Sample records for system ras plays

  1. RAS in the central nervous system: Potential role in neuropsychiatric disorders.

    PubMed

    Rocha, Natalia Pessoa; Simões e Silva, Ana Cristina; Prestes, Thiago Ruiz Rodrigues; Feracin, Victor; Machado, Caroline Amaral; Ferreira, Rodrigo Novaes; Teixeira, Antonio Lucio; de Miranda, Aline Silva

    2018-02-25

    The Renin-Angiotensin System (RAS) is a key regulator of cardiovascular and renal homeostasis, but also plays important roles in mediating physiological functions in the central nervous system (CNS). The effects of the RAS were classically described as mediated by angiotensin (Ang) II via angiotensin type 1 (AT1) receptors. However, another arm of the RAS formed by the angiotensin converting enzyme 2 (ACE2), Ang-(1-7) and the Mas receptor has been a matter of investigation due to its important physiological roles, usually counterbalancing the classical effects exerted by Ang II. We aim to provide an overview of effects elicited by the RAS, especially Ang-(1-7), in the brain. We also aim to discuss the therapeutic potential for neuropsychiatric disorders of the modulation of RAS. We carried out an extensive literature search in PubMed central. Within the brain, Ang-(1-7) contributes to the regulation of blood pressure by acting at regions that control cardiovascular functions. In contrast with Ang II, Ang-(1-7) improves baroreflex sensitivity and plays an inhibitory role in hypothalamic noradrenergic neurotransmission. Ang-(1-7) not only exerts effects related to blood pressure regulation, but also acts as a neuroprotective component of the RAS, for instance, by reducing cerebral infarct size, inflammation, oxidative stress and neuronal apoptosis. Pre-clinical evidence supports a relevant role for ACE2/Ang-(1-7)/Mas receptor axis in several neuropsychiatric conditions, including stress-related and mood disorders, cerebrovascular ischemic and haemorrhagic lesions and neurodegenerative diseases. However, very few data are available regarding the ACE2/Ang-(1-7)/Mas receptor axis in human CNS. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. The physiology of a local renin-angiotensin system in the pancreas.

    PubMed

    Leung, Po Sing

    2007-04-01

    The systemic renin-angiotensin system (RAS) plays an important role in regulating blood pressure, electrolyte and fluid homeostasis. However, local RASs also exist in diverse tissues and organs, where they play a multitude of autocrine, paracrine and intracrine physiological roles. The existence of a local RAS is now recognized in pancreatic acinar, islet, duct, endothelial and stellate cells, the expression of which is modulated in response to physiological and pathophysiological stimuli such as hypoxia, pancreatitis, islet transplantation, hyperglycaemia, and diabetes mellitus. This pancreatic RAS has been proposed to have important endocrine and exocrine roles in the pancreas, regulating local blood flow, duct cell sodium bicarbonate secretion, acinar cell digestive enzyme secretion, islet beta-cell (pro)insulin biosynthesis, and thus, glucose-stimulated insulin release, delta-cell somatostatin secretion, and pancreatic cell proliferation and differentiation. It may further mediate oxidative stress-induced cell inflammation, apoptosis and fibrosis. Further exploration of this system would probably offer new insights into the pathogenesis of pancreatitis, diabetes, cystic fibrosis and pancreatic cancer formation. New therapeutic targets and strategies might thus be suggested.

  3. The physiology of a local renin–angiotensin system in the pancreas

    PubMed Central

    Leung, Po Sing

    2007-01-01

    The systemic renin–angiotensin system (RAS) plays an important role in regulating blood pressure, electrolyte and fluid homeostasis. However, local RASs also exist in diverse tissues and organs, where they play a multitude of autocrine, paracrine and intracrine physiological roles. The existence of a local RAS is now recognized in pancreatic acinar, islet, duct, endothelial and stellate cells, the expression of which is modulated in response to physiological and pathophysiological stimuli such as hypoxia, pancreatitis, islet transplantation, hyperglycaemia, and diabetes mellitus. This pancreatic RAS has been proposed to have important endocrine and exocrine roles in the pancreas, regulating local blood flow, duct cell sodium bicarbonate secretion, acinar cell digestive enzyme secretion, islet beta-cell (pro)insulin biosynthesis, and thus, glucose-stimulated insulin release, delta-cell somatostatin secretion, and pancreatic cell proliferation and differentiation. It may further mediate oxidative stress-induced cell inflammation, apoptosis and fibrosis. Further exploration of this system would probably offer new insights into the pathogenesis of pancreatitis, diabetes, cystic fibrosis and pancreatic cancer formation. New therapeutic targets and strategies might thus be suggested. PMID:17218353

  4. [Angiotensin converting enzyme 2 and its emerging role in the regulation of the renin angiotensin system].

    PubMed

    Soler, María José; Lloveras, Josep; Batlle, Daniel

    2008-07-12

    The renin-angiotensin system (RAS) plays a key role in the regulation of cardiovascular and renal function. Thus, RAS blockade with an angiotensin-converting enzyme (ACE) and/or angiotensin receptor blocker decreases blood pressure, cardiovascular events, and delays the progression of kidney disease. The discovery of ACE2, a homologue of ACE, capable of degrading angiotensin II to angiotensin 1-7, may offer new insights into the RAS. In this review we discuss the possible protective role of ACE2 in different organs, namely heart, lungs and kidneys. The role of this enzyme is inferred from recent studies performed using genetically manipulated mice that lack the ACE2 gene and also mice treated with pharmacological ACE2 inhibitors. These results suggest that ACE2 might be a new therapeutic target within the RAS.

  5. Angiotensins as therapeutic targets beyond heart disease.

    PubMed

    Passos-Silva, Danielle Gomes; Brandan, Enrique; Santos, Robson Augusto Souza

    2015-05-01

    The renin-angiotensin system (RAS) plays a pivotal role in cardiovascular and hydro-electrolyte homeostasis. Blockade of the RAS as a therapeutic strategy for treating hypertension and related cardiovascular diseases is well established. However, actions of the RAS go far beyond the targets initially described. In this regard, the recent identification of novel components of the RAS, including angiotensin-(1-7) [Ang-(1-7)], Ang-(1-9), and alamandine, have opened new possibilities for interfering with the development and manifestations of cardiovascular and non-cardiovascular diseases. In this article, we briefly review novel targets for angiotensins and its therapeutic implications in diverse areas, including cancer, inflammation, and glaucoma. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. No evidence for a local renin-angiotensin system in liver mitochondria

    PubMed Central

    Astin, Ronan; Bentham, Robert; Djafarzadeh, Siamak; Horscroft, James A.; Kuc, Rhoda E.; Leung, Po Sing; Skipworth, James R. A.; Vicencio, Jose M.; Davenport, Anthony P.; Murray, Andrew J.; Takala, Jukka; Jakob, Stephan M.; Montgomery, Hugh; Szabadkai, Gyorgy

    2013-01-01

    The circulating, endocrine renin-angiotensin system (RAS) is important to circulatory homeostasis, while ubiquitous tissue and cellular RAS play diverse roles, including metabolic regulation. Indeed, inhibition of RAS is associated with improved cellular oxidative capacity. Recently it has been suggested that an intra-mitochondrial RAS directly impacts on metabolism. Here we sought to rigorously explore this hypothesis. Radiolabelled ligand-binding and unbiased proteomic approaches were applied to purified mitochondrial sub-fractions from rat liver, and the impact of AngII on mitochondrial function assessed. Whilst high-affinity AngII binding sites were found in the mitochondria-associated membrane (MAM) fraction, no RAS components could be detected in purified mitochondria. Moreover, AngII had no effect on the function of isolated mitochondria at physiologically relevant concentrations. We thus found no evidence of endogenous mitochondrial AngII production, and conclude that the effects of AngII on cellular energy metabolism are not mediated through its direct binding to mitochondrial targets. PMID:23959064

  7. RAS and sex differences in diabetic nephropathy.

    PubMed

    Clotet, Sergi; Riera, Marta; Pascual, Julio; Soler, Maria José

    2016-03-09

    The incidence and progression of kidney diseases are influenced by sex. The renin-angiotensin system (RAS) is an important regulator of cardiovascular and renal function. Sex differences in the renal response to RAS blockade have been demonstrated. Circulating and renal RAS has been shown to be altered in type 1 and type 2 diabetes; this enzymatic cascade plays a critical role in the development of diabetic nephropathy (DN). Angiotensin converting enzyme (ACE) and ACE2 are differentially regulated depending on its localization within the diabetic kidney. Furthermore, clinical and experimental studies have shown that circulating levels of sex hormones are clearly modulated in the context of diabetes, suggesting that sex-dependent RAS regulation may be also be affected in these individuals. The effect of sex hormones on circulating and renal RAS may be involved in the sex differences observed in DN progression. In this paper we will review the influence of sex hormones on RAS expression and its relation to diabetic kidney disease. A better understanding of the sex dimorphism on RAS might provide a new approach for diabetic kidney disease treatment. Copyright © 2015, American Journal of Physiology - Renal Physiology.

  8. Regulation of Ras Exchange Factors and Cellular Localization of Ras Activation by Lipid Messengers in T Cells

    PubMed Central

    Jun, Jesse E.; Rubio, Ignacio; Roose, Jeroen P.

    2013-01-01

    The Ras-MAPK signaling pathway is highly conserved throughout evolution and is activated downstream of a wide range of receptor stimuli. Ras guanine nucleotide exchange factors (RasGEFs) catalyze GTP loading of Ras and play a pivotal role in regulating receptor-ligand induced Ras activity. In T cells, three families of functionally important RasGEFs are expressed: RasGRF, RasGRP, and Son of Sevenless (SOS)-family GEFs. Early on it was recognized that Ras activation is critical for T cell development and that the RasGEFs play an important role herein. More recent work has revealed that nuances in Ras activation appear to significantly impact T cell development and selection. These nuances include distinct biochemical patterns of analog versus digital Ras activation, differences in cellular localization of Ras activation, and intricate interplays between the RasGEFs during distinct T cell developmental stages as revealed by various new mouse models. In many instances, the exact nature of these nuances in Ras activation or how these may result from fine-tuning of the RasGEFs is not understood. One large group of biomolecules critically involved in the control of RasGEFs functions are lipid second messengers. Multiple, yet distinct lipid products are generated following T cell receptor (TCR) stimulation and bind to different domains in the RasGRP and SOS RasGEFs to facilitate the activation of the membrane-anchored Ras GTPases. In this review we highlight how different lipid-based elements are generated by various enzymes downstream of the TCR and other receptors and how these dynamic and interrelated lipid products may fine-tune Ras activation by RasGEFs in developing T cells. PMID:24027568

  9. Brain Renin-Angiotensin System and Microglial Polarization: Implications for Aging and Neurodegeneration

    PubMed Central

    Labandeira-Garcia, Jose L.; Rodríguez-Perez, Ana I.; Garrido-Gil, Pablo; Rodriguez-Pallares, Jannette; Lanciego, Jose L.; Guerra, Maria J.

    2017-01-01

    Microglia can transform into proinflammatory/classically activated (M1) or anti-inflammatory/alternatively activated (M2) phenotypes following environmental signals related to physiological conditions or brain lesions. An adequate transition from the M1 (proinflammatory) to M2 (immunoregulatory) phenotype is necessary to counteract brain damage. Several factors involved in microglial polarization have already been identified. However, the effects of the brain renin-angiotensin system (RAS) on microglial polarization are less known. It is well known that there is a “classical” circulating RAS; however, a second RAS (local or tissue RAS) has been observed in many tissues, including brain. The locally formed angiotensin is involved in local pathological changes of these tissues and modulates immune cells, which are equipped with all the components of the RAS. There are also recent data showing that brain RAS plays a major role in microglial polarization. Level of microglial NADPH-oxidase (Nox) activation is a major regulator of the shift between M1/proinflammatory and M2/immunoregulatory microglial phenotypes so that Nox activation promotes the proinflammatory and inhibits the immunoregulatory phenotype. Angiotensin II (Ang II), via its type 1 receptor (AT1), is a major activator of the NADPH-oxidase complex, leading to pro-oxidative and pro-inflammatory effects. However, these effects are counteracted by a RAS opposite arm constituted by Angiotensin II/AT2 receptor signaling and Angiotensin 1–7/Mas receptor (MasR) signaling. In addition, activation of prorenin-renin receptors may contribute to activation of the proinflammatory phenotype. Aged brains showed upregulation of AT1 and downregulation of AT2 receptor expression, which may contribute to a pro-oxidative pro-inflammatory state and the increase in neuron vulnerability. Several recent studies have shown interactions between the brain RAS and different factors involved in microglial polarization, such as estrogens, Rho kinase (ROCK), insulin-like growth factor-1 (IGF-1), tumor necrosis factor α (TNF)-α, iron, peroxisome proliferator-activated receptor gamma, and toll-like receptors (TLRs). Metabolic reprogramming has recently been involved in the regulation of the neuroinflammatory response. Interestingly, we have recently observed a mitochondrial RAS, which is altered in aged brains. In conclusion, dysregulation of brain RAS plays a major role in aging-related changes and neurodegeneration by exacerbation of oxidative stress (OS) and neuroinflammation, which may be attenuated by pharmacological manipulation of RAS components. PMID:28515690

  10. Rab5-regulated endocytosis plays a crucial role in apical extrusion of transformed cells.

    PubMed

    Saitoh, Sayaka; Maruyama, Takeshi; Yako, Yuta; Kajita, Mihoko; Fujioka, Yoichiro; Ohba, Yusuke; Kasai, Nobuhiro; Sugama, Natsu; Kon, Shunsuke; Ishikawa, Susumu; Hayashi, Takashi; Yamazaki, Tomohiro; Tada, Masazumi; Fujita, Yasuyuki

    2017-03-21

    Newly emerging transformed cells are often eliminated from epithelial tissues. Recent studies have revealed that this cancer-preventive process involves the interaction with the surrounding normal epithelial cells; however, the molecular mechanisms underlying this phenomenon remain largely unknown. In this study, using mammalian cell culture and zebrafish embryo systems, we have elucidated the functional involvement of endocytosis in the elimination of RasV12-transformed cells. First, we show that Rab5, a crucial regulator of endocytosis, is accumulated in RasV12-transformed cells that are surrounded by normal epithelial cells, which is accompanied by up-regulation of clathrin-dependent endocytosis. Addition of chlorpromazine or coexpression of a dominant-negative mutant of Rab5 suppresses apical extrusion of RasV12 cells from the epithelium. We also show in zebrafish embryos that Rab5 plays an important role in the elimination of transformed cells from the enveloping layer epithelium. In addition, Rab5-mediated endocytosis of E-cadherin is enhanced at the boundary between normal and RasV12 cells. Rab5 functions upstream of epithelial protein lost in neoplasm (EPLIN), which plays a positive role in apical extrusion of RasV12 cells by regulating protein kinase A. Furthermore, we have revealed that epithelial defense against cancer (EDAC) from normal epithelial cells substantially impacts on Rab5 accumulation in the neighboring transformed cells. This report demonstrates that Rab5-mediated endocytosis is a crucial regulator for the competitive interaction between normal and transformed epithelial cells in mammals.

  11. Angiotensin peptides in the non-gravid uterus: Paracrine actions beyond circulation.

    PubMed

    Casalechi, Maíra; Dela Cruz, Cynthia; Lima, Luiza C; Maciel, Luciana P; Pereira, Virgínia M; Reis, Fernando M

    2018-03-01

    The renin-angiotensin system (RAS) involves a complex network of precursors, peptides, enzymes and receptors comprising a systemic (endocrine) and a local (paracrine/autocrine) system. The local RAS plays important roles in tissue modulation and may operate independently of or in close interaction with the circulatory RAS, acting in a complementary fashion. Angiotensin (Ang) II, its receptor AT 1 and Ang-(1-7) expression in the endometrium vary with menstrual cycle, and stromal cell decidualization in vitro is accompanied by local synthesis of angiotensinogen and prorenin. Mas receptor is unlikely to undergo marked changes accompanying the cyclic ovarian steroid hormone fluctuations. Studies investigating the functional relevance of the RAS in the non-gravid uterus show a number of paracrine effects beyond circulation and suggest that RAS peptides may be involved in the pathophysiology of proliferative and fibrotic diseases. Endometrial cancer is associated with increased expression of Ang II, Ang-converting enzyme 1 and AT 1 in the tumoral tissue compared to neighboring non-neoplastic endometrium, and also with a gene polymorphism that enhances AT 1 signal. Ang II induces human endometrial cells to transdifferentiate into cells with myofibroblast phenotype and to synthetize extracellular matrix components that might contribute to endometrial fibrosis. Altogether, these findings point to a fully operating RAS within the uterus, but since many concepts rely on preliminary evidence further studies are needed to clarify the role of the local RAS in uterine physiology and pathophysiology. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. In TCR-Stimulated T-cells, N-ras Regulates Specific Genes and Signal Transduction Pathways

    PubMed Central

    Lynch, Stephen J.; Zavadil, Jiri; Pellicer, Angel

    2013-01-01

    It has been recently shown that N-ras plays a preferential role in immune cell development and function; specifically: N-ras, but not H-ras or K-ras, could be activated at and signal from the Golgi membrane of immune cells following a low level T-cell receptor stimulus. The goal of our studies was to test the hypothesis that N-ras and H-ras played distinct roles in immune cells at the level of the transcriptome. First, we showed via mRNA expression profiling that there were over four hundred genes that were uniquely differentially regulated either by N-ras or H-ras, which provided strong evidence in favor of the hypothesis that N-ras and H-ras have distinct functions in immune cells. We next characterized the genes that were differentially regulated by N-ras in T cells following a low-level T-cell receptor stimulus. Of the large pool of candidate genes that were differentially regulated by N-ras downstream of TCR ligation, four genes were verified in qRT-PCR-based validation experiments (Dntt, Slc9a6, Chst1, and Lars2). Finally, although there was little overlap between individual genes that were regulated by N-ras in unstimulated thymocytes and stimulated CD4+ T-cells, there was a nearly complete correspondence between the signaling pathways that were regulated by N-ras in these two immune cell types. PMID:23755101

  13. Overexpression of K-p21Ras play a prominent role in lung cancer

    NASA Astrophysics Data System (ADS)

    Zhang, Peng-bo; Zhou, Xin-liang; Yang, Ju-lun

    2018-06-01

    The proto-oncogene ras product, p21Ras, has been found overexpression in many human tumors. However, the subtypes of overexpressed p21Ras still remain unclear. The purpose of this study was to investigate overexpressed isoforms of p21Ras and their roles in the progress of lung cancer. Method: The expression of total p21Ras in normal lung tissues and lung cancers was determined by immunohistochemically staining with monoclonal antibody (Mab) KGHR-1 which could recognize and broad spectrum reaction with the (K/H/N) ras protein. Then, the isoforms of p21Ras was examined by specific Mab for each p21Ras subtypes. Results: Low expression of total p21Ras was found in 26.67% (8/30) of normal lung tissues, and 81.31% (87/107) of adenocarcinoma harbored overexpressed total p21Ras. Besides, 70.00% (35/50) of squamous cell carcinoma were detected overexpressed total p21Ras. In addition, 122 lung cancer tissues from overexpression of total p21Ras protein were selected to detect the expression of each subtype. And all the 122 lung cancer tissues were K-p21Ras overexpression. Moreover, there was a statistical significance difference between the expression level of total p21Ras and differentiation, and the same results were observed between the expression level of total p21Ras and lymph node metastasis (P<0.05). However, there was no correlation between the expression level of total p21Ras and gender, age, tumor size (P>0.05). Conclusions: Overexpression of K-p21Ras plays a prominent role in the progress of lung cancer and it is suggested that the p21Ras could serve as a promising treatment target in lung cancer.

  14. RAS Insight

    Cancer.gov

    David Heimbrook, now CEO of the Frederick National Laboratory for Cancer Research, played a major role in a large pharma as it tried to develop an anti-RAS drug. Lessons from that failure inform the RAS Initiative today.

  15. Role of the intrarenal renin-angiotensin system in the progression of renal disease.

    PubMed

    Urushihara, Maki; Kagami, Shoji

    2017-09-01

    The intrarenal renin-angiotensin system (RAS) has many well-documented pathophysiologic functions in both blood pressure regulation and renal disease development. Angiotensin II (Ang II) is the major bioactive product of the RAS. It induces inflammation, renal cell growth, mitogenesis, apoptosis, migration, and differentiation. In addition, Ang II regulates the gene expression of bioactive substances and activates multiple intracellular signaling pathways that are involved in renal damage. Activation of the Ang II type 1 (AT1) receptor pathway results in the production of proinflammatory mediators, intracellular formation of reactive oxygen species, cell proliferation, and extracellular matrix synthesis, which in turn facilities renal injury. Involvement of angiotensinogen (AGT) in intrarenal RAS activation and development of renal disease has previously been reported. Moreover, studies have demonstrated that the urinary excretion rates of AGT provide a specific index of the intrarenal RAS status. Enhanced intrarenal AGT levels have been observed in experimental models of renal disease, supporting the concept that AGT plays an important role in the development and progression of renal disease. In this review, we focus on the role of intrarenal RAS activation in the pathophysiology of renal disease. Additionally, we explored the potential of urinary AGT as a novel biomarker of intrarenal RAS status in renal disease.

  16. Losartan, an Angiotensin type I receptor, restores erectile function by downregulation of cavernous renin-angiotensin system in streptozocin-induced diabetic rats.

    PubMed

    Yang, Rong; Yang, Bin; Wen, Yanting; Fang, Feng; Cui, Souxi; Lin, Guiting; Sun, Zeyu; Wang, Run; Dai, Yutian

    2009-03-01

    The high incidence of erectile dysfunction (ED) in diabetes highlights the need for good treatment strategies. Recent evidence indicates that blockade of the angiotensin type I receptor (AT1) may reverse ED from various diseases. To explore the role of cavernous renin-angiotensin system (RAS) in the pathogenesis of diabetic ED and the role of losartan in the treatment of diabetic ED. The AT1 blocker (ARB) losartan (30 mg/kg/d) was administered to rats with streptozocin (65 mg/kg)-induced diabetes. Erectile function, cavernous structure, and tissue gene and protein expression of RAS in the corpora cavernosa were studied. We sought to determine the changes of cavernous RAS in the condition of diabetes and after treatment with losartan. RAS components (angiotensinogen, [pro]renin receptor, angiotensin-converting enzyme [ACE], and AT1) were expressed in cavernosal tissue. In diabetic rats, RAS components were upregulated, resulting in the increased concentration of angiotensin II (Ang II) in the corpora. A positive feedback loop for Ang II formation in cavernosum was also identified, which could contribute to overactivity of cavernous RAS in diabetic rats. Administration of losartan blocked the effect of Ang II, downregulated the expression of AT1 and Ang II generated locally, and partially restored erectile function (losartan-treated group revealed an improved intracavernous pressure/mean systemic arterial pressure ratio as compared with the diabetic group (0.480 +/- 0.031 vs. 0.329 +/- 0.020, P < 0.01). However, losartan could not elevate the reduced smooth muscle/collagen ratio in diabetic rats. The cavernous RAS plays a role in modulating erectile function in corpora cavernosa and is involved in the pathogenesis of diabetic ED. ARB can restore diabetic ED through downregulating cavernous RAS.

  17. [(Pro) renin receptor in the pathogenesis of proliferative diabetic retinopathy].

    PubMed

    Kanda, Atsuhiro

    2014-11-01

    The renin-angiotensin system (RAS), originally regarded as an important controller of systemic blood pressure (circulatory RAS), plays a pivotal role in pathological vascular conditions including inflammation and angiogenesis (tissue RAS). (Pro) renin receptor [(P) RR] is known to bind with prorenin causing the dual activation of tissue renin-angiotensin system (RAS) together with RAS-independent intracellular signaling pathways and contributes to the molecular pathogenesis of end-organ damage. In this review, we investigated localization and expression of (P)RR in fibrovascular tissues and vitreous fluids from patients with proliferative diabetic retinopathy and evaluated the molecular mechanisms in vitro in order to confirm the conclusions regarding (P) RR from animal studies. (P)RR immunoreactivity was detected in vascular endothelial cells, co-localized with prorenin, phosphorylated extracellular signal-regulated kinase and vascular endothelial growth factor (VEGF). Protein levels of soluble (P) RR in the vitreous fluids were higher in proliferative diabetic retinopathy (PDR) eyes than in non-diabetic control eyes, and were significantly correlated with vitreous VEGF levels and the vascular density of fibrovascular tissues. We herein report the first evidence that shows the close association of (P) RR with angiogenic activity in human PDR. The present data suggest the validity of (P) RR as a molecular target for the treatment of PDR.

  18. The critical role of the central nervous system (pro)renin receptor in regulating systemic blood pressure

    PubMed Central

    Xu, Quanbin; Jensen, Dane D.; Peng, Hua; Feng, Yumei

    2016-01-01

    The systemic renin–angiotensin system (RAS) has long been recognized as a critically important system in blood pressure (BP) regulation. However, extensive evidence has shown that a majority of RAS components are also present in many tissues and play indispensable roles in BP regulation. Here, we review evidence that RAS components, notably including the newly identified (pro)renin receptor (PRR), are present in the brain and are essential for the central regulation of BP. Binding of the PRR to its ligand, prorenin or renin, increases BP and promotes progression of cardiovascular diseases in an angiotensin II-dependent and -independent manner, establishing the PRR a promising antihypertensive drug target. We also review the existing PRR blockers, including handle region peptide and PRO20, and propose a rationale for blocking prorenin/PRR activation as a therapeutic approach that does not affect the actions of the PRR in vacuolar H+-ATPase and development. Finally, we summarize categories of currently available antihypertensive drugs and consider future perspectives. PMID:27113409

  19. Possible involvement of MSX-2 homeoprotein in v-ras-induced transformation.

    PubMed

    Takahashi, C; Akiyama, N; Kitayama, H; Takai, S; Noda, M

    1997-04-01

    A truncated MSX-2 homeoprotein was found to induce flat reversion when expressed in v-Ki-ras-transformed NIH3T3 cells. Although the expression of endogenous MSX-2 gene is low in most of the normal adult tissues examined, it is frequently activated in carcinoma-derived cell lines. Likewise, the gene is inactive in untransformed cells but is transcriptionally activated after transformation by v-Ki-ras oncogene, suggesting that the intact MSX-2 may play a positive, rather than suppressive, role in cell transformation. To test this possibility, we isolated a full-length human MSX-2 cDNA and tested its activities in two cell systems: fibroblast and myoblast. In NIH3T3 fibroblasts, although the gene by itself failed to confer a transformed phenotype, antisense MSX-2 cDNA as well as truncated MSX-2 cDNA interfered with the transforming activities of both v-Ki-ras and v-raf oncogene. In C2C12 myoblasts, MSX-2 was found to suppress MyoD gene expression, as do activated ras oncogenes, under certain culture conditions, and truncated MSX-2 cDNA was found to inhibit the activities of both MSX-2 and ras in this system as well. Our findings not only suggest that the truncated version MSX-2 may act as a dominant suppressor of intact MSX-2 but also raise the possibility that MSX-2 gene may be an important downstream target for the Ras signaling pathways.

  20. Drug discovery in renin-angiotensin system intervention: past and future.

    PubMed

    Williams, Bryan

    2016-06-01

    The renin-angiotensin system (RAS) plays a central role in the control of blood pressure in the body and the way this interacts with other systems is widely recognized. This has not always been the case and this review summarizes how our knowledge has evolved from the initial discovery of renin by Tigerstedt and Berman in 1898. This includes the identification of angiotensin in the 1950s to the proposed relationship between this system, hypertension and ultimately cardiovascular disease. While the RAS is far more complex than originally thought, much is now known about this system and the wide ranging effects of angiotensin in the body. This has enabled the development of therapies that target the various proteins in this pathway and hence are implicated in disease. The first of these treatments was the angiotensin converting enzyme inhibitors (ACE-Is), followed by the angiotensin receptor blockers (ARBs), and more recently the direct renin inhibitors (DRIs). Clinical outcome trials have shown these drugs to be effective, but as they act at contrasting points in the RAS, there are differences in their efficacy and safety profiles. RAS blockade is the foundation of modern combination therapy with a calcium channel blocker and/or a diuretic given to reduce blood pressure and limit the impact of RAS activation. Other options that complement these treatments may be available in the future and will offer more choice to clinicians. © The Author(s), 2016.

  1. Mitochondrial angiotensin receptors in dopaminergic neurons. Role in cell protection and aging-related vulnerability to neurodegeneration

    PubMed Central

    Valenzuela, Rita; Costa-Besada, Maria A; Iglesias-Gonzalez, Javier; Perez-Costas, Emma; Villar-Cheda, Begoña; Garrido-Gil, Pablo; Melendez-Ferro, Miguel; Soto-Otero, Ramon; Lanciego, Jose L; Henrion, Daniel; Franco, Rafael; Labandeira-Garcia, Jose L

    2016-01-01

    The renin–angiotensin system (RAS) was initially considered as a circulating humoral system controlling blood pressure, being kidney the key control organ. In addition to the ‘classical' humoral RAS, a second level in RAS, local or tissular RAS, has been identified in a variety of tissues, in which local RAS play a key role in degenerative and aging-related diseases. The local brain RAS plays a major role in brain function and neurodegeneration. It is normally assumed that the effects are mediated by the cell-surface-specific G-protein-coupled angiotensin type 1 and 2 receptors (AT1 and AT2). A combination of in vivo (rats, wild-type mice and knockout mice) and in vitro (primary mesencephalic cultures, dopaminergic neuron cell line cultures) experimental approaches (confocal microscopy, electron microscopy, laser capture microdissection, transfection of fluorescent-tagged receptors, treatments with fluorescent angiotensin, western blot, polymerase chain reaction, HPLC, mitochondrial respirometry and other functional assays) were used in the present study. We report the discovery of AT1 and AT2 receptors in brain mitochondria, particularly mitochondria of dopaminergic neurons. Activation of AT1 receptors in mitochondria regulates superoxide production, via Nox4, and increases respiration. Mitochondrial AT2 receptors are much more abundant and increase after treatment of cells with oxidative stress inducers, and produce, via nitric oxide, a decrease in mitochondrial respiration. Mitochondria from the nigral region of aged rats displayed altered expression of AT1 and AT2 receptors. AT2-mediated regulation of mitochondrial respiration represents an unrecognized primary line of defence against oxidative stress, which may be particularly important in neurons with increased levels of oxidative stress such as dopaminergic neurons. Altered expression of AT1 and AT2 receptors with aging may induce mitochondrial dysfunction, the main risk factor for neurodegeneration. PMID:27763643

  2. Incoherent feedforward control governs adaptation of activated ras in a eukaryotic chemotaxis pathway.

    PubMed

    Takeda, Kosuke; Shao, Danying; Adler, Micha; Charest, Pascale G; Loomis, William F; Levine, Herbert; Groisman, Alex; Rappel, Wouter-Jan; Firtel, Richard A

    2012-01-03

    Adaptation in signaling systems, during which the output returns to a fixed baseline after a change in the input, often involves negative feedback loops and plays a crucial role in eukaryotic chemotaxis. We determined the dynamical response to a uniform change in chemoattractant concentration of a eukaryotic chemotaxis pathway immediately downstream from G protein-coupled receptors. The response of an activated Ras showed near-perfect adaptation, leading us to attempt to fit the results using mathematical models for the two possible simple network topologies that can provide perfect adaptation. Only the incoherent feedforward network accurately described the experimental results. This analysis revealed that adaptation in this Ras pathway is achieved through the proportional activation of upstream components and not through negative feedback loops. Furthermore, these results are consistent with a local excitation, global inhibition mechanism for gradient sensing, possibly with a Ras guanosine triphosphatase-activating protein acting as a global inhibitor.

  3. The nitric oxide-sensitive p21Ras-ERK pathway mediates S-nitrosoglutathione-induced apoptosis.

    PubMed

    Tsujita, Maristela; Batista, Wagner L; Ogata, Fernando T; Stern, Arnold; Monteiro, Hugo P; Arai, Roberto J

    2008-05-16

    p21Ras protein plays a critical role in cellular signaling that induces either cell cycle progression or apoptosis. Nitric oxide (NO) has been consistently reported to activate p21Ras through the redox sensitive cysteine residue (118). In this study, we demonstrated that the p21Ras-ERK pathway regulates THP-1 monocyte/macrophage apoptosis induced by S-nitrosoglutathione (SNOG). This was apparent from studies in THP-1 cells expressing NO-insensitive p21Ras (p21Ras(C118S)) where the pro-apoptotic action of SNOG was almost abrogated. Three major MAP kinase pathways (ERK, JNK, and p38) that are downstream to p21Ras were investigated. It was observed that only the activation of ERK1/2 MAP kinases by SNOG in THP-1 cells was attributable to p21Ras. The inhibition of the ERK pathway by PD98059 markedly attenuated apoptosis in SNOG-treated THP-1 cells, but had a marginal effect on SNOG-treated THP-1 cells expressing NO-insensitive p21Ras. The inhibition of the JNK and p38 pathways by selective inhibitors had no marked effects on the percentage of apoptosis. The induction of p21Waf1 expression by SNOG was observed in THP-1 cells harboring mutant and wild-type p21Ras, however in cells expressing mutant Ras, the expression of p21Waf1 was significantly attenuated. The treatment of THP-1 cells expressing wild-type p21Ras with PD98059 resulted in significant attenuation of p21Waf1 expression. These results indicate that the redox sensitive p21Ras-ERK pathway plays a critical role in sensing and delivering the pro-apoptotic signaling mediated by SNOG.

  4. The nitric oxide-sensitive p21Ras-ERK pathway mediates S-nitrosoglutathione-induced apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsujita, Maristela; Faculdade de Ciencias Farmaceuticas, Universidade de Sao Paulo, SP; Batista, Wagner L.

    2008-05-16

    p21Ras protein plays a critical role in cellular signaling that induces either cell cycle progression or apoptosis. Nitric oxide (NO) has been consistently reported to activate p21Ras through the redox sensitive cysteine residue (118). In this study, we demonstrated that the p21Ras-ERK pathway regulates THP-1 monocyte/macrophage apoptosis induced by S-nitrosoglutathione (SNOG). This was apparent from studies in THP-1 cells expressing NO-insensitive p21Ras (p21Ras{sup C118S}) where the pro-apoptotic action of SNOG was almost abrogated. Three major MAP kinase pathways (ERK, JNK, and p38) that are downstream to p21Ras were investigated. It was observed that only the activation of ERK1/2 MAP kinasesmore » by SNOG in THP-1 cells was attributable to p21Ras. The inhibition of the ERK pathway by PD98059 markedly attenuated apoptosis in SNOG-treated THP-1 cells, but had a marginal effect on SNOG-treated THP-1 cells expressing NO-insensitive p21Ras. The inhibition of the JNK and p38 pathways by selective inhibitors had no marked effects on the percentage of apoptosis. The induction of p21Waf1 expression by SNOG was observed in THP-1 cells harboring mutant and wild-type p21Ras, however in cells expressing mutant Ras, the expression of p21Waf1 was significantly attenuated. The treatment of THP-1 cells expressing wild-type p21Ras with PD98059 resulted in significant attenuation of p21Waf1 expression. These results indicate that the redox sensitive p21Ras-ERK pathway plays a critical role in sensing and delivering the pro-apoptotic signaling mediated by SNOG.« less

  5. Dragging ras back in the ring.

    PubMed

    Stephen, Andrew G; Esposito, Dominic; Bagni, Rachel K; McCormick, Frank

    2014-03-17

    Ras proteins play a major role in human cancers but have not yielded to therapeutic attack. Ras-driven cancers are among the most difficult to treat and often excluded from therapies. The Ras proteins have been termed "undruggable," based on failures from an era in which understanding of signaling transduction, feedback loops, redundancy, tumor heterogeneity, and Ras' oncogenic role was poor. Structures of Ras oncoproteins bound to their effectors or regulators are unsolved, and it is unknown precisely how Ras proteins activate their downstream targets. These knowledge gaps have impaired development of therapeutic strategies. A better understanding of Ras biology and biochemistry, coupled with new ways of targeting undruggable proteins, is likely to lead to new ways of defeating Ras-driven cancers. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. The Prorenin and (Pro)renin Receptor: New Players in the Brain Renin-Angiotensin System?

    PubMed Central

    Li, Wencheng; Peng, Hua; Seth, Dale M.; Feng, Yumei

    2012-01-01

    It is well known that the brain renin-angiotensin (RAS) system plays an essential role in the development of hypertension, mainly through the modulation of autonomic activities and vasopressin release. However, how the brain synthesizes angiotensin (Ang) II has been a debate for decades, largely due to the low renin activity. This paper first describes the expression of the vasoconstrictive arm of RAS components in the brain as well as their physiological and pathophysiological significance. It then focus on the (pro)renin receptor (PRR), a newly discovered component of the RAS which has a high level in the brain. We review the role of prorenin and PRR in peripheral organs and emphasize the involvement of brain PRR in the pathogenesis of hypertension. Some future perspectives in PRR research are heighted with respect to novel therapeutic target for the treatment of hypertension and other cardiovascular diseases. PMID:23316344

  7. Characterization of a human MSX-2 cDNA and its fragment isolated as a transformation suppressor gene against v-Ki-ras oncogene.

    PubMed

    Takahashi, C; Akiyama, N; Matsuzaki, T; Takai, S; Kitayama, H; Noda, M

    1996-05-16

    A cDNA (termed CT124) encoding a carboxyl-terminal fragment of the human homeobox protein MSX-2 was found to induce flat reversion when expressed in v-Ki-ras-transformed NIH3T3 cells. Although the expression of endogenous MSX-2 gene is low in most of the normal adult tissues examined, it is frequently activated in carcinoma-derived cell lines. Likewise, the gene is inactive in NIH3T3 cells but is transcriptionally activated after transformation by v-Ki-ras oncogene, suggesting that the intact MSX-2 may play a positive, rather than suppressive, role in cell transformation. To test this possibility, we isolated a near full-length human MSX-2 cDNA and tested its activities in two cell systems, i.e. fibroblast and myoblast. In NIH3T3 fibroblasts, although the gene by itself failed to confer a transformed phenotype, antisense MSX-2 cDNA as well as truncated CT124 cDNA interfered with the transforming activities of v-Ki-ras oncogene. In C2C12 myoblasts, MSX-2 was found to suppress MyoD gene expression, as do activated ras oncogenes, under certain culture conditions, and CT124 was found to inhibit the activities of both MSX-2 and ras in this system as well. Our findings not only suggest that CT124 may act as a dominant suppressor of MSX-2 but also raise the possibility that MSX-2 gene may be an important downstream target for the Ras signaling pathways.

  8. Ras-related tumorigenesis is suppressed by BNIP3-mediated autophagy through inhibition of cell proliferation.

    PubMed

    Wu, Shan-Ying; Lan, Sheng-Hui; Cheng, Da-En; Chen, Wei-Kai; Shen, Cheng-Huang; Lee, Ying-Ray; Zuchini, Roberto; Liu, Hsiao-Sheng

    2011-12-01

    Autophagy plays diverse roles in Ras-related tumorigenesis. H-ras(val12) induces autophagy through multiple signaling pathways including Raf-1/ERK pathway, and various ERK downstream molecules of autophagy have been reported. In this study, Bcl-2/adenovirus E1B 19-kDa-interacting protein 3 (BNIP3) is identified as a downstream transducer of the Ras/Raf/ERK signaling pathway to induce autophagy. BNIP3 was upregulated by H-ras(val12) at the transcriptional level to compete with Beclin 1 for binding with Bcl-2. H-ras(val12)-induced autophagy suppresses cell proliferation demonstrated both in vitro and in vivo by expression of ectopic BNIP3, Atg5, or interference RNA of BNIP3 (siBNIP3) and Atg5 (shAtg5) using mouse NIH3T3 and embryo fibroblast cells. H-ras(val12) induces different autophagic responses depending on the duration of Ras overexpression. After a short time (48 hours) of Ras overexpression, autophagy inhibits cell proliferation. In contrast, a longer time (2 weeks) of Ras overexpression, cell proliferation was enhanced by autophagy. Furthermore, overexpression of mutant Ras, BNIP3, and LC3-II was detected in bladder cancer T24 cells and the tumor parts of 75% of bladder cancer specimens indicating a positive correlation between autophagy and tumorigenesis. Taken together, our mouse model demonstrates a balance between BNIP3-mediated autophagy and H-ras(val12)-induced tumor formation and reveals that H-ras(val12) induces autophagy in a BNIP3-dependent manner, and the threshold of autophagy plays a decisive role in H-ras(val12)-induced tumorigenesis. Our findings combined with others' reports suggest a new therapeutic strategy against Ras-related tumorigenesis by negative or positive regulation of autophagic activity, which is determined by the level of autophagy and tumor progression stages.

  9. Enalapril and losartan are more effective than carvedilol in preventing dilated cardiomyopathy in the Syrian cardiomyopathic hamster.

    PubMed

    Crespo, Maria J; Cruz, Nildris; Altieri, Pablo I; Escobales, Nelson

    2008-09-01

    To assess the role of the renin-angiotensin (RAS) and adrenergic systems in the development and progression of dilated cardiomyopathy in the Syrian cardiomyopathic hamster (SCH), echocardiographic parameters were evaluated in 6-month-old animals after 5 months of treatment with enalapril (25 mg/kg/day) plus losartan (10 mg/kg/day), or with carvedilol (1 mg/kg/day). Cardiac output indexes (COI) increased by 53% after RAS blockade and by 20% after beta-blockade in SCH. Moreover, LVEDV and LVESV decreased 30% and 62%, respectively (P < .05) during RAS blockade, whereas ejection fraction (EF) increased by 48%. By contrast, carvedilol reduced LVESV by only 28% (P < .05) and increased EF by only 15% (P < .05). These results suggest that RAS activation plays a critical role in the development of cardiac dysfunction in SCH and that suppression of RAS may be more effective than beta-blockade in retarding the development of cardiomyopathy in SCH. Owing to timing (pre-heart failure stage) and to the single dose protocol, the implications of this study for human subjects remain to be clarified.

  10. Is there a role of food additives in recurrent aphthous stomatitis? A prospective study with patch testing.

    PubMed

    Gülseren, Duygu; Hapa, Asli; Ersoy-Evans, Sibel; Elçin, Gonca; Karaduman, Ayşen

    2017-03-01

    Recurrent aphthous stomatitis (RAS) is a common disease of the oral mucosa with an unknown etiology. This study aimed to determine if food additives play a role in the etiology of RAS as well as to determine if patch testing can be used to detect which allergens cause RAS. This prospective study included 24 patients with RAS and 22 healthy controls. All the participants underwent patch testing for 23 food additives. In total, 21 (87.5%) RAS patients and 3 (13.6%) controls had positive patch test reactions to ≥1 allergens; the difference in the patch test positivity rate between groups was significant (P < 0.05). The most common allergen that elicited positive patch test results in the patient group was cochineal red (n = 15 [62.5%]), followed by azorubine (n = 11 [45.8%]) and amaranth (n = 6 [25%]). The present findings show that food additives might play a role in the etiology of RAS and that patch testing could be a method for determining the etiology of RAS. © 2016 The International Society of Dermatology.

  11. Interaction of the Wnt/β-catenin and RAS-ERK pathways involving co-stabilization of both β-catenin and RAS plays important roles in the colorectal tumorigenesis.

    PubMed

    Lee, Sang-Kyu; Hwang, Jeong-Ha; Choi, Kang-Yell

    2018-05-01

    Cancer development is usually driven by multiple genetic and molecular alterations rather than by a single defect. In the human colorectal cancer (CRC), series of mutations of genes are involved in the different stages of tumorigenesis. For example, adenomatous polyposis coli (APC) and KRAS mutations have been known to play roles in the initiation and progression of the tumorigenesis, respectively. However, many studies indicate that mutations of these two genes, which play roles in the Wnt/β-catenin and RAS-extra-cellular signal regulated kinase (ERK) pathways, respectively, cooperatively interact in the tumorigenesis in several different cancer types including CRC. Both Apc and Kras mutations critically increase number and growth rate of tumors although single mutation of these genes does not significantly enhance the small intestinal tumorigenesis of mice. Both APC and KRAS mutations even result in the liver metastasis with inductions of the cancer stem cells (CSCs) markers in a mice xenograft model. In this review, we are going to describe the history for interaction between the Wnt/β-catenin and RAS/ERK pathways especially related with CRC, and provide the mechanical basis for the cross-talk between the two pathways. The highlight of the crosstalk involving the stability regulation of RAS protein via the Wnt/β-catenin signaling which is directly related with the cellular proliferation and transformation will be discussed. Activation status of GSK3β, a key enzyme involving both β-catenin and RAS degradations, is regulated by the status of the Wnt/β-catenin signaling dependent upon extracellular stimuli or intracellular abnormalities of the signaling components. The levels of both β-catenin and RAS proteins are co-regulated by the Wnt/β-catenin signaling, and these proteins are overexpressed with a positive correlation in the tumor tissues of CRC patients. These results indicate that the elevation of both β-catenin and RAS proteins is pathologically significant in CRC. In this review, we also will discuss further involvement of the increments of both β-catenin and RAS especially mutant KRAS in the activation of CSCs and metastasis. Overall, the increments of β-catenin and RAS especially mutant KRAS by APC loss play important roles in the cooperative tumorigenesis of CRC. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Interactions of Ras proteins with the plasma membrane and their roles in signaling.

    PubMed

    Eisenberg, Sharon; Henis, Yoav I

    2008-01-01

    The complex dynamic structure of the plasma membrane plays critical roles in cellular signaling; interactions with the membrane lipid milieu, spatial segregation within and between cellular membranes and/or targeting to specific membrane-associated scaffolds are intimately involved in many signal transduction pathways. In this review, we focus on the membrane interactions of Ras proteins. These small GTPases play central roles in the regulation of cell growth and proliferation, and their excessive activation is commonly encountered in human tumors. Ras proteins associate with the membrane continuously via C-terminal lipidation and additional interactions in both their inactive and active forms; this association, as well as the targeting of specific Ras isoforms to plasma membrane microdomains and to intracellular organelles, have recently been implicated in Ras signaling and oncogenic potential. We discuss biochemical and biophysical evidence for the roles of specific domains of Ras proteins in mediating their association with the plasma membrane, and consider the potential effects of lateral segregation and interactions with membrane-associated protein assemblies on the signaling outcomes.

  13. Ras proteins have multiple functions in vegetative cells of Dictyostelium.

    PubMed

    Bolourani, Parvin; Spiegelman, George; Weeks, Gerald

    2010-11-01

    During the aggregation of Dictyostelium cells, signaling through RasG is more important in regulating cyclic AMP (cAMP) chemotaxis, whereas signaling through RasC is more important in regulating the cAMP relay. However, RasC is capable of substituting for RasG for chemotaxis, since rasG⁻ cells are only partially deficient in chemotaxis, whereas rasC⁻/rasG⁻ cells are totally incapable of chemotaxis. In this study we have examined the possible functional overlap between RasG and RasC in vegetative cells by comparing the vegetative cell properties of rasG⁻, rasC⁻, and rasC⁻/rasG⁻ cells. In addition, since RasD, a protein not normally found in vegetative cells, is expressed in vegetative rasG⁻ and rasC⁻/rasG⁻ cells and appears to partially compensate for the absence of RasG, we have also examined the possible functional overlap between RasG and RasD by comparing the properties of rasG⁻ and rasC⁻/rasG⁻ cells with those of the mutant cells expressing higher levels of RasD. The results of these two lines of investigation show that RasD is capable of totally substituting for RasG for cytokinesis and growth in suspension, whereas RasC is without effect. In contrast, for chemotaxis to folate, RasC is capable of partially substituting for RasG, but RasD is totally without effect. Finally, neither RasC nor RasD is able to substitute for the role that RasG plays in regulating actin distribution and random motility. These specificity studies therefore delineate three distinct and none-overlapping functions for RasG in vegetative cells.

  14. Role of the Renin-Angiotensin System, Renal Sympathetic Nerve System, and Oxidative Stress in Chronic Foot Shock-Induced Hypertension in Rats

    PubMed Central

    Dong, Tao; Chen, Jing-Wei; Tian, Li-Li; Wang, Lin-Hui; Jiang, Ren-Di; Zhang, Zhe; Xu, Jian-Bing; Zhao, Xiao-Dong; Zhu, Wei; Wang, Guo-Qing; Sun, Wan-Ping; Zhang, Guo-Xing

    2015-01-01

    Objective: The renin-angiotensin system (RAS) and renal sympathetic nerve system (RSNS) are involved in the development of hypertension. The present study is designed to explore the possible roles of the RAS and the RSNS in foot shock-induced hypertension. Methods: Male Sprague-Dawley rats were divided into six groups: control, foot shock, RSNS denervation, denervation plus foot shock, Captopril (angiotensin I converting enzyme inhibitor, ACE inhibitor) plus foot shock, and Tempol (superoxide dismutase mimetic) plus foot shock. Rats received foot shock for 14 days. We measured the quantity of thiobarbituric acid reactive substances (TBARS), corticosterone, renin, and angiotensin II (Ang II) in plasma, the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and renal noradrenaline content. RAS component mRNA and protein levels were quantified in the cerebral cortex and hypothalamus. Results: The two week foot shock treatment significantly increased systolic blood pressure, which was accompanied by an increase in angiotensinogen, renin, ACE1, and AT1a mRNA and protein expression in the cerebral cortex and hypothalamus, an increase of the plasma concentrations of renin, Ang II, corticosterone, and TBARS, as well as a decrease in plasma SOD and GSH-Px activities. Systolic blood pressure increase was suppressed by denervation of the RSNS or treatment with Captopril or Tempol. Interestingly, denervation or Tempol treatment both decreased main RAS components not only in the circulatory system, but also in the central nervous system. In addition, decreased antioxidant levels and increased TBARS and corticosterone levels were also partially restored by denervation or treatment with Tempol or Captopril. Conclusions: RAS, RSNS and oxidative stress reciprocally potentiate to play important roles in the development of foot shock-induced hypertension. PMID:25999788

  15. Role of the renin-angiotensin system, renal sympathetic nerve system, and oxidative stress in chronic foot shock-induced hypertension in rats.

    PubMed

    Dong, Tao; Chen, Jing-Wei; Tian, Li-Li; Wang, Lin-Hui; Jiang, Ren-Di; Zhang, Zhe; Xu, Jian-Bing; Zhao, Xiao-Dong; Zhu, Wei; Wang, Guo-Qing; Sun, Wan-Ping; Zhang, Guo-Xing

    2015-01-01

    The renin-angiotensin system (RAS) and renal sympathetic nerve system (RSNS) are involved in the development of hypertension. The present study is designed to explore the possible roles of the RAS and the RSNS in foot shock-induced hypertension. Male Sprague-Dawley rats were divided into six groups: control, foot shock, RSNS denervation, denervation plus foot shock, Captopril (angiotensin I converting enzyme inhibitor, ACE inhibitor) plus foot shock, and Tempol (superoxide dismutase mimetic) plus foot shock. Rats received foot shock for 14 days. We measured the quantity of thiobarbituric acid reactive substances (TBARS), corticosterone, renin, and angiotensin II (Ang II) in plasma, the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and renal noradrenaline content. RAS component mRNA and protein levels were quantified in the cerebral cortex and hypothalamus. The two week foot shock treatment significantly increased systolic blood pressure, which was accompanied by an increase in angiotensinogen, renin, ACE1, and AT1a mRNA and protein expression in the cerebral cortex and hypothalamus, an increase of the plasma concentrations of renin, Ang II, corticosterone, and TBARS, as well as a decrease in plasma SOD and GSH-Px activities. Systolic blood pressure increase was suppressed by denervation of the RSNS or treatment with Captopril or Tempol. Interestingly, denervation or Tempol treatment both decreased main RAS components not only in the circulatory system, but also in the central nervous system. In addition, decreased antioxidant levels and increased TBARS and corticosterone levels were also partially restored by denervation or treatment with Tempol or Captopril. RAS, RSNS and oxidative stress reciprocally potentiate to play important roles in the development of foot shock-induced hypertension.

  16. The role of the renin-angiotensin system in the development of insulin resistance in skeletal muscle.

    PubMed

    Henriksen, Erik J; Prasannarong, Mujalin

    2013-09-25

    The canonical renin-angiotensin system (RAS) involves the initial action of renin to cleave angiotensinogen to angiotensin I (ANG I), which is then converted to ANG II by the angiotensin converting enzyme (ACE). ANG II plays a critical role in numerous physiological functions, and RAS overactivity underlies many conditions of cardiovascular dysregulation. In addition, ANG II, by acting on both endothelial and myocellular AT1 receptors, can induce insulin resistance by increasing cellular oxidative stress, leading to impaired insulin signaling and insulin-stimulated glucose transport activity. This insulin resistance associated with RAS overactivity, when coupled with progressive ß-cell dysfunction, eventually leads to the development of type 2 diabetes. Interventions that target RAS overactivity, including ACE inhibitors, ANG II receptor blockers, and, most recently, renin inhibitors, are effective both in reducing hypertension and in improving whole-body and skeletal muscle insulin action, due at least in part to enhanced Akt-dependent insulin signaling and insulin-dependent glucose transport activity. ANG-(1-7), which is produced from ANG II by the action of ACE2 and acts via Mas receptors, can counterbalance the deleterious actions of the ACE/ANG II/AT1 receptor axis on the insulin-dependent glucose transport system in skeletal muscle. This beneficial effect of the ACE2/ANG-(1-7)/Mas receptor axis appears to depend on the activation of Akt. Collectively, these findings underscore the importance of RAS overactivity in the multifactorial etiology of insulin resistance in skeletal muscle, and provide support for interventions that target the RAS to ameliorate both cardiovascular dysfunctions and insulin resistance in skeletal muscle tissue. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. Hyperproliferation of PKD1 cystic cells is induced by insulin-like growth factor-1 activation of the Ras/Raf signalling system.

    PubMed

    Parker, E; Newby, L J; Sharpe, C C; Rossetti, S; Streets, A J; Harris, P C; O'Hare, M J; Ong, A C M

    2007-07-01

    Autosomal dominant polycystic kidney disease (ADPKD) largely results from mutations in the PKD1 gene leading to hyperproliferation of renal tubular epithelial cells and consequent cyst formation. Rodent models of PKD suggest that the multifunctional hormone insulin-like growth factor-1 (IGF-1) could play a pathogenic role in renal cyst formation. In order to test this possibility, conditionally immortalized renal epithelial cells were prepared from normal individuals and from ADPKD patients with known germline mutations in PKD1. All patient cell lines had a decreased or absence of polycystin-1 but not polycystin-2. These cells had an increased sensitivity to IGF-1 and to cyclic AMP, which required phosphatidylinositol-3 (PI3)-kinase and the mitogen-activated protein kinase, extracellular signal-regulated protein kinase (ERK) for enhanced growth. Inhibition of Ras or Raf abolished the stimulated cell proliferation. Our results suggest that haploinsufficiency of polycystin-1 lowers the activation threshold of the Ras/Raf signalling system leading to growth factor-induced hyperproliferation. Inhibition of Ras or Raf activity may be a therapeutic option for decreasing tubular cell proliferation in ADPKD.

  18. Renal artery stenosis in children: therapeutic percutaneous balloon and stent angioplasty.

    PubMed

    Colyer, Jessica H; Ratnayaka, Kanishka; Slack, Michael C; Kanter, Joshua P

    2014-06-01

    Renal artery stenosis (RAS) accounts for 10 % of cases of systemic hypertension in children. Initial management involves anti-hypertensive therapy. Percutaneous interventions are documented for the treatment of RAS in the adult population. In children, case reports suggest benefit. This is a retrospective analysis of consecutive patients referred for catheterization for RAS between 2002 and 2010 at a single institution. Recorded variables included: age, weight, systemic blood pressure, minimal luminal diameter, interventional devices, antihypertensive medications, contrast volume, and complications. Twelve patients (median age 8.2, IQR 6-12.4 years); median weight 42.8 kg, IQR: 25-47.4 kg) were referred for renal artery catheterization and underwent percutaneous intervention. Overall, minimal luminal diameter (MLD) increased by 1.2 ± 0.9 mm for all patients (p < 0.05) and by 1.3 ± 0.9 mm for post-renal transplant patients (p < 0.05). Only stent angioplasty patients demonstrated significant improved blood pressure (p < 0.05). One patient had stent thrombosis requiring re-intervention with repeat balloon angioplasty. This retrospective analysis suggests that percutaneous intervention might play a role in the management of RAS, with an improvement in MLD in children with RAS. Transcatheter intervention is technically feasible with low morbidity. A prospective, longitudinal study is warranted to compare standard medical therapy with percutaneous interventions.

  19. [Intracellular signaling mechanisms in thyroid cancer].

    PubMed

    Mondragón-Terán, Paul; López-Hernández, Luz Berenice; Gutiérrez-Salinas, José; Suárez-Cuenca, Juan Antonio; Luna-Ceballos, Rosa Isela; Erazo Valle-Solís, Aura

    2016-01-01

    Thyroid cancer is the most common malignancy of the endocrine system, the papillary variant accounts for 80-90% of all diagnosed cases. In the development of papillary thyroid cancer, BRAF and RAS genes are mainly affected, resulting in a modification of the system of intracellular signaling proteins known as «protein kinase mitogen-activated» (MAPK) which consist of «modules» of internal signaling proteins (Receptor/Ras/Raf/MEK/ERK) from the cell membrane to the nucleus. In thyroid cancer, these signanling proteins regulate diverse cellular processes such as differentiation, growth, development and apoptosis. MAPK play an important role in the pathogenesis of thyroid cancer as they are used as molecular biomarkers for diagnostic, prognostic and as possible therapeutic molecular targets. Mutations in BRAF gene have been correlated with poor response to treatment with traditional chemotherapy and as an indicator of poor prognosis. To review the molecular mechanisms involved in intracellular signaling of BRAF and RAS genes in thyroid cancer. Molecular therapy research is in progress for this type of cancer as new molecules have been developed in order to inhibit any of the components of the signaling pathway (RET/PTC)/Ras/Raf/MEK/ERK; with special emphasis on the (RET/PTC)/Ras/Raf section, which is a major effector of ERK pathway. Copyright © 2016 Academia Mexicana de Cirugía A.C. Publicado por Masson Doyma México S.A. All rights reserved.

  20. Differential requirement of RasGRP1 for γδ T cell development and activation

    PubMed Central

    Chen, Yong; Ci, Xinxin; Gorentla, Balachandra; Sullivan, Sarah A.; Stone, James C.; Zhang, Weiguo; Pereira, Pablo; Lu, Jianxin; Zhong, Xiao-Ping

    2012-01-01

    γδ T cells (γδT) belong to a distinct T cell lineage that performs immune functions different from αβ T cells (αβT). Previous studies have established that Erk1/2 MAPKs are critical for positive selection of αβT cells. Additional evidence also suggests that elevated Erk1/2 activity promotes γδT cell generation. RasGRP1, a guanine nucleotide releasing factor for Ras, plays an important role in positive selection of αβT cells by activating the Ras-Erk1/2 pathway. In this report, we demonstrate that RasGRP1 is critical for TCR-induced Erk1/2 activation in γδT cells but exerts different roles for γδT cell generation and activation. Deficiency of RasGRP1 does not obviously affect γδT cell numbers in the thymus but leads to increased γδT cells, particularly CD4−CD8+ γδT cells, in the peripheral lymphoid organs. The virtually unhindered γδT cell development in the RasGRP1−/− thymus proved to be cell intrinsic, while the increase in CD8+ γδT cells is caused by non-cell-intrinsic mechanisms. Our data provides genetic evidence that decreased Erk1/2 activation in the absence of RasGRP1 is compatible for γδT cell generation. Although RasGRP1 is dispensable for γδT cell generation, RasGRP1-deficient γδT cells are defective in proliferation following TCR stimulation. Additionally, RasGRP1-deficient γδT cells are impaired to produce IL-17 but not IFNγ. Together, these observations have revealed that RasGRP1 plays differential roles for γδ and αβ T cell development but is critical for γδT cell proliferation and production of IL-17. PMID:22623331

  1. Molecular recognition of RAS/RAF complex at the membrane: Role of RAF cysteine-rich domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travers, Timothy; Lopez Bautista, Cesar Augusto; Van, Que

    Activation of RAF kinase involves the association of its RAS-binding domain (RBD) and cysteine-rich domain (CRD) with membrane-anchored RAS. However, the overall architecture of the RAS/RBD/CRD ternary complex and the orientations of its constituent domains at the membrane remain unclear. Here in this paper, we have combined all-atom and coarse-grained molecular dynamics (MD) simulations with experimental data to construct and validate a model of membrane-anchored CRD, and used this as a basis to explore models of membrane-anchored RAS/RBD/CRD complex. First, simulations of the CRD revealed that it anchors to the membrane via insertion of its two hydrophobic loops, which ismore » consistent with our NMR measurements of CRD bound to nanodiscs. Simulations of the CRD in the context of membrane-anchored RAS/RBD then show how CRD association with either RAS or RBD could play an unexpected role in guiding the membrane orientations of RAS/RBD. This finding has implications for the formation of RAS-RAS dimers, as different membrane orientations of RAS expose distinct putative dimerization interfaces.« less

  2. Molecular recognition of RAS/RAF complex at the membrane: Role of RAF cysteine-rich domain

    DOE PAGES

    Travers, Timothy; Lopez Bautista, Cesar Augusto; Van, Que; ...

    2018-05-31

    Activation of RAF kinase involves the association of its RAS-binding domain (RBD) and cysteine-rich domain (CRD) with membrane-anchored RAS. However, the overall architecture of the RAS/RBD/CRD ternary complex and the orientations of its constituent domains at the membrane remain unclear. Here in this paper, we have combined all-atom and coarse-grained molecular dynamics (MD) simulations with experimental data to construct and validate a model of membrane-anchored CRD, and used this as a basis to explore models of membrane-anchored RAS/RBD/CRD complex. First, simulations of the CRD revealed that it anchors to the membrane via insertion of its two hydrophobic loops, which ismore » consistent with our NMR measurements of CRD bound to nanodiscs. Simulations of the CRD in the context of membrane-anchored RAS/RBD then show how CRD association with either RAS or RBD could play an unexpected role in guiding the membrane orientations of RAS/RBD. This finding has implications for the formation of RAS-RAS dimers, as different membrane orientations of RAS expose distinct putative dimerization interfaces.« less

  3. Urinary Angiotensinogen Excretion Level Is Associated With Elevated Blood Pressure in the Normotensive General Population.

    PubMed

    Sato, Emiko; Wang, An Yi; Satoh, Michihiro; Nishikiori, Yoko; Oba-Yabana, Ikuko; Yoshida, Mai; Sato, Hiroshi; Ito, Sadayoshi; Hida, Wataru; Mori, Takefumi

    2018-05-07

    Inflammation, intrarenal renin-angiotensin system (RAS) activation, oxidative stress, and carbonyl stress have been postulated to play a fundamental role in controlling blood pressure. However, little is known about the association among renal RAS activation, carbonyl stress, and blood pressure elevation. We evaluated the relationship between blood pressure elevation and either renal RAS activity or carbonyl stress in the general population (N = 355) in Japan. To minimize the effect of antihypertensive drug therapy, we divided participants into 3 groups (normotensive, hypertensive-with-non-medication, and hypertensive-with-medication). Intrarenal RAS activity and carbonyl stress were indicated by the urinary angiotensinogen (AGT) and carbonyl compound excretion levels, respectively. The urinary AGT and carbonyl compound excretion levels were significantly associated with blood pressure. Using a stepwise multiple regression analysis, we found that the urinary AGT excretion levels were strongly associated with blood pressure elevation, compared with inflammation, oxidative stress, and carbonyl stress markers, in all groups. Urinary carbonyl compound excretion was significantly associated with blood pressure in only the hypertensive-without-medication group. Furthermore, blood pressure was significantly increased in these participants, and both the urinary AGT and carbonyl compound levels were high. The urinary AGT excretion levels were strongly associated with elevated blood pressure in normotensive people, and inappropriate renal RAS activity and carbonyl stress independently contributed to the development of hypertension. These findings suggest that RAS activation, particularly renal RAS activation exert a fundamental role in the pathogenesis of hypertension in the general population.

  4. K-Ras protein as a drug target.

    PubMed

    McCormick, Frank

    2016-03-01

    K-Ras proteins are major drivers of human cancers, playing a direct causal role in about one million cancer cases/year. In cancers driven by mutant K-Ras, the protein is locked in the active, GTP-bound state constitutively, through a defect in the off-switch mechanism. As such, the mutant protein resembles the normal K-Ras protein from a structural perspective, making therapeutic attack extremely challenging. K-Ras is a member of a large family of related proteins, which share very similar GDP/GTP-binding domains, making specific therapies more difficult. Furthermore, Ras proteins lack pockets to which small molecules can bind with high affinity, with a few interesting exceptions. However, new insights into the structure and function of K-Ras proteins reveal opportunities for intervention that were not appreciated many years ago, when efforts were launched to develop K-Ras therapies. Furthermore, K-Ras undergoes post-translational modification and interactions with cellular signaling proteins that present additional therapeutic opportunities, such as specific binding to calmodulin and regulation of non-canonical Wnt signaling.

  5. SIRT2 and lysine fatty acylation regulate the transforming activity of K-Ras4a

    PubMed Central

    Wisner, Stephanie A; Chen, Xiao; Spiegelman, Nicole A; Linder, Maurine E

    2017-01-01

    Ras proteins play vital roles in numerous biological processes and Ras mutations are found in many human tumors. Understanding how Ras proteins are regulated is important for elucidating cell signaling pathways and identifying new targets for treating human diseases. Here we report that one of the K-Ras splice variants, K-Ras4a, is subject to lysine fatty acylation, a previously under-studied protein post-translational modification. Sirtuin 2 (SIRT2), one of the mammalian nicotinamide adenine dinucleotide (NAD)-dependent lysine deacylases, catalyzes the removal of fatty acylation from K-Ras4a. We further demonstrate that SIRT2-mediated lysine defatty-acylation promotes endomembrane localization of K-Ras4a, enhances its interaction with A-Raf, and thus promotes cellular transformation. Our study identifies lysine fatty acylation as a previously unknown regulatory mechanism for the Ras family of GTPases that is distinct from cysteine fatty acylation. These findings highlight the biological significance of lysine fatty acylation and sirtuin-catalyzed protein lysine defatty-acylation. PMID:29239724

  6. A Novel Ras Effector Pathway Found to Play Significant Role in Tumor Suppression | Poster

    Cancer.gov

    By Nancy Parrish, Staff Writer; photo by Richard Frederickson, Staff Photographer Normal cells have mechanisms to prevent the development of cancer. Among these is a type of tumor suppressor mechanism known as oncogene-induced senescence, or OIS, which halts the uncontrolled growth of cells caused by mutations in oncogenes. The oncogene Ras plays a crucial role in inducing OIS

  7. Caveolae regulate the nanoscale organization of the plasma membrane to remotely control Ras signaling

    PubMed Central

    Ariotti, Nicholas; Fernández-Rojo, Manuel A.; Zhou, Yong; Hill, Michelle M.; Rodkey, Travis L.; Inder, Kerry L.; Tanner, Lukas B.; Wenk, Markus R.

    2014-01-01

    The molecular mechanisms whereby caveolae exert control over cellular signaling have to date remained elusive. We have therefore explored the role caveolae play in modulating Ras signaling. Lipidomic and gene array analyses revealed that caveolin-1 (CAV1) deficiency results in altered cellular lipid composition, and plasma membrane (PM) phosphatidylserine distribution. These changes correlated with increased K-Ras expression and extensive isoform-specific perturbation of Ras spatial organization: in CAV1-deficient cells K-RasG12V nanoclustering and MAPK activation were enhanced, whereas GTP-dependent lateral segregation of H-Ras was abolished resulting in compromised signal output from H-RasG12V nanoclusters. These changes in Ras nanoclustering were phenocopied by the down-regulation of Cavin1, another crucial caveolar structural component, and by acute loss of caveolae in response to increased osmotic pressure. Thus, we postulate that caveolae remotely regulate Ras nanoclustering and signal transduction by controlling PM organization. Similarly, caveolae transduce mechanical stress into PM lipid alterations that, in turn, modulate Ras PM organization. PMID:24567358

  8. H-Ras Exerts Opposing Effects on Type I Interferon Responses Depending on Its Activation Status.

    PubMed

    Chen, Guann-An; Lin, Yun-Ru; Chung, Hai-Ting; Hwang, Lih-Hwa

    2017-01-01

    Using shRNA high-throughput screening, we identified H-Ras as a regulator of antiviral activity, whose depletion could enhance Sindbis virus replication. Further analyses indicated that depletion of H-Ras results in a robust increase in vesicular stomatitis virus infection and a decrease in Sendai virus (SeV)-induced retinoic acid-inducible gene-I-like receptor (RLR) signaling. Interestingly, however, ectopic expression of wild-type H-Ras results in a biphasic mode of RLR signaling regulation: while low-level expression of H-Ras enhances SeV-induced RLR signaling, high-level expression of H-Ras significantly inhibits this signaling. The inhibitory effects correlate with the activation status of H-Ras. As a result, oncogenic H-Ras, H-RasV12, strongly inhibits SeV-induced IFN-β promoter activity and type I interferon signaling. Conversely, the positive effects exerted by H-Ras on RLR signaling are independent of its signaling activity, as a constitutively inactive form of H-Ras, H-RasN17, also positively regulates RLR signaling. Mechanistically, we demonstrate that depletion of H-Ras reduces the formation of MAVS-TNF receptor-associated factor 3 signaling complexes. These results reveal that the H-Ras protein plays a role in promoting MAVS signalosome assembly in the mitochondria, whereas oncogenic H-Ras exerts a negative effect on type I IFN responses.

  9. Molecular interaction between K-Ras and H-REV107 in the Ras signaling pathway.

    PubMed

    Han, Chang Woo; Jeong, Mi Suk; Jang, Se Bok

    2017-09-16

    Ras proteins are small GTPases that serve as master moderators of a large number of signaling pathways involved in various cellular processes. Activating mutations in Ras are found in about one-third of cancers. H-REV107, a K-Ras binding protein, plays an important role in determining K-Ras function. H-REV107 is a member of the HREV107 family of class II tumor suppressor genes and a growth inhibitory Ras target gene that suppresses cellular growth, differentiation, and apoptosis. Expression of H-REV107 was strongly reduced in about 50% of human carcinoma cell lines. However, the specific molecular mechanism by which H-REV107 inhibits Ras is still unknown. In the present study, we suggest that H-REV107 forms a strong complex with activating oncogenic mutation Q61H K-Ras from various biochemical binding assays and modeled structures. In addition, the interaction sites between K-Ras and H-REV107 were predicted based on homology modeling. Here, we found that some structure-based mutants of the K-Ras disrupted the complex formation with H-REV107. Finally, a novel molecular mechanism describing K-Ras and H-REV107 binding is suggested and insights into new K-Ras effector target drugs are provided. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. The possible mechanism of enhanced carcinogenesis induced by genotoxic carcinogens in rasH2 mice.

    PubMed

    Okamura, Miwa; Unami, Akira; Moto, Mitsuyoshi; Muguruma, Masako; Ito, Tadashi; Jin, Meilan; Oishi, Yuji; Kashida, Yoko; Mitsumori, Kunitoshi

    2007-01-08

    Microarray and RT-PCR analyses were performed for the transgene and Ras-related genes in forestomach squamous cell carcinomas (SCCs) induced by 7,12-dimethylbenz[a]anthracene (DMBA) in rasH2 mice; these results were compared with our previous molecular data of N-ethyl-N-nitrosourea-induced forestomach SCCs and urethane-induced lung adenomas in rasH2 mice. Overexpression of the transgene was detected in the DMBA-induced SCCs, suggesting that the transgene plays an important role in enhanced carcinogenesis in rasH2 mice. In addition, the mouse endogenous ras genes were up-regulated in the DMBA-induced SCCs, and are probably involved in the tumorigenesis of forestomach SCCs. Genes such as osteopontin, Cks1b, Tpm1, Reck, gelsolin, and amphiregulin that were commonly altered in these three different carcinogen-induced tumors may contribute to the development of tumors in rasH2 mice.

  11. Absence of ras-gene hot-spot mutations in canine fibrosarcomas and melanomas.

    PubMed

    Murua Escobar, Hugo; Günther, Kathrin; Richter, Andreas; Soller, Jan T; Winkler, Susanne; Nolte, Ingo; Bullerdiek, Jörn

    2004-01-01

    Point mutations within ras proto-oncogenes, particularly within the mutational hot-spot codons 12, 13 and 61, are frequently detected in human malignancies and in different types of experimentally-induced tumours in animals. So far little is known about ras mutations in naturally occurring canine fibrosarcomas or K-ras mutations in canine melanomas. To elucidate whether ras mutations exist in these naturally occurring tumours in dogs, in the present study we screened 13 canine fibrosarcomas, 2 feline fibrosarcomas and 11 canine melanomas for point mutations, particularly within the mutational hot-spots, making this the first study to investigate a large number of canine fibrosarcomas. None of the samples showed a K- or N-ras hot spot mutation. Thus, our data strongly suggest that ras mutations at the hot-spot loci are very rare and do not play a major role in the pathogenesis of the spontaneously occurring canine tumours investigated.

  12. Novel inhibitors of the cellular renin-angiotensin system components, poricoic acids, target Smad3 phosphorylation and Wnt/β-catenin pathway against renal fibrosis.

    PubMed

    Wang, Ming; Chen, Dan-Qian; Chen, Lin; Cao, Gang; Zhao, Hui; Liu, Dan; Vaziri, Nosratola D; Guo, Yan; Zhao, Ying-Yong

    2018-07-01

    Tubulo-interstitial fibrosis is the final pathway in the progression of chronic kidney disease (CKD) to kidney failure. The renin-angiotensin system (RAS) plays a major role in CKD progression. Hence, we determined the efficacy of novel RAS inhibitors isolated from Poria cocos against renal fibrosis. Effects of three novel tetracyclic triterpenoid compounds, poricoic acid ZC (PZC), poricoic acid ZD (PZD) and poricoic acid ZE (PZE), were investigated on TGFβ1- and angiotensin II (AngII)-treated HK-2 cells and unilateral ureteral obstruction (UUO) in mice. Immunofluorescence staining, quantitative real-time PCR, siRNA, co-immunoprecipitation and Western blot analyses were used to evaluate expression of key molecules in RAS, Wnt/β-catenin and TGFβ/Smad pathways. Addition of the above compounds to culture media and their administration to UUO mice: (i) significantly attenuated epithelial-to-mesenchymal transition and extracellular matrix production in TGFβ1- and AngII-treated HK-2 cells and UUO mice by inhibiting Wnt/β-catenin pathway activation and Smad3 phosphorylation; (ii) selectively inhibited Smad3 phosphorylation by blocking the interaction of TGFBR1 with Smad3; and (iii) specifically inhibited Smad3 activation. PZC and PZD showed a strong inhibitory effect on all RAS components, and PZE showed a strong inhibitory effect on renin. Furthermore, the secolanostane tetracyclic triterpenoids, PZC and PZD, showed a stronger inhibitory effect than the lanostane tetracyclic triterpenoid PZE. Therefore, compounds with secolanostance skeleton showed stronger bioactivity than those with lanostance skeleton. The secolanostane tetracyclic triterpenoids effectively blocked RAS by simultaneously targeting multiple RAS components and lanostane tetracyclic triterpenoids inhibited renin and protected against tubulo-interstitial fibrosis. © 2018 The British Pharmacological Society.

  13. The Intracrine Renin-Angiotensin System

    PubMed Central

    Kumar, Rajesh; Thomas, Candice M.; Yong, Qian Chen; Chen, Wen; Baker, Kenneth M.

    2014-01-01

    The renin-angiotensin system (RAS) is one of the earliest and most extensively studied hormonal systems. The RAS is an atypical hormonal system in several ways. The major bioactive peptide of the system, angiotensin (Ang) II, is neither synthesized in, nor targets one specific organ. New research has identified additional peptides with important physiological and pathological roles. More peptides also mean newer enzymatic cascades that generate these peptides and more receptors that mediate the function. In addition, completely different roles of components that constitute the RAS have been uncovered, such as that for prorenin via the prorenin receptor. Complexity of the RAS is further enhanced by the presence of sub-systems in tissues, which act in an autocrine/paracrine manner independent of the endocrine system. The RAS seems relevant at the cellular level, wherein individual cells have a complete system, termed the intracellular RAS. Thus, from cells to tissues to the entire organism, the RAS exhibits continuity while maintaining independent control at different levels. The intracellular RAS is a relatively new concept for the RAS. The current review presents a synopsis of the literature on this system in different tissues. PMID:22590974

  14. Review: Intracardiac intracellular angiotensin system in diabetes

    PubMed Central

    Kumar, Rajesh; Yong, Qian Chen; Thomas, Candice M.

    2012-01-01

    The renin-angiotensin system (RAS) has mainly been categorized as a circulating and a local tissue RAS. A new component of the local system, known as the intracellular RAS, has recently been described. The intracellular RAS is defined as synthesis and action of ANG II intracellularly. This RAS appears to differ from the circulating and the local RAS, in terms of components and the mechanism of action. These differences may alter treatment strategies that target the RAS in several pathological conditions. Recent work from our laboratory has demonstrated significant upregulation of the cardiac, intracellular RAS in diabetes, which is associated with cardiac dysfunction. Here, we have reviewed evidence supporting an intracellular RAS in different cell types, ANG II's actions in cardiac cells, and its mechanism of action, focusing on the intracellular cardiac RAS in diabetes. We have discussed the significance of an intracellular RAS in cardiac pathophysiology and implications for potential therapies. PMID:22170614

  15. Renal microvascular disease determines the responses to revascularization in experimental renovascular disease.

    PubMed

    Chade, Alejandro R; Kelsen, Silvia

    2010-08-01

    Percutaneous transluminal renal angioplasty (PTRA) is the most frequent therapeutic approach to resolving renal artery stenosis (RAS). However, renal function recovers in only 30% of the cases. The causes of these poor outcomes are still unknown. We hypothesized that preserving the renal microcirculation distal to RAS will improve the responses to PTRA. RAS was induced in 28 pigs. In 14, vascular endothelial growth factor (VEGF)-165 0.05 microg/kg was infused intrarenally (RAS+VEGF). Single-kidney function was assessed in all pigs in vivo using ultrafast CT after 6 weeks. Observation of half of the RAS and RAS+VEGF pigs was completed. The other half underwent PTRA and repeated VEGF, and CT studies were repeated 4 weeks later. Pigs were then euthanized, the stenotic kidney removed, renal microvascular (MV) architecture reconstructed ex vivo using 3D micro-CT, and renal fibrosis quantified. The degree of RAS and hypertension were similar in RAS and RAS+VEGF. Renal function and MV density were decreased in RAS but improved in RAS+VEGF. PTRA largely resolved RAS, but the improvements of hypertension and renal function were greater in RAS+VEGF+PTRA than in RAS+PTRA, accompanied by a 34% increase in MV density and decreased fibrosis. Preservation of the MV architecture and function in the stenotic kidney improved the responses to PTRA, indicating that renal MV integrity plays a role in determining the responses to PTRA. This study indicates that damage and early loss of renal MV is an important determinant of the progression of renal injury in RAS and instigates often irreversible damage.

  16. RENAL MICROVASCULAR DISEASE DETERMINES THE RESPONSES TO REVASCULARIZATION IN EXPERIMENTAL RENOVASCULAR DISEASE

    PubMed Central

    Chade, Alejandro R.; Kelsen, Silvia

    2011-01-01

    Background Percutaneous trasluminal renal angioplasty (PTRA) is the most frequent therapeutic approach to resolve renal artery stenosis (RAS). However, renal function recovers in only 30% of the cases. The causes of these poor outcomes are still unknown. We hypothesize that preserving the renal microcirculation distal to RAS will improve the responses to PTRA. Methods and Results RAS was induced in 28 pigs. In 14, vascular endothelial growth factor (VEGF)-165 was infused intra-renally (RAS+VEGF, 0.05 µg/kg). Single-kidney function was assessed in all pigs in vivo using ultra-fast CT after 6 weeks. Half of the RAS/RAS+VEGF completed their observation, and the other half underwent PTRA, VEGF was repeated, and CT studies repeated 4 weeks later. Pigs were then euthanized, the stenotic kidney removed, renal microvascular (MV) architecture reconstructed ex-vivo using 3D micro-CT, and renal fibrosis quantified. Degree of RAS and hypertension were similar in RAS and RAS+VEGF. Renal function and MV density were decreased in RAS but improved in RAS+VEGF. PTRA largely resolved RAS, but the improvements of hypertension and renal function were greater in RAS+VEGF+PTRA than in RAS+PTRA, accompanied by a 34% increase in MV density and decreased fibrosis. Conclusion Preservation of the MV architecture and function in the stenotic kidney improved the responses to PTRA, indicating that renal MV integrity plays a role in determining the responses to PTRA. This study indicates that damage and early loss of renal MV is an important determinant of the progression of renal injury in RAS and instigates often irreversible damage. PMID:20587789

  17. Inhibition of p38 MAPK attenuates renal atrophy and fibrosis in a murine renal artery stenosis model.

    PubMed

    Wang, Diping; Warner, Gina M; Yin, Ping; Knudsen, Bruce E; Cheng, Jingfei; Butters, Kim A; Lien, Karen R; Gray, Catherine E; Garovic, Vesna D; Lerman, Lilach O; Textor, Stephen C; Nath, Karl A; Simari, Robert D; Grande, Joseph P

    2013-04-01

    Renal artery stenosis (RAS) is an important cause of chronic renal dysfunction. Recent studies have underscored a critical role for CCL2 (MCP-1)-mediated inflammation in the progression of chronic renal damage in RAS and other chronic renal diseases. In vitro studies have implicated p38 MAPK as a critical intermediate for the production of CCL2. However, a potential role of p38 signaling in the development and progression of chronic renal disease in RAS has not been previously defined. We sought to test the hypothesis that inhibition of p38 MAPK ameliorates chronic renal injury in mice with RAS. We established a murine RAS model by placing a cuff on the right renal artery and treated mice with the p38 inhibitor SB203580 or vehicle for 2 wk. In mice treated with vehicle, the cuffed kidney developed interstitial fibrosis, tubular atrophy, and interstitial inflammation. In mice treated with SB203580, the RAS-induced renal atrophy was reduced (70% vs. 39%, P < 0.05). SB203580 also reduced interstitial inflammation and extracellular matrix deposition but had no effect on the development of hypertension. SB203580 partially blocked the induction of CCL2, CCL7 (MCP-3), CC chemokine receptor 2 (CCR2), and collagen 4 mRNA expression in the cuffed kidneys. In vitro, blockade of p38 hindered both TNF-α and TGF-β-induced CCL2 upregulation. Based on these observations, we conclude that p38 MAPK plays a critical role in the induction of CCL2/CCL7/CCR2 system and the development of interstitial inflammation in RAS.

  18. Angiotensin-(1-7): A Novel Peptide to Treat Hypertension and Nephropathy in Diabetes?

    PubMed

    Padda, Ranjit Singh; Shi, Yixuan; Lo, Chao-Sheng; Zhang, Shao-Ling; Chan, John S D

    2015-10-14

    The renin-angiotensin system (RAS) plays a pivotal role in mammalian homeostasis physiology. The RAS can be delineated into a classical RAS (the pressor arm) including angiotensinogen (Agt), renin, angiotensin-converting enzyme (ACE), angiotensin II (Ang II) and angiotensin type 1 receptor (AT1R), and a counterbalancing novel RAS (the depressor arm) including Agt, renin, angiotensin-converting enzyme-2 (ACE-2), angiotensin-(1-7) (Ang 1-7) and Ang 1-7 receptor (or Mas receptor (MasR)). Hyperglycemia (diabetes) induces severe tissue oxidative stress, which stimulates the pressor arm of the renal RAS axis and leads to an increase in ACE/ACE-2 ratio, with excessive formation of Ang II. There is a growing body of evidence for beneficial effects of the depressor arm of RAS (ACE-2/Ang 1-7/MasR) axis in diabetes, hypertension and several other diseased conditions. Evidence from in vitro, in vivo and clinical studies reflects anti-oxidant, anti-fibrotic, and anti-inflammatory properties of Ang 1-7. Most of the currently available therapies only target suppression of the pressor arm of RAS with angiotensin receptor blockers (ARBs) and ACE inhibitors (ACEi). However, it is time to consider simultaneous activation of the depressor arm for more effective outcomes. This review summarizes the recent updates on the protective role of Ang 1-7 in hypertension and kidney injury in diabetes, as well as the possible underlying mechanism(s) of Ang 1-7 action, suggesting that the ACE-2/Ang 1-7/MasR axis can be developed as a therapeutic target for the treatment of diabetes-induced hypertension and renal damage.

  19. Angiotensin-(1-7): A Novel Peptide to Treat Hypertension and Nephropathy in Diabetes?

    PubMed Central

    Padda, Ranjit Singh; Shi, Yixuan; Lo, Chao-Sheng; Zhang, Shao-Ling; Chan, John S.D.

    2015-01-01

    The renin-angiotensin system (RAS) plays a pivotal role in mammalian homeostasis physiology. The RAS can be delineated into a classical RAS (the pressor arm) including angiotensinogen (Agt), renin, angiotensin-converting enzyme (ACE), angiotensin II (Ang II) and angiotensin type 1 receptor (AT1R), and a counterbalancing novel RAS (the depressor arm) including Agt, renin, angiotensin-converting enzyme-2 (ACE-2), angiotensin-(1-7) (Ang 1-7) and Ang 1-7 receptor (or Mas receptor (MasR)). Hyperglycemia (diabetes) induces severe tissue oxidative stress, which stimulates the pressor arm of the renal RAS axis and leads to an increase in ACE/ACE-2 ratio, with excessive formation of Ang II. There is a growing body of evidence for beneficial effects of the depressor arm of RAS (ACE-2/Ang 1-7/MasR) axis in diabetes, hypertension and several other diseased conditions. Evidence from in vitro, in vivo and clinical studies reflects anti-oxidant, anti-fibrotic, and anti-inflammatory properties of Ang 1-7. Most of the currently available therapies only target suppression of the pressor arm of RAS with angiotensin receptor blockers (ARBs) and ACE inhibitors (ACEi). However, it is time to consider simultaneous activation of the depressor arm for more effective outcomes. This review summarizes the recent updates on the protective role of Ang 1-7 in hypertension and kidney injury in diabetes, as well as the possible underlying mechanism(s) of Ang 1-7 action, suggesting that the ACE-2/Ang 1-7/MasR axis can be developed as a therapeutic target for the treatment of diabetes-induced hypertension and renal damage. PMID:26793405

  20. The cornerstone K-RAS mutation in pancreatic adenocarcinoma: From cell signaling network, target genes, biological processes to therapeutic targeting.

    PubMed

    Jonckheere, Nicolas; Vasseur, Romain; Van Seuningen, Isabelle

    2017-03-01

    RAS belongs to the super family of small G proteins and plays crucial roles in signal transduction from membrane receptors in the cell. Mutations of K-RAS oncogene lead to an accumulation of GTP-bound proteins that maintains an active conformation. In the pancreatic ductal adenocarcinoma (PDAC), one of the most deadly cancers in occidental countries, mutations of the K-RAS oncogene are nearly systematic (>90%). Moreover, K-RAS mutation is the earliest genetic alteration occurring during pancreatic carcinogenetic sequence. In this review, we discuss the central role of K-RAS mutations and their tremendous diversity of biological properties by the interconnected regulation of signaling pathways (MAPKs, NF-κB, PI3K, Ral…). In pancreatic ductal adenocarcinoma, transcriptome analysis and preclinical animal models showed that K-RAS mutation alters biological behavior of PDAC cells (promoting proliferation, migration and invasion, evading growth suppressors, regulating mucin pattern, and miRNA expression). K-RAS also impacts tumor microenvironment and PDAC metabolism reprogramming. Finally we discuss therapeutic targeting strategies of K-RAS that have been developed without significant clinical success so far. As K-RAS is considered as the undruggable target, targeting its multiple effectors and target genes should be considered as potential alternatives. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Alteration at transcriptional level of cardiac renin-angiotensin system by letrozole treatment.

    PubMed

    Shekarforoush, Shahnaz; Koohpeyma, Farhad; Safari, Fatemeh

    2018-06-17

    The use of aromatase inhibitors (AIs) for breast cancer led to a marked change in ventricular function. Since accumulating evidence indicates that overactivation of the cardiac renin-angiotensin system (RAS) plays an important role in the development of cardiovascular diseases such as hypertrophy and remodelling, we aimed to investigate whether letrozole alters the transcription level of RAS related genes in the cardiac tissue. Twenty four rats were randomly divided into four groups (n = 6 per group): two groups were letrozole treated (1 and 2 mg/kg/day orally), one group was vehicle treated (DMSO) and one group was the control group without any treatment. 12 weeks after beginning treatment with letrozole, we examined the rate of transcription of renin, angiotensinogen, AngII type 1a and 1b (AT1a and AT1b) and type 2 receptors (AT2) in the rat heart using real-time polymerase chain reaction. The cardiac mRNA levels of several components of the RAS in the rats treated with letrozole were significantly increased including AT1a receptor (80%), renin (51%), and angiotensinogen (33%). Though not significant, AT2 receptor levels were observed to decrease with increasing doses of letrozole. Letrozole can induce significant changes in some RAS related genes. These alterations are important to understand the pathways and consequences beyond cardiac events induced by breast cancer treatments.

  2. Enhanced MET Translation and Signaling Sustains K-Ras-Driven Proliferation under Anchorage-Independent Growth Conditions.

    PubMed

    Fujita-Sato, Saori; Galeas, Jacqueline; Truitt, Morgan; Pitt, Cameron; Urisman, Anatoly; Bandyopadhyay, Sourav; Ruggero, Davide; McCormick, Frank

    2015-07-15

    Oncogenic K-Ras mutation occurs frequently in several types of cancers, including pancreatic and lung cancers. Tumors with K-Ras mutation are resistant to chemotherapeutic drugs as well as molecular targeting agents. Although numerous approaches are ongoing to find effective ways to treat these tumors, there are still no effective therapies for K-Ras mutant cancer patients. Here we report that K-Ras mutant cancers are more dependent on K-Ras in anchorage-independent culture conditions than in monolayer culture conditions. In seeking to determine mechanisms that contribute to the K-Ras dependency in anchorage-independent culture conditions, we discovered the involvement of Met in K-Ras-dependent, anchorage-independent cell growth. The Met signaling pathway is enhanced and plays an indispensable role in anchorage-independent growth even in cells in which Met is not amplified. Indeed, Met expression is elevated under anchorage-independent growth conditions and is regulated by K-Ras in a MAPK/ERK kinase (MEK)-dependent manner. Remarkably, in spite of a global downregulation of mRNA translation during anchorage-independent growth, we find that Met mRNA translation is specifically enhanced under these conditions. Importantly, ectopic expression of an active Met mutant rescues K-Ras ablation-derived growth suppression, indicating that K-Ras-mediated Met expression drives "K-Ras addiction" in anchorage-independent conditions. Our results indicate that enhanced Met expression and signaling is essential for anchorage-independent growth of K-Ras mutant cancer cells and suggests that pharmacological inhibitors of Met could be effective for K-Ras mutant tumor patients. ©2015 American Association for Cancer Research.

  3. Enhanced MET translation and signaling sustains K-Ras driven proliferation under anchorage-independent growth conditions

    PubMed Central

    Fujita-Sato, Saori; Galeas, Jacqueline; Truitt, Morgan; Pitt, Cameron; Urisman, Anatoly; Bandyopadhyay, Sourav; Ruggero, Davide; McCormick, Frank

    2015-01-01

    Oncogenic K-Ras mutation occurs frequently in several types of cancers including pancreatic and lung cancers. Tumors with K-Ras mutation are resistant to chemotherapeutic drugs as well as molecular targeting agents. Although numerous approaches are ongoing to find effective ways to treat these tumors, there are still no effective therapies for K-Ras mutant cancer patients. Here we report that K-Ras mutant cancers are more dependent on K-Ras in anchorage independent culture conditions than in monolayer culture conditions. In seeking to determine mechanisms that contribute to the K-Ras dependency in anchorage independent culture conditions, we discovered the involvement of Met in K-Ras-dependent, anchorage independent cell growth. The Met signaling pathway is enhanced and plays an indispensable role in anchorage independent growth even in cells in which Met is not amplified. Indeed, Met expression is elevated under anchorage-independent growth conditions and is regulated by K-Ras in a MAPK/ERK kinase (MEK)-dependent manner. Remarkably, in spite of a global down-regulation of mRNA translation during anchorage independent growth, we find that Met mRNA translation is specifically enhanced under these conditions. Importantly, ectopic expression of an active Met mutant rescues K-Ras ablation-derived growth suppression, indicating that K-Ras mediated Met expression drives “K-Ras addiction” in anchorage independent conditions. Our results indicate that enhanced Met expression and signaling is essential for anchorage independent growth of K-Ras mutant cancer cells and suggests that pharmacological inhibitors of Met could be effective for K-Ras mutant tumor patients. PMID:25977330

  4. Control of Innate and Adaptive Lymphocytes by the RAR-Retinoic Acid Axis.

    PubMed

    Kim, Chang H

    2018-02-01

    Lymphocytes, such as T cells, B cells, and innate lymphoid cells (ILCs), play central roles in regulating immune responses. Retinoic acids (RAs) are vitamin A metabolites, produced and metabolized by certain tissue cells and myeloid cells in a tissue-specific manner. It has been established that RAs induce gut-homing receptors on T cells, B cells, and ILCs. A mounting body of evidence indicates that RAs exert far-reaching effects on functional differentiation and fate of these lymphocytes. For example, RAs promote effector T cell maintenance, generation of induced gut-homing regulatory and effector T cell subsets, antibody production by B cells, and functional maturation of ILCs. Key functions of RAs in regulating major groups of innate and adaptive lymphocytes are highlighted in this article.

  5. Oxidative stress and myeloperoxidase levels in saliva of patients with recurrent aphthous stomatitis.

    PubMed

    Cağlayan, F; Miloglu, O; Altun, O; Erel, O; Yilmaz, A B

    2008-11-01

    Recurrent aphthous stomatitis (RAS) is the most common oral ulcerative condition affecting 5-25% of the general population. The aim of this study was to evaluate the oxidative stress parameters in saliva of patients with RAS and to investigate the relationship among these parameters in either group. The study involved 50 patients with RAS of whom 24 were male and 26 were female, and 25 healthy controls of whom 13 were male and 12 were female. There was no statistically significant difference in the salivary total antioxidant capacity, total oxidant status, oxidative stress index levels, and myeloperoxidase activity between patients with RAS and those in the control group. The results show that reactive oxygen species may not play a role in the etiology of RAS.

  6. The renin-angiotensin system in thyroid disorders and its role in cardiovascular and renal manifestations.

    PubMed

    Vargas, Félix; Rodríguez-Gómez, Isabel; Vargas-Tendero, Pablo; Jimenez, Eugenio; Montiel, Mercedes

    2012-04-01

    Thyroid disorders are among the most common endocrine diseases and affect virtually all physiological systems, with an especially marked impact on cardiovascular and renal systems. This review summarizes the effects of thyroid hormones on the renin-angiotensin system (RAS) and the participation of the RAS in the cardiovascular and renal manifestations of thyroid disorders. Thyroid hormones are important regulators of cardiac and renal mass, vascular function, renal sodium handling, and consequently blood pressure (BP). The RAS acts globally to control cardiovascular and renal functions, while RAS components act systemically and locally in individual organs. Various authors have implicated the systemic and local RAS in the mediation of functional and structural changes in cardiovascular and renal tissues due to abnormal thyroid hormone levels. This review analyzes the influence of thyroid hormones on RAS components and discusses the role of the RAS in BP, cardiac mass, vascular function, and renal abnormalities in thyroid disorders.

