ERIC Educational Resources Information Center
Ke, Chih-Horng; Sun, Huey-Min; Yang, Yuan-Chi; Sun, Huey-Min
2012-01-01
This study explores the effect of user and system characteristics on our proposed web-based classroom response system (CRS) by a longitudinal design. The results of research are expected to understand the important factors of user and system characteristics in the web-based CRS. The proposed system can supply interactive teaching contents,…
Tabatabaei, Mohammad
2017-07-01
In this paper, a new method for determination of the desired characteristic equation and zero location of commensurate fractional order systems is presented. The concept of the characteristic ratio is extended for zero-including commensurate fractional order systems. The generalized version of characteristic ratios is defined such that the time-scaling property of characteristic ratios is also preserved. The monotonicity of the magnitude frequency response is employed to assign the generalized characteristic ratios for commensurate fractional order transfer functions with one zero. A simple pattern for characteristic ratios is proposed to reach a non-overshooting step response. Then, the proposed pattern is revisited to reach a low overshoot (say for example 2%) step response. Finally, zero-including controllers such as fractional order PI or lag (lead) controllers are designed using generalized characteristic ratios assignment method. Numerical simulations are provided to show the efficiency of the so designed controllers. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Performance characteristics of the Mayo/IBM PACS
NASA Astrophysics Data System (ADS)
Persons, Kenneth R.; Gehring, Dale G.; Pavicic, Mark J.; Ding, Yingjai
1991-07-01
The Mayo Clinic and IBM (at Rochester, Minnesota) have jointly developed a picture archiving system for use with Mayo's MRI and Neuro CT imaging modalities. The communications backbone of the PACS is a portion of the Mayo institutional network: a series of 4-Mbps token rings interconnected by bridges and fiber optic extensions. The performance characteristics of this system are important to understand because they affect the response time a PACS user can expect, and the response time for non-PACS users competing for resources on the institutional network. The performance characteristics of each component and the average load levels of the network were measured for various load distributions. These data were used to quantify the response characteristics of the existing system and to tune a model developed by North Dakota State University Department of Computer Science for predicting response times of more complex topologies.
General algebraic method applied to control analysis of complex engine types
NASA Technical Reports Server (NTRS)
Boksenbom, Aaron S; Hood, Richard
1950-01-01
A general algebraic method of attack on the problem of controlling gas-turbine engines having any number of independent variables was utilized employing operational functions to describe the assumed linear characteristics for the engine, the control, and the other units in the system. Matrices were used to describe the various units of the system, to form a combined system showing all effects, and to form a single condensed matrix showing the principal effects. This method directly led to the conditions on the control system for noninteraction so that any setting disturbance would affect only its corresponding controlled variable. The response-action characteristics were expressed in terms of the control system and the engine characteristics. The ideal control-system characteristics were explicitly determined in terms of any desired response action.
Characteristics pertaining to a stiffness cross-coupled Jeffcott model
NASA Technical Reports Server (NTRS)
Spanyer, K. L.
1985-01-01
Rotordynamic studies of complex systems utilizing multiple degree-of-freedom analysis have been performed to understand response, loads, and stability. In order to understand the fundamental nature of rotordynamic response, the Jeffcott rotor model has received wide attention. The purpose of this paper is to provide a generic rotordynamic analysis of a stiffness cross-coupled Jeffcott rotor model to illustrate characteristics of a second order stiffness-coupled linear system. The particular characteristics investigated were forced response, force vector diagrams, response orbits, and stability. Numerical results were achieved through a fourth order Runge-Kutta method for solving differential equations and the Routh Hurwitz stability criterion. The numerical results were verified to an exact mathematical solution for the steady state response.
Linear frequency tuning in an LC-resonant system using a C-V response controllable MEMS varactor
NASA Astrophysics Data System (ADS)
Han, Chang-Hoon; Yoon, Yong-Hoon; Ko, Seung-Deok; Seo, Min-Ho; Yoon, Jun-Bo
2017-12-01
This paper proposes a device level solution to achieve linear frequency tuning with respect to a tuning voltage ( V tune ) sweep in an inductor ( L)-capacitor ( C) resonant system. Since the linearity of the resonant frequency vs. tuning voltage ( f- V) relationship in an LC-resonant system is closely related to the C- V response characteristic of the varactor, we propose a C- V response tunable varactor to realize the linear frequency tuning. The proposed varactor was fabricated using microelectromechanical system (MEMS) surface micromachining. The fabricated MEMS varactor has the ability to dynamically change the C- V response characteristic according to a curve control voltage ( V curve- control ). When V curve- control was increased from zero to 9 V, the C- V response curve was changed from a linear to a concave form (i.e., the capacitance decreased quickly in the low tuning voltage region and slowly in the high tuning voltage region). This change in the C- V response characteristic resulted in a change in the f- V relationship, and we successfully demonstrated almost perfectly linear frequency tuning in the LC-resonant system, with a linearity factor of 99.95%.
Dynamic characteristic of electromechanical coupling effects in motor-gear system
NASA Astrophysics Data System (ADS)
Bai, Wenyu; Qin, Datong; Wang, Yawen; Lim, Teik C.
2018-06-01
Dynamic characteristics of an electromechanical model which combines a nonlinear permeance network model (PNM) of a squirrel-cage induction motor and a coupled lateral-torsional dynamic model of a planetary geared rotor system is analyzed in this study. The simulations reveal the effects of internal excitations or parameters like machine slotting, magnetic saturation, time-varying mesh stiffness and shaft stiffness on the system dynamics. The responses of the electromechanical system with PNM motor model are compared with those responses of the system with dynamic motor model. The electromechanical coupling due to the interactions between the motor and gear system are studied. Furthermore, the frequency analysis of the electromechanical system dynamic characteristics predicts an efficient way to detect work condition of unsymmetrical voltage sag.
Evaluation of Ares-I Control System Robustness to Uncertain Aerodynamics and Flex Dynamics
NASA Technical Reports Server (NTRS)
Jang, Jiann-Woei; VanTassel, Chris; Bedrossian, Nazareth; Hall, Charles; Spanos, Pol
2008-01-01
This paper discusses the application of robust control theory to evaluate robustness of the Ares-I control systems. Three techniques for estimating upper and lower bounds of uncertain parameters which yield stable closed-loop response are used here: (1) Monte Carlo analysis, (2) mu analysis, and (3) characteristic frequency response analysis. All three methods are used to evaluate stability envelopes of the Ares-I control systems with uncertain aerodynamics and flex dynamics. The results show that characteristic frequency response analysis is the most effective of these methods for assessing robustness.
ERIC Educational Resources Information Center
Latham, Alyson; Hill, N. Sharon
2014-01-01
Electronic response systems (ERS) are a means to foster class participation by students who are reluctant to participate in class. In this study, we identify individual characteristics that relate to students' preference for anonymous classroom participation, and we also examine the extent to which preference for anonymity is related to their…
Must Educational Responsibility Be an Illusion?
ERIC Educational Resources Information Center
Inbar, Dan
1982-01-01
Examines the concepts of and relationship between responsibility and authority. Identifies seven characteristics of educational systems (authority, interdependence, the unified whole, goals, evaluation, correction, and knowledge) as central to an analysis of educational responsibility. Suggests restructuring the educational system on a…
NASA Technical Reports Server (NTRS)
Neal, Bradford; Sengupta, Upal
1989-01-01
During some flight programs, researchers have encountered problems in the throttle response characteristics of high-performance aircraft. To study and to help solve these problems, the National Aeronautics and Space Administration Ames Research Center's Dryden Flight Research Facility (Ames-Dryden) conducted a study using a TF-104G airplane modified with a variable-response electronic throttle control system. Ames-Dryden investigated the effects of different variables on engine response and handling qualities. The system provided transport delay, lead and lag filters, second-order lags, command rate and position limits, and variable gain between the pilot's throttle command and the engine fuel controller. These variables could be tested individually or in combination. Ten research flights were flown to gather data on engine response and to obtain pilot ratings of the various system configurations. The results should provide design criteria for engine-response characteristics. The variable-response throttle components and how they were installed in the TF-104G aircraft are described. How the variable-response throttle was used in flight and some of the results of using this system are discussed.
Health Systems' Responsiveness and Its Characteristics: A Cross-Country Comparative Analysis
Robone, Silvana; Rice, Nigel; Smith, Peter C
2011-01-01
Objectives Responsiveness has been identified as one of the intrinsic goals of health care systems. Little is known, however, about its determinants. Our objective is to investigate the potential country-level drivers of health system responsiveness. Data Source Data on responsiveness are taken from the World Health Survey. Information on country-level characteristics is obtained from a variety of sources including the United Nations Development Program (UNDP). Study Design A two-step procedure. First, using survey data we derive a country-level measure of system responsiveness purged of differences in individual reporting behavior. Secondly, we run cross-sectional country-level regressions of responsiveness on potential drivers. Principal Findings Health care expenditures per capita are positively associated with responsiveness, after controlling for the influence of potential confounding factors. Aspects of responsiveness are also associated with public sector spending (negatively) and educational development (positively). Conclusions From a policy perspective, improvements in responsiveness may require higher spending levels. The expansion of nonpublic sector provision, perhaps in the form of increased patient choice, may also serve to improve responsiveness. However, these inferences are tentative and require further study. PMID:21762144
de Oliveira, Neurilene Batista; Peres, Heloisa Helena Ciqueto
2015-01-01
To evaluate the functional performance and the technical quality of the Electronic Documentation System of the Nursing Process of the Teaching Hospital of the University of São Paulo. exploratory-descriptive study. The Quality Model of regulatory standard 25010 and the Evaluation Process defined under regulatory standard 25040, both of the International Organization for Standardization/International Electrotechnical Commission. The quality characteristics evaluated were: functional suitability, reliability, usability, performance efficiency, compatibility, security, maintainability and portability. The sample was made up of 37 evaluators. in the evaluation of the specialists in information technology, only the characteristic of usability obtained a rate of positive responses of less than 70%. For the nurse lecturers, all the quality characteristics obtained a rate of positive responses of over 70%. The staff nurses of the medical and surgical clinics with experience in using the system) and staff nurses from other units of the hospital and from other health institutions (without experience in using the system) obtained rates of positive responses of more than 70% referent to the functional suitability, usability, and security. However, performance efficiency, reliability and compatibility all obtained rates below the parameter established. the software achieved rates of positive responses of over 70% for the majority of the quality characteristics evaluated.
Experimental Study of Hydraulic Systems Transient Response Characteristics
1978-12-01
of Filter .. ... ...... ..... ..... 28 Effects of Quincke -Tube. .. ..... ...... ... 28 Error ’Estimation. .. ... ...... ..... ..... 33 I. CONCLUSIONS...System With Quincke -Tube i Configuration ..... ..................... ... 11 6 Schematic of Pump System .... ............... ... 12 7 Example of Computer...Filter Configuration ........ ..................... 32 20 Transient Response, Reservoir System, Quincke -Tube (Short) Configuration, 505 PSIA
49 CFR 213.333 - Automated vehicle inspection systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... hours of the inspection, output reports that— (1) Provide a continuous plot, on a constant-distance axis... instrumented car having dynamic response characteristics that are representative of other equipment assigned to... instrumented car having dynamic response characteristics that are representative of other equipment assigned to...
49 CFR 213.333 - Automated vehicle inspection systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... hours of the inspection, output reports that— (1) Provide a continuous plot, on a constant-distance axis... instrumented car having dynamic response characteristics that are representative of other equipment assigned to... instrumented car having dynamic response characteristics that are representative of other equipment assigned to...
SIMULATION IN TRAINING AND EDUCATION.
ERIC Educational Resources Information Center
CRAWFORD, MEREDITH P.
THE KEY CONCEPTS OF SYSTEM AND SIMULATION AS THEY ARE APPLIED TO TRAINING AND EDUCATION ARE DISCUSSED. THE GENERAL CHARACTERISTICS OF MACHINE-ASCENDANT SYSTEMS THAT FACILITATE THE ORDERLY DESIGN PROCESS OF TRAINING SIMULATORS ARE PRESENTED--(1) PURPOSE OF THE SYSTEM AND LIMITS OF ACCEPTABLE HUMAN BEHAVIOR, (2) RESPONSE CHARACTERISTICS OF THE…
14 CFR 25.473 - Landing load conditions and assumptions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... presence of systems or procedures significantly affects the lift. (c) The method of analysis of airplane... dynamic characteristics. (2) Spin-up and springback. (3) Rigid body response. (4) Structural dynamic response of the airframe, if significant. (d) The landing gear dynamic characteristics must be validated by...
Research on Harmonic Characteristic of Electronic Current Transformer Based on the Rogowski Coil
NASA Astrophysics Data System (ADS)
Shen, Diqiu; Hu, Bei; Wang, Xufeng; Zhu, Mingdong; Wang, Liang; Lu, Wenxing
2017-05-01
The nonlinear load present in the power system will cause the distortion of AC sine wave and generate the harmonic, which havea severe impact on the accuracy of energy metering and reliability of relay protection. Tosatisfy the requirements of energy metering and relay protection for the new generation of intelligent substation, based on the working principle of Rogowski coil current transformer, mathematical model and transfer characteristics of Rogowski coil sensors were studied in this paper, and frequency response characteristics of Rogowski coil current transformer system were analysed. Finally, the frequency response characteristics of the Rogowski coil current transformer at 2 to 13 harmonics was simulated and experimented. Simulation and experiments show that Rogowski coil current transformer couldmeet 0.2 accuracy requirements of harmonic power measurement of power system, and measure the harmonic components of the grid reliably.
Health systems' responsiveness and its characteristics: a cross-country comparative analysis.
Robone, Silvana; Rice, Nigel; Smith, Peter C
2011-12-01
OBJECTIVES. Responsiveness has been identified as one of the intrinsic goals of health care systems. Little is known, however, about its determinants. Our objective is to investigate the potential country-level drivers of health system responsiveness. DATA SOURCE. Data on responsiveness are taken from the World Health Survey. Information on country-level characteristics is obtained from a variety of sources including the United Nations Development Program (UNDP). STUDY DESIGN. A two-step procedure. First, using survey data we derive a country-level measure of system responsiveness purged of differences in individual reporting behavior. Secondly, we run cross-sectional country-level regressions of responsiveness on potential drivers. PRINCIPAL FINDINGS. Health care expenditures per capita are positively associated with responsiveness, after controlling for the influence of potential confounding factors. Aspects of responsiveness are also associated with public sector spending (negatively) and educational development (positively). CONCLUSIONS. From a policy perspective, improvements in responsiveness may require higher spending levels. The expansion of nonpublic sector provision, perhaps in the form of increased patient choice, may also serve to improve responsiveness. However, these inferences are tentative and require further study. © Health Research and Educational Trust.
Establishment of key grid-connected performance index system for integrated PV-ES system
NASA Astrophysics Data System (ADS)
Li, Q.; Yuan, X. D.; Qi, Q.; Liu, H. M.
2016-08-01
In order to further promote integrated optimization operation of distributed new energy/ energy storage/ active load, this paper studies the integrated photovoltaic-energy storage (PV-ES) system which is connected with the distribution network, and analyzes typical structure and configuration selection for integrated PV-ES generation system. By combining practical grid- connected characteristics requirements and technology standard specification of photovoltaic generation system, this paper takes full account of energy storage system, and then proposes several new grid-connected performance indexes such as paralleled current sharing characteristic, parallel response consistency, adjusting characteristic, virtual moment of inertia characteristic, on- grid/off-grid switch characteristic, and so on. A comprehensive and feasible grid-connected performance index system is then established to support grid-connected performance testing on integrated PV-ES system.
Method for Estimating Patronage of Demand Responsive Transportation Systems
DOT National Transportation Integrated Search
1977-12-01
This study has developed a method for estimating patronage of demand responsive transportation (DRT) systems. This procedure requires as inputs a description of the intended service area, current work trip patterns, characteristics of the served popu...
Hoffheins, B.S.; Lauf, R.J.
1997-08-05
A gas detecting system is described for classifying the type of liquid fuel in a container or tank. The system includes a plurality of semiconductor gas sensors, each of which differs from the other in its response to various organic vapors. The system includes a means of processing the responses of the plurality of sensors such that the responses to any particular organic substance or mixture is sufficiently distinctive to constitute a recognizable ``signature``. The signature of known substances are collected and divided into two classes based on some other known characteristic of the substances. A pattern recognition system classifies the signature of an unknown substance with reference to the two user-defined classes, thereby classifying the unknown substance with regard to the characteristic of interest, such as its suitability for a particular use. 14 figs.
Hoffheins, Barbara S.; Lauf, Robert J.
1997-01-01
A gas detecting system for classifying the type of liquid fuel in a container or tank. The system includes a plurality of semiconductor gas sensors, each of which differs from the other in its response to various organic vapors. The system includes a means of processing the responses of the plurality of sensors such that the responses to any particular organic substance or mixture is sufficiently distinctive to constitute a recognizable "signature". The signature of known substances are collected and divided into two classes based on some other known characteristic of the substances. A pattern recognition system classifies the signature of an unknown substance with reference to the two user-defined classes, thereby classifying the unknown substance with regard to the characteristic of interest, such as its suitability for a particular use.
Building an Evaluation Scale using Item Response Theory.
Lalor, John P; Wu, Hao; Yu, Hong
2016-11-01
Evaluation of NLP methods requires testing against a previously vetted gold-standard test set and reporting standard metrics (accuracy/precision/recall/F1). The current assumption is that all items in a given test set are equal with regards to difficulty and discriminating power. We propose Item Response Theory (IRT) from psychometrics as an alternative means for gold-standard test-set generation and NLP system evaluation. IRT is able to describe characteristics of individual items - their difficulty and discriminating power - and can account for these characteristics in its estimation of human intelligence or ability for an NLP task. In this paper, we demonstrate IRT by generating a gold-standard test set for Recognizing Textual Entailment. By collecting a large number of human responses and fitting our IRT model, we show that our IRT model compares NLP systems with the performance in a human population and is able to provide more insight into system performance than standard evaluation metrics. We show that a high accuracy score does not always imply a high IRT score, which depends on the item characteristics and the response pattern.
Building an Evaluation Scale using Item Response Theory
Lalor, John P.; Wu, Hao; Yu, Hong
2016-01-01
Evaluation of NLP methods requires testing against a previously vetted gold-standard test set and reporting standard metrics (accuracy/precision/recall/F1). The current assumption is that all items in a given test set are equal with regards to difficulty and discriminating power. We propose Item Response Theory (IRT) from psychometrics as an alternative means for gold-standard test-set generation and NLP system evaluation. IRT is able to describe characteristics of individual items - their difficulty and discriminating power - and can account for these characteristics in its estimation of human intelligence or ability for an NLP task. In this paper, we demonstrate IRT by generating a gold-standard test set for Recognizing Textual Entailment. By collecting a large number of human responses and fitting our IRT model, we show that our IRT model compares NLP systems with the performance in a human population and is able to provide more insight into system performance than standard evaluation metrics. We show that a high accuracy score does not always imply a high IRT score, which depends on the item characteristics and the response pattern.1 PMID:28004039
Todman, L. C.; Fraser, F. C.; Corstanje, R.; Deeks, L. K.; Harris, J. A.; Pawlett, M.; Ritz, K.; Whitmore, A. P.
2016-01-01
There are several conceptual definitions of resilience pertaining to environmental systems and, even if resilience is clearly defined in a particular context, it is challenging to quantify. We identify four characteristics of the response of a system function to disturbance that relate to “resilience”: (1) degree of return of the function to a reference level; (2) time taken to reach a new quasi-stable state; (3) rate (i.e. gradient) at which the function reaches the new state; (4) cumulative magnitude of the function (i.e. area under the curve) before a new state is reached. We develop metrics to quantify these characteristics based on an analogy with a mechanical spring and damper system. Using the example of the response of a soil function (respiration) to disturbance, we demonstrate that these metrics effectively discriminate key features of the dynamic response. Although any one of these characteristics could define resilience, each may lead to different insights and conclusions. The salient properties of a resilient response must thus be identified for different contexts. Because the temporal resolution of data affects the accurate determination of these metrics, we recommend that at least twelve measurements are made over the temporal range for which the response is expected. PMID:27329053
[THE CHARACTERISTICS OF CARDIOVASCULAR SYSTEM IN CHILDREN WITH INFLUENZA INFECTION].
Dudnik, V; Mantak, G; Andrikevych, I; Roizman, A
2015-01-01
Clinical changes in the cardiovascular system observed in most patients. The extent and nature of these changes may depend on the characteristics of epidemic outbreaks, such as virus, immune responsiveness, age composition patients. Flu-like lesions of the cardiovascular system in most cases occurring beneficial--quickly disappear change of heart, normal pulse and blood pressure.
A real-time spectrum acquisition system design based on quantum dots-quantum well detector
NASA Astrophysics Data System (ADS)
Zhang, S. H.; Guo, F. M.
2016-01-01
In this paper, we studied the structure characteristics of quantum dots-quantum well photodetector with response wavelength range from 400 nm to 1000 nm. It has the characteristics of high sensitivity, low dark current and the high conductance gain. According to the properties of the quantum dots-quantum well photodetectors, we designed a new type of capacitive transimpedence amplifier (CTIA) readout circuit structure with the advantages of adjustable gain, wide bandwidth and high driving ability. We have implemented the chip packaging between CTIA-CDS structure readout circuit and quantum dots detector and tested the readout response characteristics. According to the timing signals requirements of our readout circuit, we designed a real-time spectral data acquisition system based on FPGA and ARM. Parallel processing mode of programmable devices makes the system has high sensitivity and high transmission rate. In addition, we realized blind pixel compensation and smoothing filter algorithm processing to the real time spectrum data by using C++. Through the fluorescence spectrum measurement of carbon quantum dots and the signal acquisition system and computer software system to realize the collection of the spectrum signal processing and analysis, we verified the excellent characteristics of detector. It meets the design requirements of quantum dot spectrum acquisition system with the characteristics of short integration time, real-time and portability.
System and method for non-destructive evaluation of surface characteristics of a magnetic material
Jiles, David C.; Sipahi, Levent B.
1994-05-17
A system and a related method for non-destructive evaluation of the surface characteristics of a magnetic material. The sample is excited by an alternating magnetic field. The field frequency, amplitude and offset are controlled according to a predetermined protocol. The Barkhausen response of the sample is detected for the various fields and offsets and is analyzed. The system produces information relating to the frequency content, the amplitude content, the average or RMS energy content, as well as count rate information, for each of the Barkhausen responses at each of the excitation levels applied during the protocol. That information provides a contiguous body of data, heretofore unavailable, which can be analyzed to deduce information about the surface characteristics of the material at various depths below the surface.
Health Monitoring System for Composite Structures
NASA Technical Reports Server (NTRS)
Tang, S. S.; Riccardella, P. C.; Andrews, R. J.; Grady, J. E.; Mucciaradi, A. N.
1996-01-01
An automated system was developed to monitor the health status of composites. It uses the vibration characteristics of composites to identify a component's damage condition. The vibration responses are characterized by a set of signal features defined in the time, frequency and spatial domains. The identification of these changes in the vibration characteristics corresponding to different health conditions was performed using pattern recognition principles. This allows efficient data reduction and interpretation of vast amounts of information. Test components were manufactured from isogrid panels to evaluate performance of the monitoring system. The components were damaged by impact to simulate different health conditions. Free vibration response was induced by a tap test on the test components. The monitoring system was trained using these free vibration responses to identify three different health conditions. They are undamaged vs. damaged, damage location and damage zone size. High reliability in identifying the correct component health condition was achieved by the monitoring system.
Spangler, G
1997-08-01
The aim of the study was to compare emotional and physiological responses to real and control examinations and to assess their relation to personality characteristics. Emotional responses were assessed by state anxiety and perceived stress. The assessment of physiological responses included the activity of the cardiac system (heart periods, vagal tone), the adrenocortical system (cortisol) and the immune system (immune globulin A, sIgA). Emotional and physiological responses of 23 students (12 males, 11 females) were assessed during an oral exam at the end of a basic course in psychology which was a prerequisite for the students' final exams. For the control condition physiological responses were assessed one week before the examination during a memory test. The findings of the study demonstrate different emotional and physiological response patterns to examinations as compared to the control condition. Heightened anxiety was observed only before the exam. Whereas within-situation physiological responses (higher heart periods, cortisol, and sIgA; lower vagal tone) were observed both under the exam and control condition, responses to exam condition indicated pre-exam anticipatory activation and post-exam restricted recovery responses. With regard to personality characteristics subjects with high ego-resiliency showed more flexible adaptation than subjects with low ego-resiliency both on the emotional level (anxiety down-regulation after exam) and on the physiological level (situation-specific responses, quick recovery). Subjects with high ego-control exhibited a lower physiological reactivity under both conditions, i.e. they seemed to maintain longer their control also on a physiological level independent of the type of situation.
Systems for low frequency seismic and infrasound detection of geo-pressure transition zones
Shook, G. Michael; LeRoy, Samuel D.; Benzing, William M.
2007-10-16
Methods for determining the existence and characteristics of a gradational pressurized zone within a subterranean formation are disclosed. One embodiment involves employing an attenuation relationship between a seismic response signal and increasing wavelet wavelength, which relationship may be used to detect a gradational pressurized zone and/or determine characteristics thereof. In another embodiment, a method for analyzing data contained within a response signal for signal characteristics that may change in relation to the distance between an input signal source and the gradational pressurized zone is disclosed. In a further embodiment, the relationship between response signal wavelet frequency and comparative amplitude may be used to estimate an optimal wavelet wavelength or range of wavelengths used for data processing or input signal selection. Systems for seismic exploration and data analysis for practicing the above-mentioned method embodiments are also disclosed.
Hand-transmitted vibration and biodynamic response of the human hand-arm: a critical review.
Dong, R G; Rakheja, S; Schopper, A W; Han, B; Smutz, W P
2001-01-01
Hand-arm vibration syndrome (HAVS) has been associated with prolonged exposure to vibration transmitted to the human hand-arm system from hand-held power tools, vibrating machines, or hand-held vibrating workpieces. The biodynamic response of the human hand and arm to hand transmitted vibration (HTV) forms an essential basis for effective evaluations of exposures, vibration-attenuation mechanisms, and potential injury mechanisms. The biodynamic response to HTV and its relationship to HAVS are critically reviewed and discussed to highlight the advances and the need for further research. In view of its strong dependence on the nature of HTV and the lack of general agreement on the characteristics of HTV, the reported studies are first reviewed to enhance an understanding of HTV and related issues. The characteristics of HTV and relevant unresolved issues are discussed on the basis of measured data, proposed standards, and measurement methods, while the need for further developments in measurement systems is emphasized. The studies on biodynamic response and their findings are grouped into four categories based on the methodology used and the objective. These include studies on (1) through-the-hand-arm response, expressed in terms of vibration transmissibility; (2) to-the-hand response, expressed in terms of the force-motion relationship of the hand-arm system; (3) to-the-hand biodynamic response function, expressed in terms of vibration energy absorption; and (4) computer modeling of the biodynamic response characteristics.
Public Health System Response to Extreme Weather Events.
Hunter, Mark D; Hunter, Jennifer C; Yang, Jane E; Crawley, Adam W; Aragón, Tomás J
2016-01-01
Extreme weather events, unpredictable and often far-reaching, constitute a persistent challenge for public health preparedness. The goal of this research is to inform public health systems improvement through examination of extreme weather events, comparing across cases to identify recurring patterns in event and response characteristics. Structured telephone-based interviews were conducted with representatives from health departments to assess characteristics of recent extreme weather events and agencies' responses. Response activities were assessed using the Centers for Disease Control and Prevention Public Health Emergency Preparedness Capabilities framework. Challenges that are typical of this response environment are reported. Forty-five local health departments in 20 US states. Respondents described public health system responses to 45 events involving tornadoes, flooding, wildfires, winter weather, hurricanes, and other storms. Events of similar scale were infrequent for a majority (62%) of the communities involved; disruption to critical infrastructure was universal. Public Health Emergency Preparedness Capabilities considered most essential involved environmental health investigations, mass care and sheltering, surveillance and epidemiology, information sharing, and public information and warning. Unanticipated response activities or operational constraints were common. We characterize extreme weather events as a "quadruple threat" because (1) direct threats to population health are accompanied by damage to public health protective and community infrastructure, (2) event characteristics often impose novel and pervasive burdens on communities, (3) responses rely on critical infrastructures whose failure both creates new burdens and diminishes response capacity, and (4) their infrequency and scale further compromise response capacity. Given the challenges associated with extreme weather events, we suggest opportunities for organizational learning and preparedness improvements.
NASA Astrophysics Data System (ADS)
Chen, Y.; Wang, J.; Wang, H. H.; Yang, L.; Chen, W.; Xu, Y. T.
2016-08-01
Double-fed induction generator (DFIG) is sensitive to the disturbances of grid, so the security and stability of the grid and the DFIG itself are under threat with the rapid increase of DFIG. Therefore, it is important to study dynamic response of the DFIG when voltage drop failure is happened in power system. In this paper, firstly, mathematical models and the control strategy about mechanical and electrical response processes is respectively introduced. Then through the analysis of response process, it is concluded that the dynamic response characteristics are related to voltage drop level, operating status of DFIG and control strategy adapted to rotor side. Last, the correctness of conclusion is validated by the simulation about mechanical and electrical response processes in different voltage levels drop and different DFIG output levels under DIgSILENT/PowerFactory software platform.
NASA Technical Reports Server (NTRS)
Unal, Resit
1999-01-01
Multdisciplinary design optimization (MDO) is an important step in the design and evaluation of launch vehicles, since it has a significant impact on performance and lifecycle cost. The objective in MDO is to search the design space to determine the values of design parameters that optimize the performance characteristics subject to system constraints. Vehicle Analysis Branch (VAB) at NASA Langley Research Center has computerized analysis tools in many of the disciplines required for the design and analysis of launch vehicles. Vehicle performance characteristics can be determined by the use of these computerized analysis tools. The next step is to optimize the system performance characteristics subject to multidisciplinary constraints. However, most of the complex sizing and performance evaluation codes used for launch vehicle design are stand-alone tools, operated by disciplinary experts. They are, in general, difficult to integrate and use directly for MDO. An alternative has been to utilize response surface methodology (RSM) to obtain polynomial models that approximate the functional relationships between performance characteristics and design variables. These approximation models, called response surface models, are then used to integrate the disciplines using mathematical programming methods for efficient system level design analysis, MDO and fast sensitivity simulations. A second-order response surface model of the form given has been commonly used in RSM since in many cases it can provide an adequate approximation especially if the region of interest is sufficiently limited.
Study of Dynamic Characteristics of Aeroelastic Systems Utilizing Randomdec Signatures
NASA Technical Reports Server (NTRS)
Chang, C. S.
1975-01-01
The feasibility of utilizing the random decrement method in conjunction with a signature analysis procedure to determine the dynamic characteristics of an aeroelastic system for the purpose of on-line prediction of potential on-set of flutter was examined. Digital computer programs were developed to simulate sampled response signals of a two-mode aeroelastic system. Simulated response data were used to test the random decrement method. A special curve-fit approach was developed for analyzing the resulting signatures. A number of numerical 'experiments' were conducted on the combined processes. The method is capable of determining frequency and damping values accurately from randomdec signatures of carefully selected lengths.
A rapidly changing global medicines environment: How adaptable are funding decision-making systems?
Leopold, Christine; Morgan, Steven G; Wagner, Anita K
2017-06-01
With the launch of very highly priced therapies and sudden price increases of generics, pressures on health systems have drastically increased. We aimed to elicit opinions of key decision makers responsible for national assessment and funding decisions on their experiences to adapt to these new realities. Through interviews with decision makers of pharmaceutical assessment and/or funding agencies, we describe the challenges systems are currently facing, systems' responses and systems' characteristics facilitating or hindering responses to changes and overarching topics for the future. Among the most common challenges are increased funding pressures, increased uncertainty and lack of transparency in decision-making. Systems' responses include utilization management, changing of assessment processes, stakeholder engagement and a focus on outcomes and on coordinated negotiations. Integrated delivery systems, fixed health care budgets and geographic and historical characteristics facilitate or sometimes hinder responses to change. Future policy emphasis lays on expanding data structures, managing the exit of drugs funded early, and implementing processes for communications with patients and the public. Going forward emphasis has to be given to structured communications with all stakeholders with a specific emphasis on the broader public and patients about financial limits and priority setting in health care. Copyright © 2017 Elsevier B.V. All rights reserved.
Shook, G. Michael; LeRoy, Samuel D.; Benzing, William M.
2006-07-18
Methods for determining the existence and characteristics of a gradational pressurized zone within a subterranean formation are disclosed. One embodiment involves employing an attenuation relationship between a seismic response signal and increasing wavelet wavelength, which relationship may be used to detect a gradational pressurized zone and/or determine characteristics thereof. In another embodiment, a method for analyzing data contained within a response signal for signal characteristics that may change in relation to the distance between an input signal source and the gradational pressurized zone is disclosed. In a further embodiment, the relationship between response signal wavelet frequency and comparative amplitude may be used to estimate an optimal wavelet wavelength or range of wavelengths used for data processing or input signal selection. Systems for seismic exploration and data analysis for practicing the above-mentioned method embodiments are also disclosed.
NASA Technical Reports Server (NTRS)
On, F. J.
1983-01-01
A comparative evaluation of the Space Transportation System (STS)-3 flight and acoustic test random vibration response of the Office of Space Science-1 (OSS-1) payload is presented. The results provide insight into the characteristics of vibroacoustic response of pallet payload components in the payload bay during STS flights.
A controls engineering approach for analyzing airplane input-output characteristics
NASA Technical Reports Server (NTRS)
Arbuckle, P. Douglas
1991-01-01
An engineering approach for analyzing airplane control and output characteristics is presented. State-space matrix equations describing the linear perturbation dynamics are transformed from physical coordinates into scaled coordinates. The scaling is accomplished by applying various transformations to the system to employ prior engineering knowledge of the airplane physics. Two different analysis techniques are then explained. Modal analysis techniques calculate the influence of each system input on each fundamental mode of motion and the distribution of each mode among the system outputs. The optimal steady state response technique computes the blending of steady state control inputs that optimize the steady state response of selected system outputs. Analysis of an example airplane model is presented to demonstrate the described engineering approach.
A Software Toolbox for Systematic Evaluation of Seismometer-Digitizer System Responses
2011-09-01
characteristics (e.g., borehole vs. surface installation) instead of the actual seismic noise characteristics. Their results suggest that our best...Administration Award No. DE-FG02-09ER85548 ABSTRACT Measurement of the absolute amplitudes of a seismic signal requires accurate knowledge of...estimates seismic noise power spectral densities, and NOISETRAN, which generates a pseudo-amplitude response (PAR) for a seismic station, based on
Paleoclimate diagnostics: consistent large-scale temperature responses in warm and cold climates
NASA Astrophysics Data System (ADS)
Izumi, Kenji; Bartlein, Patrick; Harrison, Sandy
2015-04-01
The CMIP5 model simulations of the large-scale temperature responses to increased raditative forcing include enhanced land-ocean contrast, stronger response at higher latitudes than in the tropics, and differential responses in warm and cool season climates to uniform forcing. Here we show that these patterns are also characteristic of CMIP5 model simulations of past climates. The differences in the responses over land as opposed to over the ocean, between high and low latitudes, and between summer and winter are remarkably consistent (proportional and nearly linear) across simulations of both cold and warm climates. Similar patterns also appear in historical observations and paleoclimatic reconstructions, implying that such responses are characteristic features of the climate system and not simple model artifacts, thereby increasing our confidence in the ability of climate models to correctly simulate different climatic states. We also show the possibility that a small set of common mechanisms control these large-scale responses of the climate system across multiple states.
Socio-economic disparities in health system responsiveness in India.
Malhotra, Chetna; Do, Young Kyung
2013-03-01
To assess the magnitude of socio-economic disparities in health system responsiveness in India after correcting for potential reporting heterogeneity by socio-economic characteristics (education and wealth). Data from Wave 1 of the Study on Global Ageing and Adult Health (2007-2008) involving six Indian states were used. Seven health system responsiveness domains were considered for a respondent's last visit to an outpatient service in 12 months: prompt attention, dignity, clarity of information, autonomy, confidentiality, choice and quality of basic amenities. Hierarchical ordered probit models (correcting for reporting heterogeneity through anchoring vignettes) were used to assess the association of socio-economic characteristics with the seven responsiveness domains, controlling for age, gender and area of residence. Stratified analysis was also conducted among users of public and private health facilities. Our statistical models accounting for reporting heterogeneity revealed socio-economic disparities in all health system responsiveness domains. Estimates suggested that individuals from the lowest wealth group, for example, were less likely than individuals from the highest wealth group to report 'very good' on the dignity domain by 8% points (10% vs 18%). Stratified analysis showed that such disparities existed among users of both public and private health facilities. Socio-economic disparities exist in health system responsiveness in India, irrespective of the type of health facility used. Policy efforts to monitor and improve these disparities are required at the health system level.
K. Novick; J. Walker; W.S. Chan; A. Schmidt; C. Sobek; J.M. Vose
2013-01-01
A new class of enclosed path gas analyzers suitable for eddy covariance applications combines the advantages of traditional closed-path systems (small density corrections, good performance in poor weather) and open-path systems (good spectral response, low power requirements), and permits estimates of instantaneous gas mixing ratio. Here, the extent to which these...
Step-control of electromechanical systems
Lewis, Robert N.
1979-01-01
The response of an automatic control system to a general input signal is improved by applying a test input signal, observing the response to the test input signal and determining correctional constants necessary to provide a modified input signal to be added to the input to the system. A method is disclosed for determining correctional constants. The modified input signal, when applied in conjunction with an operating signal, provides a total system output exhibiting an improved response. This method is applicable to open-loop or closed-loop control systems. The method is also applicable to unstable systems, thus allowing controlled shut-down before dangerous or destructive response is achieved and to systems whose characteristics vary with time, thus resulting in improved adaptive systems.
Nonlinear dynamics of the human lumbar intervertebral disc.
Marini, Giacomo; Huber, Gerd; Püschel, Klaus; Ferguson, Stephen J
2015-02-05
Systems with a quasi-static response similar to the axial response of the intervertebral disc (i.e. progressive stiffening) often present complex dynamics, characterized by peculiar nonlinearities in the frequency response. However, such characteristics have not been reported for the dynamic response of the disc. The accurate understanding of disc dynamics is essential to investigate the unclear correlation between whole body vibration and low back pain. The present study investigated the dynamic response of the disc, including its potential nonlinear response, over a range of loading conditions. Human lumbar discs were tested by applying a static preload to the top and a sinusoidal displacement at the bottom of the disc. The frequency of the stimuli was set to increase linearly from a low frequency to a high frequency limit and back down. In general, the response showed nonlinear and asymmetric characteristics. For each test, the disc had different response in the frequency-increasing compared to the frequency-decreasing sweep. In particular, the system presented abrupt changes of the oscillation amplitude at specific frequencies, which differed between the two sweeps. This behaviour indicates that the system oscillation has a different equilibrium condition depending on the path followed by the stimuli. Preload and amplitude of the oscillation directly influenced the disc response by changing the nonlinear dynamics and frequency of the jump-phenomenon. These results show that the characterization of the dynamic response of physiological systems should be readdressed to determine potential nonlinearities. Their direct effect on the system function should be further investigated. Copyright © 2014 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2011 CFR
2011-04-01
... intended to have uniform characteristics and quality within specified limits. (n) Management with executive... management with executive responsibility. (v) Quality system means the organizational structure, responsibilities, procedures, processes, and resources for implementing quality management. (w) Remanufacturer...
Subcritical flutter testing and system identification
NASA Technical Reports Server (NTRS)
Houbolt, J. C.
1974-01-01
Treatment is given of system response evaluation, especially in application to subcritical flight and wind tunnel flutter testing of aircraft. An evaluation is made of various existing techniques, in conjuction with a companion survey which reports theoretical and analog experiments made to study the identification of system response characteristics. Various input excitations are considered, and new techniques for analyzing response are explored, particularly in reference to the prevalent practical case where unwanted input noise is present, such as caused by gusts or wind tunnel turbulence. Further developments are also made of system parameter identification techniques.
Topographic and soil influences on root productivity of three bioenergy cropping systems
Todd A. Ontl; Kirsten S. Hofmockel; Cynthia A. Cambardella; Lisa A. Schulte; Randall K. Kolka
2013-01-01
Successful modeling of the carbon (C) cycle requires empirical data regarding species-specific root responses to edaphic characteristics. We address this need by quantifying annual root production of three bioenergy systems (continuous corn, triticale/sorghum, switchgrass) in response to variation in soil properties across a toposequence within a Midwestern...
Design and performance characteristics of a mechanically driven vestibular stimulator.
DOT National Transportation Integrated Search
1964-01-01
In order to determine basic response characteristics of mammalian vestibular systems, the sytems so important for spatial orientation, a device to provide programs of controlled angular accelerations about the vertical axis was required. The small ro...
Asanov, E O; Os'mak, Ie D; Kuz'mins'ka, L A
2013-01-01
The peculiarities of the response of the sympathoadrenal system to psychoemotional and hypoxic stress in healthy young people and in aged people with physiological and accelerated aging of respiratory system were studied. It was shown that in aging a more pronounced response of the sympathoadrenal system to psychoemotional stress. At the same time, elderly people with different types of aging of the respiratory system did not demonstrate a difference in the response of the sympathoadrenal system to psychoemotional stress. Unlike in young people, in aged people, combination of psychoemotional and hypoxic stresses resulted in further activation of the sympathoadrenal system. The reaction of the sympathoadrenal system was more expressed in elderly people with accelerated ageing of the respiratory system.
Dynamic Response Testing in an Electrically Heated Reactor Test Facility
NASA Astrophysics Data System (ADS)
Bragg-Sitton, Shannon M.; Morton, T. J.
2006-01-01
Non-nuclear testing can be a valuable tool in the development of a space nuclear power or propulsion system. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Standard testing allows one to fully assess thermal, heat transfer, and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. The integration of thermal hydraulic hardware tests with simulated neutronic response provides a bridge between electrically heated testing and fueled nuclear testing. By implementing a neutronic response model to simulate the dynamic response that would be expected in a fueled reactor system, one can better understand system integration issues, characterize integrated system response times and response characteristics, and assess potential design improvements at a relatively small fiscal investment. Initial system dynamic response testing was demonstrated on the integrated SAFE-100a heat pipe (HP) cooled, electrically heated reactor and heat exchanger hardware, utilizing a one-group solution to the point kinetics equations to simulate the expected neutronic response of the system. Reactivity feedback calculations were then based on a bulk reactivity feedback coefficient and measured average core temperature. This paper presents preliminary results from similar dynamic testing of a direct drive gas cooled reactor system (DDG), demonstrating the applicability of the testing methodology to any reactor type and demonstrating the variation in system response characteristics in different reactor concepts. Although the HP and DDG designs both utilize a fast spectrum reactor, the method of cooling the reactor differs significantly, leading to a variable system response that can be demonstrated and assessed in a non-nuclear test facility. Planned system upgrades to allow implementation of higher fidelity dynamic testing are also discussed. Proposed DDG testing will utilize a higher fidelity point kinetics model to control core power transients, and reactivity feedback will be based on localized feedback coefficients and several independent temperature measurements taken within the core block. This paper presents preliminary test results and discusses the methodology that will be implemented in follow-on DDG testing and the additional instrumentation required to implement high fidelity dynamic testing.
Evaluation of space shuttle main engine fluid dynamic frequency response characteristics
NASA Technical Reports Server (NTRS)
Gardner, T. G.
1980-01-01
In order to determine the POGO stability characteristics of the space shuttle main engine liquid oxygen (LOX) system, the fluid dynamic frequency response functions between elements in the SSME LOX system was evaluated, both analytically and experimentally. For the experimental data evaluation, a software package was written for the Hewlett-Packard 5451C Fourier analyzer. The POGO analysis software is documented and consists of five separate segments. Each segment is stored on the 5451C disc as an individual program and performs its own unique function. Two separate data reduction methods, a signal calibration, coherence or pulser signal based frequency response function blanking, and automatic plotting features are included in the program. The 5451C allows variable parameter transfer from program to program. This feature is used to advantage and requires only minimal user interface during the data reduction process. Experimental results are included and compared with the analytical predictions in order to adjust the general model and arrive at a realistic simulation of the POGO characteristics.
NASA Technical Reports Server (NTRS)
Pilkey, W. D.; Wang, B. P.; Yoo, Y.; Clark, B.
1973-01-01
A description and applications of a computer capability for determining the ultimate optimal behavior of a dynamically loaded structural-mechanical system are presented. This capability provides characteristics of the theoretically best, or limiting, design concept according to response criteria dictated by design requirements. Equations of motion of the system in first or second order form include incompletely specified elements whose characteristics are determined in the optimization of one or more performance indices subject to the response criteria in the form of constraints. The system is subject to deterministic transient inputs, and the computer capability is designed to operate with a large linear programming on-the-shelf software package which performs the desired optimization. The report contains user-oriented program documentation in engineering, problem-oriented form. Applications cover a wide variety of dynamics problems including those associated with such diverse configurations as a missile-silo system, impacting freight cars, and an aircraft ride control system.
Vibration signature analysis of multistage gear transmission
NASA Technical Reports Server (NTRS)
Choy, F. K.; Tu, Y. K.; Savage, M.; Townsend, D. P.
1989-01-01
An analysis is presented for multistage multimesh gear transmission systems. The analysis predicts the overall system dynamics and the transmissibility to the gear box or the enclosed structure. The modal synthesis approach of the analysis treats the uncoupled lateral/torsional model characteristics of each stage or component independently. The vibration signature analysis evaluates the global dynamics coupling in the system. The method synthesizes the interaction of each modal component or stage with the nonlinear gear mesh dynamics and the modal support geometry characteristics. The analysis simulates transient and steady state vibration events to determine the resulting torque variations, speeds, changes, rotor imbalances, and support gear box motion excitations. A vibration signature analysis examines the overall dynamic characteristics of the system, and the individual model component responses. The gear box vibration analysis also examines the spectral characteristics of the support system.
How time delay and network design shape response patterns in biochemical negative feedback systems.
Börsch, Anastasiya; Schaber, Jörg
2016-08-24
Negative feedback in combination with time delay can bring about both sustained oscillations and adaptive behaviour in cellular networks. Here, we study which design features of systems with delayed negative feedback shape characteristic response patterns with special emphasis on the role of time delay. To this end, we analyse generic two-dimensional delay differential equations describing the dynamics of biochemical signal-response networks. We investigate the influence of several design features on the stability of the model equilibrium, i.e., presence of auto-inhibition and/or mass conservation and the kind and/or strength of the delayed negative feedback. We show that auto-inhibition and mass conservation have a stabilizing effect, whereas increasing abruptness and decreasing feedback threshold have a de-stabilizing effect on the model equilibrium. Moreover, applying our theoretical analysis to the mammalian p53 system we show that an auto-inhibitory feedback can decouple period and amplitude of an oscillatory response, whereas the delayed feedback can not. Our theoretical framework provides insight into how time delay and design features of biochemical networks act together to elicit specific characteristic response patterns. Such insight is useful for constructing synthetic networks and controlling their behaviour in response to external stimulation.
Regan, Jennifer; Lau, Anna S; Barnett, Miya; Stadnick, Nicole; Hamilton, Alison; Pesanti, Keri; Bando, Lillian; Brookman-Frazee, Lauren
2017-09-19
Large mental health systems are increasingly using fiscal policies to encourage the implementation of multiple evidence-based practices (EBPs). Although many implementation strategies have been identified, little is known about the types and impacts of strategies that are used by organizations within implementation as usual. This study examined organizational-level responses to a fiscally-driven, rapid, and large scale EBP implementation in children's mental health within the Los Angeles County Department of Mental Health. Qualitative methods using the principles of grounded theory were used to characterize the responses of 83 community-based agencies to the implementation effort using documentation from site visits conducted 2 years post reform. Findings indicated that agencies perceived the rapid system-driven implementation to have both positive and negative organizational impacts. Identified challenges were primarily related to system implementation requirements rather than to characteristics of specific EBPs. Agencies employed a variety of implementation strategies in response to the system-driven implementation, with agency size associated with implementation strategies used. Moderate- and large-sized agencies were more likely than small agencies to have employed systematic strategies at multiple levels (i.e., organization, therapist, client) to support implementation. These findings are among the first to characterize organizational variability in response to system-driven implementation and suggest ways that implementation interventions might be tailored by organizational characteristics.
Optimal control theory investigation of proprotor/wing response to vertical gust
NASA Technical Reports Server (NTRS)
Frick, J. K. D.; Johnson, W.
1974-01-01
Optimal control theory is used to design linear state variable feedback to improve the dynamic characteristics of a rotor and cantilever wing representing the tilting proprotor aircraft in cruise flight. The response to a vertical gust and system damping are used as criteria for the open and closed loop performance. The improvement in the dynamic characteristics achievable is examined for a gimballed rotor and for a hingeless rotor design. Several features of the design process are examined, including: (1) using only the wing or only the rotor dynamics in the control system design; (2) the use of a wing flap as well as the rotor controls for inputs; (3) and the performance of the system designed for one velocity at other forward speeds.
NASA Technical Reports Server (NTRS)
Murphy, A. C.
1981-01-01
Experimental data and correlative analytical results on the flutter and gust response characteristics of a torsion-free-wing (TFW) fighter airplane model are presented. TFW consists of a combined wing/boom/canard surface and was tested with the TFW free to pivot in pitch and with the TFW locked to the fuselage. Flutter and gust response characteristics were measured in the Langley Transonic Dynamics Tunnel with the complete airplane model mounted on a cable mount system that provided a near free flying condition. Although the lowest flutter dynamic pressure was measured for the wing free configuration, it was only about 20 deg less than that for the wing locked configuration. However, no appreciable alleviation of the gust response was measured by freeing the wing.
System for remote control of underground device
Brumleve, T.D.; Hicks, M.G.; Jones, M.O.
1975-10-21
A system is described for remote control of an underground device, particularly a nuclear explosive. The system includes means at the surface of the ground for transmitting a seismic signal sequence through the earth having controlled and predetermined signal characteristics for initiating a selected action in the device. Additional apparatus, located with or adjacent to the underground device, produces electrical signals in response to the seismic signals received and compares these electrical signals with the predetermined signal characteristics.
Operational Characteristics of an Accelerator Driven Fissile Solution System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimpland, Robert Herbert
Operational characteristics represent the set of responses that a nuclear system exhibits during normal operation. Operators rely on this behavior to assess the status of the system and to predict the consequences of off-normal events. These characteristics largely refer to the relationship between power and system operating conditions. The static and dynamic behavior of a chain-reacting system, operating at sufficient power, is primarily governed by reactivity effects. The science of reactor physics has identified and evaluated a number of such effects, including Doppler broadening and shifts in the thermal neutron spectrum. Often these reactivity effects are quantified in the formmore » of feedback coefficients that serve as coupling coefficients relating the neutron population and the physical mechanisms that drive reactivity effects, such as fissile material temperature and density changes. The operational characteristics of such nuclear systems usually manifest themselves when perturbations between system power (neutron population) and system operating conditions arise. Successful operation of such systems requires the establishment of steady equilibrium conditions. However, prior to obtaining the desired equilibrium (steady-state) conditions, an approach from zero-power (startup) must occur. This operational regime may possess certain limiting system conditions that must be maintained to achieve effective startup. Once steady-state is achieved, a key characteristic of this operational regime is the level of stability that the system possesses. Finally, a third operational regime, shutdown, may also possess limiting conditions of operation that must be maintained. This report documents the operational characteristics of a “generic” Accelerator Driven Fissile Solution (ADFS) system during the various operational regimes of startup, steady-state operation, and shutdown. Typical time-dependent behavior for each operational regime will be illustrated, and key system parameters, such as response times, will be quantified. A generalized linear systems analysis of steady-state operations will be performed to evaluate the level of stability of ADFS systems. This information should provide a basic understanding of typical ADFS system operational behavior, and facilitate the development of monitoring procedures and operator aids.« less
Hayashi, Shimpei; Wakasa, Yuhya; Takaiwa, Fumio
2013-01-01
The membrane transport system is built on the proper functioning of the endoplasmic reticulum (ER). The accumulation of unfolded proteins in the ER lumen (ER stress) disrupts ER homeostasis and disturbs the transport system. In response to ER stress, eukaryotic cells activate intracellular signaling (named the unfolded protein response, UPR), which contributes to the quality control of secretory proteins. On the other hand, the deleterious effects of UPR on plant health and growth characteristics have frequently been overlooked, due to limited information on this mechanism. However, recent studies have shed light on the molecular mechanism of plant UPR, and a number of its unique characteristics have been elucidated. This study briefly reviews the progress of understanding what is happening in plants under ER stress conditions. PMID:23629671
Test benches for studying the properties of car tyres
NASA Astrophysics Data System (ADS)
Kuznetsov, N. Yu.; Fedotov, A. I.; Vlasov, V. G.
2017-12-01
The article describes the design of the measuring systems of test benches used to study the properties of elastic tyres. The bench has two autonomous systems - for testing the braking properties of elastic tyres rolling in a plane parallel way and for testing tyre slip properties. The system for testing braking properties determines experimental characteristics of elastic tyres as the following dependencies: longitudinal response vs time, braking torque vs slip, angular velocity vs slip, and longitudinal response vs slip. The system for studying tyre slip properties determines both steady (dependence of the lateral response in a contact area on the slipping angle) and non-steady characteristics (time variation of the slipping angle as a result of turning from -40 to +40 degrees) of tyre slip. The article presents the diagrams of bench tests of elastic tyres. The experimental results show metrological parameters and functional capabilities of the bench for studying tyre properties in driving and braking modes. The metrological indices of the recorded parameters of the measuring system for studying tyre properties are presented in the table.
VICAR image processing system guide to system use
NASA Technical Reports Server (NTRS)
Seidman, J. B.
1977-01-01
The functional characteristics and operating requirements of the VICAR (Video Image Communication and Retrieval) system are described. An introduction to the system describes the functional characteristics and the basic theory of operation. A brief description of the data flow as well as tape and disk formats is also presented. A formal presentation of the control statement formats is given along with a guide to usage of the system. The guide provides a step-by-step reference to the creation of a VICAR control card deck. Simple examples are employed to illustrate the various options and the system response thereto.
NASA Astrophysics Data System (ADS)
Hou, Junfang; jing, Min; Zhang, Weihua; Lu, Yahui; He, Haiwen
2017-12-01
As for the isolation problem of electronic equipments on vehicle, the vibration response characteristics of dry friction damping isolation system under base displacement excitation was analyzed in theory by harmonic balance method, and the displacement response was compared between the isolation systems with dry friction damping and vicious damping separately. The results show that the isolation system with small dry friction damping can’t meet the demands of displacement reduction close to the natural frequency, and it can realize full-frequency vibration isolation by improving dry friction damping when the lock frequency passes beyond the resonance frequency band. The results imply that the damping mechanism of dry friction isolator can’t be described only by dry friction damping, and the composite damping with dry friction and vicious damping is more appropriate.
Hellige, G
1976-01-01
The experimentally in vitro determined dynamic response characteristics of 38 catheter manometer systems were uniform in the worst case to 5 c.p.s. and optimally to 26 c.p.s. Accordingly, some systems are only satisfactory for ordinary pressure recording in cardiac rest, while better systems record dp/dt correct up to moderate inotropic stimulation of the heart. In the frequency range of uniform response (amplitude error less +/- 5%) the phase distortion is also negligible. In clinical application the investigator is often restricted to special type of cardiac catheter. In this case a low compliant transducer yields superior results. In all examined systems the combination with MSD 10 transducers is best, whereas the combination with P 23 Db transducers leads to minimal results. An inadequate system for recording ventricular pressure pulses leads in most cases to overestimations of dp/dtmax. The use of low frequency pass filters to attenuate higher frequency artefacts is, under clinical conditions, not suitable for extending the range of uniform frequency response. The dynamic response of 14 catheter manometer systems with two types of continuous self flush units was determined. The use of the P 37 flush unit in combination with small internal diameter catheters leads to serious error in ordinary pressure recording, due to amplitude distortion of the lower harmonics. The frequency response characteristics of the combination of an Intraflow flush system and MSD 10 transducer was similar to the non-flushing P 23 Db transducer feature.
