy (DOE) and the U.S. Agency for International Development (AID). The DOE project includes village PV power demonstration projects in Gabon (four sites) and the Marshall Islands, and PV-powered vaccine refrigerator systems in six countries. The AID project includes a large village power system, a farmhouse system and two water pumping-irrigation systems in Tunisia, a water pumping/grain grinding system in Upper Volta, five medical clinic systems in four countries, PV-powered vaccine refrigerator systems in 18 countries and a PV-powered remote earth station in Indonesia. This paper reviews these PV projects and summarizes significant findings to date.

  2. Status of DOE and AID stand-alone photovoltaic system field tests

    NASA Technical Reports Server (NTRS)

    Bifano, W. J.; Delombard, R.; Ratajczak, A. F.; Scudder, L. R.

    1984-01-01

    The NASA Lewis Research Center (LeRC) is managing stand-alone photovoltaic (PV) system projects sponsored by the U.S. Department of Energy (DOE) and the U.S. Agency for International Development (AID). The DOE project includes village PV power demonstration projects in Gabon (four sites) and the Marshall Islands, and PV-powered vaccine refrigerator systems in six countries. The AID project includes a large village power system, a farmhouse system and two water pumping-irrigation systems in Tunisia, a water pumping/grain grinding system in Upper Volta, five medical clinic systems in four countries, PV-powered vaccine refrigerator systems in 18 countries and a PV-powered remote earth station in Indonesia. This paper reviews these PV projects and summarizes significant findings to date.

  3. Control system for high power laser drilling workover and completion unit

    DOEpatents

    Zediker, Mark S; Makki, Siamak; Faircloth, Brian O; DeWitt, Ronald A; Allen, Erik C; Underwood, Lance D

    2015-05-12

    A control and monitoring system controls and monitors a high power laser system for performing high power laser operations. The control and monitoring system is configured to perform high power laser operation on, and in, remote and difficult to access locations.

  4. Energy consumption and energy-saving potential analysis of pollutant abatement systems in a 1000MW coal-fired power plant.

    PubMed

    Yang, Hang; Zhang, Yongxin; Zheng, Chenghang; Wu, Xuecheng; Chen, Linghong; Gao, Xiang; Fu, Joshua S

    2018-05-10

    The pollutant abatement systems are widely applied in the coal-fired power sector and the energy consumption was considered an important part of the auxiliary power. An energy consumption analysis and assessment model of pollutant abatement systems in a power unit was developed based on the dynamic parameters and technology. The energy consumption of pollutant abatement systems in a 1000 MW coal-fired power unit which meet the ultra-low emission limits and the factors of operating parameters including unit load and inlet concentration of pollutants on the operating power were analyzed. The results show that the total power consumption of the pollutant abatement systems accounted for 1.27% of the gross power generation during the monitoring period. The WFGD system consumed 67% of the rate while the SCR and ESP systems consumed 8.9% and 24.1%. The power consumption rate of pollutant abatement systems decreased with the increase of unit load and increased with the increase of the inlet concentration of pollutants. The operation adjustment was also an effective method to increase the energy efficiency. For example, the operation adjustment of slurry circulation pumps could promote the energy-saving operation of WFGD system. Implication Statement The application of pollutant abatement technologies increases the internal energy consumption of the power plant, which will lead to an increase of power generation costs. The real-time energy consumption of the different pollutant abatement systems in a typical power unit is analyzed based on the dynamic operating data. Further, the influence of different operating parameters on the operating power of the system and the possible energy-saving potential are analyzed.

  5. Bulk electric system reliability evaluation incorporating wind power and demand side management

    NASA Astrophysics Data System (ADS)

    Huang, Dange

    Electric power systems are experiencing dramatic changes with respect to structure, operation and regulation and are facing increasing pressure due to environmental and societal constraints. Bulk electric system reliability is an important consideration in power system planning, design and operation particularly in the new competitive environment. A wide range of methods have been developed to perform bulk electric system reliability evaluation. Theoretically, sequential Monte Carlo simulation can include all aspects and contingencies in a power system and can be used to produce an informative set of reliability indices. It has become a practical and viable tool for large system reliability assessment technique due to the development of computing power and is used in the studies described in this thesis. The well-being approach used in this research provides the opportunity to integrate an accepted deterministic criterion into a probabilistic framework. This research work includes the investigation of important factors that impact bulk electric system adequacy evaluation and security constrained adequacy assessment using the well-being analysis framework. Load forecast uncertainty is an important consideration in an electrical power system. This research includes load forecast uncertainty considerations in bulk electric system reliability assessment and the effects on system, load point and well-being indices and reliability index probability distributions are examined. There has been increasing worldwide interest in the utilization of wind power as a renewable energy source over the last two decades due to enhanced public awareness of the environment. Increasing penetration of wind power has significant impacts on power system reliability, and security analyses become more uncertain due to the unpredictable nature of wind power. The effects of wind power additions in generating and bulk electric system reliability assessment considering site wind speed correlations and the interactive effects of wind power and load forecast uncertainty on system reliability are examined. The concept of the security cost associated with operating in the marginal state in the well-being framework is incorporated in the economic analyses associated with system expansion planning including wind power and load forecast uncertainty. Overall reliability cost/worth analyses including security cost concepts are applied to select an optimal wind power injection strategy in a bulk electric system. The effects of the various demand side management measures on system reliability are illustrated using the system, load point, and well-being indices, and the reliability index probability distributions. The reliability effects of demand side management procedures in a bulk electric system including wind power and load forecast uncertainty considerations are also investigated. The system reliability effects due to specific demand side management programs are quantified and examined in terms of their reliability benefits.

  6. Restrictive loads powered by separate or by common electrical sources

    NASA Technical Reports Server (NTRS)

    Appelbaum, J.

    1989-01-01

    In designing a multiple load electrical system, the designer may wish to compare the performance of two setups: a common electrical source powering all loads, or separate electrical sources powering individual loads. Three types of electrical sources: an ideal voltage source, an ideal current source, and solar cell source powering resistive loads were analyzed for their performances in separate and common source systems. A mathematical proof is given, for each case, indicating the merit of the separate or common source system. The main conclusions are: (1) identical resistive loads powered by ideal voltage sources perform the same in both system setups, (2) nonidentical resistive loads powered by ideal voltage sources perform the same in both system setups, (3) nonidentical resistive loads powered by ideal current sources have higher performance in separate source systems, and (4) nonidentical resistive loads powered by solar cells have higher performance in a common source system for a wide range of load resistances.

  7. Grid regulation services for energy storage devices based on grid frequency

    DOEpatents

    Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K

    2013-07-02

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  8. Grid regulation services for energy storage devices based on grid frequency

    DOEpatents

    Pratt, Richard M.; Hammerstrom, Donald J.; Kintner-Meyer, Michael C. W.; Tuffner, Francis K.

    2017-09-05

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  9. Grid regulation services for energy storage devices based on grid frequency

    DOEpatents

    Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K

    2014-04-15

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  10. Advanced microprocessor based power protection system using artificial neural network techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Z.; Kalam, A.; Zayegh, A.

    This paper describes an intelligent embedded microprocessor based system for fault classification in power system protection system using advanced 32-bit microprocessor technology. The paper demonstrates the development of protective relay to provide overcurrent protection schemes for fault detection. It also describes a method for power fault classification in three-phase system based on the use of neural network technology. The proposed design is implemented and tested on a single line three phase power system in power laboratory. Both the hardware and software development are described in detail.

  11. Power quality improvement of a stand-alone power system subjected to various disturbances

    NASA Astrophysics Data System (ADS)

    Lone, Shameem Ahmad; Mufti, Mairaj Ud-Din

    In wind-diesel stand-alone power systems, the disturbances like random nature of wind power, turbulent wind, sudden changes in load demand and the wind park disconnection effect continuously the system voltage and frequency. The satisfactory operation of such a system is not an easy task and the control design has to take in to account all these subtleties. For maintaining the power quality, generally, a short-term energy storage device is used. In this paper, the performance of a wind-diesel system associated with a superconducting magnetic energy storage (SMES) system is studied. The effect of installing SMES at wind park bus/load bus, on the system performance is investigated. To control the exchange of real and reactive powers between the SMES unit and the wind-diesel system, a control strategy based on fuzzy logic is proposed. The dynamic models of the hybrid power system for most common scenarios are developed and the results presented.

  12. A New Control Method to Mitigate Power Fluctuations for Grid Integrated PV/Wind Hybrid Power System Using Ultracapacitors

    NASA Astrophysics Data System (ADS)

    Jayalakshmi, N. S.; Gaonkar, D. N.

    2016-08-01

    The output power obtained from solar-wind hybrid system fluctuates with changes in weather conditions. These power fluctuations cause adverse effects on the voltage, frequency and transient stability of the utility grid. In this paper, a control method is presented for power smoothing of grid integrated PV/wind hybrid system using ultracapacitors in a DC coupled structure. The power fluctuations of hybrid system are mitigated and smoothed power is supplied to the utility grid. In this work both photovoltaic (PV) panels and the wind generator are controlled to operate at their maximum power point. The grid side inverter control strategy presented in this paper maintains DC link voltage constant while injecting power to the grid at unity power factor considering different operating conditions. Actual solar irradiation and wind speed data are used in this study to evaluate the performance of the developed system using MATLAB/Simulink software. The simulation results show that output power fluctuations of solar-wind hybrid system can be significantly mitigated using the ultracapacitor based storage system.

  13. Security region-based small signal stability analysis of power systems with FSIG based wind farm

    NASA Astrophysics Data System (ADS)

    Qin, Chao; Zeng, Yuan; Yang, Yang; Cui, Xiaodan; Xu, Xialing; Li, Yong

    2018-02-01

    Based on the Security Region approach, the impact of fixed-speed induction generator based wind farm on the small signal stability of power systems is analyzed. Firstly, the key factors of wind farm on the small signal stability of power systems are analyzed and the parameter space for small signal stability region is formed. Secondly, the small signal stability region of power systems with wind power is established. Thirdly, the corresponding relation between the boundary of SSSR and the dominant oscillation mode is further studied. Results show that the integration of fixed-speed induction generator based wind farm will cause the low frequency oscillation stability of the power system deteriorate. When the output of wind power is high, the oscillation stability of the power system is mainly concerned with the inter-area oscillation mode caused by the integration of the wind farm. Both the active power output and the capacity of reactive power compensation of the wind farm have a significant influence on the SSSR. To improve the oscillation stability of power systems with wind power, it is suggested to reasonably set the reactive power compensation capacity for the wind farm through SSSR.

  14. GPS synchronized power system phase angle measurements

    NASA Astrophysics Data System (ADS)

    Wilson, Robert E.; Sterlina, Patrick S.

    1994-09-01

    This paper discusses the use of Global Positioning System (GPS) synchronized equipment for the measurement and analysis of key power system quantities. Two GPS synchronized phasor measurement units (PMU) were installed before testing. It was indicated that PMUs recorded the dynamic response of the power system phase angles when the northern California power grid was excited by the artificial short circuits. Power system planning engineers perform detailed computer generated simulations of the dynamic response of the power system to naturally occurring short circuits. The computer simulations use models of transmission lines, transformers, circuit breakers, and other high voltage components. This work will compare computer simulations of the same event with field measurement.

  15. Analysis of GaAs and Si solar energy hybrid systems

    NASA Technical Reports Server (NTRS)

    Heinbockel, J. H.; Roberts, A. S., Jr.

    1977-01-01

    Various silicon hybrid systems are modeled and compared with a gallium arsenide hybrid system. The hybrid systems modeled produce electric power and also thermal power which can be used for heating or air conditioning. Various performance indices are defined and used to compare the system performance: capital cost per electric power out; capital cost per total power out; capital cost per electric power plus mechanical power; annual cost per annual electric energy; and annual cost per annual electric energy plus annual mechanical work. These performance indices indicate that concentrator hybrid systems can be cost effective when compared with present day energy costs.

  16. Autonomous power expert fault diagnostic system for Space Station Freedom electrical power system testbed

    NASA Technical Reports Server (NTRS)

    Truong, Long V.; Walters, Jerry L.; Roth, Mary Ellen; Quinn, Todd M.; Krawczonek, Walter M.

    1990-01-01

    The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control to the Space Station Freedom Electrical Power System (SSF/EPS) testbed being developed and demonstrated at NASA Lewis Research Center. The objectives of the program are to establish artificial intelligence technology paths, to craft knowledge-based tools with advanced human-operator interfaces for power systems, and to interface and integrate knowledge-based systems with conventional controllers. The Autonomous Power EXpert (APEX) portion of the APS program will integrate a knowledge-based fault diagnostic system and a power resource planner-scheduler. Then APEX will interface on-line with the SSF/EPS testbed and its Power Management Controller (PMC). The key tasks include establishing knowledge bases for system diagnostics, fault detection and isolation analysis, on-line information accessing through PMC, enhanced data management, and multiple-level, object-oriented operator displays. The first prototype of the diagnostic expert system for fault detection and isolation has been developed. The knowledge bases and the rule-based model that were developed for the Power Distribution Control Unit subsystem of the SSF/EPS testbed are described. A corresponding troubleshooting technique is also described.

  17. Design and experimental evaluation on an advanced multisource energy harvesting system for wireless sensor nodes.

    PubMed

    Li, Hao; Zhang, Gaofei; Ma, Rui; You, Zheng

    2014-01-01

    An effective multisource energy harvesting system is presented as power supply for wireless sensor nodes (WSNs). The advanced system contains not only an expandable power management module including control of the charging and discharging process of the lithium polymer battery but also an energy harvesting system using the maximum power point tracking (MPPT) circuit with analog driving scheme for the collection of both solar and vibration energy sources. Since the MPPT and the power management module are utilized, the system is able to effectively achieve a low power consumption. Furthermore, a super capacitor is integrated in the system so that current fluctuations of the lithium polymer battery during the charging and discharging processes can be properly reduced. In addition, through a simple analog switch circuit with low power consumption, the proposed system can successfully switch the power supply path according to the ambient energy sources and load power automatically. A practical WSNs platform shows that efficiency of the energy harvesting system can reach about 75-85% through the 24-hour environmental test, which confirms that the proposed system can be used as a long-term continuous power supply for WSNs.

  18. Design and Experimental Evaluation on an Advanced Multisource Energy Harvesting System for Wireless Sensor Nodes

    PubMed Central

    Li, Hao; Zhang, Gaofei; Ma, Rui; You, Zheng

    2014-01-01

    An effective multisource energy harvesting system is presented as power supply for wireless sensor nodes (WSNs). The advanced system contains not only an expandable power management module including control of the charging and discharging process of the lithium polymer battery but also an energy harvesting system using the maximum power point tracking (MPPT) circuit with analog driving scheme for the collection of both solar and vibration energy sources. Since the MPPT and the power management module are utilized, the system is able to effectively achieve a low power consumption. Furthermore, a super capacitor is integrated in the system so that current fluctuations of the lithium polymer battery during the charging and discharging processes can be properly reduced. In addition, through a simple analog switch circuit with low power consumption, the proposed system can successfully switch the power supply path according to the ambient energy sources and load power automatically. A practical WSNs platform shows that efficiency of the energy harvesting system can reach about 75–85% through the 24-hour environmental test, which confirms that the proposed system can be used as a long-term continuous power supply for WSNs. PMID:25032233

  19. Nuclear Hybrid Energy Systems FY16 Modeling Efforts at ORNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cetiner, Sacit M.; Greenwood, Michael Scott; Harrison, Thomas J.

    A nuclear hybrid system uses a nuclear reactor as the basic power generation unit. The power generated by the nuclear reactor is utilized by one or more power customers as either thermal power, electrical power, or both. In general, a nuclear hybrid system will couple the nuclear reactor to at least one thermal power user in addition to the power conversion system. The definition and architecture of a particular nuclear hybrid system is flexible depending on local markets needs and opportunities. For example, locations in need of potable water may be best served by coupling a desalination plant to themore » nuclear system. Similarly, an area near oil refineries may have a need for emission-free hydrogen production. A nuclear hybrid system expands the nuclear power plant from its more familiar central power station role by diversifying its immediately and directly connected customer base. The definition, design, analysis, and optimization work currently performed with respect to the nuclear hybrid systems represents the work of three national laboratories. Idaho National Laboratory (INL) is the lead lab working with Argonne National Laboratory (ANL) and Oak Ridge National Laboratory. Each laboratory is providing modeling and simulation expertise for the integration of the hybrid system.« less

  20. A Two-Stage Stochastic Mixed-Integer Programming Approach to the Smart House Scheduling Problem

    NASA Astrophysics Data System (ADS)

    Ozoe, Shunsuke; Tanaka, Yoichi; Fukushima, Masao

    A “Smart House” is a highly energy-optimized house equipped with photovoltaic systems (PV systems), electric battery systems, fuel cell cogeneration systems (FC systems), electric vehicles (EVs) and so on. Smart houses are attracting much attention recently thanks to their enhanced ability to save energy by making full use of renewable energy and by achieving power grid stability despite an increased power draw for installed PV systems. Yet running a smart house's power system, with its multiple power sources and power storages, is no simple task. In this paper, we consider the problem of power scheduling for a smart house with a PV system, an FC system and an EV. We formulate the problem as a mixed integer programming problem, and then extend it to a stochastic programming problem involving recourse costs to cope with uncertain electricity demand, heat demand and PV power generation. Using our method, we seek to achieve the optimal power schedule running at the minimum expected operation cost. We present some results of numerical experiments with data on real-life demands and PV power generation to show the effectiveness of our method.

  1. Space nuclear power systems; Proceedings of the 8th Symposium, Albuquerque, NM, Jan. 6-10, 1991. Pts. 1-3

    NASA Technical Reports Server (NTRS)

    El-Genk, Mohamed S. (Editor); Hoover, Mark D. (Editor)

    1991-01-01

    The present conference discusses NASA mission planning for space nuclear power, lunar mission design based on nuclear thermal rockets, inertial-electrostatic confinement fusion for space power, nuclear risk analysis of the Ulysses mission, the role of the interface in refractory metal alloy composites, an advanced thermionic reactor systems design code, and space high power nuclear-pumped lasers. Also discussed are exploration mission enhancements with power-beaming, power requirement estimates for a nuclear-powered manned Mars rover, SP-100 reactor design, safety, and testing, materials compatibility issues for fabric composite radiators, application of the enabler to nuclear electric propulsion, orbit-transfer with TOPAZ-type power sources, the thermoelectric properties of alloys, ruthenium silicide as a promising thermoelectric material, and innovative space-saving device for high-temperature piping systems. The second volume of this conference discusses engine concepts for nuclear electric propulsion, nuclear technologies for human exploration of the solar system, dynamic energy conversion, direct nuclear propulsion, thermionic conversion technology, reactor and power system control, thermal management, thermionic research, effects of radiation on electronics, heat-pipe technology, radioisotope power systems, and nuclear fuels for power reactors. The third volume discusses space power electronics, space nuclear fuels for propulsion reactors, power systems concepts, space power electronics systems, the use of artificial intelligence in space, flight qualifications and testing, microgravity two-phase flow, reactor manufacturing and processing, and space and environmental effects.

  2. Overview of the Habitat Demonstration Unit Power System Integration and Operation at Desert RATS 2010

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; George, Pat; Gambrell, Ronnie; Chapman, Chris

    2013-01-01

    A habitat demonstration unit (HDU) was constructed at NASA Johnson Space Center (JSC) and designed by a multicenter NASA team led out of NASA Kennedy Space Center (KSC). The HDU was subsequently utilized at the 2010 Desert Research and Technology Studies (RATS) program held at the Black Point Lava Flow in Arizona. This report describes the power system design, installation and operation for the HDU. The requirements for the power system were to provide 120 VAC, 28 VDC, and 120 VDC power to the various loads within the HDU. It also needed to be capable of providing power control and real-time operational data on the load's power consumption. The power system had to be capable of operating off of a 3 phase 480 VAC generator as well as 2 solar photovoltaic (PV) power systems. The system operated well during the 2 week Desert RATS campaign and met all of the main goals of the system. The power system is being further developed to meet the future needs of the HDU and options for this further development are discussed.

  3. Report of the Power Sub systems Panel. [spacecraft instrumentation technology

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Problems in spacecraft power system design, testing, integration, and operation are identified and solutions are defined. The specific technology development problems discussed include substorm and plasma design data, modeling of the power subsystem and components, power system monitoring and degraded system management, rotary joints for transmission of power and signals, nickel cadmium battery manufacturing and application, on-array power management, high voltage technology, and solar arrays.

  4. Space Nuclear Power and Propulsion: Materials Challenges for the 21st Century

    NASA Technical Reports Server (NTRS)

    Houts, Mike

    2008-01-01

    The current focus of NASA s space fission effort is Fission Surface Power (FSP). FSP systems could be used to provide power anytime, anywhere on the surface of the Moon or Mars. FSP systems could be used at locations away from the lunar poles or in permanently shaded regions, with no performance penalty. A potential reference 40 kWe option has been devised that is cost-competitive with alternatives while providing more power for less mass. The potential reference system is readily extensible for use on Mars. At Mars the system could be capable of operating through global dust storms and providing year-round power at any Martian latitude. To ensure affordability, the potential near-term, 40 kWe reference concept is designed to use only well established materials and fuels. However, if various materials challenges could be overcome, extremely high performance fission systems could be devised. These include high power, low mass fission surface power systems; in-space systems with high specific power; and high performance nuclear thermal propulsion systems. This tutorial will provide a brief overview of space fission systems and will focus on materials challenges that, if overcome, could help enable advanced exploration and utilization of the solar system.

  5. Control voltage and power fluctuations when connecting wind farms

    NASA Astrophysics Data System (ADS)

    Berinde, Ioan; Bǎlan, Horia; Oros Pop, Teodora Susana

    2015-12-01

    Voltage, frequency, active power and reactive power are very important parameters in terms of power quality. These parameters are followed when connecting any power plant, the more the connection of wind farms. Connecting wind farms to the electricity system must not cause interference outside the limits set by regulations. Modern solutions for fast and automatic voltage control and power fluctuations using electronic control systems of reactive power flows. FACTS (Flexible Alternating Current Transmision System) systems, established on the basis of power electronic circuits ensure control of electrical status quantities to achieve the necessary transfer of power to the power grid. FACTS devices can quickly control parameters and sizes of state power lines, such as impedance line voltages and phase angles of the voltages of the two ends of the line. Their use can lead to improvement in power system operation by increasing the transmission capacity of power lines, power flow control lines, improved static and transient stability reserve.

  6. ERDA/Lewis research center photovoltaic systems test facility

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Johnson, J. A.; Knapp, W. D.; Rigo, H.; Stover, J.; Suhay, R.

    1977-01-01

    A national photovoltaic power systems test facility (of initial 10-kW peak power rating) is described. It consists of a solar array to generate electrical power, test-hardware for several alternate methods of power conversion, electrical energy storage systems, and an instrumentation and data acquisition system.

  7. Evaluation Of Different Power Conditioning Options For Stirling Generators

    NASA Astrophysics Data System (ADS)

    Garrigos, A.; Blanes, J. M.; Carrasco, J. A.; Maset, E.; Montalban, G.; Ejea, J.; Ferreres, A.; Sanchis, E.

    2011-10-01

    Free-piston Stirling engines are an interesting alternative for electrical power systems, especially in deep space missions where photovoltaic systems are not feasible. This kind of power generators contains two main parts, the Stirling machine and the linear alternator that converts the mechanical energy from the piston movement to electrical energy. Since the generated power is in AC form, several aspects should be assessed to use such kind of generators in a spacecraft power system: AC/DC topologies, power factor correction, power regulation techniques, integration into the power system, etc. This paper details power generator operation and explores different power conversion approaches.

  8. An Adaptive Impedance Matching Network with Closed Loop Control Algorithm for Inductive Wireless Power Transfer

    PubMed Central

    Miao, Zhidong; Liu, Dake

    2017-01-01

    For an inductive wireless power transfer (IWPT) system, maintaining a reasonable power transfer efficiency and a stable output power are two most challenging design issues, especially when coil distance varies. To solve these issues, this paper presents a novel adaptive impedance matching network (IMN) for IWPT system. In our adaptive IMN IWPT system, the IMN is automatically reconfigured to keep matching with the coils and to adjust the output power adapting to coil distance variation. A closed loop control algorithm is used to change the capacitors continually, which can compensate mismatches and adjust output power simultaneously. The proposed adaptive IMN IWPT system is working at 125 kHz for 2 W power delivered to load. Comparing with the series resonant IWPT system and fixed IMN IWPT system, the power transfer efficiency of our system increases up to 31.79% and 60% when the coupling coefficient varies in a large range from 0.05 to 0.8 for 2 W output power. PMID:28763011

  9. An Adaptive Impedance Matching Network with Closed Loop Control Algorithm for Inductive Wireless Power Transfer.

    PubMed

    Miao, Zhidong; Liu, Dake; Gong, Chen

    2017-08-01

    For an inductive wireless power transfer (IWPT) system, maintaining a reasonable power transfer efficiency and a stable output power are two most challenging design issues, especially when coil distance varies. To solve these issues, this paper presents a novel adaptive impedance matching network (IMN) for IWPT system. In our adaptive IMN IWPT system, the IMN is automatically reconfigured to keep matching with the coils and to adjust the output power adapting to coil distance variation. A closed loop control algorithm is used to change the capacitors continually, which can compensate mismatches and adjust output power simultaneously. The proposed adaptive IMN IWPT system is working at 125 kHz for 2 W power delivered to load. Comparing with the series resonant IWPT system and fixed IMN IWPT system, the power transfer efficiency of our system increases up to 31.79% and 60% when the coupling coefficient varies in a large range from 0.05 to 0.8 for 2 W output power.

  10. PQScal (Power Quality Score Calculation for Distribution Systems with DER Integration)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Power Quality is of great importance to evaluate the “health” of a distribution system, especially when the distributed energy resource (DER) penetration becomes more significant. The individual components that make up power quality, such as voltage magnitude and unbalance, can be measured in simulations or in the field, however, a comprehensive method to incorporate all of these values into a single score doesn't exist. As a result, we propose a methodology to quantify the power quality health using the single number value, named as Power Quality Score (PQS). The PQS is dependent on six metrics that are developed based onmore » both components that directly impact power quality and those are often reference in the context of power quality. These six metrics are named as System Average Voltage Magnitude Violation Index (SAVMVI), System Average Voltage Fluctuation Index (SAVFI), System Average Voltage Unbalance Index (SAVUI), System Control Device Operation Index (SCDOI), System Reactive Power Demand Index (SRPDI) and System Energy Loss Index (SELI). This software tool, PQScal, is developed based on this novel PQS methodology. Besides of traditional distribution systems, PQScal can also measure the power quality for distribution systems with various DER penetrations. PQScal has been tested on two utility distribution feeders with distinct model characteristics and its effectiveness has been proved. In sum, PQScal can help utilities or other parties to measure the power quality of distribution systems with DER integration easily and effectively.« less

  11. A data seamless interaction scheme between electric power secondary business systems

    NASA Astrophysics Data System (ADS)

    Ai, Wenkai; Qian, Feng

    2018-03-01

    At present, the data interaction of electric power secondary business systems is very high, and it is not universal to develop programs when data interaction is carried out by different manufacturers' electric power secondary business systems. There are different interaction schemes for electric power secondary business systems with different manufacturers, which lead to high development cost, low reusability and high maintenance difficulty. This paper introduces a new data seamless interaction scheme between electric power secondary business systems. The scheme adopts the international common Java message service protocol as the transmission protocol, adopts the common JavaScript object symbol format as the data interactive format, unified electric power secondary business systems data interactive way, improve reusability, reduce complexity, monitor the operation of the electric power secondary business systems construction has laid a solid foundation.

  12. Communications and control for electric power systems: Power system stability applications of artificial neural networks

    NASA Technical Reports Server (NTRS)

    Toomarian, N.; Kirkham, Harold

    1994-01-01

    This report investigates the application of artificial neural networks to the problem of power system stability. The field of artificial intelligence, expert systems, and neural networks is reviewed. Power system operation is discussed with emphasis on stability considerations. Real-time system control has only recently been considered as applicable to stability, using conventional control methods. The report considers the use of artificial neural networks to improve the stability of the power system. The networks are considered as adjuncts and as replacements for existing controllers. The optimal kind of network to use as an adjunct to a generator exciter is discussed.

  13. High-Efficiency Photovoltaic System Using Partially-Connected DC-DC Converter

    NASA Astrophysics Data System (ADS)

    Uno, Masatoshi; Kukita, Akio; Tanaka, Koji

    Power conversion electronics for photovoltaic (PV) systems are desired to operate as efficiently as possible to exploit the power generated by PV modules. This paper proposes a novel PV system in which a dc-dc converter is partially connected to series-connected PV modules. The proposed system achieves high power-conversion efficiency by reducing the passing power and input/output voltages of the converter. The theoretical operating principle was experimentally validated. Resultant efficiency performances of the proposed and conventional systems demonstrated that the proposed system was more efficient in terms of power conversion though the identical converter was used for the both systems.

  14. Power fluctuation reduction methodology for the grid-connected renewable power systems

    NASA Astrophysics Data System (ADS)

    Aula, Fadhil T.; Lee, Samuel C.

    2013-04-01

    This paper presents a new methodology for eliminating the influence of the power fluctuations of the renewable power systems. The renewable energy, which is to be considered an uncertain and uncontrollable resource, can only provide irregular electrical power to the power grid. This irregularity creates fluctuations of the generated power from the renewable power systems. These fluctuations cause instability to the power system and influence the operation of conventional power plants. Overall, the power system is vulnerable to collapse if necessary actions are not taken to reduce the impact of these fluctuations. This methodology aims at reducing these fluctuations and makes the generated power capability for covering the power consumption. This requires a prediction tool for estimating the generated power in advance to provide the range and the time of occurrence of the fluctuations. Since most of the renewable energies are weather based, as a result a weather forecast technique will be used for predicting the generated power. The reduction of the fluctuation also requires stabilizing facilities to maintain the output power at a desired level. In this study, a wind farm and a photovoltaic array as renewable power systems and a pumped-storage and batteries as stabilizing facilities are used, since they are best suitable for compensating the fluctuations of these types of power suppliers. As an illustrative example, a model of wind and photovoltaic power systems with battery energy and pumped hydro storage facilities for power fluctuation reduction is included, and its power fluctuation reduction is verified through simulation.

  15. Solar Electric Power System Analyses for Mars Surface Missions

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Kohout, Lisa L.

    1999-01-01

    The electric power system is a crucial element of any architecture supporting human surface exploration of Mars. In this paper, we describe the conceptual design and detailed analysis of solar electric power system using photovoltaics and regenerative fuel cells to provide surface power on Mars. System performance, mass and deployed area predictions are discussed along with the myriad environmental factors and trade study results that helped to guide system design choices. Based on this work, we have developed a credible solar electric power option that satisfies the surface power requirements of a human Mars mission. The power system option described in this paper has a mass of approximately 10 metric tons, a approximately 5000-sq m deployable photovoltaic array using thin film solar cell technology.

  16. Diode laser satellite systems for beamed power transmission

    NASA Technical Reports Server (NTRS)

    Williams, M. D.; Kwon, J. H.; Walker, G. H.; Humes, D. H.

    1990-01-01

    A power system composed of an orbiting laser satellite and a surface-based receiver/converter is described. Power is transmitted from the satellite to the receiver/converter by laser beam. The satellite components are: (1) solar collector; (2) blackbody; (3) photovoltaic cells; (4) heat radiators; (5) laser system; and (6) transmission optics. The receiver/converter components are: receiver dish; lenticular lens; photocells; and heat radiator. Although the system can be adapted to missions at many locations in the solar system, only two are examined here: powering a lunar habitat; and powering a lunar rover. Power system components are described and their masses, dimensions, operating powers, and temperatures, are estimated using known or feasible component capabilities. The critical technologies involved are discussed and other potential missions are mentioned.