  7. Reactive oxygen species-mediated synergistic and preferential induction of cell death and reduction of clonogenic resistance in breast cancer cells by combined cisplatin and FK228.

    PubMed

    Pluchino, Lenora Ann; Choudhary, Shambhunath; Wang, Hwa-Chain Robert

    2016-10-10

    Safe and effective combination chemotherapy regimens against breast cancer are lacking. We used our cellular system, consisting of the non-cancerous human breast epithelial MCF10A cell line and its derived tumorigenic, oncogenic H-Ras-expressing, MCF10A-Ras cell line, to investigate the effectiveness of a combination chemotherapy regimen in treating breast cancer cells using two FDA-approved agents, cisplatin and FK228. Cisplatin and FK228 significantly, synergistically, and preferentially induced death and reduced drug resistance of MCF10A-Ras versus MCF10A cells. The ERK-Nox-ROS pathway played a major role in both synergistic cell death induction and GSH-level reduction, which contributed to the synergistic suppression of drug resistance in cells. Enhancement of the Ras-ERK-Nox pathway by combined cisplatin and FK228 significantly increased ROS levels, leading to induction of death, reduction of drug resistance, and induction of DNA damage and oxidation in cancerous MCF10A-Ras cells. Furthermore, synergistic induction of cell death and reduction of drug resistance by combined cisplatin and FK228 in breast cells is independent of their estrogen receptor status. Our study suggests that combined cisplatin and FK228 should be considered in clinical trials as a new regimen for therapeutic control of breast cancers. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Exploring environmental causes of altered ras effects: fragmentation plus integration?

    PubMed

    Porta, Miquel; Ayude, Daniel; Alguacil, Juan; Jariod, Manuel

    2003-02-01

    Mutations in ras genes are the most common abnormality of oncogenes in human cancer and a major example of activation by point mutation. Experimental and epidemiological studies support the notion that Ki-ras activation and expression may be chemically related. We discuss the potential role of several environmental compounds in the induction or promotion of ras mutations in humans, with a focus on exocrine pancreatic cancer, the human tumor with the highest prevalence at diagnosis of Ki-ras mutations. Organochlorine compounds, organic solvents, and coffee compounds may play an indirect role in causing Ki-ras mutations, rather than as direct inducers of the mutations. Although for some organochlorine compounds the induction of point mutations in ras oncogenes cannot be excluded, it seems more likely that the effects of these compounds are mediated through nongenomic or indirectly genotoxic mechanisms of action. Organic solvents also may act via enzymatic induction of ras mutagens or by providing a proliferation advantage to ras-mutated cell clones. In exocrine pancreatic cancer, caffeine, other coffee compounds, or other factors with which coffee drinking is associated could modulate Ki-ras activation by interfering with DNA repair, cell-cycle checkpoints, and apoptosis. Asbestos, cigarette smoking, and some dietary factors also may be involved in the initiation or the promotion of Ki-ras mutations in lung and colon cancers. Further development of the mechanistic scenarios proposed here could contribute to a meaningful integration of biological, clinical, and environmental knowledge on the causes of altered ras effects. Copyright 2003 Wiley-Liss, Inc.

  9. (Pro)renin receptor: Involvement in diabetic retinopathy and development of molecular targeted therapy.

    PubMed

    Kanda, Atsuhiro; Ishida, Susumu

    2018-03-25

    The renin-angiotensin system (RAS), a crucial regulator of systemic blood pressure (circulatory RAS), plays distinct roles in pathological angiogenesis and inflammation in various organs (tissue RAS), such as diabetic microvascular complications. Using ocular clinical samples and animal disease models, we elucidated molecular mechanisms in which tissue RAS excites the expression of vascular endothelial growth factor (VEGF)-A responsible for retinal inflammation and angiogenesis, the two major pathological events in diabetic retinopathy (DR). Furthermore, we showed the involvement of (pro)renin receptor [(P)RR] in retinal RAS activation and its concurrent intracellular signal transduction (e.g., extracellular signal-regulated kinase); namely, the (P)RR-induced dual pathogenic bioactivity referred to as the receptor-associated prorenin system. Indeed, neovascular endothelial cells in the fibrovascular tissue collected from eyes with proliferative DR were immunoreactive for the receptor-associated prorenin system components including prorenin, (P)RR, phosphorylated extracellular signal-regulated kinase and VEGF-A. Protein levels of soluble (P)RR increased with its positive correlations with prorenin, renin enzymatic activity and VEGF in the vitreous of proliferative DR eyes, suggesting a close link between (P)RR and VEGF-A-driven angiogenic activity. Furthermore, we revealed an unsuspected, PAPS-independent role of (P)RR in glucose-induced oxidative stress. Recently, we developed an innovative single-strand ribonucleic acid interference molecule selectively targeting human and mouse (P)RR, and confirmed its efficacy in suppressing diabetes-induced retinal inflammation in mice. Our data using clinical samples and animal models suggested the significant implication of (P)RR in the pathogenesis of DR, and the potential usefulness of the ribonucleic acid interference molecule as a therapeutic agent to attenuate ocular inflammation and angiogenesis. © 2018 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  10. Ras GTPases Modulate Morphogenesis, Sporulation and Cellulase Gene Expression in the Cellulolytic Fungus Trichoderma reesei

    PubMed Central

    Zhang, Jiwei; Zhang, Yanmei; Zhong, Yaohua; Qu, Yinbo; Wang, Tianhong

    2012-01-01

    Background The model cellulolytic fungus Trichoderma reesei (teleomorph Hypocrea jecorina) is capable of responding to environmental cues to compete for nutrients in its natural saprophytic habitat despite its genome encodes fewer degradative enzymes. Efficient signalling pathways in perception and interpretation of environmental signals are indispensable in this process. Ras GTPases represent a kind of critical signal proteins involved in signal transduction and regulation of gene expression. In T. reesei the genome contains two Ras subfamily small GTPases TrRas1 and TrRas2 homologous to Ras1 and Ras2 from S. cerevisiae, but their functions remain unknown. Methodology/Principal Findings Here, we have investigated the roles of GTPases TrRas1 and TrRas2 during fungal morphogenesis and cellulase gene expression. We show that both TrRas1 and TrRas2 play important roles in some cellular processes such as polarized apical growth, hyphal branch formation, sporulation and cAMP level adjustment, while TrRas1 is more dominant in these processes. Strikingly, we find that TrRas2 is involved in modulation of cellulase gene expression. Deletion of TrRas2 results in considerably decreased transcription of cellulolytic genes upon growth on cellulose. Although the strain carrying a constitutively activated TrRas2G16V allele exhibits increased cellulase gene transcription, the cbh1 and cbh2 expression in this mutant still strictly depends on cellulose, indicating TrRas2 does not directly mediate the transmission of the cellulose signal. In addition, our data suggest that the effect of TrRas2 on cellulase gene is exerted through regulation of transcript abundance of cellulase transcription factors such as Xyr1, but the influence is independent of cAMP signalling pathway. Conclusions/Significance Together, these findings elucidate the functions for Ras signalling of T. reesei in cellular morphogenesis, especially in cellulase gene expression, which contribute to deciphering the powerful competitive ability of plant cell wall degrading fungi in nature. PMID:23152805

  11. Ovarian expression of cellular Ki-ras p21 varies with physiological status.

    PubMed Central

    Palejwala, S; Goldsmith, L T

    1992-01-01

    To elucidate the potential role of the ras protooncogene proteins in a specific tissue, the present study determined the levels of individual c-ras-encoded p21 proteins in the rat ovary during various stages of physiological function. p21 protein was extracted from ovaries taken from immature normal female rats, mature nonpregnant animals in the metestrus stage of the estrus cycle, rats at various stages of pregnancy, and actively lactating animals. Levels of individual p21s were evaluated by immunoblot analysis with specific antibodies to the p21 proteins encoded by the Kirsten, Harvey, and neuroblastoma c-ras protooncogenes, c-Ki-ras, c-Ha-ras, and N-ras. Results showed that c-Ki-ras p21 is at its lowest level in the immature ovary and increases with development of the corpora lutea to its highest levels at day 16 of pregnancy, after which levels decline and then rise again during lactation. This pattern, which mimics that of circulating progesterone levels, suggests that ovarian c-Ki-ras p21 levels are regulated and that c-Ki-ras p21 plays a role in the differentiated function of the rat ovary, likely the luteal compartment. In contrast, levels of c-N-ras p21 did not appear to vary with changes in the physiological function of the ovary but appeared to be constitutive. A preferential role for the c-Ki-ras p21 may be due to the documented unique differences in the structure of the carboxyl terminus of this particular c-ras p21. Images PMID:1570348

  12. Pedunculopontine Nucleus Gamma Band Activity-Preconscious Awareness, Waking, and REM Sleep

    PubMed Central

    Urbano, Francisco J.; D’Onofrio, Stasia M.; Luster, Brennon R.; Beck, Paige B.; Hyde, James Robert; Bisagno, Veronica; Garcia-Rill, Edgar

    2014-01-01

    The pedunculopontine nucleus (PPN) is a major component of the reticular activating system (RAS) that regulates waking and REM sleep, states of high-frequency EEG activity. Recently, we described the presence of high threshold, voltage-dependent N- and P/Q-type calcium channels in RAS nuclei that subserve gamma band oscillations in the mesopontine PPN, intralaminar parafascicular nucleus (Pf), and pontine subcoeruleus nucleus dorsalis (SubCD). Cortical gamma band activity participates in sensory perception, problem solving, and memory. Rather than participating in the temporal binding of sensory events as in the cortex, gamma band activity in the RAS may participate in the processes of preconscious awareness, and provide the essential stream of information for the formulation of many of our actions. That is, the RAS may play an early permissive role in volition. Our latest results suggest that (1) the manifestation of gamma band activity during waking may employ a separate intracellular pathway compared to that during REM sleep, (2) neuronal calcium sensor (NCS-1) protein, which is over expressed in schizophrenia and bipolar disorder, modulates gamma band oscillations in the PPN in a concentration-dependent manner, (3) leptin, which undergoes resistance in obesity resulting in sleep dysregulation, decreases sodium currents in PPN neurons, accounting for its normal attenuation of waking, and (4) following our discovery of electrical coupling in the RAS, we hypothesize that there are cell clusters within the PPN that may act in concert. These results provide novel information on the mechanisms controlling high-frequency activity related to waking and REM sleep by elements of the RAS. PMID:25368599

  13. Pedunculopontine Nucleus Gamma Band Activity-Preconscious Awareness, Waking, and REM Sleep.

    PubMed

    Urbano, Francisco J; D'Onofrio, Stasia M; Luster, Brennon R; Beck, Paige B; Hyde, James Robert; Bisagno, Veronica; Garcia-Rill, Edgar

    2014-01-01

    The pedunculopontine nucleus (PPN) is a major component of the reticular activating system (RAS) that regulates waking and REM sleep, states of high-frequency EEG activity. Recently, we described the presence of high threshold, voltage-dependent N- and P/Q-type calcium channels in RAS nuclei that subserve gamma band oscillations in the mesopontine PPN, intralaminar parafascicular nucleus (Pf), and pontine subcoeruleus nucleus dorsalis (SubCD). Cortical gamma band activity participates in sensory perception, problem solving, and memory. Rather than participating in the temporal binding of sensory events as in the cortex, gamma band activity in the RAS may participate in the processes of preconscious awareness, and provide the essential stream of information for the formulation of many of our actions. That is, the RAS may play an early permissive role in volition. Our latest results suggest that (1) the manifestation of gamma band activity during waking may employ a separate intracellular pathway compared to that during REM sleep, (2) neuronal calcium sensor (NCS-1) protein, which is over expressed in schizophrenia and bipolar disorder, modulates gamma band oscillations in the PPN in a concentration-dependent manner, (3) leptin, which undergoes resistance in obesity resulting in sleep dysregulation, decreases sodium currents in PPN neurons, accounting for its normal attenuation of waking, and (4) following our discovery of electrical coupling in the RAS, we hypothesize that there are cell clusters within the PPN that may act in concert. These results provide novel information on the mechanisms controlling high-frequency activity related to waking and REM sleep by elements of the RAS.

  14. Metabolic Rate Regulation by the Renin-Angiotensin System: Brain vs. Body

    PubMed Central

    Grobe, Justin L.; Rahmouni, Kamal; Liu, Xuebo; Sigmund, Curt D.

    2013-01-01

    Substantial evidence supports a role for the renin-angiotensin system (RAS) in the regulation of metabolic function, but an apparent paradox exists where genetic or pharmacological inhibition of the RAS occasionally have similar physiological effects as chronic angiotensin infusion. Similarly, while RAS targeting in animal models has robust metabolic consequences, effects in humans are more subtle. Here we review the data supporting a role for the RAS in metabolic rate regulation and propose a model where the local brain RAS works in opposition to the peripheral RAS, thus helping to explain the paradoxically similar effects of RAS supplementation and inhibition. Selectively modulating the peripheral RAS or brain RAS may thus provide a more effective treatment paradigm for obesity and obesity-related disorders. PMID:22491893

  15. Targeting the renin-angiotensin system as novel therapeutic strategy for pulmonary diseases.

    PubMed

    Tan, Wan Shun Daniel; Liao, Wupeng; Zhou, Shuo; Mei, Dan; Wong, Wai-Shiu Fred

    2017-12-27

    The renin-angiotensin system (RAS) plays a major role in regulating electrolyte balance and blood pressure. RAS has also been implicated in the regulation of inflammation, proliferation and fibrosis in pulmonary diseases such as asthma, acute lung injury (ALI), chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF) and pulmonary arterial hypertension (PAH). Current therapeutics suffer from some drawbacks like steroid resistance, limited efficacies and side effects. Novel intervention is definitely needed to offer optimal therapeutic strategy and clinical outcome. This review compiles and analyses recent investigations targeting RAS for the treatment of inflammatory lung diseases. Inhibition of the upstream angiotensin (Ang) I/Ang II/angiotensin receptor type 1 (AT 1 R) pathway and activation of the downstream angiotensin-converting enzyme 2 (ACE2)/Ang (1-7)/Mas receptor pathway are two feasible strategies demonstrating efficacies in various pulmonary disease models. More recent studies favor the development of targeting the downstream ACE2/Ang (1-7)/Mas receptor pathway, in which diminazene aceturate, an ACE2 activator, GSK2586881, a recombinant ACE2, and AV0991, a Mas receptor agonist, showed much potential for further development. As the pathogenesis of pulmonary diseases is so complex that RAS modulation may be used alone or in combination with existing drugs like corticosteroids, pirfenidone/nintedanib or endothelin receptor antagonists for different pulmonary diseases. Personalized medicine through genetic screening and phenotyping for angiotensinogen or ACE would aid treatment especially for non-responsive patients. This review serves to provide an update on the latest development in the field of RAS targeting for pulmonary diseases, and offer some insights into future direction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Low-protein diet supplemented with ketoacids ameliorates proteinuria in 3/4 nephrectomised rats by directly inhibiting the intrarenal renin-angiotensin system.

    PubMed

    Zhang, Jia-Ying; Yin, Ying; Ni, Li; Long, Quan; You, Li; Zhang, Qian; Lin, Shan-Yan; Chen, Jing

    2016-11-01

    Low-protein diet plus ketoacids (LPD+KA) has been reported to decrease proteinuria in patients with chronic kidney diseases (CKD). However, the mechanisms have not been clarified. As over-activation of intrarenal renin-angiotensin system (RAS) has been shown to play a key role in the progression of CKD, the current study was performed to investigate the direct effects of LPD+KA on intrarenal RAS, independently of renal haemodynamics. In this study, 3/4 subtotal renal ablated rats were fed 18 % normal-protein diet (Nx-NPD), 6 % low-protein diet (Nx-LPD) or 5 % low-protein diet plus 1 % ketoacids (Nx-LPD+KA) for 12 weeks. Sham-operated rats fed NPD served as controls. The level of proteinuria and expression of renin, angiotensin II (AngII) and its type 1 receptors (AT1R) in the renal cortex were markedly higher in Nx-NPD group than in the sham group. LPD+KA significantly decreased the proteinuria and inhibited intrarenal RAS activation. To exclude renal haemodynamic impact on intrarenal RAS, the serum samples derived from the different groups were added to the culture medium of mesangial cells. It showed that the serum from Nx-NPD directly induced higher expression of AngII, AT1R, fibronectin and transforming growth factor-β1 in the mesangial cells than in the control group. Nx-LPD+KA serum significantly inhibited these abnormalities. Then, proteomics and biochemical detection suggested that the mechanisms underlying these beneficial effects of LPD+KA might be amelioration of the nutritional metabolic disorders and oxidative stress. In conclusion, LPD+KA could directly inhibit the intrarenal RAS activation, independently of renal haemodynamics, thus attenuating the proteinuria in CKD rats.

  17. Impaired endogenous nighttime melatonin secretion relates to intrarenal renin-angiotensin system activation and renal damage in patients with chronic kidney disease.

    PubMed

    Ishigaki, Sayaka; Ohashi, Naro; Isobe, Shinsuke; Tsuji, Naoko; Iwakura, Takamasa; Ono, Masafumi; Sakao, Yukitoshi; Tsuji, Takayuki; Kato, Akihiko; Miyajima, Hiroaki; Yasuda, Hideo

    2016-12-01

    Activation of the intrarenal renin-angiotensin system (RAS) plays a critical role in the pathophysiology of chronic kidney disease (CKD) and hypertension. The circadian rhythm of intrarenal RAS activation leads to renal damage and hypertension, which are associated with diurnal blood pressure (BP) variation. The activation of intrarenal RAS following reactive oxygen species (ROS) activation, sympathetic hyperactivity and nitric oxide (NO) inhibition leads to the development of renal damage. Melatonin is a hormone regulating the circadian rhythm, and has multiple functions such as anti-oxidant and anti-adrenergic effects and enhancement of NO bioavailability. Nocturnal melatonin concentrations are lower in CKD patients. However, it is not known if impaired endogenous melatonin secretion is related to BP, intrarenal RAS, or renal damage in CKD patients. We recruited 53 CKD patients and conducted 24-h ambulatory BP monitoring. urine was collected during the daytime and nighttime. We investigated the relationship among the melatonin metabolite urinary 6-sulphatoxymelatonin (U-aMT6s), BP, renal function, urinary angiotensinogen (U-AGT), and urinary albumin (U-Alb). Patients' U-aMT6s levels were significantly and negatively correlated with clinical parameters such as renal function, systolic BP, U-AGT, and U-Alb, during both day and night. Multiple regression analyses for U-aMT6s levels were performed using age, gender, renal function, and each parameter (BPs, U-AGT or U-Alb), at daytime and nighttime. U-aMT6s levels were significantly associated with U-AGT (β = -0.31, p = 0.044) and U-Alb (β = -0.25, p = 0.025) only at night. Impaired nighttime melatonin secretion may be associated with nighttime intrarenal RAS activation and renal damage in CKD patients.

  18. Impact of The Protective Renin-Angiotensin System (RAS) on The Vasoreparative Function of CD34+ CACs in Diabetic Retinopathy

    NASA Technical Reports Server (NTRS)

    Duan, Yaqian; Moldovan, Leni; Miller, Rehae C.; Beli, Eleni; Salazar, Tatiana; Hazra, Sugata; Al-Sabah, Jude; Chalam, KV; Raghunandan, Sneha; Vyas, Ruchi; hide

    2016-01-01

    Purpose: In diabetes, the impaired vasoreparative function of Circulating Angiogenic Cells (CACs) is believed to contribute to the progression of diabetic retinopathy (DR). Accumulating evidence suggests that the protective arm of renin-angiotensin system (RAS) ACE2 Angiotensin-(1-7) Mas plays an important role in restoring the function of diabetic CACs. We examined the protective RAS in CACs in diabetic individuals with different stages of retinopathy. Methods: Study subjects (n43) were recruited as controls or diabetics with either no DR, mild non-proliferative DR (NPDR), moderate NPDR, severe NPDR or proliferative DR (PDR). Fundus photography and fluorescein angiograms were analyzed using Vessel Generation Analysis (VESGEN) software in a cohort of subjects. CD34+ CACs were isolated from peripheral blood of diabetics and control subjects. RAS gene expressions in CACs were measured by qPCR. The vasoreparative function of CACs was assessed by migration ability toward CXCL12 using the QCM 5M 96-well chemotaxis cell migration assay. Results: ACE2 gene is a key enzyme converting the deleterious Angiotensin II to the beneficial Angiotensin-(1-7). ACE2 expression in CACs from diabetic subjects without DR was increased compared to controls, suggestive of compensation (p0.0437). The expression of Mas (Angiotensin-(1-7) receptor) in CACs was also increased in diabetics without DR, while was reduced in NPDR compared to controls (p0.0002), indicating a possible loss of compensation of the protective RAS at this stage of DR. The presence of even mild NPDR was associated with CD34+ CAC migratory dysfunction. When pretreating CACs of DR subjects with Angiotensin-(1-7), migratory ability to a chemoattractant CXCL12 was restored (p0.0008). By VESGEN analysis, an increase in small vessel density was observed in NPDR subjects when compared with the controls. Conclusions: These data suggest the protective RAS axis within diabetic CACs may help maintain their vasoreparative potential. The VESGEN analysis supports the presence of retinal repair in small vessels. The loss of the protective arm of RAS may predict the progression of DR.

  19. Serum levels of angiotensin converting enzyme as a biomarker of liver fibrosis

    PubMed Central

    Miranda, Aline Silva; Simões e Silva, Ana Cristina

    2017-01-01

    The renin angiotensin system (RAS) is classically conceived as a circulating hormonal system involved in blood pressure control and hydroelectrolyte balance. The discovery that RAS components are locally expressed in a wide range of organs and tissues, including the liver, pointed to a role for this system in the pathogenesis of several conditions including hepatic fibrosis and cirrhosis. It has been widely reported that the classical RAS axis composed by the angiotensin converting enzyme (ACE)-angiotensin (Ang) II-Ang type 1 (AT1) receptor mediates pro-inflammatory, pro-thrombotic, and pro-fibrotic processes. On the other hand, the alternative axis comprising ACE2-Ang-(1-7)-Mas receptor seems to play a protective role by frequently opposing Ang II action. Chronic hepatitis B (CHB) is one of the leading causes of liver fibrosis, accounting for the death of nearly one million people worldwide. Liver fibrosis is a key factor to determine therapeutic interventions for patients with CHB. However, the establishment of non-invasive and accurate methods to detect reversible stages of liver fibrosis is still a challenge. In an elegant study published in the 36th issue of the World Journal of Gastroenterology, Noguchi et al showed the predictive value of serum ACE levels in detecting not only advanced stages of liver fibrosis but also initial and intermediate fibrotic stages. The serum levels of ACE might represent an accurate, non-invasive, widely available, and easy method to evaluate fibrosis related to CHB. Moreover, therapies involving the inhibition of the classical RAS axis components might be promising in the control of CHB-related liver fibrosis. PMID:29358853

  20. Serum levels of angiotensin converting enzyme as a biomarker of liver fibrosis.

    PubMed

    Miranda, Aline Silva; Simões E Silva, Ana Cristina

    2017-12-28

    The renin angiotensin system (RAS) is classically conceived as a circulating hormonal system involved in blood pressure control and hydroelectrolyte balance. The discovery that RAS components are locally expressed in a wide range of organs and tissues, including the liver, pointed to a role for this system in the pathogenesis of several conditions including hepatic fibrosis and cirrhosis. It has been widely reported that the classical RAS axis composed by the angiotensin converting enzyme (ACE)-angiotensin (Ang) II-Ang type 1 (AT1) receptor mediates pro-inflammatory, pro-thrombotic, and pro-fibrotic processes. On the other hand, the alternative axis comprising ACE2-Ang-(1-7)-Mas receptor seems to play a protective role by frequently opposing Ang II action. Chronic hepatitis B (CHB) is one of the leading causes of liver fibrosis, accounting for the death of nearly one million people worldwide. Liver fibrosis is a key factor to determine therapeutic interventions for patients with CHB. However, the establishment of non-invasive and accurate methods to detect reversible stages of liver fibrosis is still a challenge. In an elegant study published in the 36 th issue of the World Journal of Gastroenterology , Noguchi et al showed the predictive value of serum ACE levels in detecting not only advanced stages of liver fibrosis but also initial and intermediate fibrotic stages. The serum levels of ACE might represent an accurate, non-invasive, widely available, and easy method to evaluate fibrosis related to CHB. Moreover, therapies involving the inhibition of the classical RAS axis components might be promising in the control of CHB-related liver fibrosis.

  1. HTLV-1 Tax protein cooperates with Ras in protecting cells from apoptosis.

    PubMed

    Vajente, Nicola; Trevisan, Roberta; Saggioro, Daniela

    2009-02-01

    Tax protein of the human T-cell leukemia virus type 1 (HTLV-1) plays a critical role in HTLV-I-correlated diseases through its ability to deregulate the expression of a vast array of cellular genes. We have previously shown that Tax counteracts apoptosis induced by stimuli triggering mitochondria apoptotic pathway, most likely by activating CREB-mediated transcription and affecting the phosphorylation levels of CREB at Ser-133. Here, we report data that indicate the oncoprotein Ras as a possible mediator of Tax-induced apoptosis protection and suggest a possible role of Tax in Ras activation. In addition, using inhibitors of down stream effectors of Ras, we found that ERK signaling is the most relevant for Tax-mediated apoptosis protection. As a whole, our findings provide intriguing evidence of a possible link between Ras signaling and Tax capability to counteract apoptosis and to enhance P-CREB levels, and implicates a potential role for Ras in HTLV-1-induced diseases.

  2. [Carcinogenesis and its mechanism of mutant-type[12Asp]K-ras4B gene].

    PubMed

    Gui, Li-ming; Wei, Li-hui; Zhang, Ying-mei; Wang, Jian-liu; Wang, Ying; Chen, Ying; Ma, Da-long

    2002-01-01

    Ras gene plays an important role in the extra- and intra-cellular signal transduction pathway. It mediates series cascade reactions, and eventually actives transcriptional factors in nucleus. It is unknown on the mechanism of carcinogenesis of Ras gene in endometrial carcinoma, though K-ras mutant is very common in endometrial atypical hyperplasia and carcinoma. On basis of discovering the mutation in 12th codon of K-ras in endometrial carcinoma cell line, HEC-1A, we explored the carcinogenesis and molecular mechanism of mutant-type [12Asp] K-ras4B gene. (1) Full-length [12Asp]K-ras4B cDNA was amplified with RT-PCR, then inserted into pcDI eukaryotic expressive vector. (2) Morphological change, growth kinetics in vitro and tumorigencity in nude mice in vivo after-before transfection were observed. (3) To test the cell growth kinetics by methyl thiazolium tetrazolium (MTT) and [3H]thymidine incorporation method. (1) The authors have successfully constructed eukaryotic expression plasmid pcDI-[12Asp] K-ras4B; (2) To confirm that [12Asp] K-ras4B mutant can trigger the neoplastic transformation of NIH3T3 cells by test in vitro and in vivo. (3) After pMCV-RasN17 plasmid, a Ras mutant were transfected into pcDI-[12Asp] K-ras4B cells, the growth of this cell were restrained significantly in comparison with control group. (4) These findings indicate the expression of RafS621A resulted in remarkable inhibition in proliferation of pcDI-[12Asp]K-ras4B cell (P < 0.05). However, RafCAAX mutant can enhance pcDI-[12Asp]K-ras4B cell growth (P < 0.05). (1) [12Asp]K-ras4B gene alone is able to cause neoplastic transformation in NIH3T3 cells in vitro and in vivo. (2) [12Asp]K-ras4B-induced NIH3T3 cells neoplastic transformation required Raf signaling pathway.

  3. Mapping the functional versatility and fragility of Ras GTPase signaling circuits through in vitro network reconstitution.

    PubMed

    Coyle, Scott M; Lim, Wendell A

    2016-01-14

    The Ras-superfamily GTPases are central controllers of cell proliferation and morphology. Ras signaling is mediated by a system of interacting molecules: upstream enzymes (GEF/GAP) regulate Ras's ability to recruit multiple competing downstream effectors. We developed a multiplexed, multi-turnover assay for measuring the dynamic signaling behavior of in vitro reconstituted H-Ras signaling systems. By including both upstream regulators and downstream effectors, we can systematically map how different network configurations shape the dynamic system response. The concentration and identity of both upstream and downstream signaling components strongly impacted the timing, duration, shape, and amplitude of effector outputs. The distorted output of oncogenic alleles of Ras was highly dependent on the balance of positive (GAP) and negative (GEF) regulators in the system. We found that different effectors interpreted the same inputs with distinct output dynamics, enabling a Ras system to encode multiple unique temporal outputs in response to a single input. We also found that different Ras-to-GEF positive feedback mechanisms could reshape output dynamics in distinct ways, such as signal amplification or overshoot minimization. Mapping of the space of output behaviors accessible to Ras provides a design manual for programming Ras circuits, and reveals how these systems are readily adapted to produce an array of dynamic signaling behaviors. Nonetheless, this versatility comes with a trade-off of fragility, as there exist numerous paths to altered signaling behaviors that could cause disease.

  4. Pharmacodynamic effects of C-domain-specific ACE inhibitors on the renin-angiotensin system in myocardial infarcted rats.

    PubMed

    Sharp, Sarah; Poglitsch, Marko; Zilla, Peter; Davies, Neil H; Sturrock, Edward D

    2015-12-01

    The renin-angiotensin system (RAS) is a dynamic network that plays a critical role in blood pressure regulation and fluid and electrolyte homeostasis. Modulators of the RAS, such as angiotensin-converting enzyme (ACE) inhibitors, are widely used to treat hypertension, heart failure and myocardial infarction. The effect of ACE inhibitors (lisinopril and C-domain-selective LisW-S) on the constituent peptides of the RAS following myocardial infarction was examined in rats. Ten angiotensin peptides were analysed using a sensitive LC-MS/MS-based assay to examine both the circulating and equilibrium levels of these peptides. Administration of lisinopril or LisW-S caused a significant decrease in Ang 1-8/Ang 1-10 ratios as determined by circulating and equilibrium peptide level analysis. Furthermore, Ang 1-7 levels were elevated by both ACE inhibitors, but only lisinopril decreased the Ang 1-5/Ang 1-7 ratio. This indicates LisW-S C-domain specificity as Ang 1-5 is generated by hydrolysis of Ang 1-7 by the N-domain. Further corroboration of LisW-S C-domain specificity is that only lisinopril increased the circulating levels of the N-domain ACE substrate Ac-SDKP. LisW-S is able to effectively block ACE in vivo by C-domain-selective inhibition. The LC-MS/MS-based assay allows the evaluation of the pharmacologic impact of RAS inhibitors in different pathophysiological conditions. © The Author(s) 2015.

  5. The Role of Aldosterone in Obesity-Related Hypertension

    PubMed Central

    Kawarazaki, Wakako

    2016-01-01

    Obese subjects often have hypertension and related cardiovascular and renal diseases, and this has become a serious worldwide health problem. In obese subjects, impaired renal-pressure natriuresis causes sodium retention, leading to the development of salt-sensitive hypertension. Physical compression of the kidneys by visceral fat and activation of the sympathetic nervous system, renin–angiotensin systems (RAS), and aldosterone/mineralocorticoid receptor (MR) system are involved in this mechanism. Obese subjects often exhibit hyperaldosteronism, with increased salt sensitivity of blood pressure (BP). Adipose tissue excretes aldosterone-releasing factors, thereby stimulating aldosterone secretion independently of the systemic RAS, and aldosterone/MR activation plays a key role in the development of hypertension and organ damage in obesity. In obese subjects, both salt sensitivity of BP, enhanced by obesity-related metabolic disorders including aldosterone excess, and increased dietary sodium intake are closely related to the incidence of hypertension. Some salt sensitivity-related gene variants affect the risk of obesity, and together with salt intake, its combination is possibly associated with the development of hypertension in obese subjects. With high salt levels common in modern diets, salt restriction and weight control are undoubtedly important. However, not only MR blockade but also new diagnostic modalities and therapies targeting and modifying genes that are related to salt sensitivity, obesity, or RAS regulation are expected to prevent obesity and obesity-related hypertension. PMID:26927805

  6. Inhibition of Fas (CD95) expression and Fas-mediated apoptosis by oncogenic Ras.

    PubMed

    Fenton, R G; Hixon, J A; Wright, P W; Brooks, A D; Sayers, T J

    1998-08-01

    The ras oncogene plays an important role in the multistep progression to cancer by activation of signal transduction pathways that contribute to aberrant growth regulation. Although many of these effects are cell autonomous, the ras oncogene also regulates the expression of genes that alter host/tumor interactions. We now extend the mechanisms through which ras promotes tumor survival by demonstrating that oncogenic Ras inhibits expression of the fas gene and renders Ras-transformed cells resistant to Fas-induced apoptosis. A panel of Ras-transformed clones exhibited a marked inhibition in fas mRNA and Fas cell surface expression as compared with untransformed parental cell lines. Fas expression was induced by culture in the presence of IFN-gamma + tumor necrosis factor alpha; however, the maximal level attained in Ras transformants was approximately 10-fold below the level of untransformed cells. Whereas untransformed cells were sensitive to apoptotic death induced by cross-linking surface Fas (especially after cytokine treatment), Ras-transformed cells were very resistant to Fas-induced death even under the most stringent assay conditions. To demonstrate that this resistance was mediated by oncogenic Ras and not secondary genetic events, pools of Ras-transformed cells were generated using a highly efficient retroviral transduction technique. Transformed pools were assayed 6 days after infection and demonstrated a marked decrease in fas gene expression and Fas-mediated apoptosis. Oncogenic Ras did not promote general resistance to apoptosis, because ectopic expression of a fas cDNA in Ras-transformed cells restored sensitivity to Fas-induced apoptosis. These data indicate that oncogenic Ras inhibits basal levels of expression of the fas gene, and although cytokine signal transduction pathways are functional in these cells, the level of surface Fas expression remains below the threshold required for induction of apoptosis. These data identify a mechanism by which Ras-transformed cells may escape from host-mediated immune destruction.

  7. The muscular expression of RAS in patients with achalasia.

    PubMed

    Casselbrant, A; Kostic, S; Lönroth, H

    2015-09-01

    Angiotensin II (AngII) elicits smooth muscle contractions via activation of AngII type 1 receptor (AT1R) in the intestinal wall and in sphincter regions in several species. Achalasia is a rare swallowing disorder and is characterized by a loss of the wave-like contraction that forces food through the oesophagus and a failure of the lower oesophageal sphincter to relax during swallowing. The present study was undertaken to elucidate expression and distribution of a local renin-angiotensin system (RAS) in the muscular layer of distal normal human oesophagus as well as in patients with achalasia using western blot analysis, immunohistochemistry and polymerase chain reaction (PCR). AT1R, together with enzyme renin and cathepsin D expression were decreased in patients with achalasia. In contrast, the mast cells chymase, cathepsin G, neprilysin and the receptor for angiotensin 1-7 peptides, the MAS receptor, were increased in patients with achalasia. The results showed the existence of a local RAS in human oesophageal muscular layer. The enzymes responsible for AngII production are different and there has been a shift in receptor physiology from AT1R to MAS receptor in patients with achalasia. These changes in the RAS might play a significant role in the physiological motor control for patients with achalasia. © The Author(s) 2014.

  8. Resistance and resilience of small-scale recirculating aquaculture systems (RAS) with or without algae to pH perturbation

    PubMed Central

    Giatsis, Christos; Md Yusoff, Fatimah; Verreth, Johan; Verdegem, Marc

    2018-01-01

    The experimental set-up of this study mimicked recirculating aquaculture systems (RAS) where water quality parameters such as dissolved oxygen, pH, temperature, and turbidity were controlled and wastes produced by fish and feeding were converted to inorganic forms. A key process in the RAS was the conversion of ammonia to nitrite and nitrite to nitrate through nitrification. It was hypothesized that algae inclusion in RAS would improve the ammonia removal from the water; thereby improving RAS water quality and stability. To test this hypothesis, the stability of the microbiota community composition in a freshwater RAS with (RAS+A) or without algae (RAS-A) was challenged by introducing an acute pH drop (from pH 7 to 4 during three hours) to the system. Stigeoclonium nanum, a periphytic freshwater microalga was used in this study. No significant effect of the algae presence was found on the resistance to the acute pH drop on ammonia conversion to nitrite and nitrite conversion to nitrate. Also the resilience of the ammonia conversion to the pH drop disruption was not affected by the addition of algae. This could be due to the low biomass of algae achieved in the RAS. However, with regard to the conversion step of nitrite to nitrate, RAS+A was significantly more resilient than RAS-A. In terms of overall bacterial communities, the composition and predictive function of the bacterial communities was significantly different between RAS+A and RAS-A. PMID:29659617

  9. Hemodynamic responses to acute and gradual renal artery stenosis in pigs.

    PubMed

    Rognant, Nicolas; Rouvière, Olivier; Janier, Marc; Lê, Quoc Hung; Barthez, Paul; Laville, Maurice; Juillard, Laurent

    2010-11-01

    Reduction of renal blood flow (RBF) due to a renal artery stenosis (RAS) can lead to renal ischemia and atrophy. However in pigs, there are no data describing the relationship between the degree of RAS, the reduction of RBF, and the increase of systemic plasma renin activity (PRA). Therefore, we conducted a study in order to measure the effect of acute and gradual RAS on RBF, mean arterial pressure (MAP), and systemic PRA in pigs. RAS was induced experimentally in six pigs using an occluder placed around the renal artery downstream of an ultrasound flow probe. The vascular occluder was inflated gradually to reduce RBF. At each inflation step, percentage of RAS was measured by digital subtraction angiography (DSA) with simultaneous measurements of RBF, MAP, and PRA. Data were normalized to baseline values obtained before RAS induction. Piecewise regression analysis was performed between percentage of RAS and relative RBF, MAP, and PRA, respectively. In all pigs, the relationship between the degree of RAS and RBF was similar. RBF decreased over a threshold of 42% of RAS, with a rapid drop in RBF when RAS reached 70%. PRA increased dramatically over a threshold of 58% of RAS (+1,300% before occlusion). MAP increased slightly (+15% before occlusion) without identifiable threshold. This study emphasizes that the relation between the degree of RAS and RBF and systemic PRA is not linear and that a high degree of RAS must be reached before the occurrence of significant hemodynamic and humoral effects.

  10. RasGRP1 regulates antigen-induced developmental programming by naive CD8 T cells.

    PubMed

    Priatel, John J; Chen, Xiaoxi; Huang, Yu-Hsuan; Chow, Michael T; Zenewicz, Lauren A; Coughlin, Jason J; Shen, Hao; Stone, James C; Tan, Rusung; Teh, Hung Sia

    2010-01-15

    Ag encounter by naive CD8 T cells initiates a developmental program consisting of cellular proliferation, changes in gene expression, and the formation of effector and memory T cells. The strength and duration of TCR signaling are known to be important parameters regulating the differentiation of naive CD8 T cells, although the molecular signals arbitrating these processes remain poorly defined. The Ras-guanyl nucleotide exchange factor RasGRP1 has been shown to transduce TCR-mediated signals critically required for the maturation of developing thymocytes. To elucidate the role of RasGRP1 in CD8 T cell differentiation, in vitro and in vivo experiments were performed with 2C TCR transgenic CD8 T cells lacking RasGRP1. In this study, we report that RasGRP1 regulates the threshold of T cell activation and Ag-induced expansion, at least in part, through the regulation of IL-2 production. Moreover, RasGRP1(-/-) 2C CD8 T cells exhibit an anergic phenotype in response to cognate Ag stimulation that is partially reversible upon the addition of exogenous IL-2. By contrast, the capacity of IL-2/IL-2R interactions to mediate Ras activation and CD8 T cell expansion and differentiation appears to be largely RasGRP1-independent. Collectively, our results demonstrate that RasGRP1 plays a selective role in T cell signaling, controlling the initiation and duration of CD8 T cell immune responses.

  11. Mechanism study of low-energy laser irradiation-induced lung adenocarcinoma cell proliferation by FRET in living cell

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Chen, Xiao-Chuan; Xing, Da

    2004-07-01

    Low-energy laser irradiation (LELI) has been shown to promote cell proliferation in various cell types, yet the mechanism of which has not been fully clarified. The Ras/Raf/MEK (mitogen-activated protein kinase)ERK kinase)/ERK (extracellular-signal-regulated kinase) signaling pathway is a network that govern proliferation, differentiation and cell survival. Recent studies suggested that Ras/Raf/MEK/ERK pathway is involved in the LELI-induced cell proliferation. Here, we utilized fluorescence resonance energy transfer (FRET) technique to investigate the effect of LELI on Ras/Raf signaling pathway in living cells. Raichu-Ras reporter plasmid was utilized which consisted of fusions of H-ras, the Ras-binding domain of Raf(RafRBD), a cyan fluorescent protein (CFP) and a yellow fluorescent protein (YFP), so that intramolecular binding of GTP-Ras to RafRBD brings CFP close to YFP and increases FRET between CFP and YFP. Human lung adenocarcinoma cell line (ASTC-a-1) were transfected with the plasmid (pRaichu-Ras) and then were treated by LELI. The living cell imaging showed the increase of FRET at different time points after LELI at the dose of 1.8 J/cm2, which corresponds to the Ras/Raf activation assayed by Western Blotting. Furthermore, this dose of LELI enhanced the proliferation of ASTC-a-1 cells. Taken together, these in vivo imaging data provide direct evidences with temporal or spatial resolution that Ras/Raf/MEK/ pathway plays an important role in LELI-promoted cell proliferation.

  12. Clinical utility of RAS mutations in thyroid cancer: a blurred picture now emerging clearer.

    PubMed

    Xing, Mingzhao

    2016-01-27

    RAS mutations play an important role in thyroid tumorigenesis. Considerable effort has been made in the last decade to apply RAS mutations as molecular markers to the clinical management of thyroid nodules and thyroid cancer. Yet, for the low diagnostic sensitivities and specificities of RAS mutations, when used alone, and for their uncertain role in the clinical outcomes of thyroid cancer, it has been unclear how to appropriately use them to assist the management of thyroid nodules and thyroid cancer. Studies from recent years, now added from the Alexander group, have shed light on this issue, making a blurred clinical picture now emerge clearer-RAS mutations, when combined with other genetic markers, have high diagnostic negative predictive values for thyroid cancer; cytologically benign thyroid nodules, including those positive for RAS mutations, have long-term clinical stability when non-surgically managed; and differentiated thyroid cancers harboring RAS mutations alone have an excellent prognosis. This progress in understanding RAS mutations in thyroid cancer is showing a major impact on molecular-based practice in the management of thyroid cancer.Please see related research articles: http://dx.doi.org/10.1186/s12916-016-0554-1 and http://dx.doi.org/10.1186/s12916-015-0419-z.

  13. Novel approach to abuse the hyperactive K-Ras pathway for adenoviral gene therapy of colorectal cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naumov, Inna; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv; Kazanov, Dina

    2012-01-15

    Background: Functional activation of oncogenic K-Ras signaling pathway plays an important role in the early events of colorectal carcinogenesis (CRC). K-Ras proto-oncogene is involved in 35-40% of CRC cases. Mutations in the Ras gene trigger the transduction of proliferative and anti-apoptotic signals, even in the absence of extra cellular stimuli. The objective of the current study was to use a gene-targeting approach to kill human CRC cells selectively harboring mutated K-Ras. Results: A recombinant adenovirus that carries a lethal gene, PUMA, under the control of a Ras responsive promoter (Ad-Py4-SV40-PUMA) was used selectively to target CRC cells (HCT116, SW480, DLD1more » and RIE-Ras) that possess a hyperactive Ras pathway while using HT29 and RIE cells as a control that harbors wild type Ras and exhibit very low Ras activity. Control vector, without the Ras responsive promoter elements was used to assess the specificity of our 'gene therapy' approach. Both adenoviral vectors were assed in vitro and in xenograft model in vivo. Ad-Py4-SV40-PUMA showed high potency to induce {approx} 50% apoptosis in vitro, to abolish completely tumor formation by infecting cells with the Ad-Py4-SV40-PUMA prior xenografting them in nude mice and high ability to suppress by {approx} 35% tumor progression in vivo in already established tumors. Conclusions: Selective targeting of CRC cells with the activated Ras pathway may be a novel and effective therapy in CRC. The high potency of this adenoviral vector may help to overcome an undetectable micro metastasis that is the major hurdle in challenging with CRC.« less

  14. Salivary levels of TNF-α in patients with recurrent aphthous stomatitis: A cross-sectional study.

    PubMed

    Chaudhuri, Kanad; Nair, Keerthi Krishnankutty; Ashok, Lingappa

    2018-01-01

    Background. Recurrent aphthous stomatitis (RAS) is a disorder characterized by recurring ulcers involving the oral mucosa in patients with no other signs of disease. The current concept of etiopathogenesis is that RAS is a clinical syndrome with several possible etiologies. The process seen in RAS is probably initiated through an as yet unidentified antigenic stimulation of the mucosal keratinocytes, which stimulates secretion of T-cell activation cytokines ‒ interleukins and tumor necrosis factor alpha (TNF-α). TNF-α causes inflammation by its effect on endothelial cell adhesion and neutrophil chemotaxis. The rele-vance of TNF-α to the pathogenesis of RAS has stemmed from the observations that anti- TNF-α drugs such as thalidomide and pentoxifylline have been found to be effective in the treatment of RAS. Therefore, the present study was an attempt to measure the levels of salivary TNF-α in patients with RAS, which will reflect the local production of cytokines at the site of the disease. The aim was to evaluate the salivary levels of TNF-α in patients with recurrent aphthous stomatitis. Methods. The study comprised of 60 subjects, of whom 30 clinically proven RAS patients of either sex were selected as cases and 30 healthy, age- and gender- matched subjects were selected as controls. After taking informed consent, 5 mL of unstimulated saliva were collected from both the study and control group subjects. Determination of salivary TNF-α levels was carried out by Enzyme-Linked Immunosorbent Assay (ELISA) and expressed in pg/mL. Statistical analysis of the RAS and control groups was carried out using unpaired t-test. Gender-wise comparison of salivary TNF-α levels in the study and control groups was carried out using one-way ANOVA. Results. Mean salivary TNF-α levels were significantly higher in the RAS group compared to the control group (P<0.001). It was also revealed that the mean salivary TNF-α levels in females were significantly higher than in males in the study group (PP<0.05). Conclusion. It is fair to suggest that TNF-α plays a very important mediatory role in the pathogenesis of RAS and may play an important role in the search for a definitive treatment for the disease.

  15. Membrane Curvature and Lipid Composition Synergize To Regulate N-Ras Anchor Recruitment.

    PubMed

    Larsen, Jannik B; Kennard, Celeste; Pedersen, Søren L; Jensen, Knud J; Uline, Mark J; Hatzakis, Nikos S; Stamou, Dimitrios

    2017-09-19

    Proteins anchored to membranes through covalently linked fatty acids and/or isoprenoid groups play crucial roles in all forms of life. Sorting and trafficking of lipidated proteins has traditionally been discussed in the context of partitioning to membrane domains of different lipid composition. We recently showed that membrane shape/curvature can in itself mediate the recruitment of lipidated proteins. However, exactly how membrane curvature and composition synergize remains largely unexplored. Here we investigated how three critical structural parameters of lipids, namely acyl chain saturation, headgroup size, and acyl chain length, modulate the capacity of membrane curvature to recruit lipidated proteins. As a model system we used the lipidated minimal membrane anchor of the GTPase, N-Ras (tN-Ras). Our data revealed complex synergistic effects, whereby tN-Ras binding was higher on planar DOPC than POPC membranes, but inversely higher on curved POPC than DOPC membranes. This variation in the binding to both planar and curved membranes leads to a net increase in the recruitment by membrane curvature of tN-Ras when reducing the acyl chain saturation state. Additionally, we found increased recruitment by membrane curvature of tN-Ras when substituting PC for PE, and when decreasing acyl chain length from 14 to 12 carbons (DMPC versus DLPC). However, these variations in recruitment ability had different origins, with the headgroup size primarily influencing tN-Ras binding to planar membranes whereas the change in acyl chain length primarily affected binding to curved membranes. Molecular field theory calculations recapitulated these findings and revealed lateral pressure as an underlying biophysical mechanism dictating how curvature and composition synergize to modulate recruitment of lipidated proteins. Our findings suggest that the different compositions of cellular compartments could modulate the potency of membrane curvature to recruit lipidated proteins and thereby synergistically regulate the trafficking and sorting of lipidated proteins. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. H- ras deletion protects against angiotensin II-induced arterial hypertension and cardiac remodeling through protein kinase G-Iβ pathway activation.

    PubMed

    Martín-Sánchez, Paloma; Luengo, Alicia; Griera, Mercedes; Orea, María Jesús; López-Olañeta, Marina; Chiloeches, Antonio; Lara-Pezzi, Enrique; de Frutos, Sergio; Rodríguez-Puyol, Manuel; Calleros, Laura; Rodríguez-Puyol, Diego

    2018-02-01

    Ras proteins regulate cell survival, growth, differentiation, blood pressure, and fibrosis in some organs. We have demonstrated that H- ras gene deletion produces mice hypotension via a soluble guanylate cyclase-protein kinase G (PKG)-dependent mechanism. In this study, we analyzed the consequences of H- ras deletion on cardiac remodeling induced by continuous angiotensin II (AngII) infusion and the molecular mechanisms implied. Left ventricular posterior wall thickness and mass and cardiomyocyte cross-sectional area were similar between AngII-treated H-Ras knockout (H -ras -/- ) and control wild-type (H -ras +/+ ) mice, as were extracellular matrix protein expression. Increased cardiac PKG-Iβ protein expression in H -ras -/- mice suggests the involvement of this protein in heart protection. Ex vivo experiments on cardiac explants could support this mechanism, as PKG blockade blunted protection against AngII-induced cardiac hypertrophy and fibrosis markers in H -ras -/- mice. Genetic modulation studies in cardiomyocytes and cardiac and embryonic fibroblasts revealed that the lack of H-Ras down-regulates the B-RAF/MEK/ERK pathway, which induces the glycogen synthase kinase-3β-dependent activation of the transcription factor, cAMP response element-binding protein, which is responsible for PKG-Iβ overexpression in H -ras -/- mouse embryonic fibroblasts. This study demonstrates that H- ras deletion protects against AngII-induced cardiac remodeling, possibly via a mechanism in which PKG-Iβ overexpression could play a partial role, and points to H-Ras and/or downstream proteins as potential therapeutic targets in cardiovascular disease.-Martín-Sánchez, P., Luengo, A., Griera, M., Orea, M. J., López-Olañeta, M., Chiloeches, A., Lara-Pezzi, E., de Frutos, S., Rodríguez-Puyol, M., Calleros, L., Rodríguez-Puyol, D. H- ras deletion protects against angiotensin II-induced arterial hypertension and cardiac remodeling through protein kinase G-Iβ pathway activation.

  17. Decentralized State Estimation and Remedial Control Action for Minimum Wind Curtailment Using Distributed Computing Platform

    DOE PAGES

    Liu, Ren; Srivastava, Anurag K.; Bakken, David E.; ...

    2017-08-17

    Intermittency of wind energy poses a great challenge for power system operation and control. Wind curtailment might be necessary at the certain operating condition to keep the line flow within the limit. Remedial Action Scheme (RAS) offers quick control action mechanism to keep reliability and security of the power system operation with high wind energy integration. In this paper, a new RAS is developed to maximize the wind energy integration without compromising the security and reliability of the power system based on specific utility requirements. A new Distributed Linear State Estimation (DLSE) is also developed to provide the fast andmore » accurate input data for the proposed RAS. A distributed computational architecture is designed to guarantee the robustness of the cyber system to support RAS and DLSE implementation. The proposed RAS and DLSE is validated using the modified IEEE-118 Bus system. Simulation results demonstrate the satisfactory performance of the DLSE and the effectiveness of RAS. Real-time cyber-physical testbed has been utilized to validate the cyber-resiliency of the developed RAS against computational node failure.« less

  18. Decentralized State Estimation and Remedial Control Action for Minimum Wind Curtailment Using Distributed Computing Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ren; Srivastava, Anurag K.; Bakken, David E.

    Intermittency of wind energy poses a great challenge for power system operation and control. Wind curtailment might be necessary at the certain operating condition to keep the line flow within the limit. Remedial Action Scheme (RAS) offers quick control action mechanism to keep reliability and security of the power system operation with high wind energy integration. In this paper, a new RAS is developed to maximize the wind energy integration without compromising the security and reliability of the power system based on specific utility requirements. A new Distributed Linear State Estimation (DLSE) is also developed to provide the fast andmore » accurate input data for the proposed RAS. A distributed computational architecture is designed to guarantee the robustness of the cyber system to support RAS and DLSE implementation. The proposed RAS and DLSE is validated using the modified IEEE-118 Bus system. Simulation results demonstrate the satisfactory performance of the DLSE and the effectiveness of RAS. Real-time cyber-physical testbed has been utilized to validate the cyber-resiliency of the developed RAS against computational node failure.« less

  19. miR-11 regulates pupal size of Drosophila melanogaster via directly targeting Ras85D.

    PubMed

    Li, Yao; Li, Shengjie; Jin, Ping; Chen, Liming; Ma, Fei

    2017-01-01

    MicroRNAs play diverse roles in various physiological processes during Drosophila development. In the present study, we reported that miR-11 regulates pupal size during Drosophila metamorphosis via targeting Ras85D with the following evidences: pupal size was increased in the miR-11 deletion mutant; restoration of miR-11 in the miR-11 deletion mutant rescued the increased pupal size phenotype observed in the miR-11 deletion mutant; ectopic expression of miR-11 in brain insulin-producing cells (IPCs) and whole body shows consistent alteration of pupal size; Dilps and Ras85D expressions were negatively regulated by miR-11 in vivo; miR-11 targets Ras85D through directly binding to Ras85D 3'-untranslated region in vitro; removal of one copy of Ras85D in the miR-11 deletion mutant rescued the increased pupal size phenotype observed in the miR-11 deletion mutant. Thus, our current work provides a novel mechanism of pupal size determination by microRNAs during Drosophila melanogaster metamorphosis. Copyright © 2017 the American Physiological Society.

  20. A brain leptin-renin angiotensin system interaction in the regulation of sympathetic nerve activity

    PubMed Central

    Hilzendeger, Aline M.; Morgan, Donald A.; Brooks, Leonard; Dellsperger, David; Liu, Xuebo; Grobe, Justin L.; Rahmouni, Kamal; Sigmund, Curt D.

    2012-01-01

    The sympathetic nervous system, leptin, and renin-angiotensin system (RAS) have been implicated in obesity-associated hypertension. There is increasing evidence for the presence of both leptin and angiotensin II receptors in several key brain cardiovascular and metabolic control regions. We tested the hypothesis that the brain RAS plays a facilitatory role in the sympathetic nerve responses to leptin. In rats, intracerebroventricular (ICV) administration of losartan (5 μg) selectively inhibited increases in renal and brown adipose tissue (BAT) sympathetic nerve activity (SNA) produced by leptin (10 μg ICV) but did not reduce the SNA responses to corticotrophin-releasing factor (CRF) or the melanocortin receptor agonist MTII. In mice with deletion of angiotensin II type-1a receptors (AT1aR−/−), increases in renal and BAT SNA induced by leptin (2 μg ICV) were impaired whereas SNA responses to MTII were preserved. Decreases in food intake and body weight with ICV leptin did not differ in AT1aR−/− vs. AT1aR+/+ mice. ICV leptin in rats increased AT1aR and angiotensin-converting enzyme (ACE) mRNA in the subfornical organ and AT1aR mRNA in the arcuate nucleus, suggesting leptin-induced upregulation of the brain RAS in specific brain regions. To evaluate the role of de novo production of brain angiotensin II in SNA responses to leptin, we treated rats with captopril (12.5 μg ICV). Captopril attenuated leptin effects on renal and BAT SNA. In conclusion, these studies provide evidence that the brain RAS selectively facilitates renal and BAT sympathetic nerve responses to leptin while sparing effects on food intake. PMID:22610169

  1. A brain leptin-renin angiotensin system interaction in the regulation of sympathetic nerve activity.

    PubMed

    Hilzendeger, Aline M; Morgan, Donald A; Brooks, Leonard; Dellsperger, David; Liu, Xuebo; Grobe, Justin L; Rahmouni, Kamal; Sigmund, Curt D; Mark, Allyn L

    2012-07-15

    The sympathetic nervous system, leptin, and renin-angiotensin system (RAS) have been implicated in obesity-associated hypertension. There is increasing evidence for the presence of both leptin and angiotensin II receptors in several key brain cardiovascular and metabolic control regions. We tested the hypothesis that the brain RAS plays a facilitatory role in the sympathetic nerve responses to leptin. In rats, intracerebroventricular (ICV) administration of losartan (5 μg) selectively inhibited increases in renal and brown adipose tissue (BAT) sympathetic nerve activity (SNA) produced by leptin (10 μg ICV) but did not reduce the SNA responses to corticotrophin-releasing factor (CRF) or the melanocortin receptor agonist MTII. In mice with deletion of angiotensin II type-1a receptors (AT(1a)R(-/-)), increases in renal and BAT SNA induced by leptin (2 μg ICV) were impaired whereas SNA responses to MTII were preserved. Decreases in food intake and body weight with ICV leptin did not differ in AT(1a)R(-/-) vs. AT(1a)R(+/+) mice. ICV leptin in rats increased AT(1a)R and angiotensin-converting enzyme (ACE) mRNA in the subfornical organ and AT(1a)R mRNA in the arcuate nucleus, suggesting leptin-induced upregulation of the brain RAS in specific brain regions. To evaluate the role of de novo production of brain angiotensin II in SNA responses to leptin, we treated rats with captopril (12.5 μg ICV). Captopril attenuated leptin effects on renal and BAT SNA. In conclusion, these studies provide evidence that the brain RAS selectively facilitates renal and BAT sympathetic nerve responses to leptin while sparing effects on food intake.

  2. Impairment of cocaine-mediated behaviours in mice by clinically relevant Ras-ERK inhibitors

    PubMed Central

    Papale, Alessandro; Morella, Ilaria Maria; Indrigo, Marzia Tina; Bernardi, Rick Eugene; Marrone, Livia; Marchisella, Francesca; Brancale, Andrea; Spanagel, Rainer; Brambilla, Riccardo; Fasano, Stefania

    2016-01-01

    Ras-ERK signalling in the brain plays a central role in drug addiction. However, to date, no clinically relevant inhibitor of this cascade has been tested in experimental models of addiction, a necessary step toward clinical trials. We designed two new cell-penetrating peptides - RB1 and RB3 - that penetrate the brain and, in the micromolar range, inhibit phosphorylation of ERK, histone H3 and S6 ribosomal protein in striatal slices. Furthermore, a screening of small therapeutics currently in clinical trials for cancer therapy revealed PD325901 as a brain-penetrating drug that blocks ERK signalling in the nanomolar range. All three compounds have an inhibitory effect on cocaine-induced ERK activation and reward in mice. In particular, PD325901 persistently blocks cocaine-induced place preference and accelerates extinction following cocaine self-administration. Thus, clinically relevant, systemically administered drugs that attenuate Ras-ERK signalling in the brain may be valuable tools for the treatment of cocaine addiction. DOI: http://dx.doi.org/10.7554/eLife.17111.001 PMID:27557444

  3. Hydrogen peroxide toxicity induces Ras signaling in human neuroblastoma SH-SY5Y cultured cells.

    PubMed

    Chetsawang, Jirapa; Govitrapong, Piyarat; Chetsawang, Banthit

    2010-01-01

    It has been reported that overproduction of reactive oxygen species occurs after brain injury and mediates neuronal cells degeneration. In the present study, we examined the role of Ras signaling on hydrogen peroxide-induced neuronal cells degeneration in dopaminergic neuroblastoma SH-SY5Y cells. Hydrogen peroxide significantly reduced cell viability in SH-SY5Y cultured cells. An inhibitor of the enzyme that catalyzes the farnesylation of Ras proteins, FTI-277, and a competitive inhibitor of GTP-binding proteins, GDP-beta-S significantly decreased hydrogen peroxide-induced reduction in cell viability in SH-SY5Y cultured cells. The results of this study might indicate that a Ras-dependent signaling pathway plays a role in hydrogen peroxide-induced toxicity in neuronal cells.

  4. Differential Expression of IL-17, 22 and 23 in the Progression of Colorectal Cancer in Patients with K-ras Mutation: Ras Signal Inhibition and Crosstalk with GM-CSF and IFN-γ

    PubMed Central

    Petanidis, Savvas; Anestakis, Doxakis; Argyraki, Maria; Hadzopoulou-Cladaras, Margarita; Salifoglou, Athanasios

    2013-01-01

    Recent studies have suggested that aberrant K-ras signaling is responsible for triggering immunological responses and inflammation-driven tumorigenesis. Interleukins IL-17, IL-22, and IL-23 have been reported in various types of malignancies, but the exact mechanistic role of these molecules remains to be elucidated. Given the role of K-ras and the involvement of interleukins in colorectal tumorigenesis, research efforts are reported for the first time, showing that differentially expressed interleukin IL-17, IL-22, and IL-23 levels are associated with K-ras in a stage-specific fashion along colorectal cancer progression. Specifically, a) the effect of K-ras signaling was investigated in the overall expression of interleukins in patients with colorectal cancer and healthy controls, and b) an association was established between mutant K-ras and cytokines GM-CSF and IFN-γ. The results indicate that specific interleukins are differentially expressed in K-ras positive patients and the use of K-ras inhibitor Manumycin A decreases both interleukin levels and apoptosis in Caco-2 cells by inhibiting cell viability. Finally, inflammation-driven GM-CSF and IFN-γ levels are modulated through interleukin expression in tumor patients, with interleukin expression in the intestinal lumen and cancerous tissue mediated by aberrant K-ras signaling. Collectively, the findings a) indicate that interleukin expression is influenced by ras signaling and specific interleukins play an oncogenic promoter role in colorectal cancer, highlighting the molecular link between inflammation and tumorigenesis, and b) accentuate the interwoven molecular correlations as leads to new therapeutic approaches in the future. PMID:24040001

  5. Maternal hyperthyroidism alters the pattern of expression of cardiac renin-angiotensin system components in rat offspring.

    PubMed

    Lino, Caroline A; Shibata, Caroline E R; Barreto-Chaves, Maria Luiza M

    2014-03-01

    Changes in perinatal environment can lead to physiological, morphological, or metabolic alterations in adult life. It is well known that thyroid hormones (TH) are critical for the development, growth, and maturation of organs and systems. In addition, TH interact with the renin-angiotensin system (RAS), and both play a critical role in adult cardiovascular function. The objective of this study was to evaluate the effect of maternal hyperthyroidism on cardiac RAS components in pups during development. From gestational day nine (GD9), pregnant Wistar rats received thyroxine (T4, 12 mg/l in tap water; Hyper group) or vehicle (control group). Dams and pups were killed on GD18 and GD20. Serum concentrations of triiodothyronine (T3) and T4 were higher in the Hyper group than in the control group dams. Cardiac hypertrophy was observed in Hyper pups on GD20. Cardiac angiotensin-converting enzyme (ACE) activity was significantly lower in Hyper pups on both GD18 and GD20, but there was no difference in Ang I/Ang II levels. Ang II receptors expression was higher in the Hyper pup heart on GD18. Maternal hyperthyroidism is associated with alterations in fetal development and altered pattern of expression in RAS components, which in addition to cardiac hypertrophy observed on GD20 may represent an important predisposing factor to cardiovascular diseases in adult life.

  6. The Ras effector RASSF2 is a novel tumor-suppressor gene in human colorectal cancer.

    PubMed

    Akino, Kimishige; Toyota, Minoru; Suzuki, Hiromu; Mita, Hiroaki; Sasaki, Yasushi; Ohe-Toyota, Mutsumi; Issa, Jean-Pierre J; Hinoda, Yuji; Imai, Kohzoh; Tokino, Takashi

    2005-07-01

    Activation of Ras signaling is a hallmark of colorectal cancer (CRC), but the roles of negative regulators of Ras are not fully understood. Our aim was to address that question by surveying genetic and epigenetic alterations of Ras-Ras effector genes in CRC cells. The expression and methylation status of 6 RASSF family genes were examined using RT-PCR and bisulfite PCR in CRC cell lines and in primary CRCs and colorectal adenomas. Colony formation assays and flow cytometry were used to assess the tumor suppressor activities of RASSF1 and RASSF2. Immunofluorescence microscopy was used to determine the effect of altered RASSF2 expression on cell morphology. Mutations of K- ras , BRAF, and p53 were identified using single-strand conformation analysis and direct sequencing. Aberrant methylation and histone deacetylation of RASSF2 was associated with the gene's silencing in CRC. The activities of RASSF2, which were distinct from those of RASSF1, included induction of morphologic changes and apoptosis; moreover, its ability to prevent cell transformation suggests that RASSF2 acts as a tumor suppressor in CRC. Primary CRCs that showed K- ras /BRAF mutations also frequently showed RASSF2 methylation, and inactivation of RASSF2 enhanced K- ras -induced oncogenic transformation. RASSF2 methylation was also frequently identified in colorectal adenomas. RASSF2 is a novel tumor suppressor gene that regulates Ras signaling and plays a pivotal role in the early stages of colorectal tumorigenesis.

  7. New insights into RAS biology reinvigorate interest in mathematical modeling of RAS signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, Keesha E.; Rukhlenko, Oleksii S.; Posner, Richard G.

    RAS is the most frequently mutated gene across human cancers, but developing inhibitors of mutant RAS has proven to be challenging. Given the difficulties of targeting RAS directly, drugs that impact the other components of pathways where mutant RAS operates may potentially be effective. However, the system-level features, including different localizations of RAS isoforms, competition between downstream effectors, and interlocking feedback and feed-forward loops, must be understood to fully grasp the opportunities and limitations of inhibiting specific targets. Mathematical modeling can help us discern the system-level impacts of these features in normal and cancer cells. New technologies enable the acquisitionmore » of experimental data that will facilitate development of realistic models of oncogenic RAS behavior. In light of the wealth of empirical data accumulated over decades of study and the advancement of experimental methods for gathering new data, modelers now have the opportunity to advance progress toward realization of targeted treatment for mutant RAS-driven cancers.« less

  8. New insights into RAS biology reinvigorate interest in mathematical modeling of RAS signaling

    DOE PAGES

    Erickson, Keesha E.; Rukhlenko, Oleksii S.; Posner, Richard G.; ...

    2018-03-05

    RAS is the most frequently mutated gene across human cancers, but developing inhibitors of mutant RAS has proven to be challenging. Given the difficulties of targeting RAS directly, drugs that impact the other components of pathways where mutant RAS operates may potentially be effective. However, the system-level features, including different localizations of RAS isoforms, competition between downstream effectors, and interlocking feedback and feed-forward loops, must be understood to fully grasp the opportunities and limitations of inhibiting specific targets. Mathematical modeling can help us discern the system-level impacts of these features in normal and cancer cells. New technologies enable the acquisitionmore » of experimental data that will facilitate development of realistic models of oncogenic RAS behavior. In light of the wealth of empirical data accumulated over decades of study and the advancement of experimental methods for gathering new data, modelers now have the opportunity to advance progress toward realization of targeted treatment for mutant RAS-driven cancers.« less

  9. New insights into RAS biology reinvigorate interest in mathematical modeling of RAS signaling.

    PubMed

    Erickson, Keesha E; Rukhlenko, Oleksii S; Posner, Richard G; Hlavacek, William S; Kholodenko, Boris N

    2018-03-05

    RAS is the most frequently mutated gene across human cancers, but developing inhibitors of mutant RAS has proven to be challenging. Given the difficulties of targeting RAS directly, drugs that impact the other components of pathways where mutant RAS operates may potentially be effective. However, the system-level features, including different localizations of RAS isoforms, competition between downstream effectors, and interlocking feedback and feed-forward loops, must be understood to fully grasp the opportunities and limitations of inhibiting specific targets. Mathematical modeling can help us discern the system-level impacts of these features in normal and cancer cells. New technologies enable the acquisition of experimental data that will facilitate development of realistic models of oncogenic RAS behavior. In light of the wealth of empirical data accumulated over decades of study and the advancement of experimental methods for gathering new data, modelers now have the opportunity to advance progress toward realization of targeted treatment for mutant RAS-driven cancers. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Cognitive performance, symptoms and counter-regulation during hypoglycaemia in patients with type 1 diabetes and high or low renin-angiotensin system activity.

    PubMed

    Høi-Hansen, Thomas; Pedersen-Bjergaard, Ulrik; Andersen, Rikke Due; Kristensen, Peter Lommer; Thomsen, Carsten; Kjaer, Troels; Høgenhaven, Hans; Smed, Annelise; Holst, Jens Juul; Dela, Flemming; Boomsma, Frans; Thorsteinsson, Birger

    2009-12-01

    High basal renin-angiotensin system (RAS) activity is associated with increased risk of severe hypoglycaemia in type 1 diabetes. We tested whether this might be explained by more pronounced cognitive dysfunction during hypoglycaemia in patients with high RAS activity than in patients with low RAS activity. Nine patients with type 1 diabetes and high and nine with low RAS activity were subjected to hypoglycaemia and euglycaemia in a cross-over study using an intravenous insulin infusion protocol. Cognitive function, electroencephalography, auditory evoked potentials and hypoglycaemic symptoms were recorded. At a hypoglycaemic nadir of 2.2 (SD 0.3) mmol/L the high RAS group displayed significant deterioration in cognitive performance during hypoglycaemia in the three most complex reaction time tasks. In the low RAS group, hypoglycaemia led to cognitive dysfunction in only one reaction time task. The high RAS group reported lower symptom scores during hypoglycaemia than the low RAS group, suggesting poorer hypoglycaemia awareness. High RAS activity is associated with increased cognitive dysfunction and blunted symptoms during mild hypoglycaemia compared to low RAS activity. This may explain why high RAS activity is a risk factor for severe hypoglycaemia in type 1 diabetes.

  11. Mapping the functional versatility and fragility of Ras GTPase signaling circuits through in vitro network reconstitution

    PubMed Central

    Coyle, Scott M; Lim, Wendell A

    2016-01-01

    The Ras-superfamily GTPases are central controllers of cell proliferation and morphology. Ras signaling is mediated by a system of interacting molecules: upstream enzymes (GEF/GAP) regulate Ras’s ability to recruit multiple competing downstream effectors. We developed a multiplexed, multi-turnover assay for measuring the dynamic signaling behavior of in vitro reconstituted H-Ras signaling systems. By including both upstream regulators and downstream effectors, we can systematically map how different network configurations shape the dynamic system response. The concentration and identity of both upstream and downstream signaling components strongly impacted the timing, duration, shape, and amplitude of effector outputs. The distorted output of oncogenic alleles of Ras was highly dependent on the balance of positive (GAP) and negative (GEF) regulators in the system. We found that different effectors interpreted the same inputs with distinct output dynamics, enabling a Ras system to encode multiple unique temporal outputs in response to a single input. We also found that different Ras-to-GEF positive feedback mechanisms could reshape output dynamics in distinct ways, such as signal amplification or overshoot minimization. Mapping of the space of output behaviors accessible to Ras provides a design manual for programming Ras circuits, and reveals how these systems are readily adapted to produce an array of dynamic signaling behaviors. Nonetheless, this versatility comes with a trade-off of fragility, as there exist numerous paths to altered signaling behaviors that could cause disease. DOI: http://dx.doi.org/10.7554/eLife.12435.001 PMID:26765565

  12. Transformation and radiosensitivity of human diploid skin fibroblasts transfected with activated ras oncogene and SV40 T-antigen.

    PubMed

    Su, L N; Little, J B

    1992-08-01

    Three normal human diploid cell strains were transfected with an activated Ha-ras oncogene (EJ ras) or SV40 T-antigen. Multiple clones were examined for morphological alterations, growth requirements, ability to grow under anchorage independent conditions, immortality and tumorigenicity in nude mice. Clones expressing SV40 T-antigen alone or in combination with ras protein p21 were significantly radioresistant as compared with their parent cells or clones transfected with the neo gene only. This radioresistant phenotype persisted in post-crisis, immortalized cell lines. Cells transfected with EJ ras alone showed no morphological alterations nor significant changes in radiosensitivity. Cell clones expressing ras and/or SV40 T-antigen showed a reduced requirement for serum supplements, an increase in aneuploidy and chromosomal aberrations, and enhanced growth in soft agar as an early cellular response to SV40 T-antigen expression. The sequential order of transfection with SV40 T-antigen and ras influenced radio-sensitivity but not the induction of morphological changes. These data suggest that expression of the SV40 T-antigen but not activated Ha-ras plays an important role in the radiosensitivity of human diploid cells. The radioresistant phenotype in SV40 T transfected cells was not related to the enhanced level of genetic instability seen in pre-crisis and newly immortalized cells, nor to the process of immortalization itself.

  13. The intracellular angiotensin system buffers deleterious effects of the extracellular paracrine system

    PubMed Central

    Villar-Cheda, Begoña; Costa-Besada, Maria A; Valenzuela, Rita; Perez-Costas, Emma; Melendez-Ferro, Miguel; Labandeira-Garcia, Jose L

    2017-01-01

    The ‘classical’ renin–angiotensin system (RAS) is a circulating system that controls blood pressure. Local/paracrine RAS, identified in a variety of tissues, including the brain, is involved in different functions and diseases, and RAS blockers are commonly used in clinical practice. A third type of RAS (intracellular/intracrine RAS) has been observed in some types of cells, including neurons. However, its role is still unknown. The present results indicate that in brain cells the intracellular RAS counteracts the intracellular superoxide/H2O2 and oxidative stress induced by the extracellular/paracrine angiotensin II acting on plasma membrane receptors. Activation of nuclear receptors by intracellular or internalized angiotensin triggers a number of mechanisms that protect the cell, such as an increase in the levels of protective angiotensin type 2 receptors, intracellular angiotensin, PGC-1α and IGF-1/SIRT1. Interestingly, this protective mechanism is altered in isolated nuclei from brains of aged animals. The present results indicate that at least in the brain, AT1 receptor blockers acting only on the extracellular or paracrine RAS may offer better protection of cells. PMID:28880266

  14. MRAS: A Close but Understudied Member of the RAS Family.

    PubMed

    Young, Lucy C; Rodriguez-Viciana, Pablo

    2018-01-08

    MRAS is the closest relative to the classical RAS oncoproteins and shares most regulatory and effector interactions. However, it also has unique functions, including its ability to function as a phosphatase regulatory subunit when in complex with SHOC2 and protein phosphatase 1 (PP1). This phosphatase complex regulates a crucial step in the activation cycle of RAF kinases and provides a key coordinate input required for efficient ERK pathway activation and transformation by RAS. MRAS mutations rarely occur in cancer but deregulated expression may play a role in tumorigenesis in some settings. Activating mutations in MRAS (as well as SHOC2 and PP1) do occur in the RASopathy Noonan syndrome, underscoring a key role for MRAS within the RAS-ERK pathway. MRAS also has unique roles in cell migration and differentiation and has properties consistent with a key role in the regulation of cell polarity. Further investigations should shed light on what remains a relatively understudied RAS family member. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  15. Ras-Association Domain of Sorting Nexin 27 Is Critical for Regulating Expression of GIRK Potassium Channels

    PubMed Central

    Bodhinathan, Karthik; Taura, Jaume J.; Taylor, Natalie M.; Nettleton, Margaret Y.; Ciruela, Francisco; Slesinger, Paul A.

    2013-01-01

    G protein-gated inwardly rectifying potassium (GIRK) channels play an important role in regulating neuronal excitability. Sorting nexin 27b (SNX27b), which reduces surface expression of GIRK channels through a PDZ domain interaction, contains a putative Ras-association (RA) domain with unknown function. Deleting the RA domain in SNX27b (SNX27b-ΔRA) prevents the down-regulation of GIRK2c/GIRK3 channels. Similarly, a point mutation (K305A) in the RA domain disrupts regulation of GIRK2c/GIRK3 channels and reduces H-Ras binding in vitro. Finally, the dominant-negative H-Ras (S17N) occludes the SNX27b-dependent decrease in surface expression of GIRK2c/GIRK3 channels. Thus, the presence of a functional RA domain and the interaction with Ras-like G proteins comprise a novel mechanism for modulating SNX27b control of GIRK channel surface expression and cellular excitability. PMID:23536889

  16. Phloretin induces apoptosis in H-Ras MCF10A human breast tumor cells through the activation of p53 via JNK and p38 mitogen-activated protein kinase signaling.

    PubMed

    Kim, Mi-Sung; Kwon, Jung Yeon; Kang, Nam Joo; Lee, Ki Won; Lee, Hyong Joo

    2009-08-01

    Mutations in Ras play a critical role in the development of human cancers, including breast cancer. We investigated the possible antiproliferative effects of the naturally occurring dihydrochalcone phloretin [2',4',6'-trihydroxy-3-(4-hydroxyphenyl)-propiophenone] on H-Ras-transformed MCF10A human breast epithelial (H-Ras MCF10A) cells. Phloretin suppressed H-Ras MCF10A cell proliferation in a dose-dependent manner and induced nuclear condensation in the cells, indicating that phloretin-induced cell death occurs mainly via the induction of apoptosis. Prominent upregulation of p53 and Bax and cleavage of poly (ADP)-ribose polymerase were also detected in the phloretin-treated cells. Finally, phloretin markedly increased caspase-3 activity as well as JNK and p38 mitogen-activated protein kinase signaling. Our findings suggest that the phloretin-induced apoptosis of breast tumor cells contributes to the chemopreventive potential of phloretin against breast cancer.

  17. Coupled excitable Ras and F-actin activation mediates spontaneous pseudopod formation and directed cell movement

    PubMed Central

    van Haastert, Peter J. M.; Keizer-Gunnink, Ineke; Kortholt, Arjan

    2017-01-01

    Many eukaryotic cells regulate their mobility by external cues. Genetic studies have identified >100 components that participate in chemotaxis, which hinders the identification of the conceptual framework of how cells sense and respond to shallow chemical gradients. The activation of Ras occurs during basal locomotion and is an essential connector between receptor and cytoskeleton during chemotaxis. Using a sensitive assay for activated Ras, we show here that activation of Ras and F-actin forms two excitable systems that are coupled through mutual positive feedback and memory. This coupled excitable system leads to short-lived patches of activated Ras and associated F-actin that precede the extension of protrusions. In buffer, excitability starts frequently with Ras activation in the back/side of the cell or with F-actin in the front of the cell. In a shallow gradient of chemoattractant, local Ras activation triggers full excitation of Ras and subsequently F-actin at the side of the cell facing the chemoattractant, leading to directed pseudopod extension and chemotaxis. A computational model shows that the coupled excitable Ras/F-actin system forms the driving heart for the ordered-stochastic extension of pseudopods in buffer and for efficient directional extension of pseudopods in chemotactic gradients. PMID:28148648

  18. A Novel Ras Effector Pathway Found to Play Significant Role in Tumor Suppression | Poster

    Cancer.gov

    By Nancy Parrish, Staff Writer; photo by Richard Frederickson, Staff Photographer Normal cells have mechanisms to prevent the development of cancer. Among these is a type of tumor suppressor mechanism known as oncogene-induced senescence, or OIS, which halts the uncontrolled growth of cells caused by mutations in oncogenes. The oncogene Ras plays a crucial role in inducing OIS through a specific cascade of proteins, as reported in a recent article in Molecular and Cellular Biology by Jacqueline Salotti, Ph.D., and colleagues in the Eukaryotic Transcriptional Regulation Section of the Mouse Cancer Genetics Program, Center for Cancer Research (CCR).

  19. Acute ethanol intake induces superoxide anion generation and mitogen-activated protein kinase phosphorylation in rat aorta: A role for angiotensin type 1 receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yogi, Alvaro; Callera, Glaucia E.; Mecawi, André S.

    Ethanol intake is associated with increase in blood pressure, through unknown mechanisms. We hypothesized that acute ethanol intake enhances vascular oxidative stress and induces vascular dysfunction through renin–angiotensin system (RAS) activation. Ethanol (1 g/kg; p.o. gavage) effects were assessed within 30 min in male Wistar rats. The transient decrease in blood pressure induced by ethanol was not affected by the previous administration of losartan (10 mg/kg; p.o. gavage), a selective AT{sub 1} receptor antagonist. Acute ethanol intake increased plasma renin activity (PRA), angiotensin converting enzyme (ACE) activity, plasma angiotensin I (ANG I) and angiotensin II (ANG II) levels. Ethanol inducedmore » systemic and vascular oxidative stress, evidenced by increased plasma thiobarbituric acid-reacting substances (TBARS) levels, NAD(P)H oxidase‐mediated vascular generation of superoxide anion and p47phox translocation (cytosol to membrane). These effects were prevented by losartan. Isolated aortas from ethanol-treated rats displayed increased p38MAPK and SAPK/JNK phosphorylation. Losartan inhibited ethanol-induced increase in the phosphorylation of these kinases. Ethanol intake decreased acetylcholine-induced relaxation and increased phenylephrine-induced contraction in endothelium-intact aortas. Ethanol significantly decreased plasma and aortic nitrate levels. These changes in vascular reactivity and in the end product of endogenous nitric oxide metabolism were not affected by losartan. Our study provides novel evidence that acute ethanol intake stimulates RAS activity and induces vascular oxidative stress and redox-signaling activation through AT{sub 1}-dependent mechanisms. These findings highlight the importance of RAS in acute ethanol-induced oxidative damage. -- Highlights: ► Acute ethanol intake stimulates RAS activity and vascular oxidative stress. ► RAS plays a role in acute ethanol-induced oxidative damage via AT{sub 1} receptor activation. ► Translocation of p47phox and MAPKs phosphorylation are downstream effectors. ► Acute ethanol consumption increases the risk for acute vascular injury.« less

  20. Development and validation of an automated delirium risk assessment system (Auto-DelRAS) implemented in the electronic health record system.

    PubMed

    Moon, Kyoung-Ja; Jin, Yinji; Jin, Taixian; Lee, Sun-Mi

    2018-01-01

    A key component of the delirium management is prevention and early detection. To develop an automated delirium risk assessment system (Auto-DelRAS) that automatically alerts health care providers of an intensive care unit (ICU) patient's delirium risk based only on data collected in an electronic health record (EHR) system, and to evaluate the clinical validity of this system. Cohort and system development designs were used. Medical and surgical ICUs in two university hospitals in Seoul, Korea. A total of 3284 patients for the development of Auto-DelRAS, 325 for external validation, 694 for validation after clinical applications. The 4211 data items were extracted from the EHR system and delirium was measured using CAM-ICU (Confusion Assessment Method for Intensive Care Unit). The potential predictors were selected and a logistic regression model was established to create a delirium risk scoring algorithm to construct the Auto-DelRAS. The Auto-DelRAS was evaluated at three months and one year after its application to clinical practice to establish the predictive validity of the system. Eleven predictors were finally included in the logistic regression model. The results of the Auto-DelRAS risk assessment were shown as high/moderate/low risk on a Kardex screen. The predictive validity, analyzed after the clinical application of Auto-DelRAS after one year, showed a sensitivity of 0.88, specificity of 0.72, positive predictive value of 0.53, negative predictive value of 0.94, and a Youden index of 0.59. A relatively high level of predictive validity was maintained with the Auto-DelRAS system, even one year after it was applied to clinical practice. Copyright © 2017. Published by Elsevier Ltd.

  1. Ras-dva Is a Novel Pit-1- and Glucocorticoid-Regulated Gene in the Embryonic Anterior Pituitary Gland

    PubMed Central

    Ellestad, Laura E.

    2013-01-01

    Glucocorticoids play a role in functional differentiation of pituitary somatotrophs and lactotrophs during embryogenesis. Ras-dva was identified as a gene regulated by anterior neural fold protein-1/homeobox expressed in embryonic stem cells-1, a transcription factor known to be critical in pituitary development, and has an expression profile in the chicken embryonic pituitary gland that is consistent with in vivo regulation by glucocorticoids. The objective of this study was to characterize expression and regulation of ras-dva mRNA in the developing chicken anterior pituitary. Pituitary ras-dva mRNA levels increased during embryogenesis to a maximum on embryonic day (e) 18 and then decreased and remained low or undetectable after hatch. Ras-dva expression was highly enriched in the pituitary gland on e18 relative to other tissues examined. Glucocorticoid treatment of pituitary cells from mid- and late-stage embryos rapidly increased ras-dva mRNA, suggesting it may be a direct transcriptional target of glucocorticoids. A reporter construct driven by 4 kb of the chicken ras-dva 5′-flanking region, containing six putative pituitary-specific transcription factor-1 (Pit-1) binding sites and two potential glucocorticoid receptor (GR) binding sites, was highly activated in embryonic pituitary cells and up-regulated by corticosterone. Mutagenesis of the most proximal Pit-1 site decreased promoter activity in chicken e11 pituitary cells, indicating regulation of ras-dva by Pit-1. However, mutating putative GR binding sites did not substantially reduce induction of ras-dva promoter activity by corticosterone, suggesting additional DNA elements within the 5′-flanking region are responsible for glucocorticoid regulation. We have identified ras-dva as a glucocorticoid-regulated gene that is likely expressed in cells of the Pit-1 lineage within the developing anterior pituitary gland. PMID:23161868

  2. Ras-dva is a novel Pit-1- and glucocorticoid-regulated gene in the embryonic anterior pituitary gland.

    PubMed

    Ellestad, Laura E; Porter, Tom E

    2013-01-01

    Glucocorticoids play a role in functional differentiation of pituitary somatotrophs and lactotrophs during embryogenesis. Ras-dva was identified as a gene regulated by anterior neural fold protein-1/homeobox expressed in embryonic stem cells-1, a transcription factor known to be critical in pituitary development, and has an expression profile in the chicken embryonic pituitary gland that is consistent with in vivo regulation by glucocorticoids. The objective of this study was to characterize expression and regulation of ras-dva mRNA in the developing chicken anterior pituitary. Pituitary ras-dva mRNA levels increased during embryogenesis to a maximum on embryonic day (e) 18 and then decreased and remained low or undetectable after hatch. Ras-dva expression was highly enriched in the pituitary gland on e18 relative to other tissues examined. Glucocorticoid treatment of pituitary cells from mid- and late-stage embryos rapidly increased ras-dva mRNA, suggesting it may be a direct transcriptional target of glucocorticoids. A reporter construct driven by 4 kb of the chicken ras-dva 5'-flanking region, containing six putative pituitary-specific transcription factor-1 (Pit-1) binding sites and two potential glucocorticoid receptor (GR) binding sites, was highly activated in embryonic pituitary cells and up-regulated by corticosterone. Mutagenesis of the most proximal Pit-1 site decreased promoter activity in chicken e11 pituitary cells, indicating regulation of ras-dva by Pit-1. However, mutating putative GR binding sites did not substantially reduce induction of ras-dva promoter activity by corticosterone, suggesting additional DNA elements within the 5'-flanking region are responsible for glucocorticoid regulation. We have identified ras-dva as a glucocorticoid-regulated gene that is likely expressed in cells of the Pit-1 lineage within the developing anterior pituitary gland.

  3. Interaction between Wnt/β-catenin and RAS-ERK pathways and an anti-cancer strategy via degradations of β-catenin and RAS by targeting the Wnt/β-catenin pathway.

    PubMed

    Jeong, Woo-Jeong; Ro, Eun Ji; Choi, Kang-Yell

    2018-01-01

    Aberrant activation of the Wnt/β-catenin and RAS-extracellular signal-regulated kinase (ERK) pathways play important roles in the tumorigenesis of many different types of cancer, most notably colorectal cancer (CRC). Genes for these two pathways, such as adenomatous polyposis coli ( APC ) and KRAS are frequently mutated in human CRC, and involved in the initiation and progression of the tumorigenesis, respectively. Moreover, recent studies revealed interaction of APC and KRAS mutations in the various stages of colorectal tumorigenesis and even in metastasis accompanying activation of the cancer stem cells (CSCs). A key event in the synergistic cooperation between Wnt/β-catenin and RAS-ERK pathways is a stabilization of both β-catenin and RAS especially mutant KRAS by APC loss, and pathological significance of this was indicated by correlation of increased β-catenin and RAS levels in human CRC where APC mutations occur as high as 90% of CRC patients. Together with the notion of the protein activity reduction by lowering its level, inhibition of both β-catenin and RAS especially by degradation could be a new ideal strategy for development of anti-cancer drugs for CRC. In this review, we will discuss interaction between the Wnt/β-catenin and RAS-ERK pathways in the colorectal tumorigenesis by providing the mechanism of RAS stabilization by aberrant activation of Wnt/β-catenin. We will also discuss our small molecular anti-cancer approach controlling CRC by induction of specific degradations of both β-catenin and RAS via targeting Wnt/β-catenin pathway especially for the KYA1797K, a small molecule specifically binding at the regulator of G-protein signaling (RGS)-domain of Axin.

  4. R-Ras2 is required for germinal center formation to aid B cells during energetically demanding processes.

    PubMed

    Mendoza, Pilar; Martínez-Martín, Nuria; Bovolenta, Elena R; Reyes-Garau, Diana; Hernansanz-Agustín, Pablo; Delgado, Pilar; Diaz-Muñoz, Manuel D; Oeste, Clara L; Fernández-Pisonero, Isabel; Castellano, Ester; Martínez-Ruiz, Antonio; Alonso-Lopez, Diego; Santos, Eugenio; Bustelo, Xosé R; Kurosaki, Tomohiro; Alarcón, Balbino

    2018-05-29

    Upon antigen recognition within peripheral lymphoid organs, B cells interact with T cells and other immune cells to transiently form morphological structures called germinal centers (GCs), which are required for B cell clonal expansion, immunoglobulin class switching, and affinity maturation. This process, known as the GC response, is an energetically demanding process that requires the metabolic reprogramming of B cells. We showed that the Ras-related guanosine triphosphate hydrolase (GTPase) R-Ras2 (also known as TC21) plays an essential, nonredundant, and B cell-intrinsic role in the GC response. Both the conversion of B cells into GC B cells and their expansion were impaired in mice lacking R-Ras2, but not in those lacking a highly related R-Ras subfamily member or both the classic H-Ras and N-Ras GTPases. In the absence of R-Ras2, activated B cells did not exhibit increased oxidative phosphorylation or aerobic glycolysis. We showed that R-Ras2 was an effector of both the B cell receptor (BCR) and CD40 and that, in its absence, B cells exhibited impaired activation of the PI3K-Akt-mTORC1 pathway, reduced mitochondrial DNA replication, and decreased expression of genes involved in glucose metabolism. Because most human B cell lymphomas originate from GC B cells or B cells that have undergone the GC response, our data suggest that R-Ras2 may also regulate metabolism in B cell malignancies. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  5. Activation of Extracellular Signal-Regulated Kinase but Not of p38 Mitogen-Activated Protein Kinase Pathways in Lymphocytes Requires Allosteric Activation of SOS

    PubMed Central

    Jun, Jesse E.; Yang, Ming; Chen, Hang; Chakraborty, Arup K.

    2013-01-01

    Thymocytes convert graded T cell receptor (TCR) signals into positive selection or deletion, and activation of extracellular signal-related kinase (ERK), p38, and Jun N-terminal protein kinase (JNK) mitogen-activated protein kinases (MAPKs) has been postulated to play a discriminatory role. Two families of Ras guanine nucleotide exchange factors (RasGEFs), SOS and RasGRP, activate Ras and the downstream RAF-MEK-ERK pathway. The pathways leading to lymphocyte p38 and JNK activation are less well defined. We previously described how RasGRP alone induces analog Ras-ERK activation while SOS and RasGRP cooperate to establish bimodal ERK activation. Here we employed computational modeling and biochemical experiments with model cell lines and thymocytes to show that TCR-induced ERK activation grows exponentially in thymocytes and that a W729E allosteric pocket mutant, SOS1, can only reconstitute analog ERK signaling. In agreement with RasGRP allosterically priming SOS, exponential ERK activation is severely decreased by pharmacological or genetic perturbation of the phospholipase Cγ (PLCγ)-diacylglycerol-RasGRP1 pathway. In contrast, p38 activation is not sharply thresholded and requires high-level TCR signal input. Rac and p38 activation depends on SOS1 expression but not allosteric activation. Based on computational predictions and experiments exploring whether SOS functions as a RacGEF or adaptor in Rac-p38 activation, we established that the presence of SOS1, but not its enzymatic activity, is critical for p38 activation. PMID:23589333

  6. Subcellular characteristics of functional intracellular renin–angiotensin systems☆

    PubMed Central

    Abadir, Peter M.; Walston, Jeremy D.; Carey, Robert M.

    2013-01-01

    The renin–angio tensin system (RAS) is now regarded as an integral component in not only the development of hypertension, but also in physiologic and pathophysiologic mechanisms in multiple tissues and chronic disease states. While many of the endocrine (circulating), paracrine (cell-to-different cell) and autacrine (cell-to-same cell) effects of the RAS are believed to be mediated through the canonical extracellular RAS, a complete, independent and differentially regulated intracellular RAS (iRAS) has also been proposed. Angiotensinogen, the enzymes renin and angiotensin-converting enzyme (ACE) and the angiotensin peptides can all be synthesized and retained intracellularly. Angiotensin receptors (types I and 2) are also abundant intracellularly mainly at the nuclear and mitochondrial levels. The aim of this review is to focus on the most recent information concerning the subcellular localization, distribution and functions of the iRAS and to discuss the potential consequences of activation of the subcellular RAS on different organ systems. PMID:23032352

  7. DD genotype of ACE gene I/D polymorphism is associated with Behcet disease in a Turkish population.

    PubMed

    Yigit, Serbülent; Tural, Sengül; Rüstemoglu, Aydin; Inanir, Ahmet; Gul, Ulker; Kalkan, Goknur; Akkanet, Songul; Karakuş, Nevin; Ateş, Omer

    2013-01-01

    Behcet's disease (BD) is a chronic, multi-systemic and inflammatory disorder. The local renin-angiotensin system (RAS) in the vessel wall plays a role in the endothelial control and contributes to inflammatory processes. Angiotensin-converting enzyme (ACE) is the regulatory component of the RAS. This study was conducted in Turkish patients with BD to determine the frequency of I/D polymorphism genotypes of ACE gene. Genomic DNA obtained from 566 persons (266 patients with BD and 300 healthy controls). ACE gene I/D polymorphism genotypes were determined using polymerase chain reaction using I and D allele-specific primers. There was statistically significant difference between the groups with respect to genotype distribution (p < 0.001). This study is the largest study in Turkish population that ACE gene I/D polymorphism investigated in BD. As a result of this study, ACE gene I/D polymorphism DD genotype could be a genetic marker in BD in Turkish study population.