NASA Astrophysics Data System (ADS)
Jia, Bing; Wei, Jian-Ping; Wen, Zhi-Hui; Wang, Yun-Gang; Jia, Lin-Xing
2017-11-01
In order to study the response characteristics of infrasound in coal samples under the uniaxial loading process, coal samples were collected from GengCun mine. Coal rock stress loading device, acoustic emission tested system and infrasound tested system were used to test the infrasonic signal and acoustic emission signal under uniaxial loading process. The tested results were analyzed by the methods of wavelet filter, threshold denoise, time-frequency analysis and so on. The results showed that in the loading process, the change of the infrasonic wave displayed the characteristics of stage, and it could be divided into three stages: initial stage with a certain amount infrasound events, middle stage with few infrasound events, and late stage gradual decrease. It had a good consistency with changing characteristics of acoustic emission. At the same time, the frequency of infrasound was very low. It can propagate over a very long distance with little attenuation, and the characteristics of the infrasound before the destruction of the coal samples were obvious. A method of using the infrasound characteristics to predict the destruction of coal samples was proposed. This is of great significance to guide the prediction of geological hazards in coal mines.
NASA Technical Reports Server (NTRS)
Stewart, E. C.
1976-01-01
The results of an analytical study of a system using stability derivatives determined in static wind tunnel tests of a 1/6 scale model of a popular, high wing, light airplane equipped with the gust alleviation system are reported. The longitudinal short period mode dynamics of the system are analyzed, and include the following: (1) root loci, (2) airplane frequency responses to vertical gusts, (3) power spectra of the airplane responses in a gust spectrum, (4) time history responses to vertical gusts, and (5) handling characteristics. The system reduces the airplane's normal acceleration response to vertical gusts while simultaneously increasing the pitching response and reducing the damping of the longitudinal short period mode. The normal acceleration response can be minimized by using the proper amount of static alleviation and a fast response system with a moderate amount of damping. The addition of a flap elevator interconnect or a pitch damper system further increases the alleviation while moderating the simultaneous increase in pitching response. The system provides direct lift control and may reduce the stick fixed longitudinal static stability.
Domínguez-Mayo, F J; Escalona, M J; Mejías, M; Aragón, G; García-García, J A; Torres, J; Enríquez, J G
2015-01-01
e-Health Systems quality management is an expensive and hard process that entails performing several tasks such as analysis, evaluation, and quality control. Furthermore, the development of an e-Health System involves great responsibility since people's health and quality of life depend on the system and services offered. The focus of the following study is to identify the gap in Quality Characteristics for e-Health Systems, by detecting not only which are the most studied, but also which are the most used Quality Characteristics these Systems include. A strategic study is driven in this paper by a Systematic Literature Review so as to identify Quality Characteristics in e-Health. Such study makes information and communication technology organizations reflect and act strategically to manage quality in e-Health Systems efficiently and effectively. As a result, this paper proposes the bases of a Quality Model and focuses on a set of Quality Characteristics to enable e-Health Systems quality management. Thus, we can conclude that this paper contributes to implementing knowledge with regard to the mission and view of e-Health (Systems) quality management and helps understand how current researches evaluate quality in e-Health Systems.
Escalona, M. J.; Mejías, M.; Aragón, G.; García-García, J. A.; Torres, J.; Enríquez, J. G.
2015-01-01
e-Health Systems quality management is an expensive and hard process that entails performing several tasks such as analysis, evaluation, and quality control. Furthermore, the development of an e-Health System involves great responsibility since people's health and quality of life depend on the system and services offered. The focus of the following study is to identify the gap in Quality Characteristics for e-Health Systems, by detecting not only which are the most studied, but also which are the most used Quality Characteristics these Systems include. A strategic study is driven in this paper by a Systematic Literature Review so as to identify Quality Characteristics in e-Health. Such study makes information and communication technology organizations reflect and act strategically to manage quality in e-Health Systems efficiently and effectively. As a result, this paper proposes the bases of a Quality Model and focuses on a set of Quality Characteristics to enable e-Health Systems quality management. Thus, we can conclude that this paper contributes to implementing knowledge with regard to the mission and view of e-Health (Systems) quality management and helps understand how current researches evaluate quality in e-Health Systems. PMID:26146656
ERIC Educational Resources Information Center
Hightower, William H., Jr.
2010-01-01
A survey instrument was developed to measure community college faculty and administrator views on the faculty evaluation process. Responses were then compared based on demographic characteristics such as primary area of instruction, supervisory responsibility, years of experience, and gender. Open-ended survey questions asked respondents to…
NASA Technical Reports Server (NTRS)
Lempriere, B. M.
1987-01-01
The procedures and results of a study of a conceptual system for measuring the debris environment on the space station is discussed. The study was conducted in two phases: the first consisted of experiments aimed at evaluating location of impact through panel response data collected from acoustic emission sensors; the second analyzed the available statistical description of the environment to determine the probability of the measurement system producing useful data, and analyzed the results of the previous tests to evaluate the accuracy of location and the feasibility of extracting impactor characteristics from the panel response. The conclusions were that for one panel the system would not be exposed to any event, but that the entire Logistics Module would provide a modest amount of data. The use of sensors with higher sensitivity than those used in the tests could be advantageous. The impact location could be found with sufficient accuracy from panel response data. The waveforms of the response were shown to contain information on the impact characteristics, but the data set did not span a sufficient range of the variables necessary to evaluate the feasibility of extracting the information.
NASA Technical Reports Server (NTRS)
Lewis, Michael S.; Mansur, M. Hossein; Chen, Robert T. N.
1987-01-01
A piloted simulation study investigating handling qualities and flight characteristics required for helicopter air to air combat is presented. The Helicopter Air Combat system was used to investigate this role for Army rotorcraft. Experimental variables were the maneuver envelope size (load factor and sideslip), directional axis handling qualities, and pitch and roll control-response type. Over 450 simulated, low altitude, one-on-one engagements were conducted. Results from the experiment indicate that a well damped directional response, low sideforce caused by sideslip, and some effective dihedral are all desirable for weapon system performance, good handling qualities, and low pilot workload. An angular rate command system was favored over the attitude type pitch and roll response for most applications, and an enhanced maneuver envelope size over that of current generation aircraft was found to be advantageous. Pilot technique, background, and experience are additional factors which had a significant effect on performance in the air combat tasks investigated. The implication of these results on design requirements for future helicopters is presented.
Li, Jie; Li, Lei; Liu, Rui; Lin, Hong-sheng
2012-10-01
The features and advantages of Chinese medicine (CM) in cancer comprehensive treatment have been in the spotlight of experts both at home and abroad. However, how to evaluate the effect of CM more objectively, scientifically and systematically is still the key problem of clinical trial, and also a limitation to the development and internationalization of CM oncology. The change of tumor response evaluation system in conventional medicine is gradually consistent with the features of CM clinical effect, such as they both focus on a combination of soft endpoints (i.e. quality of life, clinical benefit, etc.) and hard endpoints (i.e. tumor remission rate, time to progress, etc.). Although experts have proposed protocols of CM tumor response evaluation criteria and come to an agreement in general, divergences still exist in the importance, quantification and CM feature of the potential endpoints. Thus, establishing a CM characteristic and wildly accepted tumor response evaluation system is the key to promote internationalization of CM oncology, and also provides a more convenient and scientific platform for CM international cooperation and communication.
Pilot-model analysis and simulation study of effect of control task desired control response
NASA Technical Reports Server (NTRS)
Adams, J. J.; Gera, J.; Jaudon, J. B.
1978-01-01
A pilot model analysis was performed that relates pilot control compensation, pilot aircraft system response, and aircraft response characteristics for longitudinal control. The results show that a higher aircraft short period frequency is required to achieve superior pilot aircraft system response in an altitude control task than is required in an attitude control task. These results were confirmed by a simulation study of target tracking. It was concluded that the pilot model analysis provides a theoretical basis for determining the effect of control task on pilot opinions.
Impulse Response Measurements Over Space-Earth Paths Using the GPS Coarse/Acquisition Codes
NASA Technical Reports Server (NTRS)
Lemmon, J. J.; Papazian, P. B.
1995-01-01
The impulse responses of radio transmission channels over space-earth paths were measured using the course/acquisition code signals from the Global Positioning System of satellites. The data acquisition system and signal processing techniques used to develop the impulse responses are described. Examples of impulse response measurements are presented. The results indicate that this measurement approach enables detection of multipath signals that are 20 dB or more below the power of the direct arrival. Channel characteristics that could be investigated with additional measurements and analyses are discussed.
NASA Technical Reports Server (NTRS)
Klein, R. H.; Mcruer, D. T.; Weir, D.
1975-01-01
A maneuver complex and related performance measures used to evaluate driver/vehicle system responses as effected by variations in the directional response characteristics of passenger cars are described. The complex consists of normal and emergency maneuvers (including random and discrete disturbances) which, taken as a whole, represent all classes of steering functions and all modes of driver response behavior. Measures of driver/vehicle system response and performance in regulation tasks included direct describing function measurements and rms yaw velocity. In transient maneuvers, measures such as steering activity and cone strikes were used.
Controlled Aeroelastic Response and Airfoil Shaping Using Adaptive Materials and Integrated Systems
NASA Technical Reports Server (NTRS)
Pinkerton, Jennifer L.; McGowan, Anna-Maria R.; Moses, Robert W.; Scott, Robert C.; Heeg, Jennifer
1996-01-01
This paper presents an overview of several activities of the Aeroelasticity Branch at the NASA Langley Research Center in the area of applying adaptive materials and integrated systems for controlling both aircraft aeroelastic response and airfoil shape. The experimental results of four programs are discussed: the Piezoelectric Aeroelastic Response Tailoring Investigation (PARTI); the Adaptive Neural Control of Aeroelastic Response (ANCAR) program; the Actively Controlled Response of Buffet Affected Tails (ACROBAT) program; and the Airfoil THUNDER Testing to Ascertain Characteristics (ATTACH) project. The PARTI program demonstrated active flutter control and significant rcductions in aeroelastic response at dynamic pressures below flutter using piezoelectric actuators. The ANCAR program seeks to demonstrate the effectiveness of using neural networks to schedule flutter suppression control laws. Th,e ACROBAT program studied the effectiveness of a number of candidate actuators, including a rudder and piezoelectric actuators, to alleviate vertical tail buffeting. In the ATTACH project, the feasibility of using Thin-Layer Composite-Uimorph Piezoelectric Driver and Sensor (THUNDER) wafers to control airfoil aerodynamic characteristics was investigated. Plans for future applications are also discussed.
The response of sap flow to pulses of rain in a temperate Australian woodland
Melanie Zeppel; Catrioina M.O. Macinnis-Ng; Chelcy R. Ford; Derek Eamus
2008-01-01
In water-limited systems, pulses of rainfall can trigger a cascade of plant physiological responses. However, the timing and size of the physiological response can vary depending on plant and environmental characteristics, such as rooting depth, plant size, rainfall amount, or antecedent soil moisture. We investigated the influence of pulses of rainfall on the response...
Bae, Sungwoo; Kim, Myungchin
2016-01-01
In order to realize a true WoT environment, a reliable power circuit is required to ensure interconnections among a range of WoT devices. This paper presents research on sensors and their effects on the reliability and response characteristics of power circuits in WoT devices. The presented research can be used in various power circuit applications, such as energy harvesting interfaces, photovoltaic systems, and battery management systems for the WoT devices. As power circuits rely on the feedback from voltage/current sensors, the system performance is likely to be affected by the sensor failure rates, sensor dynamic characteristics, and their interface circuits. This study investigated how the operational availability of the power circuits is affected by the sensor failure rates by performing a quantitative reliability analysis. In the analysis process, this paper also includes the effects of various reconstruction and estimation techniques used in power processing circuits (e.g., energy harvesting circuits and photovoltaic systems). This paper also reports how the transient control performance of power circuits is affected by sensor interface circuits. With the frequency domain stability analysis and circuit simulation, it was verified that the interface circuit dynamics may affect the transient response characteristics of power circuits. The verification results in this paper showed that the reliability and control performance of the power circuits can be affected by the sensor types, fault tolerant approaches against sensor failures, and the response characteristics of the sensor interfaces. The analysis results were also verified by experiments using a power circuit prototype. PMID:27608020
WATER QUALITY EARLY WARNING SYSTEMS FOR SOURCE WATER AND DISTRIBUTION SYSTEM MONITORING
A variety of probes for use in continuous monitoring of water quality exist. They range from single parameter chemical/physical probes to comprehensive screening systems based on whole organism responses. Originally developed for monitoring specific characteristics of water qua...
NASA Technical Reports Server (NTRS)
Dunbar, William R; Wentworth, Carl B; Crowl, Robert J
1957-01-01
The performance of a control system designed for variable thrust applications was determined in an altitude free-jet facility at various Mach numbers, altitudes and angles of attack for a wide range of engine operation. The results are presented as transient response characteristics for step disturbances in fuel flow and stability characteristics as a function of control constants and engine operating conditions. The results indicate that the control is capable of successful operation over the range of conditions tested, although variations in engine gains preclude optimum response characteristics at all conditions with fixed control constants.
Flight control systems properties and problems, volume 1
NASA Technical Reports Server (NTRS)
Mcruer, D. T.; Johnston, D. E.
1975-01-01
This volume contains a delineation of fundamental and mechanization-specific flight control characteristics and problems gleaned from many sources and spanning a period of over two decades. It is organized to present and discuss first some fundamental, generic problems of closed-loop flight control systems involving numerator characteristics (quadratic dipoles, non-minimum phase roots, and intentionally introduced zeros). Next the principal elements of the largely mechanical primary flight control system are reviewed with particular emphasis on the influence of nonlinearities. The characteristics and problems of augmentation (damping, stability, and feel) system mechanizations are then dealt with. The particular idiosyncracies of automatic control actuation and command augmentation schemes are stressed, because they constitute the major interfaces with the primary flight control system and an often highly variable vehicle response.
NASA Astrophysics Data System (ADS)
Nikitin, Pavel Viktorovich
2002-01-01
A typical HVAC duct system is a network of interconnected hollow metal pipes which can serve as waveguides and carry electromagnetic waves. This work presents an analysis of this system as a radio frequency communication channel. Two main parts of the analysis include channel modelling and antenna design. The propagation modelling approach used here is based on the waveguide mode theory and employs the transfer matrix method to describe propagation through various cascaded HVAC elements. This allows one to model the channel response in the frequency domain. Impulse response characteristics of the ducts are also analyzed in this work. The approximate transfer matrices of cylindrical straight sections, bends, and tapers are derived analytically. The transforming properties of cylindrical T-junctions are analyzed experimentally. Antenna designs in waveguides and free-space are different. In waveguides, mode excitation characteristics are important as well as the impedance match. The criteria for antenna design in waveguides are presented here. Antennas analyzed in this work are monopole antennas, dipole antennas, and antenna arrays. The developed model can predict both channel response and antenna characteristics for a given geometry and dimensions of the duct system and the antennas. The model is computationally efficient and can potentially be applied to duct systems of multiple story buildings. The accuracy of the model has been validated with extensive experimental measurements on real HVAC ducts.
NASA Technical Reports Server (NTRS)
Grose, D. L.
1979-01-01
The development of the DAST I (drones for aerodynamic and structural testing) remotely piloted research vehicle is described. The DAST I is a highly modified BQM-34E/F Firebee II Supersonic Aerial Target incorporating a swept supercritical wing designed to flutter within the vehicle's flight envelope. The predicted flutter and rigid body characteristics are presented. A description of the analysis and design of an active flutter suppression control system (FSS) designed to increase the flutter boundary of the DAST wing (ARW-1) by a factor of 20% is given. The design and development of the digital remotely augmented primary flight control system and on-board analog backup control system is presented. An evaluation of the near real-time flight flutter testing methods is made by comparing results of five flutter testing techniques on simulated DAST I flutter data. The development of the DAST ARW-1 state variable model used to generate time histories of simulated accelerometer responses is presented. This model uses control surface commands and a Dryden model gust as inputs. The feasibility of the concept of extracting open loop flutter characteristics from closed loop FSS responses was examined. It was shown that open loop characteristics can be determined very well from closed loop subcritical responses.
Interpreting Nonresponse in Survey Research: Methodological Heresy?
ERIC Educational Resources Information Center
Clark, Sheldon B.; Finn, Michael G.
A study is proposed that seeks to use the normally problematic factor of non-response to a survey in a positive way in order to estimate certain characteristics of a population subgroup. A longitudinal database, the Scientific and Technical Personnel Data System (STPDS) measures the educational, demographic, and employment characteristics of the…
Influence of impeller shroud forces on turbopump rotor dynamics
NASA Technical Reports Server (NTRS)
Williams, J. P.; Childs, Dara W.
1993-01-01
The shrouded-impeller leakage path forces calculated by Childs have been analyzed to answer two questions. First, because of certain characteristics or the results of Childs, the forces could not be modeled with traditional approaches. Therefore, an approach has been devised to include the forces in conventional rotordynamic analyses. The forces were found to be well-modeled with this approach. Finally, the effect these forces had on a simple rotor-bearing system was analyzed, and, therefore, they, in addition to seal forces, were applied to a Jeffcott rotor. The traditional methods of dynamic system analysis were modified to incorporate the impeller forces and yielded results for the eigenproblem, frequency response, critical speed, transient response, and an iterative technique for finding the frequency of free vibration as well as system stability. All results lead to the conclusion that the forces have little influence on natural frequency but can have appreciable effects on system stability. Specifically, at higher values of fluid swirl at the leakage path entrance, relative stability is reduced. The only unexpected response characteristics that occurred are attributed to the nonlinearity of the model.
Response Characteristics of an Aquatic Biomonitor Used for Rapid Toxicity Detection
2004-05-15
for drinking water protection. 14. SUBJECT TERMS 15. NUMBER OF PAGES biological early warning system; Lepomis macrochirus; bluegill; aquatic toxicity...Fort Detrick, MD 21702-5010, USA Key words: biomonitor; biological early warning system; Lepomis macrochirus; bluegill; aquatic toxicity; water ...narcosis are most likely to cause rapid aquatic biomonitor depth related to variations in water quality (primarily responses. Other modes of action may
ERIC Educational Resources Information Center
Trees, April R.; Jackson, Michele H.
2007-01-01
To explore what social and educational infrastructure is needed to support classroom use of student response systems (Roschelle et al., 2004), this study investigated the ways in which student characteristics and course design choices were related to students' assessments of the contribution of clicker use to their learning and involvement in the…
NASA Technical Reports Server (NTRS)
Boland, J. S., III
1973-01-01
The derivation of an approximate error characteristic equation describing the transient system error response is given, along with a procedure for selecting adaptive gain parameters so as to relate to the transient error response. A detailed example of the application and implementation of these methods for a space shuttle type vehicle is included. An extension of the characteristic equation technique is used to provide an estimate of the magnitude of the maximum system error and an estimate of the time of occurrence of this maximum after a plant parameter disturbance. Techniques for relaxing certain stability requirements and the conditions under which this can be done and still guarantee asymptotic stability of the system error are discussed. Such conditions are possible because the Lyapunov methods used in the stability derivation allow for overconstraining a problem in the process of insuring stability.
Response characteristic of high-speed on/off valve with double voltage driving circuit
NASA Astrophysics Data System (ADS)
Li, P. X.; Su, M.; Zhang, D. B.
2017-07-01
High-speed on/off valve, an important part of turbocharging system, its quick response has a direct impact on the turbocharger pressure cycle. The methods of improving the response characteristic of high speed on/off valve include increasing the magnetic force of armature and the voltage, decreasing the mass and current of coil. The less coil number of turns, the solenoid force is smaller. The special armature structure and the magnetic material will raise cost. In this paper a new scheme of double voltage driving circuit is investigated, in which the original driving circuit of high-speed on/off valve is replaced by double voltage driving circuit. The detailed theoretical analysis and simulations were carried out on the double voltage driving circuit, it showed that the switching time and delay time of the valve respectively are 3.3ms, 5.3ms, 1.9ms and 1.8ms. When it is driven by the double voltage driving circuit, the switching time and delay time of this valve are reduced, optimizing its response characteristic. By the comparison related factors (such as duty cycle or working frequency) about influences on response characteristic, the superior of double voltage driving circuit has been further confirmed.
Influence of sampling rate on the calculated fidelity of an aircraft simulation
NASA Technical Reports Server (NTRS)
Howard, J. C.
1983-01-01
One of the factors that influences the fidelity of an aircraft digital simulation is the sampling rate. As the sampling rate is increased, the calculated response of the discrete representation tends to coincide with the response of the corresponding continuous system. Because of computer limitations, however, the sampling rate cannot be increased indefinitely. Moreover, real-time simulation requirements demand that a finite sampling rate be adopted. In view of these restrictions, a study was undertaken to determine the influence of sampling rate on the response characteristics of a simulated aircraft describing short-period oscillations. Changes in the calculated response characteristics of the simulated aircraft degrade the fidelity of the simulation. In the present context, fidelity degradation is defined as the percentage change in those characteristics that have the greatest influence on pilot opinion: short period frequency omega, short period damping ratio zeta, and the product omega zeta. To determine the influence of the sampling period on these characteristics, the equations describing the response of a DC-8 aircraft to elevator control inputs were used. The results indicate that if the sampling period is too large, the fidelity of the simulation can be degraded.
NASA Astrophysics Data System (ADS)
Parker, Chelsea L.; Bruyère, Cindy L.; Mooney, Priscilla A.; Lynch, Amanda H.
2018-01-01
Land-falling tropical cyclones along the Queensland coastline can result in serious and widespread damage. However, the effects of climate change on cyclone characteristics such as intensity, trajectory, rainfall, and especially translation speed and size are not well-understood. This study explores the relative change in the characteristics of three case studies by comparing the simulated tropical cyclones under current climate conditions with simulations of the same systems under future climate conditions. Simulations are performed with the Weather Research and Forecasting Model and environmental conditions for the future climate are obtained from the Community Earth System Model using a pseudo global warming technique. Results demonstrate a consistent response of increasing intensity through reduced central pressure (by up to 11 hPa), increased wind speeds (by 5-10% on average), and increased rainfall (by up to 27% for average hourly rainfall rates). The responses of other characteristics were variable and governed by either the location and trajectory of the current climate cyclone or the change in the steering flow. The cyclone that traveled furthest poleward encountered a larger climate perturbation, resulting in a larger proportional increase in size, rainfall rate, and wind speeds. The projected monthly average change in the 500 mb winds with climate change governed the alteration in the both the trajectory and translation speed for each case. The simulated changes have serious implications for damage to coastal settlements, infrastructure, and ecosystems through increased wind speeds, storm surge, rainfall, and potentially increased size of some systems.
ERIC Educational Resources Information Center
Social Science Education Consortium, Inc., Boulder, CO.
In this document conference participants consider characteristics of the communications network for diffusion of new instructional materials and practices. Responses to these questions are presented: What are the communication mechanisms within the diffusion system that encourage or discourage the diffusion of innovation? What role do journal…
Methods and systems for determining angular orientation of a drill string
Cobern, Martin E.
2010-03-23
Preferred methods and systems generate a control input based on a periodically-varying characteristic associated with the rotation of a drill string. The periodically varying characteristic can be correlated with the magnetic tool face and gravity tool face of a rotating component of the drill string, so that the control input can be used to initiate a response in the rotating component as a function of gravity tool face.
High frequency vibration characteristics of electric wheel system under in-wheel motor torque ripple
NASA Astrophysics Data System (ADS)
Mao, Yu; Zuo, Shuguang; Wu, Xudong; Duan, Xianglei
2017-07-01
With the introduction of in-wheel motor, the electric wheel system encounters new vibration problems brought by motor torque ripple excitation. In order to analyze new vibration characteristics of electric wheel system, torque ripple of in-wheel motor based on motor module and vector control system is primarily analyzed, and frequency/order features of the torque ripple are discussed. Then quarter vehicle-electric wheel system (QV-EWS) dynamics model based on the rigid ring tire assumption is established and the main parameters of the model are identified according to tire free modal test. Modal characteristics of the model are further analyzed. The analysis indicates that torque excitation of in-wheel motor is prone to arouse horizontal vibration, in which in-phase rotational, anti-phase rotational and horizontal translational modes of electric wheel system mainly participate. Based on the model, vibration responses of the QV-EWS under torque ripple are simulated. The results show that unlike vertical low frequency (lower than 20 Hz) vibration excited by road roughness, broadband torque ripple will arouse horizontal high frequency (50-100 Hz) vibration of electric wheel system due to participation of the three aforementioned modes. To verify the theoretical analysis, the bench experiment of electric wheel system is conducted and vibration responses are acquired. The experiment demonstrates the high frequency vibration phenomenon of electric wheel system and the measured order features as well as main resonant frequencies agree with simulation results. Through theoretical modeling, analysis and experiments this paper reveals and explains the high frequency vibration characteristics of electric wheel system, providing references for the dynamic analysis, optimal design of QV-EWS.
Investigations on response time of magnetorheological elastomer under compression mode
NASA Astrophysics Data System (ADS)
Zhu, Mi; Yu, Miao; Qi, Song; Fu, Jie
2018-05-01
For efficient fast control of vibration system with magnetorheological elastomer (MRE)-based smart device, the response time of MRE material is the key parameter which directly affects the control performance of the vibration system. For a step coil current excitation, this paper proposed a Maxwell behavior model with time constant λ to describe the normal force response of MRE, and the response time of MRE was extracted through the separation of coil response time. Besides, the transient responses of MRE under compression mode were experimentally investigated, and the effects of (i) applied current, (ii) particle distribution and (iii) compressive strain on the response time of MRE were addressed. The results revealed that the three factors can affect the response characteristic of MRE quite significantly. Besides the intrinsic importance for contributing to the response evaluation and effective design of MRE device, this study may conduce to the optimal design of controller for MRE control system.
Time Counts! Some Comments on System Latency in Head-Referenced Displays
NASA Technical Reports Server (NTRS)
Ellis, Stephen R.; Adelstein, Bernard D.
2013-01-01
System response latency is a prominent characteristic of human-computer interaction. Laggy systems are; however, not simply annoying but substantially reduce user productivity. The impact of latency on head referenced display systems, particularly head-mounted systems, is especially disturbing since not only can it interfere with dynamic registration in augmented reality displays but it also can in some cases indirectly contribute to motion sickness. We will summarize several experiments using standard psychophysical discrimination techniques that suggest what system latencies will be required to achieve perceptual stability for spatially referenced computer-generated imagery. In conclusion I will speculate about other system performance characteristics that I would hope to have for a dream augmented reality system.
Kim, Jaeshin; Mackay, Donald; Whelan, Michael John
2018-03-01
We investigated the response times of eight volatile methylsiloxanes (VMSs) in environmental systems at different scales from local to global, with a particular focus on overall loss rates after cessation of emissions. In part, this is driven by proposals to restrict the use of some of these compounds in certain products in Europe. The GloboPOP model estimated low absolute Arctic Contamination Potentials for all VMSs and rapid response times in all media except sediment. VMSs are predicted to be distributed predominantly in air where they react with OH radicals, leading to short response times. After cessation of emissions VMSs concentrations in the environment are expected to decrease rapidly from current levels. Response times in specific water and sediment systems were evaluated using a dynamic QWASI model. Response times were sensitive to both physico-chemical properties and environmental characteristics. Degradation was predicted to play the most important role in determining response times in water and sediment. In the case of the lowest molecular weight VMSs such as L2 and D3, response times were essentially independent of environmental characteristics due to fast hydrolysis in water and sediment. However, response times for the other VMSs are system-specific. They are relatively short in shallow water bodies but increase with depth due to the diminishing role of volatilization on concentration change as volume to surface area ratio increases. In sediment, degradation and resuspension rates also contribute most to the response times. The estimated response times for local environments are useful for planning future monitoring programs. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Clark, B. P.
1981-01-01
Analysis of large volumes of LANDSAT 3 RBV digital data that were converted to photographic form led to the firm identification of several visible artifacts (objects or structures not normally present, but producted by an external agency or action) in the imagery. These artifacts were identified, categorized, and traced directly to specific sensor response characteristics. None of these artifacts is easily removed and all cases remain under active study of possible future enhancement. The seven generic categories of sensor response artifacts identified to date include: (1) shading and stairsteps; (2) corners out of focus; (3) missing reseaus; (4) reseau distortion and data distortion; (5) black vertical line; (6) grain effect; and (7) faceplate contamination. An additional category under study, but not yet determined to be caused by sensor response, is a geometric anomaly. Examples of affected imagery are presented to assist in distinguishing between image content and innate defects caused by the sensor system.
Solution-grown crystals for neutron radiation detectors, and methods of solution growth
Zaitseva, Natalia; Carman, M Leslie; Payne, Steve
2014-10-28
An organic crystal according to one embodiment includes an organic crystal comprising diphenylacetylene and stilbene or a stilbene derivative, the crystal having physical characteristics of formation from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source. A system according to one embodiment includes an organic crystal comprising diphenylacetylene and stilbene or a stilbene derivative, the crystal having physical characteristics of formation from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source; and a photodetector for detecting the signal response of the organic crystal. Methods of making such crystals are also provided.
A characteristic energy scale in glasses.
Lerner, Edan; Bouchbinder, Eran
2018-06-07
Intrinsically generated structural disorder endows glassy materials with a broad distribution of various microscopic quantities-such as relaxation times and activation energies-without an obvious characteristic scale. At the same time, macroscopic glassy responses-such as Newtonian (linear) viscosity and nonlinear plastic deformation-are widely interpreted in terms of a characteristic energy scale, e.g., an effective temperature-dependent activation energy in Arrhenius relations. Nevertheless, despite its fundamental importance, such a characteristic energy scale has not been robustly identified. Inspired by the accumulated evidence regarding the crucial role played by disorder- and frustration-induced soft quasilocalized excitations in determining the properties and dynamics of glasses, we propose that the bulk average of the glass response to a localized force dipole defines such a characteristic energy scale. We show that this characteristic glassy energy scale features remarkable properties: (i) It increases dramatically in underlying inherent structures of equilibrium supercooled states approaching the glass transition temperature T g , significantly surpassing the corresponding increase in the macroscopic shear modulus, dismissing the common view that structural variations in supercooled liquids upon vitrification are minute. (ii) Its variation with annealing and system size is very similar in magnitude and form to that of the energy of the softest non-phononic vibrational mode, thus establishing a nontrivial relation between a rare glassy fluctuation and a bulk average response. (iii) It exhibits striking dependence on spatial dimensionality and system size due to the long-ranged fields associated with quasilocalization, which are speculated to be related to peculiarities of the glass transition in two dimensions. In addition, we identify a truly static growing lengthscale associated with the characteristic glassy energy scale and discuss possible connections between the increase of this energy scale and the slowing down of dynamics near the glass transition temperature. Open questions and future directions are discussed.
Hypoxia Responsive Drug Delivery Systems in Tumor Therapy.
Alimoradi, Houman; Matikonda, Siddharth S; Gamble, Allan B; Giles, Gregory I; Greish, Khaled
2016-01-01
Hypoxia is a common characteristic of solid tumors. It is mainly determined by low levels of oxygen resulting from imperfect vascular networks supplying most tumors. In an attempt to improve the present chemotherapeutic treatment and reduce associated side effects, several prodrug strategies have been introduced to achieve hypoxia-specific delivery of cytotoxic anticancer agents. With the advances in nanotechnology, novel delivery systems activated by the consequent outcomes of hypoxia have been developed. However, developing hypoxia responsive drug delivery systems (which only depend on low oxygen levels) is currently naïve. This review discusses four main hypoxia responsive delivery systems: polymeric based drug delivery systems, oxygen delivery systems combined with radiotherapy and chemotherapy, anaerobic bacteria which are used for delivery of genes to express anticancer proteins such as tumor necrosis alpha (TNF-α) and hypoxia-inducible transcription factors 1 alpha (HIF1α) responsive gene delivery systems.
NASA Technical Reports Server (NTRS)
1972-01-01
The results of the space station data flow study are reported. Conceived is a low cost interactive data dissemination system for space station experiment data that includes facility and personnel requirements and locations, phasing requirements and implementation costs. Each of the experiments identified by the operating schedule is analyzed and the support characteristics identified in order to determine data characteristics. Qualitative and quantitative comparison of candidate concepts resulted in a proposed data system configuration baseline concept that includes a data center which combines the responsibility of reprocessing, archiving, and user services according to the various agencies and their responsibility assignments. The primary source of data is the space station complex which provides through the Tracking Data Relay Satellite System (TDRS) and by space shuttle delivery data from experiments in free flying modules and orbiting shuttles as well as from the experiments in the modular space station itself.
Progressive phase trends in plates with embedded acoustic black holes.
Conlon, Stephen C; Feurtado, Philip A
2018-02-01
Acoustic black holes (ABHs) have been explored and demonstrated to be effective passive treatments for broadband noise and vibration control. Performance metrics for assessing damping concepts are often focused on maximizing structural damping loss factors. Optimally performing damping treatments can reduce the resonant response of a driven system well below the direct field response. This results in a finite structure whose vibration input-output response follows that of an infinite structure. The vibration mobility transfer functions between locations on a structure can be used to assess the structure's vibration response phase, and compare its phase response characteristics to those of idealized systems. This work experimentally explores the phase accumulation in finite plates, with and without embedded grids of ABHs. The measured results are compared and contrasted with theoretical results for finite and infinite uniform plates. Accumulated phase characteristics, their spatial dependence and limits, are examined for the plates and compared to theoretical estimates. The phase accumulation results show that the embedded acoustic black hole treatments can significantly enhance the damping of the plates to the point that their phase accumulation follows that of an infinite plate.
Modeling of electromagnetic brakes for enhanced braking capabilities
NASA Astrophysics Data System (ADS)
Kachroo, Pushkin; Ming, Qian
1998-01-01
In automatic highway systems, automatic brake actuation is a very important part of the overall control of the vehicle. Hence, a faster response and a robust braking system are crucial. This paper describes electromagnetic brakes as a supplementary system for regular friction brakes. This system provides better response time for emergency situations, and in general keeps the friction brake working longer and safer. A new mathematical model for electromagnetic brakes is proposed to describe their static characteristics. The performance of the new mathematical model is better than the other three models available in the literature.
A Study on Aircraft Engine Control Systems for Integrated Flight and Propulsion Control
NASA Astrophysics Data System (ADS)
Yamane, Hideaki; Matsunaga, Yasushi; Kusakawa, Takeshi
A flyable FADEC system engineering model incorporating Integrated Flight and Propulsion Control (IFPC) concept is developed for a highly maneuverable aircraft and a fighter-class engine. An overview of the FADEC system and functional assignments for its components such as the Engine Control Unit (ECU) and the Integrated Control Unit (ICU) are described. Overall system reliability analysis, convex analysis and multivariable controller design for the engine, fault detection/redundancy management, and response characteristics of a fuel system are addressed. The engine control performance of the FADEC is demonstrated by hardware-in-the-loop simulation for fast acceleration and thrust transient characteristics.
Optimisation of the vibrational response of ultrasonic cutting systems
NASA Astrophysics Data System (ADS)
Cartmell, M. P.; Lim, F. C. N.; Cardoni, A.; Lucas, M.
2005-10-01
This paper provides an account of an investigation into possible dynamic interactions between two coupled non-linear sub-systems, each possessing opposing non-linear overhang characteristics in the frequency domain in terms of positive and negative cubic stiffnesses. This system is a two-degree-of-freedom Duffing oscillator in which certain non-linear effects can be advantageously neutralised under specific conditions. This theoretical vehicle has been used as a preliminary methodology for understanding the interactive behaviour within typical industrial ultrasonic cutting components. Ultrasonic energy is generated within a piezoelectric exciter, which is inherently non-linear, and which is coupled to a bar- or block-horn, and to one or more material cutting blades, for example. The horn/blade configurations are also non-linear, and within the whole system there are response features which are strongly reminiscent of positive and negative cubic stiffness effects. The two-degree-of-freedom model is analysed and it is shown that a practically useful mitigating effect on the overall non-linear response of the system can be created under certain conditions when one of the cubic stiffnesses is varied. It has also been shown experimentally that coupling of ultrasonic components with different non-linear characteristics can strongly influence the performance of the system and that the general behaviour of the hypothetical theoretical model is indeed borne out in practice. Further experiments have shown that a multiple horn/blade configuration can, under certain circumstances, display autoparametric responses based on the forced response of the desired longitudinal mode parametrically exciting an undesired lateral mode. Typical autoparametric response phenomena have been observed and are presented at the end of the paper.
Early evaluation of MDIS workstations at Madigan Army Medical Center
NASA Astrophysics Data System (ADS)
Leckie, Robert G.; Goeringer, Fred; Smith, Donald V.; Bender, Gregory N.; Choi, Hyung-Sik; Haynor, David R.; Kim, Yongmin
1993-06-01
The image viewing workstation is an all-important link in the PACS (Picture Archiving and Communications System) chain since it represents the interface between the system and the user. For PACS to function, the working environment and transfer of information to the user must be the same or better than the traditional film-based system. The important characteristics of a workstation from a clinical standpoint are acceptable image quality, rapid response time, a friendly user interface, and a well-integrated, highly-reliable, fault-tolerant system which provides the user ample functions to complete his tasks successfully. Since early 1992, the MDIS (Medical Diagnostic Imaging Support) system's diagnostic and clinical workstations have been installed at Madigan Army Medical Center. Various functionalities and performance characteristics of the MDIS workstations such as image display, response time, database, and ergonomics will be presented. User comments and early experience with the workstations as well as new functionality recommended for the future will be discussed.
Characteristics and Innovations in American Education of Relevance for Indian Education.
ERIC Educational Resources Information Center
Stambler, Moses
American responses to educational problems faced around the globe can serve as models for developing nations. The following characteristics of American education with particular relevance for education in developing nations have been organized as inputs, structures and strategies, and outputs. Inputs to the system of American education, defined in…
Riparian wet meadow complexes in the mountains of the central Great Basin are scarce, ecologically important systems that are threatened by stream incision. An interdisciplinary group has investigated 1) the origin, characteristics, and controls on the evolution of these riparian...
NASA Technical Reports Server (NTRS)
Rimskiy-Korsakov, A. V.; Belousov, Y. I.
1973-01-01
A program was compiled for calculating acoustical pressure levels, which might be created by vibrations of complex structures (an assembly of shells and rods), under the influence of a given force, for cases when these fields cannot be measured directly. The acoustical field is determined according to transition frequency and pulse characteristics of the structure in the projection mode. Projection characteristics are equal to the reception characteristics, for vibrating systems in which the reciprocity principle holds true. Characteristics in the receiving mode are calculated on the basis of experimental data on a point pulse space velocity source (input signal) and vibration response of the structure (output signal). The space velocity of a pulse source, set at a point in space r, where it is necessary to calculate the sound field of the structure p(r,t), is determined by measurements of acoustic pressure, created by a point source at a distance R. The vibration response is measured at the point where the forces F and f exciting the system should act.
Reducing Design Risk Using Robust Design Methods: A Dual Response Surface Approach
NASA Technical Reports Server (NTRS)
Unal, Resit; Yeniay, Ozgur; Lepsch, Roger A. (Technical Monitor)
2003-01-01
Space transportation system conceptual design is a multidisciplinary process containing considerable element of risk. Risk here is defined as the variability in the estimated (output) performance characteristic of interest resulting from the uncertainties in the values of several disciplinary design and/or operational parameters. Uncertainties from one discipline (and/or subsystem) may propagate to another, through linking parameters and the final system output may have a significant accumulation of risk. This variability can result in significant deviations from the expected performance. Therefore, an estimate of variability (which is called design risk in this study) together with the expected performance characteristic value (e.g. mean empty weight) is necessary for multidisciplinary optimization for a robust design. Robust design in this study is defined as a solution that minimizes variability subject to a constraint on mean performance characteristics. Even though multidisciplinary design optimization has gained wide attention and applications, the treatment of uncertainties to quantify and analyze design risk has received little attention. This research effort explores the dual response surface approach to quantify variability (risk) in critical performance characteristics (such as weight) during conceptual design.
USDA-ARS?s Scientific Manuscript database
Computer Monte-Carlo (MC) simulations (Geant4) of neutron propagation and acquisition of gamma response from soil samples was applied to evaluate INS system performance characteristic [sensitivity, minimal detectable level (MDL)] for soil carbon measurement. The INS system model with best performanc...
Mirzoev, Tolib; Kane, Sumit
2017-01-01
Responsiveness is a key objective of national health systems. Responsive health systems anticipate and adapt to existing and future health needs, thus contributing to better health outcomes. Of all the health systems objectives, responsiveness is the least studied, which perhaps reflects lack of comprehensive frameworks that go beyond the normative characteristics of responsive services. This paper contributes to a growing, yet limited, knowledge on this topic. Herewith, we review the current frameworks for understanding health systems responsiveness and drawing on these, as well as key frameworks from the wider public services literature, propose a comprehensive conceptual framework for health systems responsiveness. This paper should be of interest to different stakeholders who are engaged in analysing and improving health systems responsiveness. Our review shows that existing knowledge on health systems responsiveness can be extended along the three areas. First, responsiveness entails an actual experience of people's interaction with their health system, which confirms or disconfirms their initial expectations of the system. Second, the experience of interaction is shaped by both the people and the health systems sides of this interaction. Third, different influences shape people's interaction with their health system, ultimately affecting their resultant experiences. Therefore, recognition of both people and health systems sides of interaction and their key determinants would enhance the conceptualisations of responsiveness. Our proposed framework builds on, and advances, the core frameworks in the health systems literature. It positions the experience of interaction between people and health system as the centrepiece and recognises the determinants of responsiveness experience both from the health systems (eg, actors, processes) and the people (eg, initial expectations) sides. While we hope to trigger further thinking on the conceptualisation of health system responsiveness, the proposed framework can guide assessments of, and interventions to strengthen, health systems responsiveness.
Mirzoev, Tolib; Kane, Sumit
2017-01-01
Responsiveness is a key objective of national health systems. Responsive health systems anticipate and adapt to existing and future health needs, thus contributing to better health outcomes. Of all the health systems objectives, responsiveness is the least studied, which perhaps reflects lack of comprehensive frameworks that go beyond the normative characteristics of responsive services. This paper contributes to a growing, yet limited, knowledge on this topic. Herewith, we review the current frameworks for understanding health systems responsiveness and drawing on these, as well as key frameworks from the wider public services literature, propose a comprehensive conceptual framework for health systems responsiveness. This paper should be of interest to different stakeholders who are engaged in analysing and improving health systems responsiveness. Our review shows that existing knowledge on health systems responsiveness can be extended along the three areas. First, responsiveness entails an actual experience of people’s interaction with their health system, which confirms or disconfirms their initial expectations of the system. Second, the experience of interaction is shaped by both the people and the health systems sides of this interaction. Third, different influences shape people’s interaction with their health system, ultimately affecting their resultant experiences. Therefore, recognition of both people and health systems sides of interaction and their key determinants would enhance the conceptualisations of responsiveness. Our proposed framework builds on, and advances, the core frameworks in the health systems literature. It positions the experience of interaction between people and health system as the centrepiece and recognises the determinants of responsiveness experience both from the health systems (eg, actors, processes) and the people (eg, initial expectations) sides. While we hope to trigger further thinking on the conceptualisation of health system responsiveness, the proposed framework can guide assessments of, and interventions to strengthen, health systems responsiveness. PMID:29225953
Effect of Vibration on Retention Characteristics of Screen Acquisition Systems
NASA Technical Reports Server (NTRS)
Tegart, J. R.; Park, A. C.
1977-01-01
An analytical and experimental investigation of the effect of vibration on the retention characteristics of screen acquisition systems was performed. The functioning of surface tension devices using fine-mesh screens requires that the pressure differential acting on the screen be less than its pressure retention capability. When exceeded, screen breakdown will occur and gas-free expulsion of propellant will no longer be possible. An analytical approach to predicting the effect of vibration was developed. This approach considers the transmission of the vibration to the screens of the device and the coupling of the liquid and the screen in establishing the screen response. A method of evaluating the transient response of the gas/liquid interface within the screen was also developed.
NASA Technical Reports Server (NTRS)
Bragg-Sitton, S. M.; Webster, K. L.
2007-01-01
Nonnuclear testing can be a valuable tool in the development of an in-space nuclear power or propulsion system. In a nonnuclear test facility, electric heaters are used to simulate heat from nuclear fuel. Standard testing allows one to fully assess thermal, heat transfer, and stress related attributes of a given system but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. The integration of thermal hydraulic hardware tests with simulated neutronic response provides a bridge between electrically heated testing and full nuclear testing. By implementing a neutronic response model to simulate the dynamic response that would be expected in a fueled reactor system, one can better understand system integration issues, characterize integrated system response times and response and response characteristics, and assess potential design improvements with a relatively small fiscal investment. Initial system dynamic response testing was demonstrated on the integrated SAFE 100a heat pipe cooled, electrically heated reactor and heat exchanger hardware. This Technical Memorandum discusses the status of the planned dynamic test methodology for implementation in the direct-drive gas-cooled reactor testing and assesses the additional instrumentation needed to implement high-fidelity dynamic testing.
Metabolic gene regulation in a dynamically changing environment.
Bennett, Matthew R; Pang, Wyming Lee; Ostroff, Natalie A; Baumgartner, Bridget L; Nayak, Sujata; Tsimring, Lev S; Hasty, Jeff
2008-08-28
Natural selection dictates that cells constantly adapt to dynamically changing environments in a context-dependent manner. Gene-regulatory networks often mediate the cellular response to perturbation, and an understanding of cellular adaptation will require experimental approaches aimed at subjecting cells to a dynamic environment that mimics their natural habitat. Here we monitor the response of Saccharomyces cerevisiae metabolic gene regulation to periodic changes in the external carbon source by using a microfluidic platform that allows precise, dynamic control over environmental conditions. We show that the metabolic system acts as a low-pass filter that reliably responds to a slowly changing environment, while effectively ignoring fast fluctuations. The sensitive low-frequency response was significantly faster than in predictions arising from our computational modelling, and this discrepancy was resolved by the discovery that two key galactose transcripts possess half-lives that depend on the carbon source. Finally, to explore how induction characteristics affect frequency response, we compare two S. cerevisiae strains and show that they have the same frequency response despite having markedly different induction properties. This suggests that although certain characteristics of the complex networks may differ when probed in a static environment, the system has been optimized for a robust response to a dynamically changing environment.
FIR signature verification system characterizing dynamics of handwriting features
NASA Astrophysics Data System (ADS)
Thumwarin, Pitak; Pernwong, Jitawat; Matsuura, Takenobu
2013-12-01
This paper proposes an online signature verification method based on the finite impulse response (FIR) system characterizing time-frequency characteristics of dynamic handwriting features. First, the barycenter determined from both the center point of signature and two adjacent pen-point positions in the signing process, instead of one pen-point position, is used to reduce the fluctuation of handwriting motion. In this paper, among the available dynamic handwriting features, motion pressure and area pressure are employed to investigate handwriting behavior. Thus, the stable dynamic handwriting features can be described by the relation of the time-frequency characteristics of the dynamic handwriting features. In this study, the aforesaid relation can be represented by the FIR system with the wavelet coefficients of the dynamic handwriting features as both input and output of the system. The impulse response of the FIR system is used as the individual feature for a particular signature. In short, the signature can be verified by evaluating the difference between the impulse responses of the FIR systems for a reference signature and the signature to be verified. The signature verification experiments in this paper were conducted using the SUBCORPUS MCYT-100 signature database consisting of 5,000 signatures from 100 signers. The proposed method yielded equal error rate (EER) of 3.21% on skilled forgeries.
1974-08-01
Node Control Logic 2-27 2.16 Pitch Channel Frequence Response 2-36 2.17 Yaw Channel Frequency Response 2-37 K 4 2.18 Analog Computer Mechanlzation of...8217S 0 121 £l1:c IL-I. TABLE I Elements of the Slgma 5 Digital Computer System Xerox Model- Performance MIOP Channel Description Number Characteristics...transfer control signals to or from the CPU. The MIOP can handle up to 32 I/0 channels each operating simultaneously, provided the overall data
NASA Technical Reports Server (NTRS)
Hrabak, R. R.; Levy, D. W.; Finn, P.; Roskam, J.
1981-01-01
The use of pressure differentials in a flight control system was evaluated. The pressure profile around the test surface was determined using two techniques: (1) windtunnel data (actual); and (2) NASA/Langley Single Element Airfoil Computer Program (theoretical). The system designed to evaluate the concept of using pressure differentials is composed of a sensor drive and power amplifiers, actuator, position potentiometer, and a control surface. The characteristics (both desired and actual) of the system and each individual component were analyzed. The desired characteristics of the system as a whole are given. The flight control system developed, the testing procedures and data reduction methods used, and theoretical frequency response analysis are described.
Towards a characterization of information automation systems on the flight deck
NASA Astrophysics Data System (ADS)
Dudley, Rachel Feddersen
This thesis summarizes research to investigate the characteristics that define information automation systems used on aircraft flight decks and the significant impacts that these characteristics have on pilot performance. Major accomplishments of the work include the development of a set of characteristics that describe information automation systems on the flight deck and an experiment designed to study a subset of these characteristics. Information automation systems on the flight deck are responsible for the collection, processing, analysis, and presentation of data to the flightcrew. These systems pose human factors issues and challenges that must be considered by designers of these systems. Based on a previously developed formal definition of information automation for aircraft flight deck systems, an analysis process was developed and conducted to reach a refined set of information automation characteristics. In this work, characteristics are defined as a set of properties or attributes that describe an information automation system's operation or behavior, which can be used to identify and assess potential human factors issues. Hypotheses were formed for a subset of the characteristics: Automation Visibility, Information Quality, and Display Complexity. An experimental investigation was developed to measure performance impacts related to these characteristics, which showed mixed results of expected and surprising findings, with many interactions. A set of recommendations were then developed based on the experimental observations. Ensuring that the right information is presented to pilots at the right time and in the appropriate manner is the job of flight deck system designers. This work provides a foundation for developing recommendations and guidelines specific to information automation on the flight deck with the goal of improving the design and evaluation of information automation systems before they are implemented.
A Conceptual Framework for Creating Culturally Responsive Token Economies
ERIC Educational Resources Information Center
LeBlanc, Gess
2016-01-01
Numerous studies indicate that token economy systems continue to be used by teachers as a means to either increase or decrease behaviours observed in their classrooms. However, studies find that student demographic characteristics such as ethnicity, race, and gender inform teachers' identification of target behaviours. In response to these…
Optimization of a pressure control valve for high power automatic transmission considering stability
NASA Astrophysics Data System (ADS)
Jian, Hongchao; Wei, Wei; Li, Hongcai; Yan, Qingdong
2018-02-01
The pilot-operated electrohydraulic clutch-actuator system is widely utilized by high power automatic transmission because of the demand of large flowrate and the excellent pressure regulating capability. However, a self-excited vibration induced by the inherent non-linear characteristics of valve spool motion coupled with the fluid dynamics can be generated during the working state of hydraulic systems due to inappropriate system parameters, which causes sustaining instability in the system and leads to unexpected performance deterioration and hardware damage. To ensure a stable and fast response performance of the clutch actuator system, an optimal design method for the pressure control valve considering stability is proposed in this paper. A non-linear dynamic model of the clutch actuator system is established based on the motion of the valve spool and coupling fluid dynamics in the system. The stability boundary in the parameter space is obtained by numerical stability analysis. Sensitivity of the stability boundary and output pressure response time corresponding to the valve parameters are identified using design of experiment (DOE) approach. The pressure control valve is optimized using particle swarm optimization (PSO) algorithm with the stability boundary as constraint. The simulation and experimental results reveal that the optimization method proposed in this paper helps in improving the response characteristics while ensuring the stability of the clutch actuator system during the entire gear shift process.
Man-vehicle systems research facility: Design and operating characteristics
NASA Technical Reports Server (NTRS)
1983-01-01
The Man-Vehicle Systems Research Facility (MVSRF) provides the capability of simulating aircraft (two with full crews), en route and terminal air traffic control and aircrew interactions, and advanced cockpit (1995) display representative of future generations of aircraft, all within the full mission context. The characteristics of this facility derive from research, addressing critical human factors issues that pertain to: (1) information requirements for the utilization and integration of advanced electronic display systems, (2) the interaction and distribution of responsibilities between aircrews and ground controllers, and (3) the automation of aircrew functions. This research has emphasized the need for high fidelity in simulations and for the capability to conduct full mission simulations of relevant aircraft operations. This report briefly describes the MVSRF design and operating characteristics.
NASA Astrophysics Data System (ADS)
Shibata, Akenori; Masuno, Hidemasa
2017-10-01
An eleven-story RC apartment building suffered medium damage in the 2011 East Japan earthquake and was retrofitted for re-use. Strong motion records were obtained near the building. This paper discusses the inelastic earthquake response analysis of the building using the equivalent single-degree-of-freedom (1-DOF) system to account for the features of damage. The method of converting the building frame into 1-DOF system with tri-linear reducing-stiffness restoring force characteristics was given. The inelastic response analysis of the building against the earthquake using the inelastic 1-DOF equivalent system could interpret well the level of actual damage.
Input-output characterization of an ultrasonic testing system by digital signal analysis
NASA Technical Reports Server (NTRS)
Karaguelle, H.; Lee, S. S.; Williams, J., Jr.
1984-01-01
The input/output characteristics of an ultrasonic testing system used for stress wave factor measurements were studied. The fundamentals of digital signal processing are summarized. The inputs and outputs are digitized and processed in a microcomputer using digital signal processing techniques. The entire ultrasonic test system, including transducers and all electronic components, is modeled as a discrete-time linear shift-invariant system. Then the impulse response and frequency response of the continuous time ultrasonic test system are estimated by interpolating the defining points in the unit sample response and frequency response of the discrete time system. It is found that the ultrasonic test system behaves as a linear phase bandpass filter. Good results were obtained for rectangular pulse inputs of various amplitudes and durations and for tone burst inputs whose center frequencies are within the passband of the test system and for single cycle inputs of various amplitudes. The input/output limits on the linearity of the system are determined.
A Data Acquisition System Using Single-Chip Microcomputer
NASA Astrophysics Data System (ADS)
Yonyjiang, Dai; Jingkuan, Gao; Lin, Wan; Mingjia, Pi; Jingda, Nan
1989-12-01
A data acquisition system by single-chip microcomputer was designed. It is suitable to the future devlopment of the miniature tidar signal processing epuipment . The characteristics of frequecy response, SNR, D* and NEP of FM-CW CO2 coherent tidar were discussed.
Unreliable evoked responses in autism
Dinstein, Ilan; Heeger, David J.; Lorenzi, Lauren; Minshew, Nancy J.; Malach, Rafael; Behrmann, Marlene
2012-01-01
Summary Autism has been described as a disorder of general neural processing, but the particular processing characteristics that might be abnormal in autism have mostly remained obscure. Here, we present evidence of one such characteristic: poor evoked response reliability. We compared cortical response amplitude and reliability (consistency across trials) in visual, auditory, and somatosensory cortices of high-functioning individuals with autism and controls. Mean response amplitudes were statistically indistinguishable across groups, yet trial-by-trial response reliability was significantly weaker in autism, yielding smaller signal-to-noise ratios in all sensory systems. Response reliability differences were evident only in evoked cortical responses and not in ongoing resting-state activity. These findings reveal that abnormally unreliable cortical responses, even to elementary non-social sensory stimuli, may represent a fundamental physiological alteration of neural processing in autism. The results motivate a critical expansion of autism research to determine whether (and how) basic neural processing properties such as reliability, plasticity, and adaptation/habituation are altered in autism. PMID:22998867
Filter desulfation system and method
Lowe, Michael D.; Robel, Wade J.; Verkiel, Maarten; Driscoll, James J.
2010-08-10
A method of removing sulfur from a filter system of an engine includes continuously passing an exhaust flow through a desulfation leg of the filter system during desulfation. The method also includes sensing at least one characteristic of the exhaust flow and modifying a flow rate of the exhaust flow during desulfation in response to the sensing.
Promoting Systems Change in the Health Care Response to Domestic Violence
ERIC Educational Resources Information Center
Allen, Nicole E.; Lehrner, Amy; Mattison, Erica; Miles, Teresa; Russell, Angela
2007-01-01
Community psychologists have a long-standing interest in promoting systems change to improve the lives of individuals and communities. To more fully illuminate a multilevel model of those factors involved in the promotion of systems change, the current study examined individual- and organizational-level characteristics related to health care…
APOPTOSIS DURING DEVELOPMENT AND AGING AND IN RESPONSE TO MERCURY EXPOSURE.
In the central nervous system from embryogenesis through senescence, cell number is regulated, in part, by apoptosis. Each region of the nervous system has a characteristic temporal pattern of programmed cell death, which includes far greater numbers of cells undergoing apop...
USDA-ARS?s Scientific Manuscript database
Oats produce a group of phenolic antioxidants termed avenanthramides. These metabolites are, among food crops, unique to oats and have shown some desirable nutritional characteristics, in experimental systems, such as inhibiting atherosclerotic plaque formation and reducing inflammatory responses. ...
