Large-scale-system effectiveness analysis. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patton, A.D.; Ayoub, A.K.; Foster, J.W.
1979-11-01
Objective of the research project has been the investigation and development of methods for calculating system reliability indices which have absolute, and measurable, significance to consumers. Such indices are a necessary prerequisite to any scheme for system optimization which includes the economic consequences of consumer service interruptions. A further area of investigation has been joint consideration of generation and transmission in reliability studies. Methods for finding or estimating the probability distributions of some measures of reliability performance have been developed. The application of modern Monte Carlo simulation methods to compute reliability indices in generating systems has been studied.
Nateghi, Roshanak; Guikema, Seth D; Wu, Yue Grace; Bruss, C Bayan
2016-01-01
The U.S. federal government regulates the reliability of bulk power systems, while the reliability of power distribution systems is regulated at a state level. In this article, we review the history of regulating electric service reliability and study the existing reliability metrics, indices, and standards for power transmission and distribution networks. We assess the foundations of the reliability standards and metrics, discuss how they are applied to outages caused by large exogenous disturbances such as natural disasters, and investigate whether the standards adequately internalize the impacts of these events. Our reflections shed light on how existing standards conceptualize reliability, question the basis for treating large-scale hazard-induced outages differently from normal daily outages, and discuss whether this conceptualization maps well onto customer expectations. We show that the risk indices for transmission systems used in regulating power system reliability do not adequately capture the risks that transmission systems are prone to, particularly when it comes to low-probability high-impact events. We also point out several shortcomings associated with the way in which regulators require utilities to calculate and report distribution system reliability indices. We offer several recommendations for improving the conceptualization of reliability metrics and standards. We conclude that while the approaches taken in reliability standards have made considerable advances in enhancing the reliability of power systems and may be logical from a utility perspective during normal operation, existing standards do not provide a sufficient incentive structure for the utilities to adequately ensure high levels of reliability for end-users, particularly during large-scale events. © 2015 Society for Risk Analysis.
The Application of a Residual Risk Evaluation Technique Used for Expendable Launch Vehicles
NASA Technical Reports Server (NTRS)
Latimer, John A.
2009-01-01
This presentation provides a Residual Risk Evaluation Technique (RRET) developed by Kennedy Space Center (KSC) Safety and Mission Assurance (S&MA) Launch Services Division. This technique is one of many procedures used by S&MA at KSC to evaluate residual risks for each Expendable Launch Vehicle (ELV) mission. RRET is a straight forward technique that incorporates the proven methodology of risk management, fault tree analysis, and reliability prediction. RRET derives a system reliability impact indicator from the system baseline reliability and the system residual risk reliability values. The system reliability impact indicator provides a quantitative measure of the reduction in the system baseline reliability due to the identified residual risks associated with the designated ELV mission. An example is discussed to provide insight into the application of RRET.
Scheduler for multiprocessor system switch with selective pairing
Gara, Alan; Gschwind, Michael Karl; Salapura, Valentina
2015-01-06
System, method and computer program product for scheduling threads in a multiprocessing system with selective pairing of processor cores for increased processing reliability. A selective pairing facility is provided that selectively connects, i.e., pairs, multiple microprocessor or processor cores to provide one highly reliable thread (or thread group). The method configures the selective pairing facility to use checking provide one highly reliable thread for high-reliability and allocate threads to corresponding processor cores indicating need for hardware checking. The method configures the selective pairing facility to provide multiple independent cores and allocate threads to corresponding processor cores indicating inherent resilience.
Bulk electric system reliability evaluation incorporating wind power and demand side management
NASA Astrophysics Data System (ADS)
Huang, Dange
Electric power systems are experiencing dramatic changes with respect to structure, operation and regulation and are facing increasing pressure due to environmental and societal constraints. Bulk electric system reliability is an important consideration in power system planning, design and operation particularly in the new competitive environment. A wide range of methods have been developed to perform bulk electric system reliability evaluation. Theoretically, sequential Monte Carlo simulation can include all aspects and contingencies in a power system and can be used to produce an informative set of reliability indices. It has become a practical and viable tool for large system reliability assessment technique due to the development of computing power and is used in the studies described in this thesis. The well-being approach used in this research provides the opportunity to integrate an accepted deterministic criterion into a probabilistic framework. This research work includes the investigation of important factors that impact bulk electric system adequacy evaluation and security constrained adequacy assessment using the well-being analysis framework. Load forecast uncertainty is an important consideration in an electrical power system. This research includes load forecast uncertainty considerations in bulk electric system reliability assessment and the effects on system, load point and well-being indices and reliability index probability distributions are examined. There has been increasing worldwide interest in the utilization of wind power as a renewable energy source over the last two decades due to enhanced public awareness of the environment. Increasing penetration of wind power has significant impacts on power system reliability, and security analyses become more uncertain due to the unpredictable nature of wind power. The effects of wind power additions in generating and bulk electric system reliability assessment considering site wind speed correlations and the interactive effects of wind power and load forecast uncertainty on system reliability are examined. The concept of the security cost associated with operating in the marginal state in the well-being framework is incorporated in the economic analyses associated with system expansion planning including wind power and load forecast uncertainty. Overall reliability cost/worth analyses including security cost concepts are applied to select an optimal wind power injection strategy in a bulk electric system. The effects of the various demand side management measures on system reliability are illustrated using the system, load point, and well-being indices, and the reliability index probability distributions. The reliability effects of demand side management procedures in a bulk electric system including wind power and load forecast uncertainty considerations are also investigated. The system reliability effects due to specific demand side management programs are quantified and examined in terms of their reliability benefits.
Reliability and coverage analysis of non-repairable fault-tolerant memory systems
NASA Technical Reports Server (NTRS)
Cox, G. W.; Carroll, B. D.
1976-01-01
A method was developed for the construction of probabilistic state-space models for nonrepairable systems. Models were developed for several systems which achieved reliability improvement by means of error-coding, modularized sparing, massive replication and other fault-tolerant techniques. From the models developed, sets of reliability and coverage equations for the systems were developed. Comparative analyses of the systems were performed using these equation sets. In addition, the effects of varying subunit reliabilities on system reliability and coverage were described. The results of these analyses indicated that a significant gain in system reliability may be achieved by use of combinations of modularized sparing, error coding, and software error control. For sufficiently reliable system subunits, this gain may far exceed the reliability gain achieved by use of massive replication techniques, yet result in a considerable saving in system cost.
Kalichman, Leonid; Klindukhov, Alexander; Li, Ling; Linov, Lina
2016-11-01
A reliability and cross-sectional observational study. To introduce a scoring system for visible fat infiltration in paraspinal muscles; to evaluate intertester and intratester reliability of this system and its relationship with indices of muscle density; to evaluate the association between indices of paraspinal muscle degeneration and facet joint osteoarthritis. Current evidence suggests that the paraspinal muscles degeneration is associated with low back pain, facet joint osteoarthritis, spondylolisthesis, and degenerative disc disease. However, the evaluation of paraspinal muscles on computed tomography is not radiological routine, probably because of absence of simple and reliable indices of paraspinal degeneration. One hundred fifty consecutive computed tomography scans of the lower back (N=75) or abdomen (N=75) were evaluated. Mean radiographic density (in Hounsfield units) and SD of the density of multifidus and erector spinae were evaluated at the L4-L5 spinal level. A new index of muscle degeneration, radiographic density ratio=muscle density/SD of density, was calculated. To evaluate the visible fat infiltration in paraspinal muscles, we proposed a 3-graded scoring system. The prevalence of facet joint osteoarthritis was also evaluated. Intraclass correlation and κ statistics were used to evaluate inter-rater and intra-rater reliability. Logistic regression examined the association between paraspinal muscle indices and facet joint osteoarthritis. Intra-rater reliability for fat infiltration score (κ) ranged between 0.87 and 0.92; inter-rater reliability between 0.70 and 0.81. Intra-rater reliability (intraclass correlation) for mean density of paraspinal muscles ranged between 0.96 and 0.99, inter-rater reliability between 0.95 and 0.99; SD intra-rater reliability ranged between 0.82 and 0.91, inter-rater reliability between 0.80 and 0.89. Significant associations (P<0.01) were found between facet joint osteoarthritis, fat infiltration score, and radiographic density ratio. Two suggested indices of paraspinal muscle degeneration showed excellent reliability and were significantly associated with facet joint osteoarthritis. Additional studies are needed to evaluate the associations with other spinal degeneration features and low back pain.
NASA Astrophysics Data System (ADS)
Kurnosov, R. Yu; Chernyshova, T. I.; Chernyshov, V. N.
2018-05-01
The algorithms for improving the metrological reliability of analogue blocks of measuring channels and information-measuring systems are developed. The proposed algorithms ensure the optimum values of their metrological reliability indices for a given analogue circuit block solution.
Cost-effective solutions to maintaining smart grid reliability
NASA Astrophysics Data System (ADS)
Qin, Qiu
As the aging power systems are increasingly working closer to the capacity and thermal limits, maintaining an sufficient reliability has been of great concern to the government agency, utility companies and users. This dissertation focuses on improving the reliability of transmission and distribution systems. Based on the wide area measurements, multiple model algorithms are developed to diagnose transmission line three-phase short to ground faults in the presence of protection misoperations. The multiple model algorithms utilize the electric network dynamics to provide prompt and reliable diagnosis outcomes. Computational complexity of the diagnosis algorithm is reduced by using a two-step heuristic. The multiple model algorithm is incorporated into a hybrid simulation framework, which consist of both continuous state simulation and discrete event simulation, to study the operation of transmission systems. With hybrid simulation, line switching strategy for enhancing the tolerance to protection misoperations is studied based on the concept of security index, which involves the faulted mode probability and stability coverage. Local measurements are used to track the generator state and faulty mode probabilities are calculated in the multiple model algorithms. FACTS devices are considered as controllers for the transmission system. The placement of FACTS devices into power systems is investigated with a criterion of maintaining a prescribed level of control reconfigurability. Control reconfigurability measures the small signal combined controllability and observability of a power system with an additional requirement on fault tolerance. For the distribution systems, a hierarchical framework, including a high level recloser allocation scheme and a low level recloser placement scheme, is presented. The impacts of recloser placement on the reliability indices is analyzed. Evaluation of reliability indices in the placement process is carried out via discrete event simulation. The reliability requirements are described with probabilities and evaluated from the empirical distributions of reliability indices.
NASA Astrophysics Data System (ADS)
Gilmanshin, I. R.; Kirpichnikov, A. P.
2017-09-01
In the result of study of the algorithm of the functioning of the early detection module of excessive losses, it is proven the ability to model it by using absorbing Markov chains. The particular interest is in the study of probability characteristics of early detection module functioning algorithm of losses in order to identify the relationship of indicators of reliability of individual elements, or the probability of occurrence of certain events and the likelihood of transmission of reliable information. The identified relations during the analysis allow to set thresholds reliability characteristics of the system components.
Reliability testing of the Larsen and Sharp classifications for rheumatoid arthritis of the elbow.
Jew, Nicholas B; Hollins, Anthony M; Mauck, Benjamin M; Smith, Richard A; Azar, Frederick M; Miller, Robert H; Throckmorton, Thomas W
2017-01-01
Two popular systems for classifying rheumatoid arthritis affecting the elbow are the Larsen and Sharp schemes. To our knowledge, no study has investigated the reliability of these 2 systems. We compared the intraobserver and interobserver agreement of the 2 systems to determine whether one is more reliable than the other. The radiographs of 45 patients diagnosed with rheumatoid arthritis affecting the elbow were evaluated. Anteroposterior and lateral radiographs were deidentified and distributed to 6 evaluators (4 fellowship-trained upper extremity surgeons and 2 orthopedic trainees). Each evaluator graded all 45 radiographs according to the Larsen and Sharp scoring methods on 2 occasions, at least 2 weeks apart. Overall intraobserver reliability was 0.93 (95% confidence interval [CI], 0.90-0.95) for the Larsen system and 0.92 (95% CI, 0.86-0.96) for the Sharp classification, both indicating substantial agreement. Overall interobserver reliability was 0.70 (95% CI, 0.60-0.80) for the Larsen classification and 0.68 (95% CI, 0.54-0.81) for the Sharp system, both indicating good agreement. There were no significant differences in the intraobserver or interobserver reliability of the systems overall and no significant differences in reliability between attending surgeons and trainees for either classification system. The Larsen and Sharp systems both show substantial intraobserver reliability and good interobserver agreement for the radiographic classification of rheumatoid arthritis affecting the elbow. Differences in training level did not result in substantial variances in reliability for either system. We conclude that both systems can be reliably used to evaluate rheumatoid arthritis of the elbow by observers of varying training levels. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Reliability program requirements for aeronautical and space system contractors
NASA Technical Reports Server (NTRS)
1987-01-01
General reliability program requirements for NASA contracts involving the design, development, fabrication, test, and/or use of aeronautical and space systems including critical ground support equipment are prescribed. The reliability program requirements require (1) thorough planning and effective management of the reliability effort; (2) definition of the major reliability tasks and their place as an integral part of the design and development process; (3) planning and evaluating the reliability of the system and its elements (including effects of software interfaces) through a program of analysis, review, and test; and (4) timely status indication by formal documentation and other reporting to facilitate control of the reliability program.
Evaluating North American Electric Grid Reliability Using the Barabasi-Albert Network Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chassin, David P.; Posse, Christian
2005-09-15
The reliability of electric transmission systems is examined using a scale-free model of network topology and failure propagation. The topologies of the North American eastern and western electric grids are analyzed to estimate their reliability based on the Barabási-Albert network model. A commonly used power system reliability index is computed using a simple failure propagation model. The results are compared to the values of power system reliability indices previously obtained using other methods and they suggest that scale-free network models are usable to estimate aggregate electric grid reliability.
Evaluating North American Electric Grid Reliability Using the Barabasi-Albert Network Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chassin, David P.; Posse, Christian
2005-09-15
The reliability of electric transmission systems is examined using a scale-free model of network topology and failure propagation. The topologies of the North American eastern and western electric grids are analyzed to estimate their reliability based on the Barabasi-Albert network model. A commonly used power system reliability index is computed using a simple failure propagation model. The results are compared to the values of power system reliability indices previously obtained using standard power engineering methods, and they suggest that scale-free network models are usable to estimate aggregate electric grid reliability.
NASA Astrophysics Data System (ADS)
Miao, Yongchun; Kang, Rongxue; Chen, Xuefeng
2017-12-01
In recent years, with the gradual extension of reliability research, the study of production system reliability has become the hot topic in various industries. Man-machine-environment system is a complex system composed of human factors, machinery equipment and environment. The reliability of individual factor must be analyzed in order to gradually transit to the research of three-factor reliability. Meanwhile, the dynamic relationship among man-machine-environment should be considered to establish an effective blurry evaluation mechanism to truly and effectively analyze the reliability of such systems. In this paper, based on the system engineering, fuzzy theory, reliability theory, human error, environmental impact and machinery equipment failure theory, the reliabilities of human factor, machinery equipment and environment of some chemical production system were studied by the method of fuzzy evaluation. At last, the reliability of man-machine-environment system was calculated to obtain the weighted result, which indicated that the reliability value of this chemical production system was 86.29. Through the given evaluation domain it can be seen that the reliability of man-machine-environment integrated system is in a good status, and the effective measures for further improvement were proposed according to the fuzzy calculation results.
Development of a Standard Set of Software Indicators for Aeronautical Systems Center.
1992-09-01
29:12). The composite models listed include COCOMO and the Software Productivity, Quality, and Reliability Model ( SPQR ) (29:12). The SPQR model was...determine the values of the 68 input parameters. Source provides no specifics. Indicator Name SPQR (SW Productivity, Qual, Reliability) Indicator Class
NASA Technical Reports Server (NTRS)
Spiering, Barry A.; Lee, Stuart M. C.; Mulavara, Ajitkumar P.; Bentley, Jason, R.; Buxton, Roxanne E.; Lawrence, Emily L.; Sinka, Joseph; Guilliams, Mark E.; Ploutz-Snyder, Lori L.; Bloomberg, Jacob J.
2010-01-01
Spaceflight affects nearly every physiological system. Spaceflight-induced alterations in physiological function translate to decrements in functional performance. Purpose: To develop a test battery for quickly and safely assessing diverse indices of neuromuscular performance. I. Quickly: Battery of tests can be completed in approx.30-40 min. II. Safely: a) No eccentric muscle actions or impact forces. b) Tests present little challenge to postural stability. III. Diverse indices: a) Strength: Excellent reliability (ICC = 0.99) b) Central activation: Very good reliability (ICC = 0.87) c) Power: Excellent reliability (ICC = 0.99) d) Endurance: Total work has excellent reliability (ICC = 0.99) e) Force steadiness: Poor reliability (ICC = 0.20 - 0.60) National
NASA Astrophysics Data System (ADS)
Lin, Yi-Kuei; Huang, Cheng-Fu
2015-04-01
From a quality of service viewpoint, the transmission packet unreliability and transmission time are both critical performance indicators in a computer system when assessing the Internet quality for supervisors and customers. A computer system is usually modelled as a network topology where each branch denotes a transmission medium and each vertex represents a station of servers. Almost every branch has multiple capacities/states due to failure, partial failure, maintenance, etc. This type of network is known as a multi-state computer network (MSCN). This paper proposes an efficient algorithm that computes the system reliability, i.e., the probability that a specified amount of data can be sent through k (k ≥ 2) disjoint minimal paths within both the tolerable packet unreliability and time threshold. Furthermore, two routing schemes are established in advance to indicate the main and spare minimal paths to increase the system reliability (referred to as spare reliability). Thus, the spare reliability can be readily computed according to the routing scheme.
NASA Technical Reports Server (NTRS)
Migneault, G. E.
1979-01-01
Emulation techniques are proposed as a solution to a difficulty arising in the analysis of the reliability of highly reliable computer systems for future commercial aircraft. The difficulty, viz., the lack of credible precision in reliability estimates obtained by analytical modeling techniques are established. The difficulty is shown to be an unavoidable consequence of: (1) a high reliability requirement so demanding as to make system evaluation by use testing infeasible, (2) a complex system design technique, fault tolerance, (3) system reliability dominated by errors due to flaws in the system definition, and (4) elaborate analytical modeling techniques whose precision outputs are quite sensitive to errors of approximation in their input data. The technique of emulation is described, indicating how its input is a simple description of the logical structure of a system and its output is the consequent behavior. The use of emulation techniques is discussed for pseudo-testing systems to evaluate bounds on the parameter values needed for the analytical techniques.
Flight control electronics reliability/maintenance study
NASA Technical Reports Server (NTRS)
Dade, W. W.; Edwards, R. H.; Katt, G. T.; Mcclellan, K. L.; Shomber, H. A.
1977-01-01
Collection and analysis of data are reported that concern the reliability and maintenance experience of flight control system electronics currently in use on passenger carrying jet aircraft. Two airlines B-747 airplane fleets were analyzed to assess the component reliability, system functional reliability, and achieved availability of the CAT II configuration flight control system. Also assessed were the costs generated by this system in the categories of spare equipment, schedule irregularity, and line and shop maintenance. The results indicate that although there is a marked difference in the geographic location and route pattern between the airlines studied, there is a close similarity in the reliability and the maintenance costs associated with the flight control electronics.
The Role of Reliability, Vulnerability and Resilience in the Management of Water Quality Systems
NASA Astrophysics Data System (ADS)
Lence, B. J.; Maier, H. R.
2001-05-01
The risk based performance indicators reliability, vulnerability and resilience provide measures of the frequency, magnitude and duration of the failure of water resources systems, respectively. They have been applied primarily to water supply problems, including the assessment of the performance of reservoirs and water distribution systems. Applications to water quality case studies have been limited, although the need to consider the length and magnitude of violations of a particular water quality standard has been recognized for some time. In this research, the role of reliability, vulnerability and resilience in water quality management applications is investigated by examining their significance as performance measures for water quality systems and assessing their potential for assisting in decision making processes. The importance of each performance indicator is discussed and a framework for classifying such systems, based on the relative significance of each of these indicators, is introduced and illustrated qualitatively with various case studies. Quantitative examples drawn from both lake and river water quality modeling exercises are then provided.
Liu, Zengkai; Liu, Yonghong; Cai, Baoping
2014-01-01
Reliability analysis of the electrical control system of a subsea blowout preventer (BOP) stack is carried out based on Markov method. For the subsea BOP electrical control system used in the current work, the 3-2-1-0 and 3-2-0 input voting schemes are available. The effects of the voting schemes on system performance are evaluated based on Markov models. In addition, the effects of failure rates of the modules and repair time on system reliability indices are also investigated. PMID:25409010
Intra- and Interobserver Reliability of Three Classification Systems for Hallux Rigidus.
Dillard, Sarita; Schilero, Christina; Chiang, Sharon; Pham, Peter
2018-04-18
There are over ten classification systems currently used in the staging of hallux rigidus. This results in confusion and inconsistency with radiographic interpretation and treatment. The reliability of hallux rigidus classification systems has not yet been tested. The purpose of this study was to evaluate intra- and interobserver reliability using three commonly used classifications for hallux rigidus. Twenty-one plain radiograph sets were presented to ten ACFAS board-certified foot and ankle surgeons. Each physician classified each radiograph based on clinical experience and knowledge according to the Regnauld, Roukis, and Hattrup and Johnson classification systems. The two-way mixed single-measure consistency intraclass correlation was used to calculate intra- and interrater reliability. The intrarater reliability of individual sets for the Roukis and Hattrup and Johnson classification systems was "fair to good" (Roukis, 0.62±0.19; Hattrup and Johnson, 0.62±0.28), whereas the intrarater reliability of individual sets for the Regnauld system bordered between "fair to good" and "poor" (0.43±0.24). The interrater reliability of the mean classification was "excellent" for all three classification systems. Conclusions Reliable and reproducible classification systems are essential for treatment and prognostic implications in hallux rigidus. In our study, Roukis classification system had the best intrarater reliability. Although there are various classification systems for hallux rigidus, our results indicate that all three of these classification systems show reliability and reproducibility.
NASA Technical Reports Server (NTRS)
Migneault, G. E.
1979-01-01
Emulation techniques applied to the analysis of the reliability of highly reliable computer systems for future commercial aircraft are described. The lack of credible precision in reliability estimates obtained by analytical modeling techniques is first established. The difficulty is shown to be an unavoidable consequence of: (1) a high reliability requirement so demanding as to make system evaluation by use testing infeasible; (2) a complex system design technique, fault tolerance; (3) system reliability dominated by errors due to flaws in the system definition; and (4) elaborate analytical modeling techniques whose precision outputs are quite sensitive to errors of approximation in their input data. Next, the technique of emulation is described, indicating how its input is a simple description of the logical structure of a system and its output is the consequent behavior. Use of emulation techniques is discussed for pseudo-testing systems to evaluate bounds on the parameter values needed for the analytical techniques. Finally an illustrative example is presented to demonstrate from actual use the promise of the proposed application of emulation.
NASA Astrophysics Data System (ADS)
Chaitusaney, Surachai; Yokoyama, Akihiko
In distribution system, Distributed Generation (DG) is expected to improve the system reliability as its backup generation. However, DG contribution in fault current may cause the loss of the existing protection coordination, e.g. recloser-fuse coordination and breaker-breaker coordination. This problem can drastically deteriorate the system reliability, and it is more serious and complicated when there are several DG sources in the system. Hence, the above conflict in reliability aspect unavoidably needs a detailed investigation before the installation or enhancement of DG is done. The model of composite DG fault current is proposed to find the threshold beyond which existing protection coordination is lost. Cases of protection miscoordination are described, together with their consequences. Since a distribution system may be tied with another system, the issues of tie line and on-site DG are integrated into this study. Reliability indices are evaluated and compared in the distribution reliability test system RBTS Bus 2.
Reliability Standards of Complex Engineering Systems
NASA Astrophysics Data System (ADS)
Galperin, E. M.; Zayko, V. A.; Gorshkalev, P. A.
2017-11-01
Production and manufacture play an important role in today’s modern society. Industrial production is nowadays characterized by increased and complex communications between its parts. The problem of preventing accidents in a large industrial enterprise becomes especially relevant. In these circumstances, the reliability of enterprise functioning is of particular importance. Potential damage caused by an accident at such enterprise may lead to substantial material losses and, in some cases, can even cause a loss of human lives. That is why industrial enterprise functioning reliability is immensely important. In terms of their reliability, industrial facilities (objects) are divided into simple and complex. Simple objects are characterized by only two conditions: operable and non-operable. A complex object exists in more than two conditions. The main characteristic here is the stability of its operation. This paper develops the reliability indicator combining the set theory methodology and a state space method. Both are widely used to analyze dynamically developing probability processes. The research also introduces a set of reliability indicators for complex technical systems.
DG Planning with Amalgamation of Operational and Reliability Considerations
NASA Astrophysics Data System (ADS)
Battu, Neelakanteshwar Rao; Abhyankar, A. R.; Senroy, Nilanjan
2016-04-01
Distributed Generation has been playing a vital role in dealing issues related to distribution systems. This paper presents an approach which provides policy maker with a set of solutions for DG placement to optimize reliability and real power loss of the system. Optimal location of a Distributed Generator is evaluated based on performance indices derived for reliability index and real power loss. The proposed approach is applied on a 15-bus radial distribution system and a 18-bus radial distribution system with conventional and wind distributed generators individually.
[Quality indicators in the storage and dispensing process in a Hospital Pharmacy].
Rabuñal-Álvarez, M T; Calvin-Lamas, M; Feal-Cortizas, B; Martínez-López, L M; Pedreira-Vázquez, I; Martín-Herranz, M I
2014-01-01
To establish indicators for the evaluation of the quality of the storage and dispensing processes related to semiautomatic vertical (SAVCS) and horizontal (SAHCS) carousel systems. Descriptive observational study conducted between January-December 2012. Definition of quality indicators, a target value is established and an obtained value is calculated for 2012. Five quality indicators in the process of storage and dispensing of drugs were defined and calculated: indicator 1, error filling unidose trolleys: target (<1.67%), obtained (1.03%); indicator 2, filling accuracy unidose trolleys by using an SAVCS: target (<15%), obtained (11.5%); indicator 3, reliability of drug inventory in the process of drug entries using an SAHCS: target (<15%), obtained (6.53%); indicator 4, reliability of drug inventory in the picking process of orders replacement stock of clinical units using an SAHCS: target (<10%), obtained (1.97%); indicator 5, accuracy of the picking process of drug orders using an SAHCS: target (<10%), obtained (10.41%). Establishing indicators has allowed the quality in terms of safety, precision and reliability of semiautomatic systems for storage and dispensing drugs to be assessed. Copyright © 2014 SECA. Published by Elsevier Espana. All rights reserved.
NASA Technical Reports Server (NTRS)
Karns, James
1993-01-01
The objective of this study was to establish the initial quantitative reliability bounds for nuclear electric propulsion systems in a manned Mars mission required to ensure crew safety and mission success. Finding the reliability bounds involves balancing top-down (mission driven) requirements and bottom-up (technology driven) capabilities. In seeking this balance we hope to accomplish the following: (1) provide design insights into the achievability of the baseline design in terms of reliability requirements, given the existing technology base; (2) suggest alternative design approaches which might enhance reliability and crew safety; and (3) indicate what technology areas require significant research and development to achieve the reliability objectives.
A reliability analysis tool for SpaceWire network
NASA Astrophysics Data System (ADS)
Zhou, Qiang; Zhu, Longjiang; Fei, Haidong; Wang, Xingyou
2017-04-01
A SpaceWire is a standard for on-board satellite networks as the basis for future data-handling architectures. It is becoming more and more popular in space applications due to its technical advantages, including reliability, low power and fault protection, etc. High reliability is the vital issue for spacecraft. Therefore, it is very important to analyze and improve the reliability performance of the SpaceWire network. This paper deals with the problem of reliability modeling and analysis with SpaceWire network. According to the function division of distributed network, a reliability analysis method based on a task is proposed, the reliability analysis of every task can lead to the system reliability matrix, the reliability result of the network system can be deduced by integrating these entire reliability indexes in the matrix. With the method, we develop a reliability analysis tool for SpaceWire Network based on VC, where the computation schemes for reliability matrix and the multi-path-task reliability are also implemented. By using this tool, we analyze several cases on typical architectures. And the analytic results indicate that redundancy architecture has better reliability performance than basic one. In practical, the dual redundancy scheme has been adopted for some key unit, to improve the reliability index of the system or task. Finally, this reliability analysis tool will has a directive influence on both task division and topology selection in the phase of SpaceWire network system design.
The development of a reliable amateur boxing performance analysis template.
Thomson, Edward; Lamb, Kevin; Nicholas, Ceri
2013-01-01
The aim of this study was to devise a valid performance analysis system for the assessment of the movement characteristics associated with competitive amateur boxing and assess its reliability using analysts of varying experience of the sport and performance analysis. Key performance indicators to characterise the demands of an amateur contest (offensive, defensive and feinting) were developed and notated using a computerised notational analysis system. Data were subjected to intra- and inter-observer reliability assessment using median sign tests and calculating the proportion of agreement within predetermined limits of error. For all performance indicators, intra-observer reliability revealed non-significant differences between observations (P > 0.05) and high agreement was established (80-100%) regardless of whether exact or the reference value of ±1 was applied. Inter-observer reliability was less impressive for both analysts (amateur boxer and experienced analyst), with the proportion of agreement ranging from 33-100%. Nonetheless, there was no systematic bias between observations for any indicator (P > 0.05), and the proportion of agreement within the reference range (±1) was 100%. A reliable performance analysis template has been developed for the assessment of amateur boxing performance and is available for use by researchers, coaches and athletes to classify and quantify the movement characteristics of amateur boxing.
Composite power system well-being analysis
NASA Astrophysics Data System (ADS)
Aboreshaid, Saleh Abdulrahman Saleh
The evaluation of composite system reliability is extremely complex as it is necessary to include detailed modeling of both generation and transmission facilities and their auxiliary elements. The most significant quantitative indices in composite power system adequacy evaluation are those which relate to load curtailment. Many utilities have difficulty in interpreting the expected load curtailment indices as the existing models are based on adequacy analysis and in many cases do not consider realistic operating conditions in the system under study. This thesis presents a security based approach which alleviates this difficulty and provides the ability to evaluate the well-being of customer load points and the overall composite generation and transmission power system. Acceptable deterministic criteria are included in the probabilistic evaluation of the composite system reliability indices to monitor load point well-being. The degree of load point well-being is quantified in terms of the healthy and marginal state indices in addition to the traditional risk indices. The individual well-being indices of the different system load points are aggregated to produce system indices. This thesis presents new models and techniques to quantify the well-being of composite generation and, direct and alternating current transmission systems. Security constraints are basically the operating limits which must be satisfied for normal system operation. These constraints depend mainly on the purpose behind the study. The constraints which govern the practical operation of a power system are divided, in this thesis, into three sets namely, steady-state, voltage stability and transient stability constraints. The inclusion of an appropriate transient stability constraint will lead to a more accurate appraisal of the overall power system well-being. This thesis illustrates the utilization of a bisection method in the analytical evaluation of the critical clearing time which forms the basis of most existing stability assessments. The effect of employing high-speed-simultaneous or adaptive reclosing schemes is presented in this thesis. An effective and fast technique to incorporate voltage stability considerations in composite generation and transmission system reliability evaluation is also presented. The proposed technique can be easily incorporated in an existing composite power system reliability program using voltage stability constraints that are constructed for individual load points based on a relatively simple risk index. It is believed that the concepts, procedures and indices presented in this thesis will provide useful tools for power system designers, planners and operators and assist them to perform composite system well-being analysis in addition to traditional risk assessment.
NASA Astrophysics Data System (ADS)
Karki, Rajesh
Renewable energy application in electric power systems is growing rapidly worldwide due to enhanced public concerns for adverse environmental impacts and escalation in energy costs associated with the use of conventional energy sources. Photovoltaics and wind energy sources are being increasingly recognized as cost effective generation sources. A comprehensive evaluation of reliability and cost is required to analyze the actual benefits of utilizing these energy sources. The reliability aspects of utilizing renewable energy sources have largely been ignored in the past due the relatively insignificant contribution of these sources in major power systems, and consequently due to the lack of appropriate techniques. Renewable energy sources have the potential to play a significant role in the electrical energy requirements of small isolated power systems which are primarily supplied by costly diesel fuel. A relatively high renewable energy penetration can significantly reduce the system fuel costs but can also have considerable impact on the system reliability. Small isolated systems routinely plan their generating facilities using deterministic adequacy methods that cannot incorporate the highly erratic behavior of renewable energy sources. The utilization of a single probabilistic risk index has not been generally accepted in small isolated system evaluation despite its utilization in most large power utilities. Deterministic and probabilistic techniques are combined in this thesis using a system well-being approach to provide useful adequacy indices for small isolated systems that include renewable energy. This thesis presents an evaluation model for small isolated systems containing renewable energy sources by integrating simulation models that generate appropriate atmospheric data, evaluate chronological renewable power outputs and combine total available energy and load to provide useful system indices. A software tool SIPSREL+ has been developed which generates risk, well-being and energy based indices to provide realistic cost/reliability measures of utilizing renewable energy. The concepts presented and the examples illustrated in this thesis will help system planners to decide on appropriate installation sites, the types and mix of different energy generating sources, the optimum operating policies, and the optimum generation expansion plans required to meet increasing load demands in small isolated power systems containing photovoltaic and wind energy sources.
Performance of a system of reservoirs on futuristic front
NASA Astrophysics Data System (ADS)
Saha, Satabdi; Roy, Debasri; Mazumdar, Asis
2017-10-01
Application of simulation model HEC-5 to analyze the performance of the DVC Reservoir System (a multipurpose system with a network of five reservoirs and one barrage) on the river Damodar in Eastern India in meeting projected future demand as well as controlling flood for synthetically generated future scenario is addressed here with a view to develop an appropriate strategy for its operation. Thomas-Fiering model (based on Markov autoregressive model) has been adopted for generation of synthetic scenario (monthly streamflow series) and subsequently downscaling of modeled monthly streamflow to daily values was carried out. The performance of the system (analysed on seasonal basis) in terms of `Performance Indices' (viz., both quantity based reliability and time based reliability, mean daily deficit, average failure period, resilience and maximum vulnerability indices) for the projected scenario with enhanced demand turned out to be poor compared to that for historical scenario. However, judicious adoption of resource enhancement (marginal reallocation of reservoir storage capacity) and demand management strategy (curtailment of projected high water requirements and trading off between demands) was found to be a viable option for improvement of the performance of the reservoir system appreciably [improvement being (1-51 %), (2-35 %), (16-96 %), (25-50 %), (8-36 %) and (12-30 %) for the indices viz., quantity based reliability, time based reliability, mean daily deficit, average failure period, resilience and maximum vulnerability, respectively] compared to that with normal storage and projected demand. Again, 100 % reliability for flood control for current as well as future synthetically generated scenarios was noted. The results from the study would assist concerned authority in successful operation of reservoirs in the context of growing demand and dwindling resource.
Miss-distance indicator for tank main guns
NASA Astrophysics Data System (ADS)
Bornstein, Jonathan A.; Hillis, David B.
1996-06-01
Tank main gun systems must possess extremely high levels of accuracy to perform successfully in battle. Under some circumstances, the first round fired in an engagement may miss the intended target, and it becomes necessary to rapidly correct fire. A breadboard automatic miss-distance indicator system was previously developed to assist in this process. The system, which would be mounted on a 'wingman' tank, consists of a charged-coupled device (CCD) camera and computer-based image-processing system, coupled with a separate infrared sensor to detect muzzle flash. For the system to be successfully employed with current generation tanks, it must be reliable, be relatively low cost, and respond rapidly maintaining current firing rates. Recently, the original indicator system was developed further in an effort to assist in achieving these goals. Efforts have focused primarily upon enhanced image-processing algorithms, both to improve system reliability and to reduce processing requirements. Intelligent application of newly refined trajectory models has permitted examination of reduced areas of interest and enhanced rejection of false alarms, significantly improving system performance.
Electric service reliability cost/worth assessment in a developing country
NASA Astrophysics Data System (ADS)
Pandey, Mohan Kumar
Considerable work has been done in developed countries to optimize the reliability of electric power systems on the basis of reliability cost versus reliability worth. This has yet to be considered in most developing countries, where development plans are still based on traditional deterministic measures. The difficulty with these criteria is that they cannot be used to evaluate the economic impacts of changing reliability levels on the utility and the customers, and therefore cannot lead to an optimum expansion plan for the system. The critical issue today faced by most developing countries is that the demand for electric power is high and growth in supply is constrained by technical, environmental, and most importantly by financial impediments. Many power projects are being canceled or postponed due to a lack of resources. The investment burden associated with the electric power sector has already led some developing countries into serious debt problems. This thesis focuses on power sector issues facing by developing countries and illustrates how a basic reliability cost/worth approach can be used in a developing country to determine appropriate planning criteria and justify future power projects by application to the Nepal Integrated Electric Power System (NPS). A reliability cost/worth based system evaluation framework is proposed in this thesis. Customer surveys conducted throughout Nepal using in-person interviews with approximately 2000 sample customers are presented. The survey results indicate that the interruption cost is dependent on both customer and interruption characteristics, and it varies from one location or region to another. Assessments at both the generation and composite system levels have been performed using the customer cost data and the developed NPS reliability database. The results clearly indicate the implications of service reliability to the electricity consumers of Nepal, and show that the reliability cost/worth evaluation is both possible and practical in a developing country. The average customer interruption costs of Rs 35/kWh at Hierarchical Level I and Rs 26/kWh at Hierarchical Level II evaluated in this research work led to an optimum reserve margin of 7.5%, which is considerably lower than the traditional reserve margin of 15% used in the NPS. A similar conclusion may result in other developing countries facing difficulties in power system expansion planning using the traditional approach. A new framework for system planning is therefore recommended for developing countries which would permit an objective review of the traditional system planning approach, and the evaluation of future power projects using a new approach based on fundamental principles of power system reliability and economics.
Validation of a new classification system for skin tears.
LeBlanc, Kimberly; Baranoski, Sharon; Holloway, Samantha; Langemo, Diane
2013-06-01
The aim of this study was to validate and establish reliability of the International Skin Tear classification system. A consensus panel of 12 internationally recognized key opinion leaders convened in 2011 to establish consensus statements on the prevention, prediction, assessment, and treatment of skin tears. Subsequently, a new skin tear classification system was proposed. The system was then tested for interrater and intrarater reliability between the experts before being tested more widely on a sample of 327 individuals from the United States, Canada, and Europe. The results of the study indicated a substantial level of agreement for the expert panel (Fleiss κ = 0.619; 2-month follow-up = 0.653). Intrarater reliability was high (Cohen κ = 0.877). Interrater reliability was moderate (Fleiss κ = 0.555) for healthcare professionals (n = 303) and fair for non-health professionals (Fleiss κ = 0.338; n = 24). This international study established the reliability and validity of a new classification system for skin tears.
Optimizing preventive maintenance policy: A data-driven application for a light rail braking system.
Corman, Francesco; Kraijema, Sander; Godjevac, Milinko; Lodewijks, Gabriel
2017-10-01
This article presents a case study determining the optimal preventive maintenance policy for a light rail rolling stock system in terms of reliability, availability, and maintenance costs. The maintenance policy defines one of the three predefined preventive maintenance actions at fixed time-based intervals for each of the subsystems of the braking system. Based on work, maintenance, and failure data, we model the reliability degradation of the system and its subsystems under the current maintenance policy by a Weibull distribution. We then analytically determine the relation between reliability, availability, and maintenance costs. We validate the model against recorded reliability and availability and get further insights by a dedicated sensitivity analysis. The model is then used in a sequential optimization framework determining preventive maintenance intervals to improve on the key performance indicators. We show the potential of data-driven modelling to determine optimal maintenance policy: same system availability and reliability can be achieved with 30% maintenance cost reduction, by prolonging the intervals and re-grouping maintenance actions.
Optimizing preventive maintenance policy: A data-driven application for a light rail braking system
Corman, Francesco; Kraijema, Sander; Godjevac, Milinko; Lodewijks, Gabriel
2017-01-01
This article presents a case study determining the optimal preventive maintenance policy for a light rail rolling stock system in terms of reliability, availability, and maintenance costs. The maintenance policy defines one of the three predefined preventive maintenance actions at fixed time-based intervals for each of the subsystems of the braking system. Based on work, maintenance, and failure data, we model the reliability degradation of the system and its subsystems under the current maintenance policy by a Weibull distribution. We then analytically determine the relation between reliability, availability, and maintenance costs. We validate the model against recorded reliability and availability and get further insights by a dedicated sensitivity analysis. The model is then used in a sequential optimization framework determining preventive maintenance intervals to improve on the key performance indicators. We show the potential of data-driven modelling to determine optimal maintenance policy: same system availability and reliability can be achieved with 30% maintenance cost reduction, by prolonging the intervals and re-grouping maintenance actions. PMID:29278245
NASA Technical Reports Server (NTRS)
Feldstein, J. F.
1977-01-01
Failure data from 16 commercial spacecraft were analyzed to evaluate failure trends, reliability growth, and effectiveness of tests. It was shown that the test programs were highly effective in ensuring a high level of in-orbit reliability. There was only a single catastrophic problem in 44 years of in-orbit operation on 12 spacecraft. The results also indicate that in-orbit failure rates are highly correlated with unit and systems test failure rates. The data suggest that test effectiveness estimates can be used to guide the content of a test program to ensure that in-orbit reliability goals are achieved.
Ahluwalia, Indu B; Helms, Kristen; Morrow, Brian
2013-01-01
We investigated the reliability and validity of three self-reported indicators from the Pregnancy Risk Assessment Monitoring System (PRAMS) survey. We used 2008 PRAMS (n=15,646) data from 12 states that had implemented the 2003 revised U.S. Certificate of Live Birth. We estimated reliability by kappa coefficient and validity by sensitivity and specificity using the birth certificate data as the reference for the following: prenatal participation in the Special Supplemental Nutrition Program for Women, Infants, and Children (WIC); Medicaid payment for delivery; and breastfeeding initiation. These indicators were examined across several demographic subgroups. The reliability was high for all three measures: 0.81 for WIC participation, 0.67 for Medicaid payment of delivery, and 0.72 for breastfeeding initiation. The validity of PRAMS indicators was also high: WIC participation (sensitivity = 90.8%, specificity = 90.6%), Medicaid payment for delivery (sensitivity = 82.4%, specificity = 85.6%), and breastfeeding initiation (sensitivity = 94.3%, specificity = 76.0%). The prevalence estimates were higher on PRAMS than the birth certificate for each of the indicators except Medicaid-paid delivery among non-Hispanic black women. Kappa values within most subgroups remained in the moderate range (0.40-0.80). Sensitivity and specificity values were lower for Hispanic women who responded to the PRAMS survey in Spanish and for breastfeeding initiation among women who delivered very low birthweight and very preterm infants. The validity and reliability of the PRAMS data for measures assessed were high. Our findings support the use of PRAMS data for epidemiological surveillance, research, and planning.
DOT National Transportation Integrated Search
1974-11-01
Eight airport sites and the FAA Oklahoma Depot were visited and surveys conducted to obtain reliability, maintainability and performance data on the ASDE-2 Radar System. The data was analyzed and recommendations for modification to the equipment made...
NASA Astrophysics Data System (ADS)
Chen, Fan; Huang, Shaoxiong; Ding, Jinjin; Ding, Jinjin; Gao, Bo; Xie, Yuguang; Wang, Xiaoming
2018-01-01
This paper proposes a fast reliability assessing method for distribution grid with distributed renewable energy generation. First, the Weibull distribution and the Beta distribution are used to describe the probability distribution characteristics of wind speed and solar irradiance respectively, and the models of wind farm, solar park and local load are built for reliability assessment. Then based on power system production cost simulation probability discretization and linearization power flow, a optimal power flow objected with minimum cost of conventional power generation is to be resolved. Thus a reliability assessment for distribution grid is implemented fast and accurately. The Loss Of Load Probability (LOLP) and Expected Energy Not Supplied (EENS) are selected as the reliability index, a simulation for IEEE RBTS BUS6 system in MATLAB indicates that the fast reliability assessing method calculates the reliability index much faster with the accuracy ensured when compared with Monte Carlo method.
Computer calculation of device, circuit, equipment, and system reliability.
NASA Technical Reports Server (NTRS)
Crosby, D. R.
1972-01-01
A grouping into four classes is proposed for all reliability computations that are related to electronic equipment. Examples are presented of reliability computations in three of these four classes. Each of the three specific reliability tasks described was originally undertaken to satisfy an engineering need for reliability data. The form and interpretation of the print-out of the specific reliability computations is presented. The justification for the costs of these computations is indicated. The skills of the personnel used to conduct the analysis, the interfaces between the personnel, and the timing of the projects is discussed.
Validity and Reliability Testing of an e-learning Questionnaire for Chemistry Instruction
NASA Astrophysics Data System (ADS)
Guspatni, G.; Kurniawati, Y.
2018-04-01
The aim of this paper is to examine validity and reliability of a questionnaire used to evaluate e-learning implementation in chemistry instruction. 48 questionnaires were filled in by students who had studied chemistry through e-learning system. The questionnaire consisted of 20 indicators evaluating students’ perception on using e-learning. Parametric testing was done as data were assumed to follow normal distribution. Item validity of the questionnaire was examined through item-total correlation using Pearson’s formula while its reliability was assessed with Cronbach’s alpha formula. Moreover, convergent validity was assessed to see whether indicators building a factor had theoretically the same underlying construct. The result of validity testing revealed 19 valid indicators while the result of reliability testing revealed Cronbach’s alpha value of .886. The result of factor analysis showed that questionnaire consisted of five factors, and each of them had indicators building the same construct. This article shows the importance of factor analysis to get a construct valid questionnaire before it is used as research instrument.
Ultra-short heart rate variability recording reliability: The effect of controlled paced breathing.
Melo, Hiago M; Martins, Thiago C; Nascimento, Lucas M; Hoeller, Alexandre A; Walz, Roger; Takase, Emílio
2018-06-04
Recent studies have reported that Heart Rate Variability (HRV) indices remain reliable even during recordings shorter than 5 min, suggesting the ultra-short recording method as a valuable tool for autonomic assessment. However, the minimum time-epoch to obtain a reliable record for all HRV domains (time, frequency, and Poincare geometric measures), as well as the effect of respiratory rate on the reliability of these indices remains unknown. Twenty volunteers had their HRV recorded in a seated position during spontaneous and controlled respiratory rhythms. HRV intervals with 1, 2, and 3 min were correlated with the gold standard period (6-min duration) and the mean values of all indices were compared in the two respiratory rhythm conditions. rMSSD and SD1 were more reliable for recordings with ultra-short duration at all time intervals (r values from 0.764 to 0.950, p < 0.05) for spontaneous breathing condition, whereas the other indices require longer recording time to obtain reliable values. The controlled breathing rhythm evokes stronger r values for time domain indices (r values from 0.83 to 0.99, p < 0.05 for rMSSD), but impairs the mean values replicability of domains across most time intervals. Although the use of standardized breathing increases the correlations coefficients, all HRV indices showed an increase in mean values (t values from 3.79 to 14.94, p < 0.001) except the RR and HF that presented a decrease (t = 4.14 and 5.96, p < 0.0001). Our results indicate that proper ultra-short-term recording method can provide a quick and reliable source of cardiac autonomic nervous system assessment. © 2018 Wiley Periodicals, Inc.
Ku-band signal design study. [space shuttle orbiter data processing network
NASA Technical Reports Server (NTRS)
Rubin, I.
1978-01-01
Analytical tools, methods and techniques for assessing the design and performance of the space shuttle orbiter data processing system (DPS) are provided. The computer data processing network is evaluated in the key areas of queueing behavior synchronization and network reliability. The structure of the data processing network is described as well as the system operation principles and the network configuration. The characteristics of the computer systems are indicated. System reliability measures are defined and studied. System and network invulnerability measures are computed. Communication path and network failure analysis techniques are included.
Reliable low-cost battery voltage indicator for light aircraft and automobiles
NASA Technical Reports Server (NTRS)
Miller, R. L.
1973-01-01
Voltage indicator fits into cigarette lighter socket and utilizes light emitting and Zener diodes to display three levels of battery voltage. Indicator is superior to typical conventional electrical system indicators in that it gives a positive discrete indication of battery voltage. It is simple, inexpensive, and rugged.
Aerospace reliability applied to biomedicine.
NASA Technical Reports Server (NTRS)
Lalli, V. R.; Vargo, D. J.
1972-01-01
An analysis is presented that indicates that the reliability and quality assurance methodology selected by NASA to minimize failures in aerospace equipment can be applied directly to biomedical devices to improve hospital equipment reliability. The Space Electric Rocket Test project is used as an example of NASA application of reliability and quality assurance (R&QA) methods. By analogy a comparison is made to show how these same methods can be used in the development of transducers, instrumentation, and complex systems for use in medicine.
Shuang, Qing; Zhang, Mingyuan; Yuan, Yongbo
2014-01-01
As a mean of supplying water, Water distribution system (WDS) is one of the most important complex infrastructures. The stability and reliability are critical for urban activities. WDSs can be characterized by networks of multiple nodes (e.g. reservoirs and junctions) and interconnected by physical links (e.g. pipes). Instead of analyzing highest failure rate or highest betweenness, reliability of WDS is evaluated by introducing hydraulic analysis and cascading failures (conductive failure pattern) from complex network. The crucial pipes are identified eventually. The proposed methodology is illustrated by an example. The results show that the demand multiplier has a great influence on the peak of reliability and the persistent time of the cascading failures in its propagation in WDS. The time period when the system has the highest reliability is when the demand multiplier is less than 1. There is a threshold of tolerance parameter exists. When the tolerance parameter is less than the threshold, the time period with the highest system reliability does not meet minimum value of demand multiplier. The results indicate that the system reliability should be evaluated with the properties of WDS and the characteristics of cascading failures, so as to improve its ability of resisting disasters. PMID:24551102
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patton, A.D.; Ayoub, A.K.; Singh, C.
1982-07-01
Existing methods for generating capacity reliability evaluation do not explicitly recognize a number of operating considerations which may have important effects in system reliability performance. Thus, current methods may yield estimates of system reliability which differ appreciably from actual observed reliability. Further, current methods offer no means of accurately studying or evaluating alternatives which may differ in one or more operating considerations. Operating considerations which are considered to be important in generating capacity reliability evaluation include: unit duty cycles as influenced by load cycle shape, reliability performance of other units, unit commitment policy, and operating reserve policy; unit start-up failuresmore » distinct from unit running failures; unit start-up times; and unit outage postponability and the management of postponable outages. A detailed Monte Carlo simulation computer model called GENESIS and two analytical models called OPCON and OPPLAN have been developed which are capable of incorporating the effects of many operating considerations including those noted above. These computer models have been used to study a variety of actual and synthetic systems and are available from EPRI. The new models are shown to produce system reliability indices which differ appreciably from index values computed using traditional models which do not recognize operating considerations.« less
Komal
2018-05-01
Nowadays power consumption is increasing day-by-day. To fulfill failure free power requirement, planning and implementation of an effective and reliable power management system is essential. Phasor measurement unit(PMU) is one of the key device in wide area measurement and control systems. The reliable performance of PMU assures failure free power supply for any power system. So, the purpose of the present study is to analyse the reliability of a PMU used for controllability and observability of power systems utilizing available uncertain data. In this paper, a generalized fuzzy lambda-tau (GFLT) technique has been proposed for this purpose. In GFLT, system components' uncertain failure and repair rates are fuzzified using fuzzy numbers having different shapes such as triangular, normal, cauchy, sharp gamma and trapezoidal. To select a suitable fuzzy number for quantifying data uncertainty, system experts' opinion have been considered. The GFLT technique applies fault tree, lambda-tau method, fuzzified data using different membership functions, alpha-cut based fuzzy arithmetic operations to compute some important reliability indices. Furthermore, in this study ranking of critical components of the system using RAM-Index and sensitivity analysis have also been performed. The developed technique may be helpful to improve system performance significantly and can be applied to analyse fuzzy reliability of other engineering systems. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Distribution System Reliability Analysis for Smart Grid Applications
NASA Astrophysics Data System (ADS)
Aljohani, Tawfiq Masad
Reliability of power systems is a key aspect in modern power system planning, design, and operation. The ascendance of the smart grid concept has provided high hopes of developing an intelligent network that is capable of being a self-healing grid, offering the ability to overcome the interruption problems that face the utility and cost it tens of millions in repair and loss. To address its reliability concerns, the power utilities and interested parties have spent extensive amount of time and effort to analyze and study the reliability of the generation and transmission sectors of the power grid. Only recently has attention shifted to be focused on improving the reliability of the distribution network, the connection joint between the power providers and the consumers where most of the electricity problems occur. In this work, we will examine the effect of the smart grid applications in improving the reliability of the power distribution networks. The test system used in conducting this thesis is the IEEE 34 node test feeder, released in 2003 by the Distribution System Analysis Subcommittee of the IEEE Power Engineering Society. The objective is to analyze the feeder for the optimal placement of the automatic switching devices and quantify their proper installation based on the performance of the distribution system. The measures will be the changes in the reliability system indices including SAIDI, SAIFI, and EUE. The goal is to design and simulate the effect of the installation of the Distributed Generators (DGs) on the utility's distribution system and measure the potential improvement of its reliability. The software used in this work is DISREL, which is intelligent power distribution software that is developed by General Reliability Co.
Ermakova, N V
2003-01-01
This article contains results of the comparative study of the functional state of respiratory and cardiovascular systems of almost healthy students (man) of age 19-22, inhabitants of mountain and plain regions of Latin America during their adaptation to the conditions of middle Russia. We have established that there are reliable distinctions in the functional state of cardio-respiratory system of students from mountain and plain regions of Latin America. So for representatives of mountain regions of LA were typical higher indicators of vital capacity, permeability of large and medium bronchial tubes, stroke volume, lower indicators of heart rate, systolic arterial pressure, myocard tension index, but higher coefficient of myocard efficiency than for inhabitants the plain. Considerable distinctions have been observed also in the intercommunication between different indicators. There have been marked considerable correlation connections between small bronchial tubes permeability and cardiovascular system indicators for plain inhabitants. For mountain regions inhabitants almost every indicator of bronchial tubes permeability correlate reliably with vital capacity, but didn't correlate with hemodynamics indicators.
Orbiter Autoland reliability analysis
NASA Technical Reports Server (NTRS)
Welch, D. Phillip
1993-01-01
The Space Shuttle Orbiter is the only space reentry vehicle in which the crew is seated upright. This position presents some physiological effects requiring countermeasures to prevent a crewmember from becoming incapacitated. This also introduces a potential need for automated vehicle landing capability. Autoland is a primary procedure that was identified as a requirement for landing following and extended duration orbiter mission. This report documents the results of the reliability analysis performed on the hardware required for an automated landing. A reliability block diagram was used to evaluate system reliability. The analysis considers the manual and automated landing modes currently available on the Orbiter. (Autoland is presently a backup system only.) Results of this study indicate a +/- 36 percent probability of successfully extending a nominal mission to 30 days. Enough variations were evaluated to verify that the reliability could be altered with missions planning and procedures. If the crew is modeled as being fully capable after 30 days, the probability of a successful manual landing is comparable to that of Autoland because much of the hardware is used for both manual and automated landing modes. The analysis indicates that the reliability for the manual mode is limited by the hardware and depends greatly on crew capability. Crew capability for a successful landing after 30 days has not been determined yet.
Metrics for Assessing the Reliability of a Telemedicine Remote Monitoring System
Fox, Mark; Papadopoulos, Amy; Crump, Cindy
2013-01-01
Abstract Objective: The goal of this study was to assess using new metrics the reliability of a real-time health monitoring system in homes of older adults. Materials and Methods: The “MobileCare Monitor” system was installed into the homes of nine older adults >75 years of age for a 2-week period. The system consisted of a wireless wristwatch-based monitoring system containing sensors for location, temperature, and impacts and a “panic” button that was connected through a mesh network to third-party wireless devices (blood pressure cuff, pulse oximeter, weight scale, and a survey-administering device). To assess system reliability, daily phone calls instructed participants to conduct system tests and reminded them to fill out surveys and daily diaries. Phone reports and participant diary entries were checked against data received at a secure server. Results: Reliability metrics assessed overall system reliability, data concurrence, study effectiveness, and system usability. Except for the pulse oximeter, system reliability metrics varied between 73% and 92%. Data concurrence for proximal and distal readings exceeded 88%. System usability following the pulse oximeter firmware update varied between 82% and 97%. An estimate of watch-wearing adherence within the home was quite high, about 80%, although given the inability to assess watch-wearing when a participant left the house, adherence likely exceeded the 10 h/day requested time. In total, 3,436 of 3,906 potential measurements were obtained, indicating a study effectiveness of 88%. Conclusions: The system was quite effective in providing accurate remote health data. The different system reliability measures identify important error sources in remote monitoring systems. PMID:23611640
Reliable Decentralized Control of Fuzzy Discrete-Event Systems and a Test Algorithm.
Liu, Fuchun; Dziong, Zbigniew
2013-02-01
A framework for decentralized control of fuzzy discrete-event systems (FDESs) has been recently presented to guarantee the achievement of a given specification under the joint control of all local fuzzy supervisors. As a continuation, this paper addresses the reliable decentralized control of FDESs in face of possible failures of some local fuzzy supervisors. Roughly speaking, for an FDES equipped with n local fuzzy supervisors, a decentralized supervisor is called k-reliable (1 ≤ k ≤ n) provided that the control performance will not be degraded even when n - k local fuzzy supervisors fail. A necessary and sufficient condition for the existence of k-reliable decentralized supervisors of FDESs is proposed by introducing the notions of M̃uc-controllability and k-reliable coobservability of fuzzy language. In particular, a polynomial-time algorithm to test the k-reliable coobservability is developed by a constructive methodology, which indicates that the existence of k-reliable decentralized supervisors of FDESs can be checked with a polynomial complexity.
Chavaillaz, Alain; Schwaninger, Adrian; Michel, Stefan; Sauer, Juergen
2018-05-25
The present study evaluated three automation modes for improving performance in an X-ray luggage screening task. 140 participants were asked to detect the presence of prohibited items in X-ray images of cabin luggage. Twenty participants conducted this task without automatic support (control group), whereas the others worked with either indirect cues (system indicated the target presence without specifying its location), or direct cues (system pointed out the exact target location) or adaptable automation (participants could freely choose between no cue, direct and indirect cues). Furthermore, automatic support reliability was manipulated (low vs. high). The results showed a clear advantage for direct cues regarding detection performance and response time. No benefits were observed for adaptable automation. Finally, high automation reliability led to better performance and higher operator trust. The findings overall confirmed that automatic support systems for luggage screening should be designed such that they provide direct, highly reliable cues.
Kröger, Edeltraut; Tourigny, André; Morin, Diane; Côté, Lise; Kergoat, Marie-Jeanne; Lebel, Paule; Robichaud, Line; Imbeault, Shirley; Proulx, Solange; Benounissa, Zohra
2007-11-29
This study aimed at evaluating face and content validity, feasibility and reliability of process quality indicators developed previously in the United States or other countries. The indicators can be used to evaluate care and services for vulnerable older adults affected by cognitive impairment or dementia within an integrated service system in Quebec, Canada. A total of 33 clinical experts from three major urban centres in Quebec formed a panel representing two medical specialties (family medicine, geriatrics) and seven health or social services specialties (nursing, occupational therapy, psychology, neuropsychology, pharmacy, nutrition, social work), from primary or secondary levels of care, including long-term care. A modified version of the RAND(R)/University of California at Los Angeles (UCLA) appropriateness method, a two-round Delphi panel, was used to assess face and content validity of process quality indicators. The appropriateness of indicators was evaluated according to a) agreement of the panel with three criteria, defined as a median rating of 7-9 on a nine-point rating scale, and b) agreement among panellists, judged by the statistical measure of the interpercentile range adjusted for symmetry. Feasibility of quality assessment and reliability of appropriate indicators were then evaluated within a pilot study on 29 patients affected by cognitive impairment or dementia. For measurable indicators the inter-observer reliability was calculated with the Kappa statistic. Initially, 82 indicators for care of vulnerable older adults with cognitive impairment or dementia were submitted to the panellists. Of those, 72 (88%) were accepted after two rounds. Among 29 patients for whom medical files of the preceding two years were evaluated, 63 (88%) of these indicators were considered applicable at least once, for at least one patient. Only 22 indicators were considered applicable at least once for ten or more out of 29 patients. Four indicators could be measured with the help of a validated questionnaire on patient satisfaction. Inter-observer reliability was moderate (Kappa = 0.57). A multidisciplinary panel of experts judged a large majority of the initial indicators valid for use in integrated care systems for vulnerable older adults in Quebec, Canada. Most of these indicators can be measured using patient files or patient or caregiver interviews and reliability of assessment from patient-files is moderate.
Kröger, Edeltraut; Tourigny, André; Morin, Diane; Côté, Lise; Kergoat, Marie-Jeanne; Lebel, Paule; Robichaud, Line; Imbeault, Shirley; Proulx, Solange; Benounissa, Zohra
2007-01-01
Background This study aimed at evaluating face and content validity, feasibility and reliability of process quality indicators developed previously in the United States or other countries. The indicators can be used to evaluate care and services for vulnerable older adults affected by cognitive impairment or dementia within an integrated service system in Quebec, Canada. Methods A total of 33 clinical experts from three major urban centres in Quebec formed a panel representing two medical specialties (family medicine, geriatrics) and seven health or social services specialties (nursing, occupational therapy, psychology, neuropsychology, pharmacy, nutrition, social work), from primary or secondary levels of care, including long-term care. A modified version of the RAND®/University of California at Los Angeles (UCLA) appropriateness method, a two-round Delphi panel, was used to assess face and content validity of process quality indicators. The appropriateness of indicators was evaluated according to a) agreement of the panel with three criteria, defined as a median rating of 7–9 on a nine-point rating scale, and b) agreement among panellists, judged by the statistical measure of the interpercentile range adjusted for symmetry. Feasibility of quality assessment and reliability of appropriate indicators were then evaluated within a pilot study on 29 patients affected by cognitive impairment or dementia. For measurable indicators the inter-observer reliability was calculated with the Kappa statistic. Results Initially, 82 indicators for care of vulnerable older adults with cognitive impairment or dementia were submitted to the panellists. Of those, 72 (88%) were accepted after two rounds. Among 29 patients for whom medical files of the preceding two years were evaluated, 63 (88%) of these indicators were considered applicable at least once, for at least one patient. Only 22 indicators were considered applicable at least once for ten or more out of 29 patients. Four indicators could be measured with the help of a validated questionnaire on patient satisfaction. Inter-observer reliability was moderate (Kappa = 0.57). Conclusion A multidisciplinary panel of experts judged a large majority of the initial indicators valid for use in integrated care systems for vulnerable older adults in Quebec, Canada. Most of these indicators can be measured using patient files or patient or caregiver interviews and reliability of assessment from patient-files is moderate. PMID:18047668
Ren, Pengyu; Li, Bowen; Dong, Shiyao; Chen, Lin; Zhang, Yuelin
2018-01-01
Although many mathematical methods were used to analyze the neural activity under sinusoidal stimulation within linear response range in vestibular system, the reliabilities of these methods are still not reported, especially in nonlinear response range. Here we chose nonlinear least-squares algorithm (NLSA) with sinusoidal model to analyze the neural response of semicircular canal neurons (SCNs) during sinusoidal rotational stimulation (SRS) over a nonlinear response range. Our aim was to acquire a reliable mathematical method for data analysis under SRS in vestibular system. Our data indicated that the reliability of this method in an entire SCNs population was quite satisfactory. However, the reliability was strongly negatively depended on the neural discharge regularity. In addition, stimulation parameters were the vital impact factors influencing the reliability. The frequency had a significant negative effect but the amplitude had a conspicuous positive effect on the reliability. Thus, NLSA with sinusoidal model resulted a reliable mathematical tool for data analysis of neural response activity under SRS in vestibular system and more suitable for those under the stimulation with low frequency but high amplitude, suggesting that this method can be used in nonlinear response range. This method broke out of the restriction of neural activity analysis under nonlinear response range and provided a solid foundation for future study in nonlinear response range in vestibular system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, Valerie A.; Ogilvie, Alistair B.
2012-01-01
This report addresses the general data requirements for reliability analysis of fielded wind turbines and other wind plant equipment. The report provides a rationale for why this data should be collected, a list of the data needed to support reliability and availability analysis, and specific data recommendations for a Computerized Maintenance Management System (CMMS) to support automated analysis. This data collection recommendations report was written by Sandia National Laboratories to address the general data requirements for reliability analysis of operating wind turbines. This report is intended to help develop a basic understanding of the data needed for reliability analysis frommore » a Computerized Maintenance Management System (CMMS) and other data systems. The report provides a rationale for why this data should be collected, a list of the data needed to support reliability and availability analysis, and specific recommendations for a CMMS to support automated analysis. Though written for reliability analysis of wind turbines, much of the information is applicable to a wider variety of equipment and analysis and reporting needs. The 'Motivation' section of this report provides a rationale for collecting and analyzing field data for reliability analysis. The benefits of this type of effort can include increased energy delivered, decreased operating costs, enhanced preventive maintenance schedules, solutions to issues with the largest payback, and identification of early failure indicators.« less
Li, Bowen; Dong, Shiyao; Chen, Lin; Zhang, Yuelin
2018-01-01
Although many mathematical methods were used to analyze the neural activity under sinusoidal stimulation within linear response range in vestibular system, the reliabilities of these methods are still not reported, especially in nonlinear response range. Here we chose nonlinear least-squares algorithm (NLSA) with sinusoidal model to analyze the neural response of semicircular canal neurons (SCNs) during sinusoidal rotational stimulation (SRS) over a nonlinear response range. Our aim was to acquire a reliable mathematical method for data analysis under SRS in vestibular system. Our data indicated that the reliability of this method in an entire SCNs population was quite satisfactory. However, the reliability was strongly negatively depended on the neural discharge regularity. In addition, stimulation parameters were the vital impact factors influencing the reliability. The frequency had a significant negative effect but the amplitude had a conspicuous positive effect on the reliability. Thus, NLSA with sinusoidal model resulted a reliable mathematical tool for data analysis of neural response activity under SRS in vestibular system and more suitable for those under the stimulation with low frequency but high amplitude, suggesting that this method can be used in nonlinear response range. This method broke out of the restriction of neural activity analysis under nonlinear response range and provided a solid foundation for future study in nonlinear response range in vestibular system. PMID:29304173
Developing clinical indicators for the secondary health system in India.