  8. Early superoxide scavenging accelerates renal microvascular rarefaction and damage in the stenotic kidney.

    PubMed

    Kelsen, Silvia; He, Xiaochen; Chade, Alejandro R

    2012-08-15

    Renal artery stenosis (RAS), the main cause of chronic renovascular disease (RVD), is associated with significant oxidative stress. Chronic RVD induces renal injury partly by promoting renal microvascular (MV) damage and blunting MV repair in the stenotic kidney. We tested the hypothesis that superoxide anion plays a pivotal role in MV dysfunction, reduction of MV density, and progression of renal injury in the stenotic kidney. RAS was induced in 14 domestic pigs and observed for 6 wk. Seven RAS pigs were chronically treated with the superoxide dismutase mimetic tempol (RAS+T) to reduce oxidative stress. Single-kidney hemodynamics and function were quantified in vivo using multidetector computer tomography (CT) and renal MV density was quantified ex vivo using micro-CT. Expression of angiogenic, inflammatory, and apoptotic factors was measured in renal tissue, and renal apoptosis and fibrosis were quantified in tissue sections. The degree of RAS and blood pressure were similarly increased in RAS and RAS+T. Renal blood flow (RBF) and glomerular filtration rate (GFR) were reduced in the stenotic kidney (280.1 ± 36.8 and 34.2 ± 3.1 ml/min, P < 0.05 vs. control). RAS+T kidneys showed preserved GFR (58.5 ± 6.3 ml/min, P = not significant vs. control) but a similar decreases in RBF (293.6 ± 85.2 ml/min) and further decreases in MV density compared with RAS. These changes were accompanied by blunted angiogenic signaling and increased apoptosis and fibrosis in the stenotic kidney of RAS+T compared with RAS. The current study shows that tempol administration provided limited protection to the stenotic kidney. Despite preserved GFR, renal perfusion was not improved by tempol, and MV density was further reduced compared with untreated RAS, associated with increased renal apoptosis and fibrosis. These results suggest that a tight balance of the renal redox status is necessary for a normal MV repair response to injury, at least at the early stage of RVD, and raise caution regarding antioxidant strategies in RAS.

  9. Early superoxide scavenging accelerates renal microvascular rarefaction and damage in the stenotic kidney

    PubMed Central

    Kelsen, Silvia; He, Xiaochen

    2012-01-01

    Renal artery stenosis (RAS), the main cause of chronic renovascular disease (RVD), is associated with significant oxidative stress. Chronic RVD induces renal injury partly by promoting renal microvascular (MV) damage and blunting MV repair in the stenotic kidney. We tested the hypothesis that superoxide anion plays a pivotal role in MV dysfunction, reduction of MV density, and progression of renal injury in the stenotic kidney. RAS was induced in 14 domestic pigs and observed for 6 wk. Seven RAS pigs were chronically treated with the superoxide dismutase mimetic tempol (RAS+T) to reduce oxidative stress. Single-kidney hemodynamics and function were quantified in vivo using multidetector computer tomography (CT) and renal MV density was quantified ex vivo using micro-CT. Expression of angiogenic, inflammatory, and apoptotic factors was measured in renal tissue, and renal apoptosis and fibrosis were quantified in tissue sections. The degree of RAS and blood pressure were similarly increased in RAS and RAS+T. Renal blood flow (RBF) and glomerular filtration rate (GFR) were reduced in the stenotic kidney (280.1 ± 36.8 and 34.2 ± 3.1 ml/min, P < 0.05 vs. control). RAS+T kidneys showed preserved GFR (58.5 ± 6.3 ml/min, P = not significant vs. control) but a similar decreases in RBF (293.6 ± 85.2 ml/min) and further decreases in MV density compared with RAS. These changes were accompanied by blunted angiogenic signaling and increased apoptosis and fibrosis in the stenotic kidney of RAS+T compared with RAS. The current study shows that tempol administration provided limited protection to the stenotic kidney. Despite preserved GFR, renal perfusion was not improved by tempol, and MV density was further reduced compared with untreated RAS, associated with increased renal apoptosis and fibrosis. These results suggest that a tight balance of the renal redox status is necessary for a normal MV repair response to injury, at least at the early stage of RVD, and raise caution regarding antioxidant strategies in RAS. PMID:22622460

  10. Identification of Ras-degrading small molecules that inhibit the transformation of colorectal cancer cells independent of β-catenin signaling.

    PubMed

    Shin, Wookjin; Lee, Sang-Kyu; Hwang, Jeong-Ha; Park, Jong-Chan; Cho, Yong-Hee; Ro, Eun Ji; Song, Yeonhwa; Seo, Haeng Ran; Choi, Kang-Yell

    2018-06-06

    Although the development of drugs that control Ras is an emerging topic in cancer therapy, no clinically applicable drug is currently available. We have previously utilized knowledge of the Wnt/β-catenin signaling-dependent mechanism of Ras protein stability regulation to identify small molecules that inhibit the proliferation and transformation of various colorectal cancer (CRC) cells via degradation of both β-catenin and Ras. Due to the absence of Ras degradation in cells expressing a nondegradable mutant form of β-catenin and the need to determine an alternative mechanism of Ras degradation, we designed a cell-based system to screen compounds that degrade Ras independent of the Wnt/β-catenin signaling pathway. A cell-based high-content screening (HCS) system that monitors the levels of EGFP-K-Ras G12V was established using HCT-116 cells harboring a nondegradable mutant CTNNB1 (ΔS45). Through HCS of a chemical library composed of 10,000 compounds and subsequent characterization of hits, we identified several compounds that degrade Ras without affecting the β-catenin levels. KY7749, one of the most effective compounds, inhibited the proliferation and transformation of CRC cells, especially KRAS-mutant cells that are resistant to the EGFR monoclonal antibody cetuximab. Small molecules that degrade Ras independent of β-catenin may able to be used in treatments for cancers caused by aberrant EGFR and Ras.

  11. A shared molecular mechanism underlies the human rasopathies Legius syndrome and Neurofibromatosis-1

    PubMed Central

    Stowe, Irma B.; Mercado, Ellen L.; Stowe, Timothy R.; Bell, Erika L.; Oses-Prieto, Juan A.; Hernández, Hilda; Burlingame, Alma L.; McCormick, Frank

    2012-01-01

    The Ras/mitogen-activated protein kinase (MAPK) pathway plays a critical role in transducing mitogenic signals from receptor tyrosine kinases. Loss-of-function mutations in one feedback regulator of Ras/MAPK signaling, SPRED1 (Sprouty-related protein with an EVH1 domain), cause Legius syndrome, an autosomal dominant human disorder that resembles Neurofibromatosis-1 (NF1). Spred1 functions as a negative regulator of the Ras/MAPK pathway; however, the underlying molecular mechanism is poorly understood. Here we show that neurofibromin, the NF1 gene product, is a Spred1-interacting protein that is necessary for Spred1's inhibitory function. We show that Spred1 binding induces the plasma membrane localization of NF1, which subsequently down-regulates Ras-GTP levels. This novel mechanism for the regulation of neurofibromin provides a molecular bridge for understanding the overlapping pathophysiology of NF1 and Legius syndrome. PMID:22751498

  12. Involvement of Prolonged Ras Activation in Thrombopoietin-Induced Megakaryocytic Differentiation of a Human Factor-Dependent Hematopoietic Cell Line

    PubMed Central

    Matsumura, Itaru; Nakajima, Koichi; Wakao, Hiroshi; Hattori, Seisuke; Hashimoto, Koji; Sugahara, Hiroyuki; Kato, Takashi; Miyazaki, Hiroshi; Hirano, Toshio; Kanakura, Yuzuru

    1998-01-01

    Thrombopoietin (TPO) is a hematopoietic growth factor that plays fundamental roles is both megakaryopoiesis and thrombopoiesis through binding to its receptor, c-mpl. Although TPO has been shown to activate various types of intracellular signaling molecules, such as the Janus family of protein tyrosine kinases, signal transducers and activators of transcription (STATs), and ras, the precise mechanisms underlying TPO-induced proliferation and differentiation remain unknown. In an effort to clarify the mechanisms of TPO-induced proliferation and differentiation, c-mpl was introduced into F-36P, a human interleukin-3 (IL-3)-dependent erythroleukemia cell line, and the effects of TPO on the c-mpl-transfected F-36P (F-36P-mpl) cells were investigated. F-36P-mpl cells were found to proliferate and differentiate at a high rate into mature megakaryocytes in response to TPO. Dominant-negative (dn) forms of STAT1, STAT3, STAT5, and ras were inducibly expressed in F-36P-mpl cells, and their effects on TPO-induced proliferation and megakaryocytic differentiation were analyzed. Among these dn molecules, both dn ras and dn STAT5 reduced TPO- or IL-3-induced proliferation of F-36P-mpl cells by ∼30%, and only dn ras could inhibit TPO-induced megakaryocytic differentiation. In accord with this result, overexpression of activated ras (H-rasG12V) for 5 days led to megakaryocytic differentiation of F-36P-mpl cells. In a time course analysis on H-rasG12V-induced differentiation, activation of the ras pathway for 24 to 28 h was required and sufficient to induce megakaryocytic differentiation. Consistent with this result, the treatment of F-36P-mpl cells with TPO was able to induce prolonged activation of ras for more than 24 h, whereas IL-3 had only a transient effect. These results suggest that prolonged ras activation may be involved in TPO-induced megakaryocytic differentiation. PMID:9632812

  13. Functional and molecular evidence for expression of the renin angiotensin system and ADAM17-mediated ACE2 shedding in COS7 cells

    PubMed Central

    Grobe, Nadja; Di Fulvio, Mauricio; Kashkari, Nada; Chodavarapu, Harshita; Somineni, Hari K.; Singh, Richa

    2015-01-01

    The renin angiotensin system (RAS) plays a vital role in the regulation of the cardiovascular and renal functions. COS7 is a robust and easily transfectable cell line derived from the kidney of the African green monkey, Cercopithecus aethiops. The aims of this study were to 1) demonstrate the presence of an endogenous and functional RAS in COS7, and 2) investigate the role of a disintegrin and metalloproteinase-17 (ADAM17) in the ectodomain shedding of angiotensin converting enzyme-2 (ACE2). Reverse transcription coupled to gene-specific polymerase chain reaction demonstrated expression of ACE, ACE2, angiotensin II type 1 receptor (AT1R), and renin at the transcript levels in total RNA cell extracts. Western blot and immunohistochemistry identified ACE (60 kDa), ACE2 (75 kDa), AT1R (43 kDa), renin (41 kDa), and ADAM17 (130 kDa) in COS7. At the functional level, a sensitive and selective mass spectrometric approach detected endogenous renin, ACE, and ACE2 activities. ANG-(1–7) formation (m/z 899) from the natural substrate ANG II (m/z 1,046) was detected in lysates and media. COS7 cells stably expressing shRNA constructs directed against endogenous ADAM17 showed reduced ACE2 shedding into the media. This is the first study demonstrating endogenous expression of the RAS and ADAM17 in the widely used COS7 cell line and its utility to study ectodomain shedding of ACE2 mediated by ADAM17 in vitro. The transfectable nature of this cell line makes it an attractive cell model for studying the molecular, functional, and pharmacological properties of the renal RAS. PMID:25740155

  14. Opposing tissue-specific roles of angiotensin in the pathogenesis of obesity, and implications for obesity-related hypertension

    PubMed Central

    Littlejohn, Nicole K.

    2015-01-01

    Metabolic disease, specifically obesity, has now become the greatest challenge to improving cardiovascular health. The renin-angiotensin system (RAS) exists as both a circulating hormone system and as a local paracrine signaling mechanism within various tissues including the brain, kidney, and adipose, and this system is strongly implicated in cardiovascular health and disease. Growing evidence also implicates the RAS in the control of energy balance, supporting the concept that the RAS may be mechanistically involved in the pathogenesis of obesity and obesity hypertension. Here, we review the involvement of the RAS in the entire spectrum of whole organism energy balance mechanisms, including behaviors (food ingestion and spontaneous physical activity) and biological processes (digestive efficiency and both aerobic and nonaerobic resting metabolic rates). We hypothesize that opposing, tissue-specific effects of the RAS to modulate these various components of energy balance can explain the apparently paradoxical results reported by energy-balance studies that involve stimulating, versus disrupting, the RAS. We propose a model in which such opposing and tissue-specific effects of the RAS can explain the failure of simple, global RAS blockade to result in weight loss in humans, and hypothesize that obesity-mediated uncoupling of endogenous metabolic rate control mechanisms can explain the phenomenon of obesity-related hypertension. PMID:26491099

  15. Deletion of H-Ras decreases renal fibrosis and myofibroblast activation following ureteral obstruction in mice.

    PubMed

    Grande, M Teresa; Fuentes-Calvo, Isabel; Arévalo, Miguel; Heredia, Fabiana; Santos, Eugenio; Martínez-Salgado, Carlos; Rodríguez-Puyol, Diego; Nieto, M Angela; López-Novoa, José M

    2010-03-01

    Tubulointerstitial fibrosis is characterized by the presence of myofibroblasts that contribute to extracellular matrix accumulation. These cells may originate from resident fibroblasts, bone-marrow-derived cells, or renal epithelial cells converting to a mesenchymal phenotype. Ras GTPases are activated during renal fibrosis and play crucial roles in regulating both cell proliferation and TGF-beta-induced epithelial-mesenchymal transition. Here we set out to assess the contribution of Ras to experimental renal fibrosis using the well-established model of unilateral ureteral obstruction. Fifteen days after obstruction, both fibroblast proliferation and inducers of epithelial-mesenchymal transition were lower in obstructed kidneys of H-ras knockout mice and in fibroblast cell lines derived from these mice. Interestingly, fibronectin, collagen I accumulation, overall interstitial fibrosis, and the myofibroblast population were also lower in the knockout than in the wild-type mice. As expected, we found lower levels of activated Akt in the kidneys and cultured fibroblasts of the knockout. Whether Ras inhibition will turn out to prevent progression of renal fibrosis will require more direct studies.

  16. Role of the renin-angiotensin system in hepatic fibrosis and portal hypertension.

    PubMed

    Shim, Kwang Yong; Eom, Young Woo; Kim, Moon Young; Kang, Seong Hee; Baik, Soon Koo

    2018-05-01

    The renin-angiotensin system (RAS) is an important regulator of cirrhosis and portal hypertension. As hepatic fibrosis progresses, levels of the RAS components angiotensin (Ang) II, Ang-(1-7), angiotensin-converting enzyme (ACE), and Ang II type 1 receptor (AT1R) are increased. The primary effector Ang II regulates vasoconstriction, sodium homoeostasis, fibrosis, cell proliferation, and inflammation in various diseases, including liver cirrhosis, through the ACE/Ang II/AT1R axis in the classical RAS. The ACE2/Ang-(1-7)/Mas receptor and ACE2/Ang-(1-9)/AT2R axes make up the alternative RAS and promote vasodilation, antigrowth, proapoptotic, and anti-inflammatory effects; thus, countering the effects of the classical RAS axis to reduce hepatic fibrogenesis and portal hypertension. Patients with portal hypertension have been treated with RAS antagonists such as ACE inhibitors, Ang receptor blockers, and aldosterone antagonists, with very promising hemodynamic results. In this review, we examine the RAS, its roles in hepatic fibrosis and portal hypertension, and current therapeutic approaches based on the use of RAS antagonists in patients with portal hypertension.

  17. Effects of alkalinity on ammonia removal, carbon dioxide stripping, and system pH in semi-commercial scale water recirculating aquaculture systems operated with moving bed bioreactors

    USDA-ARS?s Scientific Manuscript database

    When operating water recirculating systems (RAS) with high make-up water flushing rates in locations that have low alkalinity in the raw water, such as Norway, knowledge about the required RAS alkalinity concentration is important. Flushing RAS with make-up water containing low alkalinity washes out...

  18. DA-Raf-Mediated Suppression of the Ras--ERK Pathway Is Essential for TGF-β1-Induced Epithelial-Mesenchymal Transition in Alveolar Epithelial Type 2 Cells.

    PubMed

    Watanabe-Takano, Haruko; Takano, Kazunori; Hatano, Masahiko; Tokuhisa, Takeshi; Endo, Takeshi

    2015-01-01

    Myofibroblasts play critical roles in the development of idiopathic pulmonary fibrosis by depositing components of extracellular matrix. One source of lung myofibroblasts is thought to be alveolar epithelial type 2 cells that undergo epithelial-mesenchymal transition (EMT). Rat RLE-6TN alveolar epithelial type 2 cells treated with transforming growth factor-β1 (TGF-β1) are converted into myofibroblasts through EMT. TGF-β induces both canonical Smad signaling and non-canonical signaling, including the Ras-induced ERK pathway (Raf-MEK-ERK). However, the signaling mechanisms regulating TGF-β1-induced EMT are not fully understood. Here, we show that the Ras-ERK pathway negatively regulates TGF-β1-induced EMT in RLE-6TN cells and that DA-Raf1 (DA-Raf), a splicing isoform of A-Raf and a dominant-negative antagonist of the Ras-ERK pathway, plays an essential role in EMT. Stimulation of the cells with fibroblast growth factor 2 (FGF2), which activated the ERK pathway, prominently suppressed TGF-β1-induced EMT. An inhibitor of MEK, but not an inhibitor of phosphatidylinositol 3-kinase, rescued the TGF-β1-treated cells from the suppression of EMT by FGF2. Overexpression of a constitutively active mutant of a component of the Ras-ERK pathway, i.e., H-Ras, B-Raf, or MEK1, interfered with EMT. Knockdown of DA-Raf expression with siRNAs facilitated the activity of MEK and ERK, which were only weakly and transiently activated by TGF-β1. Although DA-Raf knockdown abrogated TGF-β1-induced EMT, the abrogation of EMT was reversed by the addition of the MEK inhibitor. Furthermore, DA-Raf knockdown impaired the TGF-β1-induced nuclear translocation of Smad2, which mediates the transcription required for EMT. These results imply that intrinsic DA-Raf exerts essential functions for EMT by antagonizing the TGF-β1-induced Ras-ERK pathway in RLE-6TN cells.

  19. Association of folate intake, dietary habits, smoking and COX-2 promotor -765G>C polymorphism with K-ras mutation in patients with colorectal cancer.

    PubMed

    Kamal, Manal M; Youssef, Omar Z; Lotfy, Ahmed N; Elsaed, Eman T; Fawzy, May M T

    2012-09-01

    Understanding the role of environmental and molecular influences on the nature and rate of K-ras mutations in colorectal neoplasms is crucial. COX-2 polymorphisms -765G>C may play a role in carcinogenic processes in combination with specific life-style conditions or dependent on the racial composition of a particular population. If mutational events play an important role in colorectal carcinogenesis sequence, one can hypothesize that modification of these events by life-style or other factors would be a useful prevention strategy. To explore the association between K-ras mutation and potential variables known or suspected to be related to the risk of colorectal cancer (CRC) as well as determining the possible modulating effect of the COX-2 polymorphism, -765G>C. The study was conducted on 80 patients with colorectal cancer from Tropical Medicine and Gastrointestinal Tract endoscopy Departments and those attending clinic of the National Cancer Institute, Cairo University during the period extending from April 2009 to March 2010. Full history taking with emphasis on the risk factors of interest, namely age, sex, family history, smoking and dietary history. Serum CEA and CA19-9, RBCs folic acid and occult blood in stool were done to all samples. K-ras protooncogene mutation at codon 12 (exon 1) and cyclooxygenase 2 (COX-2) -765G>C polymorphism were determined by PCR-RFLP. The K-ras mutation was positive in 23 (28.7%) patients. COX-2 polymorphism revealed GG in 62.5%, GC in 26.2 % and CC genotype was found in 11.3 % of cases. The mean red blood cell folic acid level was lower in the K-ras positive group (100.96±51.3 ng/ml) than the negative group (216.6±166.4 ng/ml), (P<0.01). Higher folate levels were found in males than females (median=173 ng/ml and 85 ng/ml; respectively, P=0.002) with adjusted odds ratio (OR) of 0.984. Only, the RBCs folate (P=0.0018) followed by gender (P=0.036) contributed significantly in the discrimination between patients prone to develop K-ras mutation and those who are not. RBC folic acid was significantly deficient in CRC (colorectal cancer) patients with K-ras mutations in comparison with CRC patients free of the mutations, suggesting that folic acid may be a risk factor for K-ras mutation development. Copyright © 2012. Published by Elsevier B.V.

  20. Conserved mechanisms of tumorigenesis in the Drosophila adult midgut.

    PubMed

    Martorell, Òscar; Merlos-Suárez, Anna; Campbell, Kyra; Barriga, Francisco M; Christov, Christo P; Miguel-Aliaga, Irene; Batlle, Eduard; Casanova, Jordi; Casali, Andreu

    2014-01-01

    Whereas the series of genetic events leading to colorectal cancer (CRC) have been well established, the precise functions that these alterations play in tumor progression and how they disrupt intestinal homeostasis remain poorly characterized. Activation of the Wnt/Wg signaling pathway by a mutation in the gene APC is the most common trigger for CRC, inducing benign lesions that progress to carcinomas due to the accumulation of other genetic alterations. Among those, Ras mutations drive tumour progression in CRC, as well as in most epithelial cancers. As mammalian and Drosophila's intestines share many similarities, we decided to explore the alterations induced in the Drosophila midgut by the combined activation of the Wnt signaling pathway with gain of function of Ras signaling in the intestinal stem cells. Here we show that compound Apc-Ras clones, but not clones bearing the individual mutations, expand as aggressive intestinal tumor-like outgrowths. These lesions reproduce many of the human CRC hallmarks such as increased proliferation, blockade of cell differentiation and cell polarity and disrupted organ architecture. This process is followed by expression of tumoral markers present in human lesions. Finally, a metabolic behavioral assay shows that these flies suffer a progressive deterioration in intestinal homeostasis, providing a simple readout that could be used in screens for tumor modifiers or therapeutic compounds. Taken together, our results illustrate the conservation of the mechanisms of CRC tumorigenesis in Drosophila, providing an excellent model system to unravel the events that, upon mutation in Apc and Ras, lead to CRC initiation and progression.

  1. Genotyping of K-ras codons 12 and 13 mutations in colorectal cancer by capillary electrophoresis.

    PubMed

    Chen, Yen-Ling; Chang, Ya-Sian; Chang, Jan-Gowth; Wu, Shou-Mei

    2009-06-26

    Point mutations of the K-ras gene located in codons 12 and 13 cause poor responses to the anti-epidermal growth factor receptor (anti-EGFR) therapy of colorectal cancer (CRC) patients. Besides, mutations of K-ras gene have also been proven to play an important role in human tumor progression. We established a simple and effective capillary electrophoresis (CE) method for simultaneous point mutation detection in codons 12 and 13 of K-ras gene. We combined one universal fluorescence-based nonhuman-sequence primer and two fragment-oriented primers in one tube, and performed this two-in-one polymerase chain reaction (PCR). PCR fragments included wild type and seven point mutations at codons 12 and 13 of K-ras gene. The amplicons were analyzed by single-strand conformation polymorphism (SSCP)-CE method. The CE analysis was performed by using a 1x Tris-borate-EDTA (TBE) buffer containing 1.5% (w/v) hydroxyethylcellulose (HEC) (MW 250,000) under reverse polarity with 15 degrees C and 30 degrees C. Ninety colorectal cancer patients were blindly genotyped using this developed method. The results showed good agreement with those of DNA sequencing method. The SSCP-CE was feasible for mutation screening of K-ras gene in populations.

  2. MEK-1 Activates C-Raf Through a Ras-Independent Mechanism

    PubMed Central

    Leicht, Deborah T.; Balan, Vitaly; Zhu, Jun; Kaplun, Alexander; Bronisz, Agnieszka; Rana, Ajay; Tzivion, Guri

    2013-01-01

    C-Raf is a member of the Ras-Raf-MEK-ERK mitogen-activated protein kinase (MAPK) signaling pathway that plays key roles in diverse physiological processes and is upregulated in many human cancers. C-Raf activation involves binding to Ras, increased phosphorylation and interactions with co-factors. Here, we describe a Ras-independent in vivo pathway for C-Raf activation by its downstream target MEK. Using 32P-metabolic labeling and 2D-phosphopeptide mapping experiments, we show that MEK increases C-Raf phosphorylation by up-to 10-fold. This increase was associated with C-Raf kinase activation, matching the activity seen with growth factor stimulation. Consequently, coexpression of wildtype C-Raf and MEK was sufficient for full and constitutive activation of ERK. Notably, the ability of MEK to activate C-Raf was completely Ras independent, since mutants impaired in Ras binding that are irresponsive to growth factors or Ras were fully activated by MEK. The ability of MEK to activate C-Raf was only partially dependent on MEK kinase activity but required MEK binding to C-Raf, suggesting that the binding results in a conformational change that increases C-Raf susceptibility to phosphorylation and activation or in the stabilization of the phosphorylated-active form. These findings propose a novel Ras-independent mechanism for activating C-Raf and the MAPK pathway without the need for mutations in the pathway. This mechanism could be of significance in pathological conditions or cancers overexpressing C-Raf and MEK or in conditions where C-Raf-MEK interaction is enhanced due to the downregulation of RKIP and MST2. PMID:23360980

  3. ACE insertion/deletion polymorphism (rs1799752) modifies the renoprotective effect of renin-angiotensin system blockade in patients with IgA nephropathy.

    PubMed

    Teranishi, Junya; Yamamoto, Ryohei; Nagasawa, Yasuyuki; Shoji, Tatsuya; Iwatani, Hirotsugu; Okada, Noriyuki; Moriyama, Toshiki; Yamauchi, Atsushi; Tsubakihara, Yoshiharu; Imai, Enyu; Rakugi, Hiromi; Isaka, Yoshitaka

    2015-09-01

    Little is known about genetic predictors that modify the renoprotective effect of renin-angiotensin system (RAS) blockade in IgA nephropathy (IgAN). The present multicenter retrospective observational study examined effect modification between RAS blockade and three RAS-related gene polymorphisms in 237 IgAN patients, including ACE I/D (rs1799752), AT1R A1166C (rs5186) and AGT T704C (rs699). During 9.9 ± 4.2 years of observation, 63 patients progressed to a 50% increase in serum creatinine level. Only ACE I/D predicted the outcome (ACE DD vs ID/II, hazard ratio 1.86 (95% confidence interval 1.03, 3.33)) and modified the renoprotective effect of RAS blockade (p for interaction between ACE DD and RAS blockade = 0.087). RAS blockade suppressed progression in ACE DD patients but not in ID/II patients (ACE ID/II with RAS blockade as a reference; ID/II without RAS blockade 1.45 (0.72, 2.92); DD without RAS blockade 3.06 (1.39, 6.73); DD with RAS blockade 1.51 (0.54, 4.19)), which was ascertained in a model with the outcome of slope of estimated glomerular filtration rate (p = 0.045 for interaction). ACE I/D predicted the IgAN progression and the renoprotective effect of RAS blockade in IgAN patients whereas neither AT1R A1166C nor AGT T704C did. © The Author(s) 2014.

  4. Renin-angiotensin system: an old player with novel functions in skeletal muscle.

    PubMed

    Cabello-Verrugio, Claudio; Morales, María Gabriela; Rivera, Juan Carlos; Cabrera, Daniel; Simon, Felipe

    2015-05-01

    Skeletal muscle is a tissue that shows the most plasticity in the body; it can change in response to physiological and pathological stimuli. Among the diseases that affect skeletal muscle are myopathy-associated fibrosis, insulin resistance, and muscle atrophy. A common factor in these pathologies is the participation of the renin-angiotensin system (RAS). This system can be functionally separated into the classical and nonclassical RAS axis. The main components of the classical RAS pathway are angiotensin-converting enzyme (ACE), angiotensin II (Ang-II), and Ang-II receptors (AT receptors), whereas the nonclassical axis is composed of ACE2, angiotensin 1-7 [Ang (1-7)], and the Mas receptor. Hyperactivity of the classical axis in skeletal muscle has been associated with insulin resistance, atrophy, and fibrosis. In contrast, current evidence supports the action of the nonclassical RAS as a counter-regulator axis of the classical RAS pathway in skeletal muscle. In this review, we describe the mechanisms involved in the pathological effects of the classical RAS, advances in the use of pharmacological molecules to inhibit this axis, and the beneficial effects of stimulation of the nonclassical RAS pathway on insulin resistance, atrophy, and fibrosis in skeletal muscle. © 2015 Wiley Periodicals, Inc.

  5. RasGAP Shields Akt from Deactivating Phosphatases in Fibroblast Growth Factor Signaling but Loses This Ability Once Cleaved by Caspase-3*

    PubMed Central

    Cailliau, Katia; Lescuyer, Arlette; Burnol, Anne-Françoise; Cuesta-Marbán, Álvaro; Widmann, Christian; Browaeys-Poly, Edith

    2015-01-01

    Fibroblast growth factor receptors (FGFRs) are involved in proliferative and differentiation physiological responses. Deregulation of FGFR-mediated signaling involving the Ras/PI3K/Akt and the Ras/Raf/ERK MAPK pathways is causally involved in the development of several cancers. The caspase-3/p120 RasGAP module is a stress sensor switch. Under mild stress conditions, RasGAP is cleaved by caspase-3 at position 455. The resulting N-terminal fragment, called fragment N, stimulates anti-death signaling. When caspase-3 activity further increases, fragment N is cleaved at position 157. This generates a fragment, called N2, that no longer protects cells. Here, we investigated in Xenopus oocytes the impact of RasGAP and its fragments on FGF1-mediated signaling during G2/M cell cycle transition. RasGAP used its N-terminal Src homology 2 domain to bind FGFR once stimulated by FGF1, and this was necessary for the recruitment of Akt to the FGFR complex. Fragment N, which did not associate with the FGFR complex, favored FGF1-induced ERK stimulation, leading to accelerated G2/M transition. In contrast, fragment N2 bound the FGFR, and this inhibited mTORC2-dependent Akt Ser-473 phosphorylation and ERK2 phosphorylation but not phosphorylation of Akt on Thr-308. This also blocked cell cycle progression. Inhibition of Akt Ser-473 phosphorylation and entry into G2/M was relieved by PHLPP phosphatase inhibition. Hence, full-length RasGAP favors Akt activity by shielding it from deactivating phosphatases. This shielding was abrogated by fragment N2. These results highlight the role played by RasGAP in FGFR signaling and how graded stress intensities, by generating different RasGAP fragments, can positively or negatively impact this signaling. PMID:26109071

  6. RasGAP Shields Akt from Deactivating Phosphatases in Fibroblast Growth Factor Signaling but Loses This Ability Once Cleaved by Caspase-3.

    PubMed

    Cailliau, Katia; Lescuyer, Arlette; Burnol, Anne-Françoise; Cuesta-Marbán, Álvaro; Widmann, Christian; Browaeys-Poly, Edith

    2015-08-07

    Fibroblast growth factor receptors (FGFRs) are involved in proliferative and differentiation physiological responses. Deregulation of FGFR-mediated signaling involving the Ras/PI3K/Akt and the Ras/Raf/ERK MAPK pathways is causally involved in the development of several cancers. The caspase-3/p120 RasGAP module is a stress sensor switch. Under mild stress conditions, RasGAP is cleaved by caspase-3 at position 455. The resulting N-terminal fragment, called fragment N, stimulates anti-death signaling. When caspase-3 activity further increases, fragment N is cleaved at position 157. This generates a fragment, called N2, that no longer protects cells. Here, we investigated in Xenopus oocytes the impact of RasGAP and its fragments on FGF1-mediated signaling during G2/M cell cycle transition. RasGAP used its N-terminal Src homology 2 domain to bind FGFR once stimulated by FGF1, and this was necessary for the recruitment of Akt to the FGFR complex. Fragment N, which did not associate with the FGFR complex, favored FGF1-induced ERK stimulation, leading to accelerated G2/M transition. In contrast, fragment N2 bound the FGFR, and this inhibited mTORC2-dependent Akt Ser-473 phosphorylation and ERK2 phosphorylation but not phosphorylation of Akt on Thr-308. This also blocked cell cycle progression. Inhibition of Akt Ser-473 phosphorylation and entry into G2/M was relieved by PHLPP phosphatase inhibition. Hence, full-length RasGAP favors Akt activity by shielding it from deactivating phosphatases. This shielding was abrogated by fragment N2. These results highlight the role played by RasGAP in FGFR signaling and how graded stress intensities, by generating different RasGAP fragments, can positively or negatively impact this signaling. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Mitigation of Remedial Action Schemes by Decentralized Robust Governor Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elizondo, Marcelo A.; Marinovici, Laurentiu D.; Lian, Jianming

    This paper presents transient stability improvement by a new distributed hierarchical control architecture (DHC). The integration of remedial action schemes (RAS) to the distributed hierarchical control architecture is studied. RAS in power systems are designed to maintain stability and avoid undesired system conditions by rapidly switching equipment and/or changing operating points according to predetermined rules. The acceleration trend relay currently in use in the US western interconnection is an example of RAS that trips generators to maintain transient stability. The link between RAS and DHC is through fast acting robust turbine/governor control that can also improve transient stability. In thismore » paper, the influence of the decentralized robust turbine/governor control on the design of RAS is studied. Benefits of combining these two schemes are increasing power transfer capability and mitigation of RAS generator tripping actions; the later benefit is shown through simulations.« less

  8. RAS signalling in energy metabolism and rare human diseases.

    PubMed

    Dard, L; Bellance, N; Lacombe, D; Rossignol, R

    2018-05-08

    The RAS pathway is a highly conserved cascade of protein-protein interactions and phosphorylation that is at the heart of signalling networks that govern proliferation, differentiation and cell survival. Recent findings indicate that the RAS pathway plays a role in the regulation of energy metabolism via the control of mitochondrial form and function but little is known on the participation of this effect in RAS-related rare human genetic diseases. Germline mutations that hyperactivate the RAS pathway have been discovered and linked to human developmental disorders that are known as RASopathies. Individuals with RASopathies, which are estimated to affect approximately 1/1000 human birth, share many overlapping characteristics, including cardiac malformations, short stature, neurocognitive impairment, craniofacial dysmorphy, cutaneous, musculoskeletal, and ocular abnormalities, hypotonia and a predisposition to developing cancer. Since the identification of the first RASopathy, type 1 neurofibromatosis (NF1), which is caused by the inactivation of neurofibromin 1, several other syndromes have been associated with mutations in the core components of the RAS-MAPK pathway. These syndromes include Noonan syndrome (NS), Noonan syndrome with multiple lentigines (NSML), which was formerly called LEOPARD syndrome, Costello syndrome (CS), cardio-facio-cutaneous syndrome (CFC), Legius syndrome (LS) and capillary malformation-arteriovenous malformation syndrome (CM-AVM). Here, we review current knowledge about the bioenergetics of the RASopathies and discuss the molecular control of energy homeostasis and mitochondrial physiology by the RAS pathway. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Optimizing depuration of salmon in RAS

    USDA-ARS?s Scientific Manuscript database

    Fish cultured within water recirculating aquaculture systems (RAS) can acquire "earthy" or "musty" off-flavors due to bioaccumulation of the compounds geosmin and 2-methylisoborneol (MIB), respectively, which are produced by certain bacterial species present in RAS biosolids and microbial biofilms. ...

  10. Pathophysiological effects of RhoA and Rho-associated kinase on cardiovascular system.

    PubMed

    Cai, Anping; Li, Liwen; Zhou, Yingling

    2016-01-01

    In past decades, growing evidence from basic and clinical researches reveal that small guanosine triphosphate binding protein ras homolog gene family, member A (RhoA) and its main effector Rho-associated kinase (ROCK) play central and complex roles in cardiovascular systems, and increasing RhoA and ROCK activity is associated with a broad range of cardiovascular diseases such as congestive heart failure, atherosclerosis, and hypertension. Favorable outcomes have been observed with ROCK inhibitors treatment. In this review, we briefly summarize the pathophysiological roles of RhoA/ROCK signaling pathway on cardiovascular system, displaying the potential benefits in the cardiovascular system with controlling RhoA/ROCK signaling pathway.

  11. GTP Binding and Oncogenic Mutations May Attenuate Hypervariable Region (HVR)-Catalytic Domain Interactions in Small GTPase K-Ras4B, Exposing the Effector Binding Site*

    PubMed Central

    Lu, Shaoyong; Banerjee, Avik; Jang, Hyunbum; Zhang, Jian; Gaponenko, Vadim; Nussinov, Ruth

    2015-01-01

    K-Ras4B, a frequently mutated oncogene in cancer, plays an essential role in cell growth, differentiation, and survival. Its C-terminal membrane-associated hypervariable region (HVR) is required for full biological activity. In the active GTP-bound state, the HVR interacts with acidic plasma membrane (PM) headgroups, whereas the farnesyl anchors in the membrane; in the inactive GDP-bound state, the HVR may interact with both the PM and the catalytic domain at the effector binding region, obstructing signaling and nucleotide exchange. Here, using molecular dynamics simulations and NMR, we aim to figure out the effects of nucleotides (GTP and GDP) and frequent (G12C, G12D, G12V, G13D, and Q61H) and infrequent (E37K and R164Q) oncogenic mutations on full-length K-Ras4B. The mutations are away from or directly at the HVR switch I/effector binding site. Our results suggest that full-length wild-type GDP-bound K-Ras4B (K-Ras4BWT-GDP) is in an intrinsically autoinhibited state via tight HVR-catalytic domain interactions. The looser association in K-Ras4BWT-GTP may release the HVR. Some of the oncogenic mutations weaken the HVR-catalytic domain association in the K-Ras4B-GDP/-GTP bound states, which may facilitate the HVR disassociation in a nucleotide-independent manner, thereby up-regulating oncogenic Ras signaling. Thus, our results suggest that mutations can exert their effects in more than one way, abolishing GTP hydrolysis and facilitating effector binding. PMID:26453300

  12. Selective role for RGS12 as a Ras/Raf/MEK scaffold in nerve growth factor-mediated differentiation

    PubMed Central

    Willard, Melinda D; Willard, Francis S; Li, Xiaoyan; Cappell, Steven D; Snider, William D; Siderovski, David P

    2007-01-01

    Regulator of G-protein signaling (RGS) proteins accelerate GTP hydrolysis by heterotrimeric G-protein α subunits and thus inhibit signaling by many G protein-coupled receptors. Several RGS proteins have a multidomain architecture that adds further complexity to their roles in cell signaling in addition to their GTPase-accelerating activity. RGS12 contains a tandem repeat of Ras-binding domains but, to date, the role of this protein in Ras-mediated signal transduction has not been reported. Here, we show that RGS12 associates with the nerve growth factor (NGF) receptor tyrosine kinase TrkA, activated H-Ras, B-Raf, and MEK2 and facilitates their coordinated signaling to prolonged ERK activation. RGS12 is required for NGF-mediated neurite outgrowth of PC12 cells, but not outgrowth stimulated by basic fibroblast growth factor. siRNA-mediated knockdown of RGS12 expression also inhibits NGF-induced axonal growth in dissociated cultures of primary dorsal root ganglia neurons. These data suggest that RGS12 may play a critical, and receptor-selective, role in coordinating Ras-dependent signals that are required for promoting and/or maintaining neuronal differentiation. PMID:17380122

  13. Neutron Crystal Structure of RAS GTPase Puts in Question the Protonation State of the GTP γ-Phosphate*

    PubMed Central

    Knihtila, Ryan; Holzapfel, Genevieve; Weiss, Kevin; Meilleur, Flora; Mattos, Carla

    2015-01-01

    RAS GTPase is a prototype for nucleotide-binding proteins that function by cycling between GTP and GDP, with hydrogen atoms playing an important role in the GTP hydrolysis mechanism. It is one of the most well studied proteins in the superfamily of small GTPases, which has representatives in a wide range of cellular functions. These proteins share a GTP-binding pocket with highly conserved motifs that promote hydrolysis to GDP. The neutron crystal structure of RAS presented here strongly supports a protonated γ-phosphate at physiological pH. This counters the notion that the phosphate groups of GTP are fully deprotonated at the start of the hydrolysis reaction, which has colored the interpretation of experimental and computational data in studies of the hydrolysis mechanism. The neutron crystal structure presented here puts in question our understanding of the pre-catalytic state associated with the hydrolysis reaction central to the function of RAS and other GTPases. PMID:26515069

  14. Neutron crystal structure of RAS GTPase puts in question the protonation state of the GTP γ-phosphate

    DOE PAGES

    Knihtila, Ryan; Holzapfel, Genevieve; Weiss, Kevin; ...

    2015-10-29

    RAS GTPase is a prototype for nucleotide-binding proteins that function by cycling between GTP and GDP, with hydrogen atoms playing an important role in the GTP hydrolysis mechanism. It is one of the most well studied proteins in the superfamily of small GTPases, which has representatives in a wide range of cellular functions. These proteins share a GTP-binding pocket with highly conserved motifs that promote hydrolysis to GDP. The neutron crystal structure of RAS presented here strongly supports a protonated gamma-phosphate at physiological pH. This counters the notion that the phosphate groups of GTP are fully deprotonated at the startmore » of the hydrolysis reaction, which has colored the interpretation of experimental and computational data in studies of the hydrolysis mechanism. As a result, the neutron crystal structure presented here puts in question our understanding of the pre-catalytic state associated with the hydrolysis reaction central to the function of RAS and other GTPases.« less

  15. Mechanism of SOS PR-domain autoinhibition revealed by single-molecule assays on native protein from lysate

    PubMed Central

    Lee, Young Kwang; Low-Nam, Shalini T.; Chung, Jean K.; Hansen, Scott D.; Lam, Hiu Yue Monatrice; Alvarez, Steven; Groves, Jay T.

    2017-01-01

    The guanine nucleotide exchange factor (GEF) Son of Sevenless (SOS) plays a critical role in signal transduction by activating Ras. Here we introduce a single-molecule assay in which individual SOS molecules are captured from raw cell lysate using Ras-functionalized supported membrane microarrays. This enables characterization of the full-length SOS protein, which has not previously been studied in reconstitution due to difficulties in purification. Our measurements on the full-length protein reveal a distinct role of the C-terminal proline-rich (PR) domain to obstruct the engagement of allosteric Ras independently of the well-known N-terminal domain autoinhibition. This inhibitory role of the PR domain limits Grb2-independent recruitment of SOS to the membrane through binding of Ras·GTP in the SOS allosteric binding site. More generally, this assay strategy enables characterization of the functional behaviour of GEFs with single-molecule precision but without the need for purification. PMID:28452363

  16. Mechanism of SOS PR-domain autoinhibition revealed by single-molecule assays on native protein from lysate.

    PubMed

    Lee, Young Kwang; Low-Nam, Shalini T; Chung, Jean K; Hansen, Scott D; Lam, Hiu Yue Monatrice; Alvarez, Steven; Groves, Jay T

    2017-04-28

    The guanine nucleotide exchange factor (GEF) Son of Sevenless (SOS) plays a critical role in signal transduction by activating Ras. Here we introduce a single-molecule assay in which individual SOS molecules are captured from raw cell lysate using Ras-functionalized supported membrane microarrays. This enables characterization of the full-length SOS protein, which has not previously been studied in reconstitution due to difficulties in purification. Our measurements on the full-length protein reveal a distinct role of the C-terminal proline-rich (PR) domain to obstruct the engagement of allosteric Ras independently of the well-known N-terminal domain autoinhibition. This inhibitory role of the PR domain limits Grb2-independent recruitment of SOS to the membrane through binding of Ras·GTP in the SOS allosteric binding site. More generally, this assay strategy enables characterization of the functional behaviour of GEFs with single-molecule precision but without the need for purification.

  17. Domain analysis of Ras-association domain family member 6 upon interaction with MDM2.

    PubMed

    Sarkar, Aradhan; Iwasa, Hiroaki; Hossain, Shakhawoat; Xu, Xiaoyin; Sawada, Takeru; Shimizu, Takanobu; Maruyama, Junichi; Arimoto-Matsuzaki, Kyoko; Hata, Yutaka

    2017-01-01

    The tumor suppressor Ras-association domain family member 6 (RASSF6) has Ras-association domain (RA) and Salvador/RASSF/Hippo domain (SARAH). RASSF6 antagonizes MDM2, stabilizes p53, and induces apoptosis and cell cycle arrest. We previously demonstrated the interaction between RASSF6 and MDM2, but did not determine how both proteins interact with each other. We have shown here that N-terminal, RA, and SARAH domains of RASSF6 interact with MDM2 at distinct regions. RA binds to the RING-finger region of MDM2 and stabilizes p53. SARAH binds RA and blocks the interaction between RA and MDM2. RA overexpression induces p53-dependent apoptosis and senescence. In the presence of active KRas, the interaction between RA and MDM2 is recovered. In this way, RA and SARAH play an important role in Ras-mediated regulation of p53. © 2017 Federation of European Biochemical Societies.

  18. Effect of Angiotensin II and Small GTPase Ras Signaling Pathway Inhibition on Early Renal Changes in a Murine Model of Obstructive Nephropathy

    PubMed Central

    Rodríguez-Peña, Ana B.; Fuentes-Calvo, Isabel; Docherty, Neil G.; Arévalo, Miguel; Grande, María T.; Eleno, Nélida; Pérez-Barriocanal, Fernando; López-Novoa, José M.

    2014-01-01

    Tubulointerstitial fibrosis is a major feature of chronic kidney disease. Unilateral ureteral obstruction (UUO) in rodents leads to the development of renal tubulointerstitial fibrosis consistent with histopathological changes observed in advanced chronic kidney disease in humans. The purpose of this study was to assess the effect of inhibiting angiotensin II receptors or Ras activation on early renal fibrotic changes induced by UUO. Animals either received angiotensin II or underwent UUO. UUO animals received either losartan, atorvastatin, and farnesyl transferase inhibitor (FTI) L-744,832, or chaetomellic acid A (ChA). Levels of activated Ras, phospho-ERK1/2, phospho-Akt, fibronectin, and α-smooth muscle actin were subsequently quantified in renal tissue by ELISA, Western blot, and/or immunohistochemistry. Our results demonstrate that administration of angiotensin II induces activation of the small GTPase Ras/Erk/Akt signaling system, suggesting an involvement of angiotensin II in the early obstruction-induced activation of renal Ras. Furthermore, upstream inhibition of Ras signalling by blocking either angiotensin AT1 type receptor or by inhibiting Ras prenylation (atorvastatin, FTI o ChA) reduced the activation of the Ras/Erk/Akt signaling system and decreased the early fibrotic response in the obstructed kidney. This study points out that pharmacological inhibition of Ras activation may hold promise as a future strategy in the prevention of renal fibrosis. PMID:25101263

  19. Effect of angiotensin II and small GTPase Ras signaling pathway inhibition on early renal changes in a murine model of obstructive nephropathy.

    PubMed

    Rodríguez-Peña, Ana B; Fuentes-Calvo, Isabel; Docherty, Neil G; Arévalo, Miguel; Grande, María T; Eleno, Nélida; Pérez-Barriocanal, Fernando; López-Novoa, José M

    2014-01-01

    Tubulointerstitial fibrosis is a major feature of chronic kidney disease. Unilateral ureteral obstruction (UUO) in rodents leads to the development of renal tubulointerstitial fibrosis consistent with histopathological changes observed in advanced chronic kidney disease in humans. The purpose of this study was to assess the effect of inhibiting angiotensin II receptors or Ras activation on early renal fibrotic changes induced by UUO. Animals either received angiotensin II or underwent UUO. UUO animals received either losartan, atorvastatin, and farnesyl transferase inhibitor (FTI) L-744,832, or chaetomellic acid A (ChA). Levels of activated Ras, phospho-ERK1/2, phospho-Akt, fibronectin, and α-smooth muscle actin were subsequently quantified in renal tissue by ELISA, Western blot, and/or immunohistochemistry. Our results demonstrate that administration of angiotensin II induces activation of the small GTPase Ras/Erk/Akt signaling system, suggesting an involvement of angiotensin II in the early obstruction-induced activation of renal Ras. Furthermore, upstream inhibition of Ras signalling by blocking either angiotensin AT1 type receptor or by inhibiting Ras prenylation (atorvastatin, FTI o ChA) reduced the activation of the Ras/Erk/Akt signaling system and decreased the early fibrotic response in the obstructed kidney. This study points out that pharmacological inhibition of Ras activation may hold promise as a future strategy in the prevention of renal fibrosis.

  20. The effect of renin-angiotensin system blockade on renal protection in chronic kidney disease patients with hyperkalemia.

    PubMed

    Lee, Ju-Hyun; Kwon, Young Eun; Park, Jung Tak; Lee, Mi Jung; Oh, Hyung Jung; Han, Seung Hyeok; Kang, Shin-Wook; Choi, Kyu Hun; Yoo, Tae-Hyun

    2014-12-01

    The aim of this study was to determine the effects of renin-angiotensin system (RAS) blockade maintenance on renal protection in chronic kidney disease (CKD) patients with hyperkalemia occurring during treatment with RAS blockade. CKD III or IV patients, who were prescribed with RAS blockers and also had hyperkalemia, were included. The study population was divided into two groups based on maintenance or withdrawal of RAS blocker. Renal outcomes (doubling of creatinine or end-stage renal disease) and incidence of hyperkalemia were compared between the two groups. Out of 258 subjects who developed hyperkalemia during treatment with RAS blockers, 150 (58.1%) patients continued on RAS blockades, while RAS blockades were discontinued for more than 3 months in the remaining 108 patients. Renal event-free survival was significantly higher in the maintenance group compared with the withdrawal group. Cox proportional hazard ratio for renal outcomes was 1.35 (95% CI: 1.08-1.92, p=0.04) in the withdrawal group compared with the maintenance group. However, the incidence of hyperkalemia and hyperkalemia-related hospitalization or mortality did not differ between the two groups. This study demonstrated that the maintenance of RAS blockade is beneficial for the preservation of renal function and relatively tolerable in patients with CKD and hyperkalemia occurring during treatment with RAS blockade. © The Author(s) 2014.

  1. The potential of targeting Ras proteins in lung cancer.

    PubMed

    McCormick, Frank

    2015-04-01

    The Ras pathway is a major driver in lung adenocarcinoma: over 75% of all cases harbor mutations that activate this pathway. While spectacular clinical successes have been achieved by targeting activated receptor tyrosine kinases in this pathway, little, if any, significant progress has been achieved targeting Ras proteins themselves or cancers driven by oncogenic Ras mutants. New approaches to drug discovery, new insights into Ras function, new ways of attacking undruggable proteins through RNA interference and new ways of harnessing the immune system could change this landscape in the relatively near future.

  2. Ras trafficking, localization and compartmentalized signalling

    PubMed Central

    Prior, Ian A.; Hancock, John F.

    2012-01-01

    Ras proteins are proto-oncogenes that are frequently mutated in human cancers. Three closely related isoforms, HRAS, KRAS and NRAS, are expressed in all cells and have overlapping but distinctive functions. Recent work has revealed how differences between the Ras isoforms in their trafficking, localization and protein-membrane orientation enable signalling specificity to be determined. We review the various strategies used to characterize compartmentalized Ras localization and signalling. Localization is an important contextual modifier of signalling networks and insights from the Ras system are of widespread relevance for researchers interested in signalling initiated from membranes. PMID:21924373

  3. Alphavirus production is inhibited in neurofibromin 1-deficient cells through activated RAS signalling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolokoltsova, Olga A.; Domina, Aaron M.; Kolokoltsov, Andrey A.

    2008-07-20

    Virus-host interactions essential for alphavirus pathogenesis are poorly understood. To address this shortcoming, we coupled retrovirus insertional mutagenesis and a cell survival selection strategy to generate clonal cell lines broadly resistant to Sindbis virus (SINV) and other alphaviruses. Resistant cells had significantly impaired SINV production relative to wild-type (WT) cells, although virus binding and fusion events were similar in both sets of cells. Analysis of the retroviral integration sites identified the neurofibromin 1 (NF1) gene as disrupted in alphavirus-resistant cell lines. Subsequent analysis indicated that expression of NF1 was significantly reduced in alphavirus-resistant cells. Importantly, independent down-regulation of NF1 expressionmore » in WT HEK 293 cells decreased virus production and increased cell viability during SINV infection, relative to infected WT cells. Additionally, we observed hyperactive RAS signalling in the resistant HEK 293 cells, which was anticipated because NF1 is a negative regulator of RAS. Expression of constitutively active RAS (HRAS-G12V) in a WT HEK 293 cell line resulted in a marked delay in virus production, compared with infected cells transfected with parental plasmid or dominant-negative RAS (HRAS-S17N). This work highlights novel host cell determinants required for alphavirus pathogenesis and suggests that RAS signalling may play an important role in neuronal susceptibility to SINV infection.« less

  4. The Role of Magnesium for Geometry and Charge in GTP Hydrolysis, Revealed by Quantum Mechanics/Molecular Mechanics Simulations

    PubMed Central

    Rudack, Till; Xia, Fei; Schlitter, Jürgen; Kötting, Carsten; Gerwert, Klaus

    2012-01-01

    The coordination of the magnesium ion in proteins by triphosphates plays an important role in catalytic hydrolysis of GTP or ATP, either in signal transduction or energy conversion. For example, in Ras the magnesium ion contributes to the catalysis of GTP hydrolysis. The cleavage of GTP to GDP and Pi in Ras switches off cellular signaling. We analyzed GTP hydrolysis in water, Ras, and Ras·Ras-GTPase-activating protein using quantum mechanics/molecular mechanics simulations. By comparison of the theoretical IR-difference spectra for magnesium ion coordinated triphosphate to experimental ones, the simulations are validated. We elucidated thereby how the magnesium ion contributes to catalysis. It provides a temporary storage for the electrons taken from the triphosphate and it returns them after bond cleavage and Pi release back to the diphosphate. Furthermore, the Ras·Mg2+ complex forces the triphosphate into a stretched conformation in which the β- and γ-phosphates are coordinated in a bidentate manner. In this conformation, the triphosphate elongates the bond, which has to be cleaved during hydrolysis. Furthermore, the γ-phosphate adopts a more planar structure, driving the conformation of the molecule closer to the hydrolysis transition state. GTPase-activating protein enhances these changes in GTP conformation and charge distribution via the intruding arginine finger. PMID:22853907

  5. Targeting the Vasoprotective Axis of the Renin-Angiotensin System: A Novel Strategic Approach to Pulmonary Hypertensive Therapy

    PubMed Central

    Bradford, Chastity N.; Ely, Debra R.

    2010-01-01

    A decade has passed since the discovery of angiotensin-converting enzyme 2 (ACE2), a component of the ACE2–angiotensin (Ang)-(1-7)–Mas counterregulatory axis of the renin angiotensin system (RAS). ACE2 is considered an endogenous regulator of the vasoconstrictive, proliferative, fibrotic, and proinflammatory effects of the ACE–Ang II–angiotensin II type 1 receptor (AT1R) axis. Both animal and clinical studies have emerged to define a role for ACE2 in pulmonary arterial hypertension (PAH). There is scientific evidence supporting the concept that ACE2 maintains the RAS balance and plays a protective role in PAH. The activation of pulmonary ACE2 could influence the pathogenesis of PAH and serve as a novel therapeutic target in PAH. Current therapeutic strategies and interventions have limited success, and PAH remains a fatal disease. Thus, more research that establishes the novel therapeutic potential and defines the mechanism of the ACE2–Ang-(1-7)–Mas counterregulatory axis in PAH is needed. PMID:20556668

  6. Brain angiotensin-(1-7)/Mas axis: A new target to reduce the cardiovascular risk to emotional stress.

    PubMed

    Fontes, Marco Antônio Peliky; Martins Lima, Augusto; Santos, Robson Augusto Souza dos

    2016-04-01

    Emotional stress is now considered a risk factor for several diseases including cardiac arrhythmias and hypertension. It is well known that the activation of neuroendocrine and autonomic mechanisms features the response to emotional stress. However, its link to cardiovascular diseases and the regulatory mechanisms involved remain to be further comprehended. The renin-angiotensin system (RAS) plays an important role in homeostasis on all body systems. Specifically in the brain, the RAS regulates a number of physiological aspects. Recent data indicate that the activation of angiotensin-converting enzyme/angiotensin II/AT1 receptor axis facilitates the emotional stress responses. On the other hand, growing evidence indicates that its counterregulatory axis, the angiotensin-converting enzyme 2 (ACE2)/(Ang)iotensin-(1-7)/Mas axis, reduces anxiety and attenuates the physiological responses to emotional stress. The present review focuses on angiotensin-(1-7)/Mas axis as a promising target to attenuate the physiological response to emotional stress reducing the risk of cardiovascular diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Graded inhibition of oncogenic Ras-signaling by multivalent Ras-binding domains

    PubMed Central

    2014-01-01

    Background Ras is a membrane-associated small G-protein that funnels growth and differentiation signals into downstream signal transduction pathways by cycling between an inactive, GDP-bound and an active, GTP-bound state. Aberrant Ras activity as a result of oncogenic mutations causes de novo cell transformation and promotes tumor growth and progression. Results Here, we describe a novel strategy to block deregulated Ras activity by means of oligomerized cognate protein modules derived from the Ras-binding domain of c-Raf (RBD), which we named MSOR for multivalent scavengers of oncogenic Ras. The introduction of well-characterized mutations into RBD was used to adjust the affinity and hence the blocking potency of MSOR towards activated Ras. MSOR inhibited several oncogenic Ras-stimulated processes including downstream activation of Erk1/2, induction of matrix-degrading enzymes, cell motility and invasiveness in a graded fashion depending on the oligomerization grade and the nature of the individual RBD-modules. The amenability to accurate experimental regulation was further improved by engineering an inducible MSOR-expression system to render the reversal of oncogenic Ras effects controllable. Conclusion MSOR represent a new tool for the experimental and possibly therapeutic selective blockade of oncogenic Ras signals. PMID:24383791

  8. Characterization of ACE and ACE2 Expression within Different Organs of the NOD Mouse

    PubMed Central

    Roca-Ho, Heleia; Riera, Marta; Palau, Vanesa; Pascual, Julio; Soler, Maria Jose

    2017-01-01

    Renin angiotensin system (RAS) is known to play a key role in several diseases such as diabetes, and renal and cardiovascular pathologies. Its blockade has been demonstrated to delay chronic kidney disease progression and cardiovascular damage in diabetic patients. In this sense, since local RAS has been described, the aim of this study is to characterize angiotensin converting enzyme (ACE) and ACE2 activities, as well as protein expression, in several tissues of the non-obese diabetic (NOD) mice model. After 21 or 40 days of diabetes onset, mouse serums and tissues were analyzed for ACE and ACE2 enzyme activities and protein expression. ACE and ACE2 enzyme activities were detected in different tissues. Their expressions vary depending on the studied tissue. Thus, whereas ACE activity was highly expressed in lungs, ACE2 activity was highly expressed in pancreas among the studied tissues. Interestingly, we also observed that diabetes up-regulates ACE mainly in serum, lung, heart, and liver, and ACE2 mainly in serum, liver, and pancreas. In conclusion, we found a marked serum and pulmonary alteration in ACE activity of diabetic mice, suggesting a common regulation. The increase of ACE2 activity within the circulation in diabetic mice may be ascribed to a compensatory mechanism of RAS. PMID:28273875

  9. Characterization of ACE and ACE2 Expression within Different Organs of the NOD Mouse.

    PubMed

    Roca-Ho, Heleia; Riera, Marta; Palau, Vanesa; Pascual, Julio; Soler, Maria Jose

    2017-03-05

    Renin angiotensin system (RAS) is known to play a key role in several diseases such as diabetes, and renal and cardiovascular pathologies. Its blockade has been demonstrated to delay chronic kidney disease progression and cardiovascular damage in diabetic patients. In this sense, since local RAS has been described, the aim of this study is to characterize angiotensin converting enzyme (ACE) and ACE2 activities, as well as protein expression, in several tissues of the non-obese diabetic (NOD) mice model. After 21 or 40 days of diabetes onset, mouse serums and tissues were analyzed for ACE and ACE2 enzyme activities and protein expression. ACE and ACE2 enzyme activities were detected in different tissues. Their expressions vary depending on the studied tissue. Thus, whereas ACE activity was highly expressed in lungs, ACE2 activity was highly expressed in pancreas among the studied tissues. Interestingly, we also observed that diabetes up-regulates ACE mainly in serum, lung, heart, and liver, and ACE2 mainly in serum, liver, and pancreas. In conclusion, we found a marked serum and pulmonary alteration in ACE activity of diabetic mice, suggesting a common regulation. The increase of ACE2 activity within the circulation in diabetic mice may be ascribed to a compensatory mechanism of RAS.

  10. Local bone marrow renin-angiotensin system in primitive, definitive and neoplastic haematopoiesis.

    PubMed

    Haznedaroglu, Ibrahim C; Beyazit, Yavuz

    2013-03-01

    The locally active ligand peptides, mediators, receptors and signalling pathways of the haematopoietic BM (bone marrow) autocrine/paracrine RAS (renin-angiotensin system) affect the essential steps of definitive blood cell production. Haematopoiesis, erythropoiesis, myelopoiesis, formation of monocytic and lymphocytic lineages, thrombopoiesis and other stromal cellular elements are regulated by the local BM RAS. The local BM RAS is present and active even in primitive embryonic haematopoiesis. ACE (angiotensin-converting enzyme) is expressed on the surface of the first endothelial and haematopoietic cells, forming the marrow cavity in the embryo. ACE marks early haematopoietic precursor cells and long-term blood-forming CD34(+) BM cells. The local autocrine tissue BM RAS may also be active in neoplastic haematopoiesis. Critical RAS mediators such as renin, ACE, AngII (angiotensin II) and angiotensinogen have been identified in leukaemic blast cells. The local tissue RAS influences tumour growth and metastases in an autocrine and paracrine fashion via the modulation of numerous carcinogenic events, such as angiogenesis, apoptosis, cellular proliferation, immune responses, cell signalling and extracellular matrix formation. The aim of the present review is to outline the known functions of the local BM RAS within the context of primitive, definitive and neoplastic haematopoiesis. Targeting the actions of local RAS molecules could represent a valuable therapeutic option for the management of neoplastic disorders.

  11. Gender aspects in heart failure. Pathophysiology and medical therapy.

    PubMed

    Regitz-Zagrosek, V; Lehmkuhl, E; Lehmkuhl, H B; Hetzer, R

    2004-09-01

    Gender differences in the syndrome of heart failure (HF) occur in etiology and pathophysiology and lead to differences in the clinical presentation and course of the syndrome. In addition, gender specific treatment responses and gender associated differences in the behavior of treating physicians are found. Hypertension and diabetes play a major role as causes of HF in women and both interact in their pathophysiology with the renin angiotensin system (RAS). Modulation of the RAS by estrogens explains specific differences between pre- and post-menopausal women and men. Myocardial growth processes and myocardial calcium handling are differentially regulated in female and male myocytes. Myocardial remodeling with age and as a consequence of mechanical load differs in women and men. For yet unknown reasons, HF with preserved systolic function seems to be more frequent in women than in men and the clinical course of systolic HF is different in both genders. Medical therapy in heart failure has usually not been specified according to gender and gender specific analysis has been neglected in most large survival trials. Only a post-hoc analysis of gender differences led to the recognition of increased mortality with digitalis therapy in women. Single studies on angiotensin converting enzyme inhibitors (ACEI) or beta-receptor blockers did not reach significant end points in women whereas meta-analyses showed overall positive effects. Side effects of ACEI are more common and pharmacokinetics of beta-blockers are different in women. Angiotensin receptor blockers (ARB) are equally well tolerated in women and men. RAS inhibition may be particularly advantageous in postmenopausal women in whom the natural modulation of the RAS by estrogens is lost.

  12. Positive feedback can lead to dynamic nanometer-scale clustering on cell membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wehrens, Martijn; Rein ten Wolde, Pieter; Mugler, Andrew, E-mail: amugler@purdue.edu

    2014-11-28

    Clustering of molecules on biological membranes is a widely observed phenomenon. A key example is the clustering of the oncoprotein Ras, which is known to be important for signal transduction in mammalian cells. Yet, the mechanism by which Ras clusters form and are maintained remains unclear. Recently, it has been discovered that activated Ras promotes further Ras activation. Here we show using particle-based simulation that this positive feedback is sufficient to produce persistent clusters of active Ras molecules at the nanometer scale via a dynamic nucleation mechanism. Furthermore, we find that our cluster statistics are consistent with experimental observations ofmore » the Ras system. Interestingly, we show that our model does not support a Turing regime of macroscopic reaction-diffusion patterning, and therefore that the clustering we observe is a purely stochastic effect, arising from the coupling of positive feedback with the discrete nature of individual molecules. These results underscore the importance of stochastic and dynamic properties of reaction diffusion systems for biological behavior.« less

  13. Kindlin-2 regulates renal tubular cell plasticity by activation of Ras and its downstream signaling.

    PubMed

    Wei, Xiaofan; Wang, Xiang; Xia, Yang; Tang, Yan; Li, Feng; Fang, Weigang; Zhang, Hongquan

    2014-01-01

    Kindlin-2 is an adaptor protein that contributes to renal tubulointerstitial fibrosis (TIF). Epithelial-to-mesenchymal transition (EMT) in tubular epithelial cells was regarded as one of the key events in TIF. To determine whether kindlin-2 is involved in the EMT process, we investigated its regulation of EMT in human kidney tubular epithelial cells (TECs) and explored the underlying mechanism. In this study, we found that overexpression of kindlin-2 suppressed epithelial marker E-cadherin and increased the expression of fibronectin and the myofibroblast marker α-smooth muscle actin (SMA). Kindlin-2 significantly activated ERK1/2 and Akt, and inhibition of ERK1/2 or Akt reversed kindlin-2-induced EMT in human kidney TECs. Mechanistically, kindlin-2 interacted with Ras and son of sevenless (Sos)-1. Furthermore, overexpression of kindlin-2 increased Ras activation through recruiting Sos-1. Treatment with a Ras inhibitor markedly repressed kindlin-2-induced ERK1/2 and Akt activation, leading to restraint of EMT. We further demonstrated that knockdown of kindlin-2 inhibited EGF-induced Ras-Sos-1 interaction, resulting in reduction of Ras activation and suppression of EMT stimulated by EGF. Importantly, we found that depletion of kindlin-2 significantly inhibited activation of ERK1/2 and Akt signaling in mice with unilateral ureteral obstruction. We conclude that kindlin-2, through activating Ras and the downstream ERK1/2 and Akt signaling pathways, plays an important role in regulating renal tubular EMT and could be a potential therapeutic target for the treatment of fibrotic kidney diseases.

  14. ERK mediated upregulation of death receptor 5 overcomes the lack of p53 functionality in the diaminothiazole DAT1 induced apoptosis in colon cancer models: efficiency of DAT1 in Ras-Raf mutated cells.

    PubMed

    Thamkachy, Reshma; Kumar, Rohith; Rajasekharan, K N; Sengupta, Suparna

    2016-03-08

    p53 is a tumour suppressor protein that plays a key role in many steps of apoptosis, and malfunctioning of this transcription factor leads to tumorigenesis. Prognosis of many tumours also depends upon the p53 status. Most of the clinically used anticancer compounds activate p53 dependent pathway of apoptosis and hence require p53 for their mechanism of action. Further, Ras/Raf/MEK/ERK axis is an important signaling pathway activated in many cancers. Dependence of diaminothiazoles, compounds that have gained importance recently due to their anticancer and anti angiogenic activities, were tested in cancer models with varying p53 or Ras/Raf mutational status. In this study we have used p53 mutated and knock out colon cancer cells and xenograft tumours to study the role of p53 in apoptosis mediated by diaminothiazoles. Colon cancer cell lines with varying mutational status for Ras or Raf were also used. We have also examined the toxicity and in vivo efficacy of a lead diaminothiazole 4-Amino-5-benzoyl-2-(4-methoxy phenylamino)thiazole (DAT1) in colon cancer xenografts. We have found that DAT1 is active in both in vitro and in vivo models with nonfunctional p53. Earlier studies have shown that extrinsic pathway plays major role in DAT1 mediated apoptosis. In this study, we have found that DAT1 is causing p53 independent upregulation of the death receptor 5 by activating the Ras/Raf/MEK/ERK signaling pathway both in wild type and p53 suppressed colon cancer cells. These findings are also confirmed by the in vivo results. Further, DAT1 is more efficient to induce apoptosis in colon cancer cells with mutated Ras or Raf. Minimal toxicity in both acute and subacute studies along with the in vitro and in vivo efficacy of DAT1 in cancers with both wild type and nonfunctional p53 place it as a highly beneficial candidate for cancer chemotherapy. Besides, efficiency in cancer cells with mutations in the Ras oncoprotein or its downstream kinase Raf raise interest in diaminothiazole class of compounds for further follow-up.

  15. Plasma ctDNA RAS mutation analysis for the diagnosis and treatment monitoring of metastatic colorectal cancer patients

    PubMed Central

    Vidal, J; Muinelo, L; Dalmases, A; Jones, F; Edelstein, D; Iglesias, M; Orrillo, M; Abalo, A; Rodríguez, C; Brozos, E; Vidal, Y; Candamio, S; Vázquez, F; Ruiz, J; Guix, M; Visa, L; Sikri, V; Albanell, J; Bellosillo, B; López, R; Montagut, C

    2017-01-01

    Abstract Background RAS assessment is mandatory for therapy decision in metastatic colorectal cancer (mCRC) patients. This determination is based on tumor tissue, however, genotyping of circulating tumor (ct)DNA offers clear advantages as a minimally invasive method that represents tumor heterogeneity. Our study aims to evaluate the use of ctDNA as an alternative for determining baseline RAS status and subsequent monitoring of RAS mutations during therapy as a component of routine clinical practice. Patients and methods RAS mutational status in plasma was evaluated in mCRC patients by OncoBEAM™ RAS CRC assay. Concordance of results in plasma and tissue was retrospectively evaluated. RAS mutations were also prospectively monitored in longitudinal plasma samples from selected patients. Results Analysis of RAS in tissue and plasma samples from 115 mCRC patients showed a 93% overall agreement. Plasma/tissue RAS discrepancies were mainly explained by spatial and temporal tumor heterogeneity. Analysis of clinico-pathological features showed that the site of metastasis (i.e. peritoneal, lung), the histology of the tumor (i.e. mucinous) and administration of treatment previous to blood collection negatively impacted the detection of RAS in ctDNA. In patients with baseline mutant RAS tumors treated with chemotherapy/antiangiogenic, longitudinal analysis of RAS ctDNA mirrored response to treatment, being an early predictor of response. In patients RAS wt, longitudinal monitoring of RAS ctDNA revealed that OncoBEAM was useful to detect emergence of RAS mutations during anti-EGFR treatment. Conclusion The high overall agreement in RAS mutational assessment between plasma and tissue supports blood-based testing with OncoBEAM™ as a viable alternative for genotyping RAS of mCRC patients in routine clinical practice. Our study describes practical clinico-pathological specifications to optimize RAS ctDNA determination. Moreover, OncoBEAM™ is useful to monitor RAS in patients undergoing systemic therapy to detect resistance and evaluate the efficacy of particular treatments. PMID:28419195

  16. Systemic Regulation of RAS/MAPK Signaling by the Serotonin Metabolite 5-HIAA.

    PubMed

    Schmid, Tobias; Snoek, L Basten; Fröhli, Erika; van der Bent, M Leontien; Kammenga, Jan; Hajnal, Alex

    2015-05-01

    Human cancer is caused by the interplay of mutations in oncogenes and tumor suppressor genes and inherited variations in cancer susceptibility genes. While many of the tumor initiating mutations are well characterized, the effect of genetic background variation on disease onset and progression is less understood. We have used C. elegans genetics to identify genetic modifiers of the oncogenic RAS/MAPK signaling pathway. Quantitative trait locus analysis of two highly diverged C. elegans isolates combined with allele swapping experiments identified the polymorphic monoamine oxidase A (MAOA) gene amx-2 as a negative regulator of RAS/MAPK signaling. We further show that the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA), which is a product of MAOA catalysis, systemically inhibits RAS/MAPK signaling in different organs of C. elegans. Thus, MAOA activity sets a global threshold for MAPK activation by controlling 5-HIAA levels. To our knowledge, 5-HIAA is the first endogenous small molecule that acts as a systemic inhibitor of RAS/MAPK signaling.

  17. Some Comparative Aspects of the Renin-Angiotensin System.

    ERIC Educational Resources Information Center

    Malvin, Richard L.

    1984-01-01

    The renin-angiotensin system (RAS) maintains salt and water balance. Discusses functions of the RAS as defined in mammalian species, considering how the system arose and what its original function was. Also discusses where some of the changes occurred in the system (and why) as well as other topics. (JN)

  18. K-ras mutation promotes ionizing radiation-induced invasion and migration of lung cancer in part via the Cathepsin L/CUX1 pathway.

    PubMed

    Wang, Long; Zhao, Yifan; Xiong, Yajie; Wang, Wenjuan; Fei, Yao; Tan, Caihong; Liang, Zhongqin

    2018-01-15

    K-ras mutation is involved in cancer progression including invasion and migration, but the underlying mechanism is not yet clear. Cathepsin L is a lysosomal cysteine protease and has recently been associated with invasion and migration in human cancers when it is overexpressed. Our recent studies have shown that ionizing radiation (IR) enhanced expression of cathepsin L and increased invasion and migration of tumor cells, but the molecular mechanism is still unclear. In the present study, the effects of K-ras mutation and IR induced invasion and migration of lung cancer as well as the underlying mechanisms were investigated both in vitro and in vivo. Firstly, the levels of cathepsin L and epithelial mesenchymal transition (EMT) marker proteins remarkably changed in A549 (K-ras mutant) after irradiation compared with H1299 (K-ras wild), thereby promoting invasion and migration. Additionally, cathepsin L and its downstream transcription factor CUX1/p110 were increased after irradiation in A549 transfected with CUX1/p200, and the proteolytic processing of CUX1 by cathepsin L was remarkably increased after co-transfection of CUX1/p200 and cathepsin L-lentivirus in H1299. In addition, delivery of a mutant K-ras (V12) into HEK 293 cells stimulated EMT after irradiation due to the accumulation of cathepsin L. Moreover, mutated K-ras was associated with IR-induced cathepsin L and EMT in BALB/c nude mice. Finally, the level of cathepsin L expression was higher in samples carrying a K-ras mutation than in wild-type K-ras samples and the mesenchymal markers were upregulated in the samples of mutant K-ras, whereas the epithelial marker E-cadherin was downregulated in non-small cell lung cancers tissues. In conclusion, the findings demonstrated that mutated K-ras promotes cathepsin L expression and plays a pivotal role in EMT of human lung cancer. The regulatory effect of IR-induced cathepsin L on lung cancer invasion and migration was partially attributed to the Cathepsin L /CUX1-mediated EMT signaling pathway. This study will provide cathepsin L as a potential target for tumor therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Research Assistants Caught in Limbo: Considering Their Role in Quantitative, Longitudinal Research with Vulnerable Populations.

    PubMed

    Zerger, Suzanne; Pridham, Katherine Francombe; Plenert, Erin; Newberry, Caitlin; Whisler, Adam; Fernando, Indira; Ahmed, Naveed

    2015-11-01

    Research assistants (RAs) play a variety of roles that are critical in making research happen and in determining its quality and effectiveness. Yet their locus of power in the production of knowledge stands in sharp contrast to their relative powerlessness in the hierarchical research organization. This article explores the experiences of RAs engaged in a randomized controlled longitudinal field trial of a Housing First intervention for individuals experiencing homelessness and mental illness in Toronto. They encountered several unexpected effects of navigating the power ascribed to them by both study participants and community service providers. This study underscores the importance of acknowledging that RAs are the face of the research study in the field, and of better understanding implications associated with that fact, especially when marginalized populations and their providers are involved.

  20. Down-regulation of let-7 microRNA increased K-ras expression in lung damage induced by radon.

    PubMed

    Chen, Zhihai; Wang, Dapeng; Gu, Chao; Liu, Xing; Pei, Weiwei; Li, Jianxiang; Cao, Yi; Jiao, Yang; Tong, Jian; Nie, Jihua

    2015-09-01

    Radon has long been recognized as a human carcinogen leading to lung cancer, but the underlying mechanisms remain obscure. Recent studies have shown that the let-7 microRNA and K-ras play an important role in the development of various cancers. However, the exact role between let-7 and K-ras in radon induced lung damage has not been explored so far. In the present study, wistar rats and human bronchial epithelial (HBE) cells were long-term exposed to radon, and then alterations in histological pathology of rat lung tissue, ROS, antioxidant enzymes activities and clonogenic formation in HBE cells, as well as changes in let-7 and K-ras expression were determined to observe the adverse effects induced by radon. The results showed that long-term exposure to radon produced severe lung damage in rats, significantly increased ROS production and clonogenic formation ratios and decreased SOD activities in HBE cells. In addition, an obvious down-regulation of let-7 and up-regulation of K-ras were also revealed both in mRNA and in protein level in lung tissue of rats and HBE cells exposed to radon. Furthermore, a significant down-regulation of K-ras was then confirmed in both let-7b-3p and let-7a-2-3p transfected HBE cells. Taken together, the present results propose an involvement of let-7 microRNA and K-ras in radon induced lung damage both in vivo and in vitro, which may thus be of potential value in early diagnosis and therapy of radon-induced lung tumorgenesis. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Immune response of patients with recurrent aphthous stomatitis challenged with a symbiotic.

    PubMed

    Mimura, Maria Angela Martins; Borra, Ricardo Carneiro; Hirata, Cleonice Hitomi Watashi; de Oliveira Penido, Norma

    2017-10-01

    There are indications that Th1 polarization of immune response plays an important role in the pathogenesis of recurrent aphthous stomatitis (RAS), and that the use of probiotics can stimulate immune regulatory activity, influencing the course of the disease. The aim of this study was to characterize the initial immune profile of RAS patients and evaluate clinical and serological response following a challenge with symbiotic treatment containing fructooligosaccharide, Lactobacillus, and Bifidobacterium. The immune responses of the 45 patients with RAS, submitted to symbiotic or placebo for 120 days, in relation to 30 RAS-free controls, were evaluated over a period of 6 months. Peripheral blood was collected from all patients at 0 (T0), 120 (T4), and 180 days (T6) after the start of treatment and Th1 (IL12-p70, IFN-γ), Th2 (IL-4), Treg (IL-10), Th17 (IL-17A), inflammatory (TNF-α, IL-6)-associated cytokines, and clinical parameters were quantified. At T0, significant differences were found in the serological levels of the IFN-γ, IL-4, and IL-6 cytokines of the RAS patients in comparison with the controls. It was observed that the cytokine profile of the RAS group was comprised of 2 distinct clusters: a pure Th2 and a Mixed (Th1/Th2) subtype and that symbiotic treatment induced an improvement in pain and an increase in IFN-γ levels, producing a reduction in Th2 response. In RAS, symbiotic treatment based on a fructooligosaccharide, Lactobacillus, and Bifidobacterium composition produced an alteration in the Th2 serological immune profile in the direction of Th1 and improved pain symptomatology. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. The Non-Classical Renin-Angiotensin System and Renal Function

    PubMed Central

    Chappell, Mark C.

    2014-01-01

    The renin-angiotensin-system (RAS) constitutes one of the most important hormonal systems in the physiological regulation of blood pressure through renal and non-renal mechanisms. Indeed, dysregulation of the RAS is considered a major factor in the development of cardiovascular pathologies including kidney injury and blockade of this system by the inhibition of angiotensin converting enzyme (ACE) or blockade of the angiotensin type 1 receptor (AT1R) by selective antagonists constitutes an effective therapeutic regimen. It is now apparent with the identification of multiple components of the RAS within the kidney and other tissues that the system is actually composed of different angiotensin peptides with diverse biological actions mediated by distinct receptor subtypes. The classic RAS can be defined as the ACE-Ang II AT1R axis that promotes vasoconstriction, water intake, sodium retention and other mechanisms to maintain blood pressure, as well as increase oxidative stress, fibrosis, cellular growth and inflammation in pathological conditions. In contrast, the non-classical RAS composed primarily of the AngII/Ang III–AT2R pathway and the ACE2-Ang-(1-7)-AT7R axis generally opposes the actions of a stimulated Ang II-AT1R axis through an increase in nitric oxide and prostaglandins and mediates vasodilation, natriuresis, diuresis, and a reduced oxidative stress. Moreover, increasing evidence suggests that these non-classical RAS components contribute to the therapeutic blockade of the classical system to reduce blood pressure and attenuate various indices of renal injury, as well as contribute to normal renal function. PMID:23720263

  3. Bibliography of Selected SCSD, URBS, SSP, SEF, and RAS Publications.

    ERIC Educational Resources Information Center

    Stanford Univ., CA. School Planning Lab.

    The annotated bibliography contains publications and report listings of the following sources--(1) School Construction Systems Development (SCSD), (2) University Residential Building Systems (URBS), (3) Florida Schoolhouse Systems Project (SSP), (4) Study of Educational Facilities (SEF), and (5) Recherches en Amenagements Scolaires (RAS) Building…

  4. Loss of Cbl-PI3K interaction enhances osteoclast survival due to p21-Ras mediated PI3K activation independent of Cbl-b.

    PubMed

    Adapala, Naga Suresh; Barbe, Mary F; Tsygankov, Alexander Y; Lorenzo, Joseph A; Sanjay, Archana

    2014-07-01

    Cbl family proteins, Cbl and Cbl-b, are E3 ubiquitin ligases and adaptor proteins, which play important roles in bone-resorbing osteoclasts. Loss of Cbl in mice decreases osteoclast migration, resulting in delayed bone development where as absence of Cbl-b decreases bone volume due to hyper-resorptive osteoclasts. A major structural difference between Cbl and Cbl-b is tyrosine 737 (in YEAM motif) only on Cbl, which upon phosphorylation interacts with the p85 subunit of phosphatidylinositol-3 Kinase (PI3K). In contrast to Cbl(-/-) and Cbl-b(-/-) , mice lacking Cbl-PI3K interaction due to a Y737F (tyrosine to phenylalanine, YF) mutation showed enhanced osteoclast survival, but defective bone resorption. To investigate whether Cbl-PI3K interaction contributes to distinct roles of Cbl and Cbl-b in osteoclasts, mice bearing CblY737F mutation in the Cbl-b(-/-) background (YF/YF;Cbl-b(-/-) ) were generated. The differentiation and survival were augmented similarly in YF/YF and YF/YF;Cbl-b(-/-) osteoclasts, associated with enhanced PI3K signaling suggesting an exclusive role of Cbl-PI3K interaction, independent of Cbl-b. In addition to PI3K, the small GTPase Ras also regulates osteoclast survival. In the absence of Cbl-PI3K interaction, increased Ras GTPase activity and Ras-PI3K binding were observed and inhibition of Ras activation attenuated PI3K mediated osteoclast survival. In contrast to differentiation and survival, increased osteoclast activity observed in Cbl-b(-/-) mice persisted even after introduction of the resorption-defective YF mutation in YF/YF;Cbl-b(-/-) mice. Hence, Cbl and Cbl-b play mutually exclusive roles in osteoclasts. Whereas Cbl-PI3K interaction regulates differentiation and survival, bone resorption is predominantly regulated by Cbl-b in osteoclasts. © 2014 Wiley Periodicals, Inc.

  5. Combination use of medicines from two classes of renin-angiotensin system blocking agents: risk of hyperkalemia, hypotension, and impaired renal function.

    PubMed

    Esteras, Raquel; Perez-Gomez, Maria Vanessa; Rodriguez-Osorio, Laura; Ortiz, Alberto; Fernandez-Fernandez, Beatriz

    2015-08-01

    European and United States regulatory agencies recently issued warnings against the use of dual renin-angiotensin system (RAS) blockade therapy through the combined use of angiotensin-converting enzyme inhibitors (ACEIs), angiotensin II receptor blockers (ARBs) or aliskiren in any patient, based on absence of benefit for most patients and increased risk of hyperkalemia, hypotension, and renal failure. Special emphasis was made not to use these combinations in patients with diabetic nephropathy. The door was left open to therapy individualization, especially for patients with heart failure, when the combined use of an ARB and ACEI is considered absolutely essential, although renal function, electrolytes and blood pressure should be closely monitored. Mineralocorticoid receptor antagonists were not affected by this warning despite increased risk of hyperkalemia. We now critically review the risks associated with dual RAS blockade and answer the following questions: What safety issues are associated with dual RAS blockade? Can the safety record of dual RAS blockade be improved? Is it worth trying to improve the safety record of dual RAS blockade based on the potential benefits of the combination? Is dual RAS blockade dead? What is the role of mineralocorticoid antagonists in combination with other RAS blocking agents: RAAS blockade?

  6. Ha-ras(val12) induces HSP70b transcription via the HSE/HSF1 system, but HSP70b expression is suppressed in Ha-ras(val12)-transformed cells.

    PubMed

    Stanhill, A; Levin, V; Hendel, A; Shachar, I; Kazanov, D; Arber, N; Kaminski, N; Engelberg, D

    2006-03-09

    Heat shock proteins (Hsps) are overexpressed in many tumors, but are downregulated in some tumors. To check for a direct effect of Ha-Ras(val12) on HSP70 transcription, we transiently expressed the oncoprotein in Rat1 fibroblasts and monitored its effect on HSP70b promoter-driven reporter gene. We show that expression of Ha-Ras(val12) induced this promoter. Promoter analysis via systematic deletions and point mutations revealed that Ha-Ras(val12) induces HSP70b transcription via heat shock elements (HSEs). Also, Ha-Ras(val12) induction of HSE-mediated transcription was dramatically reduced in HSF1-/- cells. Yet, residual effect of Ha-Ras(val12) that was still measured in HSF1-/- cells suggests that some of the Ha-Ras(val12) effect is Hsf1-independent. When HSF1-/- cells, stably expressing Ha-Ras(val12), were grown on soft agar only small colonies were formed suggesting a role for heat shock factor 1 (Hsf1) in Ha-Ras(val12)-mediated transformation. Although Ha-ras(Val12) seems to be an inducer of HSP70's expression, we found that in Ha-ras(Val12-)transformed fibroblasts expression of this gene is suppressed. This suppression is correlated with higher sensitivity of Ha-ras(val12)-transformed cells to heat shock. We suggest that Ha-ras(Val12) is involved in Hsf1 activation, thereby inducing the cellular protective response. Cells that repress this response are perhaps those that acquire the capability to further proliferate and become transformed clones.

  7. The benefit of angiotensin AT1 receptor blockers for early treatment of hypertensive patients.

    PubMed

    Trimarco, Bruno; Santoro, Ciro; Pepe, Marco; Galderisi, Maurizio

    2017-12-01

    ESC guidelines for management of arterial hypertension allow one to choose among five classes of antihypertensive drugs indiscriminately. They are based on the principle that in the management of hypertensive patients, it is fundamental to reduce blood pressure (BP), independently of the utilized drug. However, it has been demonstrated that the renin-angiotensin system (RAS) plays a relevant role in the hypertensive-derived development and progression of organ damage. Thus, antihypertensive drugs interfering with the RAS should be preferred in preventing and reducing target organ damage. The availability of two classes of drugs, ACE-inhibitors and angiotensin AT1 receptor blockers (ARBs), both interfering with the RAS, makes the choice between them difficult. Both pharmacological strategies offer an effective BP control, and a substantial improvement of prognosis in different associated pathologies. Regarding cardiovascular prevention, ACE-inhibitors have an extensive scientific literature regarding utility in high-risk patients. Nevertheless, there is evidence to support the concept that in the early phases of organ tissue damage, the RAS is activated, but the ACE pathway producing angiotensin II is not always employed. Accordingly, ACE-inhibitors appear to be less effective, whereas ARBs have a greater beneficial action in the initial stages of atherosclerotic disease. Moreover, patients undergoing ARBs therapy show a substantially lower risk of therapy discontinuation when compared to those treated with ACE-inhibitors, because of a better tolerability. In conclusion, ACE-inhibitors should be used in patients who have already developed organ damage, but tolerate this drug well, while ARBs should be the first choice in naïve hypertensive patients without organ damage or at the initial stages of disease.

  8. A fluorogenic near-infrared imaging agent for quantifying plasma and local tissue renin activity in vivo and ex vivo

    PubMed Central

    Zhang, Jun; Preda, Dorin V.; Vasquez, Kristine O.; Morin, Jeff; Delaney, Jeannine; Bao, Bagna; Percival, M. David; Xu, Daigen; McKay, Dan; Klimas, Michael; Bednar, Bohumil; Sur, Cyrille; Gao, David Z.; Madden, Karen; Yared, Wael; Rajopadhye, Milind

    2012-01-01

    The renin-angiotensin system (RAS) is well studied for its regulation of blood pressure and fluid homeostasis, as well as for increased activity associated with a variety of diseases and conditions, including cardiovascular disease, diabetes, and kidney disease. The enzyme renin cleaves angiotensinogen to form angiotensin I (ANG I), which is further cleaved by angiotensin-converting enzyme to produce ANG II. Although ANG II is the main effector molecule of the RAS, renin is the rate-limiting enzyme, thus playing a pivotal role in regulating RAS activity in hypertension and organ injury processes. Our objective was to develop a near-infrared fluorescent (NIRF) renin-imaging agent for noninvasive in vivo detection of renin activity as a measure of tissue RAS and in vitro plasma renin activity. We synthesized a renin-activatable agent, ReninSense 680 FAST (ReninSense), using a NIRF-quenched substrate derived from angiotensinogen that is cleaved specifically by purified mouse and rat renin enzymes to generate a fluorescent signal. This agent was assessed in vitro, in vivo, and ex vivo to detect and quantify increases in plasma and kidney renin activity in sodium-sensitive inbred C57BL/6 mice maintained on a low dietary sodium and diuretic regimen. Noninvasive in vivo fluorescence molecular tomographic imaging of the ReninSense signal in the kidney detected increased renin activity in the kidneys of hyperreninemic C57BL/6 mice. The agent also effectively detected renin activity in ex vivo kidneys, kidney tissue sections, and plasma samples. This approach could provide a new tool for assessing disorders linked to altered tissue and plasma renin activity and to monitor the efficacy of therapeutic treatments. PMID:22674025

  9. The ACE2 gene: its potential as a functional candidate for cardiovascular disease.

    PubMed

    Burrell, Louise M; Harrap, Stephen B; Velkoska, Elena; Patel, Sheila K

    2013-01-01

    The RAS (renin-angiotensin system) plays an important role in the pathophysiology of CVD (cardiovascular disease), and RAS blockade is an important therapeutic strategy in the management of CVD. A new counterbalancing arm of the RAS is now known to exist in which ACE (angiotensin-converting enzyme) 2 degrades Ang (angiotensin) II, the main effector of the classic RAS, and generates Ang-(1-7). Altered ACE2 expression is associated with cardiac and vascular disease in experimental models of CVD, and ACE2 is increased in failing human hearts and atherosclerotic vessels. In man, circulating ACE2 activity increases with coronary heart disease, as well as heart failure, and a large proportion of the variation in plasma ACE2 levels has been attributed to hereditary factors. The ACE2 gene maps to chromosome Xp22 and this paper reviews the evidence associating ACE2 gene variation with CVD and considers clues to potential functional ACE2 variants that may alter gene expression or transcriptional activity. Studies to date have investigated ACE2 gene associations in hypertension, left ventricular hypertrophy and coronary artery disease, but the results have been inconsistent. The discrepancies may reflect the sample size of the studies, the gender or ethnicity of subjects, the cardiovascular phenotype or the ACE2 SNP investigated. The frequent observation of apparent sex-dependence might be of special importance, if confirmed. As yet, there are no studies to concurrently assess ACE2 gene polymorphisms and circulating ACE2 activity. Large-scale carefully conducted clinical studies are urgently needed to clarify more precisely the potential role of ACE2 in the CVD continuum.

  10. Correlation between renin-angiotensin system gene polymorphisms and essential hypertension in the Chinese Yi ethnic group.

    PubMed

    Yang, Yu-Ling; Mo, Yan-Ping; He, Yong-Shu; Yang, Fang; Xu, Yan; Li, Cheng-Cheng; Wang, Jiao; Reng, Hao-Ming; Long, Li

    2015-12-01

    The renin-angiotensin system (RAS) has been considered to play an important role in the regulation of blood pressure. This study aimed to investigate the correlation between RAS gene polymorphisms and essential hypertension (EH) in the Chinese Yi ethnic group. A total of 244 EH subjects and 185 normotensive individuals from the Chinese Yi ethnic group were genotyped for AGT M235T (rs699), AT1R A1166C (rs5186), ACE I/D (rs4340) and ACE G2350A (rs4343) polymorphisms by the polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) method. Significant differences in the allele and genotype frequency of ACE G2350A were observed between the EH cases and controls (p=0.001, 0.002). After being grouped by gender, significant differences in the allele and genotype frequency of ACE G2350A and AT1R A1166C were observed between females of the EH cases and controls (ACE G2350A: p=0.000, 0.002; AT1R A1166C: p=0.008, 0.011). After excluding the influence of multifactorial interactions, the ACE G2350A polymorphism is significantly associated with the pathogenesis of EH in the Chinese Yi ethnic group (odds ratio (OR)=1.656, 95% confidence interval (CI) 1.807-2.524, p=0.019). The RAS-related ACE G2350A polymorphism is associated with the pathogenesis of EH in the Chinese Yi ethnic group. © The Author(s) 2015.

  11. Production of cobia in recirculating systems

    USDA-ARS?s Scientific Manuscript database

    Only limited information exists with respect to rearing juvenile cobia Rachycentron canadum to stocker and marketable sizes using recirculating aquaculture systems (RAS). To investigate this topic, two rearing trials were conducted using commercial scale RAS. In Trial 1, juvenile cobia (29 g) we...

  12. Freshwater Institute: Focused on improving recirculating aquaculture system technology

    USDA-ARS?s Scientific Manuscript database

    Recirculating aquaculture system (RAS) technologies help to overcome barriers to domestic aquaculture expansion and enhance the sustainability of the modern fish farming industry through reduction in environmental impacts. With RAS, fish farm expansion is no longer highly constrained by competition ...

  13. Dynamic remedial action scheme using online transient stability analysis

    NASA Astrophysics Data System (ADS)

    Shrestha, Arun

    Economic pressure and environmental factors have forced the modern power systems to operate closer to their stability limits. However, maintaining transient stability is a fundamental requirement for the operation of interconnected power systems. In North America, power systems are planned and operated to withstand the loss of any single or multiple elements without violating North American Electric Reliability Corporation (NERC) system performance criteria. For a contingency resulting in the loss of multiple elements (Category C), emergency transient stability controls may be necessary to stabilize the power system. Emergency control is designed to sense abnormal conditions and subsequently take pre-determined remedial actions to prevent instability. Commonly known as either Remedial Action Schemes (RAS) or as Special/System Protection Schemes (SPS), these emergency control approaches have been extensively adopted by utilities. RAS are designed to address specific problems, e.g. to increase power transfer, to provide reactive support, to address generator instability, to limit thermal overloads, etc. Possible remedial actions include generator tripping, load shedding, capacitor and reactor switching, static VAR control, etc. Among various RAS types, generation shedding is the most effective and widely used emergency control means for maintaining system stability. In this dissertation, an optimal power flow (OPF)-based generation-shedding RAS is proposed. This scheme uses online transient stability calculation and generator cost function to determine appropriate remedial actions. For transient stability calculation, SIngle Machine Equivalent (SIME) technique is used, which reduces the multimachine power system model to a One-Machine Infinite Bus (OMIB) equivalent and identifies critical machines. Unlike conventional RAS, which are designed using offline simulations, online stability calculations make the proposed RAS dynamic and adapting to any power system configuration and operating state. The generation-shedding cost is calculated using pre-RAS and post-RAS OPF costs. The criteria for selecting generators to trip is based on the minimum cost rather than minimum amount of generation to shed. For an unstable Category C contingency, the RAS control action that results in stable system with minimum generation shedding cost is selected among possible candidate solutions. The RAS control actions update whenever there is a change in operating condition, system configuration, or cost functions. The effectiveness of the proposed technique is demonstrated by simulations on the IEEE 9-bus system, the IEEE 39-bus system, and IEEE 145-bus system. This dissertation also proposes an improved, yet relatively simple, technique for solving Transient Stability-Constrained Optimal Power Flow (TSC-OPF) problem. Using the SIME method, the sets of dynamic and transient stability constraints are reduced to a single stability constraint, decreasing the overall size of the optimization problem. The transient stability constraint is formulated using the critical machines' power at the initial time step, rather than using the machine rotor angles. This avoids the addition of machine steady state stator algebraic equations in the conventional OPF algorithm. A systematic approach to reach an optimal solution is developed by exploring the quasi-linear behavior of critical machine power and stability margin. The proposed method shifts critical machines active power based on generator costs using an OPF algorithm. Moreover, the transient stability limit is based on stability margin, and not on a heuristically set limit on OMIB rotor angle. As a result, the proposed TSC-OPF solution is more economical and transparent. The proposed technique enables the use of fast and robust commercial OPF tool and time-domain simulation software for solving large scale TSC-OPF problem, which makes the proposed method also suitable for real-time application.