  17. System Design Techniques for Reducing the Power Requirements of Advanced life Support Systems

    NASA Technical Reports Server (NTRS)

    Finn, Cory; Levri, Julie; Pawlowski, Chris; Crawford, Sekou; Luna, Bernadette (Technical Monitor)

    2000-01-01

    The high power requirement associated with overall operation of regenerative life support systems is a critical Z:p technological challenge. Optimization of individual processors alone will not be sufficient to produce an optimized system. System studies must be used in order to improve the overall efficiency of life support systems. Current research efforts at NASA Ames Research Center are aimed at developing approaches for reducing system power and energy usage in advanced life support systems. System energy integration and energy reuse techniques are being applied to advanced life support, in addition to advanced control methods for efficient distribution of power and thermal resources. An overview of current results of this work will be presented. The development of integrated system designs that reuse waste heat from sources such as crop lighting and solid waste processing systems will reduce overall power and cooling requirements. Using an energy integration technique known as Pinch analysis, system heat exchange designs are being developed that match hot and cold streams according to specific design principles. For various designs, the potential savings for power, heating and cooling are being identified and quantified. The use of state-of-the-art control methods for distribution of resources, such as system cooling water or electrical power, will also reduce overall power and cooling requirements. Control algorithms are being developed which dynamically adjust the use of system resources by the various subsystems and components in order to achieve an overall goal, such as smoothing of power usage and/or heat rejection profiles, while maintaining adequate reserves of food, water, oxygen, and other consumables, and preventing excessive build-up of waste materials. Reductions in the peak loading of the power and thermal systems will lead to lower overall requirements. Computer simulation models are being used to test various control system designs.

  18. Coordinated control strategy for improving the two drops of the wind storage combined system

    NASA Astrophysics Data System (ADS)

    Qian, Zhou; Chenggen, Wang; Jing, Bu

    2018-05-01

    In the power system with high permeability wind power, due to wind power fluctuation, the operation of large-scale wind power grid connected to the system brings challenges to the frequency stability of the system. When the doubly fed wind power generation unit does not reserve spare capacity to participate in the system frequency regulation, the system frequency will produce two drops in different degrees when the wind power exits frequency modulation and enters the speed recovery stage. To solve this problem, based on the complementary advantages of wind turbines and energy storage systems in power transmission and frequency modulation, a wind storage combined frequency modulation strategy based on sectional control is proposed in this paper. Based on the TOP wind power frequency modulation strategy, the wind power output reference value is determined according to the linear relationship between the output and the speed of the wind turbine, and the auxiliary wind power load reduction is controlled when the wind power exits frequency modulation into the speed recovery stage, so that the wind turbine is recovered to run at the optimal speed. Then, according to the system frequency and the wind turbine operation state, set the energy storage system frequency modulation output. Energy storage output active support is triggered during wind speed recovery. And then when the system frequency to return to the normal operating frequency range, reduce energy storage output or to exit frequency modulation. The simulation results verify the effectiveness of the proposed method.

  19. Energy Optimization for a Weak Hybrid Power System of an Automobile Exhaust Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    Fang, Wei; Quan, Shuhai; Xie, Changjun; Tang, Xinfeng; Ran, Bin; Jiao, Yatian

    2017-11-01

    An integrated starter generator (ISG)-type hybrid electric vehicle (HEV) scheme is proposed based on the automobile exhaust thermoelectric generator (AETEG). An eddy current dynamometer is used to simulate the vehicle's dynamic cycle. A weak ISG hybrid bench test system is constructed to test the 48 V output from the power supply system, which is based on engine exhaust-based heat power generation. The thermoelectric power generation-based system must ultimately be tested when integrated into the ISG weak hybrid mixed power system. The test process is divided into two steps: comprehensive simulation and vehicle-based testing. The system's dynamic process is simulated for both conventional and thermoelectric powers, and the dynamic running process comprises four stages: starting, acceleration, cruising and braking. The quantity of fuel available and battery pack energy, which are used as target vehicle energy functions for comparison with conventional systems, are simplified into a single energy target function, and the battery pack's output current is used as the control variable in the thermoelectric hybrid energy optimization model. The system's optimal battery pack output current function is resolved when its dynamic operating process is considered as part of the hybrid thermoelectric power generation system. In the experiments, the system bench is tested using conventional power and hybrid thermoelectric power for the four dynamic operation stages. The optimal battery pack curve is calculated by functional analysis. In the vehicle, a power control unit is used to control the battery pack's output current and minimize energy consumption. Data analysis shows that the fuel economy of the hybrid power system under European Driving Cycle conditions is improved by 14.7% when compared with conventional systems.

  20. Analysis of large power systems

    NASA Technical Reports Server (NTRS)

    Dommel, H. W.

    1975-01-01

    Computer-oriented power systems analysis procedures in the electric utilities are surveyed. The growth of electric power systems is discussed along with the solution of sparse network equations, power flow, and stability studies.

  1. Implementation of a virtual link between power system testbeds at Marshall Spaceflight Center and Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Doreswamy, Rajiv

    1990-01-01

    The Marshall Space Flight Center (MSFC) owns and operates a space station module power management and distribution (SSM-PMAD) testbed. This system, managed by expert systems, is used to analyze and develop power system automation techniques for Space Station Freedom. The Lewis Research Center (LeRC), Cleveland, Ohio, has developed and implemented a space station electrical power system (EPS) testbed. This system and its power management controller are representative of the overall Space Station Freedom power system. A virtual link is being implemented between the testbeds at MSFC and LeRC. This link would enable configuration of SSM-PMAD as a load center for the EPS testbed at LeRC. This connection will add to the versatility of both systems, and provide an environment of enhanced realism for operation of both testbeds.

  2. Self-Powered Human-Interactive Transparent Nanopaper Systems.

    PubMed

    Zhong, Junwen; Zhu, Hongli; Zhong, Qize; Dai, Jiaqi; Li, Wenbo; Jang, Soo-Hwan; Yao, Yonggang; Henderson, Doug; Hu, Qiyi; Hu, Liangbing; Zhou, Jun

    2015-07-28

    Self-powered human-interactive but invisible electronics have many applications in anti-theft and anti-fake systems for human society. In this work, for the first time, we demonstrate a transparent paper-based, self-powered, and human-interactive flexible system. The system is based on an electrostatic induction mechanism with no extra power system appended. The self-powered, transparent paper device can be used for a transparent paper-based art anti-theft system in museums or for a smart mapping anti-fake system in precious packaging and documents, by virtue of the advantages of adding/removing freely, having no impairment on the appearance of the protected objects, and being easily mass manufactured. This initial study bridges the transparent nanopaper with a self-powered and human-interactive electronic system, paving the way for the development of smart transparent paper electronics.

  3. Prevention of Unintentional Islands in Power Systems with Distributed

    Science.gov Websites

    Islands in Power Systems with Distributed Resources Webinar Prevention of Unintentional Islands in Power Systems with Distributed Resources Webinar Learn about unintentional islanding in a webinar from NREL and following the presentation. Types of islands in power systems with distributed resources Issues with

  4. Foreword for the Special Section on Power System Planning and Operation Towards a Low-Carbon Economy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Yi; Kang, Chongqing; Wang, Jianhui

    2015-03-01

    The nine papers in this special section on power system planning and operation towards a low-cost economy cover the following topics: power system planning models; power system operation methods and market behavior analysis; and risk assessment and emission management.

  5. 46 CFR 169.623 - Power-driven steering systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Power-driven steering systems. 169.623 Section 169.623 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Steering Systems § 169.623 Power-driven steering systems. (a) Power-driven steering...

  6. 46 CFR 169.623 - Power-driven steering systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Power-driven steering systems. 169.623 Section 169.623 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Steering Systems § 169.623 Power-driven steering systems. (a) Power-driven steering...

  7. 46 CFR 111.97-5 - Electric and hydraulic power supply.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Watertight Door Systems § 111.97-5 Electric and hydraulic power supply. (a) Each electric motor-driven door operating system must have the same.... (f) The source of power for each hydraulically operated watertight door system using an independent...

  8. 46 CFR 111.97-5 - Electric and hydraulic power supply.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Watertight Door Systems § 111.97-5 Electric and hydraulic power supply. (a) Each electric motor-driven door operating system must have the same.... (f) The source of power for each hydraulically operated watertight door system using an independent...

  9. 46 CFR 111.97-5 - Electric and hydraulic power supply.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Watertight Door Systems § 111.97-5 Electric and hydraulic power supply. (a) Each electric motor-driven door operating system must have the same.... (f) The source of power for each hydraulically operated watertight door system using an independent...

  10. 46 CFR 111.97-5 - Electric and hydraulic power supply.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Watertight Door Systems § 111.97-5 Electric and hydraulic power supply. (a) Each electric motor-driven door operating system must have the same.... (f) The source of power for each hydraulically operated watertight door system using an independent...

  11. 46 CFR 111.97-5 - Electric and hydraulic power supply.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Watertight Door Systems § 111.97-5 Electric and hydraulic power supply. (a) Each electric motor-driven door operating system must have the same.... (f) The source of power for each hydraulically operated watertight door system using an independent...

  12. Frontiers in Distributed Optimization and Control of Sustainable Power

    Science.gov Websites

    Optimization and Control of Sustainable Power Systems Workshop Frontiers in Distributed Optimization and Control of Sustainable Power Systems Workshop In January 2016, NREL's energy systems integration team hosted a workshop on frontiers in distributed optimization and control of sustainable power systems. The

  13. Spacecraft Electrical Power System (EPS) generic analysis tools and techniques

    NASA Technical Reports Server (NTRS)

    Morris, Gladys M.; Sheppard, Mark A.

    1992-01-01

    An overview is provided of the analysis tools and techiques used in modeling the Space Station Freedom electrical power system, as well as future space vehicle power systems. The analysis capabilities of the Electrical Power System (EPS) are described and the EPS analysis tools are surveyed.

  14. 21 CFR 890.3710 - Powered communication system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Powered communication system. 890.3710 Section 890.3710 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... communication system. (a) Identification. A powered communication system is an AC- or battery-powered device...

  15. A summary of impacts of wind power integration on power system small-signal stability

    NASA Astrophysics Data System (ADS)

    Yan, Lei; Wang, Kewen

    2017-05-01

    Wind power has been increasingly integrated into power systems over the last few decades because of the global energy crisis and the pressure on environmental protection, and the stability of the system connected with wind power is becoming more prominent. This paper summaries the research status, achievements as well as deficiencies of the research on the impact of wind power integration on power system small-signal stability. In the end, the further research needed are discussed.

  16. Photovoltaic power generation; Proceedings of the EC Contractors' Meeting, Hamburg, West Germany, July 12, 13, 1983

    NASA Astrophysics Data System (ADS)

    Palz, W.

    Several operational examples of photovoltaic (PV) power generation systems in Europe are described. The systems include: a 300 kW power plant in Pellworm, West Germany; the Tremiti desalination plant in Tremiti, Italy; and the Kythnos PV power plant in Kythnos, Greece. Consideration is also given to a PV-powered swimming pool heating system in Chevretogne, Belgium; a rural electrification program using PV power plants in French Guyana; a solar-wind project on Terschelling Island, the Netherlands; and a PV power plant for hydrogen production and water pumping in Hoboken, Belgium. A 30-kW power station in Marchwood, England and the Nice airport survey and control system are also cited as examples of successful PV power generation systems.

  17. How to Integrate Variable Power Source into a Power Grid

    NASA Astrophysics Data System (ADS)

    Asano, Hiroshi

    This paper discusses how to integrate variable power source such as wind power and photovoltaic generation into a power grid. The intermittent renewable generation is expected to penetrate for less carbon intensive power supply system, but it causes voltage control problem in the distribution system, and supply-demand imbalance problem in a whole power system. Cooperative control of customers' energy storage equipment such as water heater with storage tank for reducing inverse power flow from the roof-top PV system, the operation technique using a battery system and the solar radiation forecast for stabilizing output of variable generation, smart charging of plug-in hybrid electric vehicles for load frequency control (LFC), and other methods to integrate variable power source with improving social benefits are surveyed.

  18. Reactive Power Compensation Method Considering Minimum Effective Reactive Power Reserve

    NASA Astrophysics Data System (ADS)

    Gong, Yiyu; Zhang, Kai; Pu, Zhang; Li, Xuenan; Zuo, Xianghong; Zhen, Jiao; Sudan, Teng

    2017-05-01

    According to the calculation model of minimum generator reactive power reserve of power system voltage stability under the premise of the guarantee, the reactive power management system with reactive power compensation combined generator, the formation of a multi-objective optimization problem, propose a reactive power reserve is considered the minimum generator reactive power compensation optimization method. This method through the improvement of the objective function and constraint conditions, when the system load growth, relying solely on reactive power generation system can not meet the requirement of safe operation, increase the reactive power reserve to solve the problem of minimum generator reactive power compensation in the case of load node.

  19. Skylab technology electrical power system

    NASA Technical Reports Server (NTRS)

    Woosley, A. P.; Smith, O. B.; Nassen, H. S.

    1974-01-01

    The solar array/battery power systems for the Skylab vehicle were designed to operate in a solar inertial pointing mode to provide power continuously to the Skylab. Questions of power management are considered, taking into account difficulties caused by the reduction in power system performance due to the effects of structural failure occurring during the launching process. The performance of the solar array of the Apollo Telescope Mount Power System is discussed along with the Orbital Workshop solar array performance and the Airlock Module power conditioning group performance. A list is presented of a number of items which have been identified during mission monitoring and are recommended for electrical power system concepts, designs, and operation for future spacecraft.

  20. Impact of Offshore Wind Power Integrated by VSC-HVDC on Power Angle Stability of Power Systems

    NASA Astrophysics Data System (ADS)

    Lu, Haiyang; Tang, Xisheng

    2017-05-01

    Offshore wind farm connected to grid by VSC-HVDC loses frequency support for power system, so adding frequency control in wind farm and VSC-HVDC system is an effective measure, but it will change wind farm VSC-HVDC’s transient stability on power system. Through theoretical analysis, concluding the relationship between equivalent mechanical power and electromagnetic power of two-machine system with the active power of wind farm VSC-HVDC, then analyzing the impact of wind farm VSC-HVDC with or without frequency control and different frequency control parameters on angle stability of synchronous machine by EEAC. The validity of theoretical analysis has been demonstrated through simulation in PSCAD/EMTDC.

  1. Computer-Aided Modeling and Analysis of Power Processing Systems (CAMAPPS), phase 1

    NASA Technical Reports Server (NTRS)

    Kim, S.; Lee, J.; Cho, B. H.; Lee, F. C.

    1986-01-01

    The large-signal behaviors of a regulator depend largely on the type of power circuit topology and control. Thus, for maximum flexibility, it is best to develop models for each functional block a independent modules. A regulator can then be configured by collecting appropriate pre-defined modules for each functional block. In order to complete the component model generation for a comprehensive spacecraft power system, the following modules were developed: solar array switching unit and control; shunt regulators; and battery discharger. The capability of each module is demonstrated using a simplified Direct Energy Transfer (DET) system. Large-signal behaviors of solar array power systems were analyzed. Stability of the solar array system operating points with a nonlinear load is analyzed. The state-plane analysis illustrates trajectories of the system operating point under various conditions. Stability and transient responses of the system operating near the solar array's maximum power point are also analyzed. The solar array system mode of operation is described using the DET spacecraft power system. The DET system is simulated for various operating conditions. Transfer of the software program CAMAPPS (Computer Aided Modeling and Analysis of Power Processing Systems) to NASA/GSFC (Goddard Space Flight Center) was accomplished.

  2. A Historical and Engineering View of Power Transmission Systems in Kansai Electric Power Co., Inc.

    NASA Astrophysics Data System (ADS)

    Ito, Shunichi; Akiyama, Tetsuo

    During our work in operations related to power transmission technology, we have encountered various natural calamities and man-made disasters. Over the years, we learned many valuable lessons from these bitter experiences, and we now have more reliable, cost-effective and flexible electric power systems. This paper describes the new technologies we have introduced in the facilities making up the power systems and how we operate these systems and facilities. It also takes up the Southern Hyogo Earthquake and loss of Ohi nuclear power generation due to galloping phenomena as typical examples showing how a set of measures as mentioned above substantially improved the reliability of the electric power systems to such an extent that the Japanese electric power systems have attained the world's highest level of reliability. These facts prove that steady and continuous efforts are a prerequisite to success for all power engineers.

  3. OAST Space Theme Workshop. Volume 3: Working group summary. 6: Power (P-2). A. Statement. B. Technology needs (form 1). C. Priority assessment (form 2)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Power requirements for the multipurpose space power platform, for space industrialization, SETI, the solar system exploration facility, and for global services are assessed for various launch dates. Priorities and initiatives for the development of elements of space power systems are described for systems using light power input (solar energy source) or thermal power input, (solar, chemical, nuclear, radioisotopes, reactors). Systems for power conversion, power processing, distribution and control are likewise examined.

  4. Multi-time scale dynamics in power electronics-dominated power systems

    NASA Astrophysics Data System (ADS)

    Yuan, Xiaoming; Hu, Jiabing; Cheng, Shijie

    2017-09-01

    Electric power infrastructure has recently undergone a comprehensive transformation from electromagnetics to semiconductors. Such a development is attributed to the rapid growth of power electronic converter applications in the load side to realize energy conservation and on the supply side for renewable generations and power transmissions using high voltage direct current transmission. This transformation has altered the fundamental mechanism of power system dynamics, which demands the establishment of a new theory for power system control and protection. This paper presents thoughts on a theoretical framework for the coming semiconducting power systems.

  5. Dynamic model based novel findings in power systems analysis and frequency measurement verification

    NASA Astrophysics Data System (ADS)

    Kook, Kyung Soo

    This study selects several new advanced topics in power systems, and verifies their usefulness using the simulation. In the study on ratio of the equivalent reactance and resistance of the bulk power systems, the simulation results give us the more correct value of X/R of the bulk power system, which can explain why the active power compensation is also important in voltage flicker mitigation. In the application study of the Energy Storage System(ESS) to the wind power, the new model implementation of the ESS connected to the wind power is proposed, and the control effect of ESS to the intermittency of the wind power is verified. Also this study conducts the intensive simulations for clarifying the behavior of the wide-area power system frequency as well as the possibility of the on-line instability detection. In our POWER IT Laboratory, since 2003, the U.S. national frequency monitoring network (FNET) has been being continuously operated to monitor the wide-area power system frequency in the U.S. Using the measured frequency data, the event of the power system is triggered, and its location and scale are estimated. This study also looks for the possibility of using the simulation technologies to contribute the applications of FNET, finds similarity of the event detection orders between the frequency measurements and the simulations in the U.S. Eastern power grid, and develops the new methodology for estimating the event location based on the simulated N-1 contingencies using the frequency measurement. It has been pointed out that the simulation results can not represent the actual response of the power systems due to the inevitable limit of modeling power systems and different operating conditions of the systems at every second. However, in the circumstances that we need to test such an important infrastructure supplying the electric energy without taking any risk of it, the software based simulation will be the best solution to verify the new technologies in power system engineering and, for doing this, new models and better application of the simulation should be proposed. Conducting extensive simulation studies, this dissertation verified that the actual X/R ratio of the bulk power systems is much lower than what has been known as its typical value, showed the effectiveness of the ESS control to mitigate the intermittence of the wind power from the perspective of the power grid using the newly proposed simulation model of ESS connected to the wind power, and found many characteristics of the wide-area frequency wave propagation. Also the possibility of using the simulated responses of the power system for replacing the measured data could be confirmed and this is very promising to the future application of the simulation to the on-line analysis of the power systems based on the FNET measurements.

  6. A novel photovoltaic power system which uses a large area concentrator mirror

    NASA Technical Reports Server (NTRS)

    Arrison, Anne; Fatemi, Navid

    1987-01-01

    A preliminary analysis has been made of a novel photovoltaic power system concept. The system is composed of a small area, dense photovoltaic array, a large area solar concentrator, and a battery system for energy storage. The feasibility of such a system is assessed for space power applications. The orbital efficiency, specific power, mass, and area of the system are calculated under various conditions and compared with those for the organic Rankine cycle solar dynamic system proposed for Space Station. Near term and advanced large area concentrator photovoltaic systems not only compare favorably to solar dynamic systems in terms of performance but offer other benefits as well.

  7. Concept report: Microprocessor control of electrical power system

    NASA Technical Reports Server (NTRS)

    Perry, E.

    1977-01-01

    An electrical power system which uses a microprocessor for systems control and monitoring is described. The microprocessor controlled system permits real time modification of system parameters for optimizing a system configuration, especially in the event of an anomaly. By reducing the components count, the assembling and testing of the unit is simplified, and reliability is increased. A resuable modular power conversion system capable of satisfying a large percentage of space applications requirements is examined along with the programmable power processor. The PC global controller which handles systems control and external communication is analyzed, and a software description is given. A systems application summary is also included.

  8. EPSAT - A workbench for designing high-power systems for the space environment

    NASA Technical Reports Server (NTRS)

    Kuharski, R. A.; Jongeward, G. A.; Wilcox, K. G.; Kennedy, E. M.; Stevens, N. J.; Putnam, R. M.; Roche, J. C.

    1990-01-01

    The Environment Power System Analysis Tool (EPSAT) is being developed to provide space power system design engineers with an analysis tool for determining the performance of power systems in both naturally occurring and self-induced environments. This paper presents the results of the project after two years of a three-year development program. The relevance of the project result for SDI are pointed out, and models of the interaction of the environment and power systems are discussed.

  9. Status of 20 kHz space station power distribution technology

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1988-01-01

    Power Distribution on the NASA Space Station will be accomplished by a 20 kHz sinusoidal, 440 VRMS, single phase system. In order to minimize both system complexity and the total power coversion steps required, high frequency power will be distributed end-to-end in the system. To support the final design of flight power system hardware, advanced development and demonstrations have been made on key system technologies and components. The current status of this program is discussed.

  10. Automated electric power management and control for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Dolce, James L.; Mellor, Pamela A.; Kish, James A.

    1990-01-01

    A comprehensive automation design is being developed for Space Station Freedom's electric power system. It strives to increase station productivity by applying expert systems and conventional algorithms to automate power system operation. An integrated approach to the power system command and control problem is defined and used to direct technology development in: diagnosis, security monitoring and analysis, battery management, and cooperative problem-solving for resource allocation. The prototype automated power system is developed using simulations and test-beds.

  11. Photovoltaic power conditioning subsystem: State of the art and development opportunities

    NASA Technical Reports Server (NTRS)

    Krauthamer, S.; Bahrami, K.; Das, R.; Macie, T.; Rippel, W.

    1984-01-01

    Photovoltaic systems, the state of the art of power conditioning subsystem components, and the design and operational interaction between photovoltaic systems and host utilities are detailed in this document. Major technical issues relating to the design and development of power conditioning systems for photovoltaic application are considered; these include: (1) standards, guidelines, and specifications; (2) cost effective hardware design; (3) impact of advanced components on power conditioning development; (4) protection and safety; (5) quality of power; (6) system efficiency; and (7) system integration with the host utility. Theories of harmonic distortion and reactive power flow are discussed, and information about power conditioner hardware and manufacturers is provided.

  12. Magnetic storm effects in electric power systems and prediction needs

    NASA Technical Reports Server (NTRS)

    Albertson, V. D.; Kappenman, J. G.

    1979-01-01

    Geomagnetic field fluctuations produce spurious currents in electric power systems. These currents enter and exit through points remote from each other. The fundamental period of these currents is on the order of several minutes which is quasi-dc compared to the normal 60 Hz or 50 Hz power system frequency. Nearly all of the power systems problems caused by the geomagnetically induced currents result from the half-cycle saturation of power transformers due to simultaneous ac and dc excitation. The effects produced in power systems are presented, current research activity is discussed, and magnetic storm prediction needs of the power industry are listed.

  13. A Feasibility Study of Pressure Retarded Osmosis Power Generation System based on Measuring Permeation Volume using Reverse Osmosis Membrane

    NASA Astrophysics Data System (ADS)

    Enomoto, Hiroshi; Fujitsuka, Masashi; Hasegawa, Tomoyasu; Kuwada, Masatoshi; Tanioka, Akihiko; Minagawa, Mie

    Pressure Retarded Osmosis (PRO) power generation system is a hydroelectric power system which utilize permeation flow through a semi-permeable membrane. Permeation flow is generated by potential energy of salinity difference between sea water and fresh water. As membrane cost is expensive, permeation performance of membrane must be higher to realize PRO system. We have investigated Reverse Osmosis (RO) membrane products as semi-permeable membrane and measured permeation volume of a few products. Generation power by membrane area calculated from permeation volume is about 0.62W/m2. But by our improvements (more salt water volume, spacer of fresh water channel with a function of discharging concentrated salinity, extra low pressure type of membrane, washing support layer of membrane when generation power reduces to half), generation power may be 2.43W/m2. Then power system cost is about 4.1 million yen/kW. In addition, if support layer of membrane makes thinner and PRO system is applied to the equipment that pumping power on another purpose is avairable (wastewater treatment plant located at the seaside, thermal and nuclear power plant or sea water desalination plant), generation power may be more. By these improvements PRO system may be able to realize at the cost close to photovoltaic power system.

  14. A Comparison of Brayton and Stirling Space Nuclear Power Systems for Power Levels from 1 Kilowatt to 10 Megawatts

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    2000-01-01

    An analytical study was conducted to assess the performance and mass of Brayton and Stirling nuclear power systems for a wide range of future NASA space exploration missions. The power levels and design concepts were based on three different mission classes. Isotope systems, with power levels from 1 to 10 kW, were considered for planetary surface rovers and robotic science. Reactor power systems for planetary surface outposts and bases were evaluated from 10 to 500 kW. Finally, reactor power systems in the range from 100 kW to 10 mW were assessed for advanced propulsion applications. The analysis also examined the effect of advanced component technology on system performance. The advanced technologies included high temperature materials, lightweight radiators, and high voltage power management and distribution.

  15. Lightside Atmospheric Revitalization System

    NASA Technical Reports Server (NTRS)

    Colling, A. K.; Cushman, R. J.; Hultman, M. M.; Nason, J. R.

    1980-01-01

    The system was studied as a replacement to the present baseline LiOH system for extended duration shuttle missions. The system consists of three subsystems: a solid amine water desorbed regenerable carbon dioxide removal system, a water vapor electrolysis oxygen generating system, and a Sabatier reactor carbon dioxide reduction system. The system is designed for use on a solar powered shuttle vehicle. The majority of the system's power requirements are utilized on the Sun side of each orbit, when solar power is available.

  16. 14 CFR 23.1309 - Equipment, systems, and installations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... compliance with this section with regard to the electrical power system and to equipment design and... the system must be able to supply the following power loads in probable operating combinations and for probable durations: (1) Loads connected to the power distribution system with the system functioning...

  17. Wind Power Plant Evaluation Naval Auxiliary Landing Field, San Clemente Island, California: Period of Performance 24 September 1999--15 December 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsen, T.L.; Gulman, P.J.; McKenna, E.

    2000-12-11

    The purpose of this report is to evaluate the wind power benefits and impacts to the San Clement Island wind power system, including energy savings, emissions reduction, system stability, and decreased naval dependence on fossil fuel at the island. The primary goal of the SCI wind power system has been to operate with the existing diesel power plant and provide equivalent or better power quality and system reliability than the existing diesel system. The wind system is intended to reduce, as far as possible, the use of diesel fuel and the inherent generation of nitrogen oxide emissions and other pollutants.

  18. Building 865 Hypersonic Wind Tunnel Power System Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, Larry X.

    2015-02-01

    This report documents the characterization and analysis of a high current power supply for the building 865 Hypersonic Wind Tunnel at Sandia National Laboratories. The system described in this report became operational in 2013, replacing the original 1968 system which employed an induction voltage regulator. This analysis and testing was completed to help the parent organization understand why an updated and redesigned power system was not delivering adequate power to resistive heater elements in the HWT. This analysis led to an improved understanding of the design and operation of the revised 2013 power supply system and identifies several reasons themore » revised system failed to achieve the performance of the original power supply installation. Design modifications to improve the performance of this system are discussed.« less

  19. Power System Test and Verification at Satellite Level

    NASA Astrophysics Data System (ADS)

    Simonelli, Giulio; Mourra, Olivier; Tonicello, Ferdinando

    2008-09-01

    Most of the articles on Power Systems deal with the architecture and technical solutions related to the functionalities of the power system and their performances. Very few articles, if none, address integration and verification aspects of the Power System at satellite level and the related issues with the Power EGSE (Electrical Ground Support Equipment), which, also, have to support the AIT/AIV (Assembly Integration Test and Verification) program of the satellite and, eventually, the launch campaign. In the last years a more complex development and testing concept based on MDVE (Model Based Development and Verification Environment) has been introduced. In the MDVE approach the simulation software is used to simulate the Satellite environment and, in the early stages, the satellites units. This approach changed significantly the Power EGSE requirements. Power EGSEs or, better, Power SCOEs (Special Check Out Equipment) are now requested to provide the instantaneous power generated by the solar array throughout the orbit. To achieve that, the Power SCOE interfaces to the RTS (Real Time Simulator) of the MDVE. The RTS provides the instantaneous settings, which belong to that point along the orbit, to the Power SCOE so that the Power SCOE generates the instantaneous {I,V} curve of the SA (Solar Array). That means a real time test for the power system, which is even more valuable for EO (Earth Observation) satellites where the Solar Array aspect angle to the sun is rarely fixed, and the power load profile can be particularly complex (for example, in radar applications). In this article the major issues related to integration and testing of Power Systems will be discussed taking into account different power system topologies (i.e. regulated bus, unregulated bus, battery bus, based on MPPT or S3R…). Also aspects about Power System AIT I/Fs (interfaces) and Umbilical I/Fs with the launcher and the Power SCOE I/Fs will be addressed. Last but not least, protection strategy of the Power System during AIT/AIV program will also be discussed. The objective of this discussion is also to provide the Power System Engineer with a checklist of key aspects linked to the satellite AIT/AIV program, that have to be considered in the early phases of a new power system development.

  20. Hybrid Power Management-Based Vehicle Architecture

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2011-01-01

    Hybrid Power Management (HPM) is the integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications (s ee figure). The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The basic vehicle architecture consists of a primary power source, and possibly other power sources, that provides all power to a common energy storage system that is used to power the drive motors and vehicle accessory systems. This architecture also provides power as an emergency power system. Each component is independent, permitting it to be optimized for its intended purpose. The key element of HPM is the energy storage system. All generated power is sent to the energy storage system, and all loads derive their power from that system. This can significantly reduce the power requirement of the primary power source, while increasing the vehicle reliability. Ultracapacitors are ideal for an HPM-based energy storage system due to their exceptionally long cycle life, high reliability, high efficiency, high power density, and excellent low-temperature performance. Multiple power sources and multiple loads are easily incorporated into an HPM-based vehicle. A gas turbine is a good primary power source because of its high efficiency, high power density, long life, high reliability, and ability to operate on a wide range of fuels. An HPM controller maintains optimal control over each vehicle component. This flexible operating system can be applied to all vehicles to considerably improve vehicle efficiency, reliability, safety, security, and performance. The HPM-based vehicle architecture has many advantages over conventional vehicle architectures. Ultracapacitors have a much longer cycle life than batteries, which greatly improves system reliability, reduces life-of-system costs, and reduces environmental impact as ultracapacitors will probably never need to be replaced and disposed of. The environmentally safe ultracapacitor components reduce disposal concerns, and their recyclable nature reduces the environmental impact. High ultracapacitor power density provides high power during surges, and the ability to absorb high power during recharging. Ultracapacitors are extremely efficient in capturing recharging energy, are rugged, reliable, maintenance-free, have excellent lowtemperature characteristic, provide consistent performance over time, and promote safety as they can be left indefinitely in a safe, discharged state whereas batteries cannot.