Thakur, Harshad; Chavhan, S; Jotkar, Raju; Mukherjee, Kanchan
2008-08-01
One of the prime goals of any health system is to deliver good and competent quality of healthcare. Through World Bank-assisted Maharashtra Health Systems Development Project, Government of Maharashtra in India developed and implemented clinical indicators to improve quality. During this, clinical areas eligible for monitoring quality of care and roles of health staff working at various levels were identified. Brainstorming discussion sessions were conducted to refine list of potential clinical indicators and to identify implementation problems. It was implemented in four stages. (a) Self-explanatory tool of record, standard operating procedures and training manual were prepared during tools preparation stage. (b) Pilot implementation was done to monitor the usefulness of indicators, document the experiences and standardize the system accordingly. (c) The final selection of indicators was done taking into consideration points like data reliability, indicator usefulness etc. For final implementation, 15 indicators for district and 6 indicators for rural hospitals were selected. (d) Transfer of skills was done through training of various hospital functionaries. Selection and prioritization of clinical indicators is the most crucial part. Active participation of local employees is essential for sustainability of the scheme. It is also important to ensure that data recorded/reported is both reliable and valid, to conduct monthly review of the scheme at various levels and to link it with the quality improvement programme.
Standardized quality-assessment system to evaluate pressure ulcer care in the nursing home.
Bates-Jensen, Barbara M; Cadogan, Mary; Jorge, Jennifer; Schnelle, John F
2003-09-01
To demonstrate reliability and feasibility of a standardized protocol to assess and score quality indicators relevant to pressure ulcer (PU) care processes in nursing homes (NHs). Descriptive. Eight NHs. One hundred ninety-one NH residents for whom the PU Resident Assessment Protocol of the Minimum Data Set was initiated. Nine quality indicators (two related to screening and prevention of PU, two focused on assessment, and five addressing management) were scored using medical record data, direct human observation, and wireless thigh monitor observation data. Feasibility and reliability of medical record, observation, and thigh monitor protocols were determined. The percentage of participants who passed each of the indicators, indicating care consistent with practice guidelines, ranged from 0% to 98% across all indicators. In general, participants in NHs passed fewer indicators and had more problems with medical record accuracy before a PU was detected (screening/prevention indicators) than they did once an ulcer was documented (assessment and management indicators). Reliability of the medical record protocol showed kappa statistics ranging from 0.689 to 1.00 and percentage agreement from 80% to 100%. Direct observation protocols yielded kappa statistics of 0.979 and 0.928. Thigh monitor protocols showed kappa statistics ranging from 0.609 to 0.842. Training was variable, with the observation protocol requiring 1 to 2 hours, medical records requiring joint review of 20 charts with average time to complete the review of 20 minutes, and the thigh monitor data requiring 1 week for training in data preparation and interpretation. The standardized quality assessment system generated scores for nine PU quality indicators with good reliability and provided explicit scoring rules that permit reproducible conclusions about PU care. The focus of the indicators on care processes that are under the control of NH staff made the protocol useful for external survey and internal quality improvement purposes, and the thigh monitor observational technology provided a method for monitoring repositioning care processes that were otherwise difficult to monitor and manage.
Maximally reliable Markov chains under energy constraints.
Escola, Sean; Eisele, Michael; Miller, Kenneth; Paninski, Liam
2009-07-01
Signal-to-noise ratios in physical systems can be significantly degraded if the outputs of the systems are highly variable. Biological processes for which highly stereotyped signal generations are necessary features appear to have reduced their signal variabilities by employing multiple processing steps. To better understand why this multistep cascade structure might be desirable, we prove that the reliability of a signal generated by a multistate system with no memory (i.e., a Markov chain) is maximal if and only if the system topology is such that the process steps irreversibly through each state, with transition rates chosen such that an equal fraction of the total signal is generated in each state. Furthermore, our result indicates that by increasing the number of states, it is possible to arbitrarily increase the reliability of the system. In a physical system, however, an energy cost is associated with maintaining irreversible transitions, and this cost increases with the number of such transitions (i.e., the number of states). Thus, an infinite-length chain, which would be perfectly reliable, is infeasible. To model the effects of energy demands on the maximally reliable solution, we numerically optimize the topology under two distinct energy functions that penalize either irreversible transitions or incommunicability between states, respectively. In both cases, the solutions are essentially irreversible linear chains, but with upper bounds on the number of states set by the amount of available energy. We therefore conclude that a physical system for which signal reliability is important should employ a linear architecture, with the number of states (and thus the reliability) determined by the intrinsic energy constraints of the system.
Judah, Gaby; de Witt Huberts, Jessie; Drassal, Allan; Aunger, Robert
2017-01-01
The accurate measurement of behaviour is vitally important to many disciplines and practitioners of various kinds. While different methods have been used (such as observation, diaries, questionnaire), none are able to accurately monitor behaviour over the long term in the natural context of people's own lives. The aim of this work was therefore to develop and test a reliable system for unobtrusively monitoring various behaviours of multiple individuals within the same household over a period of several months. A commercial Real Time Location System was adapted to meet these requirements and subsequently validated in three households by monitoring various bathroom behaviours. The results indicate that the system is robust, can monitor behaviours over the long-term in different households and can reliably distinguish between individuals. Precision rates were high and consistent. Recall rates were less consistent across households and behaviours, although recall rates improved considerably with practice at set-up of the system. The achieved precision and recall rates were comparable to the rates observed in more controlled environments using more valid methods of ground truthing. These initial findings indicate that the system is a valuable, flexible and robust system for monitoring behaviour in its natural environment that would allow new research questions to be addressed.
Reliability evaluation of a multistate network subject to time constraint under routing policy
NASA Astrophysics Data System (ADS)
Lin, Yi-Kuei
2013-08-01
A multistate network is a stochastic network composed of multistate arcs in which each arc has several possible capacities and may fail due to failure, maintenance, etc. The quality of a multistate network depends on how to meet the customer's requirements and how to provide the service in time. The system reliability, the probability that a given amount of data can be transmitted through a pair of minimal paths (MPs) simultaneously under the time constraint, is a proper index to evaluate the quality of a multistate network. An efficient solution procedure is first proposed to calculate it. In order to further enhance the system reliability, the network administrator decides the routing policy in advance to indicate the first and the second priority pairs of MPs. The second priority pair of MPs takes charge of the transmission duty if the first fails. The system reliability under the routing policy can be subsequently evaluated.
An Investigation of the Generalizability of Medical School Grades.
Kreiter, Clarence D; Ferguson, Kristi J
2016-01-01
Construct/Background: Medical school grades are currently unstandardized, and their level of reliability is unknown. This means their usefulness for reporting on student achievement is also not well documented. This study investigates grade reliability within 1 medical school. Generalizability analyses are conducted on grades awarded. Grades from didactic and clerkship-based courses were treated as 2 levels of a fixed facet within a univariate mixed model. Grades from within the 2 levels (didactic and clerkship) were also entered in a multivariate generalizability study. Grades from didactic courses were shown to produce a highly reliable mean score (G = .79) when averaged over as few as 5 courses. Although the universe score correlation between didactic and clerkship courses was high (r = .80), the clerkship courses required almost twice as many grades to reach a comparable level of reliability. When grades were converted to a Pass/Fail metric, almost all information contained in the grades was lost. Although it has been suggested that the imprecision of medical school grades precludes their use as a reliable indicator of student achievement, these results suggest otherwise. While it is true that a Pass/Fail system of grading provides very little information about a student's level of performance, a multi-tiered grading system was shown to be a highly reliable indicator of student achievement within the medical school. Although grades awarded during the first 2 didactic years appear to be more reliable than clerkship grades, both yield useful information about student performance within the medical college.
FOR Allocation to Distribution Systems based on Credible Improvement Potential (CIP)
NASA Astrophysics Data System (ADS)
Tiwary, Aditya; Arya, L. D.; Arya, Rajesh; Choube, S. C.
2017-02-01
This paper describes an algorithm for forced outage rate (FOR) allocation to each section of an electrical distribution system subject to satisfaction of reliability constraints at each load point. These constraints include threshold values of basic reliability indices, for example, failure rate, interruption duration and interruption duration per year at load points. Component improvement potential measure has been used for FOR allocation. Component with greatest magnitude of credible improvement potential (CIP) measure is selected for improving reliability performance. The approach adopted is a monovariable method where one component is selected for FOR allocation and in the next iteration another component is selected for FOR allocation based on the magnitude of CIP. The developed algorithm is implemented on sample radial distribution system.
NASA Astrophysics Data System (ADS)
Karri, Naveen K.; Mo, Changki
2018-06-01
Structural reliability of thermoelectric generation (TEG) systems still remains an issue, especially for applications such as large-scale industrial or automobile exhaust heat recovery, in which TEG systems are subject to dynamic loads and thermal cycling. Traditional thermoelectric (TE) system design and optimization techniques, focused on performance alone, could result in designs that may fail during operation as the geometric requirements for optimal performance (especially the power) are often in conflict with the requirements for mechanical reliability. This study focused on reducing the thermomechanical stresses in a TEG system without compromising the optimized system performance. Finite element simulations were carried out to study the effect of TE element (leg) geometry such as leg length and cross-sectional shape under constrained material volume requirements. Results indicated that the element length has a major influence on the element stresses whereas regular cross-sectional shapes have minor influence. The impact of TE element stresses on the mechanical reliability is evaluated using brittle material failure theory based on Weibull analysis. An alternate couple configuration that relies on the industry practice of redundant element design is investigated. Results showed that the alternate configuration considerably reduced the TE element and metallization stresses, thereby enhancing the structural reliability, with little trade-off in the optimized performance. The proposed alternate configuration could serve as a potential design modification for improving the reliability of systems optimized for thermoelectric performance.
Adaptations of advanced safety and reliability techniques to petroleum and other industries
NASA Technical Reports Server (NTRS)
Purser, P. E.
1974-01-01
The underlying philosophy of the general approach to failure reduction and control is presented. Safety and reliability management techniques developed in the industries which have participated in the U.S. space and defense programs are described along with adaptations to nonaerospace activities. The examples given illustrate the scope of applicability of these techniques. It is indicated that any activity treated as a 'system' is a potential user of aerospace safety and reliability management techniques.
Main propulsion system design recommendations for an advanced Orbit Transfer Vehicle
NASA Technical Reports Server (NTRS)
Redd, L.
1985-01-01
Various main propulsion system configurations of an advanced OTV are evaluated with respect to the probability of nonindependent failures, i.e., engine failures that disable the entire main propulsion system. Analysis of the life-cycle cost (LCC) indicates that LCC is sensitive to the main propulsion system reliability, vehicle dry weight, and propellant cost; it is relatively insensitive to the number of missions/overhaul, failures per mission, and EVA and IVA cost. In conclusion, two or three engines are recommended in view of their highest reliability, minimum life-cycle cost, and fail operational/fail safe capability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agalgaonkar, Yashodhan P.; Hammerstrom, Donald J.
The Pacific Northwest Smart Grid Demonstration (PNWSGD) was a smart grid technology performance evaluation project that included multiple U.S. states and cooperation from multiple electric utilities in the northwest region. One of the local objectives for the project was to achieve improved distribution system reliability. Toward this end, some PNWSGD utilities automated their distribution systems, including the application of fault detection, isolation, and restoration and advanced metering infrastructure. In light of this investment, a major challenge was to establish a correlation between implementation of these smart grid technologies and actual improvements of distribution system reliability. This paper proposes using Welch’smore » t-test to objectively determine and quantify whether distribution system reliability is improving over time. The proposed methodology is generic, and it can be implemented by any utility after calculation of the standard reliability indices. The effectiveness of the proposed hypothesis testing approach is demonstrated through comprehensive practical results. It is believed that wider adoption of the proposed approach can help utilities to evaluate a realistic long-term performance of smart grid technologies.« less
Reliable sagittal plane kinematic gait assessments are feasible using low-cost webcam technology.
Saner, Robert J; Washabaugh, Edward P; Krishnan, Chandramouli
2017-07-01
Three-dimensional (3-D) motion capture systems are commonly used for gait analysis because they provide reliable and accurate measurements. However, the downside of this approach is that it is expensive and requires technical expertise; thus making it less feasible in the clinic. To address this limitation, we recently developed and validated (using a high-precision walking robot) a low-cost, two-dimensional (2-D) real-time motion tracking approach using a simple webcam and LabVIEW Vision Assistant. The purpose of this study was to establish the repeatability and minimal detectable change values of hip and knee sagittal plane gait kinematics recorded using this system. Twenty-one healthy subjects underwent two kinematic assessments while walking on a treadmill at a range of gait velocities. Intraclass correlation coefficients (ICC) and minimal detectable change (MDC) values were calculated for commonly used hip and knee kinematic parameters to demonstrate the reliability of the system. Additionally, Bland-Altman plots were generated to examine the agreement between the measurements recorded on two different days. The system demonstrated good to excellent reliability (ICC>0.75) for all the gait parameters tested on this study. The MDC values were typically low (<5°) for most of the parameters. The Bland-Altman plots indicated that there was no systematic error or bias in kinematic measurements and showed good agreement between measurements obtained on two different days. These results indicate that kinematic gait assessments using webcam technology can be reliably used for clinical and research purposes. Copyright © 2017 Elsevier B.V. All rights reserved.
Connors, Brenda L.; Rende, Richard; Colton, Timothy J.
2014-01-01
The unique yield of collecting observational data on human movement has received increasing attention in a number of domains, including the study of decision-making style. As such, interest has grown in the nuances of core methodological issues, including the best ways of assessing inter-rater reliability. In this paper we focus on one key topic – the distinction between establishing reliability for the patterning of behaviors as opposed to the computation of raw counts – and suggest that reliability for each be compared empirically rather than determined a priori. We illustrate by assessing inter-rater reliability for key outcome measures derived from movement pattern analysis (MPA), an observational methodology that records body movements as indicators of decision-making style with demonstrated predictive validity. While reliability ranged from moderate to good for raw counts of behaviors reflecting each of two Overall Factors generated within MPA (Assertion and Perspective), inter-rater reliability for patterning (proportional indicators of each factor) was significantly higher and excellent (ICC = 0.89). Furthermore, patterning, as compared to raw counts, provided better prediction of observable decision-making process assessed in the laboratory. These analyses support the utility of using an empirical approach to inform the consideration of measuring patterning versus discrete behavioral counts of behaviors when determining inter-rater reliability of observable behavior. They also speak to the substantial reliability that may be achieved via application of theoretically grounded observational systems such as MPA that reveal thinking and action motivations via visible movement patterns. PMID:24999336
Connors, Brenda L; Rende, Richard; Colton, Timothy J
2014-01-01
The unique yield of collecting observational data on human movement has received increasing attention in a number of domains, including the study of decision-making style. As such, interest has grown in the nuances of core methodological issues, including the best ways of assessing inter-rater reliability. In this paper we focus on one key topic - the distinction between establishing reliability for the patterning of behaviors as opposed to the computation of raw counts - and suggest that reliability for each be compared empirically rather than determined a priori. We illustrate by assessing inter-rater reliability for key outcome measures derived from movement pattern analysis (MPA), an observational methodology that records body movements as indicators of decision-making style with demonstrated predictive validity. While reliability ranged from moderate to good for raw counts of behaviors reflecting each of two Overall Factors generated within MPA (Assertion and Perspective), inter-rater reliability for patterning (proportional indicators of each factor) was significantly higher and excellent (ICC = 0.89). Furthermore, patterning, as compared to raw counts, provided better prediction of observable decision-making process assessed in the laboratory. These analyses support the utility of using an empirical approach to inform the consideration of measuring patterning versus discrete behavioral counts of behaviors when determining inter-rater reliability of observable behavior. They also speak to the substantial reliability that may be achieved via application of theoretically grounded observational systems such as MPA that reveal thinking and action motivations via visible movement patterns.
ERIC Educational Resources Information Center
Chang, Chi-Cheng; Liang, Chaoyun; Chen, Yi-Hui
2013-01-01
This study explored the reliability and validity of Web-based portfolio self-assessment. Participants were 72 senior high school students enrolled in a computer application course. The students created learning portfolios, viewed peers' work, and performed self-assessment on the Web-based portfolio assessment system. The results indicated: 1)…
A forward view on reliable computers for flight control
NASA Technical Reports Server (NTRS)
Goldberg, J.; Wensley, J. H.
1976-01-01
The requirements for fault-tolerant computers for flight control of commercial aircraft are examined; it is concluded that the reliability requirements far exceed those typically quoted for space missions. Examination of circuit technology and alternative computer architectures indicates that the desired reliability can be achieved with several different computer structures, though there are obvious advantages to those that are more economic, more reliable, and, very importantly, more certifiable as to fault tolerance. Progress in this field is expected to bring about better computer systems that are more rigorously designed and analyzed even though computational requirements are expected to increase significantly.
Ludwin, Artur; Ludwin, Inga; Kudla, Marek; Kottner, Jan
2015-09-01
To estimate the inter-rater/intrarater reliability of the European Society of Human Reproduction and Embryology/European Society for Gynaecological Endoscopy (ESHRE-ESGE) classification of congenital uterine malformations and to compare the results obtained with the reliability of the American Society for Reproductive Medicine (ASRM) classification supplemented with additional morphometric criteria. Reliability/agreement study. Private clinic. Uterine malformations (n = 50 patients, consecutively included) and normal uterus (n = 62 women, randomly selected) constituted the study. These were classified based on real-time three-dimensional ultrasound single volume transvaginal (or transrectal in the case of virgins, 4 cases) ultrasonography findings, which were assessed by an expert rater based on the ESHRE-ESGE criteria. The samples were obtained from women of reproductive age. Unprocessed three-dimensional datasets were independently evaluated offline by two experienced, blinded raters using both classification systems. The κ-values and proportions of agreement. Standardized interpretation indicated that the ESHRE-ESGE system has substantial/good or almost perfect/very good reliability (κ >0.60 and >0.80), but the interpretation of the clinically relevant cutoffs of κ-values showed insufficient reliability for clinical use (κ < 0.90), especially in the diagnosis of septate uterus. The ASRM system had sufficient reliability (κ > 0.95). The low reliability of the ESHRE-ESGE system may lead to a lack of consensus about the management of common uterine malformations and biased research interpretations. The use of the ASRM classification, supplemented with simple morphometric criteria, may be preferred if their sufficient reliability can be confirmed real-time in a large sample size. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Banerjee, Sourav; Liu, Lie; Liu, S. T.; Yuan, Fuh-Gwo; Beard, Shawn
2011-04-01
Materials State Awareness (MSA) goes beyond traditional NDE and SHM in its challenge to characterize the current state of material damage before the onset of macro-damage such as cracks. A highly reliable, minimally invasive system for MSA of Aerospace Structures, Naval structures as well as next generation space systems is critically needed. Development of such a system will require a reliable SHM system that can detect the onset of damage well before the flaw grows to a critical size. Therefore, it is important to develop an integrated SHM system that not only detects macroscale damages in the structures but also provides an early indication of flaw precursors and microdamages. The early warning for flaw precursors and their evolution provided by an SHM system can then be used to define remedial strategies before the structural damage leads to failure, and significantly improve the safety and reliability of the structures. Thus, in this article a preliminary concept of developing the Hybrid Distributed Sensor Network Integrated with Self-learning Symbiotic Diagnostic Algorithms and Models to accurately and reliably detect the precursors to damages that occur to the structure are discussed. Experiments conducted in a laboratory environment shows potential of the proposed technique.
REVIEW ARTICLE: State-of-the-art of battery state-of-charge determination
NASA Astrophysics Data System (ADS)
Pop, V.; Bergveld, H. J.; Notten, P. H. L.; Regtien, P. P. L.
2005-12-01
From the early days of its discovery, humanity has depended on electricity, a phenomenon without which our technological advancements would not have been possible. With the increased need for mobility, people moved to portable power storage—first for wheeled applications, then for portable and finally nowadays wearable use. Several types of rechargeable battery systems, including those of lead-acid, nickel-cadmium, nickel-metal hydride, lithium ion and lithium-ion polymer exist in the market. The most important of them will be discussed in this review. Almost as long as rechargeable batteries have existed, systems able to give an indication about the state-of-charge (SoC) of a battery have been around. Several methods, including those of direct measurements, book-keeping and adaptive systems (Bergveld et al 2002 Battery Management Systems, Design by Modelling (Philips Research Book Series) vol 1 (Boston: Kluwer)) are known in the art for determining the SoC of a cell or battery of cells. An accurate SoC determination method and an understandable and reliable SoC display to the user will improve the performance and reliability, and will ultimately lengthen the lifetime of the battery. However, many examples of poor accuracy and reliability can be found in practice (Bergveld et al 2002, cited above). This review presents an overview on battery technology and the state-of-the-art of SoC methods. The goal of all the presented SoC indication methods is to design an SoC indication system capable of providing an accurate SoC indication under all realistic user conditions, including those of spread—in both battery and user behaviour, a large temperature and current range and ageing of the battery.
NASA Astrophysics Data System (ADS)
Jia, Heping; Jin, Wende; Ding, Yi; Song, Yonghua; Yu, Dezhao
2017-01-01
With the expanding proportion of renewable energy generation and development of smart grid technologies, flexible demand resources (FDRs) have been utilized as an approach to accommodating renewable energies. However, multiple uncertainties of FDRs may influence reliable and secure operation of smart grid. Multi-state reliability models for a single FDR and aggregating FDRs have been proposed in this paper with regard to responsive abilities for FDRs and random failures for both FDR devices and information system. The proposed reliability evaluation technique is based on Lz transform method which can formulate time-varying reliability indices. A modified IEEE-RTS has been utilized as an illustration of the proposed technique.
Apeldoorn, Adri T.; van Helvoirt, Hans; Ostelo, Raymond W.; Meihuizen, Hanneke; Kamper, Steven J.; van Tulder, Maurits W.; de Vet, Henrica C. W.
2016-01-01
Study design Observational inter-rater reliability study. Objectives To examine: (1) the inter-rater reliability of a modified version of Delitto et al.’s classification-based algorithm for patients with low back pain; (2) the influence of different levels of familiarity with the system; and (3) the inter-rater reliability of algorithm decisions in patients who clearly fit into a subgroup (clear classifications) and those who do not (unclear classifications). Methods Patients were examined twice on the same day by two of three participating physical therapists with different levels of familiarity with the system. Patients were classified into one of four classification groups. Raters were blind to the others’ classification decision. In order to quantify the inter-rater reliability, percentages of agreement and Cohen’s Kappa were calculated. Results A total of 36 patients were included (clear classification n = 23; unclear classification n = 13). The overall rate of agreement was 53% and the Kappa value was 0·34 [95% confidence interval (CI): 0·11–0·57], which indicated only fair inter-rater reliability. Inter-rater reliability for patients with a clear classification (agreement 52%, Kappa value 0·29) was not higher than for patients with an unclear classification (agreement 54%, Kappa value 0·33). Familiarity with the system (i.e. trained with written instructions and previous research experience with the algorithm) did not improve the inter-rater reliability. Conclusion Our pilot study challenges the inter-rater reliability of the classification procedure in clinical practice. Therefore, more knowledge is needed about factors that affect the inter-rater reliability, in order to improve the clinical applicability of the classification scheme. PMID:27559279
Validity of a novel computerized screening test system for mild cognitive impairment.
Park, Jin-Hyuck; Jung, Minye; Kim, Jongbae; Park, Hae Yean; Kim, Jung-Ran; Park, Ji-Hyuk
2018-06-20
ABSTRACTBackground:The mobile screening test system for screening mild cognitive impairment (mSTS-MCI) was developed for clinical use. However, the clinical usefulness of mSTS-MCI to detect elderly with MCI from those who are cognitively healthy has yet to be validated. Moreover, the comparability between this system and traditional screening tests for MCI has not been evaluated. The purpose of this study was to examine the validity and reliability of the mSTS-MCI and confirm the cut-off scores to detect MCI. The data were collected from 107 healthy elderly people and 74 elderly people with MCI. Concurrent validity was examined using the Korean version of Montreal Cognitive Assessment (MoCA-K) as a gold standard test, and test-retest reliability was investigated using 30 of the study participants at four-week intervals. The sensitivity, specificity, positive predictive value, and negative predictive value (NPV) were confirmed through Receiver Operating Characteristic (ROC) analysis, and the cut-off scores for elderly people with MCI were identified. Concurrent validity showed statistically significant correlations between the mSTS-MCI and MoCA-K and test-rests reliability indicated high correlation. As a result of screening predictability, the mSTS-MCI had a higher NPV than the MoCA-K. The mSTS-MCI was identified as a system with a high degree of validity and reliability. In addition, the mSTS-MCI showed high screening predictability, indicating it can be used in the clinical field as a screening test system for mild cognitive impairment.
Reliability Constrained Priority Load Shedding for Aerospace Power System Automation
NASA Technical Reports Server (NTRS)
Momoh, James A.; Zhu, Jizhong; Kaddah, Sahar S.; Dolce, James L. (Technical Monitor)
2000-01-01
The need for improving load shedding on board the space station is one of the goals of aerospace power system automation. To accelerate the optimum load-shedding functions, several constraints must be involved. These constraints include congestion margin determined by weighted probability contingency, component/system reliability index, generation rescheduling. The impact of different faults and indices for computing reliability were defined before optimization. The optimum load schedule is done based on priority, value and location of loads. An optimization strategy capable of handling discrete decision making, such as Everett optimization, is proposed. We extended Everett method to handle expected congestion margin and reliability index as constraints. To make it effective for real time load dispatch process, a rule-based scheme is presented in the optimization method. It assists in selecting which feeder load to be shed, the location of the load, the value, priority of the load and cost benefit analysis of the load profile is included in the scheme. The scheme is tested using a benchmark NASA system consisting of generators, loads and network.
The Potential of Energy Storage Systems with Respect to Generation Adequacy and Economic Viability
NASA Astrophysics Data System (ADS)
Bradbury, Kyle Joseph
Intermittent energy resources, including wind and solar power, continue to be rapidly added to the generation fleet domestically and abroad. The variable power of these resources introduces new levels of stochasticity into electric interconnections that must be continuously balanced in order to maintain system reliability. Energy storage systems (ESSs) offer one potential option to compensate for the intermittency of renewables. ESSs for long-term storage (1-hour or greater), aside from a few pumped hydroelectric installations, are not presently in widespread use in the U.S. The deployment of ESSs would be most likely driven by either the potential for a strong internal rate of return (IRR) on investment and through significant benefits to system reliability that independent system operators (ISOs) could incentivize. To assess the potential of ESSs three objectives are addressed. (1) Evaluate the economic viability of energy storage for price arbitrage in real-time energy markets and determine system cost improvements for ESSs to become attractive investments. (2) Estimate the reliability impact of energy storage systems on the large-scale integration of intermittent generation. (3) Analyze the economic, environmental, and reliability tradeoffs associated with using energy storage in conjunction with stochastic generation. First, using real-time energy market price data from seven markets across the U.S. and the physical parameters of fourteen ESS technologies, the maximum potential IRR of each technology from price arbitrage was evaluated in each market, along with the optimal ESS system size. Additionally, the reductions in capital cost needed to achieve a 10% IRR were estimated for each ESS. The results indicate that the profit-maximizing size of an ESS is primarily determined by its technological characteristics (round-trip charge/discharge efficiency and self-discharge) and not market price volatility, which instead increases IRR. This analysis demonstrates that few ESS technologies are likely to be implemented by investors alone. Next, the effects of ESSs on system reliability are quantified. Using historic data for wind, solar, and conventional generation, a correlation-preserving, copula-transform model was implemented in conjunction with Markov chain Monte Carlo framework for estimating system reliability indices. Systems with significant wind and solar penetration (25% or greater), even with added energy storage capacity, resulted in considerable decreases in generation adequacy. Lastly, rather than analyzing the reliability and costs in isolation of one another, system reliability, cost, and emissions were analyzed in 3-space to quantify and visualize the system tradeoffs. The modeling results implied that ESSs perform similarly to natural gas combined cycle (NGCC) systems with respect to generation adequacy and system cost, with the primary difference being that the generation adequacy improvements are less for ESSs than that of NGCC systems and the increase in LCOE is greater for ESSs than NGCC systems. Although ESSs do not appear to offer greater benefits than NGCC systems for managing energy on time intervals of 1-hour or more, we conclude that future research into short-term power balancing applications of ESSs, in particular for frequency regulation, is necessary to understand the full potential of ESSs in modern electric interconnections.
Discrete Semiconductor Device Reliability
1988-03-25
array or alphanumeric display. "--" indicates unknown diode count. Voc Open circuit voltage for photovoltaic modules . indicates unknown. Isc Short... circuit current for photovoltaic modules . "--" indicates unknown. Number Tested Quantity of parts under the described test or field conditions for that...information pertaining to electronic systems and parts used therein. The present scope includes integrated circuits , hybrids, discrete semiconductors
Ghirardelli, Alyssa; Quinn, Valerie; Sugerman, Sharon
2011-01-01
To develop a retail grocery instrument with weighted scoring to be used as an indicator of the food environment. Twenty six retail food stores in low-income areas in California. Observational. Inter-rater reliability for grocery store survey instrument. Description of store scoring methodology weighted to emphasize availability of healthful food. Type A intra-class correlation coefficients (ICC) with absolute agreement definition or a κ test for measures using ranges as categories. Measures of availability and price of fruits and vegetables performed well in reliability testing (κ = 0.681-0.800). Items for vegetable quality were better than for fruit (ICC 0.708 vs 0.528). Kappa scores indicated low to moderate agreement (0.372-0.674) on external store marketing measures and higher scores for internal store marketing. "Next to" the checkout counter was more reliable than "within 6 feet." Health departments using the store scoring system reported it as the most useful communication of neighborhood findings. There was good reliability of the measures among the research pairs. The local store scores can show the need to bring in resources and to provide access to fruits and vegetables and other healthful food. Copyright © 2011 Society for Nutrition Education. Published by Elsevier Inc. All rights reserved.
Photovoltaic-Powered Vaccine Refrigerator: Freezer Systems Field Test Results
NASA Technical Reports Server (NTRS)
Ratajczak, A. F.
1985-01-01
A project to develop and field test photovoltaic-powered refrigerator/freezers suitable for vaccine storage was undertaken. Three refrigerator/freezers were qualified; one by Solar Power Corp. and two by Solvolt. Follow-on contracts were awarded for 19 field test systems and for 10 field test systems. A total of 29 systems were installed in 24 countries between October 1981 and October 1984. The project, systems descriptions, installation experiences, performance data for the 22 systems for which field test data was reported, an operational reliability summary, and recommendations relative to system designs and future use of such systems are explained. Performance data indicate that the systems are highly reliable and are capable of maintaining proper vaccine storage temperatures in a wide range of climatological and user environments.
A hierarchical approach to reliability modeling of fault-tolerant systems. M.S. Thesis
NASA Technical Reports Server (NTRS)
Gossman, W. E.
1986-01-01
A methodology for performing fault tolerant system reliability analysis is presented. The method decomposes a system into its subsystems, evaluates vent rates derived from the subsystem's conditional state probability vector and incorporates those results into a hierarchical Markov model of the system. This is done in a manner that addresses failure sequence dependence associated with the system's redundancy management strategy. The method is derived for application to a specific system definition. Results are presented that compare the hierarchical model's unreliability prediction to that of a more complicated tandard Markov model of the system. The results for the example given indicate that the hierarchical method predicts system unreliability to a desirable level of accuracy while achieving significant computational savings relative to component level Markov model of the system.
Willingness to pay for safe drinking water: Evidence from Parral, Mexico.
Vásquez, William F; Mozumder, Pallab; Hernández-Arce, Jesús; Berrens, Robert P
2009-08-01
A referendum-format contingent valuation (CV) survey is used to elicit household willingness to pay responses for safe and reliable drinking water in Parral, Mexico. Households currently adopt a variety of averting and private investment choices (e.g., bottled water consumption, home-based water treatment, and installation of water storage facilities) to adapt to the existing water supply system. These revealed behaviors indicate the latent demand for safer and more reliable water services, which is corroborated by the CV survey evidence. Validity findings include significant scope sensitivity in WTP for water services. Further, results indicate that households are willing to pay from 1.8% to 7.55% of reported household income above their current water bill for safe and reliable drinking water services, depending upon the assumptions about response uncertainty.
NASA Technical Reports Server (NTRS)
Dunham, J. R. (Editor); Knight, J. C. (Editor)
1982-01-01
The state of the art in the production of crucial software for flight control applications was addressed. The association between reliability metrics and software is considered. Thirteen software development projects are discussed. A short term need for research in the areas of tool development and software fault tolerance was indicated. For the long term, research in format verification or proof methods was recommended. Formal specification and software reliability modeling, were recommended as topics for both short and long term research.
System principles, mathematical models and methods to ensure high reliability of safety systems
NASA Astrophysics Data System (ADS)
Zaslavskyi, V.
2017-04-01
Modern safety and security systems are composed of a large number of various components designed for detection, localization, tracking, collecting, and processing of information from the systems of monitoring, telemetry, control, etc. They are required to be highly reliable in a view to correctly perform data aggregation, processing and analysis for subsequent decision making support. On design and construction phases of the manufacturing of such systems a various types of components (elements, devices, and subsystems) are considered and used to ensure high reliability of signals detection, noise isolation, and erroneous commands reduction. When generating design solutions for highly reliable systems a number of restrictions and conditions such as types of components and various constrains on resources should be considered. Various types of components perform identical functions; however, they are implemented using diverse principles, approaches and have distinct technical and economic indicators such as cost or power consumption. The systematic use of different component types increases the probability of tasks performing and eliminates the common cause failure. We consider type-variety principle as an engineering principle of system analysis, mathematical models based on this principle, and algorithms for solving optimization problems of highly reliable safety and security systems design. Mathematical models are formalized in a class of two-level discrete optimization problems of large dimension. The proposed approach, mathematical models, algorithms can be used for problem solving of optimal redundancy on the basis of a variety of methods and control devices for fault and defects detection in technical systems, telecommunication networks, and energy systems.
Reliability demonstration test for load-sharing systems with exponential and Weibull components
Hu, Qingpei; Yu, Dan; Xie, Min
2017-01-01
Conducting a Reliability Demonstration Test (RDT) is a crucial step in production. Products are tested under certain schemes to demonstrate whether their reliability indices reach pre-specified thresholds. Test schemes for RDT have been studied in different situations, e.g., lifetime testing, degradation testing and accelerated testing. Systems designed with several structures are also investigated in many RDT plans. Despite the availability of a range of test plans for different systems, RDT planning for load-sharing systems hasn’t yet received the attention it deserves. In this paper, we propose a demonstration method for two specific types of load-sharing systems with components subject to two distributions: exponential and Weibull. Based on the assumptions and interpretations made in several previous works on such load-sharing systems, we set the mean time to failure (MTTF) of the total system as the demonstration target. We represent the MTTF as a summation of mean time between successive component failures. Next, we introduce generalized test statistics for both the underlying distributions. Finally, RDT plans for the two types of systems are established on the basis of these test statistics. PMID:29284030
Reliability demonstration test for load-sharing systems with exponential and Weibull components.
Xu, Jianyu; Hu, Qingpei; Yu, Dan; Xie, Min
2017-01-01
Conducting a Reliability Demonstration Test (RDT) is a crucial step in production. Products are tested under certain schemes to demonstrate whether their reliability indices reach pre-specified thresholds. Test schemes for RDT have been studied in different situations, e.g., lifetime testing, degradation testing and accelerated testing. Systems designed with several structures are also investigated in many RDT plans. Despite the availability of a range of test plans for different systems, RDT planning for load-sharing systems hasn't yet received the attention it deserves. In this paper, we propose a demonstration method for two specific types of load-sharing systems with components subject to two distributions: exponential and Weibull. Based on the assumptions and interpretations made in several previous works on such load-sharing systems, we set the mean time to failure (MTTF) of the total system as the demonstration target. We represent the MTTF as a summation of mean time between successive component failures. Next, we introduce generalized test statistics for both the underlying distributions. Finally, RDT plans for the two types of systems are established on the basis of these test statistics.
Savage, Jason W; Moore, Timothy A; Arnold, Paul M; Thakur, Nikhil; Hsu, Wellington K; Patel, Alpesh A; McCarthy, Kathryn; Schroeder, Gregory D; Vaccaro, Alexander R; Dimar, John R; Anderson, Paul A
2015-09-15
The thoracolumbar injury classification system (TLICS) was evaluated in 20 consecutive pediatric spine trauma cases. The purpose of this study was to determine the reliability and validity of the TLICS in pediatric spine trauma. The TLICS was developed to improve the categorization and management of thoracolumbar trauma. TLICS has been shown to have good reliability and validity in the adult population. The clinical and radiographical findings of 20 pediatric thoracolumbar fractures were prospectively presented to 20 surgeons with disparate levels of training and experience with spinal trauma. These injuries were consecutively scored using the TLICS. Cohen unweighted κ coefficients and Spearman rank order correlation values were calculated for the key parameters (injury morphology, status of posterior ligamentous complex, neurological status, TLICS total score, and proposed management) to assess the inter-rater reliabilities. Five surgeons scored the same cases 3 months later to assess the intra-rater reliability. The actual management of each case was then compared with the treatment recommended by the TLICS algorithm to assess validity. The inter-rater κ statistics of all subgroups (injury morphology, status of the posterior ligamentous complex, neurological status, TLICS total score, and proposed treatment) were within the range of moderate to substantial reproducibility (0.524-0.958). All subgroups had excellent intra-rater reliability (0.748-1.000). The various indices for validity were calculated (80.3% correct, 0.836 sensitivity, 0.785 specificity, 0.676 positive predictive value, 0.899 negative predictive value). Overall, TLICS demonstrated good validity. The TLICS has good reliability and validity when used in the pediatric population. The inter-rater reliability of predicting management and indices for validity are lower than those in adults with thoracolumbar fractures, which is likely due to differences in the way children are treated for certain types of injuries. TLICS can be used to reliably categorize thoracolumbar injuries in the pediatric population; however, modifications may be needed to better guide treatment in this specific patient population. 4.
Du, Han; Wang, Lijuan
2018-04-23
Intraindividual variability can be measured by the intraindividual standard deviation ([Formula: see text]), intraindividual variance ([Formula: see text]), estimated hth-order autocorrelation coefficient ([Formula: see text]), and mean square successive difference ([Formula: see text]). Unresolved issues exist in the research on reliabilities of intraindividual variability indicators: (1) previous research only studied conditions with 0 autocorrelations in the longitudinal responses; (2) the reliabilities of [Formula: see text] and [Formula: see text] have not been studied. The current study investigates reliabilities of [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and the intraindividual mean, with autocorrelated longitudinal data. Reliability estimates of the indicators were obtained through Monte Carlo simulations. The impact of influential factors on reliabilities of the intraindividual variability indicators is summarized, and the reliabilities are compared across the indicators. Generally, all the studied indicators of intraindividual variability were more reliable with a more reliable measurement scale and more assessments. The reliabilities of [Formula: see text] were generally lower than those of [Formula: see text] and [Formula: see text], the reliabilities of [Formula: see text] were usually between those of [Formula: see text] and [Formula: see text] unless the scale reliability was large and/or the interindividual standard deviation in autocorrelation coefficients was large, and the reliabilities of the intraindividual mean were generally the highest. An R function is provided for planning longitudinal studies to ensure sufficient reliabilities of the intraindividual indicators are achieved.
High rate concatenated coding systems using bandwidth efficient trellis inner codes
NASA Technical Reports Server (NTRS)
Deng, Robert H.; Costello, Daniel J., Jr.
1989-01-01
High-rate concatenated coding systems with bandwidth-efficient trellis inner codes and Reed-Solomon (RS) outer codes are investigated for application in high-speed satellite communication systems. Two concatenated coding schemes are proposed. In one the inner code is decoded with soft-decision Viterbi decoding, and the outer RS code performs error-correction-only decoding (decoding without side information). In the other, the inner code is decoded with a modified Viterbi algorithm, which produces reliability information along with the decoded output. In this algorithm, path metrics are used to estimate the entire information sequence, whereas branch metrics are used to provide reliability information on the decoded sequence. This information is used to erase unreliable bits in the decoded output. An errors-and-erasures RS decoder is then used for the outer code. The two schemes have been proposed for high-speed data communication on NASA satellite channels. The rates considered are at least double those used in current NASA systems, and the results indicate that high system reliability can still be achieved.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Testing. 62.30-10 Section 62.30-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING VITAL SYSTEM AUTOMATION Reliability and Safety... override safety trip control systems. This equipment must indicate when it is active. ...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Testing. 62.30-10 Section 62.30-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING VITAL SYSTEM AUTOMATION Reliability and Safety... override safety trip control systems. This equipment must indicate when it is active. ...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Testing. 62.30-10 Section 62.30-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING VITAL SYSTEM AUTOMATION Reliability and Safety... override safety trip control systems. This equipment must indicate when it is active. ...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Testing. 62.30-10 Section 62.30-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING VITAL SYSTEM AUTOMATION Reliability and Safety... override safety trip control systems. This equipment must indicate when it is active. ...
NASA Astrophysics Data System (ADS)
Akhmetova, I. G.; Chichirova, N. D.
2016-12-01
Heat supply is the most energy-consuming sector of the economy. Approximately 30% of all used primary fuel-and-energy resources is spent on municipal heat-supply needs. One of the key indicators of activity of heat-supply organizations is the reliability of an energy facility. The reliability index of a heat supply organization is of interest to potential investors for assessing risks when investing in projects. The reliability indices established by the federal legislation are actually reduced to a single numerical factor, which depends on the number of heat-supply outages in connection with disturbances in operation of heat networks and the volume of their resource recovery in the calculation year. This factor is rather subjective and may change in a wide range during several years. A technique is proposed for evaluating the reliability of heat-supply organizations with the use of the simple additive weighting (SAW) method. The technique for integrated-index determination satisfies the following conditions: the reliability level of the evaluated heat-supply system is represented maximum fully and objectively; the information used for the reliability-index evaluation is easily available (is located on the Internet in accordance with demands of data-disclosure standards). For reliability estimation of heat-supply organizations, the following indicators were selected: the wear of equipment of thermal energy sources, the wear of heat networks, the number of outages of supply of thermal energy (heat carrier due to technological disturbances on heat networks per 1 km of heat networks), the number of outages of supply of thermal energy (heat carrier due to technologic disturbances on thermal energy sources per 1 Gcal/h of installed power), the share of expenditures in the cost of thermal energy aimed at recovery of the resource (renewal of fixed assets), coefficient of renewal of fixed assets, and a coefficient of fixed asset retirement. A versatile program is developed and the analysis of heat-supply organizations is performed by the example of the Republic of Tatarstan. The assessment system is based on construction of comparative ratings of heat-supply organizations. A rating is the assessment of reliability of the organization, is characterized by a numerical value, and makes it possible to compare organizations engaged in the same kind of activity between each other.
Mohamad Marzuki, Muhamad Fadhil; Yaacob, Nor Azwany; Yaacob, Najib Majdi
2018-05-14
A mobile app is a programmed system designed to be used by a target user on a mobile device. The usability of such a system refers not only to the extent to which product can be used to achieve the task that it was designed for, but also its effectiveness and efficiency, as well as user satisfaction. The System Usability Scale is one of the most commonly used questionnaires used to assess the usability of a system. The original 10-item version of System Usability Scale was developed in English and thus needs to be adapted into local languages to assess the usability of a mobile apps developed in other languages. The aim of this study is to translate and validate (with cross-cultural adaptation) the English System Usability Scale questionnaire into Malay, the main language spoken in Malaysia. The development of a translated version will allow the usability of mobile apps to be assessed in Malay. Forward and backward translation of the questionnaire was conducted by groups of Malay native speakers who spoke English as their second language. The final version was obtained after reconciliation and cross-cultural adaptation. The content of the Malay System Usability Scale questionnaire for mobile apps was validated by 10 experts in mobile app development. The efficacy of the questionnaire was further probed by testing the face validity on 10 mobile phone users, followed by reliability testing involving 54 mobile phone users. The content validity index was determined to be 0.91, indicating good relevancy of the 10 items used to assess the usability of a mobile app. Calculation of the face validity index resulted in a value of 0.94, therefore indicating that the questionnaire was easily understood by the users. Reliability testing showed a Cronbach alpha value of .85 (95% CI 0.79-0.91) indicating that the translated System Usability Scale questionnaire is a reliable tool for the assessment of usability of a mobile app. The Malay System Usability Scale questionnaire is a valid and reliable tool to assess the usability of mobile app in Malaysia. ©Muhamad Fadhil Mohamad Marzuki, Nor Azwany Yaacob, Najib Majdi Yaacob. Originally published in JMIR Human Factors (http://humanfactors.jmir.org), 14.05.2018.
The Draw-A-Person Test: an indicator of children's cognitive and socioemotional adaptation?
ter Laak, J; de Goede, M; Aleva, A; van Rijswijk, P
2005-03-01
The authors examined aspects of reliability and validity of the Goodenough-Harris Draw-A-Person Test (DAP; D. B. Harris, 1963). The participants were 115 seven- to nine-year-old students attending regular or special education schools. Three judges, with a modest degree of training similar to that found among practicing clinicians, rated the students' human figure drawings on developmental and personality variables. The authors found that counting details and determining developmental level in the DAP test could be carried out reliably by judges with limited experience. However, the reliability of judgments of children's social and emotional development and personality was insufficient. Older students and students attending regular schools received significantly higher scores than did younger students or students attending special education schools. The authors found that the success of the DAP test as an indicator of cognitive level, socioemotional development, and personality is limited when global judgments are used. The authors concluded that more specific, reliable, valid, and useful scoring systems are needed for the DAP test.
Water Loss Reduction as the Basis of Good Water Supply Companies' Management
NASA Astrophysics Data System (ADS)
Ociepa-Kubicka, Agnieszka; Wilczak, Krzysztof
2017-10-01
Companies using water distribution systems to reduce the operating costs and increase the reliability of water supply systems, as well as to protect disposable water resources, must search for ways to reduce water losses. The article points out the economic and environmental aspects of water losses. The possibilities of using international water loss assessment standards have been analysed. The reflections presented in the paper refer to the current trends and world standards in the field of water distribution systems management. The article presents the results and analysis of water losses for the water supply network operated by the Water Supply and Sewerage Company in Gliwice (Przedsiębiorstwo Wodociągów i Kanalizacji w Gliwicach, PWiK). The losses were determined on the basis of numerous indicators and compared with other distribution systems. At present, most indicators of water loss are at a very good or good level. The Infrastructure Leakage Index (ILI), as one of the most reliable loss indicators for the surveyed distribution system, assumed values from 3.33 in 2012 to 2.06 in 2015. The recent drop in ILI values indicates the effectiveness of the Company's strategy for water leakage reduction. The success comprises a number of undertakings, such as ongoing monitoring, pressure reduction and stabilisation, repairs and replacement of the most emergency wires.
Reliability optimization design of the gear modification coefficient based on the meshing stiffness
NASA Astrophysics Data System (ADS)
Wang, Qianqian; Wang, Hui
2018-04-01
Since the time varying meshing stiffness of gear system is the key factor affecting gear vibration, it is important to design the meshing stiffness to reduce vibration. Based on the effect of gear modification coefficient on the meshing stiffness, considering the random parameters, reliability optimization design of the gear modification is researched. The dimension reduction and point estimation method is used to estimate the moment of the limit state function, and the reliability is obtained by the forth moment method. The cooperation of the dynamic amplitude results before and after optimization indicates that the research is useful for the reduction of vibration and noise and the improvement of the reliability.
ERIC Educational Resources Information Center
Ghirardelli, Alyssa; Quinn, Valerie; Sugerman, Sharon
2011-01-01
Objective: To develop a retail grocery instrument with weighted scoring to be used as an indicator of the food environment. Participants/Setting: Twenty six retail food stores in low-income areas in California. Intervention: Observational. Main Outcome Measure(s): Inter-rater reliability for grocery store survey instrument. Description of store…
Corbellini, Carlo; Andreoni, Bruno; Ansaloni, Luca; Sgroi, Giovanni; Martinotti, Mario; Scandroglio, Ildo; Carzaniga, Pierluigi; Longoni, Mauro; Foschi, Diego; Dionigi, Paolo; Morandi, Eugenio; Agnello, Mauro
2018-01-01
Measurement and monitoring of the quality of care using a core set of quality measures are increasing in health service research. Although administrative databases include limited clinical data, they offer an attractive source for quality measurement. The purpose of this study, therefore, was to evaluate the completeness of different administrative data sources compared to a clinical survey in evaluating rectal cancer cases. Between May 2012 and November 2014, a clinical survey was done on 498 Lombardy patients who had rectal cancer and underwent surgical resection. These collected data were compared with the information extracted from administrative sources including Hospital Discharge Dataset, drug database, daycare activity data, fee-exemption database, and regional screening program database. The agreement evaluation was performed using a set of 12 quality indicators. Patient complexity was a difficult indicator to measure for lack of clinical data. Preoperative staging was another suboptimal indicator due to the frequent missing administrative registration of tests performed. The agreement between the 2 data sources regarding chemoradiotherapy treatments was high. Screening detection, minimally invasive techniques, length of stay, and unpreventable readmissions were detected as reliable quality indicators. Postoperative morbidity could be a useful indicator but its agreement was lower, as expected. Healthcare administrative databases are large and real-time collected repositories of data useful in measuring quality in a healthcare system. Our investigation reveals that the reliability of indicators varies between them. Ideally, a combination of data from both sources could be used in order to improve usefulness of less reliable indicators.
Preliminary candidate advanced avionics system for general aviation
NASA Technical Reports Server (NTRS)
Mccalla, T. M.; Grismore, F. L.; Greatline, S. E.; Birkhead, L. M.
1977-01-01
An integrated avionics system design was carried out to the level which indicates subsystem function, and the methods of overall system integration. Sufficient detail was included to allow identification of possible system component technologies, and to perform reliability, modularity, maintainability, cost, and risk analysis upon the system design. Retrofit to older aircraft, availability of this system to the single engine two place aircraft, was considered.
Technique for Early Reliability Prediction of Software Components Using Behaviour Models
Ali, Awad; N. A. Jawawi, Dayang; Adham Isa, Mohd; Imran Babar, Muhammad
2016-01-01
Behaviour models are the most commonly used input for predicting the reliability of a software system at the early design stage. A component behaviour model reveals the structure and behaviour of the component during the execution of system-level functionalities. There are various challenges related to component reliability prediction at the early design stage based on behaviour models. For example, most of the current reliability techniques do not provide fine-grained sequential behaviour models of individual components and fail to consider the loop entry and exit points in the reliability computation. Moreover, some of the current techniques do not tackle the problem of operational data unavailability and the lack of analysis results that can be valuable for software architects at the early design stage. This paper proposes a reliability prediction technique that, pragmatically, synthesizes system behaviour in the form of a state machine, given a set of scenarios and corresponding constraints as input. The state machine is utilized as a base for generating the component-relevant operational data. The state machine is also used as a source for identifying the nodes and edges of a component probabilistic dependency graph (CPDG). Based on the CPDG, a stack-based algorithm is used to compute the reliability. The proposed technique is evaluated by a comparison with existing techniques and the application of sensitivity analysis to a robotic wheelchair system as a case study. The results indicate that the proposed technique is more relevant at the early design stage compared to existing works, and can provide a more realistic and meaningful prediction. PMID:27668748
Development of the Systems Thinking Scale for Adolescent Behavior Change.
Moore, Shirley M; Komton, Vilailert; Adegbite-Adeniyi, Clara; Dolansky, Mary A; Hardin, Heather K; Borawski, Elaine A
2018-03-01
This report describes the development and psychometric testing of the Systems Thinking Scale for Adolescent Behavior Change (STS-AB). Following item development, initial assessments of understandability and stability of the STS-AB were conducted in a sample of nine adolescents enrolled in a weight management program. Exploratory factor analysis of the 16-item STS-AB and internal consistency assessments were then done with 359 adolescents enrolled in a weight management program. Test-retest reliability of the STS-AB was .71, p = .03; internal consistency reliability was .87. Factor analysis of the 16-item STS-AB indicated a one-factor solution with good factor loadings, ranging from .40 to .67. Evidence of construct validity was supported by significant correlations with established measures of variables associated with health behavior change. We provide beginning evidence of the reliability and validity of the STS-AB to measure systems thinking for health behavior change in young adolescents.
Development of the Systems Thinking Scale for Adolescent Behavior Change
Moore, Shirley M.; Komton, Vilailert; Adegbite-Adeniyi, Clara; Dolansky, Mary A.; Hardin, Heather K.; Borawski, Elaine A.
2017-01-01
This report describes the development and psychometric testing of the Systems Thinking Scale for Adolescent Behavior Change (STS-AB). Following item development, initial assessments of understandability and stability of the STS-AB were conducted in a sample of nine adolescents enrolled in a weight management program. Exploratory factor analysis of the 16-item STS-AB and internal consistency assessments were then done with 359 adolescents enrolled in a weight management program. Test–retest reliability of the STS-AB was .71, p = .03; internal consistency reliability was .87. Factor analysis of the 16-item STS-AB indicated a one-factor solution with good factor loadings, ranging from .40 to .67. Evidence of construct validity was supported by significant correlations with established measures of variables associated with health behavior change. We provide beginning evidence of the reliability and validity of the STS-AB to measure systems thinking for health behavior change in young adolescents. PMID:28303755
NASA trend analysis procedures
NASA Technical Reports Server (NTRS)
1993-01-01
This publication is primarily intended for use by NASA personnel engaged in managing or implementing trend analysis programs. 'Trend analysis' refers to the observation of current activity in the context of the past in order to infer the expected level of future activity. NASA trend analysis was divided into 5 categories: problem, performance, supportability, programmatic, and reliability. Problem trend analysis uncovers multiple occurrences of historical hardware or software problems or failures in order to focus future corrective action. Performance trend analysis observes changing levels of real-time or historical flight vehicle performance parameters such as temperatures, pressures, and flow rates as compared to specification or 'safe' limits. Supportability trend analysis assesses the adequacy of the spaceflight logistics system; example indicators are repair-turn-around time and parts stockage levels. Programmatic trend analysis uses quantitative indicators to evaluate the 'health' of NASA programs of all types. Finally, reliability trend analysis attempts to evaluate the growth of system reliability based on a decreasing rate of occurrence of hardware problems over time. Procedures for conducting all five types of trend analysis are provided in this publication, prepared through the joint efforts of the NASA Trend Analysis Working Group.
41 CFR 102-80.110 - What must an equivalent level of safety analysis indicate?
Code of Federal Regulations, 2014 CFR
2014-01-01
..., and reliability of all building systems impacting fire growth, occupant knowledge of the fire, and... Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION REAL PROPERTY 80-SAFETY AND ENVIRONMENTAL MANAGEMENT Accident and Fire Prevention Equivalent Level of Safety...
41 CFR 102-80.110 - What must an equivalent level of safety analysis indicate?
Code of Federal Regulations, 2013 CFR
2013-07-01
..., and reliability of all building systems impacting fire growth, occupant knowledge of the fire, and... Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION REAL PROPERTY 80-SAFETY AND ENVIRONMENTAL MANAGEMENT Accident and Fire Prevention Equivalent Level of Safety...
41 CFR 102-80.110 - What must an equivalent level of safety analysis indicate?
Code of Federal Regulations, 2011 CFR
2011-01-01
..., and reliability of all building systems impacting fire growth, occupant knowledge of the fire, and... Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION REAL PROPERTY 80-SAFETY AND ENVIRONMENTAL MANAGEMENT Accident and Fire Prevention Equivalent Level of Safety...
41 CFR 102-80.110 - What must an equivalent level of safety analysis indicate?
Code of Federal Regulations, 2012 CFR
2012-01-01
..., and reliability of all building systems impacting fire growth, occupant knowledge of the fire, and... Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION REAL PROPERTY 80-SAFETY AND ENVIRONMENTAL MANAGEMENT Accident and Fire Prevention Equivalent Level of Safety...
System Maturity Indices for Decision Support in the Defense Acquisition Process
2008-04-23
technologies, but was to be used as ontology for contracting support (Sadin, Povinelli , & Rosen, 1989), thus TRL does not address: A complete...via probabilistic solution discovery. Reliability Engineering & System Safety. In press. Sadin, S.R., Povinelli , F.P., & Rosen, R. (1989). The NASA
Identification of the contribution of the ankle and hip joints to multi-segmental balance control
2013-01-01
Background Human stance involves multiple segments, including the legs and trunk, and requires coordinated actions of both. A novel method was developed that reliably estimates the contribution of the left and right leg (i.e., the ankle and hip joints) to the balance control of individual subjects. Methods The method was evaluated using simulations of a double-inverted pendulum model and the applicability was demonstrated with an experiment with seven healthy and one Parkinsonian participant. Model simulations indicated that two perturbations are required to reliably estimate the dynamics of a double-inverted pendulum balance control system. In the experiment, two multisine perturbation signals were applied simultaneously. The balance control system dynamic behaviour of the participants was estimated by Frequency Response Functions (FRFs), which relate ankle and hip joint angles to joint torques, using a multivariate closed-loop system identification technique. Results In the model simulations, the FRFs were reliably estimated, also in the presence of realistic levels of noise. In the experiment, the participants responded consistently to the perturbations, indicated by low noise-to-signal ratios of the ankle angle (0.24), hip angle (0.28), ankle torque (0.07), and hip torque (0.33). The developed method could detect that the Parkinson patient controlled his balance asymmetrically, that is, the right ankle and hip joints produced more corrective torque. Conclusion The method allows for a reliable estimate of the multisegmental feedback mechanism that stabilizes stance, of individual participants and of separate legs. PMID:23433148
Lee, Myungmo; Song, Changho; Lee, Kyoungjin; Shin, Doochul; Shin, Seungho
2014-07-14
Treadmill gait analysis was more advantageous than over-ground walking because it allowed continuous measurements of the gait parameters. The purpose of this study was to investigate the concurrent validity and the test-retest reliability of the OPTOGait photoelectric cell system against the treadmill-based gait analysis system by assessing spatio-temporal gait parameters. Twenty-six stroke patients and 18 healthy adults were asked to walk on the treadmill at their preferred speed. The concurrent validity was assessed by comparing data obtained from the 2 systems, and the test-retest reliability was determined by comparing data obtained from the 1st and the 2nd session of the OPTOGait system. The concurrent validity, identified by the intra-class correlation coefficients (ICC [2, 1]), coefficients of variation (CVME), and 95% limits of agreement (LOA) for the spatial-temporal gait parameters, were excellent but the temporal parameters expressed as a percentage of the gait cycle were poor. The test-retest reliability of the OPTOGait System, identified by ICC (3, 1), CVME, 95% LOA, standard error of measurement (SEM), and minimum detectable change (MDC95%) for the spatio-temporal gait parameters, was high. These findings indicated that the treadmill-based OPTOGait System had strong concurrent validity and test-retest reliability. This portable system could be useful for clinical assessments.
Reliability Validation and Improvement Framework
2012-11-01
systems . Steps in that direction include the use of the Architec- ture Tradeoff Analysis Method ® (ATAM®) developed at the Carnegie Mellon...embedded software • cyber - physical systems (CPSs) to indicate that the embedded software interacts with, manag - es, and controls a physical system [Lee...the use of formal static analysis methods to increase our confidence in system operation beyond testing. However, analysis results
ERIC Educational Resources Information Center
Martínez, José Felipe; Schweig, Jonathan; Goldschmidt, Pete
2016-01-01
A key question facing teacher evaluation systems is how to combine multiple measures of complex constructs into composite indicators of performance. We use data from the Measures of Effective Teaching (MET) study to investigate the measurement properties of composite indicators obtained under various conjunctive, disjunctive (or complementary),…
Probabilistic resource allocation system with self-adaptive capability
NASA Technical Reports Server (NTRS)
Yufik, Yan M. (Inventor)
1996-01-01
A probabilistic resource allocation system is disclosed containing a low capacity computational module (Short Term Memory or STM) and a self-organizing associative network (Long Term Memory or LTM) where nodes represent elementary resources, terminal end nodes represent goals, and directed links represent the order of resource association in different allocation episodes. Goals and their priorities are indicated by the user, and allocation decisions are made in the STM, while candidate associations of resources are supplied by the LTM based on the association strength (reliability). Reliability values are automatically assigned to the network links based on the frequency and relative success of exercising those links in the previous allocation decisions. Accumulation of allocation history in the form of an associative network in the LTM reduces computational demands on subsequent allocations. For this purpose, the network automatically partitions itself into strongly associated high reliability packets, allowing fast approximate computation and display of allocation solutions satisfying the overall reliability and other user-imposed constraints. System performance improves in time due to modification of network parameters and partitioning criteria based on the performance feedback.
Reliability history of the Apollo guidance computer
NASA Technical Reports Server (NTRS)
Hall, E. C.
1972-01-01
The Apollo guidance computer was designed to provide the computation necessary for guidance, navigation and control of the command module and the lunar landing module of the Apollo spacecraft. The computer was designed using the technology of the early 1960's and the production was completed by 1969. During the development, production, and operational phase of the program, the computer has accumulated a very interesting history which is valuable for evaluating the technology, production methods, system integration, and the reliability of the hardware. The operational experience in the Apollo guidance systems includes 17 computers which flew missions and another 26 flight type computers which are still in various phases of prelaunch activity including storage, system checkout, prelaunch spacecraft checkout, etc. These computers were manufactured and maintained under very strict quality control procedures with requirements for reporting and analyzing all indications of failure. Probably no other computer or electronic equipment with equivalent complexity has been as well documented and monitored. Since it has demonstrated a unique reliability history, it is important to evaluate the techniques and methods which have contributed to the high reliability of this computer.
Farrington, R.B.; Pruett, J.C. Jr.
1984-05-14
A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.
Farrington, Robert B.; Pruett, Jr., James C.
1986-01-01
A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.
On the reliability of seasonal climate forecasts.
Weisheimer, A; Palmer, T N
2014-07-06
Seasonal climate forecasts are being used increasingly across a range of application sectors. A recent UK governmental report asked: how good are seasonal forecasts on a scale of 1-5 (where 5 is very good), and how good can we expect them to be in 30 years time? Seasonal forecasts are made from ensembles of integrations of numerical models of climate. We argue that 'goodness' should be assessed first and foremost in terms of the probabilistic reliability of these ensemble-based forecasts; reliable inputs are essential for any forecast-based decision-making. We propose that a '5' should be reserved for systems that are not only reliable overall, but where, in particular, small ensemble spread is a reliable indicator of low ensemble forecast error. We study the reliability of regional temperature and precipitation forecasts of the current operational seasonal forecast system of the European Centre for Medium-Range Weather Forecasts, universally regarded as one of the world-leading operational institutes producing seasonal climate forecasts. A wide range of 'goodness' rankings, depending on region and variable (with summer forecasts of rainfall over Northern Europe performing exceptionally poorly) is found. Finally, we discuss the prospects of reaching '5' across all regions and variables in 30 years time.
Risk-Based Neuro-Grid Architecture for Multimodal Biometrics
NASA Astrophysics Data System (ADS)
Venkataraman, Sitalakshmi; Kulkarni, Siddhivinayak
Recent research indicates that multimodal biometrics is the way forward for a highly reliable adoption of biometric identification systems in various applications, such as banks, businesses, government and even home environments. However, such systems would require large distributed datasets with multiple computational realms spanning organisational boundaries and individual privacies.
NASA Technical Reports Server (NTRS)
Bolotin, Gary; Everline, Chet; Schmitz, Paul; Distefano, Sal
2014-01-01
This study will look at the 140 We class generator as originally envisioned for the ASRG and a larger generator that is scaled up to use four times the fuel. The results discussed below quantify the effect of the use of smaller generators and indicates that a scheme that makes use of several smaller generators enhances the system reliability and allows for more graceful degradation.
Berger, Aaron J; Momeni, Arash; Ladd, Amy L
2014-04-01
Trapeziometacarpal, or thumb carpometacarpal (CMC), arthritis is a common problem with a variety of treatment options. Although widely used, the Eaton radiographic staging system for CMC arthritis is of questionable clinical utility, as disease severity does not predictably correlate with symptoms or treatment recommendations. A possible reason for this is that the classification itself may not be reliable, but the literature on this has not, to our knowledge, been systematically reviewed. We therefore performed a systematic review to determine the intra- and interobserver reliability of the Eaton staging system. We systematically reviewed English-language studies published between 1973 and 2013 to assess the degree of intra- and interobserver reliability of the Eaton classification for determining the stage of trapeziometacarpal joint arthritis and pantrapezial arthritis based on plain radiographic imaging. Search engines included: PubMed, Scopus(®), and CINAHL. Four studies, which included a total of 163 patients, met our inclusion criteria and were evaluated. The level of evidence of the studies included in this analysis was determined using the Oxford Centre for Evidence Based Medicine Levels of Evidence Classification by two independent observers. A limited number of studies have been performed to assess intra- and interobserver reliability of the Eaton classification system. The four studies included were determined to be Level 3b. These studies collectively indicate that the Eaton classification demonstrates poor to fair interobserver reliability (kappa values: 0.11-0.56) and fair to moderate intraobserver reliability (kappa values: 0.54-0.657). Review of the literature demonstrates that radiographs assist in the assessment of CMC joint disease, but there is not a reliable system for classification of disease severity. Currently, diagnosis and treatment of thumb CMC arthritis are based on the surgeon's qualitative assessment combining history, physical examination, and radiographic evaluation. Inconsistent agreement using the current common radiographic classification system suggests a need for better radiographic tools to quantify disease severity.