  14. Uncertain Representations of Sub-Grid Pollutant Transport in Chemistry-Transport Models and Impacts on Long-Range Transport and Global Composition

    NASA Technical Reports Server (NTRS)

    Pawson, Steven; Zhu, Z.; Ott, L. E.; Molod, A.; Duncan, B. N.; Nielsen, J. E.

    2009-01-01

    Sub-grid transport, by convection and turbulence, is known to play an important role in lofting pollutants from their source regions. Consequently, the long-range transport and climatology of simulated atmospheric composition are impacted. This study uses the Goddard Earth Observing System, Version 5 (GEOS-5) atmospheric model to study pollutant transport. The baseline model uses a Relaxed Arakawa-Schubert (RAS) scheme that represents convection through a sequence of linearly entraining cloud plumes characterized by unique detrainment levels. Thermodynamics, moisture and trace gases are transported in the same manner. Various approximate forms of trace-gas transport are implemented, in which the box-averaged cloud mass fluxes from RAS are used with different numerical approaches. Substantial impacts on forward-model simulations of CO (using a linearized chemistry) are evident. In particular, some aspects of simulations using a diffusive form of sub-grid transport bear more resemblance to space-biased CO observations than do the baseline simulations with RAS transport. Implications for transport in the real atmosphere will be discussed. Another issue of importance is that many adjoint/inversion computations use simplified representations of sub-grid transport that may be inconsistent with the forward models: implications will be discussed. Finally, simulations using a complex chemistry model in GEOS-5 (in place of the linearized CO model) are underway: noteworthy results from this simulation will be mentioned.

  15. Angiotensins in Alzheimer's disease - friend or foe?

    PubMed

    Kehoe, Patrick G; Miners, Scott; Love, Seth

    2009-12-01

    The renin-angiotensin system (RAS) is an important regulator of blood pressure. Observational and experimental studies suggest that alterations in blood pressure and components of the brain RAS contribute to the development and progression of Alzheimer's disease (AD), resulting in changes that can lead or contribute to cognitive decline. The complexity of the RAS and diversity of its interactions with neurological processes have recently become apparent but large gaps in our understanding still remain. Modulation of activity of components of the brain RAS offers substantial opportunities for the treatment and prevention of dementia, including AD. This paper reviews molecular, genetic, experimental and clinical data as well as the therapeutic opportunities that relate to the involvement of the RAS in AD.

  16. The Affordable Medicines Facility-malaria (AMFm): are remote areas benefiting from the intervention?

    PubMed

    Ye, Yazoume; Arnold, Fred; Noor, Abdisalan; Wamukoya, Marilyn; Amuasi, John; Blay, Samuel; Mberu, Blessing; Ren, Ruilin; Kyobutungi, Catherine; Wekesah, Frederick; Gatakaa, Hellen; Toda, Mitsuru; Njogu, Julius; Evance, Illah; O'Connell, Kathryn; Shewchuk, Tanya; Thougher, Sarah; Mann, Andrea; Willey, Barbara; Goodman, Catherine; Hanson, Kara

    2015-10-09

    To assess the availability, price and market share of quality-assured artemisinin-based combination therapy (QAACT) in remote areas (RAs) compared with non-remote areas (nRAs) in Kenya and Ghana at end-line of the Affordable Medicines Facility-malaria (AMFm) intervention. Areas were classified by remoteness using a composite index computed from estimated travel times to three levels of service centres. The index was used to five categories of remoteness, which were then grouped into two categories of remote and non-remote areas. The number of public or private outlets with the potential to sell or distribute anti-malarial medicines, screened in nRAs and RAs, respectively, was 501 and 194 in Ghana and 9980 and 2353 in Kenya. The analysis compares RAs with nRAs in terms of availability, price and market share of QAACT in each country. QAACT were similarly available in RAs as nRAs in Ghana and Kenya. In both countries, there was no statistical difference in availability of QAACT with AMFm logo between RAs and nRAs in public health facilities (PHFs), while private-for-profit (PFP) outlets had lower availability in RA than in nRAs (Ghana: 66.0 vs 82.2 %, p < 0.0001; Kenya: 44.9 vs 63.5 %, p = <0.0001. The median price of QAACT with AMFm logo for PFP outlets in RAs (USD1.25 in Ghana and USD0.69 in Kenya) was above the recommended retail price in Ghana (US$0.95) and Kenya (US$0.46), and much higher than in nRAs for both countries. QAACT with AMFm logo represented the majority of QAACT in RAs and nRAs in Kenya and Ghana. In the PFP sector in Ghana, the market share for QAACT with AMFm logo was significantly higher in RAs than in nRAs (75.6 vs 51.4 %, p < 0.0001). In contrast, in similar outlets in Kenya, the market share of QAACT with AMFm logo was significantly lower in RAs than in nRAs (39.4 vs 65.1 %, p < 0.0001). The findings indicate the AMFm programme contributed to making QAACT more available in RAs in these two countries. Therefore, the AMFm approach can inform other health interventions aiming at reaching hard-to-reach populations, particularly in the context of universal access to health interventions. However, further examination of the factors accounting for the deep penetration of the AMFm programme into RAs is needed to inform actions to improve the healthcare delivery system, particularly in RAs.

  17. Changes in the renin angiotensin system during the development of colorectal cancer liver metastases.

    PubMed

    Neo, Jaclyn H; Ager, Eleanor I; Angus, Peter W; Zhu, Jin; Herath, Chandana B; Christophi, Christopher

    2010-04-10

    Blockade of the renin angiotensin system (RAS) via angiotensin I converting enzyme (ACE) inhibition reduces growth of colorectal cancer (CRC) liver metastases in a mouse model. In this work we defined the expression of the various components of the RAS in both tumor and liver during the progression of this disease. Immunohistochemistry and quantitative RT-PCR was used to examine RAS expression in a mouse CRC liver metastases model. CRC metastases and liver tissue was assessed separately at key stages of CRC liver metastases development in untreated (control) mice and in mice treated with the ACE inhibitor captopril (750 mg/kg/day). Non-tumor induced (sham) mice indicated the effect of tumors on normal liver RAS. The statistical significance of multiple comparisons was determined using one-way analysis of variance followed by Bonferroni adjustment with SAS/STAT software. Reduced volume of CRC liver metastases with captopril treatment was evident. Local RAS of CRC metastases differed from the surrounding liver, with lower angiotensin II type 1 receptor (AT1R) expression but increased ANG-(1-7) receptor (MasR) compared to the liver. The AT1R localised to cancer and stromal infiltrating cells, while other RAS receptors were detected in cancer cells only. Tumor induction led to an initial increase in AT1R and ACE expression while captopril treatment significantly increased ACE expression in the final stages of tumor growth. Conversely, captopril treatment decreased expression of AT1R and angiotensinogen. These results demonstrate significant changes in RAS expression in the tumor-bearing captopril treated liver and in CRC metastases. The data suggests the existence of a tumor-specific RAS that can be independently targeted by RAS blockade.

  18. Changes in the renin angiotensin system during the development of colorectal cancer liver metastases

    PubMed Central

    2010-01-01

    Background Blockade of the renin angiotensin system (RAS) via angiotensin I converting enzyme (ACE) inhibition reduces growth of colorectal cancer (CRC) liver metastases in a mouse model. In this work we defined the expression of the various components of the RAS in both tumor and liver during the progression of this disease. Methods Immunohistochemistry and quantitative RT-PCR was used to examine RAS expression in a mouse CRC liver metastases model. CRC metastases and liver tissue was assessed separately at key stages of CRC liver metastases development in untreated (control) mice and in mice treated with the ACE inhibitor captopril (750 mg/kg/day). Non-tumor induced (sham) mice indicated the effect of tumors on normal liver RAS. The statistical significance of multiple comparisons was determined using one-way analysis of variance followed by Bonferroni adjustment with SAS/STAT software. Results Reduced volume of CRC liver metastases with captopril treatment was evident. Local RAS of CRC metastases differed from the surrounding liver, with lower angiotensin II type 1 receptor (AT1R) expression but increased ANG-(1-7) receptor (MasR) compared to the liver. The AT1R localised to cancer and stromal infiltrating cells, while other RAS receptors were detected in cancer cells only. Tumor induction led to an initial increase in AT1R and ACE expression while captopril treatment significantly increased ACE expression in the final stages of tumor growth. Conversely, captopril treatment decreased expression of AT1R and angiotensinogen. Conclusions These results demonstrate significant changes in RAS expression in the tumor-bearing captopril treated liver and in CRC metastases. The data suggests the existence of a tumor-specific RAS that can be independently targeted by RAS blockade. PMID:20380732

  19. The absence of intrarenal ACE protects against hypertension

    PubMed Central

    Gonzalez-Villalobos, Romer A.; Janjoulia, Tea; Fletcher, Nicholas K.; Giani, Jorge F.; Nguyen, Mien T.X.; Riquier-Brison, Anne D.; Seth, Dale M.; Fuchs, Sebastien; Eladari, Dominique; Picard, Nicolas; Bachmann, Sebastian; Delpire, Eric; Peti-Peterdi, Janos; Navar, L. Gabriel; Bernstein, Kenneth E.; McDonough, Alicia A.

    2013-01-01

    Activation of the intrarenal renin-angiotensin system (RAS) can elicit hypertension independently from the systemic RAS. However, the precise mechanisms by which intrarenal Ang II increases blood pressure have never been identified. To this end, we studied the responses of mice specifically lacking kidney angiotensin-converting enzyme (ACE) to experimental hypertension. Here, we show that the absence of kidney ACE substantially blunts the hypertension induced by Ang II infusion (a model of high serum Ang II) or by nitric oxide synthesis inhibition (a model of low serum Ang II). Moreover, the renal responses to high serum Ang II observed in wild-type mice, including intrarenal Ang II accumulation, sodium and water retention, and activation of ion transporters in the loop of Henle (NKCC2) and distal nephron (NCC, ENaC, and pendrin) as well as the transporter activating kinases SPAK and OSR1, were effectively prevented in mice that lack kidney ACE. These findings demonstrate that ACE metabolism plays a fundamental role in the responses of the kidney to hypertensive stimuli. In particular, renal ACE activity is required to increase local Ang II, to stimulate sodium transport in loop of Henle and the distal nephron, and to induce hypertension. PMID:23619363

  20. Activation of RAS/ERK alone is insufficient to inhibit RXRα function and deplete retinoic acid in hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ai-Guo, E-mail: wangaiguotl@hotmail.com; Song, Ya-Nan; Chen, Jun

    2014-09-26

    Highlights: • The activation of RAS/ERK is insufficient to inhibit RXRα function and deplete RA. • The retinoid metabolism-related genes are down-regulated by ras oncogene. • The atRA has no effect on preventing hepatic tumorigenesis or curing the developed hepatic nodules. - Abstract: Activation of RAS/ERK signaling pathway, depletion of retinoid, and phosphorylation of retinoid X receptor alpha (RXRα) are frequent events found in liver tumors and thought to play important roles in hepatic tumorigenesis. However, the relationships among them still remained to be elucidated. By exploring the transgenic mouse model of hepatic tumorigenesis induced by liver-specific expression of H-ras12Vmore » oncogene, the activation of RAS/ERK, the mRNA expression levels of retinoid metabolism-related genes, the contents of retinoid metabolites, and phosphorylation of RXRα were determined. RAS/ERK signaling pathway was gradually and significantly activated in hepatic tumor adjacent normal liver tissues (P) and hepatic tumor tissues (T) of H-ras12V transgenic mice compared with normal liver tissues (Wt) of wild type mice. On the contrary, the mRNA expression levels of retinoid metabolism-related genes were significantly reduced in P and T compared with Wt. Interestingly, the retinoid metabolites 9-cis-retinoic acid (9cRA) and all-trans-retinoic acid (atRA), the well known ligands for nuclear transcription factor RXR and retinoic acid receptor (RAR), were significantly decreased only in T compared with Wt and P, although the oxidized polar metabolite of atRA, 4-keto-all-trans-retinoic-acid (4-keto-RA) was significantly decreased in both P and T compared with Wt. To our surprise, the functions of RXRα were significantly blocked only in T compared with Wt and P. Namely, the total protein levels of RXRα were significantly reduced and the phosphorylation levels of RXRα were significantly increased only in T compared with Wt and P. Treatment of H-ras12V transgenic mice at 5-week-old or 5-month-old with atRA had no effect on the prevention of tumorigenesis or cure of developed nodules in liver. These events imply that the depletion of 9cRA and atRA and the inhibition of RXRα function in hepatic tumors involve more complex mechanisms besides the activation of RAS/ERK pathway.« less

  1. Unbiased RNAi screen for hepcidin regulators links hepcidin suppression to proliferative Ras/RAF and nutrient-dependent mTOR signaling

    PubMed Central

    Mleczko-Sanecka, Katarzyna; Roche, Franziska; Rita da Silva, Ana; Call, Debora; D’Alessio, Flavia; Ragab, Anan; Lapinski, Philip E.; Ummanni, Ramesh; Korf, Ulrike; Oakes, Christopher; Damm, Georg; D’Alessandro, Lorenza A.; Klingmüller, Ursula; King, Philip D.; Boutros, Michael; Hentze, Matthias W.

    2014-01-01

    The hepatic hormone hepcidin is a key regulator of systemic iron metabolism. Its expression is largely regulated by 2 signaling pathways: the “iron-regulated” bone morphogenetic protein (BMP) and the inflammatory JAK-STAT pathways. To obtain broader insights into cellular processes that modulate hepcidin transcription and to provide a resource to identify novel genetic modifiers of systemic iron homeostasis, we designed an RNA interference (RNAi) screen that monitors hepcidin promoter activity after the knockdown of 19 599 genes in hepatocarcinoma cells. Interestingly, many of the putative hepcidin activators play roles in signal transduction, inflammation, or transcription, and affect hepcidin transcription through BMP-responsive elements. Furthermore, our work sheds light on new components of the transcriptional machinery that maintain steady-state levels of hepcidin expression and its responses to the BMP- and interleukin-6–triggered signals. Notably, we discover hepcidin suppression mediated via components of Ras/RAF MAPK and mTOR signaling, linking hepcidin transcriptional control to the pathways that respond to mitogen stimulation and nutrient status. Thus using a combination of RNAi screening, reverse phase protein arrays, and small molecules testing, we identify links between the control of systemic iron homeostasis and critical liver processes such as regeneration, response to injury, carcinogenesis, and nutrient metabolism. PMID:24385536

  2. Erythropoietin during hypoglycaemia in type 1 diabetes: relation to basal renin-angiotensin system activity and cognitive function.

    PubMed

    Kristensen, Peter Lommer; Høi-Hansen, Thomas; Olsen, Niels Vidiendal; Pedersen-Bjergaard, Ulrik; Thorsteinsson, Birger

    2009-07-01

    Preservation of cognitive function during hypoglycaemic episodes is crucial for patients with insulin-treated diabetes to avoid severe hypoglycaemic events. Erythropoietin has neuroprotective potential. However, the role of erythropoietin during hypoglycaemia is unclear. The aim of the study was to explore plasma erythropoietin response to hypoglycaemia and the relationship to basal renin-angiotensin system (RAS) activity and cognitive function. We performed a single-blinded, controlled, cross-over study with induced hypoglycaemia or maintained glycaemic level. Nine patients with type 1 diabetes with high and nine with low activity in RAS were studied. Hypoglycaemia was induced using a standardized insulin-infusion. Overall, erythropoietin concentrations increased during hypoglycaemia. In the high RAS group erythropoietin rose 29% (p=0.032) whereas no significant response was observed in the low RAS group (7% increment; p=0.43). Independently, both hypoglycaemia and high RAS activity were associated with higher levels of erythropoietin (p=0.02 and 0.04, respectively). Low plasma erythropoietin at baseline was associated with poorer cognitive performance during hypoglycaemia. Hypoglycaemia triggers a rise in plasma erythropoietin in patients with type 1 diabetes. The response is influenced by basal RAS activity. Erythropoietin may carry a neuroprotective potential during hypoglycaemia.

  3. Factors determining electrostatic fields in molecular dynamics simulations of the Ras/effector interface.

    PubMed

    Ensign, Daniel L; Webb, Lauren J

    2011-12-01

    Using molecular dynamics simulations, we explore geometric and physical factors contributing to calculated electrostatic fields at the binding surface of the GTPase Ras with a spectroscopically labeled variant of a downstream effector, the Ras-binding domain of Ral guanine nucleotide dissociation stimulator (RalGDS). A related system (differing by mutation of one amino acid) has been studied in our group using vibrational Stark effect spectroscopy, a technique sensitive to electrostatic fields. Electrostatic fields were computed using the AMBER 2003 force field and averaged over snapshots from molecular dynamics simulation. We investigate geometric factors by exploring how the orientation of the spectroscopic probe changes on Ras-effector binding. In addition, we explore the physical origin of electrostatic fields at our spectroscopic probe by comparing contributions to the field from discrete components of the system, such as explicit solvent, residues on the Ras surface, and residues on the RalGDS surface. These models support our experimental hypothesis that vibrational Stark shifts are caused by Ras binding to its effector and not the structural rearrangements of the effector surface or probe reorientation on Ras-effector binding, for at least some of our experimental probes. These calculations provide physical insight into the origin, magnitude, and importance of electrostatic fields in protein-protein interactions and suggest new experiments to probe the field's role in protein docking. Copyright © 2011 Wiley-Liss, Inc.

  4. Renin-angiotensin system blockers regulate the metabolism of isolated fat cells in vitro

    PubMed Central

    Caminhotto, R de O.; Sertié, R.A.L.; Andreotti, S.; Campaãa, A.B.; Lima, F.B.

    2016-01-01

    Due to the presence of the renin-angiotensin system (RAS) in tissues and its specific influence on white adipose tissue, fat cells are possible targets of pharmacological RAS blockers commonly used as anti-hypertensive drugs. In the present study, we investigated the effects of different RAS blockers on fat cell metabolism, more specifically on lipolysis, lipogenesis and oxidation of energy substrates. Isolated primary adipocytes were incubated with different RAS blockers (aliskiren, captopril and losartan) in vitro for 24 h and lipolysis, lipogenesis and glucose oxidation capacities were determined in dose-response assays to a β-adrenergic agonist and to insulin. Although no change was found in lipolytic capacity, the RAS blockers modulated lipogenesis and glucose oxidation in a different way. While captopril decreased insulin-stimulated lipogenesis (−19% of maximal response and −60% of insulin responsiveness) due to reduced glucose derived glycerol synthesis (−19% of maximal response and 64% of insulin responsiveness), aliskiren increased insulin-stimulated glucose oxidation (+49% of maximal response and +292% of insulin responsiveness) in fat cells. Our experiments demonstrate that RAS blockers can differentially induce metabolic alterations in adipocyte metabolism, characterized by a reduction in lipogenic responsiveness or an increase in glucose oxidation. The impact of RAS blockers on adipocyte metabolism may have beneficial implications on metabolic disorders during their therapeutic use in hypertensive patients. PMID:27487419

  5. The Association Between Renin-Angiotensin System Blockade and Long-term Outcomes in Renal Transplant Recipients: The Wisconsin Allograft Recipient Database (WisARD).

    PubMed

    Shin, Jung-Im; Palta, Mari; Djamali, Arjang; Kaufman, Dixon B; Astor, Brad C

    2016-07-01

    Renin-angiotensin system (RAS) blockade reduces mortality in the general population and among non-dialysis-dependent patients with chronic kidney disease. The RAS blockade also decreases proteinuria and protects renal function in non-transplant patients with chronic kidney disease. It remains controversial, however, whether this translates to improved patient or graft survival among transplant recipients. We analyzed 2684 primary kidney transplant recipients at the University of Wisconsin in 1994 to 2010 who had a functioning graft at 6 months after transplantation. We assessed the association of RAS blockade with patient and graft survival using time-dependent Cox and marginal structural models. Three hundred seventy-seven deaths and 329 graft failures before death (638 total graft losses) occurred during a median of 5.4 years of follow-up. The RAS blockade was associated with an adjusted-hazard ratio of 0.63 (95% confidence interval, 0.53-0.75) for total graft loss, 0.69 (0.55-0.86) for death, and 0.62 (0.49-0.78) for death-censored graft failure. The associations of RAS blockade with a lower risk of total graft loss and mortality were stronger with more severe proteinuria. The RAS blockade was associated with a 2-fold higher risk of hyperkalemia. Our findings suggest RAS blockade is associated with better patient and graft survival in renal transplant recipients.

  6. Trabecular meshwork ECM remodeling in glaucoma: could RAS be a target?

    PubMed

    Agarwal, Puneet; Agarwal, Renu

    2018-06-14

    Disturbances of extracellular matrix (ECM) homeostasis in trabecular meshwork (TM) cause increased aqueous outflow resistance leading to elevated intraocular pressure (IOP) in glaucomatous eyes. Therefore, restoration of ECM homeostasis is a rational approach to prevent disease progression. Since renin-angiotensin system (RAS) inhibition positively alters ECM homeostasis in cardiovascular pathologies involving pressure and volume overload, it is likely that RAS inhibitors reduce IOP primarily by restoring ECM homeostasis. Areas covered: Current evidence showing the presence of RAS components in ocular tissue and its role in regulating aqueous humor dynamics is briefly summarized. The role of RAS in ECM remodeling is discussed both in terms of its effects on ECM synthesis and its breakdown. The mechanisms of ECM remodeling involving interactions of RAS with transforming growth factor-β, Wnt/β-catenin signaling, bone morphogenic proteins, connective tissue growth factor, and matrix metalloproteinases in ocular tissue are discussed. Expert opinion: Current literature strongly indicates a significant role of RAS in ECM remodeling in TM of hypertensive eyes. Hence, IOP-lowering effect of RAS inhibitors may primarily be attributed to restoration of ECM homeostasis in aqueous outflow pathways rather than its vascular effects. However, the mechanistic targets for RAS inhibitors have much wider distribution and consequences, which remain relatively unexplored in TM.

  7. Circadian rhythm of blood pressure and the renin-angiotensin system in the kidney.

    PubMed

    Ohashi, Naro; Isobe, Shinsuke; Ishigaki, Sayaka; Yasuda, Hideo

    2017-05-01

    Activation of the intrarenal renin-angiotensin system (RAS) has a critical role in the pathophysiology of the circadian rhythm of blood pressure (BP) and renal injury, independent of circulating RAS. Although it is clear that the circulating RAS has a circadian rhythm, reports of a circadian rhythm in tissue-specific RAS are limited. Clinical studies evaluating intrarenal RAS activity by urinary angiotensinogen (AGT) levels have indicated that urinary AGT levels were equally low during both the daytime and nighttime in individuals without chronic kidney disease (CKD) and that urinary AGT levels were higher during the daytime than at nighttime in patients with CKD. Moreover, urinary AGT levels of the night-to-day (N/D) ratio of urinary AGT were positively correlated with the levels of N/D of urinary protein, albumin excretion and BP. In addition, animal studies have demonstrated that the expression of intrarenal RAS components, such as AGT, angiotensin II (AngII) and AngII type 1 receptor proteins, increased and peaked at the same time as BP and urinary protein excretion during the resting phase, and the amplitude of the oscillations of these proteins was augmented in a chronic progressive nephritis animal compared with a control. Thus, the circadian rhythm of intrarenal RAS activation may lead to renal damage and hypertension, which both are associated with diurnal variations in BP. It is possible that augmented glomerular permeability increases AGT excretion levels into the tubular lumen and that circadian fluctuation of glomerular permeability influences the circadian rhythm of the intrarenal RAS.

  8. A social and ecological assessment of tropical land uses at multiple scales: the Sustainable Amazon Network

    PubMed Central

    Gardner, Toby A.; Ferreira, Joice; Barlow, Jos; Lees, Alexander C.; Parry, Luke; Vieira, Ima Célia Guimarães; Berenguer, Erika; Abramovay, Ricardo; Aleixo, Alexandre; Andretti, Christian; Aragão, Luiz E. O. C.; Araújo, Ivanei; de Ávila, Williams Souza; Bardgett, Richard D.; Batistella, Mateus; Begotti, Rodrigo Anzolin; Beldini, Troy; de Blas, Driss Ezzine; Braga, Rodrigo Fagundes; Braga, Danielle de Lima; de Brito, Janaína Gomes; de Camargo, Plínio Barbosa; Campos dos Santos, Fabiane; de Oliveira, Vívian Campos; Cordeiro, Amanda Cardoso Nunes; Cardoso, Thiago Moreira; de Carvalho, Déborah Reis; Castelani, Sergio André; Chaul, Júlio Cézar Mário; Cerri, Carlos Eduardo; Costa, Francisco de Assis; da Costa, Carla Daniele Furtado; Coudel, Emilie; Coutinho, Alexandre Camargo; Cunha, Dênis; D'Antona, Álvaro; Dezincourt, Joelma; Dias-Silva, Karina; Durigan, Mariana; Esquerdo, Júlio César Dalla Mora; Feres, José; Ferraz, Silvio Frosini de Barros; Ferreira, Amanda Estefânia de Melo; Fiorini, Ana Carolina; da Silva, Lenise Vargas Flores; Frazão, Fábio Soares; Garrett, Rachel; Gomes, Alessandra dos Santos; Gonçalves, Karoline da Silva; Guerrero, José Benito; Hamada, Neusa; Hughes, Robert M.; Igliori, Danilo Carmago; Jesus, Ederson da Conceição; Juen, Leandro; Junior, Miércio; Junior, José Max Barbosa de Oliveira; Junior, Raimundo Cosme de Oliveira; Junior, Carlos Souza; Kaufmann, Phil; Korasaki, Vanesca; Leal, Cecília Gontijo; Leitão, Rafael; Lima, Natália; Almeida, Maria de Fátima Lopes; Lourival, Reinaldo; Louzada, Júlio; Nally, Ralph Mac; Marchand, Sébastien; Maués, Márcia Motta; Moreira, Fátima M. S.; Morsello, Carla; Moura, Nárgila; Nessimian, Jorge; Nunes, Sâmia; Oliveira, Victor Hugo Fonseca; Pardini, Renata; Pereira, Heloisa Correia; Pompeu, Paulo Santos; Ribas, Carla Rodrigues; Rossetti, Felipe; Schmidt, Fernando Augusto; da Silva, Rodrigo; da Silva, Regina Célia Viana Martins; da Silva, Thiago Fonseca Morello Ramalho; Silveira, Juliana; Siqueira, João Victor; de Carvalho, Teotônio Soares; Solar, Ricardo R. C.; Tancredi, Nicola Savério Holanda; Thomson, James R.; Torres, Patrícia Carignano; Vaz-de-Mello, Fernando Zagury; Veiga, Ruan Carlo Stulpen; Venturieri, Adriano; Viana, Cecília; Weinhold, Diana; Zanetti, Ronald; Zuanon, Jansen

    2013-01-01

    Science has a critical role to play in guiding more sustainable development trajectories. Here, we present the Sustainable Amazon Network (Rede Amazônia Sustentável, RAS): a multidisciplinary research initiative involving more than 30 partner organizations working to assess both social and ecological dimensions of land-use sustainability in eastern Brazilian Amazonia. The research approach adopted by RAS offers three advantages for addressing land-use sustainability problems: (i) the collection of synchronized and co-located ecological and socioeconomic data across broad gradients of past and present human use; (ii) a nested sampling design to aid comparison of ecological and socioeconomic conditions associated with different land uses across local, landscape and regional scales; and (iii) a strong engagement with a wide variety of actors and non-research institutions. Here, we elaborate on these key features, and identify the ways in which RAS can help in highlighting those problems in most urgent need of attention, and in guiding improvements in land-use sustainability in Amazonia and elsewhere in the tropics. We also discuss some of the practical lessons, limitations and realities faced during the development of the RAS initiative so far. PMID:23610172

  9. Molecular analysis of bacterial communities and detection of potential pathogens in a recirculating aquaculture system for Scophthalmus maximus and Solea senegalensis.

    PubMed

    Martins, Patrícia; Cleary, Daniel F R; Pires, Ana C C; Rodrigues, Ana Maria; Quintino, Victor; Calado, Ricardo; Gomes, Newton C M

    2013-01-01

    The present study combined a DGGE and barcoded 16S rRNA pyrosequencing approach to assess bacterial composition in the water of a recirculating aquaculture system (RAS) with a shallow raceway system (SRS) for turbot (Scophthalmus maximus) and sole (Solea senegalensis). Barcoded pyrosequencing results were also used to determine the potential pathogen load in the RAS studied. Samples were collected from the water supply pipeline (Sup), fish production tanks (Pro), sedimentation filter (Sed), biofilter tank (Bio), and protein skimmer (Ozo; also used as an ozone reaction chamber) of twin RAS operating in parallel (one for each fish species). Our results revealed pronounced differences in bacterial community composition between turbot and sole RAS, suggesting that in the systems studied there is a strong species-specific effect on water bacterial communities. Proteobacteria was the most abundant phylum in the water supply and all RAS compartments. Other important taxonomic groups included the phylum Bacteriodetes. The saltwater supplied displayed a markedly lower richness and appeared to have very little influence on bacterial composition. The following potentially pathogenic species were detected: Photobacterium damselae in turbot (all compartments), Tenacibaculum discolor in turbot and sole (all compartments), Tenacibaculum soleae in turbot (all compartments) and sole (Pro, Sed and Bio), and Serratia marcescens in turbot (Sup, Sed, Bio and Ozo) and sole (only Sed) RAS. Despite the presence of these pathogens, no symptomatic fish were observed. Although we were able to identify potential pathogens, this approach should be employed with caution when monitoring aquaculture systems, as the required phylogenetic resolution for reliable identification of pathogens may not always be possible to achieve when employing 16S rRNA gene fragments.

  10. Molecular Analysis of Bacterial Communities and Detection of Potential Pathogens in a Recirculating Aquaculture System for Scophthalmus maximus and Solea senegalensis

    PubMed Central

    Martins, Patrícia; Cleary, Daniel F. R.; Pires, Ana C. C.; Rodrigues, Ana Maria; Quintino, Victor; Calado, Ricardo; Gomes, Newton C. M.

    2013-01-01

    The present study combined a DGGE and barcoded 16S rRNA pyrosequencing approach to assess bacterial composition in the water of a recirculating aquaculture system (RAS) with a shallow raceway system (SRS) for turbot (Scophthalmus maximus) and sole (Solea senegalensis). Barcoded pyrosequencing results were also used to determine the potential pathogen load in the RAS studied. Samples were collected from the water supply pipeline (Sup), fish production tanks (Pro), sedimentation filter (Sed), biofilter tank (Bio), and protein skimmer (Ozo; also used as an ozone reaction chamber) of twin RAS operating in parallel (one for each fish species). Our results revealed pronounced differences in bacterial community composition between turbot and sole RAS, suggesting that in the systems studied there is a strong species-specific effect on water bacterial communities. Proteobacteria was the most abundant phylum in the water supply and all RAS compartments. Other important taxonomic groups included the phylum Bacteriodetes. The saltwater supplied displayed a markedly lower richness and appeared to have very little influence on bacterial composition. The following potentially pathogenic species were detected: Photobacterium damselae in turbot (all compartments), Tenacibaculum discolor in turbot and sole (all compartments), Tenacibaculum soleae in turbot (all compartments) and sole (Pro, Sed and Bio), and Serratia marcescens in turbot (Sup, Sed, Bio and Ozo) and sole (only Sed) RAS. Despite the presence of these pathogens, no symptomatic fish were observed. Although we were able to identify potential pathogens, this approach should be employed with caution when monitoring aquaculture systems, as the required phylogenetic resolution for reliable identification of pathogens may not always be possible to achieve when employing 16S rRNA gene fragments. PMID:24278329

  11. Vascular endothelial growth factor during hypoglycemia in patients with type 1 diabetes mellitus: relation to cognitive function and renin-angiotensin system activity.

    PubMed

    Kristensen, Peter Lommer; Høi-Hansen, Thomas; Boomsma, Frans; Pedersen-Bjergaard, Ulrik; Thorsteinsson, Birger

    2009-10-01

    In healthy adults, levels of vascular endothelial growth factor (VEGF) increase in response to mild hypoglycemia. VEGF is implicated in glucose transport over the blood-brain barrier, and the increase during hypoglycemia has been positively correlated with preservation of cognitive function during hypoglycemia. High activity in the renin-angiotensin system (RAS) is associated with an increased risk of severe hypoglycemia in patients with type 1 diabetes mellitus. Renin-angiotensin system possibly exerts its mechanism in hypoglycemia via VEGF. We studied the impact of mild hypoglycemia on plasma VEGF in patients with type 1 diabetes mellitus and high or low RAS activity and analyzed associations between VEGF levels and cognitive function during hypoglycemia. Eighteen patients with type 1 diabetes mellitus-9 with high and 9 with low RAS activity-underwent a single-blinded, placebo-controlled, crossover study with either mild hypoglycemia or stable glycemia. Cognitive function was assessed by the California Cognitive Assessment Package and the Alzheimer Quick Test. Nadir plasma glucose was 2.2 (0.3) mmol/L. During the control study, plasma VEGF did not change. During hypoglycemia, plasma VEGF increased from 39 to 58 pg/L in the high-RAS group (P = .004) and from 76 to 109 pg/L in the low-RAS group (P = .01), with no difference between RAS groups (P = .9). A weak association between reduced preservation of cognitive function during hypoglycemia and low VEGF response was observed. Plasma VEGF levels increase during mild, short-term hypoglycemia in patients with type 1 diabetes mellitus. The VEGF response is not dependent on RAS activity and only weakly associated with preservation of cognitive function during hypoglycemia. Thus, the previously described association between low RAS activity and better cognitive performance during hypoglycemia does not seem to be mediated by VEGF.

  12. High-intensity interval training has beneficial effects on cardiac remodeling through local renin-angiotensin system modulation in mice fed high-fat or high-fructose diets.

    PubMed

    de Oliveira Sá, Guilherme; Dos Santos Neves, Vívian; de Oliveira Fraga, Shyrlei R; Souza-Mello, Vanessa; Barbosa-da-Silva, Sandra

    2017-11-15

    HIIT (high-intensity interval training) has the potential to reduce cardiometabolic risk factors, but the effects on cardiac remodeling and local RAS (renin-angiotensin system) in mice fed high-fat or high-fructose diets still need to be fully addressed. Sixty male C57BL/6 mice (12weeks old) were randomly divided into three groups, control (C), High-fat (HF), or High-fructose diet (HRU) and were monitored for eight weeks before being submitted to the HIIT. Each group was randomly assigned to 2 subgroups, one subgroup was started on a 12-week HIIT protocol (T=trained group), while the other subgroup remained non-exercised (NT=not-trained group). HIIT reduced BM and systolic blood pressure in high-fat groups, while enhanced insulin sensitivity after high-fat or high-fructose intake. Moreover, HIIT reduced left ventricular hypertrophy in HF-T and HFRU-T. Notably, HIIT modulated key factors in the local left ventricular renin-angiotensin-system (RAS): reduced protein expression of renin, ACE (Angiotensin-converting enzyme), and (Angiotensin type 2 receptor) AT2R in HF-T and HFRU-T groups but reduced (Angiotensin type 1 receptor) AT1R protein expression only in the high-fat trained group. HIIT modulated ACE2/Ang (1-7)/Mas receptor axis. ACE2 mRNA gene expression was enhanced in HF-T and HFRU-T groups, complying with elevated Mas (Mas proto-oncogene, G protein-coupled receptor) receptor mRNA gene expression after HIIT. This study shows the effectiveness of HIIT sessions in producing improvements in insulin sensitivity and mitigating LV hypertrophy, though hypertension was controlled only in the high-fat-fed submitted to HIIT protocol. Local RAS system in the heart mediates these findings and receptor MAS seems to play a pivotal role when it comes to the amelioration of cardiac structural and functional remodeling due to HIIT. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Ras Signaling Inhibitors Attenuate Disease in Adjuvant-Induced Arthritis via Targeting Pathogenic Antigen-Specific Th17-Type Cells.

    PubMed

    Zayoud, Morad; Marcu-Malina, Victoria; Vax, Einav; Jacob-Hirsch, Jasmine; Elad-Sfadia, Galit; Barshack, Iris; Kloog, Yoel; Goldstein, Itamar

    2017-01-01

    The Ras family of GTPases plays an important role in signaling nodes downstream to T cell receptor and CD28 activation, potentially lowering the threshold for T-cell receptor activation by autoantigens. Somatic mutation in NRAS or KRAS may cause a rare autoimmune disorder coupled with abnormal expansion of lymphocytes. T cells from rheumatoid arthritis (RA) patients show excessive activation of Ras/MEK/ERK pathway. The small molecule farnesylthiosalicylic acid (FTS) interferes with the interaction between Ras GTPases and their prenyl-binding chaperones to inhibit proper plasma membrane localization. In the present study, we tested the therapeutic and immunomodulatory effects of FTS and its derivative 5-fluoro-FTS (F-FTS) in the rat adjuvant-induced arthritis model (AIA). We show that AIA severity was significantly reduced by oral FTS and F-FTS treatment compared to vehicle control treatment. FTS was as effective as the mainstay anti-rheumatic drug methotrexate, and combining the two drugs significantly increased efficacy compared to each drug alone. We also discovered that FTS therapy inhibited both the CFA-driven in vivo induction of Th17 and IL-17/IFN-γ producing "double positive" as well as the upregulation of serum levels of the Th17-associated cytokines IL-17A and IL-22. By gene microarray analysis of effector CD4 + T cells from CFA-immunized rats, re-stimulated in vitro with the mycobacterium tuberculosis heat-shock protein 65 (Bhsp65), we determined that FTS abrogated the Bhsp65-induced transcription of a large list of genes (e.g., Il17a/f, Il22, Ifng, Csf2, Lta, and Il1a). The functional enrichment bioinformatics analysis showed significant overlap with predefined gene sets related to inflammation, immune system processes and autoimmunity. In conclusion, FTS and F-FTS display broad immunomodulatory effects in AIA with inhibition of the Th17-type response to a dominant arthritogenic antigen. Hence, targeting Ras signal-transduction cascade is a potential novel therapeutic approach for RA.

  14. [Robot-assisted surgery in the head and neck region].

    PubMed

    Hoffmann, T K; Friedrich, D T; Schuler, P J

    2016-09-01

    Robot-assisted surgery (RAS) in the head and neck region is believed to have a large potential for the improvement of patient care. Several systems with a master-slave setup are already in routine clinical use, particularly for oncologic surgery. Although specific patient groups may benefit from RAS, there is a lack of randomized clinical studies validating the advantages of these new technological systems in comparison to the existing standard procedures. On the other hand, RAS in the head and neck region is being constantly developed. Currently, the main limitations are the technical miniaturization of the tools and the loss of haptic feedback, as well as the high costs for acquisition and maintenance without financial reimbursement. In any case, the current generation of head and neck surgeons will face the technical, scientific, and ethical challenges of RAS.

  15. Comparison of real-world effectiveness between valsartan and non-RAS inhibitor monotherapy on the incidence of new diabetes in Chinese hypertensive patients: An electronic health recording system based study.

    PubMed

    Shen, Tian; Wang, Jiwei; Yu, Yingjun; Yu, Jinming

    2018-05-21

    This study aimed to compare the real-world effectiveness of valsartan and non renin-angiotensin system (non-RAS) agent monotherapy on the incidence of new on-set diabetes (NOD) in Chinese hypertensive patients. It was based on an electronic Health Recording System database from Minhang District of Shanghai. Hypertensive patients aged ≥18 years continuously taking either valsartan or non-RAS agent monotherapy for >12 months were included. Hazard ratios (HR) of NOD events were estimated using propensity score matching method and multivariate regression. Of 29295 patients, there were 2107 in valsartan group, 21397 in CCB group, 4094 in β-blockers group and 1697 in diuretics group. Two-year follow-up revealed NOD rates of 11.09 and 14.22 per 100 persons per year in valsartan and non-RAS inhibitor groups (HR = 0.77, 95% confidence interval 0.65-0.93, P = 0.006), respectively. Among non-RAS agents, CCB group had the highest incidence of NOD (21.72 per 100 persons per year). Comparisons between CCB sub-groups revealed the highest NOD incidence for nifedipine, followed by amlodipine and felodipine. NOD incidences in β-blockers and diuretics groups (11.70 and 10.50 per 100 persons per year, respectively) were not significantly different from valsartan group. Compared with non-RAS inhibitors, particularly CCBs, valsartan could significantly reduce the incidence of NOD.

  16. Essential roles of FoxM1 in Ras-induced liver cancer progression and in cancer cells with stem cell features.

    PubMed

    Kopanja, Dragana; Pandey, Akshay; Kiefer, Megan; Wang, Zebin; Chandan, Neha; Carr, Janai R; Franks, Roberta; Yu, Dae-Yeul; Guzman, Grace; Maker, Ajay; Raychaudhuri, Pradip

    2015-08-01

    Overexpression of FoxM1 correlates with poor prognosis in hepatocellular carcinoma (HCC). Moreover, the Ras-signaling pathway is found to be ubiquitously activated in HCC through epigenetic silencing of the Ras-regulators. We investigated the roles of FoxM1 in Ras-driven HCC, and on HCC cells with stem-like features. We employed a transgenic mouse model that expresses the oncogenic Ras in the liver. That strain was crossed with a strain that harbor floxed alleles of FoxM1 and the MxCre gene that allows conditional deletion of FoxM1. FoxM1 alleles were deleted after development of HCC, and the effects on the tumors were analyzed. Also, FoxM1 siRNA was used in human HCC cell lines to determine its role in the survival of the HCC cells with stem cell features. Ras-driven tumors overexpress FoxM1. Deletion of FoxM1 inhibits HCC progression. There was increased accumulation of reactive oxygen species (ROS) in the FoxM1 deleted HCC cells. Moreover, FoxM1 deletion caused a disproportionate loss of the CD44+ and EpCAM+ HCC cells in the tumors. We show that FoxM1 directly activates expression of CD44 in human HCC cells. Moreover, the human HCC cells with stem cell features are addicted to FoxM1 for ROS-regulation and survival. Our results provide genetic evidence for an essential role of FoxM1 in the progression of Ras-driven HCC. In addition, FoxM1 is required for the expression of CD44 in HCC cells. Moreover, FoxM1 plays a critical role in the survival of the HCC cells with stem cell features by regulating ROS. Published by Elsevier B.V.

  17. Effects of reduced return activated sludge flows and volume on anaerobic zone performance for a septic wastewater biological phosphorus removal system.

    PubMed

    Magro, Daniel; Elias, Steven L; Randall, Andrew Amis

    2005-01-01

    Enhanced biological phosphorous removal (EBPR) performance was found to be adequate with reduced return-activated sludge (RAS) flows (50% of available RAS) to the anaerobic tank and smaller-than-typical anaerobic zone volume (1.08 hours hydraulic retention time [HRT]). Three identical parallel biological nutrient removal pilot plants were fed with strong, highly fermented (160 mg/L volatile fatty acids [VFAs]), domestic and industrial wastewater from a full-scale wastewater treatment facility. The pilot plants were operated at 100, 50, 40, and 25% RAS (percent of available RAS) flows to the anaerobic tank, with the remaining RAS to the anoxic tank. In addition, varying anaerobic HRT (1.08 and 1.5 hours) and increased hydraulic loading (35% increase) were examined. The study was divided into four phases, and the effect of these process variations on EBPR were studied by having one different variable between two identical systems. The most significant conclusion was that returning part of the RAS to the anaerobic zone did not decrease EBPR performance; instead, it changed the location of phosphorous release and uptake. Bringing less RAS to the anaerobic and more to the anoxic tank decreased anaerobic phosphorus release and increased anoxic phosphorus release (or decreased anoxic phosphorus uptake). Equally important is that, with VFA-rich influent wastewater, excessive anaerobic volume was shown to hurt overall phosphorus removal, even when it resulted in increased anaerobic phosphorus release.

  18. Impairment of K-Ras signaling networks and increased efficacy of epidermal growth factor receptor inhibitors by a novel synthetic miR-143.

    PubMed

    Akao, Yukihiro; Kumazaki, Minami; Shinohara, Haruka; Sugito, Nobuhiko; Kuranaga, Yuki; Tsujino, Takuya; Yoshikawa, Yuki; Kitade, Yukio

    2018-05-01

    Despite considerable research on K-Ras inhibitors, none had been established until now. We synthesized nuclease-resistant synthetic miR-143 (miR-143#12), which strongly silenced K-Ras, its effector signal molecules AKT and ERK, and the K-Ras activator Sos1. We examined the anti-proliferative effect of miR-143#12 and the mechanism in human colon cancer DLD-1 cell (G13D) and other cell types harboring K-Ras mutations. Cell growth was markedly suppressed in a concentration-dependent manner by miR-143#12 (IC 50 : 1.32 nmol L -1 ) with a decrease in the K-Ras mRNA level. Interestingly, this mRNA level was also downregulated by either a PI3K/AKT or MEK inhibitor, which indicates a positive circuit of K-Ras mRNA expression. MiR-143#12 silenced cytoplasmic K-Ras mRNA expression and impaired the positive circuit by directly targeting AKT and ERK mRNA. Combination treatment with miR-143#12 and a low-dose EGFR inhibitor induced a synergistic inhibition of growth with a marked inactivation of both PI3K/AKT and MAPK/ERK signaling pathways. However, silencing K-Ras by siR-KRas instead of miR-143#12 did not induce this synergism through the combined treatment with the EGFR inhibitor. Thus, miR-143#12 perturbed the K-Ras expression system and K-Ras activation by silencing Sos1 and, resultantly, restored the efficacy of the EGFR inhibitors. The in vivo results also supported those of the in vitro experiments. The extremely potent miR-143#12 enabled us to understand K-Ras signaling networks and shut them down by combination treatment with this miRNA and EGFR inhibitor in K-Ras-driven colon cancer cell lines. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  19. Carboxyl methylation of Ras-related proteins during signal transduction in neutrophils.

    PubMed

    Philips, M R; Pillinger, M H; Staud, R; Volker, C; Rosenfeld, M G; Weissmann, G; Stock, J B

    1993-02-12

    In human neutrophils, as in other cell types, Ras-related guanosine triphosphate-binding proteins are directed toward their regulatory targets in membranes by a series of posttranslational modifications that include methyl esterification of a carboxyl-terminal prenylcysteine residue. In intact cells and in a reconstituted in vitro system, the amount of carboxyl methylation of Ras-related proteins increased in response to the chemoattractant N-formyl-methionyl-leucyl-phenylalanine (FMLP). Activation of Ras-related proteins by guanosine-5'-O-(3-thiotriphosphate) had a similar effect and induced translocation of p22rac2 from cytosol to plasma membrane. Inhibitors of prenylcysteine carboxyl methylation effectively blocked neutrophil responses to FMLP. These findings suggest a direct link between receptor-mediated signal transduction and the carboxyl methylation of Ras-related proteins.

  20. Activation of Bmp2-Smad1 Signal and Its Regulation by Coordinated Alteration of H3K27 Trimethylation in Ras-Induced Senescence

    PubMed Central

    Kaneda, Atsushi; Fujita, Takanori; Anai, Motonobu; Yamamoto, Shogo; Nagae, Genta; Morikawa, Masato; Tsuji, Shingo; Oshima, Masanobu; Miyazono, Kohei; Aburatani, Hiroyuki

    2011-01-01

    Cellular senescence involves epigenetic alteration, e.g. loss of H3K27me3 in Ink4a-Arf locus. Using mouse embryonic fibroblast (MEF), we here analyzed transcription and epigenetic alteration during Ras-induced senescence on genome-wide scale by chromatin immunoprecipitation (ChIP)-sequencing and microarray. Bmp2 was the most activated secreted factor with H3K4me3 gain and H3K27me3 loss, whereas H3K4me3 loss and de novo formation of H3K27me3 occurred inversely in repression of nine genes, including two BMP-SMAD inhibitors Smad6 and Noggin. DNA methylation alteration unlikely occurred. Ras-activated cells senesced with nuclear accumulation of phosphorylated SMAD1/5/8. Senescence was bypassed in Ras-activated cells when Bmp2/Smad1 signal was blocked by Bmp2 knockdown, Smad6 induction, or Noggin induction. Senescence was induced when recombinant BMP2 protein was added to Bmp2-knocked-down Ras-activated cells. Downstream Bmp2-Smad1 target genes were then analyzed genome-wide by ChIP-sequencing using anti-Smad1 antibody in MEF that was exposed to BMP2. Smad1 target sites were enriched nearby transcription start sites of genes, which significantly correlated to upregulation by BMP2 stimulation. While Smad6 was one of Smad1 target genes to be upregulated by BMP2 exposure, Smad6 repression in Ras-activated cells with increased enrichment of Ezh2 and gain of H3K27me3 suggested epigenetic disruption of negative feedback by Polycomb. Among Smad1 target genes that were upregulated in Ras-activated cells without increased repressive mark, Parvb was found to contribute to growth inhibition as Parvb knockdown lead to escape from senescence. It was revealed through genome-wide analyses in this study that Bmp2-Smad1 signal and its regulation by harmonized epigenomic alteration play an important role in Ras-induced senescence. PMID:22072987

  1. miR-181a shows tumor suppressive effect against oral squamous cell carcinoma cells by downregulating K-ras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Ki-Hyuk, E-mail: kshin@dentistry.ucla.edu; Dental Research Institute, University of California, Los Angeles, CA 90095; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095

    2011-01-28

    Research highlights: {yields} MicroRNA-181a (miR-181a) was frequently downregulated in oral squamous cell carcinoma (OSCC). {yields} Overexpression of miR-181a suppressed OSCC growth. {yields} K-ras is a novel target of miR-181a. {yields} Decreased miR-181a expression is attributed to its lower promoter activity in OSCC. -- Abstract: MicroRNAs (miRNAs) are epigenetic regulators of gene expression, and their deregulation plays an important role in human cancer, including oral squamous cell carcinoma (OSCC). Recently, we found that miRNA-181a (miR-181a) was upregulated during replicative senescence of normal human oral keratinocytes. Since senescence is considered as a tumor suppressive mechanism, we thus investigated the expression and biologicalmore » role of miR-181a in OSCC. We found that miR-181a was frequently downregulated in OSCC. Ectopic expression of miR-181a suppressed proliferation and anchorage independent growth ability of OSCC. Moreover, miR-181a dramatically reduces the growth of OSCC on three dimensional organotypic raft culture. We also identified K-ras as a novel target of miR-181a. miR-181a decreased K-ras protein level as well as the luciferase activity of reporter vectors containing the 3'-untranslated region of K-ras gene. Finally, we defined a minimal regulatory region of miR-181a and found a positive correlation between its promoter activity and the level of miR-181a expression. In conclusion, miR-181a may function as an OSCC suppressor by targeting on K-ras oncogene. Thus, miR-181a should be considered for therapeutic application for OSCC.« less

  2. The GAP arginine finger movement into the catalytic site of Ras increases the activation entropy

    PubMed Central

    Kötting, Carsten; Kallenbach, Angela; Suveyzdis, Yan; Wittinghofer, Alfred; Gerwert, Klaus

    2008-01-01

    Members of the Ras superfamily of small G proteins play key roles in signal transduction pathways, which they control by GTP hydrolysis. They are regulated by GTPase activating proteins (GAPs). Mutations that prevent hydrolysis cause severe diseases including cancer. A highly conserved “arginine finger” of GAP is a key residue. Here, we monitor the GTPase reaction of the Ras·RasGAP complex at high temporal and spatial resolution by time-resolved FTIR spectroscopy at 260 K. After triggering the reaction, we observe as the first step a movement of the switch-I region of Ras from the nonsignaling “off” to the signaling “on” state with a rate of 3 s−1. The next step is the movement of the “arginine finger” into the active site of Ras with a rate of k2 = 0.8 s−1. Once the arginine points into the binding pocket, cleavage of GTP is fast and the protein-bound Pi intermediate forms. The switch-I reversal to the “off” state, the release of Pi, and the movement of arginine back into an aqueous environment is observed simultaneously with k3 = 0.1 s−1, the rate-limiting step. Arrhenius plots for the partial reactions show that the activation energy for the cleavage reaction is lowered by favorable positive activation entropy. This seems to indicate that protein-bound structured water molecules are pushed by the “arginine finger” movement out of the binding pocket into the bulk water. The proposed mechanism shows how the high activation barrier for phosphoryl transfer can be reduced by splitting into partial reactions separated by a Pi-intermediate. PMID:18434546

  3. Recurrent aphthous stomatitis: clinical characteristics and associated systemic disorders.

    PubMed

    Rogers, R S

    1997-12-01

    Recurrent aphthous stomatitis (RAS), commonly known as canker sores, has been reported as recurrent oral ulcers, recurrent aphthous ulcers, or simple or complex aphthosis. RAS is the most common inflammatory ulcerative condition of the oral mucosa in North American patients. One of its variants is the most painful condition of the oral mucosa. Recurrent aphthous stomatitis has been the subject of active investigation along multiple lines of research, including epidemiology, immunology, clinical correlations, and therapy. Clinical evaluation of the patient requires correct diagnosis of RAS and classification of the disease based on morphology (MiAU, MjAU, HU) and severity (simple versus complex). The natural history of individual lesions of RAS is important, because it is the bench mark against which treatment benefits are measured. The lesions of RAS are not caused by a single factor but occur in an environment that is permissive for development of lesions. These factors include trauma, smoking, stress, hormonal state, family history, food hypersensitivity and infectious or immunologic factors. The clinician should consider these elements of a multifactorial process leading to the development of lesions of RAS. To properly diagnose and treat a patient with lesions of RAS, the clinician must identify or exclude associated systemic disorders or "correctable causes." Behçet's disease and complex aphthosis variants, such as ulcus vulvae acutum, mouth and genital ulcers with inflamed cartilage (MAGIC) syndrome, fever, aphthosis, pharyngitis, and adenitis (FAPA) syndrome, and cyclic neutropenia, should be considered. The aphthous-like oral ulcerations of patients with human immunodeficiency virus (HIV) disease represent a challenging differential diagnosis. The association of lesions of RAS with hematinic deficiencies and gastrointestinal diseases provides an opportunity to identify a "correctable cause," which, with appropriate treatment, can result in a remission or substantial lessening of disease activity.

  4. Renin-angiotensin system within the diabetic podocyte.

    PubMed

    Márquez, Eva; Riera, Marta; Pascual, Julio; Soler, María José

    2015-01-01

    Diabetic kidney disease is the leading cause of end-stage renal disease. Podocytes are differentiated cells necessary for the development and maintenance of the glomerular basement membrane and the capillary tufts, as well as the function of the glomerular filtration barrier. The epithelial glomerular cells express a local renin-angiotensin system (RAS) that varies in different pathological situations such as hyperglycemia or mechanical stress. RAS components have been shown to be altered in diabetic podocytopathy, and their modulation may modify diabetic nephropathy progression. Podocytes are a direct target for angiotensin II-mediated injury by altered expression and distribution of podocyte proteins. Furthermore, angiotensin II promotes podocyte injury indirectly by inducing cellular hypertrophy, increased apoptosis, and changes in the anionic charge of the glomerular basement membrane, among other effects. RAS blockade has been shown to decrease the level of proteinuria and delay the progression of chronic kidney disease. This review summarizes the local intraglomerular RAS and its imbalance in diabetic podocytopathy. A better understanding of the intrapodocyte RAS might provide a new approach for diabetic kidney disease treatment. Copyright © 2015 the American Physiological Society.

  5. Big angiotensin-25: a novel glycosylated angiotensin-related peptide isolated from human urine.

    PubMed

    Nagata, Sayaka; Hatakeyama, Kinta; Asami, Maki; Tokashiki, Mariko; Hibino, Hajime; Nishiuchi, Yuji; Kuwasako, Kenji; Kato, Johji; Asada, Yujiro; Kitamura, Kazuo

    2013-11-29

    The renin-angiotensin system (RAS), including angiotensin II (Ang II), plays an important role in the regulation of blood pressure and body fluid balance. Consequently, the RAS has emerged as a key target for treatment of kidney and cardiovascular disease. In a search for bioactive peptides using an antibody against the N-terminal portion of Ang II, we identified and characterized a novel angiotensin-related peptide from human urine as a major molecular form. We named the peptide Big angiotensin-25 (Bang-25) because it consists of 25 amino acids with a glycosyl chain and added cysteine. Bang-25 is rapidly cleaved by chymase to Ang II, but is resistant to cleavage by renin. The peptide is abundant in human urine and is present in a wide range of organs and tissues. In particular, immunostaining of Bang-25 in the kidney is specifically localized to podocytes. Although the physiological function of Bang-25 remains uncertain, our findings suggest it is processed from angiotensinogen and may represent an alternative, renin-independent path for Ang II synthesis in tissue. Copyright © 2013. Published by Elsevier Inc.

  6. An Undergraduate Research Experience Studying Ras and Ras Mutants

    ERIC Educational Resources Information Center

    Griffeth, Nancy; Batista, Naralys; Grosso, Terri; Arianna, Gianluca; Bhatia, Ravnit; Boukerche, Faiza; Crispi, Nicholas; Fuller, Neno; Gauza, Piotr; Kingsbury, Lyle; Krynski, Kamil; Levine, Alina; Ma, Rui Yan; Nam, Jennifer; Pearl, Eitan; Rosa, Alessandro; Salarbux, Stephanie; Sun, Dylan

    2016-01-01

    Each January from 2010 to 2014, an undergraduate workshop on modeling biological systems was held at Lehman College of the City University of New York. The workshops were funded by a National Science Foundation (NSF) Expedition in Computing, "Computational Modeling and Analysis of Complex Systems (CMACS)." The primary goal was to…

  7. RAS mutation status predicts survival and patterns of recurrence in patients undergoing hepatectomy for colorectal liver metastases.

    PubMed

    Vauthey, Jean-Nicolas; Zimmitti, Giuseppe; Kopetz, Scott E; Shindoh, Junichi; Chen, Su S; Andreou, Andreas; Curley, Steven A; Aloia, Thomas A; Maru, Dipen M

    2013-10-01

    To determine the impact of RAS mutation status on survival and patterns of recurrence in patients undergoing curative resection of colorectal liver metastases (CLM) after preoperative modern chemotherapy. RAS mutation has been reported to be associated with aggressive tumor biology. However, the effect of RAS mutation on survival and patterns of recurrence after resection of CLM remains unclear. Somatic mutations were analyzed using mass spectroscopy in 193 patients who underwent single-regimen modern chemotherapy before resection of CLM. The relationship between RAS mutation status and survival outcomes was investigated. Detected somatic mutations included RAS (KRAS/NRAS) in 34 (18%), PIK3CA in 13 (7%), and BRAF in 2 (1%) patients. At a median follow-up of 33 months, 3-year overall survival (OS) rates were 81% in patients with wild-type versus 52.2% in patients with mutant RAS (P = 0.002); 3-year recurrence-free survival (RFS) rates were 33.5% with wild-type versus 13.5% with mutant RAS (P = 0.001). Liver and lung recurrences were observed in 89 and 83 patients, respectively. Patients with RAS mutation had a lower 3-year lung RFS rate (34.6% vs 59.3%, P < 0.001) but not a lower 3-year liver RFS rate (43.8% vs 50.2%, P = 0.181). In multivariate analyses, RAS mutation predicted worse OS [hazard ratio (HR) = 2.3, P = 0.002), overall RFS (HR = 1.9, P = 0.005), and lung RFS (HR = 2.0, P = 0.01), but not liver RFS (P = 0.181). RAS mutation predicts early lung recurrence and worse survival after curative resection of CLM. This information may be used to individualize systemic and local tumor-directed therapies and follow-up strategies.

  8. RAS mutation status predicts survival and patterns of recurrence in patients undergoing hepatectomy for colorectal liver metastases

    PubMed Central

    Vauthey, Jean-Nicolas; Zimmitti, Giuseppe; Kopetz, Scott E.; Shindoh, Junichi; Chen, Su S.; Andreou, Andreas; Curley, Steven A.; Aloia, Thomas A.; Maru, Dipen M.

    2013-01-01

    Objective To determine the impact of RAS mutation status on survival and patterns of recurrence in patients undergoing curative resection of colorectal liver metastases (CLM) after preoperative modern chemotherapy. Summary Background Data RAS mutation has been reported to be associated with aggressive tumor biology. However, the effect of RAS mutation on survival and patterns of recurrence after resection of CLM remains unclear. Methods Somatic mutations were analyzed using mass spectroscopy in 193 patients who underwent single-regimen modern chemotherapy before resection of CLM. The relationship between RAS mutation status and survival outcomes was investigated. Results Detected somatic mutations included RAS (KRAS/NRAS) in 34 patients (18%), PIK3CA in 13 (7%), and BRAF in 2 (1%). At a median follow-up of 33 months, 3-year overall survival (OS) rates were 81% in patients with wild-type vs 52.2% in patients with mutant RAS (P=0.002); 3-year recurrence-free survival (RFS) rates were 33.5% with wild-type vs 13.5% with mutant RAS (P=0.001). Liver and lung recurrences were observed in 89 and 83 patients, respectively. Patients with RAS mutation had a lower 3-year lung RFS rate (34.6% vs 59.3%, P<0.001), but not a lower 3-year liver RFS rate (43.8% vs 50.2%, P=0.181). In multivariate analyses, RAS mutation predicted worse OS (hazard ratio [HR] 2.3, P=0.002), overall RFS (HR 1.9, P=0.005), and lung RFS (HR 2.0, P=0.01), but not liver RFS (P=0.181). Conclusions RAS mutation predicts early lung recurrence and worse survival after curative resection of CLM. This information may be used to individualize systemic and local tumor-directed therapies and follow-up strategies. PMID:24018645

  9. Syndecan-1 alterations during the tumorigenic progression of human colonic Caco-2 cells induced by human Ha-ras or polyoma middle T oncogenes.

    PubMed Central

    Levy, P.; Munier, A.; Baron-Delage, S.; Di Gioia, Y.; Gespach, C.; Capeau, J.; Cherqui, G.

    1996-01-01

    The products of ras and src proto-oncogenes are frequently activated in a constitutive state in human colorectal cancer. In this study we attempted to establish whether the tumorigenic progression induced by oncogenic activation of p21ras and pp60c-src in human colonic Caco-2 cells is associated with specific alterations of syndecan-1, a membrane-anchored proteoglycan playing a role in cell-matrix interaction and neoplastic growth control. To this end, we used Caco-2 cells made highly tumorigenic by transfection with an activated (Val 12) human Ha-ras gene or with the polyoma middle T (Py-MT) oncogene, a constitutive activator of pp60c-src tyrosine kinase activity. Compared with control vector-transfected Caco-2 cells, both oncogene-transfected cell lines (1) contained smaller amounts of membrane-anchored PGs; (2) exhibited decreased syndecan-1 expression at the protein but not the mRNA level; (3) synthesized 35S-labelled syndecan-1 with decreased specific activity; (4) produced a syndecan-1 ectodomain with a lower molecular mass and reduced GAG chain size and sulphation; and (5) expressed heparanase degradative activity. These results show that the dramatic activation of the tumorigenic potential induced by oncogenic p21ras or Py-MT/pp60c-src in Caco-2 cells is associated with marked alterations of syndecan-1 expression at the translational and post-translational levels. Images Figure 2 PMID:8695359

  10. Curcumin interacts directly with the Cysteine 259 residue of STAT3 and induces apoptosis in H-Ras transformed human mammary epithelial cells.

    PubMed

    Hahn, Young-Il; Kim, Su-Jung; Choi, Bu-Young; Cho, Kyung-Cho; Bandu, Raju; Kim, Kwang Pyo; Kim, Do-Hee; Kim, Wonki; Park, Joon Sung; Han, Byung Woo; Lee, Jeewoo; Na, Hye-Kyung; Cha, Young-Nam; Surh, Young-Joon

    2018-04-23

    Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that is latent but constitutively activated in many types of cancers. It is well known that STAT3 plays a key role in inflammation-associated tumorigenesis. Curcumin is an anti-inflammatory natural compound isolated from the turmeric (Curcuma longa L., Zingiberaceae) that has been extensively used in a traditional medicine over the centuries. In the present study, we have found that curcumin inhibits STAT3 signaling that is persistently overactivated in H-Ras transformed breast epithelial cells (H-Ras MCF10A). Specific cysteine residues present in STAT3 appear to be critical for the activity as well as conformation of this transcription factor. We identified the cysteine residue 259 of STAT3 as a putative site for curcumin binding. Site-directed mutation of this cysteine residue abolished curcumin-induced inactivation of STAT3 and apoptosis in H-Ras MCF10A cells. The α,β-unsaturated carbonyl moiety of curcumin appears to be essential in its binding to STAT3 in H-Ras MCF10A cells. Tetrahydrocurcumin that lacks such electrophilic moiety failed to interact with STAT3 and to induce apoptosis in the same cell line. Taken together, our findings suggest that curcumin can abrogate aberrant activation of STAT3 through direct interaction, thereby inhibiting STAT3-mediated mammary carcinogenesis.

  11. The progression in the mouse skin carcinogenesis model correlates with ERK1/2 signaling.

    PubMed Central

    Katsanakis, Kostas D.; Gorgoulis, Vassilis; Papavassiliou, Athanasios G.; Zoumpourlis, Vassilis K.

    2002-01-01

    BACKGROUND: The ras family of proto-oncogenes encodes for small GTPases that play critical roles in cell-cycle progression and cellular transformation. ERK1/2 MAP kinases are major ras effectors. Tumors in chemically treated mouse skin contain mutations in the Ha-ras proto- oncogene. Amplification and mutation of Ha-ras has been shown to correlate with malignant progression of these tumors. Cell lines isolated from mouse skin tumors represent the stages of tumor development, such as the PDV:PDVC57 cell line pair and B9 squamous carcinoma and A5 spindle cells. PDVC57 cells were selected from PDV cells, which were transformed with dimethyl-benzanthracene (DMBA) in vitro and then transplanted in adult syngeneic mice. The PDV:PDVC57 pair contains ratio of normal:mutant Ha-ras 2:1 and 1:2, respectively. This genetic alteration correlates with more advanced tumorigenic characteristics of PDVC57 compared to PDV. The squamous carcinoma B9 cell clone was isolated from the same primary tumor as A5 spindle cell line. The mutant Ha-ras allele, also present in B9, is amplified and overexpressed in A5 cells. Therefore these cell line pairs represent an in vivo model for studies of Ha-ras and ERK1/2 signaling in mouse tumorigenesis. MATERIALS AND METHODS: The ERK1/2 status in the above mouse cell lines was examined by using various molecular techniques. For the study of the tumorigenic properties and the role of the ras/MEK/ERK1/2 pathway in the cell lines mentioned, phenotypic characteristics, colony formation assay, anchorage-independent growth, and gelatin zymography were assessed, after or without treatment with the MEK inhibitor, PD98059. RESULTS: ERK1/2 phosphorylation was found to be increased in PDVC57 when compared to PDV. This also applies to A5 spindle carcinoma cells when compared to squamous carcinoma and papilloma cells. The above finding was reproduced when transfecting human activated Ha-ras allele into PDV, thus demonstrating that Ha-ras enhances ERK1/2 signaling. To further test whether ERK1/2 activation was required for growth we used the MEK-1 inhibitor, PD98059. The latter inhibited cell proliferation and anchorage-independent growth of squamous and spindle cells. In addition, PD98059 treatment partially reverted the spindle morphology of A5 cells. CONCLUSIONS: These data suggest, for the first time, that oncogenicity and the degree of progression in the mouse skin carcinogenesis model correlates with ERK1/2 signaling. PMID:12477973

  12. Combined use of drugs inhibiting the renin-angiotensin system: prescribing patterns and risk of acute kidney injury in German nursing home residents.

    PubMed

    Dörks, Michael; Herget-Rosenthal, Stefan; Hoffmann, Falk; Jobski, Kathrin

    2018-01-01

    In 2012, the European Medicines Agency reviewed the safety of dual renin-angiotensin system (RAS) blockade because of potentially increased risks for inter alia acute kidney injury (AKI). Since residents of nursing homes are particularly vulnerable to adverse drug outcomes, the aims of our study were to describe RAS-inhibiting drug use in German nursing home residents and examine the risk of AKI associated with dual RAS blockade. Based on claims data, a nested case-control study within a cohort of RAS-inhibiting drug users was conducted. Using conditional logistic regression, confounder-adjusted odds ratios (aORs) and 95% confidence intervals (CI) were obtained for the risk of AKI associated with dual RAS blockade. Subgroup analyses were performed in patients with diabetes or chronic kidney disease and both comorbidities. Of all 127,227 nursing home residents, the study cohort included 64,567 (50.7%) who were treated with at least one RAS-inhibiting drug. More than three quarters of the study population were female (77.1%). Mean age was 86.0 ± 6.8 years. Most residents were treated with angiotensin-converting enzyme inhibitors (77.8%), followed by angiotensin II receptor blockers (21.6%) and aliskiren (0.2%). Annual prevalence of dual RAS blockade declined from 9.6 (95% CI 7.8-11.8) in 2010 to 4.7 (95% CI 4.0-5.4) per 1,000 users in 2014. In the overall cohort, AKI was not significantly associated with dual RAS blockade (aOR 1.99; 0.77-5.17). However, significantly increased aORs were observed when considering patients with diabetes (3.47; 1.27-9.47), chronic kidney disease (4.74; 1.24-18.13) or both (11.17; 2.65-47.15). Prescribing of drugs inhibiting the RAS is common in German nursing homes. Though the prevalence of dual RAS blockade declined, our study showed an increased risk of AKI in patients with diabetes and/or chronic kidney disease. Therefore, cautious use is warranted in these vulnerable patients.

  13. [Farnesyl transferase inhibitors (anti-Ras). A new class of anticancer agents].

    PubMed

    Levy, R

    Ras genes are frequently activated in human tumours. The role of their product, the P21 proteins, in the transduction of the mitogenic signal makes them attractive targets for an anti-neoplastic therapy. The p21 ras proteins are linked to the plasma membrane and transformed into an active form for signal transmission. Their effect is to mediate the effects of growth factors. Two drug families, the Benzodiazepine peptidomimetics and the CAAX tetrapeptides which inhibit the farnesylation of P21-Ras proteins abolish the transforming properties of mutated P21. These promising drugs could rapidly have clinical applications. They have been shown to be highly active at precise concentrations on ras-transformed cells but at the same concentrations are not toxic for untransformed cells. They do not effect other similar enzyme systems within the cell, underlining their selective capacity. Theoretically anti-ras therapy could only suspend cell transformation although it might be possible that if given long enough, a lethal threshold could be reached.

  14. Use of fluorescence spectroscopy to control ozone dosage in recirculating aquaculture systems.

    PubMed

    Spiliotopoulou, Aikaterini; Martin, Richard; Pedersen, Lars-Flemming; Andersen, Henrik R

    2017-03-15

    The aim of this study was to investigate the potential of fluorescence spectroscopy to be used as an ozone dosage determination tool in recirculating aquaculture systems (RASs), by studying the relationship between fluorescence intensities and dissolved organic matter (DOM) degradation by ozone, in order to optimise ozonation treatment. Water samples from six different Danish facilities (two rearing units from a commercial trout RAS, a commercial eel RAS, a pilot RAS and two marine water aquariums) were treated with different O 3 dosages (1.0-20.0 mg/L ozone) in bench-scale experiments, following which fluorescence intensity degradation was eventually determined. Ozonation kinetic experiments showed that RAS water contains fluorescent organic matter, which is easily oxidised upon ozonation in relatively low concentrations (0-5 mg O 3 /L). Fluorescence spectroscopy has a high level of sensitivity and selectivity in relation to associated fluorophores, and it is able to determine accurately the ozone demand of each system. The findings can potentially be used to design offline or online sensors based on the reduction by ozone of natural fluorescent-dissolved organic matter in RAS. The suggested indirect determination of ozone delivered into water can potentially contribute to a safer and more adequate ozone-based treatment to improve water quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Regional Sediment Management (RSM) Modeling Tools: Integration of Advanced Sediment Transport Tools into HEC-RAS

    DTIC Science & Technology

    2014-06-01

    Integration of Advanced Sediment Transport Tools into HEC-RAS by Paul M. Boyd and Stanford A. Gibson PURPOSE: This Coastal and Hydraulics Engineering...Technical Note (CHETN) summarizes the development and initial testing of new sediment transport and modeling tools developed by the U.S. Army Corps...sediment transport within the USACE HEC River Analysis System (HEC-RAS) software package and to determine its applicability to Regional Sediment

  16. A model study of bridge hydraulics

    DOT National Transportation Integrated Search

    2010-08-01

    Most flood studies in the United States use the Army Corps of Engineers HEC-RAS (Hydrologic Engineering : Centers River Analysis System) computer program. This study was carried out to compare results of HEC-RAS : bridge modeling with laboratory e...

  17. Dusp6 attenuates Ras/MAPK signaling to limit zebrafish heart regeneration.

    PubMed

    Missinato, Maria A; Saydmohammed, Manush; Zuppo, Daniel A; Rao, Krithika S; Opie, Graham W; Kühn, Bernhard; Tsang, Michael

    2018-03-06

    Zebrafish regenerate cardiac tissue through proliferation of pre-existing cardiomyocytes and neovascularization. Secreted growth factors such as FGFs, IGF, PDGFs and Neuregulin play essential roles in stimulating cardiomyocyte proliferation. These factors activate the Ras/MAPK pathway, which is tightly controlled by the feedback attenuator Dual specificity phosphatase 6 (Dusp6), an ERK phosphatase. Here, we show that suppressing Dusp6 function enhances cardiac regeneration. Inactivation of Dusp6 by small molecules or by gene inactivation increased cardiomyocyte proliferation, coronary angiogenesis, and reduced fibrosis after ventricular resection. Inhibition of Erbb or PDGF receptor signaling suppressed cardiac regeneration in wild-type zebrafish, but had a milder effect on regeneration in dusp6 mutants. Moreover, in rat primary cardiomyocytes, NRG1-stimulated proliferation can be enhanced upon chemical inhibition of Dusp6 with BCI. Our results suggest that Dusp6 attenuates Ras/MAPK signaling during regeneration and that suppressing Dusp6 can enhance cardiac repair. © 2018. Published by The Company of Biologists Ltd.

  18. Periodic bacterial control with peracetic acid in a recirculating aquaculture system and its long-term beneficial effect on fish health

    USDA-ARS?s Scientific Manuscript database

    Peracetic acid (PAA) is being introduced to aquaculture as a sustainable disinfectant. It is suitable for recirculating aquaculture systems (RAS) because of the low effective concentrations and its minimal impact on biofilter function. The application of PAA in a RAS has a combined impact on fish an...

  19. The impact of water exchange rate on the health and performance of rainbow trout Oncorhynchus mykiss in recirculation aquaculture systems

    USDA-ARS?s Scientific Manuscript database

    Fish mortality in recirculating aquaculture systems (RAS) has been observed by the authors to increase when RAS are managed at low makeup water exchange rates with relatively high feed loading. The precise etiology of this elevated mortality was unknown, all typical water quality parameters were wit...

  20. Evaluating the chronic effects of nitrate on the health and performance of post-smolt Atlantic salmon Salmo salar in freshwater recirculation aquaculture systems

    USDA-ARS?s Scientific Manuscript database

    Commercial production of Atlantic salmon smolts, post-smolts, and market-size fish using land-based recirculation aquaculture systems (RAS) is expanding. RAS generally provide a nutrient-rich environment in which nitrate accumulates as an end-product of nitrification. An 8-month study was conducted ...

  1. Membrane biological reactors to remove nitrate, digest biosolids, and eliminate water flushing requirements within replicated recirculation systems culturing rainbow trout

    USDA-ARS?s Scientific Manuscript database

    Nutrients, particularly nitrate (NO3), can accumulate to very high levels within low exchange recirculation aquaculture systems (RAS) and negatively impact a number of cultured species. To prevent the harmful effects of nitrate accumulation and to dispose of concentrated waste biosolids, many RAS ar...

  2. Evaluating standard operating procedures to mitigate off-flavor from Atlantic salmon Salmo salar cultured in a semi-commercial scale recirculating aquaculture system

    USDA-ARS?s Scientific Manuscript database

    Fish cultured within water recirculating aquaculture systems (RAS) can acquire “earthy” or “musty” off-flavors due to bioaccumulation of the compounds geosmin and 2-methylisoborneol (MIB), respectively, which are produced by certain bacterial species present in RAS biosolids and microbial biofilms. ...

  3. Renin-Angiotensin System in Diabetes.

    PubMed

    Rein, Johannes; Bader, Michael

    2017-11-17

    The renin-angiotensin system (RAS) has two different axes, the classical one with the effector peptide angiotensin II and the new one with the effector peptide angiotensin (1-7). Both peptides have been shown to be involved in the pathogenesis of diabetes mellitus and its consequences, nephropathy, retinopathy and cardiomyopathy in animal models and patients. In diabetes, angiotensin II acts mostly deleterious and angiotensin (1-7) protective. In this review we summarize the knowledge about the role of the different RAS axes in diabetes mellitus and the use of drugs interfering with the RAS in the therapy of the disease. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Expression of renin–angiotensin system components in the early bovine embryo

    PubMed Central

    Pijacka, Wioletta; Hunter, Morag G; Broughton Pipkin, Fiona; Luck, Martin R

    2012-01-01

    The renin–angiotensin system (RAS), mainly associated with the regulation of blood pressure, has been recently investigated in female reproductive organs and the developing foetus. Angiotensin II (Ang II) influences oviductal gamete movements and foetal development, but there is no information about RAS in the early embryo. The aim of this study was to determine whether RAS components are present in the pre-implantation embryo, to determine how early they are expressed and to investigate their putative role at this stage of development. Bovine embryos produced in vitro were used for analysis of RAS transcripts (RT-PCR) and localisation of the receptors AGTR1 and AGTR2 (immunofluorescent labelling). We also investigated the effects of Ang II, Olmesartan (AGTR1 antagonist) and PD123319 (AGTR2 antagonist) on oocyte cleavage, embryo expansion and hatching. Pre-implanted embryos possessed AGTR1 and AGTR2 but not the other RAS components. Both receptors were present in the trophectoderm and in the inner cell mass of the blastocyst. AGTR1 was mainly localised in granular-like structures in the cytoplasm, suggesting its internalisation into clathrin-coated vesicles, and AGTR2 was found mainly in the nuclear membrane and in the mitotic spindle of dividing trophoblastic cells. Treating embryos with PD123319 increased the proportion of hatched embryos compared with the control. These results, the first on RAS in the early embryo, suggest that the pre-implanted embryo responds to Ang II from the mother rather than from the embryo itself. This may be a route by which the maternal RAS influences blastocyst hatching and early embryonic development. PMID:23781300

  5. The Impact of Renin-Angiotensin System Blockade on Renal Outcomes and Mortality in Pre-Dialysis Patients with Advanced Chronic Kidney Disease.

    PubMed

    Oh, Yun Jung; Kim, Sun Moon; Shin, Byung Chul; Kim, Hyun Lee; Chung, Jong Hoon; Kim, Ae Jin; Ro, Han; Chang, Jae Hyun; Lee, Hyun Hee; Chung, Wookyung; Lee, Chungsik; Jung, Ji Yong

    2017-01-01

    Renin-angiotensin-system (RAS) blockade is thought to slow renal progression in patients with chronic kidney disease (CKD). However, it remains uncertain if the habitual use of RAS inhibitors affects renal progression and outcomes in pre-dialysis patients with advanced CKD. In this multicenter retrospective cohort study, we identified 2,076 pre-dialysis patients with advanced CKD (stage 4 or 5) from a total of 33,722 CKD patients. RAS blockade users were paired with non-users for analyses using inverse probability of treatment-weighted (IPTW) and propensity score (PS) matching. The outcomes were renal death, all-cause mortality, hospitalization for hyperkalemia, and interactive factors as composite outcomes. RAS blockade users showed an increased risk of renal death in PS-matched analysis (hazard ratio [HR], 1.381; 95% CI, 1.071-1.781; P = 0.013), which was in agreement with the results of IPTW analysis (HR, 1.298; 95% CI, 1.123-1.500; P < 0.001). The risk of composite outcomes was higher in RAS blockade users in IPTW (HR, 1.154; 95% CI, 1.016-1.310; P = 0.027), but was marginal significance in PS matched analysis (HR, 1.243; 95% CI, 0.996-1.550; P = 0.054). The habitual use of RAS blockades in pre-dialysis patients with advanced CKD may have a detrimental effect on renal outcome without improving all-cause mortality. Further studies are warranted to determine whether withholding RAS blockade may lead to better outcomes in these patients.

  6. w09, a novel autophagy enhancer, induces autophagy-dependent cell apoptosis via activation of the EGFR-mediated RAS-RAF1-MAP2K-MAPK1/3 pathway.

    PubMed

    Zhang, Pinghu; Zheng, Zuguo; Ling, Li; Yang, Xiaohui; Zhang, Ni; Wang, Xue; Hu, Maozhi; Xia, Yu; Ma, Yiwen; Yang, Haoran; Wang, Yunyi; Liu, Hongqi

    2017-07-03

    The EGFR (epidermal growth factor receptor) signaling pathway is frequently deregulated in many malignancies. Therefore, targeting the EGFR pathway is regarded as a promising strategy for anticancer drug discovery. Herein, we identified a 2-amino-nicotinonitrile compound (w09) as a novel autophagy enhancer, which potently induced macroautophagy/autophagy and consequent apoptosis in gastric cancer cells. Mechanistic studies revealed that EGFR-mediated activation of the RAS-RAF1-MAP2K-MAPK1/3 signaling pathway played a critical role in w09-induced autophagy and apoptosis of gastric cancer cells. Inhibition of the MAPK1/3 pathway with U0126 or blockade of autophagy by specific chemical inhibitors markedly attenuated the effect of w09-mediated growth inhibition and caspase-dependent apoptosis. Furthermore, these conclusions were supported by knockdown of ATG5 or knockout of ATG5 and/or ATG7. Notably, w09 increased the expression of SQSTM1 by transcription, and knockout of SQSTM1 or deleting the LC3-interaction region domain of SQSTM1, significantly inhibited w09-induced PARP1 cleavage, suggesting the central role played by SQSTM1 in w09-induced apoptosis. In addition, in vivo administration of w09 effectively inhibited tumor growth of SGC-7901 xenografts. Hence, our findings not only suggested that activation of the EGFR-RAS-RAF1-MAP2K-MAPK1/3 signaling pathway may play a critical role in w09-induced autophagy and apoptosis, but also imply that induction of autophagic cancer cell death through activation of the EGFR pathway may be a potential therapeutic strategy for EGFR-disregulated gastric tumors.

  7. Prorenin induces ERK activation in endothelial cells to enhance neovascularization independently of the renin-angiotensin system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uraoka, Maki; Ikeda, Koji, E-mail: ikedak@koto.kpu-m.ac.jp; Nakagawa, Yusuke

    Prorenin is an enzymatically inactive precursor of renin, and its biological function in endothelial cells (ECs) is unknown despite its relevance with the incidence of diabetic microvascular complications. Recently, (pro)renin receptor was identified, and the receptor-associated prorenin system has been discovered, whereas its expression as well as function in ECs remain unclear. In the present study, we found that ECs express the (pro)renin receptor, and that prorenin provoked ERK activation through (pro)renin receptor independently of the renin-angiotensin system (RAS). Prorenin stimulated the proliferation, migration and tube-formation of ECs, while it inhibited endothelial apoptosis induced by serum and growth factor depletion.more » MEK inhibitor abrogated these proangiogenic effects of prorenin, while AT1 receptor antagonist or angiotensin-converting enzyme inhibitor failed to block them. In vivo neovascularization in the Matrigel-plugs implanted into mouse flanks was significantly enhanced by prorenin, in which significant ERK activation was detected in ECs. Furthermore, tumor xenografts stably transfected with prorenin demonstrated the significantly accelerated growth rate concomitantly with enhanced intratumoral neovascularization. Our data demonstrated that the RAS-independent (pro)renin receptor-mediated signal transduction plays a pivotal role in the regulation of ECs function as well as in the neovascularization, and thus prorenin is potentially involved in the pathophysiology of diabetic microvascular complications as well as cancers.« less

  8. The effect of renin-angiotensin system inhibitors on mortality and heart failure hospitalization in patients with heart failure and preserved ejection fraction: a systematic review and meta-analysis.

    PubMed

    Shah, Ravi V; Desai, Akshay S; Givertz, Michael M

    2010-03-01

    Although renin-angiotensin system (RAS) inhibitors have little demonstrable effect on mortality in patients with heart failure and preserved ejection fraction (HF-PEF), some trials have suggested a benefit with regard to reduction in HF hospitalization. Here, we systematically review and evaluate prospective clinical studies of RAS inhibitors enrolling patients with HF-PEF, including the 3 major trials of RAS inhibition (Candesartan in Patients with Chronic Heart Failure and Preserved Left Ventricular Ejection Fraction [CHARM-Preserved], Irbesartan in Patients with Heart Failure and Preserved Ejection Fraction [I-PRESERVE], and Perindopril in Elderly People with Chronic Heart Failure [PEP-CHF]). We also conducted a pooled analysis of 8021 patients in the 3 major randomized trials of RAS inhibition in HF-PEF (CHARM-Preserved, I-PRESERVE, and PEP-CHF) in fixed-effect models, finding no clear benefit with regard to all-cause mortality (odds ratio [OR] 1.03, 95% confidence interval [CI], 0.92-1.15; P=.62), or HF hospitalization (OR 0.90, 95% CI 0.80-1.02; P=.09). Although RAS inhibition may be valuable in the management of comorbidities related to HF-PEF, RAS inhibition in HF-PEF is not associated with consistent reduction in HF hospitalization or mortality in this emerging cohort. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  9. Depletion of Pokemon gene inhibits hepatocellular carcinoma cell growth through inhibition of H-ras.

    PubMed

    Zhang, Quan-Le; Tian, De-An; Xu, Xiang-Jiang

    2011-01-01

    Pokemon is a transcription repressor which plays a critical role in cell transformation and malignancy. However, little is known about its effect on the development and progression of hepatocellular carcinoma (HCC). The aim of this study was to investigate the expression of Pokemon in human HCC tissues and the biological behavior of Pokemon in HCC cells in which it is overexpressed. We also explored the expression of potential downstream cofactors of Pokemon. Reverse transcription polymerase chain reaction and Western blot analysis were used to investigate the expression of Pokemon in tissues of 30 HCC patients. We then examined cell proliferation or apoptosis and β-catenin or H-ras expression in Pokemon-depleted HepG(2) cells using DNA vector-based RNA interference technology. Pokemon was markedly expressed in 22/30 (73.3%) HCC tissues, with expression levels higher than in adjacent normal liver tissues (p < 0.05); expression is correlated with tumor size. In contrast, depletion of Pokemon inhibited proliferation of HepG(2) or induced apoptosis. Also, H-ras expression decreased to a large extent. Pokemon exerts its oncogenic activity in the development of HCC by promoting cancer cell growth and reducing apoptosis, and the effect may be mediated by H-ras. Copyright © 2011 S. Karger AG, Basel.

  10. Apical accumulation of the Sevenless receptor tyrosine kinase during Drosophila eye development is promoted by the small GTPase Rap1.

    PubMed

    Baril, Caroline; Lefrançois, Martin; Sahmi, Malha; Knævelsrud, Helene; Therrien, Marc

    2014-08-01

    The Ras/MAPK-signaling pathway plays pivotal roles during development of metazoans by controlling cell proliferation and cell differentiation elicited, in several instances, by receptor tyrosine kinases (RTKs). While the internal mechanism of RTK-driven Ras/MAPK signaling is well understood, far less is known regarding its interplay with other co-required signaling events involved in developmental decisions. In a genetic screen designed to identify new regulators of RTK/Ras/MAPK signaling during Drosophila eye development, we identified the small GTPase Rap1, PDZ-GEF, and Canoe as components contributing to Ras/MAPK-mediated R7 cell differentiation. Rap1 signaling has recently been found to participate in assembling cadherin-based adherens junctions in various fly epithelial tissues. Here, we show that Rap1 activity is required for the integrity of the apical domains of developing photoreceptor cells and that reduced Rap1 signaling hampers the apical accumulation of the Sevenless RTK in presumptive R7 cells. It thus appears that, in addition to its role in cell-cell adhesion, Rap1 signaling controls the partitioning of the epithelial cell membrane, which in turn influences signaling events that rely on apico-basal cell polarity. Copyright © 2014 by the Genetics Society of America.

  11. Effect of rhythmic auditory stimulation on gait performance in children with spastic cerebral palsy.

    PubMed

    Kwak, Eunmi Emily

    2007-01-01

    The purpose of this study was to use Rhythmic Auditory Stimulation (RAS) for children with spastic cerebral palsy (CP) in a clinical setting in order to determine its effectiveness in gait training for ambulation. RAS has been shown to improve gait performance in patients with significant gait deficits. All 25 participants (6 to 20 years old) had spastic CP and were ambulatory, but needed to stabilize and gain more coordinated movement. Participants were placed in three groups: the control group, the therapist-guided training (TGT) group, and the self-guided training (SGT) group. The TGT group showed a statistically significant difference in stride length, velocity, and symmetry. The analysis of the results in SGT group suggests that the self-guided training might not be as effective as therapist-guided depending on motivation level. The results of this study support three conclusions: (a) RAS does influence gait performance of people with CP; (b) individual characteristics, such as cognitive functioning, support of parents, and physical ability play an important role in designing a training application, the effectiveness of RAS, and expected benefits from the training; and (c) velocity and stride length can be improved by enhancing balance, trajectory, and kinematic stability without increasing cadence.

  12. Boldine Improves Kidney Damage in the Goldblatt 2K1C Model Avoiding the Increase in TGF-β.

    PubMed

    Gómez, Gonzalo I; Velarde, Victoria

    2018-06-25

    Boldine, a major aporphine alkaloid found in the Chilean boldo tree, is a potent antioxidant. Oxidative stress plays a detrimental role in the pathogenesis of kidney damage in renovascular hypertension (RVH). The activation of the renin-angiotensin system (RAS) is crucial to the development and progression of hypertensive renal damage and TGF-β is closely associated with the activation of RAS. In the present study, we assessed the effect of boldine on the progression of kidney disease using the 2K1C hypertension model and identifying mediators in the RAS, such as TGF-β, that could be modulated by this alkaloid. Toward this hypothesis, rats ( n = 5/group) were treated with boldine (50 mg/kg/day, gavage) for six weeks after 2K1C surgery (pressure ≥ 180 mmHg). Kidney function was evaluated by measuring of proteinuria/creatininuria ratio (U prot/U Crea), oxidative stress (OS) by measuring thiobarbituric acid reactive substances (TBARS). The evolution of systolic blood pressure (SBP) was followed weekly. Alpha-smooth muscle actin (α-SMA) and Col III were used as markers of kidney damage; ED-1 and osteopontin (OPN) were used as markers of inflammation. We also explored the effect in RAS mediators, such as ACE-1 and TGF-β. Boldine treatment reduced the UProt/UCrea ratio, plasma TBARS, and slightly reduced SBP in 2K1C hypertensive rats, producing no effect in control animals. In 2K1C rats treated with boldine the levels of α-SMA, Col III, ED-1, and OPN were lower when compared to 2K1C rats. Boldine prevented the increase in ACE-1 and TGF-β in 2K1C rats, suggesting that boldine reduces kidney damage. These results suggest that boldine could potentially be used as a nutraceutic.

  13. Effects of mutant human Ki-ras{sup G12C} gene dosage on murine lung tumorigenesis and signaling to its downstream effectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dance-Barnes, Stephanie T.; Kock, Nancy D.; Floyd, Heather S.

    2008-08-15

    Studies in cell culture have suggested that the level of RAS expression can influence the transformation of cells and the signaling pathways stimulated by mutant RAS expression. However, the levels of RAS expression in vivo appear to be subject to feedback regulation, limiting the total amount of RAS protein that can be expressed. We utilized a bitransgenic mouse lung tumor model that expressed the human Ki-ras{sup G12C} allele in a tetracycline-inducible, lung-specific manner. Treatment for 12 months with 500 {mu}g/ml of doxycycline (DOX) allowed for maximal expression of the human Ki-ras{sup G12C} allele in the lung, and resulted in themore » development of focal hyperplasia and adenomas. We determined if different levels of mutant RAS expression would influence the phenotype of the lung lesions. Treatment with 25, 100 and 500 {mu}g/ml of DOX resulted in dose-dependent increases in transgene expression and tumor multiplicity. Microscopic analysis of the lungs of mice treated with the 25 {mu}g/ml dose of DOX revealed infrequent foci of hyperplasia, whereas mice treated with the 100 and 500 {mu}g/ml doses exhibited numerous hyperplastic foci and also adenomas. Immunohistochemical and RNA analysis of the downstream effector pathways demonstrated that different levels of mutant RAS transgene expression resulted in differences in the expression and/or phosphorylation of specific signaling molecules. Our results suggest that the molecular alterations driving tumorigenesis may differ at different levels of mutant Ki-ras{sup G12C} expression, and this should be taken into consideration when inducible transgene systems are utilized to promote tumorigenesis in mouse models.« less

  14. New Frontiers in the Intrarenal Renin-Angiotensin System: A Critical Review of Classical and New Paradigms

    PubMed Central

    Zhuo, Jia L.; Ferrao, Fernanda M.; Zheng, Yun; Li, Xiao C.

    2013-01-01

    The renin-angiotensin system (RAS) is well-recognized as one of the oldest and most important regulators of arterial blood pressure, cardiovascular, and renal function. New frontiers have recently emerged in the RAS research well beyond its classic paradigm as a potent vasoconstrictor, an aldosterone release stimulator, or a sodium-retaining hormone. First, two new members of the RAS have been uncovered, which include the renin/(Pro)renin receptor (PRR) and angiotensin-converting enzyme 2 (ACE2). Recent studies suggest that prorenin may act on the PRR independent of the classical ACE/ANG II/AT1 receptor axis, whereas ACE2 may degrade ANG II to generate ANG (1–7), which activates the Mas receptor. Second, there is increasing evidence that ANG II may function as an intracellular peptide to activate intracellular and/or nuclear receptors. Third, currently there is a debate on the relative contribution of systemic versus intrarenal RAS to the physiological regulation of blood pressure and the development of hypertension. The objectives of this article are to review and discuss the new insights and perspectives derived from recent studies using novel transgenic mice that either overexpress or are deficient of one key enzyme, ANG peptide, or receptor of the RAS. This information may help us better understand how ANG II acts, both independently or through interactions with other members of the system, to regulate the kidney function and blood pressure in health and disease. PMID:24273531

  15. Florfenicol residues in Rainbow Trout after oral dosing in recirculating and flow-through culture systems

    USGS Publications Warehouse

    Meinertz, Jeffery R.; Hess, Karina R.; Bernady, Jeffry A.; Gaikowski, M. P.; Whitsel, Melissa; Endris, R. G.