  1. Status Report on Power System Transformation: A 21st Century Power Partnership Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Mackay; Martinot, Eric; Cox, Sadie

    This report has three primary goals: (1) to articulate the concept of power system transformation; (2) to explore the current global landscape of ‘innovations’ that constitute power system transformation and provide evidence of how these innovations are emerging; and (3) to suggest an analytical framework for assessing the status of power system transformation on an on-going basis.

  2. Solar power satellite system definition study. Volume 2, phase 1: Systems analyses tradeoffs.

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A systems definition study of the solar power satellite system is presented. The satellite solar energy conversion and microwave power transmission systems are discussed. Space construction and support systems are examined including a series construction and equipment characteristics analysis. Space transportation for the satellite and the ground receiving station are assessed.

  3. Systems analysis of the space shuttle. [communication systems, computer systems, and power distribution

    NASA Technical Reports Server (NTRS)

    Schilling, D. L.; Oh, S. J.; Thau, F.

    1975-01-01

    Developments in communications systems, computer systems, and power distribution systems for the space shuttle are described. The use of high speed delta modulation for bit rate compression in the transmission of television signals is discussed. Simultaneous Multiprocessor Organization, an approach to computer organization, is presented. Methods of computer simulation and automatic malfunction detection for the shuttle power distribution system are also described.

  4. Solar Thermal Small Power Systems Study. Inventory of US industrial small electric power generating systems. [Less than 10 MW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This inventory of small industrial electric generating systems was assembled by The Aerospace Corporation to provide a data base for analyses being conducted to estimate the potential for displacement of these fossil-fueled systems by solar thermal electric systems no larger than 10 MW in rated capacity. The approximately 2100 megawatts generating capacity of systems in this category constitutes a potential market for small solar thermal and other solar electric power systems. The sources of data for this inventory were the (former) Federal Power Commission (FPC) Form 4 Industrial Ledger and Form 12-C Ledger for 1976. Table 1 alphabetically lists generatingmore » systems located at industrial plants and at Federal government installations in each of the 50 states. These systems are differentiated by type of power plant: steam turbine, diesel generator, or gas turbine. Each listing is designated as a power system rather than a power unit because the FPC Ledgers do not provide a means of determining whether more than one unit is associated with each industrial installation. Hence, the user should consider each listing to be a system capacity rating wherein the system may consist of one or more generating units with less than 10 MW/sub e/ combined rating. (WHK)« less

  5. Real time test bed development for power system operation, control and cyber security

    NASA Astrophysics Data System (ADS)

    Reddi, Ram Mohan

    The operation and control of the power system in an efficient way is important in order to keep the system secure, reliable and economical. With advancements in smart grid, several new algorithms have been developed for improved operation and control. These algorithms need to be extensively tested and validated in real time before applying to the real electric power grid. This work focuses on the development of a real time test bed for testing and validating power system control algorithms, hardware devices and cyber security vulnerability. The test bed developed utilizes several hardware components including relays, phasor measurement units, phasor data concentrator, programmable logic controllers and several software tools. Current work also integrates historian for power system monitoring and data archiving. Finally, two different power system test cases are simulated to demonstrate the applications of developed test bed. The developed test bed can also be used for power system education.

  6. Failure Detecting Method of Fault Current Limiter System with Rectifier

    NASA Astrophysics Data System (ADS)

    Tokuda, Noriaki; Matsubara, Yoshio; Asano, Masakuni; Ohkuma, Takeshi; Sato, Yoshibumi; Takahashi, Yoshihisa

    A fault current limiter (FCL) is extensively needed to suppress fault current, particularly required for trunk power systems connecting high-voltage transmission lines, such as 500kV class power system which constitutes the nucleus of the electric power system. We proposed a new type FCL system (rectifier type FCL), consisting of solid-state diodes, DC reactor and bypass AC reactor, and demonstrated the excellent performances of this FCL by developing the small 6.6kV and 66kV model. It is important to detect the failure of power devices used in the rectifier under the normal operating condition, for keeping the excellent reliability of the power system. In this paper, we have proposed a new failure detecting method of power devices most suitable for the rectifier type FCL. This failure detecting system is simple and compact. We have adapted the proposed system to the 66kV prototype single-phase model and successfully demonstrated to detect the failure of power devices.

  7. Comparative study of popular objective functions for damping power system oscillations in multimachine system.

    PubMed

    Islam, Naz Niamul; Hannan, M A; Shareef, Hussain; Mohamed, Azah; Salam, M A

    2014-01-01

    Power oscillation damping controller is designed in linearized model with heuristic optimization techniques. Selection of the objective function is very crucial for damping controller design by optimization algorithms. In this research, comparative analysis has been carried out to evaluate the effectiveness of popular objective functions used in power system oscillation damping. Two-stage lead-lag damping controller by means of power system stabilizers is optimized using differential search algorithm for different objective functions. Linearized model simulations are performed to compare the dominant mode's performance and then the nonlinear model is continued to evaluate the damping performance over power system oscillations. All the simulations are conducted in two-area four-machine power system to bring a detailed analysis. Investigated results proved that multiobjective D-shaped function is an effective objective function in terms of moving unstable and lightly damped electromechanical modes into stable region. Thus, D-shape function ultimately improves overall system damping and concurrently enhances power system reliability.

  8. Space nuclear power systems; Proceedings of the 8th Symposium, Albuquerque, NM, Jan. 6-10, 1991. Pts. 1-3

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed S.; Hoover, Mark D.

    1991-07-01

    The present conference discusses NASA mission planning for space nuclear power, lunar mission design based on nuclear thermal rockets, inertial-electrostatic confinement fusion for space power, nuclear risk analysis of the Ulysses mission, the role of the interface in refractory metal alloy composites, an advanced thermionic reactor systems design code, and space high power nuclear-pumped lasers. Also discussed are exploration mission enhancements with power-beaming, power requirement estimates for a nuclear-powered manned Mars rover, SP-100 reactor design, safety, and testing, materials compatibility issues for fabric composite radiators, application of the enabler to nuclear electric propulsion, orbit-transfer with TOPAZ-type power sources, the thermoelectric properties of alloys, ruthenium silicide as a promising thermoelectric material, and innovative space-saving device for high-temperature piping systems. The second volume of this conference discusses engine concepts for nuclear electric propulsion, nuclear technologies for human exploration of the solar system, dynamic energy conversion, direct nuclear propulsion, thermionic conversion technology, reactor and power system control, thermal management, thermionic research, effects of radiation on electronics, heat-pipe technology, radioisotope power systems, and nuclear fuels for power reactors. The third volume discusses space power electronics, space nuclear fuels for propulsion reactors, power systems concepts, space power electronics systems, the use of artificial intelligence in space, flight qualifications and testing, microgravity two-phase flow, reactor manufacturing and processing, and space and environmental effects. (For individual items see A93-13752 to A93-13937)

  9. Electrical System Technology Working Group (WG) Report

    NASA Technical Reports Server (NTRS)

    Silverman, S.; Ford, F. E.

    1984-01-01

    The technology needs for space power systems (military, public, commercial) were assessed for the period 1995 to 2005 in the area of power management and distribution, components, circuits, subsystems, controls and autonomy, modeling and simulation. There was general agreement that the military requirements for pulse power would be the dominant factor in the growth of power systems. However, the growth of conventional power to the 100 to 250kw range would be in the public sector, with low Earth orbit needs being the driver toward large 100kw systems. An overall philosophy for large power system development is also described.

  10. Cost competitiveness of a solar cell array power source for ATS-6 educational TV terminal

    NASA Technical Reports Server (NTRS)

    Masters, R. M.

    1975-01-01

    A cost comparison is made between a terrestrial solar cell array power system and a variety of other power sources for the ATS-6 Satellite Instructional Television Experiment (SITE) TV terminals in India. The solar array system was sized for a typical Indian location, Lahore. Based on present capital and fuel costs, the solar cell array power system is a close competitor to the least expensive alternate power system. A feasibility demonstration of a terrestrial solar cell array system powering an ATS-6 receiver terminal at Cleveland, Ohio is described.

  11. Analysis of Shadowing Effects on Spacecraft Power Systems

    NASA Technical Reports Server (NTRS)

    1995-01-01

    As part of an ongoing effort within the NASA Lewis Research Center's Power Systems Project Office to assist in the design and characterization of future space-based power systems, analyses have been performed to assess the effects of shadowing on the capabilities of various power systems on the International Space Station and the Russian MIR.

  12. 46 CFR 112.01-5 - Manual emergency lighting and power system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Manual emergency lighting and power system. 112.01-5 Section 112.01-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Definitions of Emergency Lighting and Power Systems § 112.01-5 Manual...

  13. 46 CFR 112.01-5 - Manual emergency lighting and power system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Manual emergency lighting and power system. 112.01-5 Section 112.01-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Definitions of Emergency Lighting and Power Systems § 112.01-5 Manual...

  14. 46 CFR 112.01-5 - Manual emergency lighting and power system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Manual emergency lighting and power system. 112.01-5 Section 112.01-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Definitions of Emergency Lighting and Power Systems § 112.01-5 Manual...

  15. 46 CFR 112.01-5 - Manual emergency lighting and power system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Manual emergency lighting and power system. 112.01-5 Section 112.01-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Definitions of Emergency Lighting and Power Systems § 112.01-5 Manual...

  16. 46 CFR 112.01-10 - Automatic emergency lighting and power system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Automatic emergency lighting and power system. 112.01-10 Section 112.01-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Definitions of Emergency Lighting and Power Systems § 112.01-10...

  17. 46 CFR 112.01-10 - Automatic emergency lighting and power system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Automatic emergency lighting and power system. 112.01-10 Section 112.01-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Definitions of Emergency Lighting and Power Systems § 112.01-10...

  18. 46 CFR 112.01-10 - Automatic emergency lighting and power system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Automatic emergency lighting and power system. 112.01-10 Section 112.01-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Definitions of Emergency Lighting and Power Systems § 112.01-10...

  19. 46 CFR 112.01-10 - Automatic emergency lighting and power system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Automatic emergency lighting and power system. 112.01-10 Section 112.01-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Definitions of Emergency Lighting and Power Systems § 112.01-10...

  20. Learning Platform for Study of Power Electronic Application in Power Systems

    ERIC Educational Resources Information Center

    Bauer, P.; Rompelman, O.

    2005-01-01

    Present engineering has to deal with increasingly complex systems. In particular, this is the case in electrical engineering. Though this is obvious in microelectronics, also in the field of power systems engineers have to design, operate and maintain highly complex systems such as power grids, energy converters and electrical drives. This is…

  1. Power Product Equipment Technician: Equipment Systems. Teacher Edition. Student Edition.

    ERIC Educational Resources Information Center

    Hilley, Robert

    This packet contains teacher and student editions on the topic of equipment systems, intended for the preparation of power product equipment technicians. This publication contains seven units: (1) principles of power transmission; (2) mechanical drive systems; (3) principles of fluid power; (4) hydraulic and pneumatic drive systems; (5) wheel and…

  2. 46 CFR 112.01-5 - Manual emergency lighting and power system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Manual emergency lighting and power system. 112.01-5 Section 112.01-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Definitions of Emergency Lighting and Power Systems § 112.01-5 Manual...

  3. 46 CFR 112.01-10 - Automatic emergency lighting and power system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Automatic emergency lighting and power system. 112.01-10 Section 112.01-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Definitions of Emergency Lighting and Power Systems § 112.01-10...

  4. 47 CFR 15.113 - Power line carrier systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... subject only to the following requirements: (a) A power utility operating a power line carrier system... systems to an industry-operated entity as set forth in § 90.63(g) of this chapter. No notification to the FCC is required. (b) The operating parameters of a power line carrier system (particularly the...

  5. Optimal wide-area monitoring and nonlinear adaptive coordinating neurocontrol of a power system with wind power integration and multiple FACTS devices.

    PubMed

    Qiao, Wei; Venayagamoorthy, Ganesh K; Harley, Ronald G

    2008-01-01

    Wide-area coordinating control is becoming an important issue and a challenging problem in the power industry. This paper proposes a novel optimal wide-area coordinating neurocontrol (WACNC), based on wide-area measurements, for a power system with power system stabilizers, a large wind farm and multiple flexible ac transmission system (FACTS) devices. An optimal wide-area monitor (OWAM), which is a radial basis function neural network (RBFNN), is designed to identify the input-output dynamics of the nonlinear power system. Its parameters are optimized through particle swarm optimization (PSO). Based on the OWAM, the WACNC is then designed by using the dual heuristic programming (DHP) method and RBFNNs, while considering the effect of signal transmission delays. The WACNC operates at a global level to coordinate the actions of local power system controllers. Each local controller communicates with the WACNC, receives remote control signals from the WACNC to enhance its dynamic performance and therefore helps improve system-wide dynamic and transient performance. The proposed control is verified by simulation studies on a multimachine power system.

  6. Effect of distributed generation installation on power loss using genetic algorithm method

    NASA Astrophysics Data System (ADS)

    Hasibuan, A.; Masri, S.; Othman, W. A. F. W. B.

    2018-02-01

    Injection of the generator distributed in the distribution network can affect the power system significantly. The effect that occurs depends on the allocation of DG on each part of the distribution network. Implementation of this approach has been made to the IEEE 30 bus standard and shows the optimum location and size of the DG which shows a decrease in power losses in the system. This paper aims to show the impact of distributed generation on the distribution system losses. The main purpose of installing DG on a distribution system is to reduce power losses on the power system.Some problems in power systems that can be solved with the installation of DG, one of which will be explored in the use of DG in this study is to reduce the power loss in the transmission line. Simulation results from case studies on the IEEE 30 bus standard system show that the system power loss decreased from 5.7781 MW to 1,5757 MW or just 27,27%. The simulated DG is injected to the bus with the lowest voltage drop on the bus number 8.

  7. Design and realization of temperature measurement system based on optical fiber temperature sensor for wireless power transfer

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Zeng, Shuang; Liu, Xiulan; Jin, Yuan; Li, Xianglong; Wang, Xiaochen

    2018-02-01

    The electric vehicles (EV) have become accepted by increasing numbers of people for the environmental-friendly advantages. A novel way to charge the electric vehicles is through wireless power transfer (WPT). The wireless power transfer is a high power transfer system. The high currents flowing through the transmitter and receiver coils increasing temperature affects the safety of person and charging equipment. As a result, temperature measurement for wireless power transfer is needed. In this paper, a temperature measurement system based on optical fiber temperature sensors for electric vehicle wireless power transfer is proposed. Initially, the thermal characteristics of the wireless power transfer system are studied and the advantages of optical fiber sensors are analyzed. Then the temperature measurement system based on optical fiber temperature sensor is designed. The system consists of optical subsystem, data acquisition subsystem and data processing subsystem. Finally, the system is tested and the experiment result shows that the system can realize 1°C precision and can acquire real-time temperature distribution of the coils, which can meet the requirement of the temperature measuring for wireless power transfer.

  8. Space Vehicle Power System Comprised of Battery/Capacitor Combinations

    NASA Technical Reports Server (NTRS)

    Camarotte, C.; Lancaster, G. S.; Eichenberg, D.; Butler, S. M.; Miller, J. R.

    2002-01-01

    Recent improvements in energy densities of batteries open the possibility of using electric rather that hydraulic actuators in space vehicle systems. However, the systems usually require short-duration, high-power pulses. This power profile requires the battery system to be sized to meet the power requirements rather than stored energy requirements, often resulting in a large and inefficient energy storage system. Similar transient power applications have used a combination of two or more disparate energy storage technologies. For instance, placing a capacitor and a battery side-by-side combines the high energy density of a battery with the high power performance of a capacitor and thus can create a lighter and more compact system. A parametric study was performed to identify favorable scenarios for using capacitors. System designs were then carried out using equivalent circuit models developed for five commercial electrochemical capacitor products. Capacitors were sized to satisfy peak power levels and consequently "leveled" the power requirement of the battery, which can then be sized to meet system energy requirements. Simulation results clearly differentiate the performance offered by available capacitor products for the space vehicle applications.

  9. Knowledge-based and integrated monitoring and diagnosis in autonomous power systems

    NASA Technical Reports Server (NTRS)

    Momoh, J. A.; Zhang, Z. Z.

    1990-01-01

    A new technique of knowledge-based and integrated monitoring and diagnosis (KBIMD) to deal with abnormalities and incipient or potential failures in autonomous power systems is presented. The KBIMD conception is discussed as a new function of autonomous power system automation. Available diagnostic modelling, system structure, principles and strategies are suggested. In order to verify the feasibility of the KBIMD, a preliminary prototype expert system is designed to simulate the KBIMD function in a main electric network of the autonomous power system.

  10. A Study on Electric Power Smoothing System for Lead-Acid Battery of Stand-Alone Natural Energy Power System Using EDLC

    NASA Astrophysics Data System (ADS)

    Jia, Yan; Shibata, Ryosuke; Yamamura, Naoki; Ishida, Muneaki

    To resolve energy shortage and global warming problem, renewable natural resource and its power system has been gradually generalizing. However, the power fluctuation suppressing in short period and the balance control of consumption and supply in long period are two of main problems that need to be resolved urgently in natural energy power system. In Stand-alone Natural Energy Power System (SNEPS) with power energy storage devices, power fluctuation in short period is one of the main reasons that recharge cycle times increase and lead-acid battery early failure. Hence, to prolong the service life of lead-acid battery and improve power quality through suppressing the power fluctuation, we proposed a method of electric power smoothing for lead-acid battery of SNEPS using bi-directional Buck/Boost converter and Electric Double Layer Capacitor (EDLC) in this paper. According to the test data of existing SNEPS, a power fluctuation condition is selected and as an example to analyze the validity of the proposed method. The analysis of frequency characteristics indicates the power fluctuation is suppressed a desired range in the target frequency region. The experimental results of confirmed the feasibility of the proposed system and the results well satisfy the requirement of system design.

  11. Hydrogen turbine power conversion system assessment

    NASA Technical Reports Server (NTRS)

    Wright, D. E.; Lucci, A. D.; Campbell, J.; Lee, J. C.

    1978-01-01

    A three part technical study was conducted whereby parametric technical and economic feasibility data were developed on several power conversion systems suitable for the generation of central station electric power through the combustion of hydrogen and the use of the resulting heat energy in turbogenerator equipment. The study assessed potential applications of hydrogen-fueled power conversion systems and identified the three most promising candidates: (1) Ericsson Cycle, (2) gas turbine, and (3) direct steam injection system for fossil fuel as well as nuclear powerplants. A technical and economic evaluation was performed on the three systems from which the direct injection system (fossil fuel only) was selected for a preliminary conceptual design of an integrated hydrogen-fired power conversion system.

  12. Isotope Brayton electric power system for the 500 to 2500 watt range.

    NASA Technical Reports Server (NTRS)

    Macosko, R. P.; Barna, G. J.; Block, H. B.; Ingle, B. D.

    1972-01-01

    An extensive study was conducted at the Lewis Research Center to evaluate an isotope Brayton electric power system for use in the 500 to 2500 W power range. The study emphasized overall system simplicity in order to reduce parasitic power losses and improve system reliability. The study included detailed parametric cycle analysis, conceptual component designs, and evaluation of system packaging. The study has resulted in the selection of a single-loop system (gas) with six major components including one rotating unit. Calculated net system efficiency varies from 23 to 28% over the power range. The use of the Pu-238 heat source being developed for the Multi-Hundred-Watt Radioisotope Thermoelectric Generator program was assumed.

  13. Kilowatt-Class Fission Power Systems for Science and Human Precursor Missions

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.; Gibson, Marc Andrew; Poston, Dave

    2013-01-01

    Nuclear power provides an enabling capability for NASA missions that might otherwise be constrained by power availability, mission duration, or operational robustness. NASA and the Department of Energy (DOE) are developing fission power technology to serve a wide range of future space uses. Advantages include lower mass, longer life, and greater mission flexibility than competing power system options. Kilowatt-class fission systems, designated "Kilopower," were conceived to address the need for systems to fill the gap above the current 100-W-class radioisotope power systems being developed for science missions and below the typical 100-k We-class reactor power systems being developed for human exploration missions. This paper reviews the current fission technology project and examines some Kilopower concepts that could be used to support future science missions or human precursors.

  14. Kilowatt-Class Fission Power Systems for Science and Human Precursor Missions

    NASA Technical Reports Server (NTRS)

    Mason, Lee; Gibson, Marc; Poston, Dave

    2013-01-01

    Nuclear power provides an enabling capability for NASA missions that might otherwise be constrained by power availability, mission duration, or operational robustness. NASA and the Department of Energy (DOE) are developing fission power technology to serve a wide range of future space uses. Advantages include lower mass, longer life, and greater mission flexibility than competing power system options. Kilowatt-class fission systems, designated "Kilopower," were conceived to address the need for systems to fill the gap above the current 100-Wclass radioisotope power systems being developed for science missions and below the typical 100-kWe-class reactor power systems being developed for human exploration missions. This paper reviews the current fission technology project and examines some Kilopower concepts that could be used to support future science missions or human precursors.

  15. Modeling and simulation of an unmanned ground vehicle power system

    NASA Astrophysics Data System (ADS)

    Broderick, John; Hartner, Jack; Tilbury, Dawn M.; Atkins, Ella M.

    2014-06-01

    Long-duration missions challenge ground robot systems with respect to energy storage and efficient conversion to power on demand. Ground robot systems can contain multiple power sources such as fuel cell, battery and/or ultra-capacitor. This paper presents a hybrid systems framework for collectively modeling the dynamics and switching between these different power components. The hybrid system allows modeling power source on/off switching and different regimes of operation, together with continuous parameters such as state of charge, temperature, and power output. We apply this modeling framework to a fuel cell/battery power system applicable to unmanned ground vehicles such as Packbot or TALON. A simulation comparison of different control strategies is presented. These strategies are compared based on maximizing energy efficiency and meeting thermal constraints.

  16. Energy loss analysis of an integrated space power distribution system

    NASA Technical Reports Server (NTRS)

    Kankam, M. D.; Ribeiro, P. F.

    1992-01-01

    The results of studies related to conceptual topologies of an integrated utility-like space power system are described. The system topologies are comparatively analyzed by considering their transmission energy losses as functions of mainly distribution voltage level and load composition. The analysis is expedited by use of a Distribution System Analysis and Simulation (DSAS) software. This recently developed computer program by the Electric Power Research Institute (EPRI) uses improved load models to solve the power flow within the system. However, present shortcomings of the software with regard to space applications, and incompletely defined characteristics of a space power system make the results applicable to only the fundamental trends of energy losses of the topologies studied. Accountability, such as included, for the effects of the various parameters on the system performance can constitute part of a planning tool for a space power distribution system.

  17. Proposal and Development of a High Voltage Variable Frequency Alternating Current Power System for Hybrid Electric Aircraft

    NASA Technical Reports Server (NTRS)

    Sadey, David J.; Taylor, Linda M.; Beach, Raymond F.

    2016-01-01

    The development of ultra-efficient commercial vehicles and the transition to low-carbon emission propulsion are seen as thrust paths within NASA Aeronautics. A critical enabler to these paths comes in the form of hybrid-electric propulsion systems. For megawatt-class systems, the best power system topology for these hybrid-electric propulsion systems is debatable. Current proposals within NASA and the Aero community suggest using a combination of AC and DC for power transmission. This paper proposes an alternative to the current thought model through the use of a primarily high voltage AC power generation, transmission, and distribution systems, supported by the Convergent Aeronautics Solutions (CAS) Project. This system relies heavily on the use of dual-fed induction machines, which provide high power densities, minimal power conversion, and variable speed operation. The paper presents background on the project along with the system architecture, development status and preliminary results.

  18. System-state and operating condition sensitive control method and apparatus for electric power delivery systems

    NASA Technical Reports Server (NTRS)

    Burns, III, William Wesley (Inventor); Wilson, Thomas George (Inventor)

    1978-01-01

    This invention provides a method and apparatus for determining a precise switching sequence for the power switching elements of electric power delivery systems of the on-off switching type and which enables extremely fast transient response, precise regulation and highly stable operation. The control utilizes the values of the power delivery system power handling network components, a desired output characteristic, a system timing parameter, and the externally imposed operating conditions to determine where steady state operations should be in order to yield desired output characteristics for the given system specifications. The actual state of the power delivery system is continuously monitored and compared to a state-space boundary which is derived from the desired equilibrium condition, and from the information obtained from this comparison, the system is moved to the desired equilibrium condition in one cycle of switching control. Since the controller continuously monitors the power delivery system's externally imposed operating conditions, a change in the conditions is immediately sensed and a new equilibrium condition is determined and achieved, again in a single cycle of switching control.

  19. Satellite Power Systems (SPS) concept definition study. Volume 4: SPS point design definition

    NASA Technical Reports Server (NTRS)

    Hanley, G.

    1978-01-01

    The satellite power systems point design concept is described. The concept definition includes satellite, ground and space systems, and their relationships. Emphasis is placed on the definition of the GaAlAs photovoltaic satellite system. The major subsystems of the satellite system including power conversion, power distribution and control, microwave, attitude control and stationkeeping, thermal control, structures, and information management and control are discussed.

  20. A hybrid electrical power system for aircraft application.

    NASA Technical Reports Server (NTRS)

    Lee, C. H.; Chin, C. Y.

    1971-01-01

    Possible improvements to present aircraft electrical power systems for use in future advanced types of aircraft have been investigated. The conventional power system is examined, the characteristics of electric loads are reviewed, and various methods of power generation and distribution are appraised. It is shown that a hybrid system, with variable-frequency generation and high-voltage dc distribution, could overcome some of the limitations of the conventional system.

  1. Recent Trend of New Type Power Delivery System and its Demonstrative Project in Japan

    NASA Astrophysics Data System (ADS)

    Morozumi, Satoshi; Nara, Koichi

    Recently many such distributed generating systems as co-generation, photovoltaic, wind, fuel cells etc. are introduced into power distribution system, and the power system must cope with the situation with distributed generators. Moreover, such industries as IT request reliable and high quality power to preserve their businesses, and some other electric energy based industries request less reliable but cheaper electricity. From these backgrounds, several new type power delivery systems are emerging where lots of distributed generators (DGs) can be connected and many benefits offered by DGs can be realized without affecting the existing power system. They are referred to various names. In U.S.A., Microgrid, Power Park and Virtual Utilities, etc. are proposed. In Europe, DISPOWER or Smart Grid is under developing. In Japan, FRIENDS and Demand Area Network System etc. are proposed and tested in real sites. In this paper, first, general concepts of such new type power delivery systems and new businesses expected to be created by using DGs are introduced. Then, recent research activities in this area in Japan are introduced so as to stimulate new business opportunities. In the later part of this paper, related NEDO's demonstrative projects are introduced. NEDO is the largest public R&D management organization and promoting several projects regarding grid connecting issues on the power system. Those projects were planned to solve several problems on the power system where distributed renewable energy resources are installed.

  2. Computer program analyzes and monitors electrical power systems (POSIMO)

    NASA Technical Reports Server (NTRS)

    Jaeger, K.

    1972-01-01

    Requirements to monitor and/or simulate electric power distribution, power balance, and charge budget are discussed. Computer program to analyze power system and generate set of characteristic power system data is described. Application to status indicators to denote different exclusive conditions is presented.

  3. Identification of high performance and component technology for space electrical power systems for use beyond the year 2000

    NASA Technical Reports Server (NTRS)

    Maisel, James E.

    1988-01-01

    Addressed are some of the space electrical power system technologies that should be developed for the U.S. space program to remain competitive in the 21st century. A brief historical overview of some U.S. manned/unmanned spacecraft power systems is discussed to establish the fact that electrical systems are and will continue to become more sophisticated as the power levels appoach those on the ground. Adaptive/Expert power systems that can function in an extraterrestrial environment will be required to take an appropriate action during electrical faults so that the impact is minimal. Manhours can be reduced significantly by relinquishing tedious routine system component maintenance to the adaptive/expert system. By cataloging component signatures over time this system can set a flag for a premature component failure and thus possibly avoid a major fault. High frequency operation is important if the electrical power system mass is to be cut significantly. High power semiconductor or vacuum switching components will be required to meet future power demands. System mass tradeoffs have been investigated in terms of operating at high temperature, efficiency, voltage regulation, and system reliability. High temperature semiconductors will be required. Silicon carbide materials will operate at a temperature around 1000 K and the diamond material up to 1300 K. The driver for elevated temperature operation is that radiator mass is reduced significantly because of inverse temperature to the fourth power.

  4. Development of a robust space power system decision model

    NASA Astrophysics Data System (ADS)

    Chew, Gilbert; Pelaccio, Dennis G.; Jacobs, Mark; Stancati, Michael; Cataldo, Robert

    2001-02-01

    NASA continues to evaluate power systems to support human exploration of the Moon and Mars. The system(s) would address all power needs of surface bases and on-board power for space transfer vehicles. Prior studies have examined both solar and nuclear-based alternatives with respect to individual issues such as sizing or cost. What has not been addressed is a comprehensive look at the risks and benefits of the options that could serve as the analytical framework to support a system choice that best serves the needs of the exploration program. This paper describes the SAIC developed Space Power System Decision Model, which uses a formal Two-step Analytical Hierarchy Process (TAHP) methodology that is used in the decision-making process to clearly distinguish candidate power systems in terms of benefits, safety, and risk. TAHP is a decision making process based on the Analytical Hierarchy Process, which employs a hierarchic approach of structuring decision factors by weights, and relatively ranks system design options on a consistent basis. This decision process also includes a level of data gathering and organization that produces a consistent, well-documented assessment, from which the capability of each power system option to meet top-level goals can be prioritized. The model defined on this effort focuses on the comparative assessment candidate power system options for Mars surface application(s). This paper describes the principles of this approach, the assessment criteria and weighting procedures, and the tools to capture and assess the expert knowledge associated with space power system evaluation. .

  5. Precise time and time interval applications to electric power systems

    NASA Technical Reports Server (NTRS)

    Wilson, Robert E.

    1992-01-01

    There are many applications of precise time and time interval (frequency) in operating modern electric power systems. Many generators and customer loads are operated in parallel. The reliable transfer of electrical power to the consumer partly depends on measuring power system frequency consistently in many locations. The internal oscillators in the widely dispersed frequency measuring units must be syntonized. Elaborate protection and control systems guard the high voltage equipment from short and open circuits. For the highest reliability of electric service, engineers need to study all control system operations. Precise timekeeping networks aid in the analysis of power system operations by synchronizing the clocks on recording instruments. Utility engineers want to reproduce events that caused loss of service to customers. Precise timekeeping networks can synchronize protective relay test-sets. For dependable electrical service, all generators and large motors must remain close to speed synchronism. The stable response of a power system to perturbations is critical to continuity of electrical service. Research shows that measurement of the power system state vector can aid in the monitoring and control of system stability. If power system operators know that a lightning storm is approaching a critical transmission line or transformer, they can modify operating strategies. Knowledge of the location of a short circuit fault can speed the re-energizing of a transmission line. One fault location technique requires clocks synchronized to one microsecond. Current research seeks to find out if one microsecond timekeeping can aid and improve power system control and operation.

  6. Test results of 3.7 GHz 500kW CW klystron for SST1 LHCD system

    NASA Astrophysics Data System (ADS)

    Sharma, Promod Kumar; Ambulkar, Kiran K.; Dalakoti, Shefali; Rajan Babu, N.; Parmar, Pramod R.; Virani, Chetan G.; Thakur, Arvind L.