Photometric Calibration and Image Stitching for a Large Field of View Multi-Camera System
Lu, Yu; Wang, Keyi; Fan, Gongshu
2016-01-01
A new compact large field of view (FOV) multi-camera system is introduced. The camera is based on seven tiny complementary metal-oxide-semiconductor sensor modules covering over 160° × 160° FOV. Although image stitching has been studied extensively, sensor and lens differences have not been considered in previous multi-camera devices. In this study, we have calibrated the photometric characteristics of the multi-camera device. Lenses were not mounted on the sensor in the process of radiometric response calibration to eliminate the influence of the focusing effect of uniform light from an integrating sphere. Linearity range of the radiometric response, non-linearity response characteristics, sensitivity, and dark current of the camera response function are presented. The R, G, and B channels have different responses for the same illuminance. Vignetting artifact patterns have been tested. The actual luminance of the object is retrieved by sensor calibration results, and is used to blend images to make panoramas reflect the objective luminance more objectively. This compensates for the limitation of stitching images that are more realistic only through the smoothing method. The dynamic range limitation of can be resolved by using multiple cameras that cover a large field of view instead of a single image sensor with a wide-angle lens. The dynamic range is expanded by 48-fold in this system. We can obtain seven images in one shot with this multi-camera system, at 13 frames per second. PMID:27077857
Analysis of Vibrational Harmonic Response for Printing Double-Sheet Detecting System via ANSYS
NASA Astrophysics Data System (ADS)
Guo, Qiang; Cai, Ji-Fei; Wang, Yan; Zhang, Yang
In order to explore the influence of the harmonic response of system vibration upon the stability of the double-sheet detector system, the mathematical model of vibrational system is established via the mechanical dynamic theory. Vibrational system of double-sheet detector is studied by theoretical modeling, and the dynamic simulation to obtain the amplitude/phase frequency response curve of the system based on ANSYS is completed to make a comparison with the theoretical results. It is shown that the theoretical value is basically consistent with that calculated through ANSYS. Conclusion vibrational characteristics of double-sheet detection system is obtained quickly and accurately, and propound solving measures by some crucial factors, such as the harmonic load, mass and stiffness, which will affect the vibration of the system, contribute to the finite element method is applied to the complex multiple-degree-of-freedom system.
Unsteady response of flow system around balance piston in a rocket pump
NASA Astrophysics Data System (ADS)
Kawasaki, S.; Shimura, T.; Uchiumi, M.; Hayashi, M.; Matsui, J.
2013-03-01
In the rocket engine turbopump, a self-balancing type of axial thrust balancing system using a balance piston is often applied. In this study, the balancing system in liquid-hydrogen (LH2) rocket pump was modeled combining the mechanical structure and the flow system, and the unsteady response of the balance piston was investigated. The axial vibration characteristics of the balance piston with a large amplitude were determined, sweeping the frequency of the pressure fluctuation on the inlet of the balance piston. This vibration was significantly affected by the compressibility of LH2.
Torabipour, Amin; Gharacheh, Laleh; Lorestani, Leila; Salehi, Reza
2017-09-01
Responsiveness is a main goal of health systems. Responsiveness focus on the non-medical aspects of health services delivery. This study was aimed to assess responsiveness level in public and private physiography clinics. In this multicenter cross sectional study, 403 patients refers to 16 public and 64 private physical therapy clinics were studied randomly in Ahvaz, Iran, from 2013 to 2014. Data were collected based on a valid health system responsiveness questionnaire that was developed by WHO. Health system responsiveness questionnaire for outpatients care includes seven components and 25 questions. Statistical relationship between responsiveness level of centers and patients characteristics was analyzed using Pearson coefficient, Independent t-test and one-way ANOVA. Out of 403 patients, 299 (74.19%) patients were women. The mean (±SD) age of the patients was 42(±14.18) years and 92.1% of patients were 65> years. Responsiveness status in private and public physiotherapy clinics was assessed excellent (26.93±5.2) and very well (21.08±5.8) respectively. In private clinics, the mean score of communication dimension (3.96±1) and autonomy dimension (3.95±0.9) was higher than other dimensions. In public clinics the mean score of dignity (3.30±0.8), autonomy (3.16±0.9), and prompt attention (3.12±1) was higher than other areas respectively. In public and private clinics, quality of basic amenities area had the lowest score. The results showed that the some patients and center characteristics such as gender and work shift were factors affecting assessment of responsiveness. Responsiveness level in private centers was better than publics.
Coordinated control of wind generation and energy storage for power system frequency regulation
NASA Astrophysics Data System (ADS)
Baone, Chaitanya Ashok
Large-scale centralized synchronous generators have long been the primary actors in exercising active power and frequency control, and much of the existing grid control framework is predicated upon their dynamic terminal characteristics. Important among these characteristics is the inertia of such generators. These play key roles in determining the electromechanical stability of the electric power grid. Modern wind generator systems are partially or fully connected to the grid through power electronic interfaces, and hence do not present the same level of inertial coupling. The absence of inertial frequency response from modern wind generator systems is a topic of growing concern in power engineering practice, as the penetration of wind generation is expected to grow dramatically in the next few years. Solutions proposed in the literature have sought to address this problem by seeking to mimic the inherent inertial response characteristics of traditional synchronous generators via control loops added to wind generators. Recent literature has raised concerns regarding this approach, and the work here will further examine its shortcomings, motivating approaches that seek to optimally design for the characteristics of the equipment exercising the control, rather than forcing new technologies to mimic the characteristics of synchronous machines. In particular, this work will develop a new approach to power system frequency regulation, with features suited to distributed energy storage devices such as grid-scale batteries and wind turbine speed and blade pitch control. The dynamic characteristics of these new technologies are treated along with existing mechanisms, such as synchronous machine governor control, to develop a comprehensive multi-input control design approach. To make the method practically feasible for geographically distributed power systems, an observer-based distributed control design utilizing phasor measurement unit (PMU) signals along with local measurements is developed. In addition to the system-wide objective of frequency regulation, a local objective of reducing the wind turbine drivetrain stress is considered. Also, an algorithm is proposed to characterize the modal degrees of controllability and observability on a subspace of critical modes of the system, so that the most effective sensor and actuator locations to be used in the control design can be found.
Descriptive and sensitivity analyses of WATBALI: A dynamic soil water model
NASA Technical Reports Server (NTRS)
Hildreth, W. W. (Principal Investigator)
1981-01-01
A soil water computer model that uses the IBM Continuous System Modeling Program III to solve the dynamic equations representing the soil, plant, and atmospheric physical or physiological processes considered is presented and discussed. Using values describing the soil-plant-atmosphere characteristics, the model predicts evaporation, transpiration, drainage, and soil water profile changes from an initial soil water profile and daily meteorological data. The model characteristics and simulations that were performed to determine the nature of the response to controlled variations in the input are described the results of the simulations are included and a change that makes the response of the model more closely represent the observed characteristics of evapotranspiration and profile changes for dry soil conditions is examined.
The effect of low velocity impact in the strength characteristics of composite materials laminates
NASA Technical Reports Server (NTRS)
Liebowitz, H.
1983-01-01
The nonlinear vibration response of a double cantilevered beam subjected to pulse loading over a central sector is studied. The initial response is generated in detail to ascertain the energetics of the response. The total energy is used as a gauge of the stability and accuracy of the solution. It is shown that to obtain accurate and stable initial solutions an extremely high spatial and time resolution is required. This requirement was only evident through an examination of the energy of the system. It is proposed, therefore, to use the total energy of the system as a necessary stability and accuracy criterion for the nonlinear response of conservative systems. The results also demonstrate that even for moderate nonlinearities, the effects of membrane forces have a significant influence on the system.
Study on Nonlinear Vibration Analysis of Gear System with Random Parameters
NASA Astrophysics Data System (ADS)
Tong, Cao; Liu, Xiaoyuan; Fan, Li
2018-03-01
In order to study the dynamic characteristics of gear nonlinear vibration system and the influence of random parameters, firstly, a nonlinear stochastic vibration analysis model of gear 3-DOF is established based on Newton’s Law. And the random response of gear vibration is simulated by stepwise integration method. Secondly, the influence of stochastic parameters such as meshing damping, tooth side gap and excitation frequency on the dynamic response of gear nonlinear system is analyzed by using the stability analysis method such as bifurcation diagram and Lyapunov exponent method. The analysis shows that the stochastic process can not be neglected, which can cause the random bifurcation and chaos of the system response. This study will provide important reference value for vibration engineering designers.
Son, Byungjik; Jeon, Seunggon
2018-01-01
A disaster preventive structural health monitoring (SHM) system needs to be equipped with the following abilities: First, it should be able to simultaneously measure diverse types of data (e.g., displacement, velocity, acceleration, strain, load, temperature, humidity, etc.) for accurate diagnosis. Second, it also requires standalone power supply to guarantee its immediate response in crisis (e.g., sudden interruption of normal AC power in disaster situations). Furthermore, it should be capable of prompt processing and realtime wireless communication of a huge amount of data. Therefore, this study is aimed at developing a wireless unified-maintenance system (WUMS) that would satisfy all the requirements for a disaster preventive SHM system of civil structures. The WUMS is designed to measure diverse types of structural responses in realtime based on wireless communication, allowing users to selectively use WiFi RF band and finally working in standalone mode by means of the field-programmable gate array (FPGA) technology. To verify its performance, the following tests were performed: (i) A test to see how far communication is possible in open field, (ii) a test on a shaker to see how accurate responses are, (iii) a modal test on a bridge to see how exactly characteristic real-time dynamic responses are of structures. The test results proved that the WUMS was able to secure stable communication far up to nearly 800 m away by acquiring wireless responses in realtime accurately, when compared to the displacement and acceleration responses which were acquired through wired communication. The analysis of dynamic characteristics also showed that the wireless acceleration responses in real-time represented satisfactorily the dynamic properties of structures. Therefore, the WUMS is proved valid as a SHM, and its outstanding performance is also proven. PMID:29747403
Heo, Gwanghee; Son, Byungjik; Kim, Chunggil; Jeon, Seunggon; Jeon, Joonryong
2018-05-09
A disaster preventive structural health monitoring (SHM) system needs to be equipped with the following abilities: First, it should be able to simultaneously measure diverse types of data (e.g., displacement, velocity, acceleration, strain, load, temperature, humidity, etc.) for accurate diagnosis. Second, it also requires standalone power supply to guarantee its immediate response in crisis (e.g., sudden interruption of normal AC power in disaster situations). Furthermore, it should be capable of prompt processing and realtime wireless communication of a huge amount of data. Therefore, this study is aimed at developing a wireless unified-maintenance system (WUMS) that would satisfy all the requirements for a disaster preventive SHM system of civil structures. The WUMS is designed to measure diverse types of structural responses in realtime based on wireless communication, allowing users to selectively use WiFi RF band and finally working in standalone mode by means of the field-programmable gate array (FPGA) technology. To verify its performance, the following tests were performed: (i) A test to see how far communication is possible in open field, (ii) a test on a shaker to see how accurate responses are, (iii) a modal test on a bridge to see how exactly characteristic real-time dynamic responses are of structures. The test results proved that the WUMS was able to secure stable communication far up to nearly 800 m away by acquiring wireless responses in realtime accurately, when compared to the displacement and acceleration responses which were acquired through wired communication. The analysis of dynamic characteristics also showed that the wireless acceleration responses in real-time represented satisfactorily the dynamic properties of structures. Therefore, the WUMS is proved valid as a SHM, and its outstanding performance is also proven.
The design and characterization of a digital optical breast cancer imaging system.
Flexman, Molly L; Li, Yang; Bur, Andres M; Fong, Christopher J; Masciotti, James M; Al Abdi, Rabah; Barbour, Randall L; Hielscher, Andreas H
2008-01-01
Optical imaging has the potential to play a major role in breast cancer screening and diagnosis due to its ability to image cancer characteristics such as angiogenesis and hypoxia. A promising approach to evaluate and quantify these characteristics is to perform dynamic imaging studies in which one monitors the hemodynamic response to an external stimulus, such as a valsalva maneuver. It has been shown that the response to such stimuli shows MARKED differences between cancerous and healthy tissues. The fast imaging rates and large dynamic range of digital devices makes them ideal for this type of imaging studies. Here we present a digital optical tomography system designed specifically for dynamic breast imaging. The instrument uses laser diodes at 4 different near-infrared wavelengths with 32 sources and 128 silicon photodiode detectors.
Global AIDS Reporting-2001 to 2015: Lessons for Monitoring the Sustainable Development Goals.
Alfvén, T; Erkkola, T; Ghys, P D; Padayachy, J; Warner-Smith, M; Rugg, D; de Lay, P
2017-07-01
Since 2001 the UNAIDS Secretariat has retained the responsibility for monitoring progress towards global commitments on HIV/AIDS. Key critical characteristics of the reporting system were assessed for the reporting period from 2004 to 2014 and analyses were undertaken of response rates and core indicator performance. Country submission rates ranged from 102 (53%) Member States in 2004 to 186 (96%) in 2012. There was great variance in response rates for specific indicators, with the highest response rates for treatment-related indicators. The Global AIDS reporting system has improved substantially over time and has provided key trend data on responses to the HIV epidemic, serving as the global accountability mechanism and providing reference data on the global AIDS response. It will be critical that reporting systems continue to evolve to support the monitoring of the Sustainable Development Goals, in view of ending the AIDS epidemic as a public health threat by 2030.
Characterization of structural connections using free and forced response test data
NASA Technical Reports Server (NTRS)
Lawrence, Charles; Huckelbridge, Arthur A.
1989-01-01
The accurate prediction of system dynamic response often has been limited by deficiencies in existing capabilities to characterize connections adequately. Connections between structural components often are complex mechanically, and difficult to accurately model analytically. Improved analytical models for connections are needed to improve system dynamic preditions. A procedure for identifying physical connection properties from free and forced response test data is developed, then verified utilizing a system having both a linear and nonlinear connection. Connection properties are computed in terms of physical parameters so that the physical characteristics of the connections can better be understood, in addition to providing improved input for the system model. The identification procedure is applicable to multi-degree of freedom systems, and does not require that the test data be measured directly at the connection locations.
Multispectral scanner flight model (F-1) radiometric calibration and alignment handbook
NASA Technical Reports Server (NTRS)
1981-01-01
This handbook on the calibration of the MSS-D flight model (F-1) provides both the relevant data and a summary description of how the data were obtained for the system radiometric calibration, system relative spectral response, and the filter response characteristics for all 24 channels of the four band MSS-D F-1 scanner. The calibration test procedure and resulting test data required to establish the reference light levels of the MSS-D internal calibration system are discussed. The final set of data ("nominal" calibration wedges for all 24 channels) for the internal calibration system is given. The system relative spectral response measurements for all 24 channels of MSS-D F-1 are included. These data are the spectral response of the complete scanner, which are the composite of the spectral responses of the scan mirror primary and secondary telescope mirrors, fiber optics, optical filters, and detectors. Unit level test data on the measurements of the individual channel optical transmission filters are provided. Measured performance is compared to specification values.
A novel approach to multihazard modeling and simulation.
Smith, Silas W; Portelli, Ian; Narzisi, Giuseppe; Nelson, Lewis S; Menges, Fabian; Rekow, E Dianne; Mincer, Joshua S; Mishra, Bhubaneswar; Goldfrank, Lewis R
2009-06-01
To develop and apply a novel modeling approach to support medical and public health disaster planning and response using a sarin release scenario in a metropolitan environment. An agent-based disaster simulation model was developed incorporating the principles of dose response, surge response, and psychosocial characteristics superimposed on topographically accurate geographic information system architecture. The modeling scenarios involved passive and active releases of sarin in multiple transportation hubs in a metropolitan city. Parameters evaluated included emergency medical services, hospital surge capacity (including implementation of disaster plan), and behavioral and psychosocial characteristics of the victims. In passive sarin release scenarios of 5 to 15 L, mortality increased nonlinearly from 0.13% to 8.69%, reaching 55.4% with active dispersion, reflecting higher initial doses. Cumulative mortality rates from releases in 1 to 3 major transportation hubs similarly increased nonlinearly as a function of dose and systemic stress. The increase in mortality rate was most pronounced in the 80% to 100% emergency department occupancy range, analogous to the previously observed queuing phenomenon. Effective implementation of hospital disaster plans decreased mortality and injury severity. Decreasing ambulance response time and increasing available responding units reduced mortality among potentially salvageable patients. Adverse psychosocial characteristics (excess worry and low compliance) increased demands on health care resources. Transfer to alternative urban sites was possible. An agent-based modeling approach provides a mechanism to assess complex individual and systemwide effects in rare events.
[Invitation to the immunoglobulin world].
Mafune, Naoki
2010-04-01
One of the most basic characteristics of the organism is to recognize self and non-self. Immune system is a typical system that fulfills this characteristic, and the immunoglobulins play important roles in it. The immunoglobulins circulating in internal or secreting to external space of the body, are basically characterized as a soluble form of cell surface receptors. The immunoglobulin has two kinds of domains. One is the variable domain that binds the antigen and the other is the constant domain that has the effecter functions. The immunoglobulin molecule can be obviously identified in vertebrates. In mammals, five immunoglobulin classes, IgG, IgA, IgM, IgD and IgE are classified. It is important to recognize that our immune system assign immunological roles among classes especially between IgG and IgA after class switch from IgM. IgG, the major immunoglobulin in plasma or extra vascular spaces, has the most versatile function of immunoglobulin molecules; such as placenta transfer, complement fixation and cell binding. On the other hand, IgA, the major immunoglobulin in secretions, does not show any complement fixation unless denatured. These facts implicate an aggressive characteristic of IgG in systemic immune response inside of the body, and a defensive characteristic of IgA in mucosal immune response on the surface of the body. Further, they allot the immunological roles to fetus or baby, in other words, IgG transferred from placenta protects fetus and newborn, and then IgA secreted in milk protects baby from mucosal invasion of pathogenic organisms.
A Review of Dynamic Characteristics of Magnetically Levitated Vehicle Systems.
1995-11-01
The dynamic response of magnetically levitated ( maglev ) ground transportation systems has important consequences for safety and ride quality...smoothness and levitation and control systems must be considered if maglev systems are to be economically feasible. The link between the guideway and the...other maglev components is vehicle dynamics. For a commercial maglev system, vehicle dynamics must be analyzed and tested in detail. This report, which
NASA Astrophysics Data System (ADS)
Ahrends, H. E.; Oberbauer, S. F.; Tweedie, C.; Hollister, R. D.
2010-12-01
Knowledge of changing tundra vegetation and its response to climate variability is critical for understanding the land-atmosphere-interactions for the Arctic and the global system. However, vegetation characteristics, such as phenology, structure and species composition, are characterized by an extreme heterogeneity at a small scale. Manual observations of these variables are highly time-consuming, labor intensive, subjective, and disturbing to the vegetation. In contrast, recently developed robotic systems (networked infomechanical systems, NIMS) allow for performing non-intrusive spatially integrated measurements of vegetation communities. Within the ITEX (International Tundra Experiment) AON (Arctic Observation Network) project we installed a cable-based sensor system, running over a transect of approximately 50 m length and 2 m width, at two long-term arctic research sites in Alaska. The trolley was initially equipped with instruments recording the distance to vegetation canopy, up- and downwelling short- and longwave radiation, air and surface temperature and spectral reflection. We aim to study the thermal and spectral response of the vegetation communities over a wide range of ecosystem types. We expect that automated observations, covering the spatial heterogeneity of vegetation and surface characteristics, can give a deeper insight in ecosystem functioning and vegetation response to climate. The data can be used for scaling up vegetation characteristics derived from manual measurements and for linking them to aircraft and satellite data and to carbon, water and surface energy budgets measured at the ecosystem scale. Sampling errors due to cable sag are correctable and effects of wind-driven movements can be offset by repeat measurements. First hand-pulled test measurements during summer 2010 show strong heterogeneity of the observation parameters and a variable spectral and thermal response of the plants within the transects. Differences support the importance of our approach for upscaling purposes and for a comprehensive understanding of the arctic biome.
Study on DFIG wind turbines control strategy for improving frequency response characteristics
NASA Astrophysics Data System (ADS)
Zhao, Dongmei; Wu, Di; Liu, Yanhua; Zhou, Zhiyu
2012-01-01
The active and reactive power decoupling control for the double-fed induction generator wind turbines(DFIG) does not play a positive role to the frequency response ability of power grid because it performs as the hidden inertia for the power grid. If we want to improve the transient frequency stability of the wind turbine when it is integrated with the system, we must ameliorate its frequency response characteristics. The inability of frequency control due to DFIG decoupling control could be overcome through releasing (or absorbing) a part of the kinetic energy stored in the rotor, so as to increase (or decrease) active power injected to the power system when the deviation of power system frequency appears. This paper discusses the mathematical model of the variable speed DFIG, including the aerodynamic model, pitch control system model, shaft model, generator model and inverter control model, and other key components, focusing on the mathematical model of the converters in rotor side and grid side. Based on the existing model of wind generator, the paper attaches the frequency control model on the platform of the simulation software DIgSILENT/PowerFactory. The simulation results show that the proposed control strategy can response quickly to transient frequency deviation and prove that wind farms can participate in the system frequency regulation to a certain extent. Finally, the result verifies the accuracy and plausibility of the inverter control model which attaches the frequency control module.
Study on DFIG wind turbines control strategy for improving frequency response characteristics
NASA Astrophysics Data System (ADS)
Zhao, Dongmei; Wu, Di; Liu, Yanhua; Zhou, Zhiyu
2011-12-01
The active and reactive power decoupling control for the double-fed induction generator wind turbines(DFIG) does not play a positive role to the frequency response ability of power grid because it performs as the hidden inertia for the power grid. If we want to improve the transient frequency stability of the wind turbine when it is integrated with the system, we must ameliorate its frequency response characteristics. The inability of frequency control due to DFIG decoupling control could be overcome through releasing (or absorbing) a part of the kinetic energy stored in the rotor, so as to increase (or decrease) active power injected to the power system when the deviation of power system frequency appears. This paper discusses the mathematical model of the variable speed DFIG, including the aerodynamic model, pitch control system model, shaft model, generator model and inverter control model, and other key components, focusing on the mathematical model of the converters in rotor side and grid side. Based on the existing model of wind generator, the paper attaches the frequency control model on the platform of the simulation software DIgSILENT/PowerFactory. The simulation results show that the proposed control strategy can response quickly to transient frequency deviation and prove that wind farms can participate in the system frequency regulation to a certain extent. Finally, the result verifies the accuracy and plausibility of the inverter control model which attaches the frequency control module.
Emotion Regulation in Emerging Adult Couples: Temperament, Attachment, and HPA Response to Conflict
Laurent, Heidemarie; Powers, Sally
2007-01-01
Difficulty managing the stress of conflict in close relationships can lead to mental and physical health problems, possibly through dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, the neuroendocrine stress response system. Temperament, an individual characteristic, and attachment, a dyadic characteristic, have both been implicated in emotion regulation processes and physiological reactivity, yet there is no clear consensus on how the two work together to influence the stress response, especially after childhood. The present study investigated the ways in which temperament and attachment together predict HPA response in emerging adult couples. Analyses using multilevel modeling (HLM) found that partners' dyadic fit on attachment avoidance impacted females' cortisol response patterns, and attachment avoidance further moderated the effect of males' emotionality on both their own and their partners' cortisol. Results are discussed in terms of emotional coregulation processes in romantic attachment. PMID:17681662
Solution-grown crystals for neutron radiation detectors, and methods of solution growth
Zaitseva, Natalia P; Hull, Giulia; Cherepy, Nerine J; Payne, Stephen A; Stoeffl, Wolfgang
2012-06-26
A method according to one embodiment includes growing an organic crystal from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source. A system according to one embodiment includes an organic crystal having physical characteristics of formation from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source; and a photodetector for detecting the signal response of the organic crystal. A method according to another embodiment includes growing an organic crystal from solution, the organic crystal being large enough to exhibit a detectable signal response signature for neutrons from a radioactive source. An organic crystal according to another embodiment includes an organic crystal having physical characteristics of formation from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source, wherein the organic crystal has a length of greater than about 1 mm in one dimension.
Emergence of scale-free characteristics in socio-ecological systems with bounded rationality
Kasthurirathna, Dharshana; Piraveenan, Mahendra
2015-01-01
Socio–ecological systems are increasingly modelled by games played on complex networks. While the concept of Nash equilibrium assumes perfect rationality, in reality players display heterogeneous bounded rationality. Here we present a topological model of bounded rationality in socio-ecological systems, using the rationality parameter of the Quantal Response Equilibrium. We argue that system rationality could be measured by the average Kullback–-Leibler divergence between Nash and Quantal Response Equilibria, and that the convergence towards Nash equilibria on average corresponds to increased system rationality. Using this model, we show that when a randomly connected socio-ecological system is topologically optimised to converge towards Nash equilibria, scale-free and small world features emerge. Therefore, optimising system rationality is an evolutionary reason for the emergence of scale-free and small-world features in socio-ecological systems. Further, we show that in games where multiple equilibria are possible, the correlation between the scale-freeness of the system and the fraction of links with multiple equilibria goes through a rapid transition when the average system rationality increases. Our results explain the influence of the topological structure of socio–ecological systems in shaping their collective cognitive behaviour, and provide an explanation for the prevalence of scale-free and small-world characteristics in such systems. PMID:26065713
Emergence of scale-free characteristics in socio-ecological systems with bounded rationality.
Kasthurirathna, Dharshana; Piraveenan, Mahendra
2015-06-11
Socio-ecological systems are increasingly modelled by games played on complex networks. While the concept of Nash equilibrium assumes perfect rationality, in reality players display heterogeneous bounded rationality. Here we present a topological model of bounded rationality in socio-ecological systems, using the rationality parameter of the Quantal Response Equilibrium. We argue that system rationality could be measured by the average Kullback--Leibler divergence between Nash and Quantal Response Equilibria, and that the convergence towards Nash equilibria on average corresponds to increased system rationality. Using this model, we show that when a randomly connected socio-ecological system is topologically optimised to converge towards Nash equilibria, scale-free and small world features emerge. Therefore, optimising system rationality is an evolutionary reason for the emergence of scale-free and small-world features in socio-ecological systems. Further, we show that in games where multiple equilibria are possible, the correlation between the scale-freeness of the system and the fraction of links with multiple equilibria goes through a rapid transition when the average system rationality increases. Our results explain the influence of the topological structure of socio-ecological systems in shaping their collective cognitive behaviour, and provide an explanation for the prevalence of scale-free and small-world characteristics in such systems.
Attitude control of an orbiting space vehicle.
NASA Technical Reports Server (NTRS)
Sutherlin, D. W.; Boland, J. S. , III; Borelli, M. T.
1971-01-01
Study of the normal and clamped modes of operation and dynamic response characteristics of the gimbaled control moment gyro (CMG) designed to fulfill the stringent pointing requirements of the Skylab telescope mount when the spacecraft is under the influence of both external and internal torques. The results indicate that the clamped mode of operation provides a feasible approach for significantly improving the system characteristics.
The Characteristics Sought by Public School Leaders of Applicants for Teaching Positions
ERIC Educational Resources Information Center
Stultz, Sherry L.
2015-01-01
This study examined the characteristics of teacher applicants that are sought by public school systems in the Commonwealth of Kentucky. The Superintendents of each of the public school districts in the Commonwealth were surveyed. A total of 99 respondents completed the survey (n = 99). This response rate of 57.2% was well-above the average for…
NASA Astrophysics Data System (ADS)
Zeng, Baoping; Liu, Jipeng; Zhang, Yu; Gong, Yajun; Hu, Sanbao
2017-12-01
Deepwater robots are important devices for human to explore the sea, which is being under development towards intellectualization, multitasking, long-endurance and large depth along with the development of science and technology. As far as a deep-water robot is concerned, its mechanical systems is an important subsystem because not only it influences the instrument measuring precision and shorten the service life of cabin devices but also its overlarge vibration and noise lead to disadvantageous effects to marine life within the operational area. Therefore, vibration characteristics shall be key factor for the deep-water robot system design. The sample collection and recycling system of some certain deepwater robot in a mechanism for opening the underwater cabin door for external operation and recycling test equipment is focused in this study. For improving vibration characteristics of locations of the cabin door during opening processes, a vibration model was established to the opening system; and the structural optimization design was carried out to its important structures by utilizing the multi-objective shape optimization and topology optimization method based on analysis of the system vibration. Analysis of characteristics of exciting forces causing vibration was first carried out, which include characteristics of dynamic loads within the hinge clearances and due to friction effects and the fluid dynamic exciting forces during processes of opening the cabin door. Moreover, vibration acceleration responses for a few important locations of the devices for opening the cabin cover were deduced by utilizing the modal synthesis method so that its rigidity and modal frequency may be one primary factor influencing the system vibration performances based on analysis of weighted acceleration responses. Thus, optimization design was carried out to the cabin cover by utilizing the multi-objective topology optimization method to perform reduction of weighted accelerations of key structure locations.
A classification of U.S. estuaries based on physical and hydrologic attributes
Engle, V.D.; Kurtz, J.C.; Smith, L.M.; Chancy, C.; Bourgeois, P.
2007-01-01
A classification of U.S. estuaries is presented based on estuarine characteristics that have been identified as important for quantifying stressor-response relationships in coastal systems. Estuaries within a class have similar physical and hydrologic characteristics and would be expected to demonstrate similar biological responses to stressor loads from the adjacent watersheds. Nine classes of estuaries were identified by applying cluster analysis to a database for 138 U.S. estuarine drainage areas. The database included physical measures of estuarine areas, depth and volume, as well as hydrologic parameters (i.e., tide height, tidal prism volume, freshwater inflow rates, salinity, and temperature). The ability of an estuary to dilute or flush pollutants can be estimated using physical and hydrologic properties such as volume, bathymetry, freshwater inflow and tidal exchange rates which influence residence time and affect pollutant loading rates. Thus, physical and hydrologic characteristics can be used to estimate the susceptibility of estuaries to pollutant effects. This classification of estuaries can be used by natural resource managers to describe and inventory coastal systems, understand stressor impacts, predict which systems are most sensitive to stressors, and manage and protect coastal resources. ?? Springer Science+Business Media B.V. 2007.
NASA Technical Reports Server (NTRS)
Ventrice, M. B.; Purdy, K. R.
1974-01-01
The response of a constant-temperature hot-wire anemometer to sinusoidal and distorted sinusoidal acoustic oscillations is examined. The output of the anemometer is dependent upon the Reynolds number of the flow over the wire. The response is a measure of the interaction between the anemometer output and the acoustic pressure in the neighborhood of the wire. It is an open-loop prediction of the characteristics of actual closed-loop operation of a system. If the open-loop response is large enough, unstable closed-loop operation is predicted. The study was motivated by a need to investigate the stability limits of liquid-propellant rockets when perturbed by pressure oscillations. The sinusoidal and distorted sinusoidal acoustic oscillations used for this study are the same as those characteristic of unstable rocket combustion. Qualitatively, the results are similar--the response of the system to pure sinusoidal acoustic vibration of the fluid surrounding the wire is small, even when the magnitude of the acoustic pressure is quite large; but the response can be increased by as much as an order of magnitude with respect to the sinusoidal case by the addition of distortion. The amplitude and phase of the distortion component, relative to the fundamental component, are the dominant factors in the increase in the response.
Predicting significant torso trauma.
Nirula, Ram; Talmor, Daniel; Brasel, Karen
2005-07-01
Identification of motor vehicle crash (MVC) characteristics associated with thoracoabdominal injury would advance the development of automatic crash notification systems (ACNS) by improving triage and response times. Our objective was to determine the relationships between MVC characteristics and thoracoabdominal trauma to develop a torso injury probability model. Drivers involved in crashes from 1993 to 2001 within the National Automotive Sampling System were reviewed. Relationships between torso injury and MVC characteristics were assessed using multivariate logistic regression. Receiver operating characteristic curves were used to compare the model to current ACNS models. There were a total of 56,466 drivers. Age, ejection, braking, avoidance, velocity, restraints, passenger-side impact, rollover, and vehicle weight and type were associated with injury (p < 0.05). The area under the receiver operating characteristic curve (83.9) was significantly greater than current ACNS models. We have developed a thoracoabdominal injury probability model that may improve patient triage when used with ACNS.
ERIC Educational Resources Information Center
Mercado del Collado, Ricardo
Higher education planning in Mexico is discussed, with attention to: conceptual characteristics of Mexico's higher education planning system; relationships among the national, regional, state, and institutional planning levels; and design and operation of the Comprehensive Program for the Development of Higher Education. Responsibilities of…
A STUDY OF SOME SOFTWARE PARAMETERS IN TIME-SHARING SYSTEMS.
A review is made of some existing time-sharing computer systems and an exploration of various software characteristics is conducted. This...of the various parameters upon the average response cycle time, the average number in the queue awaiting service , the average length of time a user is
Lai, K M
2006-03-01
An extensive growth of Stachybotrys in water-damaged buildings is of great public health concern. It is inconclusive whether Stachybotrys is responsible for the reported health effects on the occupants in these contaminated environments. However, based on the veterinary, occupational and laboratory toxicity studies, it is reasonable to project that Stachybotrys can cause adverse health responses once the toxic level of the corresponding agents reached the target systems. In order to assess the risk to occupants in contaminated buildings, it is essential to outline and collect information for risk assessment. This review paper presents the current information in the format of hazard identification, dose-response and environmental characteristics and aims to discuss existing information with researchers and risk assessors and help to conduct risk characterization under different indoor conditions.
A cross-national comparison of incident reporting systems implemented in German and Swiss hospitals.
Manser, Tanja; Imhof, Michael; Lessing, Constanze; Briner, Matthias
2017-06-01
This study aimed to empirically compare incident reporting systems (IRS) in two European countries and to explore the relationship of IRS characteristics with context factors such as hospital characteristics and characteristics of clinical risk management (CRM). We performed exploratory, secondary analyses of data on characteristics of IRS from nationwide surveys of CRM practices. The survey was originally sent to 2136 hospitals in Germany and Switzerland. Persons responsible for CRM in 622 hospitals completed the survey (response rate 29%). None. Differences between IRS in German and Swiss hospitals were assessed using Chi2, Fisher's Exact and Freeman-Halton-Tests, as appropriate. To explore interrelations between IRS characteristics and context factors (i.e. hospital and CRM characteristics) we computed Cramer's V. Comparing participating hospitals across countries, Swiss hospitals had implemented IRS earlier, more frequently and more often provided introductory IRS training systematically. German hospitals had more frequently systematically implemented standardized procedures for event analyses. IRS characteristics were significantly associated with hospital characteristics such as hospital type as well as with CRM characteristics such as existence of strategic CRM objectives and of a dedicated position for central CRM coordination. This study contributes to an improved understanding of differences in the way IRS are set up in two European countries and explores related context factors. This opens up new possibilities for empirically informed, strategic interventions to further improve dissemination of IRS and thus support hospitals in their efforts to move patient safety forward. © The Author 2017. Published by Oxford University Press in association with the International Society for Quality in Health Care. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Input-output characterization of an ultrasonic testing system by digital signal analysis
NASA Technical Reports Server (NTRS)
Williams, J. H., Jr.; Lee, S. S.; Karagulle, H.
1986-01-01
Ultrasonic test system input-output characteristics were investigated by directly coupling the transmitting and receiving transducers face to face without a test specimen. Some of the fundamentals of digital signal processing were summarized. Input and output signals were digitized by using a digital oscilloscope, and the digitized data were processed in a microcomputer by using digital signal-processing techniques. The continuous-time test system was modeled as a discrete-time, linear, shift-invariant system. In estimating the unit-sample response and frequency response of the discrete-time system, it was necessary to use digital filtering to remove low-amplitude noise, which interfered with deconvolution calculations. A digital bandpass filter constructed with the assistance of a Blackman window and a rectangular time window were used. Approximations of the impulse response and the frequency response of the continuous-time test system were obtained by linearly interpolating the defining points of the unit-sample response and the frequency response of the discrete-time system. The test system behaved as a linear-phase bandpass filter in the frequency range 0.6 to 2.3 MHz. These frequencies were selected in accordance with the criterion that they were 6 dB below the maximum peak of the amplitude of the frequency response. The output of the system to various inputs was predicted and the results were compared with the corresponding measurements on the system.
ERIC Educational Resources Information Center
Suhonen, Eira; Sajaniemi, Nina K.; Alijoki, Alisa; Nislin, Mari A.
2018-01-01
We aimed to investigate stress response regulation, temperament, cognitive and language abilities and family SES in children who entered kindergarten before two years of age. Whilst childrens stress regulatory systems are vulnerable to environmental influences little is known about how temperament and family characteristics impact on stress…
An investigation into pilot and system response to critical in-flight events, volume 1
NASA Technical Reports Server (NTRS)
Rockwell, T. H.; Giffin, W. C.
1981-01-01
The scope of a critical in-flight event (CIFE) with emphasis on pilot management of available resources is described. Detailed scenarios for both full mission simulation and written testing of pilot responses to CIFE's, and statistical relationships among pilot characteristics and observed responses are developed. A model developed to described pilot response to CIFE and an analysis of professional fight crews compliance with specified operating procedures and the relationships with in-flight errors are included.
PVDF flux/mass/velocity/trajectory systems and their applications in space
NASA Technical Reports Server (NTRS)
Tuzzolino, Anthony J.
1994-01-01
The current status of the University of Chicago Polyvinylidene Fluoride (PVDF) flux/mass/velocity/trajectory instrumentation is summarized. The particle response and thermal stability characteristics of pure PVDF and PVDF copolymer sensors are described, as well as the characteristics of specially constructed two-dimensional position-sensing PVDF sensors. The performance of high-flux systems and of velocity/trajectory systems using these sensors is discussed, and the objectives and designs of a PVDF velocity/trajectory dust instrument for launch on the Advanced Research and Global Observation Satellite (ARGOS) in 1995 and of a high-flux dust instrument for launch on the Cassini spacecraft to Saturn in 1997 are summarized.
Traceable calibration of ultraviolet meters used with broadband, extended sources.
Coleman, A J; Collins, M; Saunders, J E
2000-01-01
A calibration system has been developed to provide increased accuracy in the measurement of the irradiance responsivity appropriate for UV meters used with broadband, extended sources of the type employed in phototherapy. The single wavelength responsivity of the test meter is obtained in the wavelength range 250-400 nm by intercomparison with a transfer standard meter in a narrow, monochromatic beam. Traceability to primary standard irradiance scales is provided via the National Measurement System with a best uncertainty of 7% (at 95% confidence). The effective responsivity of the test meter, when used with broadband extended sources, is calculated using the measured spectral and angular response of the meter and tabulated data on the spectral and spatial characteristics of the source radiance. The uncertainty in the effective responsivity, independent of the source variability, is estimated to be 10% (at 95% confidence). The advantages of this calibration system over existing approaches are discussed.
XV-15 Tilt Rotor fly-by-wire collective control demonstrator development specifications
NASA Technical Reports Server (NTRS)
Meuleners, R. J.
1981-01-01
A fly by wire system in the collective control system for XV-15 Tilt Rotor Research Aircraft was evaluated. The collective control system was selected because it requires a system tracking accuracy between right and left rotors of approximately 0.1%. The performance characteristics of the collectors axel provide typical axis control response data. The demonstrator is bread boarded as a dual system instead of the triplex system.
NASA Technical Reports Server (NTRS)
Franklin, J. A.; Innis, R. C.
1972-01-01
Analytical investigations and piloted moving base simulator evaluations were conducted for manual control of pitch attitude, flight path, and airspeed for the approach and landing of a powered lift jet STOL aircraft. Flight path and speed response characteristics were described analytically and were evaluated for the simulation experiments which were carried out on a large motion simulator. The response characteristics were selected and evaluated for a specified path and speed control technique. These charcteristics were: (1) the initial pitch response and steady pitch rate sensitivity for control of attitude with a pitch rate command/ attitude hold system, (2) the initial flight path response, flight path overshoot, and flight path-airspeed coupling in response to a change in thrust, and (3) the sensitivity of airspeed to pitch attitude changes. Results are presented in the form of pilot opinion ratings and commentary, substantiated where appropriate by response time histories and aircraft states at the point of touchdown.
Response Diversity and Resilience in Social-Ecological Systems
Leslie, Paul; McCabe, J. Terrence
2013-01-01
Recent work in ecology suggests that the diversity of responses to environmental change among species contributing to the same ecosystem function can strongly influence ecosystem resilience. To render this important realization more useful for understanding coupled human-natural systems, we broaden the concept of response diversity to include heterogeneity in human decisions and action. Simply put, not all actors respond the same way to challenges, opportunities, and risks. The range, prevalence, and spatial and temporal distributions of different responses may be crucial to the resilience or the transformation of a social-ecological system, and thus have a bearing on human vulnerability and well-being in the face of environmental, socioeconomic, and political change. Response diversity can be seen at multiple scales (e.g., household, village, region) and response diversity at one scale may act synergistically with or contrary to the effects of diversity at another scale. Although considerable research on the sources of response diversity has been done, our argument is that the consequences of response diversity warrant closer attention. We illustrate this argument with examples drawn from our studies of two East African pastoral populations and discuss the relationship of response diversity to characteristics of social-ecological systems that can promote or diminish resilience. PMID:24855324
Human-simulated intelligent control of train braking response of bridge with MRB
NASA Astrophysics Data System (ADS)
Li, Rui; Zhou, Hongli; Wu, Yueyuan; Wang, Xiaojie
2016-04-01
The urgent train braking could bring structural response menace to the bridge under passive control. Based on the analysis of breaking dynamics of a train-bridge vibration system, a magnetorheological elastomeric bearing (MRB) whose mechanical parameters are adjustable is designed, tested and modeled. A finite element method (FEM) is carried out to model and optimize a full scale vibration isolation system for railway bridge based on MRB. According to the model above, we also consider the effect of different braking stop positions on the vibration isolation system and classify the bridge longitudinal vibration characteristics into several cases. Because the train-bridge vibration isolation system has multiple vibration states and strongly coupling with nonlinear characteristics, a human-simulated intelligent control (HSIC) algorithm for isolating the bridge vibration under the impact of train braking is proposed, in which the peak shear force of pier top, the displacement of beam and the acceleration of beam are chosen as control goals. The simulation of longitudinal vibration control system under the condition of train braking is achieved by MATLAB. The results indicate that different braking stop positions significantly affect the vibration isolation system and the structural response is the most drastic when the train stops at the third cross-span. With the proposed HSIC smart isolation system, the displacement of bridge beam and peak shear force of pier top is reduced by 53.8% and 34.4%, respectively. Moreover, the acceleration of bridge beam is effectively controlled within limited range.
NASA Technical Reports Server (NTRS)
Carpenter, Paul J.; Paulnock, Russell S.
1949-01-01
An investigation has been conducted with the Langley helicopter tower to obtain basic performance and control characteristics of the Raman rotor system. Blade-pitch control is obtained in this configuration by utilizing an auxiliary flap to twist the blades. Rotor thrust and power required were measured for the hovering condition and over a range of wind velocities from 0 to 30 miles per hour. The control characteristics and the transient response of the rotor to various control movements were also measured. The hovering-performance data are presented as a survey of the wake velocities and the variation of torque coefficient with thrust coefficient. The power required for the test rotor to hover at a thrust of 1350 pounds and a rotor speed of 240 rpm is approximately 6.5 percent greater than that estimated for a conventional rotor of the same diameter and solidity. It is believed that most of this difference is caused by th e flap servomechanism. The reduction in total power required for sustentation of the single-rotor configuration tested at various wind velocities and at the normal operating rotor thrust was found to be similar to the theoretical and experimental results for ro tors with conventionally actuated pitch. The control effectiveness was determined as a function of rotor speed. Sufficient control was available to give a thrust range of 0 to 1500 pounds and a rotor tilt of plus or minus 7 degrees. The time lag between flap motion and blade-pitch response is approximately 0.02 to 0.03 second. The response of the rotor following the blade-pitch response is similar to that of a rotor with conventionally actuated pitch changes. The over-all characteristics of the rotor investigated indicate that satisfactory performance and control characteristics were obtained.
Field camera measurements of gradient and shim impulse responses using frequency sweeps.
Vannesjo, S Johanna; Dietrich, Benjamin E; Pavan, Matteo; Brunner, David O; Wilm, Bertram J; Barmet, Christoph; Pruessmann, Klaas P
2014-08-01
Applications of dynamic shimming require high field fidelity, and characterizing the shim field dynamics is therefore necessary. Modeling the system as linear and time-invariant, the purpose of this work was to measure the impulse response function with optimal sensitivity. Frequency-swept pulses as inputs are analyzed theoretically, showing that the sweep speed is a key factor for the measurement sensitivity. By adjusting the sweep speed it is possible to achieve any prescribed noise profile in the measured system response. Impulse response functions were obtained for the third-order shim system of a 7 Tesla whole-body MR scanner. Measurements of the shim fields were done with a dynamic field camera, yielding also cross-term responses. The measured shim impulse response functions revealed system characteristics such as response bandwidth, eddy currents and specific resonances, possibly of mechanical origin. Field predictions based on the shim characterization were shown to agree well with directly measured fields, also in the cross-terms. Frequency sweeps provide a flexible tool for shim or gradient system characterization. This may prove useful for applications involving dynamic shimming by yielding accurate estimates of the shim fields and a basis for setting shim pre-emphasis. Copyright © 2013 Wiley Periodicals, Inc.
An organic self-regulating microfluidic system.
Eddington, D T; Liu, R H; Moore, J S; Beebe, D J
2001-12-01
In this paper we present an organic feedback scheme that merges microfluidics and responsive materials to address several limitations of current microfluidic systems. By using in situ fabrication and by taking advantage of microscale phenomena (e.g., laminar flow, short diffusion times), we have demonstrated feedback control of the output pH in a completely organic system. The system autonomously regulates an output stream at pH 7 under a range of input flow conditions. A single responsive hydrogel component performs the functionality of traditional feedback system components. Vertically stacked laminar flow is used to improve the time response of the hydrogel actuator. A star shaped orifice is utilized to improve the flow characteristics of the membrane/orifice valve. By changing the chemistry of the hydrogel component, the system can be altered to regulate flow based on hydrogels sensitive to temperature, light, biological/molecular, and others.
NASA Technical Reports Server (NTRS)
Taylor, R. B.; Zwicke, P. E.; Gold, P.; Miao, W.
1980-01-01
An analytical study was conducted to define the basic configuration of an active control system for helicopter vibration and gust response alleviation. The study culminated in a control system design which has two separate systems: narrow band loop for vibration reduction and wider band loop for gust response alleviation. The narrow band vibration loop utilizes the standard swashplate control configuration to input controller for the vibration loop is based on adaptive optimal control theory and is designed to adapt to any flight condition including maneuvers and transients. The prime characteristics of the vibration control system is its real time capability. The gust alleviation control system studied consists of optimal sampled data feedback gains together with an optimal one-step-ahead prediction. The prediction permits the estimation of the gust disturbance which can then be used to minimize the gust effects on the helicopter.
Wagner, Edwin E
2008-07-01
I present a formal system that accounts for the misleading distinction between tests formerly termed objective and projective, duly noted by Meyer and Kurtz (2006). Three principles of Response Rightness, Response Latitude and Stimulus Ambiguity are shown to govern, in combination, the formal operating characteristics of tests, producing inevitable overlap between "objective" and "projective" tests and creating at least three "types" of tests historically regarded as being projective in nature. The system resolves many past issues regarding test classification and can be generalized to include all psychological tests.
NASA Technical Reports Server (NTRS)
Lathem, W. C.; Hudson, W. R.
1972-01-01
Measurements of beam deflection angle with respect to spring positioning power and accelerator impingement current as a function of deflection angle were made on a 5-cm diameter system. Response time measurements on the translational grid beam deflection system showed that the time for the maximum deflection angle analyzed (+16.4 deg to -16.4 deg) could be reduced by a factor of nine by increasing the heating power applied to the positioning spring from 4 to 16 watts. At 14 watts the response time for maximum deflection was about 1 minute.
In Flight Evaluation of Active Inceptor Force-Feel Characteristics and Handling Qualities
NASA Technical Reports Server (NTRS)
Lusardi, Jeff A.; Blanken, Chris L.; Ott, Carl Raymond; Malpica, Carlos A.; von Gruenhagen, Wolfgang
2012-01-01
The effect of inceptor feel-system characteristics on piloted handling qualities has been a research topic of interest for many years. Most of the research efforts have focused on advanced fly-by-wire fixed-wing aircraft with only a few studies investigating the effects on rotorcraft. Consequently, only limited guidance is available on how cyclic force-feel characteristics should be set to obtain optimal handling qualities for rotorcraft. To study this effect, the U.S. Army Aeroflightdynamics Directorate working with the DLR Institute of Flight Systems in Germany under Task X of the U.S. German Memorandum of Understanding have been conducting flight test evaluations. In the U.S., five experimental test pilots have completed evaluations of two Mission Task Elements (MTEs) from ADS-33E-PRF and two command/response types for a matrix of center-stick cyclic force-feel characteristics at Moffett Field. In Germany, three experimental test Pilots have conducted initial evaluations of the two MTEs with two command/response types for a parallel matrix of side-stick cyclic force-feel characteristics at WTD-61 in Manching. The resulting data set is used to correlate the effect of changes in natural frequency and damping ratio of the cyclic inceptor on the piloted handling qualities. Existing criteria in ADS-33E and a proposed Handling Qualities Sensitivity Function that includes the effects of the cyclic force-feel characteristics are also evaluated against the data set and discussed.
NASA Technical Reports Server (NTRS)
Bragg-Sitton, Shannon M.; Hervol, David S.; Godfroy, Thomas J.
2009-01-01
A Direct Drive Gas-Cooled (DDG) reactor core simulator has been coupled to a Brayton Power Conversion Unit (BPCU) for integrated system testing at NASA Glenn Research Center (GRC) in Cleveland, OH. This is a closed-cycle system that incorporates an electrically heated reactor core module, turbo alternator, recuperator, and gas cooler. Nuclear fuel elements in the gas-cooled reactor design are replaced with electric resistance heaters to simulate the heat from nuclear fuel in the corresponding fast spectrum nuclear reactor. The thermodynamic transient behavior of the integrated system was the focus of this test series. In order to better mimic the integrated response of the nuclear-fueled system, a simulated reactivity feedback control loop was implemented. Core power was controlled by a point kinetics model in which the reactivity feedback was based on core temperature measurements; the neutron generation time and the temperature feedback coefficient are provided as model inputs. These dynamic system response tests demonstrate the overall capability of a non-nuclear test facility in assessing system integration issues and characterizing integrated system response times and response characteristics.
NASA Technical Reports Server (NTRS)
Bragg-Sitton, Shannon M.; Hervol, David S.; Godfroy, Thomas J.
2010-01-01
A Direct Drive Gas-Cooled (DDG) reactor core simulator has been coupled to a Brayton Power Conversion Unit (BPCU) for integrated system testing at NASA Glenn Research Center (GRC) in Cleveland, Ohio. This is a closed-cycle system that incorporates an electrically heated reactor core module, turboalternator, recuperator, and gas cooler. Nuclear fuel elements in the gas-cooled reactor design are replaced with electric resistance heaters to simulate the heat from nuclear fuel in the corresponding fast spectrum nuclear reactor. The thermodynamic transient behavior of the integrated system was the focus of this test series. In order to better mimic the integrated response of the nuclear-fueled system, a simulated reactivity feedback control loop was implemented. Core power was controlled by a point kinetics model in which the reactivity feedback was based on core temperature measurements; the neutron generation time and the temperature feedback coefficient are provided as model inputs. These dynamic system response tests demonstrate the overall capability of a non-nuclear test facility in assessing system integration issues and characterizing integrated system response times and response characteristics.
Comparison of System Identification Techniques for the Hydraulic Manipulator Test Bed (HMTB)
NASA Technical Reports Server (NTRS)
Morris, A. Terry
1996-01-01
In this thesis linear, dynamic, multivariable state-space models for three joints of the ground-based Hydraulic Manipulator Test Bed (HMTB) are identified. HMTB, housed at the NASA Langley Research Center, is a ground-based version of the Dexterous Orbital Servicing System (DOSS), a representative space station manipulator. The dynamic models of the HMTB manipulator will first be estimated by applying nonparametric identification methods to determine each joint's response characteristics using various input excitations. These excitations include sum of sinusoids, pseudorandom binary sequences (PRBS), bipolar ramping pulses, and chirp input signals. Next, two different parametric system identification techniques will be applied to identify the best dynamical description of the joints. The manipulator is localized about a representative space station orbital replacement unit (ORU) task allowing the use of linear system identification methods. Comparisons, observations, and results of both parametric system identification techniques are discussed. The thesis concludes by proposing a model reference control system to aid in astronaut ground tests. This approach would allow the identified models to mimic on-orbit dynamic characteristics of the actual flight manipulator thus providing astronauts with realistic on-orbit responses to perform space station tasks in a ground-based environment.
NASA Astrophysics Data System (ADS)
Chen, Yong Jian; Feng, Zhen Fa; Qi, Ai; Huang, Ying
2018-06-01
The Beam String Structure structural system, also called BSS, has the advantages of lighter dead weight and greater flexibility. The wind load is the main design control factor. The dynamic characteristics and wind-induced displacement response of BSS are studied by the finite element method. The roof structure of the stadium roof of the Fuzhou Olympic Sports Center is the engineering background. 1)The numerical model was built by ANSYS, by shape finding, determine the initial stress state of structural members such as external cables; 2)From the analysis of dynamic characteristics, the main mode of vibration is the vibration of cables; 3)The wind speed spectrum of MATLAB generation structure is obtained by AR method, the structural response of the structure under static wind load and fluctuating wind load is calculated. From the analysis result, considering the equivalent static wind load of BSS , the design of adverse wind is not safe, and the fluctuating wind load should be taken into account.
Dynamic response of active twist rotor blades
NASA Astrophysics Data System (ADS)
Cesnik, Carlos E. S.; Shin, Sang Joon; Wilbur, Matthew L.
2001-02-01
Dynamic characteristics of active twist rotor (ATR) blades are investigated analytically and experimentally in this paper. The ATR system is intended for vibration and potentially for noise reductions in helicopters through individual blade control. An aeroelastic model is developed to identify frequency response characteristics of the ATR blade with integral, generally anisotropic, strain actuators embedded in its composite construction. An ATR prototype blade was designed and manufactured to experimentally study the vibration reduction capabilities of such systems. Several bench and hover tests were conducted and those results are presented and discussed here. Selected results on sensitivity of the ATR system to collective setting (i.e. blade loading), blade rpm (i.e. centrifugal force and blade station velocity), and media density (i.e. altitude) are presented. They indicated that the twist actuation authority of the ATR blade is independent of the collective setting up to approximately 10P, and dependent on rotational speed and altitude near the torsional resonance frequency due to its dependency on the aerodynamic damping. The proposed model captures very well the physics and sensitivities to selected test parameters of the ATR system. The numerical result of the blade torsional loads show an average error of 20% in magnitude and virtually no difference in phase for the blade frequency response. Overall, the active blade model is in very good agreement with the experiments and can be used to analyze and design future active helicopter blade systems.
Real-time digital signal recovery for a multi-pole low-pass transfer function system.
Lee, Jhinhwan
2017-08-01
In order to solve the problems of waveform distortion and signal delay by many physical and electrical systems with multi-pole linear low-pass transfer characteristics, a simple digital-signal-processing (DSP)-based method of real-time recovery of the original source waveform from the distorted output waveform is proposed. A mathematical analysis on the convolution kernel representation of the single-pole low-pass transfer function shows that the original source waveform can be accurately recovered in real time using a particular moving average algorithm applied on the input stream of the distorted waveform, which can also significantly reduce the overall delay time constant. This method is generalized for multi-pole low-pass systems and has noise characteristics of the inverse of the low-pass filter characteristics. This method can be applied to most sensors and amplifiers operating close to their frequency response limits to improve the overall performance of data acquisition systems and digital feedback control systems.
NASA Astrophysics Data System (ADS)
Wang, Guangqing; Liao, Wei-Hsin; Yang, Binqiang; Wang, Xuebao; Xu, Wentan; Li, Xiuling
2018-05-01
Bistable piezoelectric energy harvesters are being increasingly seen as an alternative to batteries in low-power devices. However, their energy harvesting characteristics are limited. To enhance these, we use a configuration including an elastic magnifier to amplify base excitation and provide sufficient kinetic energy to overcome potential well barriers, thus leading to large-amplitude bistable motion. We derive the distributed parameter mathematical model of this configuration by using Hamilton's principle. We then investigate the nonlinear dynamic behaviors and energetic characteristics and analyze the bifurcation for the equilibrium solution of the model. The simulations and experiments show high electromechanical responses and energy generation characteristics of the proposed system over a broad frequency band. The results suggest that, compared with a typical bistable piezoelectric energy harvester, the proposed energy harvester system with an elastic magnifier can provide higher output over a broader frequency band at lower excitation levels by adjusting the system's mass and stiffness ratios.
Photoacoustic signal and noise analysis for Si thin plate: signal correction in frequency domain.