    2014-01-01

    Aquaflor is a feed premix for fish containing the broad spectrum antibacterial agent florfenicol (FFC) incorporated at a ratio of 50% (w/w). To enhance the effectiveness of FFC for salmonids infected with certain isolates of Flavobacterium psychrophilum causing coldwater disease, the FFC dose must be increased from the standard 10 mg·kg−1 body weight (BW)·d−1 for 10 consecutive days. A residue depletion study was conducted to determine whether FFC residues remaining in the fillet tissue after treating fish at an increased dose would be safe for human consumption. Groups of Rainbow Trout Oncorhynchus mykiss (total n = 144; weight range, 126–617 g) were treated with FFC at 20 mg·kg−1 BW·d−1 for 10 d in a flow-through system (FTS) and a recirculating aquaculture system (RAS) each with a water temperature of ∼13°C. The two-tank RAS included a nontreated tank containing 77 fish. Fish were taken from each tank (treated tank, n = 16; nontreated tank, n = 8) at 6, 12, 24, 48, 72, 120, 240, 360, and 480 h posttreatment. Florfenicol amine (FFA) concentrations (the FFC marker residue) in skin-on fillets from treated fish were greatest at 12 h posttreatment (11.58 μg/g) in the RAS and were greatest at 6 h posttreatment (11.09 μg/g) in the FTS. The half-lives for FFA in skin-on fillets from the RAS and FTS were 20.3 and 19.7 h, respectively. Assimilation of FFC residues in the fillets of nontreated fish sharing the RAS with FFC-treated fish was minimal. Florfenicol water concentrations peaked in the RAS-treated tank and nontreated tanks at 10 h (453 μg/L) and 11 h (442 μg/L) posttreatment, respectively. Monitoring of nitrite concentrations throughout the study indicated the nitrogen oxidation efficiency of the RAS biofilter was minimally impacted by the FFC treatment.

  16. Enhanced peripheral dopamine impairs post-ischemic healing by suppressing angiotensin receptor type 1 expression in endothelial cells and inhibiting angiogenesis.

    PubMed

    Sarkar, Chandrani; Ganju, Ramesh K; Pompili, Vincent J; Chakroborty, Debanjan

    2017-02-01

    Increased circulating catecholamines have been linked with cardiovascular anomalies as well as with peripheral vascular diseases. Although the roles of epinephrine and norepinephrine have received considerable attention, the role of the other catecholamine, dopamine, has been less studied. Since dopamine is a potent endogenous inhibitor of angiogenesis and as angiogenesis is essential for ischemic healing, we therefore studied the role played by dopamine during ischemic healing using dopamine D 2 receptor knockout (KOD2) mice. Although concentration of dopamine and its rate-limiting enzyme, tyrosine hydroxylase, was considerably high in the muscle tissues of wild-type and KOD2 mice with unilateral hind limb ischemia (HLI), recovery was significantly faster in the KOD2 mice compared to the wild-type controls, thereby indicating that peripheral dopamine might have a role in this healing process. In addition, we observed significant differences in post-ischemic angiogenesis between these two groups. Our study further revealed that elevated dopamine independently suppressed activation of local tissue-based renin-angiotensin system (RAS), a critical growth factor system stimulating angiogenesis in ischemia. Angiotensin II (ATII) and its receptor, angiotensin receptor type 1 (AT1R), are the key players in RAS-mediated angiogenesis. Dopamine acting through its D 2 receptors in endothelial cells inhibited ATII-mediated angiogenesis by suppressing the expression of AT1R in these cells. This study thus for the first time demonstrates the role played by dopamine in prolonging post-ischemic recovery. Therefore, pharmacological intervention inhibiting the action of dopamine holds promise as future therapeutic strategy for the treatment of HLI and other peripheral arterial diseases.

  17. Renin–angiotensin–aldosterone system in insulin resistance and metabolic syndrome

    PubMed Central

    2016-01-01

    Abstract Obesity and its consequent complications such as hypertension and metabolic syndrome are increasing in incidence in almost all countries. Insulin resistance is common in obesity. Renin– angiotensin system (RAS) is an important target in the treatment of hypertension and drugs that act on RAS improve insulin resistance and decrease the incidence of type 2 diabetes mellitus, explaining the close association between hypertension and type 2 diabetes mellitus. RAS influences food intake by modulating the hypothalamic expression of neuropeptide Y and orexins via AMPK dephosphorylation. Estrogen reduces appetite by its action on the brain in a way similar to leptin, an anorexigenic action that seems to be mediated via hypothalamic pro-opiomelanocortin (POMC) neurons in the arcuate nucleus and synaptic plasticity in the arcuate nucleus similar to leptin. Estrogen stimulates lipoxin A4, a potent vasodilator and platelet anti-aggregator. Since both RAS and estrogen act on the hypothalamic neuropeptides and regulate food intake and obesity, it is likely that RAS modulates LXA4 synthesis. Thus, it is proposed that Angiotensin-II receptor blockers and angiotensin-converting enzymes and angiotensin-II antagonists may have the ability to augment LXA4 synthesis and thus bring about their beneficial actions. PMID:28191524

  18. The adipose renin-angiotensin system modulates sysemic markers of insulin sensitivity activates the intrarenal renin-angiotensin system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Suyeon; Soltani-Bejnood, Morvarid; Quignard-Boulange, Annie

    2006-07-01

    BACKGROUND: A growing body of data provides increasing evidence that the adipose tissue renin-angiotensin system (RAS) contributes to regulation of fat mass. Beyond its paracrine actions within adipose tissue, adipocyte-derived angiotensin II (Ang II) may also impact systemic functions such as blood pressure and metabolism. METHODS AND RESULTS: We used a genetic approach to manipulate adipose RAS activity in mice and then study the consequences on metabolic parameters and on feedback regulation of the RAS. The models included deletion of the angiotensinogen (Agt) gene (Agt-KO), its expression solely in adipose tissue under the control of an adipocyte-specific promoter (aP2-Agt/ Agt-KO),more » and overexpression in adipose tissue of wild type mice (aP2-Agt). Total body weight, epididymal fat pad weight, and circulating levels of leptin, insulin and resistin were significantly decreased in Agt-KO mice, while plasma adiponectin levels were increased. Overexpression of Agt in adipose tissue resulted in increased adiposity and plasma leptin and insulin levels compared to wild type (WT) controls. Angiotensinogen and type I Ang II receptor protein levels were also markedly elevated in kidney of aP2-Agt mice, suggesting that hypertension in these animals may be in part due to stimulation of the intrarenal RAS. CONCLUSIONS: Taken together, the results from this study demonstrate that alterations in adipose RAS activity significantly alter both local and systemic physiology in a way that may contribute to the detrimental health effects of obesity.« less

  19. Evaluation of depuration procedures to mitigate the off-flavor compounds geosmin and 2-methylisoborneol from Atlantic salmon Salmo salar raised to market-size in recirculating aquaculture systems

    USDA-ARS?s Scientific Manuscript database

    Fish cultured within water recirculating aquaculture systems (RAS) can acquire “earthy” or “musty” off-flavors due to bioaccumulation of the compounds geosmin and 2-methylisoborneol (MIB), respectively, which are produced by certain bacterial species present in RAS biosolids and microbial biofilms. ...

  20. Cholecalciferol administration blunts the systemic renin-angiotensin system in essential hypertensives with hypovitaminosis D.

    PubMed

    Carrara, Davide; Bernini, Matteo; Bacca, Alessandra; Rugani, Ilaria; Duranti, Emiliano; Virdis, Agostino; Ghiadoni, Lorenzo; Taddei, Stefano; Bernini, Giampaolo

    2014-03-01

    Vitamin D plasma levels are negatively associated with blood pressure and cardiovascular mortality, and vitamin D supplementation reduces cardiovascular events. Renin-angiotensin system (RAS) suppression may be one of the mechanisms involved. However, there are no interventional prospective studies demonstrating a reduction in circulating RAS components after vitamin D treatment. Fifteen consecutive drug-free patients with essential hypertension and hypovitaminosis D underwent therapy with an oral dose of 25000 I.U. of cholecalciferol once a week for two months, while maintaining a constant-salt diet. In basal conditions and at the end of the study, RAS activity (plasma angiotensinogen, renin, PRA, angiotensin II, aldosterone and urinary angiotensinogen) was investigated, in addition to blood pressure and plasma vitamin D levels (25(OH)D). After cholecalciferol administration, all patients exhibited normalized plasma 25(OH)D values. At the end of the study, a reduction (p < 0.05) in plasma renin and aldosterone, and a decrement, although not significant, of PRA and angiotensin II, was observed. No difference was found in plasma and urinary angiotensinogen or blood pressure values. Our data indicate that in essential hypertensives with hypovitaminosis D, pharmacological correction of vitamin D levels can blunt systemic RAS activity.

  1. AutoRoute Rapid Flood Inundation Model

    DTIC Science & Technology

    2013-03-01

    Res. 33(2): 309-319. U.S. Army Engineer Hydrologic Engineering Center. 2010. “ HEC - RAS : River Analysis System, User’s Manual, Version 4.1.” Davis...cross-section data does not exist. As such, the AutoRoute model is not meant to be as accurate as models such as HEC - RAS (U.S. Army Engineer...such as HEC - RAS assume that the defined low point of cross sections must be connected. However, in this approach the channel is assumed to be defined

  2. Upregulation of circulating components of the alternative renin-angiotensin system in inflammatory bowel disease: A pilot study.

    PubMed

    Garg, Mayur; Burrell, Louise M; Velkoska, Elena; Griggs, Karen; Angus, Peter W; Gibson, Peter R; Lubel, John S

    2015-09-01

    The relationship between intestinal inflammation and circulating components of the renin-angiotensin system (RAS) is poorly understood. Demographic and clinical data were obtained from healthy controls and patients with inflammatory bowel disease (IBD). Plasma concentrations of the classical RAS components (angiotensin-converting enzyme (ACE) and angiotensin II (Ang II)) and alternative RAS components (ACE2 and angiotensin (1-7) (Ang (1-7))) were analysed by radioimmuno- and enzymatic assays. Systemic inflammation was assessed using serum C-reactive protein (CRP), white cell count, platelet count and albumin, and intestinal inflammation by faecal calprotectin. Nineteen healthy controls (11 female; mean age 38 years, range 23-68), 19 patients with Crohn's disease (11 female; aged 45 years, range 23-76) and 15 patients with ulcerative colitis (6 female; aged 42 years, 26-64) were studied. Circulating classical RAS component levels were similar across the three groups, whereas ACE2 activity and Ang (1-7) concentrations were higher in patients with IBD compared to controls (ACE2: 21.5 vs 13.3 pmol/ml/min, p<0.05; Ang (1-7): 22.8 vs 14.1 pg/ml, p<0.001). Ang (1-7) correlated weakly with platelet and white cell counts, but not calprotectin or CRP, in patients with IBD. Circulating components of the alternative RAS are increased in patients with IBD. © The Author(s) 2014.

  3. Expression of classical components of the renin-angiotensin system in the human eye.

    PubMed

    White, Andrew J R; Cheruvu, Sarat C; Sarris, Maria; Liyanage, Surabhi S; Lumbers, Eugenie; Chui, Jeanie; Wakefield, Denis; McCluskey, Peter J

    2015-03-01

    The purpose of this study was to determine the relative expression of clinically-relevant components of the renin-angiotensin system (RAS) in the adult human eye. We obtained 14 post-mortem enucleated human eyes from patients whom had no history of inflammatory ocular disease nor pre-mortem ocular infection. We determined the gene expression for prorenin, renin, prorenin receptor, angiotensin-converting enzyme, angiotensinogen and angiotensin II Type 1 receptor, on tissue sections and in cultured human primary retinal pigment epithelial and iris pigment epithelial (RPE/IPE) cell lines, using both qualitative and quantitative reverse transcription polymerase chain reaction (RT-PCR). Protein expression was studied using indirect immunofluorescence (IF). Almost all components of the classical RAS were found at high levels, at both the transcript and protein level, in the eyes' uvea and retina; and at lower levels in the cornea, conjunctiva and sclera. There was a much lower level of expression in the reference cultured RPE/IPE cells lines. This study describes the distribution of RAS in the normal adult human eye and demonstrates the existence of an independent ocular RAS, with uveal and retinal tissues showing the highest expression of RAS components. These preliminary findings provide scope for examination of additional components of this system in the human eye, as well as possible differential expression under pathological conditions. © The Author(s) 2014.

  4. [Role of let-7 in maintaining characteristics of breast cancer stem cells].

    PubMed

    Sun, Xin; Fan, Chong; Hu, Li-juan; Du, Ning; Xu, Chong-wen; Ren, Hong

    2012-08-01

    To observe the expression of let-7 in breast cancer stem cells and explore the role of let-7 in maintaining the characteristics of breast cancer stem cells. We separated breast cancer stem cells (SP and NSP) from MCF-7 cell line using SP sorting, and observed the expression of let-7a/b/c on SP and NSP cells using quantitative real-time PCR and the expressions of Ras and ERK using Western blotting to study the mechanism by which let-7 maintains the characteristics of breast cancer stem cells. The SP cells accounted for 3.3% in MCF-7 cells, however, the rate dropped to 0.4% when verapamil was added into the process of seperation. The level of Let-7a/b/c in SP cells were lower than that in NSP cells, and among let-7 miRNAs, let-7b/c showed the most obvious difference. The expressions of t-Ras and t-ERK showed no difference between SP and NSP cells, nevertheless, the expressions of p-Ras, p-ERK were higher in SP cells than in NSP cells. SP sorting is an effective method to separate cancer stem cells. There do exist cancer stem cells in MCF-7 breast cancer cell line. Let-7 is down-regulated in SP cells, and the down-regulation makes let-7 lose the opportunity to restrain Ras mRNA, finally, p-Ras and p-ERK are activated. They play an important role in maintaining the characteristics of breast cancer stem cells.

  5. How research is fueling the RAS boom

    USDA-ARS?s Scientific Manuscript database

    The Conservation Fund’s Freshwater Institute has been researching water recirculating aquaculture system (RAS) technologies and practices for salmonids for nearly 30 years using strong funding support from the U.S. Department of Agriculture’s Agricultural Research Service. These early efforts to pio...

  6. Renin-angiotensin system blockade alone or combined with ETA receptor blockade: effects on the course of chronic kidney disease in 5/6 nephrectomized Ren-2 transgenic hypertensive rats.

    PubMed

    Sedláková, Lenka; Čertíková Chábová, Věra; Doleželová, Šárka; Škaroupková, Petra; Kopkan, Libor; Husková, Zuzana; Červenková, Lenka; Kikerlová, Soňa; Vaněčková, Ivana; Sadowski, Janusz; Kompanowska-Jezierska, Elzbieta; Kujal, Petr; Kramer, Herbert J; Červenka, Luděk

    2017-01-01

    Early addition of endothelin (ET) type A (ET A ) receptor blockade to complex renin-angiotensin system (RAS) blockade has previously been shown to provide better renoprotection against progression of chronic kidney disease (CKD) in Ren-2 transgenic hypertensive rats (TGR) after 5/6 renal ablation (5/6 NX). In this study, we examined if additional protection is provided when ET A blockade is applied in rats with already developed CKD. For complex RAS inhibition, an angiotensin-converting enzyme inhibitor along with angiotensin II type 1 receptor blocker was used. Alternatively, ET A receptor blocker was added to the RAS blockade. The treatments were initiated 6 weeks after 5/6 NX and the follow-up period was 50 weeks. When applied in established CKD, addition of ET A receptor blockade to the complex RAS blockade brought no further improvement of the survival rate (30% in both groups); surprisingly, aggravated albuminuria (588 ± 47 vs. 245 ± 38 mg/24 h, p < 0.05) did not reduce renal glomerular injury index (1.25 ± 0.29 vs. 1.44 ± 0.26), did not prevent the decrease in creatinine clearance (203 ± 21 vs. 253 ± 17 µl/min/100 g body weight), and did not attenuate cardiac hypertrophy to a greater extent than observed in 5/6 NX TGR treated with complex RAS blockade alone. When applied in the advanced phase of CKD, addition of ET A receptor blockade to the complex RAS blockade brings no further beneficial renoprotective effects on the CKD progression in 5/6 NX TGR, in addition to those seen with RAS blockade alone.

  7. Change of practice patterns in urology with the introduction of the Da Vinci surgical system: the Greek NHS experience in debt crisis era.

    PubMed

    Deligiannis, Dimitros; Anastasiou, Ioannis; Mygdalis, Vasileios; Fragkiadis, Evangelos; Stravodimos, Konstantinos

    2015-03-31

    To determine the attitudinal change for urologic surgery in Greece since the introduction of the da Vinci Surgical System (DVS). We describe contemporary trends at public hospital level, the initial Greek experience, while at the same time Greece is in economic crisis and funding is under austerity measures. We retrospectively analyzed annualized case log data on urologic procedures, between 2008 (installation of the DVS) and 2013, from "Laiko'' Hospital in Athens. We evaluated, using summary statistics, trends and institutional status regarding robot-assisted surgery (RAS). We also analyzed the relationship between the introduction of RAS and change in total volume of procedures performed. 1578 of the urological procedures performed at "Laiko'' Hospital were pooled, 1342 (85%) being open and 236 RAS (15%). We observed a 6-fold increase in the number of RAS performed, from 7% of the total procedural volume (14/212) in 2008 to 30% (96/331) in 2013. For radical prostatectomy, in 2008 2% were robot-assisted and 98% open while in 2013, 46% and 54% respectively. Pyeloplasty was performed more often using the robot-assisted method since 2010. RAS-dedicated surgeons increased both RAS and the total number of procedures they performed. From 86 in 2008 to 145 in 2013, with 57% of them being RAS in 2013 as compared to 13 % in 2008. Robot-assisted surgery has integrated into the armamentarium for urologic surgery in Greece at public hospital level. Surgical robot acquisition is also associated with increased volume of procedures, especially prostatectomy, despite the ongoing debate over cost-effectiveness, during economic crisis and International Monetary Fund (IFN) era.

  8. Ras-mediated deregulation of the circadian clock in cancer.

    PubMed

    Relógio, Angela; Thomas, Philippe; Medina-Pérez, Paula; Reischl, Silke; Bervoets, Sander; Gloc, Ewa; Riemer, Pamela; Mang-Fatehi, Shila; Maier, Bert; Schäfer, Reinhold; Leser, Ulf; Herzel, Hanspeter; Kramer, Achim; Sers, Christine

    2014-01-01

    Circadian rhythms are essential to the temporal regulation of molecular processes in living systems and as such to life itself. Deregulation of these rhythms leads to failures in biological processes and eventually to the manifestation of pathological phenotypes including cancer. To address the questions as to what are the elicitors of a disrupted clock in cancer, we applied a systems biology approach to correlate experimental, bioinformatics and modelling data from several cell line models for colorectal and skin cancer. We found strong and weak circadian oscillators within the same type of cancer and identified a set of genes, which allows the discrimination between the two oscillator-types. Among those genes are IFNGR2, PITX2, RFWD2, PPARγ, LOXL2, Rab6 and SPARC, all involved in cancer-related pathways. Using a bioinformatics approach, we extended the core-clock network and present its interconnection to the discriminative set of genes. Interestingly, such gene signatures link the clock to oncogenic pathways like the RAS/MAPK pathway. To investigate the potential impact of the RAS/MAPK pathway - a major driver of colorectal carcinogenesis - on the circadian clock, we used a computational model which predicted that perturbation of BMAL1-mediated transcription can generate the circadian phenotypes similar to those observed in metastatic cell lines. Using an inducible RAS expression system, we show that overexpression of RAS disrupts the circadian clock and leads to an increase of the circadian period while RAS inhibition causes a shortening of period length, as predicted by our mathematical simulations. Together, our data demonstrate that perturbations induced by a single oncogene are sufficient to deregulate the mammalian circadian clock.

  9. Development and evaluation of an automated fall risk assessment system.

    PubMed

    Lee, Ju Young; Jin, Yinji; Piao, Jinshi; Lee, Sun-Mi

    2016-04-01

    Fall risk assessment is the first step toward prevention, and a risk assessment tool with high validity should be used. This study aimed to develop and validate an automated fall risk assessment system (Auto-FallRAS) to assess fall risks based on electronic medical records (EMRs) without additional data collected or entered by nurses. This study was conducted in a 1335-bed university hospital in Seoul, South Korea. The Auto-FallRAS was developed using 4211 fall-related clinical data extracted from EMRs. Participants included fall patients and non-fall patients (868 and 3472 for the development study; 752 and 3008 for the validation study; and 58 and 232 for validation after clinical application, respectively). The system was evaluated for predictive validity and concurrent validity. The final 10 predictors were included in the logistic regression model for the risk-scoring algorithm. The results of the Auto-FallRAS were shown as high/moderate/low risk on the EMR screen. The predictive validity analyzed after clinical application of the Auto-FallRAS was as follows: sensitivity = 0.95, NPV = 0.97 and Youden index = 0.44. The validity of the Morse Fall Scale assessed by nurses was as follows: sensitivity = 0.68, NPV = 0.88 and Youden index = 0.28. This study found that the Auto-FallRAS results were better than were the nurses' predictions. The advantage of the Auto-FallRAS is that it automatically analyzes information and shows patients' fall risk assessment results without requiring additional time from nurses. © The Author 2016. Published by Oxford University Press in association with the International Society for Quality in Health Care; all rights reserved.

  10. Progression of hypertension and kidney disease in aging fawn-hooded rats is mediated by enhanced influence of renin-angiotensin system and suppression of nitric oxide system and epoxyeicosanoids.

    PubMed

    Doleželová, Šárka; Jíchová, Šárka; Husková, Zuzana; Vojtíšková, Alžběta; Kujal, Petr; Hošková, Lenka; Kautzner, Josef; Sadowski, Janusz; Červenka, Luděk; Kopkan, Libor

    The fawn-hooded hypertensive (FHH) rat serves as a genetic model of spontaneous hypertension associated with glomerular hyperfiltration and proteinuria. However, the knowledge of the natural course of hypertension and kidney disease in FHH rats remains fragmentary and the underlying pathophysiological mechanisms are unclear. In this study, over the animals' lifetime, we followed the survival rate, blood pressure (telemetry), indices of kidney damage, the activity of renin-angiotensin (RAS) and nitric oxide (NO) systems, and CYP450-epoxygenase products (EETs). Compared to normotensive controls, no elevation of plasma and renal RAS was observed in prehypertensive and hypertensive FHH rats; however, RAS inhibition significantly reduced systolic blood pressure (137 ± 9 to 116 ± 8, and 159 ± 8 to 126 ± 4 mmHg, respectively) and proteinuria (62 ± 2 to 37 ± 3, and 132 ± 8 to 87 ± 5 mg/day, respectively). Moreover, pharmacological RAS inhibition reduced angiotensin (ANG) II and increased ANG 1-7 in the kidney and thereby may have delayed the progression of kidney disease. Furthermore, renal NO and EETs declined in the aging FHH rats but not in the control strain. The present results, especially the demonstration of exaggerated vascular responsiveness to ANG II, indicate that RAS may contribute to the development of hypertension and kidney disease in FHH rats. The activity of factors opposing the development of hypertension and protecting the kidney declined with age in this model. Therefore, therapeutic enhancement of this activity besides RAS inhibition could be attempted in the therapy of human hypertension associated with kidney disease.

  11. Functional studies of TcRjl, a novel GTPase of Trypanosoma cruzi, reveals phenotypes related with MAPK activation during parasite differentiation and after heterologous expression in Drosophila model system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reis Monteiro dos-Santos, Guilherme Rodrigo; Fontenele, Marcio Ribeiro; Dias, Felipe de Almeida

    The life cycle of the protozoan parasite Trypanosoma cruzi comprises rounds of proliferative cycles and differentiation in distinct host environments. Ras GTPases are molecular switches that play pivotal regulatory functions in cell fate. Rjl is a novel GTPase with unknown function. Herein we show that TcRjl blocks in vivo cell differentiation. The forced expression of TcRjl leads to changes in the overall tyrosine protein phosphorylation profile of parasites. TcRjl expressing parasites sustained DNA synthesis regardless the external stimuli for differentiation. Heterologous expression in the Drosophila melanogaster genetic system strongly suggests a role from TcRjl protein in RTK-dependent pathways and MAPK activation.

  12. Differential role of gp130-dependent STAT and Ras signalling for haematopoiesis following bone-marrow transplantation.

    PubMed

    Kroy, Daniela C; Hebing, Lisa; Sander, Leif E; Gassler, Nikolaus; Erschfeld, Stephanie; Sackett, Sara; Galm, Oliver; Trautwein, Christian; Streetz, Konrad L

    2012-01-01

    Bone marrow transplantation (BMT) is a complex process regulated by different cytokines and growth factors. The pleiotropic cytokine IL-6 (Interleukin-6) and related cytokines of the same family acting on the common signal transducer gp130 are known to play a key role in bone marrow (BM) engraftment. In contrast, the exact signalling events that control IL-6/gp130-driven haematopoietic stem cell development during BMT remain unresolved. Conditional gp130 knockout and knockin mice were used to delete gp130 expression (gp130(ΔMx)), or to selectively disrupt gp130-dependent Ras (gp130(ΔMxRas)) or STAT signalling (gp130(ΔMxSTAT)) in BM cells. BM derived from the respective strains was transplanted into irradiated wildtype hosts and repopulation of various haematopoietic lineages was monitored by flow cytometry. BM derived from gp130 deficient donor mice (gp130(ΔMx)) displayed a delayed engraftment, as evidenced by reduced total white blood cells (WBC), marked thrombocytopenia and anaemia in the early phase after BMT. Lineage analysis unravelled a restricted development of CD4(+) and CD8(+) T-cells, CD19(+) B-cells and CD11b(+) myeloid cells after transplantation of gp130-deficient BM grafts. To further delineate the two major gp130-induced signalling cascades, Ras-MAPK and STAT1/3-signalling respectively, we used gp130(ΔMxRas) and gp130(ΔMxSTAT) donor BM. BMT of gp130(ΔMxSTAT) cells significantly impaired engraftment of CD4(+), CD8(+), CD19(+) and CD11b(+) cells, whereas gp130(ΔMxRas) BM displayed a selective impairment in early thrombopoiesis. Importantly, gp130-STAT1/3 signalling deficiency in BM grafts severely impaired survival of transplanted mice, thus demonstrating a pivotal role for this pathway in BM graft survival and function. Our data unravel a vital function of IL-6/gp130-STAT1/3 signals for BM engraftment and haematopoiesis, as well as for host survival after transplantation. STAT1/3 and ras-dependent pathways thereby exert distinct functions on individual bone-marrow-lineages.

  13. Investigating the influence of nitrate nitrogen on post-smolt Atlantic salmon Salmo salar reproductive physiology in water recirculation aquaculture systems

    USGS Publications Warehouse

    Good, Christopher; Davidson, John; Iwanowicz, Luke R.; Meyer, Michael T.; Dietze, Julie E.; Kolpin, Dana W.; Marancik, David; Birkett, Jill; Williams, Christina; Summerfelt, Steven T.

    2017-01-01

    A major issue affecting land-based, closed containment Atlantic salmon Salmo salar growout production in water recirculation aquaculture systems (RAS) is precocious male maturation, which can negatively impact factors such as feed conversion, fillet yield, and product quality. Along with other water quality parameters, elevated nitrate nitrogen (NO3-N) has been shown to influence the reproductive development and endogenous sex steroid production in a number of aquatic animal species, including Atlantic salmon. We sought to determine whether elevated NO3-N in RAS can influence early maturation in post-smolt Atlantic salmon in an 8-month trial in replicated freshwater RAS. Post-smolt Atlantic salmon (102 ± 1 g) were stocked into six RAS, with three RAS randomly selected for dosing with high NO3-N (99 ± 1 mg/L) and three RAS set for low NO3-N (10 ± 0 mg/L). At 2-, 4-, 6-, and 8-months post-stocking, 5 fish were randomly sampled from each RAS, gonadosomatic index(GSI) data were collected, and plasma was sampled for 11-ketotestosterone(11-KT) quantification. At 4- and 8-months post-stocking, samples of culture tank and spring water (used as “makeup” or replacement water) were collected and tested for a suite of 42 hormonally active compounds using liquid chromatography/mass spectrometry, as well as for estrogenicity using the bioluminescent yeast estrogen screen (BLYES) reporter system. Finally, at 8-months post-stocking 8–9 salmon were sampled from each RAS for blood gas and chemistry analyses, and multiple organ tissues were sampled for histopathology evaluation. Overall, sexually mature males were highly prevalent in both NO3-N treatment groups by study’s end, and there did not appear to be an effect of NO3-N on male maturation prevalence based on grilse identification, GSI, and 11-KT results, indicating that other culture parameters likely instigated early maturation. No important differences were noted between treatment groups for whole blood gas and chemistry parameters, and no significant tissue changes were noted on histopathology. No hormones, hormone conjugates, or mycotoxins were detected in any water samples; phytoestrogens were generally detected at low levels but were unrelated to NO3-N treatment. Finally, low-level estrogenicity was detected in RAS water, but a NO3-N treatment effect could not be determined. The major findings of this study are i) the NO3-N treatments did not appear to be related to the observed male maturation, and ii) the majority of hormonally active compounds were not detectable in RAS water.

  14. Near-Earth space hazards and their detection (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 27 March 2013)

    NASA Astrophysics Data System (ADS)

    2013-08-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), titled "Near-Earth space hazards and their detection", was held on 27 March 2013 at the conference hall of the Lebedev Physical Institute, RAS. The agenda posted on the website of the Physical Sciences Division, RAS, http://www.gpad.ac.ru, included the following reports: (1) Emel'yanenko V V, Shustov B M (Institute of Astronomy, RAS, Moscow) "The Chelyabinsk event and the asteroid-comet hazard"; (2) Chugai N N (Institute of Astronomy, RAS, Moscow) "A physical model of the Chelyabinsk event"; (3) Lipunov V M (Lomonosov Moscow State University, Sternberg Astronomical Institute, Moscow) "MASTER global network of optical monitoring"; (4) Beskin G M (Special Astrophysical Observatory, RAS, Arkhyz, Karachai-Cirkassian Republic) "Wide-field optical monitoring systems with subsecond time resolution for the detection and study of cosmic threats". The expanded papers written on the base of oral reports 1 and 4 are given below. • The Chelyabinsk event and the asteroid-comet hazard, V V Emel'yanenko, B M Shustov Physics-Uspekhi, 2013, Volume 56, Number 8, Pages 833-836 • Wide-field subsecond temporal resolution optical monitoring systems for the detection and study of cosmic hazards, G M Beskin, S V Karpov, V L Plokhotnichenko, S F Bondar, A V Perkov, E A Ivanov, E V Katkova, V V Sasyuk, A Shearer Physics-Uspekhi, 2013, Volume 56, Number 8, Pages 836-842

  15. Balanced RAP/RAS mix design and performance evaluation system for project-specific service conditions.

    DOT National Transportation Integrated Search

    2012-11-01

    The use of reclaimed asphalt pavement (RAP) and recycled asphalt shingles (RAS) can significantly reduce the increasing cost of hot-mix asphalt paving, conserve energy, and protect the environment. However, the premature cracking problem has been a s...

  16. Transformation of NIH3T3 Cells with Synthetic c‐Ha‐ras Genes

    PubMed Central

    Kamiya, Hiroyuki; Miura, Kazunobu; Ohtomo, Noriko; Koda, Toshiaki; Kakinuma, Mitsuaki; Nishimura, Susumu

    1989-01-01

    Synthetic human c‐Ha‐ras genes in which amino acid codons were altered to those which are frequently used in highly expressed Escherichia coli genes were ligated to the 3′‐end of Rous sarcoma virus long terminal repeat. When NIH3T3 cells were transfected with the plasmids having those genes with valine at codon 12, leucine at codon 61 or arginine at codon 61, transformants were efficiently produced. These results indicated that the synthetic c‐Ha‐ras genes are expressed in a mammalian system even though their codon usage is altered to correspond with that of E. colt. This expression vector system should he useful for studies on the structure‐function relationships of c‐Ha‐ras, since the synthetic gene can be easily modified to have multiple base alterations, and can also be used simultaneously for the production of large amounts of p21 in E. coli for biochemical and biophysical studies. PMID:2542206

  17. Integration of the tricarboxylic acid (TCA) cycle with cAMP signaling and Sfl2 pathways in the regulation of CO2 sensing and hyphal development in Candida albicans

    PubMed Central

    Tao, Li; Zhang, Yulong; Fan, Shuru; Nobile, Clarissa J.; Guan, Guobo; Huang, Guanghua

    2017-01-01

    Morphological transitions and metabolic regulation are critical for the human fungal pathogen Candida albicans to adapt to the changing host environment. In this study, we generated a library of central metabolic pathway mutants in the tricarboxylic acid (TCA) cycle, and investigated the functional consequences of these gene deletions on C. albicans biology. Inactivation of the TCA cycle impairs the ability of C. albicans to utilize non-fermentable carbon sources and dramatically attenuates cell growth rates under several culture conditions. By integrating the Ras1-cAMP signaling pathway and the heat shock factor-type transcription regulator Sfl2, we found that the TCA cycle plays fundamental roles in the regulation of CO2 sensing and hyphal development. The TCA cycle and cAMP signaling pathways coordinately regulate hyphal growth through the molecular linkers ATP and CO2. Inactivation of the TCA cycle leads to lowered intracellular ATP and cAMP levels and thus affects the activation of the Ras1-regulated cAMP signaling pathway. In turn, the Ras1-cAMP signaling pathway controls the TCA cycle through both Efg1- and Sfl2-mediated transcriptional regulation in response to elevated CO2 levels. The protein kinase A (PKA) catalytic subunit Tpk1, but not Tpk2, may play a major role in this regulation. Sfl2 specifically binds to several TCA cycle and hypha-associated genes under high CO2 conditions. Global transcriptional profiling experiments indicate that Sfl2 is indeed required for the gene expression changes occurring in response to these elevated CO2 levels. Our study reveals the regulatory role of the TCA cycle in CO2 sensing and hyphal development and establishes a novel link between the TCA cycle and Ras1-cAMP signaling pathways. PMID:28787458

  18. Loss of Cbl–PI3K Interaction Enhances Osteoclast Survival due to p21-Ras Mediated PI3K Activation Independent of Cbl-b

    PubMed Central

    Adapala, Naga Suresh; Barbe, Mary F.; Tsygankov, Alexander Y.; Lorenzo, Joseph A.; Sanjay, Archana

    2015-01-01

    Cbl family proteins, Cbl and Cbl-b, are E3 ubiquitin ligases and adaptor proteins, which play important roles in bone-resorbing osteoclasts. Loss of Cbl in mice decreases osteoclast migration, resulting in delayed bone development where as absence of Cbl-b decreases bone volume due to hyper-resorptive osteoclasts. A major structural difference between Cbl and Cbl-b is tyrosine 737 (in YEAM motif) only on Cbl, which upon phosphorylation interacts with the p85 subunit of phosphatidylinositol-3 Kinase (PI3K). In contrast to Cbl−/− and Cbl-b−/−, mice lacking Cbl–PI3K interaction due to a Y737F (tyrosine to phenylalanine, YF) mutation showed enhanced osteoclast survival, but defective bone resorption. To investigate whether Cbl–PI3K interaction contributes to distinct roles of Cbl and Cbl-b in osteoclasts, mice bearing CblY737F mutation in the Cbl-b−/− background (YF/YF;Cbl-b−/−) were generated. The differentiation and survival were augmented similarly in YF/YF and YF/YF;Cbl-b−/− osteoclasts, associated with enhanced PI3K signaling suggesting an exclusive role of Cbl–PI3K interaction, independent of Cbl-b. In addition to PI3K, the small GTPase Ras also regulates osteoclast survival. In the absence of Cbl–PI3K interaction, increased Ras GTPase activity and Ras–PI3K binding were observed and inhibition of Ras activation attenuated PI3K mediated osteoclast survival. In contrast to differentiation and survival, increased osteoclast activity observed in Cbl-b−/− mice persisted even after introduction of the resorption-defective YF mutation in YF/YF;Cbl-b−/− mice. Hence, Cbl and Cbl-b play mutually exclusive roles in osteoclasts. Whereas Cbl–PI3K interaction regulates differentiation and survival, bone resorption is predominantly regulated by Cbl-b in osteoclasts. PMID:24470255

  19. Investigating the influence of nitrate nitrogen on post-smolt Atlantic salmon Salmo salar reproductive physiology in freshwater recirculation aquaculture systems

    USDA-ARS?s Scientific Manuscript database

    An 8-month trial was carried out to assess the effects of NO3-N on a variety of performance and physiological outcomes in post-smolt Atlantic salmon Salmo salar (initial weight 102 plus or minus 1 g) reared in six replicated laboratory-scale water recirculation aquaculture systems (RAS). Three RAS r...

  20. Alpha lipoic acid selectively inhibits proliferation and adhesion to fibronectin of v-H-ras-transformed 3Y1 cells.

    PubMed

    Yamasaki, Masao; Iwase, Masahiro; Kawano, Kazuo; Sakakibara, Yoichi; Suiko, Masahito; Nishiyama, Kazuo

    2012-05-01

    Here, we focused on the effects of racemic α-lipoic acid on proliferation and adhesion properties of 3Y1 rat fibroblasts and the v-H-ras-transformed derivative, HR-3Y1-2 cells. Racemic α-lipoic acid inhibited proliferation of HR-3Y1-2 but not 3Y1 cells at 0.3 and 1.0 mM. R-(+)-α-lipoic acid also inhibited proliferation of HR-3Y1-2 cells equivalent to that of racemic α-lipoic acid. In addition, racemic α-lipoic acid decreased intracellular reactive oxygen species levels in HR-3Y1 cells but not 3Y1 cells. Next, we evaluated the effects of racemic α-lipoic acid on cell adhesion to fibronectin. The results indicated that racemic α-lipoic acid decreased adhesive ability of HR-3Y1-2 cells to fibronectin-coated plates. As blocking antibody experiment revealed that β1-integrin plays a key role in cell adhesion in this experimental system, the effects of racemic α-lipoic acid on the expression of β1-integrin were examined. The results indicated that racemic α-lipoic acid selectively downregulated the expression of cell surface β1-integrin expression in HR-3Y1-2 cells. Intriguingly, exogenous hydrogen peroxide upregulated cell surface β1-integrin expression in 3Y1 cells. Taken together, these data suggest that reduction of intracellular reactive oxygen species levels by α-lipoic acid could be an effective means of ameliorating abnormal growth and adhesive properties in v-H-ras transformed cells.

  1. Autosomal dominant deficiency of the interleukin-17F in recurrent aphthous stomatitis: Possible novel mutation in a new entity.

    PubMed

    Zare Bidoki, Alireza; Massoud, Ahmad; Najafi, Shamsolmoulouk; Mohammadzadeh, Mahsa; Rezaei, Nima

    2018-05-15

    Recurrent Aphthous Stomatitis (RAS) is a common oral inflammatory disease with unknown pathogenesis. Although the immune system alterations could be involved in predisposition of individuals to oral candidiasis, precise etiologies of RAS have not been understood yet. A recent study showed that autosomal dominant IL17F deficiency could cause chronic mucocutaneous candidiasis. Considering the inflammatory nature of interleukin (IL)-17F and RAS, this study was performed to check any disease-associated mutation in a number of patients with RAS. Sixty-two Iranian individuals with RAS were investigated in this study. After DNA extraction using a phenol-chloroform method from the whole blood, amplification was accomplished by polymerase chain reaction and the products were sequenced using a 3730 ABI sequencer. The results of sequencing revealed a missense, heterozygous mutation of IL17F, converting a threonine to proline in a patient with RAS (T79P). The Poly-phen software suggested a damaging probability predicting this substitution to have a harmful effect on IL-17F protein function. This mutation was checked in fifty healthy individuals, and was not detected in any of them. This is the first study showing that a mutation in IL-17F is associated with susceptibility to RAS. However, functional studies and further studies on more patients with RAS are required to confirm such association. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Hyperactivation of Ha-ras oncogene, but not Ink4a/Arf deficiency, triggers bladder tumorigenesis

    PubMed Central

    Mo, Lan; Zheng, Xiaoyong; Huang, Hong-Ying; Shapiro, Ellen; Lepor, Herbert; Cordon-Cardo, Carlos; Sun, Tung-Tien; Wu, Xue-Ru

    2007-01-01

    Although ras is a potent mitogenic oncogene, its tumorigenicity depends on cellular context and cooperative events. Here we show that low-level expression of a constitutively active Ha-ras in mouse urothelium induces simple urothelial hyperplasia that is resistant to progression to full-fledged bladder tumors even in the absence of Ink4a/Arf. In stark contrast, doubling of the gene dosage of the activated Ha-ras triggered early-onset, rapidly growing, and 100% penetrant tumors throughout the urinary tract. Tumor initiation required superseding a rate-limiting step between simple and nodular hyperplasia, the latter of which is marked by the emergence of mesenchymal components and the coactivation of AKT and STAT pathways as well as PTEN inactivation. These results indicate that overactivation of Ha-ras is both necessary and sufficient to induce bladder tumors along a low-grade, noninvasive papillary pathway, and they shed light on the recent findings that ras activation, via point mutation, overexpression, or intensified signaling from FGF receptor 3, occurs in 70%–90% of these tumors in humans. Our results highlight the critical importance of the dosage/strength of Ha-ras activation in dictating its tumorigenicity — a mechanism of oncogene activation not fully appreciated to date. Finally, our results have clinical implications, as inhibiting ras and/or its downstream effectors, such as AKT and STAT3/5, could provide alternative means to treat low-grade, superficial papillary bladder tumors, the most common tumor in the urinary system. PMID:17256055

  3. A social and ecological assessment of tropical land uses at multiple scales: the Sustainable Amazon Network

    EPA Science Inventory

    Science has a critical role to play in guiding more sustainable development trajectories. Here we present the Sustainable Amazon Network (Rede Amazônia Sustentável, RAS): a multi-disciplinary research initiative involving more than 30 partner organisations working to assess both ...

  4. Quantification of systemic renin-angiotensin system peptides of hypertensive black and white African men established from the RAS-Fingerprint®.

    PubMed

    van Rooyen, J M; Poglitsch, M; Huisman, H W; Mels, Cmc; Kruger, R; Malan, L; Botha, S; Lammertyn, L; Gafane, L; Schutte, A E

    2016-10-01

    The objective of this study was to make use of a quantitative and qualitative approach comparing the systemic renin-angiotensin system (RAS) of hypertensive black and white African men by using RAS equilibrium analysis. This sub-study involved 23 black (n = 15) and white (n = 8) hypertensive men aged 39.5-41 years, living in the North West Province of South Africa. The RAS-Fingerprinting was determined with LC-MS/MS quantification of angiotensin peptides. Blood pressure and other variables were determined with known methods. The main finding of this study was the significant lower Ang I (<5.0 and 45.1 pg/ml; p = 0.005) and Ang II (15.6 and 123.9 pg/ml; p ⩽ 0.001) encountered in the hypertensive black African men compared to their white counterparts. Levels of Ang 1-5 (downstream metabolite of Ang 1-7) (1.8 and 3.0 pg/ml), were detected in black and white hypertensive men, respectively. The observed differences between circulating RAS components, which are reflected via equilibrium angiotensin levels, point to a distinctive molecular regulation of the RAAS in the two study cohorts. The increased peripheral resistance observed in hypertensive black individuals might take over a dominant role in control of blood pressure in this study population. A novel highly sensitive LC-MS/MS method resolved the issue of peptide recovery variations during sample preparation by using internal standards for each individual angiotensin metabolite. © The Author(s) 2016.

  5. Possible Mechanisms of Local Tissue Renin-Angiotensin System Activation in the Cardiorenal Metabolic Syndrome and Type 2 Diabetes Mellitus

    PubMed Central

    Hayden, Melvin R.; Sowers, Kurt M.; Pulakat, Lakshmi; Joginpally, Tejaswini; Krueger, Bennett; Whaley-Connell, Adam; Sowers, James R.

    2011-01-01

    The role of local tissue renin-angiotensin system (tRAS) activation in the cardiorenal metabolic syndrome (CRS) and type 2 diabetes mellitus (T2DM) is not well understood. To this point, we posit that early redox stress-mediated injury to tissues and organs via accumulation of excessive reactive oxygen species (ROS) and associated wound healing responses might serve as a paradigm to better understand how tRAS is involved. There are at least five common categories responsible for generating ROS that may result in a positive feedback ROS-tRAS axis. These mechanisms include metabolic substrate excess, hormonal excess, hypoxia-ischemia/reperfusion, trauma, and inflammation. Because ROS are toxic to proteins, lipids, and nucleic acids they may be the primary instigator, serving as the injury nidus to initiate the wound healing process. Insulin resistance is central to the development of the CRS and T2DM, and there are now thought to be four major organ systems important in their development. In states of overnutrition and tRAS activation, adipose tissue, skeletal muscle (SkM), islet tissues, and liver (the quadrumvirate) are individually and synergistically related to the development of insulin resistance, CRS, and T2DM. The obesity epidemic is thought to be the driving force behind the CRS and T2DM, which results in the impairment of multiple end-organs, including the cardiovascular system, pancreas, kidney, retina, liver, adipose tissue, SkM, and nervous system. A better understanding of the complex mechanisms leading to local tRAS activation and increases in tissue ROS may lead to new therapies emphasizing global risk reduction of ROS resulting in decreased morbidity and mortality. PMID:22096455

  6. Influence of videogames and musical instruments on performances at a simulator for robotic surgery.

    PubMed

    Moglia, Andrea; Perrone, Vittorio; Ferrari, Vincenzo; Morelli, Luca; Boggi, Ugo; Ferrari, Mauro; Mosca, Franco; Cuschieri, Alfred

    2017-06-01

    To assess if exposure to videogames, musical instrument playing, or both influence the psychomotor skills level, assessed by a virtual reality simulator for robot-assisted surgery (RAS). A cohort of 57 medical students were recruited: playing musical instruments (group 1), videogames (group 2), both (group 3), and no activity (group 4); all students executed four exercises on a virtual simulator for RAS. Subjects from group 3 achieved the best performances on overall score: 527.09 ± 130.54 vs. 493.73 ± 108.88 (group 2), 472.72 ± 85.31 (group 1), and 403.13 ± 99.83 (group 4). Statistically significant differences (p < .05) between group 3 and group 4 were found for overall score (p = .009) and for time of completion (p = .044). As regards experience with the piano, subjects from group 3 outperformed those from group 1 on overall score (496.98 ± 122.71 vs. 470.25 ± 92.31), but without statistically significant difference (p = .646). The present study suggests that the level of psychomotor skills in subjects exposed to both musical instrument playing and videogames is higher than that in those practicing either one alone. The effect of videogames appears negligible in individuals playing the piano.

  7. RB mutation and RAS overexpression induce resistance to NK cell-mediated cytotoxicity in glioma cells.

    PubMed

    Orozco-Morales, Mario; Sánchez-García, Francisco Javier; Golán-Cancela, Irene; Hernández-Pedro, Norma; Costoya, Jose A; de la Cruz, Verónica Pérez; Moreno-Jiménez, Sergio; Sotelo, Julio; Pineda, Benjamín

    2015-01-01

    Several theories aim to explain the malignant transformation of cells, including the mutation of tumor suppressors and proto-oncogenes. Deletion of Rb (a tumor suppressor), overexpression of mutated Ras (a proto-oncogene), or both, are sufficient for in vitro gliomagenesis, and these genetic traits are associated with their proliferative capacity. An emerging hallmark of cancer is the ability of tumor cells to evade the immune system. Whether specific mutations are related with this, remains to be analyzed. To address this issue, three transformed glioma cell lines were obtained (Rb(-/-), Ras(V12), and Rb(-/-)/Ras(V12)) by in vitro retroviral transformation of astrocytes, as previously reported. In addition, Ras(V12) and Rb(-/-)/Ras(V12) transformed cells were injected into SCID mice and after tumor growth two stable glioma cell lines were derived. All these cells were characterized in terms of Rb and Ras gene expression, morphology, proliferative capacity, expression of MHC I, Rae1δ, and Rae1αβγδε, mult1, H60a, H60b, H60c, as ligands for NK cell receptors, and their susceptibility to NK cell-mediated cytotoxicity. Our results show that transformation of astrocytes (Rb loss, Ras overexpression, or both) induced phenotypical and functional changes associated with resistance to NK cell-mediated cytotoxicity. Moreover, the transfer of cell lines of transformed astrocytes into SCID mice increased resistance to NK cell-mediated cytotoxicity, thus suggesting that specific changes in a tumor suppressor (Rb) and a proto-oncogene (Ras) are enough to confer resistance to NK cell-mediated cytotoxicity in glioma cells and therefore provide some insight into the ability of tumor cells to evade immune responses.

  8. The intricacies of the renin angiotensin system in metabolic regulation

    PubMed Central

    Bruce, Erin; de Kloet, Annette D.

    2017-01-01

    Over recent years, the renin-angiotensin-system (RAS), which is best-known as an endocrine system with established roles in hydromineral balance and blood pressure control, has emerged as a fundamental regulator of many additional physiological and pathophysiological processes. In this manuscript, we celebrate and honor Randall Sakai’s commitment to his trainees, as well as his contribution to science. Scientifically, Randall made many notable contributions to the recognition of the RAS’s roles in brain and behavior. His interests, in this regard, ranged from its traditionally-accepted roles in hydromineral balance, to its less-appreciated functions in stress responses and energy metabolism. Here we review the current understanding of the role of the RAS in the regulation of metabolism. In particular, the opposing actions of the RAS within adipose tissue vs. its actions within the brain are discussed. PMID:27887998

  9. Primary health care and the coordination of care in health regions: managers' and users' perspective.

    PubMed

    Bousquat, Aylene; Giovanella, Ligia; Campos, Estela Márcia Saraiva; Almeida, Patty Fidelis de; Martins, Cleide Lavieri; Mota, Paulo Henrique Dos Santos; Mendonça, Maria Helena Magalhães de; Medina, Maria Guadalupe; Viana, Ana Luiza d'Ávila; Fausto, Márcia Cristina Rodrigues; Paula, Daniel Baffini de

    2017-04-01

    This paper aims to analyze the healthcare coordination by Primary Health Care (PHC), with the backdrop of building a Health Care Network (RAS) in a region in the state of São Paulo, Brazil. We conducted a case study with qualitative and quantitative approaches, proceeding to the triangulation of data between the perception of managers and experience of users. We drew analysis realms and variables from the three pillars of healthcare coordination - informational, clinical and administrative/organizational. Stroke was the tracer event chosen and therapeutic itineraries were conducted with users and questionnaires applied to the managers. The central feature of the construction of the Health Care Network in the studied area is the prominence of a philanthropic organization. The results suggest fragility of PHC in healthcare coordination in all analyzed realms. Furthermore, we identified a public-private mix, in addition to services contracted from the Unified Health System (SUS), with out-of-pocket payments for specialist consultation, tests and rehabilitation. Much in the same way that there is no RAS without a robust PHC capable of coordinating care, PHC is unable to play its role without a solid regional arrangement and a virtuous articulation between the three federative levels.

  10. New treatment options in the management of hypertension: appraising the potential role of azilsartan medoxomil

    PubMed Central

    Volpe, Massimo; Savoia, Carmine

    2012-01-01

    Renin–angiotensin–system (RAS) activation plays a key role in the development of hypertension and cardiovascular disease. Drugs that antagonize the RAS (angiotensin-converting enzyme [ACE] inhibitors and angiotensin receptor blockers [ARBs]) have proven clinical efficacy in reducing blood pressure values and cardiovascular morbidity and mortality. ACE inhibitors partially inhibit plasma ACE, and angiotensin II generation. Thus, ARBs, which block selectively type 1 angiotensin II receptor (AT1R), have been developed and used in the clinical management of hypertension and cardiovascular disease. Experimental and clinical trials with ARBs indicate that this class of drug represents an effective, safe and well tolerated therapeutic option for the prevention and care of hypertension, even though there is no proven superiority as compared to ACE inhibitors except for the better tolerability. Most ARBs may not completely inhibit the AT1R at the approved clinical doses. Azilsartan medoxomil is a newly approved ARB for the management of hypertension. This ARB induces a potent and long-lasting antihypertensive effect and may have cardioprotective properties. This article reviews the current evidence on the clinical effectiveness of azilsartan in hypertension. PMID:22457601

  11. Geranylgeranyl Diphosphate Synthase Modulates Fetal Lung Branching Morphogenesis Possibly through Controlling K-Ras Prenylation.

    PubMed

    Jia, Wen-Jun; Jiang, Shan; Tang, Qiao-Li; Shen, Di; Xue, Bin; Ning, Wen; Li, Chao-Jun

    2016-06-01

    G proteins play essential roles in regulating fetal lung development, and any defects in their expression or function (eg, activation or posttranslational modification) can lead to lung developmental malformation. Geranylgeranyl diphosphate synthase (GGPPS) can modulate protein prenylation that is required for protein membrane-anchoring and activation. Here, we report that GGPPS regulates fetal lung branching morphogenesis possibly through controlling K-Ras prenylation during fetal lung development. GGPPS was continuously expressed in lung epithelium throughout whole fetal lung development. Specific deletion of geranylgeranyl diphosphate synthase 1 (Ggps1) in lung epithelium during fetal lung development resulted in neonatal respiratory distress syndrome-like disease. The knockout mice died at postnatal day 1 of respiratory failure, and the lungs showed compensatory pneumonectasis, pulmonary atelectasis, and hyaline membranes. Subsequently, we proved that lung malformations in Ggps1-deficient mice resulted from the failure of fetal lung branching morphogenesis. Further investigation revealed Ggps1 deletion blocked K-Ras geranylgeranylation and extracellular signal-related kinase 1 or 2/mitogen-activated protein kinase signaling, which in turn disturbed fibroblast growth factor 10 regulation on fetal lung branching morphogenesis. Collectively, our data suggest that GGPPS is essential for maintaining fetal lung branching morphogenesis, which is possibly through regulating K-Ras prenylation. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  12. Impact of water boundary layer diffusion on the nitrification rate of submerged biofilter elements from a recirculating aquaculture system.

    PubMed

    Prehn, Jonas; Waul, Christopher K; Pedersen, Lars-Flemming; Arvin, Erik

    2012-07-01

    Total ammonia nitrogen (TAN) removal by microbial nitrification is an essential process in recirculating aquaculture systems (RAS). In order to protect the aquatic environment and fish health, it is important to be able to predict the nitrification rates in RAS's. The aim of this study was to determine the impact of hydraulic film diffusion on the nitrification rate in a submerged biofilter. Using an experimental batch reactor setup with recirculation, active nitrifying biofilter units from a RAS were exposed to a range of hydraulic flow velocities. Corresponding nitrification rates were measured following ammonium chloride, NH₄Cl, spikes and the impact of hydraulic film diffusion was quantified. The nitrification performance of the tested biofilter could be significantly increased by increasing the hydraulic flow velocity in the filter. Area based first order nitrification rate constants ranged from 0.065 m d⁻¹ to 0.192 m d⁻¹ for flow velocities between 2.5 m h⁻¹ and 40 m h⁻¹ (18 °C). This study documents that hydraulic film diffusion may have a significant impact on the nitrification rate in fixed film biofilters with geometry and hydraulic flows corresponding to our experimental RAS biofilters. The results may thus have practical implications in relation to the design, operational strategy of RAS biofilters and how to optimize TAN removal in fixed film biofilter systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. The influence of lightning activity and anthropogenic factors on large-scale characteristics of natural fires

    NASA Astrophysics Data System (ADS)

    Eliseev, A. V.; Mokhov, I. I.; Chernokulsky, A. V.

    2017-01-01

    A module for simulating of natural fires (NFs) in the climate model of the A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences (IAP RAS CM), is extended with respect to the influence of lightning activity and population density on the ignition frequency and fire suppression. The IAP RAS CM is used to perform numerical experiments in accordance with the conditions of the project that intercompares climate models, CMIP5 (Coupled Models Intercomparison Project, phase 5). The frequency of lightning flashes was assigned in accordance with the LIS/OTD satellite data. In the calculations performed, anthropogenic ignitions play an important role in NF occurrences, except for regions at subpolar latitudes and, to a lesser degree, tropical and subtropical regions. Taking into account the dependence of fire frequency on lightning activity and population density intensifies the influence of characteristics of natural fires on the climate changes in tropics and subtropics as compared to the version of the IAP RAS CM that does not take the influence of ignition sources on the large-scale characteristics of NFs into consideration.

  14. Computational studies of Ras and PI3K

    NASA Technical Reports Server (NTRS)

    Ren, Lei; Cucinotta, Francis A.

    2004-01-01

    Until recently, experimental techniques in molecular cell biology have been the primary means to investigate biological risk upon space radiation. However, computational modeling provides an alternative theoretical approach, which utilizes various computational tools to simulate proteins, nucleotides, and their interactions. In this study, we are focused on using molecular mechanics (MM) and molecular dynamics (MD) to study the mechanism of protein-protein binding and to estimate the binding free energy between proteins. Ras is a key element in a variety of cell processes, and its activation of phosphoinositide 3-kinase (PI3K) is important for survival of transformed cells. Different computational approaches for this particular study are presented to calculate the solvation energies and binding free energies of H-Ras and PI3K. The goal of this study is to establish computational methods to investigate the roles of different proteins played in the cellular responses to space radiation, including modification of protein function through gene mutation, and to support the studies in molecular cell biology and theoretical kinetics models for our risk assessment project.

  15. Effectiveness of vasopressin V2 receptor antagonists OPC-31260 and OPC-41061 on polycystic kidney disease development in the PCK rat.

    PubMed

    Wang, Xiaofang; Gattone, Vincent; Harris, Peter C; Torres, Vicente E

    2005-04-01

    cAMP plays a major role in cystogenesis. Recent in vitro studies suggested that cAMP stimulates B-Raf/ERK activation and proliferation of cyst-derived cells in a Ca(2+) inhibitable, Ras-dependent manner. OPC-31260, a vasopressin V2 receptor (VPV2) antagonist, was shown to lower renal cAMP and inhibit renal disease development and progression in models orthologous to human cystic diseases. Here it is shown that OPC-41061, an antagonist chosen for its potency and selectivity for human VPV2, is effective in PCK rats. PCK kidneys have increased Ras-GTP and phosphorylated ERK levels and 95-kD/68-kD B-Raf ratios, changes that are corrected by the administration of OPC-31260 or OPC-41061. These results support the importance of cAMP in the pathogenesis of polycystic kidney disease, confirm the effectiveness of a VPV2 antagonist to be used in clinical trials for this disease, and suggest that OPC-31260 and OPC-41061 inhibit Ras/mitogen-activated protein kinase signaling in polycystic kidneys.

  16. One-way membrane trafficking of SOS in receptor-triggered Ras activation.

    PubMed

    Christensen, Sune M; Tu, Hsiung-Lin; Jun, Jesse E; Alvarez, Steven; Triplet, Meredith G; Iwig, Jeffrey S; Yadav, Kamlesh K; Bar-Sagi, Dafna; Roose, Jeroen P; Groves, Jay T

    2016-09-01

    SOS is a key activator of the small GTPase Ras. In cells, SOS-Ras signaling is thought to be initiated predominantly by membrane recruitment of SOS via the adaptor Grb2 and balanced by rapidly reversible Grb2-SOS binding kinetics. However, SOS has multiple protein and lipid interactions that provide linkage to the membrane. In reconstituted-membrane experiments, these Grb2-independent interactions were sufficient to retain human SOS on the membrane for many minutes, during which a single SOS molecule could processively activate thousands of Ras molecules. These observations raised questions concerning how receptors maintain control of SOS in cells and how membrane-recruited SOS is ultimately released. We addressed these questions in quantitative assays of reconstituted SOS-deficient chicken B-cell signaling systems combined with single-molecule measurements in supported membranes. These studies revealed an essentially one-way trafficking process in which membrane-recruited SOS remains trapped on the membrane and continuously activates Ras until being actively removed via endocytosis.

  17. One-way membrane trafficking of SOS in receptor-triggered Ras activation

    PubMed Central

    Christensen, Sune M.; Tu, Hsiung-Lin; Jun, Jesse E.; Alvarez, Steven; Triplet, Meredith G.; Iwig, Jeffrey S.; Yadav, Kamlesh K.; Bar-Sagi, Dafna; Roose, Jeroen P.; Groves, Jay T.

    2016-01-01

    SOS is a key activator of the small GTPase Ras. In cells, SOS-Ras signaling is thought to be initiated predominantly by membrane-recruitment of SOS via the adaptor Grb2 and balanced by rapidly reversible Grb2:SOS binding kinetics. However, SOS has multiple protein and lipid interactions that provide linkage to the membrane. In reconstituted membrane experiments, these Grb2-independent interactions are sufficient to retain SOS on the membrane for many minutes, during which a single SOS molecule can processively activate thousands of Ras molecules. These observations raise questions concerning how receptors maintain control of SOS in cells and how membrane-recruited SOS is ultimately released. We addressed these questions in quantitative reconstituted SOS-deficient chicken B cell signaling systems combined with single molecule measurements in supported membranes. These studies reveal an essentially one-way trafficking process in which membrane-recruited SOS remains trapped on the membrane and continuously activates Ras until it is actively removed via endocytosis. PMID:27501536

  18. The Function of Embryonic Stem Cell-expressed RAS (E-RAS), a Unique RAS Family Member, Correlates with Its Additional Motifs and Its Structural Properties.

    PubMed

    Nakhaei-Rad, Saeideh; Nakhaeizadeh, Hossein; Kordes, Claus; Cirstea, Ion C; Schmick, Malte; Dvorsky, Radovan; Bastiaens, Philippe I H; Häussinger, Dieter; Ahmadian, Mohammad Reza

    2015-06-19

    E-RAS is a member of the RAS family specifically expressed in embryonic stem cells, gastric tumors, and hepatic stellate cells. Unlike classical RAS isoforms (H-, N-, and K-RAS4B), E-RAS has, in addition to striking and remarkable sequence deviations, an extended 38-amino acid-long unique N-terminal region with still unknown functions. We investigated the molecular mechanism of E-RAS regulation and function with respect to its sequence and structural features. We found that N-terminal extension of E-RAS is important for E-RAS signaling activity. E-RAS protein most remarkably revealed a different mode of effector interaction as compared with H-RAS, which correlates with deviations in the effector-binding site of E-RAS. Of all these residues, tryptophan 79 (arginine 41 in H-RAS), in the interswitch region, modulates the effector selectivity of RAS proteins from H-RAS to E-RAS features. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Convergent Evolution of the Osmoregulation System in Decapod Shrimps.

    PubMed

    Yuan, Jianbo; Zhang, Xiaojun; Liu, Chengzhang; Duan, Hu; Li, Fuhua; Xiang, Jianhai

    2017-02-01

    In adaptating to different aquatic environments, seawater (SW) and freshwater (FW) shrimps have exploited different adaptation strategies, which should generate clusters of genes with different adaptive features. However, little is known about the genetic basis of these physiological adaptations. Thus, in this study, we performed comparative transcriptomics and adaptive evolution analyses on SW and FW shrimps and found that convergent evolution may have happened on osmoregulation system of shrimps. We identified 275 and 234 positively selected genes in SW and FW shrimps, respectively, which enriched in the functions of ion-binding and membrane-bounded organelles. Among them, five (CaCC, BEST2, GPDH, NKA, and Integrin) and four (RasGAP, RhoGDI, CNK3, and ODC) osmoregulation-related genes were detected in SW and FW shrimps, respectively. All five genes in SW shrimps have been reported to have positive effects on ion transportation, whereas RasGAP and RhoGDI in FW shrimps are associated with negative control of ion transportation, and CNK3 and ODC play central roles in cation homeostasis. Besides, the phylogenetic tree reconstructed from the positively selected sites separated the SW and FW shrimps into two groups. Distinct subsets of parallel substitutions also have been found in these osmoregulation-related genes in SW and FW shrimps. Therefore, our results suggest that distinct convergent evolution may have occurred in the osmoregulation systems of SW and FW shrimps. Furthermore, positive selection of osmoregulation-related genes may be beneficial for the regulation of water and salt balance in decapod shrimps.

  20. Activation of Ras-ERK Signaling and GSK-3 by Amyloid Precursor Protein and Amyloid Beta Facilitates Neurodegeneration in Alzheimer's Disease.

    PubMed

    Kirouac, Lisa; Rajic, Alexander J; Cribbs, David H; Padmanabhan, Jaya

    2017-01-01

    It is widely accepted that amyloid β (Aβ) generated from amyloid precursor protein (APP) oligomerizes and fibrillizes to form neuritic plaques in Alzheimer's disease (AD), yet little is known about the contribution of APP to intracellular signaling events preceding AD pathogenesis. The data presented here demonstrate that APP expression and neuronal exposure to oligomeric Aβ42 enhance Ras/ERK signaling cascade and glycogen synthase kinase 3 (GSK-3) activation. We find that RNA interference (RNAi)-directed knockdown of APP in B103 rat neuroblastoma cells expressing APP inhibits Ras-ERK signaling and GSK-3 activation, indicating that APP acts upstream of these signal transduction events. Both ERK and GSK-3 are known to induce hyperphosphorylation of tau and APP at Thr668, and our findings suggest that aberrant signaling by APP facilitates these events. Supporting this notion, analysis of human AD brain samples showed increased expression of Ras, activation of GSK-3, and phosphorylation of APP and tau, which correlated with Aβ levels in the AD brains. Furthermore, treatment of primary rat neurons with Aβ recapitulated these events and showed enhanced Ras-ERK signaling, GSK-3 activation, upregulation of cyclin D1, and phosphorylation of APP and tau. The finding that Aβ induces Thr668 phosphorylation on APP, which enhances APP proteolysis and Aβ generation, denotes a vicious feedforward mechanism by which APP and Aβ promote tau hyperphosphorylation and neurodegeneration in AD. Based on these results, we hypothesize that aberrant proliferative signaling by APP plays a fundamental role in AD neurodegeneration and that inhibition of this would impede cell cycle deregulation and neurodegeneration observed in AD.

  1. IAA RAS Radio Telescope Monitoring System

    NASA Astrophysics Data System (ADS)

    Mikhailov, A.; Lavrov, A.

    2007-07-01

    Institute of Applied Astronomy of the Russian Academy of Sciences (IAA RAS) has three identical radio telescopes, the receiving complex of which consists of five two-channel receivers of different bands, six cryogen systems, and additional devices: four local oscillators, phase calibration generators and IF commutator. The design, hardware and data communication protocol are described. The most convenient way to join the devices of the receiving complex into the common monitoring system is to use the interface which allows to connect numerous devices to the data bus. For the purpose of data communication regulation and to exclude conflicts, a data communication protocol has been designed, which operates with complex formatted data sequences. Formation of such sequences requires considerable data processing capability. That is provided by a microcontroller chip in each slave device. The test version of the software for the central computer has been developed in IAA RAS. We are developing the Mark IV FS software extension modules, which will allow us to control the receiving complex of the radio telescope by special SNAP commands from both operator input and schedule files. We are also developing procedures of automatic measurements of SEFD, system noise temperature and other parameters, available both in VLBI and single-dish modes of operation. The system described has been installed on all IAA RAS radio telescopes at "Svetloe", "Zelenchukskaya" and "Badary" observatories. It has proved to be working quite reliably and to show the perfonmance expected.

  2. Phosphotyrosine-mediated LAT assembly on membranes drives kinetic bifurcation in recruitment dynamics of the Ras activator SOS

    DOE PAGES

    Huang, William Y. C.; Yan, Qingrong; Lin, Wan-Chen; ...

    2016-07-01

    The assembly of cell surface receptors with downstream signaling molecules is a commonly occurring theme in multiple signaling systems. However, little is known about how these assemblies modulate reaction kinetics and the ultimate propagation of signals. Here, we reconstitute phosphotyrosine-mediated assembly of extended linker for the activation of T cells (LAT):growth factor receptor-bound protein 2 (Grb2):Son of Sevenless (SOS) networks, derived from the T-cell receptor signaling system, on supported membranes. Single-molecule dwell time distributions reveal two, well-differentiated kinetic species for both Grb2 and SOS on the LAT assemblies. The majority fraction of membrane-recruited Grb2 and SOS both exhibit fast kineticsmore » and single exponential dwell time distributions, with average dwell times of hundreds of milliseconds. The minor fraction exhibits much slower kinetics, extending the dwell times to tens of seconds. Considering this result in the context of the multistep process by which the Ras GEF (guanine nucleotide exchange factor) activity of SOS is activated indicates that kinetic stabilization from the LAT assembly may be important. This kinetic proofreading effect would additionally serve as a stochastic noise filter by reducing the relative probability of spontaneous SOS activation in the absence of receptor triggering. In conclusion, the generality of receptor-mediated assembly suggests that such effects may play a role in multiple receptor proximal signaling processes.« less

  3. Phosphotyrosine-mediated LAT assembly on membranes drives kinetic bifurcation in recruitment dynamics of the Ras activator SOS

    PubMed Central

    Huang, William Y. C.; Yan, Qingrong; Lin, Wan-Chen; Chung, Jean K.; Hansen, Scott D.; Christensen, Sune M.; Tu, Hsiung-Lin; Kuriyan, John; Groves, Jay T.

    2016-01-01

    The assembly of cell surface receptors with downstream signaling molecules is a commonly occurring theme in multiple signaling systems. However, little is known about how these assemblies modulate reaction kinetics and the ultimate propagation of signals. Here, we reconstitute phosphotyrosine-mediated assembly of extended linker for the activation of T cells (LAT):growth factor receptor-bound protein 2 (Grb2):Son of Sevenless (SOS) networks, derived from the T-cell receptor signaling system, on supported membranes. Single-molecule dwell time distributions reveal two, well-differentiated kinetic species for both Grb2 and SOS on the LAT assemblies. The majority fraction of membrane-recruited Grb2 and SOS both exhibit fast kinetics and single exponential dwell time distributions, with average dwell times of hundreds of milliseconds. The minor fraction exhibits much slower kinetics, extending the dwell times to tens of seconds. Considering this result in the context of the multistep process by which the Ras GEF (guanine nucleotide exchange factor) activity of SOS is activated indicates that kinetic stabilization from the LAT assembly may be important. This kinetic proofreading effect would additionally serve as a stochastic noise filter by reducing the relative probability of spontaneous SOS activation in the absence of receptor triggering. The generality of receptor-mediated assembly suggests that such effects may play a role in multiple receptor proximal signaling processes. PMID:27370798

  4. Phosphotyrosine-mediated LAT assembly on membranes drives kinetic bifurcation in recruitment dynamics of the Ras activator SOS.

    PubMed

    Huang, William Y C; Yan, Qingrong; Lin, Wan-Chen; Chung, Jean K; Hansen, Scott D; Christensen, Sune M; Tu, Hsiung-Lin; Kuriyan, John; Groves, Jay T

    2016-07-19

    The assembly of cell surface receptors with downstream signaling molecules is a commonly occurring theme in multiple signaling systems. However, little is known about how these assemblies modulate reaction kinetics and the ultimate propagation of signals. Here, we reconstitute phosphotyrosine-mediated assembly of extended linker for the activation of T cells (LAT):growth factor receptor-bound protein 2 (Grb2):Son of Sevenless (SOS) networks, derived from the T-cell receptor signaling system, on supported membranes. Single-molecule dwell time distributions reveal two, well-differentiated kinetic species for both Grb2 and SOS on the LAT assemblies. The majority fraction of membrane-recruited Grb2 and SOS both exhibit fast kinetics and single exponential dwell time distributions, with average dwell times of hundreds of milliseconds. The minor fraction exhibits much slower kinetics, extending the dwell times to tens of seconds. Considering this result in the context of the multistep process by which the Ras GEF (guanine nucleotide exchange factor) activity of SOS is activated indicates that kinetic stabilization from the LAT assembly may be important. This kinetic proofreading effect would additionally serve as a stochastic noise filter by reducing the relative probability of spontaneous SOS activation in the absence of receptor triggering. The generality of receptor-mediated assembly suggests that such effects may play a role in multiple receptor proximal signaling processes.

  5. Pharmacological potential of exercise and RAS vasoactive peptides for prevention of diseases.

    PubMed

    Petriz, Bernardo de Assis; de Almeida, Jeeser Alves; Migliolo, Ludovico; Franco, Octavio Luiz

    2013-09-01

    The Renin-Angiotensin-System (RAS) molecular network has been widely studied, especially with attention to angiotensin II, the main effector peptide among RAS. The relation of Ang II to hypertension pathogenesis has led to research being extended to other molecules from the RAS, such as angiotensin III and IV, angiotensin (1-5), and angiotensin (1-9). Moreover, great pharmacologic advances have been made in hypertension treatment by inhibiting renin and angiotensin converting enzymes and blocking the bonding of angiotensin II to its receptor AT1. Thus, RAS molecular signaling and its effect on blood pressure as well as its relationship to renal function and cardiovascular disease are still being investigated. It is a great challenge to fully cover and understand all molecules from the RAS, especially those that interfere with or have vasoactive properties. Some of these targets respond to exercise, stimulating nitric oxide synthesis and endothelial vasodilation. The activation of these specific molecules via exercise is a systematic way of controlling high blood pressure without pharmacological treatment. Angiotensin (1-7) has been focused due to its vasodilation properties and its responses to exercise, improving vascular function. Thus, stimulation of the ACE2/Ang (1-7)/Mas axis has been gaining ground as a prospective clinical means to attenuate cardiovascular diseases such as hypertension by modulating RAS activity. This review focuses on the vasoactive peptides from the RAS, their responses to exercise and possible trends for pharmacological development. In several cases where exercise training is not achievable, cardiovascular drug therapy with vasodilator peptides may possibly be an option.

  6. Recovery of phenotypes obtained by adaptive evolution through inverse metabolic engineering.

    PubMed

    Hong, Kuk-Ki; Nielsen, Jens

    2012-11-01

    In a previous study, system level analysis of adaptively evolved yeast mutants showing improved galactose utilization revealed relevant mutations. The governing mutations were suggested to be in the Ras/PKA signaling pathway and ergosterol metabolism. Here, site-directed mutants having one of the mutations RAS2(Lys77), RAS2(Tyr112), and ERG5(Pro370) were constructed and evaluated. The mutants were also combined with overexpression of PGM2, earlier proved as a beneficial target for galactose utilization. The constructed strains were analyzed for their gross phenotype, transcriptome and targeted metabolites, and the results were compared to those obtained from reference strains and the evolved strains. The RAS2(Lys77) mutation resulted in the highest specific galactose uptake rate among all of the strains with an increased maximum specific growth rate on galactose. The RAS2(Tyr112) mutation also improved the specific galactose uptake rate and also resulted in many transcriptional changes, including ergosterol metabolism. The ERG5(Pro370) mutation only showed a small improvement, but when it was combined with PGM2 overexpression, the phenotype was almost the same as that of the evolved mutants. Combination of the RAS2 mutations with PGM2 overexpression also led to a complete recovery of the adaptive phenotype in galactose utilization. Recovery of the gross phenotype by the reconstructed mutants was achieved with much fewer changes in the genome and transcriptome than for the evolved mutants. Our study demonstrates how the identification of specific mutations by systems biology can direct new metabolic engineering strategies for improving galactose utilization by yeast.

  7. The renin-angiotensin system: a target of and contributor to dyslipidemias, altered glucose homeostasis, and hypertension of the metabolic syndrome

    PubMed Central

    Putnam, Kelly; Shoemaker, Robin; Yiannikouris, Frederique

    2012-01-01

    The renin-angiotensin system (RAS) is an important therapeutic target in the treatment of hypertension. Obesity has emerged as a primary contributor to essential hypertension in the United States and clusters with other metabolic disorders (hyperglycemia, hypertension, high triglycerides, low HDL cholesterol) defined within the metabolic syndrome. In addition to hypertension, RAS blockade may also serve as an effective treatment strategy to control impaired glucose and insulin tolerance and dyslipidemias in patients with the metabolic syndrome. Hyperglycemia, insulin resistance, and/or specific cholesterol metabolites have been demonstrated to activate components required for the synthesis [angiotensinogen, renin, angiotensin-converting enzyme (ACE)], degradation (ACE2), or responsiveness (angiotensin II type 1 receptors, Mas receptors) to angiotensin peptides in cell types (e.g., pancreatic islet cells, adipocytes, macrophages) that mediate specific disorders of the metabolic syndrome. An activated local RAS in these cell types may contribute to dysregulated function by promoting oxidative stress, apoptosis, and inflammation. This review will discuss data demonstrating the regulation of components of the RAS by cholesterol and its metabolites, glucose, and/or insulin in cell types implicated in disorders of the metabolic syndrome. In addition, we discuss data supporting a role for an activated local RAS in dyslipidemias and glucose intolerance/insulin resistance and the development of hypertension in the metabolic syndrome. Identification of an activated RAS as a common thread contributing to several disorders of the metabolic syndrome makes the use of angiotensin receptor blockers and ACE inhibitors an intriguing and novel option for multisymptom treatment. PMID:22227126

  8. Establishment of a real-time PCR method for quantification of geosmin-producing Streptomyces spp. in recirculating aquaculture systems.

    PubMed

    Auffret, Marc; Pilote, Alexandre; Proulx, Emilie; Proulx, Daniel; Vandenberg, Grant; Villemur, Richard

    2011-12-15

    Geosmin and 2-methylisoborneol (MIB) have been associated with off-flavour problems in fish and seafood products, generating a strong negative impact for aquaculture industries. Although most of the producers of geosmin and MIB have been identified as Streptomyces species or cyanobacteria, Streptomyces spp. are thought to be responsible for the synthesis of these compounds in indoor recirculating aquaculture systems (RAS). The detection of genes involved in the synthesis of geosmin and MIB can be a relevant indicator of the beginning of off-flavour events in RAS. Here, we report a real-time polymerase chain reaction (qPCR) protocol targeting geoA sequences that encode a germacradienol synthase involved in geosmin synthesis. New geoA-related sequences were retrieved from eleven geosmin-producing Actinomycete strains, among them two Streptomyces strains isolated from two RAS. Combined with geoA-related sequences available in gene databases, we designed primers and standards suitable for qPCR assays targeting mainly Streptomyces geoA. Using our qPCR protocol, we succeeded in measuring the level of geoA copies in sand filter and biofilters in two RAS. This study is the first to apply qPCR assays to detect and quantify the geosmin synthesis gene (geoA) in RAS. Quantification of geoA in RAS could permit the monitoring of the level of geosmin producers prior to the occurrence of geosmin production. This information will be most valuable for fish producers to manage further development of off-flavour events. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. H-Ras and K-Ras Oncoproteins Induce Different Tumor Spectra When Driven by the Same Regulatory Sequences.

    PubMed

    Drosten, Matthias; Simón-Carrasco, Lucía; Hernández-Porras, Isabel; Lechuga, Carmen G; Blasco, María T; Jacob, Harrys K C; Fabbiano, Salvatore; Potenza, Nicoletta; Bustelo, Xosé R; Guerra, Carmen; Barbacid, Mariano

    2017-02-01

    Genetic studies in mice have provided evidence that H-Ras and K-Ras proteins are bioequivalent. However, human tumors display marked differences in the association of RAS oncogenes with tumor type. Thus, to further assess the bioequivalence of oncogenic H-Ras and K-Ras, we replaced the coding region of the murine K-Ras locus with H-Ras G12V oncogene sequences. Germline expression of H-Ras G12V or K-Ras G12V from the K-Ras locus resulted in embryonic lethality. However, expression of these genes in adult mice led to different tumor phenotypes. Whereas H-Ras G12V elicited papillomas and hematopoietic tumors, K-Ras G12V induced lung tumors and gastric lesions. Pulmonary expression of H-Ras G12V created a senescence-like state caused by excessive MAPK signaling. Likewise, H-Ras G12V but not K-Ras G12V induced senescence in mouse embryonic fibroblasts. Label-free quantitative analysis revealed that minor differences in H-Ras G12V expression levels led to drastically different biological outputs, suggesting that subtle differences in MAPK signaling confer nonequivalent functions that influence tumor spectra induced by RAS oncoproteins. Cancer Res; 77(3); 707-18. ©2016 AACR. ©2016 American Association for Cancer Research.

  10. The Tumor Suppressor DiRas3 Forms a Complex with H-Ras and C-RAF Proteins and Regulates Localization, Dimerization, and Kinase Activity of C-RAF*

    PubMed Central

    Baljuls, Angela; Beck, Matthias; Oenel, Ayla; Robubi, Armin; Kroschewski, Ruth; Hekman, Mirko; Rudel, Thomas; Rapp, Ulf R.

    2012-01-01

    The maternally imprinted Ras-related tumor suppressor gene DiRas3 is lost or down-regulated in more than 60% of ovarian and breast cancers. The anti-tumorigenic effect of DiRas3 is achieved through several mechanisms, including inhibition of cell proliferation, motility, and invasion, as well as induction of apoptosis and autophagy. Re-expression of DiRas3 in cancer cells interferes with the signaling through Ras/MAPK and PI3K. Despite intensive research, the mode of interference of DiRas3 with the Ras/RAF/MEK/ERK signal transduction is still a matter of speculation. In this study, we show that DiRas3 associates with the H-Ras oncogene and that activation of H-Ras enforces this interaction. Furthermore, while associated with DiRas3, H-Ras is able to bind to its effector protein C-RAF. The resulting multimeric complex consisting of DiRas3, C-RAF, and active H-Ras is more stable than the two protein complexes H-Ras·C-RAF or H-Ras·DiRas3, respectively. The consequence of this complex formation is a DiRas3-mediated recruitment and anchorage of C-RAF to components of the membrane skeleton, suppression of C-RAF/B-RAF heterodimerization, and inhibition of C-RAF kinase activity. PMID:22605333

  11. Intramuscular renin-angiotensin system is activated in human muscular dystrophy.

    PubMed

    Sun, Guilian; Haginoya, Kazuhiro; Dai, Hongmei; Chiba, Yoko; Uematsu, Mitsugu; Hino-Fukuyo, Naomi; Onuma, Akira; Iinuma, Kazuie; Tsuchiya, Shigeru

    2009-05-15

    To investigate the role of the muscular renin-angiotensin system (RAS) in human muscular dystrophy, we used immunohistochemistry and Western blotting to examine the cellular localization of angiotensin-converting enzyme (ACE), the angiotensin II type 1 receptor (AT1) and the angiotensin II type 2 receptor (AT2) in muscle biopsies from patients with Duchenne muscular dystrophy (DMD), Becker muscular dystrophy (BMD), and congenital muscular dystrophy (CMD). In normal muscle, ACE was expressed in vascular endothelial cells and neuromuscular junctions (NMJs), whereas AT1 was immunolocalized to the smooth muscle cells of blood vessels and intramuscular nerve twigs. AT2 was immunolocalized in the smooth muscle cells of blood vessels. These findings suggest that the RAS has a functional role in peripheral nerves and NMJs. ACE and AT1, but AT2 immunoreactivity were increased markedly in dystrophic muscle as compared to controls. ACE and the AT1 were strongly expressed in the cytoplasm and nuclei of regenerating muscle fibers, fibroblasts, and in macrophages infiltrating necrotic fibers. Double immunolabeling revealed that activated fibroblasts in the endomysium and perimysium of DMD and CMD muscle were positive for ACE and AT1. Triple immunolabeling demonstrated that transforming growth factor-beta1 (TGF-beta1) and ACE were colocalized on the cytoplasm of activated fibroblasts in dystrophic muscle. Furthermore, Western blotting showed increases in the expression of AT1 and TGF-beta1 protein in dystrophic muscle, which coincided with our immunohistochemical results. The overexpression of ACE and AT1 in dystrophic muscle would likely result in the increased production of Ang II, which may act on these cells in an autocrine manner via AT1. The activation of AT1 may induce fibrous tissue formation through overexpression of TGF-beta1, which potently activates fibrogenesis and suppresses regeneration. In conclusion, our results imply that the intramuscular RAS-TGF-beta1 pathway is activated in human muscular dystrophy and plays a role at least partly in the pathophysiology of this disease.

  12. Association of IL-6-174 G/C and IL10-1082 G/A polymorphisms with recurrent aphthous stomatitis risk: A meta-analysis.

    PubMed

    Yang, Shuo; Zhang, Bin; Shi, Quan; Liu, Jinglong; Xu, Juan; Huo, Na

    2017-12-01

    Recurrent aphthous stomatitis (RAS) is a common oral disease with unknown etiology. The association between IL-6-174 G/C and IL10-1082 G/A polymorphisms and the risk of RAS remains controversial. Therefore, we conducted this meta-analysis to gain more evidence-based information. Four online databases, PubMed, Embase, Web of Science, and Cochrane Library, were searched, and the relevant publications were collected. An odds ratio (OR) with a 95% confidence interval (CI) was applied to assess the association of the IL-6-174 G/C and IL10-1082 G/A polymorphisms with RAS susceptibility. Nine published case-control studies with 779 patients and 1016 controls were collected. The overall analysis proved that the IL10-1082 G/A polymorphism was significantly associated with the risk of RAS in a dominant model (GG + AG vs AA: OR = 1.49, 95% CI = 1.10-2.01, P = .01). A subgroup analysis based on ethnicity revealed significant associations in Asian populations in allelic, heterozygote, and dominant models (G vs A: OR = 1.55, 95% CI = 1.04-2.31, P = .03; AG vs AA: OR = 1.76, 95% CI = 1.16-2.67, P = .01; GG + AG vs AA: OR = 2.04, 95% CI = 1.37-3.03, P = .00). The association in Caucasians and people of mixed ethnicity requires further study. No significant association was detected between the IL-6-174 G/C polymorphism and RAS in any of the genetic models. However, subgroup analysis by ethnicity revealed that the Caucasians were more likely to develop RAS in 4 genetic models (G vs C: OR = 2.36, 95% CI = 1.26-4.41, P = .01; GG vs CC: OR = 7.05, 95% CI = 3.50-14.18, P = .00; GG + CG vs CC: OR = 4.28, 95% CI = 2.17-8.45, P = .00; GG vs CG + CC: OR = 2.59, 95% CI = 1.05-6.41, P = .04). In addition, a significantly decreased risk of RAS susceptibility was found in Asians (CG vs CC: OR = 0.27, 95% CI = 0.07-0.99, P = .049; GG + CG vs CC: OR = 0.27, 95% CI = 0.07-0.98, P = .047). Our meta-analysis indicated that the IL10-1082 G/A polymorphism is associated with RAS susceptibility, especially in Asians. In contrast, the IL-6-174 G/C polymorphism does not have a statistically significant association with RAS susceptibility. However, it may play a different role during the development of RAS in different ethnicities. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  13. A distinct class of dominant negative Ras mutants: cytosolic GTP-bound Ras effector domain mutants that inhibit Ras signaling and transformation and enhance cell adhesion.

    PubMed

    Fiordalisi, James J; Holly, Stephen P; Johnson, Ronald L; Parise, Leslie V; Cox, Adrienne D

    2002-03-29

    Cytosolic GTP-bound Ras has been shown to act as a dominant negative (DN) inhibitor of Ras by sequestering Raf in non-productive cytosolic complexes. Nevertheless, this distinct class of DN mutants has been neither well characterized nor extensively used to analyze Ras signaling. In contrast, DN Ras17N, which functions by blocking Ras guanine nucleotide exchange factors, has been well characterized and is widely used. Cytosolic GTP-bound Ras mutants could be used to inhibit particular Ras effectors by introducing additional mutations (T35S, E37G or Y40C) that permit them to associate selectively with and inhibit Raf, RalGDS, or phosphoinositide 3-kinase, respectively. When the wild-type Ras effector binding region is used, cytosolic Ras should associate with all Ras effectors, even those that are not yet identified, making these DN Ras mutants effective inhibitors of multiple Ras functions. We generated cytosolic GTP-bound H-, N-, and K-Ras, and we assessed their ability to inhibit Ras-induced phenotypes. In fibroblasts, cytosolic H-, N-, and K-Ras inhibited Ras-induced Elk-1 activation and focus formation, induced a flattened cell morphology, and increased adhesion to fibronectin through modulation of a beta(1)-subunit-containing integrin, thereby demonstrating that DN activity is not limited to a subset of Ras isoforms. We also generated cytosolic GTP-bound Ras effector domain mutants (EDMs), each of which reduced the ability of cytosolic GTP-bound Ras proteins to inhibit Elk-1 activation and to induce cell flattening, implicating multiple pathways in these phenotypes. In contrast, Ras-induced focus formation, platelet-derived growth factor (PDGF)-, or Ras-induced phospho-Akt levels and cell adhesion to fibronectin were affected by T35S and Y40C EDMs, whereas PDGF- or Ras-induced phospho-Erk levels were affected only by the T35S EDM, implying that a more limited set of Ras-mediated pathways participate in these phenotypes. These data constitute the first extensive characterization of this functionally distinct class of DN Ras inhibitor proteins.

  14. Freshwater Recirculating Aquaculture System Operations Drive Biofilter Bacterial Community Shifts around a Stable Nitrifying Consortium of Ammonia-Oxidizing Archaea and Comammox Nitrospira

    PubMed Central

    Bartelme, Ryan P.; McLellan, Sandra L.; Newton, Ryan J.

    2017-01-01

    Recirculating aquaculture systems (RAS) are unique engineered ecosystems that minimize environmental perturbation by reducing nutrient pollution discharge. RAS typically employ a biofilter to control ammonia levels produced as a byproduct of fish protein catabolism. Nitrosomonas (ammonia-oxidizing), Nitrospira, and Nitrobacter (nitrite-oxidizing) species are thought to be the primary nitrifiers present in RAS biofilters. We explored this assertion by characterizing the biofilter bacterial and archaeal community of a commercial scale freshwater RAS that has been in operation for >15 years. We found the biofilter community harbored a diverse array of bacterial taxa (>1000 genus-level taxon assignments) dominated by Chitinophagaceae (~12%) and Acidobacteria (~9%). The bacterial community exhibited significant composition shifts with changes in biofilter depth and in conjunction with operational changes across a fish rearing cycle. Archaea also were abundant, and were comprised solely of a low diversity assemblage of Thaumarchaeota (>95%), thought to be ammonia-oxidizing archaea (AOA) from the presence of AOA ammonia monooxygenase genes. Nitrosomonas were present at all depths and time points. However, their abundance was >3 orders of magnitude less than AOA and exhibited significant depth-time variability not observed for AOA. Phylogenetic analysis of the nitrite oxidoreductase beta subunit (nxrB) gene indicated two distinct Nitrospira populations were present, while Nitrobacter were not detected. Subsequent identification of Nitrospira ammonia monooxygenase alpha subunit genes in conjunction with the phylogenetic placement and quantification of the nxrB genotypes suggests complete ammonia-oxidizing (comammox) and nitrite-oxidizing Nitrospira populations co-exist with relatively equivalent and stable abundances in this system. It appears RAS biofilters harbor complex microbial communities whose composition can be affected directly by typical system operations while supporting multiple ammonia oxidation lifestyles within the nitrifying consortium. PMID:28194147

  15. The abundance and diversity of heterotrophic bacteria as a function of harvesting frequency of duckweed (Lemna minor L.) in recirculating aquaculture systems.

    PubMed

    Ardiansyah, A; Fotedar, R

    2016-07-01

    Duckweed (Lemna minor L.) is a potential biofilter for nutrient removal and acts as a substrate for heterotrophic bacteria in recirculating aquaculture systems (RAS). Here, we determined the effects of harvesting frequency of duckweed on heterotrophic bacteria in RAS. Twelve independent RAS consisting of fish-rearing tank, biofilter tank and waste-collection tank were used to study the interactions between duckweed harvest frequencies up to 6 days and the composition, abundance and diversity of heterotrophic bacteria. After 36 days, heterotrophic bacteria in the biofilter tank were primarily Gram-negative cocci or ovoid, coccobacilli, Gram-negative bacilli and Gram-positive bacilli. Most bacterial genera were Bacillus and Pseudomonas while the least common was Acinetobacter. Duckweed harvested after every 2 days produced the highest specific growth rates (SGR) and total harvested biomass of duckweed, but harboured less abundant bacteria, whereas 6-day harvests had a higher growth index (GI) of duckweed than 2-day harvests, but caused a poor relationship between SGR and biomass harvest with the abundance and diversity of heterotrophic bacteria. Stronger correlations (R(2)  > 0·65) between duckweed SGR and biomass harvest with the heterotrophic bacteria diversity were observed at 4-day harvest frequency and the control. This study provides significant information on the interaction between the harvest frequency of duckweed and the composition, abundance and diversity of heterotrophic bacteria in recirculating aquaculture systems (RAS). Different harvest frequencies significantly influence the abundance and diversity of heterotrophic bacteria, which in turn may influence the nitrogen uptake efficiency of the system. The research is useful in improving the efficiency of removing nitrogenous metabolites in RAS directly by the duckweed and associated heterotrophic bacteria. © 2016 The Society for Applied Microbiology.

  16. The transcription factor ETS-1 regulates angiotensin II-stimulated fibronectin production in mesangial cells.

    PubMed

    Hua, Ping; Feng, Wenguang; Rezonzew, Gabriel; Chumley, Phillip; Jaimes, Edgar A

    2012-06-01

    Angiotensin II (ANG II) produced as result of activation of the renin-angiotensin system (RAS) plays a critical role in the pathogenesis of chronic kidney disease via its hemodynamic effects on the renal microcirculation as well as by its nonhemodynamic actions including the production of extracellular matrix proteins such as fibronectin, a multifunctional extracellular matrix protein that plays a major role in cell adhesion and migration as well as in the development of glomerulosclerosis. ETS-1 is an important transcription factor essential for normal kidney development and glomerular integrity. We previously showed that ANG II increases ETS-1 expression and is required for fibronectin production in mesangial cells. In these studies, we determined that ANG II induces phosphorylation of ETS-1 via activation of the type 1 ANG II receptor and that Erk1/2 and Akt/PKB phosphorylation are required for these effects. In addition, we characterized the role of ETS-1 on the transcriptional activation of fibronectin production in mesangial cells. We determined that ETS-1 directly activates the fibronectin promoter and by utilizing gel shift assays and chromatin immunoprecipitation assays identified two different ETS-1 binding sites that promote the transcriptional activation of fibronectin in response to ANG II. In addition, we identified the essential role of CREB and its coactivator p300 on the transcriptional activation of fibronectin by ETS-1. These studies unveil novel mechanisms involved in RAS-induced production of the extracellular matrix protein fibronectin in mesangial cells and establish the role of the transcription factor ETS-1 as a direct mediator of these effects.

  17. Advanced simulation technology used to reduce accident rates through a better understanding of human behaviors and human perception

    NASA Astrophysics Data System (ADS)

    Manser, Michael P.; Hancock, Peter A.