Losa-Iglesias, Marta Elena; Becerro-de-Bengoa-Vallejo, Ricardo; Becerro-de-Bengoa-Losa, Klark Ricardo
2016-06-01
There are downloadable applications (Apps) for cell phones that can measure heart rate in a simple and painless manner. The aim of this study was to assess the reliability of this type of App for a Smartphone using an Android system, compared to the radial pulse and a portable pulse oximeter. We performed a pilot observational study of diagnostic accuracy, randomized in 46 healthy volunteers. The patients' demographic data and cardiac pulse were collected. Radial pulse was measured by palpation of the radial artery with three fingers at the wrist over the radius; a low-cost portable, liquid crystal display finger pulse oximeter; and a Heart Rate Plus for Samsung Galaxy Note®. This study demonstrated high reliability and consistency between systems with respect to the heart rate parameter of healthy adults using three systems. For all parameters, ICC was > 0.93, indicating excellent reliability. Moreover, CVME values for all parameters were between 1.66-4.06 %. We found significant correlation coefficients and no systematic differences between radial pulse palpation and pulse oximeter and a high precision. Low-cost pulse oximeter and App systems can serve as valid instruments for the assessment of heart rate in healthy adults. © The Author(s) 2014.
Validity and reliability of the Ergomopro powermeter.
Kirkland, A; Coleman, D; Wiles, J D; Hopker, J
2008-11-01
The aim of this investigation was to assess the validity and reliability of the Ergomopro powermeter. Nine participants completed trials on a Monark ergometer fitted with Ergomopro and SRM powermeters simultaneously recording power output. Each participant completed multiple trials at power outputs ranging from 50 to 450 W. The work stages recorded were 60 s in duration and were repeated three times. Participants also completed a single trial on a cycle ergometer designed to assess bilateral contributions to work output (Lode Excaliber Sport PFM). The power output during the trials was significantly different between all three systems, (p < 0.01) 231.2 +/- 114.2 W, 233.0 +/- 112.4 W, 227.8 +/- 108.8 W for the Monark, SRM and Ergomopro system, respectively. When the bilateral contributions were factored into the analysis, there were no significant differences between the powermeters (p = 0.58). The reliability of the Ergomopro system (CV%) was 2.31 % (95 % CI 2.13 - 2.52 %) compared to 1.59 % (95 % CI 1.47 to 1.74 %) for the Monark, and 1.37 % (95 % CI 1.26 - 1.50 %) for the SRM powermeter. These results indicate that the Ergomopro system has acceptable accuracy under these conditions. However, based on the reliability data, the increased variability of the Ergomopro system and bilateral balance issues have to be considered when using this device.
Reliable Change and Outcome Trajectories Across Levels of Care in a Mental Health System for Youth.
Jackson, David S; Keir, Scott S; Sender, Max; Mueller, Charles W
2017-01-01
Knowledge of mental health treatment outcome trajectories across various service types can be valuable for both system- and client-level decision-making. Using longitudinal youth functional impairment scores across 2807 treatment episodes, this study examined outcome trajectories and estimated the number of months required for reliable change across nine major services (or levels of care). Results indicate logarithmic improvement trajectories for a majority of levels of care and significant differences in time until improvement ranging from 4 to 12 months. Findings can guide system-level policies on lengths of treatment and service authorizations and provide expected treatment response data for client-level treatment decisions.
NASA Technical Reports Server (NTRS)
Martin, Ken E.; Esztergalyos, J.
1992-01-01
The Bonneville Power Administration (BPA) uses IRIG-B transmitted over microwave as its primary system time dissemination. Problems with accuracy and reliability have led to ongoing research into better methods. BPA has also developed and deployed a unique fault locator which uses precise clocks synchronized by a pulse over microwaves. It automatically transmits the data to a central computer for analysis. A proposed system could combine fault location timing and time dissemination into a Global Position System (GPS) timing receiver and close the verification loop through a master station at the Dittmer Control Center. Such a system would have many advantages, including lower cost, higher reliability, and wider industry support. Test results indicate the GPS has sufficient accuracy and reliability for this and other current timing requirements including synchronous phase angle measurements. A phasor measurement system which provides phase angle has recently been tested with excellent results. Phase angle is a key parameter in power system control applications including dynamic braking, DC modulation, remedial action schemes, and system state estimation. Further research is required to determine the applications which can most effectively use real-time phase angle measurements and the best method to apply them.
NASA Astrophysics Data System (ADS)
Martin, Ken E.; Esztergalyos, J.
1992-07-01
The Bonneville Power Administration (BPA) uses IRIG-B transmitted over microwave as its primary system time dissemination. Problems with accuracy and reliability have led to ongoing research into better methods. BPA has also developed and deployed a unique fault locator which uses precise clocks synchronized by a pulse over microwaves. It automatically transmits the data to a central computer for analysis. A proposed system could combine fault location timing and time dissemination into a Global Position System (GPS) timing receiver and close the verification loop through a master station at the Dittmer Control Center. Such a system would have many advantages, including lower cost, higher reliability, and wider industry support. Test results indicate the GPS has sufficient accuracy and reliability for this and other current timing requirements including synchronous phase angle measurements. A phasor measurement system which provides phase angle has recently been tested with excellent results. Phase angle is a key parameter in power system control applications including dynamic braking, DC modulation, remedial action schemes, and system state estimation. Further research is required to determine the applications which can most effectively use real-time phase angle measurements and the best method to apply them.
On the reliable use of satellite-derived surface water products for global flood monitoring
NASA Astrophysics Data System (ADS)
Hirpa, F. A.; Revilla-Romero, B.; Thielen, J.; Salamon, P.; Brakenridge, R.; Pappenberger, F.; de Groeve, T.
2015-12-01
Early flood warning and real-time monitoring systems play a key role in flood risk reduction and disaster response management. To this end, real-time flood forecasting and satellite-based detection systems have been developed at global scale. However, due to the limited availability of up-to-date ground observations, the reliability of these systems for real-time applications have not been assessed in large parts of the globe. In this study, we performed comparative evaluations of the commonly used satellite-based global flood detections and operational flood forecasting system using 10 major flood cases reported over three years (2012-2014). Specially, we assessed the flood detection capabilities of the near real-time global flood maps from the Global Flood Detection System (GFDS), and from the Moderate Resolution Imaging Spectroradiometer (MODIS), and the operational forecasts from the Global Flood Awareness System (GloFAS) for the major flood events recorded in global flood databases. We present the evaluation results of the global flood detection and forecasting systems in terms of correctly indicating the reported flood events and highlight the exiting limitations of each system. Finally, we propose possible ways forward to improve the reliability of large scale flood monitoring tools.
The interrater reliability of DSM III in children.
Werry, J S; Methven, R J; Fitzpatrick, J; Dixon, H
1983-09-01
A total of 195 admissions to a child psychiatric inpatient unit were diagnosed independently by two to four clinicians on the basis of case presentations at the first ward-round after admission. The DSM III as a whole and the major categories were of high or acceptable reliability, though a few were clearly unreliable. The results are generally consistent with other studies. Unlike other studies, the subcategories were examined and found to vary widely in reliability both as a whole across the system and within parent major categories, throwing considerable doubt upon their utility. The results indicate the need both for improved diagnostic data-gathering techniques in child psychiatry and for more better-designed studies of reliability and, most necessarily, of validity.
Teaching More by Grading Less (or Differently).
Schinske, Jeffrey; Tanner, Kimberly
2014-01-01
When we consider the practically universal use in all educational institutions of a system of marks, whether numbers or letters, to indicate scholastic attainment of the pupils or students in these institutions, and when we remember how very great stress is laid by teachers and pupils alike upon these marks as real measures or indicators of attainment, we can but be astonished att he blind faith that has been felt in the reliability of the marking systems.
Robustness of Synchrony in Complex Networks and Generalized Kirchhoff Indices
NASA Astrophysics Data System (ADS)
Tyloo, M.; Coletta, T.; Jacquod, Ph.
2018-02-01
In network theory, a question of prime importance is how to assess network vulnerability in a fast and reliable manner. With this issue in mind, we investigate the response to external perturbations of coupled dynamical systems on complex networks. We find that for specific, nonaveraged perturbations, the response of synchronous states depends on the eigenvalues of the stability matrix of the unperturbed dynamics, as well as on its eigenmodes via their overlap with the perturbation vector. Once averaged over properly defined ensembles of perturbations, the response is given by new graph topological indices, which we introduce as generalized Kirchhoff indices. These findings allow for a fast and reliable method for assessing the specific or average vulnerability of a network against changing operational conditions, faults, or external attacks.
Beyond the buildingcentric approach: A vision for an integrated evaluation of sustainable buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conte, Emilia, E-mail: conte@poliba.it; Monno, Valeria, E-mail: vmonno@poliba.it
2012-04-15
The available sustainable building evaluation systems have produced a new environmental design paradigm. However, there is an increasing need to overcome the buildingcentric approach of these systems, in order to further exploit their innovate potential for sustainable building practices. The paper takes this challenge by developing a cross-scale evaluation approach focusing on the reliability of sustainable building design solutions for the context in which the building is situated. An integrated building-urban evaluation model is proposed based on the urban matrix, which is a conceptualisation of the built environment as a social-ecological system. The model aims at evaluating the sustainability ofmore » a building considering it as an active entity contributing to the resilience of the urban matrix. Few holistic performance indicators are used for evaluating such contribution, so expressing the building reliability. The discussion on the efficacy of the model shows that it works as a heuristic tool, supporting the acquisition of a better insight into the complexity which characterises the relationships between the building and the built environment sustainability. Shading new lights on the meaning of sustainable buildings, the model can play a positive role in innovating sustainable building design practices, thus complementing current evaluation systems. - Highlights: Black-Right-Pointing-Pointer We model an integrated building-urban evaluation approach. Black-Right-Pointing-Pointer The urban matrix represents the social-ecological functioning of the urban context. Black-Right-Pointing-Pointer We introduce the concept of reliability to evaluate sustainable buildings. Black-Right-Pointing-Pointer Holistic indicators express the building reliability. Black-Right-Pointing-Pointer The evaluation model works as heuristic tool and complements other tools.« less
Ford, Sarah; Hall, Angela
2004-09-01
The Medical Interaction Process System (MIPS) was originally developed in order to create a reliable observation tool for analysing doctor-patient encounters in the oncology setting. This paper reports a series of analyses carried out to establish whether the behaviour categories of the MIPS can discriminate between skilled and less skilled communicators. This involved the use of MIPS coded cancer consultations to compare the MIPS indices of 10 clinicians evaluated by an independent professional as skilled communicators with 10 who were considered less skilled. Eleven out of the 15 MIPS variables tested were able to distinguish the skilled from the less skilled group. Although limitations to the study are discussed, the results indicate that the MIPS has satisfactory discriminatory power and the results provide validity data that meet key objectives for developing the system. There is an ever-increasing need for reliable methods of assessing doctors' communication skills and evaluating medical interview teaching programmes. Copyright 2004 Elsevier Ireland Ltd.
Design and validation of an automated hydrostatic weighing system.
McClenaghan, B A; Rocchio, L
1986-08-01
The purpose of this study was to design and evaluate the validity of an automated technique to assess body density using a computerized hydrostatic weighing system. An existing hydrostatic tank was modified and interfaced with a microcomputer equipped with an analog-to-digital converter. Software was designed to input variables, control the collection of data, calculate selected measurements, and provide a summary of the results of each session. Validity of the data obtained utilizing the automated hydrostatic weighing system was estimated by: evaluating the reliability of the transducer/computer interface to measure objects of known underwater weight; comparing the data against a criterion measure; and determining inter-session subject reliability. Values obtained from the automated system were found to be highly correlated with known underwater weights (r = 0.99, SEE = 0.0060 kg). Data concurrently obtained utilizing the automated system and a manual chart recorder were also found to be highly correlated (r = 0.99, SEE = 0.0606 kg). Inter-session subject reliability was determined utilizing data collected on subjects (N = 16) tested on two occasions approximately 24 h apart. Correlations revealed high relationships between measures of underwater weight (r = 0.99, SEE = 0.1399 kg) and body density (r = 0.98, SEE = 0.00244 g X cm-1). Results indicate that a computerized hydrostatic weighing system is a valid and reliable method for determining underwater weight.
Malt, U
1986-01-01
The reliability of the DSM-III is superior to other classification systems available in psychiatry. However, reliability depends on proper knowledge of the system. Some pitfalls reducing reliability of axis 1 diagnosis which commonly are overlooked are discussed. Secondly, some problems of validity of axis 1 and 2 are considered. This is done by discussing the differential diagnosis of organic mental disorders and other psychiatric disorders with concomittant physical dysfunction, and the diagnoses of post-traumatic stress disorders and adjustment disorders among others. The emphasis on health care seeking behaviour as a diagnostic criteria in the DSM-III system, may cause a social, racial and sexual bias in DSM-III diagnoses. The present discussion of the DSM-III system from a clinical point of view indicates the need for validation studies based on clinical experience with the DSM-III. These studies should include more out-patients and patients with psychopathology who do not seek psychiatric treatment. Such studies must also apply alternative diagnostic standards like the ICD-9 and not only rely on structured psychiatric interviews constructed for DSM-III diagnoses. The discussion of axis 4 points to the problem of wanting to combine reliable rating with clinically meaningful information. It is concluded that the most important issue to be settled regarding axis 4 in the future revisions is the aim of including this axis. The discussion of axis 5 concludes that axis 5 is biased toward poor functioning and thus may be less usefull when applied on patients seen outside hospitals. Despite these problems of the DSM-III, our experiences indicate that the use of the DSM-III is fruitful both for the patient, the clinician and the researcher. Thus, the cost of time and effort needed to learn to use the DSM-III properly are small compared to the benefits achieved by using the system.
Modeling service time reliability in urban ferry system
NASA Astrophysics Data System (ADS)
Chen, Yifan; Luo, Sida; Zhang, Mengke; Shen, Hanxia; Xin, Feifei; Luo, Yujie
2017-09-01
The urban ferry system can carry a large number of travelers, which may alleviate the pressure on road traffic. As an indicator of its service quality, service time reliability (STR) plays an essential part in attracting travelers to the ferry system. A wide array of studies have been conducted to analyze the STR of land transportation. However, the STR of ferry systems has received little attention in the transportation literature. In this study, a model was established to obtain the STR in urban ferry systems. First, the probability density function (PDF) of the service time provided by ferry systems was constructed. Considering the deficiency of the queuing theory, this PDF was determined by Bayes’ theorem. Then, to validate the function, the results of the proposed model were compared with those of the Monte Carlo simulation. With the PDF, the reliability could be determined mathematically by integration. Results showed how the factors including the frequency, capacity, time schedule and ferry waiting time affected the STR under different degrees of congestion in ferry systems. Based on these results, some strategies for improving the STR were proposed. These findings are of great significance to increasing the share of ferries among various urban transport modes.
Reliability and failure modes of narrow implant systems.
Hirata, Ronaldo; Bonfante, Estevam A; Anchieta, Rodolfo B; Machado, Lucas S; Freitas, Gileade; Fardin, Vinicius P; Tovar, Nick; Coelho, Paulo G
2016-09-01
Narrow implants are indicated in areas of limited bone width or when grafting is nonviable. However, the reduction of implant diameter may compromise their performance. This study evaluated the reliability of several narrow implant systems under fatigue, after restored with single-unit crowns. Narrow implant systems were divided (n = 18 each), as follows: Astra (ASC); BioHorizons (BSC); Straumann Roxolid (SNC), Intra-Lock (IMC), and Intra-Lock one-piece abutment (ILO). Maxillary central incisor crowns were cemented and subjected to step-stress accelerated life testing in water. Use level probability Weibull curves and reliability for a mission of 100,000 cycles at 130- and 180-N loads (90 % two-sided confidence intervals) were calculated. Scanning electron microscopy was used for fractography. Reliability for 100,000 cycles at 130 N was ∼99 % in group ASC, ∼99 % in BSC, ∼96 % in SNC, ∼99 % in IMC, and ∼100 % in ILO. At 180 N, reliability of ∼34 % resulted for the ASC group, ∼91 % for BSC, ∼53 % for SNC, ∼70 % for IMC, and ∼99 % for ILO. Abutment screw fracture was the main failure mode for all groups. Reliability was not different between systems for 100,000 cycles at the 130-N load. A significant decrease was observed at the 180-N load for ASC, SNC, and IMC, whereas it was maintained for BSC and ILO. The investigated narrow implants presented mechanical performance under fatigue that suggests their safe use as single crowns in the anterior region.
Olympic Scoring of English Compositions
ERIC Educational Resources Information Center
Follman, John; Panther, Edward
1974-01-01
Examines empirically the efficacy of utilizing Olympic diving and gymnastic scoring systems for grading graduate students' English compositions. Results indicated that such scoring rules do not produce ratings different in reliability or in level from conventional letter grades. (ED)
Rejec, Ana; Butinar, Janos; Gawor, Jerzy; Petelin, Milan
2017-12-01
The aim of the study was to retrospectively assess complete blood count (CBC) indices of dogs with periodontitis (PD; n = 73) and dogs with oropharyngeal tumors (OT; n = 92) in comparison to CBC indices of healthy dogs (HD; n = 71). Neutrophil to lymphocyte ratio (NLR), platelet to lymphocyte ratio, mean platelet volume to platelet ratio, and platelet large cell ratio index (PLCRi) were evaluated as biomarkers of systemic inflammatory response provoked by PD and OT. Results of multivariable polytomous logistic regression analysis indicated no significant associations between CBC indices and PD. Both NLR and PLCRi were significantly higher in dogs with OT when compared to HD and dogs with PD and could, therefore, indicate a tumor-associated systemic inflammatory response. Additional studies of CBC indices, along with other biomarkers of systemic inflammatory response, are recommended to validate them as reliable indicators of clinical disease activity.
Balfour, Margaret E; Tanner, Kathleen; Jurica, Paul J; Rhoads, Richard; Carson, Chris A
2016-01-01
Crisis and emergency psychiatric services are an integral part of the healthcare system, yet there are no standardized measures for programs providing these services. We developed the Crisis Reliability Indicators Supporting Emergency Services (CRISES) framework to create measures that inform internal performance improvement initiatives and allow comparison across programs. The framework consists of two components-the CRISES domains (timely, safe, accessible, least-restrictive, effective, consumer/family centered, and partnership) and the measures supporting each domain. The CRISES framework provides a foundation for development of standardized measures for the crisis field. This will become increasingly important as pay-for-performance initiatives expand with healthcare reform.
Reliability and Validity of the Footprint Assessment Method Using Photoshop CS5 Software.
Gutiérrez-Vilahú, Lourdes; Massó-Ortigosa, Núria; Costa-Tutusaus, Lluís; Guerra-Balic, Myriam
2015-05-01
Several sophisticated methods of footprint analysis currently exist. However, it is sometimes useful to apply standard measurement methods of recognized evidence with an easy and quick application. We sought to assess the reliability and validity of a new method of footprint assessment in a healthy population using Photoshop CS5 software (Adobe Systems Inc, San Jose, California). Forty-two footprints, corresponding to 21 healthy individuals (11 men with a mean ± SD age of 20.45 ± 2.16 years and 10 women with a mean ± SD age of 20.00 ± 1.70 years) were analyzed. Footprints were recorded in static bipedal standing position using optical podography and digital photography. Three trials for each participant were performed. The Hernández-Corvo, Chippaux-Smirak, and Staheli indices and the Clarke angle were calculated by manual method and by computerized method using Photoshop CS5 software. Test-retest was used to determine reliability. Validity was obtained by intraclass correlation coefficient (ICC). The reliability test for all of the indices showed high values (ICC, 0.98-0.99). Moreover, the validity test clearly showed no difference between techniques (ICC, 0.99-1). The reliability and validity of a method to measure, assess, and record the podometric indices using Photoshop CS5 software has been demonstrated. This provides a quick and accurate tool useful for the digital recording of morphostatic foot study parameters and their control.
Measurement systems and indices of miners' exposure to radon daughter products in the air of mines.
Domański, T
1990-01-01
This paper presents the classification of measurement systems that may be used for the assessment of miners' exposure to radiation in mines. The following systems were described and characterized as the Air Sampling System (ASS), the Environmental Control System (ECS), the Individual Dosimetry System (IDS), the Stream Monitoring System (SMS) and the Exhaust Monitoring System (EMS). The indices for evaluation of miners' working environments, or for assessment of individual or collective miners' exposure, were selected and determined. These are: average expected concentration (CAE), average observed concentration (CAO), average expected rate of exposure cumulation rate (EEXP), average observed exposure cumulation rate (EOBS), average effective exposure cumulation rate (EEFF). Mathematical formulae for determining all these indicators, according to the type of measurement system used in particular mines, are presented. The reliability of assessment of miners' exposure in particular measurement systems, as well as the role of the possible reference system, are discussed.
ERIC Educational Resources Information Center
Smith, Stacey L.; Vannest, Kimberly J.; Davis, John L.
2011-01-01
The reliability of data is a critical issue in decision-making for practitioners in the school. Percent Agreement and Cohen's kappa are the two most widely reported indices of inter-rater reliability, however, a recent Monte Carlo study on the reliability of multi-category scales found other indices to be more trustworthy given the type of data…
Reliability and accuracy of Crystaleye spectrophotometric system.
Chen, Li; Tan, Jian Guo; Zhou, Jian Feng; Yang, Xu; Du, Yang; Wang, Fang Ping
2010-01-01
to develop an in vitro shade-measuring model to evaluate the reliability and accuracy of the Crystaleye spectrophotometric system, a newly developed spectrophotometer. four shade guides, VITA Classical, VITA 3D-Master, Chromascop and Vintage Halo NCC, were measured with the Crystaleye spectrophotometer in a standardised model, ten times for 107 shade tabs. The shade-matching results and the CIE L*a*b* values of the cervical, body and incisal regions for each measurement were automatically analysed using the supporting software. Reliability and accuracy were calculated for each shade tab both in percentage and in colour difference (ΔE). Difference was analysed by one-way ANOVA in the cervical, body and incisal regions. range of reliability was 88.81% to 98.97% and 0.13 to 0.24 ΔE units, and that of accuracy was 44.05% to 91.25% and 1.03 to 1.89 ΔE units. Significant differences in reliability and accuracy were found between the body region and the cervical and incisal regions. Comparisons made among regions and shade guides revealed that evaluation in ΔE was prone to disclose the differences. measurements with the Crystaleye spectrophotometer had similar, high reliability in different shade guides and regions, indicating predictable repeated measurements. Accuracy in the body region was high and less variable compared with the cervical and incisal regions.
On the reliability of seasonal climate forecasts
Weisheimer, A.; Palmer, T. N.
2014-01-01
Seasonal climate forecasts are being used increasingly across a range of application sectors. A recent UK governmental report asked: how good are seasonal forecasts on a scale of 1–5 (where 5 is very good), and how good can we expect them to be in 30 years time? Seasonal forecasts are made from ensembles of integrations of numerical models of climate. We argue that ‘goodness’ should be assessed first and foremost in terms of the probabilistic reliability of these ensemble-based forecasts; reliable inputs are essential for any forecast-based decision-making. We propose that a ‘5’ should be reserved for systems that are not only reliable overall, but where, in particular, small ensemble spread is a reliable indicator of low ensemble forecast error. We study the reliability of regional temperature and precipitation forecasts of the current operational seasonal forecast system of the European Centre for Medium-Range Weather Forecasts, universally regarded as one of the world-leading operational institutes producing seasonal climate forecasts. A wide range of ‘goodness’ rankings, depending on region and variable (with summer forecasts of rainfall over Northern Europe performing exceptionally poorly) is found. Finally, we discuss the prospects of reaching ‘5’ across all regions and variables in 30 years time. PMID:24789559
Meylan, Grégoire; Reck, Barbara K; Rechberger, Helmut; Graedel, Thomas E; Schwab, Oliver
2017-10-17
Decision-makers traditionally expect "hard facts" from scientific inquiry, an expectation that the results of material flow analyses (MFAs) can hardly meet. MFA limitations are attributable to incompleteness of flowcharts, limited data quality, and model assumptions. Moreover, MFA results are, for the most part, based less on empirical observation but rather on social knowledge construction processes. Developing, applying, and improving the means of evaluating and communicating the reliability of MFA results is imperative. We apply two recently proposed approaches for making quantitative statements on MFA reliability to national minor metals systems: rhenium, gallium, and germanium in the United States in 2012. We discuss the reliability of results in policy and management contexts. The first approach consists of assessing data quality based on systematic characterization of MFA data and the associated meta-information and quantifying the "information content" of MFAs. The second is a quantification of data inconsistencies indicated by the "degree of data reconciliation" between the data and the model. A high information content and a low degree of reconciliation indicate reliable or certain MFA results. This article contributes to reliability and uncertainty discourses in MFA, exemplifying the usefulness of the approaches in policy and management, and to raw material supply discussions by providing country-level information on three important minor metals often considered critical.
[A set of quality and safety indicators for hospitals of the "Agencia Valenciana de Salud"].
Nebot-Marzal, C M; Mira-Solves, J J; Guilabert-Mora, M; Pérez-Jover, V; Pablo-Comeche, D; Quirós-Morató, T; Cuesta Peredo, D
2014-01-01
To prepare a set of quality and safety indicators for Hospitals of the «Agencia Valenciana de Salud». The qualitative technique Metaplan® was applied in order to gather proposals on sustainability and nursing. The catalogue of the «Spanish Society of Quality in Healthcare» was adopted as a starting point for clinical indicators. Using the Delphi technique, 207 professionals were invited to participate in the selecting the most reliable and feasible indicators. Lastly, the resulting proposal was validated with the managers of 12 hospitals, taking into account the variability, objectivity, feasibility, reliability and sensitivity, of the indicators. Participation rates varied between 66.67% and 80.71%. Of the 159 initial indicators, 68 were prioritized and selected (21 economic or management indicators, 22 nursing indicators, and 25 clinical or hospital indicators). Three of them were common to all three categories and two did not match the specified criteria during the validation phase, thus obtaining a final catalogue of 63 indicators. A set of quality and safety indicators for Hospitals was prepared. They are currently being monitored using the hospital information systems. Copyright © 2013 SECA. Published by Elsevier Espana. All rights reserved.
ERIC Educational Resources Information Center
Windham, Patricia W.; Hackett, E. Raymond
In response to the increasing use of state-based performance indicators for postsecondary education, a study was undertaken to review the reliability and validity of state-level indicators in the Florida Community College System (FCCS). Data were collected from literature reviews and the 1996 FCCS Accountability Report, detailing outcomes for 17…
Balanced scorecard-based performance evaluation of Chinese county hospitals in underdeveloped areas.
Gao, Hongda; Chen, He; Feng, Jun; Qin, Xianjing; Wang, Xuan; Liang, Shenglin; Zhao, Jinmin; Feng, Qiming
2018-05-01
Objective Since the Guangxi government implemented public county hospital reform in 2009, there have been no studies of county hospitals in this underdeveloped area of China. This study aimed to establish an evaluation indicator system for Guangxi county hospitals and to generate recommendations for hospital development and policymaking. Methods A performance evaluation indicator system was developed based on balanced scorecard theory. Opinions were elicited from 25 experts from administrative units, universities and hospitals and the Delphi method was used to modify the performance indicators. The indicator system and the Topsis method were used to evaluate the performance of five county hospitals randomly selected from the same batch of 2015 Guangxi reform pilots. Results There were 4 first-level indicators, 9 second-level indicators and 36 third-level indicators in the final performance evaluation indicator system that showed good consistency, validity and reliability. The performance rank of the hospitals was B > E > A > C > D. Conclusions The performance evaluation indicator system established using the balanced scorecard is practical and scientific. Analysis of the results based on this indicator system identified several factors affecting hospital performance, such as resource utilisation efficiency, medical service price, personnel structure and doctor-patient relationships.
Performance testing of collision-avoidance system for power wheelchairs.
Lopresti, Edmund F; Sharma, Vinod; Simpson, Richard C; Mostowy, L Casimir
2011-01-01
The Drive-Safe System (DSS) is a collision-avoidance system for power wheelchairs designed to support people with mobility impairments who also have visual, upper-limb, or cognitive impairments. The DSS uses a distributed approach to provide an add-on, shared-control, navigation-assistance solution. In this project, the DSS was tested for engineering goals such as sensor coverage, maximum safe speed, maximum detection distance, and power consumption while the wheelchair was stationary or driven by an investigator. Results indicate that the DSS provided uniform, reliable sensor coverage around the wheelchair; detected obstacles as small as 3.2 mm at distances of at least 1.6 m; and attained a maximum safe speed of 4.2 km/h. The DSS can drive reliably as close as 15.2 cm from a wall, traverse doorways as narrow as 81.3 cm without interrupting forward movement, and reduce wheelchair battery life by only 3%. These results have implications for a practical system to support safe, independent mobility for veterans who acquire multiple disabilities during Active Duty or later in life. These tests indicate that a system utilizing relatively low cost ultrasound, infrared, and force sensors can effectively detect obstacles in the vicinity of a wheelchair.
NASA Technical Reports Server (NTRS)
Forbes, Kevin F.; Cyr, Chris St
2012-01-01
During solar cycle 22, a very intense geomagnetic storm on 13 March 1989 contributed to the collapse of the Hydro-Quebec power system in Canada. This event clearly demonstrated that geomagnetic storms have the potential to lead to blackouts. This paper addresses whether geomagnetic activity challenged power system reliability during solar cycle 23. Operations by PJM Interconnection, LLC (hereafter PJM), a regional transmission organization in North America, are examined over the period 1 April 2002 through 30 April 2004. During this time PJM coordinated the movement of wholesale electricity in all or parts of Delaware, Maryland, New Jersey, Ohio, Pennsylvania, Virginia, West Virginia, and the District of Columbia in the United States. We examine the relationship between a proxy of geomagnetically induced currents (GICs) and a metric of challenged reliability. In this study, GICs are proxied using magnetometer data from a geomagnetic observatory located just outside the PJM control area. The metric of challenged reliability is the incidence of out-of-economic-merit order dispatching due to adverse reactive power conditions. The statistical methods employed make it possible to disentangle the effects of GICs on power system operations from purely terrestrial factors. The results of the analysis indicate that geomagnetic activity can significantly increase the likelihood that the system operator will dispatch generating units based on system stability considerations rather than economic merit.
NASA Astrophysics Data System (ADS)
Tyapkov, V. F.; Chudakova, I. Yu.; Alekseenko, O. A.
2011-08-01
Ways of improving the water chemistry used in the turbine generator stator's cooling systems at Russian nuclear power plants are considered. Data obtained from operational chemical monitoring of indicators characterizing the quality of cooling water in the turbine generator stator cooling systems of operating power units at nuclear power plants are presented.
Compliance of LC50 and NOEC data with Benford's Law: an indication of reliability?
de Vries, Pepijn; Murk, Albertinka J
2013-12-01
Reliability of research data is essential, especially when potentially far-reaching conclusions will be based on them. This is also, amongst others, the case for ecotoxicological data used in risk assessment. Currently, several approaches are available to classify the reliability of ecotoxicological data. The process of classification, such as using the Klimisch score, is time-consuming and focuses on the application of standardised protocols and the documentation of the study. The presence of irregularities and the integrity of the performed work, however, are not addressed. The present study shows that Benford's Law, based on the occurrence of first digits following a logarithmic scale, can be applied to ecotoxicity test data for identifying irregularities. This approach is already successfully applied in accounting. Benford's Law can be used as reliability indicator, in addition to existing reliability classifications. The law can be used to efficiently trace irregularities in large data sets of interpolated (no) effect concentrations such as LC50s (possibly the result of data manipulation), without having to evaluate the source of each individual record. Application of the law to systems in which large amounts of toxicity data are registered (e.g., European Commission Regulation concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals) can therefore be valuable. © 2013 Elsevier Inc. All rights reserved.
Rudolph, Heike; Ostertag, Silke; Ostertag, Michael; Walter, Michael H; Luthardt, Ralph Gunnar; Kuhn, Katharina
2018-02-01
The aim of this in vitro study was to assess the reliability of two measurement systems for evaluating the marginal and internal fit of dental copings. Sixteen CAD/CAM titanium copings were produced for a prepared maxillary canine. To modify the CAD surface model using different parameters (data density; enlargement in different directions), varying fit was created. Five light-body silicone replicas representing the gap between the canine and the coping were made for each coping and for each measurement method: (1) light microscopy measurements (LMMs); and (2) computer-assisted measurements (CASMs) using an optical digitizing system. Two investigators independently measured the marginal and internal fit using both methods. The inter-rater reliability [intraclass correlation coefficient (ICC)] and agreement [Bland-Altman (bias) analyses]: mean of the differences (bias) between two measurements [the closer to zero the mean (bias) is, the higher the agreement between the two measurements] were calculated for several measurement points (marginal-distal, marginal-buccal, axial-buccal, incisal). For the LMM technique, one investigator repeated the measurements to determine repeatability (intra-rater reliability and agreement). For inter-rater reliability, the ICC was 0.848-0.998 for LMMs and 0.945-0.999 for CASMs, depending on the measurement point. Bland-Altman bias was -15.7 to 3.5 μm for LMMs and -3.0 to 1.9 μm for CASMs. For LMMs, the marginal-distal and marginal-buccal measurement points showed the lowest ICC (0.848/0.978) and the highest bias (-15.7 μm/-7.6 μm). With the intra-rater reliability and agreement (repeatability) for LMMs, the ICC was 0.970-0.998 and bias was -1.3 to 2.3 μm. LMMs showed lower interrater reliability and agreement at the marginal measurement points than CASMs, which indicates a more subjective influence with LMMs at these measurement points. The values, however, were still clinically acceptable. LMMs showed very high intra-rater reliability and agreement for all measurement points, indicating high repeatability.
Rudolph, Heike; Ostertag, Silke; Ostertag, Michael; Walter, Michael H.; LUTHARDT, Ralph Gunnar; Kuhn, Katharina
2018-01-01
Abstract The aim of this in vitro study was to assess the reliability of two measurement systems for evaluating the marginal and internal fit of dental copings. Material and Methods Sixteen CAD/CAM titanium copings were produced for a prepared maxillary canine. To modify the CAD surface model using different parameters (data density; enlargement in different directions), varying fit was created. Five light-body silicone replicas representing the gap between the canine and the coping were made for each coping and for each measurement method: (1) light microscopy measurements (LMMs); and (2) computer-assisted measurements (CASMs) using an optical digitizing system. Two investigators independently measured the marginal and internal fit using both methods. The inter-rater reliability [intraclass correlation coefficient (ICC)] and agreement [Bland-Altman (bias) analyses]: mean of the differences (bias) between two measurements [the closer to zero the mean (bias) is, the higher the agreement between the two measurements] were calculated for several measurement points (marginal-distal, marginal-buccal, axial-buccal, incisal). For the LMM technique, one investigator repeated the measurements to determine repeatability (intra-rater reliability and agreement). Results For inter-rater reliability, the ICC was 0.848-0.998 for LMMs and 0.945-0.999 for CASMs, depending on the measurement point. Bland-Altman bias was −15.7 to 3.5 μm for LMMs and −3.0 to 1.9 μm for CASMs. For LMMs, the marginal-distal and marginal-buccal measurement points showed the lowest ICC (0.848/0.978) and the highest bias (-15.7 μm/-7.6 μm). With the intra-rater reliability and agreement (repeatability) for LMMs, the ICC was 0.970-0.998 and bias was −1.3 to 2.3 μm. Conclusion LMMs showed lower interrater reliability and agreement at the marginal measurement points than CASMs, which indicates a more subjective influence with LMMs at these measurement points. The values, however, were still clinically acceptable. LMMs showed very high intra-rater reliability and agreement for all measurement points, indicating high repeatability. PMID:29412364
Lunar Regenerative Fuel Cell (RFC) Reliability Testing for Assured Mission Success
NASA Technical Reports Server (NTRS)
Bents, David J.
2009-01-01
NASA's Constellation program has selected the closed cycle hydrogen oxygen Polymer Electrolyte Membrane (PEM) Regenerative Fuel Cell (RFC) as its baseline solar energy storage system for the lunar outpost and manned rover vehicles. Since the outpost and manned rovers are "human-rated," these energy storage systems will have to be of proven reliability exceeding 99 percent over the length of the mission. Because of the low (TRL=5) development state of the closed cycle hydrogen oxygen PEM RFC at present, and because there is no equivalent technology base in the commercial sector from which to draw or infer reliability information from, NASA will have to spend significant resources developing this technology from TRL 5 to TRL 9, and will have to embark upon an ambitious reliability development program to make this technology ready for a manned mission. Because NASA would be the first user of this new technology, NASA will likely have to bear all the costs associated with its development.When well-known reliability estimation techniques are applied to the hydrogen oxygen RFC to determine the amount of testing that will be required to assure RFC unit reliability over life of the mission, the analysis indicates the reliability testing phase by itself will take at least 2 yr, and could take up to 6 yr depending on the number of QA units that are built and tested and the individual unit reliability that is desired. The cost and schedule impacts of reliability development need to be considered in NASA's Exploration Technology Development Program (ETDP) plans, since life cycle testing to build meaningful reliability data is the only way to assure "return to the moon, this time to stay, then on to Mars" mission success.
Reliability of drivers in urban intersections.
Gstalter, Herbert; Fastenmeier, Wolfgang
2010-01-01
The concept of human reliability has been widely used in industrial settings by human factors experts to optimise the person-task fit. Reliability is estimated by the probability that a task will successfully be completed by personnel in a given stage of system operation. Human Reliability Analysis (HRA) is a technique used to calculate human error probabilities as the ratio of errors committed to the number of opportunities for that error. To transfer this notion to the measurement of car driver reliability the following components are necessary: a taxonomy of driving tasks, a definition of correct behaviour in each of these tasks, a list of errors as deviations from the correct actions and an adequate observation method to register errors and opportunities for these errors. Use of the SAFE-task analysis procedure recently made it possible to derive driver errors directly from the normative analysis of behavioural requirements. Driver reliability estimates could be used to compare groups of tasks (e.g. different types of intersections with their respective regulations) as well as groups of drivers' or individual drivers' aptitudes. This approach was tested in a field study with 62 drivers of different age groups. The subjects drove an instrumented car and had to complete an urban test route, the main features of which were 18 intersections representing six different driving tasks. The subjects were accompanied by two trained observers who recorded driver errors using standardized observation sheets. Results indicate that error indices often vary between both the age group of drivers and the type of driving task. The highest error indices occurred in the non-signalised intersection tasks and the roundabout, which exactly equals the corresponding ratings of task complexity from the SAFE analysis. A comparison of age groups clearly shows the disadvantage of older drivers, whose error indices in nearly all tasks are significantly higher than those of the other groups. The vast majority of these errors could be explained by high task load in the intersections, as they represent difficult tasks. The discussion shows how reliability estimates can be used in a constructive way to propose changes in car design, intersection layout and regulation as well as driver training.
NASA Astrophysics Data System (ADS)
Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan
2010-02-01
Near-infrared spectroscopy is a promising, rapidly developing, reliable and noninvasive technique, used extensively in the biomedicine and in pharmaceutical industry. With the introduction of acousto-optic tunable filters (AOTF) and highly sensitive InGaAs focal plane sensor arrays, real-time high resolution hyper-spectral imaging has become feasible for a number of new biomedical in vivo applications. However, due to the specificity of the AOTF technology and lack of spectral calibration standardization, maintaining long-term stability and compatibility of the acquired hyper-spectral images across different systems is still a challenging problem. Efficiently solving both is essential as the majority of methods for analysis of hyper-spectral images relay on a priori knowledge extracted from large spectral databases, serving as the basis for reliable qualitative or quantitative analysis of various biological samples. In this study, we propose and evaluate fast and reliable spectral calibration of hyper-spectral imaging systems in the short wavelength infrared spectral region. The proposed spectral calibration method is based on light sources or materials, exhibiting distinct spectral features, which enable robust non-rigid registration of the acquired spectra. The calibration accounts for all of the components of a typical hyper-spectral imaging system such as AOTF, light source, lens and optical fibers. The obtained results indicated that practical, fast and reliable spectral calibration of hyper-spectral imaging systems is possible, thereby assuring long-term stability and inter-system compatibility of the acquired hyper-spectral images.
NASA Astrophysics Data System (ADS)
Aguilar, Mariela C.; Gonzalez, Alex; Rowaan, Cornelis; De Freitas, Carolina; Rosa, Potyra R.; Alawa, Karam; Lam, Byron L.; Parel, Jean-Marie A.
2016-03-01
As there is no clinically available instrument to systematically and reliably determine the photosensitivity thresholds of patients with dry eyes, blepharospasms, migraines, traumatic brain injuries, and genetic disorders such as Achromatopsia, retinitis pigmentosa and other retinal dysfunctions, a computer-controlled optoelectronics system was designed. The BPEI Photosensitivity System provides a light stimuli emitted from a bi-cupola concave, 210 white LED array with varying intensity ranging from 1 to 32,000 lux. The system can either utilize a normal or an enhanced testing mode for subjects with low light tolerance. The automated instrument adjusts the intensity of each light stimulus. The subject is instructed to indicate discomfort by pressing a hand-held button. Reliability of the responses is tracked during the test. The photosensitivity threshold is then calculated after 10 response reversals. In a preliminary study, we demonstrated that subjects suffering from Achromatopsia experienced lower photosensitivity thresholds than normal subjects. Hence, the system can safely and reliably determine the photosensitivity thresholds of healthy and light sensitive subjects by detecting and quantifying the individual differences. Future studies will be performed with this system to determine the photosensitivity threshold differences between normal subjects and subjects suffering from other conditions that affect light sensitivity.
Human Factors in Financial Trading
Leaver, Meghan; Reader, Tom W.
2016-01-01
Objective This study tests the reliability of a system (FINANS) to collect and analyze incident reports in the financial trading domain and is guided by a human factors taxonomy used to describe error in the trading domain. Background Research indicates the utility of applying human factors theory to understand error in finance, yet empirical research is lacking. We report on the development of the first system for capturing and analyzing human factors–related issues in operational trading incidents. Method In the first study, 20 incidents are analyzed by an expert user group against a referent standard to establish the reliability of FINANS. In the second study, 750 incidents are analyzed using distribution, mean, pathway, and associative analysis to describe the data. Results Kappa scores indicate that categories within FINANS can be reliably used to identify and extract data on human factors–related problems underlying trading incidents. Approximately 1% of trades (n = 750) lead to an incident. Slip/lapse (61%), situation awareness (51%), and teamwork (40%) were found to be the most common problems underlying incidents. For the most serious incidents, problems in situation awareness and teamwork were most common. Conclusion We show that (a) experts in the trading domain can reliably and accurately code human factors in incidents, (b) 1% of trades incur error, and (c) poor teamwork skills and situation awareness underpin the most critical incidents. Application This research provides data crucial for ameliorating risk within financial trading organizations, with implications for regulation and policy. PMID:27142394
Human Factors in Financial Trading: An Analysis of Trading Incidents.
Leaver, Meghan; Reader, Tom W
2016-09-01
This study tests the reliability of a system (FINANS) to collect and analyze incident reports in the financial trading domain and is guided by a human factors taxonomy used to describe error in the trading domain. Research indicates the utility of applying human factors theory to understand error in finance, yet empirical research is lacking. We report on the development of the first system for capturing and analyzing human factors-related issues in operational trading incidents. In the first study, 20 incidents are analyzed by an expert user group against a referent standard to establish the reliability of FINANS. In the second study, 750 incidents are analyzed using distribution, mean, pathway, and associative analysis to describe the data. Kappa scores indicate that categories within FINANS can be reliably used to identify and extract data on human factors-related problems underlying trading incidents. Approximately 1% of trades (n = 750) lead to an incident. Slip/lapse (61%), situation awareness (51%), and teamwork (40%) were found to be the most common problems underlying incidents. For the most serious incidents, problems in situation awareness and teamwork were most common. We show that (a) experts in the trading domain can reliably and accurately code human factors in incidents, (b) 1% of trades incur error, and (c) poor teamwork skills and situation awareness underpin the most critical incidents. This research provides data crucial for ameliorating risk within financial trading organizations, with implications for regulation and policy. © 2016, Human Factors and Ergonomics Society.
Limitations of Reliability for Long-Endurance Human Spaceflight
NASA Technical Reports Server (NTRS)
Owens, Andrew C.; de Weck, Olivier L.
2016-01-01
Long-endurance human spaceflight - such as missions to Mars or its moons - will present a never-before-seen maintenance logistics challenge. Crews will be in space for longer and be farther way from Earth than ever before. Resupply and abort options will be heavily constrained, and will have timescales much longer than current and past experience. Spare parts and/or redundant systems will have to be included to reduce risk. However, the high cost of transportation means that this risk reduction must be achieved while also minimizing mass. The concept of increasing system and component reliability is commonly discussed as a means to reduce risk and mass by reducing the probability that components will fail during a mission. While increased reliability can reduce maintenance logistics mass requirements, the rate of mass reduction decreases over time. In addition, reliability growth requires increased test time and cost. This paper assesses trends in test time requirements, cost, and maintenance logistics mass savings as a function of increase in Mean Time Between Failures (MTBF) for some or all of the components in a system. In general, reliability growth results in superlinear growth in test time requirements, exponential growth in cost, and sublinear benefits (in terms of logistics mass saved). These trends indicate that it is unlikely that reliability growth alone will be a cost-effective approach to maintenance logistics mass reduction and risk mitigation for long-endurance missions. This paper discusses these trends as well as other options to reduce logistics mass such as direct reduction of part mass, commonality, or In-Space Manufacturing (ISM). Overall, it is likely that some combination of all available options - including reliability growth - will be required to reduce mass and mitigate risk for future deep space missions.
Electric system restructuring and system reliability
NASA Astrophysics Data System (ADS)
Horiuchi, Catherine Miller
In 1996 the California legislature passed AB 1890, explicitly defining economic benefits and detailing specific mechanisms for initiating a partial restructuring the state's electric system. Critics have since sought re-regulation and proponents have asked for patience as the new institutions and markets take shape. Other states' electric system restructuring activities have been tempered by real and perceived problems in the California model. This study examines the reduced regulatory controls and new constraints introduced in California's limited restructuring model using utility and regulatory agency records from the 1990's to investigate effects of new institutions and practices on system reliability for the state's five largest public and private utilities. Logit and negative binomial regressions indicate negative impact from the California model of restructuring on system reliability as measured by customer interruptions. Time series analysis of outage data could not predict the wholesale power market collapse and the subsequent rolling blackouts in early 2001; inclusion of near-outage reliability disturbances---load shedding and energy emergencies---provided a measure of forewarning. Analysis of system disruptions, generation capacity and demand, and the role of purchased power challenge conventional wisdom on the causality of Californian's power problems. The quantitative analysis was supplemented by a targeted survey of electric system restructuring participants. Findings suggest each utility and the organization controlling the state's electric grid provided protection from power outages comparable to pre-restructuring operations through 2000; however, this reliability has come at an inflated cost, resulting in reduced system purchases and decreased marginal protection. The historic margin of operating safety has fully eroded, increasing mandatory load shedding and emergency declarations for voluntary and mandatory conservation. Proposed remedies focused on state-funded contracts and government-managed power authorities may not help, as the findings suggest pricing models, market uncertainty, interjurisdictional conflict and an inability to respond to market perturbations are more significant contributors to reduced regional generation availability than the particular contract mechanisms and funding sources used for power purchases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, J.R.; Heger, A.S.; Koen, B.V.
1984-04-01
This report is the result of a preliminary feasibility study of the applicability of Stein and related parametric empirical Bayes (PEB) estimators to the Nuclear Plant Reliability Data System (NPRDS). A new estimator is derived for the means of several independent Poisson distributions with different sampling times. This estimator is applied to data from NPRDS in an attempt to improve failure rate estimation. Theoretical and Monte Carlo results indicate that the new PEB estimator can perform significantly better than the standard maximum likelihood estimator if the estimation of the individual means can be combined through the loss function or throughmore » a parametric class of prior distributions.« less
Quantifying complexity of financial short-term time series by composite multiscale entropy measure
NASA Astrophysics Data System (ADS)
Niu, Hongli; Wang, Jun
2015-05-01
It is significant to study the complexity of financial time series since the financial market is a complex evolved dynamic system. Multiscale entropy is a prevailing method used to quantify the complexity of a time series. Due to its less reliability of entropy estimation for short-term time series at large time scales, a modification method, the composite multiscale entropy, is applied to the financial market. To qualify its effectiveness, its applications in the synthetic white noise and 1 / f noise with different data lengths are reproduced first in the present paper. Then it is introduced for the first time to make a reliability test with two Chinese stock indices. After conducting on short-time return series, the CMSE method shows the advantages in reducing deviations of entropy estimation and demonstrates more stable and reliable results when compared with the conventional MSE algorithm. Finally, the composite multiscale entropy of six important stock indices from the world financial markets is investigated, and some useful and interesting empirical results are obtained.
Characteristics of Children with Phonologic Disorders of Unknown Origin.
ERIC Educational Resources Information Center
Shriberg, Lawrence D.; And Others
1986-01-01
Descriptive data are presented from three studies of children referred for assessment of developmental speech disorders. Group findings indicate involvements in mechanism, cognitive, and psychosocial areas. The reliability, learnability, and efficiency of a diagnostic classification system is also considered. (Author/CL)
A Tentative Study on the Evaluation of Community Health Service Quality*
NASA Astrophysics Data System (ADS)
Ma, Zhi-qiang; Zhu, Yong-yue
Community health service is the key point of health reform in China. Based on pertinent studies, this paper constructed an indicator system for the community health service quality evaluation from such five perspectives as visible image, reliability, responsiveness, assurance and sympathy, according to service quality evaluation scale designed by Parasuraman, Zeithaml and Berry. A multilevel fuzzy synthetical evaluation model was constructed to evaluate community health service by fuzzy mathematics theory. The applicability and maneuverability of the evaluation indicator system and evaluation model were verified by empirical analysis.
Connors, B M; Cooper, A B
2014-12-01
Categorization of the status of populations, species, and ecosystems underpins most conservation activities. Status is often based on how a system's current indicator value (e.g., change in abundance) relates to some threshold of conservation concern. Receiver operating characteristic (ROC) curves can be used to quantify the statistical reliability of indicators of conservation status and evaluate trade-offs between correct (true positive) and incorrect (false positive) classifications across a range of decision thresholds. However, ROC curves assume a discrete, binary relationship between an indicator and the conservation status it is meant to track, which is a simplification of the more realistic continuum of conservation status, and may limit the applicability of ROC curves in conservation science. We describe a modified ROC curve that treats conservation status as a continuum rather than a discrete state. We explored the influence of this continuum and typical sources of variation in abundance that can lead to classification errors (i.e., random variation and measurement error) on the true and false positive rates corresponding to varying decision thresholds and the reliability of change in abundance as an indicator of conservation status, respectively. We applied our modified ROC approach to an indicator of endangerment in Pacific salmon (Oncorhynchus nerka) (i.e., percent decline in geometric mean abundance) and an indicator of marine ecosystem structure and function (i.e., detritivore biomass). Failure to treat conservation status as a continuum when choosing thresholds for indicators resulted in the misidentification of trade-offs between true and false positive rates and the overestimation of an indicator's reliability. We argue for treating conservation status as a continuum when ROC curves are used to evaluate decision thresholds in indicators for the assessment of conservation status. © 2014 Society for Conservation Biology.
Methods of measuring pumpage through closed-conduit irrigation systems
Kjelstrom, L.C.
1991-01-01
Methods of measuring volumes of water withdrawn from the Snake River and its tributaries and pumped through closed-conduit irrigation systems were needed for equitable management of and resolution of conflicts over water use. On the basis of evaluations and field tests by researchers from the University of Idaho, Water Resources Research Institute, Moscow, Idaho, an impeller meter was selected to monitor pumpage through closed-conduit systems. In 1988, impeller meters were installed at 20 pumping stations along the Snake River between the Upper Salmon Falls and C.J. Strike Dams. Impeller-derived pumpage data were adjusted if they differed substantially from ultrasonic flow-meter- or current-meter-derived values. Comparisons of pumpage data obtained by ultrasonic flow-meter and current-meter measurements indicated that the ultrasonic flow meter was a reliable means to check operation of impeller meters. The equipment generally performed satisfactorily, and reliable pumpage data could be obtained using impeller meters in closed-conduit irrigation systems. Many pumping stations that divert water from the Snake River for irrigation remain unmeasured; however, regression analyses indicate that total pumpage can be reasonably estimated on the basis of electrical power consumption data, an approximation of total head at a pumping station, and a derived coefficient.
NASA Astrophysics Data System (ADS)
Hanna, Ryan
Distributed energy resources (DERs), and increasingly microgrids, are becoming an integral part of modern distribution systems. Interest in microgrids--which are insular and autonomous power networks embedded within the bulk grid--stems largely from the vast array of flexibilities and benefits they can offer stakeholders. Managed well, they can improve grid reliability and resiliency, increase end-use energy efficiency by coupling electric and thermal loads, reduce transmission losses by generating power locally, and may reduce system-wide emissions, among many others. Whether these public benefits are realized, however, depends on whether private firms see a "business case", or private value, in investing. To this end, firms need models that evaluate costs, benefits, risks, and assumptions that underlie decisions to invest. The objectives of this dissertation are to assess the business case for microgrids that provide what industry analysts forecast as two primary drivers of market growth--that of providing energy services (similar to an electric utility) as well as reliability service to customers within. Prototypical first adopters are modeled--using an existing model to analyze energy services and a new model that couples that analysis with one of reliability--to explore interactions between technology choice, reliability, costs, and benefits. The new model has a bi-level hierarchy; it uses heuristic optimization to select and size DERs and analytical optimization to schedule them. It further embeds Monte Carlo simulation to evaluate reliability as well as regression models for customer damage functions to monetize reliability. It provides least-cost microgrid configurations for utility customers who seek to reduce interruption and operating costs. Lastly, the model is used to explore the impact of such adoption on system-wide greenhouse gas emissions in California. Results indicate that there are, at present, co-benefits for emissions reductions when customers adopt and operate microgrids for private benefit, though future analysis is needed as the bulk grid continues to transition toward a less carbon intensive system.
Gutiérrez-Vilahú, Lourdes; Massó-Ortigosa, Núria; Rey-Abella, Ferran; Costa-Tutusaus, Lluís; Guerra-Balic, Myriam
2016-05-01
People with Down syndrome present skeletal abnormalities in their feet that can be analyzed by commonly used gold standard indices (the Hernández-Corvo index, the Chippaux-Smirak index, the Staheli arch index, and the Clarke angle) based on footprint measurements. The use of Photoshop CS5 software (Adobe Systems Software Ireland Ltd, Dublin, Ireland) to measure footprints has been validated in the general population. The present study aimed to assess the reliability and validity of this footprint assessment technique in the population with Down syndrome. Using optical podography and photography, 44 footprints from 22 patients with Down syndrome (11 men [mean ± SD age, 23.82 ± 3.12 years] and 11 women [mean ± SD age, 24.82 ± 6.81 years]) were recorded in a static bipedal standing position. A blinded observer performed the measurements using a validated manual method three times during the 4-month study, with 2 months between measurements. Test-retest was used to check the reliability of the Photoshop CS5 software measurements. Validity and reliability were obtained by intraclass correlation coefficient (ICC). The reliability test for all of the indices showed very good values for the Photoshop CS5 method (ICC, 0.982-0.995). Validity testing also found no differences between the techniques (ICC, 0.988-0.999). The Photoshop CS5 software method is reliable and valid for the study of footprints in young people with Down syndrome.
Hong, Zhiheng; Ni, Daxin; Cao, Yang; Meng, Ling; Tu, Wenxiao; Li, Leilei; Li, Qun; Jin, Lianmei
2015-06-01
To establish a comprehensive evaluation index system for the China Public Health Emergency Events Surveillance System (CPHEESS). A draft index system was built through literature review and under the consideration of the characteristics on CPHEESS. Delphi method was adapted to determine the final index system. The index system was divided into primary, secondary and tertiary levels. There were 4 primary indicators: System structure, Network platform, Surveillance implementation reports with Data analysis and utilization. There were 16 secondary and 70 tertiary indicators being set, with System structure including 14 tertiary indicators (accounted for 20.00%), 21 Network platforms (accounted for 30.00%). Twenty-four Surveillance implementation reports (accounted for 34.29%), 11 Data analysis and utilization (accounted for 15.71%). The average score of importance of each indicators was 4.29 (3.77-4.94), with an average coefficient variation as 0.14 (0.12-0.16). The mean Chronbach's α index was 0.84 (0.81-0.89). The adaptability of each related facilities indicator was specified. The primary indicators were set in accordance with the characteristics and goals of the surveillance systems. Secondary indicators provided key elements in the management and control of the system while the tertiary indicators were available and operative. The agreement rate of experts was high with good validity and reliability. This index system could be used for CPHEESS in future.
2013-01-01
Background In recent years response rates on telephone surveys have been declining. Rates for the behavioral risk factor surveillance system (BRFSS) have also declined, prompting the use of new methods of weighting and the inclusion of cell phone sampling frames. A number of scholars and researchers have conducted studies of the reliability and validity of the BRFSS estimates in the context of these changes. As the BRFSS makes changes in its methods of sampling and weighting, a review of reliability and validity studies of the BRFSS is needed. Methods In order to assess the reliability and validity of prevalence estimates taken from the BRFSS, scholarship published from 2004–2011 dealing with tests of reliability and validity of BRFSS measures was compiled and presented by topics of health risk behavior. Assessments of the quality of each publication were undertaken using a categorical rubric. Higher rankings were achieved by authors who conducted reliability tests using repeated test/retest measures, or who conducted tests using multiple samples. A similar rubric was used to rank validity assessments. Validity tests which compared the BRFSS to physical measures were ranked higher than those comparing the BRFSS to other self-reported data. Literature which undertook more sophisticated statistical comparisons was also ranked higher. Results Overall findings indicated that BRFSS prevalence rates were comparable to other national surveys which rely on self-reports, although specific differences are noted for some categories of response. BRFSS prevalence rates were less similar to surveys which utilize physical measures in addition to self-reported data. There is very little research on reliability and validity for some health topics, but a great deal of information supporting the validity of the BRFSS data for others. Conclusions Limitations of the examination of the BRFSS were due to question differences among surveys used as comparisons, as well as mode of data collection differences. As the BRFSS moves to incorporating cell phone data and changing weighting methods, a review of reliability and validity research indicated that past BRFSS landline only data were reliable and valid as measured against other surveys. New analyses and comparisons of BRFSS data which include the new methodologies and cell phone data will be needed to ascertain the impact of these changes on estimates in the future. PMID:23522349
Reliability of segmental accelerations measured using a new wireless gait analysis system.
Kavanagh, Justin J; Morrison, Steven; James, Daniel A; Barrett, Rod
2006-01-01
The purpose of this study was to determine the inter- and intra-examiner reliability, and stride-to-stride reliability, of an accelerometer-based gait analysis system which measured 3D accelerations of the upper and lower body during self-selected slow, preferred and fast walking speeds. Eight subjects attended two testing sessions in which accelerometers were attached to the head, neck, lower trunk, and right shank. In the initial testing session, two different examiners attached the accelerometers and performed the same testing procedures. A single examiner repeated the procedure in a subsequent testing session. All data were collected using a new wireless gait analysis system, which features near real-time data transmission via a Bluetooth network. Reliability for each testing condition (4 locations, 3 directions, 3 speeds) was quantified using a waveform similarity statistic known as the coefficient of multiple determination (CMD). CMD's ranged from 0.60 to 0.98 across all test conditions and were not significantly different for inter-examiner (0.86), intra-examiner (0.87), and stride-to-stride reliability (0.86). The highest repeatability for the effect of location, direction and walking speed were for the shank segment (0.94), the vertical direction (0.91) and the fast walking speed (0.91), respectively. Overall, these results indicate that a high degree of waveform repeatability was obtained using a new gait system under test-retest conditions involving single and dual examiners. Furthermore, differences in acceleration waveform repeatability associated with the reapplication of accelerometers were small in relation to normal motor variability.
An MFC-Based Online Monitoring and Alert System for Activated Sludge Process
Xu, Gui-Hua; Wang, Yun-Kun; Sheng, Guo-Ping; Mu, Yang; Yu, Han-Qing
2014-01-01
In this study, based on a simple, compact and submersible microbial fuel cell (MFC), a novel online monitoring and alert system with self-diagnosis function was established for the activated sludge (AS) process. Such a submersible MFC utilized organic substrates and oxygen in the AS reactor as the electron donor and acceptor respectively, and could provide an evaluation on the status of the AS reactor and thus give a reliable early warning of potential risks. In order to evaluate the reliability and sensitivity of this online monitoring and alert system, a series of tests were conducted to examine the response of this system to various shocks imposed on the AS reactor. The results indicate that this online monitoring and alert system was highly sensitive to the performance variations of the AS reactor. The stability, sensitivity and repeatability of this online system provide feasibility of being incorporated into current control systems of wastewater treatment plants to real-time monitor, diagnose, alert and control the AS process. PMID:25345502
A comparative reliability analysis of free-piston Stirling machines
NASA Astrophysics Data System (ADS)
Schreiber, Jeffrey G.
2001-02-01
A free-piston Stirling power convertor is being developed for use in an advanced radioisotope power system to provide electric power for NASA deep space missions. These missions are typically long lived, lasting for up to 14 years. The Department of Energy (DOE) is responsible for providing the radioisotope power system for the NASA missions, and has managed the development of the free-piston power convertor for this application. The NASA Glenn Research Center has been involved in the development of Stirling power conversion technology for over 25 years and is currently providing support to DOE. Due to the nature of the potential missions, long life and high reliability are important features for the power system. Substantial resources have been spent on the development of long life Stirling cryocoolers for space applications. As a very general statement, free-piston Stirling power convertors have many features in common with free-piston Stirling cryocoolers, however there are also significant differences. For example, designs exist for both power convertors and cryocoolers that use the flexure bearing support system to provide noncontacting operation of the close-clearance moving parts. This technology and the operating experience derived from one application may be readily applied to the other application. This similarity does not pertain in the case of outgassing and contamination. In the cryocooler, the contaminants normally condense in the critical heat exchangers and foul the performance. In the Stirling power convertor just the opposite is true as contaminants condense on non-critical surfaces. A methodology was recently published that provides a relative comparison of reliability, and is applicable to systems. The methodology has been applied to compare the reliability of a Stirling cryocooler relative to that of a free-piston Stirling power convertor. The reliability analysis indicates that the power convertor should be able to have superior reliability compared to the cryocooler. .
Hwang, Seonhong; Tsai, Chung-Ying; Koontz, Alicia M
2017-05-24
The purpose of this study was to test the concurrent validity and test-retest reliability of the Kinect skeleton tracking algorithm for measurement of trunk, shoulder, and elbow joint angle measurement during a wheelchair transfer task. Eight wheelchair users were recruited for this study. Joint positions were recorded simultaneously by the Kinect and Vicon motion capture systems while subjects transferred from their wheelchairs to a level bench. Shoulder, elbow, and trunk angles recorded with the Kinect system followed a similar trajectory as the angles recorded with the Vicon system with correlation coefficients that are larger than 0.71 on both sides (leading arm and trailing arm). The root mean square errors (RMSEs) ranged from 5.18 to 22.46 for the shoulder, elbow, and trunk angles. The 95% limits of agreement (LOA) for the discrepancy between the two systems exceeded the clinical significant level of 5°. For the trunk, shoulder, and elbow angles, the Kinect had very good relative reliability for the measurement of sagittal, frontal and horizontal trunk angles, as indicated by the high intraclass correlation coefficient (ICC) values (>0.90). Small standard error of the measure (SEM) values, indicating good absolute reliability, were observed for all joints except for the leading arm's shoulder joint. Relatively large minimal detectable changes (MDCs) were observed in all joint angles. The Kinect motion tracking has promising performance levels for some upper limb joints. However, more accurate measurement of the joint angles may be required. Therefore, understanding the limitations in precision and accuracy of Kinect is imperative before utilization of Kinect.
NASA Technical Reports Server (NTRS)
Helenbrook, R. D.; Colt, J. Z.
1977-01-01
An economical, lightweight, safe, efficient, reliable, and reusable insulation system was developed for hypersonic cruise vehicle hydrogen fuel tanks. Results indicate that, a nitrogen purged, layered insulation system with nonpermeable closed-cell insulation next to the cryogenic tank and a high service temperature fibrous insulation surrounding it, is potentially an attractive solution to the insulation problem. For the postulated hypersonic flight the average unit weight of the purged insulation system (including insulation, condensate and fuel boil off) is 6.31 kg/sq m (1.29 psf). Limited cyclic tests of large specimens of closed cell polymethacrylimide foam indicate it will withstand the expected thermal cycle.
Visconti, Luca; Martin, Conchita
2013-01-01
The aim of this study was to evaluate both intra- and interoperator reliability of a radiological three-dimensional classification system (KPG index) for the assessment of degree of difficulty for orthodontic treatment of maxillary canine impactions. Cone beam computed tomography (CBCT) scans of fifty impacted canines, obtained using three different scanners (NewTom, Kodak, and Planmeca), were classified using the KPG index by three independent orthodontists. Measurements were repeated one month later. Based on these two sessions, several recommendations on KPG Index scoring were elaborated. After a joint calibration session, these recommendations were explained to nine orthodontists and the two measurement sessions were repeated. There was a moderate intrarater agreement in the precalibration measurement sessions. After the calibration session, both intra- and interrater agreement were almost perfect. Indexes assessed with Kodak Dental Imaging 3D module software showed a better reliability in z-axis values, whereas indexes assessed with Planmeca Romexis software showed a better reliability in x- and y-axis values. No differences were found between the CBCT scanners used. Taken together, these findings indicate that the application of the instructions elaborated during this study improved KPG index reliability, which was nevertheless variously influenced by the use of different software for images evaluation. PMID:24235889
Probabilistic resource allocation system with self-adaptive capability
NASA Technical Reports Server (NTRS)
Yufik, Yan M. (Inventor)
1998-01-01
A probabilistic resource allocation system is disclosed containing a low capacity computational module (Short Term Memory or STM) and a self-organizing associative network (Long Term Memory or LTM) where nodes represent elementary resources, terminal end nodes represent goals, and weighted links represent the order of resource association in different allocation episodes. Goals and their priorities are indicated by the user, and allocation decisions are made in the STM, while candidate associations of resources are supplied by the LTM based on the association strength (reliability). Weights are automatically assigned to the network links based on the frequency and relative success of exercising those links in the previous allocation decisions. Accumulation of allocation history in the form of an associative network in the LTM reduces computational demands on subsequent allocations. For this purpose, the network automatically partitions itself into strongly associated high reliability packets, allowing fast approximate computation and display of allocation solutions satisfying the overall reliability and other user-imposed constraints. System performance improves in time due to modification of network parameters and partitioning criteria based on the performance feedback.