Markushev, D D; Rabasović, M D; Todorović, D M; Galović, S; Bialkowski, S E
2015-03-01
Methods for photoacoustic signal measurement, rectification, and analysis for 85 μm thin Si samples in the 20-20 000 Hz modulation frequency range are presented. Methods for frequency-dependent amplitude and phase signal rectification in the presence of coherent and incoherent noise as well as distortion due to microphone characteristics are presented. Signal correction is accomplished using inverse system response functions deduced by comparing real to ideal signals for a sample with well-known bulk parameters and dimensions. The system response is a piece-wise construction, each component being due to a particular effect of the measurement system. Heat transfer and elastic effects are modeled using standard Rosencweig-Gersho and elastic-bending theories. Thermal diffusion, thermoelastic, and plasmaelastic signal components are calculated and compared to measurements. The differences between theory and experiment are used to detect and correct signal distortion and to determine detector and sound-card characteristics. Corrected signal analysis is found to faithfully reflect known sample parameters.
Wireless System and Method for Collecting Motion and Non-Motion Related Data of a Rotating System
NASA Technical Reports Server (NTRS)
Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)
2011-01-01
A wireless system for collecting data indicative of a tire's characteristics uses at least one open-circuit electrical conductor in a tire. The conductor is shaped such that it can store electrical and magnetic energy. In the presence of a time-varying magnetic field, the conductor resonates to generate a harmonic response having a frequency, amplitude and bandwidth. A magnetic field response recorder is used to (i) wirelessly transmit the time-varying magnetic field to the conductor, and (ii) wirelessly detect the harmonic response and the frequency, amplitude and bandwidth, associated therewith. The recorder is adapted to be positioned in a location that is fixed with respect to the tire as the tire rotates.
Rock friction under variable normal stress
Kilgore, Brian D.; Beeler, Nicholas M.; Lozos, Julian C.; Oglesby, David
2017-01-01
This study is to determine the detailed response of shear strength and other fault properties to changes in normal stress at room temperature using dry initially bare rock surfaces of granite at normal stresses between 5 and 7 MPa. Rapid normal stress changes result in gradual, approximately exponential changes in shear resistance with fault slip. The characteristic length of the exponential change is similar for both increases and decreases in normal stress. In contrast, changes in fault normal displacement and the amplitude of small high-frequency elastic waves transmitted across the surface follow a two stage response consisting of a large immediate and a smaller gradual response with slip. The characteristic slip distance of the small gradual response is significantly smaller than that of shear resistance. The stability of sliding in response to large step decreases in normal stress is well predicted using the shear resistance slip length observed in step increases. Analysis of the shear resistance and slip-time histories suggest nearly immediate changes in strength occur in response to rapid changes in normal stress; these are manifested as an immediate change in slip speed. These changes in slip speed can be qualitatively accounted for using a rate-independent strength model. Collectively, the observations and model show that acceleration or deceleration in response to normal stress change depends on the size of the change, the frictional characteristics of the fault surface, and the elastic properties of the loading system.
A digital computer simulation and study of a direct-energy-transfer power-conditioning system
NASA Technical Reports Server (NTRS)
Burns, W. W., III; Owen, H. A., Jr.; Wilson, T. G.; Rodriguez, G. E.; Paulkovich, J.
1974-01-01
A digital computer simulation technique, which can be used to study such composite power-conditioning systems, was applied to a spacecraft direct-energy-transfer power-processing system. The results obtained duplicate actual system performance with considerable accuracy. The validity of the approach and its usefulness in studying various aspects of system performance such as steady-state characteristics and transient responses to severely varying operating conditions are demonstrated experimentally.
Utah DOT weather responsive traveler information system.
DOT National Transportation Integrated Search
1996-06-01
The Final Performance and Benefits Summary describes our understanding of the connection between the National ITS Architecture, its technical performance characteristics, and its likely benefits for ITS users and suppliers. Ultimately, the goal of th...
FEES: design of a Fire Economics Evaluation System
Thomas J. Mills; Frederick W. Bratten
1982-01-01
The Fire Economics Evaluation System (FEES)--a simulation model--is being designed for long-term planning application by all public agencies with wildland fire management responsibilities. A fully operational version of FEES will be capable of estimating the economic efficiency, fire-induced changes in resource outputs, and risk characteristics of a range of fire...
In recent years, a new class of enclosed, closed-path gas analyzers suitable for eddy covariance applications has come to market, designed to combine the advantages of traditional closed-path systems (small density corrections, good performance in poor weather) and open-path syst...
Kuo, Chien-Wei
2017-01-01
Wear particle-induced biological responses are the major factors resulting in the loosening and then failure of total joint arthroplasties. It is feasible to improve the lubrication and reduce the wear of artificial joint system. Polyetheretherketone (PEEK) is considered as a potential bearing material due to its mechanical characteristics of resistance to fatigue strain. The PEEK wear particles have been indicated to be involved in biological responses in vitro, and further studies regarding the wear phenomena and wear particle generation are needed. In this study, we have established an accelerated wear testing system with microfabricated surfaces. Various contact pressures and lubricants have been utilized in the accelerated wear tests. Our results showed that increasing contact pressure resulted in an increase of wear particle sizes and wear rate, and the size of PEEK wear particles can be controlled by the feature size of microfabricated surfaces. These results provided the information rapidly about factors that affect the morphology and amount of PEEK wear particles and can be applied in the future for application of PEEK on the biological articulation system. PMID:29230411
Su, Chen-Ying; Kuo, Chien-Wei; Fang, Hsu-Wei
2017-01-01
Wear particle-induced biological responses are the major factors resulting in the loosening and then failure of total joint arthroplasties. It is feasible to improve the lubrication and reduce the wear of artificial joint system. Polyetheretherketone (PEEK) is considered as a potential bearing material due to its mechanical characteristics of resistance to fatigue strain. The PEEK wear particles have been indicated to be involved in biological responses in vitro, and further studies regarding the wear phenomena and wear particle generation are needed. In this study, we have established an accelerated wear testing system with microfabricated surfaces. Various contact pressures and lubricants have been utilized in the accelerated wear tests. Our results showed that increasing contact pressure resulted in an increase of wear particle sizes and wear rate, and the size of PEEK wear particles can be controlled by the feature size of microfabricated surfaces. These results provided the information rapidly about factors that affect the morphology and amount of PEEK wear particles and can be applied in the future for application of PEEK on the biological articulation system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shaobu; Lu, Shuai; Zhou, Ning
In interconnected power systems, dynamic model reduction can be applied on generators outside the area of interest to mitigate the computational cost with transient stability studies. This paper presents an approach of deriving the reduced dynamic model of the external area based on dynamic response measurements, which comprises of three steps, dynamic-feature extraction, attribution and reconstruction (DEAR). In the DEAR approach, a feature extraction technique, such as singular value decomposition (SVD), is applied to the measured generator dynamics after a disturbance. Characteristic generators are then identified in the feature attribution step for matching the extracted dynamic features with the highestmore » similarity, forming a suboptimal ‘basis’ of system dynamics. In the reconstruction step, generator state variables such as rotor angles and voltage magnitudes are approximated with a linear combination of the characteristic generators, resulting in a quasi-nonlinear reduced model of the original external system. Network model is un-changed in the DEAR method. Tests on several IEEE standard systems show that the proposed method gets better reduction ratio and response errors than the traditional coherency aggregation methods.« less
Sky Radiance Distributions for Thermal Imaging Backgrounds.
1987-12-01
background noise limited system. In infrared devices we have a spectral discrimination which is due to the spectral response of the detector /filter...cannot apply the central limit theorem [Ref.]- because the detector can capture only a few shots of the cloud form and the characteristics of the...objects most infrared systems can be used as detectors or target designators. Since infrared systems are passive the advantages of such systems are enormous
NASA Technical Reports Server (NTRS)
Schonberg, William P.; Peck, Jeffrey A.
1992-01-01
Over the last three decades, multiwall structures have been analyzed extensively, primarily through experiment, as a means of increasing the protection afforded to spacecraft structure. However, as structural configurations become more varied, the number of tests required to characterize their response increases dramatically. As an alternative, numerical modeling of high-speed impact phenomena is often being used to predict the response of a variety of structural systems under impact loading conditions. This paper presents the results of a preliminary numerical/experimental investigation of the hypervelocity impact response of multiwall structures. The results of experimental high-speed impact tests are compared against the predictions of the HULL hydrodynamic computer code. It is shown that the hypervelocity impact response characteristics of a specific system cannot be accurately predicted from a limited number of HULL code impact simulations. However, if a wide range of impact loadings conditions are considered, then the ballistic limit curve of the system based on the entire series of numerical simulations can be used as a relatively accurate indication of actual system response.
THE DEVELOPMENT OF A PHOTOTROPIC ANODIZED ALUMINUM FINISH RESPONSIVE TO GAMMA RADIATION.
The present investigation was conducted to establish a phototropic anodized aluminum finish sensitive to gamma radiation. A comprehensive literature...search revealed a number of candidate phototropic materials but very little information about gamma radiation response. Because early trials...indicated that each candidate phototropic system possessed different dyeing characteristics for an anodic film, time-consuming trials with dyed anodic films
Eigenspace Design of Helicopter Flight Control Systems
1990-11-01
Attitude Changes ......... 44 2.6 Yaw Cross Coupling Criteria . ............................................... 45 I 4. i Definition of the Rigid Body...laws. The methodology detailed in this report allows the designer to synthesize control laws which result in desirable response types such as attitude ...it is simple to relate the desired frequency response characteristics to the natural frequencies and damping factors or the time constants of the
Guarded Motion for Mobile Robots
DOE Office of Scientific and Technical Information (OSTI.GOV)
2005-03-30
The Idaho National Laboratory (INL) has created codes that ensure that a robot will come to a stop at a precise, specified distance from any obstacle regardless of the robot's initial speed, its physical characteristics, and the responsiveness of the low-level motor control schema. This Guarded Motion for Mobile Robots system iteratively adjusts the robot's action in response to information about the robot's environment.
Enhanced response of non-Hermitian photonic systems near exceptional points
NASA Astrophysics Data System (ADS)
Sunada, Satoshi
2018-04-01
This paper theoretically and numerically studies the response characteristics of non-Hermitian resonant photonic systems operating near an exceptional point (EP), where two resonant eigenmodes coalesce. It is shown that a system near an EP can exhibit a non-Lorentzian frequency response, whose line shape and intensity strongly depend on the modal decay rate and coupling parameters for the input waves, unlike a normal Lorentzian response around a single resonance. In particular, it is shown that the peak intensity of the frequency response is inversely proportional to the fourth power of the modal decay rate and can be significantly enhanced with the aid of optical gain. The theoretical results are numerically verified by a full wave simulation of a microring cavity with gain. In addition, the effects of the nonlinear gain saturation and spontaneous emission are discussed. The response enhancement and its parametric dependence may be useful for designing and controlling the excitation of eigenmodes by external fields.
Theoretical studies of system performance and adaptive optics design parameters
NASA Astrophysics Data System (ADS)
Tyson, Robert K.
1990-08-01
The ultimate performance of an adaptive optics (AO) system can be sensitive to specific design parameters of individual components. The type and configuration of a wavefront sensor or the shape of individual deformable mirror actuator influence functions can have a profound effect on the correctability of the AO system. This paper will discuss the results of a theoretical study which employed both closed form analytic solutions and computer models. A parametric analysis of wavefront sensor characteristics, noise, and subaperture geometry are independently evaluated against system response to an aberrated wave characteristic of atmospheric turbulence. Similarly, the shape and extent of the deformable mirror influence function and the placement and number of actuators is evaluated to characterize the effects of fitting error and coupling.
NASA Astrophysics Data System (ADS)
Dufoyer, A.; Lecoq, N.; Massei, N.; Marechal, J. C.
2017-12-01
Physics-based modeling of karst systems remains almost impossible without enough accurate information about the inner physical characteristics. Usually, the only available hydrodynamic information is the flow rate at the karst outlet. Numerous works in the past decades have used and proven the usefulness of time-series analysis and spectral techniques applied to spring flow, precipitations or even physico-chemical parameters, for interpreting karst hydrological functioning. However, identifying or interpreting the karst systems physical features that control statistical or spectral characteristics of spring flow variations is still challenging, not to say sometimes controversial. The main objective of this work is to determine how the statistical and spectral characteristics of the hydrodynamic signal at karst springs can be related to inner physical and hydraulic properties. In order to address this issue, we undertake an empirical approach based on the use of both distributed and physics-based models, and on synthetic systems responses. The first step of the research is to conduct a sensitivity analysis of time-series/spectral methods to karst hydraulic and physical properties. For this purpose, forward modeling of flow through several simple, constrained and synthetic cases in response to precipitations is undertaken. It allows us to quantify how the statistical and spectral characteristics of flow at the outlet are sensitive to changes (i) in conduit geometries, and (ii) in hydraulic parameters of the system (matrix/conduit exchange rate, matrix hydraulic conductivity and storativity). The flow differential equations resolved by MARTHE, a computer code developed by the BRGM, allows karst conduits modeling. From signal processing on simulated spring responses, we hope to determine if specific frequencies are always modified, thanks to Fourier series and multi-resolution analysis. We also hope to quantify which parameters are the most variable with auto-correlation analysis: first results seem to show higher variations due to conduit conductivity than the ones due to matrix/conduit exchange rate. Future steps will be using another computer code, based on double-continuum approach and allowing turbulent conduit flow, and modeling a natural system.
Analysis of the operation of the SCD Response intermittent compression system.
Morris, Rh J; Griffiths, H; Woodcock, J P
2002-01-01
The work assessed the performance of the Kendall SCD Response intermittent pneumatic compression system for deep vein thrombosis prophylaxis, which claimed to set its cycle according to the blood flow characteristics of individual patient limbs. A series of tests measured the system response in various situations, including application to the limbs of healthy volunteers, and to false limbs. Practical experimentation and theoretical analysis were used to investigate influences on the system functioning other than blood flow. The system tested did not seem to perform as claimed, being unable to distinguish between real and fake limbs. The intervals between compressions were set to times unrealistic for venous refill, with temperature changes in the cuff the greatest influence on performance. Combining the functions of compression and the measurement of the effects of compression in the same air bladder makes temperature artefacts unavoidable and can cause significant errors in the inter-compression interval.
Dynamic characteristics of a vibrating beam with periodic variation in bending stiffness
NASA Technical Reports Server (NTRS)
Townsend, John S.
1987-01-01
A detailed dynamic analysis is performed of a vibrating beam with bending stiffness periodic in the spatial coordinate. The effects of system parameters on beam response are explored with a perturbation expansion technique. It is found that periodic stiffness acts to modulate the modal displacements from the characteristic shape of a simple sine wave. The results are verified by a finite element solution and through experimental testing.
NASA Astrophysics Data System (ADS)
Chu, Hsing-Hui; Lu, Ta-Jung; Wann, Jong-Wen
The purpose of this research is to explore enterprises' acceptance of Audience Response System (ARS) using Technology Acceptance Model (TAM). The findings show that (1) IT characteristics and facilitating conditions could be external variables of TAM. (2) The degree of E-business has positive significant correlation with behavioral intention of employees. (3) TAM is a good model to predict and explain IT acceptance. (4) Demographic variables, industry and firm characteristics have no significant correlation with ARS acceptance. The results provide useful information to managers and ARS providers that (1) ARS providers should focus more on creating different usages to enhance interactivity and employees' using intention. (2) Managers should pay attention to build sound internal facilitating conditions for introducing IT. (3) According to the degree of E-business, managers should set up strategic stages of introducing IT. (4) Providers should increase product promotion and also leverage academic and government to promote ARS.
Dynamic characteristics of heart rate control by the autonomic nervous system in rats.
Mizuno, Masaki; Kawada, Toru; Kamiya, Atsunori; Miyamoto, Tadayoshi; Shimizu, Shuji; Shishido, Toshiaki; Smith, Scott A; Sugimachi, Masaru
2010-09-01
We estimated the transfer function of autonomic heart rate (HR) control by using random binary sympathetic or vagal nerve stimulation in anaesthetized rats. The transfer function from sympathetic stimulation to HR response approximated a second-order, low-pass filter with a lag time (gain, 4.29 +/- 1.55 beats min(1) Hz(1); natural frequency, 0.07 +/- 0.03 Hz; damping coefficient, 1.96 +/- 0.64; and lag time, 0.73 +/- 0.12 s). The transfer function from vagal stimulation to HR response approximated a first-order, low-pass filter with a lag time (gain, 8.84 +/- 4.51 beats min(1) Hz(1); corner frequency, 0.12 +/- 0.06 Hz; and lag time, 0.12 +/- 0.08 s). These results suggest that the dynamic characteristics of HR control by the autonomic nervous system in rats are similar to those of larger mammals.
The Immune System in the Pathogenesis of Ovarian Cancer
Charbonneau, Bridget; Goode, Ellen L.; Kalli, Kimberly R.; Knutson, Keith L.; DeRycke, Melissa S.
2014-01-01
Clinical outcomes in ovarian cancer are heterogeneous even when considering common features such as stage, response to therapy, and grade. This disparity in outcomes warrants further exploration into tumor and host characteristics. One compelling host characteristic is the immune response to ovarian cancer. While several studies have confirmed a prominent role for the immune system in modifying the clinical course of the disease, recent genetic and protein analyses also suggest a role in disease incidence. Recent studies also show that anti-tumor immunity is often negated by immune suppressive cells present in the tumor microenvironment. These suppressive immune cells also directly enhance the pathogenesis through the release of various cytokines and chemokines, which together form an integrated pathologic network. Thus, future research into immunotherapy targeting ovarian cancer will likely become increasingly focused on combination approaches that simultaneously augment immunity while preventing local immune suppression or by disrupting critical cytokine networks. PMID:23582060
Effects of cockpit lateral stick characteristics on handling qualities and pilot dynamics
NASA Technical Reports Server (NTRS)
Mitchell, David G.; Aponso, Bimal L.; Klyde, David H.
1992-01-01
This report presents the results of analysis of cockpit lateral control feel-system studies. Variations in feel-system natural frequency, damping, and command sensing reference (force and position) were investigated, in combination with variations in the aircraft response characteristics. The primary data for the report were obtained from a flight investigation conducted with a variable-stability airplane, with additional information taken from other flight experiments and ground-based simulations for both airplanes and helicopters . The study consisted of analysis of handling qualities ratings and extraction of open-loop, pilot-vehicle describing functions from sum-of-sines tracking data, including, for a limited subset of these data, the development of pilot models. The study confirms the findings of other investigators that the effects on pilot opinion of cockpit feel-system dynamics are not equivalent to a comparable level of added time delay, and until a more comprehensive set of criteria are developed, it is recommended that feel-system dynamics be considered a delay-inducing element in the aircraft response. The best correlation with time-delay requirements was found when the feel-system dynamics were included in the delay measurements, regardless of the command reference. This is a radical departure from past approaches.
Vertical Vibration Characteristics of a High-Temperature Superconducting Maglev Vehicle System
NASA Astrophysics Data System (ADS)
Jiang, Jing; Li, Ke Cai; Zhao, Li Feng; Ma, Jia Qing; Zhang, Yong; Zhao, Yong
2013-06-01
The vertical vibration characteristics of a high-temperature superconducting maglev vehicle system are investigated experimentally. The displacement variations of the maglev vehicle system are measured with different external excitation frequency, in the case of a certain levitation gap. When the external vibration frequency is low, the amplitude variations of the response curve are small. With the increase of the vibration frequency, chaos status can be found. The resonance frequencies with difference levitation gap are also investigated, while the external excitation frequency range is 0-100 Hz. Along with the different levitation gap, resonance frequency is also different. There almost is a linear relationship between the levitation gap and the resonance frequency.
Design of a Forecasting Service System for Monitoring of Vulnerabilities of Sensor Networks
NASA Astrophysics Data System (ADS)
Song, Jae-Gu; Kim, Jong Hyun; Seo, Dong Il; Kim, Seoksoo
This study aims to reduce security vulnerabilities of sensor networks which transmit data in an open environment by developing a forecasting service system. The system is to remove or monitor causes of breach incidents in advance. To that end, this research first examines general security vulnerabilities of sensor networks and analyzes characteristics of existing forecasting systems. Then, 5 steps of a forecasting service system are proposed in order to improve security responses.
Human response to aircraft noise
NASA Technical Reports Server (NTRS)
Powell, Clemans A.; Fields, James M.
1991-01-01
The human auditory system and the perception of sound are discussed. The major concentration is on the annnoyance response and methods for relating the physical characteristics of sound to those psychosociological attributes associated with human response. Results selected from the extensive laboratory and field research conducted on human response to aircraft noise over the past several decades are presented along with discussions of the methodology commonly used in conducting that research. Finally, some of the more common criteria, regulations, and recommended practices for the control or limitation of aircraft noise are examined in light of the research findings on human response.
Summary of the effects of engine throttle response on airplane formation-flying qualities
NASA Technical Reports Server (NTRS)
Walsh, Kevin R.
1993-01-01
A flight evaluation was conducted to determine the effect of engine throttle response characteristics on precision formation-flying qualities. A variable electronic throttle control system was developed and flight-tested on a TF-104G airplane with a J79-11B engine at the NASA Dryden Flight Research Facility. This airplane was chosen because of its known, very favorable thrust response characteristics. Ten research flights were flown to evaluate the effects of throttle gain, time delay, and fuel control rate limiting on engine handling qualities during a demanding precision wing formation task. Handling quality effects of lag filters and lead compensation time delays were also evaluated. The Cooper and Harper Pilot Rating Scale was used to assign levels of handling quality. Data from pilot ratings and comments indicate that throttle control system time delays and rate limits cause significant degradations in handling qualities. Threshold values for satisfactory (level 1) and adequate (level 2) handling qualities of these key variables are presented. These results may provide engine manufacturers with guidelines to assure satisfactory handling qualities in future engine designs.
Equivalent reduced model technique development for nonlinear system dynamic response
NASA Astrophysics Data System (ADS)
Thibault, Louis; Avitabile, Peter; Foley, Jason; Wolfson, Janet
2013-04-01
The dynamic response of structural systems commonly involves nonlinear effects. Often times, structural systems are made up of several components, whose individual behavior is essentially linear compared to the total assembled system. However, the assembly of linear components using highly nonlinear connection elements or contact regions causes the entire system to become nonlinear. Conventional transient nonlinear integration of the equations of motion can be extremely computationally intensive, especially when the finite element models describing the components are very large and detailed. In this work, the equivalent reduced model technique (ERMT) is developed to address complicated nonlinear contact problems. ERMT utilizes a highly accurate model reduction scheme, the System equivalent reduction expansion process (SEREP). Extremely reduced order models that provide dynamic characteristics of linear components, which are interconnected with highly nonlinear connection elements, are formulated with SEREP for the dynamic response evaluation using direct integration techniques. The full-space solution will be compared to the response obtained using drastically reduced models to make evident the usefulness of the technique for a variety of analytical cases.
Singh, Bhupinder; Kaur, Anterpreet; Dhiman, Shashi; Garg, Babita; Khurana, Rajneet Kaur; Beg, Sarwar
2016-04-01
The current studies entail systematic quality by design (QbD)-based development of stimuli-responsive gastroretentive drug delivery systems (GRDDS) of acyclovir using polysaccharide blends for attaining controlled drug release profile and improved patient compliance. The patient-centric quality target product profile was defined and critical quality attributes (CQAs) earmarked. Risk assessment studies, carried out through Ishikawa fish bone diagram and failure mode, effect, and criticality analysis, helped in identifying the plausible risks or failure modes affecting the quality attributes of the drug product. A face-centered cubic design was employed for systematic development and optimization of the concentration of sodium alginate (X 1) and gellan (X 2) as the critical material attributes (CMAs) in the stimuli-responsive formulations, which were evaluated for CQAs viz. viscosity, gel strength, onset of floatation, and drug release characteristics. Mathematical modeling was carried out for generation of design space, and optimum formulation was embarked upon, exhibiting formulation characteristics marked by excellent floatation and bioadhesion characteristics along with promising drug release control up to 24 h. Drug-excipient compatibility studies through FTIR and DSC revealed absence of any interaction(s) among the formulation excipients. In vivo pharmacokinetic studies in Wistar rats corroborated extension in the drug absorption profile from the optimized stimuli-responsive GR formulations vis-à-vis the marketed suspension (ZOVIRAX®). Establishment of in vitro/in vivo correlation (IVIVC) revealed a high degree of correlation between the in vitro and in vivo data. In a nutshell, the present investigations report the successful development of stimuli-responsive GRDDS of acyclovir, which can be applicable as a platform approach for other drugs too.
NASA Astrophysics Data System (ADS)
Imai, Takashi; Ota, Kaiichiro; Aoyagi, Toshio
2017-02-01
Phase reduction has been extensively used to study rhythmic phenomena. As a result of phase reduction, the rhythm dynamics of a given system can be described using the phase response curve. Measuring this characteristic curve is an important step toward understanding a system's behavior. Recently, a basic idea for a new measurement method (called the multicycle weighted spike-triggered average method) was proposed. This paper confirms the validity of this method by providing an analytical proof and demonstrates its effectiveness in actual experimental systems by applying the method to an oscillating electric circuit. Some practical tips to use the method are also presented.
An International Comparison of Equity in Education Systems
ERIC Educational Resources Information Center
Gorard, Stephen; Smith, Emma
2004-01-01
This paper uses pupil responses to the PISA study in 2000 for all EU countries. Using indicators of the pupil intakes to schools and their outcomes it computes segregation indices for 15 countries, and then tries to explain the resulting patterns in terms of the characteristics of national school systems. Segregation by sex in each country is…
Flying qualities and control system characteristics for superaugmented aircraft
NASA Technical Reports Server (NTRS)
Myers, T. T.; Mcruer, D. T.; Johnston, D. E.
1984-01-01
Aircraft-alone dynamics and superaugmented control system fundamental regulatory properties including stability and regulatory responses of the basic closed-loop systems; fundamental high and low frequency margins and governing factors; and sensitivity to aircraft and controller parameters are addressed. Alternative FCS mechanizations, and mechanizational side effects are also discussed. An overview of flying qualities considerations encompasses general pilot operations as a controller in unattended, intermittent and trim, and full-attention regulatory or command control; effective vehicle primary and secondary response properties to pilot inputs and disturbances; pilot control architectural possibilities; and comparison of superaugmented and conventional aircraft path responses for different forms of pilot control. Results of a simple experimental investigation into pilot dynamic behavior in attitude control of superaugmented aircraft configurations with high frequency time laps and time delays are presented.
Smart drug release systems based on stimuli-responsive polymers.
Qing, Guangyan; Li, Minmin; Deng, Lijing; Lv, Ziyu; Ding, Peng; Sun, Taolei
2013-07-01
Stimuli-responsive polymers could respond to external stimuli, such as temperature, pH, photo-irradiation, electric field, biomolecules in solution, etc., which further induce reversible transformations in the structures and conformations of polymers, providing an excellent platform for controllable drug release, while the accuracy of drug delivery could obtain obvious improvement in this system. In this review, recent progresses in the drug release systems based on stimuli-responsive polymers are summarized, in which drugs can be released in an intelligent mode with high accuracy and efficiency, while potential damages to normal cells and tissues can also be effectively prevented owing to the unique characteristics of materials. Moreover, we introduce some smart nanoparticles-polymers conjugates and drug release devices, which are especially suitable for the long-term sustained drug release.
Chi Zhang; Hanqin Tian; Yuhang Wang; Tao Zeng; Yongqiang Liu
2010-01-01
The model projected ecosystem carbon dynamics were incorporated into the default (contemporary) fuel load map developed by FCCS (Fuel Characteristic Classification System) to estimate the dynamics of fuel load in the Southern United States in response to projected changes in climate and atmosphere (CO2 and nitrogen deposition) from 2002 to 2050. The study results...
A characteristic energy scale in glasses
NASA Astrophysics Data System (ADS)
Lerner, Edan; Bouchbinder, Eran
2018-06-01
Intrinsically generated structural disorder endows glassy materials with a broad distribution of various microscopic quantities—such as relaxation times and activation energies—without an obvious characteristic scale. At the same time, macroscopic glassy responses—such as Newtonian (linear) viscosity and nonlinear plastic deformation—are widely interpreted in terms of a characteristic energy scale, e.g., an effective temperature-dependent activation energy in Arrhenius relations. Nevertheless, despite its fundamental importance, such a characteristic energy scale has not been robustly identified. Inspired by the accumulated evidence regarding the crucial role played by disorder- and frustration-induced soft quasilocalized excitations in determining the properties and dynamics of glasses, we propose that the bulk average of the glass response to a localized force dipole defines such a characteristic energy scale. We show that this characteristic glassy energy scale features remarkable properties: (i) It increases dramatically in underlying inherent structures of equilibrium supercooled states approaching the glass transition temperature Tg, significantly surpassing the corresponding increase in the macroscopic shear modulus, dismissing the common view that structural variations in supercooled liquids upon vitrification are minute. (ii) Its variation with annealing and system size is very similar in magnitude and form to that of the energy of the softest non-phononic vibrational mode, thus establishing a nontrivial relation between a rare glassy fluctuation and a bulk average response. (iii) It exhibits striking dependence on spatial dimensionality and system size due to the long-ranged fields associated with quasilocalization, which are speculated to be related to peculiarities of the glass transition in two dimensions. In addition, we identify a truly static growing lengthscale associated with the characteristic glassy energy scale and discuss possible connections between the increase of this energy scale and the slowing down of dynamics near the glass transition temperature. Open questions and future directions are discussed.
Ride quality criteria. [transportation system interior and passenger response to environment
NASA Technical Reports Server (NTRS)
Stephens, D. G.
1977-01-01
Ride quality refers to the interior or passenger environment of a transportation system as well as the passenger response to the environment. Ride quality factors are illustrated with the aid of a diagram presenting inputs to vehicle, the vehicle transfer function, the ride environment, the passenger response function, and the passenger ride response. The reported investigation considers the ride environment as measured on a variety of air and surface vehicles, the passenger response to the environment as determined from laboratory and field surveys, and criteria/standards for vibration, noise, and combined stimuli. Attention is given to the vertical vibration characteristics in cruise for aircraft and automobile, the aircraft vibration levels for various operating regimes, comparative noise levels during cruise, the discomfort level for a 9 Hz sinusoidal vibration, equal discomfort contours for vertical vibration, subjective response to noise in a speech situation, and noise and vibration levels for constant discomfort contours.
Williams, Eric S; Konrad, Thomas R; Linzer, Mark; McMurray, Julia; Pathman, Donald E; Gerrity, Martha; Schwartz, Mark D; Scheckler, William E; Douglas, Jeff
2002-01-01
Objective To study the impact that physician, practice, and patient characteristics have on physician stress, satisfaction, mental, and physical health. Data Sources Based on a survey of over 5,000 physicians nationwide. Four waves of surveys resulted in 2,325 complete responses. Elimination of ineligibles yielded a 52 percent response rate; 1,411 responses from primary care physicians were used. Study Design A conceptual model was tested by structural equation modeling. Physician job satisfaction and stress mediated the relationship between physician, practice, and patient characteristics as independent variables and physician physical and mental health as dependent variables. Principle Findings The conceptual model was generally supported. Practice and, to a lesser extent, physician characteristics influenced job satisfaction, whereas only practice characteristics influenced job stress. Patient characteristics exerted little influence. Job stress powerfully influenced job satisfaction and physical and mental health among physicians. Conclusions These findings support the notion that workplace conditions are a major determinant of physician well-being. Poor practice conditions can result in poor outcomes, which can erode quality of care and prove costly to the physician and health care organization. Fortunately, these conditions are manageable. Organizational settings that are both “physician friendly” and “family friendly” seem to result in greater well-being. These findings are particularly important as physicians are more tightly integrated into the health care system that may be less clearly under their exclusive control.
The rate dependent response of a bistable chain at finite temperature
NASA Astrophysics Data System (ADS)
Benichou, Itamar; Zhang, Yaojun; Dudko, Olga K.; Givli, Sefi
2016-10-01
We study the rate dependent response of a bistable chain subjected to thermal fluctuations. The study is motivated by the fact that the behavior of this model system is prototypical to a wide range of nonlinear processes in materials physics, biology and chemistry. To account for the stochastic nature of the system response, we formulate a set of governing equations for the evolution of the probability density of meta-stable configurations. Based on this approach, we calculate the behavior for a wide range of parametric values, such as rate, temperature, overall stiffness, and number of elements in the chain. Our results suggest that fundamental characteristics of the response, such as average transition stress and hysteresis, can be captured by a simple law which folds the influence of all these factors into a single non-dimensional quantity. We also show that the applicability of analytical results previously obtained for single-well systems can be extended to systems having multiple wells by proper definition of rate and of the transition stress.
Factors involved in nurses' responses to burnout: a grounded theory study
Rafii, Forough; Oskouie, Fatemeh; Nikravesh, Mansoure
2004-01-01
Background Intense and long-standing problems in burn centers in Tehran have led nurses to burnout. This phenomenon has provoked serious responses and has put the nurses, patients and the organization under pressure. The challenge for managers and nurse executives is to understand the factors which would reduce or increase the nurses' responses to burnout and develop delivery systems that promote positive adaptation and facilitate quality care. This study, as a part of more extensive research, aims to explore and describe the nurses' perceptions of the factors affecting their responses to burnout. Methods Grounded theory was used as the method. Thirty- eight participants were recruited. Data were generated by unstructured interviews and 21 sessions of participant observations. Constant comparison was used for data analysis. Results Nurses' and patients' personal characteristics and social support influenced nurses' responses to burnout. Personal characteristics of the nurses and patients, especially when interacting, had a more powerful effect. They altered emotional, attitudinal, behavioral and organizational responses to burnout and determined the kind of caring behavior. Social support had a palliative effect and altered emotional responses and some aspects of attitudinal responses. Conclusions The powerful effect of positive personal characteristics and its sensitivity to long standing and intense organizational pressures suggests approaches to executing stress reduction programs and refreshing the nurses' morale by giving more importance to ethical aspects of caring. Moreover, regarding palliative effect of social support and its importance for the nurses' wellbeing, nurse executives are responsible for promoting a work environment that supports nurses and motivates them. PMID:15541180
Investigation of crew restraint system biomechanics. Report for May 79-Mar 81
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, N.S.; Thomson, R.A.; Fiscus, I.B.
1982-05-01
Experimental data were collected and analyses were performed to study the influence of the dynamic mechanical properties of restraint system components on human response to impact and restraint system haulback. Tests were accomplished to isolate the characteristics of the restraint system and the human body. Three restraint webbing materials were studied at varied strain rates. A pyrotechnically powered inertia reel was tested, but could not be analytically modeled successfully. Analytical models of the human and restraint system were used to study the influence of restraint material properties changes on human response parameters. An analytical model of a rhesus monkey wasmore » also used to study the efficacy of animal tests and scaling techniques to evaluate restraint systems for human use applications.« less
Pacific Northwest residential energy survey. Volume 3. Question-by-question results
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1980-07-01
Tabulations are presented of responses to approximately 105 questions. Results are tabulated by 9 geographic regions: the four states of Idaho, Montana, Oregon, and Washington; four climate zones in the region; and a weighted Pacific Northwest total. A description of the tabulated data is given in the Introduction. Tabulated data deal with questions on dwelling characteristics; heating and air-conditioning systems; water heating; appliances; demographic and swelling characteristics; and insulation.
A Software Toolbox for Systematic Evaluation of Seismometer-Digitizer System Responses
2010-09-01
characteristics (e.g., borehole vs. surface installation) than the actual seismic noise characteristics. These results suggest that our best results of NOISETRAN...Award No. DE-FG02-09ER85548/Phase_I ABSTRACT Measurement of the absolute amplitudes of a seismic signal requires accurate knowledge of...power spectral density (PSD) estimator for background noise spectra at a seismic station. SACPSD differs from the current PSD used by NEIC and IRIS
An alternative to soil taxonomy for describing key soil characteristics
Duniway, Michael C.; Miller, Mark E.; Brown, Joel R.; Toevs, Gordon
2013-01-01
is not a simple task. Furthermore, because the US system of soil taxonomy is not applied universally, its utility as a means for effectively describing soil characteristics to readers in other countries is limited. Finally, and most importantly, even at the finest level of soil classification there are often large within-taxa variations in critical properties that can determine ecosystem responses to drivers such as climate and land-use change.
NASA Astrophysics Data System (ADS)
Tran Quoc, Tinh; Khong Trong, Toan; Luong Van, Hai
2018-04-01
In this paper, Improved Moving Element Method (IMEM) is used to analyze the dynamic response of Euler-Bernoulli beam structures on the dynamic foundation model subjected to the moving load. The effects of characteristic foundation model parameters such as Winkler stiffness, shear layer based on the Pasternak model, viscoelastic dashpot and characteristic parameter of mass on foundation. Beams are modeled by moving elements while the load is fixed. Based on the principle of the publicly virtual balancing and the theory of moving element method, the motion differential equation of the system is established and solved by means of the numerical integration based on the Newmark algorithm. The influence of mass on foundation and the roughness of the beam surface on the dynamic response of beam are examined in details.
Biphasic responses in multi-site phosphorylation systems.
Suwanmajo, Thapanar; Krishnan, J
2013-12-06
Multi-site phosphorylation systems are repeatedly encountered in cellular biology and multi-site modification is a basic building block of post-translational modification. In this paper, we demonstrate how distributive multi-site modification mechanisms by a single kinase/phosphatase pair can lead to biphasic/partial biphasic dose-response characteristics for the maximally phosphorylated substrate at steady state. We use simulations and analysis to uncover a hidden competing effect which is responsible for this and analyse how it may be accentuated. We build on this to analyse different variants of multi-site phosphorylation mechanisms showing that some mechanisms are intrinsically not capable of displaying this behaviour. This provides both a consolidated understanding of how and under what conditions biphasic responses are obtained in multi-site phosphorylation and a basis for discriminating between different mechanisms based on this. We also demonstrate how this behaviour may be combined with other behaviour such as threshold and bistable responses, demonstrating the capacity of multi-site phosphorylation systems to act as complex molecular signal processors.
NASA Technical Reports Server (NTRS)
Tanner, J. A.; Stubbs, S. M.; Dreher, R. C.; Smith, E. G.
1982-01-01
A computer study was performed to assess the accuracy of three brake pressure-torque mathematical models. The investigation utilized one main gear wheel, brake, and tire assembly of a McDonnell Douglas DC-9 series 10 airplane. The investigation indicates that the performance of aircraft antiskid braking systems is strongly influenced by tire characteristics, dynamic response of the antiskid control valve, and pressure-torque response of the brake. The computer study employed an average torque error criterion to assess the accuracy of the models. The results indicate that a variable nonlinear spring with hysteresis memory function models the pressure-torque response of the brake more accurately than currently used models.
Time Analysis of Building Dynamic Response Under Seismic Action. Part 1: Theoretical Propositions
NASA Astrophysics Data System (ADS)
Ufimtcev, E. M.
2017-11-01
The first part of the article presents the main provisions of the analytical approach - the time analysis method (TAM) developed for the calculation of the elastic dynamic response of rod structures as discrete dissipative systems (DDS) and based on the investigation of the characteristic matrix quadratic equation. The assumptions adopted in the construction of the mathematical model of structural oscillations as well as the features of seismic forces’ calculating and recording based on the data of earthquake accelerograms are given. A system to resolve equations is given to determine the nodal (kinematic and force) response parameters as well as the stress-strain state (SSS) parameters of the system’s rods.
A preliminary look at control augmented dynamic response of structures
NASA Technical Reports Server (NTRS)
Ryan, R. S.; Jewell, R. E.
1983-01-01
The augmentation of structural characteristics, mass, damping, and stiffness through the use of control theory in lieu of structural redesign or augmentation was reported. The standard single-degree-of-freedom system was followed by a treatment of the same system using control augmentation. The system was extended to elastic structures using single and multisensor approaches and concludes with a brief discussion of potential application to large orbiting space structures.
A urine volume measurement system
NASA Technical Reports Server (NTRS)
Poppendiek, H. F.; Mouritzen, G.; Sabin, C. M.
1972-01-01
An improved urine volume measurement system for use in the unusual environment of manned space flight is reported. The system utilizes a low time-constant thermal flowmeter. The time integral of the transient response of the flowmeter gives the urine volume during a void as it occurs. In addition, the two phase flows through the flowmeter present no problem. Developments of the thermal flowmeter and a verification of the predicted performance characteristics are summarized.
NASA Astrophysics Data System (ADS)
Yu, Pingchao; Zhang, Dayi; Ma, Yanhong; Hong, Jie
2018-06-01
Fan Blade Out (FBO) from a running rotor of the turbofan engine will not only introduce the sudden unbalance and inertia asymmetry into the rotor, but also apply large impact load and induce rotor-to-stator rubbing on the rotor, which makes the mass, gyroscopic and stiffness matrixes of the dynamic equation become time-varying and highly nonlinear, consequently leads to the system's complicated vibration. The dynamic analysis of the aero-engine rotor system is one essential requirement of the authorities and is vital to the aero-engine's safety. The paper aims at studying the dynamic responses of the complicated dual-rotor systems at instantaneous and windmilling statuses when FBO event occurs. The physical process and mechanical characteristics of the FBO event are described qualitatively, based on which the dynamic modeling for an aero-engine dual-rotor system is carried out considering several excitations caused by FBO. Meanwhile the transient response during the instantaneous status and steady-state response at the windmilling status are obtained. The results reveal that the sudden unbalance can induce impact load to the rotor, and lead to the sharp increase of the vibration amplitude and reaction force. The rub-impact will apply constraint effects on the rotor and restrict the transient vibration amplitude, while the inertia asymmetry has little influence on the transient response. When the rotor with huge unbalance operates at windmilling status, the rub-impact turns to be the main factor determining the rotor's dynamic behavior, and several potential motion states, such as instable dry whip, intermittent rubbing and synchronous full annular rubbing would happen on certain conditions.
Modularization and Response Curve Engineering of a Naringenin-Responsive Transcriptional Biosensor.
De Paepe, Brecht; Maertens, Jo; Vanholme, Bartel; De Mey, Marjan
2018-05-18
To monitor the intra- and extracellular environment of micro-organisms and to adapt their metabolic processes accordingly, scientists are reprogramming nature's myriad of transcriptional regulatory systems into transcriptional biosensors, which are able to detect small molecules and, in response, express specific output signals of choice. However, the naturally occurring response curve, the key characteristic of biosensor circuits, is typically not in line with the requirements for real-life biosensor applications. In this contribution, a natural LysR-type naringenin-responsive biosensor circuit is developed and characterized with Escherichia coli as host organism. Subsequently, this biosensor is dissected into a clearly defined detector and effector module without loss of functionality, and the influence of the expression levels of both modules on the biosensor response characteristics is investigated. Two collections of ten unique synthetic biosensors each are generated. Each collection demonstrates a unique diversity of response curve characteristics spanning a 128-fold change in dynamic and 2.5-fold change in operational ranges and 3-fold change in levels of Noise, fit for a wide range of applications, such as adaptive laboratory evolution, dynamic pathway control and high-throughput screening methods. The established biosensor engineering concepts, and the developed biosensor collections themselves, are of use for the future development and customization of biosensors in general, for the multitude of biosensor applications and as a compelling alternative for the commonly used LacI-, TetR- and AraC-based inducible circuits.
Nguyen, Philip V; Kafka, Jessica K; Ferreira, Victor H; Roth, Kristy; Kaushic, Charu
2014-01-01
The male and female reproductive tracts are complex microenvironments that have diverse functional demands. The immune system in the reproductive tract has the demanding task of providing a protective environment for a fetal allograft while simultaneously conferring protection against potential pathogens. As such, it has evolved a unique set of adaptations, primarily under the influence of sex hormones, which make it distinct from other mucosal sites. Here, we discuss the various components of the immune system that are present in both the male and female reproductive tracts, including innate soluble factors and cells and humoral and cell-mediated adaptive immunity under homeostatic conditions. We review the evidence showing unique phenotypic and functional characteristics of immune cells and responses in the male and female reproductive tracts that exhibit compartmentalization from systemic immunity and discuss how these features are influenced by sex hormones. We also examine the interactions among the reproductive tract, sex hormones and immune responses following HIV-1 infection. An improved understanding of the unique characteristics of the male and female reproductive tracts will provide insights into improving clinical treatments of the immunological causes of infertility and the design of prophylactic interventions for the prevention of sexually transmitted infections. PMID:24976268
NASA Astrophysics Data System (ADS)
Rabin, B. M.; Joseph, J. A.; Shukitt-Hale, B.
2004-01-01
Exposure to heavy particles can affect the functioning of the central nervous system (CNS), particularly the dopaminergic system. In turn, the radiation-induced disruption of dopaminergic function affects a variety of behaviors that are dependent upon the integrity of this system, including motor behavior (upper body strength), amphetamine (dopamine)-mediated taste aversion learning, and operant conditioning (fixed-ratio bar pressing). Although the relationships between heavy particle irradiation and the effects of exposure depend, to some extent, upon the specific behavioral or neurochemical endpoint under consideration, a review of the available research leads to the hypothesis that the endpoints mediated by the CNS have certain characteristics in common. These include: (1) a threshold, below which there is no apparent effect; (2) the lack of a dose-response relationship, or an extremely steep dose-response curve, depending on the particular endpoint; and (3) the absence of recovery of function, such that the heavy particle-induced behavioral and neural changes are present when tested up to one year following exposure. The current report reviews the data relevant to the degree to which these characteristics are common to neurochemical and behavioral endpoints that are mediated by the effects of exposure to heavy particles on CNS activity.
NASA Technical Reports Server (NTRS)
Rabin, B. M.; Joseph, J. A.; Shukitt-Hale, B.
2004-01-01
Exposure to heavy particles can affect the functioning of the central nervous system (CNS), particularly the dopaminergic system. In turn, the radiation-induced disruption of dopaminergic function affects a variety of behaviors that are dependent upon the integrity of this system, including motor behavior (upper body strength), amphetamine (dopamine)-mediated taste aversion learning, and operant conditioning (fixed-ratio bar pressing). Although the relationships between heavy particle irradiation and the effects of exposure depend, to some extent, upon the specific behavioral or neurochemical endpoint under consideration, a review of the available research leads to the hypothesis that the endpoints mediated by the CNS have certain characteristics in common. These include: (1) a threshold, below which there is no apparent effect; (2) the lack of a dose-response relationship, or an extremely steep dose-response curve, depending on the particular endpoint; and (3) the absence of recovery of function, such that the heavy particle-induced behavioral and neural changes are present when tested up to one year following exposure. The current report reviews the data relevant to the degree to which these characteristics are common to neurochemical and behavioral endpoints that are mediated by the effects of exposure to heavy particles on CNS activity. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
Hajare, V D; Patre, B M
2015-11-01
This paper presents a decentralized PID controller design method for two input two output (TITO) systems with time delay using characteristic ratio assignment (CRA) method. The ability of CRA method to design controller for desired transient response has been explored for TITO systems. The design methodology uses an ideal decoupler to reduce the interaction. Each decoupled subsystem is reduced to first order plus dead time (FOPDT) model to design independent diagonal controllers. Based on specified overshoot and settling time, the controller parameters are computed using CRA method. To verify performance of the proposed controller, two benchmark simulation examples are presented. To demonstrate applicability of the proposed controller, experimentation is performed on real life interacting coupled tank level system. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
A 1-D model of the nonlinear dynamics of the human lumbar intervertebral disc
NASA Astrophysics Data System (ADS)
Marini, Giacomo; Huber, Gerd; Püschel, Klaus; Ferguson, Stephen J.
2017-01-01
Lumped parameter models of the spine have been developed to investigate its response to whole body vibration. However, these models assume the behaviour of the intervertebral disc to be linear-elastic. Recently, the authors have reported on the nonlinear dynamic behaviour of the human lumbar intervertebral disc. This response was shown to be dependent on the applied preload and amplitude of the stimuli. However, the mechanical properties of a standard linear elastic model are not dependent on the current deformation state of the system. The aim of this study was therefore to develop a model that is able to describe the axial, nonlinear quasi-static response and to predict the nonlinear dynamic characteristics of the disc. The ability to adapt the model to an individual disc's response was a specific focus of the study, with model validation performed against prior experimental data. The influence of the numerical parameters used in the simulations was investigated. The developed model exhibited an axial quasi-static and dynamic response, which agreed well with the corresponding experiments. However, the model needs further improvement to capture additional peculiar characteristics of the system dynamics, such as the change of mean point of oscillation exhibited by the specimens when oscillating in the region of nonlinear resonance. Reference time steps were identified for specific integration scheme. The study has demonstrated that taking into account the nonlinear-elastic behaviour typical of the intervertebral disc results in a predicted system oscillation much closer to the physiological response than that provided by linear-elastic models. For dynamic analysis, the use of standard linear-elastic models should be avoided, or restricted to study cases where the amplitude of the stimuli is relatively small.
The vibration characteristics of a coupled helicopter rotor-fuselage by a finite element analysis
NASA Technical Reports Server (NTRS)
Rutkowski, M. J.
1983-01-01
The dynamic coupling between the rotor system and the fuselage of a simplified helicopter model in hover was analytically investigated. Mass, aerodynamic damping, and elastic and centrifugal stiffness matrices are presented for the analytical model; the model is based on a beam finite element, with polynomial mass and stiffness distributions for both the rotor and fuselage representations. For this analytical model, only symmetric fuselage and collective blade degrees of freedom are treated. Real and complex eigen-analyses are carried out to obtain coupled rotor-fuselage natural modes and frequencies as a function of rotor speed. Vibration response results are obtained for the coupled system subjected to a radially uniform, harmonic blade loading. The coupled response results are compared with response results from an uncoupled analysis in which hub loads for an isolated rotor system subjected to the same sinusoidal blade loading as the coupled system are applied to a free-free fuselage.
NASA Astrophysics Data System (ADS)
Futko, S. I.; Ermolaeva, E. M.; Dobrego, K. V.; Bondarenko, V. P.; Dolgii, L. N.
2012-07-01
We have developed a sensitivity analysis permitting effective estimation of the change in the impulse responses of a microthrusters and in the ignition characteristics of the solid-fuel charge caused by the variation of the basic macrokinetic parameters of the mixed fuel and the design parameters of the microthruster's combustion chamber. On the basis of the proposed sensitivity analysis, we have estimated the spread of both the propulsive force and impulse and the induction period and self-ignition temperature depending on the macrokinetic parameters of combustion (pre-exponential factor, activation energy, density, and heat content) of the solid-fuel charge of the microthruster. The obtained results can be used for rapid and effective estimation of the spread of goal functions to provide stable physicochemical characteristics and impulse responses of solid-fuel mixtures in making and using microthrusters.
NASA Astrophysics Data System (ADS)
Setiono, Andi; Ula, Rini Khamimatul; Hanto, Dwi; Widiyatmoko, Bambang; Purnamaningsih, Retno Wigajatri
2016-02-01
In general, Fiber Bragg Grating (FBG) sensor works based on observation of spectral response characteristic to detect the desired parameter. In this research, we studied intensity response characteristic of FBG to detect the dynamic strain. Experiment result show that the reflected intensity had linier relationships with dynamic strain. Based on these characteristics, we developed the FBG sensor to detect low frequency vibration. This sensor is designed by attaching the FBG on the bronze cantilever with dimensions of 85×3×0.5 mm. Measurement results showed that the sensor was able to detect vibrations in the frequency range of 7-10 Hz at temperature range of 25-45 ˚C. The measured frequency range is still within the frequency range of digging activity, therefore this vibration sensor can be applied for oil pipelines vandalisation detection system.
Dynamic analysis of clamp band joint system subjected to axial vibration
NASA Astrophysics Data System (ADS)
Qin, Z. Y.; Yan, S. Z.; Chu, F. L.
2010-10-01
Clamp band joints are commonly used for connecting circular components together in industry. Some of the systems jointed by clamp band are subjected to dynamic load. However, very little research on the dynamic characteristics for this kind of joint can be found in the literature. In this paper, a dynamic model for clamp band joint system is developed. Contact and frictional slip between the components are accommodated in this model. Nonlinear finite element analysis is conducted to identify the model parameters. Then static experiments are carried out on a scaled model of the clamp band joint to validate the joint model. Finally, the model is adopted to study the dynamic characteristics of the clamp band joint system subjected to axial harmonic excitation and the effects of the wedge angle of the clamp band joint and the preload on the response. The model proposed in this paper can represent the nonlinearity of the clamp band joint and be used conveniently to investigate the effects of the structural and loading parameters on the dynamic characteristics of this type of joint system.
GP preferences for information systems: conjoint analysis of speed, reliability, access and users.
Wyatt, Jeremy C; Batley, Richard P; Keen, Justin
2010-10-01
To elicit the preferences and trade-offs of UK general practitioners about key features of health information systems, to help inform the design of such systems in future. A stated choice study to uncover implicit preferences based on a binary choice between scenarios presented in random order. were all 303 general practice members of the UK Internet service provider, Medix who were approached by email to participate. The main outcome measure was the number of seconds delay in system response that general practitioners were willing to trade off for each key system feature: the reliability of the system, the sites from which the system could be accessed and which staff are able to view patient data. Doctors valued speed of response most in information systems but would be prepared to wait 28 seconds to access a system in exchange for improved reliability from 95% to 99%, a further 2 seconds for an improvement to 99.9% and 27 seconds for access to data from anywhere including their own home compared with one place in a single health care premises. However, they would require a system that was 14 seconds faster to compensate for allowing social care as well as National Health Service staff to read patient data. These results provide important new evidence about which system characteristics doctors value highly, and hence which characteristics designers need to focus on when large scale health information systems are planned. © 2010 Blackwell Publishing Ltd.
Power conversion distribution system using a resonant high-frequency AC link
NASA Technical Reports Server (NTRS)
Sood, P. K.; Lipo, T. A.
1986-01-01
Static power conversion systems based on a resonant high frequency (HF) link offers a significant reduction in the size and weight of the equipment over that achieved with conventional approaches, especially when multiple sources and loads are to be integrated. A faster system response and absence of audible noise are the other principal characteristics of such systems. A conversion configuration based on a HF link which is suitable for applications requiring distributed power is proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Ying, E-mail: yingma@imr.ac.cn; Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science; An, Boxing
By using an electron donor–acceptor molecule that consists of a perylenediimide (PDI) core bonded with two ferrocene (Fc) units, well-defined nanorods, nanowires and microwires of PDI-Fc were formed through simply adjusting the initial concentration of PDI-Fc in dichloromethane or CH{sub 2}Cl{sub 2}. Moreover, the two-ended devices based on individual microwire were fabricated. Highly reproducible and sensitive photo response characteristics were demonstrated in the microwire through controlling the white light on and off with different light intensities. The assembly strategy via complementary donors and acceptors is of significance for constructing photoconductive systems and developing novel functional devices. - Graphical abstract: Themore » two-ended devices based on individual microwire were fabricated. Highly reproducible and sensitive photo response characteristics were observed by controlling the white light on and off with different light intensities. - Highlights: • An electron donor–acceptor molecule (PDI-Fc) was synthesized. • Well-defined nanorods, nanowires and microwires of PDI-Fc were formed. • The two-ended devices based on individual microwire were fabricated. • Highly reproducible and sensitive photo response characteristics were observed.« less
A rating system for the esthetics of bridges.
DOT National Transportation Integrated Search
1980-01-01
There is a need for a tangible way to evaluate the esthetic or visual characteristics of bridges. This report describes such a method based on a numerical experiential rating scale of -10 to +10. Negative values represent unpleasurable responses; pos...
EVALUATION OF MULTIPLE AQUATIC BIOMONITORS FOR SOURCE WATER PROTECTION
A variety of probes for use in continuous monitoring of water quality exist. They range from single parameter chemical/physical probes to comprehensive screening systems based on whole organism responses. Originally developed for monitoring specific characteristics of water qua...
Code of Federal Regulations, 2014 CFR
2014-07-01
...; (ii) Characteristics of the surrounding soil (soil composition, geology, hydrogeology, climate); (iii... sampling or monitoring data relating to the release are not available within 30 days, these data must be...
Code of Federal Regulations, 2011 CFR
2011-07-01
...; (ii) Characteristics of the surrounding soil (soil composition, geology, hydrogeology, climate); (iii... sampling or monitoring data relating to the release are not available within 30 days, these data must be...
Code of Federal Regulations, 2013 CFR
2013-07-01
...; (ii) Characteristics of the surrounding soil (soil composition, geology, hydrogeology, climate); (iii... sampling or monitoring data relating to the release are not available within 30 days, these data must be...
Code of Federal Regulations, 2012 CFR
2012-07-01
...; (ii) Characteristics of the surrounding soil (soil composition, geology, hydrogeology, climate); (iii... sampling or monitoring data relating to the release are not available within 30 days, these data must be...
An evaluation of automatic control system concepts for general aviation airplanes
NASA Technical Reports Server (NTRS)
Stewart, E. C.; Ragsdale, W. A.; Wunschel, A. J.