    2012-10-01

    A 3.7 GHz, LHCD system aims to driving non inductive plasma current for SST1 machine. Its capability has been enhanced up to 2 MW by adding two additional klystrons, each rated for 500kW, CW power. The additional klystrons are installed and commissioned at site, for rated power, for more than 1000 seconds, before connecting them to main LHCD system. The auxiliary systems, like supporting power supply system (magnet, filament, ion pump, etc.), active heat management system, slow and fast interlock system, transmission line pressurization system, low power rf drive system, etc. are inter-connected with klystron system through VME based data acquisition and control system for remote CW operation of klystron at rated power. The calorimetric measurements, employing Pt-100 sensors, suggests that the maximum rf power (˜500kW CW) extracted from klystron is dissipated on water cooled dummy loads. The unspent DC power (˜800 kW CW) is dissipated in collector which is heavily cooled with water flowing at ˜1300 litres/min (lpm). The power loss in the klystron body remained within 20 kW. The cavity temperature, measured using J-type thermocouple, remained below 150 ^oC. The output rf power, sampled through directional couplers and measured by rf detectors shows good agreement with calorimetric measurements. A detailed description of the klystron test set up and the test results obtained during its commissioning is presented in this paper.

  7. 30 CFR 77.701-1 - Approved methods of grounding of equipment receiving power from ungrounded alternating current...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... receiving power from ungrounded alternating current power systems. 77.701-1 Section 77.701-1 Mineral... power systems. For purposes of grounding metallic frames, casings and other enclosures of equipment receiving power from ungrounded alternating current power systems, the following methods of grounding will...

  8. 30 CFR 77.701-1 - Approved methods of grounding of equipment receiving power from ungrounded alternating current...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... receiving power from ungrounded alternating current power systems. 77.701-1 Section 77.701-1 Mineral... power systems. For purposes of grounding metallic frames, casings and other enclosures of equipment receiving power from ungrounded alternating current power systems, the following methods of grounding will...

  9. 30 CFR 77.701-1 - Approved methods of grounding of equipment receiving power from ungrounded alternating current...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... receiving power from ungrounded alternating current power systems. 77.701-1 Section 77.701-1 Mineral... power systems. For purposes of grounding metallic frames, casings and other enclosures of equipment receiving power from ungrounded alternating current power systems, the following methods of grounding will...

  10. Convexity of Energy-Like Functions: Theoretical Results and Applications to Power System Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dvijotham, Krishnamurthy; Low, Steven; Chertkov, Michael

    2015-01-12

    Power systems are undergoing unprecedented transformations with increased adoption of renewables and distributed generation, as well as the adoption of demand response programs. All of these changes, while making the grid more responsive and potentially more efficient, pose significant challenges for power systems operators. Conventional operational paradigms are no longer sufficient as the power system may no longer have big dispatchable generators with sufficient positive and negative reserves. This increases the need for tools and algorithms that can efficiently predict safe regions of operation of the power system. In this paper, we study energy functions as a tool to designmore » algorithms for various operational problems in power systems. These have a long history in power systems and have been primarily applied to transient stability problems. In this paper, we take a new look at power systems, focusing on an aspect that has previously received little attention: Convexity. We characterize the domain of voltage magnitudes and phases within which the energy function is convex in these variables. We show that this corresponds naturally with standard operational constraints imposed in power systems. We show that power of equations can be solved using this approach, as long as the solution lies within the convexity domain. We outline various desirable properties of solutions in the convexity domain and present simple numerical illustrations supporting our results.« less

  11. Modeling and control of hybrid wind/photovoltaic/fuel cell distributed generation systems

    NASA Astrophysics Data System (ADS)

    Wang, Caisheng

    Due to ever increasing energy consumption, rising public awareness of environmental protection, and steady progress in power deregulation, alternative (i.e., renewable and fuel cell based) distributed generation (DG) systems have attracted increased interest. Wind and photovoltaic (PV) power generation are two of the most promising renewable energy technologies. Fuel cell (FC) systems also show great potential in DG applications of the future due to their fast technology development and many merits they have, such as high efficiency, zero or low emission (of pollutant gases) and flexible modular structure. The modeling and control of a hybrid wind/PV/FC DG system is addressed in this dissertation. Different energy sources in the system are integrated through an AC bus. Dynamic models for the main system components, namely, wind energy conversion system (WECS), PV energy conversion system (PVECS), fuel cell, electrolyzer, power electronic interfacing circuits, battery, hydrogen storage tank, gas compressor and gas pressure regulator, are developed. Two types of fuel cells have been modeled in this dissertation: proton exchange membrane fuel cell (PEMFC) and solid oxide fuel cell (SOFC). Power control of a grid-connected FC system as well as load mitigation control of a stand-alone FC system are investigated. The pitch angle control for WECS, the maximum power point tracking (MPPT) control for PVECS, and the control for electrolyzer and power electronic devices, are also addressed in the dissertation. Based on the dynamic component models, a simulation model for the proposed hybrid energy system has been developed using MATLAB/Simulink. The overall power management strategy for coordinating the power flows among the different energy sources is presented in the dissertation. Simulation studies have been carried out to verify the system performance under different scenarios using a practical load profile and real weather data. The results show that the overall power management strategy is effective and the power flows among the different energy sources and the load demand is balanced successfully. The DG's impacts on the existing power system are also investigated in this dissertation. Analytical methods for finding optimal sites to deploy DG sources in power systems are presented and verified with simulation studies.

  12. Control system design method

    DOEpatents

    Wilson, David G [Tijeras, NM; Robinett, III, Rush D.

    2012-02-21

    A control system design method and concomitant control system comprising representing a physical apparatus to be controlled as a Hamiltonian system, determining elements of the Hamiltonian system representation which are power generators, power dissipators, and power storage devices, analyzing stability and performance of the Hamiltonian system based on the results of the determining step and determining necessary and sufficient conditions for stability of the Hamiltonian system, creating a stable control system based on the results of the analyzing step, and employing the resulting control system to control the physical apparatus.

  13. Subsystem design in aircraft power distribution systems using optimization

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, Sriram

    2000-10-01

    The research reported in this dissertation focuses on the development of optimization tools for the design of subsystems in a modern aircraft power distribution system. The baseline power distribution system is built around a 270V DC bus. One of the distinguishing features of this power distribution system is the presence of regenerative power from the electrically driven flight control actuators and structurally integrated smart actuators back to the DC bus. The key electrical components of the power distribution system are bidirectional switching power converters, which convert, control and condition electrical power between the sources and the loads. The dissertation is divided into three parts. Part I deals with the formulation of an optimization problem for a sample system consisting of a regulated DC-DC buck converter preceded by an input filter. The individual subsystems are optimized first followed by the integrated optimization of the sample system. It is shown that the integrated optimization provides better results than that obtained by integrating the individually optimized systems. Part II presents a detailed study of piezoelectric actuators. This study includes modeling, optimization of the drive amplifier and the development of a current control law for piezoelectric actuators coupled to a simple mechanical structure. Linear and nonlinear methods to study subsystem interaction and stability are studied in Part III. A multivariable impedance ratio criterion applicable to three phase systems is proposed. Bifurcation methods are used to obtain global stability characteristics of interconnected systems. The application of a nonlinear design methodology, widely used in power systems, to incrementally improve the robustness of a system to Hopf bifurcation instability is discussed.

  14. Design of Simulation Product for Stability of Electric Power System Using Power System Stabilizer and Optimal Control

    NASA Astrophysics Data System (ADS)

    Junaidi, Agus; Hamid, K. Abdul

    2018-03-01

    This paper will discuss the use of optimal control and Power System Stabilizer (PSS) in improving the oscillation of electric power system. Oscillations in the electric power system can occur due to the sudden release of the load (Switcing-Off). The oscillation of an unstable system for a long time causes the equipment to work in an interruption. To overcome this problem, a control device is required that can work effectively in repairing the oscillation. The power system is modeled from the Single Machine Infinite Bus Model (SMIB). The state space equation is used to mathematically model SMIB. SMIB system which is a plant will be formed togetherness state variables (State-Space), using riccati equation then determined the optimal gain as controller plant. Plant is also controlled by Power Stabilizer System using phase compensation method. Using Matlab Software based simulation will be observed response of rotor speed change and rotor angle change for each of the two controlling methods. Simulation results using the Simulink-MATLAB 6.1 software will compare the analysis of the plant state in Open loop state and use the controller. The simulation response shows that the optimal control and PSS can improve the stability of the power system in terms of acceleration to achieve settling-time and Over Shoot improvement. From the results of both methods are able to improve system performance.

  15. Development of a 66kV Class Rectifier Type Fault Current Limiter System

    NASA Astrophysics Data System (ADS)

    Ohkuma, Takeshi; Sato, Yoshibumi; Takahashi, Yoshihisa; Tokuda, Noriaki; Murai, Masaki; Nagasaki, Norihisa; Yuguchi, Kyousuke

    A fault current limiter (FCL) is extensively expected to suppress fault current, particularly required for trunk power systems heavily connected high-voltage transmission lines, such as 500 kV class power system which constitutes the nucleus of the electric power system. By installing such FCL in the power system, the system interconnection is possible without the need to raise the capacity of the circuit breakers, and it is expected that FCLs may be used in more efficient power system design. For these reasons, FCLs based on various principles of operation have been developed in the world. In this paper, we have proposed a new type of FCL system, consisting of solid-state diodes, DC coil and bypass AC coil, and described the specification of distribution power system and 66 kV class FCL model. Also we have proposed a 66 kV class prototype single-phase model and the current limiting performance of this model was evaluated using a short circuit generator.

  16. Recent Progress of Self-Powered Sensing Systems for Wearable Electronics.

    PubMed

    Lou, Zheng; Li, La; Wang, Lili; Shen, Guozhen

    2017-12-01

    Wearable/flexible electronic sensing systems are considered to be one of the key technologies in the next generation of smart personal electronics. To realize personal portable devices with mobile electronics application, i.e., wearable electronic sensors that can work sustainably and continuously without an external power supply are highly desired. The recent progress and advantages of wearable self-powered electronic sensing systems for mobile or personal attachable health monitoring applications are presented. An overview of various types of wearable electronic sensors, including flexible tactile sensors, wearable image sensor array, biological and chemical sensor, temperature sensors, and multifunctional integrated sensing systems is provided. Self-powered sensing systems with integrated energy units are then discussed, separated as energy harvesting self-powered sensing systems, energy storage integrated sensing systems, and all-in-on integrated sensing systems. Finally, the future perspectives of self-powered sensing systems for wearable electronics are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Control voltage and power fluctuations when connecting wind farms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berinde, Ioan, E-mail: ioan-berinde@yahoo.com; Bălan, Horia, E-mail: hbalan@mail.utcluj.ro; Oros, Teodora Susana, E-mail: teodoraoros-87@yahoo.com

    2015-12-23

    Voltage, frequency, active power and reactive power are very important parameters in terms of power quality. These parameters are followed when connecting any power plant, the more the connection of wind farms. Connecting wind farms to the electricity system must not cause interference outside the limits set by regulations. Modern solutions for fast and automatic voltage control and power fluctuations using electronic control systems of reactive power flows. FACTS (Flexible Alternating Current Transmision System) systems, established on the basis of power electronic circuits ensure control of electrical status quantities to achieve the necessary transfer of power to the power grid.more » FACTS devices can quickly control parameters and sizes of state power lines, such as impedance line voltages and phase angles of the voltages of the two ends of the line. Their use can lead to improvement in power system operation by increasing the transmission capacity of power lines, power flow control lines, improved static and transient stability reserve.« less

  18. Stability of large DC power systems using switching converters, with application to the international space station

    NASA Technical Reports Server (NTRS)

    Manners, B.; Gholdston, E. W.; Karimi, K.; Lee, F. C.; Rajagopalan, J.; Panov, Y.

    1996-01-01

    As space direct current (dc) power systems continue to grow in size, switching power converters are playing an ever larger role in power conditioning and control. When designing a large dc system using power converters of this type, special attention must be placed on the electrical stability of the system and of the individual loads on the system. In the design of the electric power system (EPS) of the International Space Station (ISS), the National Aeronautics and Space Administration (NASA) and its contractor team led by Boeing Defense & Space Group has placed a great deal of emphasis on designing for system and load stability. To achieve this goal, the team has expended considerable effort deriving a dear concept on defining system stability in both a general sense and specifically with respect to the space station. The ISS power system presents numerous challenges with respect to system stability, such as high power, complex sources and undefined loads. To complicate these issues, source and load components have been designed in parallel by three major subcontractors (Boeing, Rocketdyne, and McDonnell Douglas) with interfaces to both sources and loads being designed in different countries (Russia, Japan, Canada, Europe, etc.). These issues, coupled with the program goal of limiting costs, have proven a significant challenge to the program. As a result, the program has derived an impedance specification approach for system stability. This approach is based on the significant relationship between source and load impedances and the effect of this relationship on system stability. This approach is limited in its applicability by the theoretical and practical limits on component designs as presented by each system segment. As a result, the overall approach to system stability implemented by the ISS program consists of specific hardware requirements coupled with extensive system analysis and hardware testing. Following this approach, the ISS program plans to begin construction of the world's largest orbiting power system in 1997.

  19. Heatpipe power system and heatpipe bimodal system design and development options

    NASA Technical Reports Server (NTRS)

    Houts, M. G.; Poston, D. I.; Emrich, W. J., Jr.

    1997-01-01

    The Heatpipe Power System (HPS) is a potential, near-term, low-cost space fission power system. The Heatpipe Bimodal System (HBS) is a potential, near-term, low-cost space fission power and/or propulsion system. Both systems will be composed of independent modules, and all components operate within the existing databases. The HPS and HBS have relatively few system integration issues; thus, the successful development of a module is a significant step toward verifying system feasibility and performance estimates. A prototypic HPS module is being fabricated, and testing is scheduled to begin in November 1996. A successful test will provide high confidence that the HPS can achieve its predicted performance.

  20. Compact Hybrid Automotive Propulsion System

    NASA Technical Reports Server (NTRS)

    Lupo, G.

    1986-01-01

    Power train proposed for experimental vehicle powered by internal combustion engine and electric motor. Intended for front-wheel drive automobile, power train mass produced using existing technology. System includes internal-combustion engine, electric motor, continuously variable transmission, torque converter, differential, and control and adjustment systems for electric motor and transmission. Continuously variable transmission integrated into hydraulic system that also handles power steering and power brakes. Batteries for electric motor mounted elsewhere in vehicle.

  1. Naval Open Architecture Machinery Control Systems for Next Generation Integrated Power Systems

    DTIC Science & Technology

    2012-05-01

    PORTABLE) OS / RTOS ADAPTATION MIDDLEWARE (FOR OS PORTABILITY) MACHINERY CONTROLLER FRAMEWORK MACHINERY CONTROL SYSTEM SERVICES POWER CONTROL SYSTEM...SERVICES SHIP SYSTEM SERVICES TTY 0 TTY N … OPERATING SYSTEM ( OS / RTOS ) COMPUTER HARDWARE UDP IP TCP RAW DEV 0 DEV N … POWER MANAGEMENT CONTROLLER...operating systems (DOS, Windows, Linux, OS /2, QNX, SCO Unix ...) COMPUTERS: ISA compatible motherboards, workstations and portables (Compaq, Dell

  2. An explosively driven high-power microwave pulsed power system.

    PubMed

    Elsayed, M A; Neuber, A A; Dickens, J C; Walter, J W; Kristiansen, M; Altgilbers, L L

    2012-02-01

    The increased popularity of high power microwave systems and the various sources to drive them is the motivation behind the work to be presented. A stand-alone, self-contained explosively driven high power microwave pulsed power system has been designed, built, and tested at Texas Tech University's Center for Pulsed Power and Power Electronics. The system integrates four different sub-units that are composed of a battery driven prime power source utilizing capacitive energy storage, a dual stage helical flux compression generator as the main energy amplification device, an integrated power conditioning system with inductive energy storage including a fast opening electro-explosive switch, and a triode reflex geometry virtual cathode oscillator as the microwave radiating source. This system has displayed a measured electrical source power level of over 5 GW and peak radiated microwaves of about 200 MW. It is contained within a 15 cm diameter housing and measures 2 m in length, giving a housing volume of slightly less than 39 l. The system and its sub-components have been extensively studied, both as integrated and individual units, to further expand on components behavior and operation physics. This report will serve as a detailed design overview of each of the four subcomponents and provide detailed analysis of the overall system performance and benchmarks.

  3. An explosively driven high-power microwave pulsed power system

    NASA Astrophysics Data System (ADS)

    Elsayed, M. A.; Neuber, A. A.; Dickens, J. C.; Walter, J. W.; Kristiansen, M.; Altgilbers, L. L.

    2012-02-01

    The increased popularity of high power microwave systems and the various sources to drive them is the motivation behind the work to be presented. A stand-alone, self-contained explosively driven high power microwave pulsed power system has been designed, built, and tested at Texas Tech University's Center for Pulsed Power and Power Electronics. The system integrates four different sub-units that are composed of a battery driven prime power source utilizing capacitive energy storage, a dual stage helical flux compression generator as the main energy amplification device, an integrated power conditioning system with inductive energy storage including a fast opening electro-explosive switch, and a triode reflex geometry virtual cathode oscillator as the microwave radiating source. This system has displayed a measured electrical source power level of over 5 GW and peak radiated microwaves of about 200 MW. It is contained within a 15 cm diameter housing and measures 2 m in length, giving a housing volume of slightly less than 39 l. The system and its sub-components have been extensively studied, both as integrated and individual units, to further expand on components behavior and operation physics. This report will serve as a detailed design overview of each of the four subcomponents and provide detailed analysis of the overall system performance and benchmarks.

  4. Optimized design and control of an off grid solar PV/hydrogen fuel cell power system for green buildings

    NASA Astrophysics Data System (ADS)

    Ghenai, C.; Bettayeb, M.

    2017-11-01

    Modelling, simulation, optimization and control strategies are used in this study to design a stand-alone solar PV/Fuel Cell/Battery/Generator hybrid power system to serve the electrical load of a commercial building. The main objective is to design an off grid energy system to meet the desired electric load of the commercial building with high renewable fraction, low emissions and low cost of energy. The goal is to manage the energy consumption of the building, reduce the associate cost and to switch from grid-tied fossil fuel power system to an off grid renewable and cleaner power system. Energy audit was performed in this study to determine the energy consumption of the building. Hourly simulations, modelling and optimization were performed to determine the performance and cost of the hybrid power configurations using different control strategies. The results show that the hybrid off grid solar PV/Fuel Cell/Generator/Battery/Inverter power system offers the best performance for the tested system architectures. From the total energy generated from the off grid hybrid power system, 73% is produced from the solar PV, 24% from the fuel cell and 3% from the backup Diesel generator. The produced power is used to meet all the AC load of the building without power shortage (<0.1%). The hybrid power system produces 18.2% excess power that can be used to serve the thermal load of the building. The proposed hybrid power system is sustainable, economically viable and environmentally friendly: High renewable fraction (66.1%), low levelized cost of energy (92 /MWh), and low carbon dioxide emissions (24 kg CO2/MWh) are achieved.

  5. Hybrid Power Management (HPM) Program Resulted in Several New Applications

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2003-01-01

    Hybrid Power Management (HPM) is the innovative integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications. The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The advanced power devices include ultracapacitors, fuel cells, and photovoltaics. HPM has extremely wide potential with applications from nanowatts to megawatts. Applications include power generation, transportation systems, biotechnology systems, and space power systems. HPM has the potential to significantly alleviate global energy concerns, improve the environment, and stimulate the economy.

  6. Energy saving in data processing and communication systems.

    PubMed

    Iazeolla, Giuseppe; Pieroni, Alessandra

    2014-01-01

    The power management of ICT systems, that is, data processing (Dp) and telecommunication (Tlc) systems, is becoming a relevant problem in economical terms. Dp systems totalize millions of servers and associated subsystems (processors, monitors, storage devices, etc.) all over the world that need to be electrically powered. Dp systems are also used in the government of Tlc systems, which, besides requiring Dp electrical power, also require Tlc-specific power, both for mobile networks (with their cell-phone towers and associated subsystems: base stations, subscriber stations, switching nodes, etc.) and for wired networks (with their routers, gateways, switches, etc.). ICT research is thus expected to investigate into methods to reduce Dp- and Tlc-specific power consumption. However, saving power may turn into waste of performance, in other words, into waste of ICT quality of service (QoS). This paper investigates the Dp and Tlc power management policies that look at compromises between power saving and QoS.

  7. Applications of Intelligent Technology to Power System Supervisory Control and Protection Systems

    NASA Astrophysics Data System (ADS)

    Nagata, Takeshi

    Power system supervisory control and protection systems provide utilities with capabilities that are key to a planning business function, i.e., delivering power in a reliable and safe manner. A quality system solution is central to effective operation of a utility's most critical and costly generation, transmission, and distribution assets. The challenging issues for these systems today are not the same as they were few years ago. Today, there is much more placed on integration, use of new IT technologies, and access to information for more purposes. This article presents the topics of intelligent technology to the power system supervisory control and protection systems.

  8. Automation technology for aerospace power management

    NASA Technical Reports Server (NTRS)

    Larsen, R. L.

    1982-01-01

    The growing size and complexity of spacecraft power systems coupled with limited space/ground communications necessitate increasingly automated onboard control systems. Research in computer science, particularly artificial intelligence has developed methods and techniques for constructing man-machine systems with problem-solving expertise in limited domains which may contribute to the automation of power systems. Since these systems perform tasks which are typically performed by human experts they have become known as Expert Systems. A review of the current state of the art in expert systems technology is presented, and potential applications in power systems management are considered. It is concluded that expert systems appear to have significant potential for improving the productivity of operations personnel in aerospace applications, and in automating the control of many aerospace systems.

  9. Satellite power system: Concept development and evaluation program. Volume 3: Power transmission and reception. Technical summary and assessment

    NASA Technical Reports Server (NTRS)

    Dietz, R. H.; Arndt, G. D.; Seyl, J. W.; Leopold, L.; Kelley, J. S.

    1981-01-01

    Efforts in the DOE/NASA concept development and evaluation program are discussed for the solar power satellite power transmission and reception system. A technical summary is provided together with a summary of system assessment activities. System options and system definition drivers are described. Major system assessment activities were in support of the reference system definition, solid state system studies, critical technology supporting investigations, and various system and subsystem tradeoffs. These activities are described together with reference system updates and alternative concepts for each of the subsystem areas. Conclusions reached as a result of the numerous analytical and experimental evaluations are presented. Remaining issues for a possible follow-on program are identified.

  10. Comparison of Battery-Powered and Manual Bone Biopsy Systems for Core Needle Biopsy of Sclerotic Bone Lesions.

    PubMed

    Cohen, Micah G; McMahon, Colm J; Kung, Justin W; Wu, Jim S

    2016-05-01

    The purpose of this study was to compare manual and battery-powered bone biopsy systems for diagnostic yield and procedural factors during core needle biopsy of sclerotic bone lesions. A total of 155 consecutive CT-guided core needle biopsies of sclerotic bone lesions were performed at one institution from January 2006 to November 2014. Before March 2012, lesions were biopsied with manual bone drill systems. After March 2012, most biopsies were performed with a battery-powered system and either noncoaxial or coaxial biopsy needles. Diagnostic yield, crush artifact, CT procedure time, procedure radiation dose, conscious sedation dose, and complications were compared between the manual and battery-powered core needle biopsy systems by Fisher exact test and t test. One-way ANOVA was used for subgroup analysis of the two battery-powered systems for procedure time and radiation dose. The diagnostic yield for all sclerotic lesions was 60.0% (93/155) and was significantly higher with the battery-powered system (73.0% [27/37]) than with the manual systems (55.9% [66/118]) (p = 0.047). There was no significant difference between the two systems in terms of crush artifact, procedure time, radiation dose, conscious sedation administered, or complications. In subgroup analysis, the coaxial battery-powered biopsies had shorter procedure times (p = 0.01) and lower radiation doses (p = 0.002) than the coaxial manual systems, but the noncoaxial battery-powered biopsies had longer average procedure times and higher radiation doses than the coaxial manual systems. In biopsy of sclerotic bone lesions, use of a battery-powered bone drill system improves diagnostic yield over use of a manual system.

  11. Water and Climate Impacts on Power System Operations: The Importance of Cooling Systems and Demand Response Measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macknick, Jordan; Zhou, Ella; O'Connell, Matthew

    The U.S. electricity sector is highly dependent upon water resources; changes in water temperatures and water availability can affect operational costs and the reliability of power systems. Despite the importance of water for power system operations, the effects of changes in water characteristics on multiple generators in a system are generally not modeled. Moreover, demand response measures, which can change the magnitude and timing of loads and can have beneficial impacts on power system operations, have not yet been evaluated in the context of water-related power vulnerabilities. This effort provides a first comprehensive vulnerability and cost analysis of water-related impactsmore » on a modeled power system and the potential for demand response measures to address vulnerability and cost concerns. This study uniquely combines outputs and inputs of a water and power plant system model, production cost, model, and relative capacity value model to look at variations in cooling systems, policy-related thermal curtailments, and demand response measures to characterize costs and vulnerability for a test system. Twenty-five scenarios over the course of one year are considered: a baseline scenario as well as a suite of scenarios to evaluate six cooling system combinations, the inclusion or exclusion of policy-related thermal curtailments, and the inclusion or exclusion of demand response measures. A water and power plant system model is utilized to identify changes in power plant efficiencies resulting from ambient conditions, a production cost model operating at an hourly scale is used to calculate generation technology dispatch and costs, and a relative capacity value model is used to evaluate expected loss of carrying capacity for the test system.« less

  12. Facilitating Constructive Alignment in Power Systems Engineering Education Using Free and Open-Source Software

    ERIC Educational Resources Information Center

    Vanfretti, L.; Milano, F.

    2012-01-01

    This paper describes how the use of free and open-source software (FOSS) can facilitate the application of constructive alignment theory in power systems engineering education by enabling the deep learning approach in power system analysis courses. With this aim, this paper describes the authors' approach in using the Power System Analysis Toolbox…

  13. Cell-Phone Tower Power System Prototype Testing for Verizon Wireless |

    Science.gov Websites

    Verizon Wireless Cell-Phone Tower Power System Prototype Testing for Verizon Wireless For Verizon Wireless Advanced Manufacturing Research | NREL Cell-Phone Tower Power System Prototype Testing for , NREL tested a new cell-phone tower power system prototype based on DC interconnection and photovoltaics

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    X. Zhao, S. Ramakrishnan, J. Lawson, C.Neumeyer, R. Marsala, H. Schneider, Engineering Operations

    NSTX at Princeton Plasma Physics Laboratory (PPPL) requires sophisticated plasma positioning control system for stable plasma operation. TF magnetic coils and PF magnetic coils provide electromagnetic fields to position and shape the plasma vertically and horizontally respectively. NSTX utilizes twenty six coil power supplies to establish and initiate electromagnetic fields through the coil system for plasma control. A power protection and interlock system is utilized to detect power system faults and protect the TF coils and PF coils against excessive electromechanical forces, overheating, and over current. Upon detecting any fault condition the power system is restricted, and it is eithermore » prevented from initializing or suppressed to de-energize coil power during pulsing. Power fault status is immediately reported to the computer system. This paper describes the design and operation of NSTX's protection and interlocking system and possible future expansion.« less

  15. Energy Systems Test Area (ESTA). Power Systems Test Facilities

    NASA Technical Reports Server (NTRS)

    Situ, Cindy H.

    2010-01-01

    This viewgraph presentation provides a detailed description of the Johnson Space Center's Power Systems Facility located in the Energy Systems Test Area (ESTA). Facilities and the resources used to support power and battery systems testing are also shown. The contents include: 1) Power Testing; 2) Power Test Equipment Capabilities Summary; 3) Source/Load; 4) Battery Facilities; 5) Battery Test Equipment Capabilities Summary; 6) Battery Testing; 7) Performance Test Equipment; 8) Battery Test Environments; 9) Battery Abuse Chambers; 10) Battery Abuse Capabilities; and 11) Battery Test Area Resources.

  16. Power system

    DOEpatents

    Hickam, Christopher Dale [Glasford, IL

    2008-03-18

    A power system includes a prime mover, a transmission, and a fluid coupler having a selectively engageable lockup clutch. The fluid coupler may be drivingly connected between the prime mover and the transmission. Additionally, the power system may include a motor/generator drivingly connected to at least one of the prime mover and the transmission. The power-system may also include power-system controls configured to execute a control method. The control method may include selecting one of a plurality of modes of operation of the power system. Additionally, the control method may include controlling the operating state of the lockup clutch dependent upon the mode of operation selected. The control method may also include controlling the operating state of the motor/generator dependent upon the mode of operation selected.

  17. Risk Assessment of Power System considering the CPS of Transformers

    NASA Astrophysics Data System (ADS)

    Zhou, Long; Peng, Zewu; Liu, Xindong; Li, Canbing; Chen, Can

    2018-02-01

    This paper constructs a risk assessment framework of power system for device-level information security, analyzes the typical protection configuration of power transformers, and takes transformer gas protection and differential protection as examples to put forward a method that analyzes the cyber security in electric power system, which targets transformer protection parameters. We estimate the risk of power system accounting for the cyber security of transformer through utilizing Monte Carlo method and two indexes, which are the loss of load probability and the expected demand not supplied. The proposed approach is tested with IEEE 9 bus system and IEEE 118 bus system.

  18. Conceptual design of thermal energy storage systems for near-term electric utility applications

    NASA Technical Reports Server (NTRS)

    Hall, E. W.

    1980-01-01

    Promising thermal energy storage systems for midterm applications in conventional electric utilities for peaking power generation are evaluated. Conceptual designs of selected thermal energy storage systems integrated with conventional utilities are considered including characteristics of alternate systems for peaking power generation, viz gas turbines and coal fired cycling plants. Competitive benefit analysis of thermal energy storage systems with alternate systems for peaking power generation and recommendations for development and field test of thermal energy storage with a conventional utility are included. Results indicate that thermal energy storage is only marginally competitive with coal fired cycling power plants and gas turbines for peaking power generation.

  19. Kilowatt Isotope Power System: component test report for the Ground Demonstration System Alternator Stator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brainard, E.L.

    1978-04-25

    Results are presented of acceptance tests conducted on the Alternator Stator, S/N 002, for the Kilowatt Isotope Power System. These results show that the Alternator Stator, S/N 002 for the Kilowatt Isotope Power System has satisfactorily completed the testing set forth within Sundstrand Test Specification 2538. Test requirements of TS 2538 were extracted from the Kilowatt Isotope Power System, and Phase I Test Plan.

  20. Compact Power Conditioning and RF Systems for a High Power RF Source

    DTIC Science & Technology

    2008-12-01

    RF systems have increasing potential for application by the Army. High power RF, or high power microwave ( HPM ), systems can disrupt or disable...that are small, lightweight, portable, and use an independent energy source. The resulting system will be able to produce HPM from a compact package...The consortium was formed to advance the technology of the components required for a compact HPM source with the final goal of full system

  1. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov Websites

    capabilities, and new methodologies that allowed NREL to model operations of the Eastern Interconnection at Analyst Power Systems Modeling Researcher Project Manager Power Systems Engineering Center Research Engineer Power Systems Modeling and Control Get the full list of job postings and learn more about working

  2. Solar Integration National Dataset Toolkit | Grid Modernization | NREL

    Science.gov Websites

    system with them. As system topology, operation practices, and electrics power markets evolve, system data sets (for solar, wind, and load, among others) that accurately represent system conditions. For injection into the power system at each location. Related Publications NREL Develops Sub-Hour Solar Power

  3. Space station power management and distribution

    NASA Technical Reports Server (NTRS)

    Teren, F.