Integrated photovoltaic (PV) monitoring system
NASA Astrophysics Data System (ADS)
Mahinder Singh, Balbir Singh; Husain, NurSyahidah; Mohamed, Norani Muti
2012-09-01
The main aim of this research work is to design an accurate and reliable monitoring system to be integrated with solar electricity generating system. The performance monitoring system is required to ensure that the PVEGS is operating at an optimum level. The PV monitoring system is able to measure all the important parameters that determine an optimum performance. The measured values are recorded continuously, as the data acquisition system is connected to a computer, and data is stored at fixed intervals. The data can be locally used and can also be transmitted via internet. The data that appears directly on the local monitoring system is displayed via graphical user interface that was created by using Visual basic and Apache software was used for data transmission The accuracy and reliability of the developed monitoring system was tested against the data that captured simultaneously by using a standard power quality analyzer device. The high correlation which is 97% values indicates the level of accuracy of the monitoring system. The aim of leveraging on a system for continuous monitoring system is achieved, both locally, and can be viewed simultaneously at a remote system.
A thermal vacuum-UV solar simulator test system for assessing microbiological viability
NASA Technical Reports Server (NTRS)
Ross, D. S.; Wardle, M. D.; Taylor, D. M.
1975-01-01
Microorganisms were exposed to a simulated space environment in order to assess the photobiological effect of broad spectrum, nonionizing solar electromagnetic radiation in terms of viability. A thermal vacuum chamber capable of maintaining a vacuum of 0.000133n/sq m and an ultraviolet rich solar simulator were the main ingredients of the test system. Results to date indicate the system to be capable of providing reliable microbiological data.
A Novel Concept for the Rapid Deployment of Electric Power Cables. Phase 1.
1987-04-30
cable toward the tactical position that requires power. The approach effectively neutralisasl both man-made and naturally occurring deployment...guided system with a reputation for extreme accuracy, it is anticipated that the cable can be delivered to a user located within a 1000 foot range...thus readily available, because it is an effective and reliable weapon system. The system has been up-graded several times which indicates that its
Advani, Aneel; Goldstein, Mary; Shahar, Yuval; Musen, Mark A
2003-01-01
Automated quality assessment of clinician actions and patient outcomes is a central problem in guideline- or standards-based medical care. In this paper we describe a model representation and algorithm for deriving structured quality indicators and auditing protocols from formalized specifications of guidelines used in decision support systems. We apply the model and algorithm to the assessment of physician concordance with a guideline knowledge model for hypertension used in a decision-support system. The properties of our solution include the ability to derive automatically context-specific and case-mix-adjusted quality indicators that can model global or local levels of detail about the guideline parameterized by defining the reliability of each indicator or element of the guideline.
Neurophysiology underlying influence of stimulus reliability on audiovisual integration.
Shatzer, Hannah; Shen, Stanley; Kerlin, Jess R; Pitt, Mark A; Shahin, Antoine J
2018-01-24
We tested the predictions of the dynamic reweighting model (DRM) of audiovisual (AV) speech integration, which posits that spectrotemporally reliable (informative) AV speech stimuli induce a reweighting of processing from low-level to high-level auditory networks. This reweighting decreases sensitivity to acoustic onsets and in turn increases tolerance to AV onset asynchronies (AVOA). EEG was recorded while subjects watched videos of a speaker uttering trisyllabic nonwords that varied in spectrotemporal reliability and asynchrony of the visual and auditory inputs. Subjects judged the stimuli as in-sync or out-of-sync. Results showed that subjects exhibited greater AVOA tolerance for non-blurred than blurred visual speech and for less than more degraded acoustic speech. Increased AVOA tolerance was reflected in reduced amplitude of the P1-P2 auditory evoked potentials, a neurophysiological indication of reduced sensitivity to acoustic onsets and successful AV integration. There was also sustained visual alpha band (8-14 Hz) suppression (desynchronization) following acoustic speech onsets for non-blurred vs. blurred visual speech, consistent with continuous engagement of the visual system as the speech unfolds. The current findings suggest that increased spectrotemporal reliability of acoustic and visual speech promotes robust AV integration, partly by suppressing sensitivity to acoustic onsets, in support of the DRM's reweighting mechanism. Increased visual signal reliability also sustains the engagement of the visual system with the auditory system to maintain alignment of information across modalities. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Upadhaya, Nawaraj; Jordans, Mark J D; Abdulmalik, Jibril; Ahuja, Shalini; Alem, Atalay; Hanlon, Charlotte; Kigozi, Fred; Kizza, Dorothy; Lund, Crick; Semrau, Maya; Shidhaye, Rahul; Thornicroft, Graham; Komproe, Ivan H; Gureje, Oye
2016-01-01
Research on information systems for mental health in low and middle income countries (LMICs) is scarce. As a result, there is a lack of reliable information on mental health service needs, treatment coverage and the quality of services provided. With the aim of informing the development and implementation of a mental health information sub-system that includes reliable and measurable indicators on mental health within the Health Management Information Systems (HMIS), a cross-country situation analysis of HMIS was conducted in six LMICs (Ethiopia, India, Nepal, Nigeria, South Africa and Uganda), participating in the 'Emerging mental health systems in low and middle income countries' (Emerald) research programme. A situation analysis tool was developed to obtain and chart information from documents in the public domain. In circumstances when information was inadequate, key government officials were contacted to verify the data collected. In this paper we compare the baseline policy context, human resources situation as well as the processes and mechanisms of collecting, verifying, reporting and disseminating mental health related HMIS data. The findings suggest that countries face substantial policy, human resource and health governance challenges for mental health HMIS, many of which are common across sites. In particular, the specific policies and plans for the governance and implementation of mental health data collection, reporting and dissemination are absent. Across sites there is inadequate infrastructure, few HMIS experts, and inadequate technical support and supervision to junior staff, particularly in the area of mental health. Nonetheless there are also strengths in existing HMIS where a few mental health morbidity, mortality, and system level indicators are collected and reported. Our study indicates the need for greater technical and resources input to strengthen routine HMIS and develop standardized HMIS indicators for mental health, focusing in particular on indicators of coverage and quality to facilitate the implementation of the WHO mental health action plan 2013-2020.
Modelling utility-scale wind power plants. Part 2: Capacity credit
NASA Astrophysics Data System (ADS)
Milligan, Michael R.
2000-10-01
As the worldwide use of wind turbine generators in utility-scale applications continues to increase, it will become increasingly important to assess the economic and reliability impact of these intermittent resources. Although the utility industry appears to be moving towards a restructured environment, basic economic and reliability issues will continue to be relevant to companies involved with electricity generation. This article is the second in a two-part series that addresses modelling approaches and results that were obtained in several case studies and research projects at the National Renewable Energy Laboratory (NREL). This second article focuses on wind plant capacity credit as measured with power system reliability indices. Reliability-based methods of measuring capacity credit are compared with wind plant capacity factor. The relationship between capacity credit and accurate wind forecasting is also explored. Published in 2000 by John Wiley & Sons, Ltd.
The Global Integrated Drought Monitoring and Prediction System (GIDMaPS): Overview and Capabilities
NASA Astrophysics Data System (ADS)
AghaKouchak, A.; Hao, Z.; Farahmand, A.; Nakhjiri, N.
2013-12-01
Development of reliable monitoring and prediction indices and tools are fundamental to drought preparedness and management. Motivated by the Global Drought Information Systems (GDIS) activities, this paper presents the Global Integrated Drought Monitoring and Prediction System (GIDMaPS) which provides near real-time drought information using both remote sensing observations and model simulations. The monthly data from the NASA Modern-Era Retrospective analysis for Research and Applications (MERRA-Land), North American Land Data Assimilation System (NLDAS), and remotely sensed precipitation data are used as input to GIDMaPS. Numerous indices have been developed for drought monitoring based on various indicator variables (e.g., precipitation, soil moisture, water storage). Defining droughts based on a single variable (e.g., precipitation, soil moisture or runoff) may not be sufficient for reliable risk assessment and decision making. GIDMaPS provides drought information based on multiple indices including Standardized Precipitation Index (SPI), Standardized Soil Moisture Index (SSI) and the Multivariate Standardized Drought Index (MSDI) which combines SPI and SSI probabilistically. In other words, MSDI incorporates the meteorological and agricultural drought conditions for overall characterization of droughts. The seasonal prediction component of GIDMaPS is based on a persistence model which requires historical data and near-past observations. The seasonal drought prediction component is based on two input data sets (MERRA and NLDAS) and three drought indicators (SPI, SSI and MSDI). The drought prediction model provides the empirical probability of drought for different severity levels. In this presentation, both monitoring and prediction components of GIDMaPS will be discussed, and the results from several major droughts including the 2013 Namibia, 2012-2013 United States, 2011-2012 Horn of Africa, and 2010 Amazon Droughts will be presented. The results indicate that GIDMaPS advances our drought monitoring and prediction capabilities through integration of multiple data and indicators.
Sterols indicate water quality and wastewater treatment efficiency.
Reichwaldt, Elke S; Ho, Wei Y; Zhou, Wenxu; Ghadouani, Anas
2017-01-01
As the world's population continues to grow, water pollution is presenting one of the biggest challenges worldwide. More wastewater is being generated and the demand for clean water is increasing. To ensure the safety and health of humans and the environment, highly efficient wastewater treatment systems, and a reliable assessment of water quality and pollutants are required. The advance of holistic approaches to water quality management and the increasing use of ecological water treatment technologies, such as constructed wetlands and waste stabilisation ponds (WSPs), challenge the appropriateness of commonly used water quality indicators. Instead, additional indicators, which are direct measures of the processes involved in the stabilisation of human waste, have to be established to provide an in-depth understanding of system performance. In this study we identified the sterol composition of wastewater treated in WSPs and assessed the suitability of human sterol levels as a bioindicator of treatment efficiency of wastewater in WSPs. As treatment progressed in WSPs, the relative abundance of human faecal sterols, such as coprostanol, epicoprostanol, 24-ethylcoprostanol, and sitostanol decreased significantly and the sterol composition in wastewater changed significantly. Furthermore, sterol levels were found to be correlated with commonly used wastewater quality indicators, such as BOD, TSS and E. coli. Three of the seven sterol ratios that have previously been used to track sewage pollution in the environment, detected a faecal signal in the effluent of WSPs, however, the others were influenced by high prevalence of sterols originating from algal and fungal activities. This finding poses a concern for environmental assessment studies, because environmental pollution from waste stabilisation ponds can go unnoticed. In conclusion, faecal sterols and their ratios can be used as reliable indicators of treatment efficiency and water quality during wastewater treatment in WSPs. They can complement the use of commonly used indicators of water quality, to provide essential information on the overall performance of ponds and whether a pond is underperforming in terms of stabilising human waste. Such a holistic understanding is essential when the aim is to improve the performance of a treatment plant, build new plants or expand existing infrastructure. Future work should aim at further establishing the use of sterols as reliable water quality indicators on a broader scale across natural and engineered systems. Copyright © 2016 Elsevier Ltd. All rights reserved.
National audit of continence care: laying the foundation.
Mian, Sarah; Wagg, Adrian; Irwin, Penny; Lowe, Derek; Potter, Jonathan; Pearson, Michael
2005-12-01
National audit provides a basis for establishing performance against national standards, benchmarking against other service providers and improving standards of care. For effective audit, clinical indicators are required that are valid, feasible to apply and reliable. This study describes the methods used to develop clinical indicators of continence care in preparation for a national audit. To describe the methods used to develop and test clinical indicators of continence care with regard to validity, feasibility and reliability. A multidisciplinary working group developed clinical indicators that measured the structure, process and outcome of care as well as case-mix variables. Literature searching, consensus workshops and a Delphi process were used to develop the indicators. The indicators were tested in 15 secondary care sites, 15 primary care sites and 15 long-term care settings. The process of development produced indicators that received a high degree of consensus within the Delphi process. Testing of the indicators demonstrated an internal reliability of 0.7 and an external reliability of 0.6. Data collection required significant investment in terms of staff time and training. The method used produced indicators that achieved a high degree of acceptance from health care professionals. The reliability of data collection was high for this audit and was similar to the level seen in other successful national audits. Data collection for the indicators was feasible to collect, however, issues of time and staffing were identified as limitations to such data collection. The study has described a systematic method for developing clinical indicators for national audit. The indicators proved robust and reliable in primary and secondary care as well as long-term care settings.
NASA Technical Reports Server (NTRS)
Cohen, Gerald C. (Inventor); McMann, Catherine M. (Inventor)
1991-01-01
An improved method and system for automatically generating reliability models for use with a reliability evaluation tool is described. The reliability model generator of the present invention includes means for storing a plurality of low level reliability models which represent the reliability characteristics for low level system components. In addition, the present invention includes means for defining the interconnection of the low level reliability models via a system architecture description. In accordance with the principles of the present invention, a reliability model for the entire system is automatically generated by aggregating the low level reliability models based on the system architecture description.
Code of Federal Regulations, 2013 CFR
2013-10-01
... SECURITY PREPAREDNESS GRADUATED MOBILIZATION RESPONSE § 334.3 Background. (a) The GMR system is designed to... preparations over a longer period of time to increase their military power. Such preparations by potential.... These measures permit the development of reliable indicators of threat at an early time in the evolution...
Code of Federal Regulations, 2014 CFR
2014-10-01
... SECURITY PREPAREDNESS GRADUATED MOBILIZATION RESPONSE § 334.3 Background. (a) The GMR system is designed to... preparations over a longer period of time to increase their military power. Such preparations by potential.... These measures permit the development of reliable indicators of threat at an early time in the evolution...
Code of Federal Regulations, 2010 CFR
2010-10-01
... SECURITY PREPAREDNESS GRADUATED MOBILIZATION RESPONSE § 334.3 Background. (a) The GMR system is designed to... preparations over a longer period of time to increase their military power. Such preparations by potential.... These measures permit the development of reliable indicators of threat at an early time in the evolution...
Code of Federal Regulations, 2011 CFR
2011-10-01
... SECURITY PREPAREDNESS GRADUATED MOBILIZATION RESPONSE § 334.3 Background. (a) The GMR system is designed to... preparations over a longer period of time to increase their military power. Such preparations by potential.... These measures permit the development of reliable indicators of threat at an early time in the evolution...
Code of Federal Regulations, 2012 CFR
2012-10-01
... SECURITY PREPAREDNESS GRADUATED MOBILIZATION RESPONSE § 334.3 Background. (a) The GMR system is designed to... preparations over a longer period of time to increase their military power. Such preparations by potential.... These measures permit the development of reliable indicators of threat at an early time in the evolution...
Interhemispheric Inhibition Measurement Reliability in Stroke: A Pilot Study
Cassidy, Jessica M.; Chu, Haitao; Chen, Mo; Kimberley, Teresa J.; Carey, James R.
2016-01-01
Objective Reliable transcranial magnetic stimulation (TMS) measures for probing corticomotor excitability are important when assessing the physiological effects of non-invasive brain stimulation. The primary objective of this study was to examine test-retest reliability of an interhemispheric inhibition (IHI) index measurement in stroke. Materials and Methods Ten subjects with chronic stroke (≥ 6 months) completed two IHI testing sessions per week for three weeks (six testing sessions total). A single investigator measured IHI in the contra- to-ipsilesional primary motor cortex direction and in the opposite direction using bilateral paired-pulse TMS. Weekly sessions were separated by 24 hours with a 1-week washout period separating testing weeks. To determine if motor-evoked potential (MEP) quantification method affected measurement reliability, IHI indices computed from both MEP amplitude and area responses were found. Reliability was assessed with two-way, mixed intraclass correlation coefficients (ICC(3,k)). Standard error of measurement and minimal detectable difference statistics were also determined. Results With the exception of the initial testing week, IHI indices measured in the contra-to-ipsilesional hemisphere direction demonstrated moderate to excellent reliability (ICC = 0.725 – 0.913). Ipsi-to-contralesional IHI indices depicted poor or invalid reliability estimates throughout the three-week testing duration (ICC= −1.153 – 0.105). The overlap of ICC 95% confidence intervals suggested that IHI indices using MEP amplitude vs. area measures did not differ with respect to reliability. Conclusions IHI indices demonstrated varying magnitudes of reliability irrespective of MEP quantification method. Several strategies for improving IHI index measurement reliability are discussed. PMID:27333364
DSM-III field trials: II. Initial experience with the multiaxial system.
Spitzer, R L; Forman, J B
1979-06-01
The multiaxial system of DSM-III includes nondiagnostic data that are valuable in understanding possible etiological factors and in treatment planning and prognosis. The authors describe the reliability of axis IV--severity of psychosocial stressors--and axis V--highest level of adaptive functioning in the past year--for 281 adult patients interviewed in phase one of the DSM-III field trials. The kappa coefficient of agreement for axis IV was .62 for joint interviews and .58 for separate interviews, which the authors consider at least fair. Reliability for axis V was quite good, .80 for joint interviews and .69 for separate interviews. Eighty-one percent of the participating clinicians judged the multiaxial system to be a useful addition to traditional diagnostic evaluation, although many indicated that they had difficulty quantifying severity of psychosocial stressors.
Site-specific landslide assessment in Alpine area using a reliable integrated monitoring system
NASA Astrophysics Data System (ADS)
Romeo, Saverio; Di Matteo, Lucio; Kieffer, Daniel Scott
2016-04-01
Rockfalls are one of major cause of landslide fatalities around the world. The present work discusses the reliability of integrated monitoring of displacements in a rockfall within the Alpine region (Salzburg Land - Austria), taking into account also the effect of the ongoing climate change. Due to the unpredictability of the frequency and magnitude, that threatens human lives and infrastructure, frequently it is necessary to implement an efficient monitoring system. For this reason, during the last decades, integrated monitoring systems of unstable slopes were widely developed and used (e.g., extensometers, cameras, remote sensing, etc.). In this framework, Remote Sensing techniques, such as GBInSAR technique (Groung-Based Interferometric Synthetic Aperture Radar), have emerged as efficient and powerful tools for deformation monitoring. GBInSAR measurements can be useful to achieve an early warning system using surface deformation parameters as ground displacement or inverse velocity (for semi-empirical forecasting methods). In order to check the reliability of GBInSAR and to monitor the evolution of landslide, it is very important to integrate different techniques. Indeed, a multi-instrumental approach is essential to investigate movements both in surface and in depth and the use of different monitoring techniques allows to perform a cross analysis of the data and to minimize errors, to check the data quality and to improve the monitoring system. During 2013, an intense and complete monitoring campaign has been conducted on the Ingelsberg landslide. By analyzing both historical temperature series (HISTALP) recorded during the last century and those from local weather stations, temperature values (Autumn-Winter, Winter and Spring) are clearly increased in Bad Hofgastein area as well as in Alpine region. As consequence, in the last decades the rockfall events have been shifted from spring to summer due to warmer winters. It is interesting to point out that temperature values recorded in the valley and on the slope show a good relationship indicating that the climatic monitoring is reliable. In addition, the landslide displacement monitoring is reliable as well: the comparison between displacements in depth by extensometers and in surface by GBInSAR - referred to March-December 2013 - shows ad high reliability as confirmed by the inter-rater reliability analysis (Pearson correlation coefficient higher than 0.9). In conclusion, the reliability of the monitoring system confirms that data can be useful to improve the knowledge on rockfall kinematic and to develop an accurate early warning system useful for civil protection issues.
NASA Astrophysics Data System (ADS)
Vivoni, E. R.; Mayer, A. S.; Halvorsen, K. E.; Robles-Morua, A.; Kossak, D.
2016-12-01
A series of iterative participatory modeling workshops were held in Sonora, México with the goal of developing water resources management strategies in a water-stressed basin subject to hydro-climatic variability and change. A model of the water resources system, consisting of watershed hydrology, water resources infrastructure, and groundwater models, was developed deliberatively in the workshops, along with scenarios of future climate and development. Participants used the final version of the water resources systems model to select from supply-side and demand-side water resources management strategies. The performance of the strategies was based on the reliability of meeting current and future demands at a daily time scale over a year's period. Pre- and post-workshop surveys were developed and administered. The survey questions focused on evaluation of participants' modeling capacity and the utility and accuracy of the models. The selected water resources strategies and the associated, expected reliability varied widely among participants. Most participants could be clustered into three groups with roughly equal numbers of participants that varied in terms of reliance on expanding infrastructure vs. demand modification; expectations of reliability; and perceptions of social, environmental, and economic impacts. The wide range of strategies chosen and associated reliabilities indicate that there is a substantial degree of uncertainty in how future water resources decisions could be made in the region. The pre- and post-survey results indicate that participants believed their modeling abilities increased and beliefs in the utility of models increased as a result of the workshops
Torque teno virus: an improved indicator for viral pathogens in drinking waters.
Griffin, Jennifer S; Plummer, Jeanine D; Long, Sharon C
2008-10-03
Currently applied indicator organism systems, such as coliforms, are not fully protective of public health from enteric viruses in water sources. Waterborne disease outbreaks have occurred in systems that tested negative for coliforms, and positive coliform results do not necessarily correlate with viral risk. It is widely recognized that bacterial indicators do not co-occur exclusively with infectious viruses, nor do they respond in the same manner to environmental or engineered stressors. Thus, a more appropriate indicator of health risks from infectious enteric viruses is needed. Torque teno virus is a small, non-enveloped DNA virus that likely exhibits similar transport characteristics to pathogenic enteric viruses. Torque teno virus is unique among enteric viral pathogens in that it appears to be ubiquitous in humans, elicits seemingly innocuous infections, and does not exhibit seasonal fluctuations or epidemic spikes. Torque teno virus is transmitted primarily via the fecal-oral route and can be assayed using rapid molecular techniques. We hypothesize that Torque teno virus is a more appropriate indicator of viral pathogens in drinking waters than currently used indicator systems based solely on bacteria. To test the hypothesis, a multi-phased research approach is needed. First, a reliable Torque teno virus assay must be developed. A rapid, sensitive, and specific PCR method using established nested primer sets would be most appropriate for routine monitoring of waters. Because PCR detects both infectious and inactivated virus, an in vitro method to assess infectivity also is needed. The density and occurrence of Torque teno virus in feces, wastewater, and source waters must be established to define spatial and temporal stability of this potential indicator. Finally, Torque teno virus behavior through drinking water treatment plants must be determined with co-assessment of traditional indicators and enteric viral pathogens to assess whether correlations exist. If substantiated, Torque teno virus could provide a completely new, reliable, and efficient indicator system for viral pathogen risk. This indicator would have broad application to drinking water utilities, watershed managers, and protection agencies and would provide a better means to assess viral risk and protect public health.
Torque teno virus: an improved indicator for viral pathogens in drinking waters
Griffin, Jennifer S; Plummer, Jeanine D; Long, Sharon C
2008-01-01
Background Currently applied indicator organism systems, such as coliforms, are not fully protective of public health from enteric viruses in water sources. Waterborne disease outbreaks have occurred in systems that tested negative for coliforms, and positive coliform results do not necessarily correlate with viral risk. It is widely recognized that bacterial indicators do not co-occur exclusively with infectious viruses, nor do they respond in the same manner to environmental or engineered stressors. Thus, a more appropriate indicator of health risks from infectious enteric viruses is needed. Presentation of the hypothesis Torque teno virus is a small, non-enveloped DNA virus that likely exhibits similar transport characteristics to pathogenic enteric viruses. Torque teno virus is unique among enteric viral pathogens in that it appears to be ubiquitous in humans, elicits seemingly innocuous infections, and does not exhibit seasonal fluctuations or epidemic spikes. Torque teno virus is transmitted primarily via the fecal-oral route and can be assayed using rapid molecular techniques. We hypothesize that Torque teno virus is a more appropriate indicator of viral pathogens in drinking waters than currently used indicator systems based solely on bacteria. Testing the hypothesis To test the hypothesis, a multi-phased research approach is needed. First, a reliable Torque teno virus assay must be developed. A rapid, sensitive, and specific PCR method using established nested primer sets would be most appropriate for routine monitoring of waters. Because PCR detects both infectious and inactivated virus, an in vitro method to assess infectivity also is needed. The density and occurrence of Torque teno virus in feces, wastewater, and source waters must be established to define spatial and temporal stability of this potential indicator. Finally, Torque teno virus behavior through drinking water treatment plants must be determined with co-assessment of traditional indicators and enteric viral pathogens to assess whether correlations exist. Implications of the hypothesis If substantiated, Torque teno virus could provide a completely new, reliable, and efficient indicator system for viral pathogen risk. This indicator would have broad application to drinking water utilities, watershed managers, and protection agencies and would provide a better means to assess viral risk and protect public health. PMID:18834517
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Handschuh, Robert F.; Delgado, Irebert R.
2013-01-01
The objective of this study was to illustrate the importance of combining Health Usage Monitoring Systems (HUMS) data with usage monitoring system data when detecting rotorcraft transmission health. Six gear sets were tested in the NASA Glenn Spiral Bevel Gear Fatigue Rig. Damage was initiated and progressed on the gear and pinion teeth. Damage progression was measured by debris generation and documented with inspection photos at varying torque values. A contact fatigue analysis was applied to the gear design indicating the effect temperature, load and reliability had on gear life. Results of this study illustrated the benefits of combining HUMS data and actual usage data to indicate progression of damage for spiral bevel gears.
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Handschuh, Robert F.; Delgado, Irebert, R.
2013-01-01
The objective of this study was to illustrate the importance of combining Health Usage Monitoring Systems (HUMS) data with usage monitoring system data when detecting rotorcraft transmission health. Three gear sets were tested in the NASA Glenn Spiral Bevel Gear Fatigue Rig. Damage was initiated and progressed on the gear and pinion teeth. Damage progression was measured by debris generation and documented with inspection photos at varying torque values. A contact fatigue analysis was applied to the gear design indicating the effect temperature, load and reliability had on gear life. Results of this study illustrated the benefits of combining HUMS data and actual usage data to indicate progression of damage for spiral bevel gears.
User's guide to the Reliability Estimation System Testbed (REST)
NASA Technical Reports Server (NTRS)
Nicol, David M.; Palumbo, Daniel L.; Rifkin, Adam
1992-01-01
The Reliability Estimation System Testbed is an X-window based reliability modeling tool that was created to explore the use of the Reliability Modeling Language (RML). RML was defined to support several reliability analysis techniques including modularization, graphical representation, Failure Mode Effects Simulation (FMES), and parallel processing. These techniques are most useful in modeling large systems. Using modularization, an analyst can create reliability models for individual system components. The modules can be tested separately and then combined to compute the total system reliability. Because a one-to-one relationship can be established between system components and the reliability modules, a graphical user interface may be used to describe the system model. RML was designed to permit message passing between modules. This feature enables reliability modeling based on a run time simulation of the system wide effects of a component's failure modes. The use of failure modes effects simulation enhances the analyst's ability to correctly express system behavior when using the modularization approach to reliability modeling. To alleviate the computation bottleneck often found in large reliability models, REST was designed to take advantage of parallel processing on hypercube processors.
Li, Lei; He, Qingming; Wei, Yunmei; He, Qin; Peng, Xuya
2014-11-01
To determine reliable state parameters which could be used as early warning indicators of process failure due to the acidification of anaerobic digestion of food waste, three mesophilic anaerobic digesters of food waste with different operation conditions were investigated. Such parameters as gas production, methane content, pH, concentrations of volatile fatty acid (VFA), alkalinity and their combined indicators were evaluated. Results revealed that operation conditions significantly affect the responses of parameters and thus the optimal early warning indicators of each reactor differ from each other. None of the single indicators was universally valid for all the systems. The universally valid indicators should combine several parameters to supply complementary information. A combination of total VFA, the ratio of VFA to total alkalinity (VFA/TA) and the ratio of bicarbonate alkalinity to total alkalinity (BA/TA) can reflect the metabolism of the digesting system and realize rapid and effective early warning. Copyright © 2014 Elsevier Ltd. All rights reserved.
The reliability and validity of the Saliba Postural Classification System
Collins, Cristiana Kahl; Johnson, Vicky Saliba; Godwin, Ellen M.; Pappas, Evangelos
2016-01-01
Objectives To determine the reliability and validity of the Saliba Postural Classification System (SPCS). Methods Two physical therapists classified pictures of 100 volunteer participants standing in their habitual posture for inter and intra-tester reliability. For validity, 54 participants stood on a force plate in a habitual and a corrected posture, while a vertical force was applied through the shoulders until the clinician felt a postural give. Data were extracted at the time the give was felt and at a time in the corrected posture that matched the peak vertical ground reaction force (VGRF) in the habitual posture. Results Inter-tester reliability demonstrated 75% agreement with a Kappa = 0.64 (95% CI = 0.524–0.756, SE = 0.059). Intra-tester reliability demonstrated 87% agreement with a Kappa = 0.8, (95% CI = 0.702–0.898, SE = 0.05) and 80% agreement with a Kappa = 0.706, (95% CI = 0.594–0818, SE = 0.057). The examiner applied a significantly higher (p < 0.001) peak vertical force in the corrected posture prior to a postural give when compared to the habitual posture. Within the corrected posture, the %VGRF was higher when the test was ongoing vs. when a postural give was felt (p < 0.001). The %VGRF was not different between the two postures when comparing the peaks (p = 0.214). Discussion The SPCS has substantial agreement for inter- and intra-tester reliability and is largely a valid postural classification system as determined by the larger vertical forces in the corrected postures. Further studies on the correlation between the SPCS and diagnostic classifications are indicated. PMID:27559288
The reliability and validity of the Saliba Postural Classification System.
Collins, Cristiana Kahl; Johnson, Vicky Saliba; Godwin, Ellen M; Pappas, Evangelos
2016-07-01
To determine the reliability and validity of the Saliba Postural Classification System (SPCS). Two physical therapists classified pictures of 100 volunteer participants standing in their habitual posture for inter and intra-tester reliability. For validity, 54 participants stood on a force plate in a habitual and a corrected posture, while a vertical force was applied through the shoulders until the clinician felt a postural give. Data were extracted at the time the give was felt and at a time in the corrected posture that matched the peak vertical ground reaction force (VGRF) in the habitual posture. Inter-tester reliability demonstrated 75% agreement with a Kappa = 0.64 (95% CI = 0.524-0.756, SE = 0.059). Intra-tester reliability demonstrated 87% agreement with a Kappa = 0.8, (95% CI = 0.702-0.898, SE = 0.05) and 80% agreement with a Kappa = 0.706, (95% CI = 0.594-0818, SE = 0.057). The examiner applied a significantly higher (p < 0.001) peak vertical force in the corrected posture prior to a postural give when compared to the habitual posture. Within the corrected posture, the %VGRF was higher when the test was ongoing vs. when a postural give was felt (p < 0.001). The %VGRF was not different between the two postures when comparing the peaks (p = 0.214). The SPCS has substantial agreement for inter- and intra-tester reliability and is largely a valid postural classification system as determined by the larger vertical forces in the corrected postures. Further studies on the correlation between the SPCS and diagnostic classifications are indicated.
Fiori, Simona; Cioni, Giovanni; Klingels, Katrjin; Ortibus, Els; Van Gestel, Leen; Rose, Stephen; Boyd, Roslyn N; Feys, Hilde; Guzzetta, Andrea
2014-09-01
To describe the development of a novel rating scale for classification of brain structural magnetic resonance imaging (MRI) in children with cerebral palsy (CP) and to assess its interrater and intrarater reliability. The scale consists of three sections. Section 1 contains descriptive information about the patient and MRI. Section 2 contains the graphical template of brain hemispheres onto which the lesion is transposed. Section 3 contains the scoring system for the quantitative analysis of the lesion characteristics, grouped into different global scores and subscores that assess separately side, regions, and depth. A larger interrater and intrarater reliability study was performed in 34 children with CP (22 males, 12 females; mean age at scan of 9 y 5 mo [SD 3 y 3 mo], range 4 y-16 y 11 mo; Gross Motor Function Classification System level I, [n=22], II [n=10], and level III [n=2]). Very high interrater and intrarater reliability of the total score was found with indices above 0.87. Reliability coefficients of the lobar and hemispheric subscores ranged between 0.53 and 0.95. Global scores for hemispheres, basal ganglia, brain stem, and corpus callosum showed reliability coefficients above 0.65. This study presents the first visual, semi-quantitative scale for classification of brain structural MRI in children with CP. The high degree of reliability of the scale supports its potential application for investigating the relationship between brain structure and function and examining treatment response according to brain lesion severity in children with CP. © 2014 Mac Keith Press.
van Trijffel, Emiel; Lindeboom, Robert; Bossuyt, Patrick Mm; Schmitt, Maarten A; Lucas, Cees; Koes, Bart W; Oostendorp, Rob Ab
2014-01-01
Manual spinal joint mobilisations and manipulations are widely used treatments in patients with neck and low-back pain. Inter-examiner reliability of passive intervertebral motion assessment of the cervical and lumbar spine, perceived as important for indicating these interventions, is poor within a univariable approach. The diagnostic process as a whole in daily practice in manual therapy has a multivariable character, however, in which the use and interpretation of passive intervertebral motion assessment depend on earlier results from the diagnostic process. To date, the inter-examiner reliability among manual therapists of a multivariable diagnostic decision-making process in patients with neck or low-back pain is unknown. This study will be conducted as a repeated-measures design in which 14 pairs of manual therapists independently examine a consecutive series of a planned total of 165 patients with neck or low-back pain presenting in primary care physiotherapy. Primary outcome measure is therapists' decision about whether or not manual spinal joint mobilisations or manipulations, or both, are indicated in each patient, alone or as part of a multimodal treatment. Therapists will largely be free to conduct the full diagnostic process based on their formulated examination objectives. For each pair of therapists, 2×2 tables will be constructed and reliability for the dichotomous decision will be expressed using Cohen's kappa. In addition, observed agreement, prevalence of positive decisions, prevalence index, bias index, and specific agreement in positive and negative decisions will be calculated. Univariable logistic regression analysis of concordant decisions will be performed to explore which demographic, professional, or clinical factors contributed to reliability. This study will provide an estimate of the inter-examiner reliability among manual therapists of indicating spinal joint mobilisations or manipulations in patients with neck or low-back pain based on a multivariable diagnostic reasoning and decision-making process, as opposed to reliability of individual tests. As such, it is proposed as an initial step toward the development of an alternative approach to current classification systems and prediction rules for identifying those patients with spinal disorders that may show a better response to manual therapy which can be incorporated in randomised clinical trials. Potential methodological limitations of this study are discussed.
2014-01-01
Background Manual spinal joint mobilisations and manipulations are widely used treatments in patients with neck and low-back pain. Inter-examiner reliability of passive intervertebral motion assessment of the cervical and lumbar spine, perceived as important for indicating these interventions, is poor within a univariable approach. The diagnostic process as a whole in daily practice in manual therapy has a multivariable character, however, in which the use and interpretation of passive intervertebral motion assessment depend on earlier results from the diagnostic process. To date, the inter-examiner reliability among manual therapists of a multivariable diagnostic decision-making process in patients with neck or low-back pain is unknown. Methods This study will be conducted as a repeated-measures design in which 14 pairs of manual therapists independently examine a consecutive series of a planned total of 165 patients with neck or low-back pain presenting in primary care physiotherapy. Primary outcome measure is therapists’ decision about whether or not manual spinal joint mobilisations or manipulations, or both, are indicated in each patient, alone or as part of a multimodal treatment. Therapists will largely be free to conduct the full diagnostic process based on their formulated examination objectives. For each pair of therapists, 2×2 tables will be constructed and reliability for the dichotomous decision will be expressed using Cohen’s kappa. In addition, observed agreement, prevalence of positive decisions, prevalence index, bias index, and specific agreement in positive and negative decisions will be calculated. Univariable logistic regression analysis of concordant decisions will be performed to explore which demographic, professional, or clinical factors contributed to reliability. Discussion This study will provide an estimate of the inter-examiner reliability among manual therapists of indicating spinal joint mobilisations or manipulations in patients with neck or low-back pain based on a multivariable diagnostic reasoning and decision-making process, as opposed to reliability of individual tests. As such, it is proposed as an initial step toward the development of an alternative approach to current classification systems and prediction rules for identifying those patients with spinal disorders that may show a better response to manual therapy which can be incorporated in randomised clinical trials. Potential methodological limitations of this study are discussed. PMID:24982754
Evaluating Federal Social Programs: An Uncertain Act.
ERIC Educational Resources Information Center
Levitan, Sar A.; Wurzburg, Gregory K.
This study of the federal government's evaluation of social programs indicates that it is virtually impossible to establish a bias-free, valid, and reliable system of inquiry to determine the effects of social programs. Divided into five chapters, the document examines the aspirations and limitations of evaluations, methodology, evaluation in the…
Feasibility study of modifications to BQM-34E drone for NASA research applications
NASA Technical Reports Server (NTRS)
James, H. A.
1972-01-01
The feasibility of modifying an existing supersonic drone into a free-flight research vehicle is examined. Appropriate structural and control system modifications, reliability and operational considerations, and ROM costs indicate that the BQM-34E drone is indeed suitable as a NASA research vehicle.
Using Embedded Visual Coding to Support Contextualization of Historical Texts
ERIC Educational Resources Information Center
Baron, Christine
2016-01-01
This mixed-method study examines the think-aloud protocols of 48 randomly assigned undergraduate students to understand what effect embedding a visual coding system, based on reliable visual cues for establishing historical time period, would have on novice history students' ability to contextualize historic documents. Results indicate that using…
A Litmus Test of Academic Quality
ERIC Educational Resources Information Center
Orkodashvili, Mariam
2009-01-01
The paper discusses the major issues connected with the accreditation procedures in higher education system in the U.S. The questions raised are as follows: what are the reliable and credible indicators of quality instruction that could be measured in the process of accreditation of higher education institutions? How does greater transparency in…
Schweitzer, Karl M; Vaccaro, Alexander R; Harrop, James S; Hurlbert, John; Carrino, John A; Rechtine, Glenn R; Schwartz, David G; Alanay, Ahmet; Sharma, Dinesh K; Anderson, D Greg; Lee, Joon Y; Arnold, Paul M
2007-09-01
The Spine Trauma Study Group (STSG) has proposed a novel thoracolumbar injury classification system and score (TLICS) in an attempt to define traumatic spinal injuries and direct appropriate management schemes objectively. The TLICS assigns specific point values based on three variables to generate a final severity score that guides potential treatment options. Within this algorithm, significant emphasis has been placed on posterior ligamentous complex (PLC) integrity. The purpose of this study was to determine the interrater reliability of indicators surgeons use when assessing PLC disruption on imaging studies, including computed tomography (CT) and magnetic resonance imaging (MRI). Orthopedic surgeons and neurosurgeons retrospectively reviewed a series of thoracolumbar injury case studies. Thirteen case studies, including images, were distributed to STSG members for individual, independent evaluation of the following three criteria: (1) diastasis of the facet joints on CT; (2) posterior edema-like signal in the region of PLC components on sagittal T2-weighted fat saturation (FAT SAT) MRI; and (3) disrupted PLC components on sagittal T1-weighted MRI. Interrater agreement on the presence or absence of each of the three criteria in each of the 13 cases was assessed. Absolute interrater percent agreement on diastasis of the facet joints on CT and posterior edema-like signal in the region of PLC components on sagittal T2-weighted FAT SAT MRI was similar (agreement 70.5%). Interrater agreement on disrupted PLC components on sagittal T1-weighted MRI was 48.9%. Facet joint diastasis on CT was the most reliable indicator of PLC disruption as assessed by both Cohen's kappa (kappa = 0.395) and intraclass correlation coefficient (ICC 0.430). The interrater reliability of assessing diastasis of the facet joints on CT had fair to moderate agreement. The reliability of assessing the posterior edema-like signal in the region of PLC components was lower but also fair, whereas the reliability of identifying disrupted PLC components was poor.
Modeling and simulation of reliability of unmanned intelligent vehicles
NASA Astrophysics Data System (ADS)
Singh, Harpreet; Dixit, Arati M.; Mustapha, Adam; Singh, Kuldip; Aggarwal, K. K.; Gerhart, Grant R.
2008-04-01
Unmanned ground vehicles have a large number of scientific, military and commercial applications. A convoy of such vehicles can have collaboration and coordination. For the movement of such a convoy, it is important to predict the reliability of the system. A number of approaches are available in literature which describes the techniques for determining the reliability of the system. Graph theoretic approaches are popular in determining terminal reliability and system reliability. In this paper we propose to exploit Fuzzy and Neuro-Fuzzy approaches for predicting the node and branch reliability of the system while Boolean algebra approaches are used to determine terminal reliability and system reliability. Hence a combination of intelligent approaches like Fuzzy, Neuro-Fuzzy and Boolean approaches is used to predict the overall system reliability of a convoy of vehicles. The node reliabilities may correspond to the collaboration of vehicles while branch reliabilities will determine the terminal reliabilities between different nodes. An algorithm is proposed for determining the system reliabilities of a convoy of vehicles. The simulation of the overall system is proposed. Such simulation should be helpful to the commander to take an appropriate action depending on the predicted reliability in different terrain and environmental conditions. It is hoped that results of this paper will lead to more important techniques to have a reliable convoy of vehicles in a battlefield.
The reliability of the Glasgow Coma Scale: a systematic review.
Reith, Florence C M; Van den Brande, Ruben; Synnot, Anneliese; Gruen, Russell; Maas, Andrew I R
2016-01-01
The Glasgow Coma Scale (GCS) provides a structured method for assessment of the level of consciousness. Its derived sum score is applied in research and adopted in intensive care unit scoring systems. Controversy exists on the reliability of the GCS. The aim of this systematic review was to summarize evidence on the reliability of the GCS. A literature search was undertaken in MEDLINE, EMBASE and CINAHL. Observational studies that assessed the reliability of the GCS, expressed by a statistical measure, were included. Methodological quality was evaluated with the consensus-based standards for the selection of health measurement instruments checklist and its influence on results considered. Reliability estimates were synthesized narratively. We identified 52 relevant studies that showed significant heterogeneity in the type of reliability estimates used, patients studied, setting and characteristics of observers. Methodological quality was good (n = 7), fair (n = 18) or poor (n = 27). In good quality studies, kappa values were ≥0.6 in 85%, and all intraclass correlation coefficients indicated excellent reliability. Poor quality studies showed lower reliability estimates. Reliability for the GCS components was higher than for the sum score. Factors that may influence reliability include education and training, the level of consciousness and type of stimuli used. Only 13% of studies were of good quality and inconsistency in reported reliability estimates was found. Although the reliability was adequate in good quality studies, further improvement is desirable. From a methodological perspective, the quality of reliability studies needs to be improved. From a clinical perspective, a renewed focus on training/education and standardization of assessment is required.
Ringdal, Kjetil G; Skaga, Nils Oddvar; Steen, Petter Andreas; Hestnes, Morten; Laake, Petter; Jones, J Mary; Lossius, Hans Morten
2013-01-01
Pre-injury comorbidities can influence the outcomes of severely injured patients. Pre-injury comorbidity status, graded according to the American Society of Anesthesiologists Physical Status (ASA-PS) classification system, is an independent predictor of survival in trauma patients and is recommended as a comorbidity score in the Utstein Trauma Template for Uniform Reporting of Data. Little is known about the reliability of pre-injury ASA-PS scores. The objective of this study was to examine whether the pre-injury ASA-PS system was a reliable scale for grading comorbidity in trauma patients. Nineteen Norwegian trauma registry coders were invited to participate in a reliability study in which 50 real but anonymised patient medical records were distributed. Reliability was analysed using quadratic weighted kappa (κ(w)) analysis with 95% CI as the primary outcome measure and unweighted kappa (κ) analysis, which included unknown values, as a secondary outcome measure. Fifteen of the invitees responded to the invitation, and ten participated. We found moderate (κ(w)=0.77 [95% CI: 0.64-0.87]) to substantial (κ(w)=0.95 [95% CI: 0.89-0.99]) rater-against-reference standard reliability using κ(w) and fair (κ=0.46 [95% CI: 0.29-0.64]) to substantial (κ=0.83 [95% CI: 0.68-0.94]) reliability using κ. The inter-rater reliability ranged from moderate (κ(w)=0.66 [95% CI: 0.45-0.81]) to substantial (κ(w)=0.96 [95% CI: 0.88-1.00]) for κ(w) and from slight (κ=0.36 [95% CI: 0.21-0.54]) to moderate (κ=0.75 [95% CI: 0.62-0.89]) for κ. The rater-against-reference standard reliability varied from moderate to substantial for the primary outcome measure and from fair to substantial for the secondary outcome measure. The study findings indicate that the pre-injury ASA-PS scale is a reliable score for classifying comorbidity in trauma patients. Copyright © 2012 Elsevier Ltd. All rights reserved.
Applicability and Limitations of Reliability Allocation Methods
NASA Technical Reports Server (NTRS)
Cruz, Jose A.
2016-01-01
Reliability allocation process may be described as the process of assigning reliability requirements to individual components within a system to attain the specified system reliability. For large systems, the allocation process is often performed at different stages of system design. The allocation process often begins at the conceptual stage. As the system design develops, more information about components and the operating environment becomes available, different allocation methods can be considered. Reliability allocation methods are usually divided into two categories: weighting factors and optimal reliability allocation. When properly applied, these methods can produce reasonable approximations. Reliability allocation techniques have limitations and implied assumptions that need to be understood by system engineers. Applying reliability allocation techniques without understanding their limitations and assumptions can produce unrealistic results. This report addresses weighting factors, optimal reliability allocation techniques, and identifies the applicability and limitations of each reliability allocation technique.
Reliability Estimation of Parameters of Helical Wind Turbine with Vertical Axis
Dumitrascu, Adela-Eliza; Lepadatescu, Badea; Dumitrascu, Dorin-Ion; Nedelcu, Anisor; Ciobanu, Doina Valentina
2015-01-01
Due to the prolonged use of wind turbines they must be characterized by high reliability. This can be achieved through a rigorous design, appropriate simulation and testing, and proper construction. The reliability prediction and analysis of these systems will lead to identifying the critical components, increasing the operating time, minimizing failure rate, and minimizing maintenance costs. To estimate the produced energy by the wind turbine, an evaluation approach based on the Monte Carlo simulation model is developed which enables us to estimate the probability of minimum and maximum parameters. In our simulation process we used triangular distributions. The analysis of simulation results has been focused on the interpretation of the relative frequency histograms and cumulative distribution curve (ogive diagram), which indicates the probability of obtaining the daily or annual energy output depending on wind speed. The experimental researches consist in estimation of the reliability and unreliability functions and hazard rate of the helical vertical axis wind turbine designed and patented to climatic conditions for Romanian regions. Also, the variation of power produced for different wind speeds, the Weibull distribution of wind probability, and the power generated were determined. The analysis of experimental results indicates that this type of wind turbine is efficient at low wind speed. PMID:26167524
Reliability Estimation of Parameters of Helical Wind Turbine with Vertical Axis.
Dumitrascu, Adela-Eliza; Lepadatescu, Badea; Dumitrascu, Dorin-Ion; Nedelcu, Anisor; Ciobanu, Doina Valentina
2015-01-01
Due to the prolonged use of wind turbines they must be characterized by high reliability. This can be achieved through a rigorous design, appropriate simulation and testing, and proper construction. The reliability prediction and analysis of these systems will lead to identifying the critical components, increasing the operating time, minimizing failure rate, and minimizing maintenance costs. To estimate the produced energy by the wind turbine, an evaluation approach based on the Monte Carlo simulation model is developed which enables us to estimate the probability of minimum and maximum parameters. In our simulation process we used triangular distributions. The analysis of simulation results has been focused on the interpretation of the relative frequency histograms and cumulative distribution curve (ogive diagram), which indicates the probability of obtaining the daily or annual energy output depending on wind speed. The experimental researches consist in estimation of the reliability and unreliability functions and hazard rate of the helical vertical axis wind turbine designed and patented to climatic conditions for Romanian regions. Also, the variation of power produced for different wind speeds, the Weibull distribution of wind probability, and the power generated were determined. The analysis of experimental results indicates that this type of wind turbine is efficient at low wind speed.
NASA Astrophysics Data System (ADS)
LI, Y.; Yang, S. H.
2017-05-01
The Antarctica astronomical telescopes work chronically on the top of the unattended South Pole, and they have only one chance to maintain every year. Due to the complexity of the optical, mechanical, and electrical systems, the telescopes are hard to be maintained and need multi-tasker expedition teams, which means an excessive awareness is essential for the reliability of the Antarctica telescopes. Based on the fault mechanism and fault mode of the main-axis control system for the equatorial Antarctica astronomical telescope AST3-3 (Antarctic Schmidt Telescopes 3-3), the method of fault tree analysis is introduced in this article, and we obtains the importance degree of the top event from the importance degree of the bottom event structure. From the above results, the hidden problems and weak links can be effectively found out, which will indicate the direction for promoting the stability of the system and optimizing the design of the system.
NASA Astrophysics Data System (ADS)
Fenicia, Fabrizio; Reichert, Peter; Kavetski, Dmitri; Albert, Calro
2016-04-01
The calibration of hydrological models based on signatures (e.g. Flow Duration Curves - FDCs) is often advocated as an alternative to model calibration based on the full time series of system responses (e.g. hydrographs). Signature based calibration is motivated by various arguments. From a conceptual perspective, calibration on signatures is a way to filter out errors that are difficult to represent when calibrating on the full time series. Such errors may for example occur when observed and simulated hydrographs are shifted, either on the "time" axis (i.e. left or right), or on the "streamflow" axis (i.e. above or below). These shifts may be due to errors in the precipitation input (time or amount), and if not properly accounted in the likelihood function, may cause biased parameter estimates (e.g. estimated model parameters that do not reproduce the recession characteristics of a hydrograph). From a practical perspective, signature based calibration is seen as a possible solution for making predictions in ungauged basins. Where streamflow data are not available, it may in fact be possible to reliably estimate streamflow signatures. Previous research has for example shown how FDCs can be reliably estimated at ungauged locations based on climatic and physiographic influence factors. Typically, the goal of signature based calibration is not the prediction of the signatures themselves, but the prediction of the system responses. Ideally, the prediction of system responses should be accompanied by a reliable quantification of the associated uncertainties. Previous approaches for signature based calibration, however, do not allow reliable estimates of streamflow predictive distributions. Here, we illustrate how the Bayesian approach can be employed to obtain reliable streamflow predictive distributions based on signatures. A case study is presented, where a hydrological model is calibrated on FDCs and additional signatures. We propose an approach where the likelihood function for the signatures is derived from the likelihood for streamflow (rather than using an "ad-hoc" likelihood for the signatures as done in previous approaches). This likelihood is not easily tractable analytically and we therefore cannot apply "simple" MCMC methods. This numerical problem is solved using Approximate Bayesian Computation (ABC). Our result indicate that the proposed approach is suitable for producing reliable streamflow predictive distributions based on calibration to signature data. Moreover, our results provide indications on which signatures are more appropriate to represent the information content of the hydrograph.
Apoptosis and Self-Destruct: A Contribution to Autonomic Agents?
NASA Technical Reports Server (NTRS)
Sterritt, Roy; Hinchey, Mike
2004-01-01
Autonomic Computing (AC), a self-managing systems initiative based on the biological metaphor of the autonomic nervous system, is increasingly gaining momentum as the way forward in designing reliable systems. Agent technologies have been identified as a key enabler for engineering autonomicity in systems, both in terms of retrofitting autonomicity into legacy systems and designing new systems. The AC initiative provides an opportunity to consider other biological systems and principles in seeking new design strategies. This paper reports on one such investigation; utilizing the apoptosis metaphor of biological systems to provide a dynamic health indicator signal between autonomic agents.
Study of aircraft in intraurban transportation systems, volume 3
NASA Technical Reports Server (NTRS)
Stout, E. G.; Kesling, P. H.; Matteson, D. E.; Sherwood, D. E.; Tuck, W. R., Jr.; Vaughn, L. A.
1971-01-01
An investigation of three aircraft concepts, deflected slipstream STOL, helicopter VTOL, and fixed wing STOL, is presented. An attempt was made to determine the best concept for the intraurban transportation system. Desirability of the concept was based on ease of maintenance, development timing, reliability, operating costs, and the noise produced. Indications are that the deflected slipstream STOL is best suited for intraurban transportation. Tables and graphs are included.
A Decreasing Failure Rate, Mixed Exponential Model Applied to Reliability.
1981-06-01
Trident missile systems have been observed. The mixed exponential distribu- tion has been shown to fit the life data for the electronic equipment on...these systems . This paper discusses some of the estimation problems which occur with the decreasing failure rate mixed exponential distribution when...assumption of constant or increasing failure rate seemed to be incorrect. 2. However, the design of this electronic equipment indicated that
Advani, Aneel; Goldstein, Mary; Shahar, Yuval; Musen, Mark A.
2003-01-01
Automated quality assessment of clinician actions and patient outcomes is a central problem in guideline- or standards-based medical care. In this paper we describe a model representation and algorithm for deriving structured quality indicators and auditing protocols from formalized specifications of guidelines used in decision support systems. We apply the model and algorithm to the assessment of physician concordance with a guideline knowledge model for hypertension used in a decision-support system. The properties of our solution include the ability to derive automatically (1) context-specific and (2) case-mix-adjusted quality indicators that (3) can model global or local levels of detail about the guideline (4) parameterized by defining the reliability of each indicator or element of the guideline. PMID:14728124
Beckworth, Colin A; Anguyo, Robert; Kyakulaga, Francis Cranmer; Lwanga, Stephen K; Valadez, Joseph J
2016-08-17
Data collection techniques that routinely provide health system information at the local level are in demand and needed. LQAS is intended for use by local health teams to collect data at the district and sub-district levels. Our question is whether local health staff produce biased results as they are responsible for implementing the programs they also assess. This test-retest study replicates on a larger scale an earlier LQAS reliability assessment in Uganda. We conducted in two districts an LQAS survey using 15 local health staff as data collectors. A week later, the data collectors swapped districts, where they acted as disinterested non-local data collectors, repeating the LQAS survey with the same respondents. We analysed the resulting two data sets for agreement using Cohens' Kappa. The average Kappa score for the knowledge indicators was k = 0.43 (SD = 0.16) and for practice indicators k = 0.63 (SD = 0.17). These scores show moderate agreement for knowledge indicators and substantial agreement for practice indicators. Analyses confirm that respondents were more knowledgeable on retest; no evidence of bias was found for practice indicators. The findings of this study are remarkably similar to those produced in the first reliability study. There is no evidence that using local healthcare staff to collect LQAS data biases data collection in an LQAS study. The bias observed in the knowledge indicators was most likely due to a 'practice effect', whereby respondents increased their knowledge as a result of completing the first survey; no corresponding effect was seen in the practice indicators.
Integrated optimization of nonlinear R/C frames with reliability constraints
NASA Technical Reports Server (NTRS)
Soeiro, Alfredo; Hoit, Marc
1989-01-01
A structural optimization algorithm was researched including global displacements as decision variables. The algorithm was applied to planar reinforced concrete frames with nonlinear material behavior submitted to static loading. The flexural performance of the elements was evaluated as a function of the actual stress-strain diagrams of the materials. Formation of rotational hinges with strain hardening were allowed and the equilibrium constraints were updated accordingly. The adequacy of the frames was guaranteed by imposing as constraints required reliability indices for the members, maximum global displacements for the structure and a maximum system probability of failure.
Farin, E; Carl, C; Lichtenberg, S; Jäckel, W H; Maier-Riehle, B; Rütten-Köppel, E
2003-12-01
This paper reports the results of a peer review system that was implemented in the context of the quality assurance programme of the statutory German Pension Insurance scheme. The data reported refer to the 2000/2001 data collection period for medical rehabilitation in the somatic indications. Examination of inter-rater reliability for judgements of individual raters shows satisfactory results only in orthopaedics. In the quality assurance programme, rehabilitation centres are usually evaluated by the mean of 20 rater judgements. The reliability of this aggregated measure is satisfactory in all indications. The results of 561 rehabilitation centres show that those quality criteria are in particular need of improvement that refer to subjective concepts of patients (e. g., subjective theories of illness). Between peer review procedures in 1998 and 1999, the quality scores of rehabilitation centres had improved whereas between 1999 and 2000/2001, no further improvement can be shown. However, those rehabilitation centres with a low quality score in 1999 (lowest quartile of the distribution) underwent a positive development between 1999 and 2000/2001. Reasons for this trend and possibilities for improving interrater reliability of the peer review process as an element of the quality assurance programme of the German Pension Insurance scheme are discussed.
Ross, Amy M; Ilic, Kelley; Kiyoshi-Teo, Hiroko; Lee, Christopher S
2017-12-26
The purpose of this study was to establish the psychometric properties of the new 16-item leadership environment scale. The leadership environment scale was based on complexity science concepts relevant to complex adaptive health care systems. A workforce survey of direct-care nurses was conducted (n = 1,443) in Oregon. Confirmatory factor analysis, exploratory factor analysis, concordant validity test and reliability tests were conducted to establish the structure and internal consistency of the leadership environment scale. Confirmatory factor analysis indices approached acceptable thresholds of fit with a single factor solution. Exploratory factor analysis showed improved fit with a two-factor model solution; the factors were labelled 'influencing relationships' and 'interdependent system supports'. Moderate to strong convergent validity was observed between the leadership environment scale/subscales and both the nursing workforce index and the safety organising scale. Reliability of the leadership environment scale and subscales was strong, with all alphas ≥.85. The leadership environment scale is structurally sound and reliable. Nursing management can employ adaptive complexity leadership attributes, measure their influence on the leadership environment, subsequently modify system supports and relationships and improve the quality of health care systems. The leadership environment scale is an innovative fit to complex adaptive systems and how nurses act as leaders within these systems. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Mullin, Daniel Richard
2013-09-01
The majority of space programs whether manned or unmanned for science or exploration require that a Failure Modes Effects and Criticality Analysis (FMECA) be performed as part of their safety and reliability activities. This comes as no surprise given that FMECAs have been an integral part of the reliability engineer's toolkit since the 1950s. The reasons for performing a FMECA are well known including fleshing out system single point failures, system hazards and critical components and functions. However, in the author's ten years' experience as a space systems safety and reliability engineer, findings demonstrate that the FMECA is often performed as an afterthought, simply to meet contract deliverable requirements and is often started long after the system requirements allocation and preliminary design have been completed. There are also important qualitative and quantitative components often missing which can provide useful data to all of project stakeholders. These include; probability of occurrence, probability of detection, time to effect and time to detect and, finally, the Risk Priority Number. This is unfortunate as the FMECA is a powerful system design tool that when used effectively, can help optimize system function while minimizing the risk of failure. When performed as early as possible in conjunction with writing the top level system requirements, the FMECA can provide instant feedback on the viability of the requirements while providing a valuable sanity check early in the design process. It can indicate which areas of the system will require redundancy and which areas are inherently the most risky from the onset. Based on historical and practical examples, it is this author's contention that FMECAs are an immense source of important information for all involved stakeholders in a given project and can provide several benefits including, efficient project management with respect to cost and schedule, system engineering and requirements management, assembly integration and test (AI&T) and operations if applied early, performed to completion and updated along with system design.
Limits to detection of generalized synchronization in delay-coupled chaotic oscillators.
Kato, Hideyuki; Soriano, Miguel C; Pereda, Ernesto; Fischer, Ingo; Mirasso, Claudio R
2013-12-01
We study how reliably generalized synchronization can be detected and characterized from time-series analysis. To that end, we analyze synchronization in a generalized sense of delay-coupled chaotic oscillators in unidirectional ring configurations. The generalized synchronization condition can be verified via the auxiliary system approach; however, in practice, this might not always be possible. Therefore, in this study, widely used indicators to directly quantify generalized and phase synchronization from noise-free time series of two oscillators are employed complementarily to the auxiliary system approach. In our analysis, none of the indices provide the consistent results of the auxiliary system approach. Our findings indicate that it is a major challenge to directly detect synchronization in a generalized sense between two oscillators that are connected via a chain of other oscillators, even if the oscillators are identical. This has major consequences for the interpretation of the dynamics of coupled systems and applications thereof.
A particle swarm model for estimating reliability and scheduling system maintenance
NASA Astrophysics Data System (ADS)
Puzis, Rami; Shirtz, Dov; Elovici, Yuval
2016-05-01
Modifying data and information system components may introduce new errors and deteriorate the reliability of the system. Reliability can be efficiently regained with reliability centred maintenance, which requires reliability estimation for maintenance scheduling. A variant of the particle swarm model is used to estimate reliability of systems implemented according to the model view controller paradigm. Simulations based on data collected from an online system of a large financial institute are used to compare three component-level maintenance policies. Results show that appropriately scheduled component-level maintenance greatly reduces the cost of upholding an acceptable level of reliability by reducing the need in system-wide maintenance.
Computational Study of a Model System of Enzyme-Mediated [4+2] Cycloaddition Reaction
2015-01-01
A possible mechanistic pathway related to an enzyme-catalyzed [4+2] cycloaddition reac-tion was studied by theoretical calculations at density functional (B3LYP, O3LYP, M062X) and semiempirical levels (PM6-DH2, PM6) performed on a model system. The calculations were carried out for the key [4+2] cycloaddition step considering enzyme-catalyzed biosynthesis of Spinosyn A in a model reaction, where a reliable example of a biological Diels-Alder reaction was reported experimentally. In the present study it was demonstrated that the [4+2] cycloaddition reaction may benefit from moving along the energetically balanced reaction coordinate, which enabled the catalytic rate enhancement of the [4+2] cycloaddition pathway involving a single transition state. Modeling of such a system with coordination of three amino acids indicated a reliable decrease of activation energy by ~18.0 kcal/mol as compared to a non-catalytic transformation. PMID:25853669
System reliability approaches for advanced propulsion system structures
NASA Technical Reports Server (NTRS)
Cruse, T. A.; Mahadevan, S.
1991-01-01
This paper identifies significant issues that pertain to the estimation and use of system reliability in the design of advanced propulsion system structures. Linkages between the reliabilities of individual components and their effect on system design issues such as performance, cost, availability, and certification are examined. The need for system reliability computation to address the continuum nature of propulsion system structures and synergistic progressive damage modes has been highlighted. Available system reliability models are observed to apply only to discrete systems. Therefore a sequential structural reanalysis procedure is formulated to rigorously compute the conditional dependencies between various failure modes. The method is developed in a manner that supports both top-down and bottom-up analyses in system reliability.
Environmental education curriculum evaluation questionnaire: A reliability and validity study
NASA Astrophysics Data System (ADS)
Minner, Daphne Diane
The intention of this research project was to bridge the gap between social science research and application to the environmental domain through the development of a theoretically derived instrument designed to give educators a template by which to evaluate environmental education curricula. The theoretical base for instrument development was provided by several developmental theories such as Piaget's theory of cognitive development, Developmental Systems Theory, Life-span Perspective, as well as curriculum research within the area of environmental education. This theoretical base fueled the generation of a list of components which were then translated into a questionnaire with specific questions relevant to the environmental education domain. The specific research question for this project is: Can a valid assessment instrument based largely on human development and education theory be developed that reliably discriminates high, moderate, and low quality in environmental education curricula? The types of analyses conducted to answer this question were interrater reliability (percent agreement, Cohen's Kappa coefficient, Pearson's Product-Moment correlation coefficient), test-retest reliability (percent agreement, correlation), and criterion-related validity (correlation). Face validity and content validity were also assessed through thorough reviews. Overall results indicate that 29% of the questions on the questionnaire demonstrated a high level of interrater reliability and 43% of the questions demonstrated a moderate level of interrater reliability. Seventy-one percent of the questions demonstrated a high test-retest reliability and 5% a moderate level. Fifty-five percent of the questions on the questionnaire were reliable (high or moderate) both across time and raters. Only eight questions (8%) did not show either interrater or test-retest reliability. The global overall rating of high, medium, or low quality was reliable across both coders and time, indicating that the questionnaire can discriminate differences in quality of environmental education curricula. Of the 35 curricula evaluated, 6 were high quality, 14 were medium quality and 15 were low quality. The criterion-related validity of the instrument is at current time unable to be established due to the lack of comparable measures or a concretely usable set of multidisciplinary standards. Face and content validity were sufficiently demonstrated.
McGinley, Jennifer L; Goldie, Patricia A; Greenwood, Kenneth M; Olney, Sandra J
2003-02-01
Physical therapists routinely observe gait in clinical practice. The purpose of this study was to determine the accuracy and reliability of observational assessments of push-off in gait after stroke. Eighteen physical therapists and 11 subjects with hemiplegia following a stroke participated in the study. Measurements of ankle power generation were obtained from subjects following stroke using a gait analysis system. Concurrent videotaped gait performances were observed by the physical therapists on 2 occasions. Ankle power generation at push-off was scored as either normal or abnormal using two 11-point rating scales. These observational ratings were correlated with the measurements of peak ankle power generation. A high correlation was obtained between the observational ratings and the measurements of ankle power generation (mean Pearson r=.84). Interobserver reliability was moderately high (mean intraclass correlation coefficient [ICC (2,1)]=.76). Intraobserver reliability also was high, with a mean ICC (2,1) of.89 obtained. Physical therapists were able to make accurate and reliable judgments of push-off in videotaped gait of subjects following stroke using observational assessment. Further research is indicated to explore the accuracy and reliability of data obtained with observational gait analysis as it occurs in clinical practice.
Embedded control system for computerized franking machine
NASA Astrophysics Data System (ADS)
Shi, W. M.; Zhang, L. B.; Xu, F.; Zhan, H. W.
2007-12-01
This paper presents a novel control system for franking machine. A methodology for operating a franking machine using the functional controls consisting of connection, configuration and franking electromechanical drive is studied. A set of enabling technologies to synthesize postage management software architectures driven microprocessor-based embedded systems is proposed. The cryptographic algorithm that calculates mail items is analyzed to enhance the postal indicia accountability and security. The study indicated that the franking machine is reliability, performance and flexibility in printing mail items.
Documentation of pharmaceutical care: Validation of an intervention oriented classification system.