1988-01-01
A piloted simulation study of automatic longitudinal control systems for general aviation airplanes has been conducted. These automatic control systems were designed to make the simulated airplane easy to fly for a beginning or infrequent pilot. Different control systems are presented and their characteristics are documented. In a conventional airplane control system each cockpit controller commands combinations of both the airspeed and the vertical speed. The best system in the present study decoupled the airspeed and vertical speed responses to cockpit throttle inputs. That is, the cockpit throttle lever commanded only airspeed responses, and the longitudinal wheel position commanded only vertical speed responses. This system significantly reduced the pilot workload throughout an entire mission of the airplane from takeoff to landing. An important feature of the automatic system was that neither changing flap position nor maneuvering in steeply banked turns affected either the airspeed or the vertical speed. All the pilots who flew the control system simulation were favorably impressed with the very low workload and the excellent handling qualities of the simulated airplane.
Non-linear vibrating systems excited by a nonideal energy source with a large slope characteristic
NASA Astrophysics Data System (ADS)
González-Carbajal, Javier; Domínguez, Jaime
2017-11-01
This paper revisits the problem of an unbalanced motor attached to a fixed frame by means of a nonlinear spring and a linear damper. The excitation provided by the motor is, in general, nonideal, which means it is affected by the vibratory response. Since the system behaviour is highly dependent on the order of magnitude of the motor characteristic slope, the case of large slope is considered herein. Some Perturbation Methods are applied to the system of equations, which allows transforming the original 4D system into a much simpler 2D system. The fixed points of this reduced system and their stability are carefully studied. We find the existence of a Hopf bifurcation which, to the authors' knowledge, has not been addressed before in the literature. These analytical results are supported by numerical simulations. We also compare our approach and results with those published by other authors.
Dynamic response tests of inertial and optical wind-tunnel model attitude measurement devices
NASA Technical Reports Server (NTRS)
Buehrle, R. D.; Young, C. P., Jr.; Burner, A. W.; Tripp, J. S.; Tcheng, P.; Finley, T. D.; Popernack, T. G., Jr.
1995-01-01
Results are presented for an experimental study of the response of inertial and optical wind-tunnel model attitude measurement systems in a wind-off simulated dynamic environment. This study is part of an ongoing activity at the NASA Langley Research Center to develop high accuracy, advanced model attitude measurement systems that can be used in a dynamic wind-tunnel environment. This activity was prompted by the inertial model attitude sensor response observed during high levels of model vibration which results in a model attitude measurement bias error. Significant bias errors in model attitude measurement were found for the measurement using the inertial device during wind-off dynamic testing of a model system. The amount of bias present during wind-tunnel tests will depend on the amplitudes of the model dynamic response and the modal characteristics of the model system. Correction models are presented that predict the vibration-induced bias errors to a high degree of accuracy for the vibration modes characterized in the simulated dynamic environment. The optical system results were uncorrupted by model vibration in the laboratory setup.
Neuroendocrine host factors and inflammatory disease susceptibility.
Ligier, S; Sternberg, E M
1999-01-01
The etiology of autoimmune diseases is multifactorial, resulting from a combination of genetically predetermined host characteristics and environmental exposures. As the term autoimmune implies, immune dysfunction and dysregulated self-tolerance are key elements in the pathophysiology of all these diseases. The neuroendocrine and sympathetic nervous systems are increasingly recognized as modulators of the immune response at the levels of both early inflammation and specific immunity. As such, alterations in their response represent a potential mechanism by which pathologic autoimmunity may develop. Animal models of autoimmune diseases show pre-existing changes in neuroendocrine responses to a variety of stimuli, and both animal and human studies have shown altered stress responses in the setting of active immune activation. The potential role of the neuroendocrine system in linking environmental exposures and autoimmune diseases is 2-fold. First, it may represent a direct target for toxic compounds. Second, its inadequate function may result in the inappropriate response of the immune system to an environmental agent with immunogenic properties. This article reviews the relationship between autoimmune diseases and the neuroendocrine system and discusses the difficulties and pitfalls of investigating a physiologic response that is sensitive to such a multiplicity of environmental exposures. PMID:10502534
Wang, Hao; Tao, Tianyou; Guo, Tong; Li, Jian; Li, Aiqun
2014-01-01
The structural health monitoring system (SHMS) provides an effective tool to conduct full-scale measurements on existing bridges for essential research on bridge wind engineering. In July 2008, Typhoon Fung-Wong lashed China and hit Sutong cable-stayed bridge (SCB) in China. During typhoon period, full-scale measurements were conducted to record the wind data and the structural vibration responses were collected by the SHMS installed on SCB. Based on the statistical method and the spectral analysis technique, the measured data are analyzed to obtain the typical parameters and characteristics. Furthermore, this paper analyzed the measured structural vibration responses and indicated the vibration characteristics of the stay cable and the deck, the relationship between structural vibrations and wind speed, the comparison of upstream and downstream cable vibrations, the effectiveness of cable dampers, and so forth. Considering the significance of damping ratio in vibration mitigation, the modal damping ratios of the SCB are identified based on the Hilbert-Huang transform (HHT) combined with the random decrement technique (RDT). The analysis results can be used to validate the current dynamic characteristic analysis methods, buffeting calculation methods, and wind tunnel test results of the long-span cable-stayed bridges.
Tao, Tianyou; Li, Aiqun
2014-01-01
The structural health monitoring system (SHMS) provides an effective tool to conduct full-scale measurements on existing bridges for essential research on bridge wind engineering. In July 2008, Typhoon Fung-Wong lashed China and hit Sutong cable-stayed bridge (SCB) in China. During typhoon period, full-scale measurements were conducted to record the wind data and the structural vibration responses were collected by the SHMS installed on SCB. Based on the statistical method and the spectral analysis technique, the measured data are analyzed to obtain the typical parameters and characteristics. Furthermore, this paper analyzed the measured structural vibration responses and indicated the vibration characteristics of the stay cable and the deck, the relationship between structural vibrations and wind speed, the comparison of upstream and downstream cable vibrations, the effectiveness of cable dampers, and so forth. Considering the significance of damping ratio in vibration mitigation, the modal damping ratios of the SCB are identified based on the Hilbert-Huang transform (HHT) combined with the random decrement technique (RDT). The analysis results can be used to validate the current dynamic characteristic analysis methods, buffeting calculation methods, and wind tunnel test results of the long-span cable-stayed bridges. PMID:24995367
NASA Astrophysics Data System (ADS)
Al-Hindawi, Mohammed M.; Abusorrah, Abdullah; Al-Turki, Yusuf; Giaouris, Damian; Mandal, Kuntal; Banerjee, Soumitro
Photovoltaic (PV) systems with a battery back-up form an integral part of distributed generation systems and therefore have recently attracted a lot of interest. In this paper, we consider a system of charging a battery from a PV panel through a current mode controlled boost dc-dc converter. We analyze its complete nonlinear/nonsmooth dynamics, using a piecewise model of the converter and realistic nonlinear v-i characteristics of the PV panel. Through this study, it is revealed that system design without taking into account the nonsmooth dynamics of the converter combined with the nonlinear v-i characteristics of the PV panel can lead to unpredictable responses of the overall system with high current ripple and other undesirable phenomena. This analysis can lead to better designed converters that can operate under a wide variation of the solar irradiation and the battery's state of charge. We show that the v-i characteristics of the PV panel combined with the battery's output voltage variation can increase or decrease the converter's robustness, both under peak current mode control and average current mode control. We justify the observation in terms of the change in the discrete-time map caused by the nonlinear v-i characteristics of the PV panel. The theoretical results are validated experimentally.
Kosc, Tanya Z [Rochester, NY; Marshall, Kenneth L [Rochester, NY; Jacobs, Stephen D [Pittsford, NY
2006-05-09
Optical devices utilizing flakes (also called platelets) suspended in a host fluid have optical characteristics, such as reflective properties, which are angular dependent in response to an AC field. The reflectivity may be Bragg-like, and the characteristics are obtained through the use of flakes of liquid crystal material, such as polymer liquid crystal (PLC) materials including polymer cholesteric liquid crystal (PCLC) and polymer nematic liquid crystal (PNLC) material or birefringent polymers (BP). The host fluid may be propylene carbonate, poly(ethylene glycol) or other fluids or fluid mixtures having fluid conductivity to support conductivity in the flake/host system. AC field dependent rotation of 90.degree. can be obtained at rates and field intensities dependent upon the frequency and magnitude of the AC field. The devices are useful in providing displays, polarizers, filters, spatial light modulators and wherever switchable polarizing, reflecting, and transmission properties are desired.
NASA Astrophysics Data System (ADS)
Wang, B.; Zheng, J.; Che, T.; Zheng, B. T.; Si, S. S.; Deng, Z. G.
2015-12-01
The permanent magnet guideway (PMG) is very important for the performance of the high temperature superconducting (HTS) system in terms of electromagnetic force and operational stability. The dynamic response characteristics of a HTS maglev model levitating on two types of PMG, which are the normal PMG with iron flux concentration and Halbach-type PMG, were investigated by experiments. The dynamic signals for different field-cooling heights (FCHs) and loading/unloading processes were acquired and analyzed by a vibration analyzer and laser displacement sensors. The resonant frequency, stiffness and levitation height of the model were discussed. It was found that the maglev model on the Halbach-type PMG has higher resonant frequency and higher vertical stiffness compared with the normal PMG. However, the low lateral stiffness of the model on the Halbach-type PMG indicates poor lateral stability. Besides, the Halbach-type PMG has better loading capacity than the normal PMG. These results are helpful to design a suitable PMG for the HTS system in practical applications.
NASA Technical Reports Server (NTRS)
Morey-Holton, Emily; Globus, Ruth K.; Kaplansky, Alexander; Durnova, Galina
2004-01-01
The hindlimb unloading (HU) rodent model is used extensively to study the response of many physiological systems to certain aspects of spaceflight, as well as to disuse and recovery from disuse for Earth benefits. This chapter describes the evolution of HU, and is divided into three sections. The first section examines the characteristics of 1063 articles using or reviewing the HU model, published between 1976 and April 1, 2004. The characteristics include number of publications, journals, countries, major physiological systems, method modifications, species, gender, genetic strains and ages of rodents, experiment duration, and countermeasures. The second section provides a comparison of results between space flown and Hu animals from the 14-day Cosmos 2044 mission. The final section describes modifications to HU required by different experimental paradigms and a method to protect the tail harness for long duration studies. HU in rodents has enabled improved understanding of the responses of the musculoskeletal, cardiovascular, immune, renal, neural, metabolic, and reproductive systems to unloading and/or to reloading on Earth with implications for both long-duration human spaceflight and disuse on Earth.
Evaluation of RCAS Inflow Models for Wind Turbine Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tangler, J.; Bir, G.
The finite element structural modeling in the Rotorcraft Comprehensive Analysis System (RCAS) provides a state-of-the-art approach to aeroelastic analysis. This, coupled with its ability to model all turbine components, results in a methodology that can simulate complex system interactions characteristic of large wind. In addition, RCAS is uniquely capable of modeling advanced control algorithms and the resulting dynamic responses.
Design and Optimization Method of a Two-Disk Rotor System
NASA Astrophysics Data System (ADS)
Huang, Jingjing; Zheng, Longxi; Mei, Qing
2016-04-01
An integrated analytical method based on multidisciplinary optimization software Isight and general finite element software ANSYS was proposed in this paper. Firstly, a two-disk rotor system was established and the mode, humorous response and transient response at acceleration condition were analyzed with ANSYS. The dynamic characteristics of the two-disk rotor system were achieved. On this basis, the two-disk rotor model was integrated to the multidisciplinary design optimization software Isight. According to the design of experiment (DOE) and the dynamic characteristics, the optimization variables, optimization objectives and constraints were confirmed. After that, the multi-objective design optimization of the transient process was carried out with three different global optimization algorithms including Evolutionary Optimization Algorithm, Multi-Island Genetic Algorithm and Pointer Automatic Optimizer. The optimum position of the two-disk rotor system was obtained at the specified constraints. Meanwhile, the accuracy and calculation numbers of different optimization algorithms were compared. The optimization results indicated that the rotor vibration reached the minimum value and the design efficiency and quality were improved by the multidisciplinary design optimization in the case of meeting the design requirements, which provided the reference to improve the design efficiency and reliability of the aero-engine rotor.
Critical speeds and forced response solutions for active magnetic bearing turbomachinery, part 2
NASA Technical Reports Server (NTRS)
Rawal, D.; Keesee, J.; Kirk, R. Gordon
1991-01-01
The need for better performance of turbomachinery with active magnetic bearings has necessitated a study of such systems for accurate prediction of their vibrational characteristics. A modification of existing transfer matrix methods for rotor analysis is presented to predict the response of rotor systems with active magnetic bearings. The position of the magnetic bearing sensors is taken into account and the effect of changing sensor position on the vibrational characteristics of the rotor system is studied. The modified algorithm is validated using a simpler Jeffcott model described previously. The effect of changing from a rotating unbalance excitation to a constant excitation in a single plane is also studied. A typical eight stage centrifugal compressor rotor is analyzed using the modified transfer matrix code. The results for a two mass Jeffcott model were presented previously. The results obtained by running this model with the transfer matrix method were compared with the results of the Jeffcott analysis for the purposes of verification. Also included are plots of amplitude versus frequency for the eight stage centrifugal compressor rotor. These plots demonstrate the significant influence that sensor location has on the amplitude and critical frequencies of the rotor system.
Renewable energy water supply - Mexico program summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foster, R.
1997-12-01
This paper describes a program directed by the US Agency for International Development and Sandia National Laboratory which installed sustainable energy sources in the form of photovoltaic modules and wind energy systems in rural Mexico to pump water and provide solar distillation services. The paper describes the guidelines which appeared most responsible for success as: promote an integrated development program; install quality systems that develop confidence; instill local project ownership; train local industry and project developers; develop a local maintenance infrastructure; provide users training and operations guide; develop clear lines of responsibilities for system upkeep. The paper emphasizes the importancemore » of training. It also presents much collected data as to the characteristics and performance of the installed systems.« less
Acute effects of Dry Immersion on kinematic characteristics of postural corrective responses
NASA Astrophysics Data System (ADS)
Sayenko, D. G.; Miller, T. F.; Melnik, K. A.; Netreba, A. I.; Khusnutdinova, D. R.; Kitov, V. V.; Tomilovskaya, E. S.; Reschke, M. F.; Gerasimenko, Y. P.; Kozlovskaya, I. B.
2016-04-01
Impairments in balance control are inevitable following exposure to microgravity. However, the role of particular sensory system in postural disorders at different stages of the exposure to microgravity still remains unknown. We used a method called Dry Immersion (DI), as a ground-based model of microgravity, to elucidate the effects of 6-h of load-related afferent inputs on kinematic characteristics of postural corrective responses evoked by pushes to the chest of different intensities during upright standing. The structure of postural corrective responses was altered following exposure to DI, which was manifested by: (1) an increase of the ankle and knee flexion during perturbations of medium intensity, (2) the lack of the compensatory hip extension, as well as diminished knee and ankle flexion with a further increase of the perturbation intensity to submaximal level. We suggest that the lack of weight-bearing increases the reactivity of the balance control system, whereas the ability to scale the responses proportionally to the perturbation intensity decreases. Disrupted neuromuscular coordination of postural corrective responses following DI can be attributed to adaptive neural modifications on the spinal and cortical levels. The present study provides evidence that even a short-term lack of load-related afferent inputs alters kinematic patterns of postural corrective responses, and can result in decreased balance control. Because vestibular input is not primarily affected during the DI exposure, our results indicate that activity and the state of the load-related afferents play critical roles in balance control following real or simulated microgravity.
Nonlinear analysis of shock absorbers with amplitude-dependent damping
NASA Astrophysics Data System (ADS)
Łuczko, Jan; Ferdek, Urszula; Łatas, Waldemar
2018-01-01
This paper contains an analysis of a quarter-car model representing a vehicle equipped with a hydraulic damper whose characteristics are dependent on the piston stroke. The damper, compared to a classical mono-tube damper, has additional internal chambers. Oil flow in those chambers is controlled by relative piston displacement. The proposed nonlinear model of the system is aimed to test the effect of key design parameters of the damper on the quality indices representing ride comfort and driving safety. Numerical methods were used to determine the characteristic curves of the damper and responses of the system to harmonic excitations with their amplitude decreasing as the values of frequency increase.
A new intrusion prevention model using planning knowledge graph
NASA Astrophysics Data System (ADS)
Cai, Zengyu; Feng, Yuan; Liu, Shuru; Gan, Yong
2013-03-01
Intelligent plan is a very important research in artificial intelligence, which has applied in network security. This paper proposes a new intrusion prevention model base on planning knowledge graph and discuses the system architecture and characteristics of this model. The Intrusion Prevention based on plan knowledge graph is completed by plan recognition based on planning knowledge graph, and the Intrusion response strategies and actions are completed by the hierarchical task network (HTN) planner in this paper. Intrusion prevention system has the advantages of intelligent planning, which has the advantage of the knowledge-sharing, the response focused, learning autonomy and protective ability.
NASA Astrophysics Data System (ADS)
Wang, Zhihuan
Research on Information Systems (IS) acceptance is substantially focused on extrinsic motivation in workplaces, little is known about the underlying intrinsic motivations of Hedonic IS (HIS) acceptance. This paper proposes a hybrid HIS acceptance model which takes the unique characteristics of HIS and multiple identities of a HIS user into consideration by interacting Hedonic theory, Flow theory with Technology Acceptance Model (TAM). The model was empirically tested by a field survey. The result indicates that emotional responses, imaginal responses, and flow experience are three main contributions of HIS acceptance.
Boyd, Ashleigh S; Wood, Kathryn J
2010-06-04
The fully differentiated progeny of ES cells (ESC) may eventually be used for cell replacement therapy (CRT). However, elements of the innate immune system may contribute to damage or destruction of these tissues when transplanted. Herein, we assessed the hitherto ill-defined contribution of the early innate immune response in CRT after transplantation of either ESC derived insulin producing cell clusters (IPCCs) or adult pancreatic islets. Ingress of neutrophil or macrophage cells was noted immediately at the site of IPCC transplantation, but this infiltration was attenuated by day three. Gene profiling identified specific inflammatory cytokines and chemokines that were either absent or sharply reduced by three days after IPCC transplantation. Thus, IPCC transplantation provoked less of an early immune response than pancreatic islet transplantation. Our study offers insights into the characteristics of the immune response of an ESC derived tissue in the incipient stages following transplantation and suggests potential strategies to inhibit cell damage to ensure their long-term perpetuation and functionality in CRT.
Gas Sensing Properties of bis-Phthalocyanine Thin Film
NASA Astrophysics Data System (ADS)
Dumludag, Fatih; Kilic, Pinar; Odabas, Zafer; Altindal, Ahmet; Bekaroglu, Ozer
2010-01-01
In this study, response of the cofacial bis- phthalocyanine film to vapor of Volatile Organic Compounds (VOCs) was investigated. Test gases were vapors of acetone, toluene, ethanol and ammonia. Measurements were carried out between the temperatures of 293 K-423 K. Bis-phthalocyanine was dissolved in chloroform. Thin film of bis-phthalocyanine was deposited by spraying method on glass substrate patterned with Interdigital Transducer (IDT). During the measurements 0.5 volts were applied to the IDT. Response characteristics of the film were determined by means of change in dc conductivity as a function of gas concentration and temperature. Gas concentrations were controlled by mass flow controller. Dry nitrogen was used as carrier gas. Vapor pressure of the VOCs was calculated using Antoine equation. Response characteristics of the film were determined in a wide range of gas concentration (0.25%-18%). The film showed good sensitivity to the VOCs vapors in the measurement range. The responses of the film were reversible. All the measurement system was computerized.
Magnesium uptake characteristics in Arabidopsis revealed by 28Mg tracer studies.
Ogura, Takaaki; Kobayashi, Natsuko I; Suzuki, Hisashi; Iwata, Ren; Nakanishi, Tomoko M; Tanoi, Keitaro
2018-06-07
The Mg 2+ uptake system in Arabidopsis roots is Gd 3+ - and Fe 2+ -sensitive, and responds to a changing Mg 2+ concentration within 1 h with the participation of AtMRS2 transporters. Magnesium (Mg 2+ ) absorption and the mechanism regulating its activity have not been clarified yet. To address these issues, it is necessary to reveal the characteristics of Mg 2+ uptake in roots. Therefore, we first investigated the Mg 2+ uptake characteristics in roots of 1-week-old Arabidopsis plants using 28 Mg. The Mg 2+ uptake system in roots was up-regulated within 1 h in response to the low Mg 2+ condition. This induction was inhibited in Arabidopsis "mitochondrial RNA splicing 2/magnesium transport" mutants atmrs2-4/atmgt6 and atmrs2-7/atmgt7, while the expression of AtMRS2-4/AtMGT6 and AtMRS2-7/AtMGT7 genes in the Arabidopsis wild-type was not responsive to Mg 2+ conditions. In addition, the Mg deficiency-induced Mg 2+ uptake system was shut-down within 5 min when Mg 2+ was resupplied to the environment. An inhibition study showed that the constitutive mechanism functioning in Mg 2+ uptake under Mg 2+ sufficient conditions was sensitive to a number of divalent and trivalent cations, particularly Gd 3+ and Fe 2+ , but not to K + .
Narrow field electromagnetic sensor system and method
McEwan, Thomas E.
1996-01-01
A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments.
Narrow field electromagnetic sensor system and method
McEwan, T.E.
1996-11-19
A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments. 12 figs.
Moving Upstream in U.S. Hospital Care Toward Investments in Population Health.
Begun, James W; Potthoff, Sandra
The root causes for most health outcomes are often collectively referred to as the social determinants of health. Hospitals and health systems now must decide how much to "move upstream," or invest in programs that directly affect the social determinants of health. Moving upstream in healthcare delivery requires an acceptance of responsibility for the health of populations. We examine responses of 950 nonfederal, general hospitals in the United States to the 2015 American Hospital Association Population Health Survey to identify characteristics that distinguish those hospitals that are most aligned with population health and most engaged in addressing social determinants of health. Those "upstream" hospitals are significantly more likely to be large, not-for-profit, metropolitan, teaching-affiliated, and members of systems. Internally, the more upstream hospitals are more likely to organize their population health activities with strong executive-level involvement, full-time-equivalent support, and coordination at the system level.The characteristics differentiating hospitals strongly involved in population health and upstream activity are not unlike those characteristics associated with diffusion of many innovations in hospitals. These hospitals may be the early adopters in a diffusion process that will eventually include most hospitals or, at least, most not-for-profit hospitals. Alternatively, the population health and social determinants movements could be transient or could be limited to a small portion of hospitals such as those identified here, with distinctive patient populations, missions, and resources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the extent they share physical characteristics, location, and operations. (c) Third parties may be... (CSO) reviews and accepts their work. (d) Those involved in a FSA must be able to draw upon expert... preparedness and response; (10) Physical security requirements; (11) Radio and telecommunications systems...
Code of Federal Regulations, 2010 CFR
2010-07-01
... vessel to the extent that they share physical characteristics and operations. (c) Third parties may be... (CSO) reviews and accepts their work. (d) Those involved in a VSA should be able to draw upon expert... response; (10) Physical security requirements; (11) Radio and telecommunications systems, including...
A CLASSIFICATION OF U.S. ESTUARIES BASED ON PHYSICAL, HYDROLOGIC ATTRIBUTES
A classification of U.S. estuaries is presented based on estuarine characteristics that have been identified as important for quantifying stressor-response
relationships in coastal systems. Estuaries within a class have similar physical/hydrologic and land use characteris...
ERIC Educational Resources Information Center
Klein, Regina; And Others
1988-01-01
The first of three articles describes the results of a survey that examined characteristics and responsibilities of help-desk personnel at major database and online services. The second provides guidelines to using such customer services, and the third lists help-desk numbers for online databases and systems. (CLB)
Human Nature, Crime and Society.
ERIC Educational Resources Information Center
Mednick, Sarnoff A.
The paper discusses literature which reports biological factors of criminal behavior and suggests how such biological characteristics might interact with the learning of moral behavior. The first three studies of predelinquent and prerecidivistic criminals measured autonomic nervous system responses to stress. Those who later became delinquent…
Pressure Response of Various Gases in a Pneumatic Resistance Capacitance System and Pipe
NASA Astrophysics Data System (ADS)
Peng, J.; Youn, C.; Tadano, K.; Kagawa, T.
2017-10-01
City gas, such as propane and methane, is widely used as a fuel in households and factories. Recently, hydrogen as a clean and efficient fuel has been proposed for fuel cell vehicles. However, few studies have investigated pressure control and response of gases considering their properties. This study investigated the static flow rate characteristics in an orifice with four gases—air, propane, methane, and hydrogen. Then, a pressure response experiment was performed using a pneumatic resistance capacitance system comprising an isothermal chamber and a nozzle flapper, and the time constant of the pressure response with various gases was analysed with a mathematical model. The simulation results agreed with the experimental data. Finally, the differences in pressure propagation in a pipe with various gases were explicated by a pressure response experiment. The results showed that the pressure response speed of hydrogen is faster than that of the other three gases because of its small molecular weight. Therefore, the pressure control equipment of hydrogen needs a high response speed.
SU-E-T-159: Characteristics of Fiber-Optic Radiation Sensor for Proton Therapeutic Beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Son, J; Kim, M; Hwang, U
Purpose: A fiber-optic radiation sensor using Cerenkov radiation has been widely studied for use as a dosimeter for proton therapeutic beam. Although the fiber-optic radiation sensor has already been investigated for proton therapeutic, it has been examined relatively little work for clinical therapeutic proton beams. In this study, we evaluated characteristics of a fiber-optic radiation sensor for clinical therapeutic proton beams. We experimentally evaluated dose-rate dependence, dose response and energy dependence for the proton beam. Methods: A fiber-optic radiation sensor was placed in a water phantom. Beams with energies of low, middle and high were used in the passively-scattered protonmore » therapeutic beam at the National Cancer Center in Korea. The sensor consists of two plastic optical fibers (POF). A reference POF and 2 cm longer POF were used to utilize the subtraction method for having sensitive volume. Each POF is optically coupled to the Multi-Anode Photo Multiplier Tube (MAPMT) and the MAPMT signals are processed using National Instruments Data Acquisition System (NI-DAQ). We were investigated dosimetric properties including dose-rate dependence, dose response and energy dependence. Results: We have successfully evaluated characteristics of a fiber optic radiation sensor using Cerenkov radiation. The fiber-optic radiation sensor showed the dose response linearity and low energy dependence. In addition, as the dose-rate was increased, Cerenkov radiation increased linearly. Conclusion: We evaluated the basic characteristics of the fiber optic radiation sensor, the dosimetry tool, to raise the quality of proton therapy. Based on the research, we developed a real time dosimetry system of the optic fiber to confirm the real time beam position and energy for therapeutic proton pencil beam.« less
Modelling and validation of magnetorheological brake responses using parametric approach
NASA Astrophysics Data System (ADS)
Z, Zainordin A.; A, Abdullah M.; K, Hudha
2013-12-01
Magnetorheological brake (MR Brake) is one x-by-wire systems which performs better than conventional brake systems. MR brake consists of a rotating disc that is immersed with Magnetorheological Fluid (MR Fluid) in an enclosure of an electromagnetic coil. The applied magnetic field will increase the yield strength of the MR fluid where this fluid was used to decrease the speed of the rotating shaft. The purpose of this paper is to develop a mathematical model to represent MR brake with a test rig. The MR brake model is developed based on actual torque characteristic which is coupled with motion of a test rig. Next, the experimental are performed using MR brake test rig and obtained three output responses known as angular velocity response, torque response and load displacement response. Furthermore, the MR brake was subjected to various current. Finally, the simulation results of MR brake model are then verified with experimental results.
NASA Technical Reports Server (NTRS)
Lamarr, Michael; Chinske, Chris; Williams, Ethan; Law, Cameron; Skoog, Mark; Sorokowski, Paul
2016-01-01
The NASA improved Ground Collision Avoidance System (iGCAS) team conducted an onsite usability study at Experimental Aircraft Association (EAA) Air Venture in Oshkosh, Wisconsin from July 19 through July 26, 2015. EAA Air Venture had approximately 550,000 attendees from which the sample pool of pilots were selected. The objectives of this study were to assess the overall appropriateness and acceptability of iGCAS as a warning system for General Aviation aircraft, usability of the iGCAS displays and audio cues, test terrain avoidance characteristics, performance, functionality, pilot response time, and correlate terrain avoidance performance and pilot response time data.
TF34 convertible engine control system design
NASA Technical Reports Server (NTRS)
Gilmore, D. R., Jr.
1984-01-01
The characteristics of the TF34 convertible engine, capable of producing shaft power, thrust, or a combination of both, is investigated with respect to the control system design, development, bench testing, and the anticipated transient response during engine testing at NASA. The modifications to the prototype standard TF34-GE-400 turbofan, made primarily in the fan section, consist of the variable inlet guide vanes and variable exit guide vanes. The control system was designed using classical frequency domain techniques and was based on the anticipated convertible/VTOL airframe requirements. The engine has been run in the fan mode and in the shaft mode, exhibiting a response of 0.14 second to a 5-percent thrust change.
NASA Astrophysics Data System (ADS)
Koh, E. H.; Lee, E.; Kaown, D.; Lee, K. K.; Green, C. T.
2017-12-01
Timing and magnitudes of nitrate contamination are determined by various factors like contaminant loading, recharge characteristics and geologic system. Information of an elapsed time since recharged water traveling to a certain outlet location, which is defined as groundwater age, can provide indirect interpretation related to the hydrologic characteristics of the aquifer system. There are three major methods (apparent ages, lumped parameter model, and numerical model) to date groundwater ages, which differently characterize groundwater mixing resulted by various groundwater flow pathways in a heterogeneous aquifer system. Therefore, in this study, we compared the three age models in a complex aquifer system by using observed age tracer data and reconstructed history of nitrate contamination by long-term source loading. The 3H-3He and CFC-12 apparent ages, which did not consider the groundwater mixing, estimated the most delayed response time and a highest period of the nitrate loading had not reached yet. However, the lumped parameter model could generate more recent loading response than the apparent ages and the peak loading period influenced the water quality. The numerical model could delineate various groundwater mixing components and its different impacts on nitrate dynamics in the complex aquifer system. The different age estimation methods lead to variations in the estimated contaminant loading history, in which the discrepancy in the age estimation was dominantly observed in the complex aquifer system.
NASA Astrophysics Data System (ADS)
Giaccu, Gian Felice
2018-05-01
Pre-tensioned cable braces are widely used as bracing systems in various structural typologies. This technology is fundamentally utilized for stiffening purposes in the case of steel and timber structures. The pre-stressing force imparted to the braces provides to the system a remarkable increment of stiffness. On the other hand, the pre-tensioning force in the braces must be properly calibrated in order to satisfactorily meet both serviceability and ultimate limit states. Dynamic properties of these systems are however affected by non-linear behavior due to potential slackening of the pre-tensioned brace. In the recent years the author has been working on a similar problem regarding the non-linear response of cables in cable-stayed bridges and braced structures. In the present paper a displacement-based approach is used to examine the non-linear behavior of a building system. The methodology operates through linearization and allows obtaining an equivalent linearized frequency to approximately characterize, mode by mode, the dynamic behavior of the system. The equivalent frequency depends on both the mechanical characteristics of the system, the pre-tensioning level assigned to the braces and a characteristic vibration amplitude. The proposed approach can be used as a simplified technique, capable of linearizing the response of structural systems, characterized by non-linearity induced by the slackening of pre-tensioned braces.
NASA Technical Reports Server (NTRS)
Chung, W. Y. William; Borchers, Paul F.; Franklin, James A.
1995-01-01
A simulation model has been developed for use in piloted evaluations of takeoff, transition, hover, and landing characteristics of an advanced, short takeoff, vertical landing lift fan fighter aircraft. The flight/propulsion control system includes modes for several response types which are coupled to the aircraft's aerodynamic and propulsion system effectors through a control selector tailored to the lift fan propulsion system. Head-up display modes for approach and hover, tailored to their corresponding control modes are provided in the simulation. Propulsion system components modeled include a remote lift and a lift/cruise engine. Their static performance and dynamic response are represented by the model. A separate report describes the subsonic, power-off aerodynamics and jet induced aerodynamics in hover and forward flight, including ground effects.
MATLAB/Simulink Pulse-Echo Ultrasound System Simulator Based on Experimentally Validated Models.
Kim, Taehoon; Shin, Sangmin; Lee, Hyongmin; Lee, Hyunsook; Kim, Heewon; Shin, Eunhee; Kim, Suhwan
2016-02-01
A flexible clinical ultrasound system must operate with different transducers, which have characteristic impulse responses and widely varying impedances. The impulse response determines the shape of the high-voltage pulse that is transmitted and the specifications of the front-end electronics that receive the echo; the impedance determines the specification of the matching network through which the transducer is connected. System-level optimization of these subsystems requires accurate modeling of pulse-echo (two-way) response, which in turn demands a unified simulation of the ultrasonics and electronics. In this paper, this is realized by combining MATLAB/Simulink models of the high-voltage transmitter, the transmission interface, the acoustic subsystem which includes wave propagation and reflection, the receiving interface, and the front-end receiver. To demonstrate the effectiveness of our simulator, the models are experimentally validated by comparing the simulation results with the measured data from a commercial ultrasound system. This simulator could be used to quickly provide system-level feedback for an optimized tuning of electronic design parameters.
An efficient approach to ARMA modeling of biological systems with multiple inputs and delays
NASA Technical Reports Server (NTRS)
Perrott, M. H.; Cohen, R. J.
1996-01-01
This paper presents a new approach to AutoRegressive Moving Average (ARMA or ARX) modeling which automatically seeks the best model order to represent investigated linear, time invariant systems using their input/output data. The algorithm seeks the ARMA parameterization which accounts for variability in the output of the system due to input activity and contains the fewest number of parameters required to do so. The unique characteristics of the proposed system identification algorithm are its simplicity and efficiency in handling systems with delays and multiple inputs. We present results of applying the algorithm to simulated data and experimental biological data In addition, a technique for assessing the error associated with the impulse responses calculated from estimated ARMA parameterizations is presented. The mapping from ARMA coefficients to impulse response estimates is nonlinear, which complicates any effort to construct confidence bounds for the obtained impulse responses. Here a method for obtaining a linearization of this mapping is derived, which leads to a simple procedure to approximate the confidence bounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganguly, Jayanta; Ghosh, Manas, E-mail: pcmg77@rediffmail.com
We investigate the profiles of diagonal components of frequency-dependent first nonlinear (β{sub xxx} and β{sub yyy}) optical response of repulsive impurity doped quantum dots. We have assumed a Gaussian function to represent the dopant impurity potential. This study primarily addresses the role of noise on the polarizability components. We have invoked Gaussian white noise consisting of additive and multiplicative characteristics (in Stratonovich sense). The doped system has been subjected to an oscillating electric field of given intensity, and the frequency-dependent first nonlinear polarizabilities are computed. The noise characteristics are manifested in an interesting way in the nonlinear polarizability components. Inmore » case of additive noise, the noise strength remains practically ineffective in influencing the optical responses. The situation completely changes with the replacement of additive noise by its multiplicative analog. The replacement enhances the nonlinear optical response dramatically and also causes their maximization at some typical value of noise strength that depends on oscillation frequency.« less
Acoustic testing of high temperature panels
NASA Technical Reports Server (NTRS)
Leatherwood, Jack D.; Clevenson, Sherman A.; Powell, Clemans A.; Daniels, Edward F.
1990-01-01
Results are presented of a series of thermal-acoustic tests conducted on the NASA Langley Research Center Thermal-Acoustic Test Apparatus to (1) investigate techniques for obtaining strain measurements on metallic and carbon-carbon materials at elevated temperature; (2) document the dynamic strain response characteristics of several superalloy honeycomb thermal protection system panels at elevated temperatures of up to 1200 F; and (3) determine the strain response and sonic fatigue behavior of four carbon-carbon panels at both ambient and elevated temperatures. A second study tested four carbon-carbon panels to document panel dynamic response characteristics at ambient and elevated temperature, determine time to failure and faliure modes, and collect continuous strain data up to panel failure. Strain data are presented from both types of panels, and problems encountered in obtaining reliable strain data on the carbon-carbon panels are described. The failure modes of the carbon-carbon panels are examined.
Development of IR imaging system simulator
NASA Astrophysics Data System (ADS)
Xiang, Xinglang; He, Guojing; Dong, Weike; Dong, Lu
2017-02-01
To overcome the disadvantages of the tradition semi-physical simulation and injection simulation equipment in the performance evaluation of the infrared imaging system (IRIS), a low-cost and reconfigurable IRIS simulator, which can simulate the realistic physical process of infrared imaging, is proposed to test and evaluate the performance of the IRIS. According to the theoretical simulation framework and the theoretical models of the IRIS, the architecture of the IRIS simulator is constructed. The 3D scenes are generated and the infrared atmospheric transmission effects are simulated using OGRE technology in real-time on the computer. The physical effects of the IRIS are classified as the signal response characteristic, modulation transfer characteristic and noise characteristic, and they are simulated on the single-board signal processing platform based on the core processor FPGA in real-time using high-speed parallel computation method.
NASA Astrophysics Data System (ADS)
Snow, Michael G.; Bajaj, Anil K.
2015-08-01
This work presents an uncertainty quantification (UQ) analysis of a comprehensive model for an electrostatically actuated microelectromechanical system (MEMS) switch. The goal is to elucidate the effects of parameter variations on certain key performance characteristics of the switch. A sufficiently detailed model of the electrostatically actuated switch in the basic configuration of a clamped-clamped beam is developed. This multi-physics model accounts for various physical effects, including the electrostatic fringing field, finite length of electrodes, squeeze film damping, and contact between the beam and the dielectric layer. The performance characteristics of immediate interest are the static and dynamic pull-in voltages for the switch. Numerical approaches for evaluating these characteristics are developed and described. Using Latin Hypercube Sampling and other sampling methods, the model is evaluated to find these performance characteristics when variability in the model's geometric and physical parameters is specified. Response surfaces of these results are constructed via a Multivariate Adaptive Regression Splines (MARS) technique. Using a Direct Simulation Monte Carlo (DSMC) technique on these response surfaces gives smooth probability density functions (PDFs) of the outputs characteristics when input probability characteristics are specified. The relative variation in the two pull-in voltages due to each of the input parameters is used to determine the critical parameters.
NASA Astrophysics Data System (ADS)
Schechinger, Monika; Marks, Haley; Locke, Andrea; Choudhury, Mahua; Coté, Gerard
2017-02-01
Human biomarkers are indicative of the body's relative state prior to the onset of disease, and sometimes before symptoms present. While blood biomarker detection has achieved considerable success in laboratory settings, its clinical application is lagging and commercial point-of-care devices are rare. A physician's ability to detect biomarkers such as microRNA-17, a potential epigenetic indicator of preeclampsia in pregnant woman, could enable early diagnosis and preventive intervention as early as the 1st trimester. One detection approach employing DNA-functionalized nanoparticles to detect microRNA-17, in conjunction with surface-enhanced Raman spectroscopy (SERS), has shown promise but is hindered, in part, by the use of large and expensive benchtop Raman microscopes. However, recent strides have been made in developing portable Raman systems for field applications. Characteristics of the SERS assay responsible for strengthening the assay's plasmonic response were explored, whilst comparing the results from both benchtop and portable Raman systems. The Raman spectra and intensity of three different types of photoactive molecules were compared as potential Raman reporter molecules: chromophores, fluorophores, and highly polarizable small molecules. Furthermore, the plasmonic characteristics governing the formation of SERS colloidal nanoparticle assemblies in response to DNA/miRNA hybridization were investigated. There were significant variations in the SERS enhancement in response to microRNA-17 using our assay depending on the excitation lasers at wavelengths of 532 nm and 785 nm, depending on which of the three different Raman systems were used (benchtop, portable, and handheld), and depending on which of the three different Raman reporters (chromophore, fluorophore, or Raman active molecule) were used. Analysis of data obtained did indicate that signal enhancement was better for the chromophore (MGITC) and Raman active molecule (DTNB) than it was for the fluorophore (TRITC) and that, although it is possible to obtain enhancements when using excitation lasers that do not directly coincide with the optical properties of the Raman reporter molecule, clearly the enhancements are more significant when it reaches to the characteristic wavelengths of those molecules.
NASA Technical Reports Server (NTRS)
Kirk, R. G.; Gunter, E. J.
1972-01-01
The dynamic unabalance response and transient motion of the single mass Jeffcott rotor in elastic bearings mounted on damped, flexible supports are discussed. A steady state analysis of the shaft and the bearing housing motion was made by assuming synchronous precession of the system. The conditions under which the support system would act as a dynamic vibration absorber at the rotor critical speed were studied. Plots of the rotor and support amplitudes, phase angles, and forces transmitted were evaluated by the computer and the performance curves were plotted by an automatic plotter unit. Curves are presented on the optimization of the support housing characteristics of attenuate the rotor synchronous unbalance response.
Mikou, M; Ghosne, N; El Baydaoui, R; Zirari, Z; Kuntz, F
2015-05-01
Performance characteristics of the megavoltage photon dose measurements with EPR and table sugar were analyzed. An advantage of sugar as a dosimetric material is its tissue equivalency. The minimal detectable dose was found to be 1.5Gy for both the 6 and 18MV photons. The dose response curves are linear up to at least 20Gy. The energy dependence of the dose response in the megavoltage energy range is very weak and probably statistically insignificant. Reproducibility of measurements of various doses in this range performed with the peak-to-peak and double-integral methods is reported. The method can be used in real-time dosimetry in radiation therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Houts, R. C.; Burlage, D. W.
1972-01-01
A time domain technique is developed to design finite-duration impulse response digital filters using linear programming. Two related applications of this technique in data transmission systems are considered. The first is the design of pulse shaping digital filters to generate or detect signaling waveforms transmitted over bandlimited channels that are assumed to have ideal low pass or bandpass characteristics. The second is the design of digital filters to be used as preset equalizers in cascade with channels that have known impulse response characteristics. Example designs are presented which illustrate that excellent waveforms can be generated with frequency-sampling filters and the ease with which digital transversal filters can be designed for preset equalization.
Centaur engine gimbal friction characteristics under simulated thrust load
NASA Technical Reports Server (NTRS)
Askew, J. W.
1986-01-01
An investigation was performed to determine the friction characteristics of the engine gimbal system of the Centaur upper stage rocket. Because the Centaur requires low-gain autopilots in order to meet all stability requirements for some configurations, control performance (response to transients and limit-cycle amplitudes) depends highly on these friction characteristics. Forces required to rotate the Centaur engine gimbal system were measured under a simulated thrust load of 66,723 N (15,000 lb) and in an altitude/thermal environment. A series of tests was performed at three test conditions; ambient temperature and pressure, ambient temperature and vacuum, and cryogenic temperature and vacuum. Gimbal rotation was controlled, and tests were performed in which rotation amplitude and frequency were varied by using triangular and sinusoidal waveforms. Test data revealed an elastic characteristic of the gimbal, independent of the input signal, which was evident prior to true gimbal sliding. The torque required to initiate gimbal sliding was found to decrease when both pressure and temperature decreased. Results from the low amplitude and low frequency data are currently being used in mathematically modeling the gimbal friction characteristics for Centaur autopilot performance studies.
Centaur engine gimbal friction characteristics under simulated thrust load
NASA Astrophysics Data System (ADS)
Askew, J. W.
1986-09-01
An investigation was performed to determine the friction characteristics of the engine gimbal system of the Centaur upper stage rocket. Because the Centaur requires low-gain autopilots in order to meet all stability requirements for some configurations, control performance (response to transients and limit-cycle amplitudes) depends highly on these friction characteristics. Forces required to rotate the Centaur engine gimbal system were measured under a simulated thrust load of 66,723 N (15,000 lb) and in an altitude/thermal environment. A series of tests was performed at three test conditions; ambient temperature and pressure, ambient temperature and vacuum, and cryogenic temperature and vacuum. Gimbal rotation was controlled, and tests were performed in which rotation amplitude and frequency were varied by using triangular and sinusoidal waveforms. Test data revealed an elastic characteristic of the gimbal, independent of the input signal, which was evident prior to true gimbal sliding. The torque required to initiate gimbal sliding was found to decrease when both pressure and temperature decreased. Results from the low amplitude and low frequency data are currently being used in mathematically modeling the gimbal friction characteristics for Centaur autopilot performance studies.
[Organisation of emergency medicine in France].
Braun, Françis
2015-01-01
The French emergency medicine infrastructure (structures de médecine d'urgence) ensures patients care from the very location of the distress to the appropriate hospital department: medical care in the field, by hospital clinical teams (the services mobiles d'urgence et de réanimation [SMUR]), is a key characteristic of our medical emergency response system. Response to medical distress revolves around information about not only the location and characteristics of the medical need, but also the availability of adapted hospital services. Gathering and transmitting this information is the prerogative of the service d'aide médicale d'urgence (SAMU) and its telephone dispatch center (Centre 15). For patients coming directly to the hospital, the emergency room (ER), a former underfunded and neglected hospital service, has become a key point of access. The ER is now responsible, after providing immediate first line care, to guide the patient through the care system. As such they are equipped with short term hospitalization units designed to enable up to 24h patient observation before orientation. This ensemble, networked at the level of a health territory, ensures the quality, safety, and efficacy that the population is entitled to demand.
Borofloat and Starphire Float Glasses: A Comparison
Wereszczak, Andrew A.; Anderson Jr., Charles E.
2014-10-28
Borofloat ® borosilicate float glass and Starphire ® soda-lime silicate float glass are used in transparent protective systems. They are known to respond differently in some ballistic and triaxial loading conditions, and efforts are underway to understand the causes of those differences. Toward that, a suite of test and material characterizations were completed in the present study on both glasses so to identify what differences exist among them. Compositional, physical properties, elastic properties, flaw size distributions and concentrations, tensile/flexure strength, fracture toughness, spherical indentation and hardness, transmission electron microscopy, striae, high pressure responses via diamond anvil cell testing, laser shockmore » differences, and internal porosity were examined. Differences between these two float glasses were identified for many of these properties and characteristics, and the role of three (striae, high pressures where permanent densification can initiate, and sub-micron-sized porosity) lack understanding and deserve further attention. Lastly, the contributing roles of any of those properties or characteristics to triaxial or ballistic loading responses are not definitive; however, they provide potential correlations that may lead to improved understanding and management of loading responses in glasses used in transparent protective systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, Thomas J.
2014-03-01
This report documents the efforts to perform dynamic model validation on the Eastern Interconnection (EI) by modeling governor deadband. An on-peak EI dynamic model is modified to represent governor deadband characteristics. Simulation results are compared with synchrophasor measurements collected by the Frequency Monitoring Network (FNET/GridEye). The comparison shows that by modeling governor deadband the simulated frequency response can closely align with the actual system response.
Limit cycle vibrations in turbomachinery
NASA Technical Reports Server (NTRS)
Ryan, S. G.
1991-01-01
The focus is on an examination of rotordynamic systems which are simultaneously susceptible to limit cycle instability and subharmonic response. Characteristics of each phenomenon are determined as well as their interrelationship. A normalized, single mass rotor model is examined as well as a complex model of the high pressure fuel turbopump and the Space Shuttle Main Engine. Entrainment of limit cycle instability by subharmonic response is demonstrated for both models. The nonuniqueness of the solution is also demonstrated.
Low-Loss Coupler For Microwave Laser-Diode Modulation
NASA Technical Reports Server (NTRS)
Toda, Minoru
1991-01-01
Elimination of series resistor reduces loss of radio-frequency power. Quarter-wavelength matching section connected to transmission line eliminates need for resistor near laser diode and extends frequency response of system. Concept significantly extends relatively flat frequency response of laser diode or similar component, while simplifying design of its package, increasing amplitude of output signal, and reducing dissipation of heat by eliminating resistance. Phase characteristics approximately linear and any digital information transmitted not significantly altered.
NASA Astrophysics Data System (ADS)
Futko, S. I.; Bondarenko, V. P.; Dolgii, L. N.
2012-03-01
On the basis of macrokinetic calculations, the influence of the initial temperature on the impulse responses of the processes of ignition and combustion of the solid-fuel charge of the microelectromechanical system (MEMS) microthruster burning the solid fuel glycidyl azide polymer (GAP)/RDX has been investigated. It has been established that fuel heating/cooling in a wide range of temperature values from 150 to 450 K characteristic of the conditions of a satellite in orbital flight markedly affects both the thrust and the total impulse of the MEMS microthruster. In so doing, an increase in the initial temperature leads to a marked decrease in the induction period and an increase in the critical flux of fuel ignition. The influence of the change in the initial temperature on the self-ignition temperature of GAP can be neglected. To obtain stable characteristics of the microthruster, it seems expedient to use a thermostating system.
Stereo Sound Field Controller Design Using Partial Model Matching on the Frequency Domain
NASA Astrophysics Data System (ADS)
Kumon, Makoto; Miike, Katsuhiro; Eguchi, Kazuki; Mizumoto, Ikuro; Iwai, Zenta
The objective of sound field control is to make the acoustic characteristics of a listening room close to those of the desired system. Conventional methods apply feedforward controllers, such as digital filters, to achieve this objective. However, feedback controllers are also necessary in order to attenuate noise or to compensate the uncertainty of the acoustic characteristics of the listening room. Since acoustic characteristics are well modeled on the frequency domain, it is efficient to design controllers with respect to frequency responses, but it is difficult to design a multi input multi output (MIMO) control system on a wide frequency domain. In the present study, a partial model matching method on the frequency domain was adopted because this method requires only sampled data, rather than complex mathematical models of the plant, in order to design controllers for MIMO systems. The partial model matching method was applied to design two-degree-of-freedom controllers for acoustic equalization and noise reduction. Experiments demonstrated effectiveness of the proposed method.
The Charter School Experience: Autonomy in Practice
ERIC Educational Resources Information Center
McDonald, Tonya Senne
2013-01-01
While traditional public school and charter school systems continue to undergo dramatic reforms in response to the educational crisis, charter schools are praised as possessing the distinguishing characteristic of maintaining autonomy in exchange for increased accountability (Buckley & Schneider, 2009). The expectations for charter schools are…
Human Characteristics and Measures in Systems Design
2003-01-01
Electrodermal Skin conductance Field/lab $ * activity and electrode response EKG/ECG Electrocardiogram ECG electrodes- Field/la:h $ * HR, HRV Heart rate...illumination, motion, etc.). It may also be caused by psychological pressures (e.g., anxiety , anger/hostility, the "fight or flight" syndrome, threat
Volcano ecology: Disturbance characteristics and assembly of biological communities
USDA-ARS?s Scientific Manuscript database
Volcanic eruptions are powerful expressions of Earth’s geophysical forces which have shaped and influenced ecological systems since the earliest days of life. The study of the interactions of volcanoes and ecosystems, termed volcano ecology, focuses on the ecological responses of organisms and biolo...
School Library Media Specialists: Essentially Administrators.
ERIC Educational Resources Information Center
Alewine, Martha
2003-01-01
Considers how school library media specialist administrative responsibilities can carry over to a job as state consultant for school library media services. Discusses characteristics of effective administrators; collaboration; the appreciative inquiry process for systemic change; and duties and projects of the state program that strengthen media…
Lexical Effects on Second Language Acquisition
ERIC Educational Resources Information Center
Kemp, Renee Lorraine
2017-01-01
Speech production and perception are inextricably linked systems. Speakers modify their speech in response to listener characteristics, such as age, hearing ability, and language background. Listener-oriented modifications in speech production, commonly referred to as clear speech, have also been found to affect speech perception by enhancing…
NASA Technical Reports Server (NTRS)
Huffman, S. D.; Burns, W. W., III; Wilson, T. G.; Owen, H. A., Jr.
1976-01-01
Implementations of a state-plane-trajectory control law for energy storage dc-to-dc converters are presented. Performance characteristics of experimental voltage step-up converter systems employing these implementations are reported and compared to theoretical predictions.
NASA Astrophysics Data System (ADS)
Wang, Bo; Zheng, Jun; Si, Shuaishuai; Qian, Nan; Li, Haitao; Li, Jipeng; Deng, Zigang
2016-07-01
Off-centre operation of high-temperature superconducting (HTS) maglev systems caused by inevitable conditions such as the misregistration of vehicle, crosswind and curve negotiation, may change the distribution of the trapped flux in the HTS bulks and the magnetic interaction between HTS bulks and the PMG. It impacts on the performance of HTS maglev, and more seriously makes the maglev vehicle overturned. Therefore, understanding the performance of the HTS maglev in off-center operation is very important. In this paper, the dynamic response characteristics of a cryostat with twenty-four onboard YBaCuO superconductor bulks were experimentally investigated at different eccentric distances under loads before the initial FC process. Parameters such as vibration accelerations, displacement, natural frequency and dynamic stiffness were acquired and analyzed via the B&K vibration analyzer and laser displacement sensors. Results suggest that the natural frequency and dynamic stiffness of the maglev vehicle would be obviously reduced with the eccentric distance, posing negative effects on the stability of HTS maglev.
Challenges to the successful implementation of 3-D sound
NASA Astrophysics Data System (ADS)
Begault, Durand R.
1991-11-01
The major challenges for the successful implementation of 3-D audio systems involve minimizing reversals, intracranially heard sound, and localization error for listeners. Designers of 3-D audio systems are faced with additional challenges in data reduction and low-frequency response characteristics. The relationship of the head-related transfer function (HRTF) to these challenges is shown, along with some preliminary psychoacoustic results gathered at NASA-Ames.
Flores-Rentería, Dulce; Curiel Yuste, Jorge; Rincón, Ana; Brearley, Francis Q; García-Gil, Juan Carlos; Valladares, Fernando
2015-05-01
Ecological transformations derived from habitat fragmentation have led to increased threats to above-ground biodiversity. However, the impacts of forest fragmentation on soils and their microbial communities are not well understood. We examined the effects of contrasting fragment sizes on the structure and functioning of soil microbial communities from holm oak forest patches in two bioclimatically different regions of Spain. We used a microcosm approach to simulate the annual summer drought cycle and first autumn rainfall (rewetting), evaluating the functional response of a plant-soil-microbial system. Forest fragment size had a significant effect on physicochemical characteristics and microbial functioning of soils, although the diversity and structure of microbial communities were not affected. The response of our plant-soil-microbial systems to drought was strongly modulated by the bioclimatic conditions and the fragment size from where the soils were obtained. Decreasing fragment size modulated the effects of drought by improving local environmental conditions with higher water and nutrient availability. However, this modulation was stronger for plant-soil-microbial systems built with soils from the northern region (colder and wetter) than for those built with soils from the southern region (warmer and drier) suggesting that the responsiveness of the soil-plant-microbial system to habitat fragmentation was strongly dependent on both the physicochemical characteristics of soils and the historical adaptation of soil microbial communities to specific bioclimatic conditions. This interaction challenges our understanding of future global change scenarios in Mediterranean ecosystems involving drier conditions and increased frequency of forest fragmentation.
Manzo-Silberman, Stéphane; Assez, Nathalie; Vivien, Benoît; Tazarourte, Karim; Mokni, Tarak; Bounes, Vincent; Greffet, Agnès; Bataille, Vincent; Mulak, Geneviève; Goldstein, Patrick; Ducassé, Jean Louis; Spaulding, Christian; Charpentier, Sandrine
2015-03-01
The early recognition of acute coronary syndromes is a priority in health care systems, to reduce revascularization delays. In France, patients are encouraged to call emergency numbers (15, 112), which are routed to a Medical Dispatch Centre where physicians conduct an interview and decide on the appropriate response. However, the effectiveness of this system has not yet been assessed. To describe and analyse the response of emergency physicians receiving calls for chest pain in the French Emergency Medical System. From 16 November to 13 December 2009, calls to the Medical Dispatch Centre for non-traumatic chest pain were included prospectively in a multicentre observational study. Clinical characteristics and triage decisions were collected. A total of 1647 patients were included in the study. An interview was conducted with the patient in only 30.5% of cases, and with relatives, bystanders or physicians in the other cases. A Mobile Intensive Care Unit was dispatched to 854 patients (51.9%) presenting with typical angina chest pains and a high risk of cardiovascular disease. Paramedics were sent to 516 patients (31.3%) and a general practitioner was sent to 169 patients (10.3%). Patients were given medical advice only by telephone in 108 cases (6.6%). Emergency physicians in the Medical Dispatch Centre sent an effecter to the majority of patients who called the Emergency Medical System for chest pain. The response level was based on the characteristics of the chest pain and the patient's risk profile. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Zhengwei; Wang, Yueshe; Hao, Yun; Wang, Qizhi
2013-07-01
The solar cavity receiver is an important light-energy to thermal-energy convector in the tower solar thermal power plant system. The heat flux in the inner surface of the cavity will show the characteristics of non-continuous step change especially in non-normal and transient weather conditions, which may result in a continuous dynamic variation of the characteristic parameters. Therefore, the research of dynamic characteristics of the receiver plays a very important role in the operation and the control safely in solar cavity receiver system. In this paper, based on the non-continuous step change of radiation flux, a non-linear dynamic model is put forward to obtain the effects of the non-continuous step change radiation flux and step change feed water flow on the receiver performance by sequential modular approach. The subject investigated in our study is a 1MW solar power station constructed in Yanqing County, Beijing. This study has obtained the dynamic responses of the characteristic parameters in the cavity receiver, such as drum pressure, drum water level, main steam flow and main steam enthalpy under step change radiation flux. And the influence law of step-change feed water flow to the dynamic characteristics in the receiver also has been analyzed. The results have a reference value for the safe operation and the control in solar cavity receiver system.