    1996-06-01

    Human beings and technology have attained a mutually dependent and symbiotic relationship. It is easy to recognize how each depends on the other for survival. It is also easy to see how technology advances due to human activities. However, the role technology plays in advancing humankind is seldom examined. This presentation examines two research areas where the role of advanced visual simulation systems play an integral and essential role in understanding human perception and behavior. The ultimate goal of this research is the betterment of humankind through reduced accident and death rates in transportation environments. The first research area examined involved the estimation of time-to-contact. A high-fidelity wrap-around simulator (RAS) was used to examine people's ability to estimate time-to- contact. The ability of people to estimate the amount of time before an oncoming vehicle will collide with them is a necessary skill for avoiding collisions. A vehicle approached participants at one of three velocities, and while en route to the participant, the vehicle disappeared. The participants' task was to respond when they felt the accuracy of time-to-contact estimates and the practical applications of the result. The second area of research investigates the effects of various visual stimuli on underground transportation tunnel walls for the perception of vehicle speed. A RAS is paramount in creating visual patterns in peripheral vision. Flat-screen or front-screen simulators do not have this ability. Results are discussed in terms of speed perception and the application of these results to real world environments.

  18. Robot-assisted surgery: an emerging platform for human neuroscience research

    PubMed Central

    Jarc, Anthony M.; Nisky, Ilana

    2015-01-01

    Classic studies in human sensorimotor control use simplified tasks to uncover fundamental control strategies employed by the nervous system. Such simple tasks are critical for isolating specific features of motor, sensory, or cognitive processes, and for inferring causality between these features and observed behavioral changes. However, it remains unclear how these theories translate to complex sensorimotor tasks or to natural behaviors. Part of the difficulty in performing such experiments has been the lack of appropriate tools for measuring complex motor skills in real-world contexts. Robot-assisted surgery (RAS) provides an opportunity to overcome these challenges by enabling unobtrusive measurements of user behavior. In addition, a continuum of tasks with varying complexity—from simple tasks such as those in classic studies to highly complex tasks such as a surgical procedure—can be studied using RAS platforms. Finally, RAS includes a diverse participant population of inexperienced users all the way to expert surgeons. In this perspective, we illustrate how the characteristics of RAS systems make them compelling platforms to extend many theories in human neuroscience, as well as, to develop new theories altogether. PMID:26089785

  19. Fendiline Inhibits K-Ras Plasma Membrane Localization and Blocks K-Ras Signal Transmission

    PubMed Central

    van der Hoeven, Dharini; Cho, Kwang-jin; Ma, Xiaoping; Chigurupati, Sravanthi; Parton, Robert G.

    2013-01-01

    Ras proteins regulate signaling pathways important for cell growth, differentiation, and survival. Oncogenic mutant Ras proteins are commonly expressed in human tumors, with mutations of the K-Ras isoform being most prevalent. To be active, K-Ras must undergo posttranslational processing and associate with the plasma membrane. We therefore devised a high-content screening assay to search for inhibitors of K-Ras plasma membrane association. Using this assay, we identified fendiline, an L-type calcium channel blocker, as a specific inhibitor of K-Ras plasma membrane targeting with no detectable effect on the localization of H- and N-Ras. Other classes of L-type calcium channel blockers did not mislocalize K-Ras, suggesting a mechanism that is unrelated to calcium channel blockade. Fendiline did not inhibit K-Ras posttranslational processing but significantly reduced nanoclustering of K-Ras and redistributed K-Ras from the plasma membrane to the endoplasmic reticulum (ER), Golgi apparatus, endosomes, and cytosol. Fendiline significantly inhibited signaling downstream of constitutively active K-Ras and endogenous K-Ras signaling in cells transformed by oncogenic H-Ras. Consistent with these effects, fendiline blocked the proliferation of pancreatic, colon, lung, and endometrial cancer cell lines expressing oncogenic mutant K-Ras. Taken together, these results suggest that inhibitors of K-Ras plasma membrane localization may have utility as novel K-Ras-specific anticancer therapeutics. PMID:23129805

  20. Dominant negative Ras attenuates pathological ventricular remodeling in pressure overload cardiac hypertrophy

    PubMed Central

    Ramos-Kuri, Manuel; Rapti, Kleopatra; Mehel, Hind; Zhang, Shihong; Dhandapany, Perundurai S.; Liang, Lifan; García-Carrancá, Alejandro; Bobe, Regis; Fischmeister, Rodolphe; Adnot, Serge; Lebeche, Djamel; Hajjar, Roger J.; Lipskaia, Larissa; Chemaly, Elie R.

    2015-01-01

    The importance of the oncogene Ras in cardiac hypertrophy is well appreciated. The hypertrophic effects of the constitutively active mutant Ras-Val12 are revealed by clinical syndromes due to the Ras mutations and experimental studies. We examined the possible anti-hypertrophic effect of Ras inhibition in vitro using rat neonatal cardiomyocytes (NRCM) and in vivo in the setting of pressure-overload left ventricular (LV) hypertrophy (POH) in rats. Ras functions were modulated via adenovirus directed gene transfer of active mutant Ras-Val12 or dominant negative mutant N17-DN-Ras (DN-Ras). Ras-Val12 expression in vitro activates NFAT resulting in pro-hypertrophic and cardio-toxic effects on NRCM beating and Z-line organization. In contrast, the DN-Ras was antihypertrophic on NRCM, inhibited NFAT and exerted cardio-protective effects attested by preserved NRCM beating and Z line structure. Additional experiments with silencing H-Ras gene strategy corroborated the antihypertrophic effects of siRNA-H-Ras on NRCM. In vivo, with the POH model, both Ras mutants were associated with similar hypertrophy two weeks after simultaneous induction of POH and Ras-mutant gene transfer. However, LV diameters were higher and LV fractional shortening lower in the Ras-Val12 group compared to control and DN-Ras. Moreover, DN-Ras reduced the cross-sectional area of cardiomyocytes in vivo, and decreased the expression of markers of pathologic cardiac hypertrophy. In isolated adult cardiomyocytes after 2 weeks of POH and Ras-mutant gene transfer, DN-Ras improved sarcomere shortening and calcium transients compared to Ras-Val12. Overall, DN-Ras promotes a more physiological form of hypertrophy, suggesting an interesting therapeutic target for pathological cardiac hypertrophy. PMID:26260012

  1. Involvement of H- and N-Ras isoforms in transforming growth factor-{beta}1-induced proliferation and in collagen and fibronectin synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Salgado, Carlos; Fuentes-Calvo, Isabel; Instituto 'Reina Sofia' de Investigacion Nefrologica, Universidad de Salamanca, 37007 Salamanca

    2006-07-01

    Transforming growth factor {beta}1 (TGF-{beta}1) has a relevant role in the origin and maintenance of glomerulosclerosis and tubule-interstitial fibrosis. TGF-{beta} and Ras signaling pathways are closely related: TGF-{beta}1 overcomes Ras mitogenic effects and Ras counteracts TGF-{beta} signaling. Tubule-interstitial fibrosis is associated to increases in Ras, Erk, and Akt activation in a renal fibrosis model. We study the role of N- and H-Ras isoforms, and the involvement of the Ras effectors Erk and Akt, in TGF-{beta}1-mediated extracellular matrix (ECM) synthesis and proliferation, using embrionary fibroblasts from double knockout (KO) mice for H- and N-Ras (H-ras {sup -/-}/N-ras {sup -/-}) isoforms andmore » from heterozygote mice (H-ras {sup +/-}/N-ras {sup +/-}). ECM synthesis is increased in basal conditions in H-ras {sup -/-}/N-ras {sup -/-} fibroblasts, this increase being higher after stimulation with TGF-{beta}1. TGF-{beta}1-induced fibroblast proliferation is smaller in H-ras {sup -/-}/N-ras {sup -/-} than in H-ras {sup +/-}/N-ras {sup +/-} fibroblasts. Erk activation is decreased in H-ras {sup -/-}/N-ras {sup -/-} fibroblasts; inhibition of Erk activation reduces fibroblast proliferation. Akt activation is higher in double KO fibroblasts than in heterozygotes; inhibition of Akt activation also inhibits ECM synthesis. We suggest that H- and N-Ras isoforms downregulate ECM synthesis, and mediate proliferation, in part through MEK/Erk activation. PI3K-Akt pathway activation may be involved in the increase in ECM synthesis observed in the absence of H- and N-Ras.« less

  2. [miR-143 inhibits cell proliferation through targeted regulating the expression of K-ras gene in HeLa cells].

    PubMed

    Qin, H X; Cui, H K; Pan, Y; Hu, R L; Zhu, L H; Wang, S J

    2016-12-23

    Objective: To explore the effect of microRNA miR-143 on the proliferation of cervical cancer HeLa cells through targeted regulating the expression of K-ras gene. Methods: The luciferase report carrier containing wild type 3'-UTR of K-ras gene (K-ras-wt) or mutated 3'-UTR of the K-ras (K-ras-mut) were co-transfected with iR-143 mimic into the HeLa cells respectively, and the targeting effect of miR-143 in the transfectants was verified by the dual luciferase report system. HeLa cells were also transfected with miR-143 mimic (miR-143 mimic group), mimic control (negative control group), and miR-143 mimic plus K-ras gene (miR-143 mimic+ K-ras group), respectively. The expression of miR-143 in the transfected HeLa cells was detected by real-time PCR (RT-PCR), and the expression of K-ras protein was detected by Western blot. The cell proliferation activity of each group was examined by MTT assay. In addition, human cervical cancer tissue samples ( n =5) and cervical intraepithelial neoplasia tissue samples ( n =5) were also examined for the expression of miR-143 and K-ras protein by RT-PCR and Western blot, respectively. Results: The luciferase report assay showed that co-transfection with miR-143 mimic decreased the luciferase activity of the K-ras-wt significantly, but did not inhibit the luciferase activity of the K-ras-mut. The expression of miR-143 in the HeLa cells transfected with miR-143 mimic was significantly higher than that in the HeLa cells transfected with the mimic control (3.31±0.45 vs 0.97±0.22, P <0.05). The MTT assay revealed that the cell proliferative activity of the miR-143 mimic group was significantly lower than that of the negative control group ( P <0.05), and the cell proliferative activity of the miR-143 mimic+ K-ras group was also significantly lower than the control group ( P <0.05) but higher than the miR-143 mimic group significantly ( P <0.05). The expression levels of K-ras protein in the miR-143 mimic group, the negative control group and the miR-143 mimic+ K-ras group were lowest, moderate, and highest, respectively (115.27±34.08, 521.36±41.89, and 706.52±89.44, all P <0.05). In the tissue samples, the miR-143 expression in the cervical cancer group was significantly lower than that of the cervical intraepithelial neoplasia group (0.32±0.06 vs. 0.93±0.17, P <0.05); whereas the K-ras protein expression in the cervical cancer group was significantly higher than that in the cervical intraepithelial neoplasia group (584.39±72.34 vs. 114.23±25.82, P <0.05). Conclusions: In vitro, miR-143 can inhibit the proliferative activity of HeLa cells through targeted regulating the expression of K-ras gene. In human cervical cancer tissues of a small sample set, the expression of miR-143 is downregulated, and the expression of K-ras is upregulated.

  3. PREFACE: XVII International Scientific Conference ''RESHETNEV READINGS''

    NASA Astrophysics Data System (ADS)

    2015-01-01

    The International Scientific Conference ''RESHETNEV READINGS'' is dedicated to the memory of Mikhail Reshetnev, an outstanding scientist, chief-constructor of space-rocket systems and communication satellites. The current volume represents selected proceedings of the main conference materials which were published by XVII International Scientific Conference ''RESHETNEV READINGS'' held on November 12 - 14, 2013. Plenary sessions, round tables and forums will be attended by famous scientists, developers and designers representing the space technology sector, as well as professionals and experts in the IT industry. A number of outstanding academic figures expressed their interest in an event of such a level including Jaures Alferov, Vice-president of the Russian Academy of Sciences (RAS), Academician of RAS, Nobel laureate, Dirk Bochar, General Secretary of the European Federation of National Engineering Associates (FEANI), Prof. Yuri Gulyaev, Academician of RAS, Member of the Presidium of RAS, President of the International Union of Scientific and Engineering Associations, Director of the Institute of Radio Engineering and Electronics of RAS, as well as rectors of the largest universities in Russia, chief executives of well-known research enterprises and representatives of big businesses. We would like to thank our main sponsors such as JSC ''Reshetnev Information Satellite Systems'', JSC ''Krasnoyarsk Engineering Plant'', Central Design Bureau ''Geophysics'', Krasnoyarsk Region Authorities. These enterprises and companies are leading ones in the aerospace branch. It is a great pleasure to cooperate and train specialists for them.

  4. Effect of mixture ratio, solids concentration and hydraulic retention time on the anaerobic digestion of the organic fraction of municipal solid waste.

    PubMed

    Fongsatitkul, Prayoon; Elefsiniotis, Panagiotis; Wareham, David G

    2010-09-01

    This paper describes how the degradation of the organic fraction of municipal solid waste (OFMSW) is affected through codigestion with varying amounts of return activated sludge (RAS). Solid waste that had its inorganic fraction selectively removed was mixed with RAS in ratios of 100% OFMSW, 50% OFMSW/50% RAS, and 25% OFMSW/75% RAS. The total solids (TS) concentration was held at 8% and three anaerobic digester systems treating the mixtures were held (for the first run) at a total hydraulic retention time (HRT) of 28 days. Increasing amounts of RAS did not however improve the mixture's digestability, as indicated by little change and/or a drop in the main performance indices [including percentage volatile solids (VS) removal and specific gas production]. The optimum ratio in this research therefore appeared to be 100% OFMSW with an associated 85.1 ± 0.6% VS removal and 0.72 ± 0.01 L total gas g(- 1) VS. In the second run, the effect of increasing percentage of TS (8, 12% and 15%) at a system HRT of 28 days was observed to yield no improvement in the main performance indices (i.e. percentage VS removal and specific gas production). Finally, during the third run, variations in the total system HRT were investigated at an 8% TS, again using 100% OFMSW. Of the HRTs explored (23, 28 and 33 days), the longest HRT yielded the best performance overall, particularly in terms of specific gas production (0.77 ± 0.01 L total gas g(-1) VS).

  5. What makes Ras an efficient molecular switch: a computational, biophysical, and structural study of Ras-GDP interactions with mutants of Raf.

    PubMed

    Filchtinski, Daniel; Sharabi, Oz; Rüppel, Alma; Vetter, Ingrid R; Herrmann, Christian; Shifman, Julia M

    2010-06-11

    Ras is a small GTP-binding protein that is an essential molecular switch for a wide variety of signaling pathways including the control of cell proliferation, cell cycle progression and apoptosis. In the GTP-bound state, Ras can interact with its effectors, triggering various signaling cascades in the cell. In the GDP-bound state, Ras looses its ability to bind to known effectors. The interaction of the GTP-bound Ras (Ras(GTP)) with its effectors has been studied intensively. However, very little is known about the much weaker interaction between the GDP-bound Ras (Ras(GDP)) and Ras effectors. We investigated the factors underlying the nucleotide-dependent differences in Ras interactions with one of its effectors, Raf kinase. Using computational protein design, we generated mutants of the Ras-binding domain of Raf kinase (Raf) that stabilize the complex with Ras(GDP). Most of our designed mutations narrow the gap between the affinity of Raf for Ras(GTP) and Ras(GDP), producing the desired shift in binding specificity towards Ras(GDP). A combination of our best designed mutation, N71R, with another mutation, A85K, yielded a Raf mutant with a 100-fold improvement in affinity towards Ras(GDP). The Raf A85K and Raf N71R/A85K mutants were used to obtain the first high-resolution structures of Ras(GDP) bound to its effector. Surprisingly, these structures reveal that the loop on Ras previously termed the switch I region in the Ras(GDP).Raf mutant complex is found in a conformation similar to that of Ras(GTP) and not Ras(GDP). Moreover, the structures indicate an increased mobility of the switch I region. This greater flexibility compared to the same loop in Ras(GTP) is likely to explain the natural low affinity of Raf and other Ras effectors to Ras(GDP). Our findings demonstrate that an accurate balance between a rigid, high-affinity conformation and conformational flexibility is required to create an efficient and stringent molecular switch. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. RasGRP3 regulates the migration of glioma cells via interaction with Arp3

    PubMed Central

    Lee, Hae Kyung; Finniss, Susan; Cazacu, Simona; Xiang, Cunli; Poisson, Laila M.; Blumberg, Peter M.; Brodie, Chaya

    2015-01-01

    Glioblastoma (GBM), the most aggressive primary brain tumors, are highly infiltrative. Although GBM express high Ras activity and Ras proteins have been implicated in gliomagenesis, Ras-activating mutations are not frequent in these tumors. RasGRP3, an important signaling protein responsive to diacylglycerol (DAG), increases Ras activation. Here, we examined the expression and functions of RasGRP3 in GBM and glioma cells. RasGRP3 expression was upregulated in GBM specimens and glioma stem cells compared with normal brains and neural stem cells, respectively. RasGRP3 activated Ras and Rap1 in glioma cells and increased cell migration and invasion partially via Ras activation. Using pull-down assay and mass spectroscopy we identified the actin-related protein, Arp3, as a novel interacting protein of RasGRP3. The interaction of RasGRP3 and Arp3 was validated by immunofluorescence staining and co-immunoprecipitation, and PMA, which activates RasGRP3 and induces its translocation to the peri-nuclear region, increased the association of Arp3 and RasGRP3. Arp3 was upregulated in GBM, regulated cell spreading and migration and its silencing partially decreased these effects of RasGRP3 in glioma cells. In summary, RasGRP3 acts as an important integrating signaling protein of the DAG and Ras signaling pathways and actin polymerization and represents an important therapeutic target in GBM. PMID:25682201

  7. Capns1, a new binding partner of RasGAP-SH3 domain in K-Ras(V12) oncogenic cells: modulation of cell survival and migration.

    PubMed

    Pamonsinlapatham, Perayot; Gril, Brunilde; Dufour, Sylvie; Hadj-Slimane, Réda; Gigoux, Véronique; Pethe, Stéphanie; L'hoste, Sébastien; Camonis, Jacques; Garbay, Christiane; Raynaud, Françoise; Vidal, Michel

    2008-11-01

    Ras GTPase-activating protein (RasGAP) is hypothesized to be an effector of oncogenic Ras stimulating numerous downstream cellular signaling cascades involved in survival, proliferation and motility. In this study, we identified calpain small subunit-1 (Capns1) as a new RasGAP-SH3 domain binding partner, using yeast two-hybrid screening. The interaction was confirmed by co-immunoprecipitation assay and was found specific to cells expressing oncogenic K-Ras. We used confocal microscopy to analyze our stably transfected cell model producing mutant Ras (PC3Ras(V12)). Staining for RasGAP-SH3/Capns1 co-localization was two-fold stronger in the protrusions of Ras(V12) cells than in PC3 cells. RasGAP or Capns1 knockdown in PC3Ras(V12) cells induced a two- to three-fold increase in apoptosis. Capns1 gene silencing reduced the speed and increased the persistence of movement in PC3Ras(V12) cells. In contrast, RasGAP knockdown in PC3Ras(V12) cells increased cell migration. Knockdown of both proteins altered the speed and directionality of cell motility. Our findings suggest that RasGAP and Capns1 interaction in oncogenic Ras cells is involved in regulating migration and cell survival.

  8. Mutation-Specific RAS Oncogenicity Explains N-RAS Codon 61 Selection in Melanoma

    PubMed Central

    Burd, Christin E.; Liu, Wenjin; Huynh, Minh V.; Waqas, Meriam A.; Gillahan, James E.; Clark, Kelly S.; Fu, Kailing; Martin, Brit L.; Jeck, William R.; Souroullas, George P.; Darr, David B.; Zedek, Daniel C.; Miley, Michael J.; Baguley, Bruce C.; Campbell, Sharon L.

    2014-01-01

    N-RAS mutation at codon 12, 13 or 61 is associated with transformation; yet, in melanoma, such alterations are nearly exclusive to codon 61. Here, we compared the melanoma susceptibility of an N-RasQ61R knock-in allele to similarly designed K-RasG12D and N-RasG12D alleles. With concomitant p16INK4a inactivation, K-RasG12D or N-RasQ61R expression efficiently promoted melanoma in vivo, whereas N-RasG12D did not. Additionally, N-RasQ61R mutation potently cooperated with Lkb1/Stk11 loss to induce highly metastatic disease. Functional comparisons of N-RasQ61R and N-RasG12D revealed little difference in the ability of these proteins to engage PI3K or RAF. Instead, N-RasQ61R showed enhanced nucleotide binding, decreased intrinsic GTPase activity and increased stability when compared to N-RasG12D. This work identifies a faithful model of human N-RAS mutant melanoma, and suggests that the increased melanomagenecity of N-RasQ61R over N-RasG12D is due to heightened abundance of the active, GTP-bound form rather than differences in the engagement of downstream effector pathways. PMID:25252692

  9. The NM23-H1/H2 homolog NDK-1 is required for full activation of Ras signaling in C. elegans

    PubMed Central

    Masoudi, Neda; Fancsalszky, Luca; Pourkarimi, Ehsan; Vellai, Tibor; Alexa, Anita; Reményi, Attila; Gartner, Anton; Mehta, Anil; Takács-Vellai, Krisztina

    2013-01-01

    The group I members of the Nm23 (non-metastatic) gene family encode nucleoside diphosphate kinases (NDPKs) that have been implicated in the regulation of cell migration, proliferation and differentiation. Despite their developmental and medical significance, the molecular functions of these NDPKs remain ill defined. To minimize confounding effects of functional compensation between closely related Nm23 family members, we studied ndk-1, the sole Caenorhabditis elegans ortholog of group I NDPKs, and focused on its role in Ras/mitogen-activated protein kinase (MAPK)-mediated signaling events during development. ndk-1 inactivation leads to a protruding vulva phenotype and affects vulval cell fate specification through the Ras/MAPK cascade. ndk-1 mutant worms show severe reduction of activated, diphosphorylated MAPK in somatic tissues, indicative of compromised Ras/MAPK signaling. A genetic epistasis analysis using the vulval induction system revealed that NDK-1 acts downstream of LIN-45/Raf, but upstream of MPK-1/MAPK, at the level of the kinase suppressors of ras (KSR-1/2). KSR proteins act as scaffolds facilitating Ras signaling events by tethering signaling components, and we suggest that NDK-1 modulates KSR activity through direct physical interaction. Our study reveals that C. elegans NDK-1/Nm23 influences differentiation by enhancing the level of Ras/MAPK signaling. These results might help to better understand how dysregulated Nm23 in humans contributes to tumorigenesis. PMID:23900546

  10. KRAS Mutant Pancreatic Cancer: No Lone Path to an Effective Treatment

    PubMed Central

    Zeitouni, Daniel; Pylayeva-Gupta, Yuliya; Der, Channing J.; Bryant, Kirsten L.

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is among the deadliest cancers with a dismal 7% 5-year survival rate and is projected to become the second leading cause of cancer-related deaths by 2020. KRAS is mutated in 95% of PDACs and is a well-validated driver of PDAC growth and maintenance. However, despite comprehensive efforts, an effective anti-RAS drug has yet to reach the clinic. Different paths to inhibiting RAS signaling are currently under investigation in the hope of finding a successful treatment. Recently, direct RAS binding molecules have been discovered, challenging the perception that RAS is an “undruggable” protein. Other strategies currently being pursued take an indirect approach, targeting proteins that facilitate RAS membrane association or downstream effector signaling. Unbiased genetic screens have identified synthetic lethal interactors of mutant RAS. Most recently, metabolic targets in pathways related to glycolytic signaling, glutamine utilization, autophagy, and macropinocytosis are also being explored. Harnessing the patient’s immune system to fight their cancer is an additional exciting route that is being considered. The “best” path to inhibiting KRAS has yet to be determined, with each having promise as well as potential pitfalls. We will summarize the state-of-the-art for each direction, focusing on efforts directed toward the development of therapeutics for pancreatic cancer patients with mutated KRAS. PMID:27096871

  11. Pleiotrophin mediates hematopoietic regeneration via activation of RAS.

    PubMed

    Himburg, Heather A; Yan, Xiao; Doan, Phuong L; Quarmyne, Mamle; Micewicz, Eva; McBride, William; Chao, Nelson J; Slamon, Dennis J; Chute, John P

    2014-11-01

    Hematopoietic stem cells (HSCs) are highly susceptible to ionizing radiation-mediated death via induction of ROS, DNA double-strand breaks, and apoptotic pathways. The development of therapeutics capable of mitigating ionizing radiation-induced hematopoietic toxicity could benefit both victims of acute radiation sickness and patients undergoing hematopoietic cell transplantation. Unfortunately, therapies capable of accelerating hematopoietic reconstitution following lethal radiation exposure have remained elusive. Here, we found that systemic administration of pleiotrophin (PTN), a protein that is secreted by BM-derived endothelial cells, substantially increased the survival of mice following radiation exposure and after myeloablative BM transplantation. In both models, PTN increased survival by accelerating the recovery of BM hematopoietic stem and progenitor cells in vivo. PTN treatment promoted HSC regeneration via activation of the RAS pathway in mice that expressed protein tyrosine phosphatase receptor-zeta (PTPRZ), whereas PTN treatment did not induce RAS signaling in PTPRZ-deficient mice, suggesting that PTN-mediated activation of RAS was dependent upon signaling through PTPRZ. PTN strongly inhibited HSC cycling following irradiation, whereas RAS inhibition abrogated PTN-mediated induction of HSC quiescence, blocked PTN-mediated recovery of hematopoietic stem and progenitor cells, and abolished PTN-mediated survival of irradiated mice. These studies demonstrate the therapeutic potential of PTN to improve survival after myeloablation and suggest that PTN-mediated hematopoietic regeneration occurs in a RAS-dependent manner.

  12. K-Ras Populates Conformational States Differently from Its Isoform H-Ras and Oncogenic Mutant K-RasG12D.

    PubMed

    Parker, Jillian A; Volmar, Alicia Y; Pavlopoulos, Spiro; Mattos, Carla

    2018-06-05

    Structures of wild-type K-Ras from crystals obtained in the presence of guanosine triphosphate (GTP) or its analogs have remained elusive. Of the K-Ras mutants, only K-RasG12D and K-RasQ61H are available in the PDB representing the activated form of the GTPase not in complex with other proteins. We present the crystal structure of wild-type K-Ras bound to the GTP analog GppCH 2 p, with K-Ras in the state 1 conformation. Signatures of conformational states obtained by one-dimensional proton NMR confirm that K-Ras has a more substantial population of state 1 in solution than H-Ras, which predominantly favors state 2. The oncogenic mutant K-RasG12D favors state 2, changing the balance of conformational states in favor of interactions with effector proteins. Differences in the population of conformational states between K-Ras and H-Ras, as well as between K-Ras and its mutants, can provide a structural basis for focused targeting of the K-Ras isoform in cancer-specific strategies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Investigation into the Mechanism of Homo- and Heterodimerization of Angiotensin-Converting Enzyme.

    PubMed

    Abrie, J Albert; Moolman, Wessel J A; Cozier, Gyles E; Schwager, Sylva L; Acharya, K Ravi; Sturrock, Edward D

    2018-04-01

    Angiotensin-converting enzyme (ACE) plays a central role in the renin-angiotensin system (RAS), which is primarily responsible for blood pressure homeostasis. Studies have shown that ACE inhibitors yield cardiovascular benefits that cannot be entirely attributed to the inhibition of ACE catalytic activity. It is possible that these benefits are due to interactions between ACE and RAS receptors that mediate the protective arm of the RAS, such as angiotensin II receptor type 2 (AT 2 R) and the receptor MAS. Therefore, in this study, we investigated the molecular interactions of ACE, including ACE homodimerization and heterodimerization with AT 2 R and MAS, respectively. Molecular interactions were assessed by fluorescence resonance energy transfer and bimolecular fluorescence complementation in human embryonic kidney 293 cells and Chinese hamster ovary-K1 cells transfected with vectors encoding fluorophore-tagged proteins. The specificity of dimerization was verified by competition experiments using untagged proteins. These techniques were used to study several potential requirements for the germinal isoform of angiotensin-converting enzyme expressed in the testes (tACE) dimerization as well as the effect of ACE inhibitors on both somatic isoforms of angiotensin-converting enzyme expressed in the testes (sACE) and tACE dimerization. We demonstrated constitutive homodimerization of sACE and of both of its domains separately, as well as heterodimerization of both sACE and tACE with AT 2 R, but not MAS. In addition, we investigated both soluble sACE and the sACE N domain using size-exclusion chromatography-coupled small-angle X-ray scattering and we observed dimers in solution for both forms of the enzyme. Our results suggest that ACE homo- and heterodimerization does occur under physiologic conditions. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  14. The Lymphatic Phenotype of Lung Allografts in Patients With Bronchiolitis Obliterans Syndrome and Restrictive Allograft Syndrome.

    PubMed

    Traxler, Denise; Schweiger, Thomas; Schwarz, Stefan; Schuster, Magdalena Maria; Jaksch, Peter; Lang, Gyoergy; Birner, Peter; Klepetko, Walter; Ankersmit, Hendrik Jan; Hoetzenecker, Konrad

    2017-02-01

    Chronic lung allograft dysfunction (CLAD), presenting as bronchiolitis obliterans syndrome (BOS) or restrictive allograft syndrome (RAS) is the major limiting factor of long-term survival in lung transplantation. Its pathogenesis is still obscure. In BOS, persistent alloimmune injury and chronic airway inflammation are suggested. One of the main tasks of the lymphatic vessel (LV) system is the promotion of immune cell trafficking. The formation of new LVs has been shown to trigger chronic allograft rejection in kidney transplants. We therefore sought to address the role of lymphangiogenesis in CLAD. Formalin-fixed paraffin-embedded tissue samples of 22 patients receiving a lung retransplantation due to BOS or RAS were collected. Lymphatic vessel density (LVD) was determined by immunohistochemical staining for podoplanin. Lung tissue obtained from 13 non-CLAD patients served as control. The impact of LVD on graft survival was assessed. Lymphatic vessel density in CLAD patients did not differ from those in control subjects (median number of LVs per bronchiole: 4.75 (BOS), 6.47 (RAS), 4.25 (control), P = 0.97). Moreover, the number of LVs was not associated with regions of cellular infiltrates (median number of LVs per bronchiole: with infiltrates, 5.00 (BOS), 9.00 (RAS), 4.00 (control), P = 0.62; without infiltrates, 4.5 (BOS), 0.00 (RAS), 4.56 (control), P = 0.74). Lymphatic vessel density did not impact the time to development of BOS or RAS in lung transplantation (low vs high LVD: 38.5 vs 86.0 months, P = 0.15 [BOS]; 60.5 vs 69.5 months, P = 0.80 [RAS]). Unlike chronic organ failure in kidney transplantation, lymphangiogenesis is not altered in CLAD patients. Our findings highlight unique immunological processes leading to BOS and RAS.

  15. A mouse model for Costello syndrome reveals an Ang II–mediated hypertensive condition

    PubMed Central

    Schuhmacher, Alberto J.; Guerra, Carmen; Sauzeau, Vincent; Cañamero, Marta; Bustelo, Xosé R.; Barbacid, Mariano

    2008-01-01

    Germline activation of H-RAS oncogenes is the primary cause of Costello syndrome (CS), a neuro-cardio-facio-cutaneous developmental syndrome. Here we describe the generation of a mouse model of CS by introduction of an oncogenic Gly12Val mutation in the mouse H-Ras locus using homologous recombination in ES cells. Germline expression of the endogenous H-RasG12V oncogene, even in homozygosis, resulted in hyperplasia of the mammary gland. However, development of tumors in these mice was rare. H-RasG12V mutant mice closely phenocopied some of the abnormalities observed in patients with CS, including facial dysmorphia and cardiomyopathies. These mice also displayed alterations in the homeostasis of the cardiovascular system, including development of systemic hypertension, extensive vascular remodeling, and fibrosis in both the heart and the kidneys. This phenotype was age dependent and was a consequence of the abnormal upregulation of the renin–Ang II system. Treatment with captopril, an inhibitor of Ang II biosynthesis, prevented development of the hypertension condition, vascular remodeling, and heart and kidney fibrosis. In addition, it partially alleviated the observed cardiomyopathies. These mice should help in elucidating the etiology of CS symptoms, identifying additional defects, and evaluating potential therapeutic strategies. PMID:18483625

  16. A century old renin-angiotensin system still grows with endless possibilities: AT1 receptor signaling cascades in cardiovascular physiopathology.

    PubMed

    Balakumar, Pitchai; Jagadeesh, Gowraganahalli

    2014-10-01

    Ang II, the primary effector pleiotropic hormone of the renin-angiotensin system (RAS) cascade, mediates physiological control of blood pressure and electrolyte balance through its action on vascular tone, aldosterone secretion, renal sodium absorption, water intake, sympathetic activity and vasopressin release. It affects the function of most of the organs far beyond blood pressure control including heart, blood vessels, kidney and brain, thus, causing both beneficial and deleterious effects. However, the protective axis of the RAS composed of ACE2, Ang (1-7), alamandine, and Mas and MargD receptors might oppose some harmful effects of Ang II and might promote beneficial cardiovascular effects. Newly identified RAS family peptides, Ang A and angioprotectin, further extend the complexities in understanding the cardiovascular physiopathology of RAS. Most of the diverse actions of Ang II are mediated by AT1 receptors, which couple to classical Gq/11 protein and activate multiple downstream signals, including PKC, ERK1/2, Raf, tyrosine kinases, receptor tyrosine kinases (EGFR, PDGF, insulin receptor), nuclear factor κB and reactive oxygen species (ROS). Receptor activation via G12/13 stimulates Rho-kinase, which causes vascular contraction and hypertrophy. The AT1 receptor activation also stimulates G protein-independent signaling pathways such as β-arrestin-mediated MAPK activation and Src-JAK/STAT. AT1 receptor-mediated activation of NADPH oxidase releases ROS, resulting in the activation of pro-inflammatory transcription factors and stimulation of small G proteins such as Ras, Rac and RhoA. The components of the RAS and the major Ang II-induced signaling cascades of AT1 receptors are reviewed. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Up-regulation of renal renin-angiotensin system and inflammatory mechanisms in the prenatal programming by low-protein diet: beneficial effect of the post-weaning losartan treatment.

    PubMed

    Watanabe, I K M; Jara, Z P; Volpini, R A; Franco, M D C; Jung, F F; Casarini, D E

    2018-05-06

    Previous studies have shown that the renin-angiotensin system (RAS) is affected by adverse maternal nutrition during pregnancy. The aim of this study was to investigate the effects of a maternal low-protein diet on proinflammatory cytokines, reactive oxygen species and RAS components in kidney samples isolated from adult male offspring. We hypothesized that post-weaning losartan treatment would have beneficial effects on RAS activity and inflammatory and oxidative stress markers in these animals. Pregnant Sprague-Dawley rats were fed with a control (20% casein) or low-protein diet (LP) (6% casein) throughout gestation. After weaning, the LP pups were randomly assigned to LP and LP-losartan groups (AT1 receptor blockade: 10 mg/kg/day until 20 weeks of age). At 20 weeks of age, blood pressure levels were higher and renal RAS was activated in the LP group. We also observed several adverse effects in the kidneys of the LP group, including a higher number of CD3, CD68 and proliferating cell nuclear antigen-positive cells and higher levels of collagen and reactive oxygen species in the kidney. Further, our results revealed that post-weaning losartan treatment completely abolished immune cell infiltration and intrarenal RAS activation in the kidneys of LP rats. The prevention of augmentation of angiotensin (Ang II) concentration abolished inflammatory and fibrotic events, indicating that Ang II via the AT1 receptor is essential for pathological initiation. Our results suggest that the prenatal programming of hypertension is dependent on the up-regulation of local RAS and presence of immune cells in the kidney.

  18. Clinical impacts of inhibition of renin-angiotensin system in patients with acute ST-segment elevation myocardial infarction who underwent successful late percutaneous coronary intervention.

    PubMed

    Park, Hyukjin; Kim, Hyun Kuk; Jeong, Myung Ho; Cho, Jae Yeong; Lee, Ki Hong; Sim, Doo Sun; Yoon, Nam Sik; Yoon, Hyun Ju; Hong, Young Joon; Kim, Kye Hun; Park, Hyung Wook; Kim, Ju Han; Ahn, Youngkeun; Cho, Jeong Gwan; Park, Jong Chun; Kim, Young Jo; Cho, Myeong Chan; Kim, Chong Jim

    2017-01-01

    Successful percutaneous coronary intervention (PCI) of the occluded infarct-related artery (IRA) in latecomers may improve long-term survival mainly by reducing left ventricular remodeling. It is not clear whether inhibition of renin-angiotensin system (RAS) brings additional better clinical outcomes in this specific population subset. Between January 2008 and June 2013, 669 latecomer patients with acute ST-segment elevation myocardial infarction (STEMI) (66.2±12.1 years, 71.0% males) in Korea Acute Myocardial Infarction Registry (KAMIR) who underwent a successful PCI were enrolled. The study population underwent a successful PCI for a totally occluded IRA. They were divided into two groups according to whether they were prescribed RAS inhibitors at the time of discharge: group I (RAS inhibition, n=556), and group II (no RAS inhibition, n=113). During the one-year follow-up, major adverse cardiac events (MACE), which consist of cardiac death and myocardial infarction, occurred in 71 patients (10.6%). There were significantly reduced incidences of MACE in the group I (hazard ratio=0.34, 95% confidence interval 0.199-0.588, p=0.001). In subgroup analyses, RAS inhibition was beneficial in patients with male gender, history of hypertension or diabetes mellitus, and even in patients with left ventricular ejection fraction (LVEF) ≥40%. In the baseline and follow-up echocardiographic data, benefit in changes of LVEF and left ventricular end-systolic volume was noted in group I. In latecomers with STEMI, RAS inhibition improved long-term clinical outcomes after a successful PCI, even in patients with low risk who had relatively preserved LVEF. Copyright © 2016 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  19. A label-free colorimetric isothermal cascade amplification for the detection of disease-related nucleic acids based on double-hairpin molecular beacon.

    PubMed

    Wu, Dong; Xu, Huo; Shi, Haimei; Li, Weihong; Sun, Mengze; Wu, Zai-Sheng

    2017-03-08

    K-Ras mutations at codon 12 play an important role in an early step of carcinogenesis. Here, a label-free colorimetric isothermal cascade amplification for ultrasensitive and specific detection of K-Ras point mutation is developed based on a double-hairpin molecular beacon (DHMB). The biosensor consists of DHMB probe and a primer-incorporated polymerization template (PPT) designed partly complementary to DHMB. In the presence of polymerase, target DNA is designed to trigger strand displacement amplification (SDA) via promote the hybridization of PPT with DHMB and subsequently initiates cascade amplification process with the help of the nicking endonuclease. During the hybridization and enzymatic reaction, G-quadruplex/hemin DNAzymes are generated, catalyzing the oxidation of ABTS 2- by H 2 O 2 in the presence of hemin. Utilizing the proposed facile colorimetric scheme, the target DNA can be quantified down to 4 pM with the dynamic response range of 5 orders of magnitude, indicating the substantially improved detection capability. Even more strikingly, point mutation in K-ras gene can be readily observed by the naked eye without the need for the labeling or expensive equipment. Given the high-performance for K-Ras analysis, the enhanced signal transduction capability associated with double-hairpin structure of DHMB provides a novel rout to screen biomarkers, and the descripted colorimetric biosensor seems to hold great promise for diagnostic applications of genetic diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Multistep carcinogenesis of normal human fibroblasts. Human fibroblasts immortalized by repeated treatment with Co-60 gamma rays were transformed into tumorigenic cells with Ha-ras oncogenes.

    PubMed

    Namba, M; Nishitani, K; Fukushima, F; Kimoto, T

    1988-01-01

    Two normal mortal human fibroblast cell strains were transformed into immortal cell lines, SUSM-1 and KMST-6, by treatment with 4-nitroquinoline 1-oxide (4NQO) and Co-60 gamma rays, respectively. These immortalized cell lines showed morphological changes of cells and remarkable chromosome aberrations, but neither of them grew in soft agar or formed tumors in nude mice. The immortal cell line, KMST-6, was then converted into neoplastic cells by treatment with Harvey murine sarcoma virus (Ha-MSV) or the c-Ha-ras oncogene derived from a human lung carcinoma. These neoplastically transformed cells acquired anchorage-independent growth potential and developed tumors when transplanted into nude mice. All the tumors grew progressively without regression until the animals died of tumors. In addition, the tumors were transplantable into other nude mice. Normal human fibroblasts, on the other hand, were not transformed into either immortal or tumorigenic cells by treatment with Ha-MSV or c-Ha-ras alone. Our present data indicate that (1) the chemical carcinogen, 4NQO, or gamma rays worked as an initiator of carcinogenesis in normal human cells, giving rise to immortality, and (2) the ras gene played a role in the progression of the immortally transformed cells to more malignant cells showing anchorage-independent growth and tumorigenicity. In other words, the immortalization process of human cells seems to be a pivotal or rate-limiting step in the carcinogenesis of human cells.

  1. A MEK Inhibitor Abrogates Myeloproliferative Disease in Kras Mutant Mice

    PubMed Central

    Lyubynska, Natalya; Gorman, Matthew F.; Lauchle, Jennifer O.; Hong, Wan Xing; Akutagawa, Jon K.; Shannon, Kevin; Braun, Benjamin S.

    2012-01-01

    Chronic and juvenile myelomonocytic leukemias (CMML and JMML) are aggressive myeloproliferative neoplasms that are incurable with conventional chemotherapy. Mutations that deregulate Ras signaling play a central pathogenic role in both disorders, and Mx1-Cre, KrasLSL-G12D mice that express the Kras oncogene develop a fatal disease that closely mimics these two leukemias in humans. Activated Ras controls multiple downstream effectors, but the specific pathways that mediate the leukemogenic effects of hyperactive Ras are unknown. We used PD0325901, a highly selective pharmacological inhibitor of mitogen-activated protein kinase kinase (MEK), a downstream component of the Ras signaling network, to address how deregulated Raf/MEK/ERK signaling drives neoplasm formation in Mx1-Cre, KrasLSL-G12D mice. PD0325901 treatment induced a rapid and sustained reduction in leukocyte counts, enhanced erythropoiesis, prolonged mouse survival, and corrected the aberrant proliferation and differentiation of bone marrow progenitor cells. These responses were due to direct effects of PD0325901 on Kras mutant cells rather than to stimulation of normal hematopoietic cell proliferation. Consistent with the in vivo response, inhibition of MEK reversed the cytokine hypersensitivity characteristic of KrasG12D hematopoietic progenitor cells in vitro. Our data demonstrate that deregulated Raf/MEK/ERK signaling is integral to the growth of Kras-mediated myeloproliferative neoplasias, and further suggest that MEK inhibition could be a useful way to ameliorate functional hematologic abnormalities in patients with CMML and JMML. PMID:21451123

  2. Loss reduction in a rainbow trout recirculating aquaculture systems (RAS) by periodical disinfection with peracetic acid (PAA)

    USDA-ARS?s Scientific Manuscript database

    In a research rainbow trout (Oncorhynchus mykiss) RAS, two different sized raceways were operated with one common biofilter unit. The larger raceway was stocked with food fish, while the smaller raceway was stocked with juvenile trout. After removal of the food fish, juveniles were moved into free s...

  3. Alternative prophylaxis/disinfection in aquaculture - Adaptable stress induced by peracetic acid at low concentration and its application strategy in RAS

    USDA-ARS?s Scientific Manuscript database

    The application of peracetic acid (PAA) at low concentrations has been proven to be a broad-functioning and eco-friendly prophylaxis/disinfection method against various fish pathogens. However, there is lack of knowledge on how to apply PAA in a recirculating aquaculture system (RAS), and whether th...

  4. Association Between Increased Vascular Density and Loss of Protective RAS in Early-stage NPDR

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan; Raghunandan, Sneha; Vyas, Ruchi J.; Vu, Amanda C.; Bryant, Douglas; Yaqian, Duan; Knecht, Brenda E.; Grant, Maria B.; Chalam, K. V.; Parsons-Wingerter, Patricia

    2016-01-01

    Our hypothesis predicts that retinal blood vessels increase in density during early-stage progression to moderate nonproliferative diabetic retinopathy (NPDR). The renin-angiotensin system (RAS) is implicated in the pathogenesis of DR and in the function of circulating angiogenic cells (CACs), a critical bone marrow-derived population that is instrumental in vascular repair.

  5. Molecular and Behavioral Changes Associated with Adult Hippocampus-Specific SynGAP1 Knockout

    ERIC Educational Resources Information Center

    Muhia, Mary; Willadt, Silvia; Yee, Benjamin K.; Feldon, Joram; Paterna, Jean-Charles; Schwendener, Severin; Vogt, Kaspar; Kennedy, Mary B.; Knuesel, Irene

    2012-01-01

    The synaptic Ras/Rap-GTPase-activating protein (SynGAP1) plays a unique role in regulating specific downstream intracellular events in response to N-methyl-D-aspartate receptor (NMDAR) activation. Constitutive heterozygous loss of SynGAP1 disrupts NMDAR-mediated physiological and behavioral processes, but the disruptions might be of developmental…

  6. The effect of a robot-assisted surgical system on the kinematics of user movements.

    PubMed

    Nisky, Ilana; Hsieh, Michael H; Okamura, Allison M

    2013-01-01

    Teleoperated robot-assisted surgery (RAS) offers many advantages over traditional minimally invasive surgery. However, RAS has not yet realized its full potential, and it is not clear how to optimally train surgeons to use these systems. We hypothesize that the dynamics of the master manipulator impact the ability of users to make desired movements with the robot. We compared freehand and teleoperated movements of novices and experienced surgeons. To isolate the effects of dynamics from procedural knowledge, we chose simple movements rather than surgical tasks. We found statistically significant effects of teleoperation and user expertise in several aspects of motion, including target acquisition error, movement speed, and movement smoothness. Such quantitative assessment of human motor performance in RAS can impact the design of surgical robots, their control, and surgeon training methods, and eventually, improve patient outcomes.

  7. Hydrologic Engineering Center River Analysis System (HEC-RAS) Water Temperature Models Developed for the Missouri River Recovery Management Plan and Environmental Impact Statement

    DTIC Science & Technology

    2017-09-18

    Temperature Models Developed for the Missouri River Recovery Management Plan and Environmental Impact Statement En vi ro nm en ta l L ab or at or y...Engineering Center-River Analysis System (HEC-RAS) Water Temperature Models Developed for the Missouri River Recovery Management Plan and Environmental...Prepared for U.S. Army Corps of Engineers Washington, DC 20314-1000 Under Project 396939, “Missouri River Recovery Management Plan and Environmental

  8. Macrophage migration inhibitory factor promotes osteosarcoma growth and lung metastasis through activating the RAS/MAPK pathway.

    PubMed

    Wang, Chen; Zhou, Xing; Li, Wentao; Li, Mingyue; Tu, Tingyue; Ba, Ximing; Wu, Yinyu; Huang, Zhen; Fan, Gentao; Zhou, Guangxin; Wu, Sujia; Zhao, Jianning; Zhang, Junfeng; Chen, Jiangning

    2017-09-10

    Emerging evidence suggests that the tumour microenvironment plays a critical role in osteosarcoma (OS) development. Thus, cytokine immunotherapy could be a novel strategy for OS treatment. In this study, we explored the role of macrophage migration inhibitory factor (MIF), an important cytokine in OS progression, and investigated the anti-tumour effects of targeting MIF in OS. The results showed that MIF significantly increased in the tissue and serum samples of OS patients and was associated with tumour size, pulmonary metastasis and the survival rate of OS patients. We verified a positive correlation between MIF and p-ERK1/2 in OS patients. The in vitro results indicated that MIF could activate the RAS/MAPK pathway in a time- and dose-dependent manner, thereby promoting cell proliferation and migration. Furthermore, shRNA targeting MIF significantly inhibited tumour growth and lung metastasis in a mouse xenograft model and orthotopic model of OS. Additionally, inhibition of MIF significantly enhanced the sensitivity of OS cells to cisplatin and doxorubicin. Our findings suggest that immunotherapy targeting MIF to block the RAS/MAPK kinase cascade may represent a feasible and promising approach for OS treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Fra-1 promotes growth and survival in RAS-transformed thyroid cells by controlling cyclin A transcription

    PubMed Central

    Casalino, Laura; Bakiri, Latifa; Talotta, Francesco; Weitzman, Jonathan B; Fusco, Alfredo; Yaniv, Moshe; Verde, Pasquale

    2007-01-01

    Fra-1 is frequently overexpressed in epithelial cancers and implicated in invasiveness. We previously showed that Fra-1 plays crucial roles in RAS transformation in rat thyroid cells and mouse fibroblasts. Here, we report a novel role for Fra-1 as a regulator of mitotic progression in RAS-transformed thyroid cells. Fra-1 expression and phosphorylation are regulated during the cell cycle, peaking at G2/M. Knockdown of Fra-1 caused a proliferative block and apoptosis. Although most Fra-1-knockdown cells accumulated in G2, a fraction of cells entering M-phase underwent abortive cell division and exhibited hallmarks of genomic instability (micronuclei, lagging chromosomes and anaphase bridges). Furthermore, we established a link between Fra-1 and the cell-cycle machinery by identifying cyclin A as a novel transcriptional target of Fra-1. During the cell cycle, Fra-1 was recruited to the cyclin A gene (ccna2) promoter, binding to previously unidentified AP-1 sites and the CRE. Fra-1 also induced the expression of JunB, which in turn interacts with the cyclin A promoter. Hence, Fra-1 induction is important in thyroid tumorigenesis, critically regulating cyclin expression and cell-cycle progression. PMID:17347653

  10. Molecular docking studies of anti-cancerous candidates in Hippophae rhamnoides and Hippophae salicifolia

    PubMed Central

    Usha, Talambedu; Middha, Sushil Kumar; Goyal, Arvind Kumar; Karthik, Mahesh; Manoj, DA; Faizan, Syed; Goyal, Peyush; Prashanth, HP; Pande, Veena

    2014-01-01

    Abstract Actinorhizal plants contain numerous antioxidants that may play a crucial role in preventing the formation of tumors. H-Ras p21, a member of the Ras-GTPase family, is a promising target to treat various kinds of cancers. An in silico docking study was carried out to identify the inhibitory potential of compounds of these plants against H-Ras by using Discovery Studio 3.5 and by using Autodock 4.2. Docking studies revealed that four compounds, isorhamnetin-7-rhamnoside, quercetin-3-glucoside-7-rhamnoside (present in H. rhamnoides), zeaxanthin, and translutein (present in H. salicifolia) significantly bind with binding energies −17.1534, −14.7936, −10.2105 and −17.2217 Kcal/mol, respectively, even though they slightly deviate from Lipinski's rule. Absorption, distribution, metabolism, excretion and toxicity (ADME/tox) analyses of these compounds and their stereoisomers showed that they were less toxic and non-mutagenic. Amongst them, isorhamntein-7-rhamnoside showed hepatotoxicity. Hence, these compounds can be further investigated in vivo to optimize their formulation and concentration and to develop potential chemical entities for the prevention and treatment of cancers. PMID:25332713

  11. Bacillus subtilis Intramembrane Protease RasP Activity in Escherichia coli and In Vitro.

    PubMed

    Parrell, Daniel; Zhang, Yang; Olenic, Sandra; Kroos, Lee

    2017-10-01

    RasP is a predicted intramembrane metalloprotease of Bacillus subtilis that has been proposed to cleave the stress response anti-sigma factors RsiW and RsiV, the cell division protein FtsL, and remnant signal peptides within their transmembrane segments. To provide evidence for direct effects of RasP on putative substrates, we developed a heterologous coexpression system. Since expression of catalytically inactive RasP E21A inhibited expression of other membrane proteins in Escherichia coli , we added extra transmembrane segments to RasP E21A, which allowed accumulation of most other membrane proteins. A corresponding active version of RasP appeared to promiscuously cleave coexpressed membrane proteins, except those with a large periplasmic domain. However, stable cleavage products were not observed, even in clpP mutant E. coli Fusions of transmembrane segment-containing parts of FtsL and RsiW to E. coli maltose-binding protein (MBP) also resulted in proteins that appeared to be RasP substrates upon coexpression in E. coli , including FtsL with a full-length C-terminal domain (suggesting that prior cleavage by a site 1 protease is unnecessary) and RsiW designed to mimic the PrsW site 1 cleavage product (suggesting that further trimming by extracytoplasmic protease is unnecessary). Purified RasP cleaved His 6 -MBP-RsiW(73-118) in vitro within the RsiW transmembrane segment based on mass spectrometry analysis, demonstrating that RasP is an intramembrane protease. Surprisingly, purified RasP failed to cleave His 6 -MBP-FtsL(23-117). We propose that the lack of α-helix-breaking residues in the FtsL transmembrane segment creates a requirement for the membrane environment and/or an additional protein(s) in order for RasP to cleave FtsL. IMPORTANCE Intramembrane proteases govern important signaling pathways in nearly all organisms. In bacteria, they function in stress responses, cell division, pathogenesis, and other processes. Their membrane-associated substrates are typically inferred from genetic studies in the native bacterium. Evidence for direct effects has come sometimes from coexpression of the enzyme and potential substrate in a heterologous host and rarely from biochemical reconstitution of cleavage in vitro We applied these two approaches to the B. subtilis enzyme RasP and its proposed substrates RsiW and FtsL. We discovered potential pitfalls and solutions in heterologous coexpression experiments in E. coli , providing evidence that both substrates are cleaved by RasP in vivo but, surprisingly, that only RsiW was cleaved in vitro , suggesting that FtsL has an additional requirement. Copyright © 2017 American Society for Microbiology.

  12. Resistance of R-Ras knockout mice to skin tumour induction

    PubMed Central

    May, Ulrike; Prince, Stuart; Vähätupa, Maria; Laitinen, Anni M.; Nieminen, Katriina; Uusitalo-Järvinen, Hannele; Järvinen, Tero A. H.

    2015-01-01

    The R-ras gene encodes a small GTPase that is a member of the Ras family. Despite close sequence similarities, R-Ras is functionally distinct from the prototypic Ras proteins; no transformative activity and no activating mutations of R-Ras in human malignancies have been reported for it. R-Ras activity appears inhibitory towards tumour proliferation and invasion, and to promote cellular quiescence. Contrary to this, using mice with a deletion of the R-ras gene, we found that R-Ras facilitates DMBA/TPA-induced skin tumour induction. The tumours appeared in wild-type (WT) mice on average 6 weeks earlier than in R-Ras knockout (R-Ras KO) mice. WT mice developed almost 6 times more tumours than R-Ras KO mice. Despite strong R-Ras protein expression in the dermal blood vessels, no R-Ras could be detected in the epidermis from where the tumours arose. The DMBA/TPA skin tumourigenesis-model is highly dependent upon inflammation, and we found a greatly attenuated skin inflammatory response to DMBA/TPA-treatment in the R-Ras KO mice in the context of leukocyte infiltration and proinflammatory cytokine expression. Thus, these data suggest that despite its characterised role in promoting cellular quiescence, R-Ras is pro-tumourigenic in the DMBA/TPA tumour model and important for the inflammatory response to DMBA/TPA treatment. PMID:26133397

  13. Focal adhesions and Ras are functionally and spatially integrated to mediate IL-1 activation of ERK

    PubMed Central

    Wang, Qin; Downey, Gregory P.; McCulloch, Christopher A.

    2011-01-01

    In connective tissue cells, IL-1-induced ERK activation leading to matrix metalloproteinase (MMP)-3 expression is dependent on cooperative interactions between focal adhesions and the endoplasmic reticulum (ER). As Ras can be activated on the ER, we investigated the role of Ras in IL-1 signaling and focal adhesion formation. We found that constitutively active H-Ras, K-Ras or N-Ras enhanced focal adhesion maturation and β1-integrin activation. IL-1 promoted the accumulation of Ras isoforms in ER and focal adhesion fractions, as shown in cells cotransfected with GFP-tagged Ras isoforms and YFP-ER protein and by analysis of subcellular fractions enriched for ER or focal adhesion proteins. Dominant-negative H-Ras or K-Ras reduced accumulation of H-Ras and K-Ras in focal adhesions induced by IL-1 and also blocked ERK activation and focal adhesion maturation. Ras-GRF was enriched constitutively in focal adhesion fractions and was required for Ras recruitment to focal adhesions. We conclude that Ras activation and IL-1 signaling are interactive processes that regulate the maturation of focal adhesions, which, in turn, is required for ERK activation.—Wang, Q., Downey, G. P., McCulloch, C. A. Focal adhesions and Ras are functionally and spatially integrated to mediate IL-1 activation of ERK. PMID:21719512

  14. Targeting the RAS oncogene

    PubMed Central

    Takashima, Asami

    2013-01-01

    Introduction The Ras proteins (K-Ras, N-Ras, H-Ras) are GTPases that function as molecular switches for a variety of critical cellular activities and their function is tightly and temporally regulated in normal cells. Oncogenic mutations in the RAS genes, which create constitutively-active Ras proteins, can result in uncontrolled proliferation or survival in tumor cells. Areas covered The paper discusses three therapeutic approaches targeting the Ras pathway in cancer: 1) Ras itself, 2) Ras downstream pathways, and 3) synthetic lethality. The most adopted approach is targeting Ras downstream signaling, and specifically the PI3K-AKT-mTOR and Raf-MEK pathways, as they are frequently major oncogenic drivers in cancers with high Ras signaling. Although direct targeting of Ras has not been successful clinically, newer approaches being investigated in preclinical studies, such as RNA interference-based and synthetic lethal approaches, promise great potential for clinical application. Expert opinion The challenges of current and emerging therapeutics include the lack of “tumor specificity” and their limitation to those cancers which are “dependent” upon aberrant Ras signaling for survival. While the newer approaches have the potential to overcome these limitations, they also highlight the importance of robust preclinical studies and bidirectional translational research for successful clinical development of Ras-related targeted therapies. PMID:23360111

  15. A gene expression signature of RAS pathway dependence predicts response to PI3K and RAS pathway inhibitors and expands the population of RAS pathway activated tumors.

    PubMed

    Loboda, Andrey; Nebozhyn, Michael; Klinghoffer, Rich; Frazier, Jason; Chastain, Michael; Arthur, William; Roberts, Brian; Zhang, Theresa; Chenard, Melissa; Haines, Brian; Andersen, Jannik; Nagashima, Kumiko; Paweletz, Cloud; Lynch, Bethany; Feldman, Igor; Dai, Hongyue; Huang, Pearl; Watters, James

    2010-06-30

    Hyperactivation of the Ras signaling pathway is a driver of many cancers, and RAS pathway activation can predict response to targeted therapies. Therefore, optimal methods for measuring Ras pathway activation are critical. The main focus of our work was to develop a gene expression signature that is predictive of RAS pathway dependence. We used the coherent expression of RAS pathway-related genes across multiple datasets to derive a RAS pathway gene expression signature and generate RAS pathway activation scores in pre-clinical cancer models and human tumors. We then related this signature to KRAS mutation status and drug response data in pre-clinical and clinical datasets. The RAS signature score is predictive of KRAS mutation status in lung tumors and cell lines with high (> 90%) sensitivity but relatively low (50%) specificity due to samples that have apparent RAS pathway activation in the absence of a KRAS mutation. In lung and breast cancer cell line panels, the RAS pathway signature score correlates with pMEK and pERK expression, and predicts resistance to AKT inhibition and sensitivity to MEK inhibition within both KRAS mutant and KRAS wild-type groups. The RAS pathway signature is upregulated in breast cancer cell lines that have acquired resistance to AKT inhibition, and is downregulated by inhibition of MEK. In lung cancer cell lines knockdown of KRAS using siRNA demonstrates that the RAS pathway signature is a better measure of dependence on RAS compared to KRAS mutation status. In human tumors, the RAS pathway signature is elevated in ER negative breast tumors and lung adenocarcinomas, and predicts resistance to cetuximab in metastatic colorectal cancer. These data demonstrate that the RAS pathway signature is superior to KRAS mutation status for the prediction of dependence on RAS signaling, can predict response to PI3K and RAS pathway inhibitors, and is likely to have the most clinical utility in lung and breast tumors.

  16. Molecular mechanisms and signaling pathways of angiotensin II-induced muscle wasting: potential therapeutic targets for cardiac cachexia

    PubMed Central

    Yoshida, Tadashi; Tabony, A. Michael; Galvez, Sarah; Mitch, William E.; Higashi, Yusuke; Sukhanov, Sergiy; Delafontaine, Patrice

    2013-01-01

    Cachexia is a serious complication of many chronic diseases, such as congestive heart failure (CHF) and chronic kidney disease (CKD). Many factors are involved in the development of cachexia, and there is increasing evidence that angiotensin II (Ang II), the main effector molecule of the renin-angiotensin system (RAS), plays an important role in this process. Patients with advanced CHF or CKD often have increased Ang II levels and cachexia, and angiotensin-converting enzyme (ACE) inhibitor treatment improves weight loss. In rodent models, an increase in systemic Ang II leads to weight loss through increased protein breakdown, reduced protein synthesis in skeletal muscle and decreased appetite. Ang II activates the ubiquitin-proteasome system via generation of reactive oxygen species and via inhibition of the insulin-like growth factor-1 signaling pathway. Furthermore, Ang II inhibits 5′ AMP-activated protein kinase (AMPK) activity and disrupts normal energy balance. Ang II also increases cytokines and circulating hormones such as tumor necrosis factor-α, interleukin-6, serum amyloid-A, glucocorticoids and myostatin, which regulate muscle protein synthesis and degradation. Ang II acts on hypothalamic neurons to regulate orexigenic/anorexigenic neuropeptides, such as neuropeptide-Y, orexin and corticotropin-releasing hormone, leading to reduced appetite. Also, Ang II may regulate skeletal muscle regenerative processes. Several clinical studies have indicated that blockade of Ang II signaling via ACE inhibitors or Ang II type 1 receptor blockers prevents weight loss and improves muscle strength. Thus the RAS is a promising target for the treatment of muscle atrophy in patients with CHF and CKD. PMID:23769949

  17. A Histidine pH sensor regulates activation of the Ras-specific guanine nucleotide exchange factor RasGRP1.

    PubMed

    Vercoulen, Yvonne; Kondo, Yasushi; Iwig, Jeffrey S; Janssen, Axel B; White, Katharine A; Amini, Mojtaba; Barber, Diane L; Kuriyan, John; Roose, Jeroen P

    2017-09-27

    RasGRPs are guanine nucleotide exchange factors that are specific for Ras or Rap, and are important regulators of cellular signaling. Aberrant expression or mutation of RasGRPs results in disease. An analysis of RasGRP1 SNP variants led to the conclusion that the charge of His 212 in RasGRP1 alters signaling activity and plasma membrane recruitment, indicating that His 212 is a pH sensor that alters the balance between the inactive and active forms of RasGRP1. To understand the structural basis for this effect we compared the structure of autoinhibited RasGRP1, determined previously, to those of active RasGRP4:H-Ras and RasGRP2:Rap1b complexes. The transition from the autoinhibited to the active form of RasGRP1 involves the rearrangement of an inter-domain linker that displaces inhibitory inter-domain interactions. His 212 is located at the fulcrum of these conformational changes, and structural features in its vicinity are consistent with its function as a pH-dependent switch.

  18. Structural analysis of autoinhibition in the Ras-specific exchange factor RasGRP1

    PubMed Central

    Iwig, Jeffrey S; Vercoulen, Yvonne; Das, Rahul; Barros, Tiago; Limnander, Andre; Che, Yan; Pelton, Jeffrey G; Wemmer, David E; Roose, Jeroen P; Kuriyan, John

    2013-01-01

    RasGRP1 and SOS are Ras-specific nucleotide exchange factors that have distinct roles in lymphocyte development. RasGRP1 is important in some cancers and autoimmune diseases but, in contrast to SOS, its regulatory mechanisms are poorly understood. Activating signals lead to the membrane recruitment of RasGRP1 and Ras engagement, but it is unclear how interactions between RasGRP1 and Ras are suppressed in the absence of such signals. We present a crystal structure of a fragment of RasGRP1 in which the Ras-binding site is blocked by an interdomain linker and the membrane-interaction surface of RasGRP1 is hidden within a dimerization interface that may be stabilized by the C-terminal oligomerization domain. NMR data demonstrate that calcium binding to the regulatory module generates substantial conformational changes that are incompatible with the inactive assembly. These features allow RasGRP1 to be maintained in an inactive state that is poised for activation by calcium and membrane-localization signals. DOI: http://dx.doi.org/10.7554/eLife.00813.001 PMID:23908768

  19. Antigastric parietal cell and antithyroid autoantibodies in patients with recurrent aphthous stomatitis.

    PubMed

    Wu, Yang-Che; Wu, Yu-Hsueh; Wang, Yi-Ping; Chang, Julia Yu-Fong; Chen, Hsin-Ming; Sun, Andy

    2017-01-01

    Anti-gastric parietal cell antibody (GPCA), anti-thyroglobulin antibody (TGA), and anti-thyroid microsomal antibody (TMA) have not yet been reported in patients with recurrent aphthous stomatitis (RAS). This study mainly assessed the frequencies of the presence of serum GPCA, TGA, and TMA in different types of RAS patients. Serum GPCA, TGA, and TMA levels were measured in 355 RAS patients of different subtypes and in 355 age- and sex-matched healthy control individuals. We found that 13.0%, 19.4%, and 19.7% of 355 RAS patients, 16.7%, 23.3%, and 21.7% of 60 major-typed RAS patients, 12.2%, 18.6%, and 19.3% of 295 minor-typed RAS patients, 18.1%, 20.0%, and 21.9% of 160 atrophic glossitis-positive RAS (AG+/RAS) patients, and 8.7%, 19.0%, and 17.9% of 195 AG-negative RAS (AG-/RAS) patients had the presence of GPCA, TGA, and TMA in their sera, respectively. RAS, major-typed RAS, minor-typed RAS, AG+/RAS, and AG-/RAS patients all had a significantly higher frequency of GPCA, TGA, or TMA positivity than healthy control individuals (all p < 0.001). Of 65 TGA/TMA-positive RAS patients whose serum thyroid-stimulating hormone (TSH) levels were measured, 76.9%, 12.3%, and 10.8% of these TGA/TMA-positive RAS patients had normal, lower, and higher serum TSH levels, respectively. We conclude that approximately one-third RAS patients may have GPCA/TGA/TMA positivity in their sera. Because some GPCA-positive patients may develop pernicious anemia, autoimmune atrophic gastritis, and gastric carcinoma, and some TGA/TMA-positive patients may have thyroid dysfunction such as hyperthyroidism and hypothyroidism, these patients should be referred to doctors for further management. Copyright © 2016. Published by Elsevier B.V.

  20. Ras and relatives--job sharing and networking keep an old family together.

    PubMed

    Ehrhardt, Annette; Ehrhardt, Götz R A; Guo, Xuecui; Schrader, John W

    2002-10-01

    Many members of the Ras superfamily of GTPases have been implicated in the regulation of hematopoietic cells, with roles in growth, survival, differentiation, cytokine production, chemotaxis, vesicle-trafficking, and phagocytosis. The well-known p21 Ras proteins H-Ras, N-Ras, K-Ras 4A, and K-Ras 4B are also frequently mutated in human cancer and leukemia. Besides the four p21 Ras proteins, the Ras subfamily of the Ras superfamily includes R-Ras, TC21 (R-Ras2), M-Ras (R-Ras3), Rap1A, Rap1B, Rap2A, Rap2B, RalA, and RalB. They exhibit remarkable overall amino acid identities, especially in the regions interacting with the guanine nucleotide exchange factors that catalyze their activation. In addition, there is considerable sharing of various downstream effectors through which they transmit signals and of GTPase activating proteins that downregulate their activity, resulting in overlap in their regulation and effector function. Relatively little is known about the physiological functions of individual Ras family members, although the presence of well-conserved orthologs in Caenorhabditis elegans suggests that their individual roles are both specific and vital. The structural and functional similarities have meant that commonly used research tools fail to discriminate between the different family members, and functions previously attributed to one family member may be shared with other members of the Ras family. Here we discuss similarities and differences in activation, effector usage, and functions of different members of the Ras subfamily. We also review the possibility that the differential localization of Ras proteins in different parts of the cell membrane may govern their responses to activation of cell surface receptors.

  1. Importance of the REM (Ras exchange) domain for membrane interactions by RasGRP3.

    PubMed

    Czikora, Agnes; Kedei, Noemi; Kalish, Heather; Blumberg, Peter M

    2017-12-01

    RasGRP comprises a family of guanine nucleotide exchange factors, regulating the dissociation of GDP from Ras GTPases to enhance the formation of the active GTP-bound form. RasGRP1 possesses REM (Ras exchange), GEF (catalytic), EF-hand, C1, SuPT (suppressor of PT), and PT (plasma membrane-targeting) domains, among which the C1 domain drives membrane localization in response to diacylglycerol or phorbol ester and the PT domain recognizes phosphoinositides. The homologous family member RasGRP3 shows less plasma membrane localization. The objective of this study was to explore the role of the different domains of RasGRP3 in membrane translocation in response to phorbol esters. The full-length RasGRP3 shows limited translocation to the plasma membrane in response to PMA, even when the basic hydrophobic cluster in the PT domain, reported to be critical for RasGRP1 translocation to endogenous activators, is mutated to resemble that of RasGRP1. Moreover, exchange of the C-termini (SuPT-PT domain) of the two proteins had little effect on their plasma membrane translocation. On the other hand, while the C1 domain of RasGRP3 alone showed partial plasma membrane translocation, truncated RasGRP3 constructs, which contain the PT domain and are missing the REM, showed stronger translocation, indicating that the REM of RasGRP3 was a suppressor of its membrane interaction. The REM of RasGRP1 failed to show comparable suppression of RasGRP3 translocation. The marked differences between RasGRP3 and RasGRP1 in membrane interaction necessarily will contribute to their different behavior in cells and are relevant to the design of selective ligands as potential therapeutic agents. Published by Elsevier B.V.

  2. Evaluation of the Pilot Mentoring Program at the Research Foundation for SUNY

    ERIC Educational Resources Information Center

    Henderson-Harr, Amy; Caggiano-Siino, Kathleen; Prewitt, Ashlee

    2016-01-01

    This article provides a description of an 18-month pilot program focused on the leadership development of the next generation of research administrators (RAs) in the State University of New York system (SUNY). The key questions for the evaluators were: 1) can we create a developmental program that effectively prepares the next generation of RAs;…

  3. INDUCTION OF DNA ADDUCTS, TUMORS, AND KI-RAS ONCOGENE MUTATIONS IN STRAIN A/J MOUSE LUNG BY IP. ADMINISTRATION OF DIBENZ[A,H]ANTHRACENE

    EPA Science Inventory

    Induction of DNA adducts, tumors, and Ki-ras oncogene mutations in strain AlJ mouse lung by ip. administration of dibenz[a,h]anthracene

    Previous studies of polycyclic aromatic hydrocarbon (P AH) induced lung tumors in the strain NJ mouse model system have demonstrated qua...

  4. A cross-sectional study examining the expression of splice variants K-RAS4A and K-RAS4B in advanced non-small-cell lung cancer patients.

    PubMed

    Aran, Veronica; Masson Domingues, Pedro; Carvalho de Macedo, Fabiane; Moreira de Sousa, Carlos Augusto; Caldas Montella, Tatiane; de Souza Accioly, Maria Theresa; Ferreira, Carlos Gil

    2018-02-01

    Mammalian cells differently express 4 RAS isoforms: H-RAS, N-RAS, K-RAS4A and K-RAS4B, which are important in promoting oncogenic processes when mutated. In lung cancer, the K-RAS isoform is the most frequently altered RAS protein, being also a difficult therapeutic target. Interestingly, there are two K-RAS splice variants (K-RAS4A and K-RAS4B) and little is known about the role of K-RAS4A. Most studies targeting K-RAS, or analysing it as a prognostic factor, have not taken into account the two isoforms. Consequently, the in-depth investigation of them is needed. The present study analysed 98 specimens from advanced non-small cell lung cancer (NSCLC) adenocarcinoma patients originated from Brazil. The alterations present in K-RAS at the DNA level (Sanger sequencing) as well as the expression of the splicing isoforms at the RNA (qRT-PCR) and protein levels (immunohistochemistry analysis), were evaluated. Possible associations between clinicopathological features and the molecular findings were also investigated. Our results showed that in the non-smoking population, the cancer incidence was higher among women. In contrast, in smokers and former smokers, the incidence was higher among men. Regarding sequencing results, 10.5% of valid samples presented mutations in exon 2, being all wild-type for exon 3, and the most frequently occurring base change was the transversion G → T. Our qRT-PCR and immunohistochemical analysis showed that both, K-RAS4A and K-RAS4B, were differently expressed in NSCLC tumour samples. For example, tumour specimens showed higher K-RAS4A mRNA expression in relation to commercial normal lung control than did K-RAS4B. In addition, K-RAS4B protein expression was frequently stronger than K-RAS4A in the patients analysed. Our results highlight the differential expression of K-RAS4A and K-RAS4B in advanced adenocarcinoma NSCLC patients and underline the need to further clarify the enigma behind their biological significance in various cancer types, including NSCLC. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Gcn4p and the Crabtree effect of yeast: drawing the causal model of the Crabtree effect in Saccharomyces cerevisiae and explaining evolutionary trade-offs of adaptation to galactose through systems biology.

    PubMed

    Martínez, José L; Bordel, Sergio; Hong, KuFk-Ki; Nielsen, Jens

    2014-06-01

    By performing an integrated comparative analysis on the physiology and transcriptome of four different S. cerevisiae strains growing on galactose and glucose, it was inferred that the transcription factors Bas1p, Pho2p, and Gcn4p play a central role in the regulatory events causing the Crabtree effect in S. cerevisiae. The analysis also revealed that a point mutation in the RAS2 observed in a galactose-adapted strain causes a lower Crabtree effect and growth rate on glucose by decreasing the activity of Gcn4p while at the same time is at the origin of higher growth rate on galactose due to a lower activity of the transcriptional repressor Sok2p. The role of Gcn4p on the trade-off effect observed on glucose was confirmed experimentally. This was done by showing that the point mutation in RAS2 does not result in a lower growth rate on glucose if it is introduced in a GCN4-negative background. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  6. Estradiol, acting through ERα, induces endothelial non-classic renin-angiotensin system increasing angiotensin 1-7 production.

    PubMed

    Mompeón, Ana; Lázaro-Franco, Macarena; Bueno-Betí, Carlos; Pérez-Cremades, Daniel; Vidal-Gómez, Xavier; Monsalve, Elena; Gironacci, Mariela M; Hermenegildo, Carlos; Novella, Susana

    2016-02-15

    Intracellular renin-angiotensin system (RAS) can operate independently of the circulating RAS. Estrogens provide protective effects by modulating the RAS. Our aim was to investigate the effect of estradiol (E2) on angiotensin converting enzymes (ACE) 1 and ACE2 expression and activities in human endothelial cells (HUVEC), and the role of estrogen receptors (ER). The results confirmed the presence of active intracellular RAS in HUVEC. Physiological concentrations of E2 induced a concentration-dependent increase of ACE1 and ACE2 mRNA expression and ACE1, but not ACE2, protein levels. ACE1 and ACE2 enzymatic activities were also induced with E2. These effects were mediated through ERα activation, since ER antagonists ICI 182780 and MPP completely abolished the effect of E2. Moreover, the ERα agonist PPT mirrored the E2 effects on ACE1 and ACE2 protein expression and activity. Exposure of endothelial cells to E2 significantly increased Ang-(1-7) production. In conclusion, E2 increases Ang-(1-7) production, through ERα, involving increased ACE1 and ACE2 mRNA expression and activity and ACE1 protein levels. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Effects of spectral composition, photoperiod and light intensity on the gonadal development of Atlantic salmon Salmo salar in recirculating aquaculture systems (RAS)

    NASA Astrophysics Data System (ADS)

    Qiu, Denggao; Xu, Shihong; Song, Changbin; Chi, Liang; Li, Xian; Sun, Guoxiang; Liu, Baoliang; Liu, Ying

    2015-01-01

    Artificial lighting regimes have been successfully used to inhibit sexual maturity of Atlantic salmon in confinement. However, when these operations are applied in commercial recirculating aquaculture systems (RAS) using standard lighting technology, sexual maturation is not suppressed. In this study, an L9 (33) orthogonal design was used to determine the effects of three factors (spectral composition, photoperiod, and light intensity) on the gonadal development of Atlantic salmon in RAS. We demonstrated that the photoperiod at the tested levels had a much greater effect on the gonadosomatic index and female Fulton condition factor than spectral composition and light intensity. The photoperiod had a significant effect on the secretion of sex steroids and melatonin ( P<0.05), and a short photoperiod delayed sex steroid and melatonin level increases. The three test factors had no significant effects on the survival rate, specific growth rate, relative weight gain, and male Fulton condition factor ( P>0.05). The optimum lighting levels in female and male Atlantic salmon were LD 8:16, 455 nm (or 625 nm), 8.60 W/m2; and LD 8:16, 8.60 W/m2, 455 nm respectively. These conditions not only delayed gonadal development, but also had no negative effects on Atlantic salmon growth in RAS. These results demonstrate that a combination of spectral composition, photoperiod and light intensity is effective at delaying the gonadal development of both male and female salmon in RAS.

  8. Skeletal muscle myoblasts possess a stretch-responsive local angiotensin signalling system.

    PubMed

    Johnston, Adam P W; Baker, Jeff; De Lisio, Michael; Parise, Gianni

    2011-06-01

    A paucity of information exists regarding the presence of local renin-angiotensin systems (RASs) in skeletal muscle and associated muscle stem cells. Skeletal muscle and muscle stem cells were isolated from C57BL/6 mice and examined for the presence of a local RAS using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), immunohistochemistry (IHC), Western blotting and liquid chromatography-mass spectrometry (LC-MS). Furthermore, the effect of mechanical stimulation on RAS member gene expression was analysed. Whole skeletal muscle, primary myoblasts and C2C12 derived myoblasts and myotubes differentially expressed members of the RAS including angiotensinogen, angiotensin-converting enzyme (ACE), angiotensin II (Ang II) type 1 (AT(1)) and type 2 (AT(2)). Renin transcripts were never detected, however, mRNA for the 'renin-like' enzyme cathepsin D was observed and Ang I and Ang II were identified in cell culture supernatants from proliferating myoblasts. AT(1) appeared to co-localise with polymerised actin filaments in proliferating myoblasts and was primarily found in the nucleus of terminally differentiated myotubes. Furthermore, mechanical stretch of proliferating and differentiating C2C12 cells differentially induced mRNA expression of angiotensinogen, AT(1) and AT(2). Proliferating and differentiated muscle stem cells possess a local stress-responsive RAS in vitro. The precise function of a local RAS in myoblasts remains unknown. However, evidence presented here suggests that Ang II may be a regulator of skeletal muscle myoblasts.

  9. Vitamin D in the Pathophysiology of Hypertension, Kidney Disease, and Diabetes: Examining the Relationship Between Vitamin D and the Renin-Angiotensin System in Human Diseases

    PubMed Central

    Vaidya, Anand; Williams, Jonathan S.

    2011-01-01

    Objective Vitamin D has been implicated in the pathophysiology of extra-skeletal conditions such as hypertension, kidney disease, and diabetes, via its ability to negatively regulate the renin-angiotensin system (RAS). This article reviews the evidence supporting a link between vitamin D and the RAS in these conditions, with specific emphasis on translational observations and their limitations. Methods Literature review of animal and human studies evaluating the role of vitamin D in hypertension, kidney disease, and diabetes. Results Excess activity of the RAS has been implicated in the pathogenesis of hypertension, chronic kidney disease, decreased insulin secretion, and insulin resistance. Animal studies provide strong support for 1,25(OH)2D mediated down-regulation of renin expression and RAS activity via its interaction with the vitamin D receptor. Furthermore, the activity of vitamin D metabolites in animals is associated with reductions in blood pressure, proteinuria and renal injury, and with improved β–cell function. Many observational, and a few interventional, studies in humans have supported these findings; however, there is a lack of well designed prospective human interventional studies to definitively assess clinical outcomes. Conclusion Animal studies implicate vitamin D receptor agonist therapy to lower RAS activity as a potential method to reduce the risk of hypertension, kidney disease, and diabetes. There is a need for more well designed prospective interventional studies to validate this hypothesis in human clinical outcomes. PMID:22075270

  10. Renin-angiotensin system inhibition ameliorates CCl4-induced liver fibrosis in mice through the inactivation of nuclear transcription factor kappa B.

    PubMed

    Saber, Sameh; Mahmoud, Amr A A; Helal, Noha S; El-Ahwany, Eman; Abdelghany, Rasha H

    2018-06-01

    Therapeutic interventions for liver fibrosis are still limited due to the complicated molecular pathogenesis. Renin-angiotensin system (RAS) seems to contribute to the development of hepatic fibrosis. Therefore, we aimed to examine the effect of RAS inhibition on CCl 4 -induced liver fibrosis. Mice were treated with silymarin (30 mg·kg -1 ), perindopril (1 mg·kg -1 ), fosinopril (2 mg·kg -1 ), or losartan (10 mg·kg -1 ). The administration of RAS inhibitors improved liver histology and decreased protein expression of alpha smooth muscle actin (α-SMA) and hepatic content of hydroxyproline. These effects found to be mediated via inactivation of nuclear transcription factor kappa B (NFκB) pathway by the inhibition of NFκB p65 phosphorylation at the Ser536 residue and phosphorylation-induced degradation of nuclear factor kappa-B inhibitor alpha (NFκBia) subsequently inhibited NFκB-induced TNF-α and TGF-β1, leading to lower levels of tissue inhibitor of metalloproteinase-1 (TIMP-1) and vascular endothelial growth factor (VEGF). We concluded that the tissue affinity of the angiotensin converting enzyme inhibitors (ACEIs) has no impact on its antifibrotic activity and that interfering the RAS either through the inhibition of ACE or the blockade of AT1R has the same therapeutic benefit. These results suggest RAS inhibitors as promising candidates for further clinical trials in the management of hepatic fibrosis.

  11. Downregulation of Ras C-terminal processing by JNK inhibition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mouri, Wataru; Department of Neurosurgery, Yamagata University School of Medicine, Yamagata 990-9585; Biology Division, National Cancer Center Research Institute, Tokyo 104-0045

    2008-06-27

    After translation, Ras proteins undergo a series of modifications at their C-termini. This post-translational C-terminal processing is essential for Ras to become functional, but it remains unknown whether and how Ras C-terminal processing is regulated. Here we show that the C-terminal processing and subsequent plasma membrane localization of H-Ras as well as the activation of the downstream signaling pathways by H-Ras are prevented by JNK inhibition. Conversely, JNK activation by ultraviolet irradiation resulted in promotion of C-terminal processing of H-Ras. Furthermore, increased cell density promoted C-terminal processing of H-Ras most likely through an autocrine/paracrine mechanism, which was also blocked undermore » JNK-inhibited condition. Ras C-terminal processing was sensitive to JNK inhibition in the case of H- and N-Ras but not K-Ras, and in a variety of cell types. Thus, our results suggest for the first time that Ras C-terminal processing is a regulated mechanism in which JNK is involved.« less

  12. A non-cell-autonomous role for Ras signaling in C. elegans neuroblast delamination

    PubMed Central

    Parry, Jean M.; Sundaram, Meera V.

    2014-01-01

    Receptor tyrosine kinase (RTK) signaling through Ras influences many aspects of normal cell behavior, including epithelial-to-mesenchymal transition, and aberrant signaling promotes both tumorigenesis and metastasis. Although many such effects are cell-autonomous, here we show a non-cell-autonomous role for RTK-Ras signaling in the delamination of a neuroblast from an epithelial organ. The C. elegans renal-like excretory organ is initially composed of three unicellular epithelial tubes, namely the canal, duct and G1 pore cells; however, the G1 cell later delaminates from the excretory system to become a neuroblast and is replaced by the G2 cell. G1 delamination and G2 intercalation involve cytoskeletal remodeling, interconversion of autocellular and intercellular junctions and migration over a luminal extracellular matrix, followed by G1 junction loss. LET-23/EGFR and SOS-1, an exchange factor for Ras, are required for G1 junction loss but not for initial cytoskeletal or junction remodeling. Surprisingly, expression of activated LET-60/Ras in the neighboring duct cell, but not in the G1 or G2 cells, is sufficient to rescue sos-1 delamination defects, revealing that Ras acts non-cell-autonomously to permit G1 delamination. We suggest that, similarly, oncogenic mutations in cells within a tumor might help create a microenvironment that is permissive for other cells to detach and ultimately metastasize. PMID:25371363

  13. Development of a High-Throughput Gene Expression Screen for Modulators of RAS-MAPK Signaling in a Mutant RAS Cellular Context.

    PubMed

    Severyn, Bryan; Nguyen, Thi; Altman, Michael D; Li, Lixia; Nagashima, Kumiko; Naumov, George N; Sathyanarayanan, Sriram; Cook, Erica; Morris, Erick; Ferrer, Marc; Arthur, Bill; Benita, Yair; Watters, Jim; Loboda, Andrey; Hermes, Jeff; Gilliland, D Gary; Cleary, Michelle A; Carroll, Pamela M; Strack, Peter; Tudor, Matt; Andersen, Jannik N

    2016-10-01

    The RAS-MAPK pathway controls many cellular programs, including cell proliferation, differentiation, and apoptosis. In colorectal cancers, recurrent mutations in this pathway often lead to increased cell signaling that may contribute to the development of neoplasms, thereby making this pathway attractive for therapeutic intervention. To this end, we developed a 26-member gene signature of RAS-MAPK pathway activity utilizing the Affymetrix QuantiGene Plex 2.0 reagent system and performed both primary and confirmatory gene expression-based high-throughput screens (GE-HTSs) using KRAS mutant colon cancer cells (SW837) and leveraging a highly annotated chemical library. The screen achieved a hit rate of 1.4% and was able to enrich for hit compounds that target RAS-MAPK pathway members such as MEK and EGFR. Sensitivity and selectivity performance measurements were 0.84 and 1.00, respectively, indicating high true-positive and true-negative rates. Active compounds from the primary screen were confirmed in a dose-response GE-HTS assay, a GE-HTS assay using 14 additional cancer cell lines, and an in vitro colony formation assay. Altogether, our data suggest that this GE-HTS assay will be useful for larger unbiased chemical screens to identify novel compounds and mechanisms that may modulate the RAS-MAPK pathway. © 2016 Society for Laboratory Automation and Screening.

  14. Pleiotrophin mediates hematopoietic regeneration via activation of RAS

    PubMed Central

    Himburg, Heather A.; Yan, Xiao; Doan, Phuong L.; Quarmyne, Mamle; Micewicz, Eva; McBride, William; Chao, Nelson J.; Slamon, Dennis J.; Chute, John P.

    2014-01-01

    Hematopoietic stem cells (HSCs) are highly susceptible to ionizing radiation–mediated death via induction of ROS, DNA double-strand breaks, and apoptotic pathways. The development of therapeutics capable of mitigating ionizing radiation–induced hematopoietic toxicity could benefit both victims of acute radiation sickness and patients undergoing hematopoietic cell transplantation. Unfortunately, therapies capable of accelerating hematopoietic reconstitution following lethal radiation exposure have remained elusive. Here, we found that systemic administration of pleiotrophin (PTN), a protein that is secreted by BM-derived endothelial cells, substantially increased the survival of mice following radiation exposure and after myeloablative BM transplantation. In both models, PTN increased survival by accelerating the recovery of BM hematopoietic stem and progenitor cells in vivo. PTN treatment promoted HSC regeneration via activation of the RAS pathway in mice that expressed protein tyrosine phosphatase receptor-zeta (PTPRZ), whereas PTN treatment did not induce RAS signaling in PTPRZ-deficient mice, suggesting that PTN-mediated activation of RAS was dependent upon signaling through PTPRZ. PTN strongly inhibited HSC cycling following irradiation, whereas RAS inhibition abrogated PTN-mediated induction of HSC quiescence, blocked PTN-mediated recovery of hematopoietic stem and progenitor cells, and abolished PTN-mediated survival of irradiated mice. These studies demonstrate the therapeutic potential of PTN to improve survival after myeloablation and suggest that PTN-mediated hematopoietic regeneration occurs in a RAS-dependent manner. PMID:25250571

  15. RasC is required for optimal activation of adenylyl cyclase and Akt/PKB during aggregation

    PubMed Central

    Lim, Chinten James; Spiegelman, George B.; Weeks, Gerald

    2001-01-01

    Disruption of Dictyostelium rasC, encoding a Ras subfamily protein, generated cells incapable of aggregation. While rasC expression is enriched in a cell type-specific manner during post-aggregative development, the defect in rasC– cells is restricted to aggregation and fully corrected by application of exogenous cAMP pulses. cAMP is not produced in rasC– cells stimulated by 2′-deoxy-cAMP, but is produced in response to GTPγS in cell lysates, indicating that G-protein-coupled cAMP receptor activation of adenylyl cyclase is regulated by RasC. However, cAMP-induced ERK2 phosphorylation is unaffected in rasC– cells, indicating that RasC is not an upstream activator of the mitogen-activated protein kinase required for cAMP relay. rasC– cells also exhibit reduced chemotaxis to cAMP during early development and delayed response to periodic cAMP stimuli produced by wild-type cells in chimeric mixtures. Furthermore, cAMP-induced Akt/PKB phosphorylation through a phosphatidylinositide 3-kinase (PI3K)-dependent pathway is dramatically reduced in rasC– cells, suggesting that G-protein-coupled serpentine receptor activation of PI3K is regulated by RasC. Cells lacking the RasGEF, AleA, exhibit similar defects as rasC– cells, suggesting that AleA may activate RasC. PMID:11500376

  16. RasC is required for optimal activation of adenylyl cyclase and Akt/PKB during aggregation.

    PubMed

    Lim, C J; Spiegelman, G B; Weeks, G

    2001-08-15

    Disruption of Dictyostelium rasC, encoding a Ras subfamily protein, generated cells incapable of aggregation. While rasC expression is enriched in a cell type-specific manner during post-aggregative development, the defect in rasC(-) cells is restricted to aggregation and fully corrected by application of exogenous cAMP pulses. cAMP is not produced in rasC(-) cells stimulated by 2'-deoxy-cAMP, but is produced in response to GTPgammaS in cell lysates, indicating that G-protein-coupled cAMP receptor activation of adenylyl cyclase is regulated by RasC. However, cAMP-induced ERK2 phosphorylation is unaffected in rasC(-) cells, indicating that RasC is not an upstream activator of the mitogen-activated protein kinase required for cAMP relay. rasC(-) cells also exhibit reduced chemotaxis to cAMP during early development and delayed response to periodic cAMP stimuli produced by wild-type cells in chimeric mixtures. Furthermore, cAMP-induced Akt/PKB phosphorylation through a phosphatidylinositide 3-kinase (PI3K)-dependent pathway is dramatically reduced in rasC(-) cells, suggesting that G-protein-coupled serpentine receptor activation of PI3K is regulated by RasC. Cells lacking the RasGEF, AleA, exhibit similar defects as rasC(-) cells, suggesting that AleA may activate RasC.

  17. Deconstructing Ras Signaling in the Thymus

    PubMed Central

    Kortum, Robert L.; Sommers, Connie L.; Pinski, John M.; Alexander, Clayton P.; Merrill, Robert K.; Li, Wenmei; Love, Paul E.

    2012-01-01

    Thymocytes must transit at least two distinct developmental checkpoints, governed by signals that emanate from either the pre-T cell receptor (pre-TCR) or the TCR to the small G protein Ras before emerging as functional T lymphocytes. Recent studies have shown a role for the Ras guanine exchange factor (RasGEF) Sos1 at the pre-TCR checkpoint. At the second checkpoint, the quality of signaling through the TCR is interrogated to ensure the production of an appropriate T cell repertoire. Although RasGRP1 is the only confirmed RasGEF required at the TCR checkpoint, current models suggest that the intensity and character of Ras activation, facilitated by both Sos and RasGRP1, will govern the boundary between survival (positive selection) and death (negative selection) at this stage. Using mouse models, we have assessed the independent and combined roles for the RasGEFs Sos1, Sos2, and RasGRP1 during thymocyte development. Although Sos1 was the dominant RasGEF at the pre-TCR checkpoint, combined Sos1/RasGRP1 deletion was required to effectively block development at this stage. Conversely, while RasGRP1 deletion efficiently blocked positive selection, combined RasGRP1/Sos1 deletion was required to block negative selection. This functional redundancy in RasGEFs during negative selection may act as a failsafe mechanism ensuring appropriate central tolerance. PMID:22586275

  18. Reciprocal interactions between neurons and glia are required for Drosophila peripheral nervous system development.

    PubMed

    Sepp, Katharine J; Auld, Vanessa J

    2003-09-10

    A major developmental role of peripheral glia is to mediate sensory axon guidance; however, it is not known whether sensory neurons influence peripheral glial development. To determine whether glia and neurons reciprocally interact during embryonic development, we ablated each cell type by overexpressing the apoptosis gene, grim, and observed the effects on peripheral nervous system (PNS) development. When neurons are ablated, glial defects occur as a secondary effect, and vice versa. Therefore glia and neurons are codependent during embryogenesis. To further explore glial-neuronal interactions, we genetically disrupted glial migration or differentiation and observed the secondary effects on sensory neuron development. Glial migration and ensheathment of PNS axons was blocked by overexpression of activated Rho GTPase, a regulator of actin dynamics. Here, sensory axons extended to the CNS without exhibiting gross pathfinding errors. In contrast, disrupting differentiation by expression of dominant-negative Ras GTPase in glia resulted in major sensory axon pathfinding errors, similar to those seen in glial ablations. Glial overexpression of transgenic components of the epidermal growth factor receptor (EGFR) signaling pathway yielded similar sensory neuron defects and also downregulated the expression of the glial marker Neuroglian. Mutant analysis also suggested that the EGFR ligands Spitz and Vein play roles in peripheral glial development. The observations support a model in which glia express genes necessary for sensory neuron development, and these genes are potentially under the control of the EGFR/Ras signaling pathway.

  19. Downregulation of tropomyosin-1 in squamous cell carcinoma of esophagus, the role of Ras signaling and methylation.

    PubMed

    Zare, Maryam; Jazii, Ferdous Rastgar; Soheili, Zahra-Soheila; Moghanibashi, Mohamad-Mehdi

    2012-10-01

    Tropomyosins (TMs) are a family of cytoskeletal proteins that bind to and stabilize actin microfilaments. Non-muscle cells express multiple isoforms of TMs including three high molecular weight (HMW) isoforms: TM1, TM2, and TM3. While reports have indicated downregulation of TMs in transformed cells and several human cancers, nevertheless, little is known about the underlying mechanism of TMs suppression. In present study the expression of HMW TMs was investigated in squamous cell carcinoma of esophagus (SCCE), relative to primary cell cultures of normal esophagus by western blotting and real-time RT-PCR. Our results showed that TM1, TM2, and TM3 were significantly downregulated in cell line of SCCE. Moreover, mRNA level of TPM1 and TPM2 were markedly decreased by 93% and 96%, in tumor cell line relative to esophagus normal epithelial cells. Therefore, downregulation of TMs could play an important role in tumorigenesis of esophageal cancer. To asses the mechanism of TM downregulation in esophageal cancer, the role of Ras dependent signaling and promoter hypermethylation were investigated. We found that inhibition of two Ras effectory downstream pathways; MEK/ERK and PI3K/Akt leads to significant increased expression of TM1 protein and both TPM1 and TPM2 mRNAs. In addition, methyltransferase inhibition significantly upregulated TM1, suggesting the prominent contribution of promoter hypermethylation in TM1 downregulation in esophageal cancer. These data indicate that downregulation of HMW TMs occurs basically in SCCE and the activation of MEK/ERK and PI3K/Akt pathways as well as the epigenetic mechanism of promoter hypermethylation play important role in TM1 suppression in SCCE. Copyright © 2011 Wiley Periodicals, Inc.