Maes, Karen A; Studer, Helene; Berger, Jérôme; Hersberger, Kurt E; Lampert, Markus L
2017-12-01
During the dispensing process, pharmacists may come across technical and clinical issues requiring a pharmaceutical intervention (PI). An intervention-oriented classification system is a helpful tool to document these PIs in a structured manner. Therefore, we developed the PharmDISC classification system (Pharmacists' Documentation of Interventions in Seamless Care). The aim of this study was to evaluate the PharmDISC system in the daily practice environment (in terms of interrater reliability, appropriateness, interpretability, acceptability, feasibility, and validity); to assess its user satisfaction, the descriptive manual, and the online training; and to explore first implementation aspects. Twenty-one pharmacists from different community pharmacies each classified 30 prescriptions requiring a PI with the PharmDISC system on 5 selected days within 5 weeks. Interrater reliability was determined using model PIs and Fleiss's kappa coefficients (κ) were calculated. User satisfaction was assessed by questionnaire with a 4-point Likert scale. The main outcome measures were interrater reliability (κ); appropriateness, interpretability, validity (ratio of completely classified PIs/all PIs); feasibility, and acceptability (user satisfaction and suggestions). The PharmDISC system reached an average substantial agreement (κ = 0.66). Of documented 519 PIs, 430 (82.9%) were completely classified. Most users found the system comprehensive (median user agreement 3 [2/3.25 quartiles]) and practical (3[2.75/3]). The PharmDISC system raised the awareness regarding drug-related problems for most users (n = 16). To facilitate its implementation, an electronic version that automatically connects to the prescription together with a task manager for PIs needing follow-up was suggested. Barriers could be time expenditure and lack of understanding the benefits. Substantial interrater reliability and acceptable user satisfaction indicate that the PharmDISC system is a valid system to document PIs in daily community pharmacy practice. © 2017 John Wiley & Sons, Ltd.
Picardi, Angelo; Tarolla, Emanuele; de Girolamo, Giovanni; Gigantesco, Antonella; Neri, Giovanni; Rossi, Elisabetta; Biondi, Massimo
2014-01-01
This article describes the activities of a project aimed at developing a system of process and process/outcome indicators suitable to monitor over time the quality of psychiatric care of Italian inpatient and residential psychiatric facilities. This system, named PRISM (Process Indicator System for Mental health), was developed by means of a standardized evaluation made by a panel of experts and a consecutive pilot study in 17 inpatient and 13 residential psychiatric facilities. A total of 28 indicators were selected from a set of 251 candidate indicators developed by the most relevant and qualified Italian and international authorities. These indicators are derived by data from medical records and information about characteristics of facilities, and they cover processes of care, operational equipment of facilities, staff training and working, relationships with external agencies, and sentinel events. The procedure followed for the development of the indicator system was reliable and innovative. The data collected from the pilot study suggested a favourable benefit-cost ratio between the workload associated with regular use of the indicators into the context of daily clinical activities and the advantages related to the information gathered through regular use of the indicators. CONCLUSIONS.:The PRISM system provides additional information about the healthcare processes with respect to the information gathered via routine information systems, and it might prove useful for both continuous quality improvement programs and health services research.
Chaudhry, Aafia; Benson, Laura; Varshaver, Michael; Farber, Ori; Weinberg, Uri; Kirson, Eilon; Palti, Yoram
2015-11-11
Optune™, previously known as the NovoTTF-100A System™, generates Tumor Treating Fields (TTFields), an effective anti-mitotic therapy for glioblastoma. The system delivers intermediate frequency, alternating electric fields to the supratentorial brain. Patient therapy is personalized by configuring transducer array layout placement on the scalp to the tumor site using MRI measurements and the NovoTAL System. Transducer array layout mapping optimizes therapy by maximizing electric field intensity to the tumor site. This study evaluated physician performance in conducting transducer array layout mapping using the NovoTAL System compared with mapping performed by the Novocure in-house clinical team. Fourteen physicians (7 neuro-oncologists, 4 medical oncologists, and 3 neurosurgeons) evaluated five blinded cases of recurrent glioblastoma and performed head size and tumor location measurements using a standard Digital Imaging and Communications in Medicine reader. Concordance with Novocure measurement and intra- and inter-rater reliability were assessed using relevant correlation coefficients. The study criterion for success was a concordance correlation coefficient (CCC) >0.80. CCC for each physician versus Novocure on 20 MRI measurements was 0.96 (standard deviation, SD ± 0.03, range 0.90-1.00), indicating very high agreement between the two groups. Intra- and inter-rater reliability correlation coefficients were similarly high: 0.83 (SD ±0.15, range 0.54-1.00) and 0.80 (SD ±0.18, range 0.48-1.00), respectively. This user study demonstrated an excellent level of concordance between prescribing physicians and Novocure in-house clinical teams in performing transducer array layout planning. Intra-rater reliability was very high, indicating reproducible performance. Physicians prescribing TTFields, when trained on the NovoTAL System, can independently perform transducer array layout mapping required for the initiation and maintenance of patients on TTFields therapy.
Hill, N Jeremy; Moinuddin, Aisha; Häuser, Ann-Katrin; Kienzle, Stephan; Schalk, Gerwin
2012-01-01
Most brain-computer interface (BCI) systems require users to modulate brain signals in response to visual stimuli. Thus, they may not be useful to people with limited vision, such as those with severe paralysis. One important approach for overcoming this issue is auditory streaming, an approach whereby a BCI system is driven by shifts of attention between two simultaneously presented auditory stimulus streams. Motivated by the long-term goal of translating such a system into a reliable, simple yes-no interface for clinical usage, we aim to answer two main questions. First, we asked which of two previously published variants provides superior performance: a fixed-phase (FP) design in which the streams have equal period and opposite phase, or a drifting-phase (DP) design where the periods are unequal. We found FP to be superior to DP (p = 0.002): average performance levels were 80 and 72% correct, respectively. We were also able to show, in a pilot with one subject, that auditory streaming can support continuous control and neurofeedback applications: by shifting attention between ongoing left and right auditory streams, the subject was able to control the position of a paddle in a computer game. Second, we examined whether the system is dependent on eye movements, since it is known that eye movements and auditory attention may influence each other, and any dependence on the ability to move one's eyes would be a barrier to translation to paralyzed users. We discovered that, despite instructions, some subjects did make eye movements that were indicative of the direction of attention. However, there was no correlation, across subjects, between the reliability of the eye movement signal and the reliability of the BCI system, indicating that our system was configured to work independently of eye movement. Together, these findings are an encouraging step forward toward BCIs that provide practical communication and control options for the most severely paralyzed users.
Non-Traditional Displays for Mission Monitoring
NASA Technical Reports Server (NTRS)
Trujillo, Anna C.; Schutte, Paul C.
1999-01-01
Advances in automation capability and reliability have changed the role of humans from operating and controlling processes to simply monitoring them for anomalies. However, humans are traditionally bad monitors of highly reliable systems over time. Thus, the human is assigned a task for which he is ill equipped. We believe that this has led to the dominance of human error in process control activities such as operating transportation systems (aircraft and trains), monitoring patient health in the medical industry, and controlling plant operations. Research has shown, though, that an automated monitor can assist humans in recognizing and dealing with failures. One possible solution to this predicament is to use a polar-star display that will show deviations from normal states based on parameters that are most indicative of mission health.
French adaptation of the new Knee Society Scoring System for total knee arthroplasty.
Debette, C; Parratte, S; Maucort-Boulch, D; Blanc, G; Pauly, V; Lustig, S; Servien, E; Neyret, P; Argenson, J N
2014-09-01
In November 2011, the Knee Society published its new KSS score to evaluate objective clinical data and also patient expectations, satisfaction and knee function during various physical activities before and after total knee arthroplasty (TKA). We undertook the French cross-cultural adaptation of this scoring system according to current recommendations. The French version of the new KSS score is a consistent, feasible, reliable and discriminating score. Eighty patients with knee osteoarthritis were recruited from two centers: one group of 40 patients had a TKA indication, while the other group of 40 patients had an indication for conservative treatment. After the new KSS score was translated and back-translated, it was compared to three other validated instruments (KOOS, AMIQUAL and SF-12) to determine construct validity, discriminating power, feasibility in terms of response rate and existence of floor or ceiling effect, internal consistency with Chronbach's alpha and reliability based on reproducibility and sensitivity to change (responsiveness). Due to missing data, two cases were eliminated. We found that the score could discriminate between groups; it had a nearly 100% response rate, a ceiling effect in the "expectations" domain, satisfactory Chronbach's alpha, excellent reproducibility and good responsiveness. These results confirm that the French version of the new KSS score is reliable, feasible, discriminating, consistent and responsive. The novelty of this scoring system resides in the "expectations" and "satisfaction" domains, its availability as a self-assessment questionnaire and the evaluation of function during various activities. Level III. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
75 FR 72664 - System Personnel Training Reliability Standards
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-26
...Under section 215 of the Federal Power Act, the Commission approves two Personnel Performance, Training and Qualifications (PER) Reliability Standards, PER-004-2 (Reliability Coordination--Staffing) and PER-005-1 (System Personnel Training), submitted to the Commission for approval by the North American Electric Reliability Corporation, the Electric Reliability Organization certified by the Commission. The approved Reliability Standards require reliability coordinators, balancing authorities, and transmission operators to establish a training program for their system operators, verify each of their system operators' capability to perform tasks, and provide emergency operations training to every system operator. The Commission also approves NERC's proposal to retire two existing PER Reliability Standards that are replaced by the standards approved in this Final Rule.
Okundamiya, Michael S; Emagbetere, Joy O; Ogujor, Emmanuel A
2014-01-01
The rapid growth of the mobile telecommunication sectors of many emerging countries creates a number of problems such as network congestion and poor service delivery for network operators. This results primarily from the lack of a reliable and cost-effective power solution within such regions. This study presents a comprehensive review of the underlying principles of the renewable energy technology (RET) with the objective of ensuring a reliable and cost-effective energy solution for a sustainable development in the emerging world. The grid-connected hybrid renewable energy system incorporating a power conversion and battery storage unit has been proposed based on the availability, dynamism, and technoeconomic viability of energy resources within the region. The proposed system's performance validation applied a simulation model developed in MATLAB, using a practical load data for different locations with varying climatic conditions in Nigeria. Results indicate that, apart from being environmentally friendly, the increase in the overall energy throughput of about 4 kWh/$ of the proposed system would not only improve the quality of mobile services, by making the operations of GSM base stations more reliable and cost effective, but also better the living standards of the host communities.
Okundamiya, Michael S.; Emagbetere, Joy O.; Ogujor, Emmanuel A.
2014-01-01
The rapid growth of the mobile telecommunication sectors of many emerging countries creates a number of problems such as network congestion and poor service delivery for network operators. This results primarily from the lack of a reliable and cost-effective power solution within such regions. This study presents a comprehensive review of the underlying principles of the renewable energy technology (RET) with the objective of ensuring a reliable and cost-effective energy solution for a sustainable development in the emerging world. The grid-connected hybrid renewable energy system incorporating a power conversion and battery storage unit has been proposed based on the availability, dynamism, and technoeconomic viability of energy resources within the region. The proposed system's performance validation applied a simulation model developed in MATLAB, using a practical load data for different locations with varying climatic conditions in Nigeria. Results indicate that, apart from being environmentally friendly, the increase in the overall energy throughput of about 4 kWh/$ of the proposed system would not only improve the quality of mobile services, by making the operations of GSM base stations more reliable and cost effective, but also better the living standards of the host communities. PMID:24578673
Tan, Edwin T.; Martin, Sarah R.; Fortier, Michelle A.; Kain, Zeev N.
2012-01-01
Objective To develop and validate a behavioral coding measure, the Children's Behavior Coding System-PACU (CBCS-P), for children's distress and nondistress behaviors while in the postanesthesia recovery unit. Methods A multidisciplinary team examined videotapes of children in the PACU and developed a coding scheme that subsequently underwent a refinement process (CBCS-P). To examine the reliability and validity of the coding system, 121 children and their parents were videotaped during their stay in the PACU. Participants were healthy children undergoing elective, outpatient surgery and general anesthesia. The CBCS-P was utilized and objective data from medical charts (analgesic consumption and pain scores) were extracted to establish validity. Results Kappa values indicated good-to-excellent (κ's > .65) interrater reliability of the individual codes. The CBCS-P had good criterion validity when compared to children's analgesic consumption and pain scores. Conclusions The CBCS-P is a reliable, observational coding method that captures children's distress and nondistress postoperative behaviors. These findings highlight the importance of considering context in both the development and application of observational coding schemes. PMID:22167123
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bucknor, Matthew; Grabaskas, David; Brunett, Acacia
2015-04-26
Advanced small modular reactor designs include many advantageous design features such as passively driven safety systems that are arguably more reliable and cost effective relative to conventional active systems. Despite their attractiveness, a reliability assessment of passive systems can be difficult using conventional reliability methods due to the nature of passive systems. Simple deviations in boundary conditions can induce functional failures in a passive system, and intermediate or unexpected operating modes can also occur. As part of an ongoing project, Argonne National Laboratory is investigating various methodologies to address passive system reliability. The Reliability Method for Passive Systems (RMPS), amore » systematic approach for examining reliability, is one technique chosen for this analysis. This methodology is combined with the Risk-Informed Safety Margin Characterization (RISMC) approach to assess the reliability of a passive system and the impact of its associated uncertainties. For this demonstration problem, an integrated plant model of an advanced small modular pool-type sodium fast reactor with a passive reactor cavity cooling system is subjected to a station blackout using RELAP5-3D. This paper discusses important aspects of the reliability assessment, including deployment of the methodology, the uncertainty identification and quantification process, and identification of key risk metrics.« less
The system of technical diagnostics of the industrial safety information network
NASA Astrophysics Data System (ADS)
Repp, P. V.
2017-01-01
This research is devoted to problems of safety of the industrial information network. Basic sub-networks, ensuring reliable operation of the elements of the industrial Automatic Process Control System, were identified. The core tasks of technical diagnostics of industrial information safety were presented. The structure of the technical diagnostics system of the information safety was proposed. It includes two parts: a generator of cyber-attacks and the virtual model of the enterprise information network. The virtual model was obtained by scanning a real enterprise network. A new classification of cyber-attacks was proposed. This classification enables one to design an efficient generator of cyber-attacks sets for testing the virtual modes of the industrial information network. The numerical method of the Monte Carlo (with LPτ - sequences of Sobol), and Markov chain was considered as the design method for the cyber-attacks generation algorithm. The proposed system also includes a diagnostic analyzer, performing expert functions. As an integrative quantitative indicator of the network reliability the stability factor (Kstab) was selected. This factor is determined by the weight of sets of cyber-attacks, identifying the vulnerability of the network. The weight depends on the frequency and complexity of cyber-attacks, the degree of damage, complexity of remediation. The proposed Kstab is an effective integral quantitative measure of the information network reliability.
Error control techniques for satellite and space communications
NASA Technical Reports Server (NTRS)
Costello, D. J., Jr.
1986-01-01
High rate concatenated coding systems with trellis inner codes and Reed-Solomon (RS) outer codes for application in satellite communication systems are considered. Two types of inner codes are studied: high rate punctured binary convolutional codes which result in overall effective information rates between 1/2 and 1 bit per channel use; and bandwidth efficient signal space trellis codes which can achieve overall effective information rates greater than 1 bit per channel use. Channel capacity calculations with and without side information performed for the concatenated coding system. Concatenated coding schemes are investigated. In Scheme 1, the inner code is decoded with the Viterbi algorithm and the outer RS code performs error-correction only (decoding without side information). In scheme 2, the inner code is decoded with a modified Viterbi algorithm which produces reliability information along with the decoded output. In this algorithm, path metrics are used to estimate the entire information sequence, while branch metrics are used to provide the reliability information on the decoded sequence. This information is used to erase unreliable bits in the decoded output. An errors-and-erasures RS decoder is then used for the outer code. These two schemes are proposed for use on NASA satellite channels. Results indicate that high system reliability can be achieved with little or no bandwidth expansion.
NASA Technical Reports Server (NTRS)
Guman, W. J. (Editor)
1971-01-01
Thermal vacuum design supporting thruster tests indicate no problems under the worst case conditions of sink temperature and spin rate. The reliability of the system was calculated to be 0.92 for a five-year mission. Minus the main energy storage capacitor it is 0.98.
CLASS Reliability Training as Professional Development for Preschool Teachers
ERIC Educational Resources Information Center
Casbergue, Renée M.; Bedford, April Whatley; Burstein, Karen
2014-01-01
Use of the Classroom Assessment Scoring System (CLASS) is increasing across the United States as an important indicator of the quality of programs for young children. Professional development is required to facilitate teachers' understanding of the instructional behaviors upon which they will be judged. This study investigated the use of the…
Starting Strong 2017: Key OECD Indicators on Early Childhood Education and Care
ERIC Educational Resources Information Center
OECD Publishing, 2017
2017-01-01
Early childhood education and care (ECEC) can help lay the foundations for future skills development, well-being and learning. Having timely, reliable and comparable international information is essential to help countries improve their ECEC services and systems. For over 15 years, the OECD has been conducting policy analysis and gathering new…
Evaluating the Reliability of Indices from IEP. AIR 1983 Annual Forum Paper.
ERIC Educational Resources Information Center
McLaughlin, Gerald W.; And Others
The Information Exchange Procedures (IEP), which were developed through a project sponsored by the National Center for Higher Education Management Systems, are briefly described, and the application of the IEP in Virginia is examined. The IEP were designed to enhance the institution's ability to identify alternatives in the allocation of resources…
Market Orientation in Universities: A Comparative Study of Two National Higher Education Systems
ERIC Educational Resources Information Center
Hemsley-Brown, Jane; Oplatka, Izhar
2010-01-01
Purpose: The paper's purpose is to test: whether there are significant differences between England and Israel, in terms of perceptions of market orientation (MO) in higher education (HE); which MO dimensions (student, competition, intra-functional) indicate more positive attitudes and whether the differences are significant; and the reliability of…
A Review of Transmission Diagnostics Research at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Zakajsek, James J.
1994-01-01
This paper presents a summary of the transmission diagnostics research work conducted at NASA Lewis Research Center over the last four years. In 1990, the Transmission Health and Usage Monitoring Research Team at NASA Lewis conducted a survey to determine the critical needs of the diagnostics community. Survey results indicated that experimental verification of gear and bearing fault detection methods, improved fault detection in planetary systems, and damage magnitude assessment and prognostics research were all critical to a highly reliable health and usage monitoring system. In response to this, a variety of transmission fault detection methods were applied to experimentally obtained fatigue data. Failure modes of the fatigue data include a variety of gear pitting failures, tooth wear, tooth fracture, and bearing spalling failures. Overall results indicate that, of the gear fault detection techniques, no one method can successfully detect all possible failure modes. The more successful methods need to be integrated into a single more reliable detection technique. A recently developed method, NA4, in addition to being one of the more successful gear fault detection methods, was also found to exhibit damage magnitude estimation capabilities.
Prototype microprocessor controller. [for STDN antennas
NASA Technical Reports Server (NTRS)
Zarur, J.; Kraeuter, R.
1980-01-01
A microcomputer controller for STDN antennas was developed. The microcomputer technology reduces the system's physical size by the implementation in firmware of functions. The reduction in the number of components increases system reliability and similar benefit is derived when a graphic video display is substituted for several control and indicator panels. A substantial reduction in the number of cables, connectors, and mechanical switches is achieved. The microcomputer based system is programmed to perform calibration and diagnostics, to update the satellite orbital vector, and to communicate with other network systems. The design is applicable to antennas and lasers.
Developing Reliable Life Support for Mars
NASA Technical Reports Server (NTRS)
Jones, Harry W.
2017-01-01
A human mission to Mars will require highly reliable life support systems. Mars life support systems may recycle water and oxygen using systems similar to those on the International Space Station (ISS). However, achieving sufficient reliability is less difficult for ISS than it will be for Mars. If an ISS system has a serious failure, it is possible to provide spare parts, or directly supply water or oxygen, or if necessary bring the crew back to Earth. Life support for Mars must be designed, tested, and improved as needed to achieve high demonstrated reliability. A quantitative reliability goal should be established and used to guide development t. The designers should select reliable components and minimize interface and integration problems. In theory a system can achieve the component-limited reliability, but testing often reveal unexpected failures due to design mistakes or flawed components. Testing should extend long enough to detect any unexpected failure modes and to verify the expected reliability. Iterated redesign and retest may be required to achieve the reliability goal. If the reliability is less than required, it may be improved by providing spare components or redundant systems. The number of spares required to achieve a given reliability goal depends on the component failure rate. If the failure rate is under estimated, the number of spares will be insufficient and the system may fail. If the design is likely to have undiscovered design or component problems, it is advisable to use dissimilar redundancy, even though this multiplies the design and development cost. In the ideal case, a human tended closed system operational test should be conducted to gain confidence in operations, maintenance, and repair. The difficulty in achieving high reliability in unproven complex systems may require the use of simpler, more mature, intrinsically higher reliability systems. The limitations of budget, schedule, and technology may suggest accepting lower and less certain expected reliability. A plan to develop reliable life support is needed to achieve the best possible reliability.
Simpson, V; Hughes, M; Wilkinson, J; Herrick, A L; Dinsdale, G
2018-03-01
Digital ulcers are a major problem in patients with systemic sclerosis (SSc), causing severe pain and impairment of hand function. In addition, digital ulcers heal slowly and sometimes become infected, which can lead to gangrene and necessitate amputation if appropriate intervention is not taken. A reliable, objective method for assessing digital ulcer healing or progression is needed in both the clinical and research arenas. This study was undertaken to compare 2 computer-assisted planimetry methods of measurement of digital ulcer area on photographs (ellipse and freehand regions of interest [ROIs]), and to assess the reliability of photographic calibration and the 2 methods of area measurement. Photographs were taken of 107 digital ulcers in 36 patients with SSc spectrum disease. Three raters assessed the photographs. Custom software allowed raters to calibrate photograph dimensions and draw ellipse or freehand ROIs. The shapes and dimensions of the ROIs were saved for further analysis. Calibration (by a single rater performing 5 repeats per image) produced an intraclass correlation coefficient (intrarater reliability) of 0.99. The mean ± SD areas of digital ulcers assessed using ellipse and freehand ROIs were 18.7 ± 20.2 mm 2 and 17.6 ± 19.3 mm 2 , respectively. Intrarater and interrater reliability of the ellipse ROI were 0.97 and 0.77, respectively. For the freehand ROI, the intrarater and interrater reliability were 0.98 and 0.76, respectively. Our findings indicate that computer-assisted planimetry methods applied to SSc-related digital ulcers can be extremely reliable. Further work is needed to move toward applying these methods as outcome measures for clinical trials and in clinical settings. © 2017, American College of Rheumatology.
Schäfer, Axel; Lüdtke, Kerstin; Breuel, Franziska; Gerloff, Nikolas; Knust, Maren; Kollitsch, Christian; Laukart, Alex; Matej, Laura; Müller, Antje; Schöttker-Königer, Thomas; Hall, Toby
2018-08-01
Headache is a common and costly health problem. Although pathogenesis of headache is heterogeneous, one reported contributing factor is dysfunction of the upper cervical spine. The flexion rotation test (FRT) is a commonly used diagnostic test to detect upper cervical movement impairment. The aim of this cross-sectional study was to investigate concurrent validity of detecting high cervical ROM impairment during the FRT by comparing measurements established by an ultrasound-based system (gold standard) with eyeball estimation. Secondary aim was to investigate intra-rater reliability of FRT ROM eyeball estimation. The examiner (6 years experience) was blinded to the data from the ultrasound-based device and to the symptoms of the patients. FRT test result (positive or negative) was based on visual estimation of range of rotation less than 34° to either side. Concurrently, range of rotation was evaluated using the ultrasound-based device. A total of 43 subjects with headache (79% female), mean age of 35.05 years (SD 13.26) were included. According to the International Headache Society Classification 23 subjects had migraine, 4 tension type headache, and 16 multiple headache forms. Sensitivity and specificity were 0.96 and 0.89 for combined rotation, indicating good concurrent reliability. The area under the ROC curve was 0.95 (95% CI 0.91-0.98) for rotation to both sides. Intra-rater reliability for eyeball estimation was excellent with Fleiss Kappa 0.79 for right rotation and left rotation. The results of this study indicate that the FRT is a valid and reliable test to detect impairment of upper cervical ROM in patients with headache.
Goode, N; Salmon, P M; Taylor, N Z; Lenné, M G; Finch, C F
2017-10-01
One factor potentially limiting the uptake of Rasmussen's (1997) Accimap method by practitioners is the lack of a contributing factor classification scheme to guide accident analyses. This article evaluates the intra- and inter-rater reliability and criterion-referenced validity of a classification scheme developed to support the use of Accimap by led outdoor activity (LOA) practitioners. The classification scheme has two levels: the system level describes the actors, artefacts and activity context in terms of 14 codes; the descriptor level breaks the system level codes down into 107 specific contributing factors. The study involved 11 LOA practitioners using the scheme on two separate occasions to code a pre-determined list of contributing factors identified from four incident reports. Criterion-referenced validity was assessed by comparing the codes selected by LOA practitioners to those selected by the method creators. Mean intra-rater reliability scores at the system (M = 83.6%) and descriptor (M = 74%) levels were acceptable. Mean inter-rater reliability scores were not consistently acceptable for both coding attempts at the system level (M T1 = 68.8%; M T2 = 73.9%), and were poor at the descriptor level (M T1 = 58.5%; M T2 = 64.1%). Mean criterion referenced validity scores at the system level were acceptable (M T1 = 73.9%; M T2 = 75.3%). However, they were not consistently acceptable at the descriptor level (M T1 = 67.6%; M T2 = 70.8%). Overall, the results indicate that the classification scheme does not currently satisfy reliability and validity requirements, and that further work is required. The implications for the design and development of contributing factors classification schemes are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Reliability based design optimization: Formulations and methodologies
NASA Astrophysics Data System (ADS)
Agarwal, Harish
Modern products ranging from simple components to complex systems should be designed to be optimal and reliable. The challenge of modern engineering is to ensure that manufacturing costs are reduced and design cycle times are minimized while achieving requirements for performance and reliability. If the market for the product is competitive, improved quality and reliability can generate very strong competitive advantages. Simulation based design plays an important role in designing almost any kind of automotive, aerospace, and consumer products under these competitive conditions. Single discipline simulations used for analysis are being coupled together to create complex coupled simulation tools. This investigation focuses on the development of efficient and robust methodologies for reliability based design optimization in a simulation based design environment. Original contributions of this research are the development of a novel efficient and robust unilevel methodology for reliability based design optimization, the development of an innovative decoupled reliability based design optimization methodology, the application of homotopy techniques in unilevel reliability based design optimization methodology, and the development of a new framework for reliability based design optimization under epistemic uncertainty. The unilevel methodology for reliability based design optimization is shown to be mathematically equivalent to the traditional nested formulation. Numerical test problems show that the unilevel methodology can reduce computational cost by at least 50% as compared to the nested approach. The decoupled reliability based design optimization methodology is an approximate technique to obtain consistent reliable designs at lesser computational expense. Test problems show that the methodology is computationally efficient compared to the nested approach. A framework for performing reliability based design optimization under epistemic uncertainty is also developed. A trust region managed sequential approximate optimization methodology is employed for this purpose. Results from numerical test studies indicate that the methodology can be used for performing design optimization under severe uncertainty.
Papuga, M Owen; Burke, Jeanmarie R
2011-02-01
An ink pad and paper, pressure-sensitive platforms, and photography have previously been used to collect footprint data used in clinical assessment. Digital scanners have been widely used more recently to collect such data. The purpose of this study was to evaluate the intra- and interrater reliability of a flatbed digital image scanning technology to capture footprint data. This study used a repeated-measures design on 32 (16 male 16 female) healthy subjects. The following measured indices of footprint were recorded from 2-dimensional images of the plantar surface of the foot recorded with an Associate Platinum (Foot Levelers Inc, Roanoke, VA) digital foot scanner: Staheli index, Chippaux-Smirak index, arch angle, and arch index. Intraclass correlation coefficient (ICC) values were calculated to evaluate intrarater, interday, and interclinician reliability. The ICC values for intrarater reliability were greater than or equal to .817, indicating an excellent level of reproducibility in assessing the collected images. Analyses of variance revealed that there were no significant differences between raters for each index (P > .05). The ICC values also indicated excellent reliability (.881-.971) between days and clinicians in all but one of the indices of footprint, arch angle (.689), with good reliability between clinicians. The full-factorial analysis of variance model did not reveal any interaction effects (P > .05), which indicated that indices of footprint were not changing across days and clinicians. Scanning technology used in this study demonstrated good intra- and interrater reliability measurements of footprint indices, as demonstrated by high ICC values. Copyright © 2011 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.
Calculating system reliability with SRFYDO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morzinski, Jerome; Anderson - Cook, Christine M; Klamann, Richard M
2010-01-01
SRFYDO is a process for estimating reliability of complex systems. Using information from all applicable sources, including full-system (flight) data, component test data, and expert (engineering) judgment, SRFYDO produces reliability estimates and predictions. It is appropriate for series systems with possibly several versions of the system which share some common components. It models reliability as a function of age and up to 2 other lifecycle (usage) covariates. Initial output from its Exploratory Data Analysis mode consists of plots and numerical summaries so that the user can check data entry and model assumptions, and help determine a final form for themore » system model. The System Reliability mode runs a complete reliability calculation using Bayesian methodology. This mode produces results that estimate reliability at the component, sub-system, and system level. The results include estimates of uncertainty, and can predict reliability at some not-too-distant time in the future. This paper presents an overview of the underlying statistical model for the analysis, discusses model assumptions, and demonstrates usage of SRFYDO.« less
Lean, Premixed-Prevaporized (LPP) combustor conceptual design study
NASA Technical Reports Server (NTRS)
Dickman, R. A.; Dodds, W. J.; Ekstedt, E. E.
1979-01-01
Four combustion systems were designed and sized for the energy efficient engine. A fifth combustor was designed for the cycle and envelope of the twin-spool, high bypass ratio, high pressure ratio turbofan engine. Emission levels, combustion performance, life, and reliability assessments were made for these five combustion systems. Results of these design studies indicate that cruise NOx emission can be reduced by the use of lean, premixed-prevaporaized combustion and airflow modulation.
Statis Program Analysis for Reliable, Trusted Apps
2017-02-01
flexibility to system design. However, it is challenging for a static analysis to compute or verify properties about a system that uses implicit control...sources might affect the variable’s value. The type qualifier @Sink indicates where (information computed from) the value might be output. These...upper bound on the set of sensitive sources that were actually used to compute the value. If the type of x is qualified by @Source({INTERNET, LOCATION
Schwertner, Debora Soccal; Oliveira, Raul; Mazo, Giovana Zarpellon; Gioda, Fabiane Rosa; Kelber, Christian Roberto; Swarowsky, Alessandra
2016-05-04
Several posture evaluation devices have been used to detect deviations of the vertebral column. However it has been observed that the instruments present measurement errors related to the equipment, environment or measurement protocol. This study aimed to build, validate, analyze the reliability and describe a measurement protocol for the use of the Posture Evaluation Rotating Platform System (SPGAP, Brazilian abbreviation). The posture evaluation system comprises a Posture Evaluation Rotating Platform, video camera, calibration support and measurement software. Two pilot studies were carried out with 102 elderly individuals (average age 69 years old, SD = ±7.3) to establish a protocol for SPGAP, controlling the measurement errors related to the environment, equipment and the person under evaluation. Content validation was completed with input from judges with expertise in posture measurement. The variation coefficient method was used to validate the measurement by the instrument of an object with known dimensions. Finally, reliability was established using repeated measurements of the known object. Expert content judges gave the system excellent ratings for content validity (mean 9.4 out of 10; SD 1.13). The measurement of an object with known dimensions indicated excellent validity (all measurement errors <1 %) and test-retest reliability. A total of 26 images were needed to stabilize the system. Participants in the pilot studies indicated that they felt comfortable throughout the assessment. The use of only one image can offer measurements that underestimate or overestimate the reality. To verify the images of objects with known dimensions the values for the width and height were, respectively, CV 0.88 (width) and 2.33 (height), SD 0.22 (width) and 0.35 (height), minimum and maximum values 24.83-25.2 (width) and 14.56 - 15.75 (height). In the analysis of different images (similar) of an individual, greater discrepancies were observed in the values found. The cervical index, for example, presented minimum and maximum values of 15.38 and 37.5, a coefficient of variation of 0.29 and a standard deviation of 6.78. The SPGAP was shown to be a valid and reliable instrument for the quantitative analysis of body posture with applicability and clinical use, since it managed to reduce several measurement errors, amongst which parallax distortion.
Methods and Costs to Achieve Ultra Reliable Life Support
NASA Technical Reports Server (NTRS)
Jones, Harry W.
2012-01-01
A published Mars mission is used to explore the methods and costs to achieve ultra reliable life support. The Mars mission and its recycling life support design are described. The life support systems were made triply redundant, implying that each individual system will have fairly good reliability. Ultra reliable life support is needed for Mars and other long, distant missions. Current systems apparently have insufficient reliability. The life cycle cost of the Mars life support system is estimated. Reliability can be increased by improving the intrinsic system reliability, adding spare parts, or by providing technically diverse redundant systems. The costs of these approaches are estimated. Adding spares is least costly but may be defeated by common cause failures. Using two technically diverse systems is effective but doubles the life cycle cost. Achieving ultra reliability is worth its high cost because the penalty for failure is very high.
Reliability analysis of the epidural spinal cord compression scale.
Bilsky, Mark H; Laufer, Ilya; Fourney, Daryl R; Groff, Michael; Schmidt, Meic H; Varga, Peter Paul; Vrionis, Frank D; Yamada, Yoshiya; Gerszten, Peter C; Kuklo, Timothy R
2010-09-01
The evolution of imaging techniques, along with highly effective radiation options has changed the way metastatic epidural tumors are treated. While high-grade epidural spinal cord compression (ESCC) frequently serves as an indication for surgical decompression, no consensus exists in the literature about the precise definition of this term. The advancement of the treatment paradigms in patients with metastatic tumors for the spine requires a clear grading scheme of ESCC. The degree of ESCC often serves as a major determinant in the decision to operate or irradiate. The purpose of this study was to determine the reliability and validity of a 6-point, MR imaging-based grading system for ESCC. To determine the reliability of the grading scale, a survey was distributed to 7 spine surgeons who participate in the Spine Oncology Study Group. The MR images of 25 cervical or thoracic spinal tumors were distributed consisting of 1 sagittal image and 3 axial images at the identical level including T1-weighted, T2-weighted, and Gd-enhanced T1-weighted images. The survey was administered 3 times at 2-week intervals. The inter- and intrarater reliability was assessed. The inter- and intrarater reliability ranged from good to excellent when surgeons were asked to rate the degree of spinal cord compression using T2-weighted axial images. The T2-weighted images were superior indicators of ESCC compared with T1-weighted images with and without Gd. The ESCC scale provides a valid and reliable instrument that may be used to describe the degree of ESCC based on T2-weighted MR images. This scale accounts for recent advances in the treatment of spinal metastases and may be used to provide an ESCC classification scheme for multicenter clinical trial and outcome studies.
LOX/LH2 propulsion system for launch vehicle upper stage, test results
NASA Technical Reports Server (NTRS)
Ikeda, T.; Imachi, U.; Yuzawa, Y.; Kondo, Y.; Miyoshi, K.; Higashino, K.
1984-01-01
The test results of small LOX/LH2 engines for two propulsion systems, a pump fed system and a pressure fed system are reported. The pump fed system has the advantages of higher performances and higher mass fraction. The pressure fed system has the advantages of higher reliability and relative simplicity. Adoption of these cryogenic propulsion systems for upper stage of launch vehicle increases the payload capability with low cost. The 1,000 kg thrust class engine was selected for this cryogenic stage. A thrust chamber assembly for the pressure fed propulsion system was tested. It is indicated that it has good performance to meet system requirements.
Grooten, Wilhelmus Johannes Andreas; Sandberg, Lisa; Ressman, John; Diamantoglou, Nicolas; Johansson, Elin; Rasmussen-Barr, Eva
2018-01-08
Clinical examinations are subjective and often show a low validity and reliability. Objective and highly reliable quantitative assessments are available in laboratory settings using 3D motion analysis, but these systems are too expensive to use for simple clinical examinations. Qinematic™ is an interactive movement analyses system based on the Kinect camera and is an easy-to-use clinical measurement system for assessing posture, balance and side-bending. The aim of the study was to test the test-retest the reliability and construct validity of Qinematic™ in a healthy population, and to calculate the minimal clinical differences for the variables of interest. A further aim was to identify the discriminative validity of Qinematic™ in people with low-back pain (LBP). We performed a test-retest reliability study (n = 37) with around 1 week between the occasions, a construct validity study (n = 30) in which Qinematic™ was tested against a 3D motion capture system, and a discriminative validity study, in which a group of people with LBP (n = 20) was compared to healthy controls (n = 17). We tested a large range of psychometric properties of 18 variables in three sections: posture (head and pelvic position, weight distribution), balance (sway area and velocity in single- and double-leg stance), and side-bending. The majority of the variables in the posture and balance sections, showed poor/fair reliability (ICC < 0.4) and poor/fair validity (Spearman <0.4), with significant differences between occasions, between Qinematic™ and the 3D-motion capture system. In the clinical study, Qinematic™ did not differ between people with LPB and healthy for these variables. For one variable, side-bending to the left, there was excellent reliability (ICC =0.898), excellent validity (r = 0.943), and Qinematic™ could differentiate between LPB and healthy individuals (p = 0.012). This paper shows that a novel software program (Qinematic™) based on the Kinect camera for measuring balance, posture and side-bending has poor psychometric properties, indicating that the variables on balance and posture should not be used for monitoring individual changes over time or in research. Future research on the dynamic tasks of Qinematic™ is warranted.
Methods for reliability evaluation of trust and reputation systems
NASA Astrophysics Data System (ADS)
Janiszewski, Marek B.
2016-09-01
Trust and reputation systems are a systematic approach to build security on the basis of observations of node's behaviour. Exchange of node's opinions about other nodes is very useful to indicate nodes which act selfishly or maliciously. The idea behind trust and reputation systems gets significance because of the fact that conventional security measures (based on cryptography) are often not sufficient. Trust and reputation systems can be used in various types of networks such as WSN, MANET, P2P and also in e-commerce applications. Trust and reputation systems give not only benefits but also could be a thread itself. Many attacks aim at trust and reputation systems exist, but such attacks still have not gain enough attention of research teams. Moreover, joint effects of many of known attacks have been determined as a very interesting field of research. Lack of an acknowledged methodology of evaluation of trust and reputation systems is a serious problem. This paper aims at presenting various approaches of evaluation such systems. This work also contains a description of generalization of many trust and reputation systems which can be used to evaluate reliability of such systems in the context of preventing various attacks.
NASA Technical Reports Server (NTRS)
Bavuso, Salvatore J.; Rothmann, Elizabeth; Dugan, Joanne Bechta; Trivedi, Kishor S.; Mittal, Nitin; Boyd, Mark A.; Geist, Robert M.; Smotherman, Mark D.
1994-01-01
The Hybrid Automated Reliability Predictor (HARP) integrated Reliability (HiRel) tool system for reliability/availability prediction offers a toolbox of integrated reliability/availability programs that can be used to customize the user's application in a workstation or nonworkstation environment. HiRel consists of interactive graphical input/output programs and four reliability/availability modeling engines that provide analytical and simulative solutions to a wide host of reliable fault-tolerant system architectures and is also applicable to electronic systems in general. The tool system was designed to be compatible with most computing platforms and operating systems, and some programs have been beta tested, within the aerospace community for over 8 years. Volume 1 provides an introduction to the HARP program. Comprehensive information on HARP mathematical models can be found in the references.
Merritt, Victoria C; Bradson, Megan L; Meyer, Jessica E; Arnett, Peter A
2018-05-01
The Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT) is a commonly used tool in sports concussion assessment. While test-retest reliabilities have been established for the ImPACT cognitive composites, few studies have evaluated the psychometric properties of the ImPACT's Post-Concussion Symptom Scale (PCSS). The purpose of this study was to establish the test-retest reliability of symptom indices associated with the PCSS. Participants included 38 undergraduate students (50.0% male) who underwent neuropsychological testing as part of their participation in their psychology department's research subject pool. The majority of the participants were Caucasian (94.7%) and had no history of concussion (73.7%). All participants completed the ImPACT at two time points, approximately 6 weeks apart. The PCSS was the main outcome measure, and eight symptom indices were calculated (a total symptom score, three symptom summary indices, and four symptom clusters). Pearson correlations (r) and intraclass correlation coefficients (ICCs) were computed as measures of test-retest reliability. Overall, reliabilities ranged from low to high (r = .44 to .80; ICC = .44 to .77). The cognitive symptom cluster exhibited the highest test-retest reliability (r = .80, ICC = .77), followed by the positive symptom total (PST) index, an indicator of the total number of symptoms endorsed (r = .71, ICC = .69). In contrast, the commonly used total symptom score showed lower test-retest reliability (r = .67, ICC = .62). Paired-samples t tests revealed no significant differences between test and retest for any of the symptom variables (all p > .01). Finally, reliable change indices (RCI) were computed to determine whether differences observed between test and retest represented clinically significant change. RCI values were provided for each symptom index at the 80%, 90%, and 95% confidence intervals. These results suggest that evaluating additional symptom indices beyond the total symptom score from the PCSS is beneficial. Findings from this study can be applied to athlete samples to assess reliable change in symptoms following concussion.
NASA Astrophysics Data System (ADS)
James, C. Andrew; Kershner, Jessi; Samhouri, Jameal; O'Neill, Sandra; Levin, Phillip S.
2012-03-01
Ecosystem-based Management (EBM) is an approach that includes different management priorities and requires a balance between anthropogenic and ecological resource demands. Indicators can be used to monitor ecosystem status and trends, and assess whether projects and/or programs are leading to the achievement of management goals. As such, the careful selection of a suite of indicators is a crucial exercise. In this paper we describe an indicator evaluation and selection process designed to support the EBM approach in Puget Sound. The first step in this process was the development of a general framework for selecting indicators. The framework, designed to transparently include both scientific and policy considerations into the selection and evaluation process, was developed and then utilized in the organization and determination of a preliminary set of indicators. Next, the indicators were assessed against a set of nineteen distinct criteria that describe the model characteristics of an indicator. A literature review was performed for each indicator to determine the extent to which it satisfied each of the evaluation criteria. The result of each literature review was summarized in a numerical matrix, allowing comparison, and demonstrating the extent of scientific reliability. Finally, an approach for ranking indicators was developed to explore the effects of intended purpose on indicator selection. We identified several sets of scientifically valid and policy-relevant indicators that included metrics such as annual-7 day low flow and water system reliability, which are supportive of the EBM approach in the Puget Sound.
A Centralized Display for Mission Monitoring
NASA Technical Reports Server (NTRS)
Trujillo, Anna C.
2004-01-01
Humans traditionally experience a vigilance decrement over extended periods of time on reliable systems. One possible solution to aiding operators in monitoring is to use polar-star displays that will show deviations from normal in a more salient manner. The primary objectives of this experiment were to determine if polar-star displays aid in monitoring and preliminary diagnosis of the aircraft state. This experiment indicated that the polar-star display does indeed aid operators in detecting and diagnosing system events. Subjects were able to notice system events earlier and they subjectively reported the polar-star display helped them in monitoring, noticing an event, and diagnosing an event. Therefore, these results indicate that the polar-star display used for monitoring and preliminary diagnosis improves performance in these areas for system related events.
NASA Technical Reports Server (NTRS)
Orr, James K.; Peltier, Daryl
2010-01-01
Thsi slide presentation reviews the avionics software system on board the space shuttle, with particular emphasis on the quality and reliability. The Primary Avionics Software System (PASS) provides automatic and fly-by-wire control of critical shuttle systems which executes in redundant computers. Charts given show the number of space shuttle flights vs time, PASS's development history, and other charts that point to the reliability of the system's development. The reliability of the system is also compared to predicted reliability.
Reliability of the Straight-Arm Hang for Testing Muscular Endurance among Children 2 to 5.
ERIC Educational Resources Information Center
Gabbard, Carl; And Others
1979-01-01
The straight-arm hang as a reliable testing instrument for young children is investigated with results indicating that it is a reliable indicator for four- and five-year-old children. Questionable results may occur if utilized for younger subjects and further investigation is recommended for six-to-nine-year-old subjects. (JD)
Ciamarra, Massimo Pica; Cheong, Siew Ann
2018-01-01
There is growing interest in the use of critical slowing down and critical fluctuations as early warning signals for critical transitions in different complex systems. However, while some studies found them effective, others found the opposite. In this paper, we investigated why this might be so, by testing three commonly used indicators: lag-1 autocorrelation, variance, and low-frequency power spectrum at anticipating critical transitions in the very-high-frequency time series data of the Australian Dollar-Japanese Yen and Swiss Franc-Japanese Yen exchange rates. Besides testing rising trends in these indicators at a strict level of confidence using the Kendall-tau test, we also required statistically significant early warning signals to be concurrent in the three indicators, which must rise to appreciable values. We then found for our data set the optimum parameters for discovering critical transitions, and showed that the set of critical transitions found is generally insensitive to variations in the parameters. Suspecting that negative results in the literature are the results of low data frequencies, we created time series with time intervals over three orders of magnitude from the raw data, and tested them for early warning signals. Early warning signals can be reliably found only if the time interval of the data is shorter than the time scale of critical transitions in our complex system of interest. Finally, we compared the set of time windows with statistically significant early warning signals with the set of time windows followed by large movements, to conclude that the early warning signals indeed provide reliable information on impending critical transitions. This reliability becomes more compelling statistically the more events we test. PMID:29538373
Wen, Haoyu; Ciamarra, Massimo Pica; Cheong, Siew Ann
2018-01-01
There is growing interest in the use of critical slowing down and critical fluctuations as early warning signals for critical transitions in different complex systems. However, while some studies found them effective, others found the opposite. In this paper, we investigated why this might be so, by testing three commonly used indicators: lag-1 autocorrelation, variance, and low-frequency power spectrum at anticipating critical transitions in the very-high-frequency time series data of the Australian Dollar-Japanese Yen and Swiss Franc-Japanese Yen exchange rates. Besides testing rising trends in these indicators at a strict level of confidence using the Kendall-tau test, we also required statistically significant early warning signals to be concurrent in the three indicators, which must rise to appreciable values. We then found for our data set the optimum parameters for discovering critical transitions, and showed that the set of critical transitions found is generally insensitive to variations in the parameters. Suspecting that negative results in the literature are the results of low data frequencies, we created time series with time intervals over three orders of magnitude from the raw data, and tested them for early warning signals. Early warning signals can be reliably found only if the time interval of the data is shorter than the time scale of critical transitions in our complex system of interest. Finally, we compared the set of time windows with statistically significant early warning signals with the set of time windows followed by large movements, to conclude that the early warning signals indeed provide reliable information on impending critical transitions. This reliability becomes more compelling statistically the more events we test.
Li, Tuan; Zhang, Hongping; Niu, Xiaoji; Gao, Zhouzheng
2017-01-01
Dual-frequency Global Positioning System (GPS) Real-time Kinematics (RTK) has been proven in the past few years to be a reliable and efficient technique to obtain high accuracy positioning. However, there are still challenges for GPS single-frequency RTK, such as low reliability and ambiguity resolution (AR) success rate, especially in kinematic environments. Recently, multi-Global Navigation Satellite System (multi-GNSS) has been applied to enhance the RTK performance in terms of availability and reliability of AR. In order to further enhance the multi-GNSS single-frequency RTK performance in terms of reliability, continuity and accuracy, a low-cost micro-electro-mechanical system (MEMS) inertial measurement unit (IMU) is adopted in this contribution. We tightly integrate the single-frequency GPS/BeiDou/GLONASS and MEMS-IMU through the extended Kalman filter (EKF), which directly fuses the ambiguity-fixed double-differenced (DD) carrier phase observables and IMU data. A field vehicular test was carried out to evaluate the impacts of the multi-GNSS and IMU on the AR and positioning performance in different system configurations. Test results indicate that the empirical success rate of single-epoch AR for the tightly-coupled single-frequency multi-GNSS RTK/INS integration is over 99% even at an elevation cut-off angle of 40°, and the corresponding position time series is much more stable in comparison with the GPS solution. Besides, GNSS outage simulations show that continuous positioning with certain accuracy is possible due to the INS bridging capability when GNSS positioning is not available. PMID:29077070
Li, Tuan; Zhang, Hongping; Niu, Xiaoji; Gao, Zhouzheng
2017-10-27
Dual-frequency Global Positioning System (GPS) Real-time Kinematics (RTK) has been proven in the past few years to be a reliable and efficient technique to obtain high accuracy positioning. However, there are still challenges for GPS single-frequency RTK, such as low reliability and ambiguity resolution (AR) success rate, especially in kinematic environments. Recently, multi-Global Navigation Satellite System (multi-GNSS) has been applied to enhance the RTK performance in terms of availability and reliability of AR. In order to further enhance the multi-GNSS single-frequency RTK performance in terms of reliability, continuity and accuracy, a low-cost micro-electro-mechanical system (MEMS) inertial measurement unit (IMU) is adopted in this contribution. We tightly integrate the single-frequency GPS/BeiDou/GLONASS and MEMS-IMU through the extended Kalman filter (EKF), which directly fuses the ambiguity-fixed double-differenced (DD) carrier phase observables and IMU data. A field vehicular test was carried out to evaluate the impacts of the multi-GNSS and IMU on the AR and positioning performance in different system configurations. Test results indicate that the empirical success rate of single-epoch AR for the tightly-coupled single-frequency multi-GNSS RTK/INS integration is over 99% even at an elevation cut-off angle of 40°, and the corresponding position time series is much more stable in comparison with the GPS solution. Besides, GNSS outage simulations show that continuous positioning with certain accuracy is possible due to the INS bridging capability when GNSS positioning is not available.
NASA Technical Reports Server (NTRS)
Yepishina, S. G.
1974-01-01
The influence of a constant magnetic field (CMF) with a strength of 250 and 2500 oersteds on the recalcification reaction and the tolerance of plasma to heparin was studied as a function of the exposure time of the plasma to the CMF. The maximum and reliable change in the activation of the coagulatory system of the blood was observed after a 20-hour incubation of the plasma in a CMF. As the exposure time increased, the recalcification reaction changed insigificantly; the difference between the mean arithmetic of the experiment and control values was not statistically reliable. The tolerance of the plasma to heparin as a function of the exposure time to the CMF of the plasma was considerably modified, an was statistically reliable.
Nair, Arun T; Ramachandran, Vadivelan; Joghee, Nanjan M; Antony, Shanish; Ramalingam, Gopalakrishnan
2018-01-01
Recent investigations suggest that gut microbiota affects the brain activity through the microbiota-gut-brain axis under both physiological and pathological disease conditions like Parkinson’s disease. Further dopamine synthesis in the brain is induced by dopamine producing enzymes that are controlled by gut microbiota via the microbiota-gut-brain axis. Also alpha synuclein deposition and the associated neurodegeneration in the enteric nervous system that increase intestinal permeability, oxidative stress, and local inflammation, accounts for constipation in Parkinson’s disease patients. The trigger that causes blood brain barrier leakage, immune cell activation and inflammation, and ultimately neuroinflammation in the central nervous system is believed to be due to the chronic low-grade inflammation in the gut. The non-motor symptoms that appear years before motor symptoms could be reliable early biomarkers, if they could be correlated with the established and reliable neuroimaging techniques or behavioral indices. The future directions should therefore, focus on the exploration of newer investigational techniques to identify these reliable early biomarkers and define the specific gut microbes that contribute to the development of Parkinson’s disease. This ultimately should pave the way to safer and novel therapeutic approaches that avoid the complications of the drugs delivered today to the brain of Parkinson’s disease patients. PMID:29291606
Reliability and Cost Impacts for Attritable Systems
2017-03-23
and cost risk metrics to convey the value of reliability and reparability trades. Investigation of the benefit of trading system reparability...illustrates the benefit that reliability engineering can have on total cost . 2.3.1 Contexts of System Reliability Hogge (2012) identifies two distinct...reliability and reparability trades. Investigation of the benefit of trading system reparability shows a marked increase in cost risk. Yet, trades in
Cho, Keunhee; Park, Sung Yong; Cho, Jeong-Rae; Kim, Sung Tae; Park, Young-Hwan
2015-01-01
Prestressed concrete (PSC) is one of the most reliable, durable and widely used construction materials, which overcomes the weakness of concrete in tension by the introduction of a prestress force. Smart strands enabling measurement of the prestress force have recently been developed to maintain PSC structures throughout their lifetime. However, the smart strand cannot give a representative indication of the whole prestress force when used in multi-strand systems since each strand sustains a different prestress force. In this paper, the actual distribution of the prestress force in a multi-strand system is examined using elastomagnetic (EM) sensors to develop a method for tracking representative indicators of the prestress force using smart strands. PMID:26083230
Zuck, T F; Cumming, P D; Wallace, E L
2001-12-01
The safety of blood for transfusion depends, in part, on the reliability of the health history given by volunteer blood donors. To improve reliability, a pilot study evaluated the use of an interactive computer-based audiovisual donor interviewing system at a typical midwestern blood center in the United States. An interactive video screening system was tested in a community donor center environment on 395 volunteer blood donors. Of the donors using the system, 277 completed surveys regarding their acceptance of and opinions about the system. The study showed that an interactive computer-based audiovisual donor screening system was an effective means of conducting the donor health history. The majority of donors found the system understandable and favored the system over a face-to-face interview. Further, most donors indicated that they would be more likely to return if they were to be screened by such a system. Interactive computer-based audiovisual blood donor screening is useful and well accepted by donors; it may prevent a majority of errors and accidents that are reportable to the FDA; and it may contribute to increased safety and availability of the blood supply.
Evaluation of reliability modeling tools for advanced fault tolerant systems
NASA Technical Reports Server (NTRS)
Baker, Robert; Scheper, Charlotte
1986-01-01
The Computer Aided Reliability Estimation (CARE III) and Automated Reliability Interactice Estimation System (ARIES 82) reliability tools for application to advanced fault tolerance aerospace systems were evaluated. To determine reliability modeling requirements, the evaluation focused on the Draper Laboratories' Advanced Information Processing System (AIPS) architecture as an example architecture for fault tolerance aerospace systems. Advantages and limitations were identified for each reliability evaluation tool. The CARE III program was designed primarily for analyzing ultrareliable flight control systems. The ARIES 82 program's primary use was to support university research and teaching. Both CARE III and ARIES 82 were not suited for determining the reliability of complex nodal networks of the type used to interconnect processing sites in the AIPS architecture. It was concluded that ARIES was not suitable for modeling advanced fault tolerant systems. It was further concluded that subject to some limitations (the difficulty in modeling systems with unpowered spare modules, systems where equipment maintenance must be considered, systems where failure depends on the sequence in which faults occurred, and systems where multiple faults greater than a double near coincident faults must be considered), CARE III is best suited for evaluating the reliability of advanced tolerant systems for air transport.
Dixon, Stephen R; Wickens, Christopher D
2006-01-01
Two experiments were conducted in which participants navigated a simulated unmanned aerial vehicle (UAV) through a series of mission legs while searching for targets and monitoring system parameters. The goal of the study was to highlight the qualitatively different effects of automation false alarms and misses as they relate to operator compliance and reliance, respectively. Background data suggest that automation false alarms cause reduced compliance, whereas misses cause reduced reliance. In two studies, 32 and 24 participants, including some licensed pilots, performed in-lab UAV simulations that presented the visual world and collected dependent measures. Results indicated that with the low-reliability aids, false alarms correlated with poorer performance in the system failure task, whereas misses correlated with poorer performance in the concurrent tasks. Compliance and reliance do appear to be affected by false alarms and misses, respectively, and are relatively independent of each other. Practical implications are that automated aids must be fairly reliable to provide global benefits and that false alarms and misses have qualitatively different effects on performance.
NASA Astrophysics Data System (ADS)
Chen, Shanjun; Duan, Haibin; Deng, Yimin; Li, Cong; Zhao, Guozhi; Xu, Yan
2017-12-01
Autonomous aerial refueling is a significant technology that can significantly extend the endurance of unmanned aerial vehicles. A reliable method that can accurately estimate the position and attitude of the probe relative to the drogue is the key to such a capability. A drogue pose estimation method based on infrared vision sensor is introduced with the general goal of yielding an accurate and reliable drogue state estimate. First, by employing direct least squares ellipse fitting and convex hull in OpenCV, a feature point matching and interference point elimination method is proposed. In addition, considering the conditions that some infrared LEDs are damaged or occluded, a missing point estimation method based on perspective transformation and affine transformation is designed. Finally, an accurate and robust pose estimation algorithm improved by the runner-root algorithm is proposed. The feasibility of the designed visual measurement system is demonstrated by flight test, and the results indicate that our proposed method enables precise and reliable pose estimation of the probe relative to the drogue, even in some poor conditions.
Design of a reliable and operational landslide early warning system at regional scale
NASA Astrophysics Data System (ADS)
Calvello, Michele; Piciullo, Luca; Gariano, Stefano Luigi; Melillo, Massimo; Brunetti, Maria Teresa; Peruccacci, Silvia; Guzzetti, Fausto
2017-04-01
Landslide early warning systems at regional scale are used to warn authorities, civil protection personnel and the population about the occurrence of rainfall-induced landslides over wide areas, typically through the prediction and measurement of meteorological variables. A warning model for these systems must include a regional correlation law and a decision algorithm. A regional correlation law can be defined as a functional relationship between rainfall and landslides; it is typically based on thresholds of rainfall indicators (e.g., cumulated rainfall, rainfall duration) related to different exceedance probabilities of landslide occurrence. A decision algorithm can be defined as a set of assumptions and procedures linking rainfall thresholds to warning levels. The design and the employment of an operational and reliable early warning system for rainfall-induced landslides at regional scale depend on the identification of a reliable correlation law as well as on the definition of a suitable decision algorithm. Herein, a five-step process chain addressing both issues and based on rainfall thresholds is proposed; the procedure is tested in a landslide-prone area of the Campania region in southern Italy. To this purpose, a database of 96 shallow landslides triggered by rainfall in the period 2003-2010 and rainfall data gathered from 58 rain gauges are used. First, a set of rainfall thresholds are defined applying a frequentist method to reconstructed rainfall conditions triggering landslides in the test area. In the second step, several thresholds at different exceedance probabilities are evaluated, and different percentile combinations are selected for the activation of three warning levels. Subsequently, within steps three and four, the issuing of warning levels is based on the comparison, over time and for each combination, between the measured rainfall and the pre-defined warning level thresholds. Finally, the optimal percentile combination to be employed in the regional early warning system is selected evaluating the model performance in terms of success and error indicators by means of the "event, duration matrix, performance" (EDuMaP) method.
System and Software Reliability (C103)
NASA Technical Reports Server (NTRS)
Wallace, Dolores
2003-01-01
Within the last decade better reliability models (hardware. software, system) than those currently used have been theorized and developed but not implemented in practice. Previous research on software reliability has shown that while some existing software reliability models are practical, they are no accurate enough. New paradigms of development (e.g. OO) have appeared and associated reliability models have been proposed posed but not investigated. Hardware models have been extensively investigated but not integrated into a system framework. System reliability modeling is the weakest of the three. NASA engineers need better methods and tools to demonstrate that the products meet NASA requirements for reliability measurement. For the new models for the software component of the last decade, there is a great need to bring them into a form that they can be used on software intensive systems. The Statistical Modeling and Estimation of Reliability Functions for Systems (SMERFS'3) tool is an existing vehicle that may be used to incorporate these new modeling advances. Adapting some existing software reliability modeling changes to accommodate major changes in software development technology may also show substantial improvement in prediction accuracy. With some additional research, the next step is to identify and investigate system reliability. System reliability models could then be incorporated in a tool such as SMERFS'3. This tool with better models would greatly add value in assess in GSFC projects.
Glenn, Jordan M; Galey, Madeline; Edwards, Abigail; Rickert, Bradley; Washington, Tyrone A
2015-07-01
Ability to generate force from the core musculature is a critical factor for sports and general activities with insufficiencies predisposing individuals to injury. This study evaluated isometric force production as a valid and reliable method of assessing abdominal force using the abdominal test and evaluation systems tool (ABTEST). Secondary analysis estimated 1-repetition maximum on commercially available abdominal machine compared to maximum force and average power on ABTEST system. This study utilized test-retest reliability and comparative analysis for validity. Reliability was measured using test-retest design on ABTEST. Validity was measured via comparison to estimated 1-repetition maximum on a commercially available abdominal device. Participants applied isometric, abdominal force against a transducer and muscular activation was evaluated measuring normalized electromyographic activity at the rectus-abdominus, rectus-femoris, and erector-spinae. Test, re-test force production on ABTEST was significantly correlated (r=0.84; p<0.001). Mean electromyographic activity for the rectus-abdominus (72.93% and 75.66%), rectus-femoris (6.59% and 6.51%), and erector-spinae (6.82% and 5.48%) were observed for trial-1 and trial-2, respectively. Significant correlations for the estimated 1-repetition maximum were found for average power (r=0.70, p=0.002) and maximum force (r=0.72, p<0.001). Data indicate the ABTEST can accurately measure rectus-abdominus force isolated from hip-flexor involvement. Negligible activation of erector-spinae substantiates little subjective effort among participants in the lower back. Results suggest ABTEST is a valid and reliable method of evaluating abdominal force. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Methods of increasing efficiency and maintainability of pipeline systems
NASA Astrophysics Data System (ADS)
Ivanov, V. A.; Sokolov, S. M.; Ogudova, E. V.
2018-05-01
This study is dedicated to the issue of pipeline transportation system maintenance. The article identifies two classes of technical-and-economic indices, which are used to select an optimal pipeline transportation system structure. Further, the article determines various system maintenance strategies and strategy selection criteria. Meanwhile, the maintenance strategies turn out to be not sufficiently effective due to non-optimal values of maintenance intervals. This problem could be solved by running the adaptive maintenance system, which includes a pipeline transportation system reliability improvement algorithm, especially an equipment degradation computer model. In conclusion, three model building approaches for determining optimal technical systems verification inspections duration were considered.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-19
... Reliability Operating Limits; System Restoration Reliability Standards AGENCY: Federal Energy Regulatory... data necessary to analyze and monitor Interconnection Reliability Operating Limits (IROL) within its... Interconnection Reliability Operating Limits, Order No. 748, 134 FERC ] 61,213 (2011). \\2\\ The term ``Wide-Area...
An Integrated Monitoring System of Pre-earthquake Processes in Peloponnese, Greece
NASA Astrophysics Data System (ADS)
Karastathis, V. K.; Tsinganos, K.; Kafatos, M.; Eleftheriou, G.; Ouzounov, D.; Mouzakiotis, E.; Papadopoulos, G. A.; Voulgaris, N.; Bocchini, G. M.; Liakopoulos, S.; Aspiotis, T.; Gika, F.; Tselentis, A.; Moshou, A.; Psiloglou, B.
2017-12-01
One of the controversial issues in the contemporary seismology is the ability of radon accumulation monitoring to provide reliable earthquake forecasting. Although there are many examples in the literature showing radon increase before earthquakes, skepticism arises from instability of the measurements, false alarms, difficulties in interpretation caused by the weather influence (eg. rainfall) and difficulties on the consideration an irrefutable theoretical background of the phenomenon.We have developed and extensively tested a multi parameter network aimed for studying of the pre-earthquake processes and operating as a part of integrated monitoring system in the high seismicity area of the Western Hellenic Arc (SW Peloponnese, Greece). The prototype consists of four components: A real-time monitoring system of Radon accumulation. It consists of three gamma radiation detectors [NaI(Tl) scintillators] A nine-station seismic array to monitor the microseismicity in the offshore area of the Hellenic arc. The processing of the data is based on F-K and beam-forming techniques. Real-time weather monitoring systems for air temperature, relative humidity, precipitation and pressure. Thermal radiation emission from AVHRR/NOAA-18 polar orbit satellite observation. The project revolved around the idea of jointly studying the emission of Radon that has been proven in many cases as a reliable indicator of the possible time of an event, with the accurate location of the foreshock activity detected by the seismic array that can be a more reliable indicator of the possible position of an event. In parallel a satellite thermal anomaly detection technique has been used for monitoring of larger magnitude events (possible indicator for strong events M ≥5.0.). The first year of operations revealed a number of pre-seismic radon variation anomalies before several local earthquakes (M>3.6). The Radon increases systematically before the larger events.Details about the overall performance in registration of pre-seismic signals in Peloponnese region, along with two distant but very strong earthquakes in Jun 12, 2017 M6.3 and Jul 20, 2017 M6.6 in Greece will be discussed.
ERIC Educational Resources Information Center
Belcher, Christopher P.; Pemberton, Cynthia Lee A.
2012-01-01
Accurate quantification of training intensity is an essential component of a training program (Rowbottom, 2000). A training program designed to optimize athlete performance abilities cannot be practically planned or implemented without a valid and reliable indication of training intensity and its effect on the physiological mechanisms of the human…
[Monitoring evaluation system for high-specialty hospitals].
Fajardo Dolci, Germán; Aguirre Gas, Héctor G; Robledo Galván, Héctor
2011-01-01
Hospital evaluation is a fundamental process to identify medical units' objective compliance, to analyze efficiency of resource use and allocation, institutional values and mission alignment, patient safety and quality standards, contributions to research and medical education, and the degree of coordination among medical units and the health system as a whole. We propose an evaluation system for highly specialized regional hospitals through the monitoring of performance indicators. The following are established as base thematic elements in the construction of indicators: safe facilities and equipment, financial situation, human resources management, policy management, organizational climate, clinical activity, quality and patient safety, continuity of care, patients' and providers' rights and obligations, teaching, research, social responsibility, coordination mechanisms. Monitoring refers to the planned and systematic evaluation of valid and reliable indicators, aimed at identifying problems and opportunity areas. Moreover, evaluation is a powerful tool to strengthen decision-making and accountability in medical units.