    1985-01-01

    The power system architecture is presented by a series of schematics which illustrate the power management and distribution (PMAD) system at the component level, including converters, controllers, switchgear, rotary power transfer devices, power and data cables, remote power controllers, and load converters. Power distribution options, reference power management, and control strategy are also outlined. A summary of advanced development status and plans and an overview of system test plans are presented.

  4. Potential Application of a Thermoelectric Generator in Passive Cooling System of Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Wang, Dongqing; Liu, Yu; Jiang, Jin; Pang, Wei; Lau, Woon Ming; Mei, Jun

    2017-05-01

    In the design of nuclear power plants, various natural circulation passive cooling systems are considered to remove residual heat from the reactor core in the event of a power loss and maintain the plant's safety. These passive systems rely on gravity differences of fluids, resulting from density differentials, rather than using an external power-driven system. Unfortunately, a major drawback of such systems is their weak driving force, which can negatively impact safety. In such systems, there is a temperature difference between the heat source and the heat sink, which potentially offers a natural platform for thermoelectric generator (TEG) applications. While a previous study designed and analyzed a TEG-based passive core cooling system, this paper considers TEG applications in other passive cooling systems of nuclear power plants, after which the concept of a TEG-based passive cooling system is proposed. In such a system, electricity is produced using the system's temperature differences through the TEG, and this electricity is used to further enhance the cooling process.

  5. The salinity gradient power generating system integrated into the seawater desalination system

    NASA Astrophysics Data System (ADS)

    Zhu, Yongqiang; Wang, Wanjun; Cai, Bingqian; Hao, Jiacheng; Xia, Ruihua

    2017-01-01

    Seawater desalination is an important way to solve the problem of fresh water shortage. Low energy efficiency and high cost are disadvantages existing in seawater desalination. With huge reserve and the highest energy density among different types of marine energy, salinity gradient energy has a bright application prospect. The promotion of traditional salinity gradient power generating systems is hindered by its low efficiency and specific requirements on site selection. This paper proposes a salinity gradient power generating system integrated into the seawater desalination system which combines the salinity gradient power generating system and the seawater desalination system aiming to remedy the aforementioned deficiency and could serve as references for future seawater desalination and salinity gradient energy exploitation. The paper elaborates on the operating principles of the system, analyzes the detailed working process, and estimates the energy output and consumption of the system. It is proved that with appropriate design, the energy output of the salinity gradient power generating system can satisfy the demand of the seawater desalination system.

  6. Probabilistic Analysis Techniques Applied to Complex Spacecraft Power System Modeling

    NASA Technical Reports Server (NTRS)

    Hojnicki, Jeffrey S.; Rusick, Jeffrey J.

    2005-01-01

    Electric power system performance predictions are critical to spacecraft, such as the International Space Station (ISS), to ensure that sufficient power is available to support all the spacecraft s power needs. In the case of the ISS power system, analyses to date have been deterministic, meaning that each analysis produces a single-valued result for power capability because of the complexity and large size of the model. As a result, the deterministic ISS analyses did not account for the sensitivity of the power capability to uncertainties in model input variables. Over the last 10 years, the NASA Glenn Research Center has developed advanced, computationally fast, probabilistic analysis techniques and successfully applied them to large (thousands of nodes) complex structural analysis models. These same techniques were recently applied to large, complex ISS power system models. This new application enables probabilistic power analyses that account for input uncertainties and produce results that include variations caused by these uncertainties. Specifically, N&R Engineering, under contract to NASA, integrated these advanced probabilistic techniques with Glenn s internationally recognized ISS power system model, System Power Analysis for Capability Evaluation (SPACE).

  7. 7 CFR 1730.61 - RUS policy.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., or reliability on the borrower's electric power system or other electric power systems interconnected to the borrower's electric power system. The Agency encourages borrowers to consider model policy... ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE Interconnection of Distributed Resources § 1730.61 RUS policy...

  8. 7 CFR 1730.61 - RUS policy.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., or reliability on the borrower's electric power system or other electric power systems interconnected to the borrower's electric power system. The Agency encourages borrowers to consider model policy... ELECTRIC SYSTEM OPERATIONS AND MAINTENANCE Interconnection of Distributed Resources § 1730.61 RUS policy...

  9. The environment power system analysis tool development program

    NASA Technical Reports Server (NTRS)

    Jongeward, Gary A.; Kuharski, Robert A.; Kennedy, Eric M.; Stevens, N. John; Putnam, Rand M.; Roche, James C.; Wilcox, Katherine G.

    1990-01-01

    The Environment Power System Analysis Tool (EPSAT) is being developed to provide space power system design engineers with an analysis tool for determining system performance of power systems in both naturally occurring and self-induced environments. The program is producing an easy to use computer aided engineering (CAE) tool general enough to provide a vehicle for technology transfer from space scientists and engineers to power system design engineers. The results of the project after two years of a three year development program are given. The EPSAT approach separates the CAE tool into three distinct functional units: a modern user interface to present information, a data dictionary interpreter to coordinate analysis; and a data base for storing system designs and results of analysis.

  10. Health and safety: Preliminary comparative assessment of the Satellite Power System (SPS) and other energy alternatives

    NASA Technical Reports Server (NTRS)

    Habegger, L. J.; Gasper, J. R.; Brown, C.

    1980-01-01

    Data readily available from the literature were used to make an initial comparison of the health and safety risks of a fission power system with fuel reprocessing; a combined-cycle coal power system with a low-Btu gasifier and open-cycle gas turbine; a central-station, terrestrial, solar photovoltaic power system; the satellite power system; and a first-generation fusion system. The assessment approach consists of the identification of health and safety issues in each phase of the energy cycle from raw material extraction through electrical generation, waste disposal, and system deactivation; quantitative or qualitative evaluation of impact severity; and the rating of each issue with regard to known or potential impact level and level of uncertainty.

  11. Phase 1 of the First Small Power System Experiment (engineering Experiment No. 1). Volume 2: System Concept Selection. [development and testing of a solar thermal power plant

    NASA Technical Reports Server (NTRS)

    Holl, R. J.

    1979-01-01

    The development of a modular solar thermal power system for application in the 1 to 10 MWe range is presented. The system is used in remote utility applications, small communities, rural areas, and for industrial uses. Systems design and systems optimization studies are conducted which consider plant size, annual capacity factors, and startup time as variables. Investigations are performed on the energy storage requirements and type of energy storage, concentrator design and field optimization, energy transport, and power conversion subsystems. The system utilizes a Rankine cycle, an axial flow steam turbine for power conversion, and heat transfer sodium for collector fluid.

  12. Modular Power Standard for Space Explorations Missions

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Gardner, Brent G.

    2016-01-01

    Future human space exploration will most likely be composed of assemblies of multiple modular spacecraft elements with interconnected electrical power systems. An electrical system composed of a standardized set modular building blocks provides significant development, integration, and operational cost advantages. The modular approach can also provide the flexibility to configure power systems to meet the mission needs. A primary goal of the Advanced Exploration Systems (AES) Modular Power System (AMPS) project is to establish a Modular Power Standard that is needed to realize these benefits. This paper is intended to give the space exploration community a "first look" at the evolving Modular Power Standard and invite their comments and technical contributions.

  13. Development of an expert system for power quality advisement using CLIPS 6.0

    NASA Technical Reports Server (NTRS)

    Chandrasekaran, A.; Sarma, P. R. R.; Sundaram, Ashok

    1994-01-01

    Proliferation of power electronic devices has brought in its wake both deterioration in and demand for quality power supply from the utilities. The power quality problems become apparent when the user's equipment or systems maloperate or fail. Since power quality concerns arise from a wide variety of sources and the problem fixes are better achieved from the expertise of field engineers, development of an expert system for power quality advisement seems to be a very attractive and cost-effective solution for utility applications. An expert system thus developed gives an understanding of the adverse effects of power quality related problems on the system and could help in finding remedial solutions. The paper reports the design of a power quality advisement expert system being developed using CLIPS 6.0. A brief outline of the power quality concerns is first presented. A description of the knowledge base is next given and details of actual implementation include screen output from the program.

  14. Uninterruptible power systems and other power protection equipment for electronic health care systems.

    PubMed

    Massey, J K

    1979-01-01

    The increasing usage of electronic instruments in health care systems invariably leads to some level of dependence on them. In order to maximize the utility of these tools a high degree of reliability is essential. Many of the failures being experienced in systems where electronic instruments are being utilized may be attributed not to a failure of the instrument itself but rather to the poor quality of the commercial power to which they are attached. In order to reduce the effects of power fluctuations and outages, some type of power protection equipment must be installed between the commercial power system and the instrument. This article discusses the types of "electronic noise" present on commercial power lines and the various types of equipment used to reduce its effect on electronic instrumentation. In general, the Uninterruptible Power System (UPS) is shown to be the most effective power buffering element for a health care environment. General terminology associated with specifications of a UPS is defined in the article and attached appendix.

  15. Hydro power flexibility for power systems with variable renewable energy sources: an IEA Task 25 collaboration: Hydro power flexibility for power systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huertas-Hernando, Daniel; Farahmand, Hossein; Holttinen, Hannele

    2016-06-20

    Hydro power is one of the most flexible sources of electricity production. Power systems with considerable amounts of flexible hydro power potentially offer easier integration of variable generation, e.g., wind and solar. However, there exist operational constraints to ensure mid-/long-term security of supply while keeping river flows and reservoirs levels within permitted limits. In order to properly assess the effective available hydro power flexibility and its value for storage, a detailed assessment of hydro power is essential. Due to the inherent uncertainty of the weather-dependent hydrological cycle, regulation constraints on the hydro system, and uncertainty of internal load as wellmore » as variable generation (wind and solar), this assessment is complex. Hence, it requires proper modeling of all the underlying interactions between hydro power and the power system, with a large share of other variable renewables. A summary of existing experience of wind integration in hydro-dominated power systems clearly points to strict simulation methodologies. Recommendations include requirements for techno-economic models to correctly assess strategies for hydro power and pumped storage dispatch. These models are based not only on seasonal water inflow variations but also on variable generation, and all these are in time horizons from very short term up to multiple years, depending on the studied system. Another important recommendation is to include a geographically detailed description of hydro power systems, rivers' flows, and reservoirs as well as grid topology and congestion.« less

  16. Load converter interactions with the secondary system in the Space Station Freedom power management and distribution DC test bed

    NASA Technical Reports Server (NTRS)

    Lebron, Ramon C.

    1992-01-01

    The NASA LeRC in Cleveland, Ohio, is responsible for the design, development, and assembly of the Space Station Freedom (SSF) Electrical Power System (EPS). In order to identify and understand system level issues during the SSF Program design and development phases, a system Power Management and Distribution (PMAD) DC test bed was assembled. Some of the objectives of this test bed facility are the evaluation of, system efficiency, power quality, system stability, and system protection and reconfiguration schemes. In order to provide a realistic operating scenario, dc Load Converter Units are used in the PMAD dc test bed to characterize the user interface with the power system. These units are dc to dc converters that provide the final system regulation before power is delivered to the load. This final regulation is required on the actual space station because the majority of user loads will require voltage levels different from the secondary bus voltage. This paper describes the testing of load converters in an end to end system environment (from solar array to loads) where their interactions and compatibility with other system components are considered. Some of the system effects of interest that are presented include load converters transient behavior interactions with protective current limiting switchgear, load converters ripple effects, and the effects of load converter constant power behavior with protective features such as foldback.

  17. Load converter interactions with the secondary system in the Space Station Freedom power management and distribution dc test bed

    NASA Technical Reports Server (NTRS)

    Lebron, Ramon C.

    1992-01-01

    The NASA LeRC in Cleveland, Ohio, is responsible for the design, development, and assembly of the Space Station Freedom (SSF) Electrical Power System (EPS). In order to identify and understand system level issues during the SSF program design and development phases, a system Power Management and Distribution (PMAD) dc test bed was assembled. Some of the objectives of this test bed facility are the evaluation of, system efficiency, power quality, system stability, and system protection and reconfiguration schemes. In order to provide a realistic operating scenario, dc Load Converter Units are used in the PMAD dc test bed to characterize the user interface with the power system. These units are dc to dc converters that provide the final system regulation before power is delivered to the load. This final regulation is required on the actual space station because the majority of user loads will require voltage levels different from the secondary bus voltage. This paper describes the testing of load converters in an end to end system environment (from solar array to loads) where their interactions and compatibility with other system components are considered. Some of the system effects of interest that are presented include load converters transient behavior interactions with protective current limiting switchgear, load converters ripple effects, and the effects of load converter constant power behavior with protective features such as foldback.

  18. Improving urban district heating systems and assessing the efficiency of the energy usage therein

    NASA Astrophysics Data System (ADS)

    Orlov, M. E.; Sharapov, V. I.

    2017-11-01

    The report describes issues in connection with improving urban district heating systems from combined heat power plants (CHPs), to propose the ways for improving the reliability and the efficiency of the energy usage (often referred to as “energy efficiency”) in such systems. The main direction of such urban district heating systems improvement suggests transition to combined heating systems that include structural elements of both centralized and decentralized systems. Such systems provide the basic part of thermal power via highly efficient methods for extracting thermal power plants turbines steam, while peak loads are covered by decentralized peak thermal power sources to be mounted at consumers’ locations, with the peak sources being also reserve thermal power sources. The methodology was developed for assessing energy efficiency of the combined district heating systems, implemented as a computer software product capable of comparatively calculating saving on reference fuel for the system.

  19. Radiatively coupled thermionic and thermoelectric power system concept

    NASA Technical Reports Server (NTRS)

    Shimada, K.; Ewell, R.

    1981-01-01

    The study presented showed that the large power systems (about 100 kW) utilizing radiatively coupled thermionic or thermoelectric converters could be designed so that the power subsystem could be contained in a Space Shuttle bay as a part of an electrically propelled spacecraft. The radiatively coupled system requires a large number of individual converters since the transferred heat is smaller than with the conductively coupled system, but the advantages of the new system indicates merit for further study. The advantages are (1) good electrical isolation between converters and the heat source, (2) physical separation of converters from the heat source (making the system fabrication manageable), and (3) elimination of radiator heat pipes, which are required in an all-heat-pipe power system. In addition, the specific weight of the radiatively coupled power systems favorably compares with that of the all-heat-pipe systems.

  20. An architecture for automated fault diagnosis. [Space Station Module/Power Management And Distribution

    NASA Technical Reports Server (NTRS)

    Ashworth, Barry R.

    1989-01-01

    A description is given of the SSM/PMAD power system automation testbed, which was developed using a systems engineering approach. The architecture includes a knowledge-based system and has been successfully used in power system management and fault diagnosis. Architectural issues which effect overall system activities and performance are examined. The knowledge-based system is discussed along with its associated automation implications, and interfaces throughout the system are presented.

  1. Development of a component centered fault monitoring and diagnosis knowledge based system for space power system

    NASA Technical Reports Server (NTRS)

    Lee, S. C.; Lollar, Louis F.

    1988-01-01

    The overall approach currently being taken in the development of AMPERES (Autonomously Managed Power System Extendable Real-time Expert System), a knowledge-based expert system for fault monitoring and diagnosis of space power systems, is discussed. The system architecture, knowledge representation, and fault monitoring and diagnosis strategy are examined. A 'component-centered' approach developed in this project is described. Critical issues requiring further study are identified.

  2. Megawatt solar power systems for lunar surface operations

    NASA Technical Reports Server (NTRS)

    Adams, B.; Alhadeff, S.; Beard, S.; Carlile, D.; Cook, D.; Douglas, C.; Garcia, D.; Gillespie, D.; Golingo, R.; Gonzalez, D.

    1990-01-01

    The work presented here shows that a solar power system can provide power on the order of one megawatt to a lunar base with a fairly high specific power. The main drawback to using solar power is still the high mass, and therefore, cost of supplying energy storage through the solar night. The use of cryogenic reactant storage in a fuel cell system, however, greatly reduces the total system mass over conventional energy storage schemes.

  3. Options for Affordable Planetary Fission Surface Power Systems

    NASA Technical Reports Server (NTRS)

    Houts, Mike; Gaddis, Steve; Porter, Ron; VanDyke, Melissa; Martin, Jim; Godfroy, Tom; Bragg-Sitton, Shannon; Garber, Anne; Pearson, Boise

    2006-01-01

    Nuclear fission systems could serve as "workhorse" power plants for the Vision for Space Exploration. In this context, the "workhorse" power plant is defined as a system that could provide power anywhere on the surface of the moon or Mars, land on the moon using a Robotic Lunar Exploration Program (RLEP)-developed lander, and would be a viable, affordable option once power requirements exceed that which can be provided by existing energy systems.

  4. Research on the content framework of information disclosure mechanism in Shanxi power market

    NASA Astrophysics Data System (ADS)

    Sun, Yanzhang; Li, Tao; Hou, Zhehui; Cao, Xiaozhong

    2018-06-01

    With the further development of the power reform, establishing a sound power system with rich content and efficient operation has become an urgent need. Faced with the current circumstance of power market information disclosure in Shanxi province, this paper fully incorporates the actual situation and introduces the index into the power market information disclosure mechanism, and sets up the general information disclosure framework in Shanxi province power market on the basis of which A direct information disclosure mechanism and an indirect information disclosure mechanism were designed. Then we formulate comprehensive power index system, generation index system, transmission and distribution index system, and power utilization index system. In conclusion, the outcomes above will enrich power information disclosure mechanism in Shanxi province and will provide a platform for various market members as a guidance on setting right business decisions.

  5. MW-Class Electric Propulsion System Designs

    NASA Technical Reports Server (NTRS)

    LaPointe, Michael R.; Oleson, Steven; Pencil, Eric; Mercer, Carolyn; Distefano, Salvador

    2011-01-01

    Electric propulsion systems are well developed and have been in commercial use for several years. Ion and Hall thrusters have propelled robotic spacecraft to encounters with asteroids, the Moon, and minor planetary bodies within the solar system, while higher power systems are being considered to support even more demanding future space science and exploration missions. Such missions may include orbit raising and station-keeping for large platforms, robotic and human missions to near earth asteroids, cargo transport for sustained lunar or Mars exploration, and at very high-power, fast piloted missions to Mars and the outer planets. The Advanced In-Space Propulsion Project, High Efficiency Space Power Systems Project, and High Power Electric Propulsion Demonstration Project were established within the NASA Exploration Technology Development and Demonstration Program to develop and advance the fundamental technologies required for these long-range, future exploration missions. Under the auspices of the High Efficiency Space Power Systems Project, and supported by the Advanced In-Space Propulsion and High Power Electric Propulsion Projects, the COMPASS design team at the NASA Glenn Research Center performed multiple parametric design analyses to determine solar and nuclear electric power technology requirements for representative 300-kW class and pulsed and steady-state MW-class electric propulsion systems. This paper describes the results of the MW-class electric power and propulsion design analysis. Starting with the representative MW-class vehicle configurations, and using design reference missions bounded by launch dates, several power system technology improvements were introduced into the parametric COMPASS simulations to determine the potential system level benefits such technologies might provide. Those technologies providing quantitative system level benefits were then assessed for technical feasibility, cost, and time to develop. Key assumptions and primary results of the COMPASS MW-class electric propulsion power system study are reported, and discussion is provided on how the analysis might be used to guide future technology investments as NASA moves to more capable high power in-space propulsion systems.

  6. Optimal Capacity Proportion and Distribution Planning of Wind, Photovoltaic and Hydro Power in Bundled Transmission System

    NASA Astrophysics Data System (ADS)

    Ye, X.; Tang, Q.; Li, T.; Wang, Y. L.; Zhang, X.; Ye, S. Y.

    2017-05-01

    The wind, photovoltaic and hydro power bundled transmission system attends to become common in Northwest and Southwest of China. To make better use of the power complementary characteristic of different power sources, the installed capacity proportion of wind, photovoltaic and hydro power, and their capacity distribution for each integration node is a significant issue to be solved in power system planning stage. An optimal capacity proportion and capacity distribution model for wind, photovoltaic and hydro power bundled transmission system is proposed here, which considers the power out characteristic of power resources with different type and in different area based on real operation data. The transmission capacity limit of power grid is also considered in this paper. Simulation cases are tested referring to one real regional system in Southwest China for planning level year 2020. The results verify the effectiveness of the model in this paper.

  7. Electrical engineering unit for the reactive power control of the load bus at the voltage instability

    NASA Astrophysics Data System (ADS)

    Kotenev, A. V.; Kotenev, V. I.; Kochetkov, V. V.; Elkin, D. A.

    2018-01-01

    For the purpose of reactive power control error reduction and decrease of the voltage sags in the electric power system caused by the asynchronous motors started the mathematical model of the load bus was developed. The model was built up of the sub-models of the following elements: a transformer, a transmission line, a synchronous and an asynchronous loads and a capacitor bank load, and represents the automatic reactive power control system taking into account electromagnetic processes of the asynchronous motors started and reactive power changing of the electric power system elements caused by the voltage fluctuation. The active power/time and reactive power/time characteristics based on the recommended procedure of the equivalent electric circuit parameters calculation were obtained. The derived automatic reactive power control system was shown to eliminate the voltage sags in the electric power system caused by the asynchronous motors started.

  8. A Low Power, Parallel Wearable Multi-Sensor System for Human Activity Evaluation.

    PubMed

    Li, Yuecheng; Jia, Wenyan; Yu, Tianjian; Luan, Bo; Mao, Zhi-Hong; Zhang, Hong; Sun, Mingui

    2015-04-01

    In this paper, the design of a low power heterogeneous wearable multi-sensor system, built with Zynq System-on-Chip (SoC), for human activity evaluation is presented. The powerful data processing capability and flexibility of this SoC represent significant improvements over our previous ARM based system designs. The new system captures and compresses multiple color images and sensor data simultaneously. Several strategies are adopted to minimize power consumption. Our wearable system provides a new tool for the evaluation of human activity, including diet, physical activity and lifestyle.

  9. Megawatt solar power systems for lunar surface operations

    NASA Technical Reports Server (NTRS)

    Adams, Brian; Alhadeff, Sam; Beard, Shawn; Carlile, David; Cook, David; Douglas, Craig; Garcia, Don; Gillespie, David; Golingo, Raymond; Gonzalez, Drew

    1990-01-01

    Lunar surface operations require habitation, transportation, life support, scientific, and manufacturing systems, all of which require some form of power. As an alternative to nuclear power, the development of a modular one megawatt solar power system is studied, examining both photovoltaic and dynamic cycle conversion methods, along with energy storage, heat rejection, and power backup subsystems. For photovoltaic power conversion, two systems are examined. First, a substantial increase in photovoltaic conversion efficiency is realized with the use of new GaAs/GaSb tandem photovoltaic cells, offering an impressive overall array efficiency of 23.5 percent. Since these new cells are still in the experimental phase of development, a currently available GaAs cell providing 18 percent efficiency is examined as an alternate to the experimental cells. Both Brayton and Stirling cycles, powered by linear parabolic solar concentrators, are examined for dynamic cycle power conversion. The Brayton cycle is studied in depth since it is already well developed and can provide high power levels fairly efficiently in a compact, low mass system. The dynamic conversion system requires large scale waste heat rejection capability. To provide this heat rejection, a comparison is made between a heat pipe/radiative fin system using advanced composites, and a potentially less massive liquid droplet radiator system. To supply power through the lunar night, both a low temperature alkaline fuel cell system and an experimental high temperature monolithic solid-oxide fuel cell system are considered. The reactants for the fuel cells are stored cryogenically in order to avoid the high tankage mass required by conventional gaseous storage. In addition, it is proposed that the propellant tanks from a spent, prototype lunar excursion vehicle be used for this purpose, therefore resulting in a significant overall reduction in effective storage system mass.

  10. Heatpipe space power and propulsion systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houts, M.G.; Poston, D.I.; Ranken, W.A.

    1995-07-01

    Safe, reliable, low-mass space power and propulsion systems could have numerous civilian and military applications. This paper discusses two fission-powered concepts: the Heatpipe Power System (HPS) that provides power only, and the Heatpipe Bimodal System (HBS) that provides both power and thermal propulsion. Both concepts have 10 important features. First, only existing technology and recently tested fuel forms are used. Second, fuel can be removed whenever desired, greatly facilitating system fabrication and handling. Third, full electrically heated system testing is possible, with minimal operations required to replace the heaters with fuel and ready the system for launch. Fourth, the systemsmore » are passively subcritical during launch accidents. Fifth, a modular approach is used, and most technical issues can be resolved with inexpensive module tests. Sixth, bonds between dissimilar metals are minimized. Seventh, there are no single point failures during power mode operation. Eighth, fuel burnup rate is quite low to help ensure greater than 10-year system life. Ninth, there are no pumped coolant loops, and the systems can be shut down and restarted without coolant freeze/thaw concerns. Finally, a full ground nuclear test is not needed, and development costs will be low. The baseline HPS uses SNAP-10A-style thermoelectric power converters to produce 5 kWe at a system mass of about 500 kg. The unicouple thermoelectric converters have a hot shoe temperature of 1275 K and reject waste heat at 775 K. This type of thermoelectric converter has been used extensively by the space program, demonstrating an operational lifetime of decades. At higher thermal power, the same core can produce over 10 kWe using thermoelectric converters, and over 50 kWe using advanced power conversion systems.« less

  11. National Maglev initiative: California line electric utility power system requirements

    NASA Technical Reports Server (NTRS)

    Save, Phil

    1994-01-01

    The electrical utility power system requirements were determined for a Maglev line from San Diego to San Francisco and Sacramento with a maximum capacity of 12,000 passengers an hour in each direction at a speed of 300 miles per hour, or one train every 30 seconds in each direction. Basically the Maglev line requires one 50-MVA substation every 12.5 miles. The need for new power lines to serve these substations and their voltage levels are based not only on equipment loading criteria but also on limitations due to voltage flicker and harmonics created by the Maglev system. The resulting power system requirements and their costs depend mostly on the geographical area, urban or suburban with 'strong' power systems, or mountains and rural areas with 'weak' power systems. A reliability evaluation indicated that emergency power sources, such as a 10-MW battery at each substation, were not justified if sufficient redundancy is provided in the design of the substations and the power lines serving them. With a cost of $5.6 M per mile, the power system requirements, including the 12-kV DC cables and the inverters along the Maglev line, were found to be the second largest cost component of the Maglev system, after the cost of the guideway system ($9.1 M per mile), out of a total cost of $23 M per mile.

  12. Description of photovoltaic village power systems in the United States and Africa

    NASA Technical Reports Server (NTRS)

    Ratajczak, A. F.; Bifano, W. J.

    1979-01-01

    Photovoltaic power systems in remote villages in the United States and Africa are described. These projects were undertaken to demonstrate that existing photovoltaic system technology is capable of providing electrical power for basic domestic services for the millions of small, remote communities in both developed and developing countries. One system is located in the Papago Indian Village of Schuchuli in southwest Arizona (U. S.) and became operational 16 December 1978. The other system is located in Tangaye, a rural village in Upper Volta, Africa. It became operational 1 March 1979. The Schuchuli system has a 3.5 kW (peak) solar array which provides electric power for village water pumping, a refrigerator for each family, lights in the village buildings, and a community washing machine and sewing machine. The 1.8 kW (peak) Tangaye system provides power for community water pumping, flour milling and lights in the milling building. These are both stand-alone systems (i.e., no back-up power source) which are being operated and maintained by local personnel. Both systems are instrumented. Systems operations are being monitored by NASA to measure design adequacy and to refine designs for future systems.

  13. System design impacts on optimization of the advanced radioisotope power system (ARPS) AMTEC cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendricks, T.J.; Huang, C.

    1998-07-01

    Several NASA deep space missions require Advanced Radioisotope Power Systems (ARPS) to supply spacecraft power for various internal functions and mission instruments and experiments. AMTEC (Alkali-Metal Thermal-Electric Conversion) power conversion is the DOE-selected technology for an advanced, next- generation RPS to power these spacecraft. Advanced Modular Power Systems, Inc. (AMPS) has begun investigating the design of an AMTEC-based ARPS using the General Purpose Heat Source (GPHS) and the latest PX-5 AMTEC cell technology with refractory materials in critical components. This paper presents and discusses the system design methodology, and results of important system design tradeoffs and system design impacts onmore » the ARPS AMTEC cell design. This work investigated dual 2-GPHS system configurations and 4-GPHS system configurations with 16 side-mounted AMTEC cells operating at beginning-of-mission (BOM) and end-of-mission (EOM) GPHS heat dissipation conditions. Current design studies indicate using a refractory material AMTEC cell with 8-BASE tubes, 5.0 inches long, and 1.75 inches diameter in the 4-GPHS system configuration is the strongest design candidate to satisfy system performance requirements.« less

  14. Scheduling lessons learned from the Autonomous Power System

    NASA Technical Reports Server (NTRS)

    Ringer, Mark J.

    1992-01-01

    The Autonomous Power System (APS) project at NASA LeRC is designed to demonstrate the applications of integrated intelligent diagnosis, control, and scheduling techniques to space power distribution systems. The project consists of three elements: the Autonomous Power Expert System (APEX) for Fault Diagnosis, Isolation, and Recovery (FDIR); the Autonomous Intelligent Power Scheduler (AIPS) to efficiently assign activities start times and resources; and power hardware (Brassboard) to emulate a space-based power system. The AIPS scheduler was tested within the APS system. This scheduler is able to efficiently assign available power to the requesting activities and share this information with other software agents within the APS system in order to implement the generated schedule. The AIPS scheduler is also able to cooperatively recover from fault situations by rescheduling the affected loads on the Brassboard in conjunction with the APEX FDIR system. AIPS served as a learning tool and an initial scheduling testbed for the integration of FDIR and automated scheduling systems. Many lessons were learned from the AIPS scheduler and are now being integrated into a new scheduler called SCRAP (Scheduler for Continuous Resource Allocation and Planning). This paper will service three purposes: an overview of the AIPS implementation, lessons learned from the AIPS scheduler, and a brief section on how these lessons are being applied to the new SCRAP scheduler.

  15. 20--500 watt AMTEC auxiliary electric power system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanenok, J.F. III; Sievers, R.K.

    1996-12-31

    Numerous design studies have been completed on Alkali Metal Thermal to Electric Converter (AMTEC) power systems for space applications demonstrating their substantial increase in performance. Recently design studies have been initiated to couple AMTEC power conversion with fossil fueled combustion systems. This paper describes the results of a Phase 1 SBIR effort to design an innovative, efficient, reliable, long life AMTEC Auxiliary Electric Power System (AEPS) for remote site applications (20--500 watts). The concept uses high voltage AMTEC cells, each containing 7 to 9 small electrolyte tubes, integrated with a combustor and recuperator. These multi-tube AMTEC cells are low cost,more » reliable, long life static converters. AMTEC technology is ideal for auxiliary electric power supplies that must operate reliably over a broad range of temperatures, fuel sources, power levels, and operational specifications. The simplicity, efficiency (20% systems) and modularity of this technology allow it to fill applications as varied as light-weight backpacks, remote site power supplies, and military base power. Phase 1 demonstrated the feasibility of a 20% system design, and showed that the development needs to focus on identifying long life AMTEC cell components, determining the AMTEC cell and system reliability, and demonstrating that a 20 watt AMTEC system is 3--5 times more efficient than existing systems for the same application.« less

  16. Achieving Better Buying Power through Acquisition of Open Architecture Software Systems for Web-Based and Mobile Devices

    DTIC Science & Technology

    2015-05-01

    Achieving Better Buying Power through Acquisition of Open Architecture Software Systems for Web-Based and Mobile Devices Walt Scacchi and Thomas...2015 to 00-00-2015 4. TITLE AND SUBTITLE Achieving Better Buying Power through Acquisition of Open Architecture Software Systems for Web-Based and...architecture (OA) software systems  Emerging challenges in achieving Better Buying Power (BBP) via OA software systems for Web- based and Mobile devices

  17. Options for Affordable Fission Surface Power Systems

    NASA Technical Reports Server (NTRS)

    Houts, Mike; Gaddis, Steve; Porter, Ron; VanDyke, Melissa; Martin Jim; Godfroy, Tom; Bragg-Sitton, Shannon; Garber, Anne; Pearson, Boise

    2006-01-01

    Fission surface power systems could provide abundant power anywhere on free surface of the moon or Mars. Locations could include permanently shaded regions on the moon and high latitudes on Mars. To be fully utilized; however, fission surface power systems must be safe, have adequate performance, and be affordable. This paper discusses options for the design and development of such systems.