The feasibility study for electronic imaging system with the photoheliograph
NASA Technical Reports Server (NTRS)
Svensson, E. L.; Schaff, F. L.
1972-01-01
The development of the electronic subsystems used for the photoheliograph and its application for a high resolution study of the sun are discussed. Basic considerations are as follows: (1) determination of characteristics of solar activity within the spectral response of the photoheliograph, (2) determination of the space vehicles capable of carrying the photoheliograph, (3) analysis of the capability of the ground based data gathering network to assimilate the generated information, and (4) the characteristics of the photoheliograph and the associated spectral filters.
Dynamic characteristics of a vibrating beam with periodic variation in bending stiffness
NASA Technical Reports Server (NTRS)
Townsend, John S.
1987-01-01
A detailed dynamic analysis is performed of a vibrating beam with bending stiffness periodic in the spatial coordinate. Using a perturbation expansion technique the free vibration solution is obtained in a closed-form, and the effects of system parameters on beam response are explored. It is found that periodic stiffness acts to modulate the modal displacements from the characteristic shape of a simple sine wave. The results are verified by a finite element solution and through experimental testing.
Probe systems for measuring static pressure and turbulence intensity in fluid streams
NASA Technical Reports Server (NTRS)
Rossow, Vernon J. (Inventor)
1993-01-01
A method and an apparatus for measuring time-averaged static or ambient pressure and turbulence intensity in a turbulent stream are discussed. The procedure involves placing a plurality of probes in the stream. Each probe responds in a different manner to characteristics of the fluid stream, preferably as a result of having varying cross sections. The responses from the probes are used to eliminate unwanted components in the measured quantities for accurate determination of selected characteristics.
Environmentally Adaptive UXO Detection and Classification Systems
2016-04-01
probability of false alarm ( Pfa ), as well as Receiver Op- erating Characteristic (ROC) curve and confusion matrix characteristics. The results of these...techniques at a false alarm probability of Pfa = 1× 10−3. X̃ = g(X). In this case, the problem remains invariant to the group of transformations G = { g : g(X...and observed target responses as well as the probability of detection versus SNR for both detection techniques at Pfa = 1× 10−3. with N = 128 and M = 50
Sura, Anjali; Failing, Christopher; Sturza, Julie; Stannard, Jasmine; Riebschleger, Meredith
2018-01-05
Systemic juvenile idiopathic arthritis (sJIA) is an auto-inflammatory disease characterized by fever, arthritis, and ≥1 of rash, generalized lymphadenopathy, hepato/splenomegaly, and serositis. Non-steroidal anti-inflammatory drugs (NSAIDs) are among the initial treatments of sJIA, but there is currently no evidence indicating which children should undergo a trial of NSAID monotherapy and which should not. Our objective is to identify presentation characteristics which are associated with response and lack of response to a trial of NSAID monotherapy. This is a retrospective single-center cohort study of children diagnosed with sJIA from 2000 to 2014. Patient demographics and disease characteristics were investigated to identify predictors of response to NSAID monotherapy. Eighty-seven children were newly diagnosed with sJIA 2000-2014. Thirteen of the 51 children who received NSAID monotherapy achieved clinically inactive disease (CID) without other medications. Age at presentation (≤8 years old), initial joint count (≤5), and C-reactive protein (CRP) (≤13 mg/dL) at diagnosis were associated with achievement of CID on NSAIDs alone. Physicians were less likely to trial NSAID monotherapy if the patient had either serositis or macrophage activation syndrome (MAS) at diagnosis. Ultimate achievement of CID and time to CID were not significantly affected by whether the patient received a trial of NSAID monotherapy. While a subset of children with sJIA can achieve CID with NSAID monotherapy, we recommend against a trial in patients who are >8 years old, with >5 joints involved, or with CRP > 13 mg/dL. Patients who undergo a trial of NSAID monotherapy should follow up within 2-4 weeks to evaluate for possible need for drug escalation. Clinical trials are necessary to confirm these findings.
Fukuzawa, Toshihiko
2010-10-01
Unusual light-reflecting pigment cells, "white pigment cells", specifically appear in the periodic albino mutant (a(p) /a(p)) of Xenopus laevis and localize in the same place where melanophores normally differentiate in the wild-type. The mechanism responsible for the development of unusual pigment cells is unclear. In this study, white pigment cells in the periodic albino were compared with melanophores in the wild-type, using a cell culture system and a tail-regenerating system. Observations of both intact and cultured cells demonstrate that white pigment cells are unique in (1) showing characteristics of melanophore precursors at various stages of development, (2) accumulating reflecting platelets characteristic of iridophores, and (3) exhibiting pigment dispersion in response to α-melanocyte stimulating hormone (α-MSH) in the same way that melanophores do. When a tadpole tail is amputated, a functionally competent new tail is regenerated. White pigment cells appear in the mutant regenerating tail, whereas melanophores differentiate in the wild-type regenerating tail. White pigment cells in the mutant regenerating tail are essentially similar to melanophores in the wild-type regenerating tail with respect to their localization, number, and response to α-MSH. In addition to white pigment cells, iridophores which are never present in the intact tadpole tail appear specifically in the somites near the amputation level in the mutant regenerating tail. Iridophores are distinct from white pigment cells in size, shape, blue light-induced fluorescence, and response to α-MSH. These findings strongly suggest that white pigment cells in the mutant arise from melanophore precursors and accumulate reflecting platelets characteristic of iridophores.
2010-01-01
Unusual light-reflecting pigment cells, “white pigment cells”, specifically appear in the periodic albino mutant (ap/ap) of Xenopus laevis and localize in the same place where melanophores normally differentiate in the wild-type. The mechanism responsible for the development of unusual pigment cells is unclear. In this study, white pigment cells in the periodic albino were compared with melanophores in the wild-type, using a cell culture system and a tail-regenerating system. Observations of both intact and cultured cells demonstrate that white pigment cells are unique in (1) showing characteristics of melanophore precursors at various stages of development, (2) accumulating reflecting platelets characteristic of iridophores, and (3) exhibiting pigment dispersion in response to α-melanocyte stimulating hormone (α-MSH) in the same way that melanophores do. When a tadpole tail is amputated, a functionally competent new tail is regenerated. White pigment cells appear in the mutant regenerating tail, whereas melanophores differentiate in the wild-type regenerating tail. White pigment cells in the mutant regenerating tail are essentially similar to melanophores in the wild-type regenerating tail with respect to their localization, number, and response to α-MSH. In addition to white pigment cells, iridophores which are never present in the intact tadpole tail appear specifically in the somites near the amputation level in the mutant regenerating tail. Iridophores are distinct from white pigment cells in size, shape, blue light-induced fluorescence, and response to α-MSH. These findings strongly suggest that white pigment cells in the mutant arise from melanophore precursors and accumulate reflecting platelets characteristic of iridophores. PMID:20859642
Investigation of dynamic characteristics of a rotor system with surface coatings
NASA Astrophysics Data System (ADS)
Yang, Yang; Cao, Dengqing; Wang, Deyou
2017-02-01
A Jeffcott rotor system with surface coatings capable of describing the mechanical vibration resulting from unbalance and rub-impact is formulated in this article. A contact force model proposed recently to describe the impact force between the disc and casing with coatings is employed to do the dynamic analysis for the rotor system with rubbing fault. Due to the variation of penetration, the contact force model is correspondingly modified. Meanwhile, the Coulomb friction model is applied to simulate the friction characteristics. Then, the case study of rub-impact with surface coatings is simulated by the Runge-Kutta method, in which a linear interpolation method is adopted to predict the rubbing instant. Moreover, the dynamic characteristics of the rotor system with surface coatings are analyzed in terms of bifurcation plot, waveform, whirl orbit, Poincaré map and spectrum plot. And the effects of the hardness of surface coatings on the response are investigated as well. Finally, compared with the classical models, the modified contact force model is shown to be more suitable to solve the rub-impact of aero-engine with surface coatings.
Temporal Code-Driven Stimulation: Definition and Application to Electric Fish Signaling
Lareo, Angel; Forlim, Caroline G.; Pinto, Reynaldo D.; Varona, Pablo; Rodriguez, Francisco de Borja
2016-01-01
Closed-loop activity-dependent stimulation is a powerful methodology to assess information processing in biological systems. In this context, the development of novel protocols, their implementation in bioinformatics toolboxes and their application to different description levels open up a wide range of possibilities in the study of biological systems. We developed a methodology for studying biological signals representing them as temporal sequences of binary events. A specific sequence of these events (code) is chosen to deliver a predefined stimulation in a closed-loop manner. The response to this code-driven stimulation can be used to characterize the system. This methodology was implemented in a real time toolbox and tested in the context of electric fish signaling. We show that while there are codes that evoke a response that cannot be distinguished from a control recording without stimulation, other codes evoke a characteristic distinct response. We also compare the code-driven response to open-loop stimulation. The discussed experiments validate the proposed methodology and the software toolbox. PMID:27766078
Temporal Code-Driven Stimulation: Definition and Application to Electric Fish Signaling.
Lareo, Angel; Forlim, Caroline G; Pinto, Reynaldo D; Varona, Pablo; Rodriguez, Francisco de Borja
2016-01-01
Closed-loop activity-dependent stimulation is a powerful methodology to assess information processing in biological systems. In this context, the development of novel protocols, their implementation in bioinformatics toolboxes and their application to different description levels open up a wide range of possibilities in the study of biological systems. We developed a methodology for studying biological signals representing them as temporal sequences of binary events. A specific sequence of these events (code) is chosen to deliver a predefined stimulation in a closed-loop manner. The response to this code-driven stimulation can be used to characterize the system. This methodology was implemented in a real time toolbox and tested in the context of electric fish signaling. We show that while there are codes that evoke a response that cannot be distinguished from a control recording without stimulation, other codes evoke a characteristic distinct response. We also compare the code-driven response to open-loop stimulation. The discussed experiments validate the proposed methodology and the software toolbox.
Chen, R; Hahn, C E W; Farmery, A D
2012-08-15
The development of a methodology for testing the time response, linearity and performance characteristics of ultra fast fibre optic oxygen sensors in the liquid phase is presented. Two standard medical paediatric oxygenators are arranged to provide two independent extracorporeal circuits. Flow from either circuit can be diverted over the sensor under test by means of a system of rapid cross-over solenoid valves exposing the sensor to an abrupt change in oxygen partial pressure, P O2. The system is also capable of testing the oxygen sensor responses to changes in temperature, carbon dioxide partial pressure P CO2 and pH in situ. Results are presented for a miniature fibre optic oxygen sensor constructed in-house with a response time ≈ 50 ms and a commercial fibre optic sensor (Ocean Optics Foxy), when tested in flowing saline and stored blood. Copyright © 2012 Elsevier B.V. All rights reserved.
Röttger, Julia; Blümel, Miriam; Engel, Susanne; Grenz-Farenholtz, Brigitte; Fuchs, Sabine; Linder, Roland; Verheyen, Frank; Busse, Reinhard
2015-01-01
Background: The responsiveness of a health system is considered to be an intrinsic goal of health systems and an essential aspect in performance assessment. Numerous studies have analysed health system responsiveness and related concepts, especially across different countries and health systems. However, fewer studies have applied the concept for the evaluation of specific healthcare delivery structures and thoroughly analysed its determinants within one country. The aims of this study are to assess the level of perceived health system responsiveness to patients with chronic diseases in ambulatory care in Germany and to analyse the determinants of health system responsiveness as well as its distribution across different population groups. Methods and Analysis: The target population consists of chronically ill people in Germany, with a focus on patients suffering from type 2 diabetes and/or from coronary heart disease (CHD). Data comes from two different sources: (i) cross-sectional survey data from a postal survey and (ii) claims data from a German sickness fund. Data from both sources will be linked at an individual-level. The postal survey has the purpose of measuring perceived health system responsiveness, health related quality of life, experiences with disease management programmes (DMPs) and (subjective) socioeconomic background. The claims data consists of information on (co)morbidities, service utilization, enrolment within a DMP and sociodemographic characteristics, including the type of residential area. Discussion: RAC is one of the first projects linking survey data on health system responsiveness at individual level with claims data. With this unique database, it will be possible to comprehensively analyse determinants of health system responsiveness and its relation to other aspects of health system performance assessment. The results of the project will allow German health system decision-makers to assess the performance of nonclinical aspects of healthcare delivery and their determinants in two important areas of health policy: in ambulatory and chronic disease care. PMID:26188807
Röttger, Julia; Blümel, Miriam; Engel, Susanne; Grenz-Farenholtz, Brigitte; Fuchs, Sabine; Linder, Roland; Verheyen, Frank; Busse, Reinhard
2015-05-20
The responsiveness of a health system is considered to be an intrinsic goal of health systems and an essential aspect in performance assessment. Numerous studies have analysed health system responsiveness and related concepts, especially across different countries and health systems. However, fewer studies have applied the concept for the evaluation of specific healthcare delivery structures and thoroughly analysed its determinants within one country. The aims of this study are to assess the level of perceived health system responsiveness to patients with chronic diseases in ambulatory care in Germany and to analyse the determinants of health system responsiveness as well as its distribution across different population groups. The target population consists of chronically ill people in Germany, with a focus on patients suffering from type 2 diabetes and/or from coronary heart disease (CHD). Data comes from two different sources: (i) cross-sectional survey data from a postal survey and (ii) claims data from a German sickness fund. Data from both sources will be linked at an individual-level. The postal survey has the purpose of measuring perceived health system responsiveness, health related quality of life, experiences with disease management programmes (DMPs) and (subjective) socioeconomic background. The claims data consists of information on (co)morbidities, service utilization, enrolment within a DMP and sociodemographic characteristics, including the type of residential area. RAC is one of the first projects linking survey data on health system responsiveness at individual level with claims data. With this unique database, it will be possible to comprehensively analyse determinants of health system responsiveness and its relation to other aspects of health system performance assessment. The results of the project will allow German health system decision-makers to assess the performance of nonclinical aspects of healthcare delivery and their determinants in two important areas of health policy: in ambulatory and chronic disease care. © 2015 by Kerman University of Medical Sciences.
Sources of uncertanity as a basis to fill the information gap in a response to flood
NASA Astrophysics Data System (ADS)
Kekez, Toni; Knezic, Snjezana
2016-04-01
Taking into account uncertainties in flood risk management remains a challenge due to difficulties in choosing adequate structural and/or non-structural risk management options. Despite stated measures wrong decisions are often being made when flood occurs. Parameter and structural uncertainties which include model and observation errors as well as lack of knowledge about system characteristics are the main considerations. Real time flood risk assessment methods are predominantly based on measured water level values and vulnerability as well as other relevant characteristics of flood affected area. The goal of this research is to identify sources of uncertainties and to minimize information gap between the point where the water level is measured and the affected area, taking into consideration main uncertainties that can affect risk value at the observed point or section of the river. Sources of uncertainties are identified and determined using system analysis approach and relevant uncertainties are included in the risk assessment model. With such methodological approach it is possible to increase response time with more effective risk assessment which includes uncertainty propagation model. Response phase could be better planned with adequate early warning systems resulting in more time and less costs to help affected areas and save human lives. Reliable and precise information is necessary to raise emergency operability level in order to enhance safety of citizens and reducing possible damage. The results of the EPISECC (EU funded FP7) project are used to validate potential benefits of this research in order to improve flood risk management and response methods. EPISECC aims at developing a concept of a common European Information Space for disaster response which, among other disasters, considers the floods.
[Establishment of response system to emergency parasitic disease affairs in China].
Chun-Li, C; Le-Ping, S; Qing-Biao, H; Bian-Li, X U; Bo, Z; Jian-Bing, L; Dan-Dan, L; Shi-Zhu, L I; Oning, X; Xiao-Nong, Z
2017-08-14
China's prevention and control of parasitic diseases has made remarkable achievements. However, the prevalence and transmission of parasitic diseases is impacted by the complicated natural and social factors of environment, natural disasters, population movements, and so on. Therefore, there are still the risks of the outbreak of emergency parasitic diseases affairs, which may affect the control effectiveness of parasitic diseases and endanger the social stability seriously. In this article, we aim at the analysis of typical cases of emergency parasitic disease affairs and their impacts on public health security in China in recently years, and we also elaborate the disposal characteristics of emergency parasitic disease affairs, and propose the establishment of response system to emergency parasitic disease affairs in China, including the organizational structure and response flow path, and in addition, point out that, in the future, we should strengthen the system construction and measures of the response system to emergency parasitic disease affairs, so as to control the risk and harm of parasitic disease spread as much as possible and to realize the early intervention and proper disposal of emergency parasitic disease affairs.
Some Sensitivity Studies of Chemical Transport Simulated in Models of the Soil-Plant-Litter System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Begovich, C.L.
2002-10-28
Fifteen parameters in a set of five coupled models describing carbon, water, and chemical dynamics in the soil-plant-litter system were varied in a sensitivity analysis of model response. Results are presented for chemical distribution in the components of soil, plants, and litter along with selected responses of biomass, internal chemical transport (xylem and phloem pathways), and chemical uptake. Response and sensitivity coefficients are presented for up to 102 model outputs in an appendix. Two soil properties (chemical distribution coefficient and chemical solubility) and three plant properties (leaf chemical permeability, cuticle thickness, and root chemical conductivity) had the greatest influence onmore » chemical transport in the soil-plant-litter system under the conditions examined. Pollutant gas uptake (SO{sub 2}) increased with change in plant properties that increased plant growth. Heavy metal dynamics in litter responded to plant properties (phloem resistance, respiration characteristics) which induced changes in the chemical cycling to the litter system. Some of the SO{sub 2} and heavy metal responses were not expected but became apparent through the modeling analysis.« less
Comparison and validation of acoustic response models for wind noise reduction pipe arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marty, Julien; Denis, Stéphane; Gabrielson, Thomas
The detection capability of the infrasound component of the International Monitoring System (IMS) is tightly linked to the performance of its wind noise reduction systems. The wind noise reduction solution implemented at all IMS infrasound measurement systems consists of a spatial distribution of air inlets connected to the infrasound sensor through a network of pipes. This system, usually referred to as “pipe array,” has proven its efficiency in operational conditions. The objective of this paper is to present the results of the comparison and validation of three distinct acoustic response models for pipe arrays. The characteristics of the models andmore » the results obtained for a defined set of pipe array configurations are described. A field experiment using a newly developed infrasound generator, dedicated to the validation of these models, is then presented. The comparison between the modeled and empirical acoustic responses shows that two of the three models can be confidently used to estimate pipe array acoustic responses. Lastly, this study paves the way to the deconvolution of IMS infrasound data from pipe array responses and to the optimization of pipe array design to IMS applications.« less
Comparison and validation of acoustic response models for wind noise reduction pipe arrays
Marty, Julien; Denis, Stéphane; Gabrielson, Thomas; ...
2017-02-13
The detection capability of the infrasound component of the International Monitoring System (IMS) is tightly linked to the performance of its wind noise reduction systems. The wind noise reduction solution implemented at all IMS infrasound measurement systems consists of a spatial distribution of air inlets connected to the infrasound sensor through a network of pipes. This system, usually referred to as “pipe array,” has proven its efficiency in operational conditions. The objective of this paper is to present the results of the comparison and validation of three distinct acoustic response models for pipe arrays. The characteristics of the models andmore » the results obtained for a defined set of pipe array configurations are described. A field experiment using a newly developed infrasound generator, dedicated to the validation of these models, is then presented. The comparison between the modeled and empirical acoustic responses shows that two of the three models can be confidently used to estimate pipe array acoustic responses. Lastly, this study paves the way to the deconvolution of IMS infrasound data from pipe array responses and to the optimization of pipe array design to IMS applications.« less
Tellado, Matias; Olaiz, Nahuel; Michinski, Sebastian; Marshall, Guillermo
2016-01-01
Background Electrochemotherapy (ECT), a medical treatment widely used in human patients for tumor treatment, increases bleomycin toxicity by 1000 fold in the treated area with an objective response rate of around 80%. Despite its high response rate, there are still 20% of cases in which the patients are not responding. This could be ascribed to the fact that bleomycin, when administered systemically, is not reaching the whole tumor mass properly because of the characteristics of tumor vascularization, in which case local administration could cover areas that are unreachable by systemic administration. Patients and methods We propose combined bleomycin administration, both systemic and local, using companion animals as models. We selected 22 canine patients which failed to achieve a complete response after an ECT treatment session. Eleven underwent another standard ECT session (control group), while 11 received a combined local and systemic administration of bleomycin in the second treatment session. Results According to the WHO criteria, the response rates in the combined administration group were: complete response (CR) 54% (6), partial response (PR) 36% (4), stable disease (SD) 10% (1). In the control group, these were: CR 0% (0), PR 19% (2), SD 63% (7), progressive disease (PD) 18% (2). In the combined group 91% objective responses (CR+PR) were obtained. In the control group 19% objective responses were obtained. The difference in the response rate between the treatment groups was significant (p < 0.01). Conclusions Combined local and systemic bleomycin administration was effective in previously to ECT non responding canine patients. The results indicate that this approach could be useful and effective in specific population of patients and reduce the number of treatment sessions needed to obtain an objective response. PMID:27069450
Operational stability prediction in milling based on impact tests
NASA Astrophysics Data System (ADS)
Kiss, Adam K.; Hajdu, David; Bachrathy, Daniel; Stepan, Gabor
2018-03-01
Chatter detection is usually based on the analysis of measured signals captured during cutting processes. These techniques, however, often give ambiguous results close to the stability boundaries, which is a major limitation in industrial applications. In this paper, an experimental chatter detection method is proposed based on the system's response for perturbations during the machining process, and no system parameter identification is required. The proposed method identifies the dominant characteristic multiplier of the periodic dynamical system that models the milling process. The variation of the modulus of the largest characteristic multiplier can also be monitored, the stability boundary can precisely be extrapolated, while the manufacturing parameters are still kept in the chatter-free region. The method is derived in details, and also verified experimentally in laboratory environment.
[The inducement of demand in dental medicine in Belgium].
Decaluwe, Frida; Renckens, An
2006-01-01
Many factors are important for the existence of supplier-induced demand (SID). Not just the individual practitioner is responsible; his or her behaviour might be influenced by the specific organisation of the market for health care/dental care. The article investigates the characteristics of the Belgian market for dental care and analyses the way in which they might influence the occurrence of SID and/or overconsumption. Attention goes to the payment system of dentists in Belgium, the health insurance system, dentist density and the regulation of the sector. Also mentioned are the recall system and other (governmental) initiatives that may influence patients' and practitioners' behaviour. Some factors--not yet systematically investigated--may be relevant as well: personal characteristics of the dentist (gender in particular) and the way companies direct practitioners' and patients' behaviour.
Thermoresponsive scattering coating for smart white LEDs.
Bauer, Jurica; Verbunt, Paul P C; Lin, Wan-Yu; Han, Yang; Van, My-Phung; Cornelissen, Hugo J; Yu, Joan J H; Bastiaansen, Cees W M; Broer, Dirk J
2014-12-15
White light emitting diode (LED) systems, capable of lowering the color temperature of emitted light on dimming, have been reported in the literature. These systems all use multiple color LEDs and complex control circuitry. Here we present a novel responsive lighting system based on a single white light emitting LED and a thermoresponsive scattering coating. The coated LED automatically emits light of lower correlated color temperature (CCT) when the power is reduced. We also present results on the use of multiple phosphors in the white light LED allowing for the emission of warm white light in the range between 2900 K and 4150 K, and with a chromaticity complying with the ANSI standards (C78.377). This responsive warm white light LED-system with close-to-ideal emission characteristics is highly interesting for the lighting industry.
Fujibuchi, Toshioh; Murazaki, Hiroo; Kuramoto, Taku; Umedzu, Yoshiyuki; Ishigaki, Yung
2015-08-01
Because of the more advanced and more complex procedures in interventional radiology, longer treatment times have become necessary. Therefore, it is important to determine the exposure doses received by operators and patients. The aim of our study was to evaluate an experimental production wireless dose monitoring system for pulse radiation in diagnostic X-ray. The energy, dose rate, and pulse fluoroscopy dependence were evaluated as the basic characteristics of this system for diagnostic X-ray using a fully digital fluoroscopy system. The error of 1 cm dose equivalent rate was less than 15% from 35.1 keV to 43.2 keV with energy correction using metal filter. It was possible to accurately measure the dose rate dependence of this system, which was highly linear until 100 μSv/h. This system showed a constant response to the pulse fluoroscopy. This system will become useful wireless dosimeter for the individual exposure management by improving the high dose rate and the energy characteristics.
Commeau, R.F.; Reynolds, Leslie A.; Poag, C.W.
1985-01-01
The composition of agglutinated foraminiferal tests vary remarkably in response to local substrate characteristics, physiochemical properties of the water column and species- dependant selectivity of test components. We have employed a technique that combines a scanning electron microscope with an energy dispersive X-ray spectrometer system to identify major and minor elemental constituents of agglutinated foraminiferal walls. As a sample is bombarded with a beam of high energy electrons, X-rays are generated that are characteristic of the elements present. As a result, X- ray density maps can be produced for each of several elements present in the tests of agglutinated foraminifers.
DIRBE External Calibrator (DEC)
NASA Technical Reports Server (NTRS)
Wyatt, Clair L.; Thurgood, V. Alan; Allred, Glenn D.
1987-01-01
Under NASA Contract No. NAS5-28185, the Center for Space Engineering at Utah State University has produced a calibration instrument for the Diffuse Infrared Background Experiment (DIRBE). DIRBE is one of the instruments aboard the Cosmic Background Experiment Observatory (COBE). The calibration instrument is referred to as the DEC (Dirbe External Calibrator). DEC produces a steerable, infrared beam of controlled spectral content and intensity and with selectable point source or diffuse source characteristics, that can be directed into the DIRBE to map fields and determine response characteristics. This report discusses the design of the DEC instrument, its operation and characteristics, and provides an analysis of the systems capabilities and performance.
NASA Astrophysics Data System (ADS)
Rabin, B.; Joseph, J.; Shukitt-Hale, B.
Exposure to heavy particles can affect the functioning of the central nervous system (CNS), particularly the dopaminergic system. In turn, the radiation- induced disruption of dopaminergic function disrupts a variety of behaviors that are dependent upon the integrity of the dopaminergic system, including motor behavior (upper body strength), amphetamine (dopamine)-mediated taste aversion learning, spatial learning and memory (Morris water maze), and operant conditioning (fixed-ratio bar pressing). Although the relationships between heavy particle irradiation and the effects of exposure depend, to some extent, upon the specific behavioral or neurochemical endpoint under consideration, a review of the available research leads to the hypothesis that the endpoints mediated by the CNS have certain characteristics in common. These include: (1) a threshold, below which there is no apparent effect; (2) the lack of a dose-response relationship, or an extremely steep dose-response curve, depending on the particular endpoint; and (3) the absence of recovery of function, such that the heavy particle-induced behavioral and neural changes are present when tested up to one year following exposure. The current presentation will review the data relevant to the degree to which these characteristics are in fact common to neurochemical and behavioral endpoints that are mediated by the effects of exposure to heavy particles on CNS activity. Supported by N.A.S.A. Grant NAG9-1190.
Molenaar, Dylan; de Boeck, Paul
2018-06-01
In item response theory modeling of responses and response times, it is commonly assumed that the item responses have the same characteristics across the response times. However, heterogeneity might arise in the data if subjects resort to different response processes when solving the test items. These differences may be within-subject effects, that is, a subject might use a certain process on some of the items and a different process with different item characteristics on the other items. If the probability of using one process over the other process depends on the subject's response time, within-subject heterogeneity of the item characteristics across the response times arises. In this paper, the method of response mixture modeling is presented to account for such heterogeneity. Contrary to traditional mixture modeling where the full response vectors are classified, response mixture modeling involves classification of the individual elements in the response vector. In a simulation study, the response mixture model is shown to be viable in terms of parameter recovery. In addition, the response mixture model is applied to a real dataset to illustrate its use in investigating within-subject heterogeneity in the item characteristics across response times.
Optimum design of bridges with superelastic-friction base isolators against near-field earthquakes
NASA Astrophysics Data System (ADS)
Ozbulut, Osman E.; Hurlebaus, Stefan
2010-04-01
The seismic response of a multi-span continuous bridge isolated with novel superelastic-friction base isolator (S-FBI) is investigated under near-field earthquakes. The isolation system consists of a flat steel-Teflon sliding bearing and a superelastic NiTi shape memory alloy (SMA) device. Sliding bearings limit the maximum seismic forces transmitted to the superstructure to a certain value that is a function of friction coefficient of sliding interface. Superelastic SMA device provides restoring capability to the isolation system together with additional damping characteristics. The key design parameters of an S-FBI system are the natural period of the isolated, yielding displacement of SMA device, and the friction coefficient of the sliding bearings. The goal of this study is to obtain optimal values for each design parameter by performing sensitivity analyses of the isolated bridge. First, a three-span continuous bridge is modeled as a two-degrees-of-freedom with S-FBI system. A neuro-fuzzy model is used to capture rate-dependent nonlinear behavior of SMA device. A time-dependent method which employs wavelets to adjust accelerograms to match a target response spectrum with minimum changes on the other characteristics of ground motions is used to generate ground motions used in the simulations. Then, a set of nonlinear time history analyses of the isolated bridge is performed. The variation of the peak response quantities of the isolated bridge is shown as a function of design parameters. Also, the influence of temperature variations on the effectiveness of S-FBI system is evaluated. The results show that the optimum design of the isolated bridge with S-FBI system can be achieved by a judicious specification of design parameters.
Combined expert system/neural networks method for process fault diagnosis
Reifman, Jaques; Wei, Thomas Y. C.
1995-01-01
A two-level hierarchical approach for process fault diagnosis is an operating system employs a function-oriented approach at a first level and a component characteristic-oriented approach at a second level, where the decision-making procedure is structured in order of decreasing intelligence with increasing precision. At the first level, the diagnostic method is general and has knowledge of the overall process including a wide variety of plant transients and the functional behavior of the process components. An expert system classifies malfunctions by function to narrow the diagnostic focus to a particular set of possible faulty components that could be responsible for the detected functional misbehavior of the operating system. At the second level, the diagnostic method limits its scope to component malfunctions, using more detailed knowledge of component characteristics. Trained artificial neural networks are used to further narrow the diagnosis and to uniquely identify the faulty component by classifying the abnormal condition data as a failure of one of the hypothesized components through component characteristics. Once an anomaly is detected, the hierarchical structure is used to successively narrow the diagnostic focus from a function misbehavior, i.e., a function oriented approach, until the fault can be determined, i.e., a component characteristic-oriented approach.
Combined expert system/neural networks method for process fault diagnosis
Reifman, J.; Wei, T.Y.C.
1995-08-15
A two-level hierarchical approach for process fault diagnosis of an operating system employs a function-oriented approach at a first level and a component characteristic-oriented approach at a second level, where the decision-making procedure is structured in order of decreasing intelligence with increasing precision. At the first level, the diagnostic method is general and has knowledge of the overall process including a wide variety of plant transients and the functional behavior of the process components. An expert system classifies malfunctions by function to narrow the diagnostic focus to a particular set of possible faulty components that could be responsible for the detected functional misbehavior of the operating system. At the second level, the diagnostic method limits its scope to component malfunctions, using more detailed knowledge of component characteristics. Trained artificial neural networks are used to further narrow the diagnosis and to uniquely identify the faulty component by classifying the abnormal condition data as a failure of one of the hypothesized components through component characteristics. Once an anomaly is detected, the hierarchical structure is used to successively narrow the diagnostic focus from a function misbehavior, i.e., a function oriented approach, until the fault can be determined, i.e., a component characteristic-oriented approach. 9 figs.
NASA Technical Reports Server (NTRS)
Rogers, Melissa J. B.; Alexander, J. I. D.; Schoess, Jeff
1993-01-01
The Honeywell In-Space Accelerometer (HISA) system collected data in the mid-deck area of the Shuttle Columbia during the flight of STS-32, January 1990. The resulting data were to be used to investigate the response of crystal microstructure to different types of residual acceleration. The HISA is designed to detect and record transient and oscillatory accelerations. The sampling and electronics package stored averaged accelerations over two sampling periods; two sampling rates were available: 1 Hz and 50 Hz. Analysis of the HISA data followed the CMMR Acceleration Data Processing Guide, considering in-house computer modelling of a float-zone indium crystal growth experiment. Characteristic examples of HISA data showing the response to the primary reaction control system, Orbiter Maneuvering System operations, and crew treadmill activity are presented. Various orbiter structural modes are excited by these and other activities.
ERIC Educational Resources Information Center
Roth, Charles E.
1976-01-01
This paper (1) details characteristics of human communications systems, (2) assesses the fundamental concerns of environmental education, (3) examines how different cultures evolve different perceptions and attitudes towards the environment, and (4) examines the role the written word will play on shaping Man's response to the environment in the…
Chang, Chia-Yu; Chen, Jen-Yin; Chen, Sheng-Hsien; Cheng, Tain-Junn; Lin, Mao-Tsun; Hu, Miao-Lin
2016-04-01
The impact of ascorbate on oxidative stress-related diseases is moderate because of its limited oral bioavailability and rapid clearance. However, recent evidence of the clinical benefit of parenteral vitamin C administration has emerged, especially in critical care. Heatstroke is defined as a form of excessive hyperthermia associated with a systemic inflammatory response that results in multiple organ dysfunctions in which central nervous system disorders such as delirium, convulsions, and coma are predominant. The thermoregulatory, immune, coagulation and tissue injury responses of heatstroke closely resemble those observed during sepsis and are likely mediated by similar cellular mechanisms. This study was performed by using the characteristic high lethality rate and sepsis-mimic systemic inflammatory response of a murine model of heat stroke to test our hypothesis that supra-physiological doses of ascorbate may have therapeutic use in critical care. We demonstrated that parenteral administration of ascorbate abrogated the lethality and thermoregulatory dysfunction in murine model of heat stroke by attenuating heat stroke-induced accelerated systemic inflammatory, coagulation responses and the resultant multiple organ injury, especially in hypothalamus. Overall, our findings support the hypothesis and notion that supra-physiological doses of ascorbate may have therapeutic use in critical care. Copyright © 2016. Published by Elsevier Inc.
Ultrasonic Resonance Spectroscopy of Composite Rims for Flywheel Rotors
NASA Technical Reports Server (NTRS)
Harmon, Laura M.; Baaklini, George Y.
2002-01-01
Flywheel energy storage devices comprising multilayered composite rotor systems are being studied extensively for utilization in the International Space Station. These composite material systems were investigated with a recently developed ultrasonic resonance spectroscopy technique. The ultrasonic system employs a continuous swept-sine waveform and performs a fast Fourier transform (FFT) on the frequency response spectrum. In addition, the system is capable of equalizing the amount of energy at each frequency. Equalization of the frequency spectrum, along with interpretation of the second FFT, aids in the evaluation of the fundamental frequency. The frequency responses from multilayered material samples, with and without known defects, were analyzed to assess the capabilities and limitations of this nondestructive evaluation technique for material characterization and defect detection. Amplitude and frequency changes were studied from ultrasonic responses of thick composite rings and a multiring composite rim. A composite ring varying in thickness was evaluated to investigate the full thickness resonance. The frequency response characteristics from naturally occurring voids in a composite ring were investigated. Ultrasonic responses were compared from regions with and without machined voids in a composite ring and a multiring composite rim. Finally, ultrasonic responses from the multiring composite rim were compared before and after proof spin testing to 63,000 rpm.
Shift-variant linear system modeling for multispectral scanners
NASA Astrophysics Data System (ADS)
Amini, Abolfazl M.; Ioup, George E.; Ioup, Juliette W.
1995-07-01
Multispectral scanner data are affected both by the spatial impulse response of the sensor and the spectral response of each channel. To achieve a realistic representation for the output data for a given scene spectral input, both of these effects must be incorporated into a forward model. Each channel can have a different spatial response and each has its characteristic spectral response. A forward model is built which includes the shift invariant spatial broadening of the input for the channels and the shift variant spectral response across channels. The model is applied to the calibrated airborne multispectral scanner as well as the airborne terrestrial applications sensor developed at NASA Stennis Space Center.
Biophysical characteristics of HIMAC clinical irradiation system for heavy-ion radiation therapy.
Kanai, T; Endo, M; Minohara, S; Miyahara, N; Koyama-ito, H; Tomura, H; Matsufuji, N; Futami, Y; Fukumura, A; Hiraoka, T; Furusawa, Y; Ando, K; Suzuki, M; Soga, F; Kawachi, K
1999-04-01
The irradiation system and biophysical characteristics of carbon beams are examined regarding radiation therapy. An irradiation system was developed for heavy-ion radiotherapy. Wobbler magnets and a scatterer were used for flattening the radiation field. A patient-positioning system using X ray and image intensifiers was also installed in the irradiation system. The depth-dose distributions of the carbon beams were modified to make a spread-out Bragg peak, which was designed based on the biophysical characteristics of monoenergetic beams. A dosimetry system for heavy-ion radiotherapy was established to deliver heavy-ion doses safely to the patients according to the treatment planning. A carbon beam of 80 keV/microm in the spread-out Bragg peak was found to be equivalent in biological responses to the neutron beam that is produced at cyclotron facility in National Institute Radiological Sciences (NIRS) by bombarding 30-MeV deuteron beam on beryllium target. The fractionation schedule of the NIRS neutron therapy was adapted for the first clinical trials using carbon beams. Carbon beams, 290, 350, and 400 MeV/u, were used for a clinical trial from June of 1994. Over 300 patients have already been treated by this irradiation system by the end of 1997.
NASA Astrophysics Data System (ADS)
Wang, Qingze; Chen, Xingying; Ji, Li; Liao, Yingchen; Yu, Kun
2017-05-01
The air-conditioning system of office building is a large power consumption terminal equipment, whose unreasonable operation mode leads to low energy efficiency. Realizing the optimization of the air-conditioning system has become one of the important research contents of the electric power demand response. In this paper, in order to save electricity cost and improve energy efficiency, bi-level optimization method of air-conditioning system based on TOU price is put forward by using the energy storage characteristics of the office building itself. In the upper level, the operation mode of the air-conditioning system is optimized in order to minimize the uses’ electricity cost in the premise of ensuring user’ comfort according to the information of outdoor temperature and TOU price, and the cooling load of the air-conditioning is output to the lower level; In the lower level, the distribution mode of cooling load among the multi chillers is optimized in order to maximize the energy efficiency according to the characteristics of each chiller. Finally, the experimental results under different modes demonstrate that the strategy can improve the energy efficiency of chillers and save the electricity cost for users.
Dynamic characteristics and mechatronics model for maglev blood pump
NASA Astrophysics Data System (ADS)
Sun, Kun; Chen, Chen
2017-01-01
Magnetic bearing system(MBs) has been developed in the new-generation blood pump due to its low power consumption, low blood trauma and high durability. However, MBs for a blood pump were almost influenced by a series of factors such as hemodynamics, rotation speeds and actuator response in working fluids, compared with those applied in other industrial fields. In this study, the dynamic characteristics of MBs in fluid environments, including the influence of the pumping fluid and rotation of the impeller on the radial dynamic model were investigated by measuring the frequency response to sinusoidal excitation upon coils, and the response of radial displacement during a raise in the speed. The excitation tests were conducted under conditions in which the blood pump was levitated in air and water and with or without rotation. The experimental and simulated results indicate that rotations of the impeller affected the characteristics of MBs in water apparently, and the vibration in water was decreased, compared with that in air due to the hydraulic force. During the start-up and rotation, the actuator failed to operate fully and timely, and the voltage supplied can be chosen under the consideration of the rotor displacement and consumption.
Characterizing Geohydrologic Linkages using Process Domains for Monitoring Aquatic Ecosystems
NASA Astrophysics Data System (ADS)
Weekes, A.; Torgersen, C.; Montgomery, D. R.; Woodward, A.; Bolton, S.
2009-12-01
Aquatic habitats in glaciated headwater basins can differ widely within a mountain region and are often more complex than those found in lowland river systems. Current legislative mandates for ecosystem monitoring often require the ability to relate geomorphic and hydrologic stream attributes to ecological response. The capacity to define meaningful references states against which to evaluate current status and trends is particularly challenging in mountain aquatic ecosystems. To aid in the implementation of the National Park Service (NPS) Vital Signs Monitoring Program in the mountainous North Coast and Cascades Network (NCCN) parks, this project sought a systematic way to characterize both the spatial distribution of geomorphic controls within the stream hierarchy and to integrate hydrologic response. These controls comprise the physical context that supports biotic “vital signs” in park ecosystems and have consequences that directly affect the life history strategies and persistence of biota living in mountain streams and other aquatic habitats. However, there are currently no monitoring protocols that provide a precedent for incorporating the geomorphic spatial characteristics or diverse types of hydrologic response at the spatial and temporal scales unique to these headwater systems. To address this issue, we investigated relationships between valley-scale glacial macroforms and hydrologic indices (e.g. streamflow gauging, stable isotope analysis and water temperature measurements) in small (1 - 20 km2) headwater basins on the east side of Mount Rainier National Park. The linkage between geomorphic and hydrologic response was found to be best expressed in process domains defined as colluvial, alluvial and bedrock systems. Study results show a correlation between the percentage of colluvial process domains within a headwater catchment and the characteristic hydrologic regime of the basin. These relationships offer a framework that can account for the innate system complexity useful to ecological monitoring programs that aim to compare the physical habitats that control biotic response.
Transients control in Raman fiber amplifiers
NASA Astrophysics Data System (ADS)
Freitas, Marcio; Givigi, Sidney N., Jr.; Klein, Jackson; Calmon, Luiz C.; de Almeida, Ailson R.
2004-11-01
Raman fiber amplifiers (RFA) are being used in optical transmission communication systems in the recent years due to their advantages in comparison to erbium-doped fiber amplifiers (EDFA). Recently the analysis of RFAs dynamic response and transients control has become important in order to predict the system response to add/drop of channels or cable cuts in optical systems, and avoid impairments caused by the power transients. Fast signal power transients in the surviving channels are caused by the cross-gain saturation effect in RFA and the slope of the gain saturation characteristics determines the steady-state surviving channel power excursion. We are presenting the modeling and analysis of power transients and its control using a pump control method for a single and multi-pump scheme.
Martín-Fernández, Jesús; del Cura-González, Ma Isabel; Rodríguez-Martínez, Gemma; Ariza-Cardiel, Gloria; Zamora, Javier; Gómez-Gascón, Tomás; Polentinos-Castro, Elena; Pérez-Rivas, Francisco Javier; Domínguez-Bidagor, Julia; Beamud-Lagos, Milagros; Tello-Bernabé, Ma Eugenia; Conde-López, Juan Francisco; Aguado-Arroyo, Óscar; Sanz-Bayona, Ma Teresa; Gil-Lacruz, Ana Isabel
2013-01-01
Identifying the economic value assigned by users to a particular health service is of principal interest in planning the service. The aim of this study was to evaluate the perception of economic value of nursing consultation in primary care (PC) by its users. Economic study using contingent valuation methodology. A total of 662 users of nursing consultation from 23 health centers were included. Data on demographic and socioeconomic characteristics, health needs, pattern of usage, and satisfaction with provided service were compiled. The validity of the response was evaluated by an explanatory mixed-effects multilevel model in order to assess the factors associated with the response according to the welfare theory. Response reliability was also evaluated. Subjects included in the study indicated an average Willingness to Pay (WTP) of €14.4 (CI 95%: €13.2-15.5; median €10) and an average Willingness to Accept [Compensation] (WTA) of €20.9 (CI 95%: €19.6-22.2; median €20). Average area income, personal income, consultation duration, home visit, and education level correlated with greater WTP. Women and older subjects showed lower WTP. Fixed parameters explained 8.41% of the residual variability, and response clustering in different health centers explained 4-6% of the total variability. The influence of income on WTP was different in each center. The responses for WTP and WTA in a subgroup of subjects were consistent when reassessed after 2 weeks (intraclass correlation coefficients 0.952 and 0.893, respectively). The economic value of nursing services provided within PC in a public health system is clearly perceived by its user. The perception of this value is influenced by socioeconomic and demographic characteristics of the subjects and their environment, and by the unique characteristics of the evaluated service. The method of contingent valuation is useful for making explicit this perception of value of health services.
Martín-Fernández, Jesús; del Cura-González, Mª Isabel; Rodríguez-Martínez, Gemma; Ariza-Cardiel, Gloria; Zamora, Javier; Gómez-Gascón, Tomás; Polentinos-Castro, Elena; Pérez-Rivas, Francisco Javier; Domínguez-Bidagor, Julia; Beamud-Lagos, Milagros; Tello-Bernabé, Mª Eugenia; Conde-López, Juan Francisco; Aguado-Arroyo, Óscar; Bayona, Mª Teresa Sanz-; Gil-Lacruz, Ana Isabel
2013-01-01
Background Identifying the economic value assigned by users to a particular health service is of principal interest in planning the service. The aim of this study was to evaluate the perception of economic value of nursing consultation in primary care (PC) by its users. Methods and Results Economic study using contingent valuation methodology. A total of 662 users of nursing consultation from 23 health centers were included. Data on demographic and socioeconomic characteristics, health needs, pattern of usage, and satisfaction with provided service were compiled. The validity of the response was evaluated by an explanatory mixed-effects multilevel model in order to assess the factors associated with the response according to the welfare theory. Response reliability was also evaluated. Subjects included in the study indicated an average Willingness to Pay (WTP) of €14.4 (CI 95%: €13.2–15.5; median €10) and an average Willingness to Accept [Compensation] (WTA) of €20.9 (CI 95%: €19.6–22.2; median €20). Average area income, personal income, consultation duration, home visit, and education level correlated with greater WTP. Women and older subjects showed lower WTP. Fixed parameters explained 8.41% of the residual variability, and response clustering in different health centers explained 4–6% of the total variability. The influence of income on WTP was different in each center. The responses for WTP and WTA in a subgroup of subjects were consistent when reassessed after 2 weeks (intraclass correlation coefficients 0.952 and 0.893, respectively). Conclusions The economic value of nursing services provided within PC in a public health system is clearly perceived by its user. The perception of this value is influenced by socioeconomic and demographic characteristics of the subjects and their environment, and by the unique characteristics of the evaluated service. The method of contingent valuation is useful for making explicit this perception of value of health services. PMID:23626858
Jablonski, Ireneusz; Mroczka, Janusz
2010-01-01
The paper offers an enhancement of the classical interrupter technique algorithm dedicated to respiratory mechanics measurements. Idea consists in exploitation of information contained in postocclusional transient states during indirect measurement of parameter characteristics by model identification. It needs the adequacy of an inverse analogue to general behavior of the real system and a reliable algorithm of parameter estimation. The second one was a subject of reported works, which finally showed the potential of the approach to separation of airway and tissue response in a case of short-term excitation by interrupter valve operation. Investigations were conducted in a regime of forward-inverse computer experiment.
1987-12-01
A- -- HZ LIN 3.0 . Be-I. •,% •4’ 20.. 0-p -4 -0 30a 4a j0 O0 100a 10 4140 iSo 130 20C. 2210 140 M* LIN g•" %g Figur 19. Cyli Avergin (N4,M 0 -3- 40...shows that the degree of nonlinearity of a structure varies according to the characteristics of the system. That is, welded structures will usually...exhibit a linear response; where a riveted or spot welded structure exhibits a very nonlinear response [52]. As an example of a nonlinear system
A new broadband square law detector. [microwave radiometers
NASA Technical Reports Server (NTRS)
Reid, M. S.; Gardner, R. A.; Stelzried, C. T.
1975-01-01
A broadband constant law detector was developed for precision power measurements, radio metric measurements, and other applications. It has a wide dynamic range and an accurate square law response. Other desirable characteristics, which are all included in a single compact unit, are: (1) high-level dc output with immunity to ground loop problems; (2) fast response times; (3) ability to insert known time constants; and (4) good thermal stability. The detector and its performance are described in detail. The detector can be operated in a programmable system with a ten-fold increase in accuracy. The use and performance of the detector in a noise-adding radiometer system is also discussed.
Effects of Injection Scheme on Rotating Detonation Engine Operation
NASA Astrophysics Data System (ADS)
Chacon, Fabian; Duvall, James; Gamba, Mirko
2017-11-01
In this work, we experimentally investigate the operation and performance characteristics of a rotating detonation engine (RDE) operated with different fuel injection schemes and operating conditions. In particular, we investigate the detonation and operation characteristics produced with an axial flow injector configuration and semi-impinging injector configurations. These are compared to the characteristics produced with a canonical radial injection system (AFRL injector). Each type produces a different flowfield and mixture distribution, leading to a different detonation initiation, injector dynamic response, and combustor pressure rise. By using a combination of diagnostics, we quantify the pressure loses and gains in the system, the ability to maintain detonation over a range of operating points, and the coupling between the detonation and the air/fuel feed lines. We particularly focus on how this coupling affects both the stability and the performance of the detonation wave. This work is supported by the DOE/UTSR program under project DE-FE0025315.
Mucosal immunity in the female genital tract, HIV/AIDS.
Reis Machado, Juliana; da Silva, Marcos Vinícius; Cavellani, Camila Lourencini; dos Reis, Marlene Antônia; Monteiro, Maria Luiza Gonçalves dos Reis; Teixeira, Vicente de Paula Antunes; Miranda Corrêa, Rosana Rosa
2014-01-01
Mucosal immunity consists of innate and adaptive immune responses which can be influenced by systemic immunity. Despite having been the subject of intensive studies, it is not fully elucidated what exactly occurs after HIV contact with the female genital tract mucosa. The sexual route is the main route of HIV transmission, with an increased risk of infection in women compared to men. Several characteristics of the female genital tract make it suitable for inoculation, establishment of infection, and systemic spread of the virus, which causes local changes that may favor the development of infections by other pathogens, often called sexually transmitted diseases (STDs). The relationship of these STDs with HIV infection has been widely studied. Here we review the characteristics of mucosal immunity of the female genital tract, its alterations due to HIV/AIDS, and the characteristics of coinfections between HIV/AIDS and the most prevalent STDs.
Mucosal Immunity in the Female Genital Tract, HIV/AIDS
Reis Machado, Juliana; da Silva, Marcos Vinícius; Cavellani, Camila Lourencini; Antônia dos Reis, Marlene; Monteiro, Maria Luiza Gonçalves dos Reis; Teixeira, Vicente de Paula Antunes; Rosa Miranda Corrêa, Rosana
2014-01-01
Mucosal immunity consists of innate and adaptive immune responses which can be influenced by systemic immunity. Despite having been the subject of intensive studies, it is not fully elucidated what exactly occurs after HIV contact with the female genital tract mucosa. The sexual route is the main route of HIV transmission, with an increased risk of infection in women compared to men. Several characteristics of the female genital tract make it suitable for inoculation, establishment of infection, and systemic spread of the virus, which causes local changes that may favor the development of infections by other pathogens, often called sexually transmitted diseases (STDs). The relationship of these STDs with HIV infection has been widely studied. Here we review the characteristics of mucosal immunity of the female genital tract, its alterations due to HIV/AIDS, and the characteristics of coinfections between HIV/AIDS and the most prevalent STDs. PMID:25313360
Ginty, Annie T; Phillips, Anna C; Higgs, Suzanne; Heaney, Jennifer L J; Carroll, Douglas
2012-05-01
Research suggests a potential dysregulation of the stress response in individuals with bulimia nervosa. This study measured both cardiovascular and cortisol reactions to a standardised laboratory stress task in individuals identified as showing disordered eating behaviour to determine whether dysregulation of the stress response is characteristic of the two branches of the stress response system. Female students (N=455) were screened using two validated eating disorder questionnaires. Twelve women with disordered eating, including self-induced vomiting, and 12 healthy controls were selected for laboratory stress testing. Salivary cortisol and cardiovascular activity, via Doppler imaging and semi-automatic blood pressure monitoring, were measured at resting baseline and during and after exposure to a 10-min mental arithmetic stress task. Compared to controls the disordered eating group showed blunted cortisol, cardiac output, heart rate, and stroke volume reactions to the acute stress, as well as an attenuated vasodilatory reaction. These effects could not be accounted for in terms of group differences in stress task performance, subjective task impact/engagement, age, BMI, neuroticism, cardio-respiratory fitness, or co-morbid exercise dependence. Our findings suggest that disordered eating is characterised by a dysregulation of the autonomic stress-response system. As such, they add further weight to the general contention that blunted stress reactivity is characteristic of a number of maladaptive behaviours and states. Copyright © 2011 Elsevier Ltd. All rights reserved.
Fenaux, Pierre; Giagounidis, Aristoteles; Selleslag, Dominik; Beyne-Rauzy, Odile; Mittelman, Moshe; Muus, Petra; Nimer, Stephen D; Hellström-Lindberg, Eva; Powell, Bayard L; Guerci-Bresler, Agnes; Sekeres, Mikkael A; Deeg, H Joachim; Del Cañizo, Consuelo; Greenberg, Peter L; Shammo, Jamile M; Skikne, Barry; Yu, Xujie; List, Alan F
2017-06-26
Particularly since the advent of lenalidomide, lower-risk myelodysplastic syndromes (MDS) patients with del(5q) have been the focus of many studies; however, the impact of age on disease characteristics and response to lenalidomide has not been analyzed. We assessed the effect of age on clinical characteristics and outcomes in 286 lenalidomide-treated MDS patients with del(5q) from two multicenter trials. A total of 33.9, 34.3, and 31.8% patients were aged <65 years, ≥65 to <75 years, and ≥75 years, respectively. Age <65 years was associated with less favorable International Prognostic Scoring System (IPSS) risk and additional cytopenias at baseline versus older age groups, significantly lower cytogenetic response rates (p = 0.022 vs. ≥65 to <75 years; p = 0.047 vs. ≥75 years), and higher rates of acute myeloid leukemia (AML) progression (Gray's test, p = 0.013). Lenalidomide was equally well tolerated across age groups, producing consistently high rates of red blood cell transfusion independence ≥26 weeks. Baseline disease characteristics and AML progression appear to be more severe in younger lower-risk MDS patients with del(5q), whereas older age does not seem to compromise the response to lenalidomide. ClinicalTrials.gov NCT00065156 and NCT00179621.
Salomon, Maria; Sylvest, Randi; Hansson, Helena; Nyboe Andersen, Anders; Schmidt, Lone
2015-05-01
To examine sociodemographic characteristics, family backgrounds, reproductive histories, and attitudes towards motherhood in single vs. cohabiting women seeking treatment with donor semen. Baseline data collection in a multicenter cohort study. All nine public fertility clinics in Denmark. In total n = 311 childless women initiating assisted reproduction using donor semen. Self-reported questionnaire responses from n = 184 single women seeking treatment by using donor semen were compared with responses from n = 127 cohabiting women. Sociodemographic characteristics, family backgrounds, reproductive histories, attitudes towards motherhood. Single women were 3.5 years older on average when initiating treatment compared with cohabiting women. No significant differences were found regarding sociodemographic characteristics, previous long-term relationships, previous pregnancies, or attitudes towards motherhood between single women and cohabiting women. The vast majority of single women wanted to achieve parenthood with a partner, 85.8% wished to have a partner in the future, and approximately half of them preferred for a partner to take parental responsibilities. In this study single women seeking treatment with donor semen in the public health system did not differ from cohabiting women, except that they were older. To be a single mother by choice is not their preferred way of parenthood, but a solution they needed to accept. © 2015 Nordic Federation of Societies of Obstetrics and Gynecology.
NASA Technical Reports Server (NTRS)
Schrier, R. W.; Humphreys, M. H.; Ufferman, R. C.
1971-01-01
Study of the differential characteristics of hepatic congestion and decreased cardiac output in terms of potential afferent stimuli in the antinatriuretic effect of acute thoracic inferior vena cava (TIVC) constriction. An attempt is made to see if the autonomic nervous system is involved in the antinatriuretic effect of acute TIVC or thoracic superior vena cava constriction.
[The present and future state of minimized extracorporeal circulation].