Scaglioni-Solano, Pietro; Aragón-Vargas, Luis F
2014-06-01
Standing balance is an important motor task. Postural instability associated with age typically arises from deterioration of peripheral sensory systems. The modified Clinical Test of Sensory Integration for Balance and the Tandem test have been used to screen for balance. Timed tests present some limitations, whereas quantification of the motions of the center of pressure (CoP) with portable and inexpensive equipment may help to improve the sensitivity of these tests and give the possibility of widespread use. This study determines the validity and reliability of the Wii Balance Board (Wii BB) to quantify CoP motions during the mentioned tests. Thirty-seven older adults completed three repetitions of five balance conditions: eyes open, eyes closed, eyes open on a compliant surface, eyes closed on a compliant surface, and tandem stance, all performed on a force plate and a Wii BB simultaneously. Twenty participants repeated the trials for reliability purposes. CoP displacement was the main outcome measure. Regression analysis indicated that the Wii BB has excellent concurrent validity, and Bland-Altman plots showed good agreement between devices with small mean differences and no relationship between the difference and the mean. Intraclass correlation coefficients (ICCs) indicated modest-to-excellent test-retest reliability (ICC=0.64-0.85). Standard error of measurement and minimal detectable change were similar for both devices, except the 'eyes closed' condition, with greater standard error of measurement for the Wii BB. In conclusion, the Wii BB is shown to be a valid and reliable method to quantify CoP displacement in older adults.
NASA Astrophysics Data System (ADS)
Kamiaka, Shoya; Benomar, Othman; Suto, Yasushi
2018-05-01
Advances in asteroseismology of solar-like stars, now provide a unique method to estimate the stellar inclination i⋆. This enables to evaluate the spin-orbit angle of transiting planetary systems, in a complementary fashion to the Rossiter-McLaughlineffect, a well-established method to estimate the projected spin-orbit angle λ. Although the asteroseismic method has been broadly applied to the Kepler data, its reliability has yet to be assessed intensively. In this work, we evaluate the accuracy of i⋆ from asteroseismology of solar-like stars using 3000 simulated power spectra. We find that the low signal-to-noise ratio of the power spectra induces a systematic under-estimate (over-estimate) bias for stars with high (low) inclinations. We derive analytical criteria for the reliable asteroseismic estimate, which indicates that reliable measurements are possible in the range of 20° ≲ i⋆ ≲ 80° only for stars with high signal-to-noise ratio. We also analyse and measure the stellar inclination of 94 Kepler main-sequence solar-like stars, among which 33 are planetary hosts. According to our reliability criteria, a third of them (9 with planets, 22 without) have accurate stellar inclination. Comparison of our asteroseismic estimate of vsin i⋆ against spectroscopic measurements indicates that the latter suffers from a large uncertainty possibly due to the modeling of macro-turbulence, especially for stars with projected rotation speed vsin i⋆ ≲ 5km/s. This reinforces earlier claims, and the stellar inclination estimated from the combination of measurements from spectroscopy and photometric variation for slowly rotating stars needs to be interpreted with caution.
Amini, Michael H; Sykes, Joshua B; Olson, Stephen T; Smith, Richard A; Mauck, Benjamin M; Azar, Frederick M; Throckmorton, Thomas W
2015-03-01
The severity of elbow arthritis is one of many factors that surgeons must evaluate when considering treatment options for a given patient. Elbow surgeons have historically used the Broberg and Morrey (BM) and Hastings and Rettig (HR) classification systems to radiographically stage the severity of post-traumatic arthritis (PTA) and primary osteoarthritis (OA). We proposed to compare the intraobserver and interobserver reliability between systems for patients with either PTA or OA. The radiographs of 45 patients were evaluated at least 2 weeks apart by 6 evaluators of different levels of training. Intraobserver and interobserver reliability were calculated by Spearman correlation coefficients with 95% confidence intervals. Agreement was considered almost perfect for coefficients >0.80 and substantial for coefficients of 0.61 to 0.80. In patients with both PTA and OA, intraobserver reliability and interobserver reliability were substantial, with no difference between classification systems. There were no significant differences in intraobserver or interobserver reliability between attending physicians and trainees for either classification system (all P > .10). The presence of fracture implants did not affect reliability in the BM system but did substantially worsen reliability in the HR system (intraobserver P = .04 and interobserver P = .001). The BM and HR classifications both showed substantial intraobserver and interobserver reliability for PTA and OA. Training level differences did not affect reliability for either system. Both trainees and fellowship-trained surgeons may easily and reliably apply each classification system to the evaluation of primary elbow OA and PTA, although the HR system was less reliable in the presence of fracture implants. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Elsebaie, H B; Dannawi, Z; Altaf, F; Zaidan, A; Al Mukhtar, M; Shaw, M J; Gibson, A; Noordeen, H
2016-02-01
The achievement of shoulder balance is an important measure of successful scoliosis surgery. No previously described classification system has taken shoulder balance into account. We propose a simple classification system for AIS based on two components which include the curve type and shoulder level. Altogether, three curve types have been defined according to the size and location of the curves, each curve pattern is subdivided into type A or B depending on the shoulder level. This classification was tested for interobserver reproducibility and intraobserver reliability. A retrospective analysis of the radiographs of 232 consecutive cases of AIS patients treated surgically between 2005 and 2009 was also performed. Three major types and six subtypes were identified. Type I accounted for 30 %, type II 28 % and type III 42 %. The retrospective analysis showed three patients developed a decompensation that required extension of the fusion. One case developed worsening of shoulder balance requiring further surgery. This classification was tested for interobserver and intraobserver reliability. The mean kappa coefficients for interobserver reproducibility ranged from 0.89 to 0.952, while the mean kappa value for intraobserver reliability was 0.964 indicating a good-to-excellent reliability. The treatment algorithm guides the spinal surgeon to achieve optimal curve correction and postoperative shoulder balance whilst fusing the smallest number of spinal segments. The high interobserver reproducibility and intraobserver reliability makes it an invaluable tool to describe scoliosis curves in everyday clinical practice.
Reliable actuators for twin rotor MIMO system
NASA Astrophysics Data System (ADS)
Rao, Vidya S.; V. I, George; Kamath, Surekha; Shreesha, C.
2017-11-01
Twin Rotor MIMO System (TRMS) is a bench mark system to test flight control algorithms. One of the perturbations on TRMS which is likely to affect the control system is actuator failure. Therefore, there is a need for a reliable control system, which includes H infinity controller along with redundant actuators. Reliable control refers to the design of a control system to tolerate failures of a certain set of actuators or sensors while retaining desired control system properties. Output of reliable controller has to be transferred to the redundant actuator effectively to make the TRMS reliable even under actual actuator failure.
Magasi, Susan; Wong, Alex; Miskovic, Ana; Tulsky, David; Heinemann, Allen W
2018-01-01
To test the effect that indicators of mobility device quality have on participation outcomes in community-dwelling adults with spinal cord injury, traumatic brain injury, and stroke by using structural equation modeling. Survey, cross-sectional study, and model testing. Clinical research space at 2 academic medical centers and 1 free-standing rehabilitation hospital. Community-dwelling adults (N=250; mean age, 48±14.3y) with spinal cord injury, traumatic brain injury, and stroke. Not applicable. The Mobility Device Impact Scale, Patient-Reported Outcomes Measurement Information System Social Function (version 2.0) scale, including Ability to Participate in Social Roles and Activities and Satisfaction with Social Roles and Activities, and the 2 Community Participation Indicators' enfranchisement scales. Details about device quality (reparability, reliability, ease of maintenance) and device type were also collected. Respondents used ambulation aids (30%), manual (34%), and power wheelchairs (30%). Indicators of device quality had a moderating effect on participation outcomes, with 3 device quality variables (repairability, ease of maintenance, device reliability) accounting for 20% of the variance in participation. Wheelchair users reported lower participation enfranchisement than did ambulation aid users. Mobility device quality plays an important role in participation outcomes. It is critical that people have access to mobility devices and that these devices be reliable. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Mciver, D.; Hatfield, J. J.
1978-01-01
Digital and display technology combined with human factors research under development today are expected to become operational in the commercial aircraft of the 1990s. Attention is given to reducing the pilot's workload and increasing aircraft reliability through integration of electronic systems, and through multi-mode displays. Recent advances in display technology are outlined, including electroluminescent panels, beam penetration color CRTs, liquid crystal modules, and LED panels and indicators. Research cockpits are described in terms of simplification of aircraft systems evaluation and control.
Evaluation and Validation (E&V) Team Public Report. Volume 2.
1985-11-30
Byron, Countess of Lovelace. The Countess was an associate of Charles Babbage and is presumed to be the world’s first programmer (Barnes, 1982:2...by DDT&E, STARS, and AJPO personnel, as appropriate. 4.20.9 Focal Point The DDT&E and STARS focal points, respectively, are indicated below Charles K...Technology For Adaptable, Reliable Systems Major Charles W. Lillie from Headquarters Air Force Systems Command gave a presentation concerning Software For
Optimization of a GCaMP calcium indicator for neural activity imaging.
Akerboom, Jasper; Chen, Tsai-Wen; Wardill, Trevor J; Tian, Lin; Marvin, Jonathan S; Mutlu, Sevinç; Calderón, Nicole Carreras; Esposti, Federico; Borghuis, Bart G; Sun, Xiaonan Richard; Gordus, Andrew; Orger, Michael B; Portugues, Ruben; Engert, Florian; Macklin, John J; Filosa, Alessandro; Aggarwal, Aman; Kerr, Rex A; Takagi, Ryousuke; Kracun, Sebastian; Shigetomi, Eiji; Khakh, Baljit S; Baier, Herwig; Lagnado, Leon; Wang, Samuel S-H; Bargmann, Cornelia I; Kimmel, Bruce E; Jayaraman, Vivek; Svoboda, Karel; Kim, Douglas S; Schreiter, Eric R; Looger, Loren L
2012-10-03
Genetically encoded calcium indicators (GECIs) are powerful tools for systems neuroscience. Recent efforts in protein engineering have significantly increased the performance of GECIs. The state-of-the art single-wavelength GECI, GCaMP3, has been deployed in a number of model organisms and can reliably detect three or more action potentials in short bursts in several systems in vivo. Through protein structure determination, targeted mutagenesis, high-throughput screening, and a battery of in vitro assays, we have increased the dynamic range of GCaMP3 by severalfold, creating a family of "GCaMP5" sensors. We tested GCaMP5s in several systems: cultured neurons and astrocytes, mouse retina, and in vivo in Caenorhabditis chemosensory neurons, Drosophila larval neuromuscular junction and adult antennal lobe, zebrafish retina and tectum, and mouse visual cortex. Signal-to-noise ratio was improved by at least 2- to 3-fold. In the visual cortex, two GCaMP5 variants detected twice as many visual stimulus-responsive cells as GCaMP3. By combining in vivo imaging with electrophysiology we show that GCaMP5 fluorescence provides a more reliable measure of neuronal activity than its predecessor GCaMP3. GCaMP5 allows more sensitive detection of neural activity in vivo and may find widespread applications for cellular imaging in general.
Fortin, Carole; Feldman, Debbie Ehrmann; Cheriet, Farida; Gravel, Denis; Gauthier, Frédérique; Labelle, Hubert
2012-03-01
To determine overall, test-retest and inter-rater reliability of posture indices among persons with idiopathic scoliosis. A reliability study using two raters and two test sessions. Tertiary care paediatric centre. Seventy participants aged between 10 and 20 years with different types of idiopathic scoliosis (Cobb angle 15 to 60°) were recruited from the scoliosis clinic. Based on the XY co-ordinates of natural reference points (e.g., eyes) as well as markers placed on several anatomical landmarks, 32 angular and linear posture indices taken from digital photographs in the standing position were calculated from a specially developed software program. Generalisability theory served to estimate the reliability and standard error of measurement (SEM) for the overall, test-retest and inter-rater designs. Bland and Altman's method was also used to document agreement between sessions and raters. In the random design, dependability coefficients demonstrated a moderate level of reliability for six posture indices (ϕ=0.51 to 0.72) and a good level of reliability for 26 posture indices out of 32 (ϕ≥0.79). Error attributable to marker placement was negligible for most indices. Limits of agreement and SEM values were larger for shoulder protraction, trunk list, Q angle, cervical lordosis and scoliosis angles. The most reproducible indices were waist angles and knee valgus and varus. Posture can be assessed in a global fashion from photographs in persons with idiopathic scoliosis. Despite the good reliability of marker placement, other studies are needed to minimise measurement errors in order to provide a suitable tool for monitoring change in posture over time. Copyright © 2011 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
Terada, Tasuku; Loehr, Sarah; Guigard, Emmanuel; McCargar, Linda J; Bell, Gordon J; Senior, Peter; Boulé, Normand G
2014-08-01
This study determined the test-retest reliability of a continuous glucose monitoring system (CGMS) (iPro™2; Medtronic, Northridge, CA) under standardized conditions in individuals with type 2 diabetes (T2D). Fourteen individuals with T2D spent two nonconsecutive days in a calorimetry unit. On both days, meals, medication, and exercise were standardized. Glucose concentrations were measured continuously by CGMS, from which daily mean glucose concentration (GLU(mean)), time spent in hyperglycemia (t(>10.0 mmol/L)), and meal, exercise, and nocturnal mean glucose concentrations, as well as glycemic variability (SD(w), percentage coefficient of variation [%cv(w)], mean amplitude of glycemic excursions [MAGEc, MAGE(ave), and MAGE(abs.gos)], and continuous overlapping net glycemic action [CONGA(n)]) were estimated. Absolute and relative reliabilities were investigated using coefficient of variation (CV) and intraclass correlation, respectively. Relative reliability ranged from 0.77 to 0.95 (P<0.05) for GLU(mean) and meal, exercise, and nocturnal glycemia with CV ranging from 3.9% to 11.7%. Despite significant relative reliability (R=0.93; P<0.01), t(>10.0 mmol/L) showed larger CV (54.7%). Among the different glycemic variability measures, a significant between-day difference was observed in MAGEc, MAGE(ave), CONGA6, and CONGA12. The remaining measures (i.e., SD(w), %cv(w), MAGE(abs.gos), and CONGA1-4) indicated no between-day differences and significant relative reliability. In individuals with T2D, CGMS-estimated glycemic profiles were characterized by high relative and absolute reliability for both daily and shorter-term measurements as represented by GLUmean and meal, exercise, and nocturnal glycemia. Among the different methods to calculate glycemic variability, our results showed SD(w), %cv(w), MAGE(abs.gos), and CONGAn with n ≤ 4 were reliable measures. These results suggest the usefulness of CGMS in clinical trials utilizing repeated measured.
Reliability and Validity Assessment of a Linear Position Transducer
Garnacho-Castaño, Manuel V.; López-Lastra, Silvia; Maté-Muñoz, José L.
2015-01-01
The objectives of the study were to determine the validity and reliability of peak velocity (PV), average velocity (AV), peak power (PP) and average power (AP) measurements were made using a linear position transducer. Validity was assessed by comparing measurements simultaneously obtained using the Tendo Weightlifting Analyzer Systemi and T-Force Dynamic Measurement Systemr (Ergotech, Murcia, Spain) during two resistance exercises, bench press (BP) and full back squat (BS), performed by 71 trained male subjects. For the reliability study, a further 32 men completed both lifts using the Tendo Weightlifting Analyzer Systemz in two identical testing sessions one week apart (session 1 vs. session 2). Intraclass correlation coefficients (ICCs) indicating the validity of the Tendo Weightlifting Analyzer Systemi were high, with values ranging from 0.853 to 0.989. Systematic biases and random errors were low to moderate for almost all variables, being higher in the case of PP (bias ±157.56 W; error ±131.84 W). Proportional biases were identified for almost all variables. Test-retest reliability was strong with ICCs ranging from 0.922 to 0.988. Reliability results also showed minimal systematic biases and random errors, which were only significant for PP (bias -19.19 W; error ±67.57 W). Only PV recorded in the BS showed no significant proportional bias. The Tendo Weightlifting Analyzer Systemi emerged as a reliable system for measuring movement velocity and estimating power in resistance exercises. The low biases and random errors observed here (mainly AV, AP) make this device a useful tool for monitoring resistance training. Key points This study determined the validity and reliability of peak velocity, average velocity, peak power and average power measurements made using a linear position transducer The Tendo Weight-lifting Analyzer Systemi emerged as a reliable system for measuring movement velocity and power. PMID:25729300
Butler, Stephen F; Venuti, Synne Wing; Benoit, Christine; Beaulaurier, Richard L; Houle, Brian; Katz, Nathaniel
2007-09-01
This study describes the development of a systematic approach to the analysis of Internet chatter as a means of monitoring potentially abusable opioid analgesics. Message boards dedicated to drug abuse were selected using specific inclusion criteria. Threaded discussions containing 48,293 posts were captured. A coding system was created to compare content of posts related to 3 opioid analgesics: Kadian, Vicodin, and OxyContin. The number of posts containing mentions of the target drugs were significantly different [OxyContin (1813)>Vicodin (940)>Kadian (27), P<0.001]. Analyses revealed that these differences were not simply a reflection of the availability of each product (ie, number of prescriptions written). Reliability tests indicated that the content coding system achieved good interrater reliability coefficients (average kappa across all categories=0.76, range=0.52 to 1.0). Content analysis of a sample of 234 randomly selected posts indicated that the proportion of Internet posts endorsing abuse of Kadian was statistically significantly less than OxyContin (45.5% vs. 68.4%, P=0.036, not adjusted for multiple comparisons). These results suggest that a systematic approach to postmarketing surveillance of Internet chatter related to pharmaceutical products is feasible and yields reliable information about the quantity of discussion of specific products and qualitative information regarding the nature of the discussions. Kadian was associated with fewer Internet mentions than either OxyContin or Vicodin. This investigation stands as a first attempt to establish systematic methods for conducting Internet surveillance.
On the Scaling Behavior of Reliability-Resilience-Vulnerability Indices in Agricultural Watersheds
Risk indices such as reliability-resilience-vulnerability (R-R-V) have been proposed to assess watershed health. In this study, the spatial scaling behavior of R-R-V indices has been explored for five agricultural watersheds in the midwestern United States. The study was conduc...
A new vestibulo-ocular reflex recording system designed for routine vestibular clinical use.
Funabiki, K; Naito, Y; Matsuda, K; Honjo, I
1999-01-01
A new vestibulo-ocular reflex (VOR) recording system was developed, which consists of an infrared eye camera, a small velocity sensor and a frequency modulator. Using this system, the head velocity signal was frequency modulated and simultaneously recorded as a sound signal on the audio track of a Hi8 video recorder with eye images. This device enabled recording of the VOR response in routine vestibular clinical practice. The reliability and effectiveness of this system were estimated by recording and analysing the VOR response against manually controlled rotation in normal subjects (n = 22) and in patients with unilateral severe vestibular hypofunction (n = 11). VOR gain on clockwise rotation viewed from the top was defined as R gain, and counterclockwise rotation as L gain. Directional preponderance (DP%) was also calculated. VOR gain towards the diseased side was significantly lower than that towards the intact side, and also significantly lower than that of normal subjects. DP% of unilateral vestibular hypofunction cases was significantly larger than that of normal subjects. These findings indicate that this VOR recording system reliably detects severe unilateral vestibular hypofunction.
Parts and Components Reliability Assessment: A Cost Effective Approach
NASA Technical Reports Server (NTRS)
Lee, Lydia
2009-01-01
System reliability assessment is a methodology which incorporates reliability analyses performed at parts and components level such as Reliability Prediction, Failure Modes and Effects Analysis (FMEA) and Fault Tree Analysis (FTA) to assess risks, perform design tradeoffs, and therefore, to ensure effective productivity and/or mission success. The system reliability is used to optimize the product design to accommodate today?s mandated budget, manpower, and schedule constraints. Stand ard based reliability assessment is an effective approach consisting of reliability predictions together with other reliability analyses for electronic, electrical, and electro-mechanical (EEE) complex parts and components of large systems based on failure rate estimates published by the United States (U.S.) military or commercial standards and handbooks. Many of these standards are globally accepted and recognized. The reliability assessment is especially useful during the initial stages when the system design is still in the development and hard failure data is not yet available or manufacturers are not contractually obliged by their customers to publish the reliability estimates/predictions for their parts and components. This paper presents a methodology to assess system reliability using parts and components reliability estimates to ensure effective productivity and/or mission success in an efficient manner, low cost, and tight schedule.
Theory of reliable systems. [systems analysis and design
NASA Technical Reports Server (NTRS)
Meyer, J. F.
1973-01-01
The analysis and design of reliable systems are discussed. The attributes of system reliability studied are fault tolerance, diagnosability, and reconfigurability. Objectives of the study include: to determine properties of system structure that are conducive to a particular attribute; to determine methods for obtaining reliable realizations of a given system; and to determine how properties of system behavior relate to the complexity of fault tolerant realizations. A list of 34 references is included.
76 FR 64082 - Mandatory Reliability Standards for the Bulk-Power System; Notice of Staff Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-17
... Reliability Standards for the Bulk-Power System; Notice of Staff Meeting Take notice that the Federal Energy... reliability implications to the interconnected transmission system associated with a single point of failure... R1.3.10 of Commission-approved transmission planning Reliability Standard TPL-002- 0 (System...
NASA Astrophysics Data System (ADS)
Yang, Zhou; Zhu, Yunpeng; Ren, Hongrui; Zhang, Yimin
2015-03-01
Reliability allocation of computerized numerical controlled(CNC) lathes is very important in industry. Traditional allocation methods only focus on high-failure rate components rather than moderate failure rate components, which is not applicable in some conditions. Aiming at solving the problem of CNC lathes reliability allocating, a comprehensive reliability allocation method based on cubic transformed functions of failure modes and effects analysis(FMEA) is presented. Firstly, conventional reliability allocation methods are introduced. Then the limitations of direct combination of comprehensive allocation method with the exponential transformed FMEA method are investigated. Subsequently, a cubic transformed function is established in order to overcome these limitations. Properties of the new transformed functions are discussed by considering the failure severity and the failure occurrence. Designers can choose appropriate transform amplitudes according to their requirements. Finally, a CNC lathe and a spindle system are used as an example to verify the new allocation method. Seven criteria are considered to compare the results of the new method with traditional methods. The allocation results indicate that the new method is more flexible than traditional methods. By employing the new cubic transformed function, the method covers a wider range of problems in CNC reliability allocation without losing the advantages of traditional methods.
Materials interactions between the thermoelectric converter and the 5kwe reactor system
NASA Technical Reports Server (NTRS)
Ferry, P. B.
1973-01-01
The integration of a compact thermoelectric converter with a 5-kwe reactor system is described. Material interaction uncertainties study is also presented. This includes degradation of the required austenitic - refractory metal transition joint during operation at high temperatures; loss of corrosion resistance; embrittlement by the presence of hydrogen; and loss of design margin by transport of interstitial elements. Analysis and limited experimental evidence indicate that these potential materials interactions can be adequately controlled. Group 5-2 refractory metals can be utilized without unacceptable adverse effect on system reliability.
Carbon recycling in materially closed ecological life support systems
NASA Technical Reports Server (NTRS)
Obenhuber, D. C.; Folsome, C. E.
1988-01-01
Results of studies are presented of materially closed energetically open microbial ecosystems or 'closed ecosystems'. These are natural marine ecosystems that have been sealed in glass containers to prevent material exchange with the environment but allow energy to pass freely through them. They represent model life support systems for the future human habitation of space. The results are discussed analytically and indicate that these ecosystems, when subjected to a constant energy flux, seem to be reliable and self-sufficient systems for recycling of biologically produced carbon compounds.
Perinetti, Giuseppe; Contardo, Luca
2017-01-01
Current evidence on the reliability of growth indicators in the identification of the pubertal growth spurt and efficiency of functional treatment for skeletal Class II malocclusion, the timing of which relies on such indicators, is highly controversial. Regarding growth indicators, the hand and wrist (including the sole middle phalanx of the third finger) maturation method and the standing height recording appear to be most reliable. Other methods are subjected to controversies or were showed to be unreliable. Main sources of controversies include use of single stages instead of ossification events and diagnostic reliability conjecturally based on correlation analyses. Regarding evidence on the efficiency of functional treatment, when treated during the pubertal growth spurt, more favorable response is seen in skeletal Class II patients even though large individual responsiveness remains. Main sources of controversies include design of clinical trials, definition of Class II malocclusion, and lack of inclusion of skeletal maturity among the prognostic factors. While no growth indicator may be considered to have a full diagnostic reliability in the identification of the pubertal growth spurt, their use may still be recommended for increasing efficiency of functional treatment for skeletal Class II malocclusion.
2017-01-01
Current evidence on the reliability of growth indicators in the identification of the pubertal growth spurt and efficiency of functional treatment for skeletal Class II malocclusion, the timing of which relies on such indicators, is highly controversial. Regarding growth indicators, the hand and wrist (including the sole middle phalanx of the third finger) maturation method and the standing height recording appear to be most reliable. Other methods are subjected to controversies or were showed to be unreliable. Main sources of controversies include use of single stages instead of ossification events and diagnostic reliability conjecturally based on correlation analyses. Regarding evidence on the efficiency of functional treatment, when treated during the pubertal growth spurt, more favorable response is seen in skeletal Class II patients even though large individual responsiveness remains. Main sources of controversies include design of clinical trials, definition of Class II malocclusion, and lack of inclusion of skeletal maturity among the prognostic factors. While no growth indicator may be considered to have a full diagnostic reliability in the identification of the pubertal growth spurt, their use may still be recommended for increasing efficiency of functional treatment for skeletal Class II malocclusion. PMID:28168195
NASA Technical Reports Server (NTRS)
1993-01-01
The Marshall Space Flight Center is responsible for the development and management of advanced launch vehicle propulsion systems, including the Space Shuttle Main Engine (SSME), which is presently operational, and the Space Transportation Main Engine (STME) under development. The SSME's provide high performance within stringent constraints on size, weight, and reliability. Based on operational experience, continuous design improvement is in progress to enhance system durability and reliability. Specialized data analysis and interpretation is required in support of SSME and advanced propulsion system diagnostic evaluations. Comprehensive evaluation of the dynamic measurements obtained from test and flight operations is necessary to provide timely assessment of the vibrational characteristics indicating the operational status of turbomachinery and other critical engine components. Efficient performance of this effort is critical due to the significant impact of dynamic evaluation results on ground test and launch schedules, and requires direct familiarity with SSME and derivative systems, test data acquisition, and diagnostic software. Detailed analysis and evaluation of dynamic measurements obtained during SSME and advanced system ground test and flight operations was performed including analytical/statistical assessment of component dynamic behavior, and the development and implementation of analytical/statistical models to efficiently define nominal component dynamic characteristics, detect anomalous behavior, and assess machinery operational condition. In addition, the SSME and J-2 data will be applied to develop vibroacoustic environments for advanced propulsion system components, as required. This study will provide timely assessment of engine component operational status, identify probable causes of malfunction, and indicate feasible engineering solutions. This contract will be performed through accomplishment of negotiated task orders.
A study on reliability of power customer in distribution network
NASA Astrophysics Data System (ADS)
Liu, Liyuan; Ouyang, Sen; Chen, Danling; Ma, Shaohua; Wang, Xin
2017-05-01
The existing power supply reliability index system is oriented to power system without considering actual electricity availability in customer side. In addition, it is unable to reflect outage or customer’s equipment shutdown caused by instantaneous interruption and power quality problem. This paper thus makes a systematic study on reliability of power customer. By comparing with power supply reliability, reliability of power customer is defined and extracted its evaluation requirements. An indexes system, consisting of seven customer indexes and two contrast indexes, are designed to describe reliability of power customer from continuity and availability. In order to comprehensively and quantitatively evaluate reliability of power customer in distribution networks, reliability evaluation method is proposed based on improved entropy method and the punishment weighting principle. Practical application has proved that reliability index system and evaluation method for power customer is reasonable and effective.
NASA Technical Reports Server (NTRS)
Handley, Thomas H., Jr.; Preheim, Larry E.
1990-01-01
Data systems requirements in the Earth Observing System (EOS) Space Station Freedom (SSF) eras indicate increasing data volume, increased discipline interplay, higher complexity and broader data integration and interpretation. A response to the needs of the interdisciplinary investigator is proposed, considering the increasing complexity and rising costs of scientific investigation. The EOS Data Information System, conceived to be a widely distributed system with reliable communication links between central processing and the science user community, is described. Details are provided on information architecture, system models, intelligent data management of large complex databases, and standards for archiving ancillary data, using a research library, a laboratory and collaboration services.
Ultra Reliable Closed Loop Life Support for Long Space Missions
NASA Technical Reports Server (NTRS)
Jones, Harry W.; Ewert, Michael K.
2010-01-01
Spacecraft human life support systems can achieve ultra reliability by providing sufficient spares to replace all failed components. The additional mass of spares for ultra reliability is approximately equal to the original system mass, provided that the original system reliability is not too low. Acceptable reliability can be achieved for the Space Shuttle and Space Station by preventive maintenance and by replacing failed units. However, on-demand maintenance and repair requires a logistics supply chain in place to provide the needed spares. In contrast, a Mars or other long space mission must take along all the needed spares, since resupply is not possible. Long missions must achieve ultra reliability, a very low failure rate per hour, since they will take years rather than weeks and cannot be cut short if a failure occurs. Also, distant missions have a much higher mass launch cost per kilogram than near-Earth missions. Achieving ultra reliable spacecraft life support systems with acceptable mass will require a well-planned and extensive development effort. Analysis must determine the reliability requirement and allocate it to subsystems and components. Ultra reliability requires reducing the intrinsic failure causes, providing spares to replace failed components and having "graceful" failure modes. Technologies, components, and materials must be selected and designed for high reliability. Long duration testing is needed to confirm very low failure rates. Systems design should segregate the failure causes in the smallest, most easily replaceable parts. The system must be designed, developed, integrated, and tested with system reliability in mind. Maintenance and reparability of failed units must not add to the probability of failure. The overall system must be tested sufficiently to identify any design errors. A program to develop ultra reliable space life support systems with acceptable mass should start soon since it must be a long term effort.
NASA Technical Reports Server (NTRS)
Huang, Zhao-Feng; Fint, Jeffry A.; Kuck, Frederick M.
2005-01-01
This paper is to address the in-flight reliability of a liquid propulsion engine system for a launch vehicle. We first establish a comprehensive list of system and sub-system reliability drivers for any liquid propulsion engine system. We then build a reliability model to parametrically analyze the impact of some reliability parameters. We present sensitivity analysis results for a selected subset of the key reliability drivers using the model. Reliability drivers identified include: number of engines for the liquid propulsion stage, single engine total reliability, engine operation duration, engine thrust size, reusability, engine de-rating or up-rating, engine-out design (including engine-out switching reliability, catastrophic fraction, preventable failure fraction, unnecessary shutdown fraction), propellant specific hazards, engine start and cutoff transient hazards, engine combustion cycles, vehicle and engine interface and interaction hazards, engine health management system, engine modification, engine ground start hold down with launch commit criteria, engine altitude start (1 in. start), Multiple altitude restart (less than 1 restart), component, subsystem and system design, manufacturing/ground operation support/pre and post flight check outs and inspection, extensiveness of the development program. We present some sensitivity analysis results for the following subset of the drivers: number of engines for the propulsion stage, single engine total reliability, engine operation duration, engine de-rating or up-rating requirements, engine-out design, catastrophic fraction, preventable failure fraction, unnecessary shutdown fraction, and engine health management system implementation (basic redlines and more advanced health management systems).
NASA Technical Reports Server (NTRS)
Bavuso, Salvatore J.; Rothmann, Elizabeth; Mittal, Nitin; Koppen, Sandra Howell
1994-01-01
The Hybrid Automated Reliability Predictor (HARP) integrated Reliability (HiRel) tool system for reliability/availability prediction offers a toolbox of integrated reliability/availability programs that can be used to customize the user's application in a workstation or nonworkstation environment. HiRel consists of interactive graphical input/output programs and four reliability/availability modeling engines that provide analytical and simulative solutions to a wide host of highly reliable fault-tolerant system architectures and is also applicable to electronic systems in general. The tool system was designed at the outset to be compatible with most computing platforms and operating systems, and some programs have been beta tested within the aerospace community for over 8 years. This document is a user's guide for the HiRel graphical preprocessor Graphics Oriented (GO) program. GO is a graphical user interface for the HARP engine that enables the drawing of reliability/availability models on a monitor. A mouse is used to select fault tree gates or Markov graphical symbols from a menu for drawing.
Quality of patient health information on the Internet: reviewing a complex and evolving landscape.
Fahy, Eamonn; Hardikar, Rohan; Fox, Adrian; Mackay, Sean
2014-01-01
The popularity of the Internet has enabled unprecedented access to health information. As a largely unregulated source, there is potential for inconsistency in the quality of information that reaches the patient. To review the literature relating to the quality indicators of health information for patients on the Internet. A search of English language literature was conducted using PubMed, Google Scholar and EMBASE databases. Many articles have been published which assess the quality of information relating to specific medical conditions. Indicators of quality have been defined in an attempt to predict higher quality health information on the Internet. Quality evaluation tools are scoring systems based on indicators of quality. Established tools such as the HONcode may help patients navigate to more reliable information. Google and Wikipedia are important emerging sources of patient health information. The Internet is crucial for modern dissemination of health information, but it is clear that quality varies significantly between sources. Quality indicators for web-information have been developed but there is no agreed standard yet. We envisage that reliable rating tools, effective search engine ranking and progress in crowd-edited websites will enhance patient access to health information on the Internet.
Volatile organic compound sensor system
Schabron, John F [Laramie, WY; Rovani, Jr., Joseph F.; Bomstad, Theresa M [Laramie, WY; Sorini-Wong, Susan S [Laramie, WY
2009-02-10
Generally, this invention relates to the development of field monitoring methodology for new substances and sensing chemical warfare agents (CWAs) and terrorist substances. It also relates to a portable test kit which may be utilized to measure concentrations of halogenated volatile organic compounds (VOCs) in the field. Specifically it relates to systems for reliably field sensing the potential presence of such items while also distinguishing them from other elements potentially present. It also relates to overall systems and processes for sensing, reacting, and responding to an indicated presence of such substance, including modifications of existing halogenated sensors and arrayed sensing systems and methods.
Volatile organic compound sensor system
Schabron, John F.; Rovani, Jr., Joseph F.; Bomstad, Theresa M.; Sorini-Wong, Susan S.; Wong, Gregory K.
2011-03-01
Generally, this invention relates to the development of field monitoring methodology for new substances and sensing chemical warfare agents (CWAs) and terrorist substances. It also relates to a portable test kit which may be utilized to measure concentrations of halogenated volatile organic compounds (VOCs) in the field. Specifically it relates to systems for reliably field sensing the potential presence of such items while also distinguishing them from other elements potentially present. It also relates to overall systems and processes for sensing, reacting, and responding to an indicated presence of such substance, including modifications of existing halogenated sensors and arrayed sensing systems and methods.
NASA Astrophysics Data System (ADS)
Launch vehicle propulsion system reliability considerations during the design and verification processes are discussed. The tools available for predicting and minimizing anomalies or failure modes are described and objectives for validating advanced launch system propulsion reliability are listed. Methods for ensuring vehicle/propulsion system interface reliability are examined and improvements in the propulsion system development process are suggested to improve reliability in launch operations. Also, possible approaches to streamline the specification and procurement process are given. It is suggested that government and industry should define reliability program requirements and manage production and operations activities in a manner that provides control over reliability drivers. Also, it is recommended that sufficient funds should be invested in design, development, test, and evaluation processes to ensure that reliability is not inappropriately subordinated to other management considerations.
Sun, Yi; Arning, Martin; Bochmann, Frank; Börger, Jutta; Heitmann, Thomas
2018-06-01
The Occupational Safety and Health Monitoring and Assessment Tool (OSH-MAT) is a practical instrument that is currently used in the German woodworking and metalworking industries to monitor safety conditions at workplaces. The 12-item scoring system has three subscales rating technical, organizational, and personnel-related conditions in a company. Each item has a rating value ranging from 1 to 9, with higher values indicating higher standard of safety conditions. The reliability of this instrument was evaluated in a cross-sectional survey among 128 companies and its validity among 30,514 companies. The inter-rater reliability of the instrument was examined independently and simultaneously by two well-trained safety engineers. Agreement between the double ratings was quantified by the intraclass correlation coefficient and absolute agreement of the rating values. The content validity of the OSH-MAT was evaluated by quantifying the association between OSH-MAT values and 5-year average injury rates by Poisson regression analysis adjusted for the size of the companies and industrial sectors. The construct validity of OSH-MAT was examined by principle component factor analysis. Our analysis indicated good to very good inter-rater reliability (intraclass correlation coefficient = 0.64-0.74) of OSH-MAT values with an absolute agreement of between 72% and 81%. Factor analysis identified three component subscales that met exactly the structure theory of this instrument. The Poisson regression analysis demonstrated a statistically significant exposure-response relationship between OSH-MAT values and the 5-year average injury rates. These analyses indicate that OSH-MAT is a valid and reliable instrument that can be used effectively to monitor safety conditions at workplaces.
NASA Astrophysics Data System (ADS)
Mayer, A. S.; Vivoni, E. R.; Halvorsen, K. E.; Kossak, D.
2014-12-01
The Rio Sonora Basin (RSB) in northwest Mexico has a semi-arid and highly variable climate along with urban and agricultural pressures on water resources. Three participatory modeling workshops were held in the RSB in spring 2013. A model of the water resources system, consisting of a watershed hydrology model, a model of the water infrastructure, and groundwater models, was developed deliberatively in the workshops, along with scenarios of future climate and development. Participants were asked to design water resources management strategies by choosing from a range of supply augmentation and demand reduction measures associated with water conservation. Participants assessed water supply reliability, measured as the average daily supply divided by daily demand for historical and future periods, by probing with the climate and development scenarios. Pre- and post-workshop-surveys were developed and administered, based on conceptual models of workshop participants' beliefs regarding modeling and local water resources. The survey results indicate that participants believed their modeling abilities increased and beliefs in the utility of models increased as a result of the workshops. The selected water resources strategies varied widely among participants. Wastewater reuse for industry and aquifer recharge were popular options, but significant numbers of participants thought that inter-basin transfers and desalination were viable. The majority of participants indicated that substantial increases in agricultural water efficiency could be achieved. On average, participants chose strategies that produce reliabilities over the historical and future periods of 95%, but more than 20% of participants were apparently satisfied with reliabilities lower than 80%. The wide range of strategies chosen and associated reliabilities indicate that there is a substantial degree of uncertainty in how future water resources decisions could be made in the region.
Validity and reliability of a pilot scale for assessment of multiple system atrophy symptoms.
Matsushima, Masaaki; Yabe, Ichiro; Takahashi, Ikuko; Hirotani, Makoto; Kano, Takahiro; Horiuchi, Kazuhiro; Houzen, Hideki; Sasaki, Hidenao
2017-01-01
Multiple system atrophy (MSA) is a rare progressive neurodegenerative disorder for which brief yet sensitive scale is required in order for use in clinical trials and general screening. We previously compared several scales for the assessment of MSA symptoms and devised an eight-item pilot scale with large standardized response mean [handwriting, finger taps, transfers, standing with feet together, turning trunk, turning 360°, gait, body sway]. The aim of the present study is to investigate the validity and reliability of a simple pilot scale for assessment of multiple system atrophy symptoms. Thirty-two patients with MSA (15 male/17 female; 20 cerebellar subtype [MSA-C]/12 parkinsonian subtype [MSA-P]) were prospectively registered between January 1, 2014 and February 28, 2015. Patients were evaluated by two independent raters using the Unified MSA Rating Scale (UMSARS), Scale for Assessment and Rating of Ataxia (SARA), and the pilot scale. Correlations between UMSARS, SARA, pilot scale scores, intraclass correlation coefficients (ICCs), and Cronbach's alpha coefficients were calculated. Pilot scale scores significantly correlated with scores for UMSARS Parts I, II, and IV as well as with SARA scores. Intra-rater and inter-rater ICCs and Cronbach's alpha coefficients remained high (> 0.94) for all measures. The results of the present study indicate the validity and reliability of the eight-item pilot scale, particularly for the assessment of symptoms in patients with early state multiple system atrophy.
NASA Astrophysics Data System (ADS)
Shi, J. T.; Han, X. T.; Xie, J. F.; Yao, L.; Huang, L. T.; Li, L.
2013-03-01
A Pulsed High Magnetic Field Facility (PHMFF) has been established in Wuhan National High Magnetic Field Center (WHMFC) and various protection measures are applied in its control system. In order to improve the reliability and robustness of the control system, the safety analysis of the PHMFF is carried out based on Fault Tree Analysis (FTA) technique. The function and realization of 5 protection systems, which include sequence experiment operation system, safety assistant system, emergency stop system, fault detecting and processing system and accident isolating protection system, are given. The tests and operation indicate that these measures improve the safety of the facility and ensure the safety of people.
Birds see the true colours of fruits to live off the fat of the land
Schaefer, H. Martin; Valido, Alfredo; Jordano, Pedro
2014-01-01
Communication is a characteristic of life, but its reliability and basic definition are hotly debated. Theory predicts that trade among mutualists requires high reliability. Here, we show that moderate reliability already allows mutualists to optimize their rewards. The colours of Mediterranean fleshy-fruits indicate lipid rewards (but not other nutrients) to avian seed dispersers on regional and local scales. On the regional scale, fruits with high lipid content were significantly darker and less chromatic than congeners with lower lipid content. On the local scale, two warbler species (Sylvia atricapilla and Sylvia borin) selected fruit colours that were less chromatic, and thereby maximized their intake of lipids—a critical resource during migration and wintering. Crucially, birds were able to maximize lipid rewards with moderate reliability from visual fruit colours (r2 = 0.44–0.60). We suggest that mutualisms require only that any association between the quality and sensory aspects of signallers is learned through multiple, repeated interactions. Because these conditions are often fulfilled, also in social communication systems, we contend that selection on reliability is less intense than hitherto assumed. This may contribute to explaining the extraordinary diversity of signals, including that of plant reproductive displays. PMID:24403330
Comparison of Reliability Measures under Factor Analysis and Item Response Theory
ERIC Educational Resources Information Center
Cheng, Ying; Yuan, Ke-Hai; Liu, Cheng
2012-01-01
Reliability of test scores is one of the most pervasive psychometric concepts in measurement. Reliability coefficients based on a unifactor model for continuous indicators include maximal reliability rho and an unweighted sum score-based omega, among many others. With increasing popularity of item response theory, a parallel reliability measure pi…
Minimum Control Requirements for Advanced Life Support Systems
NASA Technical Reports Server (NTRS)
Boulange, Richard; Jones, Harry; Jones, Harry
2002-01-01
Advanced control technologies are not necessary for the safe, reliable and continuous operation of Advanced Life Support (ALS) systems. ALS systems can and are adequately controlled by simple, reliable, low-level methodologies and algorithms. The automation provided by advanced control technologies is claimed to decrease system mass and necessary crew time by reducing buffer size and minimizing crew involvement. In truth, these approaches increase control system complexity without clearly demonstrating an increase in reliability across the ALS system. Unless these systems are as reliable as the hardware they control, there is no savings to be had. A baseline ALS system is presented with the minimal control system required for its continuous safe reliable operation. This baseline control system uses simple algorithms and scheduling methodologies and relies on human intervention only in the event of failure of the redundant backup equipment. This ALS system architecture is designed for reliable operation, with minimal components and minimal control system complexity. The fundamental design precept followed is "If it isn't there, it can't fail".
NASA Astrophysics Data System (ADS)
Shi, Yu-Fang; Ma, Yi-Yi; Song, Ping-Ping
2018-03-01
System Reliability Theory is a research hotspot of management science and system engineering in recent years, and construction reliability is useful for quantitative evaluation of project management level. According to reliability theory and target system of engineering project management, the defination of construction reliability appears. Based on fuzzy mathematics theory and language operator, value space of construction reliability is divided into seven fuzzy subsets and correspondingly, seven membership function and fuzzy evaluation intervals are got with the operation of language operator, which provides the basis of corresponding method and parameter for the evaluation of construction reliability. This method is proved to be scientific and reasonable for construction condition and an useful attempt for theory and method research of engineering project system reliability.
Reliability models applicable to space telescope solar array assembly system
NASA Technical Reports Server (NTRS)
Patil, S. A.
1986-01-01
A complex system may consist of a number of subsystems with several components in series, parallel, or combination of both series and parallel. In order to predict how well the system will perform, it is necessary to know the reliabilities of the subsystems and the reliability of the whole system. The objective of the present study is to develop mathematical models of the reliability which are applicable to complex systems. The models are determined by assuming k failures out of n components in a subsystem. By taking k = 1 and k = n, these models reduce to parallel and series models; hence, the models can be specialized to parallel, series combination systems. The models are developed by assuming the failure rates of the components as functions of time and as such, can be applied to processes with or without aging effects. The reliability models are further specialized to Space Telescope Solar Arrray (STSA) System. The STSA consists of 20 identical solar panel assemblies (SPA's). The reliabilities of the SPA's are determined by the reliabilities of solar cell strings, interconnects, and diodes. The estimates of the reliability of the system for one to five years are calculated by using the reliability estimates of solar cells and interconnects given n ESA documents. Aging effects in relation to breaks in interconnects are discussed.
Photovoltaic module reliability improvement through application testing and failure analysis
NASA Technical Reports Server (NTRS)
Dumas, L. N.; Shumka, A.
1982-01-01
During the first four years of the U.S. Department of Energy (DOE) National Photovoltatic Program, the Jet Propulsion Laboratory Low-Cost Solar Array (LSA) Project purchased about 400 kW of photovoltaic modules for test and experiments. In order to identify, report, and analyze test and operational problems with the Block Procurement modules, a problem/failure reporting and analysis system was implemented by the LSA Project with the main purpose of providing manufacturers with feedback from test and field experience needed for the improvement of product performance and reliability. A description of the more significant types of failures is presented, taking into account interconnects, cracked cells, dielectric breakdown, delamination, and corrosion. Current design practices and reliability evaluations are also discussed. The conducted evaluation indicates that current module designs incorporate damage-resistant and fault-tolerant features which address field failure mechanisms observed to date.
Reliability Testing of NASA Piezocomposite Actuators
NASA Technical Reports Server (NTRS)
Wilkie, W.; High, J.; Bockman, J.
2002-01-01
NASA Langley Research Center has developed a low-cost piezocomposite actuator which has application for controlling vibrations in large inflatable smart space structures, space telescopes, and high performance aircraft. Tests show the NASA piezocomposite device is capable of producing large, directional, in-plane strains on the order of 2000 parts-per-million peak-to-peak, with no reduction in free-strain performance to 100 million electrical cycles. This paper describes methods, measurements, and preliminary results from our reliability evaluation of the device under externally applied mechanical loads and at various operational temperatures. Tests performed to date show no net reductions in actuation amplitude while the device was moderately loaded through 10 million electrical cycles. Tests were performed at both room temperature and at the maximum operational temperature of the epoxy resin system used in manufacture of the device. Initial indications are that actuator reliability is excellent, with no actuator failures or large net reduction in actuator performance.
An Evaluation of the Technical Adequacy of a Revised Measure of Quality Indicators of Transition
ERIC Educational Resources Information Center
Morningstar, Mary E.; Lee, Hyunjoo; Lattin, Dana L.; Murray, Angela K.
2016-01-01
This study confirmed the reliability and validity of the Quality Indicators of Exemplary Transition Programs Needs Assessment-2 (QI-2). Quality transition program indicators were identified through a systematic synthesis of transition research, policies, and program evaluation measures. To verify reliability and validity of the QI-2, we…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-05
..., RM13-14-000 and RM13-15-000] Monitoring System Conditions--Transmission Operations Reliability...) 502-6817, [email protected] . Robert T. Stroh (Legal Information), Office of the General... Reliability Standards ``address the important reliability goal of ensuring that the transmission system is...
Stakeholder driven indicators for eHealth performance management.
Vedlūga, Tomas; Mikulskienė, Birutė
2017-08-01
The goal of the present article is to compile a corpus of indicators of eHealth development evaluation that would essentially reflect stakeholder approaches and complement technical indicators of assessment of an eHealth system. Consequently, the assessment of the development of an eHealth system would reflect stakeholder approaches and become an innovative solution in attempting to improve productivity of IT projects in the field of health care. The compiled minimum set of indicators will be designed to monitor implementation of the national eHealth information system. To ensure reliability of the quality research, the respondents were grouped in accordance to the geographical distribution and diversity of the levels and types of the represented jobs and institutions. The applied analysis implies several managerial insights on the hierarchy of eHealth indicators. These insights may be helpful in recommending priority activities in implementation of an eHealth data system on the national or international level. The research is practically useful as it is the first to deal with the topic in Lithuania and its theoretical and practical aspect are particularly relevant in implementation of an eHealth data system in Lithuania. The eHealth assessment indicators presented in the article may be practically useful in two aspects: (1) as key implementation guidelines facilitating the general course of eHealth system development and (2) as a means to evaluate eHealth outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.
How reliable are clinical systems in the UK NHS? A study of seven NHS organisations
Franklin, Bryony Dean; Moorthy, Krishna; Cooke, Matthew W; Vincent, Charles
2012-01-01
Background It is well known that many healthcare systems have poor reliability; however, the size and pervasiveness of this problem and its impact has not been systematically established in the UK. The authors studied four clinical systems: clinical information in surgical outpatient clinics, prescribing for hospital inpatients, equipment in theatres, and insertion of peripheral intravenous lines. The aim was to describe the nature, extent and variation in reliability of these four systems in a sample of UK hospitals, and to explore the reasons for poor reliability. Methods Seven UK hospital organisations were involved; each system was studied in three of these. The authors took delivery of the systems' intended outputs to be a proxy for the reliability of the system as a whole. For example, for clinical information, 100% reliability was defined as all patients having an agreed list of clinical information available when needed during their appointment. Systems factors were explored using semi-structured interviews with key informants. Common themes across the systems were identified. Results Overall reliability was found to be between 81% and 87% for the systems studied, with significant variation between organisations for some systems: clinical information in outpatient clinics ranged from 73% to 96%; prescribing for hospital inpatients 82–88%; equipment availability in theatres 63–88%; and availability of equipment for insertion of peripheral intravenous lines 80–88%. One in five reliability failures were associated with perceived threats to patient safety. Common factors causing poor reliability included lack of feedback, lack of standardisation, and issues such as access to information out of working hours. Conclusions Reported reliability was low for the four systems studied, with some common factors behind each. However, this hides significant variation between organisations for some processes, suggesting that some organisations have managed to create more reliable systems. Standardisation of processes would be expected to have significant benefit. PMID:22495099
Development and pilot study of an essential set of indicators for general surgery services.
Soria-Aledo, Victor; Angel-Garcia, Daniel; Martinez-Nicolas, Ismael; Rebasa Cladera, Pere; Cabezali Sanchez, Roger; Pereira García, Luis Francisco
2016-11-01
At present there is a lack of appropriate quality measures for benchmarking in general surgery units of Spanish National Health System. The aim of this study is to present the selection, development and pilot-testing of an initial set of surgical quality indicators for this purpose. A modified Delphi was performed with experts from the Spanish Surgeons Association in order to prioritize previously selected indicators. Then, a pilot study was carried out in a public hospital encompassing qualitative analysis of feasibility for prioritized indicators and an additional qualitative and quantitative three-rater reliability assessment for medical record-based indicators. Observed inter-rater agreement, prevalence adjusted and bias adjusted kappa and non-adjusted kappa were performed, using a systematic random sample (n=30) for each of these indicators. Twelve out of 13 proposed indicators were feasible: 5 medical record-based indicators and 7 indicators based on administrative databases. From medical record-based indicators, 3 were reliable (observed agreement >95%, adjusted kappa index >0.6 or non-adjusted kappa index >0.6 for composites and its components) and 2 needed further refinement. Currently, medical record-based indicators could be used for comparison purposes, whilst further research must be done for validation and risk-adjustment of outcome indicators from administrative databases. Compliance results in the adequacy of informed consent, diagnosis-to-treatment delay in colorectal cancer, and antibiotic prophylaxis show room for improvement in the pilot-tested hospital. Copyright © 2016 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.
General Aviation Aircraft Reliability Study
NASA Technical Reports Server (NTRS)
Pettit, Duane; Turnbull, Andrew; Roelant, Henk A. (Technical Monitor)
2001-01-01
This reliability study was performed in order to provide the aviation community with an estimate of Complex General Aviation (GA) Aircraft System reliability. To successfully improve the safety and reliability for the next generation of GA aircraft, a study of current GA aircraft attributes was prudent. This was accomplished by benchmarking the reliability of operational Complex GA Aircraft Systems. Specifically, Complex GA Aircraft System reliability was estimated using data obtained from the logbooks of a random sample of the Complex GA Aircraft population.
What to Do With "Moderate" Reliability and Validity Coefficients?
Post, Marcel W
2016-07-01
Clinimetric studies may use criteria for test-retest reliability and convergent validity such that correlation coefficients as low as .40 are supportive of reliability and validity. It can be argued that moderate (.40-.60) correlations should not be interpreted in this way and that reliability coefficients <.70 should be considered as indicative of unreliability. Convergent validity coefficients in the .40 to .60 or .40 to .70 range should be considered as indications of validity problems, or as inconclusive at best. Studies on reliability and convergent should be designed in such a way that it is realistic to expect high reliability and validity coefficients. Multitrait multimethod approaches are preferred to study construct (convergent-divergent) validity. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Applying reliability analysis to design electric power systems for More-electric aircraft
NASA Astrophysics Data System (ADS)
Zhang, Baozhu
The More-Electric Aircraft (MEA) is a type of aircraft that replaces conventional hydraulic and pneumatic systems with electrically powered components. These changes have significantly challenged the aircraft electric power system design. This thesis investigates how reliability analysis can be applied to automatically generate system topologies for the MEA electric power system. We first use a traditional method of reliability block diagrams to analyze the reliability level on different system topologies. We next propose a new methodology in which system topologies, constrained by a set reliability level, are automatically generated. The path-set method is used for analysis. Finally, we interface these sets of system topologies with control synthesis tools to automatically create correct-by-construction control logic for the electric power system.
Implications of DSM-5 for the diagnosis of pediatric eating disorders.
Limburg, Karina; Shu, Chloe Y; Watson, Hunna J; Hoiles, Kimberley J; Egan, Sarah J
2018-05-01
The aim of the study was to compare the DSM-IV, DSM-5, and ICD-10 eating disorders (ED) nomenclatures to assess their value in the classification of pediatric eating disorders. We investigated the prevalence of the disorders in accordance with each system's diagnostic criteria, diagnostic concordance between the systems, and interrater reliability. Participants were 1062 children and adolescents assessed at intake to a specialist Eating Disorders Program (91.6% female, mean age 14.5 years, SD = 1.75). Measures were collected from routine intake assessments. DSM-5 categorization led to a lower prevalence of unspecified EDs when compared with DSM-IV. There was almost complete overlap for specified EDs. Kappa values indicated almost excellent agreement between the two coders on all three diagnostic systems, although there was higher interrater reliability for DSM-5 and ICD-10 when compared with DSM-IV. DSM-5 nomenclature is useful in classifying eating disorders in pediatric clinical samples. © 2018 Wiley Periodicals, Inc.
Managing Complex IT Security Processes with Value Based Measures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abercrombie, Robert K; Sheldon, Frederick T; Mili, Ali
2009-01-01
Current trends indicate that IT security measures will need to greatly expand to counter the ever increasingly sophisticated, well-funded and/or economically motivated threat space. Traditional risk management approaches provide an effective method for guiding courses of action for assessment, and mitigation investments. However, such approaches no matter how popular demand very detailed knowledge about the IT security domain and the enterprise/cyber architectural context. Typically, the critical nature and/or high stakes require careful consideration and adaptation of a balanced approach that provides reliable and consistent methods for rating vulnerabilities. As reported in earlier works, the Cyberspace Security Econometrics System provides amore » comprehensive measure of reliability, security and safety of a system that accounts for the criticality of each requirement as a function of one or more stakeholders interests in that requirement. This paper advocates a dependability measure that acknowledges the aggregate structure of complex system specifications, and accounts for variations by stakeholder, by specification components, and by verification and validation impact.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Dr. Li; Cui, Xiaohui; Cemerlic, Alma
Ad hoc networks are very helpful in situations when no fixed network infrastructure is available, such as natural disasters and military conflicts. In such a network, all wireless nodes are equal peers simultaneously serving as both senders and routers for other nodes. Therefore, how to route packets through reliable paths becomes a fundamental problems when behaviors of certain nodes deviate from wireless ad hoc routing protocols. We proposed a novel Dirichlet reputation model based on Bayesian inference theory which evaluates reliability of each node in terms of packet delivery. Our system offers a way to predict and select a reliablemore » path through combination of first-hand observation and second-hand reputation reports. We also proposed moving window mechanism which helps to adjust ours responsiveness of our system to changes of node behaviors. We integrated the Dirichlet reputation into routing protocol of wireless ad hoc networks. Our extensive simulation indicates that our proposed reputation system can improve good throughput of the network and reduce negative impacts caused by misbehaving nodes.« less
Novel Manufacturing Technologies for GHZ/THz Integrated Circuits on Synthetic Diamond Substrates
2010-11-15
silicon form palladium silicide Pd2Si at a temperature of 400 ºС, thus ensuring high reliability of the contacts. All the above metallization layers were...indicate possibility of realization of ICs on diamond substrates. In the course of our studies it was found that the Ti-Pd-Au metallization system...thickness of 2-3 um) can be applied when forming the topology of IC elements on synthetic diamond layers, while the Cr–Cu–Ni–Au metallization system with
Study on the evaluation index of active power reserve
NASA Astrophysics Data System (ADS)
Guo, Xiaorui; Liu, Jiantao; Wang, Ke; Min, Lu
2018-01-01
Based on the role of active reserve at different time scales, divides the evaluation dimension of active reserve. Analysis the calculation principle of traditional reliability index such as probability of system safety, lack of power shortage and electricity shortage expectancy, and studies the applicability of these indicators to evaluate the reserve capacity on different dimensions. Resolves the evaluation index of active reserve capacity from the dimensions of time dimension, spatial dimension, system state, risk degree and economy, then construct evaluation index of active reserve capacity.
Explorer Satellite Electronics
NASA Technical Reports Server (NTRS)
Eyraud, J. P.; Richter, H. L.; Victor, W. K.
1960-01-01
A discussion is presented of the design restrictions and the philosophy which enabled the Explorer satellites to be first during the IGY to reveal the presence of a belt of intense cosmic radiation encircling the earth's equator. In addition, an indication of the amount and momentum of cosmic dust in the solar system was obtained from the Explorers. Methods used to obtain reliability in the transducing and communications system are described, together with interpretations of space-environment information as deduced from the narrow-band telemetry.
NASA Technical Reports Server (NTRS)
Snelson, F. F., Jr.
1980-01-01
The applicability of monitoring populations of Poccilia latipinna (sailfin molly) and its reproductive efforts as reliable indicators of environmental effects of aerospace activities in the Kennedy Space Center area was investigated. Results show that the sailfin molly experiences drastic fluctuations in population and reproductive success and is not an appropriate factor for monitoring to establish perturbations of the environment due to space transportation system related activities.
Land mobile satellite propagation results
NASA Technical Reports Server (NTRS)
Nicholas, David C.
1988-01-01
During the Fall of 1987 a land mobile satellite demonstration using the MARECS B2 satellite at 26 degrees W was performed. While all the data have not been digested, some observations are in order. First, the system worked remarkably well for the margins indicated. Second, when the system worked poorly, the experimenters could almost always identify terrain or other obstacles causing blockage. Third, the forward link seems relatively more reliable than the return link, and occasional return link problems occured which have not been entirely explained.
Design of fuel cell powered data centers for sufficient reliability and availability
NASA Astrophysics Data System (ADS)
Ritchie, Alexa J.; Brouwer, Jacob
2018-04-01
It is challenging to design a sufficiently reliable fuel cell electrical system for use in data centers, which require 99.9999% uptime. Such a system could lower emissions and increase data center efficiency, but the reliability and availability of such a system must be analyzed and understood. Currently, extensive backup equipment is used to ensure electricity availability. The proposed design alternative uses multiple fuel cell systems each supporting a small number of servers to eliminate backup power equipment provided the fuel cell design has sufficient reliability and availability. Potential system designs are explored for the entire data center and for individual fuel cells. Reliability block diagram analysis of the fuel cell systems was accomplished to understand the reliability of the systems without repair or redundant technologies. From this analysis, it was apparent that redundant components would be necessary. A program was written in MATLAB to show that the desired system reliability could be achieved by a combination of parallel components, regardless of the number of additional components needed. Having shown that the desired reliability was achievable through some combination of components, a dynamic programming analysis was undertaken to assess the ideal allocation of parallel components.
Reliability modeling of fault-tolerant computer based systems
NASA Technical Reports Server (NTRS)
Bavuso, Salvatore J.
1987-01-01
Digital fault-tolerant computer-based systems have become commonplace in military and commercial avionics. These systems hold the promise of increased availability, reliability, and maintainability over conventional analog-based systems through the application of replicated digital computers arranged in fault-tolerant configurations. Three tightly coupled factors of paramount importance, ultimately determining the viability of these systems, are reliability, safety, and profitability. Reliability, the major driver affects virtually every aspect of design, packaging, and field operations, and eventually produces profit for commercial applications or increased national security. However, the utilization of digital computer systems makes the task of producing credible reliability assessment a formidable one for the reliability engineer. The root of the problem lies in the digital computer's unique adaptability to changing requirements, computational power, and ability to test itself efficiently. Addressed here are the nuances of modeling the reliability of systems with large state sizes, in the Markov sense, which result from systems based on replicated redundant hardware and to discuss the modeling of factors which can reduce reliability without concomitant depletion of hardware. Advanced fault-handling models are described and methods of acquiring and measuring parameters for these models are delineated.
Rocket engine system reliability analyses using probabilistic and fuzzy logic techniques
NASA Technical Reports Server (NTRS)
Hardy, Terry L.; Rapp, Douglas C.
1994-01-01
The reliability of rocket engine systems was analyzed by using probabilistic and fuzzy logic techniques. Fault trees were developed for integrated modular engine (IME) and discrete engine systems, and then were used with the two techniques to quantify reliability. The IRRAS (Integrated Reliability and Risk Analysis System) computer code, developed for the U.S. Nuclear Regulatory Commission, was used for the probabilistic analyses, and FUZZYFTA (Fuzzy Fault Tree Analysis), a code developed at NASA Lewis Research Center, was used for the fuzzy logic analyses. Although both techniques provided estimates of the reliability of the IME and discrete systems, probabilistic techniques emphasized uncertainty resulting from randomness in the system whereas fuzzy logic techniques emphasized uncertainty resulting from vagueness in the system. Because uncertainty can have both random and vague components, both techniques were found to be useful tools in the analysis of rocket engine system reliability.
ERIC Educational Resources Information Center
Shindler, John; Taylor, Clint; Cadenas, Herminia; Jones, Albert
This study was a pilot effort to examine the efficacy of an analytic trait scale school climate assessment instrument and democratic change system in two urban high schools. Pilot study results indicate that the instrument shows promising soundness in that it exhibited high levels of validity and reliability. In addition, the analytic trait format…
Millimeter wave propagation measurements using the ATS 5 satellite
NASA Technical Reports Server (NTRS)
Ippolito, L. J.
1972-01-01
The ATS 5 millimeter wave propagation experiment determines long- and short-term attenuation statistics of operational millimeter wavelength earthspace links as functions of defined meteorological conditions. A preliminary analysis of results with 15 GHz downlink and 32 GHz uplink frequency bands indicates that both frequency bands exhibit an excellent potential for utilization in reliable high data rate earth-space communications systems.
The development of an instrument to match individuals with disabilities and service animals.
Zapf, S A; Rough, R B
There has been an increase in the use of service animals assisting persons with disabilities in the past decade. However many of the service dog agencies do not utilize an assessment that is designed to match the person to the animal in the rehabilitation and psycho-social domains. The purpose of this study was to develop the Service Animal Adaptive Intervention Assessment (SAAIA) and to measure the content validity, inter-rater reliability and clinical utility of the assessment. Two subject groups were used. Subject group one had 43 subjects who measured the content validity and clinical utility of the SAAIA Survey. Subject group two had 12 subjects who measured the inter-rater reliability by completing the SAAIA using information obtained through a video-taped client case scenario. Content validity results indicated a good to high percentage of agreement and a fair percentage of agreement for clinical utility. Inter-rater reliability results indicate good to high agreement on six of the eight variables of the SAAIA. However, the Kappa score indicates low inter-rater reliability. Results indicate the SAAIA has good content validity and inter-rater reliability and fair clinical utility based on percent agreement. However, further research is needed on the reliability of the SAAIA.
Mukherjee, Shalini; Yadav, Rajeev; Yung, Iris; Zajdel, Daniel P.; Oken, Barry S.
2011-01-01
Objectives To determine 1) whether heart rate variability (HRV) was a sensitive and reliable measure in mental effort tasks carried out by healthy seniors and 2) whether non-linear approaches to HRV analysis, in addition to traditional time and frequency domain approaches were useful to study such effects. Methods Forty healthy seniors performed two visual working memory tasks requiring different levels of mental effort, while ECG was recorded. They underwent the same tasks and recordings two weeks later. Traditional and 13 non-linear indices of HRV including Poincaré, entropy and detrended fluctuation analysis (DFA) were determined. Results Time domain (especially mean R-R interval/RRI), frequency domain and, among nonlinear parameters- Poincaré and DFA were the most reliable indices. Mean RRI, time domain and Poincaré were also the most sensitive to different mental effort task loads and had the largest effect size. Conclusions Overall, linear measures were the most sensitive and reliable indices to mental effort. In non-linear measures, Poincaré was the most reliable and sensitive, suggesting possible usefulness as an independent marker in cognitive function tasks in healthy seniors. Significance A large number of HRV parameters was both reliable as well as sensitive indices of mental effort, although the simple linear methods were the most sensitive. PMID:21459665
Impact Foam Testing for Multi-Mission Earth Entry Vehicle Applications
NASA Technical Reports Server (NTRS)
Glaab, Louis J.; Agrawal, Paul; Hawbaker, James
2013-01-01
Multi-Mission Earth Entry Vehicles (MMEEVs) are blunt-body vehicles designed with the purpose of transporting payloads from outer space to the surface of the Earth. To achieve high-reliability and minimum weight, MMEEVs avoid use of limited-reliability systems, such as parachutes and retro-rockets, instead using built-in impact attenuators to absorb energy remaining at impact to meet landing loads requirements. The Multi-Mission Systems Analysis for Planetary Entry (M-SAPE) parametric design tool is used to facilitate the design of MMEEVs and develop the trade space. Testing was conducted to characterize the material properties of several candidate impact foam attenuators to enhance M-SAPE analysis. In the current effort, two different Rohacell foams were tested to determine their thermal conductivity in support of MMEEV design applications. These applications include thermal insulation during atmospheric entry, impact attenuation, and post-impact thermal insulation in support of thermal soak analysis. Results indicate that for these closed-cell foams, the effect of impact is limited on thermal conductivity due to the venting of the virgin material gas and subsequent ambient air replacement. Results also indicate that the effect of foam temperature is significant compared to data suggested by manufacturer's specifications.