  18. Space vehicle electrical power processing distribution and control study. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Krausz, A.

    1972-01-01

    A concept for the processing, distribution, and control of electric power for manned space vehicles and future aircraft is presented. Emphasis is placed on the requirements of the space station and space shuttle configurations. The systems involved are referred to as the processing distribution and control system (PDCS), electrical power system (EPS), and electric power generation system (EPGS).

  19. Probability density function evolution of power systems subject to stochastic variation of renewable energy

    NASA Astrophysics Data System (ADS)

    Wei, J. Q.; Cong, Y. C.; Xiao, M. Q.

    2018-05-01

    As renewable energies are increasingly integrated into power systems, there is increasing interest in stochastic analysis of power systems.Better techniques should be developed to account for the uncertainty caused by penetration of renewables and consequently analyse its impacts on stochastic stability of power systems. In this paper, the Stochastic Differential Equations (SDEs) are used to represent the evolutionary behaviour of the power systems. The stationary Probability Density Function (PDF) solution to SDEs modelling power systems excited by Gaussian white noise is analysed. Subjected to such random excitation, the Joint Probability Density Function (JPDF) solution to the phase angle and angular velocity is governed by the generalized Fokker-Planck-Kolmogorov (FPK) equation. To solve this equation, the numerical method is adopted. Special measure is taken such that the generalized FPK equation is satisfied in the average sense of integration with the assumed PDF. Both weak and strong intensities of the stochastic excitations are considered in a single machine infinite bus power system. The numerical analysis has the same result as the one given by the Monte Carlo simulation. Potential studies on stochastic behaviour of multi-machine power systems with random excitations are discussed at the end.

  20. Autonomous power expert system

    NASA Technical Reports Server (NTRS)

    Ringer, Mark J.; Quinn, Todd M.

    1990-01-01

    The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control technologies to the Space Station Freedom Electrical Power Systems (SSF/EPS). The objectives of the program are to establish artificial intelligence/expert system technology paths, to create knowledge based tools with advanced human-operator interfaces, and to integrate and interface knowledge-based and conventional control schemes. This program is being developed at the NASA-Lewis. The APS Brassboard represents a subset of a 20 KHz Space Station Power Management And Distribution (PMAD) testbed. A distributed control scheme is used to manage multiple levels of computers and switchgear. The brassboard is comprised of a set of intelligent switchgear used to effectively switch power from the sources to the loads. The Autonomous Power Expert System (APEX) portion of the APS program integrates a knowledge based fault diagnostic system, a power resource scheduler, and an interface to the APS Brassboard. The system includes knowledge bases for system diagnostics, fault detection and isolation, and recommended actions. The scheduler autonomously assigns start times to the attached loads based on temporal and power constraints. The scheduler is able to work in a near real time environment for both scheduling and dynamic replanning.

  1. Autonomous power expert system

    NASA Technical Reports Server (NTRS)

    Ringer, Mark J.; Quinn, Todd M.

    1990-01-01

    The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control technologies to the Space Station Freedom Electrical Power Systems (SSF/EPS). The objectives of the program are to establish artificial intelligence/expert system technology paths, to create knowledge based tools with advanced human-operator interfaces, and to integrate and interface knowledge-based and conventional control schemes. This program is being developed at the NASA-Lewis. The APS Brassboard represents a subset of a 20 KHz Space Station Power Management And Distribution (PMAD) testbed. A distributed control scheme is used to manage multiple levels of computers and switchgear. The brassboard is comprised of a set of intelligent switchgear used to effectively switch power from the sources to the loads. The Autonomous Power Expert System (APEX) portion of the APS program integrates a knowledge based fault diagnostic system, a power resource scheduler, and an interface to the APS Brassboard. The system includes knowledge bases for system diagnostics, fault detection and isolation, and recommended actions. The scheduler autonomously assigns start times to the attached loads based on temporal and power constraints. The scheduler is able to work in a near real time environment for both scheduling an dynamic replanning.

  2. Conceptual definition of a technology development mission for advanced solar dynamic power systems

    NASA Technical Reports Server (NTRS)

    Migra, R. P.

    1986-01-01

    An initial conceptual definition of a technology development mission for advanced solar dynamic power systems is provided, utilizing a space station to provide a dedicated test facility. The advanced power systems considered included Brayton, Stirling, and liquid metal Rankine systems operating in the temperature range of 1040 to 1400 K. The critical technologies for advanced systems were identified by reviewing the current state of the art of solar dynamic power systems. The experimental requirements were determined by planning a system test of a 20 kWe solar dynamic power system on the space station test facility. These requirements were documented via the Mission Requirements Working Group (MRWG) and Technology Development Advocacy Group (TDAG) forms. Various concepts or considerations of advanced concepts are discussed. A preliminary evolutionary plan for this technology development mission was prepared.

  3. Nuclear Energy for Space Exploration

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.

    2010-01-01

    Nuclear power and propulsion systems can enable exciting space exploration missions. These include bases on the moon and Mars; and the exploration, development, and utilization of the solar system. In the near-term, fission surface power systems could provide abundant, constant, cost-effective power anywhere on the surface of the Moon or Mars, independent of available sunlight. Affordable access to Mars, the asteroid belt, or other destinations could be provided by nuclear thermal rockets. In the further term, high performance fission power supplies could enable both extremely high power levels on planetary surfaces and fission electric propulsion vehicles for rapid, efficient cargo and crew transfer. Advanced fission propulsion systems could eventually allow routine access to the entire solar system. Fission systems could also enable the utilization of resources within the solar system. Fusion and antimatter systems may also be viable in the future

  4. Hybrid PV/diesel solar power system design using multi-level factor analysis optimization

    NASA Astrophysics Data System (ADS)

    Drake, Joshua P.

    Solar power systems represent a large area of interest across a spectrum of organizations at a global level. It was determined that a clear understanding of current state of the art software and design methods, as well as optimization methods, could be used to improve the design methodology. Solar power design literature was researched for an in depth understanding of solar power system design methods and algorithms. Multiple software packages for the design and optimization of solar power systems were analyzed for a critical understanding of their design workflow. In addition, several methods of optimization were studied, including brute force, Pareto analysis, Monte Carlo, linear and nonlinear programming, and multi-way factor analysis. Factor analysis was selected as the most efficient optimization method for engineering design as it applied to solar power system design. The solar power design algorithms, software work flow analysis, and factor analysis optimization were combined to develop a solar power system design optimization software package called FireDrake. This software was used for the design of multiple solar power systems in conjunction with an energy audit case study performed in seven Tibetan refugee camps located in Mainpat, India. A report of solar system designs for the camps, as well as a proposed schedule for future installations was generated. It was determined that there were several improvements that could be made to the state of the art in modern solar power system design, though the complexity of current applications is significant.

  5. Evaluating the effect placement capacitor and distributed photovoltaic generation for power system losses minimization in radial distribution system

    NASA Astrophysics Data System (ADS)

    Rahman, Yuli Asmi; Manjang, Salama; Yusran, Ilham, Amil Ahmad

    2018-03-01

    Power loss minimization have many advantagess to the distribution system radial among others reduction of power flow in feeder lines, freeing stress on feeder loading, deterrence of power procurement from the grid and also the cost of loss compensating instruments. This paper, presents capacitor and photovoltaic (PV) placement as alternative means to decrease power system losses. The paper aims to evaluate the best alternative for decreasing power system losses and improving voltage profile in the radial distribution system. To achieve the objectives of paper, they are used three cases tested by Electric Transient and Analysis Program (ETAP) simulation. Firstly, it performs simulation of placement capacitor. Secondly, simulated placement of PV. Lastly, it runs simulation of placement capacitor and PV simultaneously. The simulations were validated using the IEEE 34-bus test system. As a result, they proved that the installation of capacitor and PV integration simultaneously leading to voltage profile correction and power losses minimization significantly.

  6. A Wireless Capsule Endoscope System With Low-Power Controlling and Processing ASIC.

    PubMed

    Xinkai Chen; Xiaoyu Zhang; Linwei Zhang; Xiaowen Li; Nan Qi; Hanjun Jiang; Zhihua Wang

    2009-02-01

    This paper presents the design of a wireless capsule endoscope system. The proposed system is mainly composed of a CMOS image sensor, a RF transceiver and a low-power controlling and processing application specific integrated circuit (ASIC). Several design challenges involving system power reduction, system miniaturization and wireless wake-up method are resolved by employing optimized system architecture, integration of an area and power efficient image compression module, a power management unit (PMU) and a novel wireless wake-up subsystem with zero standby current in the ASIC design. The ASIC has been fabricated in 0.18-mum CMOS technology with a die area of 3.4 mm * 3.3 mm. The digital baseband can work under a power supply down to 0.95 V with a power dissipation of 1.3 mW. The prototype capsule based on the ASIC and a data recorder has been developed. Test result shows that proposed system architecture with local image compression lead to an average of 45% energy reduction for transmitting an image frame.

  7. A High-Power Wireless Charging System Development and Integration for a Toyota RAV4 Electric Vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onar, Omer C; Seiber, Larry Eugene; White, Cliff P

    Several wireless charging methods are underdevelopment or available as an aftermarket option in the light-duty automotive market. However, there are not many studies detailing the vehicle integrations, particularly a complete vehicle integration with higher power levels. This paper presents the development, implementation, and vehicle integration of a high-power (>10 kW) wireless power transfer (WPT)-based electric vehicle (EV) charging system for a Toyota RAV4 vehicle. The power stages of the system are introduced with the design specifications and control systems including the active front-end rectifier with power factor correction (PFC), high frequency power inverter, high frequency isolation transformer, coupling coils, vehiclemore » side full-bridge rectifier and filter, and the vehicle battery. The operating principles of the control, communications, and protection systems are also presented in addition to the alignment and the driver interface system. The physical limitations of the system are also defined that would prevent the system operating at higher levels. The experiments are carried out using the integrated vehicle and the results obtained to demonstrate the system performance including the stage-by-stage efficiencies with matched and interoperable primary and secondary coils.« less

  8. Advanced Power System Analysis Capabilities

    NASA Technical Reports Server (NTRS)

    1997-01-01

    As a continuing effort to assist in the design and characterization of space power systems, the NASA Lewis Research Center's Power and Propulsion Office developed a powerful computerized analysis tool called System Power Analysis for Capability Evaluation (SPACE). This year, SPACE was used extensively in analyzing detailed operational timelines for the International Space Station (ISS) program. SPACE was developed to analyze the performance of space-based photovoltaic power systems such as that being developed for the ISS. It is a highly integrated tool that combines numerous factors in a single analysis, providing a comprehensive assessment of the power system's capability. Factors particularly critical to the ISS include the orientation of the solar arrays toward the Sun and the shadowing of the arrays by other portions of the station.

  9. Applicability of STEM-RTG and High-Power SRG Power Systems to the Discovery and Scout Mission Capabilities Expansion (DSMCE) Study of ASRG-Based Missions

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Cataldo, Robert L.

    2015-01-01

    This study looks at the applicability of utilizing the Segmented Thermoelectric Modular Radioisotope Thermoelectric Generator (STEM-RTG) or a high-power radioisotope generator to replace the Advanced Stirling Radioisotope Generator (ASRG), which had been identified as the baseline power system for a number of planetary exploration mission studies. Nine different Discovery-Class missions were examined to determine the applicability of either the STEM-RTG or the high-power SRG power systems in replacing the ASRG. The nine missions covered exploration across the solar system and included orbiting spacecraft, landers and rovers. Based on the evaluation a ranking of the applicability of each alternate power system to the proposed missions was made.

  10. Utilization of artificial intelligence techniques for the Space Station power system

    NASA Technical Reports Server (NTRS)

    Evatt, Thomas C.; Gholdston, Edward W.

    1988-01-01

    Due to the complexity of the Space Station Electrical Power System (EPS) as currently envisioned, artificial intelligence/expert system techniques are being investigated to automate operations, maintenance, and diagnostic functions. A study was conducted to investigate this technology as it applies to failure detection, isolation, and reconfiguration (FDIR) and health monitoring of power system components and of the total system. Control system utilization of expert systems for load scheduling and shedding operations was also researched. A discussion of the utilization of artificial intelligence/expert systems for Initial Operating Capability (IOC) for the Space Station effort is presented along with future plans at Rocketdyne for the utilization of this technology for enhanced Space Station power capability.

  11. Suitability of representative electrochemical energy storage technologies for ramp-rate control of photovoltaic power

    NASA Astrophysics Data System (ADS)

    Jiang, Yu; Fletcher, John; Burr, Patrick; Hall, Charles; Zheng, Bowen; Wang, Da-Wei; Ouyang, Zi; Lennon, Alison

    2018-04-01

    Photovoltaic (PV) systems can exhibit rapid variances in their power output due to irradiance changes which can destabilise an electricity grid. This paper presents a quantitative comparison of the suitability of different electrochemical energy storage system (ESS) technologies to provide ramp-rate control of power in PV systems. Our investigations show that, for PV systems ranging from residential rooftop systems to megawatt power systems, lithium-ion batteries with high energy densities (up to 600 Wh L-1) require the smallest power-normalised volumes to achieve the ramp rate limit of 10% min-1 with 100% compliance. As the system size increases, the ESS power-normalised volume requirements are significantly reduced due to aggregated power smoothing, with high power lithium-ion batteries becoming increasingly more favourable with increased PV system size. The possibility of module-level ramp-rate control is also introduced, and results show that achievement of a ramp rate of 10% min-1 with 100% compliance with typical junction box sizes will require ESS energy and power densities of 400 Wh L-1 and 2300 W L-1, respectively. While module-level ramp-rate control can reduce the impact of solar intermittence, the requirement is challenging, especially given the need for low cost and long cycle life.

  12. Bifurcations, chaos and adaptive backstepping sliding mode control of a power system with excitation limitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Min, Fuhong, E-mail: minfuhong@njnu.edu.cn; Wang, Yaoda; Peng, Guangya

    2016-08-15

    The bifurcation and Lyapunov exponent for a single-machine-infinite bus system with excitation model are carried out by varying the mechanical power, generator damping factor and the exciter gain, from which periodic motions, chaos and the divergence of system are observed respectively. From given parameters and different initial conditions, the coexisting motions are developed in power system. The dynamic behaviors in power system may switch freely between the coexisting motions, which will bring huge security menace to protection operation. Especially, the angle divergences due to the break of stable chaotic oscillation are found which causes the instability of power system. Finally,more » a new adaptive backstepping sliding mode controller is designed which aims to eliminate the angle divergences and make the power system run in stable orbits. Numerical simulations are illustrated to verify the effectivity of the proposed method.« less

  13. Solar power satellite system definition study, phase 2. Volume 2: Reference system description

    NASA Technical Reports Server (NTRS)

    1979-01-01

    System descriptions and cost estimates for the reference system of the solar power satellite program are presented. The reference system is divided into five principal elements: the solar power satellites; space construction and support; space and ground transportation; ground receiving stations; and operations control. The program scenario and non-recurring costs are briefly described.

  14. Design study for a gound microwave power transmission system for use with a high-altitude powered platform

    NASA Technical Reports Server (NTRS)

    Brown, W. C.

    1983-01-01

    The conceptual design of a ground-based microwave power transmission system is described. This system is intended to supply electrical power via an air link to a high-altitude (21 km) powered platform. The platform must be equipped with the required instrumentation (RECTENNA) to convert the RF energy to dc power.

  15. Renewables cannot be stored economically on a well-run power system

    NASA Astrophysics Data System (ADS)

    Swift-Hook, Donald

    2017-11-01

    Economic storage on a power system must rely on arbitrage, buying electrical power when it is cheap and selling when it is dear. In practice, this means a store must buy power at night and sell it during the day. There is no solar power at night [by definition], so solar power cannot be stored economically on a well-run power system. Also renewables [and nuclear] are installed commercially to save fuel but fuel costs the same at night as it does during the day, so there is no arbitrage on fuel-saving to justify storage. Pumped water storage has always been widely used on power systems and is still the only method that is economic today, although many others have been tried, including fuels cells, compressed air and batteries. Devices for power correction and balancing [e.g. capacitor banks and batteries] may physically involve the storage of energy [just as a mobile phone does] but it is misleading to describe them as methods of power system storage, [just as it would be misleading to call a School bus a fuel transportation system, even though it does transport fuel]. When a power system has different sorts of plant generating - coal, gas, nuclear, wind etc - any power being put into storage is from the plant that would need to be switched off [because less power was needed] if storage ceased [e.g. because the store became full or failed]. On a well-run power system, that always has the highest fuel/running cost, but the wind blows free and has zero fuel/running cost, so wind is never [normally] stored unless there is no other plant on line i.e. wind power is the last to be stored.

  16. Radioisotope Reduction Using Solar Power for Outer Planetary Missions

    NASA Technical Reports Server (NTRS)

    Fincannon, James

    2008-01-01

    Radioisotope power systems have historically been (and still are) the power system of choice from a mass and size perspective for outer planetary missions. High demand for and limited availability of radioisotope fuel has made it necessary to investigate alternatives to this option. Low mass, high efficiency solar power systems have the potential for use at low outer planetary temperatures and illumination levels. This paper documents the impacts of using solar power systems instead of radioisotope power for all or part of the power needs of outer planetary spacecraft and illustrates the potential fuel savings of such an approach.

  17. An evolution strategy for lunar nuclear surface power

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    1992-01-01

    The production and transmission of electric power for a permanently inhabited lunar base poses a significant challenge which can best be met through an evolution strategy. Nuclear systems offer the best opportunity for evolution in terms of both life and performance. Applicable nuclear power technology options include isotope systems (either radioisotope thermoelectric generators or dynamic isotope power systems) and reactor systems with either static (thermoelectric or thermionic) or dynamic (Brayton, Stirling, Rankine) conversion. A power system integration approach that takes evolution into account would benefit by reduced development and operations cost, progressive flight experience, and simplified logistics, and would permit unrestrained base expansion. For the purposes of defining a nuclear power system evolution strategy, the lunar base development shall consist of four phases: precursor, emplacement, consolidation, and operations.

  18. Issues and status of power distribution options for space exploration

    NASA Technical Reports Server (NTRS)

    Bercaw, Robert W.; Cull, Ronald C.; Kenny, Barbara H.

    1991-01-01

    The Space Exploration Initiative (SEI) will need a wide variety of manned systems with requirements significantly different than those for existing systems. The concept of a space power utility is discussed and the impact of this concept on the engineering of space power systems is examined. Almost all existing space power systems use low voltage direct current. Although they have been very succesful, increasing power system requirements in recent years have exposed their inherent limitations and led to the proposal of a number of alternatives including high voltage DC and AC at various frequencies. Drawing on the experience gained from Space Station Freedom and SEI systems studies, factors that may affect the choice of frequency standards on which to build such a space power utility are discussed.

  19. Technology Projections for Solar Dynamic Power

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    1999-01-01

    Solar Dynamic power systems can offer many potential benefits to Earth orbiting satellites including high solar-to-electric efficiency, long life without performance degradation, and high power capability. A recent integrated system test of a 2 kilowatt SD power system in a simulated space environment has successfully demonstrated technology readiness for space flight. Conceptual design studies of SD power systems have addressed several potential mission applications: a 10 kilowatt LEO satellite, a low power Space Based Radar, and a 30 kilowatt GEO communications satellite. The studies show that with moderate component development, SD systems can exhibit excellent mass and deployed area characteristics. Using the conceptual design studies as a basis, a SD technology roadmap was generated which identifies the component advances necessary to assure SD systems a competitive advantage for future NASA, DOD, and commercial missions.

  20. Comparison of all-electric secondary power systems for civil transport

    NASA Technical Reports Server (NTRS)

    Renz, David D.

    1992-01-01

    Three separate studies have shown operational, weight, and cost advantages for commercial subsonic transport aircraft using an all-electric secondary power system. The first study in 1982 showed that all-electric secondary power systems produced the second largest benefit compared to four other technology upgrades. The second study in 1985 showed a 10 percent weight and fuel savings using an all-electric high frequency (20 kHz) secondary power system. The last study in 1991 showed a 2 percent weight savings using today's technology (400 Hz) in an all-electric secondary power system. This paper will compare the 20 kHz and 400 Hz studies, analyze the 2 to 10 percent difference in weight savings and comment on the common benefits of the all-electric secondary power system.

  1. Comparison of all-electric secondary power systems for civil subsonic transports

    NASA Technical Reports Server (NTRS)

    Renz, David D.

    1992-01-01

    Three separate studies have shown operational, weight, and cost advantages for commercial subsonic transport aircraft using an all-electric secondary power system. The first study in 1982 showed that all-electric secondary power systems produced the second largest benefit compared to four other technology upgrades. The second study in 1985 showed a 10 percent weight and fuel savings using an all-electric high frequency (20 kHz) secondary power system. The last study in 1991 showed a 2 percent weight savings using today's technology (400 Hz) in an all-electric secondary power system. This paper will compare the 20 kHz and 400 Hz studies, analyze the 2 to 10 percent difference in weight savings and comment on the common benefits of the all-electric secondary power system.

  2. Space station automation of common module power management and distribution

    NASA Technical Reports Server (NTRS)

    Miller, W.; Jones, E.; Ashworth, B.; Riedesel, J.; Myers, C.; Freeman, K.; Steele, D.; Palmer, R.; Walsh, R.; Gohring, J.

    1989-01-01

    The purpose is to automate a breadboard level Power Management and Distribution (PMAD) system which possesses many functional characteristics of a specified Space Station power system. The automation system was built upon 20 kHz ac source with redundancy of the power buses. There are two power distribution control units which furnish power to six load centers which in turn enable load circuits based upon a system generated schedule. The progress in building this specified autonomous system is described. Automation of Space Station Module PMAD was accomplished by segmenting the complete task in the following four independent tasks: (1) develop a detailed approach for PMAD automation; (2) define the software and hardware elements of automation; (3) develop the automation system for the PMAD breadboard; and (4) select an appropriate host processing environment.

  3. Conceptual design of a 500 watt solar AMTEC space power system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanenok, J.F. III; Sievers, R.K.; Harty, R.B.

    1995-12-31

    Numerous design studies have been completed on Radioisotope powered Alkali Metal Thermal to Electric Converter (RAMTEC) power systems demonstrating their substantial increase in performance. Prior to recent advances in AMTEC technology and Thermal Energy Storage (TES), coupling AMTEC converters with a solar concentrator did not increase the performance of solar powered space power systems. This paper describes a conceptual design of an innovative, low cost, reliable, low mass, long life 500 watt Solar AMTEC (SAMTEC) power system, and the predicted system performance. The concept uses innovative, high voltage AMTEC cells, each containing 7 to 9 small electrolyte tubes, integrated withmore » an individual TES unit. These multi-tube AMTEC cells are identical to the AMTEC cells designed for radioisotope powered systems. The TES used in this conceptual design is the LiF-22%CaF{sub 2} unit currently being developed at NASA Lewis Research Center (LeRC) for the Solar Dynamic Ground Test Demonstration (SDGTD) Program. The system was designed to provide 500 watts of electrical power at 28 volts to a payload in Low Earth Orbit (LEO, 800 km, 28.5{degree} inclination) for a minimum lifetime of 5 years. The SAMTEC power system is predicted to have a specific power k of 5.3 to 8.9 W(e)/kg (including the concentrator, receiver, AMTEC cells, gimbals and drives, structure, power processing and control, and a 30% mass contingency) at the 500 watt power level, and 12 to 17 W(e)/kg at the 5,000 watt power level. The SAMTEC system, including all of the components listed above, is anticipated to cost $1,000/W(e) once development is complete and production begins. The SAMTEC system provides 92% of its Beginning of Life (BOL) power after a 5 year period in LEO, and SAMTEC systems should provide 10 to 15 years of life in LEO. Current AMTEC cells have demonstrated 18% efficiency in the laboratory and have been heated radiatively, with propane flames and electrical resistance heaters.« less

  4. 49 CFR 579.21 - Reporting requirements for manufacturers of 5,000 or more light vehicles annually.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (compressed natural gas), CIF (compression ignition fuel), EBP (electric battery power), FCP (fuel-cell power... (electric battery power), FCP (fuel-cell power), HEV (hybrid electric vehicle), HCP (hydrogen combustion... and engine cooling system, 07 fuel system, 10 power train, 11 electrical system, 12 exterior lighting...

  5. The Advantages of Non-Flow-Through Fuel Cell Power Systems for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark; Burke, Kenneth; Jakupca, Ian

    2011-01-01

    NASA has been developing proton-exchange-membrane (PEM) fuel cell power systems for the past decade, as an upgraded technology to the alkaline fuel cells which presently provide power for the Shuttle Orbiter. All fuel cell power systems consist of one or more fuel cell stacks in combination with appropriate balance-of-plant hardware. Traditional PEM fuel cells are characterized as flow-through, in which recirculating reactant streams remove product water from the fuel cell stack. NASA recently embarked on the development of non-flow-through fuel cell systems, in which reactants are dead-ended into the fuel cell stack and product water is removed by internal wicks. This simplifies the fuel cell power system by eliminating the need for pumps to provide reactant circulation, and mechanical water separators to remove the product water from the recirculating reactant streams. By eliminating these mechanical components, the resulting fuel cell power system has lower mass, volume, and parasitic power requirements, along with higher reliability and longer life. These improved non-flow-through fuel cell power systems therefore offer significant advantages for many aerospace applications.

  6. Infrastructure for deployment of power systems

    NASA Technical Reports Server (NTRS)

    Sprouse, Kenneth M.

    1991-01-01

    A preliminary effort in characterizing the types of stationary lunar power systems which may be considered for emplacement on the lunar surface from the proposed initial 100-kW unit in 2003 to later units ranging in power from 25 to 825 kW is presented. Associated with these power systems are their related infrastructure hardware including: (1) electrical cable, wiring, switchgear, and converters; (2) deployable radiator panels; (3) deployable photovoltaic (PV) panels; (4) heat transfer fluid piping and connection joints; (5) power system instrumentation and control equipment; and (6) interface hardware between lunar surface construction/maintenance equipment and power system. This report: (1) presents estimates of the mass and volumes associated with these power systems and their related infrastructure hardware; (2) provides task breakdown description for emplacing this equipment; (3) gives estimated heat, forces, torques, and alignment tolerances for equipment assembly; and (4) provides other important equipment/machinery requirements where applicable. Packaging options for this equipment will be discussed along with necessary site preparation requirements. Design and analysis issues associated with the final emplacement of this power system hardware are also described.

  7. Environmental Control and Life Support Systems and Power Systems ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Environmental Control and Life Support Systems and Power Systems - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  8. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, MARIAH ENERGY CORPORATION HEAT PLUS POWER SYSTEM

    EPA Science Inventory

    The Greenhouse Gas Technology Center (GHG Center) has recently evaluated the performance of the Heat PlusPower(TM) System (Mariah CDP System), which integrates microturbine technology with a heat recovery system. Electric power is generated with a Capstone MicroTurbine(TM) Model ...

  9. Model-based reasoning for power system management using KATE and the SSM/PMAD

    NASA Technical Reports Server (NTRS)

    Morris, Robert A.; Gonzalez, Avelino J.; Carreira, Daniel J.; Mckenzie, F. D.; Gann, Brian

    1993-01-01

    The overall goal of this research effort has been the development of a software system which automates tasks related to monitoring and controlling electrical power distribution in spacecraft electrical power systems. The resulting software system is called the Intelligent Power Controller (IPC). The specific tasks performed by the IPC include continuous monitoring of the flow of power from a source to a set of loads, fast detection of anomalous behavior indicating a fault to one of the components of the distribution systems, generation of diagnosis (explanation) of anomalous behavior, isolation of faulty object from remainder of system, and maintenance of flow of power to critical loads and systems (e.g. life-support) despite fault conditions being present (recovery). The IPC system has evolved out of KATE (Knowledge-based Autonomous Test Engineer), developed at NASA-KSC. KATE consists of a set of software tools for developing and applying structure and behavior models to monitoring, diagnostic, and control applications.

  10. Preliminary operational results from the Willard solar power system

    NASA Technical Reports Server (NTRS)

    Fenton, D. L.; Abernathy, G. H.; Krivokapich, G.; Ellibee, D. E.; Chilton, V.

    1980-01-01

    The solar powered system located near Willard, New Mexico, generates mechanical or electrical power at a capacity of 19 kW (25 HP). The solar collection system incorporates east/west tracking parabolic trough collectors with a total aperture area of 1275 sq m (13,720 sq ft). The hot oil type thermal energy storage is sufficient for approximately 20 hours of power system operation. The system utilizes a reaction type turbine in conjunction with an organic Rankine cycle engine. Total collector field efficiency reaches a maximum of 20 percent near the winter solstice and about 50 percent during the summer. During the month of July, 1979, the system pumped 60 percent of the 35,300 cu m (28.6 acre-feet) of water delivered. Operating efficiencies for the turbine component, organic Rankine cycle engine and the complete power system are respectively 65 to 75 percent, 12 to 15 percent and 5 to 6 percent. Significant maintenance time was expended on both the collector and power systems throughout the operational period.

  11. Proposal and Development of a High Voltage Variable Frequency Alternating Current Power System for Hybrid Electric Aircraft

    NASA Technical Reports Server (NTRS)

    Sadey, David J.; Taylor, Linda M.; Beach, Raymond F.

    2017-01-01

    The development of ultra-efficient commercial vehicles and the transition to low-carbon emission propulsion are seen as strategic thrust paths within NASA Aeronautics. A critical enabler to these paths comes in the form of hybrid electric propulsion systems. For megawatt-class systems, the best power system topology for these hybrid electric propulsion systems is debatable. Current proposals within NASA and the Aero community suggest using a combination of alternating current (AC) and direct current (DC) for power generation, transmission, and distribution. This paper proposes an alternative to the current thought model through the use of a primarily high voltage AC power system, supported by the Convergent Aeronautics Solutions (CAS) Project. This system relies heavily on the use of doubly-fed induction machines (DFIMs), which provide high power densities, minimal power conversion, and variable speed operation. The paper presents background on the activity along with the system architecture, development status, and preliminary results.

  12. Preliminary operational results from the Willard solar power system

    NASA Astrophysics Data System (ADS)

    Fenton, D. L.; Abernathy, G. H.; Krivokapich, G.; Ellibee, D. E.; Chilton, V.

    1980-05-01

    The solar powered system located near Willard, New Mexico, generates mechanical or electrical power at a capacity of 19 kW (25 HP). The solar collection system incorporates east/west tracking parabolic trough collectors with a total aperture area of 1275 sq m (13,720 sq ft). The hot oil type thermal energy storage is sufficient for approximately 20 hours of power system operation. The system utilizes a reaction type turbine in conjunction with an organic Rankine cycle engine. Total collector field efficiency reaches a maximum of 20 percent near the winter solstice and about 50 percent during the summer. During the month of July, 1979, the system pumped 60 percent of the 35,300 cu m (28.6 acre-feet) of water delivered. Operating efficiencies for the turbine component, organic Rankine cycle engine and the complete power system are respectively 65 to 75 percent, 12 to 15 percent and 5 to 6 percent. Significant maintenance time was expended on both the collector and power systems throughout the operational period.