Meng, Fan; Yang, Ming
2013-05-01
Minimized extracorporeal circulation improved in the postoperative side effects of conventional extracorporeal circulation is a kind of new extracorporeal circulation. This paper introduces the principle, characteristics, applications and related research of minimized extracorporeal circulation. For the problems of systemic inflammatory response syndrome and limited assist time, the article proposes three development direction including system miniaturization and integration, pulsatile blood pump and the adaptive control by human parameter identification.
Classification of finger movements by using the ultra-wide band radar.
Eldosoky, Mohamed A A
2010-12-01
The coding system of finger movements depends on the differences in the characteristics of the muscles that are responsible for these movements. The ability of ultra-wide band (UWB) radar for use as a tool for identifying the movements of each finger is presented. This will facilitate the ability of the UWB radar in designing a coding system for the movement of fingers of each hand.
Erickson, L D; Vogel, L A; Cascalho, M; Wong, J; Wabl, M; Durell, B G; Noelle, R J
2000-11-01
This study tracks the fate of antigen-reactive B cells through follicular and extrafollicular responses and addresses the function of CD40 in these processes. The unique feature of this system is the use of transgenic B cells in which the heavy chain locus has been altered by site-directed insertion of a rearranged V(H) DJ(H) exon such that they are able to clonally expand, isotype-switch and follow a normal course of differentiation upon immunization. These Ig transgenic B cells when adoptively transferred into non-transgenic (Tg) mice in measured amounts expanded and differentiated distinctively in response to T cell-independent (TI) or T cell-dependent (TD) antigens. The capacity of these Tg B cells to faithfully recapitulate the humoral immune response to TI and TD antigens provides the means to track clonal B cell behavior in vivo. Challenge with TI antigen in the presence of agonistic anti-CD40 mAb resulted in well-defined alterations of the TI response. In vivo triggering of Tg B cells with TI antigen and CD40 caused an increase in the levels IgG produced and a broadening of the Ig isotype profile, characteristics which partially mimic TD responses. Although some TD characteristics were induced by TI antigen and CD40 triggering, the Tg B cells failed to acquire a germinal center phenotype and failed to generate a memory response. Therefore, TD-like immunity can be only partially reconstituted with CD40 agonists and TI antigens, suggesting that there are additional signals required for germinal center formation and development of memory.
NASA Astrophysics Data System (ADS)
Srinivas, V.; Jeyasehar, C. Antony; Ramanjaneyulu, K.; Sasmal, Saptarshi
2012-02-01
Need for developing efficient non-destructive damage assessment procedures for civil engineering structures is growing rapidly towards structural health assessment and management of existing structures. Damage assessment of structures by monitoring changes in the dynamic properties or response of the structure has received considerable attention in recent years. In the present study, damage assessment studies have been carried out on a reinforced concrete beam by evaluating the changes in vibration characteristics with the changes in damage levels. Structural damage is introduced by static load applied through a hydraulic jack. After each stage of damage, vibration testing is performed and system parameters were evaluated from the measured acceleration and displacement responses. Reduction in fundamental frequencies in first three modes is observed for different levels of damage. It is found that a consistent decrease in fundamental frequency with increase in damage magnitude is noted. The beam is numerically simulated and found that the vibration characteristics obtained from the measured data are in close agreement with the numerical data.
Dausey, David J; Chandra, Anita; Schaefer, Agnes G; Bahney, Ben; Haviland, Amelia; Zakowski, Sarah; Lurie, Nicole
2008-09-01
We tested telephone-based disease surveillance systems in local health departments to identify system characteristics associated with consistent and timely responses to urgent case reports. We identified a stratified random sample of 74 health departments and conducted a series of unannounced tests of their telephone-based surveillance systems. We used regression analyses to identify system characteristics that predicted fast connection with an action officer (an appropriate public health professional). Optimal performance in consistently connecting callers with an action officer in 30 minutes or less was achieved by 31% of participating health departments. Reaching a live person upon dialing, regardless of who that person was, was the strongest predictor of optimal performance both in being connected with an action officer and in consistency of connection times. Health departments can achieve optimal performance in consistently connecting a caller with an action officer in 30 minutes or less and may improve performance by using a telephone-based disease surveillance system in which the phone is answered by a live person at all times.
An approach to the determination of aircraft handling qualities using pilot transfer functions
NASA Technical Reports Server (NTRS)
Adams, J. J.; Hatch, H. G., Jr.
1978-01-01
It was shown that a correlation exists between pilot-aircraft system closed-loop characteristics, determined by using analytical expressions for pilot response along with the analytical expression for the aircraft response, and pilot ratings obtained in many previous flight and simulation studies. Two different levels of preferred pilot response were used. These levels were: (1) a static gain and a second-order lag function with a lag time constant of 0.2 second; and (2) a static gain, a lead time constant of 1 second, and a 0.2-second lag time constant. If a system response with a pitch-angle time constant of 2.6 seconds and a stable oscillatory mode of motion with a period of 2.5 seconds could be achieved with the first-level pilot model, it was shown that the pilot rating will be satisfactory for that vehicle.
NASA Astrophysics Data System (ADS)
Schonberg, William P.
1992-11-01
All earth-orbiting spacecraft are susceptible to high-speed impacts by pieces of orbital debris. To prevent mission failure and possibly loss of life, protection against perforation by high-speed orbital debris particles must be included in the spacecraft design. Although any number of materials can be used to manufacture perforation-resistant structures, aluminum is often used in such systems because of its relatively high strength-to-weight ratio. This paper presents the results of a study in which the high speed impact response characteristics of dual-wall structures made from two different aluminum alloys were analyzed to determine which alloy would be more suitable for use in a perforation-resistant dual-wall structural system that is to be exposed to the orbital debris environment. Impact response characteristics were obtained numerically and experimentally. At impact speeds below 7 km/s, it was found that the two aluminum alloys considered contributed similar levels of perforation resistance; at speeds in excess of 7 km/s, aluminum 2219-T87 was superior to aluminum 5546-H116 in preventing perforation of dual-wall structural systems.
NASA Technical Reports Server (NTRS)
Morey-Holton, Emily; Globus, Ruth K.; Kaplansky, Alexander; Durnova, Galina
2005-01-01
The hindlimb unloading rodent model is used extensively to study the response of many physiological systems to certain aspects of space flight, as well as to disuse and recovery from disuse for Earth benefits. This chapter describes the evolution of hindlimb unloading, and is divided into three sections. The first section examines the characteristics of 1064 articles using or reviewing the hindlimb unloading model, published between 1976 and April 1, 2004. The characteristics include number of publications, journals, countries, major physiological systems, method modifications, species, gender, genetic strains and ages of rodents, experiment duration, and countermeasures. The second section provides a comparison of results between space flown and hindlimb unloading animals from the 14-day Cosmos 2044 mission. The final section describes modifications to hindlimb unloading required by different experimental paradigms and a method to protect the tail harness for long duration studies. Hindlimb unloading in rodents has enabled improved understanding of the responses of the musculoskeletal, cardiovascular, immune, renal, neural, metabolic, and reproductive systems to unloading and/or to reloading on Earth with implications for both long-duration human space flight and disuse on Earth.
NASA Technical Reports Server (NTRS)
Schonberg, William P.
1992-01-01
All earth-orbiting spacecraft are susceptible to high-speed impacts by pieces of orbital debris. To prevent mission failure and possibly loss of life, protection against perforation by high-speed orbital debris particles must be included in the spacecraft design. Although any number of materials can be used to manufacture perforation-resistant structures, aluminum is often used in such systems because of its relatively high strength-to-weight ratio. This paper presents the results of a study in which the high speed impact response characteristics of dual-wall structures made from two different aluminum alloys were analyzed to determine which alloy would be more suitable for use in a perforation-resistant dual-wall structural system that is to be exposed to the orbital debris environment. Impact response characteristics were obtained numerically and experimentally. At impact speeds below 7 km/s, it was found that the two aluminum alloys considered contributed similar levels of perforation resistance; at speeds in excess of 7 km/s, aluminum 2219-T87 was superior to aluminum 5546-H116 in preventing perforation of dual-wall structural systems.
Zu, Yuangang; Zhao, Qi; Zhao, Xiuhua; Zu, Shuchong; Meng, Li
2011-01-01
Oligomycin-A (Oli-A), an anticancer drug, was loaded to the folate (FA)-conjugated chitosan as a tumor-targeted drug delivery system for the purpose of overcoming the nonspecific targeting characteristics and the hydrophobicity of the compound. The two-level factorial design (2-LFD) was applied to modeling the preparation process, which was composed of five independent variables, namely FA-conjugated chitosan (FA-CS) concentration, Oli-A concentration, sodium tripolyphosphate (TPP) concentration, the mass ratio of FA-CS to TPP, and crosslinking time. The mean particle size (MPS) and the drug loading rate (DLR) of the resulting Oli-loaded FA-CS nanoparticles (FA-Oli-CSNPs) were used as response variables. The interactive effects of the five independent variables on the response variables were studied. The characteristics of the nanoparticles, such as amount of FA conjugation, drug entrapment rate (DER), DLR, surface morphology, and release kinetics properties in vitro were investigated. The FA-Oli-CSNPs with MPS of 182.6 nm, DER of 17.3%, DLR of 58.5%, and zeta potential (ZP) of 24.6 mV were obtained under optimum conditions. The amount of FA conjugation was 45.9 mg/g chitosan. The FA-Oli-CSNPs showed sustained-release characteristics for 576 hours in vitro. The results indicated that FA-Oli-CSNPs obtained as a targeted drug delivery system could be effective in the therapy of leukemia in the future.
NASA Astrophysics Data System (ADS)
Huang, Dongmei; Xu, Wei
2017-11-01
In this paper, the combination of the cubic nonlinearity and time delay is proposed to improve the performance of a piecewise-smooth (PWS) system with negative stiffness. Dynamical properties, feedback control performance and symmetry-breaking bifurcation are mainly considered for a PWS system with negative stiffness under nonlinear position and velocity feedback control. For the free vibration system, the homoclinic-like orbits are firstly derived. Then, the amplitude-frequency response of the controlled system is obtained analytically in aspect of the Lindstedt-Poincaré method and the method of multiple scales, which is also verified through the numerical results. In this regard, a softening-type behavior, which directly leads to the multi-valued responses, is illustrated over the negative position feedback. Especially, the five-valued responses in which three branches of them are stable are found. And complex multi-valued characteristics are also observed in the force-amplitude responses. Furthermore, for explaining the effectiveness of feedback control, the equivalent damping and stiffness are also introduced. Sensitivity of the system response to the feedback gain and time delay is comprehensively considered and interesting dynamical properties are found. Relatively, from the perspective of suppressing the maximum amplitude and controlling the resonance stability, the selection of the feedback parameters is discussed. Finally, the symmetry-breaking bifurcation and chaotic motion are considered.
Chatelle, Claire; Ochoa-Fernandez, Rocio; Engesser, Raphael; Schneider, Nils; Beyer, Hannes M; Jones, Alex R; Timmer, Jens; Zurbriggen, Matias D; Weber, Wilfried
2018-05-18
The ever-increasing complexity of synthetic gene networks and applications of synthetic biology requires precise and orthogonal gene expression systems. Of particular interest are systems responsive to light as they enable the control of gene expression dynamics with unprecedented resolution in space and time. While broadly used in mammalian backgrounds, however, optogenetic approaches in plant cells are still limited due to interference of the activating light with endogenous photoreceptors. Here, we describe the development of the first synthetic light-responsive system for the targeted control of gene expression in mammalian and plant cells that responds to the green range of the light spectrum in which plant photoreceptors have minimal activity. We first engineered a system based on the light-sensitive bacterial transcription factor CarH and its cognate DNA operator sequence CarO from Thermus thermophilus to control gene expression in mammalian cells. The system was functional in various mammalian cell lines, showing high induction (up to 350-fold) along with low leakiness, as well as high reversibility. We quantitatively described the systems characteristics by the development and experimental validation of a mathematical model. Finally, we transferred the system into A. thaliana protoplasts and demonstrated gene repression in response to green light. We expect that this system will provide new opportunities in applications based on synthetic gene networks and will open up perspectives for optogenetic studies in mammalian and plant cells.
NASA Technical Reports Server (NTRS)
Flowers, George T.
1995-01-01
Progress made in the current year is listed, and the following papers are included in the appendix: Steady-State Dynamic Behavior of an Auxiliary Bearing Supported Rotor System; Dynamic Behavior of a Magnetic Bearing Supported Jet Engine Rotor with Auxiliary Bearings; Dynamic Modelling and Response Characteristics of a Magnetic Bearing Rotor System with Auxiliary Bearings; and Synchronous Dynamics of a Coupled Shaft/Bearing/Housing System with Auxiliary Support from a Clearance Bearing: Analysis and Experiment.
Interaction Dynamics Between a Flexible Rotor and an Auxiliary Clearance Bearing
NASA Technical Reports Server (NTRS)
Lawen, James L., Jr.; Flowers, George T.
1996-01-01
This study investigates the application of synchronous interaction dynamics methodology to the design of auxiliary bearing systems. The technique is applied to a flexible rotor system and comparisons are made between the behavior predicted by this analysis method and the observed simulation response characteristics. Of particular interest is the influence of coupled shaft/bearing vibration modes on rotordynamical behavior. Experimental studies are also perFormed to validate the simulation results and provide insight into the expected behavior of such a system.
Bilateral Impedance Control For Telemanipulators
NASA Technical Reports Server (NTRS)
Moore, Christopher L.
1993-01-01
Telemanipulator system includes master robot manipulated by human operator, and slave robot performing tasks at remote location. Two robots electronically coupled so slave robot moves in response to commands from master robot. Teleoperation greatly enhanced if forces acting on slave robot fed back to operator, giving operator feeling he or she manipulates remote environment directly. Main advantage of bilateral impedance control: enables arbitrary specification of desired performance characteristics for telemanipulator system. Relationship between force and position modulated at both ends of system to suit requirements of task.
NASA Astrophysics Data System (ADS)
Duan, Chaowei; Zhan, Yafeng
2016-03-01
The output characteristics of a linear monostable system driven with a periodic signal and an additive white Gaussian noise are studied in this paper. Theoretical analysis shows that the output signal-to-noise ratio (SNR) decreases monotonously with the increasing noise intensity but the output SNR-gain is stable. Inspired by this high SNR-gain phenomenon, this paper applies the linear monostable system in the parameters estimation algorithm for phase shift keying (PSK) signals and improves the estimation performance.
Valor, Lara; López-Longo, Francisco Javier
2015-09-07
Systemic lupus erythematosus is an autoimmune disease associated with an aberrant production of autoantibodies by self-reactive B lymphocytes. The study of the phenotypic characteristics of B lymphocytes and the identification of their surface receptors such as BAFF-R, TACI and BCMA, which are responsible of their survival and maturation, have contributed to the development of new therapeutic strategies in recent years. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.
Neuron analysis of visual perception
NASA Technical Reports Server (NTRS)
Chow, K. L.
1980-01-01
The receptive fields of single cells in the visual system of cat and squirrel monkey were studied investigating the vestibular input affecting the cells, and the cell's responses during visual discrimination learning process. The receptive field characteristics of the rabbit visual system, its normal development, its abnormal development following visual deprivation, and on the structural and functional re-organization of the visual system following neo-natal and prenatal surgery were also studied. The results of each individual part of each investigation are detailed.
Brown, Lawrence H; Chaiechi, Taha; Buettner, Petra G; Canyon, Deon V; Crawford, J Mac; Judd, Jenni
2013-02-01
To evaluate the impact of changing energy prices on Australian ambulance systems. Generalised estimating equations were used to analyse contemporaneous and lagged relationships between changes in energy prices and ambulance system performance measures in all Australian State/Territory ambulance systems for the years 2000-2010. Measures included: expenditures per response; labour-to-total expenditure ratio; full-time equivalent employees (FTE) per 10,000 responses; average salary; median and 90th percentile response time; and injury compensation claims. Energy price data included State average diesel price, State average electricity price, and world crude oil price. Changes in diesel prices were inversely associated with changes in salaries, and positively associated with changes in ambulance response times; changes in oil prices were also inversely associated with changes in salaries, as well with staffing levels and expenditures per ambulance response. Changes in electricity prices were positively associated with changes in expenditures per response and changes in salaries; they were also positively associated with changes in injury compensation claims per 100 FTE. Changes in energy prices are associated with changes in Australian ambulance systems' resource, performance and safety characteristics in ways that could affect both patients and personnel. Further research is needed to explore the mechanisms of, and strategies for mitigating, these impacts. The impacts of energy prices on other aspects of the health system should also be investigated. © 2013 The Authors. ANZJPH © 2013 Public Health Association of Australia.
The, Bertram; Reininga, Inge H F; El Moumni, Mostafa; Eygendaal, Denise
2013-10-01
The modern standard of evaluating treatment results includes the use of rating systems. Elbow-specific rating systems are frequently used in studies aiming at elbow-specific pathology. However, proper validation studies seem to be relatively sparse. In addition, these scoring systems might not always be used for appropriate populations of interest. Both of these issues might give rise to invalid conclusions being reported in the literature. Our aim was to investigate the extent to which the available elbow-specific outcome measurement tools have been validated and the quality of the validation itself. We also aimed to provide characteristics of the populations used for validation of these scales to enable clinicians to use them appropriately. A literature search identified 17 studies of 12 different elbow-specific scoring systems. These were assessed for validity, reliability, and responsiveness characteristics. The quality of these assessments was rated according to the Consensus Based Standards for the Selection of Health Measurement Instruments (COSMIN) checklist criteria, a standardized and validated tool developed specifically for this purpose. Currently, the only elbow-specific rating system that is validated using high-quality methodology is the Oxford Elbow Score, a patient-administered outcome measure tool that has been validated on heterogeneous study populations. Other rating systems still have to be proven in the future to be as good as the Oxford Elbow Score for clinical or research purposes. Additional validation studies are needed. Copyright © 2013 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.
Thieme, Kati; Turk, Dennis C; Gracely, Richard H; Maixner, William; Flor, Herta
2015-02-01
This study examined the relationship of psychophysiological response patterns in fibromyalgia with psychological characteristics and comorbid mental disorders. Surface electromyographic data, systolic and diastolic blood pressure, heart rate (HR), and skin conductance levels were recorded continuously during baseline, stress, and relaxation tasks. Cluster analysis revealed 4 subgroups of patients who differed on pain characteristics and cognitive, affective, and behavioral responses to pain and stress. The largest group (46.7%) was characterized by elevated blood pressure levels and stress reactivity (a disposition assumed to be a vulnerability factor for the development of diseases) associated with pain, anxiety, physical interference, low activity, and pain behaviors. A second group (41.6%) showed low baseline blood pressure and reactivity, and high activity and stress. A third group (9.2%) displayed high baseline skin conductance level, reactivity, and depression, and a fourth small group (2.5%) displayed elevated baseline electromyographic response and reactivity with high levels of anxiety and depression. These data suggest that unique psychophysiological response patterns are associated with psychological coping and mental disorders in fibromyalgia patients. The identification of the mechanisms that contribute to these group differences will further our understanding of the mechanisms involved in the development and maintenance of fibromyalgia and suggest differential treatment strategies. This article presents psychological characteristics and comorbidity with mental disorders of psychophysiological subgroups of fibromyalgia patients. This mechanistic analysis will assist scientific identification of systems-based pathways that contribute to autonomic and stress mechanisms that mediate chronic pain. Demonstration of distinct, homogeneous subgroups is an important step towards personalized, mechanism-oriented treatments. Copyright © 2015 American Pain Society. All rights reserved.
Faculty Internships in California Community Colleges.
ERIC Educational Resources Information Center
Klein, Charlie; Peralez, Jose
In response to a request from the Board of Governors, the California Community Colleges' Office of the Chancellor undertook a study to determine the extent and characteristics of faculty internship programs in system colleges. In April 1995, surveys were mailed to human resource directors and chief instructional officers at all 106 community…
Stage Evolution of Office Automation Technological Change and Organizational Learning.
ERIC Educational Resources Information Center
Sumner, Mary
1985-01-01
A study was conducted to identify stage characteristics in terms of technology, applications, the role and responsibilities of the office automation organization, and planning and control strategies; and to describe the respective roles of data processing professionals, office automation analysts, and users in office automation systems development…
ERIC Educational Resources Information Center
Rampal, A.
1992-01-01
Examines trends in teachers' beliefs about scientists and the nature of science. Discusses teachers' questionnaire responses on the following qualities of scientists: minimum educational qualifications; creativity; temperament; stereotyped image; and personal beliefs about indigenous systems of medicine and astrology. (Contains 63 references.)…
TV and Extension in Carbon County, Pa.
ERIC Educational Resources Information Center
Reitz, Ray W.
To help improve televised extension education, a study was made of the interests and characteristics of the potential audience (9,300) of PTVC, a community antenna television system in Carbon County, Pennsylvania. A checklist questionnaire survey drew 160 usable responses from the communities of Jim Thorpe, Lehighton, and Palmerton. Data on…
Campsite reservation systems...the camper's viewpoint
Arthur W. Magill
1976-01-01
Attitudes and characteristics of campers reached by two Federal campsite reservation programs in experimental use during the summer of 1973 were surveyed. Most campers strongly favored reservations, but preferred that one company sell reservations to all government campgrounds. Questionnaire responses indicated need for a systematic procedure for referring campers to...
Evaluating measures to assess soil health in long-term agroecosystem trials
USDA-ARS?s Scientific Manuscript database
Monitoring and assessing soil health is an important component of any land management system with a vision of sustaining soil resources. Soil organic matter(SOM)characteristics are key to soil health and responsive to tillage regime and crop management. As metrics of soil health, we evaluated surfac...
Hispanic/Latino Natural Support Systems. CSAP Implementation Guide.
ERIC Educational Resources Information Center
Acosta, Annie; Hamel, Vicki
This guide is intended to share knowledge about the Hispanic/Latino community with Center for Substance Abuse Prevention (CSAP) grant recipients and to help them develop effective prevention services responsive to the communities they serve. The guide: (1) highlights specific characteristics of the Hispanic and Latino communities that affect…
China's Vocational Universities. ERIC Digest.
ERIC Educational Resources Information Center
Ding, Anning
This ERIC Digest describes the development and characteristics of vocational universities (VUs) in China. In response to the demand for increased numbers of trained technical workers in the 1980's, VUs developed and the higher vocational education system in China was reformed. Currently, 101 vocational universities are in existence in China. These…
How states, tribes and localities are re-defining systems of care.
Pires, Sheila A
2010-02-01
The original definition of system of care was developed 20 years ago largely in response to the fragmented services experienced by children with serious emotional disorders and their families, who, typically, were involved in multiple systems and/or receiving services from different providers. Over time, in response to national funders' pursuing system of care for different populations and their own experience, states, tribes and localities have applied system of care principles, values and operational characteristics to other populations (children and adults). The definition offered by Hodges et al., has an unintended effect of constraining the properties (and potential) of system of care in its limitation to a single population. This paper argues that the adaptations made to the original Stroul and Friedman definition in the training curriculum Building Systems of Care: A Primer adequately encompass properties that reflect state, tribal and local implementation experience and are specific to planning, implementing and evaluating a system of care, without limiting system of care to any one population.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heubach, J.G.; Hunt, S.T.; Pond, L.R.
1992-06-01
Information management technology has proliferated in the past decade in response to the information explosion. As documentation accumulates, the need to access information residing in manuals, handbooks and regulations conveniently, accurately, and quickly has increased. However, studies show that only fractions of the available information is read (Martin, 1978). Consequently, one of the biggest challenges in linking information and electronic management of information is to use the power of communication technology to meet the information needs of the audience. Pacific Northwest Laboratories' (PNL) investigation of translating its print manual system to an on-line system fits this challenge precisely. PNL's manualsmore » contain a tremendous amount of information for which manual holders are responsible. To perform their tasks in compliance with policy and procedure guidelines, users need to access information accurately, conveniently, and quickly. In order to select and use information management tools wisely, answers must be sought to a few basic questions. Communication experts cite four key questions: What do users want What do users need What characteristics of an on-line information system affect its usefulness Who are the users whose wants and needs are to be met Once these questions are answered, attention can be focused on finding the best match between user requirements and technology characteristics and weighing the costs and benefits of proposed options.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heubach, J.G.; Hunt, S.T.; Pond, L.R.
1992-06-01
Information management technology has proliferated in the past decade in response to the information explosion. As documentation accumulates, the need to access information residing in manuals, handbooks and regulations conveniently, accurately, and quickly has increased. However, studies show that only fractions of the available information is read (Martin, 1978). Consequently, one of the biggest challenges in linking information and electronic management of information is to use the power of communication technology to meet the information needs of the audience. Pacific Northwest Laboratories` (PNL) investigation of translating its print manual system to an on-line system fits this challenge precisely. PNL`s manualsmore » contain a tremendous amount of information for which manual holders are responsible. To perform their tasks in compliance with policy and procedure guidelines, users need to access information accurately, conveniently, and quickly. In order to select and use information management tools wisely, answers must be sought to a few basic questions. Communication experts cite four key questions: What do users want? What do users need? What characteristics of an on-line information system affect its usefulness? Who are the users whose wants and needs are to be met? Once these questions are answered, attention can be focused on finding the best match between user requirements and technology characteristics and weighing the costs and benefits of proposed options.« less
NASA Technical Reports Server (NTRS)
Burns, III, William Wesley (Inventor); Wilson, Thomas George (Inventor)
1978-01-01
This invention provides a method and apparatus for determining a precise switching sequence for the power switching elements of electric power delivery systems of the on-off switching type and which enables extremely fast transient response, precise regulation and highly stable operation. The control utilizes the values of the power delivery system power handling network components, a desired output characteristic, a system timing parameter, and the externally imposed operating conditions to determine where steady state operations should be in order to yield desired output characteristics for the given system specifications. The actual state of the power delivery system is continuously monitored and compared to a state-space boundary which is derived from the desired equilibrium condition, and from the information obtained from this comparison, the system is moved to the desired equilibrium condition in one cycle of switching control. Since the controller continuously monitors the power delivery system's externally imposed operating conditions, a change in the conditions is immediately sensed and a new equilibrium condition is determined and achieved, again in a single cycle of switching control.
Explaining public satisfaction with health-care systems: findings from a nationwide survey in China.
Munro, Neil; Duckett, Jane
2016-06-01
To identify factors associated with health-care system satisfaction in China. Recent research suggests that socio-demographic characteristics, self-reported health, income and insurance, ideological beliefs, health-care utilization, media use and perceptions of services may affect health-care system satisfaction, but the relative importance of these factors is poorly understood. New data from China offer the opportunity to test theories about the sources of health-care system satisfaction. Stratified nationwide survey sample analysed using multilevel logistic regression. 3680 Chinese adults residing in family dwellings between 1 November 2012 and 17 January 2013. Satisfaction with the way the health-care system in China is run. We find only weak associations between satisfaction and socio-demographic characteristics, self-reported health and income. We do, however, find that satisfaction is strongly associated with having insurance and belief in personal responsibility for meeting health-care costs. We also find it is negatively associated with utilization, social media use, perceptions of access as unequal and perceptions of service providers as unethical. To improve satisfaction, Chinese policymakers - and their counterparts in countries with similar health-care system characteristics - should improve insurance coverage and the quality of health services, and tackle unethical medical practices. © 2015 The Authors. Health Expectations published by John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Rockwell, T. H.; Griffin, W. C.
1981-01-01
Critical in-flight events (CIFE) that threaten the aircraft were studied. The scope of the CIFE was described and defined with emphasis on characterizing event development, detection and assessment; pilot information requirements, sources, acquisition, and interpretation, pilot response options, decision processed, and decision implementation and event outcome. Detailed scenarios were developed for use in simulators and paper and pencil testing for developing relationships between pilot performance and background information as well as for an analysis of pilot reaction decision and feedback processes. Statistical relationships among pilot characteristics and observed responses to CIFE's were developed.
Compensation based on linearized analysis for a six degree of freedom motion simulator
NASA Technical Reports Server (NTRS)
Parrish, R. V.; Dieudonne, J. E.; Martin, D. J., Jr.; Copeland, J. L.
1973-01-01
The inertial response characteristics of a synergistic, six-degree-of-freedom motion base are presented in terms of amplitude ratio and phase lag as functions of frequency data for the frequency range of interest (0 to 2 Hz) in real time, digital, flight simulators. The notch filters which smooth the digital-drive signals to continuous drive signals are presented, and appropriate compensation, based on the inertial response data, is suggested. The existence of an inverse transformation that converts actuator extensions into inertial positions makes it possible to gather the response data in the inertial axis system.
Boyd, Ashleigh S.; Wood, Kathryn J.
2010-01-01
Background The fully differentiated progeny of ES cells (ESC) may eventually be used for cell replacement therapy (CRT). However, elements of the innate immune system may contribute to damage or destruction of these tissues when transplanted. Methodology/Principal Findings Herein, we assessed the hitherto ill-defined contribution of the early innate immune response in CRT after transplantation of either ESC derived insulin producing cell clusters (IPCCs) or adult pancreatic islets. Ingress of neutrophil or macrophage cells was noted immediately at the site of IPCC transplantation, but this infiltration was attenuated by day three. Gene profiling identified specific inflammatory cytokines and chemokines that were either absent or sharply reduced by three days after IPCC transplantation. Thus, IPCC transplantation provoked less of an early immune response than pancreatic islet transplantation. Conclusions/Significance Our study offers insights into the characteristics of the immune response of an ESC derived tissue in the incipient stages following transplantation and suggests potential strategies to inhibit cell damage to ensure their long-term perpetuation and functionality in CRT. PMID:20532031
Jung, HoHyun; Chun, Keyoung Jin; Hong, Jaesoo; Lim, Dohyung
2015-01-01
Balance is important in daily activities and essential for maintaining an independent lifestyle in the elderly. Recent studies have shown that balance rehabilitation training can improve the balance ability of the elderly, and diverse balance rehabilitation training equipment has been developed. However, there has been little research into optimized strategies for balance rehabilitation training. To provide an optimized strategy, we analyzed the balance characteristics of participants in response to the rotation of a base plate on multiple axes. Seven male adults with no musculoskeletal or nervous system-related diseases (age: 25.5±1.7 years; height: 173.9±6.4 cm; body mass: 71.3±6.5 kg; body mass index: 23.6±2.4 kg/m2) were selected to investigate the balance rehabilitation training using customized rehabilitation equipment. Rotation of the base plate of the equipment was controlled to induce dynamic rotation of participants in the anterior–posterior, right-diagonal, medial–lateral, and left-diagonal directions. We used a three-dimensional motion capture system employing infrared cameras and the Pedar Flexible Insoles System to characterize the major lower-extremity joint angles, center of body mass, and center of pressure. We found statistically significant differences between the changes in joint angles in the lower extremities in response to dynamic rotation of the participants (P<0.05). The maximum was greater with anterior–posterior and medial–lateral dynamic rotation than with that in other directions (P<0.05). However, there were no statistically significant differences in the frequency of center of body mass deviations from the base of support (P>0.05). These results indicate that optimizing rotation control of the base plate of balance rehabilitation training equipment to induce anterior–posterior and medial–lateral dynamic rotation preferentially can lead to effective balance training. Additional tests with varied speeds and ranges of angles of base plate rotation are expected to be useful as well as an analysis of the balance characteristics considering a balance index that reflects the muscle activity and cooperative characteristics. PMID:26508847
Wind and turbine characteristics needed for integration of wind turbine arrays into a utility system
NASA Technical Reports Server (NTRS)
Park, G. L.
1982-01-01
Wind data and wind turbine generator (WTG) performance characteristics are often available in a form inconvenient for use by utility planners and engineers. The steps used by utility planners are summarized and the type of wind and WTG data needed for integration of WTG arrays suggested. These included long term yearly velocity averages for preliminary site feasibility, hourly velocities on a 'wind season' basis for more detailed economic analysis and for reliability studies, worst-case velocity profiles for gusts, and various minute-to-hourly velocity profiles for estimating the effect of longer-term wind fluctuations on utility operations. wind turbine data needed includes electrical properties of the generator, startup and shutdown characteristics, protection characteristics, pitch control response and control strategy, and electro-mechanical model for stability analysis.
Dynamic response characteristics of dual flow-path integrally bladed rotors
NASA Astrophysics Data System (ADS)
Beck, Joseph A.; Brown, Jeffrey M.; Scott-Emuakpor, Onome E.; Cross, Charles J.; Slater, Joseph C.
2015-02-01
New turbine engine designs requiring secondary flow compression often look to dual flow-path integrally bladed rotors (DFIBRs) since these stages have the ability to perform work on the secondary, or bypassed, flow-field. While analogous to traditional integrally bladed rotor stages, DFIBR designs have many differences that result in unique dynamic response characteristics that must be understood to avoid fatigue. This work investigates these characteristics using reduced-order models (ROMs) that incorporate mistuning through perturbations to blade frequencies. This work provides an alternative to computationally intensive geometric-mistuning approaches for DFIBRs by utilizing tuned blade mode reductions and substructure coupling in cyclic coordinates. Free and forced response results are compared to full finite element model (FEM) solutions to determine if any errors are related to the reduced-order model formulation reduction methods. It is shown that DFIBRs have many more frequency veering regions than their single flow-path integrally blade rotor (IBR) counterparts. Modal families are shown to transition between system, inner-blade, and outer-blade motion. Furthermore, findings illustrate that while mode localization of traditional IBRs is limited to a single or small subset of blades, DFIBRs can have modal energy localized to either an inner- or outer-blade set resulting in many blades responding above tuned levels. Lastly, ROM forced response predictions compare well to full FEM predictions for the two test cases shown.
Optical response in a laser-driven quantum pseudodot system
NASA Astrophysics Data System (ADS)
Kilic, D. Gul; Sakiroglu, S.; Ungan, F.; Yesilgul, U.; Kasapoglu, E.; Sari, H.; Sokmen, I.
2017-03-01
We investigate theoretically the intense laser-induced optical absorption coefficients and refractive index changes in a two-dimensional quantum pseudodot system under an uniform magnetic field. The effects of non-resonant, monochromatic intense laser field upon the system are treated within the framework of high-frequency Floquet approach in which the system is supposed to be governed by a laser-dressed potential. Linear and nonlinear absorption coefficients and relative changes in the refractive index are obtained by means of the compact-density matrix approach and iterative method. The results of numerical calculations for a typical GaAs quantum dot reveal that the optical response depends strongly on the magnitude of external magnetic field and characteristic parameters of the confinement potential. Moreover, we have demonstrated that the intense laser field modifies the confinement and thereby causes remarkable changes in the linear and nonlinear optical properties of the system.
NASA Astrophysics Data System (ADS)
Western, A. W.; Lintern, A.; Liu, S.; Ryu, D.; Webb, J. A.; Leahy, P.; Wilson, P.; Waters, D.; Bende-Michl, U.; Watson, M.
2016-12-01
Many streams, lakes and estuaries are experiencing increasing concentrations and loads of nutrient and sediments. Models that can predict the spatial and temporal variability in water quality of aquatic systems are required to help guide the management and restoration of polluted aquatic systems. We propose that a Bayesian hierarchical modelling framework could be used to predict water quality responses over varying spatial and temporal scales. Stream water quality data and spatial data of catchment characteristics collected throughout Victoria and Queensland (in Australia) over two decades will be used to develop this Bayesian hierarchical model. In this paper, we present the preliminary exploratory data analysis required for the development of the Bayesian hierarchical model. Specifically, we present the results of exploratory data analysis of Total Nitrogen (TN) concentrations in rivers in Victoria (in South-East Australia) to illustrate the catchment characteristics that appear to be influencing spatial variability in (1) mean concentrations of TN; and (2) the relationship between discharge and TN throughout the state. These important catchment characteristics were identified using: (1) monthly TN concentrations measured at 28 water quality gauging stations and (2) climate, land use, topographic and geologic characteristics of the catchments of these 28 sites. Spatial variability in TN concentrations had a positive correlation to fertiliser use in the catchment and average temperature. There were negative correlations between TN concentrations and catchment forest cover, annual runoff, runoff perenniality, soil erosivity and catchment slope. The relationship between discharge and TN concentrations showed spatial variability, possibly resulting from climatic and topographic differences between the sites. The results of this study will feed into the hierarchical Bayesian model of river water quality.
NASA Astrophysics Data System (ADS)
Boutt, D. F.; Weider, K. M.
2010-12-01
Theory suggests that ground water systems at shallow depths are sensitive to climate system dynamics but respond at differing rates due to primarily hydrogeologic characteristics of the aquifer. These rates are presumably to a first order controlled by the transmissivity and hydrogeologic settings of aquifer systems. Regional scale modeling and understanding of the impact of this behavior is complicated by the fact that aquifer systems in glaciated regions of the North American continent often possess high degrees of heterogeneity as well as disparate hydraulic connections between aquifer systems. In order to investigate these relationships we present the results of a regional compilation of groundwater hydraulic head data across the New England states together with corresponding atmospheric (precipitation and temperature) and streamflow data for a 60 year period (1950-2010). Ground water trends are calculated as normalized anomalies, and analyzed with respect to regional compiled precipitation, temperature, and streamflow. Anomalies in ground water levels are analyzed together with hydrogeologic variables such as aquifer thickness, topographic setting, and distance from coast. The time-series display decadal patterns with ground water levels being highly variable and lagging that of precipitation and streamflow pointing to site specific and non-linear response to changes in climate. Sites with deeper water tables respond slower and with larger anomalies compared to shallow water table sites. Tills consistently respond quicker and have larger anomalies compared to outwash and stratified glacial deposits. The data set suggests that while regional patterns in ground water table response are internally consistent, the magnitude and timing of the response to wet or dry periods is extremely sensitive to hydrogeologic characteristics of the host aquifer.
Colombini, Manuela; Dockerty, Colleen; Mayhew, Susannah H
2017-06-01
This systematic review synthesizes 11 studies of health-sector responses to intimate partner violence (IPV) in low- and middle-income countries. The services that were most comprehensive and integrated in their responsiveness to IPV were primarily in primary health and antenatal care settings. Findings suggest that the following facilitators are important: availability of clear guidelines, policies, or protocols; management support; intersectoral coordination with clear, accessible on-site and off-site referral options; adequate and trained staff with accepting and empathetic attitudes toward survivors of IPV; initial and ongoing training for health workers; and a supportive and supervised environment in which to enact new IPV protocols. A key characteristic of the most integrated responses was the connection or "linkages" between different individual factors. Irrespective of their service entry point, what emerged as crucial was a connected systems-level response, with all elements implemented in a coordinated manner. © 2017 The Population Council, Inc.
NASA Astrophysics Data System (ADS)
Crawford, Bobby Grant
In an effort to field smaller and cheaper Uninhabited Aerial Vehicles (UAVs), the Army has expressed an interest in an ability of the vehicle to autonomously detect and avoid obstacles. Current systems are not suitable for small aircraft. NASA Langley Research Center has developed a vision sensing system that uses small semiconductor cameras. The feasibility of using this sensor for the purpose of autonomous obstacle avoidance by a UAV is the focus of the research presented in this document. The vision sensor characteristics are modeled and incorporated into guidance and control algorithms designed to generate flight commands based on obstacle information received from the sensor. The system is evaluated by simulating the response to these flight commands using a six degree-of-freedom, non-linear simulation of a small, fixed wing UAV. The simulation is written using the MATLAB application and runs on a PC. Simulations were conducted to test the longitudinal and lateral capabilities of the flight control for a range of airspeeds, camera characteristics, and wind speeds. Results indicate that the control system is suitable for obstacle avoiding flight control using the simulated vision system. In addition, a method for designing and evaluating the performance of such a system has been developed that allows the user to easily change component characteristics and evaluate new systems through simulation.
Development of a multi-body nonlinear model for a seat-occupant system
NASA Astrophysics Data System (ADS)
Azizi, Yousof
A car seat is an important component of today's cars, which directly affects ride comfort experienced by occupants. Currently, the process of ride comfort evaluation is subjective. Alternatively, the ride comfort can be evaluated by a series of objective metrics in the dynamic response of the occupant. From previous studies it is well known that the dynamic behavior of a seat-occupant system is greatly affected by soft nonlinear viscoelastic materials used in the seat cushion. Therefore, in this research, especial attention was given to efficiently modeling the behavior of seat cushion. In the first part of this research, a phenomenological nonlinear viscoelastic foam model was proposed and its ability to capture uniaxial behavior of foam was investigated. The model is based on the assumption that the total stress can be decomposed into the sum of a nonlinear elastic component, modeled by a higher order polynomial of strain, and a nonlinear hereditary type viscoelastic component. System identification procedures were developed to estimate the model parameters using uniaxial cyclic compression data from experiments conducted at different rates on two types of low density polyurethane foams and three types of high density CONFOR foams. The performance of the proposed model was compared to that of other traditional continuum models. For each foam type, it was observed that lower order models are sufficient to describe the uniaxial behavior of the foam compressed at different rates. Although, the estimated model parameters were functions of the input strain rate. Alternatively, higher order comprehensive models, with strain independent parameters, were estimated as well. The estimated comprehensive model predicts foam responses under different compression rates. Also, a methodology was proposed to predict the stress-response of a layered foam system using the estimated models of each foam in the layers. Next, the estimated foam model was incorporated into a single-degree of freedom foam-mass model which is also the simplest model of seat-occupant systems. The steady-state response of the system when it is subjected to harmonic base excitation was studied using the incremental harmonic balance method. The incremental harmonic balance method was used to reduce the time required to generate the steady-state response of the system. The incremental harmonic balance method was used to reduce the time required to generate the steady-state response of the system. Experiments are conducted on a single-degree of freedom foam-mass system subjected to harmonic base excitation. Initially, the simulated response predictions were found to deviate from the experimental results. The foam-mass model was then modified to incorporate rate dependency of foam parameters resulting in response predictions that were in good agreement with experimental results. In the second part of this research, the dynamic response of a seat-occupant system was examined through a more realistic planar multi-body seat-occupant model. A constraint Lagrangian formulation was used to derive the governing equations for the seat-occupant model. First, the governing equations were solved numerically to obtain the occupant transient response, the occupant's H-Point location and the interfacial pressure distribution. Variations in the H-Point location and the seat-occupant pressure distribution with changes in the seat-occupant parameters, including the seat geometry and the occupant's characteristics, were studied. The estimated pressure was also investigated experimentally and was found to match with the results obtained using the seat-occupant model. Next, the incremental harmonic balance method was modified and used to obtain the occupant's steady-state response when the seat-occupant system was subjected to harmonic base excitation at different frequencies. The system frequency response and mode shapes at different frequencies were also obtained and compared to the previously measured experimental frequency responses. Finally, variations in the estimated frequency response with changes in the seat-occupant parameters, including the seat geometry and the occupant characteristics, were studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macknick, Jordan; Zhou, Ella; O'Connell, Matthew
The U.S. electricity sector is highly dependent upon water resources; changes in water temperatures and water availability can affect operational costs and the reliability of power systems. Despite the importance of water for power system operations, the effects of changes in water characteristics on multiple generators in a system are generally not modeled. Moreover, demand response measures, which can change the magnitude and timing of loads and can have beneficial impacts on power system operations, have not yet been evaluated in the context of water-related power vulnerabilities. This effort provides a first comprehensive vulnerability and cost analysis of water-related impactsmore » on a modeled power system and the potential for demand response measures to address vulnerability and cost concerns. This study uniquely combines outputs and inputs of a water and power plant system model, production cost, model, and relative capacity value model to look at variations in cooling systems, policy-related thermal curtailments, and demand response measures to characterize costs and vulnerability for a test system. Twenty-five scenarios over the course of one year are considered: a baseline scenario as well as a suite of scenarios to evaluate six cooling system combinations, the inclusion or exclusion of policy-related thermal curtailments, and the inclusion or exclusion of demand response measures. A water and power plant system model is utilized to identify changes in power plant efficiencies resulting from ambient conditions, a production cost model operating at an hourly scale is used to calculate generation technology dispatch and costs, and a relative capacity value model is used to evaluate expected loss of carrying capacity for the test system.« less
Simulation of pyroshock environments using a tunable resonant fixture
Davie, N.T.
1996-10-15
Disclosed are a method and apparatus for simulating pyrotechnic shock for the purpose of qualifying electronic components for use in weapons, satellite, and aerospace applications. According to the invention, a single resonant bar fixture has an adjustable resonant frequency in order to exhibit a desired shock response spectrum upon mechanical impact. The invention eliminates the need for availability of a large number of different fixtures, capable of exhibiting a range of shock response characteristics, in favor of a single tunable system. 32 figs.
Simulation of pyroshock environments using a tunable resonant fixture
Davie, Neil T.
1996-01-01
Disclosed are a method and apparatus for simulating pyrotechnic shock for the purpose of qualifying electronic components for use in weapons, satellite, and aerospace applications. According to the invention, a single resonant bar fixture has an adjustable resonant frequency in order to exhibit a desired shock response spectrum upon mechanical impact. The invention eliminates the need for availability of a large number of different fixtures, capable of exhibiting a range of shock response characteristics, in favor of a single tunable system.
User's Manual for Computer Program ROTOR. [to calculate tilt-rotor aircraft dynamic characteristics
NASA Technical Reports Server (NTRS)
Yasue, M.
1974-01-01
A detailed description of a computer program to calculate tilt-rotor aircraft dynamic characteristics is presented. This program consists of two parts: (1) the natural frequencies and corresponding mode shapes of the rotor blade and wing are developed from structural data (mass distribution and stiffness distribution); and (2) the frequency response (to gust and blade pitch control inputs) and eigenvalues of the tilt-rotor dynamic system, based on the natural frequencies and mode shapes, are derived. Sample problems are included to assist the user.
Evolving Requirements for Magnetic Tape Data Storage Systems
NASA Technical Reports Server (NTRS)
Gniewek, John J.
1996-01-01
Magnetic tape data storage systems have evolved in an environment where the major applications have been back-up/restore, disaster recovery, and long term archive. Coincident with the rapidly improving price-performance of disk storage systems, the prime requirements for tape storage systems have remained: (1) low cost per MB, (2) a data rate balanced to the remaining system components. Little emphasis was given to configuring the technology components to optimize retrieval of the stored data. Emerging new applications such as network attached high speed memory (HSM), and digital libraries, place additional emphasis and requirements on the retrieval of the stored data. It is therefore desirable to consider the system to be defined both by STorage And Retrieval System (STARS) requirements. It is possible to provide comparative performance analysis of different STARS by incorporating parameters related to (1) device characteristics, and (2) application characteristics in combination with queuing theory analysis. Results of these analyses are presented here in the form of response time as a function of system configuration for two different types of devices and for a variety of applications.
2015-06-19
effective and scientifically valid method of making comparisons of clothing and equipment changes prior to conducting human research. predictive modeling...valid method of making comparisons of clothing and equipment changes prior to conducting human research. 2 INTRODUCTION Modern day...clothing and equipment changes prior to conducting human research. METHODS Ensembles Three different body armor (BA) plus clothing ensembles were
Blends and Nanocomposite Biomaterials for Articular Cartilage Tissue Engineering
Doulabi, Azadehsadat Hashemi; Mequanint, Kibret; Mohammadi, Hadi
2014-01-01
This review provides a comprehensive assessment on polymer blends and nanocomposite systems for articular cartilage tissue engineering applications. Classification of various types of blends including natural/natural, synthetic/synthetic systems, their combination and nanocomposite biomaterials are studied. Additionally, an inclusive study on their characteristics, cell responses ability to mimic tissue and regenerate damaged articular cartilage with respect to have functionality and composition needed for native tissue, are also provided. PMID:28788131
Design, fabrication and test of a 4750 Newton-meter-second double Gimbal control moment gyroscope
NASA Technical Reports Server (NTRS)
Cook, Lewis; Golley, Paul; Krome, Henning; Blondin, Joseph; Gurrisi, Charles; Kolvek, John
1989-01-01
The development of a prototype Control Moment Gyroscope (CMG) is discussed. Physical characteristics and the results of functional testing are presented to demonstrate the level of system performance obtained. Particular attention is given to how the man-rated mission requirement influenced the choice of the materials, fabrication, and design details employed. Comparisons are made of the measured system responses against the prediction generated by computer simulation.
Impact of the rail-pad multi-discrete model upon the prediction of the rail response
NASA Astrophysics Data System (ADS)
Mazilu, T.; Leu, M.
2017-08-01
Wheel/rail vibration has many technical effects such as wear of the rolling surfaces, rolling noise, settlement of the ballast and subgrade etc. This vibration is depending on the rail pad characteristic and subsequently, it is important to have an accurate overview on the relation between the rail pad characteristic and the level of the wheel/rail vibration. To this end, much theoretical and experimental research has been developed in the past, and for the theoretical approach the track model, in general, and, particularly, the rail pad model is of crucial importance. Usually, the rail pad model is discrete model one, neglecting the length of the rail pad. This fact is questionable because the sleepers span is only 4 times the rail pad length. Using the rail pad discrete model, the rail response is overestimated when the frequency of the excitation equals the pinned-pinned resonance frequency. In this paper, a multi-discrete model for the rail pad, consisting in many Kelvin-Voigt parallel systems, is inserted into an analytical model of the track. The track model is reduced to a rail taken as infinite Timoshenko beam, discretely supported via rail pad, sleeper and ballast. The influence of the number of Kelvin-Voigt systems of the rail pad model on the rail response is analysed.
[What role for paraclinical investigations within clinical trials conducted in psychiatric patients?
Kaladjian, A; Adida, M; Simon, N; Belzeaux, R; Blin, O; Fakra, E; Azorin, J-M
2016-12-01
As in the usual care of patients, paraclinical investigations have today only a very modest role in clinical trials in psychiatry, mainly to complete the pre-therapeutical assessments prior to inclusion of subjects or to monitor treatment tolerance. Yet, the accumulation of data in neurosciences suggests the next emergence of biomarkers, whose interest is that they are closely associated to the biological disturbances underlying psychiatric illnesses, and that they are accessible by means of technological tools such as imaging devices. These tools allow to explore the effects on brain of psychotropic medications, such as antidepressants, antipsychotics, or mood stabilizers, in relation to their therapeutic action. The obtained results allow to consider the use of such biomarkers in clinical trials in addition to more conventional approaches. In particular, they could be used as targets to measure brain response to treatment in association with clinical response, to predict a therapeutic response from the neurofunctional characteristics of patients, or to establish the safety profile of drugs on the nervous system. The use of such biomarkers in clinical trials would help to better define the explored populations and their characteristics, as well as the variables to assess, and to better measure the impact of the treatments and their potential harmful effects on the nervous system. © L’Encéphale, Paris, 2016.
Strain Sensing Characteristics of Rubbery Carbon Nanotube Composite for Flexible Sensors.
Choi, Gyong Rak; Park, Hyung-ki; Huh, Hoon; Kim, Young-Ju; Ham, Heon; Kim, Hyoun Woo; Lim, Kwon Taek; Kim, Sung Yong; Kang, Inpil
2016-02-01
In this study, the piezoresistive properties of CNT (Carbon Nanotube)/EPDM composite are characterized for the applications of a flexible sensor. The CNT/EPDM composites were prepared by using a Brabender mixer with MWCNT (Multi-walled Carbon Nanotube) and organoclay. The static and quasi-dynamic voltage output responses of the composite sensor were also experimentally studied and were compared with those of a conventional foil strain gage. The voltage output by using a signal processing system was fairly stable and it shows somehow linear responses at both of loading and unloading cases with hysteresis. The voltage output was distorted under a quasi-dynamic test due to its unsymmetrical piezoresistive characteristics. The CNT/EPDM sensor showed quite tardy response to its settling time test under static deflections and that would be a hurdle for its real time applications. Furthermore, since the CNT/EPDM sensor does not have directional voltage output to tension and compression, it only could be utilized as a mono-directional force sensor such as a compressive touch sensor.
Multi-purpose wind tunnel reaction control model block
NASA Technical Reports Server (NTRS)
Dresser, H. S.; Daileda, J. J. (Inventor)
1978-01-01
A reaction control system nozzle block is provided for testing the response characteristics of space vehicles to a variety of reaction control thruster configurations. A pressurized air system is connected with the supply lines which lead to the individual jet nozzles. Each supply line terminates in a compact cylindrical plenum volume, axially perpendicular and adjacent to the throat of the jet nozzle. The volume of the cylindrical plenum is sized to provide uniform thrust characteristics from each jet nozzle irrespective of the angle of approach of the supply line to the plenum. Each supply line may be plugged or capped to stop the air supply to selected jet nozzles, thereby enabling a variety of nozzle configurations to be obtained from a single model nozzle block.
Wijdicks, Eelco F M; Kramer, Andrew A; Rohs, Thomas; Hanna, Susan; Sadaka, Farid; O'Brien, Jacklyn; Bible, Shonna; Dickess, Stacy M; Foss, Michelle
2015-02-01
Impaired consciousness has been incorporated in prediction models that are used in the ICU. The Glasgow Coma Scale has value but is incomplete and cannot be assessed in intubated patients accurately. The Full Outline of UnResponsiveness score may be a better predictor of mortality in critically ill patients. Thirteen ICUs at five U.S. hospitals. One thousand six hundred ninety-five consecutive unselected ICU admissions during a six-month period in 2012. Glasgow Coma Scale and Full Outline of UnResponsiveness score were recorded within 1 hour of admission. Baseline characteristics and physiologic components of the Acute Physiology and Chronic Health Evaluation system, as well as mortality were linked to Glasgow Coma Scale/Full Outline of UnResponsiveness score information. None. We recruited 1,695 critically ill patients, of which 1,645 with complete data could be linked to data in the Acute Physiology and Chronic Health Evaluation system. The area under the receiver operating characteristic curve of predicting ICU mortality using the Glasgow Coma Scale was 0.715 (95% CI, 0.663-0.768) and using the Full Outline of UnResponsiveness score was 0.742 (95% CI, 0.694-0.790), statistically different (p = 0.001). A similar but nonsignificant difference was found for predicting hospital mortality (p = 0.078). The respiratory and brainstem reflex components of the Full Outline of UnResponsiveness score showed a much wider range of mortality than the verbal component of Glasgow Coma Scale. In multivariable models, the Full Outline of UnResponsiveness score was more useful than the Glasgow Coma Scale for predicting mortality. The Full Outline of UnResponsiveness score might be a better prognostic tool of ICU mortality than the Glasgow Coma Scale in critically ill patients, most likely a result of incorporating brainstem reflexes and respiration into the Full Outline of UnResponsiveness score.
Predicting catastrophes of non-autonomous networks with visibility graphs and horizontal visibility
NASA Astrophysics Data System (ADS)
Zhang, Haicheng; Xu, Daolin; Wu, Yousheng
2018-05-01
Prediction of potential catastrophes in engineering systems is a challenging problem. We first attempt to construct a complex network to predict catastrophes of a multi-modular floating system in advance of their occurrences. Response time series of the system can be mapped into an virtual network by using visibility graph or horizontal visibility algorithm. The topology characteristics of the networks can be used to forecast catastrophes of the system. Numerical results show that there is an obvious corresponding relationship between the variation of topology characteristics and the onset of catastrophes. A Catastrophe Index (CI) is proposed as a numerical indicator to measure a qualitative change from a stable state to a catastrophic state. The two approaches, the visibility graph and horizontal visibility algorithms, are compared by using the index in the reliability analysis with different data lengths and sampling frequencies. The technique of virtual network method is potentially extendable to catastrophe predictions of other engineering systems.
Research on Fault Characteristics and Line Protections Within a Large-scale Photovoltaic Power Plant
NASA Astrophysics Data System (ADS)
Zhang, Chi; Zeng, Jie; Zhao, Wei; Zhong, Guobin; Xu, Qi; Luo, Pandian; Gu, Chenjie; Liu, Bohan
2017-05-01
Centralized photovoltaic (PV) systems have different fault characteristics from distributed PV systems due to the different system structures and controls. This makes the fault analysis and protection methods used in distribution networks with distributed PV not suitable for a centralized PV power plant. Therefore, a consolidated expression for the fault current within a PV power plant under different controls was calculated considering the fault response of the PV array. Then, supported by the fault current analysis and the on-site testing data, the overcurrent relay (OCR) performance was evaluated in the collection system of an 850 MW PV power plant. It reveals that the OCRs at downstream side on overhead lines may malfunction. In this case, a new relay scheme was proposed using directional distance elements. In the PSCAD/EMTDC, a detailed PV system model was built and verified using the on-site testing data. Simulation results indicate that the proposed relay scheme could effectively solve the problems under variant fault scenarios and PV plant output levels.
NASA Technical Reports Server (NTRS)
Corless, L. D.; Blanken, C. L.