Reliability of Fault Tolerant Control Systems. Part 1
NASA Technical Reports Server (NTRS)
Wu, N. Eva
2001-01-01
This paper reports Part I of a two part effort, that is intended to delineate the relationship between reliability and fault tolerant control in a quantitative manner. Reliability analysis of fault-tolerant control systems is performed using Markov models. Reliability properties, peculiar to fault-tolerant control systems are emphasized. As a consequence, coverage of failures through redundancy management can be severely limited. It is shown that in the early life of a syi1ein composed of highly reliable subsystems, the reliability of the overall system is affine with respect to coverage, and inadequate coverage induces dominant single point failures. The utility of some existing software tools for assessing the reliability of fault tolerant control systems is also discussed. Coverage modeling is attempted in Part II in a way that captures its dependence on the control performance and on the diagnostic resolution.
NASA Technical Reports Server (NTRS)
Belcastro, C. M.
1983-01-01
Flight critical computer based control systems designed for advanced aircraft must exhibit ultrareliable performance in lightning charged environments. Digital system upset can occur as a result of lightning induced electrical transients, and a methodology was developed to test specific digital systems for upset susceptibility. Initial upset data indicates that there are several distinct upset modes and that the occurrence of upset is related to the relative synchronization of the transient input with the processing sate of the digital system. A large upset test data base will aid in the formulation and verification of analytical upset reliability modeling techniques which are being developed.
NASA Astrophysics Data System (ADS)
Zhang, Ding; Zhang, Yingjie
2017-09-01
A framework for reliability and maintenance analysis of job shop manufacturing systems is proposed in this paper. An efficient preventive maintenance (PM) policy in terms of failure effects analysis (FEA) is proposed. Subsequently, reliability evaluation and component importance measure based on FEA are performed under the PM policy. A job shop manufacturing system is applied to validate the reliability evaluation and dynamic maintenance policy. Obtained results are compared with existed methods and the effectiveness is validated. Some vague understandings for issues such as network modelling, vulnerabilities identification, the evaluation criteria of repairable systems, as well as PM policy during manufacturing system reliability analysis are elaborated. This framework can help for reliability optimisation and rational maintenance resources allocation of job shop manufacturing systems.
Reliability analysis and initial requirements for FC systems and stacks
NASA Astrophysics Data System (ADS)
Åström, K.; Fontell, E.; Virtanen, S.
In the year 2000 Wärtsilä Corporation started an R&D program to develop SOFC systems for CHP applications. The program aims to bring to the market highly efficient, clean and cost competitive fuel cell systems with rated power output in the range of 50-250 kW for distributed generation and marine applications. In the program Wärtsilä focuses on system integration and development. System reliability and availability are key issues determining the competitiveness of the SOFC technology. In Wärtsilä, methods have been implemented for analysing the system in respect to reliability and safety as well as for defining reliability requirements for system components. A fault tree representation is used as the basis for reliability prediction analysis. A dynamic simulation technique has been developed to allow for non-static properties in the fault tree logic modelling. Special emphasis has been placed on reliability analysis of the fuel cell stacks in the system. A method for assessing reliability and critical failure predictability requirements for fuel cell stacks in a system consisting of several stacks has been developed. The method is based on a qualitative model of the stack configuration where each stack can be in a functional, partially failed or critically failed state, each of the states having different failure rates and effects on the system behaviour. The main purpose of the method is to understand the effect of stack reliability, critical failure predictability and operating strategy on the system reliability and availability. An example configuration, consisting of 5 × 5 stacks (series of 5 sets of 5 parallel stacks) is analysed in respect to stack reliability requirements as a function of predictability of critical failures and Weibull shape factor of failure rate distributions.
NASA Technical Reports Server (NTRS)
Sargusingh, Miriam J.; Nelson, Jason R.
2014-01-01
NASA has highlighted reliability as critical to future human space exploration, particularly in the area of environmental controls and life support systems. The Advanced Exploration Systems (AES) projects have been encouraged to pursue higher reliability components and systems as part of technology development plans. However, no consensus has been reached on what is meant by improving on reliability, or on how to assess reliability within the AES projects. This became apparent when trying to assess reliability as one of several figures of merit for a regenerable water architecture trade study. In the spring of 2013, the AES Water Recovery Project hosted a series of events at Johnson Space Center with the intended goal of establishing a common language and understanding of NASA's reliability goals, and equipping the projects with acceptable means of assessing the respective systems. This campaign included an educational series in which experts from across the agency and academia provided information on terminology, tools, and techniques associated with evaluating and designing for system reliability. The campaign culminated in a workshop that included members of the Environmental Control and Life Support System and AES communities. The goal of this workshop was to develop a consensus on what reliability means to AES and identify methods for assessing low- to mid-technology readiness level technologies for reliability. This paper details the results of that workshop.
In itinere strategic environmental assessment of an integrated provincial waste system.
Federico, Giovanna; Rizzo, Gianfranco; Traverso, Marzia
2009-06-01
In the paper, the practical problem of analysing in an integrated way the performance of provincial waste systems is approached, in the framework of the Strategic Environmental Assessment (SEA). In particular, the in itinere phase of SEA is analysed herein. After separating out a proper group of ambits, to which the waste system is supposed to determine relevant impacts, pertinent sets of single indicators are proposed. Through the adoption of such indicators the time trend of the system is investigated, and the suitability of each indicator is critically revised. The structure of the evaluation scheme, which is essentially based on the use of ambit issues and analytical indicators, calls for the application of the method of the Dashboard of Sustainability for the integrated evaluation of the whole system. The suitability of this method is shown through the paper, together with the possibility of a comparative analysis of different scenarios of interventions. Of course, the reliability of the proposed method strongly relies on the availability of a detailed set of territorial data. The method appears to represent a useful tool for public administration in the process of optimizing the policy actions aimed at minimizing the increasing problem represented by waste production in urban areas.
[An objective scoring system to evaluate the credibility of health related websites].
Horváth, Tamás; Matics, Katalin; Meskó, Bertalan
2018-04-01
The unreliable quality of online health contents poses a serious challenge to the medical profession. Evaluating websites on the basis of their credibility increases the chance for readers to access professional content of better quality. Hungary still lags behind in taking practical steps to improve the quality and reliability of online patient education. EgészségKommandó (HealthCommando) is a new Hungarian objective scoring system established to evaluate the credibility of health related websites. It uses four types of indicators: transparency, content, recommendations, references. We evaluated 122 websites with EgészségKommandó. Out of this, 22.1% qualified as credible. The same assessment using JAMA benchmarks yielded only one credible website (0.8%). The most frequent deficiencies were the absence of reference to source, the omission of the quote that "the website information does not replace the doctor-patient discussion", and the identity of the author. In 45.9% of the cases, however, the content was written by medical professionals with contact information. By applying different types of credibility and quality indicators in a scoring system, EgészségKommandó can efficiently assess the websites on health-awareness. In cases where the recognized indicators are absent multiple times from a website, it will not pass the credibility test. Thus, EgészégKommandó can act as a filter. At the same time, EgészségKommandó is also capable of assessing webpages of different sorts systemically, and can recommend a proportionately large amount of reliable Hungarian medical web resources to those interested. Orv Hetil. 2018; 159(13): 511-519.
Welsh, A W; Hou, M; Meriki, N; Martins, W P
2012-10-01
Volumetric impedance indices derived from spatiotemporal image correlation (STIC) power Doppler ultrasound (PDU) might overcome the influence of machine settings and attenuation. We examined the feasibility of obtaining these indices from spherical samples of anterior placentas in healthy pregnancies, and assessed intraobserver reliability and correlation with conventional umbilical artery (UA) impedance indices. Uncomplicated singleton pregnancies with anterior placenta were included in the study. A single observer evaluated UA pulsatility index (PI), resistance index (RI) and systolic/diastolic ratio (S/D) and acquired three STIC-PDU datasets from the placenta just above the placental cord insertion. Another observer analyzed the STIC-PDU datasets using Virtual Organ Computer-aided AnaLysis (VOCAL) spherical samples from every frame to determine the vascularization index (VI) and vascularization flow index (VFI); maximum, minimum and average values were used to determine the three volumetric impedance indices (vPI, vRI, vS/D). Intraobserver reliability was examined by intraclass correlation coefficients (ICC) and association between volumetric indices from placenta, and UA Doppler indices were assessed by Pearson's correlation coefficient. A total of 25 pregnant women were evaluated but five were excluded because of artifacts observed during analysis. The reliability of measurement of volumetric indices of both VI and VFI from three STIC-PDU datasets was similar, with all ICCs ≥ 0.78. Pearson's r values showed a weak and non-significant correlation between UA pulsed-wave Doppler indices and their respective volumetric indices from spherical samples of placenta (all r ≥ 0.23). VOCAL indices from specific phases of the cardiac cycle showed good repeatability (ICC ≥ 0.92). Volumetric impedance indices determined from spherical samples of placenta are sufficiently reliable but do not correlate with UA Doppler indices in healthy pregnancies. Copyright © 2012 ISUOG. Published by John Wiley & Sons, Ltd.
Space Shuttle Propulsion System Reliability
NASA Technical Reports Server (NTRS)
Welzyn, Ken; VanHooser, Katherine; Moore, Dennis; Wood, David
2011-01-01
This session includes the following sessions: (1) External Tank (ET) System Reliability and Lessons, (2) Space Shuttle Main Engine (SSME), Reliability Validated by a Million Seconds of Testing, (3) Reusable Solid Rocket Motor (RSRM) Reliability via Process Control, and (4) Solid Rocket Booster (SRB) Reliability via Acceptance and Testing.
[Implementation of quality of care indicators for third-level public hospitals in Mexico].
Saturno-Hernández, Pedro Jesús; Martínez-Nicolás, Ismael; Poblano-Verástegui, Ofelia; Vértiz-Ramírez, José de Jesús; Suárez-Ortiz, Erasto Cosme; Magaña-Izquierdo, Manuel; Kawa-Karasik, Simón
2017-01-01
To select, pilot test and implement a set of indicators for tertiary public hospitals. Quali-quantitative study in four stages: identification of indicators used internationally; selection and prioritization by utility, feasibility and reliability; exploration of the quality of sources of information in six hospitals; pilot feasibility and reliability, and follow-up measurement. From 143 indicators, 64 were selected and eight were prioritized. The scan revealed sources of information deficient. In the pilot, three indicators were feasible with reliability limited. Has conducted workshops to improve records and sources of information; nine hospitals reported measurements of a quarter. Eight priority indicators could not be measured immediately due to limitations in the data sources for its construction. It is necessary to improve mechanisms of registration and processing of data in this group of hospital.
Al-Fatlawi, Ali H; Fatlawi, Hayder K; Sai Ho Ling
2017-07-01
Daily physical activities monitoring is benefiting the health care field in several ways, in particular with the development of the wearable sensors. This paper adopts effective ways to calculate the optimal number of the necessary sensors and to build a reliable and a high accuracy monitoring system. Three data mining algorithms, namely Decision Tree, Random Forest and PART Algorithm, have been applied for the sensors selection process. Furthermore, the deep belief network (DBN) has been investigated to recognise 33 physical activities effectively. The results indicated that the proposed method is reliable with an overall accuracy of 96.52% and the number of sensors is minimised from nine to six sensors.
Space station electrical power system availability study
NASA Technical Reports Server (NTRS)
Turnquist, Scott R.; Twombly, Mark A.
1988-01-01
ARINC Research Corporation performed a preliminary reliability, and maintainability (RAM) anlaysis of the NASA space station Electric Power Station (EPS). The analysis was performed using the ARINC Research developed UNIRAM RAM assessment methodology and software program. The analysis was performed in two phases: EPS modeling and EPS RAM assessment. The EPS was modeled in four parts: the insolar power generation system, the eclipse power generation system, the power management and distribution system (both ring and radial power distribution control unit (PDCU) architectures), and the power distribution to the inner keel PDCUs. The EPS RAM assessment was conducted in five steps: the use of UNIRAM to perform baseline EPS model analyses and to determine the orbital replacement unit (ORU) criticalities; the determination of EPS sensitivity to on-orbit spared of ORUs and the provision of an indication of which ORUs may need to be spared on-orbit; the determination of EPS sensitivity to changes in ORU reliability; the determination of the expected annual number of ORU failures; and the integration of the power generator system model results with the distribution system model results to assess the full EPS. Conclusions were drawn and recommendations were made.
Diacetin, a reliable cue and private communication channel in a specialized pollination system
Schäffler, Irmgard; Steiner, Kim E.; Haid, Mark; van Berkel, Sander S.; Gerlach, Günter; Johnson, Steven D.; Wessjohann, Ludger; Dötterl, Stefan
2015-01-01
The interaction between floral oil secreting plants and oil-collecting bees is one of the most specialized of all pollination mutualisms. Yet, the specific stimuli used by the bees to locate their host flowers have remained elusive. This study identifies diacetin, a volatile acetylated glycerol, as a floral signal compound shared by unrelated oil plants from around the globe. Electrophysiological measurements of antennae and behavioural assays identified diacetin as the key volatile used by oil-collecting bees to locate their host flowers. Furthermore, electrophysiological measurements indicate that only oil-collecting bees are capable of detecting diacetin. The structural and obvious biosynthetic similarity between diacetin and associated floral oils make it a reliable cue for oil-collecting bees. It is easily perceived by oil bees, but can’t be detected by other potential pollinators. Therefore, diacetin represents the first demonstrated private communication channel in a pollination system. PMID:26245141
Tensile failure criteria for fiber composite materials
NASA Technical Reports Server (NTRS)
Rosen, B. W.; Zweben, C. H.
1972-01-01
The analysis provides insight into the failure mechanics of these materials and defines criteria which serve as tools for preliminary design material selection and for material reliability assessment. The model incorporates both dispersed and propagation type failures and includes the influence of material heterogeneity. The important effects of localized matrix damage and post-failure matrix shear stress transfer are included in the treatment. The model is used to evaluate the influence of key parameters on the failure of several commonly used fiber-matrix systems. Analyses of three possible failure modes were developed. These modes are the fiber break propagation mode, the cumulative group fracture mode, and the weakest link mode. Application of the new model to composite material systems has indicated several results which require attention in the development of reliable structural composites. Prominent among these are the size effect and the influence of fiber strength variability.
Coliform Bacteria Monitoring in Fish Systems: Current Practices in Public Aquaria.
Culpepper, Erin E; Clayton, Leigh A; Hadfield, Catherine A; Arnold, Jill E; Bourbon, Holly M
2016-06-01
Public aquaria evaluate coliform indicator bacteria levels in fish systems, but the purpose of testing, testing methods, and management responses are not standardized, unlike with the coliform bacteria testing for marine mammal enclosures required by the U.S. Department of Agriculture. An online survey was sent to selected aquaria to document current testing and management practices in fish systems without marine mammals. The information collected included indicator bacteria species, the size and type of systems monitored, the primary purpose of testing, sampling frequency, test methods, the criteria for interpreting results, corrective actions, and management changes to limit human exposure. Of the 25 institutions to which surveys were sent, 19 (76%) responded. Fourteen reported testing for fecal indicator bacteria in fish systems. The most commonly tested indicator species were total (86%) and fecal (79%) coliform bacteria, which were detected by means of the membrane filtration method (64%). Multiple types and sizes of systems were tested, and the guidelines for testing and corrective actions were highly variable. Only three institutions performed additional tests to confirm the identification of indicator organisms. The results from this study can be used to compare bacterial monitoring practices and protocols in fish systems, as an aid to discussions relating to the accuracy and reliability of test results, and to help implement appropriate management responses. Received August 23, 2015; accepted December 29, 2015.
2009-02-17
Identification of Classified Information in Unclassified DoD Systems During the Audit of Internal Controls and Data Reliability in the Deployable...TITLE AND SUBTITLE Identification of Classified Information in Unclassified DoD Systems During the Audit of Internal Controls and Data Reliability...Systems During the Audit ofInternal Controls and Data Reliability in the Deployable Disbursing System (Report No. D-2009-054) Weare providing this
Performance Analysis of Retrofitted Tribo-Corrosion Test Rig for Monitoring In Situ Oil Conditions.
Siddaiah, Arpith; Khan, Zulfiqar Ahmad; Ramachandran, Rahul; Menezes, Pradeep L
2017-09-28
Oils and lubricants, once extracted after use from a mechanical system, can hardly be reused, and should be refurbished or replaced in most applications. New methods of in situ oil and lubricant efficiency monitoring systems have been introduced for a wide variety of mechanical systems, such as automobiles, aerospace aircrafts, ships, offshore wind turbines, and deep sea oil drilling rigs. These methods utilize electronic sensors to monitor the "byproduct effects" in a mechanical system that are not indicative of the actual remaining lifecycle and reliability of the oils. A reliable oil monitoring system should be able to monitor the wear rate and the corrosion rate of the tribo-pairs due to the inclusion of contaminants. The current study addresses this technological gap, and presents a novel design of a tribo-corrosion test rig for oils used in a dynamic system. A pin-on-disk tribometer test rig retrofitted with a three electrode-potentiostat corrosion monitoring system was used to analyze the corrosion and wear rate of a steel tribo-pair in industrial grade transmission oil. The effectiveness of the retrofitted test rig was analyzed by introducing various concentrations of contaminants in an oil medium that usually leads to a corrosive working environment. The results indicate that the retrofitted test rig can effectively monitor the in situ tribological performance of the oil in a controlled dynamic corrosive environment. It is a useful method to understand the wear-corrosion synergies for further experimental work, and to develop accurate predictive lifecycle assessment and prognostic models. The application of this system is expected to have economic benefits and help reduce the ecological oil waste footprint.
Performance Analysis of Retrofitted Tribo-Corrosion Test Rig for Monitoring In Situ Oil Conditions
Ramachandran, Rahul; Menezes, Pradeep L.
2017-01-01
Oils and lubricants, once extracted after use from a mechanical system, can hardly be reused, and should be refurbished or replaced in most applications. New methods of in situ oil and lubricant efficiency monitoring systems have been introduced for a wide variety of mechanical systems, such as automobiles, aerospace aircrafts, ships, offshore wind turbines, and deep sea oil drilling rigs. These methods utilize electronic sensors to monitor the “byproduct effects” in a mechanical system that are not indicative of the actual remaining lifecycle and reliability of the oils. A reliable oil monitoring system should be able to monitor the wear rate and the corrosion rate of the tribo-pairs due to the inclusion of contaminants. The current study addresses this technological gap, and presents a novel design of a tribo-corrosion test rig for oils used in a dynamic system. A pin-on-disk tribometer test rig retrofitted with a three electrode-potentiostat corrosion monitoring system was used to analyze the corrosion and wear rate of a steel tribo-pair in industrial grade transmission oil. The effectiveness of the retrofitted test rig was analyzed by introducing various concentrations of contaminants in an oil medium that usually leads to a corrosive working environment. The results indicate that the retrofitted test rig can effectively monitor the in situ tribological performance of the oil in a controlled dynamic corrosive environment. It is a useful method to understand the wear–corrosion synergies for further experimental work, and to develop accurate predictive lifecycle assessment and prognostic models. The application of this system is expected to have economic benefits and help reduce the ecological oil waste footprint. PMID:28956819
Vroland-Nordstrand, Kristina; Krumlinde-Sundholm, Lena
2012-11-01
to evaluate the test-retest reliability of children's perceptions of their own competence in performing daily tasks and of their choice of goals for intervention using the Swedish version of the perceived efficacy and goal setting system (PEGS). A second aim was to evaluate agreement between children's and parents' perceptions of the child's competence and choices of intervention goals. Forty-four children with disabilities and their parents completed the Swedish version of the PEGS. Thirty-six of the children completed a retest session allocated into one of two groups: (A) for evaluation of perceived competence and (B) for evaluation of choice of goals. Cohen's kappa, weighted kappa and absolute agreement were calculated. Test-retest reliability for children's perceived competence showed good agreement for the dichotomized scale of competent/non-competent performance; however, using the four-point scale the agreement varied. The children's own goals were relatively stable over time; 78% had an absolute agreement ranging from 50% to 100%. There was poor agreement between the children's and their parents' ratings. Goals identified by the children differed from those identified by their parents, with 48% of the children having no goals identical to those chosen by their parents. These results indicate that the Swedish version of the PEGS produces reliable outcomes comparable to the original version.
Design and Analysis of a Flexible, Reliable Deep Space Life Support System
NASA Technical Reports Server (NTRS)
Jones, Harry W.
2012-01-01
This report describes a flexible, reliable, deep space life support system design approach that uses either storage or recycling or both together. The design goal is to provide the needed life support performance with the required ultra reliability for the minimum Equivalent System Mass (ESM). Recycling life support systems used with multiple redundancy can have sufficient reliability for deep space missions but they usually do not save mass compared to mixed storage and recycling systems. The best deep space life support system design uses water recycling with sufficient water storage to prevent loss of crew if recycling fails. Since the amount of water needed for crew survival is a small part of the total water requirement, the required amount of stored water is significantly less than the total to be consumed. Water recycling with water, oxygen, and carbon dioxide removal material storage can achieve the high reliability of full storage systems with only half the mass of full storage and with less mass than the highly redundant recycling systems needed to achieve acceptable reliability. Improved recycling systems with lower mass and higher reliability could perform better than systems using storage.
Field trial of a diagnostic axis for defense mechanisms for DSM-IV.
Perry, J C; Hoglend, P; Shear, K; Vaillant, G E; Horowitz, M; Kardos, M E; Bille, H; Kagan, D
1998-01-01
Following critiques that the DSM multiaxial system lacks psychodynamic information useful for treatment, an axis for defense mechanisms was developed for DSM-IV, including up to 7 individual defenses from a glossary of 27, and 3 predominant defense levels from a list of 7. We tested the feasibility, reliability, and discriminability of the proposed axis. Clinician and psychiatric resident volunteers were trained at two U.S. and one Norwegian sites. After conducting initial interviews on 107 patients, they rated the DSM-III-R and defense axes, as did a second blind rater. Median kappa reliabilities were .42 (individual defenses), and .47 (defense levels). A summary measure, Overall Defensive Functioning (ODF), had similar reliability to current GAF (IR .68 vs. .62), similar 1-month stability (.75 vs. .78), but greater 6-month stability (.51 vs. .17). Independent of Axis III, ODF had small to moderate associations with other Axes and symptoms. Our findings indicate that the defense axis is a feasible, acceptably reliable, and nonredundant addition to DSM-IV, which may prove useful for planning and conducting treatment.
NASA Technical Reports Server (NTRS)
Sproles, Darrell W.; Bavuso, Salvatore J.
1994-01-01
The Hybrid Automated Reliability Predictor (HARP) integrated Reliability (HiRel) tool system for reliability/availability prediction offers a toolbox of integrated reliability/availability programs that can be used to customize the user's application in a workstation or nonworkstation environment. HiRel consists of interactive graphical input/output programs and four reliability/availability modeling engines that provide analytical and simulative solutions to a wide host of highly reliable fault-tolerant system architectures and is also applicable to electronic systems in general. The tool system was designed at the outset to be compatible with most computing platforms and operating systems and some programs have been beta tested within the aerospace community for over 8 years. This document is a user's guide for the HiRel graphical postprocessor program HARPO (HARP Output). HARPO reads ASCII files generated by HARP. It provides an interactive plotting capability that can be used to display alternate model data for trade-off analyses. File data can also be imported to other commercial software programs.
18 CFR 39.3 - Electric Reliability Organization certification.
Code of Federal Regulations, 2010 CFR
2010-04-01
... operators of the Bulk-Power System, and other interested parties for improvement of the Electric Reliability... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Electric Reliability..., Reliability Standards that provide for an adequate level of reliability of the Bulk-Power System, and (2) Has...
78 FR 44475 - Protection System Maintenance Reliability Standard
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-24
... Protection System Maintenance--Phase 2 (Reclosing Relays)). 12. NERC states that the proposed Reliability... of the relay inputs and outputs that are essential to proper functioning of the protection system...] Protection System Maintenance Reliability Standard AGENCY: Federal Energy Regulatory Commission, Energy...
NASA Astrophysics Data System (ADS)
Varlataya, S. K.; Evdokimov, V. E.; Urzov, A. Y.
2017-11-01
This article describes a process of calculating a certain complex information security system (CISS) reliability using the example of the technospheric security management model as well as ability to determine the frequency of its maintenance using the system reliability parameter which allows one to assess man-made risks and to forecast natural and man-made emergencies. The relevance of this article is explained by the fact the CISS reliability is closely related to information security (IS) risks. Since reliability (or resiliency) is a probabilistic characteristic of the system showing the possibility of its failure (and as a consequence - threats to the protected information assets emergence), it is seen as a component of the overall IS risk in the system. As it is known, there is a certain acceptable level of IS risk assigned by experts for a particular information system; in case of reliability being a risk-forming factor maintaining an acceptable risk level should be carried out by the routine analysis of the condition of CISS and its elements and their timely service. The article presents a reliability parameter calculation for the CISS with a mixed type of element connection, a formula of the dynamics of such system reliability is written. The chart of CISS reliability change is a S-shaped curve which can be divided into 3 periods: almost invariable high level of reliability, uniform reliability reduction, almost invariable low level of reliability. Setting the minimum acceptable level of reliability, the graph (or formula) can be used to determine the period of time during which the system would meet requirements. Ideally, this period should not be longer than the first period of the graph. Thus, the proposed method of calculating the CISS maintenance frequency helps to solve a voluminous and critical task of the information assets risk management.
NASA Astrophysics Data System (ADS)
Flanigan, Katherine A.; Johnson, Nephi R.; Hou, Rui; Ettouney, Mohammed; Lynch, Jerome P.
2017-04-01
The ability to quantitatively assess the condition of railroad bridges facilitates objective evaluation of their robustness in the face of hazard events. Of particular importance is the need to assess the condition of railroad bridges in networks that are exposed to multiple hazards. Data collected from structural health monitoring (SHM) can be used to better maintain a structure by prompting preventative (rather than reactive) maintenance strategies and supplying quantitative information to aid in recovery. To that end, a wireless monitoring system is validated and installed on the Harahan Bridge which is a hundred-year-old long-span railroad truss bridge that crosses the Mississippi River near Memphis, TN. This bridge is exposed to multiple hazards including scour, vehicle/barge impact, seismic activity, and aging. The instrumented sensing system targets non-redundant structural components and areas of the truss and floor system that bridge managers are most concerned about based on previous inspections and structural analysis. This paper details the monitoring system and the analytical method for the assessment of bridge condition based on automated data-driven analyses. Two primary objectives of monitoring the system performance are discussed: 1) monitoring fatigue accumulation in critical tensile truss elements; and 2) monitoring the reliability index values associated with sub-system limit states of these members. Moreover, since the reliability index is a scalar indicator of the safety of components, quantifiable condition assessment can be used as an objective metric so that bridge owners can make informed damage mitigation strategies and optimize resource management on single bridge or network levels.
Bunford, Nora; Kinney, Kerry L; Michael, Jamie; Klumpp, Heide
2017-07-03
Accumulating data from fMRI studies implicate the rostral anterior cingulate cortex (rACC) in inhibition of attention to threat distractors that compete with task-relevant goals for processing resources. However, little data is available on the reliability of rACC activation. Our aim in the current study was to examine test-retest reliability of rACC activation over a 12-week period, in the context of a validated emotional interference paradigm that varied in perceptual load. During functional MRI, 23 healthy volunteers completed a task involving a target letter in a string of identical letters (low load) or in a string of mixed letters (high load) superimposed on angry, fearful, and neutral face distractors. Intraclass correlation coefficients (ICCs) indicated that under low, but not high perceptual load, rACC activation to fearful vs. neutral distractors was moderately reliable. Conversely, regardless of perceptual load, rACC activation to angry vs. neutral distractors was not reliable. Regarding behavioral performance, ICCs indicated that accuracy was not reliable regardless of distractor type or perceptual load. Although reaction time (RT) was similarly not reliable regardless of distractor type under low perceptual load, RT to angry vs. neutral distractors and to fearful vs. neutral distractors was reliable under high perceptual load. Together, results indicate the test-retest reliability of rACC activation and corresponding behavioral performance are context dependent; reliability of the former varies as a function of distractor type and level of cognitive demand, whereas reliability of the latter depends on behavioral index (accuracy vs. RT) and level of cognitive demand but not distractor type. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Efroymson, Rebecca Ann; Dale, Virginia H; Kline, Keith L
Indicators of the environmental sustainability of biofuel production, distribution, and use should be selected, measured, and interpreted with respect to the context in which they are used. These indicators include measures of soil quality, water quality and quantity, greenhouse-gas emissions, biodiversity, air quality, and vegetation productivity. Contextual considerations include the purpose for the sustainability analysis, the particular biofuel production and distribution system (including supply chain, management aspects, and system viability), policy conditions, stakeholder values, location, temporal influences, spatial scale, baselines, and reference scenarios. Recommendations presented in this paper include formulating the problem for particular analyses, selecting appropriate context-specific indicators ofmore » environmental sustainability, and developing indicators that can reflect multiple environmental properties at low cost within a defined context. In addition, contextual considerations such as technical objectives, varying values and perspectives of stakeholder groups, and availability and reliability of data need to be understood and considered. Sustainability indicators for biofuels are most useful if adequate historical data are available, information can be collected at appropriate spatial and temporal scales, organizations are committed to use indicator information in the decision-making process, and indicators can effectively guide behavior toward more sustainable practices.« less
The 747 primary flight control systems reliability and maintenance study
NASA Technical Reports Server (NTRS)
1979-01-01
The major operational characteristics of the 747 Primary Flight Control Systems (PFCS) are described. Results of reliability analysis for separate control functions are presented. The analysis makes use of a NASA computer program which calculates reliability of redundant systems. Costs for maintaining the 747 PFCS in airline service are assessed. The reliabilities and cost will provide a baseline for use in trade studies of future flight control system design.
Scheduling for energy and reliability management on multiprocessor real-time systems
NASA Astrophysics Data System (ADS)
Qi, Xuan
Scheduling algorithms for multiprocessor real-time systems have been studied for years with many well-recognized algorithms proposed. However, it is still an evolving research area and many problems remain open due to their intrinsic complexities. With the emergence of multicore processors, it is necessary to re-investigate the scheduling problems and design/develop efficient algorithms for better system utilization, low scheduling overhead, high energy efficiency, and better system reliability. Focusing cluster schedulings with optimal global schedulers, we study the utilization bound and scheduling overhead for a class of cluster-optimal schedulers. Then, taking energy/power consumption into consideration, we developed energy-efficient scheduling algorithms for real-time systems, especially for the proliferating embedded systems with limited energy budget. As the commonly deployed energy-saving technique (e.g. dynamic voltage frequency scaling (DVFS)) will significantly affect system reliability, we study schedulers that have intelligent mechanisms to recuperate system reliability to satisfy the quality assurance requirements. Extensive simulation is conducted to evaluate the performance of the proposed algorithms on reduction of scheduling overhead, energy saving, and reliability improvement. The simulation results show that the proposed reliability-aware power management schemes could preserve the system reliability while still achieving substantial energy saving.
A Cost-effective and Reliable Method to Predict Mechanical Stress in Single-use and Standard Pumps
Dittler, Ina; Dornfeld, Wolfgang; Schöb, Reto; Cocke, Jared; Rojahn, Jürgen; Kraume, Matthias; Eibl, Dieter
2015-01-01
Pumps are mainly used when transferring sterile culture broths in biopharmaceutical and biotechnological production processes. However, during the pumping process shear forces occur which can lead to qualitative and/or quantitative product loss. To calculate the mechanical stress with limited experimental expense, an oil-water emulsion system was used, whose suitability was demonstrated for drop size detections in bioreactors1. As drop breakup of the oil-water emulsion system is a function of mechanical stress, drop sizes need to be counted over the experimental time of shear stress investigations. In previous studies, the inline endoscopy has been shown to be an accurate and reliable measurement technique for drop size detections in liquid/liquid dispersions. The aim of this protocol is to show the suitability of the inline endoscopy technique for drop size measurements in pumping processes. In order to express the drop size, the Sauter mean diameter d32 was used as the representative diameter of drops in the oil-water emulsion. The results showed low variation in the Sauter mean diameters, which were quantified by standard deviations of below 15%, indicating the reliability of the measurement technique. PMID:26274765
Cohen, Alysia; McDonald, Samantha; McIver, Kerry; Pate, Russell; Trost, Stewart
2014-05-01
The purpose of this study was to evaluate the validity and interrater reliability of the Observational System for Recording Activity in Children: Youth Sports (OSRAC:YS). Children (N = 29) participating in a parks and recreation soccer program were observed during regularly scheduled practices. Physical activity (PA) intensity and contextual factors were recorded by momentary time-sampling procedures (10-second observe, 20-second record). Two observers simultaneously observed and recorded children's PA intensity, practice context, social context, coach behavior, and coach proximity. Interrater reliability was based on agreement (Kappa) between the observer's coding for each category, and the Intraclass Correlation Coefficient (ICC) for percent of time spent in MVPA. Validity was assessed by calculating the correlation between OSRAC:YS estimated and objectively measured MVPA. Kappa statistics for each category demonstrated substantial to almost perfect interobserver agreement (Kappa = 0.67-0.93). The ICC for percent time in MVPA was 0.76 (95% C.I. = 0.49-0.90). A significant correlation (r = .73) was observed for MVPA recorded by observation and MVPA measured via accelerometry. The results indicate the OSRAC:YS is a reliable and valid tool for measuring children's PA and contextual factors during a youth soccer practice.
NASA Technical Reports Server (NTRS)
White, Mark
2012-01-01
New space missions will increasingly rely on more advanced technologies because of system requirements for higher performance, particularly in instruments and high-speed processing. Component-level reliability challenges with scaled CMOS in spacecraft systems from a bottom-up perspective have been presented. Fundamental Front-end and Back-end processing reliability issues with more aggressively scaled parts have been discussed. Effective thermal management from system-level to the componentlevel (top-down) is a key element in overall design of reliable systems. Thermal management in space systems must consider a wide range of issues, including thermal loading of many different components, and frequent temperature cycling of some systems. Both perspectives (top-down and bottom-up) play a large role in robust, reliable spacecraft system design.
NASA Astrophysics Data System (ADS)
Amarasinghe, Pradeep; Liu, An; Egodawatta, Prasanna; Barnes, Paul; McGree, James; Goonetilleke, Ashantha
2016-09-01
A water supply system can be impacted by rainfall reduction due to climate change, thereby reducing its supply potential. This highlights the need to understand the system resilience, which refers to the ability to maintain service under various pressures (or disruptions). Currently, the concept of resilience has not yet been widely applied in managing water supply systems. This paper proposed three technical resilience indictors to assess the resilience of a water supply system. A case study analysis was undertaken of the Water Grid system of Queensland State, Australia, to showcase how the proposed indicators can be applied to assess resilience. The research outcomes confirmed that the use of resilience indicators is capable of identifying critical conditions in relation to the water supply system operation, such as the maximum allowable rainfall reduction for the system to maintain its operation without failure. Additionally, resilience indicators also provided useful insight regarding the sensitivity of the water supply system to a changing rainfall pattern in the context of climate change, which represents the system's stability when experiencing pressure. The study outcomes will help in the quantitative assessment of resilience and provide improved guidance to system operators to enhance the efficiency and reliability of a water supply system.
Developing Ultra Reliable Life Support for the Moon and Mars
NASA Technical Reports Server (NTRS)
Jones, Harry W.
2009-01-01
Recycling life support systems can achieve ultra reliability by using spares to replace failed components. The added mass for spares is approximately equal to the original system mass, provided the original system reliability is not very low. Acceptable reliability can be achieved for the space shuttle and space station by preventive maintenance and by replacing failed units, However, this maintenance and repair depends on a logistics supply chain that provides the needed spares. The Mars mission must take all the needed spares at launch. The Mars mission also must achieve ultra reliability, a very low failure rate per hour, since it requires years rather than weeks and cannot be cut short if a failure occurs. Also, the Mars mission has a much higher mass launch cost per kilogram than shuttle or station. Achieving ultra reliable space life support with acceptable mass will require a well-planned and extensive development effort. Analysis must define the reliability requirement and allocate it to subsystems and components. Technologies, components, and materials must be designed and selected for high reliability. Extensive testing is needed to ascertain very low failure rates. Systems design should segregate the failure causes in the smallest, most easily replaceable parts. The systems must be designed, produced, integrated, and tested without impairing system reliability. Maintenance and failed unit replacement should not introduce any additional probability of failure. The overall system must be tested sufficiently to identify any design errors. A program to develop ultra reliable space life support systems with acceptable mass must start soon if it is to produce timely results for the moon and Mars.
An anatomical subunit-based outcome assessment scale for bilateral cleft lip and palate.
Bonanthaya, K; Shetty, P N; Fudalej, P S; Rao, D D; Bitra, S; Pabari, M; Rachwalski, M
2017-08-01
As there is currently no internationally accepted outcome measurement tool available for complete bilateral cleft lip and palate (CBCLP), the goal of this prospective study was to develop a numerical evaluation scale that allows reliable scoring of this cleft deformity. Our cohort comprised 121 Indian subjects with CBCLP who underwent surgical repair (mean age at time of surgery 6.53 months) using a modified Millard technique. A panel of three professionals evaluated each subject's outcome of bilateral cleft lip repair 6 months postoperatively on two-dimensional (2D) full-face photographs in the frontal view and worm's eye view. A simple two-point rating system was applied to separately analyse a total of 12 components of lip, nose, and scar. The results and mean scores for the analysed anatomical areas were 2.2±1.01 (max=3) for nose, 5.4±1.54 (max=8) for lip, and 1.9±1.3 (max=3) for scar, with a total score 7.7±2.21 (max=12) indicating a good surgical outcome. The inter-examiner ICC for nose, lip, scar, and total score was calculated at 0.836, 0.889, 0.723, and 0.927 respectively and indicated a strong level of repeatability and reliability that was highly significant (P<0.001). In conclusion, we were able to develop and test a scoring system for measuring outcomes in CBCLP that warrants simplicity of use, reliability and reproducibility. Copyright © 2017 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Akay, Abdullah E; Wing, Michael G; Sivrikaya, Fatih; Sakar, Dursun
2012-03-01
The ability of firefighting vehicles and staff to reach a fire area as quickly as possible is critical in fighting against forest fires. In this study, a Geographical Information System-based decision support system was developed to assist fire managers in determining the fastest and the safest or more reliable access routes from firefighting headquarters to fire areas. The decision support system was tested in the Kahramanmaras Forestry Regional Directoratein the Mediterranean region of Turkey. The study area consisted of forested lands which had been classified according to fire sensitivity. The fire response routing simulations considered firefighting teams located in 20 firefighting headquarter locations. The road network, the locations of the firefighting headquarters, and possible fire locations were mapped for simulation analysis. In alternative application simulations, inaccessible roads which might be closed due to fire or other reasons were indicated in the network analysis so that the optimum route was not only the fastest but also the safest and most reliable path. The selection of which firefighting headquarters to use was evaluated by considering critical response time to potential fire areas based on fire sensitivity levels. Results indicated that new firefighting headquarters should be established in the region in order to provide sufficient firefighting response to all forested lands. In addition, building new fire access roads and increasing the design speed on current roads could also increase firefighting response capabilities within the study area.
Tracking accuracy assessment for concentrator photovoltaic systems
NASA Astrophysics Data System (ADS)
Norton, Matthew S. H.; Anstey, Ben; Bentley, Roger W.; Georghiou, George E.
2010-10-01
The accuracy to which a concentrator photovoltaic (CPV) system can track the sun is an important parameter that influences a number of measurements that indicate the performance efficiency of the system. This paper presents work carried out into determining the tracking accuracy of a CPV system, and illustrates the steps involved in gaining an understanding of the tracking accuracy. A Trac-Stat SL1 accuracy monitor has been used in the determination of pointing accuracy and has been integrated into the outdoor CPV module test facility at the Photovoltaic Technology Laboratories in Nicosia, Cyprus. Results from this work are provided to demonstrate how important performance indicators may be presented, and how the reliability of results is improved through the deployment of such accuracy monitors. Finally, recommendations on the use of such sensors are provided as a means to improve the interpretation of real outdoor performance.
Reliability assessment and improvement for a fast corrector power supply in TPS
NASA Astrophysics Data System (ADS)
Liu, Kuo-Bin; Liu, Chen-Yao; Wang, Bao-Sheng; Wong, Yong Seng
2018-07-01
Fast Orbit Feedback System (FOFB) can be installed in a synchrotron light source to eliminate undesired disturbances and to improve the stability of beam orbit. The design and implementation of an accurate and reliable Fast Corrector Power Supply (FCPS) is essential to realize the effectiveness and availability of the FOFB. A reliability assessment for the FCPSs in the FOFB of Taiwan Photon Source (TPS) considering MOSFETs' temperatures is represented in this paper. The FCPS is composed of a full-bridge topology and a low-pass filter. A Hybrid Pulse Width Modulation (HPWM) requiring two MOSFETs in the full-bridge circuit to be operated at high frequency and the other two be operated at the output frequency is adopted to control the implemented FCPS. Due the characteristic of HPWM, the conduction loss and switching loss of each MOSFET in the FCPS is not same. Two of the MOSFETs in the full-bridge circuit will suffer higher temperatures and therefore the circuit reliability of FCPS is reduced. A Modified PWM Scheme (MPWMS) designed to average MOSFETs' temperatures and to improve circuit reliability is proposed in this paper. Experimental results measure the MOSFETs' temperatures of FCPS controlled by the HPWM and the proposed MPWMS. The reliability indices under different PWM controls are then assessed. From the experimental results, it can be observed that the reliability of FCPS using the proposed MPWMS can be improved because the MOSFETs' temperatures are closer. Since the reliability of FCPS can be enhanced, the availability of FOFB can also be improved.
Uncertainties in obtaining high reliability from stress-strength models
NASA Technical Reports Server (NTRS)
Neal, Donald M.; Matthews, William T.; Vangel, Mark G.
1992-01-01
There has been a recent interest in determining high statistical reliability in risk assessment of aircraft components. The potential consequences are identified of incorrectly assuming a particular statistical distribution for stress or strength data used in obtaining the high reliability values. The computation of the reliability is defined as the probability of the strength being greater than the stress over the range of stress values. This method is often referred to as the stress-strength model. A sensitivity analysis was performed involving a comparison of reliability results in order to evaluate the effects of assuming specific statistical distributions. Both known population distributions, and those that differed slightly from the known, were considered. Results showed substantial differences in reliability estimates even for almost nondetectable differences in the assumed distributions. These differences represent a potential problem in using the stress-strength model for high reliability computations, since in practice it is impossible to ever know the exact (population) distribution. An alternative reliability computation procedure is examined involving determination of a lower bound on the reliability values using extreme value distributions. This procedure reduces the possibility of obtaining nonconservative reliability estimates. Results indicated the method can provide conservative bounds when computing high reliability. An alternative reliability computation procedure is examined involving determination of a lower bound on the reliability values using extreme value distributions. This procedure reduces the possibility of obtaining nonconservative reliability estimates. Results indicated the method can provide conservative bounds when computing high reliability.
Kayser, Georgia L; Moriarty, Patrick; Fonseca, Catarina; Bartram, Jamie
2013-10-11
Monitoring of water services informs policy and planning for national governments and the international community. Currently, the international monitoring system measures the type of drinking water source that households use. There have been calls for improved monitoring systems over several decades, some advocating use of multiple indicators. We review the literature on water service indicators and frameworks with a view to informing debate on their relevance to national and international monitoring. We describe the evidence concerning the relevance of each identified indicator to public health, economic development and human rights. We analyze the benefits and challenges of using these indicators separately and combined in an index as tools for planning, monitoring, and evaluating water services. We find substantial evidence on the importance of each commonly recommended indicator--service type, safety, quantity, accessibility, reliability or continuity of service, equity, and affordability. Several frameworks have been proposed that give structure to the relationships among individual indicators and some combine multiple indicator scores into a single index but few have been rigorously tested. More research is needed to understand if employing a composite metric of indicators is advantageous and how each indicator might be scored and scaled.
Iwata, Shintaro; Uehara, Kosuke; Ogura, Koichi; Akiyama, Toru; Shinoda, Yusuke; Yonemoto, Tsukasa; Kawai, Akira
2016-09-01
The Musculoskeletal Tumor Society (MSTS) scoring system is a widely used functional evaluation tool for patients treated for musculoskeletal tumors. Although the MSTS scoring system has been validated in English and Brazilian Portuguese, a Japanese version of the MSTS scoring system has not yet been validated. We sought to determine whether a Japanese-language translation of the MSTS scoring system for the lower extremity had (1) sufficient reliability and internal consistency, (2) adequate construct validity, and (3) reasonable criterion validity compared with the Toronto Extremity Salvage Score (TESS) and SF-36 using psychometric analysis. The Japanese version of the MSTS scoring system was developed using accepted guidelines, which included translation of the English version of the MSTS into Japanese by five native Japanese bilingual musculoskeletal oncology surgeons and integrated into one document. One hundred patients with a diagnosis of intermediate or malignant bone or soft tissue tumors located in the lower extremity and who had undergone tumor resection with or without reconstruction or amputation participated in this study. Reliability was evaluated by test-retest analysis, and internal consistency was established by Cronbach's alpha coefficient. Construct validity was evaluated using the principal factor analysis and Akaike information criterion network. Criterion validity was evaluated by comparing the MSTS scoring system with the TESS and SF-36. Test-retest analysis showed a high intraclass correlation coefficient (0.92; 95% CI, 0.88-0.95), indicating high reliability of the Japanese version of the MSTS scoring system, although a considerable ceiling effect was observed, with 23 patients (23%) given the maximum score. Cronbach's alpha coefficient was 0.87 (95% CI, 0.82-0.90), suggesting a high level of internal consistency. Factor analysis revealed that all items had high loading values and communalities; we identified a central role for the items "walking" and "gait" according to the Akaike information criterion network. The total MSTS score was correlated with that of the TESS (r = 0.81; 95% CI, 0.73-0.87; p < 0.001) and the physical component summary and physical functioning of the SF-36. The Japanese-language translation of the MSTS scoring system for the lower extremity has sufficient reliability and reasonable validity. Nevertheless, the observation of a ceiling effect suggests poor ability of this system to discriminate from among patients who have a high level of function.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-22
... configuration to maintain system stability, acceptable voltage or power flows.\\12\\ \\12\\ In the Western... prevent system instability or cascading outages, and protect other facilities in response to transmission... nature used to address system reliability vulnerabilities to prevent system instability, cascading...
A preliminary study of wildland fire pattern indicator reliability following an experimental fire
Albert Simeoni; Zachary C. Owens; Erik W. Christiansen; Abid Kemal; Michael Gallagher; Kenneth L. Clark; Nicholas Skowronski; Eric V. Mueller; Jan C. Thomas; Simon Santamaria; Rory M. Hadden
2017-01-01
An experimental fire was conducted in 2016, in the Pinelands National Reserve of New Jersey, to assess the reliability of the fire pattern indicators used in wildland fire investigation. Objects were planted in the burn area to support the creation of the indicators. Fuel properties and environmental data were recorded. Video and infrared cameras were used to document...
Reliability studies of Integrated Modular Engine system designs
NASA Technical Reports Server (NTRS)
Hardy, Terry L.; Rapp, Douglas C.
1993-01-01
A study was performed to evaluate the reliability of Integrated Modular Engine (IME) concepts. Comparisons were made between networked IME systems and non-networked discrete systems using expander cycle configurations. Both redundant and non-redundant systems were analyzed. Binomial approximation and Markov analysis techniques were employed to evaluate total system reliability. In addition, Failure Modes and Effects Analyses (FMEA), Preliminary Hazard Analyses (PHA), and Fault Tree Analysis (FTA) were performed to allow detailed evaluation of the IME concept. A discussion of these system reliability concepts is also presented.
Reliability studies of integrated modular engine system designs
NASA Technical Reports Server (NTRS)
Hardy, Terry L.; Rapp, Douglas C.
1993-01-01
A study was performed to evaluate the reliability of Integrated Modular Engine (IME) concepts. Comparisons were made between networked IME systems and non-networked discrete systems using expander cycle configurations. Both redundant and non-redundant systems were analyzed. Binomial approximation and Markov analysis techniques were employed to evaluate total system reliability. In addition, Failure Modes and Effects Analyses (FMEA), Preliminary Hazard Analyses (PHA), and Fault Tree Analysis (FTA) were performed to allow detailed evaluation of the IME concept. A discussion of these system reliability concepts is also presented.
Reliability studies of integrated modular engine system designs
NASA Astrophysics Data System (ADS)
Hardy, Terry L.; Rapp, Douglas C.
1993-06-01
A study was performed to evaluate the reliability of Integrated Modular Engine (IME) concepts. Comparisons were made between networked IME systems and non-networked discrete systems using expander cycle configurations. Both redundant and non-redundant systems were analyzed. Binomial approximation and Markov analysis techniques were employed to evaluate total system reliability. In addition, Failure Modes and Effects Analyses (FMEA), Preliminary Hazard Analyses (PHA), and Fault Tree Analysis (FTA) were performed to allow detailed evaluation of the IME concept. A discussion of these system reliability concepts is also presented.
Reliability studies of Integrated Modular Engine system designs
NASA Astrophysics Data System (ADS)
Hardy, Terry L.; Rapp, Douglas C.
1993-06-01
A study was performed to evaluate the reliability of Integrated Modular Engine (IME) concepts. Comparisons were made between networked IME systems and non-networked discrete systems using expander cycle configurations. Both redundant and non-redundant systems were analyzed. Binomial approximation and Markov analysis techniques were employed to evaluate total system reliability. In addition, Failure Modes and Effects Analyses (FMEA), Preliminary Hazard Analyses (PHA), and Fault Tree Analysis (FTA) were performed to allow detailed evaluation of the IME concept. A discussion of these system reliability concepts is also presented.
NASA Technical Reports Server (NTRS)
Jackson, T. J.; Shiue, J.; Oneill, P.; Wang, J.; Fuchs, J.; Owe, M.
1984-01-01
The verification of a multi-sensor aircraft system developed to study soil moisture applications is discussed. This system consisted of a three beam push broom L band microwave radiometer, a thermal infrared scanner, a multispectral scanner, video and photographic cameras and an onboard navigational instrument. Ten flights were made of agricultural sites in Maryland and Delaware with little or no vegetation cover. Comparisons of aircraft and ground measurements showed that the system was reliable and consistent. Time series analysis of microwave and evaporation data showed a strong similarity that indicates a potential direction for future research.
NASA Astrophysics Data System (ADS)
Szuster-Janiaczyk, Agnieszka; Zeuschner, Piotr; Noga, Paweł; Skrzypczak, Marta
2018-02-01
The study presents an analysis of water quality monitoring in terms of the content of heavy metals, which is conducted in three independent water supply systems in Poland. The analysis showed that the monitoring of heavy metals isn't reliable - both the quantity of tested water samples and the location of the monitoring points are the problem. The analysis of changes in water quality from raw water to tap water was possible only for one of the analysed systems and indicate a gradual deterioration of water quality, although still within acceptable limits of legal regulations.
Test-retest reliability of posture measurements in adolescents with idiopathic scoliosis.
Heitz, Pierre-Henri; Aubin-Fournier, Jean-François; Parent, Éric; Fortin, Carole
2018-05-07
Posture changes are a major consequence of IS (IS). Posture changes can lead to psychosocial and physical impairments in adolescents with IS. Therefore, it is important to assess posture but the test-retest reliability of posture measurements still remains unknown in this population. The primary objective was to determine the test-retest reliability of 25 head and trunk posture indices using the Clinical Photographic Postural Assessment Tool (CPPAT) in adolescents with IS. The secondary objective was to determine the standard error of measurement and the minimal detectable change. This is a prospective test-retest reliability study carried out at two tertiary university hospital centers. Forty-one adolescents with IS, aged 10 to 16 years old with curves 10 to 45 o and treated non-operatively were recruited. Two posture assessments were done using the CPPAT five to 10 days apart following a standardized procedure. Photographs were analyzed with the CPPAT software by digitizing reference landmarks placed on the participant by a physiotherapist evaluator. Generalizability theory was used to obtain a coefficient of dependability, standard error of measurement and the minimal detectable change at the 90% confidence interval. This project was supported by the Canadian Pediatric Spine Society (CPSS: 10000$). There is no study-specific conflicts of interest-associated biases. Fourteen of 25 posture indices had a good reliability (ϕ ≥ 0.78), ten of 25 had moderate reliability (ϕ = 0.55 to 0.74) and one had poor reliability (ϕ = 0.45). The most reliable posture indices were waist angles asymmetry (ϕ = 0.93), right waist angle (ϕ = 0.91) and frontal trunk list (ϕ = 0.92). Right sagittal trunk list was the least reliable posture index (ϕ = 0.45). The MDC 90 values ranged from 2.6 to 10.3° for angular measurements and from 8.4 to 35.1 mm for linear measurements. This study demonstrates that most posture indices, especially the trunk posture indices, are reproducible in time among adolescents with IS and provides reference values. Clinicians and researchers can use these reference values in order to assess change in posture over time attributable to treatment effectiveness. Copyright © 2018. Published by Elsevier Inc.
Optimization of a GCaMP calcium indicator for neural activity imaging
Akerboom, Jasper; Chen, Tsai-Wen; Wardill, Trevor J.; Tian, Lin; Marvin, Jonathan S.; Mutlu, Sevinç; Calderón, Nicole Carreras; Esposti, Federico; Borghuis, Bart G.; Sun, Xiaonan Richard; Gordus, Andrew; Orger, Michael B.; Portugues, Ruben; Engert, Florian; Macklin, John J.; Filosa, Alessandro; Aggarwal, Aman; Kerr, Rex; Takagi, Ryousuke; Kracun, Sebastian; Shigetomi, Eiji; Khakh, Baljit S.; Baier, Herwig; Lagnado, Leon; Wang, Samuel S.-H.; Bargmann, Cornelia I.; Kimmel, Bruce E.; Jayaraman, Vivek; Svoboda, Karel; Kim, Douglas S.; Schreiter, Eric R.; Looger, Loren L.
2012-01-01
Genetically encoded calcium indicators (GECIs) are powerful tools for systems neuroscience. Recent efforts in protein engineering have significantly increased the performance of GECIs. The state-of-the art single-wavelength GECI, GCaMP3, has been deployed in a number of model organisms and can reliably detect three or more action potentials (APs) in short bursts in several systems in vivo. Through protein structure determination, targeted mutagenesis, high-throughput screening, and a battery of in vitro assays, we have increased the dynamic range of GCaMP3 by several-fold, creating a family of “GCaMP5” sensors. We tested GCaMP5s in several systems: cultured neurons and astrocytes, mouse retina, and in vivo in Caenorhabditis chemosensory neurons, Drosophila larval neuromuscular junction and adult antennal lobe, zebrafish retina and tectum, and mouse visual cortex. Signal-to-noise ratio was improved by at least 2–3-fold. In the visual cortex, two GCaMP5 variants detected twice as many visual stimulus-responsive cells as GCaMP3. By combining in vivo imaging with electrophysiology we show that GCaMP5 fluorescence provides a more reliable measure of neuronal activity than its predecessor GCaMP3. GCaMP5 allows more sensitive detection of neural activity in vivo and may find widespread applications for cellular imaging in general. PMID:23035093
Recent Photovoltaic Performance Data in the USA (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, D.
2014-03-01
This paper presents performance data from nearly 50,000 Photovoltaic systems totaling 1.7 Gigawatts installed capacity in the USA from 2009 to 2012. 90% of the systems performed to within 10% or better of expected performance. Only 2-4% of the data indicate issues significantly affecting the system performance. Special causes of underperformance and their impacts are delineated by reliability category. Delays and interconnections dominate project-related issues particularly in the first year, but total less than 0.5% of all systems. Hardware-related issues are dominated by inverter problems totaling less than 0.4% and underperforming modules to less than 0.1%.
Computer-Aided Reliability Estimation
NASA Technical Reports Server (NTRS)
Bavuso, S. J.; Stiffler, J. J.; Bryant, L. A.; Petersen, P. L.
1986-01-01
CARE III (Computer-Aided Reliability Estimation, Third Generation) helps estimate reliability of complex, redundant, fault-tolerant systems. Program specifically designed for evaluation of fault-tolerant avionics systems. However, CARE III general enough for use in evaluation of other systems as well.
Verification of Triple Modular Redundancy Insertion for Reliable and Trusted Systems
NASA Technical Reports Server (NTRS)
Berg, Melanie; LaBel, Kenneth
2016-01-01
If a system is required to be protected using triple modular redundancy (TMR), improper insertion can jeopardize the reliability and security of the system. Due to the complexity of the verification process and the complexity of digital designs, there are currently no available techniques that can provide complete and reliable confirmation of TMR insertion. We propose a method for TMR insertion verification that satisfies the process for reliable and trusted systems.
Wiggins, Ian M; Anderson, Carly A; Kitterick, Pádraig T; Hartley, Douglas E H
2016-09-01
Functional near-infrared spectroscopy (fNIRS) is a silent, non-invasive neuroimaging technique that is potentially well suited to auditory research. However, the reliability of auditory-evoked activation measured using fNIRS is largely unknown. The present study investigated the test-retest reliability of speech-evoked fNIRS responses in normally-hearing adults. Seventeen participants underwent fNIRS imaging in two sessions separated by three months. In a block design, participants were presented with auditory speech, visual speech (silent speechreading), and audiovisual speech conditions. Optode arrays were placed bilaterally over the temporal lobes, targeting auditory brain regions. A range of established metrics was used to quantify the reproducibility of cortical activation patterns, as well as the amplitude and time course of the haemodynamic response within predefined regions of interest. The use of a signal processing algorithm designed to reduce the influence of systemic physiological signals was found to be crucial to achieving reliable detection of significant activation at the group level. For auditory speech (with or without visual cues), reliability was good to excellent at the group level, but highly variable among individuals. Temporal-lobe activation in response to visual speech was less reliable, especially in the right hemisphere. Consistent with previous reports, fNIRS reliability was improved by averaging across a small number of channels overlying a cortical region of interest. Overall, the present results confirm that fNIRS can measure speech-evoked auditory responses in adults that are highly reliable at the group level, and indicate that signal processing to reduce physiological noise may substantially improve the reliability of fNIRS measurements. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
The reliability of three devices used for measuring vertical jump height.
Nuzzo, James L; Anning, Jonathan H; Scharfenberg, Jessica M
2011-09-01
The purpose of this investigation was to assess the intrasession and intersession reliability of the Vertec, Just Jump System, and Myotest for measuring countermovement vertical jump (CMJ) height. Forty male and 39 female university students completed 3 maximal-effort CMJs during 2 testing sessions, which were separated by 24-48 hours. The height of the CMJ was measured from all 3 devices simultaneously. Systematic error, relative reliability, absolute reliability, and heteroscedasticity were assessed for each device. Systematic error across the 3 CMJ trials was observed within both sessions for males and females, and this was most frequently observed when the CMJ height was measured by the Vertec. No systematic error was discovered across the 2 testing sessions when the maximum CMJ heights from the 2 sessions were compared. In males, the Myotest demonstrated the best intrasession reliability (intraclass correlation coefficient [ICC] = 0.95; SEM = 1.5 cm; coefficient of variation [CV] = 3.3%) and intersession reliability (ICC = 0.88; SEM = 2.4 cm; CV = 5.3%; limits of agreement = -0.08 ± 4.06 cm). Similarly, in females, the Myotest demonstrated the best intrasession reliability (ICC = 0.91; SEM = 1.4 cm; CV = 4.5%) and intersession reliability (ICC = 0.92; SEM = 1.3 cm; CV = 4.1%; limits of agreement = 0.33 ± 3.53 cm). Additional analysis revealed that heteroscedasticity was present in the CMJ when measured from all 3 devices, indicating that better jumpers demonstrate greater fluctuations in CMJ scores across testing sessions. To attain reliable CMJ height measurements, practitioners are encouraged to familiarize athletes with the CMJ technique and then allow the athletes to complete numerous repetitions until performance plateaus, particularly if the Vertec is being used.
NASA Astrophysics Data System (ADS)
Gromek, Katherine Emily
A novel computational and inference framework of the physics-of-failure (PoF) reliability modeling for complex dynamic systems has been established in this research. The PoF-based reliability models are used to perform a real time simulation of system failure processes, so that the system level reliability modeling would constitute inferences from checking the status of component level reliability at any given time. The "agent autonomy" concept is applied as a solution method for the system-level probabilistic PoF-based (i.e. PPoF-based) modeling. This concept originated from artificial intelligence (AI) as a leading intelligent computational inference in modeling of multi agents systems (MAS). The concept of agent autonomy in the context of reliability modeling was first proposed by M. Azarkhail [1], where a fundamentally new idea of system representation by autonomous intelligent agents for the purpose of reliability modeling was introduced. Contribution of the current work lies in the further development of the agent anatomy concept, particularly the refined agent classification within the scope of the PoF-based system reliability modeling, new approaches to the learning and the autonomy properties of the intelligent agents, and modeling interacting failure mechanisms within the dynamic engineering system. The autonomous property of intelligent agents is defined as agent's ability to self-activate, deactivate or completely redefine their role in the analysis. This property of agents and the ability to model interacting failure mechanisms of the system elements makes the agent autonomy fundamentally different from all existing methods of probabilistic PoF-based reliability modeling. 1. Azarkhail, M., "Agent Autonomy Approach to Physics-Based Reliability Modeling of Structures and Mechanical Systems", PhD thesis, University of Maryland, College Park, 2007.
Mukherjee, Shalini; Yadav, Rajeev; Yung, Iris; Zajdel, Daniel P; Oken, Barry S
2011-10-01
To determine (1) whether heart rate variability (HRV) was a sensitive and reliable measure in mental effort tasks carried out by healthy seniors and (2) whether non-linear approaches to HRV analysis, in addition to traditional time and frequency domain approaches were useful to study such effects. Forty healthy seniors performed two visual working memory tasks requiring different levels of mental effort, while ECG was recorded. They underwent the same tasks and recordings 2 weeks later. Traditional and 13 non-linear indices of HRV including Poincaré, entropy and detrended fluctuation analysis (DFA) were determined. Time domain, especially mean R-R interval (RRI), frequency domain and, among non-linear parameters - Poincaré and DFA were the most reliable indices. Mean RRI, time domain and Poincaré were also the most sensitive to different mental effort task loads and had the largest effect size. Overall, linear measures were the most sensitive and reliable indices to mental effort. In non-linear measures, Poincaré was the most reliable and sensitive, suggesting possible usefulness as an independent marker in cognitive function tasks in healthy seniors. A large number of HRV parameters was both reliable as well as sensitive indices of mental effort, although the simple linear methods were the most sensitive. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chanda, Kironmala; Maity, Rajib; Sharma, Ashish; Mehrotra, Rajeshwar
2014-10-01
This paper characterizes the long-term, spatiotemporal variation of drought propensity through a newly proposed, namely Drought Management Index (DMI), and explores its predictability in order to assess the future drought propensity and adapt drought management policies for a location. The DMI was developed using the reliability-resilience-vulnerability (RRV) rationale commonly used in water resources systems analysis, under the assumption that depletion of soil moisture across a vertical soil column is equivalent to the operation of a water supply reservoir, and that drought should be managed not simply using a measure of system reliability, but should also take into account the readiness of the system to bounce back from drought to a normal state. Considering India as a test bed, 5 year long monthly gridded (0.5° Lat × 0.5° Lon) soil moisture data are used to compute the RRV at each grid location falling within the study domain. The Permanent Wilting Point (PWP) is used as the threshold, indicative of transition into water stress. The association between resilience and vulnerability is then characterized through their joint probability distribution ascertained using Plackett copula models for four broad soil types across India. The joint cumulative distribution functions (CDF) of resilience and vulnerability form the basis for estimating the DMI as a five-yearly time series at each grid location assessed. The status of DMI over the past 50 years indicate that drought propensity is consistently low toward northern and north eastern parts of India but higher in the western part of peninsular India. Based on the observed past behavior of DMI series on a climatological time scale, a DMI prediction model comprising deterministic and stochastic components is developed. The predictability of DMI for a lead time of 5 years is found to vary across India, with a Pearson correlation coefficient between observed and predicted DMI above 0.6 over most of the study area, indicating a reasonably good potential for drought management in the medium term water resources planning horizon.
Soler, Jean K; Corrigan, Derek; Kazienko, Przemyslaw; Kajdanowicz, Tomasz; Danger, Roxana; Kulisiewicz, Marcin; Delaney, Brendan
2015-05-16
Analysis of encounter data relevant to the diagnostic process sourced from routine electronic medical record (EMR) databases represents a classic example of the concept of a learning healthcare system (LHS). By collecting International Classification of Primary Care (ICPC) coded EMR data as part of the Transition Project from Dutch and Maltese databases (using the EMR TransHIS), data mining algorithms can empirically quantify the relationships of all presenting reasons for encounter (RfEs) and recorded diagnostic outcomes. We have specifically looked at new episodes of care (EoC) for two urinary system infections: simple urinary tract infection (UTI, ICPC code: U71) and pyelonephritis (ICPC code: U70). Participating family doctors (FDs) recorded details of all their patient contacts in an EoC structure using the ICPC, including RfEs presented by the patient, and the FDs' diagnostic labels. The relationships between RfEs and episode titles were studied using probabilistic and data mining methods as part of the TRANSFoRm project. The Dutch data indicated that the presence of RfE's "Cystitis/Urinary Tract Infection", "Dysuria", "Fear of UTI", "Urinary frequency/urgency", "Haematuria", "Urine symptom/complaint, other" are all strong, reliable, predictors for the diagnosis "Cystitis/Urinary Tract Infection" . The Maltese data indicated that the presence of RfE's "Dysuria", "Urinary frequency/urgency", "Haematuria" are all strong, reliable, predictors for the diagnosis "Cystitis/Urinary Tract Infection". The Dutch data indicated that the presence of RfE's "Flank/axilla symptom/complaint", "Dysuria", "Fever", "Cystitis/Urinary Tract Infection", "Abdominal pain/cramps general" are all strong, reliable, predictors for the diagnosis "Pyelonephritis" . The Maltese data set did not present any clinically and statistically significant predictors for pyelonephritis. We describe clinically and statistically significant diagnostic associations observed between UTIs and pyelonephritis presenting as a new problem in family practice, and all associated RfEs, and demonstrate that the significant diagnostic cues obtained are consistent with the literature. We conclude that it is possible to generate clinically meaningful diagnostic evidence from electronic sources of patient data.