  20. Aurora kinase A interacts with H-Ras and potentiates Ras-MAPK signaling | Office of Cancer Genomics

    Cancer.gov

    In cancer, upregulated Ras promotes cellular transformation and proliferation in part through activation of oncogenic Ras-MAPK signaling. While directly inhibiting Ras has proven challenging, new insights into Ras regulation through protein-protein interactions may offer unique opportunities for therapeutic intervention. Here we report the identification and validation of Aurora kinase A (Aurora A) as a novel Ras binding protein. We demonstrate that the kinase domain of Aurora A mediates the interaction with the N-terminal domain of H-Ras.

  1. Sex dimorphism in ANGII-mediated crosstalk between ACE2 and ACE in diabetic nephropathy.

    PubMed

    Clotet-Freixas, Sergi; Soler, Maria Jose; Palau, Vanesa; Anguiano, Lidia; Gimeno, Javier; Konvalinka, Ana; Pascual, Julio; Riera, Marta

    2018-06-08

    Angiotensin-converting enzyme (ACE) and ACE2 play a critical role in the renin-angiotensin system (RAS) by altering angiotensin II (ANGII) levels, thus governing its deleterious effects. Both enzymes are altered by sex and diabetes, and play an important role in the development of diabetic nephropathy (DN). Importantly, previous evidence in diabetic and ACE2-deficient (ACE2KO) males suggest a sex-dependent crosstalk between renal ACE and ACE2. In the present work, we aimed to study the sex-specific susceptibility to diabetes and direct infusion of ANGII in kidney disease progression, with a special focus on its link to ACE2 and ACE. In our mouse model, ANGII promoted hypertension, albuminuria, reduced glomerular filtration, and glomerular histological alterations. ANGII adverse effects were accentuated by diabetes and ACE2 deficiency, in a sex-dependent fashion: ACE2 deficiency accentuated ANGII-induced hypertension, albuminuria, and glomerular hypertrophy in diabetic females, whereas in diabetic males exacerbated ANGII-mediated glomerular hypertrophy, mesangial expansion, and podocyte loss. At the molecular level, ANGII downregulated renal ACE gene and enzymatic activity levels, as well as renin gene expression in ACE2KO mice. Interestingly, male sex and diabetes accentuated this effect. Here we show sex dimorphism in the severity of diabetes- and ANGII-related renal lesions, and demonstrate that ACE2- and ACE-related compensatory mechanisms are sex-specific. Supporting our previous findings, the modulation and ANGII-mediated crosstalk between ACE2 and ACE in DN progression was more evident in males. This work increases the understanding of the sex-specific role of ACE2 and ACE in DN, reinforcing the necessity of more personalized treatments targeting RAS.

  2. Neprilysin inhibition in chronic kidney disease

    PubMed Central

    Judge, Parminder; Haynes, Richard; Landray, Martin J.; Baigent, Colin

    2015-01-01

    Despite current practice, patients with chronic kidney disease (CKD) are at increased risk of progression to end-stage renal disease and cardiovascular events. Neprilysin inhibition (NEPi) is a new therapeutic strategy with potential to improve outcomes for patients with CKD. NEPi enhances the activity of natriuretic peptide systems leading to natriuresis, diuresis and inhibition of the renin–angiotensin system (RAS), which could act as a potentially beneficial counter-regulatory system in states of RAS activation such as chronic heart failure (HF) and CKD. Early NEPi drugs were combined with angiotensin-converting enzyme inhibitors but were associated with unacceptable rates of angioedema and, therefore, withdrawn. However, one such agent (omapatrilat) showed promise of NEP/RAS inhibition in treating CKD in animal models, producing greater reductions in proteinuria, glomerulosclerosis and tubulointerstitial fibrosis compared with isolated RAS inhibition. A new class of drug called angiotensin receptor neprilysin inhibitor (ARNi) has been developed. One such drug, LCZ696, has shown substantial benefits in trials in hypertension and HF. In CKD, HF is common due to a range of mechanisms including hypertension and structural heart disease (including left ventricular hypertrophy), suggesting that ARNi could benefit patients with CKD by both retarding the progression of CKD (hence delaying the need for renal replacement therapy) and reducing the risk of cardiovascular disease. LCZ696 is now being studied in a CKD population. PMID:25140014

  3. A gene expression signature of RAS pathway dependence predicts response to PI3K and RAS pathway inhibitors and expands the population of RAS pathway activated tumors

    PubMed Central

    2010-01-01

    Background Hyperactivation of the Ras signaling pathway is a driver of many cancers, and RAS pathway activation can predict response to targeted therapies. Therefore, optimal methods for measuring Ras pathway activation are critical. The main focus of our work was to develop a gene expression signature that is predictive of RAS pathway dependence. Methods We used the coherent expression of RAS pathway-related genes across multiple datasets to derive a RAS pathway gene expression signature and generate RAS pathway activation scores in pre-clinical cancer models and human tumors. We then related this signature to KRAS mutation status and drug response data in pre-clinical and clinical datasets. Results The RAS signature score is predictive of KRAS mutation status in lung tumors and cell lines with high (> 90%) sensitivity but relatively low (50%) specificity due to samples that have apparent RAS pathway activation in the absence of a KRAS mutation. In lung and breast cancer cell line panels, the RAS pathway signature score correlates with pMEK and pERK expression, and predicts resistance to AKT inhibition and sensitivity to MEK inhibition within both KRAS mutant and KRAS wild-type groups. The RAS pathway signature is upregulated in breast cancer cell lines that have acquired resistance to AKT inhibition, and is downregulated by inhibition of MEK. In lung cancer cell lines knockdown of KRAS using siRNA demonstrates that the RAS pathway signature is a better measure of dependence on RAS compared to KRAS mutation status. In human tumors, the RAS pathway signature is elevated in ER negative breast tumors and lung adenocarcinomas, and predicts resistance to cetuximab in metastatic colorectal cancer. Conclusions These data demonstrate that the RAS pathway signature is superior to KRAS mutation status for the prediction of dependence on RAS signaling, can predict response to PI3K and RAS pathway inhibitors, and is likely to have the most clinical utility in lung and breast tumors. PMID:20591134

  4. Identification of a small heat-shock protein associated with a ras-mediated signaling pathway in ectomycorrhizal symbiosis

    Treesearch

    Shiv Hiremath; Kirsten Lehtoma; Gopi K. Podila

    2009-01-01

    Initiation, development, and establishment of a functional ectomycorrhiza involve a series of biochemical events mediated by a number of genes from the fungus as well as the host plant. We have identified a heat shock protein gene from Laccaria bicolor (Lbhsp) that appears to play a role in these events. The size and...

  5. GNAq mutations are not identified in papillary thyroid carcinomas and hyperfunctioning thyroid nodules.

    PubMed

    Cassol, Clarissa A; Guo, Miao; Ezzat, Shereen; Asa, Sylvia L

    2010-12-01

    Activating mutations of GNAq protein in a hotspot at codon 209 have been recently described in uveal melanomas. Since these neoplasms share with thyroid carcinomas a high frequency of MAP kinase pathway-activating mutations, we hypothesized whether GNAq mutations could also play a role in the development of thyroid carcinomas. Additionally, activating mutations of another subtype of G protein (GNAS1) are frequently found in hyperfunctioning thyroid adenomas, making it plausible that GNAq-activating mutations could also be found in some of these nodules. To investigate thyroid papillary carcinomas and thyroid hyperfunctioning nodules for GNAq mutations in exon 5, codon 209, a total of 32 RET/PTC, BRAF, and RAS negative thyroid papillary carcinomas and 13 hyperfunctioning thyroid nodules were evaluated. No mutations were identified. Although plausible, GNAq mutations seem not to play an important role in the development of thyroid follicular neoplasms, either benign hyperfunctioning nodules or malignant papillary carcinomas. Our results are in accordance with the literature, in which no GNAq hotspot mutations were found in thyroid papillary carcinomas, as well as in an extensive panel of other tumors. The molecular basis for MAP-kinase pathway activation in RET-PTC/BRAF/RAS negative thyroid carcinomas remains to be determined.

  6. C. elegans Vulva Induction: An In Vivo Model to Study Epidermal Growth Factor Receptor Signaling and Trafficking.

    PubMed

    Gauthier, Kimberley; Rocheleau, Christian E

    2017-01-01

    Epidermal growth factor receptor (EGFR)-mediated activation of the canonical Ras/MAPK signaling cascade is responsible for cell proliferation and cell growth. This signaling pathway is frequently overactivated in epithelial cancers; therefore, studying regulation of this pathway is crucial not only for our fundamental understanding of cell biology but also for our ability to treat EGFR-related disease. Genetic model organisms such as Caenorhabditis elegans, a hermaphroditic nematode, played a vital role in identifying components of the EGFR/Ras/MAPK pathway and delineating their order of function, and continues to play a role in identifying novel regulators of the pathway. Polarized activation of LET-23, the C. elegans homolog of EGFR, is responsible for induction of the vulval cell fate; perturbations in this signaling pathway produce either a vulvaless or multivulva phenotype. The translucent cuticle of the nematode facilitates in vivo visualization of the receptor, revealing that localization of LET-23 EGFR is tightly regulated and linked to its function. In this chapter, we review the methods used to harness vulva development as a tool for studying EGFR signaling and trafficking in C. elegans.

  7. Targeting RAS Membrane Association: Back to the Future for Anti-RAS Drug Discovery?

    PubMed Central

    Cox, Adrienne D.; Der, Channing J.; Philips, Mark R.

    2015-01-01

    RAS proteins require membrane association for their biological activity, making this association a logical target for anti-RAS therapeutics. Lipid modification of RAS proteins by a farnesyl isoprenoid is an obligate step in that association, and is an enzymatic process. Accordingly, farnesyltransferase inhibitors (FTIs) were developed as potential anti-RAS drugs. The lack of efficacy of FTIs as anti-cancer drugs was widely seen as indicating that blocking RAS membrane association was a flawed approach to cancer treatment. However, a deeper understanding of RAS modification and trafficking has revealed that this was an erroneous conclusion. In the presence of FTIs, KRAS and NRAS, which are the RAS isoforms most frequently mutated in cancer, become substrates for alternative modification, can still associate with membranes, and can still function. Thus, FTIs failed not because blocking RAS membrane association is an ineffective approach, but because FTIs failed to accomplish that task. Recent findings regarding RAS isoform trafficking and the regulation of RAS subcellular localization have rekindled interest in efforts to target these processes. In particular, improved understanding of the palmitoylation/depalmitoylation cycle that regulates RAS interaction with the plasma membrane, endomembranes and cytosol, and of the potential importance of RAS chaperones, have led to new approaches. Efforts to validate and target other enzymatically regulated post-translational modifications are also ongoing. In this review, we revisit lessons learned, describe the current state of the art, and highlight challenging but promising directions to achieve the goal of disrupting RAS membrane association and subcellular localization for anti-RAS drug development. PMID:25878363

  8. Evolutionary Analyses of Entire Genomes Do Not Support the Association of mtDNA Mutations with Ras/MAPK Pathway Syndromes

    PubMed Central

    Cerezo, María; Balboa, Emilia; Heredia, Claudia; Castro-Feijóo, Lidia; Rica, Itxaso; Barreiro, Jesús; Eirís, Jesús; Cabanas, Paloma; Martínez-Soto, Isabel; Fernández-Toral, Joaquín; Castro-Gago, Manuel; Pombo, Manuel; Carracedo, Ángel; Barros, Francisco

    2011-01-01

    Background There are several known autosomal genes responsible for Ras/MAPK pathway syndromes, including Noonan syndrome (NS) and related disorders (such as LEOPARD, neurofibromatosis type 1), although mutations of these genes do not explain all cases. Due to the important role played by the mitochondrion in the energetic metabolism of cardiac muscle, it was recently proposed that variation in the mitochondrial DNA (mtDNA) genome could be a risk factor in the Noonan phenotype and in hypertrophic cardiomyopathy (HCM), which is a common clinical feature in Ras/MAPK pathway syndromes. In order to test these hypotheses, we sequenced entire mtDNA genomes in the largest series of patients suffering from Ras/MAPK pathway syndromes analyzed to date (n = 45), most of them classified as NS patients (n = 42). Methods/Principal Findings The results indicate that the observed mtDNA lineages were mostly of European ancestry, reproducing in a nutshell the expected haplogroup (hg) patterns of a typical Iberian dataset (including hgs H, T, J, and U). Three new branches of the mtDNA phylogeny (H1j1, U5b1e, and L2a5) are described for the first time, but none of these are likely to be related to NS or Ras/MAPK pathway syndromes when observed under an evolutionary perspective. Patterns of variation in tRNA and protein genes, as well as redundant, private and heteroplasmic variants, in the mtDNA genomes of patients were as expected when compared with the patterns inferred from a worldwide mtDNA phylogeny based on more than 8700 entire genomes. Moreover, most of the mtDNA variants found in patients had already been reported in healthy individuals and constitute common polymorphisms in human population groups. Conclusions/Significance As a whole, the observed mtDNA genome variation in the NS patients was difficult to reconcile with previous findings that indicated a pathogenic role of mtDNA variants in NS. PMID:21526175

  9. Copper/zinc and copper/selenium ratios, and oxidative stress as biochemical markers in recurrent aphthous stomatitis.

    PubMed

    Ozturk, Perihan; Belge Kurutas, Ergul; Ataseven, Arzu

    2013-10-01

    Recurrent aphthous stomatitis (RAS) is a common oral mucosal disorder characterized by recurrent, painful oral aphthae, and oxidative stress presumably contributes to its pathogenesis. The aim of this study is to scrutinize the relationship between oxidative stress and serum trace elements (copper, Cu; zinc, Zn; selenium, Se), and to evaluate the ratios of Cu/Zn and Cu/Se in this disorder. Patients with RAS (n = 33) and age- and sex-matched healthy control subjects (n = 30) were enrolled in this study. Malondialdehyde (MDA) concentrations in plasma and the activities of superoxide dismutase (SOD1; CuZnSOD), glutathione peroxidase (GPx) and catalase (CAT) in erythrocyte were determined as spectrophotometric. Also, the levels of Se, Zn and Cu in serum were determined on flame and furnace atomic absorption spectrophotometer using Zeeman background correction. Oxidative stress was confirmed by the significant elevation in plasma MDA, and by the significant decrease in CAT, SOD1, and GPx (p < 0.05). When compared to controls, Zn and Se levels were significantly lower in patients, whereas Cu levels was higher in RAS patients than those in controls (p < 0.05). In addition, the correlation results of this study were firstly shown that there were significant and positive correlations between Se-CAT, Se-GPx, and Cu-MDA parameters, but negative correlations between Se-Cu, Se-MDA, Cu-CAT, Cu-SOD1 and Cu-GPx parameters in RAS patients. Furthermore, the ratios of Cu/Zn and Cu/Se were significantly higher in the patients than the control subjects (p < 0.05). Our results indicated that lipid peroxidation associated with the imbalance of the trace elements seems to play a crucial role in the pathogenesis of RAS. Furthermore, the serum Cu/Zn and Cu/Se ratios may be used as biochemical markers in these patients. Crown Copyright © 2013. Published by Elsevier GmbH. All rights reserved.

  10. AMPK and Endothelial Nitric Oxide Synthase Signaling Regulates K-Ras Plasma Membrane Interactions via Cyclic GMP-Dependent Protein Kinase 2

    PubMed Central

    Cho, Kwang-jin; Casteel, Darren E.; Prakash, Priyanka; Tan, Lingxiao; van der Hoeven, Dharini; Salim, Angela A.; Kim, Choel; Capon, Robert J.; Lacey, Ernest; Cunha, Shane R.; Gorfe, Alemayehu A.

    2016-01-01

    K-Ras must localize to the plasma membrane and be arrayed in nanoclusters for biological activity. We show here that K-Ras is a substrate for cyclic GMP-dependent protein kinases (PKGs). In intact cells, activated PKG2 selectively colocalizes with K-Ras on the plasma membrane and phosphorylates K-Ras at Ser181 in the C-terminal polybasic domain. K-Ras phosphorylation by PKG2 is triggered by activation of AMP-activated protein kinase (AMPK) and requires endothelial nitric oxide synthase and soluble guanylyl cyclase. Phosphorylated K-Ras reorganizes into distinct nanoclusters that retune the signal output. Phosphorylation acutely enhances K-Ras plasma membrane affinity, but phosphorylated K-Ras is progressively lost from the plasma membrane via endocytic recycling. Concordantly, chronic pharmacological activation of AMPK → PKG2 signaling with mitochondrial inhibitors, nitric oxide, or sildenafil inhibits proliferation of K-Ras-positive non-small cell lung cancer cells. The study shows that K-Ras is a target of a metabolic stress-signaling pathway that can be leveraged to inhibit oncogenic K-Ras function. PMID:27697864

  11. Angiotensin-converting enzyme inhibitors (ACEIs), not angiotensin receptor blockers (ARBs), are preferred and effective mode of therapy in high cardiovascular risk patients.

    PubMed

    Vijan, Suresh G

    2009-03-01

    Blockade of the renin-angiotensin system (RAS) plays an important role in the prevention and correction of cardiovascular diseases. Agents that block the RAS such as angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) are major in this league. There have been numerous clinical trials looking at the use of ACEIs and ARBs in hypertension, heart failure (HF), and other special population who remain at high risk for cardiovascular and cardiometabolic abnormalities. Overall, ACEIs are the first line agents, recommended for high cardiovascular risk patients and are supported suitably by worldwide therapeutic guidelines including class IA recommendation from American College of Cardiology (ACC)/American Heart Association. These recommendations are based on, large body of clinical results which overall supports ACEIs in reducing mortality, MI, stroke, and new-onset congestive heart failure, and their unique cardioprotective benefits in patients with diabetes, independent of coexistent atherosclerosis and concomitant nephropathy. Although, theoretically, ARBs offer improved blockade of the RAS system than ACEIs, their relative effectiveness in the treatment of HF and other comorbid cardiovascular conditions remains controversial as evident from clinical trial and meta-analysis results which shows that ARBs are not as effective in reducing mortality, rate of hospitalisation, prevention of nephropathic progression, etc. The results from the latest ONTARGET 'non-inferiority' trial has further elucidated the fact that ARBs are no better than ACEIs at reducing fatal and non-fatal cardiovascular events including MI and CV death. Although theoretically, combination of ACEIs and ARBs is an attractive therapeutic option as none of them block RAS completely, but it may also open the gate for supplementary collection of adverse events as has been evidenced in recent trials. Although, there are no data at present to precisely suggest the efficacy differences between all available ACEIs, there are trials which support that ramipril, a long acting ACEI with good tissue penetration, potent long-lasting inhibition of ACE may not be applicable to other available ACEIs. Ramipril also specifically reduces major adverse coronary and cerebrovascular events in post MI patients when compared to other ACEIs or placebo. When clinicians are faced with the choice of using either an ACEI or an ARB in high-risk patients, they should be mindful of the unique differences between each class of medication, particularly with respect to MI and CV death, and also the range of indications, cost and individual convenience.

  12. The effect of vitamin D on renin-angiotensin system activation and blood pressure: a randomized control trial.

    PubMed

    McMullan, Ciaran J; Borgi, Lea; Curhan, Gary C; Fisher, Naomi; Forman, John P

    2017-04-01

    Disruption of vitamin D signaling in rodents causes activation of the rennin-angiotensin system (RAS) and development of hypertension. Observational studies in humans found lower circulating 25-hydroxyvitamin D [25(OH)D] is associated with increased RAS activity and blood pressure (BP). We performed the first randomized control trial to investigate the effects of vitamin D supplementation on the RAS in humans. Vitamin D deficient, [25(OH)D ≤20 ng/ml), overweight individuals without hypertension were randomized into a double-blind, placebo-controlled trial of 8-weeks treatment with ergocalciferol or placebo. Kidney-specific RAS activity, measured using renal plasma flow response to captopril in high sodium balance, was assessed at baseline and 8 weeks, as was systemic RAS activity and 24-h ambulatory BP. In total, 84 participants completed the study. Mean 25[OH]D levels increased from 14.7 to 30.3 ng/ml in the ergocalciferol group, P value < 0.0001, and from 14.3 to 17.4 ng/ml in the placebo group, P value = 0.3. The renal plasma flow response to captopril was 33.9 ± 56.1 ml/min per 1.73 m at baseline and 35.7 ± 47.7 ml/min per 1.73 m at 8 weeks in the ergocalciferol group (P value = 0.83); and was 37.3 ± 46.9 ml/min per 1.73 m at baseline and 35.9 ± 26.2 ml/min per 1.73 m at 8 weeks in the placebo group (P value = 0.78). Ergocalciferol had no effect on PRA, AngII, or 24-h BP measurements. This trial found no benefit from correcting vitamin D deficiency on RAS activity or BP after 8 weeks. These findings are not consistent with the hypothesis that vitamin D is a modifiable target for lowering BP in vitamin D deficient individuals.

  13. Yeast-expressed recombinant As16 protects mice against Ascaris suum infection through induction of a Th2-skewed immune response

    PubMed Central

    Liu, Zhuyun; Keegan, Brian; Gazzinelli-Guimarães, Ana Clara; Fujiwara, Ricardo T.; Briggs, Neima; Jones, Kathryn M.; Strych, Ulrich; Beaumier, Coreen M.; Bottazzi, Maria Elena; Zhan, Bin

    2017-01-01

    Background Ascariasis remains the most common helminth infection in humans. As an alternative or complementary approach to global deworming, a pan-anthelminthic vaccine is under development targeting Ascaris, hookworm, and Trichuris infections. As16 and As14 have previously been described as two genetically related proteins from Ascaris suum that induced protective immunity in mice when formulated with cholera toxin B subunit (CTB) as an adjuvant, but the exact protective mechanism was not well understood. Methodology/Principal findings As16 and As14 were highly expressed as soluble recombinant proteins (rAs16 and rAs14) in Pichia pastoris. The yeast-expressed rAs16 was highly recognized by immune sera from mice infected with A. suum eggs and elicited 99.6% protection against A. suum re-infection. Mice immunized with rAs16 formulated with ISA720 displayed significant larva reduction (36.7%) and stunted larval development against A. suum eggs challenge. The protective immunity was associated with a predominant Th2-type response characterized by high titers of serological IgG1 (IgG1/IgG2a > 2000) and high levels of IL-4 and IL-5 produced by restimulated splenocytes. A similar level of protection was observed in mice immunized with rAs16 formulated with alum (Alhydrogel), known to induce mainly a Th2-type immune response, whereas mice immunized with rAs16 formulated with MPLA or AddaVax, both known to induce a Th1-type biased response, were not significantly protected against A. suum infection. The rAs14 protein was not recognized by A. suum infected mouse sera and mice immunized with rAs14 formulated with ISA720 did not show significant protection against challenge infection, possibly due to the protein’s inaccessibility to the host immune system or a Th1-type response was induced which would counter a protective Th2-type response. Conclusions/Significance Yeast-expressed rAs16 formulated with ISA720 or alum induced significant protection in mice against A. suum egg challenge that associates with a Th2-skewed immune response, suggesting that rAS16 could be a feasible vaccine candidate against ascariasis. PMID:28708895

  14. Radiosensitization Effect of STI-571 on Pancreatic Cancer Cells In Vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Hye Won; Wen, Jing; Lim, Jong-Baeck

    2009-11-01

    Purpose: To examine STI-571-induced radiosensitivity in human pancreatic cancer cells in vitro. Methods and Materials: Three human pancreatic cancer cell lines (Bxpc-3, Capan-1, and MiaPaCa-2) exhibiting different expression levels of c-Kit and platelet-derived growth factor receptor beta (PDGFRbeta) and showing different K-ras mutation types were used. For evaluation of the antitumor activity of STI-571 in combination with radiation, clonogenic survival assays, Western blot analysis, and the annexin V/propidium iodide assay with microscopic evaluation by 4',6-diamidino-2-phenylindole were conducted. Results: Dramatic phosphorylated (p)-c-Kit and p-PDGFRbeta attenuation, a modest dose- and time-dependent growth inhibition, and significant radiosensitization were observed after STI-571 treatment inmore » view of apoptosis, although the levels of growth inhibition and increased radiosensitization were different according to cell lines. The grades of radiosensitivity corresponded to the attenuation levels of p-c-Kit and p-PDGFRbeta by STI-571, particularly to those of p-c-Kit, and the radiosensitivity was partially affected by K-ras mutation in pancreatic cancer cells. Among downstream pathways associated with c-Kit or PDGFRbeta, p-PLCgamma was more closely related to radiosensitivity compared with p-Akt1 or p-extracellular signal-regulated kinase 1. Conclusion: STI-571 enhances radiation response in pancreatic cancer cells. This effect is affected by the attenuation levels of p-c-Kit or p-PDGFRbeta, and K-ras mutation status. Among them, p-c-Kit plays more important roles in the radiosensitivity in pancreatic cancer compared with p-PDGFRbeta or K-ras mutation status.« less

  15. Galectin-1 dimers can scaffold Raf-effectors to increase H-ras nanoclustering

    PubMed Central

    Blaževitš, Olga; Mideksa, Yonatan G.; Šolman, Maja; Ligabue, Alessio; Ariotti, Nicholas; Nakhaeizadeh, Hossein; Fansa, Eyad K.; Papageorgiou, Anastassios C.; Wittinghofer, Alfred; Ahmadian, Mohammad R.; Abankwa, Daniel

    2016-01-01

    Galectin-1 (Gal-1) dimers crosslink carbohydrates on cell surface receptors. Carbohydrate-derived inhibitors have been developed for cancer treatment. Intracellularly, Gal-1 was suggested to interact with the farnesylated C-terminus of Ras thus specifically stabilizing GTP-H-ras nanoscale signalling hubs in the membrane, termed nanoclusters. The latter activity may present an alternative mechanism for how overexpressed Gal-1 stimulates tumourigenesis. Here we revise the current model for the interaction of Gal-1 with H-ras. We show that it indirectly forms a complex with GTP-H-ras via a high-affinity interaction with the Ras binding domain (RBD) of Ras effectors. A computationally generated model of the Gal-1/C-Raf-RBD complex is validated by mutational analysis. Both cellular FRET as well as proximity ligation assay experiments confirm interaction of Gal-1 with Raf proteins in mammalian cells. Consistently, interference with H-rasG12V-effector interactions basically abolishes H-ras nanoclustering. In addition, an intact dimer interface of Gal-1 is required for it to positively regulate H-rasG12V nanoclustering, but negatively K-rasG12V nanoclustering. Our findings suggest stacked dimers of H-ras, Raf and Gal-1 as building blocks of GTP-H-ras-nanocluster at high Gal-1 levels. Based on our results the Gal-1/effector interface represents a potential drug target site in diseases with aberrant Ras signalling. PMID:27087647

  16. Microphysics of Clouds with the Relaxed Arakawa-Schubert Scheme (McRAS). Part I: Design and Evaluation with GATE Phase III Data.

    NASA Astrophysics Data System (ADS)

    Sud, Y. C.; Walker, G. K.

    1999-09-01

    A prognostic cloud scheme named McRAS (Microphysics of Clouds with Relaxed Arakawa-Schubert Scheme) has been designed and developed with the aim of improving moist processes, microphysics of clouds, and cloud-radiation interactions in GCMs. McRAS distinguishes three types of clouds: convective, stratiform, and boundary layer. The convective clouds transform and merge into stratiform clouds on an hourly timescale, while the boundary layer clouds merge into the stratiform clouds instantly. The cloud condensate converts into precipitation following the autoconversion equations of Sundqvist that contain a parametric adaptation for the Bergeron-Findeisen process of ice crystal growth and collection of cloud condensate by precipitation. All clouds convect, advect, as well as diffuse both horizontally and vertically with a fully interactive cloud microphysics throughout the life cycle of the cloud, while the optical properties of clouds are derived from the statistical distribution of hydrometeors and idealized cloud geometry.An evaluation of McRAS in a single-column model (SCM) with the Global Atmospheric Research Program Atlantic Tropical Experiment (GATE) Phase III data has shown that, together with the rest of the model physics, McRAS can simulate the observed temperature, humidity, and precipitation without discernible systematic errors. The time history and time mean in-cloud water and ice distribution, fractional cloudiness, cloud optical thickness, origin of precipitation in the convective anvils and towers, and the convective updraft and downdraft velocities and mass fluxes all simulate a realistic behavior. Some of these diagnostics are not verifiable with data on hand. These SCM sensitivity tests show that (i) without clouds the simulated GATE-SCM atmosphere is cooler than observed; (ii) the model's convective scheme, RAS, is an important subparameterization of McRAS; and (iii) advection of cloud water substance is helpful in simulating better cloud distribution and cloud-radiation interaction. An evaluation of the performance of McRAS in the Goddard Earth Observing System II GCM is given in a companion paper (Part II).

  17. Arousal and the control of perception and movement.

    PubMed

    Garcia-Rill, E; Virmani, T; Hyde, J R; D'Onofrio, S; Mahaffey, S

    2016-01-01

    Recent discoveries on the nature of the activity generated by the reticular activating system (RAS) suggest that arousal is much more involved in perception and movement than previously thought. The RAS is not simply an amorphous, unspecific region but rather a distinct group of nuclei with specific cell and transmitter types that control waking and modulate such processes as perception and movement. Thus, disturbances in the RAS will affect a number of neurological disorders. The discovery of gamma band activity in the RAS determined that high threshold calcium channels are responsible for generating gamma band activity in the RAS. Results showing that waking is mediated by CaMKII modulation of P/Q-type channels and REM sleep is modulated by cAMP/PK modulation of N-type channels points to different intracellular pathways influencing each state. Few studies address these important breakthroughs. Novel findings also show that the same primate RAS neurons exhibiting activity in relation to arousal are also involved in locomotion. Moreover, deep brain stimulation of this region, specifically the pedunculopontine nucleus (PPN DBS), in Parkinson's disease has salutary effects on movement, sleep, and cognition. Gamma oscillations appear to participate in sensory perception, problem solving, and memory, and coherence at these frequencies may occur at cortical or thalamocortical levels. However, rather than participating in the temporal binding of sensory events, gamma band activity generated in the RAS may help stabilize coherence related to arousal, providing a stable activation state during waking, and relay such activation to the cortex. Continuous sensory input will thus induce gamma band activity in the RAS to participate in the processes of preconscious awareness, and provide the essential stream of information for the formulation of many of our perceptions and actions. Such a role has received little attention but promises to help understand and treat a number of neurological disorders.

  18. Phenotypic Screening Identifies Protein Synthesis Inhibitors as H-Ras-Nanocluster-Increasing Tumor Growth Inducers.

    PubMed

    Najumudeen, Arafath K; Posada, Itziar M D; Lectez, Benoit; Zhou, Yong; Landor, Sebastian K-J; Fallarero, Adyary; Vuorela, Pia; Hancock, John; Abankwa, Daniel

    2015-12-15

    Ras isoforms H-, N-, and K-ras are each mutated in specific cancer types at varying frequencies and have different activities in cell fate control. On the plasma membrane, Ras proteins are laterally segregated into isoform-specific nanoscale signaling hubs, termed nanoclusters. As Ras nanoclusters are required for Ras signaling, chemical modulators of nanoclusters represent ideal candidates for the specific modulation of Ras activity in cancer drug development. We therefore conducted a chemical screen with commercial and in-house natural product libraries using a cell-based H-ras-nanoclustering FRET assay. Next to established Ras inhibitors, such as a statin and farnesyl-transferase inhibitor, we surprisingly identified five protein synthesis inhibitors as positive regulators. Using commonly employed cycloheximide as a representative compound, we show that protein synthesis inhibition increased nanoclustering and effector recruitment specifically of active H-ras but not of K-ras. Consistent with these data, cycloheximide treatment activated both Erk and Akt kinases and specifically promoted H-rasG12V-induced, but not K-rasG12V-induced, PC12 cell differentiation. Intriguingly, cycloheximide increased the number of mammospheres, which are enriched for cancer stem cells. Depletion of H-ras in combination with cycloheximide significantly reduced mammosphere formation, suggesting an exquisite synthetic lethality. The potential of cycloheximide to promote tumor cell growth was also reflected in its ability to increase breast cancer cell tumors grown in ovo. These results illustrate the possibility of identifying Ras-isoform-specific modulators using nanocluster-directed screening. They also suggest an unexpected feedback from protein synthesis inhibition to Ras signaling, which might present a vulnerability in certain tumor cell types.

  19. Platelet-derived growth factor-dependent association of the GTPase-activating protein of Ras and Src.

    PubMed Central

    Schlesinger, T K; Demali, K A; Johnson, G L; Kazlauskas, A

    1999-01-01

    Here we report that the platelet-derived growth factor beta receptor (betaPDGFR) is not the only tyrosine kinase able to associate with the GTPase-activating protein of Ras (RasGAP). The interaction of non-betaPDGFR kinase(s) with RasGAP was dependent on stimulation with platelet-derived growth factor (PDGF) and seemed to require tyrosine phosphorylation of RasGAP. Because the tyrosine phosphorylation site of RasGAP is in a sequence context that is favoured by the Src homology 2 ('SH2') domain of Src family members, we tested the possibility that Src was the kinase that associated with RasGAP. Indeed, Src interacted with phosphorylated RasGAP fusion proteins; immunodepletion of Src markedly decreased the recovery of the RasGAP-associated kinase activity. Thus PDGF-dependent tyrosine phosphorylation of RasGAP results in the formation of a complex between RasGAP and Src. To begin to address the relevance of these observations, we focused on the consequences of the interaction of Src and RasGAP. We found that a receptor mutant that did not activate Src was unable to efficiently mediate the tyrosine phosphorylation of phospholipase Cgamma (PLCgamma). Taken together, these observations support the following hypothesis. When RasGAP is recruited to the betaPDGFR, it is phosphorylated and associates with Src. Once bound to RasGAP, Src is no longer able to promote the phosphorylation of PLCgamma. This hypothesis offers a mechanistic explanation for our previously published findings that the recruitment of RasGAP to the betaPDGFR attenuates the tyrosine phosphorylation of PLCgamma. Finally, these findings suggest a novel way in which RasGAP negatively regulates signal relay by the betaPDGFR. PMID:10567236

  20. Genetic Validation of Cell Proliferation via Ras-Independent Activation of the Raf/Mek/Erk Pathway.

    PubMed

    Lechuga, Carmen G; Simón-Carrasco, Lucía; Jacob, Harrys K C; Drosten, Matthias

    2017-01-01

    Signaling transmitted by the Ras family of small GTPases (H-, N-, and K-Ras) is essential for proliferation of mouse embryonic fibroblasts (MEFs). However, constitutive activation of the downstream Raf/Mek/Erk pathway can bypass the requirement for Ras proteins and allow cells to proliferate in the absence of the three Ras isoforms. Here we describe a protocol for a colony formation assay that permits evaluating the role of candidate proteins that are positive or negative regulators of cell proliferation mediated via Ras-independent Raf/Mek/Erk pathway activation. K-Ras lox (H-Ras -/- , N-Ras -/- , K-Ras lox/lox , RERT ert/ert ) MEFs are infected with retro- or lentiviral vectors expressing wild-type or constitutively activated candidate cDNAs, shRNAs, or sgRNAs in combination with Cas9 to ascertain the possibility of candidate proteins to function either as an activator or inhibitor of Ras-independent Raf/Mek/Erk activation. These cells are then seeded in the absence or presence of 4-Hydroxytamoxifen (4-OHT), which activates the resident CreERT2 alleles resulting in elimination of the conditional K-Ras alleles and ultimately generating Rasless cells. Colony formation in the presence of 4-OHT indicates cell proliferation via Ras-independent Raf/Mek/Erk activation.

  1. Regulation of Son of sevenless by the membrane-actin linker protein ezrin

    PubMed Central

    Geißler, Katja J.; Jung, M. Juliane; Riecken, Lars Björn; Sperka, Tobias; Cui, Yan; Schacke, Stephan; Merkel, Ulrike; Markwart, Robby; Rubio, Ignacio; Than, Manuel E.; Breithaupt, Constanze; Peuker, Sebastian; Seifert, Reinhard; Kaupp, Ulrich Benjamin; Herrlich, Peter; Morrison, Helen

    2013-01-01

    Receptor tyrosine kinases participate in several signaling pathways through small G proteins such as Ras (rat sarcoma). An important component in the activation of these G proteins is Son of sevenless (SOS), which catalyzes the nucleotide exchange on Ras. For optimal activity, a second Ras molecule acts as an allosteric activator by binding to a second Ras-binding site within SOS. This allosteric Ras-binding site is blocked by autoinhibitory domains of SOS. We have reported recently that Ras activation also requires the actin-binding proteins ezrin, radixin, and moesin. Here we report the mechanism by which ezrin modulates SOS activity and thereby Ras activation. Active ezrin enhances Ras/MAPK signaling and interacts with both SOS and Ras in vivo and in vitro. Moreover, in vitro kinetic assays with recombinant proteins show that ezrin also is important for the activity of SOS itself. Ezrin interacts with GDP-Ras and with the Dbl homology (DH)/pleckstrin homology (PH) domains of SOS, bringing GDP-Ras to the proximity of the allosteric site of SOS. These actions of ezrin are antagonized by the neurofibromatosis type 2 tumor-suppressor protein merlin. We propose an additional essential step in SOS/Ras control that is relevant for human cancer as well as all physiological processes involving Ras. PMID:24297905

  2. Palmitoylation regulates vesicular trafficking of R-Ras to membrane ruffles and effects on ruffling and cell spreading

    PubMed Central

    Wurtzel, Jeremy G.T.; Kumar, Puneet; Goldfinger, Lawrence E.

    2012-01-01

    In this study we investigated the dynamics of R-Ras intracellular trafficking and its contributions to the unique roles of R-Ras in membrane ruffling and cell spreading. Wild type and constitutively active R-Ras localized to membranes of both Rab11- and transferrin-positive and -negative vesicles, which trafficked anterograde to the leading edge in migrating cells. H-Ras also co-localized with R-Ras in many of these vesicles in the vicinity of the Golgi, but R-Ras and H-Ras vesicles segregated proximal to the leading edge, in a manner dictated by the C-terminal membrane-targeting sequences. These segregated vesicle trafficking patterns corresponded to distinct modes of targeting to membrane ruffles at the leading edge. Geranylgeranylation was required for membrane anchorage of R-Ras, whereas palmitoylation was required for exit from the Golgi in post-Golgi vesicle membranes and trafficking to the plasma membrane. R-Ras vesicle membranes did not contain phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3), whereas R-Ras co-localized with PtdIns(3,4,5)P3 in membrane ruffles. Finally, palmitoylation-deficient R-Ras blocked membrane ruffling, R-Ras/PI3-kinase interaction, enrichment of PtdIns(3,4,5)P3 at the plasma membrane, and R-Ras-dependent cell spreading. Thus, lipid modification of R-Ras dictates its vesicle trafficking, targeting to membrane ruffles, and its unique roles in localizing PtdIns(3,4,5)P3 to ruffles and promoting cell spreading. PMID:22751447

  3. The effect of direct renin inhibition alone and in combination with ACE inhibition on endothelial function, arterial stiffness, and renal function in type 1 diabetes.

    PubMed

    Cherney, David Z I; Scholey, James W; Jiang, Shan; Har, Ronnie; Lai, Vesta; Sochett, Etienne B; Reich, Heather N

    2012-11-01

    Diabetes is associated with renin-angiotensin system (RAS) activation, leading to renal and systemic vascular dysfunction that contribute to end-organ injury and significant morbidity. RAS blockade with ACE inhibitors reduces, but does not abolish, RAS effects. Accordingly, our aim was to determine if direct renin inhibition alone, and in combination with an ACE inhibitor, corrects early hemodynamic abnormalities associated with type 1 diabetes. Arterial stiffness (augmentation index), flow-mediated vasodilatation (FMD), and renal hemodynamic function (inulin and paraaminohippurate clearance) were measured at baseline under clamped euglycemic and hyperglycemic conditions (n = 21). Measures were repeated after 4 weeks of aliskiren therapy and again after aliskiren plus ramipril. Blood pressure-lowering effects of aliskiren were similar during clamped euglycemia and hyperglycemia. Combination therapy augmented this effect under both glycemic conditions (P = 0.0005). Aliskiren reduced arterial stiffness under clamped euglycemic and hyperglycemic conditions, and the effects were augmented by dual RAS blockade (-3.4 ± 11.2 to -8.0 ± 11.5 to -14.3 ± 8.4%, respectively, during euglycemia, P = 0.0001). During clamped euglycemia, aliskiren increased FMD; dual therapy exaggerated this effect (5.1 ± 3.3 to 7.5 ± 3.0 to 10.8 ± 3.5%, repeated-measures ANOVA, P = 0.0001). Aliskiren monotherapy caused renal vasodilatation during clamped hyperglycemia only. In contrast, dual therapy augmented renal vasodilatory effects during clamped euglycemia and hyperglycemia. In patients with uncomplicated type 1 diabetes, aliskiren-based dual RAS blockade is associated with greater arterial compliance, FMD, and renal vasodilatation.

  4. Validation of methods to control for immortal time bias in a pharmacoepidemiologic analysis of renin-angiotensin system inhibitors in type 2 diabetes.

    PubMed

    Yang, Xilin; Kong, Alice Ps; Luk, Andrea Oy; Ozaki, Risa; Ko, Gary Tc; Ma, Ronald Cw; Chan, Juliana Cn; So, Wing Yee

    2014-01-01

    Pharmacoepidemiologic analysis can confirm whether drug efficacy in a randomized controlled trial (RCT) translates to effectiveness in real settings. We examined methods used to control for immortal time bias in an analysis of renin-angiotensin system (RAS) inhibitors as the reference cardioprotective drug. We analyzed data from 3928 patients with type 2 diabetes who were recruited into the Hong Kong Diabetes Registry between 1996 and 2005 and followed up to July 30, 2005. Different Cox models were used to obtain hazard ratios (HRs) for cardiovascular disease (CVD) associated with RAS inhibitors. These HRs were then compared to the HR of 0.92 reported in a recent meta-analysis of RCTs. During a median follow-up period of 5.45 years, 7.23% (n = 284) patients developed CVD and 38.7% (n = 1519) were started on RAS inhibitors, with 39.1% of immortal time among the users. In multivariable analysis, time-dependent drug-exposure Cox models and Cox models that moved immortal time from users to nonusers both severely inflated the HR, and time-fixed models that included immortal time deflated the HR. Use of time-fixed Cox models that excluded immortal time resulted in a HR of only 0.89 (95% CI, 0.68-1.17) for CVD associated with RAS inhibitors, which is closer to the values reported in RCTs. In pharmacoepidemiologic analysis, time-dependent drug exposure models and models that move immortal time from users to nonusers may introduce substantial bias in investigations of the effects of RAS inhibitors on CVD in type 2 diabetes.

  5. The Dark Side of Blocking RAS in Diabetic Patients with Incipient or Manifested Nephropathy.

    PubMed

    Bolignano, D; Pisano, A; Coppolino, G

    2016-06-01

    Renin-angiotensin system (RAS) inhibitors are currently advocated as the first line approach for diabetic patients with high blood pressure, particularly if early signs of renal damage are manifest. This mostly relies on the supposed benefits of these drugs, either achieved indirectly by blood pressure lowering or directly by pleiotropic effects, on cardiovascular and renal outcomes. Yet, data from large randomized controlled trials and independent meta-analyses seem to raise some concerns on the compelling use of RAS-inhibitors in the whole diabetic population as improvements in cardiovascular and renal endpoints may not be as definite as generally believed. Furthermore, the risk of adverse events, such as hyperkalemia, deserves more attention in diabetic patients.In this brief review we aimed at summarizing the most relevant available evidence on "negative" or "null" effects of RAS-inhibitors on clinical outcomes in diabetic patients, providing reasons for a "personalized" rather than generalized use of these drugs according to individual characteristics. © Georg Thieme Verlag KG Stuttgart · New York.

  6. The RAS mutation status predicts survival in patients undergoing hepatic resection for colorectal liver metastases: The results from a genetic analysis of all-RAS.

    PubMed

    Amikura, Katsumi; Akagi, Kiwamu; Ogura, Toshiro; Takahashi, Amane; Sakamoto, Hirohiko

    2018-03-01

    We investigated the impact of mutations in KRAS exons 3-4 and NRAS exons 2-3 in addition to KRAS exon 2, so-called all-RAS mutations, in patients with colorectal liver metastasis (CLM) undergoing hepatic resection. We analyzed 421 samples from CLM patients for their all-RAS mutation status to compare the overall survival rate (OS), recurrence-free survival rate (RFS), and the pattern of recurrence between the patients with and without RAS mutations. RAS mutations were detected in 191 (43.8%). Thirty-two rare mutations (12.2%) were detected in 262 patients with KRAS exon 2 wild-type. After excluding 79 patients who received anti-EGFR antibody therapy, 168 were classified as all-RAS wild-type, and 174 as RAS mutant-type. A multivariate analysis of factors associated with OS and RFS identified the RAS status as an independent factor (OS; hazard ratio [HR] = 1.672, P = 0.0031, RFS; HR = 1.703, P = 0.0024). Recurrence with lung metastasis was observed significantly more frequent in patients with RAS mutations than in patients with RAS wild-type (P = 0.0005). Approximately half of CLM patients may have a RAS mutation. CLM patients with RAS mutations had a significantly worse survival rate in comparison to patients with RAS wild-type, regardless of the administration of anti-EGFR antibody therapy. © 2017 Wiley Periodicals, Inc.

  7. Ras, an Actor on Many Stages

    PubMed Central

    Arozarena, Imanol; Calvo, Fernando; Crespo, Piero

    2011-01-01

    Among the wealth of information that we have gathered about Ras in the past decade, the introduction of the concept of space in the field has constituted a major revolution that has enabled many pieces of the Ras puzzle to fall into place. In the early days, it was believed that Ras functioned exclusively at the plasma membrane. Today, we know that within the plasma membrane, the 3 Ras isoforms—H-Ras, K-Ras, and N-Ras—occupy different microdomains and that these isoforms are also present and active in endomembranes. We have also discovered that Ras proteins are not statically associated with these localizations; instead, they traffic dynamically between compartments. And we have learned that at these localizations, Ras is under site-specific regulatory mechanisms, distinctively engaging effector pathways and switching on diverse genetic programs to generate different biological responses. All of these processes are possible in great part due to the posttranslational modifications whereby Ras proteins bind to membranes and to regulatory events such as phosphorylation and ubiquitination that Ras is subject to. As such, space and these control mechanisms act in conjunction to endow Ras signals with an enormous signal variability that makes possible its multiple biological roles. These data have established the concept that the Ras signal, instead of being one single, homogeneous entity, results from the integration of multiple, site-specified subsignals, and Ras has become a paradigm of how space can differentially shape signaling. PMID:21779492

  8. Exacerbation of acute kidney injury by bone marrow stromal cells from rats with persistent renin-angiotensin system activation.

    PubMed

    Kankuri, Esko; Mervaala, Elina E; Storvik, Markus; Ahola, Aija M J; Levijoki, Jouko; Müller, Dominik N; Finckenberg, Piet; Mervaala, Eero M

    2015-06-01

    Hypertension and persistent activation of the renin-angiotensin system (RAS) are predisposing factors for the development of acute kidney injury (AKI). Although bone-marrow-derived stromal cells (BMSCs) have shown therapeutic promise in treatment of AKI, the impact of pathological RAS on BMSC functionality has remained unresolved. RAS and its local components in the bone marrow are involved in several key steps of cell maturation processes. This may also render the BMSC population vulnerable to alterations even in the early phases of RAS pathology. We isolated transgenic BMSCs (TG-BMSCs) from young end-organ-disease-free rats with increased RAS activation [human angiotensinogen/renin double transgenic rats (dTGRs)] that eventually develop hypertension and die of end-organ damage and kidney failure at 8 weeks of age. Control cells (SD-BMSCs) were isolated from wild-type Sprague-Dawley rats. Cell phenotype, mitochondrial reactive oxygen species (ROS) production and respiration were assessed, and gene expression profiling was carried out using microarrays. Cells' therapeutic efficacy was evaluated in a rat model of acute ischaemia/reperfusion-induced AKI. Serum urea and creatinine were measured at 24 h and 48 h. Acute tubular damage was scored and immunohistochemistry was used for evaluation for markers of inflammation [monocyte chemoattractant protein (MCP-1), ED-1], and kidney injury [kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL)]. TG-BMSCs showed distinct mitochondrial morphology, decreased cell respiration and increased production of ROS. Gene expression profiling revealed a pronounced pro-inflammatory phenotype. In contrast with the therapeutic effect of SD-BMSCs, administration of TG-BMSCs in the AKI model resulted in exacerbation of kidney injury and high mortality. Our results demonstrate that early persistent RAS activation can dramatically compromise therapeutic potential of BMSCs by causing a shift into a pro-inflammatory phenotype with mitochondrial dysfunction.

  9. Renin angiotensin system blockers-associated angioedema in the Thai population: analysis from Thai National Pharmacovigilance Database.

    PubMed

    Win, Thet Su Zin; Chaiyakunapruk, Nathorn; Suwankesawong, Wimon; Dilokthornsakul, Piyameth; Nathisuwan, Surakit

    2015-09-01

    Renin-angiotensin-aldosterone system (RAS) blockers are commonly used for cardiovascular diseases. Currently, little information exists for the Asian population on angioedema, a rare yet serious adverse event. This study aimed to describe characteristics of RAS blockers-associated angioedema (RASBA) in Thai patients. A retrospective study using the national pharmacovigilance database of Thailand was undertaken. Cases indicating the presence of angioedema with RAS blockers uses from 1984-2011 were identified. Patient demographics, co-morbidities, concomitant drugs, information for the RAS blockers and angioedema were obtained as well as causality assessment and quality of reports. A total of 895 cases were identified. Mean age was 59.9+12.8 years and 66.5% being female. Most angioedema events (48.6%) occurred during the first week of treatment. Angiotensin converting enzyme inhibitors (87.7%) were the most commonly implicated agents followed by angiotensin receptor blockers (10.5%), aldosterone antagonist (2.1%) and direct renin inhibitor (0.2%). Out of the 895 cases incorporated in this study, 165 (18.4%) were classified as serious events and resulted in hospitalization. The overall case fatality rate was 0.4%. Respiratory disturbance occurred in 46 cases (5.1%). Patients with respiratory complications tended to be younger (53.4+13.9 vs 60.3+12.7 years old; p=0.002) and with higher frequency of allergy history (26.1% vs 14.7%; p=0.032) compared to those without respiratory complications. Based on multivariate logistic regression, the adjusted OR for history of allergy was 2.23 (95%CI: 1.04 - 4.78, p = 0.041). RASBA in Thai population occurred mostly in elderly female patients and often led to hospitalization. Since large number of patients is regularly exposed to RAS-blockers, a nationwide attempt to raise awareness of clinicians when prescribing RAS-blockers is prudent.

  10. Local bone marrow renin-angiotensin system in the genesis of leukemia and other malignancies.

    PubMed

    Haznedaroglu, I C; Malkan, U Y

    2016-10-01

    The existence of a local renin-angiotensin system (RAS) specific to the hematopoietic bone marrow (BM) microenvironment had been proposed two decades ago. Most of the RAS molecules including ACE, ACE2, AGT, AGTR1, AGTR2, AKR1C4, AKR1D1, ANPEP, ATP6AP2, CMA1, CPA3, CTSA, CTSD, CTSG, CYP11A1, CYP11B1, CYP11B2, CYP17A1, CYP21A2, DPP3, EGFR, ENPEP, GPER, HSD11B1, HSD11B2, IGF2R, KLK1, LNPEP, MAS1, MME, NR3C1, NR3C2, PREP, REN, RNPEP, and THOP1 are locally present in the BM microenvironment. Local BM RAS peptides control the hematopoietic niche, myelopoiesis, erythropoiesis, thrombopoiesis and the development of other cellular lineages. Local BM RAS is important in hematopoietic stem cell biology and microenvironment. Angiotensin II regulates the proliferation, differentiation, and engraftment of hematopoietic stem cells. Activation of Mas receptor or ACE2 promotes proliferation of CD34+ cells. BM contains a progenitor that expresses renin throughout development. Angiotensin II attenuates the migration and proliferation of CD34+ Cells and promotes the adhesion of both MNCs and CD34+ cells. Renin cells in hematopoietic organs are precursor B cells. The renin cell requires RBP-J to differentiate. Mutant renin-expressing hematopoietic precursors can cause leukemia. Deletion of RBP-J in the renin-expressing progenitors enriches the precursor B-cell gene programme. Mutant cells undergo a neoplastic transformation, and mice develop a highly penetrant B-cell leukemia with multi-organ infiltration and early death. Many biological conditions during the development and function of blood cells are mediated by RAS, such as apoptosis, cellular proliferation, intracellular signaling, mobilization, angiogenesis, and fibrosis. The aim of this paper is to review recent developments regarding the actions of local BM RAS in the genesis of leukemia and other malignancies molecules.

  11. Effect of Rhythmic Auditory Stimulation on Hemiplegic Gait Patterns.

    PubMed

    Shin, Yoon-Kyum; Chong, Hyun Ju; Kim, Soo Ji; Cho, Sung-Rae

    2015-11-01

    The purpose of our study was to investigate the effect of gait training with rhythmic auditory stimulation (RAS) on both kinematic and temporospatial gait patterns in patients with hemiplegia. Eighteen hemiplegic patients diagnosed with either cerebral palsy or stroke participated in this study. All participants underwent the 4-week gait training with RAS. The treatment was performed for 30 minutes per each session, three sessions per week. RAS was provided with rhythmic beats using a chord progression on a keyboard. Kinematic and temporospatial data were collected and analyzed using a three-dimensional motion analysis system. Gait training with RAS significantly improved both proximal and distal joint kinematic patterns in hip adduction, knee flexion, and ankle plantar flexion, enhancing the gait deviation index (GDI) as well as ameliorating temporal asymmetry of the stance and swing phases in patients with hemiplegia. Stroke patients with previous walking experience demonstrated significant kinematic improvement in knee flexion in mid-swing and ankle dorsiflexion in terminal stance. Among stroke patients, subacute patients showed a significantly increased GDI score compared with chronic patients. In addition, household ambulators showed a significant effect on reducing anterior tilt of the pelvis with an enhanced GDI score, while community ambulators significantly increased knee flexion in mid-swing phase and ankle dorsiflexion in terminal stance phase. Gait training with RAS has beneficial effects on both kinematic and temporospatial patterns in patients with hemiplegia, providing not only clinical implications of locomotor rehabilitation with goal-oriented external feedback using RAS but also differential effects according to ambulatory function.

  12. Brain targeted nanoparticulate drug delivery system of rasagiline via intranasal route.

    PubMed

    Mittal, Deepti; Md, Shadab; Hasan, Quamrul; Fazil, Mohammad; Ali, Asgar; Baboota, Sanjula; Ali, Javed

    2016-01-01

    The aim of the present study was to prepare and evaluate a rasagiline-loaded chitosan glutamate nanoparticles (RAS-CG-NPs) by ionic gelation of CG with tripolyphosphate anions (TPP). RAS-loaded CG-NPs were characterized for particle size, size distribution, encapsulation efficiency and in vitro drug release. The mean particles size, polydispersity index (PDI) and encapsulation efficiency was found to be 151.1 ± 10.31, 0.380 ± 0.01 and 96.43 ± 4.23, respectively. Biodistribution of RAS formulations in the brain and blood of mice following intranasal (i.n.) and intravenous (i.v.) administration was performed using HPLC analytical method. The drug concentrations in brain following the i.n. of CG-NPs were found to be significantly higher at all the time points compared to both drug (i.n.) and drug CG-NPs (i.v.). The Cmax (999.25 ng/ml) and AUC (2086.60 ng h/ml) of formulation CG-NPs (i.n) were found to be significantly higher than CG-NPs (i.v.) and RAS solution (i.n.). The direct transport percentage (DTP%) values of RAS-loaded CG-NPs (i.n.) as compared to drug solution (i.n.) increased from 66.27 ± 1.8 to 69.27 ± 2.1%. The results showed significant enhancement of bioavailability in brain, after administration of the RAS-loaded CG-NPs which could be a substantial achievement of direct nose to brain targeting in Parkinson's disease therapy.

  13. Rat embryo cells immortalized with transfected oncogenes are transformed by gamma irradiation.

    PubMed

    Endlich, B; Salavati, R; Sullivan, T; Ling, C C

    1992-12-01

    Cesium-137 gamma rays were used to transform rat embryo cells (REC) which were first transfected with activated c-myc or c-Ha-ras oncogenes to produce immortal cell lines (REC:myc and REC:ras). When exposed to 6 Gy of 137Cs gamma rays, some cells became morphologically transformed with focus formation frequencies of approximately 3 x 10(-4) for REC:myc and approximately 1 x 10(-4) for REC:ras, respectively. Cells isolated from foci of gamma-ray-transformed REC:myc (REC:myc:gamma) formed anchorage-independent colonies and were tumorigenic in nude mice, but foci from gamma-ray-transformed REC:ras (REC:ras:gamma) did not exhibit either of these criteria of transformation. Similar to the results with gamma irradiation, we observed a sequence-dependent phenomenon when myc and ras were transfected into REC, one at a time. REC immortalized by ras transfection were not converted to a tumorigenic phenotype by secondary transfection with myc, but REC transfected with myc were very susceptible to transformation by subsequent ras transfection. This suggests that myc-immortalized cells are more permissive to transformation via secondary treatments. In sequentially transfected REC, myc expression was high whether it was transfected first or second, whereas ras expression was highest when the ras gene was transfected secondarily into myc-containing REC. Molecular analysis of REC:ras:gamma transformants showed no alterations in structure of the transfected ras or of the endogenous ras, myc, p53, or fos genes. The expression of ras and p53 was increased in some isolates of REC:ras:gamma, but myc and fos expression were not affected. Similarly, REC:myc:gamma transformants did not demonstrate rearrangement or amplification of the transfected or the endogenous myc genes, or of the potentially cooperating Ha-, Ki-, or N-ras genes. Northern hybridization analysis revealed increased expression of N-ras in two isolates, REC:myc:gamma 33 and gamma 41, but no alterations in the expression of myc, raf, Ha-ras, or Ki-ras genes in any REC:myc transformant. DNA from several transformed REC:myc:gamma cell lines induced focus formation in recipient C3H 10T1/2 and NIH 3T3 cells. The NIH 3T3 foci tested positive when hybridized to a probe for rat repetitive DNA. A detailed analysis of the NIH 3T3 transformants generated from REC:myc:gamma 33 and gamma 41 DNA failed to detect Ha-ras, Ki-ras, raf, neu, trk, abl, fms, or src oncogenes of rat origin.(ABSTRACT TRUNCATED AT 400 WORDS)

  14. Structural Dynamics in Ras and Related Proteins upon Nucleotide Switching.

    PubMed

    Harrison, Rane A; Lu, Jia; Carrasco, Martin; Hunter, John; Manandhar, Anuj; Gondi, Sudershan; Westover, Kenneth D; Engen, John R

    2016-11-20

    Structural dynamics of Ras proteins contributes to their activity in signal transduction cascades. Directly targeting Ras proteins with small molecules may rely on the movement of a conserved structural motif, switch II. To understand Ras signaling and advance Ras-targeting strategies, experimental methods to measure Ras dynamics are required. Here, we demonstrate the utility of hydrogen-deuterium exchange (HDX) mass spectrometry (MS) to measure Ras dynamics by studying representatives from two branches of the Ras superfamily, Ras and Rho. A comparison of differential deuterium exchange between active (GMPPNP-bound) and inactive (GDP-bound) proteins revealed differences between the families, with the most notable differences occurring in the phosphate-binding loop and switch II. The P-loop exchange signature correlated with switch II dynamics observed in molecular dynamics simulations focused on measuring main-chain movement. HDX provides a means of evaluating Ras protein dynamics, which may be useful for understanding the mechanisms of Ras signaling, including activated signaling of pathologic mutants, and for targeting strategies that rely on protein dynamics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. RasGRP1 opposes proliferative EGFR–SOS1–Ras signals and restricts intestinal epithelial cell growth

    PubMed Central

    Depeille, Philippe; Henricks, Linda M.; van de Ven, Robert A. H.; Lemmens, Ed; Wang, Chih-Yang; Matli, Mary; Werb, Zena; Haigis, Kevin M.; Donner, David; Warren, Robert; Roose, Jeroen P.

    2015-01-01

    The character of EGFR signals can influence cell fate but mechanistic insights into intestinal EGFR-Ras signalling are limited. Here we show that two distinct Ras nucleotide exchange factors, RasGRP1 and SOS1, lie downstream of EGFR but act in functional opposition. RasGRP1 is expressed in intestinal crypts where it restricts epithelial growth. High RasGRP1 expression in colorectal cancer (CRC) patient samples correlates with a better clinical outcome. Biochemically, we find that RasGRP1 creates a negative feedback loop that limits proliferative EGFR–SOS1–Ras signals in CRC cells. Genetic Rasgrp1 depletion from mice with either an activating mutation in KRas or with aberrant Wnt signalling due to a mutation in Apc resulted in both cases in exacerbated Ras–ERK signalling and cell proliferation. The unexpected opposing cell biological effects of EGFR–RasGRP1 and EGFR–SOS1 signals in the same cell shed light on the intricacy of EGFR-Ras signalling in normal epithelium and carcinoma. PMID:26005835

  16. p21ras independent down-regulation of ras-induced increases in natural antibody binding during tumor progression.

    PubMed

    Tough, D F; Feng, X; Chow, D A

    1995-01-01

    Selective outgrowth of v-H-ras-infected 10T1/2 cells based on the cointroduction of a gene for resistance to geneticin (G418), yielded cells which exhibited an increased capacity to bind polyclonal serum natural antibody (NAb). This demonstrated an NAb-susceptible phase of tumor development which would be a basic requirement for NAb-mediated surveillance of tumors. The ras-oncogene dependence of the high-NAb-binding phenotype provided a model for assessing NAb resistance against ras transformants in vivo and for a comparative analysis of phenotypic and genetic alterations contributing to the progression of ras transformants. Variants were developed through in vitro and in vivo models of tumor progression. T24-H-ras and v-H-ras transformants were isolated in vitro through more rigorous growth conditions, focus formation in the presence of untransformed cells with no selecting drug. These clones expressed p21ras but exhibited little or no increase in NAb binding. Variants recovered following growth from intravenous or threshold subcutaneous (s.c.) inocula of high-NAb-binding ras transformants in syngeneic C3H/HeN mice exhibited decreases in NAb binding but no uniform change in p21ras. Concurring inverse correlations between NAb binding and s.c. tumorigenicity were exhibited by the T24-H-ras transformant clones, the ras transformants grown in vivo, and the v-H-ras-transformed clones isolated in the presence versus the absence of untransformed cells. This consistent inverse correlation, together with the reduced NAb binding of the ras transformants grown in vivo, provides strong evidence that NAb participates in the defense against ras-transformed cells in vivo. The lack of any direct correlation between p21ras expression and the reduction in NAb binding or the increase in tumorigenicity of cells generated through progression in vivo suggested the regulatory action of additional genes. Hybridization studies between high- and low-NAb-binding clones implicated the activation of an additional oncogene and inactivation of an antioncogene in the down-regulation of the ras-induced increases in NAb binding associated with tumor progression.

  17. An Active RFID Accountability System (RAS) for Constrained Wireless Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barker, Alan M; Hanson, Gregory R; Sexton, Angela Kay

    A team from Oak Ridge National Laboratory (ORNL) has developed an RFID Accountability System (RAS) that allows items with active RFID tags to be tracked in environments where tags may not be able to transmit their location continuously. The system uses activators that transmit a short range signal. Active RFID tags are in a sleep state until they encounter an activator. Then they transmit a signal that is picked up by the antennas installed throughout the building. This paper presents the theory of operation, application areas, lessons learned, and key features developed over the course of seven years of developmentmore » and use.« less

  18. The Study of Familiarity of Iranian ESP Teachers and ESP Course Learners with Academic Rhetoric within a Systemic Functional Grammar at Graduate Level

    ERIC Educational Resources Information Center

    Jafarian, Tahereh; Azizifar, Akbar; Gowhary, Habib; Jamalinesari, Ali

    2014-01-01

    Publication of research articles (RAs) in English seems a challenging task for native and non-native writers. The acquisition of rhetorical structure and function grammar can be very helpful for academicians to achieve the wanted goal which is, of course, the publication of their RAs. This study aims to investigate the current level of familiarity…

  19. Commercial production of tiger puffer ( Takifugu rubripes) in winter using a recirculating aquaculture system

    NASA Astrophysics Data System (ADS)

    Lin, Zhongling; Wang, Hua; Yu, Chunyan; Lv, Fenghe; Liu, Hengming; Zhang, Tao

    2017-02-01

    Tiger puffer ( Takifugu rubripes) is a promising species for aquaculture production because of its high value and limited supply. However, in the north of China, using sea cages to culture this species in winter is hampered by the fact that the seawater temperature is extremely low. Here, a large scale commercial production of tiger puffer has been successfully realized using a recirculating aquaculture system (RAS) from 3 October 2012 to 31 May 2013. The RAS was comprised of nine culture tanks (total water volume 200 m3) and stocked with approximately a total of 14400 fish (initial mean weight 160 g). The tiger puffer was hand-fed at a rate of 0.7% of total body weight per day, and the feed conversion rate was (1.21 ± 0.3) kg kg-1. The recycle water in RAS was treated by a sieve bend screen, a foam fractionator, a submerged biofilter, an UV sterilizer and a submersible aerator. During the whole culture period, an excellent water quality control was achieved in RAS. At the end of this experiment, the survival rate of tiger puffer was more than 98%. The final tank densities averaged 31.2 kg m-3, and the final individual mean weight was 440 g.

  20. Anatomic distribution of renal artery stenosis in children: implications for imaging.

    PubMed

    Vo, Nghia J; Hammelman, Ben D; Racadio, Judy M; Strife, C Frederic; Johnson, Neil D; Racadio, John M

    2006-10-01

    Renal artery stenosis (RAS) causes significant hypertension in children. Frequently, pediatric RAS occurs with systemic disorders. In these cases, stenoses are often complex and/or include long segments. We believed that hypertensive children without comorbid conditions had a different lesion distribution and that the difference might have implications for imaging and treatment. To identify locations of RAS lesions in these hypertensive children without comorbid conditions. Patients who had renal angiography for hypertension from 1993 to 2005 were identified. Patients with systemic disorders, renovascular surgery, or normal angiograms were excluded. The angiograms of the remaining patients were reviewed for number, type, and location of stenoses. Eighty-seven patients underwent renal angiography for hypertension; 30 were excluded for comorbid conditions. Twenty-one of the remaining 57 patients had abnormal angiograms; 24 stenoses were identified in those patients. All were focal and distributed as follows: 6 (25%) main renal artery, 12 (50%) 2nd order branch, 3 (12.5%) 3rd order branch, and 3 (12.5%) accessory renal artery. Hypertensive children without comorbid conditions who have RAS usually have single, focal branch artery stenoses. This distribution supports angiography in these patients because of its superior sensitivity in detecting branch vessel disease and its therapeutic role in percutaneous transluminal renal angioplasty.

  1. Bilateral Renal Denervation Ameliorates Isoproterenol-Induced Heart Failure through Downregulation of the Brain Renin-Angiotensin System and Inflammation in Rat

    PubMed Central

    Li, Jian-Dong; Cheng, Ai-Yuan; Huo, Yan-Li; Fan, Jie; Zhang, Yu-Ping; Fang, Zhi-Qin; Sun, Hong-Sheng; Peng, Wei; Zhang, Jin-Shun

    2016-01-01

    Heart failure (HF) is characterized by cardiac dysfunction along with autonomic unbalance that is associated with increased renin-angiotensin system (RAS) activity and elevated levels of proinflammatory cytokines (PICs). Renal denervation (RD) has been shown to improve cardiac function in HF, but the protective mechanisms remain unclear. The present study tested the hypothesis that RD ameliorates isoproterenol- (ISO-) induced HF through regulation of brain RAS and PICs. Chronic ISO infusion resulted in remarked decrease in blood pressure (BP) and increase in heart rate and cardiac dysfunction, which was accompanied by increased BP variability and decreased baroreflex sensitivity and HR variability. Most of these adverse effects of ISO on cardiac and autonomic function were reversed by RD. Furthermore, ISO upregulated mRNA and protein expressions of several components of the RAS and PICs in the lamina terminalis and hypothalamic paraventricular nucleus, two forebrain nuclei involved in cardiovascular regulations. RD significantly inhibited the upregulation of these genes. Either intracerebroventricular AT1-R antagonist, irbesartan, or TNF-α inhibitor, etanercept, mimicked the beneficial actions of RD in the ISO-induced HF. The results suggest that the RD restores autonomic balance and ameliorates ISO-induced HF and that the downregulated RAS and PICs in the brain contribute to these beneficial effects of RD. PMID:27746855

  2. The relationship between vitamin D and the renin-angiotensin system in the pathophysiology of hypertension, kidney disease, and diabetes.

    PubMed

    Vaidya, Anand; Williams, Jonathan S

    2012-04-01

    Vitamin D has been implicated in the pathophysiology of extraskeletal conditions such as hypertension, kidney disease, and diabetes via its ability to negatively regulate the renin-angiotensin system (RAS). This article reviews the evidence supporting a link between vitamin D and the RAS in these conditions, with specific emphasis on translational observations and their limitations. A literature review of animal and human studies evaluating the role of vitamin D in hypertension, kidney disease, and diabetes was performed. Excess activity of the RAS has been implicated in the pathogenesis of hypertension, chronic kidney disease, decreased insulin secretion, and insulin resistance. Animal studies provide strong support for 1,25-dihydroxyvitamin D(3)-mediated downregulation of renin expression and RAS activity via its interaction with the vitamin D receptor. Furthermore, the activity of vitamin D metabolites in animals is associated with reductions in blood pressure, proteinuria and renal injury, and with improved β-cell function. Many observational, and a few interventional, studies in humans have supported these findings; however, there is a lack of well-designed prospective human interventional studies to definitively assess clinical outcomes. There is a need for more well-designed prospective interventional studies to validate this hypothesis in human clinical outcomes. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Interplay of vitamin D, erythropoiesis, and the renin-angiotensin system.

    PubMed

    Santoro, Domenico; Caccamo, Daniela; Lucisano, Silvia; Buemi, Michele; Sebekova, Katerina; Teta, Daniel; De Nicola, Luca

    2015-01-01

    For many years deficiency of vitamin D was merely identified and assimilated to the presence of bone rickets. It is now clear that suboptimal vitamin D status may be correlated with several disorders and that the expression of 1-α-hydroxylase in tissues other than the kidney is widespread and of clinical relevance. Recently, evidence has been collected to suggest that, beyond the traditional involvement in mineral metabolism, vitamin D may interact with other kidney hormones such as renin and erythropoietin. This interaction would be responsible for some of the systemic and renal effects evoked for the therapy with vitamin D. The administration of analogues of vitamin D has been associated with an improvement of anaemia and reduction in ESA requirements. Moreover, vitamin D deficiency could contribute to an inappropriately activated or unsuppressed RAS, as a mechanism for progression of CKD and/or cardiovascular disease. Experimental data on the anti-RAS and anti-inflammatory effects treatment with active vitamin D analogues suggest a therapeutic option particularly in proteinuric CKD patients. This option should be considered for those subjects that are intolerant to anti-RAS agents or, as add-on therapy, in those already treated with anti-RAS but not reaching the safe threshold level of proteinuria.

  4. EphA2 Drives the Segregation of Ras-Transformed Epithelial Cells from Normal Neighbors.

    PubMed

    Porazinski, Sean; de Navascués, Joaquín; Yako, Yuta; Hill, William; Jones, Matthew Robert; Maddison, Robert; Fujita, Yasuyuki; Hogan, Catherine

    2016-12-05

    In epithelial tissues, cells expressing oncogenic Ras (hereafter RasV12 cells) are detected by normal neighbors and as a result are often extruded from the tissue [1-6]. RasV12 cells are eliminated apically, suggesting that extrusion may be a tumor-suppressive process. Extrusion depends on E-cadherin-based cell-cell adhesions and signaling to the actin-myosin cytoskeleton [2, 6]. However, the signals underlying detection of the RasV12 cell and triggering extrusion are poorly understood. Here we identify differential EphA2 signaling as the mechanism by which RasV12 cells are detected in epithelial cell sheets. Cell-cell interactions between normal cells and RasV12 cells trigger ephrin-A-EphA2 signaling, which induces a cell repulsion response in RasV12 cells. Concomitantly, RasV12 cell contractility increases in an EphA2-dependent manner. Together, these responses drive the separation of RasV12 cells from normal cells. In the absence of ephrin-A-EphA2 signals, RasV12 cells integrate with normal cells and adopt a pro-invasive morphology. We also show that Drosophila Eph (DEph) is detected in segregating clones of RasV12 cells and is functionally required to drive segregation of RasV12 cells in vivo, suggesting that our in vitro findings are conserved in evolution. We propose that expression of RasV12 in single or small clusters of cells within a healthy epithelium creates ectopic EphA2 boundaries, which drive the segregation and elimination of the transformed cell from the tissue. Thus, deregulation of Eph/ephrin would allow RasV12 cells to go undetected and expand within an epithelium. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Impact of Emergent Circulating Tumor DNA RAS Mutation in Panitumumab-Treated Chemoresistant Metastatic Colorectal Cancer.

    PubMed

    Kim, Tae Won; Peeters, Marc; Thomas, Anne L; Gibbs, Peter; Hool, Kristina; Zhang, Jianqi; Ang, Agnes; Bach, Bruce Allen; Price, Timothy

    2018-06-13

    The accumulation of emergent RAS mutations during anti-epidermal growth factor receptor (EGFR) therapy is of interest as a mechanism for acquired resistance to anti-EGFR treatment. Plasma analysis of circulating tumor (ct) DNA is a minimally invasive and highly sensitive method to determine RAS mutational status. This biomarker analysis of the global phase III ASPECCT study used next-generation sequencing to detect expanded RAS ctDNA mutations in panitumumab-treated patients. Plasma samples collected at baseline and posttreatment were analyzed categorically for the presence of RAS mutations by the Plasma Select -R™ 64-gene panel at 0.1% sensitivity. Among panitumumab-treated patients with evaluable plasma samples at baseline (n = 238), 188 (79%) were wild-type (WT) RAS, and 50 (21%) were mutant RAS Of the 188 patients with baseline ctDNA WT RAS status, 164 had evaluable posttreatment results with a 32% rate of emergent RAS mutations. The median overall survival (OS) for WT and RAS mutant status by ctDNA at baseline was 13.7 (95% confidence interval: 11.5-15.4) and 7.9 months (6.4-9.6), respectively ( P < 0.0001). Clinical outcomes were not significantly different between patients with and without emergent ctDNA RAS mutations. Although patients with baseline ctDNA RAS mutations had worse outcomes than patients who were WT RAS before initiating treatment, emergent ctDNA RAS mutations were not associated with less favorable patient outcomes in panitumumab-treated patients. Further research is needed to determine a clinically relevant threshold for baseline and emergent ctDNA RAS mutations. Copyright ©2018, American Association for Cancer Research.

  6. A New Strategy to Control and Eradicate "Undruggable" Oncogenic K-RAS-Driven Pancreatic Cancer: Molecular Insights and Core Principles Learned from Developmental and Evolutionary Biology.

    PubMed

    Van Sciver, Robert E; Lee, Michael P; Lee, Caroline Dasom; Lafever, Alex C; Svyatova, Elizaveta; Kanda, Kevin; Colliver, Amber L; Siewertsz van Reesema, Lauren L; Tang-Tan, Angela M; Zheleva, Vasilena; Bwayi, Monicah N; Bian, Minglei; Schmidt, Rebecca L; Matrisian, Lynn M; Petersen, Gloria M; Tang, Amy H

    2018-05-14

    Oncogenic K-RAS mutations are found in virtually all pancreatic cancers, making K-RAS one of the most targeted oncoproteins for drug development in cancer therapies. Despite intense research efforts over the past three decades, oncogenic K-RAS has remained largely "undruggable". Rather than targeting an upstream component of the RAS signaling pathway (i.e., EGFR/HER2) and/or the midstream effector kinases (i.e., RAF/MEK/ERK/PI3K/mTOR), we propose an alternative strategy to control oncogenic K-RAS signal by targeting its most downstream signaling module, Seven-In-Absentia Homolog (SIAH). SIAH E3 ligase controls the signal output of oncogenic K-RAS hyperactivation that drives unchecked cell proliferation, uncontrolled tumor growth, and rapid cancer cell dissemination in human pancreatic cancer. Therefore, SIAH is an ideal therapeutic target as it is an extraordinarily conserved downstream signaling gatekeeper indispensable for proper RAS signaling. Guided by molecular insights and core principles obtained from developmental and evolutionary biology, we propose an anti-SIAH-centered anti-K-RAS strategy as a logical and alternative anticancer strategy to dampen uncontrolled K-RAS hyperactivation and halt tumor growth and metastasis in pancreatic cancer. The clinical utility of developing SIAH as both a tumor-specific and therapy-responsive biomarker, as well as a viable anti-K-RAS drug target, is logically simple and conceptually innovative. SIAH clearly constitutes a major tumor vulnerability and K-RAS signaling bottleneck in pancreatic ductal adenocarcinoma (PDAC). Given the high degree of evolutionary conservation in the K-RAS/SIAH signaling pathway, an anti-SIAH-based anti-PDAC therapy will synergize with covalent K-RAS inhibitors and direct K-RAS targeted initiatives to control and eradicate pancreatic cancer in the future.

  7. Does Harvey-Ras gene expression lead to oral squamous cell carcinoma? A clinicopathological aspect

    PubMed Central

    Krishna, Akhilesh; Singh, Shraddha; Singh, Vineeta; Kumar, Vijay; Singh, Uma Shankar; Sankhwar, Satya Narayan

    2018-01-01

    Background: Harvey-Ras (H-Ras) is an important guanosine triphosphatase protein for the regulation of cellular growth and survival. Altered Ras signaling has been observed in different types of cancer either by gene amplification and/or mutation. The H-Ras oncogene mutations are well reported, but expression of the H-Ras gene is still unknown. Objective: This study aimed to examine both protein and messenger-RNA (mRNA) expressions of H-Ras in oral squamous cell carcinoma (OSCC) and analyzed the association with risk habits and the clinicopathological profile of cases. Methodology: A total of 65 tissue specimens of OSCC (case group) and equal number of normal tissues (control group) were included in this study. H-Ras protein and mRNA expressions were analyzed using immunohistochemical and quantitative real time-polymerase chain reaction techniques, respectively. Results: The H-Ras protein was significantly overexpressed in the oral carcinoma group compared to the normal group (P = 0.03). Most of the OSCC cases showed positive staining with moderate expression, while negative and moderate staining was high in the control group. The majority of H-Ras positive cases were found in individuals with multiple risk habits including tobacco chewing. The risk of H-Ras positivity was 1.46 times higher in smokers than non-smokers. H-Ras positivity increased in cases affected with buccal mucosa site and higher grade of carcinoma. Relative mRNA level of H-Ras was significantly elevated in oral carcinoma as compared with the control group (P ≤ 0.001). Protein and mRNA levels of H-Ras in case group was poorly correlated. Conclusion: H-Ras oncogene expression was markedly higher in oral carcinoma, and it can be a prognostic marker and target for an effective molecular therapy. PMID:29731559

  8. Ras Dimer Formation as a New Signaling Mechanism and Potential Cancer Therapeutic Target

    PubMed Central

    Chen, Mo; Peters, Alec; Huang, Tao; Nan, Xiaolin

    2016-01-01

    The K-, N-, and HRas small GTPases are key regulators of cell physiology and are frequently mutated in human cancers. Despite intensive research, previous efforts to target hyperactive Ras based on known mechanisms of Ras signaling have been met with little success. Several studies have provided compelling evidence for the existence and biological relevance of Ras dimers, establishing a new mechanism for regulating Ras activity in cells additionally to GTP-loading and membrane localization. Existing data also start to reveal how Ras proteins dimerize on the membrane. We propose a dimer model to describe Ras-mediated effector activation, which contrasts existing models of Ras signaling as a monomer or as a 5-8 membered multimer. We also discuss potential implications of this model in both basic and translational Ras biology. PMID:26423697

  9. Endomembrane H-Ras Controls Vascular Endothelial Growth Factor-induced Nitric-oxide Synthase-mediated Endothelial Cell Migration*

    PubMed Central

    Haeussler, Dagmar J.; Pimentel, David R.; Hou, Xiuyun; Burgoyne, Joseph R.; Cohen, Richard A.; Bachschmid, Markus M.

    2013-01-01

    We demonstrate for the first time that endomembrane-delimited H-Ras mediates VEGF-induced activation of endothelial nitric-oxide synthase (eNOS) and migratory response of human endothelial cells. Using thiol labeling strategies and immunofluorescent cell staining, we found that only 31% of total H-Ras is S-palmitoylated, tethering the small GTPase to the plasma membrane but leaving the function of the large majority of endomembrane-localized H-Ras unexplained. Knockdown of H-Ras blocked VEGF-induced PI3K-dependent Akt (Ser-473) and eNOS (Ser-1177) phosphorylation and nitric oxide-dependent cell migration, demonstrating the essential role of H-Ras. Activation of endogenous H-Ras led to recruitment and phosphorylation of eNOS at endomembranes. The loss of migratory response in cells lacking endogenous H-Ras was fully restored by modest overexpression of an endomembrane-delimited H-Ras palmitoylation mutant. These studies define a newly recognized role for endomembrane-localized H-Ras in mediating nitric oxide-dependent proangiogenic signaling. PMID:23548900

  10. Differences in the Regulation of K-Ras and H-Ras Isoforms by Monoubiquitination*

    PubMed Central

    Baker, Rachael; Wilkerson, Emily M.; Sumita, Kazutaka; Isom, Daniel G.; Sasaki, Atsuo T.; Dohlman, Henrik G.; Campbell, Sharon L.

    2013-01-01

    Ras GTPases are signaling switches that control critical cellular processes including gene expression, differentiation, and apoptosis. The major Ras isoforms (K, H, and N) contain a conserved core GTPase domain, but have distinct biological functions. Among the three Ras isoforms there are clear differences in post-translational regulation, which contribute to differences in localization and signaling output. Modification by ubiquitination was recently reported to activate Ras signaling in cells, but the mechanisms of activation are not well understood. Here, we show that H-Ras is activated by monoubiquitination and that ubiquitination at Lys-117 accelerates intrinsic nucleotide exchange, thereby promoting GTP loading. This mechanism of Ras activation is distinct from K-Ras monoubiquitination at Lys-147, which leads to impaired regulator-mediated GTP hydrolysis. These findings reveal that different Ras isoforms are monoubiquitinated at distinct sites, with distinct mechanisms of action, but with a common ability to chronically activate the protein in the absence of a receptor signal or oncogenic mutation. PMID:24247240

  11. Craniofacial and Dental Development in Costello Syndrome

    PubMed Central

    Goodwin, Alice F.; Oberoi, Snehlata; Landan, Maya; Charles, Cyril; Massie, Jessica C.; Fairley, Cecilia; Rauen, Katherine A.; Klein, Ophir D.

    2014-01-01

    Costello syndrome (CS) is a RASopathy characterized by a wide range of cardiac, musculoskeletal, dermatological, and developmental abnormalities. The RASopathies are defined as a group of syndromes caused by activated Ras/mitogen-activated protein kinase (MAPK) signaling. Specifically, CS is caused by activating mutations in HRAS. Although receptor tyrosine kinase (RTK) signaling, which is upstream of Ras/MAPK, is known to play a critical role in craniofacial and dental development, the craniofacial and dental features of CS have not been systematically defined in a large group of individuals. In order to address this gap in our understanding and fully characterize the CS phenotype, we evaluated the craniofacial and dental phenotype in a large cohort (n=41) of CS individuals. We confirmed that the craniofacial features common in CS include macrocephaly, bitemporal narrowing, convex facial profile, full cheeks, and large mouth. Additionally, CS patients have a characteristic dental phenotype that includes malocclusion with anterior open bite and posterior crossbite, enamel hypo-mineralization, delayed tooth development and eruption, gingival hyperplasia, thickening of the alveolar ridge, and high palate. Comparison of the craniofacial and dental phenotype in CS with other RASopathies, such as cardio-facio-cutaneous syndrome (CFC), provides insight into the complexities of Ras/MAPK signaling in human craniofacial and dental development. PMID:24668879

  12. Oral treatment with complement factor C5a receptor (CD88) antagonists inhibits experimental periodontitis in rats.

    PubMed

    Breivik, T; Gundersen, Y; Gjermo, P; Taylor, S M; Woodruff, T M; Opstad, P K

    2011-12-01

    The complement activation product 5a (C5a) is a potent mediator of the innate immune response to infection, and may thus also importantly determine the development of periodontitis. The present study was designed to explore the effect of several novel, potent and orally active C5a receptor (CD88) antagonists (C5aRAs) on the development of ligature-induced periodontitis in an animal model. Three different cyclic peptide C5aRAs, termed PMX205, PMX218 and PMX273, were investigated. Four groups of Wistar rats (n = 10 in each group) were used. Starting 3 d before induction of experimental periodontitis, rats either received one of the C5aRas (1-2 mg/kg) in the drinking water or received drinking water only. Periodontitis was assessed when the ligatures had been in place for 14 d. Compared with control rats, PMX205- and PMX218-treated rats had significantly reduced periodontal bone loss. The findings suggest that complement activation, and particularly C5a generation, may play a significant role in the development and progression of periodontitis. Blockade of the major C5a receptor, CD88, with specific inhibitors such as PMX205, may offer novel treatment options for periodontitis. © 2011 John Wiley & Sons A/S.

  13. Craniofacial and dental development in Costello syndrome.

    PubMed

    Goodwin, Alice F; Oberoi, Snehlata; Landan, Maya; Charles, Cyril; Massie, Jessica C; Fairley, Cecilia; Rauen, Katherine A; Klein, Ophir D

    2014-06-01

    Costello syndrome (CS) is a RASopathy characterized by a wide range of cardiac, musculoskeletal, dermatological, and developmental abnormalities. The RASopathies are defined as a group of syndromes caused by activated Ras/mitogen-activated protein kinase (MAPK) signaling. Specifically, CS is caused by activating mutations in HRAS. Although receptor tyrosine kinase (RTK) signaling, which is upstream of Ras/MAPK, is known to play a critical role in craniofacial and dental development, the craniofacial and dental features of CS have not been systematically defined in a large group of individuals. In order to address this gap in our understanding and fully characterize the CS phenotype, we evaluated the craniofacial and dental phenotype in a large cohort (n = 41) of CS individuals. We confirmed that the craniofacial features common in CS include macrocephaly, bitemporal narrowing, convex facial profile, full cheeks, and large mouth. Additionally, CS patients have a characteristic dental phenotype that includes malocclusion with anterior open bite and posterior crossbite, enamel hypo-mineralization, delayed tooth development and eruption, gingival hyperplasia, thickening of the alveolar ridge, and high palate. Comparison of the craniofacial and dental phenotype in CS with other RASopathies, such as cardio-facio-cutaneous syndrome (CFC), provides insight into the complexities of Ras/MAPK signaling in human craniofacial and dental development. © 2014 Wiley Periodicals, Inc.

  14. Role of pp60(c-src) and p(44/42) MAPK in ANG II-induced contraction of rat tonic gastrointestinal smooth muscles.

    PubMed

    Puri, Rajinder N; Fan, Ya-Ping; Rattan, Satish

    2002-08-01

    We examined the role of mitogen-activated protein kinase (p(44/42) MAPK) in ANG II-induced contraction of lower esophageal sphincter (LES) and internal anal sphincter (IAS) smooth muscles. Studies were performed in the isolated smooth muscles and cells (SMC). ANG II-induced changes in the levels of phosphorylation of different signal transduction and effector proteins were determined before and after selective inhibitors. ANG II-induced contraction of the rat LES and IAS SMC was inhibited by genistein, PD-98059 [a specific inhibitor of MAPK kinases (MEK 1/2)], herbimycin A (a pp60(c-src) inhibitor), and antibodies to pp60(c-src) and p(120) ras GTPase-activating protein (p(120) rasGAP). ANG II-induced contraction of the tonic smooth muscles was accompanied by an increase in tyrosine phosphorylation of p(120) rasGAP. These were attenuated by genistein but not by PD-98059. ANG II-induced increase in phosphorylations of p(44/42) MAPKs and caldesmon was attenuated by both genistein and PD-98059. We conclude that pp60(c-src) and p(44/42) MAPKs play an important role in ANG II-induced contraction of LES and IAS smooth muscles.

  15. Approach for targeting Ras with small molecules that activate SOS-mediated nucleotide exchange.

    PubMed

    Burns, Michael C; Sun, Qi; Daniels, R Nathan; Camper, DeMarco; Kennedy, J Phillip; Phan, Jason; Olejniczak, Edward T; Lee, Taekyu; Waterson, Alex G; Rossanese, Olivia W; Fesik, Stephen W

    2014-03-04

    Aberrant activation of the small GTPase Ras by oncogenic mutation or constitutively active upstream receptor tyrosine kinases results in the deregulation of cellular signals governing growth and survival in ∼30% of all human cancers. However, the discovery of potent inhibitors of Ras has been difficult to achieve. Here, we report the identification of small molecules that bind to a unique pocket on the Ras:Son of Sevenless (SOS):Ras complex, increase the rate of SOS-catalyzed nucleotide exchange in vitro, and modulate Ras signaling pathways in cells. X-ray crystallography of Ras:SOS:Ras in complex with these molecules reveals that the compounds bind in a hydrophobic pocket in the CDC25 domain of SOS adjacent to the Switch II region of Ras. The structure-activity relationships exhibited by these compounds can be rationalized on the basis of multiple X-ray cocrystal structures. Mutational analyses confirmed the functional relevance of this binding site and showed it to be essential for compound activity. These molecules increase Ras-GTP levels and disrupt MAPK and PI3K signaling in cells at low micromolar concentrations. These small molecules represent tools to study the acute activation of Ras and highlight a pocket on SOS that may be exploited to modulate Ras signaling.

  16. N-ras Mutation Detection by Pyrosequencing in Adult Patients with Acute Myeloid Leukemia at a Single Institution

    PubMed Central

    Jeong, Ji Hun; Park, Soon Ho; Park, Mi Jung; Kim, Moon Jin; Kim, Kyung Hee; Park, Pil Whan; Seo, Yiel Hea; Lee, Jae Hoon; Park, Jinny; Hong, Junshik

    2013-01-01

    Background N-ras mutations are one of the most commonly detected abnormalities of myeloid origin. N-ras mutations result in a constitutively active N-ras protein that induces uncontrolled cell proliferation and inhibits apoptosis. We analyzed N-ras mutations in adult patients with AML at a particular institution and compared pyrosequencing analysis with a direct sequencing method for the detection of N-ras mutations. Methods We analyzed 90 bone marrow samples from 83 AML patients. We detected N-ras mutations in codons 12, 13, and 61 using the pyrosequencing method and subsequently confirmed all data by direct sequencing. Using these methods, we screened the N-ras mutation quantitatively and determined the incidence and characteristic of N-ras mutation. Results The incidence of N-ras mutation was 7.2% in adult AML patients. The patients with N-ras mutations showed significant higher hemoglobin levels (P=0.022) and an increased incidence of FLT3 mutations (P=0.003). We observed 3 cases with N-ras mutations in codon 12 (3.6%), 2 cases in codon 13 (2.4%), and 1 case in codon 61 (1.2%). All the mutations disappeared during chemotherapy. Conclusions There is a low incidence (7.2%) of N-ras mutations in AML patients compared with other populations. Similar data is obtained by both pyrosequencing and direct sequencing. This study showed the correlation between the N-ras mutation and the therapeutic response. However, pyrosequencing provides quantitative data and is useful for monitoring therapeutic responses. PMID:23667841

  17. The Role of Dimerization in Raf Signaling | Center for Cancer Research

    Cancer.gov

    One frequently mutated pathway in a variety of cancers and developmental disorders is the Ras-Raf-MEK-ERK cascade. Normally, binding of a growth factor to its receptor switches on Ras, which, in turn, activates one or more of the Raf kinase family members, A-Raf, B-Raf, and C-Raf. Rafs perpetuate the signal by phosphorylating and activating MEK, another kinase that phosphorylates a third kinase, ERK. ERK then phosphorylates a number of key growth-, survival-, or differentiation-promoting targets. Of the proteins in the cascade, Rafs have the most complex regulatory mechanisms, including the ability to form dimers. Because the role that dimerization plays in Raf function has been unclear, researchers working with Deborah Morrison, Ph.D., Chief of CCR’s Laboratory of Cell and Developmental Signaling, decided to investigate its significance in normal and disease-associated Raf signaling.

  18. Neonatal pulmonary arterial hypertension and Noonan syndrome: two fatal cases with a specific RAF1 mutation.

    PubMed

    Hopper, Rachel K; Feinstein, Jeffrey A; Manning, Melanie A; Benitz, William; Hudgins, Louanne

    2015-04-01

    Mutations in RAF1 are associated with Noonan syndrome and hypertrophic cardiomyopathy. We present two infants with Noonan syndrome and an identical RAF1 mutation, p.Ser257Leu (c.770C>T), who developed severe pulmonary arterial hypertension (PAH) that proved to be fatal. The RAF1 gene encodes Raf-1 kinase, part of the Ras/mitogen-activated kinase (MAPK) signaling pathway, which has been linked to the development of PAH. This specific mutation has been associated with dephosphorylation of a critical serine residue and constitutive activation of the Raf-1 kinase. These two cases suggest that abnormal activation of the Ras/MAPK pathway may play a significant role in the development of pulmonary vascular disease in the subset of patients with Noonan syndrome and a specific RAF1 mutation. © 2015 Wiley Periodicals, Inc.

  19. Enhancement of Th1 immune responses to recombinant influenza nucleoprotein by Ribi adjuvant.

    PubMed

    Cargnelutti, Diego E; Sanchez, María A V; Alvarez, Paula; Boado, Lorena; Mattion, Nora; Scodeller, Eduardo A

    2013-04-01

    A broad coverage influenza vaccine against multiple viral strains based on the viral nucleoprotein (NP) is a goal pursued by many laboratories. If the goal is to formulate the vaccine with recombinant NP it is essential to count on adjuvants capable of inducing cellular immunity. This work have studied the effect of the monophosphoryl lipid A and trehalose dimycolate, known as the Ribi Adjuvant System (RAS), in the immune response induced in mice immunized with recombinant NP. The NP was formulated with RAS and used to immunize BALB/c mice. Immunizations with NP-RAS increased the humoral and cellular immune responses compared to unadjuvanted NP. The predominant antibody isotype was IgG2a, suggesting the development of a Th1 response. Analysis of the cytokines from mice immunized with NP-RAS showed a significant increase in the production of IFN-g and a decreased production of IL-10 and IL-4 compared to controls without RAS. These results are similar to those usually obtained using Freund’s adjuvant, known to induce Th1 and CTL responses when co-administered with purified proteins, and suggest that a similar approach may be possible to enhance the performance of a T-cell vaccine containing NP.