1983-01-01
A multi-phase program is being conducted to study, in a generic sense and through ground simulation, the effects of engine response, rotor inertia, rpm control, excess power, and vertical damping on specific maneuvers included in nap-of-the-Earth (NOE) operations. The helicopter configuration with an rpm-governed gas-turbine engine are considered. Handling-qualities-criteria data are considered in light of aspects peculiar to rotary-wing and NOE operations. The results of three moving-based piloted simulation studies are summarized and the frequency, characteristics of the helicopter thrust response which set it apart from other VTOL types are explained. Power-system response is affected by both the engine-governor response and the level of rotor inertia. However, results indicate that with unlimited power, variations in engine response can have a significant effect on pilot rating, whereas changes in rotor inertia, in general, do not. The results also show that any pilot interaction required to maintain proper control can significantly degrade handling qualities. Data for variations in vertical damping and collective sensitivity are compared with existing handling-qualities specifications, MIL-F-83300 and AGARD 577, and show a need for higher minimums for both damping and sensitivity for the bob-up task. Results for cases of limited power are also shown.
Research on the response characteristics of solenoid valve of the air-jet loom by simulation
NASA Astrophysics Data System (ADS)
Jin, Yuzhen; Deng, Ruoyu; Jin, Yingzi; Hu, Xudong
2013-12-01
Solenoid valve is one of the executive parts of weft insertion control system. According to the response characteristics of the solenoid valve, an improved design becomes a necessity. Firstly, the numerical model was established after analyzing the solenoid valve during its start-up and shut-down. Comparing the simulation data with the practical data, it is verified that the numerical simulation model has a high feasibility. Secondly, excitation voltage and spring pre-compression were adjusted respectively, and the response rules after adjusting were investigated. The research of the study shows: the response time tends to be inverse proportional to the excitation voltage during start-up, and it becomes a constant value with the increase of the excitation voltage; the response time is proportional to the spring pre-compression when the solenoid valve starts up, it is inverse proportional to spring pre-compression when the solenoid valve shuts down. And the total response time is a constant value with the increase of the spring pre-compression. Therefore, the value of the excitation voltage and the spring pre-compression should be selected when the curve is becoming flatten. The results of the research can provide the reference to the further development of the solenoid valve.
Impact of the time scale of model sensitivity response on coupled model parameter estimation
NASA Astrophysics Data System (ADS)
Liu, Chang; Zhang, Shaoqing; Li, Shan; Liu, Zhengyu
2017-11-01
That a model has sensitivity responses to parameter uncertainties is a key concept in implementing model parameter estimation using filtering theory and methodology. Depending on the nature of associated physics and characteristic variability of the fluid in a coupled system, the response time scales of a model to parameters can be different, from hourly to decadal. Unlike state estimation, where the update frequency is usually linked with observational frequency, the update frequency for parameter estimation must be associated with the time scale of the model sensitivity response to the parameter being estimated. Here, with a simple coupled model, the impact of model sensitivity response time scales on coupled model parameter estimation is studied. The model includes characteristic synoptic to decadal scales by coupling a long-term varying deep ocean with a slow-varying upper ocean forced by a chaotic atmosphere. Results show that, using the update frequency determined by the model sensitivity response time scale, both the reliability and quality of parameter estimation can be improved significantly, and thus the estimated parameters make the model more consistent with the observation. These simple model results provide a guideline for when real observations are used to optimize the parameters in a coupled general circulation model for improving climate analysis and prediction initialization.
NASA Technical Reports Server (NTRS)
Shen, Ji-Yao; Taylor, Lawrence W., Jr.
1994-01-01
It is beneficial to use a distributed parameter model for large space structures because the approach minimizes the number of model parameters. Holzer's transfer matrix method provides a useful means to simplify and standardize the procedure for solving the system of partial differential equations. Any large space structures can be broken down into sub-structures with simple elastic and dynamical properties. For each single element, such as beam, tether, or rigid body, we can derive the corresponding transfer matrix. Combining these elements' matrices enables the solution of the global system equations. The characteristics equation can then be formed by satisfying the appropriate boundary conditions. Then natural frequencies and mode shapes can be determined by searching the roots of the characteristic equation at frequencies within the range of interest. This paper applies this methodology, and the maximum likelihood estimation method, to refine the modal characteristics of the NASA Mini-Mast Truss by successively matching the theoretical response to the test data of the truss. The method is being applied to more complex configurations.
Temperature dependence of frequency response characteristics in organic field-effect transistors
NASA Astrophysics Data System (ADS)
Lu, Xubing; Minari, Takeo; Liu, Chuan; Kumatani, Akichika; Liu, J.-M.; Tsukagoshi, Kazuhito
2012-04-01
The frequency response characteristics of semiconductor devices play an essential role in the high-speed operation of electronic devices. We investigated the temperature dependence of dynamic characteristics in pentacene-based organic field-effect transistors and metal-insulator-semiconductor capacitors. As the temperature decreased, the capacitance-voltage characteristics showed large frequency dispersion and a negative shift in the flat-band voltage at high frequencies. The cutoff frequency shows Arrhenius-type temperature dependence with different activation energy values for various gate voltages. These phenomena demonstrate the effects of charge trapping on the frequency response characteristics, since decreased mobility prevents a fast charge response for alternating current signals at low temperatures.
Wang, Xiaolin; Huang, Dehui; Huang, Xusheng; Zhang, Jiatang; Ran, Ye; Lou, Xin; Gui, Qiuping; Yu, Shengyuan
2017-04-15
Chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroid (CLIPPERS) was first described in 2010. The characteristic clinical picture, radiological distribution and steroid response have been well-described in previous reports. However, the underlying pathogenesis and nosological position of CLIPPERS in the CNS require further investigation for the primary CNS lymphoma have been identified by autopsy subsequently. Here, we report a 51-year-old woman who was diagnosed with CLIPPERS but progressed to primary CNS lymphomatoid granulomatosis, which supports that CLIPPERS is not just an inflammatory CNS disorder. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Frady, Greg; Smaolloey, Kurt; LaVerde, Bruce; Bishop, Jim
2004-01-01
The paper will discuss practical and analytical findings of a test program conducted to assist engineers in determining which analytical strain fields are most appropriate to describe the crack initiating and crack propagating stresses in thin walled cylindrical hardware that serves as part of the Space Shuttle Main Engine's fuel system. In service the hardware is excited by fluctuating dynamic pressures in a cryogenic fuel that arise from turbulent flow/pump cavitation. A bench test using a simplified system was conducted using acoustic energy in air to excite the test articles. Strain measurements were used to reveal response characteristics of two Flowliner test articles that are assembled as a pair when installed in the engine feed system.
Sensitivity of nonlinear photoionization to resonance substructure in collective excitation
Mazza, T.; Karamatskou, A.; Ilchen, M.; Bakhtiarzadeh, S.; Rafipoor, A. J.; O'Keeffe, P.; Kelly, T. J.; Walsh, N.; Costello, J. T.; Meyer, M.; Santra, R.
2015-01-01
Collective behaviour is a characteristic feature in many-body systems, important for developments in fields such as magnetism, superconductivity, photonics and electronics. Recently, there has been increasing interest in the optically nonlinear response of collective excitations. Here we demonstrate how the nonlinear interaction of a many-body system with intense XUV radiation can be used as an effective probe for characterizing otherwise unresolved features of its collective response. Resonant photoionization of atomic xenon was chosen as a case study. The excellent agreement between experiment and theory strongly supports the prediction that two distinct poles underlie the giant dipole resonance. Our results pave the way towards a deeper understanding of collective behaviour in atoms, molecules and solid-state systems using nonlinear spectroscopic techniques enabled by modern short-wavelength light sources. PMID:25854939
NASA Astrophysics Data System (ADS)
Desvillettes, Laurent; Lorenzani, Silvia
2012-09-01
The mechanism leading to gas damping in micro-electro-mechanical systems (MEMS) devices vibrating at high frequencies is investigated by using the linearized Boltzmann equation based on simplified kinetic models and diffuse reflection boundary conditions. Above a certain frequency of oscillation, the sound waves propagating through the gas are trapped in the gaps between the moving elements and the fixed boundaries of the microdevice. In particular, we found a scaling law, valid for all Knudsen numbers Kn (defined as the ratio between the gas mean free path and a characteristic length of the gas flow), that predicts a resonant response of the system. This response enables a minimization of the damping force exerted by the gas on the oscillating wall of the microdevice.
Wan, Yi; Sun, Yan; Qi, Peng; Wang, Peng; Zhang, Dun
2014-05-15
Nanomaterial-based 'chemical nose' sensor with sufficient sensing specificity is a useful analytical tool for the detection of toxicologically important substances in complicated biological systems. A sensor array containing three quaternized magnetic nanoparticles (q-MNPs)-fluorescent polymer systems has been designed to identify and quantify bacteria. The bacterial cell membranes disrupt the q-MNP-fluorescent polymer, generating unique fluorescence response array. The response intensity of the array is dependent on the level of displacement determined by the relative q-MNP-fluorescent polymer binding strength and bacteria cells-MNP interaction. These characteristic responses show a highly repeatable bacteria cells and can be differentiated by linear discriminant analysis (LDA). Based on the array response matrix from LDA, our approach has been used to measure bacteria with an accuracy of 87.5% for 10(7) cfu mL(-1) within 20 min. Combined with UV-vis measurement, the method can be successfully performed to identify and detect eight different pathogen samples with an accuracy of 96.8%. The measurement system has a potential for further applications and provides a facile and simple method for the rapid analysis of protein, DNA, and pathogens. Copyright © 2013 Elsevier B.V. All rights reserved.
Lithium Battery Transient Response as a Diagnostic Tool
NASA Astrophysics Data System (ADS)
Denisov, E.; Nigmatullin, R.; Evdokimov, Y.; Timergalina, G.
2018-05-01
Lithium batteries are currently used as the main energy storage for electronic devices. Progress in the field of portable electronic devices is significantly determined by the improvement of their weight/dimensional characteristics and specific capacity. In addition to the high reliability required of lithium batteries, in some critical applications proper diagnostics are required. Corresponding techniques allow prediction and prevention of operation interruption and avoidance of expensive battery replacement, and also provide additional benefits. Many effective diagnostic methods have been suggested; however, most of them require expensive experimental equipment, as well as interruption or strong perturbation of the operating mode. In the framework of this investigation, a simple diagnostic method based on analysis of transient processes is proposed. The transient response is considered as a reaction to an applied load variation that typically corresponds to normal operating conditions for most real applications. The transient response contains the same information as the impedance characteristic for the system operating in linear mode. Taking into account the large number of publications describing the impedance response associated with diagnostic methods, it can be assumed that the transient response contains a sufficient amount of information for creation of effective diagnostic systems. The proposed experimental installation is based on a controlled load, providing current variation, measuring equipment, and data processing electronics. It is proposed to use the second exponent parameters U 2 and β to estimate the state of charge for secondary lithium batteries. The proposed method improves the accuracy and reliability of a set of quantitative parameters associated with electrochemical energy sources.
A scaling procedure for the response of an isolated system with high modal overlap factor
NASA Astrophysics Data System (ADS)
De Rosa, S.; Franco, F.
2008-10-01
The paper deals with a numerical approach that reduces some physical sizes of the solution domain to compute the dynamic response of an isolated system: it has been named Asymptotical Scaled Modal Analysis (ASMA). The proposed numerical procedure alters the input data needed to obtain the classic modal responses to increase the frequency band of validity of the discrete or continuous coordinates model through the definition of a proper scaling coefficient. It is demonstrated that the computational cost remains acceptable while the frequency range of analysis increases. Moreover, with reference to the flexural vibrations of a rectangular plate, the paper discusses the ASMA vs. the statistical energy analysis and the energy distribution approach. Some insights are also given about the limits of the scaling coefficient. Finally it is shown that the linear dynamic response, predicted with the scaling procedure, has the same quality and characteristics of the statistical energy analysis, but it can be useful when the system cannot be solved appropriately by the standard Statistical Energy Analysis (SEA).
Ares I-X In-Flight Modal Identification
NASA Technical Reports Server (NTRS)
Bartkowicz, Theodore J.; James, George H., III
2011-01-01
Operational modal analysis is a procedure that allows the extraction of modal parameters of a structure in its operating environment. It is based on the idealized premise that input to the structure is white noise. In some cases, when free decay responses are corrupted by unmeasured random disturbances, the response data can be processed into cross-correlation functions that approximate free decay responses. Modal parameters can be computed from these functions by time domain identification methods such as the Eigenvalue Realization Algorithm (ERA). The extracted modal parameters have the same characteristics as impulse response functions of the original system. Operational modal analysis is performed on Ares I-X in-flight data. Since the dynamic system is not stationary due to propellant mass loss, modal identification is only possible by analyzing the system as a series of linearized models over short periods of time via a sliding time-window of short time intervals. A time-domain zooming technique was also employed to enhance the modal parameter extraction. Results of this study demonstrate that free-decay time domain modal identification methods can be successfully employed for in-flight launch vehicle modal extraction.
Antagonistic autoregulation speeds up a homogeneous response in Escherichia coli.
Rodrigo, Guillermo; Bajic, Djordje; Elola, Ignacio; Poyatos, Juan F
2016-10-31
By integrating positive and negative feedback loops, biological systems establish intricate gene expression patterns linked to multistability, pulsing, and oscillations. This depends on the specific characteristics of each interlinked feedback, and thus one would expect additional expression programs to be found. Here, we investigate one such program associated with an antagonistic positive and negative transcriptional autoregulatory motif derived from the multiple antibiotic resistance (mar) system of Escherichia coli. We studied the dynamics of the system by combining a predictive mathematical model with high-resolution experimental measures of the response both at the population and single-cell level. We show that in this motif the weak positive autoregulation does not slow down but rather enhances response speedup in combination with a strong negative feedback loop. This balance of feedback strengths anticipates a homogeneous population phenotype, which we corroborate experimentally. Theoretical analysis also emphasized the specific molecular properties that determine the dynamics of the mar phenotype. More broadly, response acceleration could provide a rationale for the presence of weak positive feedbacks in other biological scenarios exhibiting these interlinked regulatory architectures.
Mass failures and other processes of sediment production in Pacific northwest forest landscapes
Frederick J. Swanson; Lee E. Benda; Stanley H. Duncan; Gordon E. Grant; Walter F. Megahan; Leslie M. Reid; Robert R. Ziemer
1987-01-01
Abstract - Accelerated sediment production by mass failures and other erosion processes is an important link between management of forest resources and fish resources. Dominant processes and the rates of sediment production vary greatly throughout the Pacific Northwest in response to geologic and climatic factors. The complex sediment routing systems characteristic...
A Cognitive Anthropological Perspective on First-Graders' Classifications of Picture Storybooks.
ERIC Educational Resources Information Center
Leung, Cynthia B.
2001-01-01
Finds that children in a culturally diverse first-grade classroom sorted 15 picture books into piles of books having similar characteristics, classifying books by topic, genre, author, culture, emotional response, and physical property of the book. Discusses how some aspects of children's classification systems were similar to the teacher's way of…
Applications of selective catalytic reduction (SCR) systems and wet flue gas desulfurization (FGD) scrubbers on coal-fired boilers have led to substantial reductions in emissions of nitrogen oxides (NOX) and sulfur dioxide (SO2). However, observations of pilot- and full-scale tes...
On the Performance Characteristics of Latent-Factor and Knowledge Tracing Models
ERIC Educational Resources Information Center
Klingler, Severin; Käser, Tanja; Solenthaler, Barbara; Gross, Markus
2015-01-01
Modeling student knowledge is a fundamental task of an intelligent tutoring system. A popular approach for modeling the acquisition of knowledge is Bayesian Knowledge Tracing (BKT). Various extensions to the original BKT model have been proposed, among them two novel models that unify BKT and Item Response Theory (IRT). Latent Factor Knowledge…
Nondestructive defect detection in laser optical coatings
NASA Astrophysics Data System (ADS)
Marrs, C. D.; Porteus, J. O.; Palmer, J. R.
1985-03-01
Defects responsible for laser damage in visible-wavelength mirrors are observed at nondamaging intensities using a new video microscope system. Studies suggest that a defect scattering phenomenon combined with lag characteristics of video cameras makes this possible. Properties of the video-imaged light are described for multilayer dielectric coatings and diamond-turned metals.
ERIC Educational Resources Information Center
Waxman, Robyn P.; Spencer, Patricia E.; Poisson, Susan S.
1996-01-01
The Greenspan-Lieberman Observational System Revised was used to evaluate characteristics of dyadic interactions between 10 hearing mothers and hearing toddlers (HH), 10 deaf mothers and deaf toddlers (DD), and 10 hearing mothers and deaf toddlers (HD). Findings suggest that assessment instruments require some modifications and results must be…
USDA-ARS?s Scientific Manuscript database
Detection and rapid response to in-season changes of soil nutrient availability and plant needs with weather conditions and site-specific characteristics are essential to the optimal performance of an agronomic crop production system. With recent advances in material science, detector design and se...
NASA Technical Reports Server (NTRS)
Ambs, P.; Fainman, Y.; Esener, S.; Lee, S. H.
1988-01-01
Holographic optical elements (HOEs) of space-variant impulse response have been designed and generated using a computerized optical system. HOEs made of dichromated gelatin have been produced and used for spatial light modulator defect removal and optical interconnects. Experimental performance and characteristics are presented.
Teacher Burnout in Metro Manila Secondary Schools.
ERIC Educational Resources Information Center
Mercado, Nenita
1987-01-01
Explores and defines teacher burnout and lists characteristics; (1) loss of idealism; (2) loss of motivation; (3) loss of concern; and (4) loss of energy. Specifically focuses on secondary teachers attitudes toward burnout in the Metro-Manila School System. Includes a list of responses to selected questions from the survey on burnout and…
IPV6 Alias Resolution Via Induced Router Fragmentation
2013-06-01
26 3.4 Controlled Alias Resolution . . . . . . . . . . . . . . . . . . . . . . 28 4 Analysis 29 4.1 Efficacy of TBT ...17 Figure 3.1 TBT , the “Too-Big Trick” . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 3.2 GNS3 Test Topology with Asymmetric MTU...13 Table 4.1 TBT Response Characteristics . . . . . . . . . . . . . . . . . . . . . . 30 Table 4.2 Operating System Identifiers for Alias
Characteristics of gaps and natural regeneration in mature longleaf pine flatwoods ecosystems
Jennifer L. Gagnon; Eric J. Jokela; W.K. Moser; Dudley A. Huber
2004-01-01
Developing uneven-aged structure in mature stands of longleaf pine requires scientifically based silvicultural systems that are reliable, productive and sustainable. Understanding seedling responses to varying levels of site resource availability within forest gaps is essential for effectively converting even-aged stands to uneven-aged stands. A project was initiated...
Duong, Hieu V; Herrera, Lauren Nicholas; Moore, Justin Xavier; Donnelly, John; Jacobson, Karen E; Carlson, Jestin N; Mann, N Clay; Wang, Henry E
2018-01-01
Older adults, those aged 65 and older, frequently require emergency care. However, only limited national data describe the Emergency Medical Services (EMS) care provided to older adults. We sought to determine the characteristics of EMS care provided to older adults in the United States. We used data from the 2014 National Emergency Medical Services Information System (NEMSIS), encompassing EMS response data from 46 States and territories. We excluded EMS responses for children <18 years, interfacility transports, intercepts, non-emergency medical transports, and standby responses. We defined older adults as age ≥65 years. We compared patient demographics (age, sex, race, primary payer), response characteristics (dispatch time, location type, time intervals), and clinical course (clinical impression, injury, procedures, medications) between older and younger adult EMS emergency 9-1-1 responses. During the study period there were 20,212,245 EMS emergency responses. Among the 16,116,219 adult EMS responses, there were 6,569,064 (40.76%) older and 9,547,155 (59.24%) younger adults. Older EMS patients were more likely to be white and the EMS incident to be located in healthcare facilities (clinic, hospital, nursing home). Compared with younger patients, older EMS patients were more likely to present with syncope (5.68% vs. 3.40%; OR 1.71; CI: 1.71-1.72), cardiac arrest/rhythm disturbance (3.27% vs. 1.69%; OR 1.97; CI: 1.96-1.98), stroke (2.18% vs. 0.74%; OR 2.99; CI: 2.96-3.02) and shock (0.77% vs. 0.38%; OR 2.02; CI: 2.00-2.04). Common EMS interventions performed on older persons included intravenous access (32.02%), 12-lead ECG (14.37%), CPR (0.87%), and intubation (2.00%). The most common EMS drugs administered to older persons included epinephrine, atropine, furosemide, amiodarone, and albuterol or ipratropium. One of every three U.S. EMS emergency responses involves older adults. EMS personnel must be prepared to care for the older patient.
Dynamic analysis of a 5-MW tripod offshore wind turbine by considering fluid-structure interaction
NASA Astrophysics Data System (ADS)
Zhang, Li-wei; Li, Xin
2017-10-01
Fixed offshore wind turbines usually have large underwater supporting structures. The fluid influences the dynamic characteristics of the structure system. The dynamic model of a 5-MW tripod offshore wind turbine considering the pile-soil system and fluid structure interaction (FSI) is established, and the structural modes in air and in water are obtained by use of ANSYS. By comparing low-order natural frequencies and mode shapes, the influence of sea water on the free vibration characteristics of offshore wind turbine is analyzed. On basis of the above work, seismic responses under excitation by El-Centro waves are calculated by the time-history analysis method. The results reveal that the dynamic responses such as the lateral displacement of the foundation and the section bending moment of the tubular piles increase substantially under the influence of the added-mass and hydrodynamic pressure of sea water. The method and conclusions presented in this paper can provide a theoretical reference for structure design and analysis of offshore wind turbines fixed in deep seawater.
Roll and pitch independently tuned interconnected suspension: modelling and dynamic analysis
NASA Astrophysics Data System (ADS)
Xu, Guangzhong; Zhang, Nong; Roser, Holger M.
2015-12-01
In this paper, a roll and pitch independently tuned hydraulically interconnected passive suspension is presented. Due to decoupling of vibration modes and the improved lateral and longitudinal stability, the stiffness of individual suspension spring can be reduced for improving ride comfort and road grip. A generalised 14 degree-of-freedom nonlinear vehicle model with anti-roll bars is established to investigate the vehicle ride and handling dynamic responses. The nonlinear fluidic model of the hydraulically interconnected suspension is developed and integrated with the full vehicle model to investigate the anti-roll and anti-pitch characteristics. Time domain analysis of the vehicle model with the proposed suspension is conducted under different road excitations and steering/braking manoeuvres. The dynamic responses are compared with conventional suspensions to demonstrate the potential of enhanced ride and handling performance. The results illustrate the model-decoupling property of the hydraulically interconnected system. The anti-roll and anti-pitch performance could be tuned independently by the interconnected systems. With the improved anti-roll and anti-pitch characteristics, the bounce stiffness and ride damping can be optimised for better ride comfort and tyre grip.
Rational design of aptazyme riboswitches for efficient control of gene expression in mammalian cells
Zhong, Guocai; Wang, Haimin; Bailey, Charles C; Gao, Guangping; Farzan, Michael
2016-01-01
Efforts to control mammalian gene expression with ligand-responsive riboswitches have been hindered by lack of a general method for generating efficient switches in mammalian systems. Here we describe a rational-design approach that enables rapid development of efficient cis-acting aptazyme riboswitches. We identified communication-module characteristics associated with aptazyme functionality through analysis of a 32-aptazyme test panel. We then developed a scoring system that predicts an aptazymes’s activity by integrating three characteristics of communication-module bases: hydrogen bonding, base stacking, and distance to the enzymatic core. We validated the power and generality of this approach by designing aptazymes responsive to three distinct ligands, each with markedly wider dynamic ranges than any previously reported. These aptayzmes efficiently regulated adeno-associated virus (AAV)-vectored transgene expression in cultured mammalian cells and mice, highlighting one application of these broadly usable regulatory switches. Our approach enables efficient, protein-independent control of gene expression by a range of small molecules. DOI: http://dx.doi.org/10.7554/eLife.18858.001 PMID:27805569
Sensitivity and network topology in chemical reaction systems
NASA Astrophysics Data System (ADS)
Okada, Takashi; Mochizuki, Atsushi
2017-08-01
In living cells, biochemical reactions are catalyzed by specific enzymes and connect to one another by sharing substrates and products, forming complex networks. In our previous studies, we established a framework determining the responses to enzyme perturbations only from network topology, and then proved a theorem, called the law of localization, explaining response patterns in terms of network topology. In this paper, we generalize these results to reaction networks with conserved concentrations, which allows us to study any reaction system. We also propose network characteristics quantifying robustness. We compare E. coli metabolic network with randomly rewired networks, and find that the robustness of the E. coli network is significantly higher than that of the random networks.
Order reduction of z-transfer functions via multipoint Jordan continued-fraction expansion
NASA Technical Reports Server (NTRS)
Lee, Ying-Chin; Hwang, Chyi; Shieh, Leang S.
1992-01-01
The order reduction problem of z-transfer functions is solved by using the multipoint Jordan continued-fraction expansion (MJCFE) technique. An efficient algorithm that does not require the use of complex algebra is presented for obtaining an MJCFE from a stable z-transfer function with expansion points selected from the unit circle and/or the positive real axis of the z-plane. The reduced-order models are exactly the multipoint Pade approximants of the original system and, therefore, they match the (weighted) time-moments of the impulse response and preserve the frequency responses of the system at some characteristic frequencies, such as gain crossover frequency, phase crossover frequency, bandwidth, etc.
Workshop on Advanced Technologies for Planetary Instruments, part 1
NASA Technical Reports Server (NTRS)
Appleby, John F. (Editor)
1993-01-01
This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. This volume contains papers presented at the Workshop on Advanced Technologies for Planetary Instruments on 28-30 Apr. 1993. This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. Over the past several years, SDIO has sponsored a significant technology development program aimed, in part, at the production of instruments with these characteristics. This workshop provided an opportunity for specialists from the planetary science and DoD communities to establish contacts, to explore common technical ground in an open forum, and more specifically, to discuss the applicability of SDIO's technology base to planetary science instruments.
Dynamic analysis of spiral bevel and hypoid gears with high-order transmission errors
NASA Astrophysics Data System (ADS)
Yang, J. J.; Shi, Z. H.; Zhang, H.; Li, T. X.; Nie, S. W.; Wei, B. Y.
2018-03-01
A new gear surface modification methodology based on curvature synthesis is proposed in this study to improve the transmission performance. The generated high-order transmission error (TE) for spiral bevel and hypoid gears is proved to reduce the vibration of geared-rotor system. The method is comprised of the following steps: Firstly, the fully conjugate gear surfaces with pinion flank modified according to the predesigned relative transmission movement are established based on curvature correction. Secondly, a 14-DOF geared-rotor system model considering backlash nonlinearity is used to evaluate the effect of different orders of TE on the dynamic performance a hypoid gear transmission system. For case study, numerical simulation is performed to illustrate the dynamic response of hypoid gear pair with parabolic, fourth-order and sixth-order transmission error derived. The results show that the parabolic TE curve has higher peak to peak amplitude compared to the other two types of TE. Thus, the excited dynamic response also shows larger amplitude at response peaks. Dynamic responses excited by fourth and sixth order TE also demonstrate distinct response components due to their different TE period which is expected to generate different sound quality or other acoustic characteristics.
Qin, Heng; Zuo, Yong; Zhang, Dong; Li, Yinghui; Wu, Jian
2017-03-06
Through slight modification on typical photon multiplier tube (PMT) receiver output statistics, a generalized received response model considering both scattered propagation and random detection is presented to investigate the impact of inter-symbol interference (ISI) on link data rate of short-range non-line-of-sight (NLOS) ultraviolet communication. Good agreement with the experimental results by numerical simulation is shown. Based on the received response characteristics, a heuristic check matrix construction algorithm of low-density-parity-check (LDPC) code is further proposed to approach the data rate bound derived in a delayed sampling (DS) binary pulse position modulation (PPM) system. Compared to conventional LDPC coding methods, better bit error ratio (BER) below 1E-05 is achieved for short-range NLOS UVC systems operating at data rate of 2Mbps.
Spectral characterization of the LANDSAT thematic mapper sensors
NASA Technical Reports Server (NTRS)
Markham, B. L.; Barker, J. L.
1983-01-01
Data collected on the spectral characteristics of the LANDSAT-4 and LANDSAT-4 backup thematic mapper instruments, the protoflight (TM/PF) and flight (TM/F) models, respectively, are presented and analyzed. Tests were conducted on the instruments and their components to determine compliance with two sets of spectral specifications: band-by-band spectral coverage and channel-by-channel within-band spectral matching. Spectral coverage specifications were placed on: (1) band edges--points at 50% of peak response, (2) band edge slopes--steepness of rise and fall-off of response, (3) spectral flatness--evenness of response between edges, and (4) spurious system response--ratio of out-of-band response to in-band response. Compliance with the spectral coverage specifications was determined by analysis of spectral measurements on the individual components contributing to the overall spectral response: filters, detectors, and optical surfaces.
Shimizu, Naoki; Wood, Scott; Kushiro, Keisuke; Yanai, Shuichi; Perachio, Adrian; Makishima, Tomoko
2014-01-01
The central vestibular system plays an important role in higher neural functions such as self-motion perception and spatial orientation. Its ability to store head angular velocity is called velocity storage mechanism (VSM), which has been thoroughly investigated across a wide range of species. However, little is known about the mouse VSM, because the mouse lacks typical ocular responses such as optokinetic after nystagmus or a dominant time constant of vestibulo-ocular reflex for which the VSM is critical. Experiments were conducted to examine the otolith-driven eye movements related to the VSM and verify its characteristics in mice. We used a novel approach to generate a similar rotating vector as a traditional off-vertical axis rotation (OVAR) but with a larger resultant gravito-inertial force (>1 g) by using counter rotation centrifugation. Similar to results previously described in other animals during OVAR, two components of eye movements were induced, i.e. a sinusoidal modulatory eye movement (modulation component) on which a unidirectional nystagmaus (bias component) was superimposed. Each response is considered to derive from different mechanisms; modulations arise predominantly through linear vestibulo-ocular reflex, whereas for the bias, the VSM is responsible. Data indicate that the mouse also has a well-developed vestibular system through otoliths inputs, showing its highly conserved nature across mammalian species. On the other hand, to reach a plateau state of bias, a higher frequency rotation or a larger gravito-inertial force was considered to be necessary than other larger animals. Compared with modulation, the bias had a more variable profile, suggesting an inherent complexity of higher-order neural processes in the brain. Our data provides the basis for further study of the central vestibular system in mice, however, the underlying individual variability should be taken into consideration. PMID:25446357
Holographic Floquet states I: a strongly coupled Weyl semimetal
NASA Astrophysics Data System (ADS)
Hashimoto, Koji; Kinoshita, Shunichiro; Murata, Keiju; Oka, Takashi
2017-05-01
Floquet states can be realized in quantum systems driven by continuous time-periodic perturbations. It is known that a state known as the Floquet Weyl semimetal can be realized when free Dirac fermions are placed in a rotating electric field. What will happen if strong interaction is introduced to this system? Will the interaction wash out the characteristic features of Weyl semimetals such as the Hall response? Is there a steady state and what is its thermodynamic behavior? We answer these questions using AdS/CFT correspondence in the N = 2 supersymmetric massless QCD in a rotating electric field in the large N c limit realizing the first example of a "holographic Floquet state". In this limit, gluons not only mediate interaction, but also act as an energy reservoir and stabilize the nonequilibrium steady state (NESS). We obtain the electric current induced by a rotating electric field: in the high frequency region, the Ohm's law is satisfied, while we recover the DC nonlinear conductivity at low frequency, which was obtained holographically in a previous work. The thermodynamic properties of the NESS, e.g., fluctuation-dissipation relation, is characterized by the effective Hawking temperature that is defined from the effective horizon giving a holographic meaning to the "periodic thermodynamic" concept. In addition to the strong (pump) rotating electric field, we apply an additional weak (probe) electric field in the spirit of the pump-probe experiments done in condensed matter experiments. Weak DC and AC probe analysis in the background rotating electric field shows Hall currents as a linear response, therefore the Hall response of Floquet Weyl semimetals survives at the strong coupling limit. We also find frequency mixed response currents, i.e., a heterodyning effect, characteristic to periodically driven Floquet systems.
Microgravity fluid management in two-phase thermal systems
NASA Technical Reports Server (NTRS)
Parish, Richard C.
1987-01-01
Initial studies have indicated that in comparison to an all liquid single phase system, a two-phase liquid/vapor thermal control system requires significantly lower pumping power, demonstrates more isothermal control characteristics, and allows greater operational flexibility in heat load placement. As a function of JSC's Work Package responsibility for thermal management of space station equipment external to the pressurized modules, prototype development programs were initiated on the Two-Phase Thermal Bus System (TBS) and the Space Erectable Radiator System (SERS). JSC currently has several programs underway to enhance the understanding of two-phase fluid flow characteristics. The objective of one of these programs (sponsored by the Microgravity Science and Applications Division at NASA-Headquarters) is to design, fabricate, and fly a two-phase flow regime mapping experiment in the Shuttle vehicle mid-deck. Another program, sponsored by OAST, involves the testing of a two-phase thermal transport loop aboard the KC-135 reduced gravity aircraft to identify system implications of pressure drop variation as a function of the flow quality and flow regime present in a representative thermal system.
Zhou, Shengxi; Yan, Bo; Inman, Daniel J
2018-05-09
This paper presents a novel nonlinear piezoelectric energy harvesting system which consists of linear piezoelectric energy harvesters connected by linear springs. In principle, the presented nonlinear system can improve broadband energy harvesting efficiency where magnets are forbidden. The linear spring inevitably produces the nonlinear spring force on the connected harvesters, because of the geometrical relationship and the time-varying relative displacement between two adjacent harvesters. Therefore, the presented nonlinear system has strong nonlinear characteristics. A theoretical model of the presented nonlinear system is deduced, based on Euler-Bernoulli beam theory, Kirchhoff’s law, piezoelectric theory and the relevant geometrical relationship. The energy harvesting enhancement of the presented nonlinear system (when n = 2, 3) is numerically verified by comparing with its linear counterparts. In the case study, the output power area of the presented nonlinear system with two and three energy harvesters is 268.8% and 339.8% of their linear counterparts, respectively. In addition, the nonlinear dynamic response characteristics are analyzed via bifurcation diagrams, Poincare maps of the phase trajectory, and the spectrum of the output voltage.
The High School Characteristics Index as an Individual and Aggregate Response Measure
ERIC Educational Resources Information Center
Tolsma, Robert J.; And Others
1976-01-01
The High School Characteristics Index (HSCI) is an instrument designed to measure environmental press. Measurement characteristics of the HSCI used to measure differences among the responses of individuals are contrasted with those obtained for the HSCI used to measure differences among aggregate group responses. (Author)
Nakaya, Helder I.; Clutterbuck, Elizabeth; Kazmin, Dmitri; Wang, Lili; Cortese, Mario; Bosinger, Steven E.; Patel, Nirav B.; Zak, Daniel E.; Aderem, Alan; Dong, Tao; Del Giudice, Giuseppe; Rappuoli, Rino; Cerundolo, Vincenzo; Pollard, Andrew J.; Pulendran, Bali; Siegrist, Claire-Anne
2016-01-01
The dynamics and molecular mechanisms underlying vaccine immunity in early childhood remain poorly understood. Here we applied systems approaches to investigate the innate and adaptive responses to trivalent inactivated influenza vaccine (TIV) and MF59-adjuvanted TIV (ATIV) in 90 14- to 24-mo-old healthy children. MF59 enhanced the magnitude and kinetics of serum antibody titers following vaccination, and induced a greater frequency of vaccine specific, multicytokine-producing CD4+ T cells. Compared with transcriptional responses to TIV vaccination previously reported in adults, responses to TIV in infants were markedly attenuated, limited to genes regulating antiviral and antigen presentation pathways, and observed only in a subset of vaccinees. In contrast, transcriptional responses to ATIV boost were more homogenous and robust. Interestingly, a day 1 gene signature characteristic of the innate response (antiviral IFN genes, dendritic cell, and monocyte responses) correlated with hemagglutination at day 28. These findings demonstrate that MF59 enhances the magnitude, kinetics, and consistency of the innate and adaptive response to vaccination with the seasonal influenza vaccine during early childhood, and identify potential molecular correlates of antibody responses. PMID:26755593
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lekov, Alex; Thompson, Lisa; McKane, Aimee
2009-05-11
This report summarizes the Lawrence Berkeley National Laboratory's research to date in characterizing energy efficiency and open automated demand response opportunities for industrial refrigerated warehouses in California. The report describes refrigerated warehouses characteristics, energy use and demand, and control systems. It also discusses energy efficiency and open automated demand response opportunities and provides analysis results from three demand response studies. In addition, several energy efficiency, load management, and demand response case studies are provided for refrigerated warehouses. This study shows that refrigerated warehouses can be excellent candidates for open automated demand response and that facilities which have implemented energy efficiencymore » measures and have centralized control systems are well-suited to shift or shed electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. Control technologies installed for energy efficiency and load management purposes can often be adapted for open automated demand response (OpenADR) at little additional cost. These improved controls may prepare facilities to be more receptive to OpenADR due to both increased confidence in the opportunities for controlling energy cost/use and access to the real-time data.« less
Hemodynamic and Thermal Responses to Head and Neck Cooling in Men and Women
NASA Technical Reports Server (NTRS)
Ku, Yu-Tsuan E.; Montgomery, Leslie D.; Carbo, Jorge E.; Webbon, Bruce W.
1995-01-01
Personal cooling systems are used to alleviate symptoms of multiple sclerosis and to prevent increased core temperature during daily activities. Configurations of these systems include passive ice vests and circulating liquid cooling garments (LCGs) in the forms of vests, cooling caps and combined head and neck cooling systems. However, little information is available oil the amount or heat that can be extracted from the body with these systems or the physiologic changes produced by routine operation of these systems. The objective of this study was to determine the operating characteristics and the physiologic change, produced by short term use of one commercially available thermal control system.
Nonlinear dynamic failure process of tunnel-fault system in response to strong seismic event
NASA Astrophysics Data System (ADS)
Yang, Zhihua; Lan, Hengxing; Zhang, Yongshuang; Gao, Xing; Li, Langping
2013-03-01
Strong earthquakes and faults have significant effect on the stability capability of underground tunnel structures. This study used a 3-Dimensional Discrete Element model and the real records of ground motion in the Wenchuan earthquake to investigate the dynamic response of tunnel-fault system. The typical tunnel-fault system was composed of one planned railway tunnel and one seismically active fault. The discrete numerical model was prudentially calibrated by means of the comparison between the field survey and numerical results of ground motion. It was then used to examine the detailed quantitative information on the dynamic response characteristics of tunnel-fault system, including stress distribution, strain, vibration velocity and tunnel failure process. The intensive tunnel-fault interaction during seismic loading induces the dramatic stress redistribution and stress concentration in the intersection of tunnel and fault. The tunnel-fault system behavior is characterized by the complicated nonlinear dynamic failure process in response to a real strong seismic event. It can be qualitatively divided into 5 main stages in terms of its stress, strain and rupturing behaviors: (1) strain localization, (2) rupture initiation, (3) rupture acceleration, (4) spontaneous rupture growth and (5) stabilization. This study provides the insight into the further stability estimation of underground tunnel structures under the combined effect of strong earthquakes and faults.
An ACC Design Method for Achieving Both String Stability and Ride Comfort
NASA Astrophysics Data System (ADS)
Yamamura, Yoshinori; Seto, Yoji; Nishira, Hikaru; Kawabe, Taketoshi
An investigation was made of a method for designing adaptive cruise control (ACC) so as to achieve a headway distance response that feels natural to the driver while at the same time obtaining high levels of both string stability and ride comfort. With this design method, the H∞ norm is adopted as the index of string stability. Additionally, two norms are introduced for evaluating ride comfort and natural vehicle behavior. The relationship between these three norms and headway distance response characteristics was analyzed, and an evaluation method was established for achieving high levels of the various performance characteristics required of ACC. An ACC system designed with this method was evaluated in driving tests conducted on a proving ground course, and the results confirmed that it achieved the targeted levels of string stability, ride comfort and natural vehicle behavior.
Optimal estimator model for human spatial orientation
NASA Technical Reports Server (NTRS)
Borah, J.; Young, L. R.; Curry, R. E.
1979-01-01
A model is being developed to predict pilot dynamic spatial orientation in response to multisensory stimuli. Motion stimuli are first processed by dynamic models of the visual, vestibular, tactile, and proprioceptive sensors. Central nervous system function is then modeled as a steady-state Kalman filter which blends information from the various sensors to form an estimate of spatial orientation. Where necessary, this linear central estimator has been augmented with nonlinear elements to reflect more accurately some highly nonlinear human response characteristics. Computer implementation of the model has shown agreement with several important qualitative characteristics of human spatial orientation, and it is felt that with further modification and additional experimental data the model can be improved and extended. Possible means are described for extending the model to better represent the active pilot with varying skill and work load levels.
Dynamics and controls in maglev systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Y.; Chen, S.S.; Rote, D.M.
1992-09-01
The dynamic response of magnetically levitated (maglev) ground transportation systems has important consequences for safety and ride quality, guideway design, and system costs. Ride quality is determined by vehicle response and by environmental factors such as humidity and noise. The dynamic response of the vehicles is the key element in determining ride quality, and vehicle stability is an important safety-related element. To design a proper guideway that provides acceptable ride quality in the stable region, vehicle dynamics must be understood. Furthermore the trade-off between guideway smoothness and the levitation and control systems must be considered if maglev systems are tomore » be economically feasible. The link between the guideway and the other maglev components is vehicle dynamics. For a commercial maglev system, vehicle dynamics must be analyzed and tested in detail. In this study, the role of dynamics and controls in maglev vehicle/guideway interactions is discussed, and the literature on modeling the dynamic interactions of vehicle/guideway and suspension controls for ground vehicles is reviewed. Particular emphasis is placed on modeling vehicle/guideway interactions and response characteristics of maglev systems for a multicar, multiload vehicle traveling on a single- or doublespan flexible guideway, including coupling effects of vehicle/guideway, comparison of concentrated and distributed loads, and ride comfort. Different control-law designs are introduced into vehicle suspensions when a simple two-degree-of-freedom vehicle model is applied. Active and semiactive control designs for primary and secondary suspensions do improve the response of vehicle and provide acceptable ride comfort. Finally, future research associated with dynamics and controls of vehicle/guideway systems is identified.« less
Comparison of air-charged and water-filled urodynamic pressure measurement catheters.
Cooper, M A; Fletter, P C; Zaszczurynski, P J; Damaser, M S
2011-03-01
Catheter systems are utilized to measure pressure for diagnosis of voiding dysfunction. In a clinical setting, patient movement and urodynamic pumps introduce hydrostatic and motion artifacts into measurements. Therefore, complete characterization of a catheter system includes its response to artifacts as well its frequency response. The objective of this study was to compare the response of two disposable clinical catheter systems: water-filled and air-charged, to controlled pressure signals to assess their similarities and differences in pressure transduction. We characterized frequency response using a transient step test, which exposed the catheters to a sudden change in pressure; and a sinusoidal frequency sweep test, which exposed the catheters to a sinusoidal pressure wave from 1 to 30 Hz. The response of the catheters to motion artifacts was tested using a vortex and the response to hydrostatic pressure changes was tested by moving the catheter tips to calibrated heights. Water-filled catheters acted as an underdamped system, resonating at 10.13 ± 1.03 Hz and attenuating signals at frequencies higher than 19 Hz. They demonstrated significant motion and hydrostatic artifacts. Air-charged catheters acted as an overdamped system and attenuated signals at frequencies higher than 3.02 ± 0.13 Hz. They demonstrated significantly less motion and hydrostatic artifacts than water-filled catheters. The transient step and frequency sweep tests gave comparable results. Air-charged and water-filled catheters respond to pressure changes in dramatically different ways. Knowledge of the characteristics of the pressure-measuring system is essential to finding the best match for a specific application. Copyright © 2011 Wiley-Liss, Inc.
NASA Technical Reports Server (NTRS)
Smetana, J.; Curren, A. N.
1979-01-01
The performance characteristics of the transmitter experiment package (TEP) aboard the Communications Technology Satellite (CTS) measured during its first 2 years in orbit are presented. The TEP consists of a nominal 200 watt output stage tube (OST), a supporting power processing system (PPS), and a variable conductance heat pipe system (VCHPS). The OST, a traveling wave tube augmented with a 10 stage depressed collector has an overall saturated average efficiency of 51.5 percent and an average saturated radio frequency (rf) output power at center band frequency of 240 watts. The PPS operated with a measured efficiency of 86.5 to 88.5 percent. The VCHPS, using three pipes to conduct heat from the PPS and the OST to a 52 by 124 centimeter radiator fin, maintained the PPS baseplate temperature below 50 C for all operating conditions. The TEP performance characteristics presented include frequency response, rf output power, thermal performance, and efficiency. Communications characteristics were evaluated by using both video and audio modulated signals. On four occasions, the TEP experienced temporary thermal control system malfunctions. The anomalies were terminated safely, and the problem was investigated because of the potential for TEP damage due to the signficant temperature increases. Safe TEP operating procedures were established.
Review of current status of smart structures and integrated systems
NASA Astrophysics Data System (ADS)
Chopra, Inderjit
1996-05-01
A smart structure involves distributed actuators and sensors, and one or more microprocessors that analyze the responses from the sensors and use distributed-parameter control theory to command the actuators to apply localized strains to minimize system response. A smart structure has the capability to respond to a changing external environment (such as loads or shape change) as well as to a changing internal environment (such as damage or failure). It incorporates smart actuators that allow the alteration of system characteristics (such as stiffness or damping) as well as of system response (such as strain or shape) in a controlled manner. Many types of actuators and sensors are being considered, such as piezoelectric materials, shape memory alloys, electrostrictive materials, magnetostrictive materials, electro- rheological fluids and fiber optics. These can be integrated with main load-carrying structures by surface bonding or embedding without causing any significant changes in the mass or structural stiffness of the system. Numerous applications of smart structures technology to various physical systems are evolving to actively control vibration, noise, aeroelastic stability, damping, shape and stress distribution. Applications range from space systems, fixed-wing and rotary-wing aircraft, automotive, civil structures and machine tools. Much of the early development of smart structures methodology was driven by space applications such as vibration and shape control of large flexible space structures, but now wider applications are envisaged for aeronautical and other systems. Embedded or surface-bonded smart actuators on an airplane wing or helicopter blade will induce alteration of twist/camber of airfoil (shape change), that in turn will cause variation of lift distribution and may help to control static and dynamic aeroelastic problems. Applications of smart structures technology to aerospace and other systems are expanding rapidly. Major barriers are: actuator stroke, reliable data base of smart material characteristics, non-availability of robust distributed parameter control strategies, and non-existent mathematical modeling of smart systems. The objective of this paper is to review the state-of-the-art of smart actuators and sensors and integrated systems and point out the needs for future research.
Farmers' preferences for automatic lameness-detection systems in dairy cattle.
Van De Gucht, T; Saeys, W; Van Nuffel, A; Pluym, L; Piccart, K; Lauwers, L; Vangeyte, J; Van Weyenberg, S
2017-07-01
As lameness is a major health problem in dairy herds, a lot of attention goes to the development of automated lameness-detection systems. Few systems have made it to the market, as most are currently still in development. To get these systems ready for practice, developers need to define which system characteristics are important for the farmers as end users. In this study, farmers' preferences for the different characteristics of proposed lameness-detection systems were investigated. In addition, the influence of sociodemographic and farm characteristics on farmers' preferences was assessed. The third aim was to find out if preferences change after the farmer receives extra information on lameness and its consequences. Therefore, a discrete choice experiment was designed with 3 alternative lameness-detection systems: a system attached to the cow, a walkover system, and a camera system. Each system was defined by 4 characteristics: the percentage missed lame cows, the percentage false alarms, the system cost, and the ability to indicate which leg is lame. The choice experiment was embedded in an online survey. After answering general questions and choosing their preferred option in 4 choice sets, extra information on lameness was provided. Consecutively, farmers were shown a second block of 4 choice sets. Results from 135 responses showed that farmers' preferences were influenced by the 4 system characteristics. The importance a farmer attaches to lameness, the interval between calving and first insemination, and the presence of an estrus-detection system contributed significantly to the value a farmer attaches to lameness-detection systems. Farmers who already use an estrus detection system were more willing to use automatic detection systems instead of visual lameness detection. Similarly, farmers who achieve shorter intervals between calving and first insemination and farmers who find lameness highly important had a higher tendency to choose for automatic lameness detection. A sensor attached to the cow was preferred, followed by a walkover system and a camera system. In general, visual lameness detection was preferred over automatic detection systems, but this preference changed after informing farmers about the consequences of lameness. To conclude, the system cost and performance were important features, but dairy farmers should be sensitized on the consequences of lameness and its effect on farm profitability. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Nguyen, Hoa T.; Stanton, Daniel E.; Schmitz, Nele; Farquhar, Graham D.; Ball, Marilyn C.
2015-01-01
Background and Aims Halophytic eudicots are characterized by enhanced growth under saline conditions. This study combines physiological and anatomical analyses to identify processes underlying growth responses of the mangrove Avicennia marina to salinities ranging from fresh- to seawater conditions. Methods Following pre-exhaustion of cotyledonary reserves under optimal conditions (i.e. 50 % seawater), seedlings of A. marina were grown hydroponically in dilutions of seawater amended with nutrients. Whole-plant growth characteristics were analysed in relation to dry mass accumulation and its allocation to different plant parts. Gas exchange characteristics and stable carbon isotopic composition of leaves were measured to evaluate water use in relation to carbon gain. Stem and leaf hydraulic anatomy were measured in relation to plant water use and growth. Key Results Avicennia marina seedlings failed to grow in 0–5 % seawater, whereas maximal growth occurred in 50–75 % seawater. Relative growth rates were affected by changes in leaf area ratio (LAR) and net assimilation rate (NAR) along the salinity gradient, with NAR generally being more important. Gas exchange characteristics followed the same trends as plant growth, with assimilation rates and stomatal conductance being greatest in leaves grown in 50–75 % seawater. However, water use efficiency was maintained nearly constant across all salinities, consistent with carbon isotopic signatures. Anatomical studies revealed variation in rates of development and composition of hydraulic tissues that were consistent with salinity-dependent patterns in water use and growth, including a structural explanation for low stomatal conductance and growth under low salinity. Conclusions The results identified stem and leaf transport systems as central to understanding the integrated growth responses to variation in salinity from fresh- to seawater conditions. Avicennia marina was revealed as an obligate halophyte, requiring saline conditions for development of the transport systems needed to sustain water use and carbon gain. PMID:25600273
Response Characteristics of a Stable Mixed Potential Ammonia Sensor in Simulated Diesel Exhaust
Ramaiyan, Kannan P.; Pihl, Josh A.; Kreller, Cortney R.; ...
2017-07-15
A mixed potential sensor using Au and Pt dense wire electrodes embedded between tape-casted layers of 8 mol% yttria stabilized zirconia (YSZ) was tested for application toward NH 3, NO, NO 2, C 3H 6 and C 3H 8. In single-gas testing, the sensor exhibited the highest response toward NH 3, while still exhibiting reasonably high sensitivity toward other interferent gases. We tested the sensor in a high-flow reactor at the National Transportation Research Center (NTRC) in order to simulate exhaust gas constituents and flow rates produced by lean-burn vehicles powered by Compression-Ignition Direct-Injection (CIDI), diesel engines. The sensor wasmore » characterized at 525 and 625°C for NH 3, CO, C 3H 6, C 3H 8, and NO x in a base gas composition of 10% O 2, 5% H 2O, and 5% CO 2 flowing at 15 slpm. The sensor exhibited fast response time equal to the response time of the system's switching valve (T90<0.6s). Furthermore, in simulations of overdosing a selective catalytic reduction (SCR) system, the sensor was able to selectively respond to 20ppm injections of NH 3 slip despite the presence of the interferent gas species at combined concentrations ten times higher than that of the NH 3. The laboratory sensor construct was transitioned to a pre-commercial, automotive stick sensor configuration that was demonstrated to retain the advantageous characteristics of the tape-cast device.« less
Response Characteristics of a Stable Mixed Potential Ammonia Sensor in Simulated Diesel Exhaust
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramaiyan, Kannan P.; Pihl, Josh A.; Kreller, Cortney R.
A mixed potential sensor using Au and Pt dense wire electrodes embedded between tape-casted layers of 8 mol% yttria stabilized zirconia (YSZ) was tested for application toward NH 3, NO, NO 2, C 3H 6 and C 3H 8. In single-gas testing, the sensor exhibited the highest response toward NH 3, while still exhibiting reasonably high sensitivity toward other interferent gases. We tested the sensor in a high-flow reactor at the National Transportation Research Center (NTRC) in order to simulate exhaust gas constituents and flow rates produced by lean-burn vehicles powered by Compression-Ignition Direct-Injection (CIDI), diesel engines. The sensor wasmore » characterized at 525 and 625°C for NH 3, CO, C 3H 6, C 3H 8, and NO x in a base gas composition of 10% O 2, 5% H 2O, and 5% CO 2 flowing at 15 slpm. The sensor exhibited fast response time equal to the response time of the system's switching valve (T90<0.6s). Furthermore, in simulations of overdosing a selective catalytic reduction (SCR) system, the sensor was able to selectively respond to 20ppm injections of NH 3 slip despite the presence of the interferent gas species at combined concentrations ten times higher than that of the NH 3. The laboratory sensor construct was transitioned to a pre-commercial, automotive stick sensor configuration that was demonstrated to retain the advantageous characteristics of the tape-cast device.« less
Hajal, Nastassia; Neiderhiser, Jenae; Moore, Ginger; Leve, Leslie; Shaw, Daniel; Harold, Gordon; Scaramella, Laura; Ganiban, Jody; Reiss, David
2015-01-01
This study examined genetic and environmental influences on harsh parenting of adopted 9-month-olds (N = 503), with an emphasis on positive child-, parent-, and family-level characteristics. Evocative gene-environment correlation (rGE) was examined by testing the effect of both positive and negative indices of birth parent temperament on adoptive parents' harsh parenting. Adoptive fathers' harsh parenting was inversely related to birth mother positive temperament, indicating evocative rGE, as well as to marital quality. Adoptive parents' negative temperamental characteristics were related to hostile parenting for both fathers and mothers. Findings support the importance of enhancing positive family characteristics in addition to mitigating negative characteristics, as well as engaging multiple levels of the family system to prevent harsh parenting. © 2015 The Authors. Child Development © 2015 Society for Research in Child Development, Inc.
Kroneman, Madelon W; van Essen, Gerrit A
2007-01-01
Background In Sweden, the vaccination campaign is the individual responsibility of the counties, which results in different arrangements. The aim of this study was to find out whether influenza vaccination coverage rates (VCRs) had increased between 2003/4 and 2004/5 among population at high risk and to find out the influence of personal preferences, demographic characteristics and health care system characteristics on VCRs. Methods An average sample of 2500 persons was interviewed each season (2003/4 and 2004/5). The respondents were asked whether they had had an influenza vaccination, whether they suffered from chronic conditions and the reasons of non-vaccination. For every county the relevant health care system characteristics were collected via a questionnaire sent to the medical officers of communicable diseases. Results No difference in VCR was found between the two seasons. Personal invitations strongly increased the chance of having had a vaccination. For the elderly, the number of different health care professionals in a region involved in administering vaccines decreased this chance. Conclusion Sweden remained below the WHO-recommendations for population at high risk due to disease. To meet the 2010 WHO-recommendation further action may be necessary to increase vaccine uptake. Increasing the number of personal invitations and restricting the number of different administrators responsible for vaccination may be effective in increasing VCRs among the elderly. PMID:17570837
Modeling the Colorado Front Range Flood of 2013 with Coupled WRF and WRF-Hydro System
NASA Astrophysics Data System (ADS)
Unal, E.; Ramirez, J. A.
2015-12-01
Abstract. Flash floods are one of the most damaging natural disasters producing large socio-economic losses. Projected impacts of climate change include increases in the magnitude and the frequency of flash floods all around the world. Therefore, it is important to understand the physical processes of flash flooding to enhance our capacity for prediction, prevention, risk management, and recovery. However, understanding these processes is ambitious because of small spatial scale and sudden nature of flash floods, interactions with complex topography and land use, difficulty in defining initial soil moisture conditions, non-linearity of catchment response, and high space-time variability of storm characteristics. Thus, detailed regional case studies are needed, especially with respect to the interactions between the land surface and the atmosphere. One such flash flood event occurred recently in the Front Range of the Rocky Mountains of Colorado during September 9-15, 2013 causing 10 fatalities and $3B cost in damages. An unexpected persistent and moist weather pattern located over the mountains and produced seven-day extreme rainfall fed by moisture input from the Gulf of Mexico. We used a coupled WRF-WRF-Hydro modeling system to simulate this event for better understanding of the physical process and of the sensitivity of the hydrologic response to storm characteristics, initial soil moisture conditions, and watershed characteristics.