Multidisciplinary System Reliability Analysis
NASA Technical Reports Server (NTRS)
Mahadevan, Sankaran; Han, Song; Chamis, Christos C. (Technical Monitor)
2001-01-01
The objective of this study is to develop a new methodology for estimating the reliability of engineering systems that encompass multiple disciplines. The methodology is formulated in the context of the NESSUS probabilistic structural analysis code, developed under the leadership of NASA Glenn Research Center. The NESSUS code has been successfully applied to the reliability estimation of a variety of structural engineering systems. This study examines whether the features of NESSUS could be used to investigate the reliability of systems in other disciplines such as heat transfer, fluid mechanics, electrical circuits etc., without considerable programming effort specific to each discipline. In this study, the mechanical equivalence between system behavior models in different disciplines are investigated to achieve this objective. A new methodology is presented for the analysis of heat transfer, fluid flow, and electrical circuit problems using the structural analysis routines within NESSUS, by utilizing the equivalence between the computational quantities in different disciplines. This technique is integrated with the fast probability integration and system reliability techniques within the NESSUS code, to successfully compute the system reliability of multidisciplinary systems. Traditional as well as progressive failure analysis methods for system reliability estimation are demonstrated, through a numerical example of a heat exchanger system involving failure modes in structural, heat transfer and fluid flow disciplines.
Multi-Disciplinary System Reliability Analysis
NASA Technical Reports Server (NTRS)
Mahadevan, Sankaran; Han, Song
1997-01-01
The objective of this study is to develop a new methodology for estimating the reliability of engineering systems that encompass multiple disciplines. The methodology is formulated in the context of the NESSUS probabilistic structural analysis code developed under the leadership of NASA Lewis Research Center. The NESSUS code has been successfully applied to the reliability estimation of a variety of structural engineering systems. This study examines whether the features of NESSUS could be used to investigate the reliability of systems in other disciplines such as heat transfer, fluid mechanics, electrical circuits etc., without considerable programming effort specific to each discipline. In this study, the mechanical equivalence between system behavior models in different disciplines are investigated to achieve this objective. A new methodology is presented for the analysis of heat transfer, fluid flow, and electrical circuit problems using the structural analysis routines within NESSUS, by utilizing the equivalence between the computational quantities in different disciplines. This technique is integrated with the fast probability integration and system reliability techniques within the NESSUS code, to successfully compute the system reliability of multi-disciplinary systems. Traditional as well as progressive failure analysis methods for system reliability estimation are demonstrated, through a numerical example of a heat exchanger system involving failure modes in structural, heat transfer and fluid flow disciplines.
Novel Strength Test Battery to Permit Evidence-Based Paralympic Classification
Beckman, Emma M.; Newcombe, Peter; Vanlandewijck, Yves; Connick, Mark J.; Tweedy, Sean M.
2014-01-01
Abstract Ordinal-scale strength assessment methods currently used in Paralympic athletics classification prevent the development of evidence-based classification systems. This study evaluated a battery of 7, ratio-scale, isometric tests with the aim of facilitating the development of evidence-based methods of classification. This study aimed to report sex-specific normal performance ranges, evaluate test–retest reliability, and evaluate the relationship between the measures and body mass. Body mass and strength measures were obtained from 118 participants—63 males and 55 females—ages 23.2 years ± 3.7 (mean ± SD). Seventeen participants completed the battery twice to evaluate test–retest reliability. The body mass–strength relationship was evaluated using Pearson correlations and allometric exponents. Conventional patterns of force production were observed. Reliability was acceptable (mean intraclass correlation = 0.85). Eight measures had moderate significant correlations with body size (r = 0.30–61). Allometric exponents were higher in males than in females (mean 0.99 vs 0.30). Results indicate that this comprehensive and parsimonious battery is an important methodological advance because it has psychometric properties critical for the development of evidence-based classification. Measures were interrelated with body size, indicating further research is required to determine whether raw measures require normalization in order to be validly applied in classification. PMID:25068950
Lawrason Hughes, Amy; Murray, Nicole; Valdez, Tulio A; Kelly, Raeanne; Kavanagh, Katherine
2014-01-01
National attention has focused on the importance of handoffs in medicine. Our practice during airway patient handoffs is to communicate a patient-specific emergency plan for airway reestablishment; patients who are not intubatable by standard means are at higher risk for failure. There is currently no standard classification system describing airway risk in tracheotomized patients. To introduce and assess the interrater reliability of a simple airway risk classification system, the Connecticut Airway Risk Evaluation (CARE) system. We created a novel classification system, the CARE system, based on ease of intubation and the need for ventilation: group 1, easily intubatable; group 2, intubatable with special equipment and/or maneuvers; group 3, not intubatable. A "v" was appended to any group number to indicate the need for mechanical ventilation. We performed a retrospective medical chart review of patients aged 0 to 18 years who were undergoing tracheotomy at our tertiary care pediatric hospital between January 2000 and April 2011. INTERVENTIONS Each patient's medical history, including airway disease and means of intubation, was reviewed by 4 raters. Patient airways were separately rated as CARE groups 1, 2, or 3, each group with or without a v appended, as appropriate, based on the available information. After the patients were assigned to an airway group by each of the 4 raters, the interrater reliability was calculated to determine the ease of use of the rating system. We identified complete data for 155 of 169 patients (92%), resulting in a total of 620 ratings. Based on the patient's ease of intubation, raters categorized tracheotomized patients into group 1 (70%, 432 of 620); group 2 (25%, 157 of 620); or group 3 (5%, 29 of 620), each with a v appended if appropriate. The interrater reliability was κ = 0.95. We propose an airway risk classification system for tracheotomized patients, CARE, that has high interrater reliability and is easy to use and interpret. As medical providers and national organizations place more focus on improvements in interprovider communication, the creation of an airway handoff tool is integral to improving patient safety and airway management strategies following tracheotomy complications.
Hawaii electric system reliability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva Monroy, Cesar Augusto; Loose, Verne William
2012-09-01
This report addresses Hawaii electric system reliability issues; greater emphasis is placed on short-term reliability but resource adequacy is reviewed in reference to electric consumers' views of reliability %E2%80%9Cworth%E2%80%9D and the reserve capacity required to deliver that value. The report begins with a description of the Hawaii electric system to the extent permitted by publicly available data. Electrical engineering literature in the area of electric reliability is researched and briefly reviewed. North American Electric Reliability Corporation standards and measures for generation and transmission are reviewed and identified as to their appropriateness for various portions of the electric grid and formore » application in Hawaii. Analysis of frequency data supplied by the State of Hawaii Public Utilities Commission is presented together with comparison and contrast of performance of each of the systems for two years, 2010 and 2011. Literature tracing the development of reliability economics is reviewed and referenced. A method is explained for integrating system cost with outage cost to determine the optimal resource adequacy given customers' views of the value contributed by reliable electric supply. The report concludes with findings and recommendations for reliability in the State of Hawaii.« less
Hawaii Electric System Reliability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loose, Verne William; Silva Monroy, Cesar Augusto
2012-08-01
This report addresses Hawaii electric system reliability issues; greater emphasis is placed on short-term reliability but resource adequacy is reviewed in reference to electric consumers’ views of reliability “worth” and the reserve capacity required to deliver that value. The report begins with a description of the Hawaii electric system to the extent permitted by publicly available data. Electrical engineering literature in the area of electric reliability is researched and briefly reviewed. North American Electric Reliability Corporation standards and measures for generation and transmission are reviewed and identified as to their appropriateness for various portions of the electric grid and formore » application in Hawaii. Analysis of frequency data supplied by the State of Hawaii Public Utilities Commission is presented together with comparison and contrast of performance of each of the systems for two years, 2010 and 2011. Literature tracing the development of reliability economics is reviewed and referenced. A method is explained for integrating system cost with outage cost to determine the optimal resource adequacy given customers’ views of the value contributed by reliable electric supply. The report concludes with findings and recommendations for reliability in the State of Hawaii.« less
NASA Astrophysics Data System (ADS)
Aggarwal, Anil Kr.; Kumar, Sanjeev; Singh, Vikram
2017-03-01
The binary states, i.e., success or failed state assumptions used in conventional reliability are inappropriate for reliability analysis of complex industrial systems due to lack of sufficient probabilistic information. For large complex systems, the uncertainty of each individual parameter enhances the uncertainty of the system reliability. In this paper, the concept of fuzzy reliability has been used for reliability analysis of the system, and the effect of coverage factor, failure and repair rates of subsystems on fuzzy availability for fault-tolerant crystallization system of sugar plant is analyzed. Mathematical modeling of the system is carried out using the mnemonic rule to derive Chapman-Kolmogorov differential equations. These governing differential equations are solved with Runge-Kutta fourth-order method.
Soft error evaluation and vulnerability analysis in Xilinx Zynq-7010 system-on chip
NASA Astrophysics Data System (ADS)
Du, Xuecheng; He, Chaohui; Liu, Shuhuan; Zhang, Yao; Li, Yonghong; Xiong, Ceng; Tan, Pengkang
2016-09-01
Radiation-induced soft errors are an increasingly important threat to the reliability of modern electronic systems. In order to evaluate system-on chip's reliability and soft error, the fault tree analysis method was used in this work. The system fault tree was constructed based on Xilinx Zynq-7010 All Programmable SoC. Moreover, the soft error rates of different components in Zynq-7010 SoC were tested by americium-241 alpha radiation source. Furthermore, some parameters that used to evaluate the system's reliability and safety were calculated using Isograph Reliability Workbench 11.0, such as failure rate, unavailability and mean time to failure (MTTF). According to fault tree analysis for system-on chip, the critical blocks and system reliability were evaluated through the qualitative and quantitative analysis.
Improving the reliability of automated non-destructive inspection
NASA Astrophysics Data System (ADS)
Brierley, N.; Tippetts, T.; Cawley, P.
2014-02-01
In automated NDE a region of an inspected component is often interrogated several times, be it within a single data channel, across multiple channels or over the course of repeated inspections. The systematic combination of these diverse readings is recognized to provide a means to improve the reliability of the inspection, for example by enabling noise suppression. Specifically, such data fusion makes it possible to declare regions of the component defect-free to a very high probability whilst readily identifying indications. Registration, aligning input datasets to a common coordinate system, is a critical pre-computation before meaningful data fusion takes place. A novel scheme based on a multiobjective optimization is described. The developed data fusion framework, that is able to identify and rate possible indications in the dataset probabilistically, based on local data statistics, is outlined. The process is demonstrated on large data sets from the industrial ultrasonic testing of aerospace turbine disks, with major improvements in the probability of detection and probability of false call being obtained.
Development of Passive Fuel Cell Thermal Management Technology
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.; Jakupca, Ian; Colozza, Anthony
2011-01-01
The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA exploration program. The passive thermal management system relies on heat conduction within the cooling plate to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack rather than using a pumped loop cooling system to convectively remove the heat. Using the passive approach eliminates the need for a coolant pump and other cooling loop components which reduces fuel cell system mass and improves overall system reliability. Previous analysis had identified that low density, ultra-high thermal conductivity materials would be needed for the cooling plates in order to achieve the desired reductions in mass and the highly uniform thermal heat sink for each cell within a fuel cell stack. A pyrolytic graphite material was identified and fabricated into a thin plate using different methods. Also a development project with Thermacore, Inc. resulted in a planar heat pipe. Thermal conductivity tests were done using these materials. The results indicated that lightweight passive fuel cell cooling is feasible.
[Signs and symptoms of autonomic dysfunction in dysphonic individuals].
Park, Kelly; Behlau, Mara
2011-01-01
To verify the occurrence of signs and symptoms of autonomic nervous system dysfunction in individuals with behavioral dysphonia, and to compare it with the results obtained by individuals without vocal complaints. Participants were 128 adult individuals with ages between 14 and 74 years, divided into two groups: behavioral dysphonia (61 subjects) and without vocal complaints (67 subjects). It was administered the Protocol of Autonomic Dysfunction, containing 46 questions: 22 related to the autonomic nervous system and had no direct relationship with voice, 16 related to both autonomic nervous system and voice, six non-relevant questions, and two reliability questions. There was a higher occurrence of reported neurovegetative signs in the group with behavioral dysphonia, in questions related to voice, such as frequent throat clearing, frequent swallowing need, fatigability when speaking, and sore throat. In questions not directly related to voice, dysphonic individuals presented greater occurrence of three out of 22 symptoms: gas, tinnitus and aerophagia. Both groups presented similar results in questions non-relevant to the autonomic nervous system. Reliability questions needed reformulation. Individuals with behavioral dysphonia present higher occurrence of neurovegetative signs and symptoms, particularly those with direct relationship with voice, indicating greater lability of the autonomic nervous system in these subjects.
NASA Astrophysics Data System (ADS)
Valtseva, A. I.; Bibik, I. S.
2017-11-01
This article discusses how the latest system of special water purification KPF-30, designed specifically for the fourth power unit of Beloyarskaya nuclear power plant, which has a number of advantages over other water purification systems as chemical-physical and technical-economic, environmental, and other industrial indicators. The scheme covered in this article systems of special water purification involves the use of a hydrocyclone at the preliminary stage of water treatment, as a worthy alternative to ion-exchange filters, which can significantly reduce the volume of toxic waste. The world community implements the project of closing the nuclear fuel cycle, there is a need to improve the reliability of the equipment for safe processes and development of critical and supercritical parameters in the nuclear industry. Essentially, on operated NPP units, the only factor that can cost-effectively optimize to improve the reliability of equipment is the water chemistry. System KPF30 meets the principles and criteria of ecological safety, demonstrating the justification for reagent less method of water treatment on the main stages, in which no formation of toxic wastes, leading to irreversible consequences of environmental pollution and helps to conserve water.
Bahrdt, C; Krech, A B; Wurz, A; Wulff, D
2010-03-01
For years, an increasing number and diversity of genetically modified plants has been grown on a commercial scale. The need for detection and identification of these genetically modified organisms (GMOs) calls for broad and at the same time flexible high throughput testing methods. Here we describe the development and validation of a hexaplex real-time polymerase chain reaction (PCR) screening assay covering more than 100 approved GMOs containing at least one of the GMO targets of the assay. The assay comprises detection systems for Cauliflower Mosaic Virus 35S promoter, Agrobacterium tumefaciens NOS terminator, Figwort Mosaic Virus 34S promoter and two construct-specific sequences present in novel genetically modified soybean and maize that lack common screening elements. Additionally a detection system for an internal positive control (IPC) indicating the presence or absence of PCR inhibiting substances was included. The six real-time PCR systems were allocated to five detection channels showing no significant crosstalk between the detection channels. As part of an extensive validation, a limit of detection (LOD(abs)) < or = ten target copies was proven in hexaplex format. A sensitivity < or = ten target copies of each GMO detection system was still shown in highly asymmetric target situations in the presence of 1,000 copies of all other GMO targets of each detection channel. Furthermore, the applicability to a broad sample spectrum and reliable indication of inhibition by the IPC system was demonstrated. The presented hexaplex assay offers sensitive and reliable detection of GMOs in processed and unprocessed food, feed and seed samples with high efficiency.
NASA Astrophysics Data System (ADS)
Szeląg, Bartosz; Barbusiński, Krzysztof; Studziński, Jan; Bartkiewicz, Lidia
2017-11-01
In the study, models developed using data mining methods are proposed for predicting wastewater quality indicators: biochemical and chemical oxygen demand, total suspended solids, total nitrogen and total phosphorus at the inflow to wastewater treatment plant (WWTP). The models are based on values measured in previous time steps and daily wastewater inflows. Also, independent prediction systems that can be used in case of monitoring devices malfunction are provided. Models of wastewater quality indicators were developed using MARS (multivariate adaptive regression spline) method, artificial neural networks (ANN) of the multilayer perceptron type combined with the classification model (SOM) and cascade neural networks (CNN). The lowest values of absolute and relative errors were obtained using ANN+SOM, whereas the MARS method produced the highest error values. It was shown that for the analysed WWTP it is possible to obtain continuous prediction of selected wastewater quality indicators using the two developed independent prediction systems. Such models can ensure reliable WWTP work when wastewater quality monitoring systems become inoperable, or are under maintenance.
Evaluation of submarine strain-gage systems for monitoring coastal sediment migration
NASA Technical Reports Server (NTRS)
Shideler, G. L.; Mcgrath, D. G.
1973-01-01
Single and multiple strain-gage systems were respectively evaluated as in situ point and areal sensors for monitoring sand-height variations in coastal environments. Static loading tests indicate that gage response pressure is linear for sand heights up to 24 inches. Response pressures are a function of both sand height and aggregate density, with density being influenced by both sediment texture and degree of compaction. Poorer sediment sorting and greater compaction result in higher response pressures. Field tests in a beach foreshore environment indicate that the gage systems are effective qualitative instruments for monitoring long-period migration trends of beach sediments; whereas, short-period responses are not sufficiently reliable. The durability and compactness of the gage systems must be substantially increased for effective field operations. It is recommended that the systems' qualitative potentials be further developed, whereas their development as quantitative instruments be terminated. Further development should emphasize the construction of remote recording systems designed for semipermanent installation.
The reusable launch vehicle technology program
NASA Astrophysics Data System (ADS)
Cook, S.
Today's launch systems have major shortcomings that will increase in significance in the future, and thus are principal drivers for seeking major improvements in space transportation. They are too costly; insufficiently reliable, safe, and operable; and increasingly losing market share to international competition. For the United States to continue its leadership in the human exploration and wide ranging utilization of space, the first order of business must be to achieve low cost, reliable transportatin to Earth orbit. NASA's Access to Space Study, in 1993, recommended the development of a fully reusable single-stage-to-orbit (SSTO) rocket vehicle as an Agency goal. The goal of the Reusable Launch Vehicle (RLV) technology program is to mature the technologies essential for a next-generation reusable launch system capable of reliably serving National space transportation needs at substantially reduced costs. The primary objectives of the RLV technology program are to (1) mature the technologies required for the next-generation system, (2) demonstrate the capability to achieve low development and operational cost, and rapid launch turnaround times and (3) reduce business and technical risks to encourage significant private investment in the commercial development and operation of the next-generation system. Developing and demonstrating the technologies required for a Single Stage to Orbit (SSTO) rocket is a focus of the program becuase past studies indicate that it has the best potential for achieving the lowest space access cost while acting as an RLV technology driver (since it also encompasses the technology requirements of reusable rocket vehicles in general).
Fuzzy probabilistic design of water distribution networks
NASA Astrophysics Data System (ADS)
Fu, Guangtao; Kapelan, Zoran
2011-05-01
The primary aim of this paper is to present a fuzzy probabilistic approach for optimal design and rehabilitation of water distribution systems, combining aleatoric and epistemic uncertainties in a unified framework. The randomness and imprecision in future water consumption are characterized using fuzzy random variables whose realizations are not real but fuzzy numbers, and the nodal head requirements are represented by fuzzy sets, reflecting the imprecision in customers' requirements. The optimal design problem is formulated as a two-objective optimization problem, with minimization of total design cost and maximization of system performance as objectives. The system performance is measured by the fuzzy random reliability, defined as the probability that the fuzzy head requirements are satisfied across all network nodes. The satisfactory degree is represented by necessity measure or belief measure in the sense of the Dempster-Shafer theory of evidence. An efficient algorithm is proposed, within a Monte Carlo procedure, to calculate the fuzzy random system reliability and is effectively combined with the nondominated sorting genetic algorithm II (NSGAII) to derive the Pareto optimal design solutions. The newly proposed methodology is demonstrated with two case studies: the New York tunnels network and Hanoi network. The results from both cases indicate that the new methodology can effectively accommodate and handle various aleatoric and epistemic uncertainty sources arising from the design process and can provide optimal design solutions that are not only cost-effective but also have higher reliability to cope with severe future uncertainties.
The reusable launch vehicle technology program
NASA Technical Reports Server (NTRS)
Cook, S.
1995-01-01
Today's launch systems have major shortcomings that will increase in significance in the future, and thus are principal drivers for seeking major improvements in space transportation. They are too costly; insufficiently reliable, safe, and operable; and increasingly losing market share to international competition. For the United States to continue its leadership in the human exploration and wide ranging utilization of space, the first order of business must be to achieve low cost, reliable transportatin to Earth orbit. NASA's Access to Space Study, in 1993, recommended the development of a fully reusable single-stage-to-orbit (SSTO) rocket vehicle as an Agency goal. The goal of the Reusable Launch Vehicle (RLV) technology program is to mature the technologies essential for a next-generation reusable launch system capable of reliably serving National space transportation needs at substantially reduced costs. The primary objectives of the RLV technology program are to (1) mature the technologies required for the next-generation system, (2) demonstrate the capability to achieve low development and operational cost, and rapid launch turnaround times and (3) reduce business and technical risks to encourage significant private investment in the commercial development and operation of the next-generation system. Developing and demonstrating the technologies required for a Single Stage to Orbit (SSTO) rocket is a focus of the program becuase past studies indicate that it has the best potential for achieving the lowest space access cost while acting as an RLV technology driver (since it also encompasses the technology requirements of reusable rocket vehicles in general).
The reliability-quality relationship for quality systems and quality risk management.
Claycamp, H Gregg; Rahaman, Faiad; Urban, Jason M
2012-01-01
Engineering reliability typically refers to the probability that a system, or any of its components, will perform a required function for a stated period of time and under specified operating conditions. As such, reliability is inextricably linked with time-dependent quality concepts, such as maintaining a state of control and predicting the chances of losses from failures for quality risk management. Two popular current good manufacturing practice (cGMP) and quality risk management tools, failure mode and effects analysis (FMEA) and root cause analysis (RCA) are examples of engineering reliability evaluations that link reliability with quality and risk. Current concepts in pharmaceutical quality and quality management systems call for more predictive systems for maintaining quality; yet, the current pharmaceutical manufacturing literature and guidelines are curiously silent on engineering quality. This commentary discusses the meaning of engineering reliability while linking the concept to quality systems and quality risk management. The essay also discusses the difference between engineering reliability and statistical (assay) reliability. The assurance of quality in a pharmaceutical product is no longer measured only "after the fact" of manufacturing. Rather, concepts of quality systems and quality risk management call for designing quality assurance into all stages of the pharmaceutical product life cycle. Interestingly, most assays for quality are essentially static and inform product quality over the life cycle only by being repeated over time. Engineering process reliability is the fundamental concept that is meant to anticipate quality failures over the life cycle of the product. Reliability is a well-developed theory and practice for other types of manufactured products and manufacturing processes. Thus, it is well known to be an appropriate index of manufactured product quality. This essay discusses the meaning of reliability and its linkages with quality systems and quality risk management.
Reliability of temporal summation and diffuse noxious inhibitory control
Cathcart, Stuart; Winefield, Anthony H; Rolan, Paul; Lushington, Kurt
2009-01-01
BACKGROUND: The test-retest reliability of temporal summation (TS) and diffuse noxious inhibitory control (DNIC) has not been reported to date. Establishing such reliability would support the possibility of future experimental studies examining factors affecting TS and DNIC. Similarly, the use of manual algometry to induce TS, or an occlusion cuff to induce DNIC of TS to mechanical stimuli, has not been reported to date. Such devices may offer a simpler method than current techniques for inducing TS and DNIC, affording assessment at more anatomical locations and in more varied research settings. METHOD: The present study assessed the test-retest reliability of TS and DNIC using the above techniques. Sex differences on these measures were also investigated. RESULTS: Repeated measures ANOVA indicated successful induction of TS and DNIC, with no significant differences across test-retest occasions. Sex effects were not significant for any measure or interaction. Intraclass correlations indicated high test-retest reliability for all measures; however, there was large interindividual variation between test and retest measurements. CONCLUSION: The present results indicate acceptable within-session test-retest reliability of TS and DNIC. The results support the possibility of future experimental studies examining factors affecting TS and DNIC. PMID:20011713
Kayser, Georgia L.; Moriarty, Patrick; Fonseca, Catarina; Bartram, Jamie
2013-01-01
Monitoring of water services informs policy and planning for national governments and the international community. Currently, the international monitoring system measures the type of drinking water source that households use. There have been calls for improved monitoring systems over several decades, some advocating use of multiple indicators. We review the literature on water service indicators and frameworks with a view to informing debate on their relevance to national and international monitoring. We describe the evidence concerning the relevance of each identified indicator to public health, economic development and human rights. We analyze the benefits and challenges of using these indicators separately and combined in an index as tools for planning, monitoring, and evaluating water services. We find substantial evidence on the importance of each commonly recommended indicator—service type, safety, quantity, accessibility, reliability or continuity of service, equity, and affordability. Several frameworks have been proposed that give structure to the relationships among individual indicators and some combine multiple indicator scores into a single index but few have been rigorously tested. More research is needed to understand if employing a composite metric of indicators is advantageous and how each indicator might be scored and scaled. PMID:24157507
[Validation and adhesion to GESIDA quality indicators in patients with HIV infection].
Riera, Melchor; Esteban, Herminia; Suarez, Ignacio; Palacios, Rosario; Lozano, Fernando; Blanco, Jose R; Valencia, Eulalia; Ocampo, Antonio; Amador, Concha; Frontera, Guillem; vonWichmann-de Miguel, Miguel Angel
2016-01-01
The objective of the study is to validate the relevant GESIDA quality indicators for HIV infection, assessing the reliability, feasibility and adherence to them. The reliability was evaluated using the reproducibility of 6 indicators in peer review, with the second observer being an outsider. The feasibility and measurement of the level of adherence to the 22 indicators was conducted with annual fragmented retrospective collection of information from specific databases or the clinical charts of the nine participating hospitals. Reliability was very high, with interobserver agreement levels higher than 95% in 5 of the 6 indicators. The median time to achieve the indicators ranged between 5 and 600minutes, but could be achieved progressively from specific databases, enabling obtaining them automatically. As regards adherence to the indicators related with the initial evaluation of the patients, instructions and suitability of the guidelines for ART, adherence to ART, follow-up in clinics, and achieve an undetectable HIV by PCR at week 48 of the ART. Indicators of quality related to the prevention of opportunistic infections and control of comorbidities, the standards set were not achieved, and significant heterogeneity was observed between hospitals. The GESIDA quality indicators of HIV infection enabled the relevant indicators to be feasibly and reliably measured, and should be collected in all the units that care for patients with HIV infection. Copyright © 2015 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.
A Passive System Reliability Analysis for a Station Blackout
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunett, Acacia; Bucknor, Matthew; Grabaskas, David
2015-05-03
The latest iterations of advanced reactor designs have included increased reliance on passive safety systems to maintain plant integrity during unplanned sequences. While these systems are advantageous in reducing the reliance on human intervention and availability of power, the phenomenological foundations on which these systems are built require a novel approach to a reliability assessment. Passive systems possess the unique ability to fail functionally without failing physically, a result of their explicit dependency on existing boundary conditions that drive their operating mode and capacity. Argonne National Laboratory is performing ongoing analyses that demonstrate various methodologies for the characterization of passivemore » system reliability within a probabilistic framework. Two reliability analysis techniques are utilized in this work. The first approach, the Reliability Method for Passive Systems, provides a mechanistic technique employing deterministic models and conventional static event trees. The second approach, a simulation-based technique, utilizes discrete dynamic event trees to treat time- dependent phenomena during scenario evolution. For this demonstration analysis, both reliability assessment techniques are used to analyze an extended station blackout in a pool-type sodium fast reactor (SFR) coupled with a reactor cavity cooling system (RCCS). This work demonstrates the entire process of a passive system reliability analysis, including identification of important parameters and failure metrics, treatment of uncertainties and analysis of results.« less
NASA Technical Reports Server (NTRS)
Wilkes, R. L.; Kennedy, R. S.; Dunlap, W. P.; Lane, N. E.
1986-01-01
A need exists for an automated performance test system to study drugs, agents, treatments, and stresses of interest to the aviation, space, and environmental medical community. The purpose of this present study is to evaluate tests for inclusion in the NASA-sponsored Automated Performance Test System (APTS). Twenty-one subjects were tested over 10 replications with tests previously identified as good candidates for repeated-measure research. The tests were concurrently administered in paper-and-pencil and microcomputer modes. Performance scores for the two modes were compared. Data from trials 1 to 10 were examined for indications of test stability and reliability. Nine of the ten APT system tests achieved stability. Reliabilities were generally high. Cross-correlation of microbased tests with traditional paper-and-pencil versions revealed similarity of content within tests in the different modes, and implied at least three cognition and two motor factors. This protable, inexpensive, rugged, computerized battery of tests is recommended for use in repeated-measures studies of environmental and drug effects on performance. Identification of other tests compatible with microcomputer testing and potentially capable of tapping previously unidentified factors is recommended. Documentation of APTS sensitivity to environmental agents is available for more than a dozen facilities and is reported briefly. Continuation of such validation remains critical in establishing the efficacy of APTS tests.
NASA Astrophysics Data System (ADS)
Forbes, Kevin F.; St. Cyr, O. C.
2017-10-01
This paper addresses whether geomagnetic activity challenged the reliability of the electric power system during part of the declining phase of solar cycle 23. Operations by National Grid in England and Wales are examined over the period of 11 March 2003 through 31 March 2005. This paper examines the relationship between measures of geomagnetic activity and a metric of challenged electric power reliability known as the net imbalance volume (NIV). Measured in megawatt hours, NIV represents the sum of all energy deployments initiated by the system operator to balance the electric power system. The relationship between geomagnetic activity and NIV is assessed using a multivariate econometric model. The model was estimated using half-hour settlement data over the period of 11 March 2003 through 31 December 2004. The results indicate that geomagnetic activity had a demonstrable effect on NIV over the sample period. Based on the parameter estimates, out-of-sample predictions of NIV were generated for each half hour over the period of 1 January to 31 March 2005. Consistent with the existence of a causal relationship between geomagnetic activity and the electricity market imbalance, the root-mean-square error of the out-of-sample predictions of NIV is smaller; that is, the predictions are more accurate, when the statistically significant estimated effects of geomagnetic activity are included as drivers in the predictions.
Bru, Juan; Berger, Christopher A
2012-01-01
Background Point-of-care electronic medical records (EMRs) are a key tool to manage chronic illness. Several EMRs have been developed for use in treating HIV and tuberculosis, but their applicability to primary care, technical requirements and clinical functionalities are largely unknown. Objectives This study aimed to address the needs of clinicians from resource-limited settings without reliable internet access who are considering adopting an open-source EMR. Study eligibility criteria Open-source point-of-care EMRs suitable for use in areas without reliable internet access. Study appraisal and synthesis methods The authors conducted a comprehensive search of all open-source EMRs suitable for sites without reliable internet access. The authors surveyed clinician users and technical implementers from a single site and technical developers of each software product. The authors evaluated availability, cost and technical requirements. Results The hardware and software for all six systems is easily available, but they vary considerably in proprietary components, installation requirements and customisability. Limitations This study relied solely on self-report from informants who developed and who actively use the included products. Conclusions and implications of key findings Clinical functionalities vary greatly among the systems, and none of the systems yet meet minimum requirements for effective implementation in a primary care resource-limited setting. The safe prescribing of medications is a particular concern with current tools. The dearth of fully functional EMR systems indicates a need for a greater emphasis by global funding agencies to move beyond disease-specific EMR systems and develop a universal open-source health informatics platform. PMID:22763661
Crezee, J; van der Koijk, J F; Kaatee, R S; Lagendijk, J J
1997-04-01
The 27 MHz Multi Electrode Current Source (MECS) interstitial hyperthermia system uses segmented electrodes, 10-20 mm long, to steer the 3D power deposition. This power control at a scale of 1-2 cm requires detailed and accurate temperature feedback data. To this end seven-point thermocouples are integrated into the probes. The aim of this work was to evaluate the feasibility and reliability of integrated thermometry in the 27 MHz MECS system, with special attention to the interference between electrode and thermometry and its effect on system performance. We investigated the impact of a seven-sensor thermocouple probe (outer diameter 150 microns) on the apparent impedance and power output of a 20 mm dual electrode (O.D. 1.5 mm) in a polyethylene catheter in a muscle equivalent medium (sigma 1 = 0.6 S m-1). The cross coupling between electrode and thermocouple was found to be small (1-2 pF) and to cause no problems in the dual-electrode mode, and only minimal problems in the single-electrode mode. Power loss into the thermometry system can be prevented using simple filters. The temperature readings are reliable and representative of the actual tissue temperature around the electrode. Self-heating effects, occurring in some catheter materials, are eliminated by sampling the temperature after a short power-off interval. We conclude that integrated thermocouple thermometry is compatible with 27 MHz capacitively coupled interstitial hyperthermia. The performance of the system is not affected and the temperatures measured are a reliable indication of the maximum tissue temperatures.
40 CFR 75.42 - Reliability criteria.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Reliability criteria. 75.42 Section 75...) CONTINUOUS EMISSION MONITORING Alternative Monitoring Systems § 75.42 Reliability criteria. To demonstrate reliability equal to or better than the continuous emission monitoring system, the owner or operator shall...
Integrating Reliability Analysis with a Performance Tool
NASA Technical Reports Server (NTRS)
Nicol, David M.; Palumbo, Daniel L.; Ulrey, Michael
1995-01-01
A large number of commercial simulation tools support performance oriented studies of complex computer and communication systems. Reliability of these systems, when desired, must be obtained by remodeling the system in a different tool. This has obvious drawbacks: (1) substantial extra effort is required to create the reliability model; (2) through modeling error the reliability model may not reflect precisely the same system as the performance model; (3) as the performance model evolves one must continuously reevaluate the validity of assumptions made in that model. In this paper we describe an approach, and a tool that implements this approach, for integrating a reliability analysis engine into a production quality simulation based performance modeling tool, and for modeling within such an integrated tool. The integrated tool allows one to use the same modeling formalisms to conduct both performance and reliability studies. We describe how the reliability analysis engine is integrated into the performance tool, describe the extensions made to the performance tool to support the reliability analysis, and consider the tool's performance.
Reliability and cost/worth evaluation of generating systems utilizing wind and solar energy
NASA Astrophysics Data System (ADS)
Bagen
The utilization of renewable energy resources such as wind and solar energy for electric power supply has received considerable attention in recent years due to adverse environmental impacts and fuel cost escalation associated with conventional generation. At the present time, wind and/or solar energy sources are utilized to generate electric power in many applications. Wind and solar energy will become important sources for power generation in the future because of their environmental, social and economic benefits, together with public support and government incentives. The wind and sunlight are, however, unstable and variable energy sources, and behave far differently than conventional sources. Energy storage systems are, therefore, often required to smooth the fluctuating nature of the energy conversion system especially in small isolated applications. The research work presented in this thesis is focused on the development and application of reliability and economic benefits assessment associated with incorporating wind energy, solar energy and energy storage in power generating systems. A probabilistic approach using sequential Monte Carlo simulation was employed in this research and a number of analyses were conducted with regards to the adequacy and economic assessment of generation systems containing wind energy, solar energy and energy storage. The evaluation models and techniques incorporate risk index distributions and different operating strategies associated with diesel generation in small isolated systems. Deterministic and probabilistic techniques are combined in this thesis using a system well-being approach to provide useful adequacy indices for small isolated systems that include renewable energy and energy storage. The concepts presented and examples illustrated in this thesis will help power system planners and utility managers to assess the reliability and economic benefits of utilizing wind energy conversion systems, solar energy conversion systems and energy storage in electric power systems and provide useful input to the managerial decision process.
NASA Technical Reports Server (NTRS)
Motyka, P.
1983-01-01
A methodology for quantitatively analyzing the reliability of redundant avionics systems, in general, and the dual, separated Redundant Strapdown Inertial Measurement Unit (RSDIMU), in particular, is presented. The RSDIMU is described and a candidate failure detection and isolation system presented. A Markov reliability model is employed. The operational states of the system are defined and the single-step state transition diagrams discussed. Graphical results, showing the impact of major system parameters on the reliability of the RSDIMU system, are presented and discussed.
Reliability issues of free-space communications systems and networks
NASA Astrophysics Data System (ADS)
Willebrand, Heinz A.
2003-04-01
Free space optics (FSO) is a high-speed point-to-point connectivity solution traditionally used in the enterprise campus networking market for building-to-building LAN connectivity. However, more recently some wire line and wireless carriers started to deploy FSO systems in their networks. The requirements on FSO system reliability, meaing both system availability and component reliability, are far more stringent in the carrier market when compared to the requirements in the enterprise market segment. This paper tries to outline some of the aspects that are important to ensure carrier class system reliability.
Advanced reliability modeling of fault-tolerant computer-based systems
NASA Technical Reports Server (NTRS)
Bavuso, S. J.
1982-01-01
Two methodologies for the reliability assessment of fault tolerant digital computer based systems are discussed. The computer-aided reliability estimation 3 (CARE 3) and gate logic software simulation (GLOSS) are assessment technologies that were developed to mitigate a serious weakness in the design and evaluation process of ultrareliable digital systems. The weak link is based on the unavailability of a sufficiently powerful modeling technique for comparing the stochastic attributes of one system against others. Some of the more interesting attributes are reliability, system survival, safety, and mission success.
Methodology for Software Reliability Prediction. Volume 1.
1987-11-01
SPACECRAFT 0 MANNED SPACECRAFT B ATCH SYSTEM AIRBORNE AVIONICS 0 UNMANNED EVENT C014TROL a REAL TIME CLOSED 0 UNMANNED SPACECRAFT LOOP OPERATINS SPACECRAFT...software reliability. A Software Reliability Measurement Framework was established which spans the life cycle of a software system and includes the...specification, prediction, estimation, and assessment of software reliability. Data from 59 systems , representing over 5 million lines of code, were
Life cycle assessment of overhead and underground primary power distribution.
Bumby, Sarah; Druzhinina, Ekaterina; Feraldi, Rebe; Werthmann, Danae; Geyer, Roland; Sahl, Jack
2010-07-15
Electrical power can be distributed in overhead or underground systems, both of which generate a variety of environmental impacts at all stages of their life cycles. While there is considerable literature discussing the trade-offs between both systems in terms of aesthetics, safety, cost, and reliability, environmental assessments are relatively rare and limited to power cable production and end-of-life management. This paper assesses environmental impacts from overhead and underground medium voltage power distribution systems as they are currently built and managed by Southern California Edison (SCE). It uses process-based life cycle assessment (LCA) according to ISO 14044 (2006) and SCE-specific primary data to the extent possible. Potential environmental impacts have been calculated using a wide range of midpoint indicators, and robustness of the results has been investigated through sensitivity analysis of the most uncertain and potentially significant parameters. The studied underground system has higher environmental impacts in all indicators and for all parameter values, mostly due to its higher material intensity. For both systems and all indicators the majority of impact occurs during cable production. Promising strategies for impact reduction are thus cable failure rate reduction for overhead and cable lifetime extension for underground systems.
Pocket Handbook on Reliability
1975-09-01
exponencial distributions Weibull distribution, -xtimating reliability, confidence intervals, relia- bility growth, 0. P- curves, Bayesian analysis. 20 A S...introduction for those not familiar with reliability and a good refresher for those who are currently working in the area. LEWIS NERI, CHIEF...includes one or both of the following objectives: a) prediction of the current system reliability, b) projection on the system reliability for someI future
Allen, Brian; Tussey, Chriscelyn
2012-04-01
Clinical observations have suggested that children who experience physical or sexual abuse may provide indicators in their drawings that can distinguish them from nonabused children. Some have even suggested that a child's drawings and the interpretive testimony of a trained mental health clinician should be admissible in court as evidence of a child's abuse status. Many of these comments, however, may reflect a limited consideration of the available research. The current article provides a comprehensive literature review of the controlled research to determine whether any graphic indicators (e.g., genitalia, omission of body parts) or predefined scoring system can reliability and validly discriminate abused from nonabused children. Results indicate that, although individual studies have found support for various indicators or scoring systems, these results are rarely replicated, many times studies finding significant results suffer from serious methodological flaws and alternative explanations for findings (e.g., mental illness) are often present. No graphic indicator or scoring system possessed sufficient empirical evidence to support its use for identifying sexual or physical abuse. A discussion of the legal ramifications of these results is provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gemmell, H.A.; Jacobson, B.H.; Edwards, S.W.
Twenty subjects (6 male, 14 female) with low back pain were examined by two experienced and licensed chiropractic doctors (E1 and E2). Both examiners examined the patients using a Toftness Electromagnetic Radiation Receiver (EMRR) and by manual palpation (MP) of the spinous processes. Interexaminer reliability was calculated at three sites (L3, L4, L5) for the following combinations: (a) E1,MP--E2,MP; (b) E1,EMRR--E2,EMRR; (c) E1,MP--E2,EMRR; and (d) E2,MP--E1,EMRR, and intraexaminer reliability was calculated for the following variables: (e) E1,MP--E1,EMRR; and (f) E2,MP--E2,EMRR. Results of a Kappa coefficient analysis for interexaminer reliability of the stated combinations and at the specific sites were: (a)more » -0.071, 0.400, 0.200; (b) -0.013, 0.100, -0.120; (c) 0.286, 0.300, 0.200; (d) -0.081, 0.000, 0.048. These results predominantly indicate a poor to fair interexaminer reliability. The results of a Kappa coefficient analysis for intraexaminer reliability of the stated combinations were: (e) 0.111, 0.400, 0.737; (f) 0.000, 0.100, 0.368. These results indicate a poor to fair reliability. It was concluded that in subjects with low back pain the EMRR may not be a reliable indicator of spinal joint dysfunction.« less
GenSeq: An updated nomenclature and ranking for genetic sequences from type and non-type sources
Chakrabarty, Prosanta; Warren, Melanie; Page, Lawrence M.; Baldwin, Carole C.
2013-01-01
Abstract An improved and expanded nomenclature for genetic sequences is introduced that corresponds with a ranking of the reliability of the taxonomic identification of the source specimens. This nomenclature is an advancement of the “Genetypes” naming system, which some have been reluctant to adopt because of the use of the “type” suffix in the terminology. In the new nomenclature, genetic sequences are labeled “genseq,” followed by a reliability ranking (e.g., 1 if the sequence is from a primary type), followed by the name of the genes from which the sequences were derived (e.g., genseq-1 16S, COI). The numbered suffix provides an indication of the likely reliability of taxonomic identification of the voucher. Included in this ranking system, in descending order of taxonomic reliability, are the following: sequences from primary types – “genseq-1,” secondary types – “genseq-2,” collection-vouchered topotypes – “genseq-3,” collection-vouchered non-types – “genseq-4,” and non-types that lack specimen vouchers but have photo vouchers – “genseq-5.” To demonstrate use of the new nomenclature, we review recently published new-species descriptions in the ichthyological literature that include DNA data and apply the GenSeq nomenclature to sequences referenced in those publications. We encourage authors to adopt the GenSeq nomenclature (note capital “G” and “S” when referring to the nomenclatural program) to provide a searchable tag (e.g., “genseq”; note lowercase “g” and “s” when referring to sequences) for genetic sequences from types and other vouchered specimens. Use of the new nomenclature and ranking system will improve integration of molecular phylogenetics and biological taxonomy and enhance the ability of researchers to assess the reliability of sequence data. We further encourage authors to update sequence information on databases such as GenBank whenever nomenclatural changes are made. PMID:24223486
Reliability and maintainability assessment factors for reliable fault-tolerant systems
NASA Technical Reports Server (NTRS)
Bavuso, S. J.
1984-01-01
A long term goal of the NASA Langley Research Center is the development of a reliability assessment methodology of sufficient power to enable the credible comparison of the stochastic attributes of one ultrareliable system design against others. This methodology, developed over a 10 year period, is a combined analytic and simulative technique. An analytic component is the Computer Aided Reliability Estimation capability, third generation, or simply CARE III. A simulative component is the Gate Logic Software Simulator capability, or GLOSS. The numerous factors that potentially have a degrading effect on system reliability and the ways in which these factors that are peculiar to highly reliable fault tolerant systems are accounted for in credible reliability assessments. Also presented are the modeling difficulties that result from their inclusion and the ways in which CARE III and GLOSS mitigate the intractability of the heretofore unworkable mathematics.
NASA Astrophysics Data System (ADS)
Vainshtein, Igor; Baruch, Shlomi; Regev, Itai; Segal, Victor; Filis, Avishai; Riabzev, Sergey
2018-05-01
The growing demand for EO applications that work around the clock 24hr/7days a week, such as in border surveillance systems, emphasizes the need for a highly reliable cryocooler having increased operational availability and optimized system's Integrated Logistic Support (ILS). In order to meet this need, RICOR developed linear and rotary cryocoolers which achieved successfully this goal. Cryocoolers MTTF was analyzed by theoretical reliability evaluation methods, demonstrated by normal and accelerated life tests at Cryocooler level and finally verified by field data analysis derived from Cryocoolers operating at system level. The following paper reviews theoretical reliability analysis methods together with analyzing reliability test results derived from standard and accelerated life demonstration tests performed at Ricor's advanced reliability laboratory. As a summary for the work process, reliability verification data will be presented as a feedback from fielded systems.
Mamo, Dereje; Hazel, Elizabeth; Lemma, Israel; Guenther, Tanya; Bekele, Abeba; Demeke, Berhanu
2014-10-01
Program managers require feasible, timely, reliable, and valid measures of iCCM implementation to identify problems and assess progress. The global iCCM Task Force developed benchmark indicators to guide implementers to develop or improve monitoring and evaluation (M&E) systems. To assesses Ethiopia's iCCM M&E system by determining the availability and feasibility of the iCCM benchmark indicators. We conducted a desk review of iCCM policy documents, monitoring tools, survey reports, and other rele- vant documents; and key informant interviews with government and implementing partners involved in iCCM scale-up and M&E. Currently, Ethiopia collects data to inform most (70% [33/47]) iCCM benchmark indicators, and modest extra effort could boost this to 83% (39/47). Eight (17%) are not available given the current system. Most benchmark indicators that track coordination and policy, human resources, service delivery and referral, supervision, and quality assurance are available through the routine monitoring systems or periodic surveys. Indicators for supply chain management are less available due to limited consumption data and a weak link with treatment data. Little information is available on iCCM costs. Benchmark indicators can detail the status of iCCM implementation; however, some indicators may not fit country priorities, and others may be difficult to collect. The government of Ethiopia and partners should review and prioritize the benchmark indicators to determine which should be included in the routine M&E system, especially since iCCMdata are being reviewed for addition to the HMIS. Moreover, the Health Extension Worker's reporting burden can be minimized by an integrated reporting approach.
Kepler, Christopher K; Vaccaro, Alexander R; Koerner, John D; Dvorak, Marcel F; Kandziora, Frank; Rajasekaran, Shanmuganathan; Aarabi, Bizhan; Vialle, Luiz R; Fehlings, Michael G; Schroeder, Gregory D; Reinhold, Maximilian; Schnake, Klaus John; Bellabarba, Carlo; Cumhur Öner, F
2016-04-01
The aims of this study were (1) to demonstrate the AOSpine thoracolumbar spine injury classification system can be reliably applied by an international group of surgeons and (2) to delineate those injury types which are difficult for spine surgeons to classify reliably. A previously described classification system of thoracolumbar injuries which consists of a morphologic classification of the fracture, a grading system for the neurologic status and relevant patient-specific modifiers was applied to 25 cases by 100 spinal surgeons from across the world twice independently, in grading sessions 1 month apart. The results were analyzed for classification reliability using the Kappa coefficient (κ). The overall Kappa coefficient for all cases was 0.56, which represents moderate reliability. Kappa values describing interobserver agreement were 0.80 for type A injuries, 0.68 for type B injuries and 0.72 for type C injuries, all representing substantial reliability. The lowest level of agreement for specific subtypes was for fracture subtype A4 (Kappa = 0.19). Intraobserver analysis demonstrated overall average Kappa statistic for subtype grading of 0.68 also representing substantial reproducibility. In a worldwide sample of spinal surgeons without previous exposure to the recently described AOSpine Thoracolumbar Spine Injury Classification System, we demonstrated moderate interobserver and substantial intraobserver reliability. These results suggest that most spine surgeons can reliably apply this system to spine trauma patients as or more reliably than previously described systems.
Integrated performance and reliability specification for digital avionics systems
NASA Technical Reports Server (NTRS)
Brehm, Eric W.; Goettge, Robert T.
1995-01-01
This paper describes an automated tool for performance and reliability assessment of digital avionics systems, called the Automated Design Tool Set (ADTS). ADTS is based on an integrated approach to design assessment that unifies traditional performance and reliability views of system designs, and that addresses interdependencies between performance and reliability behavior via exchange of parameters and result between mathematical models of each type. A multi-layer tool set architecture has been developed for ADTS that separates the concerns of system specification, model generation, and model solution. Performance and reliability models are generated automatically as a function of candidate system designs, and model results are expressed within the system specification. The layered approach helps deal with the inherent complexity of the design assessment process, and preserves long-term flexibility to accommodate a wide range of models and solution techniques within the tool set structure. ADTS research and development to date has focused on development of a language for specification of system designs as a basis for performance and reliability evaluation. A model generation and solution framework has also been developed for ADTS, that will ultimately encompass an integrated set of analytic and simulated based techniques for performance, reliability, and combined design assessment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, S.M.; Boccio, J.L.; Karimian, S.
1986-01-01
In this paper, a trial application of reliability technology to the emergency diesel generator system at the Trojan Nuclear Power Plant is presented. An approach for formulating a reliability program plan for this system is being developed. The trial application has shown that a reliability program process, using risk- and reliability-based techniques, can be interwoven into current plant operational activities to help in controlling, analyzing, and predicting faults that can challenge safety systems. With the cooperation of the utility, Portland General Electric Co., this reliability program can eventually be implemented at Trojan to track its effectiveness.
Validation of heart and lung teleauscultation on an Internet-based system.
Fragasso, Gabriele; De Benedictis, Marialuisa; Palloshi, Altin; Moltrasio, Marco; Cappelletti, Alberto; Carlino, Mauro; Marchisi, Angelo; Pala, Mariagrazia; Alfieri, Ottavio; Margonato, Alberto
2003-11-01
The feasibility and accuracy of an Internet-based system for teleauscultation was evaluated in 103 cardiac patients, who were auscultated by the same cardiologist with a conventional stethoscope and with an Internet-based method, using an electronic stethoscope and transmitting heart and lung sounds between computer work stations. In 92% of patients, the results of electronic and acoustic auscultation coincided, indicating that teleauscultation may be considered a reliable method for assessing cardiac patients and could, therefore, be adopted in the context of comprehensive telecare programs.
Low level vapor verification of monomethyl hydrazine
NASA Technical Reports Server (NTRS)
Mehta, Narinder
1990-01-01
The vapor scrubbing system and the coulometric test procedure for the low level vapor verification of monomethyl hydrazine (MMH) are evaluated. Experimental data on precision, efficiency of the scrubbing liquid, instrument response, detection and reliable quantitation limits, stability of the vapor scrubbed solution, and interference were obtained to assess the applicability of the method for the low ppb level detection of the analyte vapor in air. The results indicated that the analyte vapor scrubbing system and the coulometric test procedure can be utilized for the quantitative detection of low ppb level vapor of MMH in air.
Development of a nanosatellite de-orbiting system by reliability based design optimization
NASA Astrophysics Data System (ADS)
Nikbay, Melike; Acar, Pınar; Aslan, Alim Rüstem
2015-12-01
This paper presents design approaches to develop a reliable and efficient de-orbiting system for the 3USAT nanosatellite to provide a beneficial orbital decay process at the end of a mission. A de-orbiting system is initially designed by employing the aerodynamic drag augmentation principle where the structural constraints of the overall satellite system and the aerodynamic forces are taken into account. Next, an alternative de-orbiting system is designed with new considerations and further optimized using deterministic and reliability based design techniques. For the multi-objective design, the objectives are chosen to maximize the aerodynamic drag force through the maximization of the Kapton surface area while minimizing the de-orbiting system mass. The constraints are related in a deterministic manner to the required deployment force, the height of the solar panel hole and the deployment angle. The length and the number of layers of the deployable Kapton structure are used as optimization variables. In the second stage of this study, uncertainties related to both manufacturing and operating conditions of the deployable structure in space environment are considered. These uncertainties are then incorporated into the design process by using different probabilistic approaches such as Monte Carlo Simulation, the First-Order Reliability Method and the Second-Order Reliability Method. The reliability based design optimization seeks optimal solutions using the former design objectives and constraints with the inclusion of a reliability index. Finally, the de-orbiting system design alternatives generated by different approaches are investigated and the reliability based optimum design is found to yield the best solution since it significantly improves both system reliability and performance requirements.
Approach to developing reliable space reactor power systems
NASA Technical Reports Server (NTRS)
Mondt, Jack F.; Shinbrot, Charles H.
1991-01-01
During Phase II, the Engineering Development Phase, the SP-100 Project has defined and is pursuing a new approach to developing reliable power systems. The approach to developing such a system during the early technology phase is described along with some preliminary examples to help explain the approach. Developing reliable components to meet space reactor power system requirements is based on a top-down systems approach which includes a point design based on a detailed technical specification of a 100-kW power system. The SP-100 system requirements implicitly recognize the challenge of achieving a high system reliability for a ten-year lifetime, while at the same time using technologies that require very significant development efforts. A low-cost method for assessing reliability, based on an understanding of fundamental failure mechanisms and design margins for specific failure mechanisms, is being developed as part of the SP-100 Program.
A new method for computing the reliability of consecutive k-out-of-n:F systems
NASA Astrophysics Data System (ADS)
Gökdere, Gökhan; Gürcan, Mehmet; Kılıç, Muhammet Burak
2016-01-01
In many physical systems, reliability evaluation, such as ones encountered in telecommunications, the design of integrated circuits, microwave relay stations, oil pipeline systems, vacuum systems in accelerators, computer ring networks, and spacecraft relay stations, have had applied consecutive k-out-of-n system models. These systems are characterized as logical connections among the components of the systems placed in lines or circles. In literature, a great deal of attention has been paid to the study of the reliability evaluation of consecutive k-out-of-n systems. In this paper, we propose a new method to compute the reliability of consecutive k-out-of-n:F systems, with n linearly and circularly arranged components. The proposed method provides a simple way for determining the system failure probability. Also, we write R-Project codes based on our proposed method to compute the reliability of the linear and circular systems which have a great number of components.
Investigating Reliabilities of Intraindividual Variability Indicators
ERIC Educational Resources Information Center
Wang, Lijuan; Grimm, Kevin J.
2012-01-01
Reliabilities of the two most widely used intraindividual variability indicators, "ISD[superscript 2]" and "ISD", are derived analytically. Both are functions of the sizes of the first and second moments of true intraindividual variability, the size of the measurement error variance, and the number of assessments within a burst. For comparison,…
Time irreversibility and intrinsics revealing of series with complex network approach
NASA Astrophysics Data System (ADS)
Xiong, Hui; Shang, Pengjian; Xia, Jianan; Wang, Jing
2018-06-01
In this work, we analyze time series on the basis of the visibility graph algorithm that maps the original series into a graph. By taking into account the all-round information carried by the signals, the time irreversibility and fractal behavior of series are evaluated from a complex network perspective, and considered signals are further classified from different aspects. The reliability of the proposed analysis is supported by numerical simulations on synthesized uncorrelated random noise, short-term correlated chaotic systems and long-term correlated fractal processes, and by the empirical analysis on daily closing prices of eleven worldwide stock indices. Obtained results suggest that finite size has a significant effect on the evaluation, and that there might be no direct relation between the time irreversibility and long-range correlation of series. Similarity and dissimilarity between stock indices are also indicated from respective regional and global perspectives, showing the existence of multiple features of underlying systems.
Reliability Analysis and Modeling of ZigBee Networks
NASA Astrophysics Data System (ADS)
Lin, Cheng-Min
The architecture of ZigBee networks focuses on developing low-cost, low-speed ubiquitous communication between devices. The ZigBee technique is based on IEEE 802.15.4, which specifies the physical layer and medium access control (MAC) for a low rate wireless personal area network (LR-WPAN). Currently, numerous wireless sensor networks have adapted the ZigBee open standard to develop various services to promote improved communication quality in our daily lives. The problem of system and network reliability in providing stable services has become more important because these services will be stopped if the system and network reliability is unstable. The ZigBee standard has three kinds of networks; star, tree and mesh. The paper models the ZigBee protocol stack from the physical layer to the application layer and analyzes these layer reliability and mean time to failure (MTTF). Channel resource usage, device role, network topology and application objects are used to evaluate reliability in the physical, medium access control, network, and application layers, respectively. In the star or tree networks, a series system and the reliability block diagram (RBD) technique can be used to solve their reliability problem. However, a division technology is applied here to overcome the problem because the network complexity is higher than that of the others. A mesh network using division technology is classified into several non-reducible series systems and edge parallel systems. Hence, the reliability of mesh networks is easily solved using series-parallel systems through our proposed scheme. The numerical results demonstrate that the reliability will increase for mesh networks when the number of edges in parallel systems increases while the reliability quickly drops when the number of edges and the number of nodes increase for all three networks. More use of resources is another factor impact on reliability decreasing. However, lower network reliability will occur due to network complexity, more resource usage and complex object relationship.
Thomassen, Sisse Anette; Kjærgaard, Benedict; Sørensen, Preben; Andreasen, Jan Jesper; Larsson, Anders; Rasmussen, Bodil Steen
2017-04-01
Muscle tissue saturation (StO 2 ) measured with near-infrared spectroscopy has generally been considered a measurement of the tissue microcirculatory condition. However, we hypothesized that StO 2 could be more regarded as a fast and reliable measure of global than of regional circulatory adequacy and tested this with muscle, intestinal and brain metabolomics at normal and two levels of low cardiopulmonary bypass blood flow rates in a porcine model. Twelve 80 kg pigs were connected to normothermic cardiopulmonary bypass with a blood flow of 60 mL/kg/min for one hour, reduced randomly to 47.5 mL/kg/min (Group I) or 35 mL/kg/min (Group II) for one hour followed by one hour of 60 mL/kg/min in both groups. Regional StO 2 was measured continuously above the musculus gracilis (non-cannulated leg). Metabolomics were obtained by brain tissue oxygen monitoring system (Licox) measurements of the brain and microdialysis perfusate from the muscle, intestinal mucosa and brain. A non-parametric statistical method was used. The systemic parameters showed profound systemic ischaemia during low CPB blood flow. StO 2 did not change markedly in Group I, but in Group II, StO 2 decreased immediately when blood flow was reduced and, furthermore, was not restored despite blood flow being normalized. Changes in the metabolomics from the muscle, colon and brain followed the changes in StO 2 . We found, in this experimental cardiopulmonary bypass model, that StO 2 reacted rapidly when the systemic circulation became inadequate and, furthermore, reliably indicate insufficient global tissue perfusion even when the systemic circulation was restored after a period of systemic hypoperfusion.
Assessment of reliability and safety of a manufacturing system with sequential failures is an important issue in industry, since the reliability and safety of the system depend not only on all failed states of system components, but also on the sequence of occurrences of those...
Synergistic effect of solar radiation and solar heating to disinfect drinking water sources.
Rijal, G K; Fujioka, R S
2001-01-01
Waterborne diseases are still common in developing countries as drinking water sources are contaminated and feasible means to reliably treat and disinfect these waters are not available. Many of these developing countries are in the tropical regions of the world where sunlight is plentiful. The objective of this study was to evaluate the effectiveness of combining solar radiation and solar heating to disinfect contaminated water using a modified Family Sol*Saver System (FSP). The non-UV transmittable cover sheet of the former FSP system was replaced with an UV transmittable plastic cover sheet to enable more wavelengths of sunlight to treat the water. Disinfection efficiency of both systems was evaluated based on reduction of the natural populations of faecal coliform, E. coli, enterococci, C. perfringens, total heterotrophic bacteria, hydrogen sulphide producing bacteria and FRNA virus. The results showed that under sunny and partly sunny conditions, water was heated to critical temperature (60 degrees C) in both the FSP systems inactivating more than 3 log (99.9%) of the concentrations of faecal coliform and E. coli to undetectable levels of < 1 CFU/100 mL within 2-5 h exposure to sunlight. However, under cloudy conditions, the two FSP systems did not reduce the concentrations of faecal indicator bacteria to levels of < 1 CFU/100 mL. Nonetheless, sufficient evidence was obtained to show that UV radiation of sunlight plus heat worked synergistically to enhance the inactivation of faecal indicator bacteria. The relative log removal of indicator microorganism in the FSP treated water was total heterotrophic bacteria < C. perfringens < F RNA virus < enterococci < E. coli < faecal coliform. In summary, time of exposure to heat and radiation effects of sunlight were important in disinfecting water by solar units. The data indicated that direct radiation of sunlight worked synergistically with solar heating of the water to disinfect the water. Thus, effective disinfection was observed even when the water temperature did not reach 60 degrees C. Finally, the hydrogen sulphide test is a simple and reliable test that householders can use to determine whether their water had been sufficiently disinfected.
NASA Astrophysics Data System (ADS)
Andriushin, A. V.; Dolbikova, N. S.; Kiet, S. V.; Merzlikina, E. I.; Nikitina, I. S.
2017-11-01
The reliability of the main equipment of any power station depends on the correct water chemistry. In order to provide it, it is necessary to monitor the heat carrier quality, which, in its turn, is provided by the chemical monitoring system. Thus, the monitoring system reliability plays an important part in providing reliability of the main equipment. The monitoring system reliability is determined by the reliability and structure of its hardware and software consisting of sensors, controllers, HMI and so on [1,2]. Workers of a power plant dealing with the measuring equipment must be informed promptly about any breakdowns in the monitoring system, in this case they are able to remove the fault quickly. A computer consultant system for personnel maintaining the sensors and other chemical monitoring equipment can help to notice faults quickly and identify their possible causes. Some technical solutions for such a system are considered in the present paper. The experimental results were obtained on the laboratory and experimental workbench representing a physical model of a part of the chemical monitoring system.
18 CFR 40.2 - Mandatory Reliability Standards.
Code of Federal Regulations, 2010 CFR
2010-04-01
...-POWER SYSTEM § 40.2 Mandatory Reliability Standards. (a) Each applicable user, owner or operator of the Bulk-Power System must comply with Commission-approved Reliability Standards developed by the Electric... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Mandatory Reliability...
Otieno, C F; Kaseje, D; Ochieng', B M; Githae, M N
2012-02-01
A general introduction of this article is as follows: Reliable and timely health information is an essential foundation of public health action and health systems strengthening, both nationally and internationally (Aqil et al. in Health Policy Plan 24(3): 217-228, 2009; Bradshaw et al. in initial burden of disease estimates for South Africa, 2000. South African Medical Research Council, Cape Town, 2003). The need for sound information is especially urgent in the case of emergent diseases and other acute health threats, where rapid awareness, investigation and response can save lives and prevent broader national outbreaks and even global pandemics (Aqil et al. in Health Policy Plan 24(3): 217-228, 2009). The government of Kenya, through the ministry of public health and sanitation has rolled out the community health strategy as a way of improving health care at the household level. This involves community health workers collecting health status data at the household level, which is then used for dialogue at all the levels to inform decisions and actions towards improvement in health status. A lot of health interventions have involved the community health workers in reaching out to the community, hence successfully implementing these health interventions. Large scale involvement of community health workers in government initiatives and most especially to collect health data for use in the health systems has been minimal due to the assumption that the data may not be useful to the government, because its quality is uncertain. It was therefore necessary that the validity and reliability of the data collected by community health workers be determined, and whether this kind of data can be used for planning and policy formulation for the communities from which it is collected. This would go a long way to settle speculation on whether the data collected by these workers is valid and reliable for use in determining the health status, its causes and distribution, of a community. Our general objective of this article is to investigate the validity and reliability of Community Based Information, and we deal with research question "What is the reliability of data collected at the Community level by Community health workers?". The methods which we use to find an reliable answer to this question is "Ten percent of all households visited by CHWs for data collection were recollected by a technically trained team. Test/retest method was applied to the data to establish reliability. The Kappa score, sensitivity, specificity and positive predictive values were also used to measure reliability". Finally our findings are as follows: Latrine availability and Antenatal care presented good correspondence between the two sets of data. This was also true for exclusive breast feeding indicator. Measles immunization coverage showed less consistency than the rest of the child health indicators. At last we conclude and recommend that CHWs can accurately and reliably collect household data which can be used for health decisions and actions especially in resource poor settings where other approaches to population based data are too expensive.
ECLSS Reliability for Long Duration Missions Beyond Lower Earth Orbit
NASA Technical Reports Server (NTRS)
Sargusingh, Miriam J.; Nelson, Jason
2014-01-01
Reliability has been highlighted by NASA as critical to future human space exploration particularly in the area of environmental controls and life support systems. The Advanced Exploration Systems (AES) projects have been encouraged to pursue higher reliability components and systems as part of technology development plans. However there is no consensus on what is meant by improving on reliability; nor on how to assess reliability within the AES projects. This became apparent when trying to assess reliability as one of several figures of merit for a regenerable water architecture trade study. In the spring of 2013, the AES Water Recovery Project (WRP) hosted a series of events at the NASA Johnson Space Center (JSC) with the intended goal of establishing a common language and understanding of our reliability goals, and equipping the projects with acceptable means of assessing our respective systems. This campaign included an educational series in which experts from across the agency and academia provided information on terminology, tools and techniques associated with evalauating and designing for system reliability. The campaign culminated in a workshop at JSC with members of the ECLSS and AES communities with the goal of developing a consensus on what reliability means to AES and identifying methods for assessing our low to mid-technology readiness level (TRL) technologies for reliability. This paper details the results of the workshop.