  20. Low Response of Renin-Angiotensin System to Sodium Intake Intervention in Chinese Hypertensive Patients.

    PubMed

    Feng, Weijing; Cai, Qingqing; Yuan, Woliang; Liu, Yu; Bardeesi, Adham Sameer A; Wang, Jingfeng; Chen, Jie; Huang, Hui

    2016-02-01

    The interactions of sodium balance and response of renin-angiotensin-aldosterone system are important for maintaining the hemodynamic stability in physiological conditions. However, the influence of short-term sodium intake intervention in the response of renin-angiotensin system (RAS) on hypertensive patients is still unclear. Thus, we conducted a clinical trial to investigate the effects of short-term sodium intake intervention on the response of RAS in hypertensive patients.One hundred twenty-five primary Chinese hypertensive patients were divided into high, moderate, and low sodium groups by 24-hour urinary sodium excretion (UNa). All the patients received a 10-day dietary sodium intake intervention with standardized sodium (173.91mmol/day) and potassium (61.53mmol/day). Blood pressure, urinary sodium, urinary potassium, plasma sodium, potassium, creatinine, the levels of plasma renin activity, plasma angiotensin II concentrations (AT-II), and plasma aldosterone concentrations were detected before and after the intervention.Before the intervention, no differences were found in blood pressure and RAS among 3 groups. After standardized dietary sodium intake intervention, both UNa excretion and systolic pressure decreased in high-sodium group, while they increased in moderate and low-sodium groups. Intriguingly, there were no changes in the levels of plasma renin activity, AT-II, and plasma aldosterone concentrations among 3 groups during the intervention.The present study demonstrated that the influenced sodium excretion and blood pressure by short-term sodium intake intervention were independent of RAS quick response in Chinese hypertensive patients.

  1. Low Response of Renin–Angiotensin System to Sodium Intake Intervention in Chinese Hypertensive Patients

    PubMed Central

    Feng, Weijing; Cai, Qingqing; Yuan, Woliang; Liu, Yu; Bardeesi, Adham Sameer A.; Wang, Jingfeng; Chen, Jie; Huang, Hui

    2016-01-01

    Abstract The interactions of sodium balance and response of renin–angiotensin–aldosterone system are important for maintaining the hemodynamic stability in physiological conditions. However, the influence of short-term sodium intake intervention in the response of renin–angiotensin system (RAS) on hypertensive patients is still unclear. Thus, we conducted a clinical trial to investigate the effects of short-term sodium intake intervention on the response of RAS in hypertensive patients. One hundred twenty-five primary Chinese hypertensive patients were divided into high, moderate, and low sodium groups by 24-hour urinary sodium excretion (UNa+). All the patients received a 10-day dietary sodium intake intervention with standardized sodium (173.91mmol/day) and potassium (61.53mmol/day). Blood pressure, urinary sodium, urinary potassium, plasma sodium, potassium, creatinine, the levels of plasma renin activity, plasma angiotensin II concentrations (AT-II), and plasma aldosterone concentrations were detected before and after the intervention. Before the intervention, no differences were found in blood pressure and RAS among 3 groups. After standardized dietary sodium intake intervention, both UNa+ excretion and systolic pressure decreased in high-sodium group, while they increased in moderate and low-sodium groups. Intriguingly, there were no changes in the levels of plasma renin activity, AT-II, and plasma aldosterone concentrations among 3 groups during the intervention. The present study demonstrated that the influenced sodium excretion and blood pressure by short-term sodium intake intervention were independent of RAS quick response in Chinese hypertensive patients. PMID:26871780

  2. ARF1 and SAR1 GTPases in Endomembrane Trafficking in Plants

    PubMed Central

    Cevher-Keskin, Birsen

    2013-01-01

    Small GTPases largely control membrane traffic, which is essential for the survival of all eukaryotes. Among the small GTP-binding proteins, ARF1 (ADP-ribosylation factor 1) and SAR1 (Secretion-Associated RAS super family 1) are commonly conserved among all eukaryotes with respect to both their functional and sequential characteristics. The ARF1 and SAR1 GTP-binding proteins are involved in the formation and budding of vesicles throughout plant endomembrane systems. ARF1 has been shown to play a critical role in COPI (Coat Protein Complex I)-mediated retrograde trafficking in eukaryotic systems, whereas SAR1 GTPases are involved in intracellular COPII-mediated protein trafficking from the ER to the Golgi apparatus. This review offers a summary of vesicular trafficking with an emphasis on the ARF1 and SAR1 expression patterns at early growth stages and in the de-etiolation process. PMID:24013371

  3. Investigating RAS Signaling in Cancer | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    CPTAC expertise has been charged to develop RAS specific targeted proteomic assays to study the important pathways of human cancer. The oncogene RAS is linked to 30 percent of human cancers, but the search for a targeted therapy for RAS has remained elusive. To advance our understanding of this oncogene and to develop improved targeted therapies against RAS pathway, the National Cancer Institute (NCI) has launched a RAS Initiative.

  4. Inhibition of Ras for cancer treatment: the search continues

    PubMed Central

    Baines, Antonio T.; Xu, Dapeng; Der, Channing J.

    2012-01-01

    Background The RAS oncogenes (HRAS, NRAS and KRAS) comprise the most frequently mutated class of oncogenes in human cancers (33%), stimulating intensive effort in developing anti-Ras inhibitors for cancer treatment. Discussion Despite intensive effort, to date no effective anti-Ras strategies have successfully made it to the clinic. We present an overview of past and ongoing strategies to inhibit oncogenic Ras in cancer. Conclusions Since approaches to directly target mutant Ras have not been successful, most efforts have focused on indirect approaches to block Ras membrane association or downstream effector signaling. While inhibitors of effector signaling are currently under clinical evaluation, genome-wide unbiased genetic screens have identified novel directions for future anti-Ras drug discovery. PMID:22004085

  5. Wild-type H- and N-Ras promote mutant K-Ras driven tumorigenesis by modulating the DNA damage response

    PubMed Central

    Grabocka, Elda; Pylayeva-Gupta, Yuliya; Jones, Mathew JK; Lubkov, Veronica; Yemanaberhan, Eyoel; Taylor, Laura; Jeng, Hao Hsuan; Bar-Sagi, Dafna

    2014-01-01

    SUMMARY Mutations in KRAS are prevalent in human cancers and universally predictive of resistance to anti-cancer therapeutics. Although it is widely accepted that acquisition of an activating mutation endows RAS genes with functional autonomy, recent studies suggest that the wild-type forms of Ras may contribute to mutant Ras-driven tumorigenesis. Here we show that downregulation of wild-type H-Ras or N-Ras in mutant K-Ras cancer cells leads to hyperactivation of the Erk/p90RSK and PI3K/Akt pathways, and consequently, the phosphorylation of Chk1 at an inhibitory site, Ser 280. The resulting inhibition of ATR/Chk1 signaling abrogates the activation of the G2 DNA damage checkpoint and confers specific sensitization of mutant K-Ras cancer cells to DNA damage chemotherapeutic agents in vitro and in vivo. PMID:24525237

  6. Electrostatic Interactions Positively Regulate K-Ras Nanocluster Formation and Function▿

    PubMed Central

    Plowman, Sarah J.; Ariotti, Nicholas; Goodall, Andrew; Parton, Robert G.; Hancock, John F.

    2008-01-01

    The organization of Ras proteins into plasma membrane nanoclusters is essential for high-fidelity signal transmission, but whether the nanoscale enviroments of different Ras nanoclusters regulate effector interactions is unknown. We show using high-resolution spatial mapping that Raf-1 is recruited to and retained in K-Ras-GTP nanoclusters. In contrast, Raf-1 recruited to the plasma membrane by H-Ras is not retained in H-Ras-GTP nanoclusters. Similarly, upon epidermal growth factor receptor activation, Raf-1 is preferentially recruited to K-Ras-GTP and not H-Ras-GTP nanoclusters. The formation of K-Ras-GTP nanoclusters is inhibited by phosphorylation of S181 in the C-terminal polybasic domain or enhanced by blocking S181 phosphorylation, with a concomitant reduction or increase in Raf-1 plasma membrane recruitment, respectively. Phosphorylation of S181 does not, however, regulate in vivo interactions with the nanocluster scaffold galectin-3 (Gal3), indicating separate roles for the polybasic domain and Gal3 in driving K-Ras nanocluster formation. Together, these data illustrate that Ras nanocluster composition regulates effector recruitment and highlight the importance of lipid/protein nanoscale environments to the activation of signaling cascades. PMID:18458061

  7. CHMP6 and VPS4A mediate recycling of Ras to the plasma membrane to promote growth factor signaling

    PubMed Central

    Zheng, Ze-Yi; Cheng, Chiang-Min; Fu, Xin-Rong; Chen, Liuh-Yow; Xu, Lizhong; Terrillon, Sonia; Wong, Stephen T.; Bar-Sagi, Dafna; Songyang, Zhou; Chang, Eric C.

    2011-01-01

    While Ras is well-known to function on the plasma membrane (PM) to mediate growth factor signaling, increasing evidence suggests that Ras has complex roles in the cytoplasm. To uncover these roles, we screened a cDNA library and isolated H-Ras-binding proteins that also influence Ras functions. Many isolated proteins regulate trafficking involving endosomes; CHMP6/VPS20 and VPS4A, which interact with ESCRT-III, were chosen for further study. We showed that the binding is direct and occurs in endosomes. Furthermore, the binding is most efficient when H-Ras has a functional effector-binding-loop and is GTP-bound and ubiquitylated. CHMP6 and VPS4A also bound N-Ras, but not K-Ras. Repressing CHMP6 and VPS4A blocked Ras-induced transformation, which correlated with inefficient Ras localization to the PM as measured by cell fractionation and photobleaching. Moreover, silencing CHMP6 and VPS4A also blocked EGFR recycling. These data suggest that Ras interacts with key ESCRT-III components to promote recycling of itself and EGFR back to the PM to create a positive feedback loop to enhance growth factor signaling. PMID:22231449

  8. Inhibitors of Ras-SOS Interactions.

    PubMed

    Lu, Shaoyong; Jang, Hyunbum; Zhang, Jian; Nussinov, Ruth

    2016-04-19

    Activating Ras mutations are found in about 30 % of human cancers. Ras activation is regulated by guanine nucleotide exchange factors, such as the son of sevenless (SOS), which form protein-protein interactions (PPIs) with Ras and catalyze the exchange of GDP by GTP. This is the rate-limiting step in Ras activation. However, Ras surfaces lack any evident suitable pockets where a molecule might bind tightly, rendering Ras proteins still 'undruggable' for over 30 years. Among the alternative approaches is the design of inhibitors that target the Ras-SOS PPI interface, a strategy that is gaining increasing recognition for treating Ras mutant cancers. Herein we focus on data that has accumulated over the past few years pertaining to the design of small-molecule modulators or peptide mimetics aimed at the interface of the Ras-SOS PPI. We emphasize, however, that even if such Ras-SOS therapeutics are potent, drug resistance may emerge. To counteract this development, we propose "pathway drug cocktails", that is, drug combinations aimed at parallel (or compensatory) pathways. A repertoire of classified cancer, cell/tissue, and pathway/protein combinations would be beneficial toward this goal. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. RasGRP1 confers the phorbol ester-sensitive phenotype to EL4 lymphoma cells.

    PubMed

    Han, Shujie; Knoepp, Stewart M; Hallman, Mark A; Meier, Kathryn E

    2007-01-01

    The murine EL4 lymphoma cell line exists in variants that are either sensitive or resistant to the tumor promoter phorbol 12-myristate 13-acetate (PMA). In sensitive EL4 cells, PMA causes robust Erk mitogen-activated protein kinase activation that results in growth arrest. In resistant cells, PMA induces minimal Erk activation, without growth arrest. PMA stimulates IL-2 production in sensitive, but not resistant, cells. The role of RasGRP1, a PMA-activated guanine nucleotide exchange factor for Ras, in EL4 phenotype was examined. Endogenous RasGRP1 protein is expressed at much higher levels in sensitive than in resistant cells. PMA-induced Ras activation is observed in sensitive cells but not in resistant cells lacking Ras-GRP1. PMA induces down-regulation of RasGRP1 protein in sensitive cells but increases RasGRP1 in resistant cells. Transfection of RasGRP1 into resistant cells enhances PMA-induced Erk activation. In the reverse experiment, introduction of small interfering RNA (siRNA) for RasGRP1 suppresses PMA-induced Ras and Erk activations in sensitive cells. Sensitive cells incubated with siRNA for RasGRP1 exhibit the PMA-resistant phenotype, in that they are able to proliferate in the presence of PMA and do not secrete IL-2 when stimulated with PMA. These studies indicate that the PMA-sensitive phenotype, as previously defined for the EL4 cell line, is conferred by endogenous expression of RasGRP1 protein.

  10. Andrographolide derivatives inhibit guanine nucleotide exchange and abrogate oncogenic Ras function

    PubMed Central

    Hocker, Harrison J.; Cho, Kwang-Jin; Chen, Chung-Ying K.; Rambahal, Nandini; Sagineedu, Sreenivasa Rao; Shaari, Khozirah; Stanslas, Johnson; Hancock, John F.; Gorfe, Alemayehu A.

    2013-01-01

    Aberrant signaling by oncogenic mutant rat sarcoma (Ras) proteins occurs in ∼15% of all human tumors, yet direct inhibition of Ras by small molecules has remained elusive. Recently, several small-molecule ligands have been discovered that directly bind Ras and inhibit its function by interfering with exchange factor binding. However, it is unclear whether, or how, these ligands could lead to drugs that act against constitutively active oncogenic mutant Ras. Using a dynamics-based pocket identification scheme, ensemble docking, and innovative cell-based assays, here we show that andrographolide (AGP)—a bicyclic diterpenoid lactone isolated from Andrographis paniculata—and its benzylidene derivatives bind to transient pockets on Kirsten-Ras (K-Ras) and inhibit GDP–GTP exchange. As expected for inhibitors of exchange factor binding, AGP derivatives reduced GTP loading of wild-type K-Ras in response to acute EGF stimulation with a concomitant reduction in MAPK activation. Remarkably, however, prolonged treatment with AGP derivatives also reduced GTP loading of, and signal transmission by, oncogenic mutant K-RasG12V. In sum, the combined analysis of our computational and cell biology results show that AGP derivatives directly bind Ras, block GDP–GTP exchange, and inhibit both wild-type and oncogenic K-Ras signaling. Importantly, our findings not only show that nucleotide exchange factors are required for oncogenic Ras signaling but also demonstrate that inhibiting nucleotide exchange is a valid approach to abrogating the function of oncogenic mutant Ras. PMID:23737504

  11. Blood-based detection of RAS mutations to guide anti-EGFR therapy in colorectal cancer patients: concordance of results from circulating tumor DNA and tissue-based RAS testing.

    PubMed

    Schmiegel, Wolff; Scott, Rodney J; Dooley, Susan; Lewis, Wendy; Meldrum, Cliff J; Pockney, Peter; Draganic, Brian; Smith, Steve; Hewitt, Chelsee; Philimore, Hazel; Lucas, Amanda; Shi, Elva; Namdarian, Kateh; Chan, Timmy; Acosta, Danilo; Ping-Chang, Su; Tannapfel, Andrea; Reinacher-Schick, Anke; Uhl, Waldemar; Teschendorf, Christian; Wolters, Heiner; Stern, Josef; Viebahn, Richard; Friess, Helmut; Janssen, Klaus-Peter; Nitsche, Ulrich; Slotta-Huspenina, Julia; Pohl, Michael; Vangala, Deepak; Baraniskin, Alexander; Dockhorn-Dworniczak, Barbara; Hegewisch-Becker, Susanne; Ronga, Philippe; Edelstein, Daniel L; Jones, Frederick S; Hahn, Stephan; Fox, Stephen B

    2017-02-01

    An accurate blood-based RAS mutation assay to determine eligibility of metastatic colorectal cancer (mCRC) patients for anti-EGFR therapy would benefit clinical practice by better informing decisions to administer treatment independent of tissue availability. The objective of this study was to determine the level of concordance between plasma and tissue RAS mutation status in patients with mCRC to gauge whether blood-based RAS mutation testing is a viable alternative to standard-of-care RAS tumor testing. RAS testing was performed on plasma samples from newly diagnosed metastatic patients, or from recurrent mCRC patients using the highly sensitive digital PCR technology, BEAMing (beads, emulsions, amplification, and magnetics), and compared with DNA sequencing data of respective FFPE (formalin-fixed paraffin-embedded) tumor samples. Discordant tissue RAS results were re-examined by BEAMing, if possible. The prevalence of RAS mutations detected in plasma (51%) vs. tumor (53%) was similar, in accord with the known prevalence of RAS mutations observed in mCRC patient populations. The positive agreement between plasma and tumor RAS results was 90.4% (47/52), the negative agreement was 93.5% (43/46), and the overall agreement (concordance) was 91.8% (90/98). The high concordance of plasma and tissue results demonstrates that blood-based RAS mutation testing is a viable alternative to tissue-based RAS testing. © 2016 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

  12. Rearing Water Treatment Induces Microbial Selection Influencing the Microbiota and Pathogen Associated Transcripts of Cod (Gadus morhua) Larvae.

    PubMed

    Vestrum, Ragnhild I; Attramadal, Kari J K; Winge, Per; Li, Keshuai; Olsen, Yngvar; Bones, Atle M; Vadstein, Olav; Bakke, Ingrid

    2018-01-01

    We have previously shown that K-selection and microbial stability in the rearing water increases survival and growth of Atlantic cod ( Gadus morhua ) larvae, and that recirculating aquaculture systems (RAS) are compatible with this. Here, we have assessed how water treatment influenced the larval microbiota and host responses at the gene expression level. Cod larvae were reared with two different rearing water systems: a RAS and a flow-through system (FTS). The water microbiota was examined using a 16S rDNA PCR/DGGE strategy. RNA extracted from larvae at 8, 13, and 17 days post hatching was used for microbiota and microarray gene expression analysis. Bacterial cDNA was synthesized and used for 16S rRNA amplicon 454 pyrosequencing of larval microbiota. Both water and larval microbiota differed significantly between the systems, and the larval microbiota appeared to become more dissimilar between systems with time. In total 4 phyla were identified for all larvae: Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. The most profound difference in larval microbiota was a high abundance of Arcobacter (Epsilonproteobacteria) in FTS larvae (34 ± 9% of total reads). Arcobacter includes several species that are known pathogens for humans and animals. Cod larval transcriptome responses were investigated using an oligonucleotide gene expression microarray covering approximately 24,000 genes. Interestingly, FTS larvae transcriptional profiles revealed an overrepresentation of upregulated transcripts associated with responses to pathogens and infections, such as c1ql3-like , pglyrp-2-like and zg16, compared to RAS larvae. In conclusion, distinct water treatment systems induced differences in the larval microbiota. FTS larvae showed up-regulation of transcripts associated with responses to microbial stress. These results are consistent with the hypothesis that RAS promotes K-selection and microbial stability by maintaining a microbial load close to the carrying capacity of the system, and ensuring long retention times for both bacteria and water in the system.

  13. Rearing Water Treatment Induces Microbial Selection Influencing the Microbiota and Pathogen Associated Transcripts of Cod (Gadus morhua) Larvae

    PubMed Central

    Vestrum, Ragnhild I.; Attramadal, Kari J. K.; Winge, Per; Li, Keshuai; Olsen, Yngvar; Bones, Atle M.; Vadstein, Olav; Bakke, Ingrid

    2018-01-01

    We have previously shown that K-selection and microbial stability in the rearing water increases survival and growth of Atlantic cod (Gadus morhua) larvae, and that recirculating aquaculture systems (RAS) are compatible with this. Here, we have assessed how water treatment influenced the larval microbiota and host responses at the gene expression level. Cod larvae were reared with two different rearing water systems: a RAS and a flow-through system (FTS). The water microbiota was examined using a 16S rDNA PCR/DGGE strategy. RNA extracted from larvae at 8, 13, and 17 days post hatching was used for microbiota and microarray gene expression analysis. Bacterial cDNA was synthesized and used for 16S rRNA amplicon 454 pyrosequencing of larval microbiota. Both water and larval microbiota differed significantly between the systems, and the larval microbiota appeared to become more dissimilar between systems with time. In total 4 phyla were identified for all larvae: Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. The most profound difference in larval microbiota was a high abundance of Arcobacter (Epsilonproteobacteria) in FTS larvae (34 ± 9% of total reads). Arcobacter includes several species that are known pathogens for humans and animals. Cod larval transcriptome responses were investigated using an oligonucleotide gene expression microarray covering approximately 24,000 genes. Interestingly, FTS larvae transcriptional profiles revealed an overrepresentation of upregulated transcripts associated with responses to pathogens and infections, such as c1ql3-like, pglyrp-2-like and zg16, compared to RAS larvae. In conclusion, distinct water treatment systems induced differences in the larval microbiota. FTS larvae showed up-regulation of transcripts associated with responses to microbial stress. These results are consistent with the hypothesis that RAS promotes K-selection and microbial stability by maintaining a microbial load close to the carrying capacity of the system, and ensuring long retention times for both bacteria and water in the system. PMID:29765364

  14. Molecular mechanisms and signaling pathways of angiotensin II-induced muscle wasting: potential therapeutic targets for cardiac cachexia.

    PubMed

    Yoshida, Tadashi; Tabony, A Michael; Galvez, Sarah; Mitch, William E; Higashi, Yusuke; Sukhanov, Sergiy; Delafontaine, Patrice

    2013-10-01

    Cachexia is a serious complication of many chronic diseases, such as congestive heart failure (CHF) and chronic kidney disease (CKD). Many factors are involved in the development of cachexia, and there is increasing evidence that angiotensin II (Ang II), the main effector molecule of the renin-angiotensin system (RAS), plays an important role in this process. Patients with advanced CHF or CKD often have increased Ang II levels and cachexia, and angiotensin-converting enzyme (ACE) inhibitor treatment improves weight loss. In rodent models, an increase in systemic Ang II leads to weight loss through increased protein breakdown, reduced protein synthesis in skeletal muscle and decreased appetite. Ang II activates the ubiquitin-proteasome system via generation of reactive oxygen species and via inhibition of the insulin-like growth factor-1 signaling pathway. Furthermore, Ang II inhibits 5' AMP-activated protein kinase (AMPK) activity and disrupts normal energy balance. Ang II also increases cytokines and circulating hormones such as tumor necrosis factor-α, interleukin-6, serum amyloid-A, glucocorticoids and myostatin, which regulate muscle protein synthesis and degradation. Ang II acts on hypothalamic neurons to regulate orexigenic/anorexigenic neuropeptides, such as neuropeptide-Y, orexin and corticotropin-releasing hormone, leading to reduced appetite. Also, Ang II may regulate skeletal muscle regenerative processes. Several clinical studies have indicated that blockade of Ang II signaling via ACE inhibitors or Ang II type 1 receptor blockers prevents weight loss and improves muscle strength. Thus the RAS is a promising target for the treatment of muscle atrophy in patients with CHF and CKD. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Alamandine acts via MrgD to induce AMPK/NO activation against ANG II hypertrophy in cardiomyocytes.

    PubMed

    Jesus, Itamar Couto Guedes de; Scalzo, Sérgio; Alves, Fabiana; Marques, Kariny; Rocha-Resende, Cibele; Bader, Michael; Santos, Robson A Souza; Guatimosim, Silvia

    2018-06-01

    The renin-angiotensin system (RAS) plays a pivotal role in the pathogenesis of cardiovascular diseases. New members of this system have been characterized and shown to have biologically relevant actions. Alamandine and its receptor MrgD are recently identified components of RAS. In the cardiovascular system, alamandine actions included vasodilation, antihypertensive, and antifibrosis effects. Currently, the actions of alamandine on cardiomyocytes are unknown. Here our goal was twofold: 1) to unravel the signaling molecules activated by the alamandine/MrgD axis in cardiomyocytes; and 2) to evaluate the ability of this axis to prevent angiotensin II (ANG II)-induced hypertrophy. In cardiomyocytes from C57BL/6 mice, alamandine treatment induced an increase in nitric oxide (NO) production, which was blocked by d-Pro 7 -ANG-(1-7), a MrgD antagonist. This NO rise correlated with increased phosphorylation of AMPK. Alamandine-induced NO production was preserved in Mas -/- myocytes and lost in MrgD -/- cells. Binding of fluorescent-labeled alamandine was observed in wild-type cells, but it was dramatically reduced in MrgD -/- myocytes. We also assessed the consequences of prolonged alamandine exposure to cultured neonatal rat cardiomyocytes (NRCMs) treated with ANG II. Treatment of NRCMs with alamandine prevented ANG II-induced hypertrophy. Moreover, the antihypertrophic actions of alamandine were mediated via MrgD and NO, since they could be prevented by d-Pro 7 -ANG-(1-7) or inhibitors of NO synthase or AMPK. β-Alanine, a MrgD agonist, recapitulated alamandine's cardioprotective effects in cardiomyocytes. Our data show that alamandine via MrgD induces AMPK/NO signaling to counterregulate ANG II-induced hypertrophy. These findings highlight the therapeutic potential of the alamandine/MrgD axis in the heart.

  16. The RAS Initiative

    Cancer.gov

    NCI established the RAS Initiative to explore innovative approaches for attacking the proteins encoded by mutant forms of RAS genes and to ultimately create effective, new therapies for RAS-related cancers.

  17. K-ras p21 expression and activity in lung and lung tumors.

    PubMed

    Ramakrishna, G; Sithanandam, G; Cheng, R Y; Fornwald, L W; Smith, G T; Diwan, B A; Anderson, L M

    2000-12-01

    Although K-ras is mutated in many human and mouse lung adenocarcinomas, the function of K-ras p21 in lung is not known. We sought evidence for the prevalent hypothesis that K-ras p21 activates raf, which in turn passes the signal through the extracellular signal regulated kinases (Erks) to stimulate cell division, and that this pathway is upregulated when K-ras is mutated. Results from both mouse lung tumors and immortalized cultured E10 and C10 lung type II cells failed to substantiate this hypothesis. Lung tumors did not have more total K-ras p21 or K-ras p21 GTP than normal lung tissue, nor were high levels of these proteins found in tumors with mutant K-ras. Activated K-ras p21-GTP levels did not correlate with proliferating cell nuclear antigen. Special features of tumors with mutant K-ras included small size of carcinomas compared with carcinomas lacking this mutation, and correlation of proliferating cell nuclear antigen with raf-1. In nontransformed type II cells in culture, both total and activated K-ras p21 increased markedly at confluence but not after serum stimulation, whereas both Erk1/2 and the protein kinase Akt were rapidly activated by the serum treatment. Reverse transcriptase-polymerase chain reaction (RT-PCR) assays of K-ras mRNA indicated an increase in confluent and especially in postconfluent cells. Together the findings indicate that normal K-ras p21 activity is associated with growth arrest of lung type II cells, and that the exact contribution of mutated K-ras p21 to tumor development remains to be discovered.

  18. Effect of stressful life events on the onset and duration of recurrent aphthous stomatitis.

    PubMed

    Huling, Laura B; Baccaglini, Lorena; Choquette, Linda; Feinn, Richard S; Lalla, Rajesh V

    2012-02-01

    Recurrent aphthous stomatitis (RAS) is a common and painful oral mucosal disease. Possible etiologies include genetics, vitamin deficiencies, trauma, immune dysfunction, and stress. The goal of this study was to examine the relationship between the occurrence, type, and magnitude of stressful events and the onset and duration of RAS episodes. One hundred and sixty subjects with a history of RAS completed a weekly phone survey for up to 1 year, providing data on the occurrence of RAS episodes and details of any stressful events they experienced during the previous week. During RAS episodes, subjects also completed daily paper diaries that recorded incidence and duration of the RAS episode. Stressful events were quantified using the validated Recent Life Changes Questionnaire (RLCQ) and were classified as mental or physical stressors. Stressful life events were significantly associated with the onset of RAS episodes (P < 0.001), however, not with the duration of the RAS episodes. Experiencing a stressful life event increased the odds of an RAS episode by almost three times (OR = 2.72; 95% CI = 2.04-3.62). When controlled for each other, mental stressors had a larger effect (OR = 3.46, 95% CI = 2.54-4.72) than physical stressors (OR = 1.44; 95% CI = 1.04-1.99) on the occurrence of RAS episodes. RAS episodes did not occur more frequently or last longer with increasing stress severity. In patients with a history of RAS, stressful events may mediate changes involved in the initiation of new RAS episodes. Mental stressors are more strongly associated with RAS episodes than physical stressors. © 2011 John Wiley & Sons A/S.

  19. Involvement of H-ras in erythroid differentiation of TF1 and human umbilical cord blood CD34 cells.

    PubMed

    Ge, Y; Li, Z H; Marshall, M S; Broxmeyer, H E; Lu, L

    1998-06-01

    To investigate the role of the ras gene in erythroid differentiation, a human erythroleukemic cell line, TF1, was transduced with a selectable retroviral vector carrying a mammalian wild type H-ras gene or a cytoplasmic dominant negative RAS1 gene. Transduction of TF1 cells with the wild type H-ras gene resulted in changes of cell types and up-regulation of erythroid-specific gene expression similar to that seen in differentiating erythroid cells. The number of red blood cell containing colonies derived from TF1 cells transduced with wild type H-ras cDNA was significantly increased and the cells in the colonies were more hemoglobinized as estimated by a deeper red color compared to those colony cells from mock or dominant negative RAS1 gene transduced TF1 cells, suggesting increased erythroid differentiation of TF1 cells after transduction of wild type H-ras in vitro. The mRNA levels of beta- and gamma-, but not alpha-, globin genes were significantly higher in H-ras transduced TF1 cells than those in TF1 cells transduced with mock or dominant negative RAS1 gene. Moreover, a 4kb pre-mRNA of the Erythropoietin receptor (EpoR) was highly expressed only in H-ras transduced TF1 cells. Additionally, human umbilical cord blood (CB) CD34 cells which are highly enriched for hematopoietic stem/progenitor cells were transduced with the same retroviral vectors to evaluate in normal primary cells the activities of H-ras in erythroid differentiation. Increased numbers of erythroid cell containing colonies (BFU-E and CFU-GEMM) were observed in CD34 cells transduced with the H-ras cDNA, compared to that from mock transduced cells. These data suggest a possible role for ras in erythroid differentiation.

  20. siRNA blocking the RAS signalling pathway and inhibits the growth of oesophageal squamous cell carcinoma in nude mice.

    PubMed

    Wang, Xinjie; Zheng, Yuling; Fan, Qingxia; Zhang, Xudong; Shi, Yonggang

    2014-12-01

    The aim of this study was to study RAS-siRNA blocking RAS pathway and suppressing cell growth in human oesophageal squamous cell carcinoma in nude mice. The methods in this study was to construct RAS-siRNA expression vector, establish 40 oesophageal squamous cell carcinoma xenograft animal models and divided them into five groups: control group, siRNA control group, RAS-siRNA group, paclitaxel group and RAS-siRNA and paclitaxel group. We observed tumour growth in nude mice, studied histology by HE staining, tumour growth inhibition by TUNEL assay and detected the RAS, MAPK and cyclin D1 protein expression by immunohistochemistry and western blot. We have obtained the following results: (i) successfully established animal models; (ii) nude mice in each group after treatment inhibited tumour volume was significantly reduced compared with the control group (p < 0.05); (iii) compared with the control group, the number of apoptotic cells were significantly increased in the siRNA control group and the RAS-siRNA group, and the number of apoptosis cells in the paclitaxel and RAS-siRNA group is significantly most than the paclitaxel group and RAS-siRNA group (p < 0.05); and (iv) after treatment, RAS, MAPK and cyclin D1 expression in five groups was decreasing gradually. After adding paclitaxel, the protein expression in the paclitaxel and RAS-siRNA group was significantly lower than that of paclitaxel group, negative control and paclitaxel group (p < 0.05). We therefore conclude that RAS-siRNA can block the RAS signal transduction pathway, reduce the activity of tumour cells, arrest tumour cell cycle, promote apoptosis, inhibit cell proliferation and increase tumour cell sensitivity to chemotherapeutic drugs. Copyright © 2014 John Wiley & Sons, Ltd.

  1. Mucosal and salivary microbiota associated with recurrent aphthous stomatitis.

    PubMed

    Kim, Yun-Ji; Choi, Yun Sik; Baek, Keum Jin; Yoon, Seok-Hwan; Park, Hee Kyung; Choi, Youngnim

    2016-04-01

    Recurrent aphthous stomatitis (RAS) is a common oral mucosal disorder of unclear etiopathogenesis. Although recent studies of the oral microbiota by high-throughput sequencing of 16S rRNA genes have suggested that imbalances in the oral microbiota may contribute to the etiopathogenesis of RAS, no specific bacterial species associated with RAS have been identified. The present study aimed to characterize the microbiota in the oral mucosa and saliva of RAS patients in comparison with control subjects at the species level. The bacterial communities of the oral mucosa and saliva from RAS patients with active lesions (RAS, n = 18 for mucosa and n = 8 for saliva) and control subjects (n = 18 for mucosa and n = 7 for saliva) were analyzed by pyrosequencing of the 16S rRNA genes. There were no significant differences in the alpha diversity between the controls and the RAS, but the mucosal microbiota of the RAS patients showed increased inter-subject variability. A comparison of the relative abundance of each taxon revealed decreases in the members of healthy core microbiota but increases of rare species in the mucosal and salivary microbiota of RAS patients. Particularly, decreased Streptococcus salivarius and increased Acinetobacter johnsonii in the mucosa were associated with RAS risk. A dysbiosis index, which was developed using the relative abundance of A. johnsonii and S. salivarius and the regression coefficients, correctly predicted 83 % of the total cases for the absence or presence of RAS. Interestingly, A. johnsonii substantially inhibited the proliferation of gingival epithelial cells and showed greater cytotoxicity against the gingival epithelial cells than S. salivarius. RAS is associated with dysbiosis of the mucosal and salivary microbiota, and two species associated with RAS have been identified. This knowledge may provide a diagnostic tool and new targets for therapeutics for RAS.

  2. The Significance of Ras Activity in Pancreatic Cancer Initiation.

    PubMed

    Logsdon, Craig D; Lu, Weiqin

    2016-01-01

    The genetic landscape of pancreatic cancer shows nearly ubiquitous mutations of K-RAS. However, oncogenic K-Ras(mt) alone is not sufficient to lead to pancreatic ductal adenocarcinoma (PDAC) in either human or in genetically modified adult mouse models. Many stimulants, such as high fat diet, CCK, LPS, PGE2 and others, have physiological effects at low concentrations that are mediated in part through modest increases in K-Ras activity. However, at high concentrations, they induce inflammation that, in the presence of oncogenic K-Ras expression, substantially accelerates PDAC formation. The mechanism involves increased activity of oncogenic K-Ras(mt). Unlike what has been proposed in the standard paradigm for the role of Ras in oncogenesis, oncogenic K-Ras(mt) is now known to not be constitutively active. Rather, it can be activated by standard mechanisms similar to wild-type K-Ras, but its activity is sustained for a prolonged period. Furthermore, if the level of K-Ras activity exceeds a threshold at which it begins to generate its own activators, then a feed-forward loop is formed between K-Ras activity and inflammation and pathological processes including oncogenesis are initiated. Oncogenic K-Ras(mt) activation, a key event in PDAC initiation and development, is subject to complex regulatory mechanisms. Reagents which inhibit inflammation, such as the Cox2 inhibitor celecoxib, block the feed-forward loop and prevent induction of PDAC in models with endogenous oncogenic K-Ras(mt). Increased understanding of the role of activating and inhibitory mechanisms on oncogenic K-Ras(mt) activity is of paramount importance for the development of preventive and therapeutic strategies to fight against this lethal disease.

  3. Missouri River Recovery Management Plan and Environmental Impact Statement

    DTIC Science & Technology

    2014-04-11

    Proficient in hydrologic and hydraulic engineering computer models, particularly ResSim and HEC - RAS ; working experience with large river systems including...to help study teams determine ecosystem responses to changes in the flow regime of a river or connected wetland. HEC -EFM analyses involve: 1...Description of the Model and How It Will Be Applied in the Study Approval Status HEC - RAS The function of this model is to conduct one-dimensional hydraulic

  4. Exploiting the bad eating habits of Ras-driven cancers.

    PubMed

    White, Eileen

    2013-10-01

    Oncogenic Ras promotes glucose fermentation and glutamine use to supply central carbon metabolism, but how and why have only emerged recently. Ras-mediated metabolic reprogramming generates building blocks for growth and promotes antioxidant defense. To fuel metabolic pathways, Ras scavenges extracellular proteins and lipids. To bolster metabolism and mitigate stress, Ras activates cellular self-cannibalization and recycling of proteins and organelles by autophagy. Targeting these distinct features of Ras-driven cancers provides novel approaches to cancer therapy.

  5. Rabex-5 ubiquitin ligase activity restricts Ras signaling to establish pathway homeostasis in Drosophila.

    PubMed

    Yan, Hua; Jahanshahi, Maryam; Horvath, Elizabeth A; Liu, Hsiu-Yu; Pfleger, Cathie M

    2010-08-10

    The Ras signaling pathway allows cells to translate external cues into diverse biological responses. Depending on context and the threshold reached, Ras signaling can promote growth, proliferation, differentiation, or cell survival. Failure to maintain precise control of Ras can have adverse physiological consequences. Indeed, excess Ras signaling disrupts developmental patterning and causes developmental disorders [1, 2], and in mature tissues, it can lead to cancer [3-5]. We identify Rabex-5 as a new component of Ras signaling crucial for achieving proper pathway outputs in multiple contexts in vivo. We show that Drosophila Rabex-5 restricts Ras signaling to establish organism size, wing vein pattern, and eye versus antennal fate. Rabex-5 has both Rab5 guanine nucleotide exchange factor (GEF) activity that regulates endocytic trafficking [6] and ubiquitin ligase activity [7, 8]. Surprisingly, overexpression studies demonstrate that Rabex-5 ubiquitin ligase activity, not its Rab5 GEF activity, is required to restrict wing vein specification and to suppress the eye phenotypes of oncogenic Ras expression. Furthermore, genetic interaction experiments indicate that Rabex-5 acts at the step of Ras, and tissue culture studies show that Rabex-5 promotes Ras ubiquitination. Together, these findings reveal a new mechanism for attenuating Ras signaling in vivo and suggest an important role for Rabex-5-mediated Ras ubiquitination in pathway homeostasis. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  6. Incidence of and risk factors for newly diagnosed hyperkalemia after hospital discharge in non-dialysis-dependent CKD patients treated with RAS inhibitors.

    PubMed

    Saito, Yuki; Yamamoto, Hiroyuki; Nakajima, Hideki; Takahashi, Osamu; Komatsu, Yasuhiro

    2017-01-01

    Renin-angiotensin system (RAS) inhibitors have been increasingly prescribed due to their beneficial effects on end-organ protection. Iatrogenic hyperkalemia is a well-known life-threatening complication of RAS inhibitor use in chronic kidney disease (CKD) patients. We hypothesized that CKD patients treated with RAS inhibitors frequently develop hyperkalemia after hospital discharge even if they were normokalemic during their hospitalization because their lifestyles change substantially after discharge. The present study aimed to examine the incidence of newly diagnosed hyperkalemia, the timing of hyperkalemia, and its risk factors in CKD patients treated with RAS inhibitors at the time of hospital discharge. We retrospectively enrolled patients aged 20 years or older with CKD G3-5 (estimated glomerular filtration rate < 60 mL/min/1.73 m2) and who were treated with RAS inhibitors and discharged from St. Luke's International Hospital between July 2011 and December 2015. Patients who were under maintenance dialysis or had hyperkalemic events before discharge were excluded. Data regarding the patients' age, sex, CKD stage, diabetes mellitus status, malignancy status, combined use of RAS inhibitors, concurrent medication, and hyperkalemic events after discharge were extracted from the hospital database. Our primary outcome was hyperkalemia, defined as serum potassium ≥ 5.5 mEq/L. Multiple logistic regression and Kaplan-Meier analyses were performed to identify the risk factors for and the timing of hyperkalemia, respectively. Among the 986 patients, 121 (12.3%) developed hyperkalemia after discharge. In the regression analysis, relative to CKD G3a, G3b [odds ratio (OR): 1.88, 95% confidence interval 1.20-2.97] and G4-5 (OR: 3.40, 1.99-5.81) were significantly associated with hyperkalemia. The use of RAS inhibitor combinations (OR: 1.92, 1.19-3.10), malignancy status (OR: 2.10, 1.14-3.86), and baseline serum potassium (OR: 1.91, 1.23-2.97) were also significantly associated with hyperkalemia. The Kaplan-Meier analysis showed that hyperkalemia was most frequent during the early period after discharge, particularly within one month. Hyperkalemia was frequent during the early period after discharge among previously normokalemic CKD patients who were treated with RAS inhibitors. Appropriate follow-up after discharge should be required for these patients, particularly those with advanced CKD or malignancy status, such as hematological malignancy or late-stage malignancy, and those who are treated with multiple RAS inhibitors.

  7. Incidence of and risk factors for newly diagnosed hyperkalemia after hospital discharge in non-dialysis-dependent CKD patients treated with RAS inhibitors

    PubMed Central

    Saito, Yuki; Nakajima, Hideki; Takahashi, Osamu; Komatsu, Yasuhiro

    2017-01-01

    Introduction Renin-angiotensin system (RAS) inhibitors have been increasingly prescribed due to their beneficial effects on end-organ protection. Iatrogenic hyperkalemia is a well-known life-threatening complication of RAS inhibitor use in chronic kidney disease (CKD) patients. We hypothesized that CKD patients treated with RAS inhibitors frequently develop hyperkalemia after hospital discharge even if they were normokalemic during their hospitalization because their lifestyles change substantially after discharge. The present study aimed to examine the incidence of newly diagnosed hyperkalemia, the timing of hyperkalemia, and its risk factors in CKD patients treated with RAS inhibitors at the time of hospital discharge. Methods We retrospectively enrolled patients aged 20 years or older with CKD G3-5 (estimated glomerular filtration rate < 60 mL/min/1.73 m2) and who were treated with RAS inhibitors and discharged from St. Luke’s International Hospital between July 2011 and December 2015. Patients who were under maintenance dialysis or had hyperkalemic events before discharge were excluded. Data regarding the patients’ age, sex, CKD stage, diabetes mellitus status, malignancy status, combined use of RAS inhibitors, concurrent medication, and hyperkalemic events after discharge were extracted from the hospital database. Our primary outcome was hyperkalemia, defined as serum potassium ≥ 5.5 mEq/L. Multiple logistic regression and Kaplan-Meier analyses were performed to identify the risk factors for and the timing of hyperkalemia, respectively. Results Among the 986 patients, 121 (12.3%) developed hyperkalemia after discharge. In the regression analysis, relative to CKD G3a, G3b [odds ratio (OR): 1.88, 95% confidence interval 1.20–2.97] and G4-5 (OR: 3.40, 1.99–5.81) were significantly associated with hyperkalemia. The use of RAS inhibitor combinations (OR: 1.92, 1.19–3.10), malignancy status (OR: 2.10, 1.14–3.86), and baseline serum potassium (OR: 1.91, 1.23–2.97) were also significantly associated with hyperkalemia. The Kaplan-Meier analysis showed that hyperkalemia was most frequent during the early period after discharge, particularly within one month. Conclusion Hyperkalemia was frequent during the early period after discharge among previously normokalemic CKD patients who were treated with RAS inhibitors. Appropriate follow-up after discharge should be required for these patients, particularly those with advanced CKD or malignancy status, such as hematological malignancy or late-stage malignancy, and those who are treated with multiple RAS inhibitors. PMID:28877239

  8. HNF4alpha dysfunction as a molecular rational for cyclosporine induced hypertension.

    PubMed

    Niehof, Monika; Borlak, Jürgen

    2011-01-27

    Induction of tolerance against grafted organs is achieved by the immunosuppressive agent cyclosporine, a prominent member of the calcineurin inhibitors. Unfortunately, its lifetime use is associated with hypertension and nephrotoxicity. Several mechanism for cyclosporine induced hypertension have been proposed, i.e. activation of the sympathetic nervous system, endothelin-mediated systemic vasoconstriction, impaired vasodilatation secondary to reduction in prostaglandin and nitric oxide, altered cytosolic calcium translocation, and activation of the renin-angiotensin system (RAS). In this regard the molecular basis for undue RAS activation and an increased signaling of the vasoactive oligopeptide angiotensin II (AngII) remain elusive. Notably, angiotensinogen (AGT) is the precursor of AngII and transcriptional regulation of AGT is controlled by the hepatic nuclear factor HNF4alpha. To better understand the molecular events associated with cyclosporine induced hypertension, we investigated the effect of cyclosporine on HNF4alpha expression and activity and searched for novel HNF4alpha target genes among members of the RAS cascade. Using bioinformatic algorithm and EMSA bandshift assays we identified angiotensin II receptor type 1 (AGTR1), angiotensin I converting enzyme (ACE), and angiotensin I converting enzyme 2 (ACE2) as genes targeted by HNF4alpha. Notably, cyclosporine represses HNF4alpha gene and protein expression and its DNA-binding activity at consensus sequences to AGT, AGTR1, ACE, and ACE2. Consequently, the gene expression of AGT, AGTR1, and ACE2 was significantly reduced as evidenced by quantitative real-time RT-PCR. While RAS is composed of a sophisticated interplay between multiple factors we propose a decrease of ACE2 to enforce AngII signaling via AGTR1 to ultimately result in vasoconstriction and hypertension. Taken collectively we demonstrate cyclosporine to repress HNF4alpha activity through calcineurin inhibitor mediated inhibition of nuclear factor of activation of T-cells (NFAT) which in turn represses HNF4alpha that leads to a disturbed balance of RAS.

  9. Molecular pathways: targeting RAC-p21-activated serine-threonine kinase signaling in RAS-driven cancers.

    PubMed

    Baker, Nicole M; Yee Chow, Hoi; Chernoff, Jonathan; Der, Channing J

    2014-09-15

    Cancers driven by oncogenic Ras proteins encompass some of the most deadly human cancer types, and there is a pressing need to develop therapies for these diseases. Although recent studies suggest that mutant Ras proteins may yet be druggable, the most promising and advanced efforts involve inhibitors of Ras effector signaling. Most efforts to target Ras signaling have been aimed at the ERK mitogen-activated protein kinase and the phosphoinositide 3-kinase signaling networks. However, to date, no inhibitors of these Ras effector pathways have been effective against RAS-mutant cancers. This ineffectiveness is due, in part, to the involvement of additional effectors in Ras-dependent cancer growth, such as the Rac small GTPase and the p21-activated serine-threonine kinases (PAK). PAK proteins are involved in many survival, cell motility, and proliferative pathways in the cell and may present a viable new target in Ras-driven cancers. In this review, we address the role and therapeutic potential of Rac and group I PAK proteins in driving mutant Ras cancers. ©2014 American Association for Cancer Research.

  10. Nitrative and oxidative DNA damage caused by K-ras mutation in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohnishi, Shiho; Saito, Hiromitsu; Suzuki, Noboru

    2011-09-23

    Highlights: {yields} Mutated K-ras in transgenic mice caused nitrative DNA damage, 8-nitroguanine. {yields} The mutagenic 8-nitroguanine seemed to be generated by iNOS via Ras-MAPK signal. {yields} Mutated K-ras produces additional mutagenic lesions, as a new oncogenic role. -- Abstract: Ras mutation is important for carcinogenesis. Carcinogenesis consists of multi-step process with mutations in several genes. We investigated the role of DNA damage in carcinogenesis initiated by K-ras mutation, using conditional transgenic mice. Immunohistochemical analysis revealed that mutagenic 8-nitroguanine and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) were apparently formed in adenocarcinoma caused by mutated K-ras. 8-Nitroguanine was co-localized with iNOS, eNOS, NF-{kappa}B, IKK, MAPK, MEK,more » and mutated K-ras, suggesting that oncogenic K-ras causes additional DNA damage via signaling pathway involving these molecules. It is noteworthy that K-ras mutation mediates not only cell over-proliferation but also the accumulation of mutagenic DNA lesions, leading to carcinogenesis.« less

  11. Expression and effect of inhibition of aminopeptidase-A during nephrogenesis.

    PubMed

    Dijkman, Henry B P M; Assmann, Karel J M; Steenbergen, Eric J; Wetzels, Jack F M

    2006-02-01

    Aminopeptidase-A (APA) is a metalloprotease that cleaves N-terminal aspartyl and glutamyl residues from peptides. Its best-known substrate is angiotensin II (Ang II), the most active compound of the renin-angiotensin system (RAS). The RAS is involved in renal development. Most components of the RAS system are expressed in the developing kidney. Thus far, APA has not been studied in detail. In the present study we have evaluated the expression of APA at the protein, mRNA, and enzyme activity (EA) level in the kidney during nephrogenesis. Furthermore, we have studied the effect of inhibiting APA EA by injection of anti-APA antibodies into 1-day-old mice. APA expression was observed from the comma stage onwards, predominantly in the developing podocytes and brush borders of proximal tubular cells. Notably, APA was absent in the medulla or the renal arterioles. Inhibition of APA EA caused temporary podocyte foot-process effacement, suggesting a minimum role for APA during nephrogenesis.

  12. Proton pump inhibitors and histamine 2 blockers are associated with improved overall survival in patients with head and neck squamous carcinoma (HNSCC)

    PubMed Central

    Papagerakis, Silvana; Bellile, Emily; Peterson, Lisa A.; Pliakas, Maria; Balaskas, Katherine; Selman, Sara; Hanauer, David; Taylor, Jeremy M.G.; Duffy, Sonia; Wolf, Gregory

    2015-01-01

    It has been postulated that gastroesophageal reflux plays a role in the etiology of head and neck squamous cell carcinomas (HNSCC) and contributes to complications after surgery or during radiotherapy. Antacid medications are commonly used in HNSCC patients for the management of acid reflux however their relationship with outcomes has not been well studied. Associations between histamine receptor-2 antagonists (H2RAs) and proton pump inhibitors (PPIs) use and treatment outcomes were determined in 596 previously untreated HNSCC patients enrolled in our SPORE epidemiology program from 2003–2008 (median follow-up 55-month). Comprehensive clinical information was entered prospectively in our database. Risk strata were created based on possible confounding prognostic variables (age, demographics, socioeconomics, tumor stage, primary site, smoking status, HPV-16 status and treatment modality); correlations within risk strata were analyzed in a multivariable model. Patients taking antacid medications had significantly better overall survival (PPI alone: p<0.001: H2RA alone, p=0.0479; both PPI+H2RA, p=0.0133). Using multivariable Cox models and adjusting for significant prognostic covariates, both PPIs and H2RAs use were significant prognostic factors for overall survival, but only H2RAs use for recurrence-free survival in HPV16-positive oropharyngeal patients. We found significant associations between use of H2RAs and PPIs, alone or in combination, and various clinical characteristics. The findings in this large cohort study indicate that routine use of antacid medications may have significant therapeutic benefit in HNSCC patients. The reasons for this association remain an active area of investigation and could lead to identification of new treatment and prevention approaches with agents that have minimal toxicities. PMID:25468899

  13. Novel Cardiac Intracrine Mechanisms Based on Ang-(1-12)/Chymase Axis Require a Revision of Therapeutic Approaches in Human Heart Disease.

    PubMed

    Reyes, Santiago; Varagic, Jasmina; Ahmad, Sarfaraz; VonCannon, Jessica; Kon, Neal D; Wang, Hao; Groban, Leanne; Cheng, Che Ping; Dell'Italia, Louis J; Ferrario, Carlos M

    2017-02-01

    Drugs targeting the renin-angiotensin system (RAS), namely angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor blockers, are the most commonly prescribed drugs for patients with or at risk for cardiovascular events. However, new treatment strategies aimed at mitigating the rise of the heart failure pandemic are warranted because clinical trials show that RAS blockers have limited benefits in halting disease progression. The main goal of this review is to put forward the concept of an intracrine RAS signaling through the novel angiotensin-(1-12)/chymase axis as the main source of deleterious angiotensin II (Ang II) in cardiac maladaptive remodeling leading to heart failure (HF). Expanding traditional knowledge, Ang II can be produced in tissues independently from the circulatory renin-angiotensin system. In the heart, angiotensin-(1-12) [Ang-(1-12)], a recently discovered derivative of angiotensinogen, is a precursor of Ang II, and chymase rather than ACE is the main enzyme contributing to the direct production of Ang II from Ang-(1-12). The Ang-(1-12)/chymase axis is an independent intracrine pathway accounting for the trophic, contractile, and pro-arrhythmic Ang II actions in the human heart. Ang-(1-12) expression and chymase activity have been found elevated in the left atrial appendage of heart disease subjects, suggesting a pivotal role of this axis in the progression of HF. Recent meta-analysis of large clinical trials on the use of ACE inhibitors and angiotensin receptor blockers in cardiovascular disease has demonstrated an imbalance between patients that significantly benefit from these therapeutic agents and those that remain at risk for heart disease progression. Looking to find an explanation, detailed investigation on the RAS has unveiled a previously unrecognized complexity of substrates and enzymes in tissues ultimately associated with the production of Ang II that may explain the shortcomings of ACE inhibition and angiotensin receptor blockade. Discovery of the Ang-(1-12)/chymase axis in human hearts, capable of producing Ang II independently from the circulatory RAS, has led to the notion that a tissue-delimited RAS signaling in an intracrine fashion may account for the deleterious effects of Ang II in the heart, contributing to the transition from maladaptive cardiac remodeling to heart failure. Targeting intracellular RAS signaling may improve current therapies aimed at reducing the burden of heart failure.

  14. A New Strategy to Control and Eradicate “Undruggable” Oncogenic K-RAS-Driven Pancreatic Cancer: Molecular Insights and Core Principles Learned from Developmental and Evolutionary Biology

    PubMed Central

    Lee, Michael P.; Lee, Caroline Dasom; Lafever, Alex C.; Svyatova, Elizaveta; Kanda, Kevin; Collier, Amber L.; Siewertsz van Reesema, Lauren L.; Tang-Tan, Angela M.; Zheleva, Vasilena; Bwayi, Monicah N.; Bian, Minglei; Schmidt, Rebecca L.; Petersen, Gloria M.

    2018-01-01

    Oncogenic K-RAS mutations are found in virtually all pancreatic cancers, making K-RAS one of the most targeted oncoproteins for drug development in cancer therapies. Despite intense research efforts over the past three decades, oncogenic K-RAS has remained largely “undruggable”. Rather than targeting an upstream component of the RAS signaling pathway (i.e., EGFR/HER2) and/or the midstream effector kinases (i.e., RAF/MEK/ERK/PI3K/mTOR), we propose an alternative strategy to control oncogenic K-RAS signal by targeting its most downstream signaling module, Seven-In-Absentia Homolog (SIAH). SIAH E3 ligase controls the signal output of oncogenic K-RAS hyperactivation that drives unchecked cell proliferation, uncontrolled tumor growth, and rapid cancer cell dissemination in human pancreatic cancer. Therefore, SIAH is an ideal therapeutic target as it is an extraordinarily conserved downstream signaling gatekeeper indispensable for proper RAS signaling. Guided by molecular insights and core principles obtained from developmental and evolutionary biology, we propose an anti-SIAH-centered anti-K-RAS strategy as a logical and alternative anticancer strategy to dampen uncontrolled K-RAS hyperactivation and halt tumor growth and metastasis in pancreatic cancer. The clinical utility of developing SIAH as both a tumor-specific and therapy-responsive biomarker, as well as a viable anti-K-RAS drug target, is logically simple and conceptually innovative. SIAH clearly constitutes a major tumor vulnerability and K-RAS signaling bottleneck in pancreatic ductal adenocarcinoma (PDAC). Given the high degree of evolutionary conservation in the K-RAS/SIAH signaling pathway, an anti-SIAH-based anti-PDAC therapy will synergize with covalent K-RAS inhibitors and direct K-RAS targeted initiatives to control and eradicate pancreatic cancer in the future. PMID:29757973

  15. Mitochondrial uncoupling proteins regulate angiotensin-converting enzyme expression: crosstalk between cellular and endocrine metabolic regulators suggested by RNA interference and genetic studies.

    PubMed

    Dhamrait, Sukhbir S; Maubaret, Cecilia; Pedersen-Bjergaard, Ulrik; Brull, David J; Gohlke, Peter; Payne, John R; World, Michael; Thorsteinsson, Birger; Humphries, Steve E; Montgomery, Hugh E

    2016-07-01

    Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin-converting enzyme (ACE) is the central component of endocrine and local tissue renin-angiotensin systems (RAS), which also regulate diverse aspects of whole-body metabolism and mitochondrial function (partly through altering mitochondrial UCP expression). We show that ACE expression also appears to be regulated by mitochondrial UCPs. In genetic analysis of two unrelated populations (healthy young UK men and Scandinavian diabetic patients) serum ACE (sACE) activity was significantly higher amongst UCP3-55C (rather than T) and UCP2 I (rather than D) allele carriers. RNA interference against UCP2 in human umbilical vein endothelial cells reduced UCP2 mRNA sixfold (P < 0·01) whilst increasing ACE expression within a physiological range (<1·8-fold at 48 h; P < 0·01). Our findings suggest novel hypotheses. Firstly, cellular feedback regulation may occur between UCPs and ACE. Secondly, cellular UCP regulation of sACE suggests a novel means of crosstalk between (and mutual regulation of) cellular and endocrine metabolism. This might partly explain the reduced risk of developing diabetes and metabolic syndrome with RAS antagonists and offer insight into the origins of cardiovascular disease in which UCPs and ACE both play a role. © 2016 The Authors. BioEssays published by WILEY Periodicals, Inc.

  16. Mitochondrial uncoupling proteins regulate angiotensin‐converting enzyme expression: crosstalk between cellular and endocrine metabolic regulators suggested by RNA interference and genetic studies

    PubMed Central

    Maubaret, Cecilia; Pedersen‐Bjergaard, Ulrik; Brull, David J.; Gohlke, Peter; Payne, John R.; World, Michael; Thorsteinsson, Birger; Humphries, Steve E.; Montgomery, Hugh E.

    2015-01-01

    Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin‐converting enzyme (ACE) is the central component of endocrine and local tissue renin–angiotensin systems (RAS), which also regulate diverse aspects of whole‐body metabolism and mitochondrial function (partly through altering mitochondrial UCP expression). We show that ACE expression also appears to be regulated by mitochondrial UCPs. In genetic analysis of two unrelated populations (healthy young UK men and Scandinavian diabetic patients) serum ACE (sACE) activity was significantly higher amongst UCP3‐55C (rather than T) and UCP2 I (rather than D) allele carriers. RNA interference against UCP2 in human umbilical vein endothelial cells reduced UCP2 mRNA sixfold (P < 0·01) whilst increasing ACE expression within a physiological range (<1·8‐fold at 48 h; P < 0·01). Our findings suggest novel hypotheses. Firstly, cellular feedback regulation may occur between UCPs and ACE. Secondly, cellular UCP regulation of sACE suggests a novel means of crosstalk between (and mutual regulation of) cellular and endocrine metabolism. This might partly explain the reduced risk of developing diabetes and metabolic syndrome with RAS antagonists and offer insight into the origins of cardiovascular disease in which UCPs and ACE both play a role. PMID:27347560

  17. Mitochondrial uncoupling proteins regulate angiotensin-converting enzyme expression: crosstalk between cellular and endocrine metabolic regulators suggested by RNA interference and genetic studies.

    PubMed

    Dhamrait, Sukhbir S; Maubaret, Cecilia; Pedersen-Bjergaard, Ulrik; Brull, David J; Gohlke, Peter; Payne, John R; World, Michael; Thorsteinsson, Birger; Humphries, Steve E; Montgomery, Hugh E

    2016-01-01

    Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin-converting enzyme (ACE) is the central component of endocrine and local tissue renin-angiotensin systems (RAS), which also regulate diverse aspects of whole-body metabolism and mitochondrial function (partly through altering mitochondrial UCP expression). We show that ACE expression also appears to be regulated by mitochondrial UCPs. In genetic analysis of two unrelated populations ( healthy young UK men and Scandinavian diabetic patients ) serum ACE (sACE) activity was significantly higher amongst UCP3-55C (rather than T) and UCP2 I (rather than D) allele carriers. RNA interference against UCP2 in human umbilical vein endothelial cells reduced UCP2 mRNA sixfold ( P  < 0·01) whilst increasing ACE expression within a physiological range (<1·8-fold at 48 h; P  < 0·01). Our findings suggest novel hypotheses. Firstly, cellular feedback regulation may occur between UCPs and ACE. Secondly, cellular UCP regulation of sACE suggests a novel means of crosstalk between (and mutual regulation of) cellular and endocrine metabolism. This might partly explain the reduced risk of developing diabetes and metabolic syndrome with RAS antagonists and offer insight into the origins of cardiovascular disease in which UCPs and ACE both play a role.

  18. Erythropoiesis and Blood Pressure Are Regulated via AT1 Receptor by Distinctive Pathways.

    PubMed

    Kato, Hideki; Ishida, Junji; Matsusaka, Taiji; Ishimaru, Tomohiro; Tanimoto, Keiji; Sugiyama, Fumihiro; Yagami, Ken-Ichi; Nangaku, Masaomi; Fukamizu, Akiyoshi

    2015-01-01

    The renin-angiotensin system (RAS) plays a central role in blood pressure regulation. Although clinical and experimental studies have suggested that inhibition of RAS is associated with progression of anemia, little evidence is available to support this claim. Here we report that knockout mice that lack angiotensin II, including angiotensinogen and renin knockout mice, exhibit anemia. The anemia of angiotensinogen knockout mice was rescued by angiotensin II infusion, and rescue was completely blocked by simultaneous administration of AT1 receptor blocker. To genetically determine the responsible receptor subtype, we examined AT1a, AT1b, and AT2 knockout mice, but did not observe anemia in any of them. To investigate whether pharmacological AT1 receptor inhibition recapitulates the anemic phenotype, we administered AT1 receptor antagonist in hypotensive AT1a receptor knockout mice to inhibit the remaining AT1b receptor. In these animals, hematocrit levels barely decreased, but blood pressure further decreased to the level observed in angiotensinogen knockout mice. We then generated AT1a and AT1b double-knockout mice to completely ablate the AT1 receptors; the mice finally exhibited the anemic phenotype. These results provide clear evidence that although erythropoiesis and blood pressure are negatively controlled through the AT1 receptor inhibition in vivo, the pathways involved are complex and distinct, because erythropoiesis is more resistant to AT1 receptor inhibition than blood pressure control.

  19. Immunological Characterization of Whole Tumour Lysate-Loaded Dendritic Cells for Cancer Immunotherapy

    PubMed Central

    Ottobrini, Luisa; Biasin, Mara; Borelli, Manuela; Lucignani, Giovanni; Trabattoni, Daria; Clerici, Mario

    2016-01-01

    Introduction Dendritic cells play a key role as initiators of T-cell responses, and even if tumour antigen-loaded dendritic cells can induce anti-tumour responses, their efficacy has been questioned, suggesting a need to enhance immunization strategies. Matherials & Methods We focused on the characterization of bone marrow-derived dendritic cells pulsed with whole tumour lysate (TAA-DC), as a source of known and unknown antigens, in a mouse model of breast cancer (MMTV-Ras). Dendritic cells were evaluated for antigen uptake and for the expression of MHC class I/II and costimulatory molecules and markers associated with maturation. Results Results showed that antigen-loaded dendritic cells are characterized by a phenotypically semi-mature/mature profile and by the upregulation of genes involved in antigen presentation and T-cell priming. Activated dendritic cells stimulated T-cell proliferation and induced the production of high concentrations of IL-12p70 and IFN-γ but only low levels of IL-10, indicating their ability to elicit a TH1-immune response. Furthermore, administration of Antigen loaded-Dendritic Cells in MMTV-Ras mice evoked a strong anti-tumour response in vivo as demonstrated by a general activation of immunocompetent cells and the release of TH1 cytokines. Conclusion Data herein could be useful in the design of antitumoral DC-based therapies, showing a specific activation of immune system against breast cancer. PMID:26795765

  20. Mitochondrial clearance by the STK38 kinase supports oncogenic Ras-induced cell transformation

    PubMed Central

    Bettoun, Audrey; Surdez, Didier; Vallerand, David; Gundogdu, Ramazan; Sharif, Ahmad A.D.; Gomez, Marta; Cascone, Ilaria; Meunier, Brigitte; White, Michael A.; Codogno, Patrice; Parrini, Maria Carla; Camonis, Jacques H.; Hergovich, Alexander

    2016-01-01

    Oncogenic Ras signalling occurs frequently in many human cancers. However, no effective targeted therapies are currently available to treat patients suffering from Ras-driven tumours. Therefore, it is imperative to identify downstream effectors of Ras signalling that potentially represent promising new therapeutic options. Particularly, considering that autophagy inhibition can impair the survival of Ras-transformed cells in tissue culture and mouse models, an understanding of factors regulating the balance between autophagy and apoptosis in Ras-transformed human cells is needed. Here, we report critical roles of the STK38 protein kinase in oncogenic Ras transformation. STK38 knockdown impaired anoikis resistance, anchorage-independent soft agar growth, and in vivo xenograft growth of Ras-transformed human cells. Mechanistically, STK38 supports Ras-driven transformation through promoting detachment-induced autophagy. Even more importantly, upon cell detachment STK38 is required to sustain the removal of damaged mitochondria by mitophagy, a selective autophagic process, to prevent excessive mitochondrial reactive oxygen species production that can negatively affect cancer cell survival. Significantly, knockdown of PINK1 or Parkin, two positive regulators of mitophagy, also impaired anoikis resistance and anchorage-independent growth of Ras-transformed human cells, while knockdown of USP30, a negative regulator of PINK1/Parkin-mediated mitophagy, restored anchorage-independent growth of STK38-depleted Ras-transformed human cells. Therefore, our findings collectively reveal novel molecular players that determine whether Ras-transformed human cells die or survive upon cell detachment, which potentially could be exploited for the development of novel strategies to target Ras-transformed cells. PMID:27283898

  1. Effect of Rhythmic Auditory Stimulation on Hemiplegic Gait Patterns

    PubMed Central

    Shin, Yoon-Kyum; Chong, Hyun Ju

    2015-01-01

    Purpose The purpose of our study was to investigate the effect of gait training with rhythmic auditory stimulation (RAS) on both kinematic and temporospatial gait patterns in patients with hemiplegia. Materials and Methods Eighteen hemiplegic patients diagnosed with either cerebral palsy or stroke participated in this study. All participants underwent the 4-week gait training with RAS. The treatment was performed for 30 minutes per each session, three sessions per week. RAS was provided with rhythmic beats using a chord progression on a keyboard. Kinematic and temporospatial data were collected and analyzed using a three-dimensional motion analysis system. Results Gait training with RAS significantly improved both proximal and distal joint kinematic patterns in hip adduction, knee flexion, and ankle plantar flexion, enhancing the gait deviation index (GDI) as well as ameliorating temporal asymmetry of the stance and swing phases in patients with hemiplegia. Stroke patients with previous walking experience demonstrated significant kinematic improvement in knee flexion in mid-swing and ankle dorsiflexion in terminal stance. Among stroke patients, subacute patients showed a significantly increased GDI score compared with chronic patients. In addition, household ambulators showed a significant effect on reducing anterior tilt of the pelvis with an enhanced GDI score, while community ambulators significantly increased knee flexion in mid-swing phase and ankle dorsiflexion in terminal stance phase. Conclusion Gait training with RAS has beneficial effects on both kinematic and temporospatial patterns in patients with hemiplegia, providing not only clinical implications of locomotor rehabilitation with goal-oriented external feedback using RAS but also differential effects according to ambulatory function. PMID:26446657

  2. Deterioration of kidney function by the (pro)renin receptor blocker handle region peptide in aliskiren-treated diabetic transgenic (mRen2)27 rats.

    PubMed

    te Riet, Luuk; van den Heuvel, Mieke; Peutz-Kootstra, Carine J; van Esch, Joep H M; van Veghel, Richard; Garrelds, Ingrid M; Musterd-Bhaggoe, Usha; Bouhuizen, Angelique M; Leijten, Frank P J; Danser, A H Jan; Batenburg, Wendy W

    2014-05-15

    Dual renin-angiotensin system (RAS) blockade in diabetic nephropathy is no longer feasible because of the profit/side effect imbalance. (Pro)renin receptor [(P)RR] blockade with handle region peptide (HRP) has been reported to exert beneficial effects in various diabetic models in a RAS-independent manner. To what degree (P)RR blockade adds benefits on top of RAS blockade is still unknown. In the present study, we treated diabetic TGR(mREN2)27 rats, a well-established nephropathy model with high prorenin levels [allowing continuous (P)RR stimulation in vivo], with HRP on top of renin inhibition with aliskiren. Aliskiren alone lowered blood pressure and exerted renoprotective effects, as evidenced by reduced glomerulosclerosis, diuresis, proteinuria, albuminuria, and urinary aldosterone levels as well as diminished renal (P)RR and ANG II type 1 receptor expression. It also suppressed plasma and tissue RAS activity and suppressed cardiac atrial natriuretic peptide and brain natriuretic peptide expression. HRP, when given on top of aliskiren, did not alter the effects of renin inhibition on blood pressure, RAS activity, or aldosterone. However, it counteracted the beneficial effects of aliskiren in the kidney, induced hyperkalemia, and increased plasma plasminogen activator-inhibitor 1, renal cyclooxygenase-2, and cardiac collagen content. All these effects have been linked to (P)RR stimulation, suggesting that HRP might, in fact, act as a partial agonist. Therefore, the use of HRP on top of RAS blockade in diabetic nephropathy is not advisable. Copyright © 2014 the American Physiological Society.

  3. Validation of Methods to Control for Immortal Time Bias in a Pharmacoepidemiologic Analysis of Renin–Angiotensin System Inhibitors in Type 2 Diabetes

    PubMed Central

    Yang, Xilin; Kong, Alice PS; Luk, Andrea OY; Ozaki, Risa; Ko, Gary TC; Ma, Ronald CW; Chan, Juliana CN; So, Wing Yee

    2014-01-01

    Background Pharmacoepidemiologic analysis can confirm whether drug efficacy in a randomized controlled trial (RCT) translates to effectiveness in real settings. We examined methods used to control for immortal time bias in an analysis of renin–angiotensin system (RAS) inhibitors as the reference cardioprotective drug. Methods We analyzed data from 3928 patients with type 2 diabetes who were recruited into the Hong Kong Diabetes Registry between 1996 and 2005 and followed up to July 30, 2005. Different Cox models were used to obtain hazard ratios (HRs) for cardiovascular disease (CVD) associated with RAS inhibitors. These HRs were then compared to the HR of 0.92 reported in a recent meta-analysis of RCTs. Results During a median follow-up period of 5.45 years, 7.23% (n = 284) patients developed CVD and 38.7% (n = 1519) were started on RAS inhibitors, with 39.1% of immortal time among the users. In multivariable analysis, time-dependent drug-exposure Cox models and Cox models that moved immortal time from users to nonusers both severely inflated the HR, and time-fixed models that included immortal time deflated the HR. Use of time-fixed Cox models that excluded immortal time resulted in a HR of only 0.89 (95% CI, 0.68–1.17) for CVD associated with RAS inhibitors, which is closer to the values reported in RCTs. Conclusions In pharmacoepidemiologic analysis, time-dependent drug exposure models and models that move immortal time from users to nonusers may introduce substantial bias in investigations of the effects of RAS inhibitors on CVD in type 2 diabetes. PMID:24747198

  4. Renin-angiotensin system phenotyping as a guidance toward personalized medicine for ACE inhibitors: can the response to ACE inhibition be predicted on the basis of plasma renin or ACE?

    PubMed

    Schilders, Joyce E M; Wu, Haiyan; Boomsma, Frans; van den Meiracker, Anton H; Danser, A H Jan

    2014-08-01

    Not all hypertensive patients respond well to ACE inhibition. Here we determined whether renin-angiotensin system (RAS) phenotyping, i.e., the measurement of renin or ACE, can predict the individual response to RAS blockade, either chronically (enalapril vs. enalapril + candesartan) or acutely (enalapril ± hydrochlorothiazide, HCT). Chronic enalapril + candesartan induced larger renin rises, but did not lower blood pressure (BP) more than enalapril. Similar observations were made for enalapril + HCT vs. enalapril when given acutely. Baseline renin predicted the peak changes in BP chronically, but not acutely. Baseline ACE levels had no predictive value. Yet, after acute drug intake, the degree of ACE inhibition, like Δrenin, did correlate with ΔBP. Only the relationship with Δrenin remained significant after chronic RAS blockade. Thus, a high degree of ACE inhibition and a steep renin rise associate with larger acute responses to enalapril. However, variation was large, ranging >50 mm Hg for a given degree of ACE inhibition or Δrenin. The same was true for the relationships between Δrenin and ΔBP, and between baseline renin and the maximum reduction in BP in the chronic study. Our data do not support that RAS phenotyping will help to predict the individual BP response to RAS blockade. Notably, these conclusions were reached in a carefully characterized, homogenous population, and when taking into account the known fluctuations in renin that relate to gender, age, ethnicity, salt intake and diuretic treatment, it seems unlikely that a cut-off renin level can be defined that has predictive value.

  5. Combined Inhibition of the Renin-Angiotensin System and Neprilysin Positively Influences Complex Mitochondrial Adaptations in Progressive Experimental Heart Failure

    PubMed Central

    Reinders, Jörg; Schröder, Josef; Dietl, Alexander; Schmid, Peter M.; Jungbauer, Carsten; Resch, Markus; Maier, Lars S.; Luchner, Andreas; Birner, Christoph

    2017-01-01

    Background Inhibitors of the renin angiotensin system and neprilysin (RAS-/NEP-inhibitors) proved to be extraordinarily beneficial in systolic heart failure. Furthermore, compelling evidence exists that impaired mitochondrial pathways are causatively involved in progressive left ventricular (LV) dysfunction. Consequently, we aimed to assess whether RAS-/NEP-inhibition can attenuate mitochondrial adaptations in experimental heart failure (HF). Methods and Results By progressive right ventricular pacing, distinct HF stages were induced in 15 rabbits, and 6 animals served as controls (CTRL). Six animals with manifest HF (CHF) were treated with the RAS-/NEP-inhibitor omapatrilat. Echocardiographic studies and invasive blood pressure measurements were undertaken during HF progression. Mitochondria were isolated from LV tissue, respectively, and further worked up for proteomic analysis using the SWATH technique. Enzymatic activities of citrate synthase and the electron transfer chain (ETC) complexes I, II, and IV were assessed. Ultrastructural analyses were performed by transmission electron microscopy. During progression to overt HF, intricate expression changes were mainly detected for proteins belonging to the tricarboxylic acid cycle, glucose and fat metabolism, and the ETC complexes, even though ETC complex I, II, or IV enzymatic activities were not significantly influenced. Treatment with a RAS-/NEP-inhibitor then reversed some maladaptive metabolic adaptations, positively influenced the decline of citrate synthase activity, and altered the composition of each respiratory chain complex, even though this was again not accompanied by altered ETC complex enzymatic activities. Finally, ultrastructural evidence pointed to a reduction of autophagolytic and degenerative processes with omapatrilat-treatment. Conclusions This study describes complex adaptations of the mitochondrial proteome in experimental tachycardia-induced heart failure and shows that a combined RAS-/NEP-inhibition can beneficially influence mitochondrial key pathways. PMID:28076404

  6. New KRAS Antibodies Available | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    Researchers estimate that approximately 30% of all human cancers are driven by RAS oncogenes. Mutated RAS genes are responsible for making RAS proteins that support cancer development. While anti-RAS therapies may have potential clinical benefit, researchers yet do not understand how the four RAS protein isoforms, KRAS4A, KRAS4B, HRAS, and NRAS, drive malignant phenotypes. Well-characterized and defined reagents like antibodies are central to reproducibility in biomedical research and necessary for future RAS studies.

  7. Molecular Dynamics Simulations and Dynamic Network Analysis Reveal the Allosteric Unbinding of Monobody to H-Ras Triggered by R135K Mutation.

    PubMed

    Ni, Duan; Song, Kun; Zhang, Jian; Lu, Shaoyong

    2017-10-26

    Ras proteins, as small GTPases, mediate cell proliferation, survival and differentiation. Ras mutations have been associated with a broad spectrum of human cancers and thus targeting Ras represents a potential way forward for cancer therapy. A recently reported monobody NS1 allosterically disrupts the Ras-mediated signaling pathway, but its efficacy is reduced by R135K mutation in H-Ras. However, the detailed mechanism is unresolved. Here, using molecular dynamics (MD) simulations and dynamic network analysis, we explored the molecular mechanism for the unbinding of NS1 to H-Ras and shed light on the underlying allosteric network in H-Ras. MD simulations revealed that the overall structures of the two complexes did not change significantly, but the H-Ras-NS1 interface underwent significant conformational alteration in the mutant Binding free energy analysis showed that NS1 binding was unfavored after R135K mutation, which resulted in the unfavorable binding of NS1. Furthermore, the critical residues on H-Ras responsible for the loss of binding of NS1 were identified. Importantly, the allosteric networks for these important residues were revealed, which yielded a novel insight into the allosteric regulatory mechanism of H-Ras.

  8. An orthosteric inhibitor of the RAS-SOS interaction.

    PubMed

    Nickerson, Seth; Joy, Stephen T; Arora, Paramjit S; Bar-Sagi, Dafna

    2013-01-01

    Rat sarcoma (RAS) proteins are signaling nodes that transduce extracellular cues into precise alterations in cellular physiology by engaging effector pathways. RAS signaling thus regulates diverse cell processes including proliferation, migration, differentiation, and survival. Owing to this central role in governing mitogenic signals, RAS pathway components are often dysregulated in human diseases. Targeted therapy of RAS pathways has generally not been successful, largely because of the robust biochemistry of the targets and their multifaceted network of molecular regulators. The rate-limiting step of RAS activation is Son of Sevenless (SOS)-mediated nucleotide exchange involving a single evolutionarily conserved catalytic helix from SOS. Structure function data of this mechanism provided a strong platform to design an SOS-derived, helically constrained peptide mimic as an inhibitor of the RAS-SOS interaction. In this chapter, we review RAS-SOS signaling dynamics and present evidence supporting the novel paradigm of inhibiting their interaction as a therapeutic strategy. We then describe a method of generating helically constrained peptide mimics of protein surfaces, which we have employed to inhibit the RAS-SOS active site interaction. The biochemical and functional properties of this SOS mimic support the premise that inhibition of RAS-nucleotide exchange can effectively block RAS activation and downstream signaling. © 2013 Elsevier Inc. All rights reserved.

  9. R-Ras Contributes to LTP and Contextual Discrimination

    PubMed Central

    Darcy, Michael J.; Jin, Shan-Xue; Feig, Larry A.

    2014-01-01

    The ability to discriminate between closely related contexts is a specific form of hippocampal-dependent learning that may be impaired in certain neurodegenerative disorders such as Alzheimer's and Down Syndrome. However, signaling pathways regulating this form of learning are poorly understood. Previous studies have shown that the calcium-dependent exchange factor Ras-GRF1, an activator of Rac, Ras and R-Ras GTPases, is important for this form of learning and memory. Moreover, the ability to discriminate contexts was linked to the ability of Ras-GRF1 to promote high-frequency stimulation (HFS)-LTP via the activation of p38 Map kinase. Here, we show that R-Ras is involved in this form of learning by using virally-delivered miRNAs targeting R-Ras into the CA1 region of dorsal hippocampus and observing impaired contextual discrimination. Like the loss of GRF1, knockdown of R-Ras in the CA1 also impairs the induction of HFS-LTP and p38 Map kinase. Nevertheless, experiments indicate that this involvement of R-Ras in HFS-LTP that is required for contextual discrimination is independent of Ras-GRF1. Thus, R-Ras is a novel regulator of a form of hippocampal-dependent LTP as well as learning and memory that is affected in certain forms of neurodegenerative diseases. PMID:25043327

  10. K-Ras(G12D)-selective inhibitory peptides generated by random peptide T7 phage display technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakamoto, Kotaro; Kamada, Yusuke; Sameshima, Tomoya

    Amino-acid mutations of Gly{sup 12} (e.g. G12D, G12V, G12C) of V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (K-Ras), the most promising drug target in cancer therapy, are major growth drivers in various cancers. Although over 30 years have passed since the discovery of these mutations in most cancer patients, effective mutated K-Ras inhibitors have not been marketed. Here, we report novel and selective inhibitory peptides to K-Ras(G12D). We screened random peptide libraries displayed on T7 phage against purified recombinant K-Ras(G12D), with thorough subtraction of phages bound to wild-type K-Ras, and obtained KRpep-2 (Ac-RRCPLYISYDPVCRR-NH{sub 2}) as a consensus sequence. KRpep-2 showedmore » more than 10-fold binding- and inhibition-selectivity to K-Ras(G12D), both in SPR analysis and GDP/GTP exchange enzyme assay. K{sub D} and IC{sub 50} values were 51 and 8.9 nM, respectively. After subsequent sequence optimization, we successfully generated KRpep-2d (Ac-RRRRCPLYISYDPVCRRRR-NH{sub 2}) that inhibited enzyme activity of K-Ras(G12D) with IC{sub 50} = 1.6 nM and significantly suppressed ERK-phosphorylation, downstream of K-Ras(G12D), along with A427 cancer cell proliferation at 30 μM peptide concentration. To our knowledge, this is the first report of a K-Ras(G12D)-selective inhibitor, contributing to the development and study of K-Ras(G12D)-targeting drugs. - Highlights: • The first K-Ras(G12D)-selective inhibitory peptides were generated. • These peptides showed more than 10-fold binding- and inhibition-selectivity to K-Ras(G12D) in compared to wild type K-Ras. • The peptide KRpep-2d suppressed downstream signal of K-Ras(G12D) and cell proliferations of cancer cell line A427.« less

  11. Subcellular Distribution of S-Nitrosylated H-Ras in Differentiated and Undifferentiated PC12 Cells during Hypoxia.

    PubMed

    Barbakadze, Tamar; Goloshvili, Galina; Narmania, Nana; Zhuravliova, Elene; Mikeladze, David

    2017-10-01

    Hypoxia or exposure to excessive reactive oxygen or nitrogen species could induce S-nitrosylation of various target proteins, including GTPases of the Ras-superfamily. Under hypoxic conditions, the Ras-protein is translocated to the cytosol and interacts with the Golgi complex, endoplasmic reticulum, mitochondria. The mobility/translocation of Ras depend on the cells oxidative status. However, the importance of relocated Snitrosylated- H-Ras (NO-H-Ras) in proliferation/differentiation processes is not completely understood. We have determined the content of soluble- and membrane-bound-NO-HRas in differentiated (D) and undifferentiated (ND) rat pheochromocytoma (PC12) cells under hypoxic and normoxic conditions. In our experimental study, we analyzed NO-H-Ras levels under hypoxic/normoxic conditions in membrane and soluble fractions of ND and D PC12 cells with/without nitric oxide donor, sodium nitroprusside (SNP) treatment. Cells were analyzed by the S-nitrosylated kit, immunoprecipitation, and Western blot. We assessed the action of NO-H-Ras on oxidative metabolism of isolated mitochondria by determining mitochondrial hydrogen peroxide generation via the scopoletin oxidation method and ATPproduction as estimated by the luminometric method. Hypoxia did not influence nitrosylation of soluble H-Ras in ND PC12 cells. Under hypoxic conditions, the nitrosylation of soluble-H-Ras greatly decreased in D PC12 cells. SNP didn't change the levels of nitrosylation of soluble-H-Ras, in either hypoxic or normoxic conditions. On the other hand, hypoxia, per se, did not affect the nitrosylation of membrane-bound-H-Ras in D and ND PC12 cells. SNP-dependent nitrosylation of membrane-bound-H-Ras greatly increased in D PC12 cells. Both unmodified normal and mutated H-Ras enhanced the mitochondrial synthesis of ATP, whereas the stimulatory effects on ATP synthesis were eliminated after S-nitrosylation of H-Ras. According to the results, it may be proposed that hypoxia can decrease S-nitrosylation of soluble-H-Ras in D PC12 cells and abolish the inhibitory effect of NO-HRas in mitochondrial oxidative metabolism. Copyright© by Royan Institute. All rights reserved.

  12. A concept of a space hazard counteraction system: Astronomical aspects

    NASA Astrophysics Data System (ADS)

    Shustov, B. M.; Rykhlova, L. V.; Kuleshov, Yu. P.; Dubov, Yu. N.; Elkin, K. S.; Veniaminov, S. S.; Borovin, G. K.; Molotov, I. E.; Naroenkov, S. A.; Barabanov, S. I.; Emel'yanenko, V. V.; Devyatkin, A. V.; Medvedev, Yu. D.; Shor, V. A.; Kholshevnikov, K. V.

    2013-07-01

    The basic science of astronomy and, primarily, its branch responsible for studying the Solar System, face the most important practical task posed by nature and the development of human civilization—to study space hazards and to seek methods of counteracting them. In pursuance of the joint Resolution of the Federal Space Agency (Roscosmos) and the RAS (Russian Academy of Sciences) Space Council of June 23, 2010, the RAS Institute of Astronomy in collaboration with other scientific and industrial organizations prepared a draft concept of the federal-level program targeted at creating a system of space hazard detection and counteraction. The main ideas and astronomical content of the concept are considered in this article.

  13. Classification System and Information Services in the Library of SAO RAS

    NASA Astrophysics Data System (ADS)

    Shvedova, G. S.

    The classification system used at SAO RAS is described. It includes both special determinants from UDC (Universal Decimal Classification) and newer tables with astronomical terms from the Library-Bibliographical Classification (LBC). The classification tables are continually modified, and new astronomical terms are introduced. At the present time the information services of the scientists is fulfilled with the help of the Abstract Journal Astronomy, Astronomy and Astrophysics Abstracts, catalogues and card indexes of the library. Based on our classification system and The Astronomy Thesaurus completed by R.M. Shobbrook and R.R. Shobbrook the development of a database for the library has been started, which allows prompt service of the observatory's staff members.

  14. Howard Young Brings Light to the Serious Side of Science | Poster

    Cancer.gov

    You know what they say about all work and no play. And without a doubt, science requires constant hard work. But the NCI at Frederick has an antidote to the serious side of science: Howard Young. Young, Ph.D., Senior Investigator, Cancer and Inflammation Program, is a serious scientist in his own right. He was part of the team that characterized and cloned the RAS oncogene, he

  15. Ras signaling in aging and metabolic regulation.

    PubMed

    Slack, Cathy

    2017-12-07

    Aberrant signal transduction downstream of the Ras GTPase has a well-established role in tumorigenesis. Mutations that result in hyperactivation of Ras are responsible for a third of all human cancers. Hence, small molecule inhibitors of the Ras signal transduction cascade have been under intense focus as potential cancer treatments. In both invertebrate and mammalian models, emerging evidence has also implicated components of the Ras signaling pathway in aging and metabolic regulation. Here, I review the current evidence for Ras signaling in these newly discovered roles highlighting the interactions between the Ras pathway and other longevity assurance mechanisms. Defining the role of Ras signaling in maintaining age-related health may have important implications for the development of interventions that could not only increase lifespan but also delay the onset and/or progression of age-related functional decline.

  16. Ras inhibitors display an anti-metastatic effect by downregulation of lysyl oxidase through inhibition of the Ras-PI3K-Akt-HIF-1α pathway.

    PubMed

    Yoshikawa, Yoko; Takano, Osamu; Kato, Ichiro; Takahashi, Yoshihisa; Shima, Fumi; Kataoka, Tohru

    2017-12-01

    Metastasis stands as the major obstacle for the survival from cancers. Nonetheless most existing anti-cancer drugs inhibit only cell proliferation, and discovery of agents having both anti-proliferative and anti-metastatic properties would be more beneficial. We previously reported the discovery of small-molecule Ras inhibitors, represented by Kobe0065, that displayed anti-proliferative activity on xenografts of human colorectal cancer (CRC) cell line SW480 carrying the K-ras G12V gene. Here we show that treatment of cancer cells carrying the activated ras genes with Kobe0065 or a siRNA targeting Ras downregulates the expression of lysyl oxidase (LOX), which has been implicated in metastasis. LOX expression is enhanced by co-expression of Ras G12V through activation of phosphatidylinositol 3-kinase (PI3K)/Akt and concomitant accumulation of hypoxia-inducible factor (HIF)-1α. Furthermore, Kobe0065 effectively inhibits not only migration and invasion of cancer cells carrying the activated ras genes but also lung metastasis of human CRC cell line SW620 carrying the K-ras G12V gene. Collectively, these results indicate that Kobe0065 prevents metastasis through inhibition of the Ras-PI3K-Akt-HIF-1α-LOX signaling and suggest that Ras inhibitors in general might exhibit both anti-proliferative and anti-metastatic properties toward cancer cells carrying the activated ras genes. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Monitoring Ras Interactions with the Nucleotide Exchange Factor Son of Sevenless (Sos) Using Site-specific NMR Reporter Signals and Intrinsic Fluorescence*

    PubMed Central

    Vo, Uybach; Vajpai, Navratna; Flavell, Liz; Bobby, Romel; Breeze, Alexander L.; Embrey, Kevin J.; Golovanov, Alexander P.

    2016-01-01

    The activity of Ras is controlled by the interconversion between GTP- and GDP-bound forms partly regulated by the binding of the guanine nucleotide exchange factor Son of Sevenless (Sos). The details of Sos binding, leading to nucleotide exchange and subsequent dissociation of the complex, are not completely understood. Here, we used uniformly 15N-labeled Ras as well as [13C]methyl-Met,Ile-labeled Sos for observing site-specific details of Ras-Sos interactions in solution. Binding of various forms of Ras (loaded with GDP and mimics of GTP or nucleotide-free) at the allosteric and catalytic sites of Sos was comprehensively characterized by monitoring signal perturbations in the NMR spectra. The overall affinity of binding between these protein variants as well as their selected functional mutants was also investigated using intrinsic fluorescence. The data support a positive feedback activation of Sos by Ras·GTP with Ras·GTP binding as a substrate for the catalytic site of activated Sos more weakly than Ras·GDP, suggesting that Sos should actively promote unidirectional GDP → GTP exchange on Ras in preference of passive homonucleotide exchange. Ras·GDP weakly binds to the catalytic but not to the allosteric site of Sos. This confirms that Ras·GDP cannot properly activate Sos at the allosteric site. The novel site-specific assay described may be useful for design of drugs aimed at perturbing Ras-Sos interactions. PMID:26565026

  18. Activation of RAS family genes in urothelial carcinoma.

    PubMed

    Boulalas, I; Zaravinos, A; Karyotis, I; Delakas, D; Spandidos, D A

    2009-05-01

    Bladder cancer is the fifth most common malignancy in men in Western society. We determined RAS codon 12 and 13 point mutations and evaluated mRNA expression levels in transitional cell carcinoma cases. Samples from 30 human bladder cancers and 30 normal tissues were analyzed by polymerase chain reaction/restriction fragment length polymorphism and direct sequencing to determine the occurrence of mutations in codons 12 and 13 of RAS family genes. Moreover, we used real-time reverse transcriptase-polymerase chain reaction to evaluate the expression profile of RAS genes in bladder cancer specimens compared to that in adjacent normal tissues. Overall H-RAS mutations in codon 12 were observed in 9 tumor samples (30%). Two of the 9 patients (22%) had invasive bladder cancer and 7 (77%) had noninvasive bladder cancer. One H-RAS mutation (11%) was homozygous and the remaining 89% were heterozygous. All samples were WT for K and N-RAS oncogenes. Moreover, 23 of 30 samples (77%) showed over expression in at least 1 RAS family gene compared to adjacent normal tissue. K and N-RAS had the highest levels of over expression in bladder cancer specimens (50%), whereas 27% of transitional cell carcinomas demonstrated H-RAS over expression relative to paired normal tissues. Our results underline the importance of H-RAS activation in human bladder cancer by codon 12 mutations. Moreover, they provide evidence that increased expression of all 3 RAS genes is a common event in bladder cancer that is associated with disease development.

  19. Exploring the interactions of the RAS family in the human protein network and their potential implications in RAS-directed therapies

    PubMed Central

    Bueno, Anibal; Morilla, Ian; Diez, Diego; Moya-Garcia, Aurelio A.; Lozano, José; Ranea, Juan A.G.

    2016-01-01

    RAS proteins are the founding members of the RAS superfamily of GTPases. They are involved in key signaling pathways regulating essential cellular functions such as cell growth and differentiation. As a result, their deregulation by inactivating mutations often results in aberrant cell proliferation and cancer. With the exception of the relatively well-known KRAS, HRAS and NRAS proteins, little is known about how the interactions of the other RAS human paralogs affect cancer evolution and response to treatment. In this study we performed a comprehensive analysis of the relationship between the phylogeny of RAS proteins and their location in the protein interaction network. This analysis was integrated with the structural analysis of conserved positions in available 3D structures of RAS complexes. Our results show that many RAS proteins with divergent sequences are found close together in the human interactome. We found specific conserved amino acid positions in this group that map to the binding sites of RAS with many of their signaling effectors, suggesting that these pairs could share interacting partners. These results underscore the potential relevance of cross-talking in the RAS signaling network, which should be taken into account when considering the inhibitory activity of drugs targeting specific RAS oncoproteins. This study broadens our understanding of the human RAS signaling network and stresses the importance of considering its potential cross-talk in future therapies. PMID:27713118

  20. Risk of thrombosis with anti-phospholipid syndrome in systemic lupus erythematosus treated with thrombopoietin-receptor agonists.

    PubMed

    Guitton, Zelie; Terriou, Louis; Lega, Jean-Christophe; Nove-Josserand, Raphaele; Hie, Miguel; Amoura, Zahir; Bussel, James B; Hamidou, Mohamed; Rosenthal, Eric; Lioger, Bertrand; Chauveau, Dominique; Chaminade, Axel; Magy-Bertrand, Nadine; Michel, Marc; Audia, Sylvain; Godeau, Bertrand; Mahevas, Matthieu

    2018-05-10

    The use of thrombopoietin-receptor agonists (TPO-RAs) has increased as a second-line therapy in ITP, but the efficacy and safety of such drugs has not been evaluated in SLE-associated ITP. This was a multicentre retrospective cohort study from 2009 to 2016. Participating centres (n = 11) were secondary- or tertiary-care hospitals belonging to the French national network for adult ITP. We included 18 patients with SLE-ITP treated with TPO-RAs; 10 (55%) had aPL, 5 (27%) showing definite APS. Except for one patient, all (94%) achieved response with TPO-RAs overall. After a median follow-up of 14.7 months with TPO-RAs, four arterial thrombosis events (including one catastrophic APS) occurred in four patients. Two venous thrombosis events occurred in a patient without APS or aPLs. Our results suggest that aPLs should be systematically screened before TPO-RA initiation in patients with SLE. With aPL positivity, alternative therapy should be discussed (if possible), especially in patients with definite APS or suboptimal adherence to anti-coagulation therapy.

Top