  13. Initial guidelines and estimates for a power system with inertial (flywheel) energy storage

    NASA Technical Reports Server (NTRS)

    Slifer, L. W., Jr.

    1980-01-01

    The starting point for the assessment of a spacecraft power system utilizing inertial (flywheel) energy storage. Both general and specific guidelines are defined for the assessment of a modular flywheel system, operationally similar to but with significantly greater capability than the multimission modular spacecraft (MMS) power system. Goals for the flywheel system are defined in terms of efficiently train estimates and mass estimates for the system components. The inertial storage power system uses a 5 kw-hr flywheel storage component at 50 percent depth of discharge (DOD). It is capable of supporting an average load of 3 kw, including a peak load of 7.5 kw for 10 percent of the duty cycle, in low earth orbit operation. The specific power goal for the system is 10 w/kg, consisting of a 56w/kg (end of life) solar array, a 21.7 w-hr/kg (at 50 percent DOD) flywheel, and 43 w/kg power processing (conditioning, control and distribution).

  14. Transient analysis of an HTS DC power cable with an HVDC system

    NASA Astrophysics Data System (ADS)

    Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun; Yang, Byeongmo

    2013-11-01

    The operational characteristics of a superconducting DC power cable connected to a highvoltage direct current (HVDC) system are mainly concerned with the HVDC control and protection system. To confirm how the cable operates with the HVDC system, verifications using simulation tools are needed. This paper presents a transient analysis of a high temperature superconducting (HTS) DC power cable in connection with an HVDC system. The study was conducted via the simulation of the HVDC system and a developed model of the HTS DC power cable using a real time digital simulator (RTDS). The simulation was performed with some cases of short circuits that may have caused system damage. The simulation results show that during the faults, the quench did not happen with the HTS DC power cable because the HVDC controller reduced some degree of the fault current. These results could provide useful data for the protection design of a practical HVDC and HTS DC power cable system.

  15. Forecasting Electric Power Generation of Photovoltaic Power System for Energy Network

    NASA Astrophysics Data System (ADS)

    Kudo, Mitsuru; Takeuchi, Akira; Nozaki, Yousuke; Endo, Hisahito; Sumita, Jiro

    Recently, there has been an increase in concern about the global environment. Interest is growing in developing an energy network by which new energy systems such as photovoltaic and fuel cells generate power locally and electric power and heat are controlled with a communications network. We developed the power generation forecast method for photovoltaic power systems in an energy network. The method makes use of weather information and regression analysis. We carried out forecasting power output of the photovoltaic power system installed in Expo 2005, Aichi Japan. As a result of comparing measurements with a prediction values, the average prediction error per day was about 26% of the measured power.

  16. Ground-Based and Space-Based Laser Beam Power Applications

    NASA Technical Reports Server (NTRS)

    Bozek, John M.

    1995-01-01

    A space power system based on laser beam power is sized to reduce mass, increase operational capabilities, and reduce complexity. The advantages of laser systems over solar-based systems are compared as a function of application. Power produced from the conversion of a laser beam that has been generated on the Earth's surface and beamed into cislunar space resulted in decreased round-trip time for Earth satellite electric propulsion tugs and a substantial landed mass savings for a lunar surface mission. The mass of a space-based laser system (generator in space and receiver near user) that beams down to an extraterrestrial airplane, orbiting spacecraft, surface outpost, or rover is calculated and compared to a solar system. In general, the advantage of low mass for these space-based laser systems is limited to high solar eclipse time missions at distances inside Jupiter. The power system mass is less in a continuously moving Mars rover or surface outpost using space-based laser technology than in a comparable solar-based power system, but only during dust storm conditions. Even at large distances for the Sun, the user-site portion of a space-based laser power system (e.g., the laser receiver component) is substantially less massive than a solar-based system with requisite on-board electrochemical energy storage.

  17. The fault monitoring and diagnosis knowledge-based system for space power systems: AMPERES, phase 1

    NASA Technical Reports Server (NTRS)

    Lee, S. C.

    1989-01-01

    The objective is to develop a real time fault monitoring and diagnosis knowledge-based system (KBS) for space power systems which can save costly operational manpower and can achieve more reliable space power system operation. The proposed KBS was developed using the Autonomously Managed Power System (AMPS) test facility currently installed at NASA Marshall Space Flight Center (MSFC), but the basic approach taken for this project could be applicable for other space power systems. The proposed KBS is entitled Autonomously Managed Power-System Extendible Real-time Expert System (AMPERES). In Phase 1 the emphasis was put on the design of the overall KBS, the identification of the basic research required, the initial performance of the research, and the development of a prototype KBS. In Phase 2, emphasis is put on the completion of the research initiated in Phase 1, and the enhancement of the prototype KBS developed in Phase 1. This enhancement is intended to achieve a working real time KBS incorporated with the NASA space power system test facilities. Three major research areas were identified and progress was made in each area. These areas are real time data acquisition and its supporting data structure; sensor value validations; development of inference scheme for effective fault monitoring and diagnosis, and its supporting knowledge representation scheme.

  18. Stability Assessment of a System Comprising a Single Machine and Inverter with Scalable Ratings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Brian B; Lin, Yashen; Gevorgian, Vahan

    From the inception of power systems, synchronous machines have acted as the foundation of large-scale electrical infrastructures and their physical properties have formed the cornerstone of system operations. However, power electronics interfaces are playing a growing role as they are the primary interface for several types of renewable energy sources and storage technologies. As the role of power electronics in systems continues to grow, it is crucial to investigate the properties of bulk power systems in low inertia settings. In this paper, we assess the properties of coupled machine-inverter systems by studying an elementary system comprised of a synchronous generator,more » three-phase inverter, and a load. Furthermore, the inverter model is formulated such that its power rating can be scaled continuously across power levels while preserving its closed-loop response. Accordingly, the properties of the machine-inverter system can be assessed for varying ratios of machine-to-inverter power ratings and, hence, differing levels of inertia. After linearizing the model and assessing its eigenvalues, we show that system stability is highly dependent on the interaction between the inverter current controller and machine exciter, thus uncovering a key concern with mixed machine-inverter systems and motivating the need for next-generation grid-stabilizing inverter controls.« less

  19. Reactor/Brayton power systems for nuclear electric spacecraft

    NASA Technical Reports Server (NTRS)

    Layton, J. P.

    1980-01-01

    Studies are currently underway to assess the technological feasibility of a nuclear-reactor-powered spacecraft propelled by electric thrusters. This vehicle would be capable of performing detailed exploration of the outer planets of the solar system during the remainder of this century. The purpose of this study was to provide comparative information on a closed cycle gas turbine power conversion system. The results have shown that the performance is very competitive and that a 400 kWe space power system is dimensionally compatible with a single Space Shuttle launch. Performance parameters of system mass and radiator area were determined for systems from 100 to 1000 kWe. A 400 kWe reference system received primary attention. The components of this system were defined and a conceptual layout was developed with encouraging results. The preliminary mass determination for the complete power system was very close to the desired goal of 20 kg/kWe. Use of more advanced technology (higher turbine inlet temperature) will substantially improve system performance characteristics.

  20. Non-Flow-Through Fuel Cell System Test Results and Demonstration on the SCARAB Rover

    NASA Technical Reports Server (NTRS)

    Scheidegger, Brianne, T.; Burke, Kenneth A.; Jakupca, Ian J.

    2012-01-01

    This paper describes the results of the demonstration of a non-flow-through PEM fuel cell as part of a power system on the SCARAB rover. A 16-cell non-flow-through fuel cell stack from Infinity Fuel Cell and Hydrogen, Inc. was incorporated into a power system designed to act as a range extender by providing power to the rover s hotel loads. This work represents the first attempt at a ground demonstration of this new technology aboard a mobile test platform. Development and demonstration were supported by the Office of the Chief Technologist s Space Power Systems Project and the Advanced Exploration System Modular Power Systems Project.

  1. Optimal Dispatch of Unreliable Electric Grid-Connected Diesel Generator-Battery Power Systems

    NASA Astrophysics Data System (ADS)

    Xu, D.; Kang, L.

    2015-06-01

    Diesel generator (DG)-battery power systems are often adopted by telecom operators, especially in semi-urban and rural areas of developing countries. Unreliable electric grids (UEG), which have frequent and lengthy outages, are peculiar to these regions. DG-UEG-battery power system is an important kind of hybrid power system. System dispatch is one of the key factors to hybrid power system integration. In this paper, the system dispatch of a DG-UEG-lead acid battery power system is studied with the UEG of relatively ample electricity in Central African Republic (CAR) and UEG of poor electricity in Congo Republic (CR). The mathematical models of the power system and the UEG are studied for completing the system operation simulation program. The net present cost (NPC) of the power system is the main evaluation index. The state of charge (SOC) set points and battery bank charging current are the optimization variables. For the UEG in CAR, the optimal dispatch solution is SOC start and stop points 0.4 and 0.5 that belong to the Micro-Cycling strategy and charging current 0.1 C. For the UEG in CR, the optimal dispatch solution is of 0.1 and 0.8 that belongs to the Cycle-Charging strategy and 0.1 C. Charging current 0.1 C is suitable for both grid scenarios compared to 0.2 C. It makes the dispatch strategy design easier in commercial practices that there are a few very good candidate dispatch solutions with system NPC values close to that of the optimal solution for both UEG scenarios in CAR and CR.

  2. Automated Power-Distribution System

    NASA Technical Reports Server (NTRS)

    Thomason, Cindy; Anderson, Paul M.; Martin, James A.

    1990-01-01

    Automated power-distribution system monitors and controls electrical power to modules in network. Handles both 208-V, 20-kHz single-phase alternating current and 120- to 150-V direct current. Power distributed to load modules from power-distribution control units (PDCU's) via subsystem distributors. Ring busses carry power to PDCU's from power source. Needs minimal attention. Detects faults and also protects against them. Potential applications include autonomous land vehicles and automated industrial process systems.

  3. Fission Surface Power Technology Development Update

    NASA Technical Reports Server (NTRS)

    Palac, Donald T.; Mason, Lee S.; Houts, Michael G.; Harlow, Scott

    2011-01-01

    Power is a critical consideration in planning exploration of the surfaces of the Moon, Mars, and places beyond. Nuclear power is an important option, especially for locations in the solar system where sunlight is limited or environmental conditions are challenging (e.g., extreme cold, dust storms). NASA and the Department of Energy are maintaining the option for fission surface power for the Moon and Mars by developing and demonstrating technology for a fission surface power system. The Fission Surface Power Systems project has focused on subscale component and subsystem demonstrations to address the feasibility of a low-risk, low-cost approach to space nuclear power for surface missions. Laboratory demonstrations of the liquid metal pump, reactor control drum drive, power conversion, heat rejection, and power management and distribution technologies have validated that the fundamental characteristics and performance of these components and subsystems are consistent with a Fission Surface Power preliminary reference concept. In addition, subscale versions of a non-nuclear reactor simulator, using electric resistance heating in place of the reactor fuel, have been built and operated with liquid metal sodium-potassium and helium/xenon gas heat transfer loops, demonstrating the viability of establishing system-level performance and characteristics of fission surface power technologies without requiring a nuclear reactor. While some component and subsystem testing will continue through 2011 and beyond, the results to date provide sufficient confidence to proceed with system level technology readiness demonstration. To demonstrate the system level readiness of fission surface power in an operationally relevant environment (the primary goal of the Fission Surface Power Systems project), a full scale, 1/4 power Technology Demonstration Unit (TDU) is under development. The TDU will consist of a non-nuclear reactor simulator, a sodium-potassium heat transfer loop, a power conversion unit with electrical controls, and a heat rejection system with a multi-panel radiator assembly. Testing is planned at the Glenn Research Center Vacuum Facility 6 starting in 2012, with vacuum and liquid-nitrogen cold walls to provide simulation of operationally relevant environments. A nominal two-year test campaign is planned including a Phase 1 reactor simulator and power conversion test followed by a Phase 2 integrated system test with radiator panel heat rejection. The testing is expected to demonstrate the readiness and availability of fission surface power as a viable power system option for NASA's exploration needs. In addition to surface power, technology development work within this project is also directly applicable to in-space fission power and propulsion systems.

  4. ePave: A Self-Powered Wireless Sensor for Smart and Autonomous Pavement.

    PubMed

    Xiao, Jian; Zou, Xiang; Xu, Wenyao

    2017-09-26

    "Smart Pavement" is an emerging infrastructure for various on-road applications in transportation and road engineering. However, existing road monitoring solutions demand a certain periodic maintenance effort due to battery life limits in the sensor systems. To this end, we present an end-to-end self-powered wireless sensor-ePave-to facilitate smart and autonomous pavements. The ePave system includes a self-power module, an ultra-low-power sensor system, a wireless transmission module and a built-in power management module. First, we performed an empirical study to characterize the piezoelectric module in order to optimize energy-harvesting efficiency. Second, we developed an integrated sensor system with the optimized energy harvester. An adaptive power knob is designated to adjust the power consumption according to energy budgeting. Finally, we intensively evaluated the ePave system in real-world applications to examine the system's performance and explore the trade-off.

  5. Power supply system for the superconducting outsert of the CHMFL hybrid magnet

    NASA Astrophysics Data System (ADS)

    Fang, Z.; Zhu, J.; Chen, W.; Jiang, D.; Huang, P.; Chen, Z.; Tan, Y.; Kuang, G.

    2017-12-01

    The construction of a new hybrid magnet, consisting of a 11 T superconducting outsert and a 34 T resistive insert magnet, has been finished at the Chinese High Magnetic Field Laboratory (CHMFL) in Hefei. With a room temperature bore of 800 mm in diameter, the hybrid magnet superconducting outsert is composed of four separate Nb3Sn-based Cable-in-Conduit Conductor (CICC) coils electrically connected in series and powered by a single power supply system. The power supply system for the superconducting outsert consists of a 16 kA DC power supply, a quench protection system, a pair of 16 kA High Temperature Superconducting (HTS) current leads, and two Low Temperature Superconducting bus-lines. The design and manufacturing of the power supply system have been completed at the CHMFL. This paper describes the design features of the power supply system as well as the current fabrication condition of its main components.

  6. Optimization of output power and transmission efficiency of magnetically coupled resonance wireless power transfer system

    NASA Astrophysics Data System (ADS)

    Yan, Rongge; Guo, Xiaoting; Cao, Shaoqing; Zhang, Changgeng

    2018-05-01

    Magnetically coupled resonance (MCR) wireless power transfer (WPT) system is a promising technology in electric energy transmission. But, if its system parameters are designed unreasonably, output power and transmission efficiency will be low. Therefore, optimized parameters design of MCR WPT has important research value. In the MCR WPT system with designated coil structure, the main parameters affecting output power and transmission efficiency are the distance between the coils, the resonance frequency and the resistance of the load. Based on the established mathematical model and the differential evolution algorithm, the change of output power and transmission efficiency with parameters can be simulated. From the simulation results, it can be seen that output power and transmission efficiency of the two-coil MCR WPT system and four-coil one with designated coil structure are improved. The simulation results confirm the validity of the optimization method for MCR WPT system with designated coil structure.

  7. Power system applications of fiber optics

    NASA Technical Reports Server (NTRS)

    Kirkham, H.; Johnston, A.; Lutes, G.; Daud, T.; Hyland, S.

    1984-01-01

    Power system applications of optical systems, primarily using fiber optics, are reviewed. The first section reviews fibers as components of communication systems. The second section deals with fiber sensors for power systems, reviewing the many ways light sources and fibers can be combined to make measurements. Methods of measuring electric field gradient are discussed. Optical data processing is the subject of the third section, which begins by reviewing some widely different examples and concludes by outlining some potential applications in power systems: fault location in transformers, optical switching for light fired thyristors and fault detection based on the inherent symmetry of most power apparatus. The fourth and final section is concerned with using optical fibers to transmit power to electric equipment in a high voltage situation, potentially replacing expensive high voltage low power transformers. JPL has designed small photodiodes specifically for this purpose, and fabricated and tested several samples. This work is described.

  8. Control of large wind turbine generators connected to utility networks

    NASA Technical Reports Server (NTRS)

    Hinrichsen, E. N.

    1983-01-01

    This is an investigation of the control requirements for variable pitch wind turbine generators connected to electric power systems. The requirements include operation in very small as well as very large power systems. Control systems are developed for wind turbines with synchronous, induction, and doubly fed generators. Simulation results are presented. It is shown how wind turbines and power system controls can be integrated. A clear distinction is made between fast control of turbine torque, which is a peculiarity of wind turbines, and slow control of electric power, which is a traditional power system requirement.

  9. Analysis of impact of “strong DC and weak AC” on receiving-end power system

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Li, Tianran; Yang, Pengcheng

    2018-02-01

    The rapid development of UHVDC transmission project has brought abundant power supply to the receiving-end power system area, but also many security and stability problems. This paper summarizes four elements that affect the strength of AC system, and then simulates the most basic two-terminal single-pole UHV transmission system by MATLAB/Simulink. It analyses the impact of receiving-end AC power system strength on real-time power, frequency and voltage. Finally, in view of operation risk of “strong DC and weak AC”, this paper puts forward three countermeasures.

  10. Design and emplacement of an integrated lunar power system - Issues and concerns

    NASA Technical Reports Server (NTRS)

    Sprouse, Kenneth M.; Robin, James E.; Metcalf, Kenneth J.; Cataldo, Robert

    1991-01-01

    Issues regarding the construction and operation of a stationary lunar surface power system that must be resolved in order to create a permanent manned presence on the moon are addressed. The issues considered include: (1) the centralization or decentralization of the electrical power system; (2) whether power transmission should be ac or dc; (3) what mix of power generating technology should be used; and (4) the physical interface requirements between the power-system hardware and the construction equipment to be used in placing the hardware on the lunar surface.

  11. Proposals for the construction of space systems based on small spacecraft and a transport and power module with a nuclear power plant

    NASA Astrophysics Data System (ADS)

    Barabanov, A. A.; Papchenko, B. P.; Pichkhadze, K. M.; Rebrov, S. G.; Semenkin, A. V.; Sysoev, V. K.; Yanchur, S. V.

    2016-12-01

    The concept of interconnected satellite systems for various scientific and engineering applications based on small spacecraft and a transport and power module with a nuclear power plant is discussed. The system is connected by laser radiation from the transport and power module that supplies power to small satellites, establishes high-speed data transmission, and is used to perform high-precision measurements of intersatellite distances. Several practical use cases for such a connected system are considered.

  12. Reprint of “Performance analysis of a model-sized superconducting DC transmission system based VSC-HVDC transmission technologies using RTDS”

    NASA Astrophysics Data System (ADS)

    Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Sung-Kyu; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun

    2013-01-01

    The combination of a high temperature superconducting DC power cable and a voltage source converter based HVDC (VSC-HVDC) creates a new option for transmitting power with multiple collection and distribution points for long distance and bulk power transmissions. It offers some greater advantages compared with HVAC or conventional HVDC transmission systems, and it is well suited for the grid integration of renewable energy sources in existing distribution or transmission systems. For this reason, a superconducting DC transmission system based HVDC transmission technologies is planned to be set up in the Jeju power system, Korea. Before applying this system to a real power system on Jeju Island, system analysis should be performed through a real time test. In this paper, a model-sized superconducting VSC-HVDC system, which consists of a small model-sized VSC-HVDC connected to a 2 m YBCO HTS DC model cable, is implemented. The authors have performed the real-time simulation method that incorporates the model-sized superconducting VSC-HVDC system into the simulated Jeju power system using Real Time Digital Simulator (RTDS). The performance analysis of the superconducting VSC-HVDC systems has been verified by the proposed test platform and the results were discussed in detail.

  13. Performance analysis of a model-sized superconducting DC transmission system based VSC-HVDC transmission technologies using RTDS

    NASA Astrophysics Data System (ADS)

    Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Sung-Kyu; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun

    2012-08-01

    The combination of a high temperature superconducting DC power cable and a voltage source converter based HVDC (VSC-HVDC) creates a new option for transmitting power with multiple collection and distribution points for long distance and bulk power transmissions. It offers some greater advantages compared with HVAC or conventional HVDC transmission systems, and it is well suited for the grid integration of renewable energy sources in existing distribution or transmission systems. For this reason, a superconducting DC transmission system based HVDC transmission technologies is planned to be set up in the Jeju power system, Korea. Before applying this system to a real power system on Jeju Island, system analysis should be performed through a real time test. In this paper, a model-sized superconducting VSC-HVDC system, which consists of a small model-sized VSC-HVDC connected to a 2 m YBCO HTS DC model cable, is implemented. The authors have performed the real-time simulation method that incorporates the model-sized superconducting VSC-HVDC system into the simulated Jeju power system using Real Time Digital Simulator (RTDS). The performance analysis of the superconducting VSC-HVDC systems has been verified by the proposed test platform and the results were discussed in detail.

  14. The assessment of exploitation process of power for access control system

    NASA Astrophysics Data System (ADS)

    Wiśnios, Michał; Paś, Jacek

    2017-10-01

    The safety of public utility facilities is a function not only of effectiveness of the electronic safety systems, used for protection of property and persons, but it also depends on the proper functioning of their power supply systems. The authors of the research paper analysed the power supply systems, which are used in buildings for the access control system that is integrated with the closed-circuit TV. The Access Control System is a set of electronic, electromechanical and electrical devices and the computer software controlling the operation of the above-mentioned elements, which is aimed at identification of people, vehicles allowed to cross the boundary of the reserved area, to prevent from crossing the reserved area and to generate the alarm signal informing about the attempt of crossing by an unauthorised entity. The industrial electricity with appropriate technical parameters is a basis of proper functioning of safety systems. Only the electricity supply to the systems is not equivalent to the operation continuity provision. In practice, redundant power supply systems are used. In the carried out reliability analysis of the power supply system, various power circuits of the system were taken into account. The reliability and operation requirements for this type of system were also included.

  15. Neuro-Fuzzy Computational Technique to Control Load Frequency in Hydro-Thermal Interconnected Power System

    NASA Astrophysics Data System (ADS)

    Prakash, S.; Sinha, S. K.

    2015-09-01

    In this research work, two areas hydro-thermal power system connected through tie-lines is considered. The perturbation of frequencies at the areas and resulting tie line power flows arise due to unpredictable load variations that cause mismatch between the generated and demanded powers. Due to rising and falling power demand, the real and reactive power balance is harmed; hence frequency and voltage get deviated from nominal value. This necessitates designing of an accurate and fast controller to maintain the system parameters at nominal value. The main purpose of system generation control is to balance the system generation against the load and losses so that the desired frequency and power interchange between neighboring systems are maintained. The intelligent controllers like fuzzy logic, artificial neural network (ANN) and hybrid fuzzy neural network approaches are used for automatic generation control for the two area interconnected power systems. Area 1 consists of thermal reheat power plant whereas area 2 consists of hydro power plant with electric governor. Performance evaluation is carried out by using intelligent (ANFIS, ANN and fuzzy) control and conventional PI and PID control approaches. To enhance the performance of controller sliding surface i.e. variable structure control is included. The model of interconnected power system has been developed with all five types of said controllers and simulated using MATLAB/SIMULINK package. The performance of the intelligent controllers has been compared with the conventional PI and PID controllers for the interconnected power system. A comparison of ANFIS, ANN, Fuzzy and PI, PID based approaches shows the superiority of proposed ANFIS over ANN, fuzzy and PI, PID. Thus the hybrid fuzzy neural network controller has better dynamic response i.e., quick in operation, reduced error magnitude and minimized frequency transients.

  16. Off-Design Performance Analysis of a Solid-Oxide Fuel Cell/Gas Turbine Hybrid for Auxiliary Aerospace Power

    NASA Technical Reports Server (NTRS)

    Freeh, Joshua E.; Steffen, J., Jr.; Larosiliere, Louis M.

    2005-01-01

    A solid-oxide fuel cell/gas turbine hybrid system for auxiliary aerospace power is analyzed using 0-D and 1-D system-level models. The system is designed to produce 440 kW of net electrical power, sized for a typical long-range 300-passenger civil airplane, at both sea level and cruise flight level (12,500 m). In addition, a part power level of 250 kW is analyzed at the cruise condition, a requirement of the operating power profile. The challenge of creating a balanced system for the three distinct conditions is presented, along with the compromises necessary for each case. A parametric analysis is described for the cruise part power operating point, in which the system efficiency is maximized by varying the air flow rate. The system is compared to an earlier version that was designed solely for cruise operation. The results show that it is necessary to size the turbomachinery, fuel cell, and heat exchangers at sea level full power rather than cruise full power. The resulting estimated mass of the system is 1912 kg, which is significantly higher than the original cruise design point mass, 1396 kg. The net thermal efficiencies with respect to the fuel LHV are calculated to be 42.4 percent at sea level full power, 72.6 percent at cruise full power, and 72.8 percent at cruise part power. The cruise conditions take advantage of pre-compressed air from the on-board Environmental Control System, which accounts for a portion of the unusually high thermal efficiency at those conditions. These results show that it is necessary to include several operating points in the overall assessment of an aircraft power system due to the variations throughout the operating profile.

  17. System-wide emissions implications of increased wind power penetration.

    PubMed

    Valentino, Lauren; Valenzuela, Viviana; Botterud, Audun; Zhou, Zhi; Conzelmann, Guenter

    2012-04-03

    This paper discusses the environmental effects of incorporating wind energy into the electric power system. We present a detailed emissions analysis based on comprehensive modeling of power system operations with unit commitment and economic dispatch for different wind penetration levels. First, by minimizing cost, the unit commitment model decides which thermal power plants will be utilized based on a wind power forecast, and then, the economic dispatch model dictates the level of production for each unit as a function of the realized wind power generation. Finally, knowing the power production from each power plant, the emissions are calculated. The emissions model incorporates the effects of both cycling and start-ups of thermal power plants in analyzing emissions from an electric power system with increasing levels of wind power. Our results for the power system in the state of Illinois show significant emissions effects from increased cycling and particularly start-ups of thermal power plants. However, we conclude that as the wind power penetration increases, pollutant emissions decrease overall due to the replacement of fossil fuels.

  18. Simulation of a Lunar Surface Base Power Distribution Network for the Constellation Lunar Surface Systems

    NASA Technical Reports Server (NTRS)

    Mintz, Toby; Maslowski, Edward A.; Colozza, Anthony; McFarland, Willard; Prokopius, Kevin P.; George, Patrick J.; Hussey, Sam W.

    2010-01-01

    The Lunar Surface Power Distribution Network Study team worked to define, breadboard, build and test an electrical power distribution system consistent with NASA's goal of providing electrical power to sustain life and power equipment used to explore the lunar surface. A testbed was set up to simulate the connection of different power sources and loads together to form a mini-grid and gain an understanding of how the power systems would interact. Within the power distribution scheme, each power source contributes to the grid in an independent manner without communication among the power sources and without a master-slave scenario. The grid consisted of four separate power sources and the accompanying power conditioning equipment. Overall system design and testing was performed. The tests were performed to observe the output and interaction of the different power sources as some sources are added and others are removed from the grid connection. The loads on the system were also varied from no load to maximum load to observe the power source interactions.

  19. Description of real-time Ada software implementation of a power system monitor for the Space Station Freedom PMAD DC testbed

    NASA Technical Reports Server (NTRS)

    Ludwig, Kimberly; Mackin, Michael; Wright, Theodore

    1991-01-01

    The authors describe the Ada language software developed to perform the electrical power system monitoring functions for the NASA Lewis Research Center's Power Management and Distribution (PMAD) DC testbed. The results of the effort to implement this monitor are presented. The PMAD DC testbed is a reduced-scale prototype of the electric power system to be used in Space Station Freedom. The power is controlled by smart switches known as power control components (or switchgear). The power control components are currently coordinated by five Compaq 386/20e computers connected through an 802.4 local area network. The power system monitor algorithm comprises several functions, including periodic data acquisition, data smoothing, system performance analysis, and status reporting. Data are collected from the switchgear sensors every 100 ms, then passed through a 2-Hz digital filter. System performance analysis includes power interruption and overcurrent detection. The system monitor required a hardware timer interrupt to activate the data acquisition function. The execution time of the code was optimized by using an assembly language routine. The routine allows direct vectoring of the processor to Ada language procedures that perform periodic control activities.

  20. Integrated assessment of water-power grid systems under changing climate

    NASA Astrophysics Data System (ADS)

    Yan, E.; Zhou, Z.; Betrie, G.

    2017-12-01

    Energy and water systems are intrinsically interconnected. Due to an increase in climate variability and extreme weather events, interdependency between these two systems has been recently intensified resulting significant impacts on both systems and energy output. To address this challenge, an Integrated Water-Energy Systems Assessment Framework (IWESAF) is being developed to integrate multiple existing or developed models from various sectors. In this presentation, we are focusing on recent improvement in model development of thermoelectric power plant water use simulator, power grid operation and cost optimization model, and model integration that facilitate interaction among water and electricity generation under extreme climate events. A process based thermoelectric power water use simulator includes heat-balance, climate, and cooling system modules that account for power plant characteristics, fuel types, and cooling technology. The model is validated with more than 800 power plants of fossil-fired, nuclear and gas-turbine power plants with different cooling systems. The power grid operation and cost optimization model was implemented for a selected regional in the Midwest. The case study will be demonstrated to evaluate the sensitivity and resilience of thermoelectricity generation and power grid under various climate and hydrologic extremes and potential economic consequences.

  1. Power feasibility of implantable digital spike-sorting circuits for neural prosthetic systems.

    PubMed

    Zumsteg, Zachary S; Ahmed, Rizwan E; Santhanam, Gopal; Shenoy, Krishna V; Meng, Teresa H

    2004-01-01

    A new class of neural prosthetic systems aims to assist disabled patients by translating cortical neural activity into control signals for prosthetic devices. Based on the success of proof-of-concept systems in the laboratory, there is now considerable interest in increasing system performance and creating implantable electronics for use in clinical systems. A critical question that impacts system performance and the overall architecture of these systems is whether it is possible to identify the neural source of each action potential (spike sorting) in real-time and with low power. Low power is essential both for power supply considerations and heat dissipation in the brain. In this paper we report that several state-of-the-art spike sorting algorithms implemented in modern CMOS VLSI processes are expected to be power realistic.

  2. Research on multi - channel interactive virtual assembly system for power equipment under the “VR+” era

    NASA Astrophysics Data System (ADS)

    Ren, Yilong; Duan, Xitong; Wu, Lei; He, Jin; Xu, Wu

    2017-06-01

    With the development of the “VR+” era, the traditional virtual assembly system of power equipment has been unable to satisfy our growing needs. In this paper, based on the analysis of the traditional virtual assembly system of electric power equipment and the application of VR technology in the virtual assembly system of electric power equipment in our country, this paper puts forward the scheme of establishing the virtual assembly system of power equipment: At first, we should obtain the information of power equipment, then we should using OpenGL and multi texture technology to build 3D solid graphics library. After the completion of three-dimensional modeling, we can use the dynamic link library DLL package three-dimensional solid graphics generation program to realize the modularization of power equipment model library and power equipment model library generated hidden algorithm. After the establishment of 3D power equipment model database, we set up the virtual assembly system of 3D power equipment to separate the assembly operation of the power equipment from the space. At the same time, aiming at the deficiency of the traditional gesture recognition algorithm, we propose a gesture recognition algorithm based on improved PSO algorithm for BP neural network data glove. Finally, the virtual assembly system of power equipment can really achieve multi-channel interaction function.

  3. Application of Synchrophasor Measurements for Improving Situational Awareness of the Power System

    NASA Astrophysics Data System (ADS)

    Obushevs, A.; Mutule, A.

    2018-04-01

    The paper focuses on the application of synchrophasor measurements that present unprecedented benefits compared to SCADA systems in order to facilitate the successful transformation of the Nordic-Baltic-and-European electric power system to operate with large amounts of renewable energy sources and improve situational awareness of the power system. The article describes new functionalities of visualisation tools to estimate a grid inertia level in real time with monitoring results between Nordic and Baltic power systems.

  4. Damping torque analysis of VSC-based system utilizing power synchronization control

    NASA Astrophysics Data System (ADS)

    Fu, Q.; Du, W. J.; Zheng, K. Y.; Wang, H. F.

    2017-05-01

    Power synchronization control is a new control strategy of VSC-HVDC for connecting a weak power system. Different from the vector control method, this control method utilizes the internal synchronization mechanism in ac systems, in principle, similar to the operation of a synchronous machine. So that the parameters of controllers in power synchronization control will change the electromechanical oscillation modes and make an impact on the transient stability of power system. This paper present a mathematical model for small-signal stability analysis of VSC station used power synchronization control and analyse the impact of the dynamic interactions by calculating the contribution of the damping torque from the power synchronization control, besides, the parameters of controllers which correspond to damping torque and synchronous torque in the power synchronization control is defined respectively. At the end of the paper, an example power system is presented to demonstrate and validate the theoretical analysis and associated conclusions are made.

  5. A low-power RFID integrated circuits for intelligent healthcare systems.

    PubMed

    Lee, Shuenn-Yuh; Wang, Liang-Hung; Fang, Qiang

    2010-11-01

    This paper presents low-power radio-frequency identification (RFID) technology for intelligent healthcare systems. With attention to power-efficient communication in the body sensor network, RF power transfer was estimated and the required low-power ICs, which are important in the development of a healthcare system with miniaturization and system integration, are discussed based on the RFID platform. To analyze the power transformation, this paper adopts a 915-MHz industrial, scientific, and medical RF with a radiation power of 70 mW to estimate the power loss under the 1-m communication distance between an RFID reader (bioinformation node) and a transponder (biosignal acquisition nodes). The low-power ICs of the transponder will be implemented in the TSMC 0.18-μm CMOS process. The simulation result reveals that the transponder's IC can fit in with the link budget of the UHF RFID system.

  6. System Assessment of a High Power 3-U CubeSat

    NASA Technical Reports Server (NTRS)

    Shaw, Katie

    2016-01-01

    The Advanced eLectrical Bus (ALBus) CubeSat project is a technology demonstration mission of a 3-UCubeSat with an advanced, digitally controlled electrical power system capability and novel use of Shape Memory Alloy (SMA) technology for reliable deployable solar array mechanisms. The objective of the project is to, through an on orbit demonstration, advance the state of power management and distribution (PMAD) capabilities to enable future missions requiring higher power, flexible and reliable power systems. The goals of the mission include demonstration of: 100 Watt distribution to a target electrical load, efficient battery charging in the orbital environment, flexible power system distribution interfaces, adaptation of power system control on orbit, and reliable deployment of solar arrays and antennas utilizing re-settable SMA mechanisms. The power distribution function of the ALBus PMAD system is unique in the total power to target load capability of 100 W, the flexibility to support centralized or point-to-load regulation and ability to respond to fast transient power requirements. Power will be distributed from batteries at 14.8 V, 6.5 A to provide 100 W of power directly to a load. The deployable solar arrays utilize NASA Glenn Research Center superelastic and activated Nitinol(Nickel-Titanium alloy) Shape Memory Alloy (SMA) technology for hinges and a retention and release mechanism. The deployable solar array hinge design features utilization of the SMA material properties for dual purpose. The hinge uses the shape memory properties of the SMA to provide the spring force to deploy the arrays. The electrical conductivity properties of the SMA also enables the design to provide clean conduits for power transfer from the deployable arrays to the power management system. This eliminates the need for electrical harnesses between the arrays and the PMAD system in the ALBus system design. The uniqueness of the SMA retention and release mechanism design is the ability to reset the mechanism, allowing functional tests of the mechanisms prior to flight with no degradation of performance. The project is currently in preparation at the NASA Glenn Research Center for a launch in late calendar year of 2017. The 100 Watt power distribution and dual purpose, re-settable SMA mechanisms introduced several system level challenges due to the physical constraints in volume, mass and surface area of 3-U CubeSats. Several trade studies and design cycles have been completed to develop a system which supports the project objectives. This paper is a report on the results of the system level trade studies and assessments. The results include assessment of options for thermal control of 100 Watts of power dissipation, data from system analyses and engineering development tests, limitations of the 3-U system and extensibility to larger scale CubeSat missions.

  7. The economic viability of pursuing a space power system concept

    NASA Technical Reports Server (NTRS)

    Hazelrigg, G. A., Jr.

    1977-01-01

    The development of a space power system requires no fundamental technological breakthroughs. There are, however, uncertainties regarding the degree to which necessary developments can be achieved or exceeded. An analysis is conducted concerning the implementation of a 5000 MW space-based solar power system based on photovoltaic conversion of solar energy to electrical energy. The solar array is about 13 km long and 5 km wide. Placed in geosynchronous orbit, it provides power to the earth for 30 years. Attention is given to the economic feasibility of a space power system, a risk analysis for space power systems, and the use of the presented methodology for comparing alternative technology development programs.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curry, J J; Gallagher, D W; Modarres, M

    Appendices are presented concerning isolation condenser makeup; vapor suppression system; station air system; reactor building closed cooling water system; turbine building secondary closed water system; service water system; emergency service water system; fire protection system; emergency ac power; dc power system; event probability estimation; methodology of accident sequence quantification; and assignment of dominant sequences to release categories.

  9. 10 CFR 205.351 - Reporting requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... electric power supply system. (2) Equipment failures/system operational actions attributable to the loss of... greater for purposes of maintaining the continuity of the bulk electric power supply system. (2) Reports...) or terrorism directed at an electric power supply system, local or regional, in an attempt to either...

  10. Assessment of Power Quality based on Fuzzy Logic and Discrete Wavelet Transform for Nonstationary Disturbances

    NASA Astrophysics Data System (ADS)

    Sinha, Pampa; Nath, Sudipta

    2010-10-01

    The main aspects of power system delivery are reliability and quality. If all the customers of a power system get uninterrupted power through the year then the system is considered to be reliable. The term power quality may be referred to as maintaining near sinusoidal voltage at rated frequency at the consumers end. The power component definitions are defined according to the IEEE Standard 1459-2000 both for single phase and three phase unbalanced systems based on Fourier Transform (FFT). In the presence of nonstationary power quality (PQ) disturbances results in accurate values due to its sensitivity to the spectral leakage problem. To overcome these limitations the power quality components are calculated using Discrete Wavelet Transform (DWT). In order to handle the uncertainties associated with electric power systems operations fuzzy logic has been incorporated in this paper. A new power quality index has been introduced here which can assess the power quality under nonstationary disturbances.

  11. Electrical Power System Architectures for In-House NASA/GSFC Missions

    NASA Technical Reports Server (NTRS)

    Yun, Diane D.

    2006-01-01

    This power point presentation reviews the electrical power system (EPS) architecture used for a few NASA GSFC's missions both current and planned. Included in the presentation are reviews of electric power systems for the Space Technology 5 (ST5) mission, the Solar Dynamics Observatory (SDO) Mission, and the Lunar Reconnaissance Orbiter (LRO). There is a slide that compares the three missions' electrical supply systems.

  12. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov Websites

    DOE-funded research projects that are integrating cybersecurity controls with power systems principles Management, a hardware and software system that mimics the communications, power systems, and cybersecurity

  13. Air Force space power and thermal management technology - Requirements for the early 21st century

    NASA Astrophysics Data System (ADS)

    Herrera, Ernest D.; Kuck, Inara

    Typical projections for military space power and thermal management technologies have posited requirements for high powered and highly survivable systems. Recent changes in defense needs, however, will require spacecraft that are smaller, lower powered, less survivable, and highly proliferated. Technologies will be developed to provide low cost, ultra-light, high power density, 'smart' conventional power systems. Compact nuclear power systems will also be developed to meet higher power needs.

  14. Mobile Robot Positioning with 433-MHz Wireless Motes with Varying Transmission Powers and a Particle Filter.

    PubMed

    Canedo-Rodriguez, Adrian; Rodriguez, Jose Manuel; Alvarez-Santos, Victor; Iglesias, Roberto; Regueiro, Carlos V

    2015-04-30

    In wireless positioning systems, the transmitter's power is usually fixed. In this paper, we explore the use of varying transmission powers to increase the performance of a wireless localization system. To this extent, we have designed a robot positioning system based on wireless motes. Our motes use an inexpensive, low-power sub-1-GHz system-on-chip (CC1110) working in the 433-MHz ISM band. Our localization algorithm is based on a particle filter and infers the robot position by: (1) comparing the power received with the expected one; and (2) integrating the robot displacement. We demonstrate that the use of transmitters that vary their transmission power over time improves the performance of the wireless positioning system significantly, with respect to a system that uses fixed power transmitters. This opens the door for applications where the robot can localize itself actively by requesting the transmitters to change their power in real time.

  15. Mobile Robot Positioning with 433-MHz Wireless Motes with Varying Transmission Powers and a Particle Filter

    PubMed Central

    Canedo-Rodriguez, Adrian; Rodriguez, Jose Manuel; Alvarez-Santos, Victor; Iglesias, Roberto; Regueiro, Carlos V.

    2015-01-01

    In wireless positioning systems, the transmitter's power is usually fixed. In this paper, we explore the use of varying transmission powers to increase the performance of a wireless localization system. To this extent, we have designed a robot positioning system based on wireless motes. Our motes use an inexpensive, low-power sub-1-GHz system-on-chip (CC1110) working in the 433-MHz ISM band. Our localization algorithm is based on a particle filter and infers the robot position by: (1) comparing the power received with the expected one; and (2) integrating the robot displacement. We demonstrate that the use of transmitters that vary their transmission power over time improves the performance of the wireless positioning system significantly, with respect to a system that uses fixed power transmitters. This opens the door for applications where the robot can localize itself actively by requesting the transmitters to change their power in real time. PMID:25942641

  16. A Metric-Based Validation Process to Assess the Realism of Synthetic Power Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birchfield, Adam; Schweitzer, Eran; Athari, Mir

    Public power system test cases that are of high quality benefit the power systems research community with expanded resources for testing, demonstrating, and cross-validating new innovations. Building synthetic grid models for this purpose is a relatively new problem, for which a challenge is to show that created cases are sufficiently realistic. This paper puts forth a validation process based on a set of metrics observed from actual power system cases. These metrics follow the structure, proportions, and parameters of key power system elements, which can be used in assessing and validating the quality of synthetic power grids. Though wide diversitymore » exists in the characteristics of power systems, the paper focuses on an initial set of common quantitative metrics to capture the distribution of typical values from real power systems. The process is applied to two new public test cases, which are shown to meet the criteria specified in the metrics of this paper.« less

  17. Ocean Thermal Energy Conversion power system development. Phase I. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-12-04

    This report covers the conceptual and preliminary design of closed-cycle, ammonia, ocean thermal energy conversion power plants by Westinghouse Electric Corporation. Preliminary designs for evaporator and condenser test articles (0.13 MWe size) and a 10 MWe modular experiment power system are described. Conceptual designs for 50 MWe power systems, and 100 MWe power plants are also descirbed. Design and cost algorithms were developed, and an optimized power system design at the 50 MWe size was completed. This design was modeled very closely in the test articles and in the 10 MWe Modular Application. Major component and auxiliary system design, materials,more » biofouling, control response, availability, safety and cost aspects are developed with the greatest emphasis on the 10 MWe Modular Application Power System. It is concluded that all power plant subsystems are state-of-practice and require design verification only, rather than continued research. A complete test program, which verifies the mechanical reliability as well as thermal performance, is recommended and described.« less

  18. Development of the Optimum Operation Scheduling Model of Domestic Electric Appliances for the Supply-Demand Adjustment in a Power System

    NASA Astrophysics Data System (ADS)

    Ikegami, Takashi; Iwafune, Yumiko; Ogimoto, Kazuhiko

    The high penetration of variable renewable generation such as Photovoltaic (PV) systems will cause the issue of supply-demand imbalance in a whole power system. The activation of the residential power usage, storage and generation by sophisticated scheduling and control using the Home Energy Management System (HEMS) will be needed to balance power supply and demand in the near future. In order to evaluate the applicability of the HEMS as a distributed controller for local and system-wide supply-demand balances, we developed an optimum operation scheduling model of domestic electric appliances using the mixed integer linear programming. Applying this model to several houses with dynamic electricity prices reflecting the power balance of the total power system, it was found that the adequate changes in electricity prices bring about the shift of residential power usages to control the amount of the reverse power flow due to excess PV generation.

  19. A Preliminary Model for Spacecraft Propulsion Performance Analysis Based on Nuclear Gain and Subsystem Mass-Power Balances

    NASA Technical Reports Server (NTRS)

    Chakrabarti, S.; Schmidt, G. R.; Thio, Y. C.; Hurst, C. M.

    1999-01-01

    Rapid transportation of human crews to destinations throughout the solar system will require propulsion systems having not only very high exhaust velocities (i.e., I(sub sp) >= 10(exp 4) to 10(exp 5) sec) but also extremely low mass-power ratios (i.e., alpha <= 10(exp -2) kg/kW). These criteria are difficult to meet with electric propulsion and other power-limited systems, but may be achievable with propulsion concepts that use onboard power to produce a net gain in energy via fusion or some other nuclear process. This paper compares the fundamental performance of these gain-limited systems with that of power-limited systems, and determines from a generic power balance the gains required for ambitious planetary missions ranging up to 100 AU. Results show that energy gain reduces the required effective mass-power ratio of the system, thus enabling shorter trip times than those of power-limited concepts.

  20. A Metric-Based Validation Process to Assess the Realism of Synthetic Power Grids

    DOE PAGES

    Birchfield, Adam; Schweitzer, Eran; Athari, Mir; ...

    2017-08-19

    Public power system test cases that are of high quality benefit the power systems research community with expanded resources for testing, demonstrating, and cross-validating new innovations. Building synthetic grid models for this purpose is a relatively new problem, for which a challenge is to show that created cases are sufficiently realistic. This paper puts forth a validation process based on a set of metrics observed from actual power system cases. These metrics follow the structure, proportions, and parameters of key power system elements, which can be used in assessing and validating the quality of synthetic power grids. Though wide diversitymore » exists in the characteristics of power systems, the paper focuses on an initial set of common quantitative metrics to capture the distribution of typical values from real power systems. The process is applied to two new public test cases, which are shown to meet the criteria specified in the metrics of this paper.« less

  1. High voltage systems (tube-type microwave)/low voltage system (solid-state microwave) power distribution

    NASA Technical Reports Server (NTRS)

    Nussberger, A. A.; Woodcock, G. R.

    1980-01-01

    SPS satellite power distribution systems are described. The reference Satellite Power System (SPS) concept utilizes high-voltage klystrons to convert the onboard satellite power from dc to RF for transmission to the ground receiving station. The solar array generates this required high voltage and the power is delivered to the klystrons through a power distribution subsystem. An array switching of solar cell submodules is used to maintain bus voltage regulation. Individual klystron dc voltage conversion is performed by centralized converters. The on-board data processing system performs the necessary switching of submodules to maintain voltage regulation. Electrical power output from the solar panels is fed via switch gears into feeder buses and then into main distribution buses to the antenna. Power also is distributed to batteries so that critical functions can be provided through solar eclipses.

  2. Analysis on the power and efficiency in wireless power transfer system via coupled magnetic resonances

    NASA Astrophysics Data System (ADS)

    Liu, Mingjie

    2018-06-01

    The analysis of characteristics of the power and efficiency in wireless power transmission (WPT) system is the theoretical basis of magnetic coupling resonant wireless power transmission (MCR-WPT) technology. The electromagnetic field theory was employed to study the variation of the coupling degree of the two electromagnetic coils with the parameters of the coils. The equivalent circuit was used to analyze the influence of different factors on the transmission power and efficiency of the WPT system. The results show that there is an optimal radius ratio between the two coils, which makes the mutual inductance of the coils the largest. Moreover, when the WPT system operates in the under-coupling state, the transmission power of the system drops sharply, and there is a frequency splitting of the power when in the over-coupling state.

  3. Fission Surface Power Systems (FSPS) Project Final Report for the Exploration Technology Development Program (ETDP): Fission Surface Power, Transition Face to Face

    NASA Technical Reports Server (NTRS)

    Palac, Donald T.

    2011-01-01

    The Fission Surface Power Systems Project became part of the ETDP on October 1, 2008. Its goal was to demonstrate fission power system technology readiness in an operationally relevant environment, while providing data on fission system characteristics pertinent to the use of a fission power system on planetary surfaces. During fiscal years 08 to 10, the FSPS project activities were dominated by hardware demonstrations of component technologies, to verify their readiness for inclusion in the fission surface power system. These Pathfinders demonstrated multi-kWe Stirling power conversion operating with heat delivered via liquid metal NaK, composite Ti/H2O heat pipe radiator panel operations at 400 K input water temperature, no-moving-part electromagnetic liquid metal pump operation with NaK at flight-like temperatures, and subscale performance of an electric resistance reactor simulator capable of reproducing characteristics of a nuclear reactor for the purpose of system-level testing, and a longer list of component technologies included in the attached report. Based on the successful conclusion of Pathfinder testing, work began in 2010 on design and development of the Technology Demonstration Unit (TDU), a full-scale 1/4 power system-level non-nuclear assembly of a reactor simulator, power conversion, heat rejection, instrumentation and controls, and power management and distribution. The TDU will be developed and fabricated during fiscal years 11 and 12, culminating in initial testing with water cooling replacing the heat rejection system in 2012, and complete testing of the full TDU by the end of 2014. Due to its importance for Mars exploration, potential applicability to missions preceding Mars missions, and readiness for an early system-level demonstration, the Enabling Technology Development and Demonstration program is currently planning to continue the project as the Fission Power Systems project, including emphasis on the TDU completion and testing.

  4. AC/DC Smart Control And Power Sharing of DC Distribution Systems

    DTIC Science & Technology

    2012-02-10

    system losses will decrease since the semiconductor losses due to switching in converter are reduced. The use of DC power systems to supply...cells yield variable DC voltage. In stand-alone systems , in order to be able to make full use of the generated power and to feed the loads, a controlled...alternate sources connected to the DC Distribution System

  5. Developing Large-Scale Bayesian Networks by Composition: Fault Diagnosis of Electrical Power Systems in Aircraft and Spacecraft

    NASA Technical Reports Server (NTRS)

    Mengshoel, Ole Jakob; Poll, Scott; Kurtoglu, Tolga

    2009-01-01

    In this paper, we investigate the use of Bayesian networks to construct large-scale diagnostic systems. In particular, we consider the development of large-scale Bayesian networks by composition. This compositional approach reflects how (often redundant) subsystems are architected to form systems such as electrical power systems. We develop high-level specifications, Bayesian networks, clique trees, and arithmetic circuits representing 24 different electrical power systems. The largest among these 24 Bayesian networks contains over 1,000 random variables. Another BN represents the real-world electrical power system ADAPT, which is representative of electrical power systems deployed in aerospace vehicles. In addition to demonstrating the scalability of the compositional approach, we briefly report on experimental results from the diagnostic competition DXC, where the ProADAPT team, using techniques discussed here, obtained the highest scores in both Tier 1 (among 9 international competitors) and Tier 2 (among 6 international competitors) of the industrial track. While we consider diagnosis of power systems specifically, we believe this work is relevant to other system health management problems, in particular in dependable systems such as aircraft and spacecraft. (See CASI ID 20100021910 for supplemental data disk.)

  6. The changing sensitivity of power systems to meteorological drivers: a case study of Great Britain

    NASA Astrophysics Data System (ADS)

    Bloomfield, H. C.; Brayshaw, D. J.; Shaffrey, L. C.; Coker, P. J.; Thornton, H. E.

    2018-05-01

    The increasing use of intermittent renewable generation (such as wind) is increasing the exposure of national power systems to meteorological variability. This study identifies how the integration of wind power in one particular country (Great Britain, GB) is affecting the overall sensitivity of the power system to weather using three key metrics: total annual energy requirement, peak residual load (from sources other than wind) and wind power curtailment. The present-day level of wind power capacity (approximately 15 GW) is shown to have already changed the power system’s overall sensitivity to weather in terms of the total annual energy requirement, from a temperature- to a wind-dominated regime (which occurred with 6GW of installed wind power capacity). Peak residual load from sources other than wind also shows a similar shift. The associated changes in the synoptic- and large-scale meteorological drivers associated with each metric are identified and discussed. In a period where power systems are changing rapidly, it is therefore argued that past experience of the weather impacts on the GB power system may not be a good guide for the impact on the present or near-future power system.

  7. Photovoltaic Test and Demonstration Project. [for solar cell power systems

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Brandhorst, H. W., Jr.; Deyo, J. N.

    1976-01-01

    The Photovoltaic Test and Demonstration Project was initiated by NASA in June, 1975, to develop economically feasible photovoltaic power systems suitable for a variety of terrestrial applications. Objectives include the determination of operating characteristic and lifetimes of a variety of solar cell systems and components and development of methodology and techniques for accurate measurements of solar cell and array performance and diagnostic measurements for solar power systems. Initial work will be concerned with residential applications, with testing of the first prototype system scheduled for June, 1976. An outdoor 10 kW array for testing solar power systems is under construction.

  8. Power Systems for Human Exploration Missions

    NASA Technical Reports Server (NTRS)

    Cataldo, Robert L.

    1998-01-01

    Power system options were reviewed for their appropriateness to meet mission requirements and guidelines. Contending system technologies include: solar, nuclear, isotopic, electro-chemical and chemical. Mission elements can basically be placed into two categories; in-space transportation systems, both cargo and piloted; and surface systems, both stationary and mobile. All transportation and surface element power system requirements were assessed for application synergies that would suggest common hardware (duplicates of the same or similar design) or multi-use (reuse system in a different application/location), wherever prudent.

  9. Intelligent systems for strategic power infrastructure defense

    NASA Astrophysics Data System (ADS)

    Jung, Ju-Hwan

    A fault or disturbance in a power system can be severe due to the sources of vulnerability such as human errors, protection and control system failures, a failure of communication networks to deliver critical control signals, and market and load uncertainties. There have been several catastrophic failures resulting from disturbances involving the sources of vulnerability while power systems are designed to withstand disturbances or faults. To avoid catastrophic failures or minimize the impact of a disturbance(s), the state of the power system has to be analyzed correctly and preventive or corrective self-healing control actions have to be deployed. This dissertation addresses two aspects of power systems: Defense system and diagnosis, both concerned with the power system analysis and operation during events involving faults or disturbances. This study is intended to develop a defense system that is able to assess power system vulnerability and to perform self-healing control actions based on the system-wide analysis. In order to meet the requirements of the system-wide analysis, the defense system is designed with multi-agent system technologies. Since power systems are dynamic and uncertain the self-healing control actions need to be adaptive. This study applies the reinforcement learning technique to provide a theoretical basis for adaptation. One of the important issues in adaptation is the convergence of the learning algorithm. An appropriate convergence criterion is derived and an application with a load-shedding scheme is demonstrated in this study. This dissertation also demonstrates the feasibility of the defense system and self-healing control actions through multi-agent system technologies. The other subject of this research is to investigate the methodology for on-line fault diagnosis using the information from Sequence-of-Events Recorders (SER). The proposed multiple-hypothesis analysis generates one or more hypothetical fault scenarios to interpret the SER information. In order to avoid ambiguity of the hypotheses, this study proposes a new method to determine the credibility of each hypothesis. Even if there is not enough SER information, the proposed method is able to perform an accurate fault and malfunction analysis. To avoid exhaustive testing, a minimal set of test scenarios is derived, which is able to handle missing information and SERs. During extreme contingencies or cascading events, fault diagnosis is the first step in the operation of the power system. On-line fault diagnosis provides necessary and correct information for the defense system to make correct and efficient decisions on self-healing control actions. It has been shown in previous studies that incorrect fault diagnosis can lead to catastrophic failures in power systems. Fault diagnosis is an important issue for strategic power infrastructure defense.

  10. Photovoltaic power system reliability considerations

    NASA Technical Reports Server (NTRS)

    Lalli, V. R.

    1980-01-01

    An example of how modern engineering and safety techniques can be used to assure the reliable and safe operation of photovoltaic power systems is presented. This particular application is for a solar cell power system demonstration project designed to provide electric power requirements for remote villages. The techniques utilized involve a definition of the power system natural and operating environment, use of design criteria and analysis techniques, an awareness of potential problems via the inherent reliability and FMEA methods, and use of fail-safe and planned spare parts engineering philosophy.

  11. Activity and accomplishments of dish/Stirling electric power system development

    NASA Technical Reports Server (NTRS)

    Livingston, F. R.

    1985-01-01

    The development of the solar parabolic-dish/Stirling-engine electricity generating plant known as the dish/Stirling electric power system is described. The dish/Stirling electric power system converts sunlight to electricity more efficiently than any known existing solar electric power system. The fabrication and characterization of the test bed concentrators that were used for Stirling module testing and of the development of parabolic dish concentrator No. 2, an advanced solar concentrator unit considered for use with the Stirling power conversion unit is discussed.

  12. Concept for a power system controller for large space electrical power systems

    NASA Technical Reports Server (NTRS)

    Lollar, L. F.; Lanier, J. R., Jr.; Graves, J. R.

    1981-01-01

    The development of technology for a fail-operatonal power system controller (PSC) utilizing microprocessor technology for managing the distribution and power processor subsystems of a large multi-kW space electrical power system is discussed. The specific functions which must be performed by the PSC, the best microprocessor available to do the job, and the feasibility, cost savings, and applications of a PSC were determined. A limited function breadboard version of a PSC was developed to demonstrate the concept and potential cost savings.

  13. Examining System-Wide Impacts of Solar PV Control Systems with a Power Hardware-in-the-Loop Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Tess L.; Fuller, Jason C.; Schneider, Kevin P.

    2014-06-08

    High penetration levels of distributed solar PV power generation can lead to adverse power quality impacts, such as excessive voltage rise, voltage flicker, and reactive power values that result in unacceptable voltage levels. Advanced inverter control schemes have been developed that have the potential to mitigate many power quality concerns. However, local closed-loop control may lead to unintended behavior in deployed systems as complex interactions can occur between numerous operating devices. To enable the study of the performance of advanced control schemes in a detailed distribution system environment, a test platform has been developed that integrates Power Hardware-in-the-Loop (PHIL) withmore » concurrent time-series electric distribution system simulation. In the test platform, GridLAB-D, a distribution system simulation tool, runs a detailed simulation of a distribution feeder in real-time mode at the Pacific Northwest National Laboratory (PNNL) and supplies power system parameters at a point of common coupling. At the National Renewable Energy Laboratory (NREL), a hardware inverter interacts with grid and PV simulators emulating an operational distribution system. Power output from the inverters is measured and sent to PNNL to update the real-time distribution system simulation. The platform is described and initial test cases are presented. The platform is used to study the system-wide impacts and the interactions of inverter control modes—constant power factor and active Volt/VAr control—when integrated into a simulated IEEE 8500-node test feeder. We demonstrate that this platform is well-suited to the study of advanced inverter controls and their impacts on the power quality of a distribution feeder. Additionally, results are used to validate GridLAB-D simulations of advanced inverter controls.« less

  14. Hybrid Solid Oxide Fuel Cell/Gas Turbine System Design for High Altitude Long Endurance Aerospace Missions

    NASA Technical Reports Server (NTRS)

    Himansu, Ananda; Freeh, Joshua E.; Steffen, Christopher J., Jr.; Tornabene, Robert T.; Wang, Xiao-Yen J.

    2006-01-01

    A system level analysis, inclusive of mass, is carried out for a cryogenic hydrogen fueled hybrid solid oxide fuel cell and bottoming gas turbine (SOFC/GT) power system. The system is designed to provide primary or secondary electrical power for an unmanned aerial vehicle (UAV) over a high altitude, long endurance mission. The net power level and altitude are parametrically varied to examine their effect on total system mass. Some of the more important technology parameters, including turbomachinery efficiencies and the SOFC area specific resistance, are also studied for their effect on total system mass. Finally, two different solid oxide cell designs are compared to show the importance of the individual solid oxide cell design on the overall system. We show that for long mission durations of 10 days or more, the fuel mass savings resulting from the high efficiency of a SOFC/GT system more than offset the larger powerplant mass resulting from the low specific power of the SOFC/GT system. These missions therefore favor high efficiency, low power density systems, characteristics typical of fuel cell systems in general.

  15. A Techno-Economic Assessment of Hybrid Cooling Systems for Coal- and Natural-Gas-Fired Power Plants with and without Carbon Capture and Storage.

    PubMed

    Zhai, Haibo; Rubin, Edward S

    2016-04-05

    Advanced cooling systems can be deployed to enhance the resilience of thermoelectric power generation systems. This study developed and applied a new power plant modeling option for a hybrid cooling system at coal- or natural-gas-fired power plants with and without amine-based carbon capture and storage (CCS) systems. The results of the plant-level analyses show that the performance and cost of hybrid cooling systems are affected by a range of environmental, technical, and economic parameters. In general, when hot periods last the entire summer, the wet unit of a hybrid cooling system needs to share about 30% of the total plant cooling load in order to minimize the overall system cost. CCS deployment can lead to a significant increase in the water use of hybrid cooling systems, depending on the level of CO2 capture. Compared to wet cooling systems, widespread applications of hybrid cooling systems can substantially reduce water use in the electric power sector with only a moderate increase in the plant-level cost of electricity generation.

  16. 30 CFR 77.701-2 - Approved methods of grounding metallic frames, casings, and other enclosures of electric...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... from a direct-current power system with one polarity grounded will be approved: (1) A solid connection..., casings, and other enclosures of electric equipment receiving power from a direct-current power system. 77... enclosures of electric equipment receiving power from a direct-current power system. (a) The following...

  17. 30 CFR 75.701-3 - Approved methods of grounding metallic frames, casings and other enclosures of electric equipment...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., casings and other enclosures of electric equipment receiving power from direct current power systems with... equipment receiving power from direct current power systems with one polarity grounded. For the purpose of... direct-current power system with one polarity grounded, the following methods of grounding will be...

  18. 30 CFR 75.701-3 - Approved methods of grounding metallic frames, casings and other enclosures of electric equipment...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., casings and other enclosures of electric equipment receiving power from direct current power systems with... equipment receiving power from direct current power systems with one polarity grounded. For the purpose of... direct-current power system with one polarity grounded, the following methods of grounding will be...

  19. 30 CFR 77.701-2 - Approved methods of grounding metallic frames, casings, and other enclosures of electric...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... from a direct-current power system with one polarity grounded will be approved: (1) A solid connection..., casings, and other enclosures of electric equipment receiving power from a direct-current power system. 77... enclosures of electric equipment receiving power from a direct-current power system. (a) The following...

  20. 30 CFR 75.701-3 - Approved methods of grounding metallic frames, casings and other enclosures of electric equipment...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., casings and other enclosures of electric equipment receiving power from direct current power systems with... equipment receiving power from direct current power systems with one polarity grounded. For the purpose of... direct-current power system with one polarity grounded, the following methods of grounding will be...

Top